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ABSTRACT 

 

In recent years, the urgent need to develop sustainable processes to fight the negative effects of 

climate change has gained global attention and has led to the transition into renewable energies. 

As renewable sources present a complex dynamic behavior, this has motivated a search of new 

ways to simulate and optimize processes more efficiently. One emerging area that has recently 

been explored is Reinforcement learning (RL), which has shown promising results for different 

chemical engineering applications. Although recent studies on RL applied to chemical engineering 

applications have been performed in different areas such as process design, scheduling, and 

dynamic optimization, there is a need to explore further these applications to determine their 

technical feasibility and potential implementation in the chemical and manufacturing sectors. An 

emerging area of opportunity to consider is biological systems, such as Anaerobic Digestion 

Systems (AD). These systems are not only able to reduce waste from wastewater, but they can also 

produce biogas, which is an attractive source of renewable energy.  

 

The aim of this work is to test the feasibility of a RL algorithm referred to as Deep Deterministic 

Policy Gradient (DDPG) to two typical areas of process operations in chemical engineering, i.e., 

process control and process design and control. Parametric uncertainty and disturbances are 

considered in both approaches (i.e., process control and integration of process and control 

design). The motivation in using this algorithm is due to its ability to consider stochastic features, 

which can be interpreted as plant-model mismatch, which is needed to represent realistic 

operations of processes.  

In the first part of this work, the DDPG algorithm is used to seek for open-loop control actions that 

optimize an AD system treating Tequila vinasses under the effects of parametric uncertainty and 
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disturbances. To provide a further insight, two different AD configurations (i.e., a single-stage and 

a two-stage system) are considered and compared under different scenarios. The results showed 

that the proposed methodology was able to learn an optimal policy, i.e., the control actions to 

minimize the organic content of Tequila in the effluents while producing biogas. However, further 

improvements are necessary to implement this DDPG-based methodology for online large-scale 

applications, e.g., reduce the computational costs.  

The second part of this study focuses on the development of a methodology to address the 

integration of process design and control for AD systems. The objective is to optimize an economic 

function with the aim of finding an optimal design while taking into account the controllability of 

the process. Some key aspects of this methodology are the consideration of stochastic disturbances 

and the ability to combine time-dependent and time-independent actions in the DDPG. The same 

two different reactor configurations considered in the optimal control study were explored and 

compared in this approach. To account for constraints, a penalty function was considered in the 

formulation of the economic function. The results showed that there are different advantages and 

limitations for each AD system. The two-stage system required a larger investment in capital costs 

in exchange of higher amounts of biogas being produced from this design. On the other hand, the 

single-stage AD system required less investment in capital costs in exchange of producing less 

biogas and therefore lower profits than the two-stage system. Overall, the DDPG was able to learn 

new control paths and optimal designs simultaneously thus making it an attractive method to 

address the integrated design and control of chemical systems subject to stochastic disturbances 

and parametric uncertainty. 
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CHAPTER 1 

Introduction 

Nowadays, the pollution levels combined with current global market demands have led industries 

to implement and improve sustainable processes to fight climate change. Therefore, renewable 

sources have been positioned as a key player in the transition into more sustainable processes. One 

of the clean technologies that has been extensively studied is anaerobic digestion (AD) systems, 

which are one of the leading biochemical conversion technologies commonly applied for organic 

waste valorization(Sikarwar et al., 2021). This process can simultaneously reduce organic matter 

content and generate biogas (a gas mixture mainly composed of methane), thus making it quite 

attractive for large-scale applications. To operate an AD process efficiently, it is necessary to tackle 

the problem of plant-model mismatch, which is common in AD systems since this process is 

subject to external disturbances and model parameter uncertainty. Plant-model mismatch may lead 

to inaccurate estimations of operating conditions and dynamically infeasible designs if the models 

assume perfect knowledge of key process parameters and inputs, i.e., it ignores the effects of 

external perturbations or parametric uncertainty. In AD systems, plant-model mismatch is often 

observed as disturbances in the substrate load whereas uncertainty in the kinetic parameters are 

key factors affecting the performance of these systems. Typically, disturbances are assumed to 

follow a deterministic profile; however, the disturbance profiles in a real setting are often subject 

to random realizations thus making these external variables stochastic in nature. One potential 

technique to consider these stochastic features is Reinforcement Learning, which has been recently 

gaining interest for different chemical engineering applications.  

e.g., planning and scheduling, (Arai et al., 2000), real-time optimization (Powell et al., 2020), batch 

bioprocesses optimization (Petsagkourakis et al., 2020b), and dynamic optimization (MacHalek et 
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al., 2020). 

RL is an iterative learning process where an agent decides a sequence of actions in order to 

maximize a reward. The purpose of RL is to learn policies, i.e., actions that lead optimal solutions. 

Recently, RL has presented several improvements, such as AlphaGo, a computer program that 

defeated a world champion player of Go, a complex Chinese game (Silver et al., 2016). Since then, 

multiple algorithms have applied the basis of AlphaGo to create new and efficient RL algorithms, 

such as PPO (Schulman et al., 2017) and TRPO (Schulman et al., 2015) and TD3( (Dankwa & 

Zheng, 2019). Among the RL algorithms, the present study focuses on one method referred to as 

Deep Deterministic Policy Gradient (DDPG). This algorithm can describe high dimensional 

systems, it has an inherent stochastic nature, and can solve continuous action control problems 

(Yoo, Kim, et al., 2021). To the author’s knowledge, the application of DDPG for chemical 

systems is very limited. Hence, there is an incentive to explore the application of this RL algorithm 

to systems that exhibit different complex dynamic behavior, such as the AD process considered in 

this study. As AD systems are prone to suffer from model uncertainty due to their kinetic 

parameters and external disturbances in the loading of the process, these stochastic features make 

RL a potential technique to deal with the controllability of AD systems. The two most common 

reactor configurations for AD systems are the single-stage system, where there is just one digester 

for the process, and the two-stage system, where two different reactors are used to separate the 

microorganisms to enhance their growth. Various studies have indicated that two-stage AD 

systems promote a better environment for microbial growth and thus, more biogas can be produced 

from those systems. However, other studies have indicated that the performance of an AD system 

is mostly influenced by the operational conditions and the types of substrates treated (Schievano 

et al., 2014). To provide further insight, the present study will discuss the performance between 
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these two typical reactor configurations for AD systems. 

Typically, the operating conditions are strongly correlated to the design of a process, which is often 

obtained from steady state considerations. However, multiple studies have suggested that 

developing a simultaneous process design and control framework can improve process 

sustainability (Bahakim & Ricardez-Sandoval, 2014; Palma-Flores & Ricardez-Sandoval, 2022; 

Sharifzadeh, 2013) . Although different methodologies addressing an integrated process design 

and control have shown promising results, each study have addressed specific challenges; thus, a 

general methodology for integrated process design and control is not currently available (Rafiei & 

Ricardez-Sandoval, 2020a). As DDPG can deal with high dimensional systems under stochastic 

conditions, this work aims to explore the feasibility of this approach to perform the integration of 

process design and control for dynamic systems. To the author’s knowledge, the study from 

(Sachio et al., 2021) is the only contribution that has proposed a RL-based methodology for process 

design and control applications.  In that study, a bi-level mixed-integer nonlinear program was 

split into two problems: a design problem and a control problem; optimal control is computed by 

using RL, which is later embedded into the optimal design problem; parametric uncertainty was 

not considered in that study. Consequently, there is a need to provide further insights on the 

potential of this method to address the optimal design and control of large-scale dynamic systems. 

In addition, process design and control considerations have not been explored for AD applications, 

representing another gap in the existing literature. 
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1.1.- Research objectives 

The aim of this study is to explore the feasibility of a model-free RL algorithm applied to two 

different AD system configurations to treat Tequila vinasses using a Deep Deterministic Policy 

Gradient (DDPG) (Lillicrap et al., 2015). Two studies will be developed; in the first study, the 

algorithm DDPG is used to search for optimal process control profiles for these systems. In the 

second study, the DDPG algorithm will be used for a simultaneous process design and control 

approach. Additionally, the present study compares the performance of the AD systems using a 

single-stage and a two-stage reactor configurations under different scenarios involving 

disturbances and model parameter uncertainty. The specific objectives of the present study are as 

follows: 

• Develop a DDPG-based approach to search for optimal open-loop control actions that 

minimize the chemical oxygen demand (COD) of Tequila vinasses under disturbances and 

uncertainties in the system parameters.   

• Develop a DDPG-based approach that simultaneously searches for optimal open-loop 

control actions and a process design that maximizes the annual profits of an AD process 

treating Tequila vinasses under stochastic disturbances and parametric uncertainty.    

To the author's knowledge, the application of the algorithm DDPG for control or simultaneous 

design and control of AD systems for Tequila vinasses has not been explored in the literature. The 

aim of this work pursues to contribute to the current literature in the following aspects: 

• Consideration of AD systems treating tequila vinasses in closed-loop using RL 

applications, and 
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• a new RL-based methodology to address the integration of process design and control of 

dynamic systems subject to stochastic disturbances and model uncertainty. 

 

1.2.- Outline of this study  

The thesis is structured as follows: 

 Chapter 2: In this section, a discussion and review of the general state of the art of the literature 

using RL for process control and process design and control is provided. Necessary background 

concepts are described in this chapter to facilitate comprehension of the key topics covered in this 

research and to identify the key gaps in the existing literature related to the topics of this research 

study. 

 Chapter 3: This chapter presents a robust control framework under parametric uncertainty and 

disturbances using an actor-critic model algorithm (i.e., DDPG). Different scenarios using two 

different AD configurations are tested and considered in the analysis. The results showed that the 

proposed DDPG framework was able to learn optimal policies to minimize the organic content 

matter while producing biogas. The outcomes of this chapter have been disseminated in a journal 

publication  

 Chapter 4: This chapter presents a DDPG-based framework for integration of design and control 

subject to stochastic disturbances and parametric uncertainty. The combination of time-dependent 

and time-independent variables were considered for the actions of DDPG, which is a key feature 

introduced in this work. To add a more realistic representation of a chemical process, parametric 

uncertainty combined with stochastic disturbances were considered. To deal with process 

constraints, penalty functions were added to the reward function in the DDPG algorithm. Results 

showed different advantages and limitations between the two AD configurations. In general, 
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higher concentrations of biogas resulting in higher plant profits were observed for the two-stage 

AD system.  

 Chapter 5: This chapter presents the main conclusions drawn from this study and suggestions for 

future lines of research. 
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CHAPTER 2 

Literature review 

This chapter presents the current state-of-the-art involving the application of reinforcement 

learning algorithms in process control and integration of process design and control. This 

literature review has been performed to clarify the scope of the present work and to better 

outline their contributions to this emerging area in process systems engineering. To have a 

better understanding of these topics, some conceptual framework is explained in this section. 

This chapter begins with section 2.1, where a description of the relationship between 

reinforcement learning and chemical engineering is provided; section 2.2 discusses the role 

of RL and the current state-of-the-art studies of RL-based methodologies in process control; 

section 2.3 provides a general description of neural networks (NNs); section 2.4 provides a 

description of AD systems and current advances in these systems in terms of process 

operations and management. A summary of this chapter is provided at the end. 

 

2.1.- Reinforcement learning and chemical engineering  

Due to the impacts of climate change, pollution prevention and waste minimization have become 

of utmost importance in the industrial operation of chemical processes. Likewise, renewable 

resources have become the centerpiece in fighting climate change, and several industries are 

considering the transition into cleaner technologies. However, turning into renewable sources 

requires more efficient and sustainable processes. In addition, designing and operating these types 

of processes is a challenge as these systems have a complex dynamic behavior that is often subject 

to external disturbances and uncertainty, which often makes the models computationally 

intractable. Similarly, the growing demand for globalized and customized products adds more 
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challenges to process operations, which is an area in engineering that plays a key role in developing 

sustainable processes. To develop sustainable processes, optimization is needed to specify the 

operating points that result in most profitable and environmentally friendly operation (Edgar et al., 

2001); accordingly, accurate models are needed to provide truly implementable and attractive 

solutions for these processes. Throughout the history of chemical engineering, mathematical 

modelling has been of major influence on to design and control chemical processes. One emerging 

approach to modelling complex dynamic systems is machine learning (ML), which can be defined 

as a method of data analysis that uses statistical models that are able to learn from experience and 

explore new trajectories without the need to use classical dynamic programming methods (el Naqa 

et al., 2015). Although ML was not suitable for chemical engineering applications a few decades 

ago due to limitations, several improvements in ML have been recently made, thus enabling its 

potential for modelling complex systems in chemical engineering. Some reasons behind the 

previous limitations were the limited computational power, lack of data accessibility and lack of 

efficient programming environments (Schweidtmann et al., 2021). As the computing resources 

have become more compelling and there is free, open-source ML software publicly available (e.g., 

Pytorch and TensorFlow), a wide range of possibilities to explore possible applications in chemical 

engineering have emerged. Recently, ML algorithms have been rapidly developed with several 

advanced innovations in Artificial Intelligence, such as AlphaGo*, the first computer program that 

can outperform the most professional human players (Silver et al., 2016). The success behind 

AlphaGo relies on Reinforcement Learning, which is an area of machine learning that can be 

described as a sequential learning process, where a model interacts with an environment, executes 

actions, receives feedback, and executes a new action based on the observations from the feedback 

(Sutton and Barto, 2018). Another motivation for using RL is its stochastic nature, as it considers 
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noise while executing the actions. This feature makes it attractive for systems with complex 

dynamic behavior, i.e., when the model is subject to uncertainty or disturbances, as it could account 

for the plant-model mismatch.  

RL can be considered as a sequential decision-making process, which is a type of problem that is 

commonly present in chemical process operations. The aim of process operations is the 

management and use of material, energy, human, capital, and information resources to produce 

selected products in a reliable, safe, flexible, and cost-efficient as rapidly as possible in an 

environmentally engaged manner (Edgar et al., 2001). Traditionally, process operations are 

optimized hierarchically and solved independently for each decision layer. As depicted in Figure 

2.1, the hierarchy illustrates the information flow and the specific time scale for each layer.  

 

 

Fig. 2.1.-The five levels for process manufacturing.  

 

Decision-making problems involving time and spatial decisions can be solved using dynamic 
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optimization methods. As there is a certain resemblance between RL behavior and decision-

making problems in process operations, there is a need to explore the potential behind RL to 

address problems in chemical engineering. Some recent RL studies have shown promising 

results in different chemical engineering applications, such as process scheduling (Hubbs et 

al., 2020; Mowbray et al., 2022; Waschneck et al., 2018), dynamic optimization (Boulesnane 

& Meshoul, 2021; MacHalek et al., 2020; Petsagkourakis et al., 2020a), renewable energy 

systems (Mendiola-Rodriguez & Ricardez-Sandoval, 2022; Rangel-Martinez et al., 2021; 

Zhang et al., 2019), optimization of reactions (Lan & An, 2021; Neumann & Palkovits, 2022; 

Zhou et al., 2017), process design (Sachio et al., 2021), among others.  

The aim of this work is to develop a DDPG-based methodology applied to two different areas 

of process operations, i.e., process control and integration of process design and control. 

Hence, this chapter will focus on these two aspects. A deep review of the current advances 

in each of these areas is described next. 

 

2.2.-Reinforcement learning in process control 

RL has recently gained interest in process control applications, and thusly, RL-based approaches 

for chemical engineering applications have been developed over the last years; different algorithms 

have been tested, such as DDPG (Lillicrap et al., 2015), PPO (Schulman et al., 2017) and TRPO 

(Schulman et al., 2015). As shown in Table 2.1, these frameworks achieved optimal policies and 

met the operational requirements. These promising results show that RL can play a key role in 

industrial process control in the coming years. Although the feasibility of RL has been explored in 

different applications of process control, e.g., hydraulic fracturing (Bangi & Kwon, 2021), zinc 

electrowinning processes (Shi et al., 2020) and semi-batch polymerization reactions (Yoo et 
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al.,2021), there is a gap for RL applications in Anaerobic Digestion systems; hence, this represents 

one contribution in the present study. Another gap identified is the lack of consideration of 

parametric uncertainty in the analysis of control systems using RL methods, which represents 

another contribution of the current work. Adding uncertainty to the problem increases its 

complexity; thus, more training is required by the RL algorithm. This point will be further 

discussed in chapter 3. Table 2.1 provides a list of some prominent studies that have presented RL-

based methodologies for process control applications.  

Table 2.1.- Reinforcement learning algorithms for process control.  

Authors Contribution 

(Shi et al., 2020) A DDPG learning controller was applied to zinc electrowinning 

processes, which exhibited better results than traditional controllers 

such as PI and MPC. 

(Bangi & Kwon, 2021) RL controller based on DDPG was implemented to handle hydraulic 

fracturing to obtain an adequate proppant concentration, and fast 

learning was observed. 

(Yoo, Kim, et al., 2021) A controller using DDPG for a semi-batch polymerization reaction. 

That study showed that the controller could learn even with random 

noise in the environment; parametric uncertainty was not considered 

in that study. 

(Quah et al., 2020) The algorithm PPO performed slightly better (profits and CPU time) 

when compared to the PSO algorithm. Nevertheless, PPO was easier 

to implement as it required less training data.   

(Seo et al., 2021) Developed a based predictive controls scheme by using a DNN and a 

PPO agent. When comparing this scheme to traditional approaches 

such as scheduling or the MPC method, the RL controller 

outperformed the conventional approaches.  

(Zheng et al., 2021) They proposed a RL control scheme to eliminate vortex-induced 

vibration of a cylinder. The framework was a soft actor-critical 

algorithm (SAC) and open-source software in the environment 

(OpenFOAM). The control requirements were met.   

(Zhu et al., 2021) A SAC-based controller was developed and met the specified target 

conditions. The controller obtained accurate results between the data 

obtained and the current optimal operating conditions.  

(Dogru et al., 2021) An A3C (Asynchronous Advantage Actor-Critic) controller was able 

to track an interface between two liquids under uncertainty for 

applications in the oil sands industry.  
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2.3.-Process and control design  

As mentioned above, this work also focuses on process design and control. This section provides 

some background information for the integration of process and control design. A review of the 

main studies in process and control design is provided below.  

Traditionally, the layers of process design and process control from the business manufacturing 

flowsheet depicted in Fig. 1 are solved sequentially. Although solving the layers separately may 

lead to promising economic solutions, there is no guarantee to achieve those optimal solutions 

during operation as some assumptions made during the stage design assume ideal conditions, e.g., 

transients are ignored in the sequential approach. Therefore, a key factor to consider in the early 

design stages is process dynamics. (LA-Ricardez-Sandoval, 2008; Rafiei & Ricardez-Sandoval, 

2020b; Tian et al., 2021; Vega et al., 2014; Yuan et al., 2012)  

An integrated design and control approach can be defined as the activity of incorporating both 

dynamic controllability and steady-state economics. This is particularly challenging as there are 

some inherent conflicts between dynamic performance (flexibility/disturbance rejection) and 

efficiency (steady-state economics). Nowadays, current research has justified the integrated 

framework by developing studies with potential designs with process dynamics, higher profits, 

and better operability of the process (Bernal et al., 2018; Flores-Tlacuahuac & Biegler, 2007a; 

Oyama & Durand, 2020; Palma-Flores & Ricardez-Sandoval, 2022b; Patilas & Kookos, 2021; 

Porru & Özkan, 2019; Tian et al., 2021; Toffolo & Ricardez-Sandoval, 2021). Table 2.2 provides 

a list of some prominent studies that have presented methodologies for the integration of design 

and control.  
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Table 2.2.- Studies with simultaneous design and control methodologies.   

(Mohideen et al., 1996) A unified framework using a robust stability criterion to solve a 

mixed-integer stochastic optimal control problem.  

(Flores-Tlacuahuac & 

Biegler, 2007b) 

A simultaneous dynamic optimization approach was implemented for 

a problem with relatively few integer variables and large NLP 

problems. 

(Alvarado-Morales et 

al., 2010) 

An integrated process design and controller design (IPDC) and a 

process-group contribution approach were presented.  

(Sánchez-Sánchez & 

Ricardez-Sandoval, 

2013) 

Process and control design of dynamic systems under uncertainty is 

addressed through a simultaneous approach of dynamic feasibility 

and dynamic flexibility in a single optimization formulation.  

(Trainor et al., 2013) Stability and robust feasibility analysis are considered 

simultaneously for a framework to address convex mathematical 

problems. The methodology does not require the solution of an 

MINLP. 

(Mansouri et al., 2016) An integrated design and control method for reactive distillation 

processes is represented as a binary system. Different algorithms 

based on the element concept are considered in this method. An 

optimal design-control solution was obtained, and the study 

considered disturbances in the feed. 

(Bansal et al., 2003) A formulation based on generalized Benders' decomposition 

principles. This approach is independent of the solving method for 

the primal dynamic optimization problem. 

(Bahakim & Ricardez-

Sandoval, 2014) 

A stochastic-based simultaneous design and control framework is 

developed. The dynamic variability of the system is determined using 

a stochastic-based worst-case variability index, which is computed 

from the PDF (assumed Gaussian) of the worst-case variability index. 

Flexibility in the design stage is considered a trade-off between 

attractive economical solutions and stable conventional designs.  

(Diangelakis et al., 

2017) 

A PAROC framework that addresses design and control problems 

through multi-parametric programming.  

(Meidanshahi & 

Adams, 2016) 

An integrated design and control framework for a semicontinuous 

distillation system. The MIDO problem formulation is addressed via 

the deterministic outer approximation method by using a built-in 

optimization package of gPROMS.  

(Koller et al., 2018) A back-off methodology for integration of design and control, and 

scheduling under stochastic realizations in the disturbances of a 

multiproduct CSTR system. Using Monte Carlo sampling to generate 

random realizations. The effect of stochastic disturbances and 

uncertainties is approximated by a flexibility analysis incorporating 

back-off terms. 

(Rafiei & Ricardez-

Sandoval, 2018) 

Methodology based on the back-off to address a simultaneous design 

and control problem. The main idea is to simulate the confidence 

interval of process constraints by the usage of power series expansion 
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(PSE)-based functions, which are designed by Monte Carlo sampling. 

This approach considers stochastic descriptions in disturbances and 

parametric uncertainty in a wastewater treatment plant.  

(de Carvalho & Alvarez, 

2020) 

Infinite horizon model predictive control is the basis of the 

methodology. The problem is divided into three stages that are solved 

by goal attainment and quadratic cost techniques. This methodology 

outperformed the traditional sequential configurations.  

(Rafiei & Ricardez-

Sandoval, 2020c) 

The Trust region method is considered to address optimal process 

design for a large-scale system under uncertainty. PSE is used as a 

surrogate model to reduce the complexity of the problem.   

(Sachio et al., 2021) A bi-level MIDO is solved through a RL-based controller and 

mathematical programming. The outer optimization addresses the 

design problem while the inner optimization is solved through a 

Policy Gradient Algorithm.  

(Palma-Flores & 

Ricardez-Sandoval, 

2022) 

An NMPC-based framework that results in a bilevel optimization. A 

classical KKT transformation is used to transform the problem into a 

single-level dynamic optimization problem.  

 

As shown in Table 2.2., these frameworks presented different methodologies to address the design 

and control problem for different case studies. Nonetheless, very few studies have considered 

disturbances defined as time-varying random events. Some studies that have considered stochastic 

disturbances are (Bahakim & Ricardez-Sandoval, 2014; Koller et al., 2018; Rafiei & Ricardez-

Sandoval, 2018). As these stochastic inputs can take random (unknown) values at any time t, the 

problem becomes a stochastic infinite-dimensional, which is prone to be computationally 

demanding. Therefore, there is a need to develop approaches that can take into consideration 

stochastic disturbances, which is a key motivation for the present research work. With this in mind, 

stochastic disturbances are considered in this work, contributing to this limited area in the literature 

for integration of design and control.  

Although the area of simultaneous design and control has been studied since the 1960s, there is a 

lack of studies on its application in reinforcement learning. As shown in Table 2.2., the study from 

Sachio et al., (2021) has been the only work that has applied RL to address simultaneous design 

and control. The methodology proposed in that work used a policy gradient method for the outer 
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optimization and was tested in two small case studies obtaining promising results. Thus, there is a 

need to explore the feasibility of more RL algorithms, and this represents a novelty in the present 

study. Another contribution of the present research study is the fact that the methodology considers 

solving the entire process design and control problem through the DDPG-based framework; this 

is done by solving an economic function that enforces constraints within the same function. This 

will be discussed in detail in Chapter 3.  

The Deep Deterministic Policy Gradient belongs to a class of RL algorithms called Actor-Critic 

(AC) models, where the main feature is the synergy of two different DNNs, one for action 

prediction (called actor-network) and another referred to as critic-network that aims to evaluate 

the predicted action through a Q-value. To improve stability to the algorithm, DDPG also includes 

a target DNN for the actor and a target DNN for the critic. A detailed description of the algorithm 

will be provided in chapter 3. As the architecture of the proposed algorithm DDPG consists of 4 

Deep Neural Networks (DNNs), it is important to provide a general description of the performance 

of a neural network (NN). This will be discussed in the next section.  

 

2.4.-Neural networks and their training  

A neural network is a system approximator with interconnected nodes that aims to recognize 

relationships between the input data. It is inspired by the learning process of the human brain, 

imitating how the biological cells pass information by synapses. Neural networks have the 

advantage of being able to detect complex nonlinear relationships between variables (Tu, 1996); 

hence, they are good approximators. The main components of a neural network are the neuron and 

the activation function. The input layer receives the states (represented as x1, x2…xm in Fig. 2.2), 

where m is the total number of elements in the input layer, then the information is passed through 
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hidden layers to obtain an output layer. The hidden layers aim to determine the relationship 

between inputs and outputs (Morán et al., 2017).  

  

Fig. 2.2.- Schematic representation of a NN. 

The values calculated in the hidden layers are passed to the next layer. The number of hidden 

layers depends on the complexity of the problem under consideration. As depicted in Fig 2.2, 

inside a neuron, the weighted sum of the weights w1, w2… wm and biases 𝑏𝑖 across the set "i", 

∀𝑖 ∈ {1, … , 𝑚} are calculated, and then it is multiplied by an activation function 𝜕, which is a 

function assigned to a neuron that decides the signal that will be passed as the output of the neuron 

(represented as y). The most used activation functions in chemical engineering applications are the 

rectified linear unit, sigmoidal transfer function, and the hyperbolic tangent function. The rectified 

linear unit function (also known as ReLu) thresholds values at 0, i.e., it outputs 0 when the inputs 

are negative values; this function is widely used in convolutional NN. The sigmoid function exists 

between the range [0,1], it is differentiable, and its output is interpreted as a probability function. 

Thus, this function is commonly used for NNs regression. Moreover, the hyperbolic tangent 

activation function (also known as tanh) takes inputs that are negative, neutral, and positive. 

However, this function requires a significant computational effort due to the exponential terms 

involved in the function (Cavalcanti et al., 2021). 
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The training of an artificial neural network consists of the adjustment of all the weights such that 

they provide accurate output predictions. The weights and the biases are the neural network 

parameters. From the same analogy of a NN imitating the human brain, the NN parameters could 

be seen as the assigned weights from the sensors of the synapses. When the weights and the biases 

are adjusted, this can be interpreted as how much the states (input layer) change. The adjustment 

of the parameters decides to what extent/proportion the signal is passed along the neuron. To train 

the weights and biases, an error calculation between the output value predicted by the NN and the 

target value is performed. For the updating process of the weights, the algorithm of 

backpropagation is considered (Rumelhart et al., 1986). Traditional backpropagation algorithms 

use gradient descent to minimize the error. To know to which extent the parameters should be 

modified, the computation of the gradients with respect to 𝑤𝑖  and 𝑏𝑖 are estimated. Generally, at 

the beginning of the training process, the weights and the biases of the NN are generated randomly, 

and once the training continues, 𝑤𝑖  and 𝑏𝑖 are constantly updated until the error is minimized.  

A neural network that involves multiple layers is referred to as a deep neural network (DNN). As 

mentioned above, the specific performance of DDPG and how DNNs are used in this framework 

is discussed in chapter 3.  
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2.5.- Anaerobic digestion systems 

As the world's population is rapidly increasing, the problem of wastewater management becomes 

a threat. Renewable energy systems are therefore of utmost importance to diminish the increasing 

levels of water pollution. Bioenergy is one class of renewable energy generated from living 

organisms or their bioproducts that plays an essential role in decarbonizing energy systems. An 

attractive alternative is biochemical conversion processes, which transform organic material into 

valuable fuels such as biogas and bioethanol using microorganisms (Singh & Olsen, 2011).  

Among the different biochemical conversion technologies, the present work focuses on anaerobic 

digestion systems, which aim to reduce organic content in wastewater while producing biogas. 

Organic matter content in wastewater is usually measured by the COD, which estimates the 

concentration of dissolved oxygen required for the organic to be oxidated. A high COD 

concentration may lead to dangerous environmental consequences as it can consume dissolved 

oxygen from water bodies. A common consequence of high COD is the disturbance of aquatic life, 

affecting marine diversity and affecting human health via its consumption (Chukwu, 2008).  

Biogas is a flexible renewable energy source that can potentially substitute fossil fuels such as 

natural gas. Moreover, the digestate is the waste stream from AD, mainly composed of a 

concentrated agricultural complex that can be potentially used as fertilizer (Nkoa, 2013). Some of 

the main operational and economic advantages of AD are lower amounts of nutrients required for 

microbial growth compared to aerobic systems, small reactor volumes and low energy inputs. 

Likewise, AD can be widely applicable to different substrates that emerge in industrial organic 

wastewater (Kleerebezem et al., 2003), agriculture (Merlin et al., 2021), food waste (Zhang et al., 

2007), and municipal solid waste (Hartmann & Ahring, 2005).  
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Fig. 2.3.- Scheme representation of an AD system.  

 

The AD process often involves the following steps: hydrolysis, acidogenesis, acetogenesis and 

methanogenesis. The main groups of microorganisms involved in AD are acidogenic and 

methanogenic bacteria (as depicted in Fig. 2.3) The most conventional digester configuration 

consists of a single reactor where all the reactions involving these steps take place (Ahring et al., 

2003 ). Méndez-Acosta et al., (2010) suggested a single-stage treatment for a lab-scale AD system 

to treat Tequila vinasses. Wan et al., (2013) also indicated a single-stage AD configuration to treat 

food waste. Several studies have also suggested that a two-stage structure (one reactor for the 

acidogenic stage and another one for the methanogenic stage) allows the development of 

appropriate conditions for the different microbial communities and increases the methane yield 

and stability of the process (Aslanzadeh et al., 2014; Bouallagui et al., 2004; Liu et al., 2002; Yang 

et al., 2003). Although the two-stage reactor configuration has been suggested to offer better 
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performance (i.e., higher biogas yields at low COD), some studies suggest that a two-stage 

structure may not be suitable for all types of substrates. Schievano et al., (2014) reported a similar 

performance regarding biomethane generation for the two-reactor configuration and the single-

stage reactor treating maize silage, waste rice flour, olive pomace and waste fruit. Shen et al.,( 

2013) indicated a better performance from a single-stage model regarding methane production at 

a lower Organic Loading Rate (OLR). Lindner et al., (2016) suggested that the substrate 

composition influences the reduction of organic content matter and methane production.  

 

As with any biological process, AD is subject to multiple operational conditions, e.g., disturbances 

in the loading rate, lack of knowledge (i.e., uncertainty) in the biochemical reaction kinetics and 

the conditions that generate an adequate bacterial growth (Ferenci, 1999). Likewise, AD is 

extremely sensitive to process disturbances that may result in low biogas yield, abrasive hydrogen 

sulphide production and unstable pH conditions. Hence, adequate and effective control systems 

for AD systems are needed to achieve a stable and dynamically feasible operation of the process 

while achieving high biogas yields (Nguyen et al., 2015). 

 

In general, systems that exhibit different complex dynamic behaviour represent a great opportunity 

to explore the capacity of RL. That being the case, the aim of this study is the exploration of the 

feasibility of RL applied to AD systems. The feasibility of reinforcement learning has not been 

widely explored for AD applications, and thus, it represents a potential area for improvement. 

Chen et al., (2021) applied multi-agent deep reinforcement learning (MADRL) to optimize the 

dissolved oxygen and chemical dosage in a Wastewater treatment plant. The model was developed 

by Hydromantis GPS-X and was tested under different scenarios to identify the key factors that 
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influence the costs. The results suggested that more data is needed to apply this method to large-

scale systems. Pettigrew & Delgado, (2016) developed a RL framework by using neural networks 

in a Java simulation environment to optimize the flow of a wastewater treatment plant, obtaining 

an improvement in methane yield in a two-stage AD system. Despite these efforts, more research 

is indeed necessary to explore the benefits and potential adoption of these technologies in 

bioprocess systems. In particular, those previous studies did not consider disturbances or 

uncertainty; the present study aims to address these gaps in the literature, as it will be discussed in 

detail in chapter 4. 

 

2.6.-Summary 

 

This chapter presented a review of relevant studies in process control and integrated process design 

and control using RL. In the first section, the relationship between chemical engineering and 

reinforcement learning was explained with the aim of showing the incentive behind the application 

of RL, and in particular the DDPG algorithm, in the present research study. The advantages of 

using RL for different fields in process operations were described, such as the capacity of 

considering stochastic disturbances and parametric uncertainty. Moreover, the literature review for 

process control and simultaneous design and control was presented with the purpose of showing 

the state-of-the-art studies in these areas as well as their corresponding challenges. Results from 

this review revealed that RL applied in process control is a relative new research area that has 

recently gained interest in different chemical engineering applications, with a very limited number 

of studies using RL-based methodologies applied to biological systems, such as AD systems. 

Similarly, there is a lack of studies addressing an integrated process design and control approach 

using RL, as currently just one work using a RL-based methodology has been proposed to address 

simultaneous design and control. To have a better understanding of the background information of 



 

 

22 

DDPG, the training process of a NN was discussed. Moreover, the introduction and background 

information on AD systems were presented, as well as the motivations and challenges of these 

types of systems. The next chapter describes the methodology of the DDPG approach and its 

application to process control. 
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CHAPTER 3 

Robust control 

This chapter presents the methodology of the DDPG applied to process control for AD systems 

treating Tequila vinasses. The first section describes the proposed methodology, where the 

relationship between dynamic optimization and reinforcement learning is described. Section 3.1.2. 

provides a description of the DDPG algorithm. In section 3.2, the case study of the process control 

approach is presented. Section 3.3 presents the problem statement related to the case study. Section 

3.4 describes the performance of the AD systems using a single-stage and a two-stage reactor 

configuration under different scenarios involving disturbances and model uncertainty. In addition, 

the performance of the RL controller is compared to an optimal open-loop controller using a 

conventional multi-scenario dynamic optimization framework. Furthermore, a robust economic 

model predictive controller (EMPC) using the DDPG is tested under disturbances and parametric 

uncertainty. The outcomes of this chapter have been presented in a journal publication (Mendiola-

Rodriguez & Ricardez-Sandoval, 2022) 

 

3.1.-Methodology 

This section describes the RL methodology from a Dynamic optimization framework. Also, the 

DDPG framework for optimization of discrete-time nonlinear processes is presented.  

 

3.1.1.- Dynamic Optimization and Reinforcement Learning  

One prominent feature of most chemical processes is their intrinsic dynamic nature to deal with 

disturbances and parametric uncertainties continuously during operation (Ricardez-Sandoval et al., 

2009). Nowadays, among the increasing demand for customized products and globalization (Calvo 
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et al., 2022), the application of efficient process control schemes has become more challenging to 

meet product demands while achieving sustainable and economically viable processes. To 

circumvent this issue, dynamic optimization strategies are often considered to improve dynamic 

systems' controllability and process operations under uncertainty. A generic dynamic optimization 

problem (DOP) subject to parametric uncertainty can be formulated as follows:  

                                                                                                                             

min
𝑢𝑡

∑ 𝜔𝑗
𝑀
𝑗=1 (𝐱𝑡,𝑗 ,  𝒖𝑡 , 𝒚̂𝑡,𝑗; 𝜽𝑗) 

𝑓(𝒙𝑡,𝑗 , 𝒖𝑡 , 𝜽𝑗) = 𝒙𝑡,𝑗                                                                          ∀𝑗 ∈ {1, … , 𝑀} 

ℎ(𝒙𝑡,𝑗 , 𝒖𝑡; 𝜽𝑗) = 𝒀̂𝑡,𝑗                                                                          ∀𝑗 ∈ {1, … , 𝑀} 

𝑔(𝒙𝑡,𝑗 , 𝒖𝑡; 𝜽𝑗) ≤ 0                                                                              ∀𝑗 ∈ {1, … , 𝑀} 

𝒙𝑡 = 𝒙0                                                                                                 for t=0 

𝒖𝒍 ≤ 𝒖𝒕 ≤ 𝒖𝒉 

(3.1)  

 

where 𝜽𝑗 ∈  ℝ𝑛𝜃 is the set of time-independent realizations for the uncertain parameters across the 

set "j," ∀𝑗 ∈ {1, … , 𝑀}, where M represents the number of uncertainty realizations; 𝒙𝑡,𝑗∈  ℝn𝑥  is 

the differential states for each uncertain realization j and every time step t,  𝒖𝑡∈  ℝn𝑢 is the control 

profile vector, 𝑢𝑙 and 𝑢ℎ denote the lower and upper bounds for the control vector, 𝒚̂𝑡,𝑗 ∈   ℝ𝑛𝑦 are 

the controlled variables for each realization, 𝒀̂𝑡,𝑗 is the algebraic variable vector, 𝒙𝑡∈  ℝn𝑥 (t=0) is 

the state vector used to denote the initial conditions (𝒙0); 𝑓: ℝ𝑛𝑥 × ℝ𝑛𝑢 × ℝ𝑛𝜃 ⟶ ℝ𝑛𝑥 represents 

the set of nonlinear differential equations representing the system dynamics; ℎ: ℝ𝑛𝑥 × ℝ𝑛𝑢 ×

ℝ𝑛𝜃 ⟶ ℝ𝑛𝑌 symbolizes the set of algebraic equations and  𝑔: ℝ𝑛𝑥 × ℝ𝑛𝑢 × ℝ𝑛𝜃 ⟶ ℝ𝑛𝑌  denotes 

the set of inequality constraints; 𝜔𝑗 are the weights assigned for each uncertainty realization j 
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considered in the formulation. Optimization problems in functional spaces are known as optimal 

open-loop control problems, which aim to search for the optimum of a specific function by 

manipulating a set of input (manipulated) variables available for control. While problem (3.1) is a 

conventional multi-scenario formulation to deal with parametric uncertainty, a fundamental 

assumption is that uncertainty remains static during the analysis. In real operations, systems may 

be subject to uncertain parameters that are continuously changing during operation. Also, the usual 

plant-model mismatch often found in chemical systems due to additional uncertainty not 

considered in the model (𝑓) and process constraints (i.e., ℎ and 𝑔) may impact the economics and 

operation of the process. 

 

Recently, RL has emerged as an attractive technique to solve complex sequential decision-making 

problems like DOP. RL is made up of a set of agents (i.e., available variables for control) that 

iteratively interact with an environment (i.e., a process) to take decisions at every time-step t, 

seeking to find an optimal strategy referred to as a policy. In RL, an agent learns the best path 

through exploitation and exploration strategies to achieve a specific assignment (e.g., optimize an 

objective function). A key feature in RL is that it only requires input-output data instead of 

acquiring a fully dynamic model, which enables the application of this method to high-dimensional 

problems (Tang & Daoutidis, 2018). In addition, RL can predict data offline to optimize online 

computation time (Bemporad et al., 2002) and the possibility of using the same algorithm to learn 

different tasks (Nian et al., 2020). On the other hand, more complex systems also require larger 

data sets that would eventually impact the efficiency and convergence of this method (Shin et al., 

2019). Nevertheless, exploring this method to offer optimal control solutions in reasonable 

turnaround times is still needed to fully assess their benefits and limitations.  



 

 

26 

Fig. 3.1 presents a potential adaptation of DOP in the context of the RL algorithm. The agent is 

the decision-maker; different algorithms can be used as agents in RL, e.g., State-action-reward-

state-action (SARSA) (Rummery & Niranjan, 1994), REINFORCE (Williams, 1992), 

Asynchronous Advantage Actor-Critic (A3C) (Mnih et al., 2016), Deep Deterministic Policy 

Gradient (DDPG). In DOP, this concept would correspond to the numerical approach used to solve 

the optimization problem. The agent interacts sequentially over a discrete-time with the 

environment E, modelled as a Markov Decision Process (MDP) model. A MDP consists of a state-

space S ∈  ℝN, an action space A ∈  ℝN, a transition function 𝒫(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡), 𝒫: S x A x S → ℝ 

that represents the probability of an action to be selected,  and a reward function 𝑟(𝑠𝑡 , 𝑎𝑡), which 

is given after an action was taken. In DOP, E would correspond to the mechanistic process model 

representing the system's transient behavior, which is often described by a set of nonlinear 

differential equations, algebraic equations, and constraints, i.e., f, h in Eq. (3.1). Penalty functions 

are usually added in RL to deal with process constraints 𝑔 (Tessler et al., 2018; Yoo, Zavala, et 

al., 2021). At every time-step t, the agent interacts with the environment by observing the 

states 𝑠𝑡 ∈  S from the environment, which describes the current state of the process. In DOP, this 

would be depicted as the states presented of the DOP system 𝑥̂𝑡,𝑗. Based on the observations, the 

agent executes an action: each action 𝑎𝑡 ∈  A. In DOP, the variables used for control (i.e., 

𝑢𝑡)would be interpreted as the actions taken to optimize the process. Once the action is executed 

in the environment, the environment changes and produces a new state 𝑠𝑡+1. Both RL and DOP 

aim to optimize a performance objective function referred to as the reward function in RL. In both 

cases, the actions selected influence the execution of the strategy. However, the objective in RL is 

to maximize the expected accumulated sum of discounted future rewards 𝑅𝑡 using state-action 

pairs (𝑠𝑡 , 𝑎𝑡), i.e.,  
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𝑅𝑡 = ∑ 𝛾(𝑖−𝑡)𝑟(𝑠𝑡 , 𝑎𝑡)
𝑇

𝑖=𝑡
  

(3.2)  

                                                                                                                             

where 𝛾 ∈ [0,1] is a discount factor that describes the priority of immediate rewards over future 

rewards; usually, 𝛾 is set to a closer value to 1, i.e., it prioritizes the immediate rewards to 

emphasize the action of the state at time t. Note that 𝛾 must be within the bounds [0,1] to guarantee 

a finite convergence. Moreover, the reward in DOP would be indicated as the objective function 

in Eq. (3.1). The goal of the agent in RL is to find an optimal policy  that maximizes 𝑅𝑡, i.e.,  

 

 

𝑀𝑎𝑥[𝑅𝑡|𝑠𝑡 , 𝑎𝑡] (3.3)  

 

Fig. 3.1.- Schematic DOP through a RL framework.  
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The agent's actions are directly driven by a policy  that depicts states to a probability distribution 

over the actions : S𝑃 → (A) , that is, the policy is the agent's strategy to find the optimal control 

trajectory. In the DOP shown in problem (1), the policy  would be equivalent to the control 

actions 𝑢𝑡. The agent decides and executess actions to optimize a process. In this work, the DDPG 

algorithm is the RL agent. This is explained in detail next. 

 

3.1.2.-Deep Deterministic Policy Gradient  

This algorithm is a combination of Policy Gradient and Deep Q learning methods. As depicted in 

Fig. 3.2, the structure comprises two Deep-Q neural networks (DNN), two target networks, an 

environment (E), and a buffer memory. This algorithm includes a set of model parameters and 

hyperparameters. The former are the weights of the Deep-Q, neural networks ( ϕ𝑄, ϕ𝜇 , ϕ𝑄′
, and 

ϕ𝜇′
), which work as function approximators, whereas the latter are variables that define the 

learning process, i.e., how the DNNs are trained. Hyperparameters have a strong influence in the 

algorithm's learning behaviour; hence, tunning of these parameters is necessary to develop good 

learning performance. These hyperparameters, together with the learning process of DDPG, are 

described below. Each element in the DDPG framework is explained next. 
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Fig. 3.2.- DDPG algorithm structure. 

 

3.1.2.1.- Q network and target network.  

The key concept behind the critic DNN is Q-learning, which is a value-based method (Watkins & 

Dayan, 1992). The critic DNN, also called Q-Network, is composed of a Q value function 

𝑄(𝑠𝑡 , 𝑎𝑡|ϕ𝑄) with model parameters ϕ𝑄. The critic calculates an optimal Q value function (𝑄) to 

find an optimal action 𝑎𝜇(𝑠𝑡), i.e., 

𝑎𝜇(𝑠𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑄(𝑠𝑡 , 𝑎𝑡)       (3.4)  

A Q value can be defined as the expectation of the reward after one action was executed and can 

be seen as an indicator of the goodness of that action towards finding the optimal policy . Finding 

optimal actions for discrete spaces is straightforward. In this study, action spaces are considered 

a 
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continuous and therefore, the optimization problem becomes more challenging since the 

computation of the max operator over the actions in Eq. (3.4) becomes intractable as there is in 

principle, an infinite action space to explore. To circumvent this issue, 𝑄(𝑠𝑡 , 𝑎𝑡) is assumed to be 

differentiable with respect to the actions 𝑎𝑡, which enables the use of a gradient-based policy (𝑠𝑡) 

in Eq. (3.4), i.e., 

𝑚𝑎𝑥𝑄(𝑠𝑡 , 𝑎𝑡) ≈ 𝑄 (𝑠𝑡 , 𝜇)  (3.5)  

This gradient-based policy (𝑠𝑡) will be further discussed in the actor DNN process. The optimal-

value function 𝑄(𝑠𝑡 , 𝑎𝑡) is described by the Bellman equation, i.e., 

𝑄(𝑠𝑡 , 𝑎𝑡) = Ε[𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑚𝑎𝑥𝑄(𝑠𝑡+1, 𝑎𝑡+1)]                                                                (3.6)  

With this recursive equation, the agent starts by estimating an approximator to the optimal value 

function 𝑄(𝑠𝑡 , 𝑎𝑡). The critic network, i.e., Q network, is updated by calculating the loss function, 

which is represented by the mean-squared Bellman error (MSBE): 

𝐿 =  1/𝑇 ∑ [𝑦𝑡 − 𝑄(𝑠𝑡 , 𝑎𝑡|ϕ𝑄)]2
𝑡                         

where: 

(3.7)  

𝑦𝑡 = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑄′(𝑠𝑡+1, 𝜇′(𝑠𝑡+1|ϕ𝜇′
)|ϕ𝑄′

)         (3.8)  

where 𝑇 is a minibatch of randomly sampled transitions from the replay buffer. The purpose of the 

replay buffer is to keep track of previous experiences (see next section). 𝑦𝑡 represents the target 

value whereas Q′and 𝜇′represent the outputs of the target critic network and actor-critic network, 

respectively. The use of target networks is a crucial innovation in the DDPG algorithm. Target 

DNNs are delayed copies of the actor and critic network to stabilize the process, i.e., to avoid 

divergence of the algorithm. As shown in Fig. 3.2, the model parameters of the Q-network and 

Policy network are copied to the Target DNNS (step 9 from Fig. 3.2), but to avoid the dependence 

a 
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of the target NN on the same model parameters ∅, the target DNNs are periodically updated 

through a "soft update" (Eq. (3.9)), i.e., target DNN's parameters ∅𝑄′
, ∅𝜇′

are slowly copied over 

from the Q-network and Policy network. 

ϕ𝑄′
← ϕ𝑄 + (1 − )ϕ𝑄′

 

ϕ𝜇′ ← ϕ𝜇 + (1 − )ϕ𝜇′
 

(3.9)  

where  is the hyperparameter that determines how often the weights of the target networks are 

updated and often ranges between 0.001 and 0.01. Soft update is important because if there were 

no time delay for the target DNNs in Eq. (3.7), the MSBE would be chasing a moving target, 

making this algorithm unstable. As shown in Eq. (3.8), the target DNNs 𝜇′ and Q′ are necessary 

to calculate the target action value 𝑦𝑡. Therefore, by minimizing the loss function L in Eq. (3.7), 

the algorithm aims to make the Q-value function 𝑄(𝑠𝑡 , 𝑎𝑡|ϕ𝑄) as close as possible to the target 

value 𝑦𝑡 that accounts for the Q value for the following state (𝑠𝑡+1); i.e., the agent seeks to 

minimize the error between the Q-value function of the current time step and the predicted Q-value 

function from the target DNNs; this is referred to as a Temporal Difference (TD) learning feature 

and hence, the error that DDPG seeks to minimize is referred to as the TD error, which is optimized 

through stochastic gradient descent to update the critic network. A key parameter for the update 

process is the learning rate, which determines how the model changes in response to the TD error. 

A small value of the learning rate could lead to divergence due to the lack of flexibility of the 

model, whereas large learning rate might result in an unstable training or a suboptimal set of 

parameters.  

 

 

 



 

 

32 

3.1.2.2.- Buffer memory 

A replay buffer stores the agent's experiences more efficiently and has the purpose of tracking a P 

finite (user-defined) number of previous experiences in the form of tuples{𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡,𝑠𝑡+1}; once the 

accumulated experiences reach P number tuples, the old experiences are discarded. For the training 

process, minibatches of size T of the experiences accumulated are sampled randomly to help 

developing a stable behaviour for the algorithm. The size of the buffer depends on the type of 

problem because few data might lead to overfitting, whereas a wide range of data might slow the 

learning process. To avoid divergence of the algorithm, the data used in the training process should 

be independently distributed. Therefore, at every time step, the DNNs are updated by stochastic 

sampling a minibatch from the buffer to reduce correlations between samples.  

 

3.2.2.3.-Policy Network 

The policy network, also referred to as actor network, observes a state from the environment and 

executes a continuous action every step time t. As with any RL algorithm, the agent's goal is to 

find the optimal policy ; DDPG applies a policy gradient method to find the optimal policy where 

a parameterized function 𝜇(𝑠 |ϕ𝜇) maps a state deterministically to a specific action. Using a 

deterministic policy avoids the high computational cost of calculating the gradient of the state 

distribution. It has been shown that the gradient of the policy's performance is equivalent to the 

deterministic policy gradient (Silver et al., 2014). By applying the chain rule shown in Eq. (3.10), 

the derivative of the policy can be estimated and, consequently, the actor-network and actor-target 

network parameters 
𝜇 and 

𝜇′
can be updated through gradient ascent as the objective is to 

maximize the reward. 
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∇∅𝜇𝐽 ≈ 𝔼𝑠𝑡
[∇ϕ𝜇𝑄(𝑠, 𝑎|ϕ𝑄)|𝑠=𝑠𝑡,𝑎=𝜇(𝑠|ϕ𝜇

)]          

        

 

           = 𝔼𝑠𝑡 [∇𝑎𝑄(𝑠, 𝑎|ϕ𝑄) |𝑠=𝑠𝑡,𝑎=𝜇(𝑠|ϕ𝜇
)∇ϕ𝜇𝜇(𝑠 |ϕ𝜇) |𝑠=𝑠𝑡

]                                                             

(3.10)  

To enable exploration, i.e., exploring new control paths, a Gaussian-type process, called Ornstein-

Uhlenbeck (OU) noise (Uhlenbeck & Ornstein, 1930) (denoted by  𝒩𝑡) is added before the action 

is returned to the environment (Eq. (3.11)). This noise can be interpreted as a to plant-model 

mismatch and samples noise from a correlated normal distribution: 

𝑎𝑡 = 𝜇(st|ϕ
𝜇  +  𝒩𝑡)                                                                                                                    (3.11)  

Zero-mean Gaussian noises have been reported as suitable for the DDPG (Liang et al., 2020). This 

feature is attractive from a process control perspective, as most of the problems are complex and 

nonlinear and can be computationally expensive with conventional software. A feature of the 

DDPG algorithm is its model-free structure, which means the transition probabilities are unknown, 

i.e., the agent does not have previous knowledge of how the environment works, which can be 

convenient for processes where no a priori information is available. As depicted in Fig. 3.2, the 

steps for the DDPG learning process per episode can be summarized as follows:  

[1] The initial conditions of the states of the model are observed.  

[2] The policy network receives the state and outputs an action. A Gaussian-type process, called 

Ornstein-Uhlenbeck (OU) noise, is added before the action is returned to the environment (Eq. 

(3.11)). This noise is interpreted as accounting for the plant-model mismatch.  

[3] According to the action executed, the environment receives a reward 𝑟𝑡 and produces a next 

state 𝑠𝑡+1. The MDP elements (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) are stored in the buffer memory.  

[4] Randomly sample a minibatch of  𝑇 transitions (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) from the buffer memory.  
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[5] Critic network receives the state 𝑠𝑡 and action  𝑎𝑡 

[6] The critic network computes the target 𝑦𝑡 (Eq. (3.8)) 

[7] Update the critic through the minimization of the loss L (TD error, Eq. (3.7)) 

[8] Update the actor-network through the derivative of the policy (Eq. (3.10)) 

[9] Target networks update (Eq. (3.9)) 

This learning process is terminated when a user-defined number of episodes are reached, or a user-

defined stopping criterion is satisfied, e.g., reward not improving over a large number of episodes.  

 

3.2.-Case study: anaerobic digestion for tequila vinasses treatment  

3.2.1.- Problem statement 

One potential candidate for AD systems is Tequila vinasses. This waste is continuously increasing 

due to the high global demands of Tequila, which is one of the most traditional beverages in 

Mexico and the World (Colunga-GarcíaMarín & Zizumbo-Villarreal, 2006). According to the 

Mexican Tequila Regulatory Council, the production of Tequila was 374 million liters in 2020 (40 

\% Alc. Vol) (CRT, 2021) representing a 6.3 % increase in production with respect to 2019.  

Tequila vinasses are a by-product in the production of Tequila and are considered a pollutant due 

to their high temperature, low pH, and high organic. López-López et al., (2010) indicated that 10-

12 liters of vinasses are produced for each liter of Tequila produced. Hence, 3740 million liters of 

vinasses were generated in 2020; this amount is equivalent to 48620 tons of organic material 

measured as biological oxygen demand. Due to inadequate technologies for residual water 

treatments, these highly polluted effluents are typically discharged into water bodies. Considering 

no post-treatment, the vinasses released in 2020 would have been equivalent to the annual pollution 

from a population of 2.46 million people, representing a major environmental 
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problem.   Therefore, there is a great incentive to meet the environmental requirements and exploit 

the potential valorization of vinasses' high organic matter content (Arreola-Vargas et al., 2016). 

These characteristics make Tequila vinasses suitable for AD treatment. Thus, efficient operational 

and control strategies are needed to treat the Tequila vinasses and satisfy the environmental 

regulations that allow Tequila's clean and sustainable production. Studies on anaerobic digestion 

applied to Tequila vinasses treatment have proposed different control strategies. Méndez-Acosta 

et al., (2010) suggested a sampled delayed control for the chemical oxygen demand. Lizarraga-

Palazuelos et al., (2013) proposed a saturated linear PI Output-Feedback controller, whereas 

Méndez-Acosta et al., (2016) designed a hybrid control scheme for the VFA and COD regulation. 

Recently, Piceno-Díaz et al., (2020) reported a multi-scenario robust NMPC for a two-stage AD 

process.   

An emerging control strategy that has not been widely explored for AD treatment is the application 

of RL techniques. However, to the author’s knowledge, the application of a reinforcement learning 

methodology applied to AD systems treating Tequila vinasses has not been proposed, thus, 

representing one contribution of the current research.  

 

3.2.2.-Mathematical models of AD systems  

The DDPG framework presented in the previous section was applied to control the organic matter 

content of the effluent of two different AD system configurations in mesophilic conditions to treat 

Tequila vinasses, i.e., a single-stage model in a CSTR (Fig. 3.3) and a two-stage model in two up-

flow fixed bed reactors (Fig. 3.4). The inlet stream of the AD systems corresponds to the substrate, 

i.e., the amount of tequila vinasses, described by the inlet concentrations in terms of COD and 

volatile fatty acids (VFA). The selection of uncertain parameters and their range of values for both 
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systems are based on a preliminary sensitivity analysis reported by Piceno-Díaz et al., (2020). Each 

of these systems is described next.  

 

3.2.2.1.- Single-stage AD system. 

A single-stage AD unit system for the treatment of tequila vinasses was adopted (Zarate, 2013). 

The acidogenic step considers the reaction: 𝐶𝑂𝐷 → 𝑉𝐹𝐴 + 𝐶𝑂2 + 𝐻2, where the objective is to 

convert the high organic substrate, i.e., tequila vinasses, into VFA with the by-products of 𝐶𝑂2  

and 𝐻2. In addition, the methanogenic step consists of the reaction 𝑉𝐹𝐴 → 𝐶𝑂2 + 𝐶𝐻4, where the 

VFA obtained in the acidogenic step is converted into methane and carbon dioxide. The system is 

perfectly mixed with the acidogenic and methanogenic microorganisms. The Monod kinetic 

growth model is used for acidogenic bacteria, whereas the Haldane kinetic growth model is for 

methanogenic bacteria. The manipulated variable is the dilution rate 𝐷 (1/d) that regulates the inlet 

flow; the upper and lower bounds considered for this variable are 0.05 and 0.56 (1/d), respectively. 

    

Fig. 3.3.- Schematic representation of the single-stage AD system.  

 

The mathematical model for the single-stage system (Fig.3.3) is given as follows: 
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𝑑𝑧1

𝑑𝑡
= −𝐷𝛼𝑧1 +

𝜇1𝑚𝑎𝑥𝑆1

𝑘𝑠1 + 𝑆1
𝑧1 

𝑑𝑧2

𝑑𝑡
 =  −𝐷𝛼𝑧1 +

𝜇2𝑚𝑎𝑥𝑆2

𝑘𝑠2 + 𝑆2 + (
𝑆2

𝑘𝐼2
)

2 𝑧2 

𝑑𝑧3

𝑑𝑡
= D(S1,in − S1) −  

𝜇1𝑚𝑎𝑥𝑆1

𝑘𝑠1 + 𝑆1
𝑧1 

𝑑𝑧4

𝑑𝑡
= 𝐷(𝑆2,𝑖𝑛 − 𝑆2) −

𝜇2𝑚𝑎𝑥𝑆2

𝑘𝑠2 + 𝑆2 + (
𝑆2

𝑘I2
)

2 𝑧2 + 𝛾1

𝜇1𝑚𝑎𝑥𝑆1

𝑘𝑠1 + 𝑆1
𝑧1 

(3.12)  

where 𝑧1 𝑎𝑛𝑑  𝑧2 are the concentration of the acidogenic biomass (g/L) and methanogenic biomass 

(g/L), respectively; 𝑧3 𝑎𝑛𝑑  𝑧4 correspond to the substrate concentrations in terms of COD (g 

COD/L) and VFA (mmol VFA/L); 𝛼 represents the biomass fraction that is suspended in liquid 

phase, 𝜇1𝑚𝑎𝑥 (1/𝑑) and 𝑘𝑠1(𝑔𝐶𝑂𝐷/𝐿) are parameters of the Monod kinetics in the acidogenic 

step whereas  𝜇2𝑚𝑎𝑥 (1/𝑑), 𝑘𝑠2(𝑚𝑚𝑜𝑙/𝐿)and,  𝑘𝐼2 (mmol/L)1/2 are parameters of the Haldane 

kinetics involved in the methanogenic reaction. 𝛾1represents the yield coefficient (mmol VFA/g 

𝑧1) whereas 𝑆1,𝑖𝑛 and 𝑆2,𝑖𝑛 are the inlet concentrations of COD (g COD/L) and VFA (mmol 

VFA/L) that enter the reactor, respectively. The nominal parameters and initial conditions for this 

system are depicted in Table 3.1. 

 

Table 3.1.- Nominal model parameters and initial conditions of the single-stage model. Note that 

it is assumed that 𝑧3,0 and 𝑧4,0 correspond to the inlet concentrations of the system. (Zarate, 2013) 

Parameters Initial conditions 

𝑘𝑠2=36.468 𝑚𝑚𝑜𝑙/𝐿 𝑧1,0 = 3.002 g /L (acidogenic biomass) 
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𝑘𝑖2=16.773 (mmol/L)1/2 𝑧2,0 = 143.496 mmol /L (methanogenic 

biomass) 

𝛾1=2.6584 mmol VFA/g 𝑧1 𝑧3,0 = 𝑆1𝑖𝑛 = 16 g COD /L 

 𝑧4,0 = 𝑆2𝑖𝑛 = 60 mmol VFA/L  

 

3.2.2.2.-Two-stage AD system 

The two-stage AD system considered in this work is presented in Fig. 3.4. The model parameters 

used in this work were reported in the study of Piceno-Díaz et al. (2020). The acidogenic step takes 

place in the first reactor and considers the reaction: 𝑆11,𝑖𝑛 → 𝑉𝐹𝐴 + 𝐶𝑂2 , which transforms the 

inlet concentration of COD from vinasses (𝑆11,𝑖𝑛) into VFAs and 𝐶𝑂2 . It is assumed that the first-

stage reactor only considers acidogenic bacteria. Likewise, the methanogenic stage in the second 

reactor features first, the reaction 𝑥6,𝑖𝑛 → 𝑉𝐹𝐴 + 𝐶𝑂2 that transforms the organic concentration of 

COD of vinasses entering the second reactor into VFAs and 𝐶𝑂2 . Later, the reaction 𝑉𝐹𝐴 →

𝐶𝐻4 + 𝐶𝑂2 takes place and converts the VFA produced by the acidogenic bacteria into the desired 

product (methane) and carbon dioxide. The manipulated variable is the dilution rate D2 (1/d) that 

regulates the inlet flow to the methanogenic reactor, and its upper and lower bounds are 0.05 and 

0.56 (1/d), respectively. It is assumed that the acidogenic reactor's inlet flow  𝑄1 is equal to the 

methanogenic reactor's 𝑄2 as it is a continuous system and to prevent biomass removal, i.e., 

washouts. 
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Fig. 3.4.- Schematic representation of the two-stage AD system.  

 

The mathematical model considered for the present case study is as follows: 

Acidogenic Reactor:  

𝑑𝑥1

𝑑𝑡
= −

𝑄1

𝑉1
𝛼1𝑥1 +

𝜇11𝑚𝑎𝑥𝑥2

𝑘𝑠11 + 𝑥2
𝑥1 

𝑑𝑥2

𝑑𝑡
=

𝑄1

𝑉1
(𝑆11,𝑖𝑛 − 𝑥2) −

𝜇11𝑚𝑎𝑥𝑥2

𝑘𝑠11 + 𝑥2
𝑥1 

𝑑𝑥3

𝑑𝑡
=

𝑄1

𝑉1
(𝑆21,𝑖𝑛 − 𝑥3) +

𝑘2

𝑘1

𝜇11𝑚𝑎𝑥𝑥2

𝑘𝑠11 + 𝑥2
𝑥1 

(3.13)  

Methanogenic Reactor: 

𝑑𝑥4

𝑑𝑡
= −

𝑄2

𝑉2
𝛼2𝑥4 +

𝜇12𝑚𝑎𝑥𝑥6

𝑘𝑠12 + 𝑥6
𝑥4 

𝑑𝑥5

𝑑𝑡
= −

𝑄2

𝑉2
𝛼2𝑥5 +

𝜇22𝑚𝑎𝑥𝑥7

𝑘𝑠22 + 𝑥7
𝑥5 

𝑑𝑥6

𝑑𝑡
=

𝑄2

𝑉2

(𝑥2 − 𝑥6) −
𝜇12𝑚𝑎𝑥𝑥6

𝑘𝑠12 + 𝑥6
𝑥4 

(3.14)  
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𝑑𝑥7

𝑑𝑡
=

𝑄2

𝑉2

(𝑥3 − 𝑥7) −
𝜇22𝑚𝑎𝑥𝑥7

𝑘𝑠22 + 𝑥7 + (
𝑥7

𝑘12
)

2 𝑥5 +
𝑘5 

𝑘3 

𝜇12𝑚𝑎𝑥𝑥6

𝑘𝑠12 + 𝑥6
𝑥4 

where 𝑥1 (𝑔𝐶𝑂𝐷/𝐿) and 𝑥4 (𝑔𝐶𝑂𝐷/𝐿) are the scaled acidogenic concentration of the biomass in 

the acidogenic and methanogenic reactor; 𝑥5 (mmol VFA/L) represents the methanogenic 

concentration of the biomass in the methanogenic reactor; 𝑥2 (g COD/L) and 𝑥3 (mmol VFA/L) 

are the substrate concentration of COD and VFA in the acidogenic reactor;  𝑥6 (g COD/L) and 𝑥7 

(mmol VFA/L) represent the substrate concentration of COD and VFA in the methanogenic 

reactor; 𝑉1 (8.7 L) and 𝑉2 (4.5 L) are the reactors capacities; 𝑘1(𝑔𝐶𝑂𝐷/𝑔𝑋11),  𝑘2 (𝑚𝑚𝑜𝑙 𝑉𝐹𝐴/

 𝑔 𝑋11), 𝑘3 (𝑔 𝐶𝑂𝐷/ 𝑔 𝑋12), 𝑎𝑛𝑑 𝑘5 (𝑚𝑚𝑜𝑙 𝑉𝐹𝐴/ 𝑔 𝑋12) are the yield coefficients of the 

system; 𝛼1 and 𝛼2 are the biomass fractions that leave the acidogenic and methanogenic reactor; 

𝑆11,𝑖𝑛 (g COD/L) and 𝑆21,𝑖𝑛(𝑚𝑚𝑜𝑙𝑉𝐹𝐴/𝐿) are the inlet concentrations of COD (g COD/L) and 

VFA (mmol VFA/L) that enter to the acidogenic reactor; 𝜇11𝑚𝑎𝑥 (1/d), 𝑘𝑠11(𝑔𝐶𝑂𝐷/

𝐿),  𝜇12𝑚𝑎𝑥(1/d)and𝑘𝑠12(𝑔𝐶𝑂𝐷/𝐿)  are parameters of the Monod kinetics and  𝜇22𝑚𝑎𝑥 (1/d),   

𝑘𝑠22(𝑚𝑚𝑜𝑙𝑉𝐹𝐴/𝐿), and 𝑘𝐼2(𝑚𝑚𝑜𝑙𝑉𝐹𝐴/𝐿)1/2 correspond to the Haldane kinetics. The nominal 

parameters and initial conditions used in this study are depicted in Table 3.2.  

 

Table 3.2.- Nominal model parameters and initial conditions of the two-stage model. (Piceno-Díaz 

et al., 2020). Note that 𝑥2,0 and 𝑥3,0 correspond to the inlet concentrations of the system. 

Parameters  Initial conditions 

𝑘𝑠11 = 24 g COD/L 𝑥1,0 = 94.79 g COD/L 

𝑘2/𝑘1 = 3.5 mmol VFA/g COD 𝑥2,0 = 𝑆11,𝑖𝑛= 27 g COD /L 

𝑘5/𝑘3 = 3.5 𝑥3,0 = 𝑆21,𝑖𝑛 = 50 50 mmol VFA/L 

𝑘𝑠22 = 16 mmol VFA/L 𝑥4,0 = 23.2 g COD/L 
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𝑘𝐼2 = 27 (mmol VFA/L)1/2 𝑥5,0 = 100 mmol VFA/L 

𝑉2/𝑉1 = 1.9527 𝑥6,0 = 10 g COD/L 

 𝑥7,0 = 30 mmol VFA/L 

 

3.3.-Results 

In this section, the DDPG algorithm described in section 3.1.2 is used to search for optimal open-

loop control profiles for the single-stage and two-stage AD systems presented in the previous 

section. Multiple scenarios involving ideal (nominal) conditions, parametric uncertainties as well 

as deterministic and random disturbances are considered. Each of these scenarios is explained next. 

 

3.3.1.- DDPG structure 

Most RL algorithms work through episodes, which is a series of interactions with the environment 

until a terminal stage is reached. For this study, the terminal stage for the DDPG algorithm was set 

to 2000 episodes. This number was chosen because the approximated amount of required episodes 

to converge was not known a priori. Thus, a large number of episodes was chosen to guarantee 

convergence in the AD systems. Also, we assumed that a plant model is available to simulate the 

dynamic operation of the AD process and used in this work as a digital twin plant for testing and 

development of the proposed DDPG algorithm. For every episode, the optimization was performed 

over 365 time steps; each time step represents one day of operation and is considered as the 

sampling time. These criteria were selected from prior trial-and-error tests. Note that implementing 

conventional feedback controllers for the present AD system may not necessarily result in 

significantly smaller closed-loop setting times (Oscar Méndez-Acosta et al., 2010.; Piceno-Díaz et 

al., 2020). As mentioned in section 2, the DDPG architecture consists of four deep neural networks 
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(DNNs). The parameters of DNNs are updated every step time of the optimization process. Each 

DNN consists of two hidden layers of 128 and 64 neurons. For the critic DNN, linear activation 

and rectified linear unit activation functions were used for the hidden and output layers, 

respectively. For the actor DNN, linear activation and sigmoid activation functions were used for 

the hidden and output layers, respectively. Layer normalization (Ba et al., 2016) was applied to 

normalize the different scales of the inputs. The parameters of the Ornstein-Uhlenbeck noise were 

set to 𝜎 = 0.015 and 𝜑 = 0.15. The selected size for the minibatch is T=64; the buffer memory 

size is P=10000; the architecture of the networks as well as the hyperparameters' values were 

chosen from prior trial-and-error experiments. Adam optimizer (Kingma & Ba, 2014) is used for 

the training process of the DNNs. The feasibility of DDPG was evaluated for the single-stage and 

the two-stage AD systems described above under different scenarios that are likely to occur during 

operation. This study was implemented in the framework Python Pytorch in Google Colab Pro; 

the calculations were performed on an Intel Core i7 CPU at 1.7 GHz and 8.00GB memory. 

 

3.3.2.- Single-stage AD system optimization problem   

The control objective for the following studies is the minimization of the COD 𝑧3 of the effluent 

of the reactor. The optimization variable is the daily change in the dilution rate 𝐷(𝑡)obtained from 

the DDPG algorithm. The optimization problem is the following:  

 max
𝐷(𝑡)

∑ −𝜔𝑗

𝑀

𝑗=1
∑ (𝑧3𝑡,𝑗

)
𝑡𝑓

𝑡0

 

s.t. 

𝒛̂𝑡,𝑗 =  𝑓𝐼(𝒛𝑡,𝑗 , 𝐷(𝑡), 𝜽𝑗)                                                               ∀𝑗 ∈ {1, … , 𝑀} 

𝒛𝑡 = 𝒛0                                                                                         for t=0 

(3.15)  
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0.05 ≤ 𝐷(𝑡) ≤ 0.56  

t=[0, tf] 

where tf  represents the final integration time (365 days) whereas the sampling interval was set to 

1 day. The single-stage AD model is represented by a function 𝑓𝐼  and represents Eq. (3.12); the 

uncertain parameters considered in the present formulation are 𝜽 = {𝜇1𝑚𝑎𝑥, 𝜇2𝑚𝑎𝑥, 𝑘𝑠1, 𝛼}; the 

weights for each uncertainty realization (𝜔𝑗) are assumed to be equal for all the realizations. Note 

that the objective function in Eq. (3.15) is reformulated in the context of the DDPG framework, 

i.e., as a maximization problem. Since one of the objectives of AD is to produce biogas and the 

mathematical model does not account for a direct variable to approximate the biogas production, 

we assume the concentration of methanogenic microorganisms 𝑧2 is equivalent to biogas 

production.  

 

3.3.2.1.-Scenario 1: Single-stage AD system (nominal conditions) 

To have a benchmark for the single-stage system, no disturbances or uncertainties were considered 

in this scenario. The nominal parameters and the initial conditions presented in Table 3.1 were 

adopted for this work. The hyperparameters in the DDPG are key factors that impact the 

performance of the algorithm. The selected configuration for the system is depicted in Table 3.3  

 

 Table 3.3.- Final hyperparameters configuration for single-stage.   

Hyperparameters used in DDPG Value 

Minibatch size 64 

Actor learning rate 0.0001 

Critic learning rate 0.001 
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Discount factor 0.95 

Buffer memory 10000 

 

Fig. 3.5 depicts the learning curve of the algorithm for the single-stage AD system for this scenario, 

which shows the behavior of the final reward throughout the 2000 episodes. As shown in Fig. 3.5, 

the learning curve undergoes fluctuations at the beginning due to the random initialization of the 

model parameters, but once it reaches episode 240, the highest reward is achieved, and after that, 

the algorithm keeps oscillating near the highest value, resulting in a good performance. 

 

Fig. 3.5.- Learning curve of single-stage AD model of scenario 1 (moving window of 10 

episodes). 

 

The tequila vinasses have a high organic matter content; hence, the DDPG specified a rapid 

decrease in the dilution rate 𝐷(𝑡) at the beginning of the operation (Fig. 3.6(a)) thus causing a 

decrease in the COD of the effluent 𝑧3, as depicted in Fig. 3.6(b). This behaviour prevents the 

reactor from overfeeding, which would cause the methanogenic bacteria's inhibition since the 

acidogenic bacteria may process the organic substrate faster than the methanogenic. After that 
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rapid change, the 𝐷(𝑡) kept progressively decreasing until reaching a saturation from the bottom. 

A similar performance in 𝐷(𝑡) was observed in Méndez-Acosta et al., (2016) where they suggested 

that the dilution rate should remain saturated to maintain appropriate control. This decreasing rate 

in D (t) is required to stabilize the process and avoid possible washouts of the biomass. Fig. 3.6(c) 

depicts the methanogenic biomass profile. As shown in this figure, the production of methanogenic 

biomass reacts to the rapid decrease in the dilution rate, resulting in a fast increase of this species 

at the beginning of the operation. As the manipulated variable 𝐷(𝑡) was adjusted, the acidogenic 

and methanogenic bacteria needed time to achieve a stable operation. The COD concentration of 

the effluent reached the value of 0.1534 g COD/L at day 365, and the methanogenic biomass 

reached a concentration of 220.4228 mmol/L. The expected optimal accumulated COD was 

109.0748 g COD/L d and the CPU time needed to obtain the resulting optimal open-loop control 

profile D(t) was 5069.8 seconds.

  

Fig. 3.6.- Scenario 1: Single-stage system over a 365-days optimization under nominal conditions. 

(a) The dilution rate profile of methanogenic reactor, which represents the manipulated variable of 

the system. In DDPG framework, it represents the optimal policy chosen by the algorithm. (b) The 

COD profile (c)Methanogenic biomass profile.  
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3.3.2.2.-Scenario 2: Single-stage AD system under disturbances and uncertainty 

Considering the possible variations of the organic matter content of tequila vinasses reported in 

the literature, i.e., between 27-100 g COD/L (López-López et al., 2010; Méndez-Acosta et al., 

2010; Piceno-Díaz et al., 2020), a disturbance profile was considered for the inlet concentrations 

(𝑆1,𝑖𝑛 and  𝑆2,𝑖𝑛) as depicted in Fig. 3.7(a) and Fig. 3.7(b) in terms of COD and VFA, respectively. 

Step input disturbances were added at day 15, 101, 247, and 320 of -25%, -15%, +20%, and +25% 

with respect to the original concentrations, respectively. Note that disturbances are assumed to be 

known a priori. To test the robustness of DDPG, parametric uncertainty was considered for the 

following model parameters: 𝜽 = {𝜇1𝑚𝑎𝑥 , 𝜇2𝑚𝑎𝑥, 𝑘𝑠1, 𝛼}. Table 3.4 depicts the realizations 

considered for these uncertain parameters. Note that realization number 5 corresponds to the 

nominal conditions considered in Scenario 1. The same DDPG hyperparameters from Scenario 1 

were used for the present scenario.   

 

Table 3.4.- Uncertainty parameters of scenario 2.  

 
𝜃 1 2 3 4 5 6 7 8 

𝜇1𝑚𝑎𝑥, 0.63 0.95 1.2 0.48 0.7999 0.55 1.05 0.87 

𝜇2𝑚𝑎𝑥, 0.75 1.03 0.88 0.97 0.7357 0.65 0.81 0.92 

𝑘𝑠1 6.2 4.53 5.71 7.3 5.207 3.27 3.85 3.12 

𝛼 0.4 0.32 0.47 0.5 0.458 0.55 0.49 0.53 
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Fig. 3.7.- Scenario 2: Step-wise profile introduced to account for disturbances in the inlet 

concentrations of the single-stage AD system. (a) Disturbances in terms of COD, (b) Disturbances 

in terms of VFA. 

 

As shown in Fig. 3.8(a), the dilution rate (𝐷(𝑡)) decreased to accommodate the effect of external 

perturbations and uncertainties affecting the operation of the system. The expected accumulated 

COD for this scenario was 115.8609  63.9625 g COD/L d, which represents 6% more COD when 

compared to scenario 1. Note that the set of uncertainty realizations considered represent favorable 

and adverse conditions for microorganism growth. For example, for realizations j=3 and j=7 (Table 

5), the effects of potential inhibition of the methanogenization stage are observed due to high and 

low realizations of 𝜇1𝑚𝑎𝑥, and 𝜇2𝑚𝑎𝑥, respectively; that is, as 𝜇1𝑚𝑎𝑥 becomes higher while 𝜇2𝑚𝑎𝑥 

becomes lower than the nominal conditions, the acidogenic bacteria shows a rapid growth that 

does not allow the methanogenic bacteria to reach adequate conditions to grow; as a result, lower 

concentrations of methanogenic biomass were obtained for these realizations when compared to 

the nominal case scenario, as shown in Fig. 3.8(c). One realization that exhibited a strong influence 

in the robust approach was j=2, i.e., the fraction of biomass that leaves the reactor (𝛼) has a small 

value; hence, it promotes the production of bacteria as less biomass is leaving the system, thereby 

increasing the production of biogas. Based on the above, the overall expected value and standard 
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deviation of COD and methanogenic biomass at day 365 is 0.1441  0.0918g COD/L and 254.5420 

45.1056 mmol VFA/L, respectively. Note that these are only the final concentrations of COD 

and VFA at the last time interval in the optimization horizon (i.e., day 365). This represents an 

improvement of 6% in COD removed and 15% more methanogenic biomass concentration 

achieved with respect to scenario 1. The CPU time of the optimization was 6192.8 seconds, 

representing an increase of 22% in CPU time when compared to scenario 1, respectively. As shown 

in Fig. 3.8(b), the DDPG can provide attractive control actions that can efficiently reject 

disturbances while considering parametric uncertainty.   

Fig. 3.8.- Scenario 2: Single-stage scenario over a 365-days optimization under disturbances and 

parametric uncertainty. (a) Dilution rate profile of methanogenic reactor, (b) COD profile, 

(c)Methanogenic biomass profile.  

 

3.3.3.-Two-stage AD system optimization problem 

The control objective for the two-stage system is the same as in the single-stage AD system, i.e., 

minimization of the fraction of COD that was not processed in the system. The manipulated 

variable will be the daily change in the dilution rate of the methanogenic reactor (𝐷2(𝑡)).As in the 

single-stage system, the optimization problem is shown through the DDPG framework as follows:  
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max
𝐷2(𝑡)

∑ −𝜔𝑗

𝑀

𝑗=1
∑ (

𝑥6,𝑡

𝑥2,0
)

2𝑡𝑓

𝑡0

 

s.t. 

𝒙𝑡,𝑗 =  𝑓𝐼𝐼(𝒙𝑡,𝑗 , 𝐷2(𝑡), 𝜽𝑗)                                              

𝒙𝑡 = 𝒙0      

0.05 ≤ 𝐷2(𝑡) ≤ 0.56 

t=[0, tf] 

(3.16)  

where tf  corresponds to the final integration time (365 days); 𝑓𝐼𝐼  represents the two-stage AD 

model described with Eq. (3.13) and Eq. (3.14); the uncertain parameters considered for this 

system are 𝜽 = {𝜇11𝑚𝑎𝑥, 𝜇12𝑚𝑎𝑥, 𝜇22𝑚𝑎𝑥, 𝑘𝑠12, 𝛼1, 𝛼2}. All the weights (𝜔𝑗) are assumed to be 

equal for all the realizations. As in the single-stage AD system, the concentration of methanogenic 

microorganisms 𝑥5 is assumed to be equivalent to biogas production. 

 

3.3.3.1.-Scenario 3: Two-stage AD system (nominal)  

This scenario is the benchmark for the two-stage AD system. The nominal parameters and the 

initial conditions as shown in Table 3.2; these were adopted from Piceno-Díaz et al., (2020). The 

final configuration for the DDPG hyperparameters is depicted in Table 3.5. 

 

  Table 3.5- Final hyperparameters configuration for two-stage.   

Hyperparameters used in DDPG Value 

Minibatch size 64 

Actor learning rate 0.0001 

Critic learning rate 0.001 
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Discount factor 0.99 

Buffer memory 10000 

 

Fig. 3.9(a) and Fig. 3.9(b) show that the COD (𝑥6) decreases as the dilution rate (𝐷2(𝑡)) decreases 

for the present scenario. There is a rapid decrease of the dilution rate at the beginning, making the 

COD being reduced at a concentration of 0.2 g COD/L by day 3. Fig. 3.9(c) depicts the profile of 

the methanogenic concentration 𝑥5; once the dilution rate reaches a steady operation, progressive 

growth is observed. The COD concentration of the effluent reached the value of 0.1094 g COD/L 

at day 365, whereas the methanogenic biomass reached a concentration of 365.8356 mmol/L. 

Compared to the results obtained for scenario 1, there was an improvement of 0.55% more COD 

removed and an increase of 65.9% in methanogenic concentration at the outlet. These results agree 

with the study of Luo et al., (2011) since they indicated that the main advantage of the two-stage 

AD system is a more efficient methanogenesis phase.  

To compare the performance of DDPG to a conventional NLP algorithms, the optimization 

problem shown in Eq. (16) was solved using the interior-point optimization algorithm (IPOPT) 

(Wächter & Biegler, 2005). This optimization problem was discretized using orthogonal 

collocation on finite elements. As shown in Table 3.6, this problem was solved using different 

combinations of finite elements and collocation points. Moreover, Fig. 3.9(d), 3.9(e) and 3.9(f) 

show the results for the first numerical scheme (i.e., 14 finite elements and 4 collocation points). 

By day 365, the COD (𝑥6) was reduced to 0.2635 g COD/L and 358.2811 mmol VFA/L of 

methanogenic biomass 𝑥5 were produced. This represents 0.57% less COD reduced and 2.84% 

less methanogenic biomass production. Nevertheless, the expected accumulated COD obtained for 

this numerical scheme is 22.8% more than that obtained from the DDPG (73.6323 g COD/L d). 
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On the other hand, numerical scheme 4 resulted in smooth control profiles (not shown for brevity) 

and returned an expected accumulated COD that is 1.63% lower than that obtained by the DDPG 

algorithm. In addition, numerical scheme 4 was solved in a CPU time that is an order of magnitude 

lower than that required by the DDPG algorithm (6015.5 s).  

 

Table 3.6.- Different discretizations of IPOPT, their CPU time and their optimal solution. Note 

that after increasing the number of finite elements beyond numerical scheme number four, the 

optimal solution observes multiple oscillations.  

Numerical 

scheme 

No. finite 

elements 

No. collocation 

points 

CPU time (s) Optimal 

accumulated 

COD (g COD/L d)  

1 14 4 5.75 90.4273 

2 30 4 28.5 79.2142 

3 100 2 61.578 74.4868 

4 100 4 222.985 72.4322 

 

Table 3.6 shows that there is a trade-off between the accuracy of the solution and CPU time as the 

number of finite elements and collocation points change. As shown in this table, the solution 

improves as a larger number of finite elements are considered in the solution. Note that a larger 

number of elements resulted in non-smooth profiles thus indicating that the optimal solution may 

be numerically unstable. Although the expected accumulated COD obtained from the numerical 

scheme 4 is slightly smaller than that obtained by the DDPG algorithm, this is an expected result 

since the DDPG considers plant-model mismatch by its inherent stochastic nature, thus making it 

more suitable to accommodate plant uncertainty that is not accounted for by the process model.  
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Fig. 3.9.- Scenario 3: Two-stage AD profiles applied to conventional DOP software (IPOPT) and 

DDPG under nominal conditions. (a) Dilution rate of methanogenic reactor (DDPG), (b) COD 

profile of effluent (DDPG), (c) Methanogenic profile (DDPG), (d) Dilution rate of methanogenic 

reactor (IPOPT), (e) COD profile of effluent (IPOPT), (f) Methanogenic profile (IPOPT) 

 

3.3.3.2.-Scenario 4: Single-stage vs two-stage AD system  

For comparison purposes, the inlet stream conditions of the single-stage system were used in the 

two-stage model (𝑆11,𝑖𝑛 = 16 g COD/L) and 𝑆21,𝑖𝑛 = 60 mmol VFA/L). Both systems were 

designed using different experimental data, so a direct comparison between the two systems cannot 

be made; however, this comparison was performed with the aim to provide insight on the expected 

performance of these AD configurations using the same feedstream conditions.  
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Fig. 3.10.- Scenario 4: Two-stage vs single-stage with the same inlet conditions and under nominal 

conditions. (a) Dilution rate of methanogenic reactor from two-stage and reactor of single-stage 

(b) COD profile, (c) Methanogenic profile. 

 

Fig. 3.10(b) shows that the single-stage system reached a COD concentration of 0.1534 g COD/L 

(𝑧3) whereas the two-stage system reached 0.1044 g COD/L (𝑥6) at day 365. As a result, a higher 

concentration of methanogenic biomass  𝑥5 (291.4750 mmol VFA/L) is obtained at day 365 in the 

two-stage configuration than in the single-stage system  𝑧2 (220.4228 mmol VFA/L). As the s 

ingle-stage system deals with both microorganism groups simultaneously and the methanogenic 

microorganisms require a longer time to grow compared to the acidogenic bacteria, the dilution 

rate (𝐷(𝑡)) of the single system is set to low values to achieve suitable conditions (Fig. 3.10(a)). 

These changes in 𝐷(𝑡) are needed to ensure the adequate production of acidogenic bacteria; if 

overproduction of acidogenic bacteria occurs, an excess of VFA may be produced and result in a 

decrease in pH, causing an excess of 𝐻2 and inducing methanogenic inhibition. The accumulated 

COD over the entire time horizon (365 days) obtained for the two-stage system was 68.1390 g 

COD/L d whereas the CPU time required to complete the 2000 episodes was 6682 seconds. When 

compared to scenario 1 (single-stage system), these represent an improvement of 37.5% less 

accumulated COD in the effluent and an increase of 31% in CPU costs. This difference in COD 
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performance is due to the changes observed for the two-stage AD system, as shown in the inner 

plot in Fig. 3.10(b). 

 

3.3.3.3.-Scenario 5: Two-stage AD system with disturbances and uncertainty 

From an operational perspective, a two-stage process becomes more challenging to control because 

it considers two digesters that operate in tandem. At the same time, both reactors are prone to 

disturbances and kinetic uncertainty. To test the performance of this system under such conditions, 

a step-wise profile was introduced as depicted in Fig. 3.11(a) and Fig. 3.11(b) combined with 

parametric uncertainty, i.e., 𝜽 = {𝜇11𝑚𝑎𝑥 , 𝜇12𝑚𝑎𝑥, 𝜇22𝑚𝑎𝑥, 𝑘𝑠12, 𝛼1, 𝛼2}. The step disturbances 

considered for this scenario are assumed to be known a priori and were added at day 15, 101, 247, 

and 320 of -25%, -15%, +20%, and +25% with respect to the original inlet COD and VFA 

concentrations, respectively. The uncertain realizations used for this scenario are shown in Table 

3.7; note that realization j=5 corresponds to the nominal condition considered for scenario 3. 

 

Table 3.7.- Uncertainty parameters scenario 5.  

 

𝜃 1 2 3 4 5 6 7 8 

𝜇11𝑚𝑎𝑥, 0.15 0.351 0.183 0.284 0.27 0.34 0.234 0.41 

𝜇12𝑚𝑎𝑥, 0.58 0.635 0.4 0.439 0.5 0.6 0.575 0.7 

𝜇22𝑚𝑎𝑥, 0.44 0.248 0.26 0.228 0.29 0.28 0.395 0.37 

𝑘𝑠12 5 3.607 3 3.372 3.5 4.25 2.671 2.75 

𝛼1 0.085 0.17 0.11 0.159 0.13 0.18 0.15 0.20 

𝛼2 0.47 0.403 0.29 0.392 0.38 0.42 0.43 0.32 
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Fig. 3.11.- Scenario 5: Step-wise profile introduced to account for disturbances in the inlet 

concentrations of the two-stage AD system. (a) Disturbances in terms of COD, (b) Disturbances 

in terms of VFA.  

 

Fig. 3.12.- Scenario 5: Two-stage scenario over a 365-days optimization under disturbances and 

parametric uncertainty. (a) Dilution rate methanogenic reactor, (b) COD profile (c) Methanogenic 

biomass profile.  

 

As shown in Fig. 3.12(a), the dilution rate (𝐷2(𝑡)) is decreased to accommodate the disturbances 

and uncertainties considered in this scenario. Fig. 3.12(a) also shows how the disturbances of the 

inlet concentrations influence the dilution rate. Every time the inlet concentrations increase, the 

dilution rate (𝐷2(𝑡))  performs a rapid change until it reaches a steady-state operation. Regarding 
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biogas production, the different realizations account for favorable (highest, j=3) and adverse 

conditions (lowest, j=1) for the AD system, as shown in Fig. 3.12(c). The expected value and 

standard deviation of COD and methanogenic biomass at day 365 is 0.0889 0.0309 g COD/L and 

393.565762.3238 mmol VFA/L, respectively; this represents an improvement of 18.7% more 

COD reduced and a 7.5% increase in the final methanogenic biomass concentration when 

compared to scenario 3, which shows a significant sensitivity of the system to disturbances and 

parametric uncertainty. The expected accumulated COD and standard deviation was 55.0791  

17.28 g COD/L d (Fig, 3.12(b)), which represent an improvement of 25.1% more COD reduced 

when compared to scenario 3. The CPU time reported for this scenario was 7580.6 seconds, which 

is 26% higher that the CPU time reported for scenario 3.  

 

3.3.3.4.-Scenario 6: Two-stage with random disturbances  

To provide further on the performance of the DDPG algorithm, random samples from a Gaussian 

distribution were added to the inlet concentrations in the two-stage AD system, i.e., 

𝑆11,𝑖𝑛𝐺
= 𝑆11,𝑖𝑛 + 𝜀1,𝑡                                               

𝑆21,𝑖𝑛𝐺
= 𝑆21,𝑖𝑛 + 𝜀2,𝑡                                                                                                                 

(3.17)  

where 𝜀𝑡,1 and 𝜀𝑡,2 are random Gaussian noises (𝑁[𝜑, ]) with a zero-mean (𝜑 = 0) a standard 

deviation  of 5% with respect to the nominal inlet concentrations. The frequency of the random 

samples was set to 1 day. 𝑆11,𝑖𝑛𝐺
 and 𝑆21,𝑖𝑛𝐺

 represent the random inlet concentrations of tequila 

vinasses entering the system whereas 𝑆11,𝑖𝑛 and 𝑆21,𝑖𝑛 are the nominal inlet concentrations 

considered in scenario 3. As this scenario considers a random disturbance for every step time, it 

becomes more computationally challenging. To reduce the computational costs, the following 

stopping criteria was selected for the present scenario: once every 100 episodes we evaluated the 
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expected reward and compared it to the previous 100 episodes. If the improvement in the expected 

rewards was below a user-defined tolerance criterion (i.e., 0.0001%), then the algorithm was 

terminated.  

  

Fig. 3.13.- Scenario 6: Stochastic performance for random disturbances in a two-stage AD model. 

(a) Dilution rate profile of methanogenic reactor, (b) COD profile of effluent, (c) Methanogenic 

biomass profile.  

 

As depicted in Fig. 3.13(b), the COD concentration 𝑥6 decreases almost monotonically, reaching 

a concentration of 0.4934 g COD/L and a methanogens concentration 𝑥5 of 125.715 mmol VFA/L 

at day 365 (Fig. 3.13(c)). This represents 3.5 times more COD and 65.6% less methanogenic 

concentration than that reported for scenario 3 (nominal conditions). The expected accumulated 

COD over the entire time horizon (365 days) for this scenario was 874.0724 g COD/L d (Fig. 3.13 

(b)) representing an increase of one order of magnitude in COD to that obtained from scenario 3. 

On the other hand, the algorithm showed significant learning after 100 episodes (Fig. 3.14), 

demonstrating the potential of the DDPG algorithm to control processes under random external 

perturbations.  
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Fig. 3.14.- Scenario 6: Learning curve of the two-stage model with stochastic disturbances 

(moving window of 10 episodes). 

 

The CPU time obtained for this scenario was 225371.3 s. Although scenario 6 might reflect a more 

realistic case for the inlet concentrations of tequila vinasses due to the random disturbances, the 

CPU time is at least two orders of magnitude higher than that reported for scenario 3, which is an 

indication that further improvements are needed to implement this method for online large-scale 

applications. 

 

3.3.3.5.-Scenario 7: EMPC for Single-stage AD system 

To further illustrate the benefits of the proposed DDPG algorithm, a robust EMPC strategy was 

implemented for the single-stage AD system. Typically, an EMPC uses a dynamic process model 

to obtain optimal control actions that minimize an economic function in the presence of constraints. 

Note that a feedback control strategy could compensate for parametric uncertainty; however, there 

is no guarantee that their control actions would result in optimal control actions unless uncertainty 

is explicitly considered in the design of the controller. To account for this condition, the DDPG 

algorithm presented in the previous section was embedded within a feedback strategy to search for 
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optimal control actions of the single-stage AD system under disturbances and parametric 

uncertainty. That is, the DDPG algorithm represents the EMPC strategy in the feedback strategy 

and is solved at each sampling interval. Parametric uncertainty was considered within the DDPG 

algorithm using the same multi-scenario approach considered in scenario 2 for this AD system. To 

simplify the analysis, the plant model depicted in problem (3.15) was assumed to be same used by 

the EMPC (DDPG) strategy; that is, problem (3.15) represents the environment in the DDPG 

algorithm that must be solved using the plant states assumed to be available at each sampling 

interval (10 days). Note that the environment in the DDPG (EMPC) framework accounts for all 

the realizations considered for the single-stage AD system depicted in Table 4 whereas the plant 

is assumed to operate at one of these uncertainty realizations (uncertainty set 5 in Table 4). In 

addition to parametric uncertainty, a series of measured disturbances in the inlet concentrations 

were considered (i.e., 𝑆1,𝑖𝑛 and 𝑆2,𝑖𝑛). As shown in Fig. 3.15, a series of step disturbances of -10%, 

-20%, +10% and +20% with respect to the inlet concentrations' nominal values enter the system 

at each sampling interval. Note that in the EMPC (DDPG) framework, the disturbance 

measurements for 𝑆1,𝑖𝑛 and  𝑆2,𝑖𝑛 at each sampling interval are considered constant throughout the 

time horizon in the DDPG (EMPC) formulation. For the present scenario, both the prediction and 

control horizons in the DDPG framework were set to 100 days. For the training process, 500 

episodes were considered for each run of the DDPG (EMPC) framework. 
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Fig. 3.15.- Scenario 7: Step-wise profile of disturbances in the inlet concentrations of the single-

stage AD plant simulation. (a) Disturbances in terms of COD, (b) Disturbances in terms of VFA. 

 

 

 

Fig. 3.16.- Scenario 7: Closed-loop simulation of the single-stage system over 50 days. (a) dilution 

rate profile of methanogenic reactor, (b) COD profile in the methanogenic reactor. 

 

The expected optimal accumulated COD (𝑧3) was 46.7438 g COD/L d, whereas the averaged CPU 

time needed to obtain the optimal control actions in D(t) at each sampling interval was 1681.7 

seconds. Fig. 3.16 (a) depicts a rapid decrease of the manipulated variable D during the first 20 

days of operation. As a result, the plant responds to this rapid change in D to achieve a low organic 

concentration 𝑧3, as shown in Fig. 16 (b). The final concentration of 𝑧3 at day 50 was 0.1511 g 
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COD/L. Note that a somewhat similar performance was observed in scenario 2, (Fig. 3.8 (a)) 

regarding the rapid decrease of D during the first days of operation. Nevertheless, the control 

actions returned by the EMPC (DDPG) strategy can efficiently accommodate the changes in the 

disturbances such that a minimum COD is maintained in the process, as shown in Fig. 16. This 

scenario demonstrates the potential of the proposed DDPG strategy to operate slow systems 

involving large time-constants in closed-loop. 

 

3.4.-Summary 

The aim of this chapter was to present a DDPG-based methodology for process control under 

disturbances and parametric uncertainty. The selected case studies were two AD systems treating 

tequila vinasses, with the purpose of reducing COD while producing biogas. Two different 

configurations (single-stage and two-stage) were considered and compared using different 

scenarios. The results showed that the proposed methodology exhibited advantages and limitations 

with respect to conventional NLP solvers. Also, when comparing the two different reactor 

configurations under similar inlet conditions, the twos-stage system exhibited a more efficient 

performance on biogas production and COD reduction. One scenario considered stochastic 

disturbances, resulting in a more realistic representation of the process; however, the required CPU 

indicated that further improvements are needed before this methodology can be considered for 

large-scale online applications. The last scenario involved the application of a robust EMPC, 

showing the ability of the algorithm to maintain adequate COD concentrations while dealing with 

disturbances and parametric uncertainty.   
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CHAPTER 4 

Integrated process design and control 

This chapter presents the methodology of the DDPG applied to integrated process design and 

control for AD systems treating Tequila vinasses. This framework combines time-dependent and 

time independent variables, stochastic disturbances, and constraints, which are embedded in the 

formulation as penalty functions. As in the previous chapter, different scenarios involving the two 

different reactor’s schemes are analyzed and compared in this study. This chapter begins with the 

description of the proposed methodology in section 4.1, where different key elements of the 

proposed framework are explained, such as the customed activation function, the objective 

function, and limitations. In section 4.2, three different scenarios are described, outlining the 

advantages and limitations of the current methodology applied to the two reactor configurations. 

A summary of this chapter is provided at the end.  

 

4.1.-Methodology 

In this section, the problem statement for a conceptual integration of design and control 

formulation is presented. In section 4.1.2, the analogy between integration of process and control 

design and the DDPG algorithm is explained. A brief explanation of the DDPG algorithm is also 

described.  The cost function and the limitations of the proposed method are described at the end 

of this section.  
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4.1.1.-Problem statement: integrated process design and control  

The purpose of simultaneous process and control design is to search for an optimal process design 

that can accommodate operating scenarios that are likely to occur during the lifetime of a plant 

while considering the process dynamics. Simultaneous approaches usually seek to solve complex 

mixed-integer dynamic optimization (MIDO) problems which are later discretized to become 

mixed-integer nonlinear programming (MINLP) problems. Often, those problems may become 

intractable for large-scale systems as they have increased complexity due to the addition of integer 

optimization variables. In the present work, integer decisions are not considered to simplify the 

analysis and alleviate the already taxing computational costs associated with these 

methodologies(Rafiei & Ricardez-Sandoval, 2020b). NLP approaches have been mostly 

formulated assuming perfect knowledge of the model parameters, user-defined profiles in the 

external perturbations, or discrete realizations in the uncertain parameters (i.e., deterministic 

approaches). Nevertheless, the implementation of design and control strategies under random 

realizations in the disturbances and parameter uncertainty are limited (Bahakim & Ricardez-

Sandoval, 2014; Koller et al., 2018; Rafiei & Ricardez-Sandoval, 2018). Hence, there is a need to 

develop efficient methods that can deal with disturbances and parametric uncertainty that follow a 

stochastic representation to produce a more realistic representation of the systems during 

operation. Frameworks based on stochastic optimization are often prone to be computationally 

expensive and have converging problems as the dimensions of the problem increase (Chachuat et 

al., 2006). Similarly, stochastic global optimization methods tend to only find local solutions and 

are usually incapable of dealing with highly constrained problems (Sharifzadeh, 2013).  
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The promising potential of developing a DDPG-based simultaneous design and control 

methodology as a strategy for optimal open-loop control relies on the DDPG’s ability to consider 

stochastic random variables that may account for plant-model mismatch (Lee & Lee, 2004) and its 

potential to deal with high dimensional systems, which are key challenges for NLP problems. A 

generic simultaneous design and control problem addressed via stochastic optimization can be 

formulated as follows:  

min
𝒖(𝑡),𝒅𝒆𝒔

∑ 𝑤𝑗
𝐽
𝑗=1 𝑂𝐹(𝒙̇(𝑡), 𝒙(𝑡), 𝒚(𝑡), 𝒖(𝑡), 𝒅(𝑡), 𝜻, 𝒅𝒆𝒔, 𝑡)  

𝑓(𝒙(𝑡), 𝒖(𝑡), 𝒅(𝑡), 𝜻, 𝒅𝒆𝒔, 𝑡) = 𝒙̇(𝑡)             

𝑓0(𝒙(𝑡0), 𝒖(𝑡0), 𝒅(𝑡0), 𝜻, 𝒅𝒆𝒔, 𝑡0) = 𝒙̇(𝑡0)      

ℎ(𝒙(𝑡), 𝒖(𝑡), 𝒅(𝑡), 𝜻, 𝒅𝒆𝒔, 𝑡) = 𝒚(𝑡)                  

𝑔(𝒙(𝒕), 𝒖(𝑡), 𝒅(𝑡), 𝜻, 𝒅𝒆𝒔, 𝑡) ≤ 0        

𝒖𝒍 ≤ 𝒖(𝒕), ≤ 𝒖𝒉 

                     

(4.1)  

where OF represents an economic function,  𝒙(𝑡) and 𝒙̇(𝑡) ∈  ℝn𝑥   are the system’s states and 

their corresponding derivatives; 𝒖 ∈  ℝn𝑢 is the control profile vector, 𝒖𝑙 and 𝒖ℎ denote the lower 

and upper bounds for the control vector whereas 𝒚 ∈  ℝn𝑦  represents algebraic variables. The 

formulation presented in Eq. (4.1) considers jth uncertain realizations given by the vector 𝜻. Hence, 

the present work assumes a multi-scenario approach where uncertainty realizations can be 

approximated using a finite set of discrete realizations defined a priori. A fundamental assumption 

is that uncertainty remains static during the analysis, i.e., time-invariant uncertainty. The design 

variables are denoted by des ∈  ℝn𝑑𝑒𝑠, which are time-invariant variables; 𝑓: ℝ𝑛𝑥 × ℝ𝑛𝑢 × ℝ𝑛𝑑 ×

ℝ𝑛𝜁 × ℝ𝑛𝑑𝑒𝑠 ⟶ ℝ𝑛𝑥  represents the set of nonlinear differential equations subject to their  

initial conditions 𝑓0; ℎ: ℝ𝑛𝑥 × ℝ𝑛𝑢 × ℝ𝑛𝑑 × ℝ𝑛𝜁 × ℝ𝑛𝑑𝑒𝑠 ⟶ ℝ𝑛𝑥 ⟶ ℝ𝑛𝑦 symbolizes the set of 

algebraic equations and  𝑔: ℝ𝑛𝑥 × ℝ𝑛𝑢 × ℝ𝑛𝑑 × ℝ𝑛𝜁 × ℝ𝑛𝑑𝑒𝑠 ⟶ ℝ𝑛𝑌 denotes the set of inequality 

constraints; 𝜔𝑗 are the weights assigned for each probability of occurrence of each uncertainty 

realization j considered in the formulation; d∈  ℝn𝑑 represents the vector accounting for 
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disturbances (Eq. (4.2)). The key novelties of this study are the application of DDPG for 

simultaneous process and control design under consideration of stochastic (random) time-varying 

noise in disturbances and discrete realizations in the uncertain parameters. In this work, we 

investigate the effect of noise 𝝑 considered in the disturbances of the system d, i.e.,   

𝒅(𝑡) =  𝖓(𝑡)  + 𝝑(𝑡)                        (4.2)  

𝜗(𝑡) = {𝜗|𝝑~𝑃𝐷𝐹(𝜍)}                        (4.3)  

where 𝖓 denotes the seasonal changes with respect to the nominal values in the disturbances, these 

values 𝔫 are assumed to be known a priori;  𝝑 represents the noise added to seasonal changing-

disturbances, such as sinusoidal functions with uncertain critical parameters (e.g., the study from 

Malcolm et al., (2007) or step changes with unknown magnitudes within a certain range as the 

study from Sakizlis et al., (2004). As shown in Eq. (4.3), the random noise follows a probability 

density function (PDF). The PDF parameters 𝜍, such as mean and standard deviation for a Normal 

distribution, are user-defined parameters that can be obtained from heuristics or historical process 

data. In the present work, a normal PDF was selected; this type of PDF is widely used for 

engineering applications (DeCoursey, 2004). Note that other distributions can be considered, such 

as symmetric and non-symmetric probability distributions. In traditional approaches (e.g., 

sequential), overdesign factors are added to the process design to address disturbances and 

parametric uncertainty; these features may result in expensive process designs. Thus, the stochastic 

noise considered in the simultaneous process and control design makes it an attractive option for 

complex systems where stochastic perturbations plays a major role. However, adding these 

stochastic features to the system represents a challenge as they make the problem more difficult to 

converge due to the problem’s stochastic NLP nature. A brief description of the RL-based DDPG 

algorithm is provided next. 
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4.1.2.-Simultaneous Design and Control using DDPG  

DDPG belongs to a type of RL algorithms where an agent (a decision-maker) interacts with an 

environment (i.e., a process) iteratively by observing the states of the process, executing actions, 

and assign a positive or negative reward based on these actions. As most RL algorithms, DDPG 

works through episodes, which are a series of interactions with the environment until a terminal 

stage is reached. The terminal stage might be a user-defined number of episodes or a specific-

termination criteria, such as specified operating conditions, concentrations, or a specific tolerance 

(e.g., the study of Bangi & Kwon, (2021)).  For every episode, there is also a user-defined number 

of discrete time-steps 𝑡𝑓 ∀𝑖 ∈ {1, … , 𝑡𝑓}.  The architecture of this algorithm comprises two Deep-

Q neural networks (DNN) and two target networks (one for the actor and another for the critic), 

an environment (E), and a buffer memory.  

 

Fig. 4.1.- Schematic Design and control through a RL framework.  
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Fig. 4.1 presents the adaptation of the simultaneous design and control approach in the context of 

the RL algorithm proposed in this work. From a process design and control perspective, the agent 

(i.e., the decision-maker) would correspond to the numerical approach used to solve the problem 

statement. For the present study, the agent corresponds to the DDPG algorithm. The main feature 

in DDPG is the actor-critic architecture, where an actor network outputs a policy 𝜇 (which 

corresponds to the control decisions of the optimization problem) and the critic DNN evaluates the 

goodness of the policy through a Q-value (which helps in the convergence of the optimal solution). 

To avoid divergence of the algorithm, target DNNs are embedded in the DDPG framework. These 

are equivalent to delayed copies of the actor and critic networks that aim to stabilize the learning 

process by enforcing slow changes of the predicted values for the actor and critic DNNs. The 

performance of DDPG is highly sensitive to the hyperparameters, which are parameters that define 

the learning process in the algorithm. Thus, an adequate tuning of these DDPG parameters is 

relevant to achieve an acceptable performance. The learning process (also known as training 

process) of the actor and critic network consists in the improvement of the adjustment of the 

weights (ϕ𝑄, ϕ𝜇 , ϕ𝑄′
, and ϕ𝜇′

), which are the key parameters of the DNNs and are updated at 

every time step (Bouwmans et al., 2019). This iterative process is achieved through sequential 

interactions over a discrete time with the environment E, modelled as a Markov Decision Process 

(MDP).  

In the case of simultaneous design and control, the environment corresponds to the mechanistic 

process model representing the system's transient behavior, which is often described by a set of 

nonlinear differential equations, algebraic equations, and constraints, i.e., f, h in Eq. (4.1). As with 

most RL algorithms, DDPG cannot explicitly handle process constraints; thus, penalty functions 

are usually added to deal with process constraints, i.e., ℎ and 𝑔  (Tessler et al., 2018; Yoo et al., 
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2021). In the present work, the variability of the system is considered in the objective function as 

penalty functions that can account for process constraints. This will be further discussed on section 

4.1.4. Note that stochastic time-dependent disturbances are explicitly considered in the present 

DDPG implementation. The purpose of the agent is to maximize a user-defined reward (objective) 

function 𝑟𝑡, which would correspond to the performance objective of the simultaneous design and 

control approach, i.e. OF in Eq (4.1). 

At every time-step t, the agent observes the states 𝑠𝑡 ∈  S from the environment, which describes 

the current state of the design and control scheme. These states  𝑠𝑡 would correspond to the system 

states 𝒙(𝑡) presented in the design and control problem (Eq. (4.1)). Based on the observations, the 

agent (i.e., DDPG) executes an action 𝑎𝑡 ∈  A. The action is an n-dimensional action space to 

account for the different control decisions of the NLP. In the simultaneous design and control 

method, the manipulated variables available for control (i.e., 𝑢𝑡) and the design variables des 

would be interpreted as the actions taken by the agent to maximize a user-defined reward. To 

enable exploration in the DDPG algorithm, a user-defined noise (𝒩𝑡) is added to the action before 

it is sent back to the environment, i.e., 

𝑎𝑡 = 𝜇(st|ϕ
𝜇  +  𝒩𝑡)                        (4.4)  

This noise can be interpreted as plant-model mismatch. For the current study, a Gaussian-type 

process referred to as Ornstein-Uhlenbeck (OU) noise (Uhlenbeck & Ornstein, 1930) is 

considered. Once the action is executed by the environment, a new state  𝑠𝑡+1 is produced, and the 

transition generated in the time-step (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) is stored in the buffer memory to collect a 

finite number P of previous transitions; once this number of P transitions is reached, the old 

transitions are discarded. At every time step, the actor and critic DNNs are updated by randomly 

sampling minibatches of a user-defined finite number T of transitions from the buffer; this is 
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performed with the purpose of reducing correlations between samples. Simultaneously, the buffer 

is filled with P transitions. More details about the DDPG algorithm can be found in Lillicrap et al., 

(2015).  

 

4.1.3.-Custom activation function  

As shown in Eq. (4.1), the simultaneous design and control problem considers the interaction of 

time-dependent (manipulated variables 𝒖) and time-independent (design variables des) variables 

(e.g., equipment sizes). To accomplish this goal, we enforce that the actions referred to as the 

design variables remain fixed throughout the entire episode by implementing a custom activation 

function. In the present work, this function uses a sigmoid activation function in the output layer 

of the actor DNN to update the n-dimensional action vector at different frequencies of time-steps. 

The sigmoid function was chosen in this work as it can be interpreted as a probability and thus, 

they are commonly used in NN for regression. These types of functions can measure the 

relationship between independent and dependent variables, i.e., they can correlate complex 

nonlinear data (Gupta et al., 2020). To perform backpropagation (i.e., updating the weights of 

DNNs), the derivative of the activation function is needed, and the fact that sigmoid function is 

nonlinear, differentiable, and continuous everywhere, makes it a good candidate for this work 

(Ngah et al., 2016). For the manipulated variables, the updating process is at every timestep of the 

episode whilst the design variables are only updated at the first time-step of the episode and are 

kept constant for the remaining time-steps. This can be formulated as follows: 
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Custom activation function  

for episode= 1, MA do 

for step t = 1, TS do 

if t=0: 

 𝑎𝑢(𝑡) =
1

1+𝑒−χ  

 𝑎𝑑𝑒𝑠(𝑡) =
1

1+𝑒−χ  

if t1: 

 𝑎𝑢(𝑡) =
1

1+𝑒−χ  

 𝑎𝑑𝑒𝑠(𝑡 = 0) =
1

1+𝑒−χ  

end for 

     end for  

 

where MA is the final number of episodes, TS corresponds to the final number of timesteps in the 

each episode, χ corresponds to the inputs of the neuron,  𝑎𝑢 is the activation function of the 

manipulated variables and 𝑎𝑑𝑒𝑠 corresponds to the activation function of the design variables. 

Using this approach, the proposed method enforces that the output and input of the actor DNN 

would have the same value for the actions representing the design variables after the second time-

step; hence, the design (time-independent) variables are restricted to a single value per episode, 

being adjusted through the realizations/executions of the episodes. 

 

4.1.4.-Objective function 

In the present study, the objective is the maximization of an economic function that combines the 

capital cost, the production profit and variability cost that is expected to account for the system’s 

transients. This function is represented as the reward function in the RL algorithm and is defined 

as follows: 

𝑂𝐹 =  − CC(𝒅𝒆𝒔, 𝜻) + PP (𝒅𝒆𝒔, 𝜻, 𝒖(𝑡), 𝒙(𝑡)) − 𝐸𝐶(𝒅𝒆𝒔, 𝜻, 𝒖(𝑡), 𝒙(𝑡))  −  VC (𝒅𝒆𝒔, 𝜻, 𝒖(𝑡), 𝒙(𝑡)) 

 

(4.5)  
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where CC are the capital cost, PP is the production profit, EC are the energy consumption costs 

and VC refers to the variability costs. The capital costs are related to the process design as they 

often represent equipment sizing. The production profit describes the economic gains of the 

product produced. Capital costs (CC) are typically calculated using steady-state information. The 

energy consumption costs describe the economic expenses needed to operate the process.  The 

process variability costs are often defined as a function of those time-dependent variables that must 

be close to their corresponding target (desired) design values. As RL is known for its inability to 

satisfy process constraints, a way to include constraints is by adding a penalty function to the actual 

reward function (Pan et al., 2021). Hence, to accommodate for process constraints, the process 

variability will be implemented in this methodology as a penalty into the reward function; this 

function has the purpose of guiding the agent towards solutions that satisfy the constraints. In this 

work, the penalty function considers the difference between a set point and the predicted value 

obtained by the RL algorithm. Then, this function is weighted by a penalty factor, that all together 

will represent the deduced cost when violating the constraints, i.e., when the set point is not met, 

and consequently, will impact the plant profits. Note that in some cases, this function might also 

increase the profits, i.e., whenever the values are below the desired target (set-point) values).  Some 

examples of VC are the final product specifications (e.g., product quality) which will be directly 

proportional to the deviations from a nominal or targeted design value. Note that process variability 

costs are also an implicit method to assign an economic cost to the process control performance 

(Ricardez-Sandoval et al., 2008, 2010).  

4.1.5.-Limitations 

Overall, the general economic function shown in Eq. (4.5) can accommodate the transient 

operation of the system while searching for an optimal process design. Nonetheless, one limitation 
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of this approach is that it relies on defining a coherent economic function that considers the 

objectives for the specific system, e.g., depending on the elements of the economic function (e.g., 

penalty costs, selling prices of products, etc.), there are possible scenarios where the agent might 

prefer to violate the constraints (Hua et al., (2019)) in exchange of producing more economical 

gains, as there will be a trade-off between performance (profits) and penalty costs. Therefore, this 

represents a limitation for safety-related constraints, i.e., problems where violating constraints 

represent a high-risk for the operation of the process.  This will be further illustrated in the next 

section.  

 

As mentioned above, an important feature for a good performance of the algorithm is the training 

of DNNs. This consists of two steps: forward and backpropagation. The first consists in the 

transformation of the input data through layers and activation functions to calculate a predicted 

output. The second step (backpropagation), aims to adjust the parameters (weights) of the DNNs. 

This is achieved using gradient descent to minimize the difference between the output value of the 

DNNs and its predicted values, causing the improvement of the accuracy of DNNs. Before 

adjusting these weights, it is necessary to compute the gradients with respect to the DNNs 

parameters to assess how much each weight needs to be adjusted to optimize the reward. To 

calculate these gradients, it is necessary the differentiation of the activation functions computed 

by the neurons, which will lead to several calculations as the derivates are calculated at each 

connection of the neurons. Therefore, calculating and storing the gradients for the backpropagation 

requires a longer computational time than the forward training step; this represents the main 

technical challenge in the training process (Chen et al., 2018). 
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Another challenge for the DDPG is the trade-off between the ability to deal with high dimensional 

problems and the computational costs. The higher the dimension of the problem, the higher the 

number of neurons needed in each layer of the DNN to perform as good approximators, and a 

higher number of episodes of training to converge. Therefore, larger the computational costs would 

be required. Despite these limitations, the DDPG algorithm is still able to provide economically 

attractive integrated design and control schemes in acceptable turnaround times. 

 

4.2.-Results 

In this section, the integrated process design and control approach described in section 4.1 is used 

to search for optimal process design and open-loop control profiles by maximizing an economic 

function for the single-stage and two-stage AD systems presented in section 3.3. For this case, the 

mathematical process models presented in chapter 3 were slightly modified. To address the 

integrated process design and control scheme, the volumes of the AD systems become design 

variables thus adding more complexity to the DDPG algorithm. Several scenarios describing a 

typical operation of these systems are considered. First, the modifications and considerations of 

the AD systems are explained. The DDPG configuration and the corresponding optimization 

problem for each AD system are described next. In section 4.2.3., a comparison between a 

sequential approach and an integrated process design and control approach for the single-stage AD 

system is presented. Section 4.2.4 presents the integrated process design and control approach 

implemented for the two-stage AD system. To compare both systems and provide further insight 

of advantages and limitations of each system, a comparison between the single-stage and the two-

stage (section 4.2.5) is described at the end of this section. 
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4.2.1.-DDPG structure 

It is assumed for this study the usage of a digital twin to simulate the dynamic operation of the AD 

processes. For each episode, 365 steps were performed, where each time-step represents one day 

of operation. The parameters of the DDPG algorithm are updated at every time-step; the four 

DNNs have two hidden layers of 128 and 64 neurons. For the actor DNN, linear activation and 

sigmoid activation functions were used for the hidden and output layers, respectively. For the critic 

DNN, linear activation and rectified linear unit activation functions were selected for the hidden 

and output layers, respectively. In this study, the Scipy ordinary differential equations solver was 

used to simulate the environment of DDPG, i.e., the mathematical model of the AD systems. For 

the exploration noise, Ornstein-Uhlenbeck (OU) noise (Uhlenbeck & Ornstein, 1930) is added (Eq. 

4.4) with parameters of 𝜎 = 0.015 and 𝜑 = 0.15. The minibatch size is T=64; the replay buffer 

size is P=10000. Moreover, Adam optimizer (Kingma & Ba, 2014) is used for the training of the 

DNNs. The hyperparameters selected for the DDPG are presented on Table 4.1.  This configuration 

setting was chosen from on our previous study presented in chapter 3. The present approach was 

implemented using Python Pytorch in Anaconda; the calculations were performed on an Intel Core 

i7 CPU at 1.7 GHz and 8.00GB memory.  

 

Table 4.1.- Hyper-parameters configuration for AD systems.  

HYPERPARAMETER SINGLE-STAGE TWO-STAGE 

Learning rate for critic DNN 0.0001 0.001 

Learning rate for actor DNN 0.001 0.001 

Discount factor 0.95 0.99 
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4.2.2.-Modelling characteristics of AD systems 

The AD system model presented in chapter 3 assumed fixed volumes for the reactors. To account 

for changes in the reactor’s capacity, the following modifications are considered. For the single-

stage AD-system, the following algebraic equation was added: 

𝐷 =
𝑄

𝑉
 

(4.6)  

where Q is the volumetric flow of the system (L/day), i.e., the vinasses in the AD system and V 

represents the reactor’s capacity (L).  

Similarly, for the two-stage AD system, the following algebraic equations are added:  

𝛽 =
𝑉2

𝑉1
 

(4.7)  

𝐷2 =
𝑄1

𝑉1
 

(4.8)  

𝐷1 = 𝛽𝐷2 (4.9)  

where 𝑉1and 𝑉2 correspond to the acidogenic and methanogenic reactor volume, respectively; 𝛽 

describes the ratio between the two reactors and 𝑄1 and  𝑄2 (L/day) are the volumetric flows of 

the acidogenic reactor and methanogenic reactor. The objective function considered for both 

single-stage and two-stage AD systems consists in the maximization of the economic functions 

presented in Eq. (4.10) and Eq. (4.11), where the subscripts 1 and 2 corresponds to the single-stage 

system and the two-stage system, respectively.  

𝑂𝐹1 =  − CC 1 + PP 1 − 𝐸𝐶1 − VC1  (4.10)  

𝑂𝐹2 =  − CC 2 + PP2   − 𝐸𝐶2 −  VC2 (4.11)  

For the present work, the capacities of the digesters were used to specify the annualized capital 

costs of the economic function. Although the two-stage AD system considers two up-flow fixed 
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bed reactors and the single-stage a CSTR, all the reactors were assumed to be the same reactor-

type when calculating the annualized costs. Both single-stage and two-stage AD systems were 

assumed to be vertical process vessels made of carbon steel. Accordingly, the bare-module cost in 

2001 for each AD digester are as follows:  

𝐶𝐵𝑀𝑅1 = 4.07[(103.4974+0.1074 log10 𝑉2
)(𝑉0.4485)]                        (4.12)  

𝐶𝐵𝑀𝑅21 = 4.07[(103.4974+0.1074 log10 𝑉1
2
)(𝑉1

0.4485)]                        (4.13)  

𝐶𝐵𝑀𝑅22 = 4.07[(103.4974+0.1074 log10 𝑉2
2
)(𝑉2

0.4485)]           (4.14)  

where 𝐶𝐵𝑀𝑅1 (Eq. 4.12) corresponds to the bare-module cost for the single-stage system; 𝐶𝐵𝑀𝑅21 

and 𝐶𝐵𝑀𝑅22 in Eq (4.13) and (4.14) correspond to the bare-module costs for the first and second 

reactor in two stage configuration, respectively. These costs were converted to 2020 USD using 

the Plant Cost Index from Chemical Engineering Magazine (The Chemical Engineering Plant Cost 

Index - Chemical Engineering, 2020.). Thus, the annualized capital costs for the single-stage AD 

(𝐶𝐶1) system and the two-stage system (𝐶𝐶2) are as follows:  

𝐶𝐶1 = 𝑟(𝐶𝐵𝑀𝑅1)(1/365)                  (4.15)  

𝐶𝐶2 = 𝑟(𝐶𝐵𝑀𝑅21  +  𝐶𝐵𝑀𝑅22)(1/365)                        (4.16)  

where r is the desired return on investment and under the assumption of 15%/year return (Mallon 

& Weersink, 2007). Note that the present study only considers changes in the capital costs due to 

the changes in the reactors’ capacities. The bare-module costs were obtained from Turton et al., 

(2008). To define the bounds of the design variables, i.e., the capacities of the digesters, it is 

assumed that the acidogenic reactor from the two stage AD system and the reactor from the single 

stage have the same capacity limits (Ghanimeh et al., 2020). 
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To address the variability of the AD systems with respect to the set-point for COD, the following 

penalty functions are included in each system:  

𝑉𝐶1 = −𝑝𝑐 ∑ 𝜔𝑗

𝑀

𝑗=1
∑ (𝑧3 − 𝑠𝑝𝐶𝑂𝐷)𝑄 ∗ ∆𝑡

𝑡𝑓

𝑡0

 (4.17)  

𝑉𝐶2 = −𝑝𝑐 ∑ 𝜔𝑗

𝑀

𝑗=1
∑ (𝑥6 − 𝑠𝑝𝐶𝑂𝐷)𝑄1 ∗ ∆𝑡

𝑡𝑓

𝑡0

 (4.18)  

where 𝑉𝐶1 in Eq. (4.17) represents the penalty function for the single-stage AD system and 𝑉𝐶2 in 

Eq. (4.18) refers to the penalty function for the two-stage AD system, respectively. As shown in 

both equations, a COD set-point (𝑠𝑝𝐶𝑂𝐷) of 2 g COD/L was assumed (Piceno-Diaz, 2018); tf 

represents the final integration time (365 days) whereas the sampling interval ∆𝑡 was set to 1 day; 

pc is the penalty cost that accounts for set-point tracking errors, with a user-defined value of -0.015 

(USD/g COD) taken from the literature (Wastewater Rates :: East Bay Municipal Utility District, 

2022) and (Kuo & Dow, 2017); 𝜔𝑗 represents the probability for each jth uncertain realization; 𝑧3 

and 𝑥6 represent the corresponding COD concentrations of the single-stage and two-stage AD 

systems, respectively.  

The production profits account for the methane production in the following equations: 

𝑃𝑃1 = ∑ 𝑞 𝑦𝐶𝐻4
𝑦𝑚𝑏

𝑀

𝑗=1
𝜔𝑗 ∑ 𝑧2𝑄

𝑡𝑓

𝑡0

 (4.19)  

𝑃𝑃2 = ∑ 𝑞 𝑦𝐶𝐻4
𝑦𝑚𝑏

𝑀

𝑗=1
𝜔𝑗 ∑ 𝑥5𝑄1

𝑡𝑓

𝑡0

 (4.20)  

where 𝑃𝑃1 accounts for the methane production of biogas in the single-stage system, while 𝑃𝑃2 

accounts for the methane production of biogas in the two-stage system 𝑦𝐶𝐻4
 has a value of 3.82 

(gCH4/gmb) and is the yield coefficient of methane production with respect to methanogenic 

biomas; gmb represents the methanogenic biomass for each system (i.e., 𝑧2 for the single-stage and 

𝑥5 for the two-stage AD system) ; 𝑦mb (gmb /mmol VFA) is the biomass factor with a value of 0.69 

(Moguel-Castañeda et al., 2020). In the present study, the price of natural gas is assumed as the 
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selling price for methane (i.e., q in Eqs. (4.19) and (4.20)). Thus, the natural gas price of 2.71 

USD/ft3 from June 2020 is considered in the calculations of methane production in present work  

(U.S. Energy Information Administration, 2022).  

 The energy consumption costs in this chapter are assumed to be equivalent to the cost for tequila 

vinasses treatment; these costs can be estimated as follows: 

𝐸𝐶1 = −𝑝 ∑ 𝑄∗∆𝑡

𝑡𝑓

𝑡0

 (4.21)  

𝐸𝐶2 = −𝑝 ∑ 𝑄1∗∆𝑡

𝑡𝑓

𝑡0

 (4.22)  

where 𝐸𝐶1 and 𝐸𝐶2 refer to the energy consumption costs from the single-stage and two-stage 

system, respectively; p is the tequila vinasses treatment price, which corresponds to 16 USD/m3 

(Martinez-Orozco et al., 2020). 

Based on the above descriptions, the optimization problem for the single-AD system is as follows: 

𝑚𝑎𝑥
𝐷(𝑡), 𝑉1

− CC 1 + PP 1 − 𝐸𝐶1 − VC1  

 

s.t. 

𝒛̇(𝑡) =  Ω𝐼(𝒛(𝑡), 𝑫(𝑡), 𝝃)                                             

𝒛(𝑡) = 𝒛(𝑡0)      

0.1 ≤ 𝐷(𝑡) ≤ 1.4174 

5000 ≤ 𝑉1 ≤ 10000 

t=[0, tf] 

(4.23)  

Similarly, the optimization problem for the two-state AD system is as follows: 

𝑚𝑎𝑥
𝐷2(𝑡), 𝑉2,𝛽

− CC 2 + PP 2 − 𝐸𝐶2 − VC2  

 

s.t. 

𝒙̇(𝑡) = Ω𝐼𝐼(𝒙(𝑡), 𝑫𝟐(𝑡), 𝝃)                                              

𝒙(𝑡) = 𝒙(𝑡0)           

0.05 ≤ 𝐷2(𝑡) ≤ 0.22 

(4.24)  
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5000 ≤ 𝑉1 ≤ 10000 

1.6 ≤ 𝛽 ≤ 5 

t=[0, tf] 

 

As for the capacities of the digesters, it is assumed that both acidogenic reactors have the same 

capacity limits (Ghanimeh et al., 2020). The digesters’ capacities are within a range of 5m3 to 50 

m3, which is common for Tequila factories  (Méndez-Acosta et al., 2010); the ratio  between the 

two digesters in the two-stage AD system is set within a range based on different studies (Cohen 

et al., 1979, 1980; Saddoud et al., 2007; Vergara-Fernández et al., 2008). The single stage AD 

model is represented by function Ω𝐼 and represents Eq. (3.12) and Eq. (4.6); the Ω𝐼𝐼represents the 

two-stage model (Eqs. (3.13), (3.14), (4.7), (4.8), and (4.9)). As in the optimal control approach 

presented in Chapter 3, parametric uncertainty was considered for the present case studies using 

the same uncertain parameters; however, different values were assumed for the set of uncertainty 

realizations. The weights (𝜔𝑗) of each realization are assumed to be 0.4 for the nominal realization 

(j=5), 0.05 for the “extreme” realizations (meaning that they are less likely to occur), and 0.1 for 

the rest of the realizations (see table 4.2, 4.3 below). Due to the sensitivity analysis from Piceno-

Díaz et al., (2020) and the results from Chapter 3 of the present study, it is assumed that the extreme 

realizations are the cases with the highest and lowest biomass fractions. The fraction of the single-

stage is represented by 𝛼 whrereas for the two-stage, only the biomass fraction 𝛼2 of the 

methanogenic reactor was considered. 

As there was no previous knowledge of a specific number of episodes to guarantee convergence 

for an integrated process design and control framework using the DDPG-based approach, a study 

to determine the final number of episodes was performed. Each experiment of the training process 

of DDPG was performed five times using 500, 1000 and 1500 episodes under nominal/ideal 
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conditions, i.e., no disturbances or uncertainty were considered. The expected accumulated reward, 

i.e., the annualized costs (OF1 in Eq. (4.10)) and (OF2 in Eq. (4.11)), and CPU times were recorded 

together with their respective standard deviation. 

 

Fig. 4.2.- Terminal stage determination analysis. Annualized profit vs CPU cost for single-stage AD system 

 

Fig. 4.3.- Terminal stage determination analysis. Annualized profit vs CPU cost for two-stage AD system. 

 

As shown in Fig. 4.2 and 4.3, the criteria of 1500 episodes showed the highest annualized profit. 

However, they also exhibited the highest CPU costs for both systems. Hence, the criteria selected 
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for the terminal stage was 1000 episodes, as it showed high enough annualized costs and smaller 

CPU costs compared to those obtained in 1500 episodes.  

 

4.2.3.- Scenario 1: Integrated vs sequential approach  

The aim of this section is to present a comparison between the integrated process design and 

control and the sequential method by implementing both techniques on the single-stage AD 

system. For the sequential approach, the optimization problem from Eq. (4.1) was implemented 

with the interior-point optimization algorithm (IPOPT) (Wächter & Biegler, 2005).  Nominal 

conditions are assumed, i.e., no disturbances or parametric uncertainty were considered. To 

transform the problem into a steady-state optimization, the time domain in the process model was 

not considered. The resulting capacity of the digester from the steady state optimization was 5000 

L with a dilution rate of 0.476 d-1. Once these values were obtained, a dynamic optimization (Eq. 

(3.1)) was implemented using the DDPG algorithm. For this optimization, the capacity of the 

reactor obtained in the steady-state optimization is fixed, i.e., no design variables are considered, 

assuming the dilution rate 𝐷(𝑡) as the only control variable. To account for the possible variations 

of the organic matter content of tequila vinasses, stochastic disturbances and parametric 

uncertainty were considered for the dynamic optimization of the sequential approach and for the 

integrated design and control approach. Table 4.2 depicts the different values for the uncertain 

parameters used in this study, these values account for favorable and adverse conditions for 

microorganism growth. As the seasonal disturbances, steps with magnitudes  𝖓  were added at day 

15, 101, 247, and 320 of -25%, -15%, +20%, and +25% with respect to the nominal concentrations, 

i.e., the inlet concentrations of the substrates in terms of COD and VFA [27 g COD/L and 50 mmol 

VFA/L)].  respectively. Random Gaussian noises 𝝑 (Eq. (4.3)) were added at a sampling interval of one 
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day. These Gaussian noises (𝑁[𝜑, ]) assume a zero-mean (𝜑 = 0) with a standard deviation  of 5% with 

respect to the nominal inlet concentrations.  

 

Table 4.2.- Uncertainty parameters of scenario 1  

 

 

 

 

 𝜻 1 2 3 4 5 6 7 8 

𝜇1𝑚𝑎𝑥 , 1.02 0.95 1.2 0.99 0.7999 0.83 1.05 0.87 

𝜇2𝑚𝑎𝑥 , 0.7 1.03 0.88 0.97 0.7357 0.91 0.81 0.92 

𝑘𝑠1 6.2 4.53 5.71 7.3 5.207 4 3.35 3.12 

𝛼 0.35 0.41 0.42 0.32 0.458 0.5 0.58 0.55 
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Fig. 4.4.- Scenario 1: Comparison of sequential approach and integrated process design and control 

approach applied on single-stage AD system. (a) Dilution rate of the digester in sequential 

approach, (b) COD profile of effluent in sequential approach (c) Methane production profile in 

sequential approach.  

 

 

 

Fig 4.5.- Scenario 1: Comparison of sequential approach and integrated process design and control 

approach applied on single-stage AD system. (a) COD profile of effluent in integrated approach, 

(b) COD profile in sequential approach, (c) Methane production profile in integrated approach.  
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The overall profits of the integrated process design and control were $83,130.6 USD/year, 

representing an increase of at least twice of that observed in the sequential approach ($39,938.5 

USD/year). The selected capacity for the reactor in the integrated approach was 10,000 L, which 

is the double the capacity of that specified by the sequential approach. Due to this difference of 

capacities, the capital costs in the integrated approach resulted 16% more expensive than the 

sequential. Similarly, the integrated approach treated double amount of vinasses than the 

sequential approach, thus resulting in higher profits. From an energy-point of view (Fig. 4.4 (c) 

and Fig. 4.5(c)), the methane produced in the integrated approach was approximately 2.04 times 

the methane produced in the sequential approach, i.e., the integrated approach produced an 

expected value of $119,307.8 USD/year. Similar results were reported by Kuo & Dow, (2017) 

where field data from a wastewater treatment plant employing AD was reported with methane 

production of the same order of magnitude as that one obtained by the present integrated approach 

for the single-stage AD system. From an environmental perspective, the integrated approach 

produced slightly a higher expected concentration of COD (𝑧3) in the effluent than the sequential 

(4% more). Nonetheless, the integrated approach process double the amount of liters of vinasses 

at an equivalent organic concentration. As depicted in Fig. 4.5 (a), the integrated DDPG-based 

approach specified a rapid decrease in the dilution rate at the beginning of the process; this was 

due to the reduction of the organic concentrations of the vinasses due to the stochastic disturbances. 

After the initial transients, the dilution rate progressively increased until reaching a steady-state; 

this increase aims to feed the system with more tequila vinasses and thus, produce more biogas. 

This agrees with the study of Poh et al., (2016) that showed that anaerobic digestors with higher 

organic concentrations shall be operated with high dilution rates. Also, by comparing both dilution 

rate profiles (Fig 4.4 (a) and 4.5(a)), it was observed a smoother operation for the integrated 
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approach. Fig. 4.4 (b) and Fig 4.5 (b) showed that both sequential and integrated approach reached 

COD concentrations above the set-point, suggesting that the trade-off between performance 

(profits) and the variability cost led to a set-point violation in exchange for more profits. From the 

last 100 days of the operation, the sequential approach violated the set-point almost 30% of the 

time, while the integrated design and control scheme did the same for 23%. Although these results 

are somewhat similar, the violation of the set-point was more notorious in the sequential approach, 

as the values were reaching concentrations around 6 g COD/L near day 330, as shown in Fig. 4.4 

(b). For the integrated approach, the highest values were around 3 g COD/L near day 330 (Fig. 4.5 

(b)). Hence, a more smooth and feasible operation was identified from the integrated approach. 

The fact that both techniques showed the highest COD concentrations at similar days is due to the 

stochastic disturbances, as it is shown on Figs. 4.4 (b) and 4.5 (b) that around day 330 is where the 

highest concentration of tequila vinasses entered the system. The production of methane represents 

the highest contribution to the economic function in both approaches, while the capital cost CC 

has the lowest contribution. Regarding computational costs, the integrated approach required a 

CPU time of 75,731 s while the sequential approach required a total of 75,878 s for the steady-

state and dynamic optimization, which is an indication that the additional decisions (i.e., design 

variables) considered in the integrated approach did not affect considerably the CPU costs. Based 

on the above, the integrated approach showed multiple advantages with respect to the sequential 

approach, such as higher profits, similar environmental costs, and an increase in biogas production.  

 

4.2.4- Scenario 2: integrated process design and control for a two-stage AD system  

In contrast to the single-stage AD system, the two-stage system considers another design variable 

in the system, i.e., the ratio 𝛽 (Eq. 4.7) between the two digesters. As in the previous scenario, 
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stochastic disturbances and parametric uncertainty were considered. Table 4.3 shows the 

uncertainty realizations for the two-stage AD system; these values account for the uncertain 

realizations consider favorable and adverse conditions for microorganism growth. The seasonal 

changing values in the disturbances also follow a step-wise profile complemented with random 

noises. 

Table 4.3.- Uncertainty parameters for scenario 2: integrated process design and control for a two-stage AD 

system.  

 

 

For this scenario, the DDPG resulted in an overall profit of $231,030.2 USD/year. The selected 

capacities were 10,000 L for the acidogenic reactor and 50,000 L for the methanogenic reactor, 

indicating a ratio  of value 5. The capital costs resulted in $55,270.9 USD/year; in addition, the 

system is able to process 3949720.1 liters of vinasses, resulting in EC of $ 63370.6 USD/year. In 

this scenario, the variability cost defined by the penalty function shown in Eq. (4.18) resulted in a 

positive value, i.e., the COD concentrations were more likely below their set-point thus less 

pollutants are diverted to the effluents thus making this process more environmentally-friendly. 

This variability cost represents 17% of the cost function.   

 

 

𝜻 1 2 3 4 5 6 7 8 

𝜇11𝑚𝑎𝑥 , 0.15 0.351 0.234 0.284 0.27 0.34 0.183 0.41 

𝜇12𝑚𝑎𝑥 , 0.58 0.635 0.575 0.439 0.5 0.6 0.4 0.7 

𝜇22𝑚𝑎𝑥, 0.44 0.248 0.395 0.228 0.29 0.34 0.26 0.37 

𝑘𝑠12 5.0 3.607 2.671 3.372 3.5 2.0 3.0 2.75 

𝛼1 0.085 0.17 0.15 0.159 0.13 0.18 0.11 0.20 

𝛼2 0.4 0.403 0.43 0.392 0.38 0.26 0.29 0.32 
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Fig 4.6.-Scenario 2: integrated process design and control approach applied on a two-stage AD 

system. (a)Dilution rate profile, (b) COD profile (c) Methane production profile. 

 

From an environmental perspective, the system did not exceed the COD limits over the last 100 

days of the operation, as observed on Fig. 4.6 (b). This suggests that a two-stage reactor scheme 

promotes more adequate conditions for the microorganisms’ growth, organic consumption and 

accordingly, more biogas production. From an energy point of view (Fig. 4.6 (c)), the methane 

produced was $267,549 USD/year, representing the highest contribution to the economic function 

(a) 

(b) 

(c) 
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(58%), whereas the lowest contribution was the capital costs (11%). As depicted in Fig. 4.6 (a), 

the DDPG specified a dilution rate that tends to constantly saturate from the top, i.e., it reaches the 

upper bound of 𝐷2; these high values aim to feed the system with more tequila vinasses and thus, 

produce more biogas. Nonetheless, it is also observed on Fig. 4.6 (a) that, to accommodate the 

stochastic disturbances and parametric uncertainty, the DDPG framework constantly changes the 

dilution rate with rapid movements that end up decreasing 𝐷2 for short periods of time. This shows 

that the design and control scheme for this two-stage AD system has more capacity and flexibility 

to accommodate stochastic disturbances and parametric uncertainty. Regarding computational 

costs, a CPU time of 259,278 s was required, representing a change of one order of magnitude 

when compared to optimization under nominal conditions depicted in Fig. 4.3.   

 

4.2.5.- Scenario 3: comparison between single-stage and two-stage AD system  

 

As mentioned in Chapter 2, previous studies have shown that a two-stage AD configuration allows 

the development of more favorable growth conditions for microorganisms than the conventional 

approach of using a single digester. To provide a further insight, a comparison between these two 

systems was performed using the proposed DDPG methodology. For comparison purposes, the 

same inlet stream conditions of the two-stage AD system (𝑆11,𝑖𝑛 = 27 g COD/L) and 𝑆21,𝑖𝑛 =

50 mmol VFA/L) were used in the single-stage AD system as a nominal value for the seasonal 

values in the disturbances. As discussed in Chapter 3, both AD models were designed using 

different experimental conditions, so a direct comparison between the two AD systems cannot be 

made. Hence, parametric uncertainty was not considered, i.e., only stochastic disturbances were 

taken into account to perform the integration of design and control (Eq. (4.2)). 
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Fig.-4.7.-Scenario 3: comparison of single-stage AD system vs two-stage AD system. (a) COD 

profile of effluent in integrated approach in single-stage system, (b) COD profile in integrated 

approach in single-stage system, (c) Methane production profile in integrated approach in single-

stage system 
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Fig.-4.8.- Scenario 3: comparison of single-stage AD system vs two-stage AD system. (a) COD 

profile of effluent in integrated approach in two-stage system, (b) COD profile in integrated 

approach in two-stage system, (c) Methane production profile in integrated approach in two-stage 

system 

 

The overall profits obtained for the two-stage AD system were $30,718.6 USD/year, representing 

an increase in profits of 11% with respect to the single-stage system. For the two-stage AD system, 

the capacities were 9959.3 L for the acidogenic reactor and 26448.8 for the methanogenic, 

representing a ratio 𝛽 of 2.6. On the other hand, the reactor capacity for the single-stage was 8567.8 

L. Due to the difference in capacities, the volume of vinasses in the two-stage was equivalent to 

2.1 times the volume of vinasses treated by the single-stage. The capital costs in the two-stage 

system were twice the costs obtained for the single-stage system. Nevertheless, the two-stage 
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produced 17% more methane than the single-stage, resulting in higher profits for the former. From 

an environmental perspective, the two-stage was able to accommodate the stochastic disturbances 

while respecting the specified set-point of COD and showed a smoother operation regarding COD 

reduction. As depicted in Figs. 4.7 (b) and Fig. 4.8 (b), a continuous decrease in COD was obtained 

from both approaches until reaching a steady state. However, the COD obtained in the two-stage 

returned a more steady operation with lower concentrations of COD than the single-stage system. 

In the single-stage, the proposed integrated scheme starts decreasing COD at a slower pace that 

results in less production of biogas. Fig. 4.7 (b) shows that the concentration 𝑧3 of COD in single-

stage AD system achieves values that are higher than their corresponding set-point. The value for 

the VC in the two-stage resulted in a positive value representing 7% of the economic function, 

while the VC for the single-stage resulted in negative profits as the set-point was violated multiple 

times during operation (see fig. 4.7 (b)); this suggests that the trade-off between performance 

(profits) and the variability cost led to a set-point violation in exchange for an increase in profits. 

From the last 100 days of the optimization, the single-stage exceeded the set-point 36% of the 

time, while the two-stage always met the set-point during this period of operation. The production 

of methane represents the highest contribution of the economic function in both approaches. The 

lowest contribution in the two-stage was the variability cost (7%), and in the single-stage, the 

capital costs (9%). Regarding computational costs, the two-stage system required a CPU time of 

55,881 s, while the single-stage system consumed a total of 27,410 s. This shows how the CPU 

time increases considerably when the AD model becomes more complex. This supports the 

importance of the acidogenic microorganisms’ growth, as it is known that they are able to convert 

substrate at a faster pace that the methanogenic bacteria ((López Velarde Santos et al., 2020; Solera 

et al., 2001). If this criterion is not carefully considered, treating more vinasses could lead to 
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accumulation of VFA, causing potential methanogenic inhibition and as a consequence, more 

biomass would be washed as the microorganisms would not be able to transform the substrate into 

methane. This analysis has shown that the two-stage AD system performs better than the single-

stage AD system. Nonetheless, the user-defined criteria and parameters considered in this study 

may play a key role. For instance, the DDPG algorithm implemented for the single-stage returned 

a design and control scheme that sacrificed environmental aspects such as the set-point violation 

in COD, resulting in lower profits. On the other hand, due to the strengthen microbial growth 

achieved by the two-reactor configuration, the two-stage can accommodate better the variability 

of the process by obtaining concentrations below the COD set-point, which conducts to a more 

environmentally-attractive operation of the system. However, more investment in CC is required 

with a two-stage configuration but this allows the system to handle larger quantities of vinasses 

that result in higher plant profits.  

4.3.-Summary 

This chapter presented a methodology for an integrated process design and control based on the 

algorithm Deep Deterministic Policy Gradient. The case study involved AD systems under two 

different configurations (single-stage and two-stage) treating Tequila vinasses subject to stochastic 

disturbances and parametric uncertainty. A key aspect in this study was the consideration of 

stochastic disturbances, which are more challenging to handle but they represent a more realistic 

operation of the systems. The results showed that the proposed methodology exhibited 

improvements in performance with respect to a traditional approach, i.e., a sequential approach. 

Also, the integrated process design and control approach in the two-stage AD system showed 

higher profits in exchange of more expensive designs (i.e. higher capital costs). When comparing 

the two different reactor configurations under similar inlet conditions, several trade-offs were 
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observed, such as the ability to respect the imposed constraint on the COD, the investment on 

capital costs and methane production costs. Overall, the two-stage AD system exhibited a more 

stable and smooth operation with higher profits, while the single-stage resulted in lower profits 

than those obtained by the two-stage AD system.  
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CHAPTER 5 

Conclusions and future work 

 

5.1.-Conclusions 

The objective of this thesis was to test the feasibility of a RL algorithm called Deep Deterministic 

Policy Gradient applied for process control and integrated process design and control. In chapter 

3, the feasibility of the DDPG algorithm applied to AD systems was explored under different 

scenarios to optimize the reduction of COD while producing biogas. The results showed that the 

DDPG was able to abstract the states from the AD system and learn successfully through an 

adequate tuning of the hyper-parameters. When compared to conventional NLP solvers such as 

IPOPT, a crucial factor for the NLP solver was the trade-off between computational time and 

accuracy of the control performance by modifying the number of finite elements and collocation 

points. While the NLP solvers returned a low COD in shorter CPU times than those obtained by 

the DDPG, the latter algorithm accounts for plant-model mismatch, which makes it a suitable 

candidate for a more realistic operation. When the single-stage and the two-stage AD 

configurations were compared using the same substrate, the later resulted in a significant reduction 

in the accumulated COD at the effluent, thus resulting in a more attractive operation. The DDPG 

algorithm was also able to accommodate disturbances in the inlet feed concentrations of tequila 

vinasses combined with uncertainty in the kinetic parameters for both configurations. Furthermore, 

the proposed algorithm was able to return an acceptable performance in the presence of stochastic 

disturbances in the inlet stream. Although several disturbances and parametric uncertainty were 

considered, the open-loop control actions can accommodate those effects while maintaining the 

COD concentration in the methanogenic reactor at low values. Additionally, the robust EMPC for 
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the single-stage AD system was able to maintain a low COD in the presence of disturbances and 

parametric uncertainty. The results presented in this study have shown the potential that RL 

algorithms could offer to address control for chemical systems. Although the DDPG algorithm 

demonstrated the ability to learn optimal control policies under the different scenarios considered 

in this work, in particular for cases involving time-varying random disturbances, the CPU time 

required by this method is still considerable and may not be acceptable for applications involving 

short closed-loop time constants. Further improvements are thus needed to realize the application 

of this technique for online industrial-scale applications. 

 

A methodology to address an integrated process design and control using DDPG was presented in 

Chapter 4. The key contribution of this methodology is the consideration of the interaction of time-

dependent (manipulated variables 𝒖) and time-independent (design variables des) for the DDPG 

through a customized activation function and the consideration of stochastic disturbances. By 

maximizing an economic function, the DDPG aimed to identify optimal designs while obtaining 

open-loop control profiles that can accommodate the transient operation of the system. Three 

different scenarios using a single-stage and two-stage AD systems were tested. Overall, the single-

stage AD system resulted in lower capital costs but also returned lower profits compared to the 

two-stage AD system. Although the two-stage configuration may be seen as a larger investment 

on equipment, it exhibited better performance in terms of COD reduction and thus, more methane 

production was observed for this case study. Regarding the variability cost (VC), this study 

considered a penalty function in the objective function to enforce this condition as a constraint. 

For this case study, the constraint’s objective was formulated such that it was required to meet a 

specified (user-defined) set-point in COD in the effluent stream. The results showed that the DDPG 
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was able to accommodate the process constraint in the two-stage AD system for most of the 

operation whereas a higher frequency of constraint violation was observed for the single-stage 

system. This suggests that it might be more attractive for the single-stage AD system to pay a 

higher environmental cost, i.e., release more organic content through the effluent, at the expense 

of producing more biogas and therefore increasing the plant profits. Moreover, it was observed 

that the single-stage system treated a less volume of vinasses while the two-stage tend to deal with 

higher capacities of vinasses. When comparing the integrated approach with a traditional 

sequential approach, it was observed a more stable and smooth operation and a higher biogas 

production for the integrated approach. Overall, the results showed a promising potential for RL 

in large-scale applications, particularly for slow processes such as AD systems, where daily control 

actions may be sufficient to operate the process near optimal conditions.  

5.2.- Recommendations for Future Work 

The study presented in this thesis can be extended in different ways to provide a further insight on 

RL applications in process control for AD systems, as well as different applications for addressing 

an integrated process design and control problem. The recommendations that can be pursued as 

part of the future work in this study are as follows:  

• The methodologies presented in this work obtained the hyperparameter’s tuning through trial-

and-error experiments. Although this methodology resulted in an acceptable performance, the 

tuning procedure was time consuming. Hence, further improvement can be achieved by 

performing a hyperparameter optimization such as search grid or Bayesian model-based 

optimization (Dewancker et al., 2016).  

• The proposed methodology of an integrated process design and control assumed that the design 

variables were continuous variables. Consideration of integer variables in the process design 
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and control methodology using DDPG is therefore suggested as a method to further refine the 

present methodology and offer more attractive design and control schemes while taking into 

account structural decisions. 

• This study focused on the case study of AD systems treating Tequila vinasses. A potential 

future work could also consider different substrates of AD systems to determine the benefits 

and limitations in terms of AD systems performance.  

• An attractive area of opportunity would be to implement the proposed methodology on large 

chemical systems to explore the feasibility of the DDPG algorithm to handle even higher 

dimensional problems.  

• The case studies considered for the integrated process design and control only included a single 

constraint in the formulation, which was represented as a penalty function in the DDPG 

formulation. Process models that include a more realistic representation consider multiple 

constraints related to economics, sustainability, and process operation. Further improvements 

of this methodology could include the consideration of more constraints as penalty functions.  

• A key assumption made in the integrated design and control framework is full access to the 

system states. In practice, only a limited number of states can be accessed online using 

measurements, soft sensors or state estimation methods (Valipour et al., 2021; Valipour & 

Ricardez-Sandoval, 2021a) Moreover, states and model parameters are subject to constraints 

that are often ignored in the analysis (Valipour & Ricardez-Sandoval, 2021b, 2022). A future 

area of research can consider the development of robust integrated design and control 

formulations that explicitly consider state and parameter estimation schemes that are subject 

to process constraints.  
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• The methodologies considered in this work were based on the DDPG algorithm, which is one 

of the most advanced algorithms. To date, there is one algorithm that is very similar to DDPG, 

called Twin Delayed DDPG (TD3). Future work in this area could consider the adaption of the 

proposed methodologies to the TD3 algorithm. Such modifications are expected to improve 

the quality of the solution, but they may also require higher computational costs.  
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