
Designing an Incentive-compatible
Reward Scheme for Algorand

by

Maizi Liao

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2022

© Maizi Liao 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Founded in 2017, Algorand is the first carbon-negative blockchain protocol inspired
by proof of stake. Algorand uses a Byzantine agreement protocol to add new blocks to
the blockchain. The protocol can tolerate malicious users as long as a supermajority
of the stake is controlled by non-malicious users. The protocol achieves about 100x more
throughput that Bitcoin and can be easily scaled to millions of nodes. Despite its impressive
features, Algorand lacks a reward-distribution scheme to incentivize nodes to participate
in the protocol. In this work, we study the incentive issue in Algorand through the lens of
game theory. We model the Algorand protocol as a Bayesian game and propose a novel
reward scheme to address the incentive issue in Algorand. Through rigorous analysis,
we derive necessary conditions to ensure that participation in the protocol is a Bayesian
Nash equilibrium even in the presence of a malicious adversary. In addition, we propose a
referral mechanism to ensure that malicious nodes cannot earn more rewards in expectation
compared to non-malicious nodes.

iii

Acknowledgements

I would like to thank Prof. Seyed Majid Zahedi and Prof. Wojciech Golab for su-
pervising my research. I would also like to thank Prof. Kate Larson and Prof. Mahesh
Tripunitara for reviewing my thesis.

iv

Dedication

This is dedicated to the one I love.

v

Table of Contents

List of Figures viii

List of Tables ix

1 Introduction 1

2 Background 4

2.1 Communication Model . 4

2.2 Adversary Model . 5

2.3 The Consensus Problem . 6

2.4 Blockchain . 7

2.5 Proof-of-work Protocols . 8

2.6 Proof-of-stake Protocols . 9

2.7 Finality . 10

2.8 The Algorand Protocol . 11

3 Proposed Cost Model 14

3.1 Operational Costs . 14

3.2 Total Cost Model . 15

4 Proposed Game Model 17

4.1 The Algorand Game . 17

4.2 Strategies and Equilibria . 19

vi

5 Incentive Analysis in Algorand Game 21

5.1 Algorand’s Original Reward Scheme . 21

5.2 Incentive-compatible Reward Scheme . 22

6 Expected Rewards under IRS 29

6.1 Referral Mechanism . 29

7 Implementation Details 37

7.1 Gossip Protocol in IRS . 37

7.2 Consideration of Assets in IRS . 38

8 Related Works 40

8.1 Selfish Mining . 40

8.2 Mining Gap . 42

8.3 Bribery Attacks . 44

8.4 Information Propagation . 44

8.5 Algorand . 45

9 Conclusion & Future Works 47

References 48

APPENDICES 55

A Notations 56

B Algorand 58

B.1 Step 1 (Block Proposal) . 58

B.2 Step 2 & 3 (Graded Consensus) . 59

B.3 Step 4 to Kmax (Binary Byzantine Agreement) 60

vii

List of Figures

2.1 Blockchain data structure . 7

8.1 Selfish Mining . 41

8.2 Mining Gaps . 43

viii

List of Tables

2.1 Optimal resilience of Byzantine consensus protocols under different commu-
nication models . 7

2.2 Blockchain classifications . 11

A.1 Notations . 56

ix

Chapter 1

Introduction

The concept of blockchain is first popularized by Bitcoin [57] as a tamper-resistant dis-
tributed transaction ledger. The ledger consists of a chain of blocks. To add a new block
to the chain, nodes in the system run a consensus protocol, which ensures that nodes are
in agreement on the new block. Consensus protocols are divided into two main categories:
permissioned and permissionless. Permissioned consensus protocols consider a system that
comprises a fixed and known set of authenticated nodes [23, 50, 59]. In contrast, per-
missionless consensus protocols allow nodes to join the system without any permission
[44, 55].

When permission is not required, the system could become prone to a Sybil attack1. To
mitigate the Sybil attack threat, permissionless consensus protocols often use additional
mechanisms. For example, Bitcoin uses proof of work (PoW), which requires nodes to
solve a computationally intensive puzzle. Winners earn the right to add blocks to the
blockchain and collect rewards for their computational effort. PoW suffers from high
energy and computational costs [2]. Proof of stake (PoS) has been proposed to mitigate
these costs [7, 47]. In most of PoS consensus protocols, nodes stake their cryptocurrency
assets to gain rights to add blocks and earn rewards.

Algorand is a randomized, committee-based consensus protocol inspired by proof of
stake [40, 24]. The core of Algorand is a Byzantine agreement protocol that allows nodes
to reach consensus on a new block in the presence of Byzantine faults2. Nodes are selected

1In a Sybil attack, the attacker creates a large number of pseudonymous identities to gain dispropor-
tionate control and/or influence over the system.

2In a Byzantine fault, a node may inconsistently appear both failed and functioning to other nodes.
The term is taken from the “Byzantine general problem” [51].

1

randomly to participate in the Byzantine agreement protocol as committee members. The
random selection is conducted by each node locally, but committee memberships are ver-
ifiable by other nodes. The original reward scheme of Algorand3 rewards all nodes pro-
portionally to their account balance. Although simple, this reward scheme suffers for the
free-rider problem: nodes have no incentive to participate in the protocol as doing so im-
poses computational and communication costs. This can be seen by tracking the number
of nodes that actively participate in Algorand. According to [1], in May 2022, only about
1.6 billion units of Algorand’s cryptocurrency were registered to participate while a total
of about 8.4 billion units of Algorand’s cryptocurrency were available. Moreover, while
there were more than 1.7 million active accounts, only 361 unique accounts had recently
participated in Algorand’s consensus protocol. Since the safety and liveness of Algorand
depend mainly on high participation of nodes, the lack of participation poses a serious
threat to Algorand by making it prone to attacks from malicious participants.

The incentive problem in Bitcoin-like blockchains has been studied extensively in re-
cent years [34, 63, 60, 52, 26]. However, the results do not apply to Algorand due to
its unique consensus protocol. Amoussou-Guenou et al. [12, 13] analyze incentives in a
committee-based consensus protocol. They present a game-theoretic model of the protocol
and study its safety and liveness under equilibrium strategies of participating nodes. Al-
though related, their analysis is not applicable to Algorand as their studied protocol has
major differences with the consensus protocol in Algorand. One of the main differences is
that they consider the membership of nodes in the committee to be common knowledge.
In Algorand, however, nodes’ membership in the committee is determined locally by each
node and is private information.

In a closely related work, Fooladgar et al. [38] propose a role-based reward scheme
to mitigate the free-rider problem in Algorand. They model Algorand as a static non-
cooperative game and study equilibrium strategies under their proposed reward scheme.
Although all nodes that are selected as committee members are incentivized to participate,
their proposed reward scheme only incentivizes a limited fraction of non-committee nodes.
Moreover, their analysis only considers well-behaved nodes and does not apply to systems
with Byzantine nodes corrupted by a malicious adversary.

In this paper, we propose IRS, an incentive-compatible reward scheme for Algorand. We
model Algorand as a Bayesian game and study nodes’ strategies under our proposed reward
scheme. Our analysis considers an adversary that can corrupt nodes in a probabilistic

3Algorand is moving from its original reward scheme to a new reward scheme called the Governance
Rewards [6]. Under the new reward scheme, only agents who commit to participate in the governance
of the Algorand ecosystem will be rewarded. Agents have to prove their commitment by locking their
cryptocurrency assets for a potentially long term. This new scheme is in line with proof-of-stake protocols.

2

manner. We show that if certain conditions are met, all nodes are incentivized to participate
in the protocol regardless of being selected as committee members. We further propose
a referral reward mechanism to ensure that the malicious adversary does not gain more
expected rewards per corrupted node compared to non-corrupted nodes. In summary, we
make the following contributions.

• We present a detailed cost model for nodes’ participation in Algorand (§3).

• We model the Algorand protocol as a Bayesian game (§4).

• We propose IRS, a novel incentive-compatible reward scheme to address the free-rider
problem (§5).

• We study equilibrium strategies under IRS and derive necessary conditions to ensure
participation in equilibrium (§5).

• We propose a novel referral mechanism to ensure that corrupted nodes receive less
than or equal expected reward compared to non-corrupted nodes (§6).

• We present detailed implementation requirements for real-world deployment of IRS
(§7).

3

Chapter 2

Background

In this chapter, we provide some background materials about Algorand. We first in-
troduce the common communication and adversary models used in distributed systems.
Next we describe the consensus problem, which is fundamental to distributed systems like
blockchains. Then we categorize blockchains based on the consensus protocols.

2.1 Communication Model

In distributed systems, the underlying network usually suffers from uncertainty such that
the messages could be delayed for some period. The communication model defines the
limit of such message delays.

There are three common communication models in distributed system literature: the
Synchronous model, the Asynchronous model, and the Partially Synchronous model. The
following are the assumptions made for each model:

• Synchronous Model: Any message sent will be received within a known time
bound t′.

• Asynchronous Model: Any message sent will be received within an unknown time
bound.

• Partially Synchronous Model [31]: Any message sent at time t will be received
within t′ +max(t, GST) where GST (Global Stabilization Time) is unknown.

4

One way to reason about the Partially Synchronous model is that the communication
is asynchronous before GST and becomes synchronous after that.

2.2 Adversary Model

The nodes in a distributed system may suffer from some kinds of failures. For example,
a power shortage may cause a node to crash and a software bug could lead to undefined
behaviour from the nodes. Moreover, a malicious attacker may take full control of some
nodes and make the nodes behave arbitrarily. Theses failures are usually captured by
assuming the existence of an adversary which can corrupt f out of n nodes in the system.

The adversaries are usually classified by the types of failure it can inflict on the cor-
rupted nodes. There are three common kinds of failure in distributed systems [31]:

• Crash Failure: The corrupted nodes stop sending or receiving any messages.

• Omission Failure: The corrupted nodes fail to send or receive messages when they
should.

• Byzantine Failure [51]: The corrupted nodes could send erroneous messages.

Note that the Byzantine failure is a superclass of the crash failure and the omission
failure since a Byzantine node can pretend to be a one of these types. There are many other
failures but most of them can be subsumed by the Byzantine failure. In a permissionless
setting where everyone can join and leave the system at any time, such as Bitcoin [57],
the protocols designers usually focus on the Byzantine failure since it is the most general
failure mode. In addition, malicious users can join the system and it is hard to predict
what they will do.

Another important assumption about the adversary is the inability to break the cryp-
tographic primitives used in the distributed systems. Distributed systems usually assume
a public key infrastructure (PKI) where each node has a public-private key pair (pk, sk).
When a node wants to send a message m to other nodes, it should send the signed version
of the message msk instead. Other nodes can verify the signature using the sender’s public
key pk. Many consensus protocols [23, 42, 68, 40] are based on the assumption that the
adversary cannot forge the signature of correct nodes. This prevents impossibility results
caused by the issue where the adversary can simulate correct nodes [36].

5

2.3 The Consensus Problem

The consensus problem is one of the fundamental problems in distributed systems like
blockchains. It occurs when multiple nodes in the system need to make an agreement on
a value. In blockchains, the nodes in the system want to reach an agreement on the order
and the content of the blocks, which contains an ordered set of transactions. The formal
definition of the consensus problem is defined as the following:

In a system with n nodes indexed by 1, . . . , n, there are f out of n nodes with
failures. Each node i has an input value vi ∈ V . The nodes must decide a value
among these inputs such that the following properties are satisfied [31]:

• Safety: If a correct node decides a value v, all other correct nodes decide on the
same value v. The decided value v should satisfy the application-specific validity
conditions.

• Liveness: All the correct nodes will eventually decide a value v.

A seminal work [37] from Fischer, Lynch and Paterson proved that it is impossible to
satisfy both properties under asynchronous communication model when there exists an
adversary who can only crash one of the nodes. However, as noted in the paper [37],
this does not mean the consensus problem is not solvable under asynchronous network
models; rather, the impossibility results indicate that more refined models or less strict
requirements on the solutions are needed. There are mainly two possible workarounds to
circumvent the impossibility result. The first method is by finding a middle ground between
the synchronous model and the asynchronous model, such as the partially synchronous
model introduced by [31]. Another method is to lighten the constraint on the liveness
property by randomization such that all the correct nodes eventually decide a value v with
probability 1 [17, 20, 19].

The solutions to the consensus problem, usually called consensus protocols, are said to
be t-resilient if they can tolerate up to t faulty nodes. The maximum number of corrupted
nodes a consensus protocol can tolerate is called the optimal resilience of the protocol.
As shown in table 2.1, it has been proved in [31, 20] that the optimal resilience of any
asynchronous or semi-synchronous Byzantine consensus protocols is ⌊n−1

3
⌋ where n is the

total number of nodes. If we assume the communication is synchronous, then the optimal
resilience is increased to ⌊n−1

2
⌋.

6

Communication Model Optimal Resilience

Synchronous ⌊n−1
2
⌋

Asynchronous ⌊n−1
3
⌋

Semi-synchronous ⌊n−1
3
⌋

Table 2.1: Optimal resilience of Byzantine consensus protocols under different communi-
cation models

Previous Hash

Block

T1 T2 T3

Previous Hash

Block

T1 T2 T3

Previous Hash

Block

T1 T2 T3

Figure 2.1: Blockchain data structure

These optimal resilience thresholds are based on the assumption that nodes in the
system are equivalent such that they have the same voting power. In an open system like
Bitcoin [57] where nodes can join and leave freely, making such an assumption is prone to
the Sybil attack [30] where an attacker can create identities in the system cheaply and gain
more voting power. Once the voting power of the attacker exceeds the optimal resilience,
it can break the safety property of the system. In this scenario, the voting power of nodes
should depend on some resource which cannot be easily replicated. Section 2.2 discusses
how to prevent Sybil attacks under an open environment in details.

2.4 Blockchain

As shown in Fig. 2.1, each block in a blockchain contains a set of ordered transactions and
the hash of the previous block. To reduce the block size, some blockchains such as Bitcoin
[57] will use a data structure called Merkle Tree to store the transactions. Each block
also includes the hash of the previous block, forming a chain of blocks. Some additional
metadata could be added to a block such as the identity of the block proposer and the
timestamp of the block.

Another thing people can store in a blockchain is smart contract [65, 67]. A smart
contract is a collection of functions and the data. The functions could be written in Solidity
[9] or other general purpose programming languages [14]. Once a smart contract is deployed

7

on the blockchain, it can not be changed since it is also finalized by the consensus protocol
when the nodes in the system are trying to reach an agreement on the block. Any node
in the system can then invoke the functions in the smart contract. In blockchains, smart
contracts are usually used to ensure that the transactions recorded in blockchain will only
take effect when the required conditions are met. Bitcoin implements a script which can
also be considered as a kind of smart contract. However, Bitcoin script does not support
looping and thus is not a Turing-complete [8].

Blockchains could be classified into two categories: permissioned and permissionless.
Permissioned blockchains, also known as private blockchains, use an access control mech-
anism to restrict unauthorized users to access the ledger. Examples include HyperLedger
Fabric [14] and Libra (now called Diem) [4]. In contrast, permissionless blockchains do
not have any access restrictions. Examples include Bitcoin [57] and Ethereum [67]. To se-
cure the ledger, permissionless blockchains usually utilize a proof-of-work or proof-of-stake
mechanism. In permissionless blockchains, nodes are usually not treated equally, meaning
that nodes with more voting power will have greater influence on the blockchains.

2.5 Proof-of-work Protocols

Proof of work is originally proposed to deter spammers and discourage junk mail [32].
Bitcoin is the first cryptocurrency that adopted PoW to prevent Sybil attacks [57]. The
main idea is that to generate a new block, a node is required to solve a computationally
intensive cryptographic puzzle. The puzzle is designed in such a way that the solution
cannot be found faster than by brute-force search. To solve the puzzle, a node needs to
find a nonce. When combining the nonce with the payload in a block, such as the hash of
previous block and the hash of the root of the merkle tree, as the input to a public known
hash function H(·) (such as SHA-256), the output should be less than a small number D
which is a difficulty parameter [57].

H(nonce, payload) < D.

The voting power in the PoW system is essentially the computation power owned by
the node. In addition, Bitcoin will only reward the block proposers of the blocks which
are on the longest chain. For a Bitcoin miner to increase its portion of blocks on the
longest chain, it needs to invest more computation power into solving the puzzles. This
reward-distribution scheme instills competition among the miners and aggravates energy
consumption. Nowadays, the total power consumption by Bitcoin is about 135 TWh a
year, comparable to the annual power consumption of Sweden [2].

8

Although Bitcoin is designed with the vision to be a decentralized system, it becomes
more centralized as the total computation power in Bitcoin increases [39, 26]. The same
phenomenon happens to Ethereum [67] as well, which is another popular PoW blockchain.
About 90% of mining power is controlled by only 16 distinct mining entity in Bitcoin and
only 11 distinct mining entity in Ethereum. One possible explanation is that most small
miners are risk-averse, which means their utility is a strictly concave function of the reward.
It has been shown by [63, 52, 26] that the reward scheme used by Bitcoin and Ethereum is
not collusion-proof in the sense that miners are incentivized to form mining pools to reduce
reward variance. Another potential reason is that the cost of mining (such as electricity
cost) is different among the miners and [15] shows that this asymmetric cost can lead to
centralized mining.

2.6 Proof-of-stake Protocols

Proof-of-stake (PoS) is proposed to mitigate the energy waste problem caused by PoW.
The idea of proof-of-stake is first discussed in a Bitcoin forum [7] and is first utilized in
PPCoin [47]. In proof-of-stake blockchains, nodes that hold a greater balance of the assets
will have more voting power in the system.

There are two ways for nodes to provide proof of stake to be a block proposer [28].
They can either provide a public computation result similar to the nonce in proof-of-work
blockchains, which can be computed repeatedly by other nodes in the system to verify
the result, or a private computation result secured by the node’s private key through a
cryptographic mechanism, which can only be verified by using the node’s public key.

The public computation method was first used by PPCoin [47] and then by a series
of following works, such as Ouroboros [46] and Snow White [27]. For example, PPCoin
[47] makes use of coin age, which is the product of the amount of the coins and the time
period of holding the coins, to play the role of hashing power in proof-of-work blockchains.
The node in PPCoin will use a hash function similar to the one in Bitcoin to check if it
is selected as a block proposer. Once selected, the coin age of the node will be consumed
(reset the time period of holding the coins to 0). One important difference between the
hashing process of PPCoin and proof-of-work blockchains is that the node is restricted to
try only a certain amount of hashes per second (proportionally to the amount of stakes
holding by the node). This can be achieved by requiring nodes to add time as one of the
input to the hash function and will mitigate the computation competition between the
nodes.

9

The private computation method was used in blockchains including Algorand [40] and
Ouroboros Praos [28]. In Algorand, a node x will feed the role (such as block proposers)
with a seed as an input to a verifiable random function (VRF). The VRF also needs the
private key of the node and outputs a hash and a proof. The hash can then be used to
determine the eligibility of the node as the role. Other nodes, who know the public key
of the node x in the system can verify the eligibility of the node x by using the proof to
check that the hash is indeed computed by the VRF with the corresponding inputs.

Some PoS blockchains [21, 67] require nodes to stake part of their account balance.
The stake of the nodes cannot be spent for a certain time. During this time, the stake of
the nodes will be the voting power of the nodes. If a node is found to be malicious, its
stake will be expropriated as a punishment. A potential problem of such a punishment
mechanism is that nodes with a small account balance may not be willing to stake their
account balance, and only nodes with a large account balance will stake their assets to
participate in the protocol [24].

Delegated Proof-of-Stake (DPoS) [3, 5] is another popular variant of PoS. In DPoS,
nodes will delegate their voting power to a fixed set of validators. The validators will be
treated equally and the DPoS blockchains can use traditional consensus protocols to reach
agreement on the blocks. Delegates found to be malicious can be expelled by the nodes
through voting mechanisms. However, DPoS is inherently permissioned and centralized.
As a result, it is prone to attacks by adversaries, such as denial of service attacks or Eclipse
attacks [43].

2.7 Finality

One of the problems of blockchains is that forking may happen due to network delays and
the randomness from the selection mechanisms. For example, multiple Bitcoin miners may
solve the puzzles for the blocks at the same height around the same time and nodes may
receive different blocks at the same height. This leads to a divergent view of the order and
the content of the blocks.

Bitcoin [57] and many other permissionless blockchains use the longest-chain rule to
resolve forks. The longest-chain rule requires the nodes to follow the longest chain when
facing forks and break ties in favour of the fork which was discovered first. Protocols
adopting the longest-chain rule usually ask nodes to confirm a block when there are k
more blocks after it, where k is a safety parameter. A larger k means a higher probability
that the block will not be reverted, but also a longer confirmation latency. Another problem

10

caused by the forks and the longest-chain rule is selfish mining [34]. When a node possesses
more than 1

3
of the voting power, it is incentivized to hide the block created by itself to

maximize utility.

By contrast, committee-based consensus protocols [40, 21] using certificates of votes
can provide nearly instant finality of a new block. As soon as a node receives enough votes
for a block, it can mark the block as finalized since no other blocks at the same height will
also receive enough votes. In this case, forks will never happen or will only happen with a
negligible probability, and the protocols will not suffer from selfish mining.

Table 2.2 below shows different categories of blockchains and examples of them.

Openness Consensus Protocol Example

Permissioned Quorum Certificate HyperLedger Fabric[14], Diem[68, 4]

Permissionless

PoW + Longest-Chain Bitcoin[57], Ethereum[67]
PoW + Quorum Certificate ByzCoin[48], Solida[10]

PoS + Longest-Chain
PPCoin[47], Ouroboros[46], Snow
White[27]

PoS + Quorum Certificate Algorand[40], Tendermint[21]

Table 2.2: Blockchain classifications

2.8 The Algorand Protocol

The Algorand protocol maintains a public, permissionless blockchain. Adding a new block
to the blockchain requires multiple steps. Algorithm (1) provides high-level pseudocode of
the Algorand protocol1. At each step, all nodes wait for the messages from the previous
step for a fixed amount of time. Each node then validates and propagates received messages
to its neighbors. The protocol can terminate at specific steps (i.e., k > 4 where k ̸≡ 1
(mod 3)) if a termination condition is met (i.e., enough votes are received or the final step,
Kmax, is reached). At each non-terminal step, a random committee of self-selected nodes is
formed. Committee members generate and propagate a message according to the protocol.
The message is a block proposal if k = 1, and its a vote on a proposed block if k > 1.

Cryptographic sortition. In Algorand, nodes are assumed to have access to a unique
signature scheme (e.g., [56]). As shown in Algorithm (2), at step k, given a publicly

1For more details, see Appendices B.1–B.3.

11

Algorithm 1: High-level pseudocode of the Algorand protocol

for k = 1, . . . ,Kmax do
if k > 1 then Validate and gossip step-(k - 1) messages for a fixed time period;
if k > 4 and k ̸≡ 1 (mod 3) then Exit if termination condition for step k is
met;
(xk, σk) ← Sortition(k);
if .xk ≤ pc then

message ← Generate a message;
Propagate(message, σk);

end

end

Algorithm 2: Sortition(k) procedure given seed Q

procedure Sortition(k) begin
σ ← SIG(k,Q);
x ← H(σ);
return (x, σ);

end

known random seed, Q, each node privately computes a hashlen-bit-long random string
xk = H(SIG(k,Q)) by digitally signing (k,Q) and then hashing it using a random oracle
H [41]. The string xk is interpreted as a binary expansion of a number between 0 and
1, denoted by .xk = xk/2

hashlen. If this number is less than a known threshold, pc, then
the node is a member of the committee at step k. The threshold is set such that the
expected size of the committee is τ (i.e., pc = τ/n, where n is the number of nodes in
the system). .xk is also used to represent the priority of the node; the smaller .xk is the
higher the priority of the node will be. For nodes in the committee, σk = SIG(k,Q) is
the committee credential. Committee members propagate their credential alongside their
generated message.

Adversary model. The committee is guaranteed to reach Byzantine agreement [61,
29, 35] in the presence of an adversary that can corrupt nodes and control their actions. The
Algorand protocol is resilient to such adversary as long as it cannot corrupt more than 1/3
of the nodes. This is achieved by setting the expected size of the committee, τ , such that,
with high probability, at least 2/3 of the committee members are non-Byzantine nodes.
In this paper, however, we consider a slightly different adversary model. In particular, we

12

assume that the adversary corrupts each node with a fixed probability pb < 1/3. Under
our probabilistic adversary model, it is possible for the adversary to corrupt more than
1/3 of nodes ex post. However, we show in §5 that for large systems, under our adversary
model, non-Byzantine nodes still constitute more than 2/3 of the committee with high
probability. Consequently, Algorand protocol is guaranteed to reach Byzantine agreement
with high probability.

Non-Byzantine majority. Since Algorand is a permissionless blockchain, the adver-
sary can easily introduce as many new nodes as it wishes. Therefore, instead of assuming
that the system has at least a 2/3 majority of non-Byzantine nodes, it is often more
meaningful to assume that at least 2/3 of the cryptocurrency assets are controlled by
non-Byzantine nodes. In other words, instead of assuming that the adversary can corrupt
up to 1/3 of the nodes, it is often assumed that the adversary can control up to 1/3 of
the assets in the blockchain. Algorand achieves this by assigning sub-nodes to each node
in proportion to the balance of its account. The cryptographic sortition algorithm then
randomly selects each sub-node as a committee member. In this paper, we present our
analysis under the simpler assumption that each node has a single sub-node. We then
show how to modify the Algorand protocol and our analysis to consider the more realistic
assumption that each node controls multiple sub-nodes.

Gossip network and protocol. In Algorand, each node is provided with an address-
book file containing the IP address and the port number of other nodes. Nodes form a gossip
network by selecting a subset of nrp random peers to gossip messages to. The parameter
nrp depends on the number of nodes, and it is set such that the gossip network is strongly
connected. Messages are disseminated on the gossip network using a gossip protocol. The
message dissemination is initiated by committee members at each step. Each committee
member propagates their generated message to their randomly selected peers. Those peers
then forward the message to their own peers. And this process continues until the message
is received by all the nodes in the network. To avoid forwarding loops, nodes do not
propagate the same message twice.

Timing guarantee. In this paper, we assume that the gossip network is strongly
synchronous. This is a widely adopted network assumption [40, 21, 12, 13] which states
that all messages propagated initially by non-Byzantine nodes are received by all other non-
Byzantine nodes within a known time period. We further assume that the network remains
strongly synchronous if a majority of nodes run the gossip protocol. This means that for
large systems, the adversary cannot launch an Eclipse attack [43] with high probability.

13

Chapter 3

Proposed Cost Model

In this section, we provide our proposed cost model. Nodes running the Algorand proto-
col incur processing and communication costs at each step of the protocol. These costs
are measurable in quantitative terms (e.g., energy consumption) and can be expressed in
monetary values (e.g., cryptocurrency or Dollar).

3.1 Operational Costs

Below, we provide a brief description of the different operational costs incurred by nodes
running the Algorand protocol.

Cryptographic sortition. At every non-terminal step, nodes invoke the crypto-
graphic sortition to privately identify if they are a committee member for that step. The
sortition algorithm produces a digital signature and runs a hash function to generate a
random string and a credential. We use ccs to denote the cost of running the sortition
algorithm per step.

Block generation. At step 1, each node in the committee generates a block proposal.
This requires the committee members to first validate a set of pending transactions that
they have heard about. Next, validated transactions are assembled in a new block proposal
The block is then digitally signed by the committee member. We use cbg to represent all
the costs associated with generating a new block proposal.

Vote generation. At step k ≥ 2, selected committee members generate a vote based
on the Algorand protocol. This requires three steps: (i) computing the value of the vote,

14

(ii) constructing the vote, and (iii) digitally signing the vote. We let cvg(k) denote the total
cost of generating a vote at step k ≥ 2. This cost depends on step number as the amount
of processing needed to compute the value of the vote is not the same across different steps.

Block validation. At step 2, all nodes validate all unique block proposals they receive
before gossiping them to their peers. This requires nodes to first verify the signature of the
block proposer for each received block proposal. Next, the sortition of the block proposer
is verified and the priority of the block proposal is calculated. Finally, nodes validate
the content of the block (i.e., all pending transactions) and its hash. Note that in the
gossip protocol, a node could receive the same message from different peers. We assume
that nodes can detect duplicates with negligible cost to avoid validating the same block
proposal multiple times. For example, nodes can cache the hashes of blocks. We use cbv to
denote the total cost of validating a received block proposal.

Vote validation. At step k ≥ 3, all nodes validate all unique votes they receive
before propagating them in the gossip network. For each vote, nodes verify the signature
of the committee member that initiated the vote. Nodes then verify the sortition for
the committee member using the committee credential that is included with the message.
Similarly to block validation, we assume that nodes validate each unique vote once even
if they receive the vote multiple times from different peers. We let cvv represent the costs
incurred by each node for validating each vote.

Message propagation. All nodes gossip unique validated messages that they receive
to their peers. Committee members additionally propagate their generated messages to
their peers. A message is either a block proposal or a vote. The size of a block proposal
is usually larger than that of a vote. Therefore, gossiping a block proposal has a higher
communication cost compared to gossiping a vote. We use cbp to denote the cost of sending
a block proposal and cvp to denote the cost of sending a vote to each peer.

3.2 Total Cost Model

The total cost incurred by any node i at step k is denoted by Ci(k), and it has two
components: (a) baseline costs, Cb

i (k), and (b) committee costs, Cc(k). We model Ci(k)
as follows.

Ci(k) = Cb
i (k) + Cc(k)× 1(.xi,k < pc)

1. (3.1)

15

Baseline costs. Cb
i (k) represents the baseline costs that do not depend on whether node

i is selected as a committee member at step k. We model Cb
i (k) as follows.

Cb
i (k) =

ccs if k = 1,

ccs +mi(k) · cbv + m̄i(k) · nrp · cbp if k = 2,

ccs +mi(k) · cvv + m̄i(k) · nrp · cvp if k ≥ 3.

In this formula, nrp is the number of each node’s peers (i.e., |Ni| = nrp, where Ni is
the set of node i’s randomly selected peers). mi(k) is the number of unique messages
(block proposals or votes) received by node i at step k. And m̄i(k) is the number of unique
validated messages received by node i at step k, which depends on the size of the committee
at step k.

The cost of running the cryptographic sortition is incurred at every step as a baseline
cost. At every step k ≥ 2, nodes validate every unique message they receive. They then
propagate all validated messages to their randomly selected peers. At step k = 2, the
messages are block proposals, and at step k ≥ 3, the messages are committee votes. In
general, mi(k) could be greater than m̄i(k) as Byzantine nodes might send invalid messages
to their peers. Non-Byzantine nodes do not propagate invalid messages and stop accepting
any further messages from nodes that propagated invalid messages to them in previous
steps. Therefore, we have the following inequality at any step k′.

k′∑
k=1

mi(k) ≤ |N̂i|+
k′∑

k=1

m̄i(k),

where N̂i is the set of nodes of which node i is a randomly selected peer. Since invalid
messages do not impact the protocol, in this paper, we assume that Byzantine nodes do not
send such messages (i.e., mi(k) = m̄i(k)). The expected number of unique valid messages
per step is equal to the expected number of committee members. Therefore, the average
baseline cost for agent i at step k, C̄b(k), can be derived by setting mi(k) = m̄i(k) = τ .

Committee costs. Cc represents the committee costs incurred by a node when it is
selected as a committee member at step k. We model Cc(k) as follows.

Cc(k) =

{
cbg + nrp · cbp k = 1,

cvg(k) + nrp · cvp k ≥ 2.

At every step k ≥ 1, nodes that are selected as a committee member have to generate a
message and broadcast it to all their peers. At step k = 1, the message is a block proposal,
and at step k ≥ 2, the message is a committee vote.

11(·) is the indicator function which returns 1 if the condition is true, and 0 otherwise.

16

Chapter 4

Proposed Game Model

To study nodes’ incentives, we model the participation of nodes in the Algorand protocol
as a Bayesian game. We formally define the Algorand game and describe nodes’ strategies
and utilities. We then discuss solution concepts for our proposed game.

4.1 The Algorand Game

To study nodes’ incentives for participation in the Algorand protocol, we use Bayesian
games. A Bayesian game consists of a set of agents. Each agent has a type and a set
of available actions. Agents do not know their types before the start of the game. They,
however, know a common prior probability distribution over types. At the beginning of the
game, each agent privately observes its own type. Agents then simultaneously take their
actions without knowing each others’ types. Finally, agents receive a real-valued utility
(also known as payoff) given their joint types and actions. A Bayesian game is formally
defined as follows.

Definition 1 (Bayesian Game [64]). A Bayesian game is represented by a tuple (N,A,Θ, p, u)
where:

• N = {1, . . . , n} is a set of agents;

• A = A1 × · · · × An, where Ai is a set of actions available to agent i;

• Θ = Θ1 × · · · ×Θn, where Θi is the type space of agent i;

17

• P : Θ 7→ [0, 1] is a common prior probability distribution over types; and

• u = (u1, . . . , un), where ui : A×Θ 7→ R is the utility function for agent i.

Agents and actions. In our setting, agents represent Algorand nodes. Agents are
assumed to be rational in the sense that they selfishly choose an action to maximize their
utility function. We consider three actions: (i) cooperate, C, (ii) defect, D, (iii) misbehave,
M . A cooperative agent fully runs the Algorand protocol’s code and consequently incurs
all the processing and communication costs associated with it. A defective agent does not
run any code (e.g., logs off from the system) and incurs no costs. A misbehaving agent runs
a malicious code to sabotage the system. Node that the malicious code can imitate the
behaviour of cooperating or defecting. Non-Byzantine agents that are not corrupted by the
adversary do not misbehave. They only choose between cooperating and defecting. They
cooperate if and only if their expected rewards exceed their expected costs. Byzantine
agents, however, always misbehave (i.e., they run the adversary’s malicious code).

Formally, we denote the action of agent i by ai ∈ Ai = {C,D,M}. A vector of
actions a = (a1, . . . , an) ∈ A is called an action profile. An action profile a can be written
as (ai, a−i), where a−i = (a1, . . . , ai−1, ai+1, . . . , an) is an action profile without agent i’s
action1.

Types. We define the type of each agent i to be θi = (θi,0, θi,1, . . . , θi,Kmax), where
θi,0 ∈ {0, 1} indicates if agent i is corrupted by the adversary (1 if i is Byzantine and zero
otherwise), and θi,k is a number between 0 and 1 represented in binary by the hash result
of the sortition algorithm run by agent i at step k = 1, . . . ,Kmax (θi,k = .xi,k, where xi,k is
returned by Sortitioni(k)). The type space of agent i is denoted as Θi. At the beginning
of the Algorand game, each agent observers whether it is corrupted by the adversary.
Agents also receive a random seed for the cryptographic sortition algorithm. Given the
random seed, agents can run the sortition algorithm for all steps to know what exactly
their type vector is.

Prior probabilities. The probability that agent i is corrupted by the adversary is
P(θi,0 = 1) = pb. For k = 1, . . . ,Kmax, θi,k’s are drawn independently for a uniform
distribution between 0 and 1. Therefore, the probability that agent i is selected as a
committee member is P(θi,k ≤ pc) = pc. The adversary corrupts agents independently.
Agents also are selected as committee members at any given step independently.

Utility functions. For agent i, the utility function, ui, maps action profiles, a =
(a1, . . . , an), and type vectors, θ = (θ1, . . . , θn), to real-valued payoffs. If θi,0 = 1, then

1Throughout the paper, we use −i to denote all agents except agent i.

18

we assume that ui(a, θ) is −B if ai ∈ {C,D} and 0 if ai = M where B is a large real
number. Under this assumption, regardless of their type, Byzantine agents always prefer
M to C and D. To model non-Byzantine agents preferences, we assume that if θi,0 = 0,
then ui(a, θ) = −B if ai = M . For ai ∈ {C,D}, the utility of non-Byzantine agents is
equal to the rewards they receive minus the costs they incur. We analyze utility functions
in more details in §5.

Table A.1 in Appendix A provides detailed description of all the parameters used in
our game model and analysis.

4.2 Strategies and Equilibria

A strategy defines a description of how a game would be played in every contingency. In
a Bayesian game, a strategy prescribes a distribution over actions for every type that an
agent could have. Let ∆(Ai) be the set of all probability distributions over Ai. For agent
i, a strategy si : Θi 7→ ∆(Ai) is a mapping from agent i’s types to distributions over agent
i’s actions. The set of all strategies for agent i is denoted by Si. By si(ai | θi), we indicate
the probability that agent i takes action ai under si given that agent i’s type is θi. Similar
to action profiles, a strategy profile s = (s1, . . . , sn) ∈ S is a vector of strategies, where
S = S1 × · · · × Sn is a set of all possible strategy profiles.

Expected utilities. In Bayesian games, there are two main sources of uncertainty:
(i) types and (ii) actions. Types are drawn from the prior probability distribution, P , and
actions are taken based on agents’ strategies. To capture both sources of uncertainty, the
ex ante expected utility of agent i is modeled as follows.

EU i(s) = Ea,θ[ui(a, θ)] = pb · Ea,θ[ui(a, θ) | θi,0 = 1] + (1− pb) · Ea,θ[ui(a, θ) | θi,0 = 0].

The expectation is taken with respect to θ and a ∼ s(· | θ). This formula models the
expected utility of agent i before the start of the game and before the agent observes its
type.

Given the defined expected utility model, we can define the set of agent i’s best re-
sponses to strategy profile s−i as:

BRi(s−i) = argmax
si∈Si

EU i((si, s−i)).

Intuitively, a best response is a strategy which provides the highest expected utility given
the strategy of others. Note that there may be more than one strategy that maximizes
agent i’s expected utility for a given s−i.

19

Bayesian Nash equilibrium. As discussed before, a strategy is a full contingency
plan. Agents simultaneously choose their strategies before the start of the game and
do not change their adopted strategies during the game. Once the game starts, each
agent observes its type and acts as prescribed by its strategy. Agents strategies form a
Bayesian Nash equilibrium (BNE) when the strategy of each agent is a best response to
the strategies adopted by other agents. Formally, a strategy profile s∗ is a BNE if and
only if s∗i ∈ BRi(s

∗
−i), for all i. Informally, in a BNE, agent i does not have any incentive

to unilaterally change its strategy from s∗i if it knows that other agents have fixed their
strategies to s∗−i.

20

Chapter 5

Incentive Analysis in Algorand Game

In this section, we formulate agents’ utilities and study their BNE strategies. We first
consider Algorand’s original reward scheme. We show that under this reward scheme,
cooperation is not a BNE strategy. We then propose a novel reward scheme and show
that under certain conditions, our proposed reward scheme incentivizes all non-Byzantine
agents to cooperate regardless of their type.

5.1 Algorand’s Original Reward Scheme

Algorand’s original reward scheme is called Participation Rewards [6]. Under this reward
scheme, The Algorand Foundation distributes a fixed amount of cryptocurrency assets as
a reward among all agents. Agents are assigned sub-nodes in proportion to the balance
of their accounts. Under Algorand’s original reward scheme, the fixed reward, R, is dis-
tributed equally among all sub-nodes. If agent i is assigned wi sub-nodes, then agent i’s
reward, Ri, is equal to R ·wi/W , where W is the total number of sub-nodes in the system.
The first advantage of this reward scheme is its simplicity: it is easy to implement, and
it is easy to explain to agents how they are rewarded. The most important advantage of
Algorand’s original reward scheme is that it provides proportional rewards.

Definition 2. Proportional rewards. Let Ri denote the expected reward of agent i. A
reward scheme provides proportional rewards if for any agent i and j, Ri/Rj = wi/wj.

The proportional rewards property ensures that the expected fraction of assets con-
trolled by the adversary does not increase by the action of the reward scheme.

21

Although Algorand’s original reward scheme is simple and provides proportional re-
wards, it suffers from a key drawback: it fails to prevent free riding. Agents do not have
any incentive to cooperate as they receive their rewards irrespective of their cooperation.
To formally analyze this, let us define s∗ and a∗ as follows.

Theorem 3. Let s∗ be a strategy profile where for each agent i, if θi,0 = 0, then s∗i (C |θi) =
1, and otherwise, s∗i (M | θi) = 1. Under Algorand’s original reward scheme, s∗ is not a
BNE.

Proof. Suppose agent i is a non-Byzantine agent (i.e., θi,0 = 0). If agent i defects, it
receives its rewards without incurring any costs. Formally, ui(a, θ) = R/n for all θ ∈ Θ if
ai = D1. Let s′i be a strategy that chooses D regardless of the type (i.e., s′i(D | θi) = 1 for
all θi ∈ Θi). It can be easily shown that EU i((s

′
i, s

∗
−i)) = (1−pb) ·R/n. If a non-Byzantine

agent i cooperates, it receives its reward but incurs some strictly positive costs. This means
that ui(a, θ) < R/n if ai = C. Let a∗(θ) be an action profile where a∗i is C if θi,0 = 0 and
M otherwise. The expected utility of agent i for s∗ can be written as:

EU i(s
∗) = (1− pb) · Eθ[ui(a

∗(θ), θ) | θi,0 = 0]

< (1− pb) ·R/n = EU i((s
′
i, s

∗
−i)).

This implies that s∗i is not a best response to s∗−i, which in turn means that s∗ is not a
BNE under Algorand’s original reward distribution.

5.2 Incentive-compatible Reward Scheme

To address the free-rider problem, we propose IRS, a novel incentive-compatible reward
scheme for Algorand. Under IRS, the Algorand Foundation distributes rewards among
agents based on their cooperation. The cooperation of committee members can be easily
tracked as their messages are guaranteed to reach all other agents. However, tracking
the cooperation of the agents that are not selected as a committee member is challenging
as they do not initiate any messages. To address this challenge, our proposed reward
scheme requires committee members at step k = 2, . . . ,Kmax to include with their vote the
identities of the agents from which they have received a valid message at step k − 1.

Let Rc(k) and Rb(k) denote a fixed baseline reward and a fixed committee reward at
step k, respectively. Under IRS, a cooperating agent i receives a committee reward of

1We present the proof for the case where all agents are assigned a single sub-node. Our proof easily
extends to the case where agents are assigned different number of sub-nodes.

22

Rc(k) if it is selected as a committee member at step k. Additionally, if agent i’s identity
is included in the vote generated by agent j ∈ Ni at step k, then agent i receives a baseline
reward of Rb(k)/nrs. We assume that Byzantine agents do not include the identity of non-
Byzantine agents in their vote when they are selected as committee members. In other
words, non-Byzantine agents do not receive any baseline reward for propagating messages
to their Byzantine peers. Given this assumption, the total reward of a cooperating agent
i at step k given an action profile a and a type vector θ can be formulated as:

Ri(a, θ, k) = (Rb(k)/nrs)
∑
j∈Ni

1(θj,k ≤ pc, aj = C) +Rc(k) · 1(θi,k ≤ pc). (5.1)

To show that our reward scheme prevents the free-rider problem, we first prove that
any non-Byzantine agent cannot unilaterally change the outcome of each step by defecting.
Given that, we formulate the expected utility of each non-Byzantine agent assuming that
all other non-Byzantine agents cooperate regardless of their type. We then prove that
if certain conditions are met, cooperation is a best response for a non-Byzantine agent
when other non-Byzantine agents cooperate. This then shows that cooperation is a BNE
strategy for non-Byzantine agents under our proposed reward scheme.

Lemma 4. Let NRk and NBk be random variables indicating the number of non-Byzantine
and the number of Byzantine agents selected as committee members at any step k, respec-
tively. Let µr = E(NRk), µb = E(NBk), µ = µb + µr/2, δr = 1 − T/(1 − pb), and
δ = 2× T/(1 + pb)− 1.

• P(NRk ≤ T · τ) ≤ e−µr·δ2r/2, and

• P(NBk + NRk/2 ≥ T · τ) ≤ e−µ·δ2/(2+δ).

Proof. Let Xi,k be a random variable that takes value 1 if agent i is selected as a committee
member and agent i is not corrupted by the adversary, and takes value 0 otherwise. Simi-
larly, let Yi,k be a random variable that takes value 1 if agent i is selected as a committee
member and agent i is corrupted by the adversary, and takes 0 otherwise. We can write
NRk =

∑
i Xi,k, and NBk =

∑
i Yi,k. We have E(Xi,k) = (1− pb) · pc, and E(Yi,k) = pb · pc.

Therefore, µr = E(NRk) =
∑

i E(Xi,k) = (1−pb)·τ , and µb = E(NBk) =
∑

i E(Yi,k) = pb ·τ .

Since δr ≥ 0, according the the Chernoff bound, the following inequality holds for any
k.

P(NRk ≤ T · τ) = P(NRk ≤ (1− δr) · (1− pb) · τ) = P(NRk ≤ (1− δr) · µr) ≤ e−µr·δ2r/2.

23

Similarly, since δ ≥ 0, we have the following inequality for any k.

P(NBk + NRk/2 ≥ T · τ) = P(NBk + NRk/2 ≥ (1 + δ) · (1 + pb) · τ/2)
= P(NBk + NRk/2 ≥ (1 + δ) · µ) ≤ e−µ·δ2/(2+δ).

We assume that pb, τ , and T are set such that NRk > T · τ and NBk + NRk/2 < T · τ
are true with overwhelming probability. For example, using Lemma (4), with pb = 0.2,
τ = 4000 and T = 0.7, the probability that NRk ≤ T · τ is less than 10−10 and the
probability that NBk + NRk/2 ≥ T · τ is less than 10−13. A main implication of the two
inequalities is that more than 2/3 of the selected committee members at each step are
non-Byzantine agents with overwhelming probability.

Proposition 5. Consider any agent i. Suppose that the strategy profile of all agents
except agent i is s∗−i where for each agent j ∈ N \ i, if θj,0 = 0, then s∗j(C | θj) = 1,
and s∗j(M | θj) = 1 otherwise. In a large system (i.e., n → ∞), the safety and liveness
guarantees of the Algorand protocol are met with high probability regardless of the strategy
of agent i.

Proof. Assume that pb, τ , and T are set such that NRk > T · τ and NBk +NRk/2 < T · τ
with overwhelming probability. Consider a new system consisting of all agents except agent
i. For large systems, it is easy to modify Lemma (4) to show that the two inequalities still
hold for the new system with the same pb, τ , and T . Moreover, the Chernoff bound can
be applied to show that with pb ≤ 1/3, the network is synchronous with high probability
regardless of agent i’s cooperation. Given that the network is synchronous, and the two
inequalities hold with high probability, Theorem 1 from [24] can be applied to the new
system to guarantee safety and liveness of the system.

We next formulate the expected utility of each agents. The Algorand protocol imple-
ments a randomized algorithm. As discussed in §2.8, the algorithm runs in multiple steps.
We use K(a, θ) to denote the total number of steps it takes the algorithm to complete as a
function of agents’ types and their actions. Given a and θ, the total utility of agent i with
θi,0 = 0 can be formulated as:

ui(a, θ) =

K(a,θ)∑
k=1

ui(a, θ, k),

24

where ui(a, θ, k) is Ri(a, θ, k)− Ci(a, θ, k)
2 if ai = C and 0 otherwise.

Lemma 6. Consider any agent i. Suppose that the strategy profile of all agents except agent
i is s∗−i where for each agent j ∈ N \ i, if θj,0 = 0, then s∗j(C | θj) = 1, and s∗j(M | θj) = 1
otherwise. Suppose further that agent i adopts strategy si which plays M if θi,0 = 1 and
plays C with probability sc and D with probability 1− sc if θi,0 = 0. Let a∗(θ) be an action
profile where a∗i is C if θi,0 = 0 and M otherwise. Define K(θ) = K(a∗(θ), θ). Under IRS,
the expected utility of agent i is:

EU i((si, s
∗
−i)) = sc · (1− pb) ·

Kmax∑
ℓ=1

P(K(θ) = ℓ)
ℓ∑

k=1

ū(k),

where ū(k) = Rb(k) · pc · (1− pb)− C̄b(k) + (Rc(k)− Cc(k)) · pc.

Proof. If agent i is corrupted by the adversary, it strictly prefers action M , which leads
to a payoff of zero as defined in §4.1. If agent i is not corrupted, it takes action D with
probability 1 − sc for a payoff of zero. We can write the expected utility of agent i for
(si, s

∗
−i) as:

EU i((si, s
∗
−i)) = sc · (1− pb) · Eθ

K(θ)∑
k=1

ui(a
∗(θ), θ, k)

∣∣∣ θi,0 = 0

 .

We can write the expectation in the above formula as follows.

Eθ

K(θ)∑
k=1

ui(a
∗(θ), θ, k)

∣∣∣ θi,0 = 0

=

Kmax∑
ℓ=1

P(K(θ) = ℓ) · Eθ

[
ℓ∑

k=1

ui(a
∗(θ), θ, k)

∣∣∣ θi,0 = 0, K(θ) = ℓ

]

=
Kmax∑
ℓ=1

P(K(θ) = ℓ)
ℓ∑

k=1

Eθ [ui(a
∗(θ), θ, k) | θi,0 = 0, K(θ) = ℓ]

=
Kmax∑
ℓ=1

ℓ∑
k=1

P(K(θ) = ℓ) · Eθ [Ri(a
∗(θ), θ, k)− Ci(a

∗(θ), θ, k) | θi,0 = 0, K(θ) = ℓ] .

2In Equation (3.1), Ci depends on θ through .xi,k, and it is formulated assuming that agent i cooperates.

25

The second equality holds because the expected value of the sum of random variables is
equal to the sum of their expectations. Given Equation (5.1), we have the following for Ri.

P(K(θ) = ℓ) · Eθ [Ri(a
∗(θ), θ, k) | θi,0 = 0, K(θ) = ℓ]

= (Rb(k)/nrs)
∑
j∈Ni

P(K(θ) = ℓ) · P(θj,k ≤ pc, a
∗
j(θ) = C | θi,0 = 0, K(θ) = ℓ)

+Rc(k) · P(K(θ) = ℓ) · P(θi,k ≤ pc | θi,0 = 0, K(θ) = ℓ)

= (Rb(k)/nrs)
∑
j∈Ni

P(K(θ) = ℓ) · P(θj,k ≤ pc, θj,0 = 0 |K(θ) = ℓ)

+Rc(k) · P(K(θ) = ℓ) · P(θi,k ≤ pc |K(θ) = ℓ)

= (Rb(k)/nrs)
∑
j∈Ni

P(θj,k ≤ pc, θj,k = 0) · P(K(θ) = ℓ | θj,k ≤ pc, θj,0 = 0)

+Rc(k) · P(θi,k ≤ pc) · P(K(θ) = ℓ | θi,k ≤ pc)

= (Rb(k)/nrs)
∑
j∈Ni

pc · (1− pb) · P(K(θ) = ℓ | θj,k ≤ pc, θj,0 = 0)

+Rc(k) · pc · P(K(θ) = ℓ | θi,k ≤ pc).

The second equality holds since there is no dependency between any two elements of θ,
and according to the definition of a∗, a∗j(θ) = C if and only if θj,0 = 0. The third equality
follows simply from Bayes’ rule.

The number of steps needed to complete the Algorand protocol depends on whether
the highest-priority committee member at steps k ∈ {1, 7, 10, . . . ,Kmax} is corrupted (see
Theorem 1 in [24]). Let Ej be a binary random variable that takes value 1 if agent j is not
the highest-priority committee member at any of steps k ∈ {1, 7, 10, . . . ,Kmax} and takes
value 0 otherwise. If Ej = 1, then agent j’s action and type do not affect the number of
steps it takes the Algorand protocol to complete.

Agent j becomes the highest-priority committee member at any step k if θj,k < θj′,k
for all j′ ∈ N . θj,k is uniformly distributed between 0 and 1. Therefore, the probability
that an agent is the highest-priority committee member at any steps is 1/n. Since θj,k’s
are independent and identically distributed, we have P(Ej = 0) ≤ Kmax /3n, and we can

26

write:

P(K(θ) = ℓ | θj,k ≤ pc, θj,k = 0)

=P(K(θ) = ℓ | θj,k ≤ pc, θj,k = 0, Ej = 0) · P(Ej = 0)

+ P(K(θ) = ℓ | θj,k ≤ pc, θj,k = 0, Ej = 1) · P(Ej = 1)

≃P(K(θ) = ℓ | θj,k ≤ pc, θj,k = 0, Ej = 1)

=P(K(θ) = ℓ | Ej = 1)

=P(K(θ) = ℓ). (5.2)

The first equality follows from the law of total probability. The second equality holds
asymptotically since P(Ej = 0) goes to zero as n goes to infinity. The third equality holds
since given Ej = 1, the number of steps needed to complete the protocol does not depend
on agent j’s type. Finally, the fourth equality holds since Ej = 1 and K(θ) = ℓ are
independent events. Knowing that agent j is not the highest-priority agent at some steps
does not reveal any information about the number of steps needed to complete the protocol.
The same argument can be applied to show that P(K(θ) = ℓ | θi,k ≤ pc) = P(K(θ) = ℓ).

Given Equation (3.1), we have the following for Ci.

P(K(θ) = ℓ) · Eθ [Ci(a
∗(θ), θ, k) | θi,0 = 0, K(θ) = ℓ]

= P(K(θ) = ℓ) ·
(
C̄b(k) + Cc(k) · P(θi,k ≤ pc | θi,0 = 0, K(θ) = ℓ)

)
= P(K(θ) = ℓ) · C̄b(k) + Cc(k) · P(θi,k ≤ pc) · P(K(θ) = ℓ | θi,k ≤ pc)

= P(K(θ) = ℓ) · C̄b(k) + Cc(k) · pc · P(K(θ) = ℓ). (5.3)

The second equality follows from Bayes’ rule, and the third equality holds as shown for
Ri. Note that for this equality equality, we also use the fact that there is no dependency
between θi,0 and θi,k. This completes the proof of the lemma.

Next, we prove that s∗ is a BNE under certain conditions.

Theorem 7. Let s∗ be a strategy profile where for each agent i, if θi,0 = 0, then s∗i (C |θi) =
1, and otherwise, s∗i (M | θi) = 1. Given pc, pb, C̄

b(k), and Cc(k) for k = 1, . . . ,Kmax, s
∗ is

a BNE under IRS if:

Rb(k)(1− pb) +Rc(k) ≥ C̄b(k)/pc + Cc(k), ∀k = 1, . . . ,Kmax .

Proof. To prove that s∗ is a BNE, it suffices to show that s∗i is a best response to s∗−i for all
agent i ∈ N . Recall that s∗i is a best response to s∗−i when EU i((s

∗
i , s

∗
−i)) ≥ EU i((si, s

∗
−i))

27

for all si ∈ Si. If R
b(k) · (1− pb) +Rc(k) ≥ C̄b(k)/pc + Cc(k) for all k = 1, . . . ,Kmax, then

ū(k) in Lemma (6) is greater than or equal to zero for all k = 1, . . . ,Kmax. Consequently,
EU i((si, s

∗
−i)) is maximized when sc = 1. In this case, we have s = s∗ which means s∗ is a

BNE.

28

Chapter 6

Expected Rewards under IRS

In §5, we showed that cooperating is a BNE strategy for non-Byzantine agents under the
IRS reward scheme. In this section, we study expected rewards gained by Byzantine and
non-Byzantine nodes. If there is no adversary (i.e., pb = 0), then in equilibrium, all agents
receive the same expected rewards under IRS according to Lemma (6) and Theorem (7).
However, in the presence of an adversary, IRS could fail to provide proportional rewards.
This is mainly because IRS relies on selected agents to refer cooperation of other agents.
Non-Byzantine agents refer both Byzantine and non-Byzantine agents. Byzantine agents,
however, do not refer non-Byzantine agents. If we assume that Byzantine agents do refer
other Byzantine agents, then the adversary has the opportunity to receive a higher expected
reward per Byzantine agent than non-Byzantine agents1. This could pose a risk to Algorand
as the expected proportion of assets controlled by the adversary could increase under IRS.

6.1 Referral Mechanism

To prevent corrupted nodes to receive higher expected rewards than non-corrupted nodes,
we propose a referral reward mechanism. Under this mechanism, selected committee mem-
bers receive extra rewards for every agent that they refer in their vote. More specifically,
for every agent that is referred in a committee member’s vote, the committee member
receives a referral reward of Rr(k)/|N̂i|, where Rr(k) is a fixed referral reward at step k.
The addition of referral rewards poses a dilemma for the adversary. If a Byzantine agent

1This could be achieved when, for example, the adversary code fully mimics the protocol except referring
the cooperation of the other agents.

29

propagates messages to its non-Byzantine peers, it gains expected baseline rewards but
enables non-Byzantine agents to claim referral rewards. Similarly, if a Byzantine commit-
tee member refers its non-Byzantine neighbors, it gains referral rewards, but that allows
non-Byzantine agents to gain baseline rewards. In the remainder of this section, we con-
sider four cases for the adversary code: (I) does not propagate messages to non-Byzantine
peers but refers all neighbors, (II) does not propagate messages to non-Byzantine peers
and only refers Byzantine neighbors, (III) propagates messages to all peers but only refers
Byzantine neighbors, and (IV) propagates messages to all peers and refers all neighbors.

The total reward of agent i given action profile a, and type vector θ under IRS with
referral rewards can be formulated as follows.

Ri(a, θ) =

K(a,θ)∑
k=1

Rb
i(a, θ, k) +Rc

i (a, θ, k) +Rr
i (a, θ, k).

In this formula, Rc
i (a, θ, k) = Rc(k) · 1(θi,k ≤ pc) for all four cases. However, the definition

of Rb
i(a, θ, k) depends on each case as follows.

Rb
i(a, θ, k) =

(Rb(k)/nrs)

∑
j∈Ni

1(θj,k ≤ pc, aj ∈ {C,M}) for (I)/(IV) if θi,0 = 0,

(Rb(k)/nrs)
∑

j∈Ni
1(θj,k ≤ pc, aj = C) for (II)/(III) if θi,0 = 0,

(Rb(k)/nrs)
∑

j∈Ni
1(θj,k ≤ pc, aj ∈ {C,M}) for (III)/(IV) if θi,0 = 1,

(Rb(k)/nrs)
∑

j∈Ni
1(θj,k ≤ pc, aj = M) for (I)/(II) if θi,0 = 1.

For cases (I) and (IV), Byzantine committee members refer all their neighbors. Therefore,
if θi,0 = 0, then agent i receives baseline rewards for being referred by any cooperating
or misbehaving peer that is selected as a committee member. For cases (II) and (III),
Byzantine committee members only refer their Byzantine neighbors. This means that if
θi,0 = 0, then agent i receives baseline rewards only for being referred by cooperating
committee members among its peers. For cases (III) and (IV), Byzantine agents propagate
messages to all their peers. Therefore, if θi,0 = 1, agent i receives baseline rewards for
being referred by any cooperating or misbehaving peer that is selected as a committee
member. Finally, for cases (I) and (II), Byzantine agents do not propagate messages to
their non-Byzantine peers. For these two cases, if θi,0 = 1, agent i receives baseline rewards
for being referred by misbehaving committee members among its neighbors.

30

Similarly, Rr
i (a, θ, k) is defined as follows.

Rr
i (a, θ, k) =

(Rr(k)/|N̂i|)

∑
j∈N̂i

1(θi,k ≤ pc, aj = C) for (I)/(II) if θi,0 = 0,

(Rr(k)/|N̂i|)
∑

j∈N̂i
1(θi,k ≤ pc, aj ∈ {C,M}) for (III)/(IV) if θi,0 = 0,

(Rr(k)/|N̂i|)
∑

j∈N̂i
1(θi,k ≤ pc) for (I)/(IV) if θi,0 = 1,

(Rr(k)/|N̂i|)
∑

j∈N̂i
1(θi,k ≤ pc, θj,0 = 1) for (II)/(III) if θi,0 = 1.

For cases (I) and (II), Byzantine agents only propagate messages to their Byzantine neigh-
bors. Therefore, if θi,0 = 0, then committee member i can only claim referral rewards for
cooperating peers. For cases (III) and (IV), Byzantine agents propagate messages to all
their neighbors. This means that if θi,0 = 0, then committee member i receives referral
rewards for referring any cooperating or misbehaving peer. For cases (I) and (IV), Byzan-
tine agents refer all their neighbors. Therefore, if θi,0 = 1, committee member i receives
referral rewards for all its neighbors. Finally, for cases (II) and (III), Byzantine agents only
refer their Byzantine neighbors. For these two cases, if θi,0 = 1, committee member i only
claims referral rewards for its Byzantine neighbors.

We next formulate conditional expectation of rewards of an agent given that agent
being a non-Byzantine or a Byzantine agent.

Lemma 8. Consider any agent i. Suppose that the strategy profile of all agents except agent
i is s∗−i where for each agent j ∈ N \ i, if θj,0 = 0, then s∗j(C | θj) = 1, and s∗j(M | θj) = 1
otherwise. Suppose further that agent i adopts strategy si which plays M if θi,0 = 1 and
plays C with probability sc and D with probability 1− sc if θi,0 = 0. Let a∗(θ) be an action
profile where a∗i is C if θi,0 = 0 and M otherwise. Define K(θ) = K(a∗(θ), θ). Under IRS
with referral rewards, the conditional expectation of agent i’s reward given θi,0 = 0 is:

Ea,θ[Ri(a, θ) | θi,0 = 0] = sc ·
Kmax∑
ℓ=1

P(K(θ) = ℓ)
ℓ∑

k=1

R̄(k),

where R̄(k) is defined as:

R̄(k) =

Rb(k) · pc +Rc(k) · pc +Rr(k) · pc · (1− pb) for (I),

Rb(k) · pc · (1− pb) +Rc(k) · pc +Rr(k) · pc · (1− pb) for (II),

Rb(k) · pc · (1− pb) +Rc(k) · pc +Rr(k) · pc for (III),

Rb(k) · pc +Rc(k) · pc +Rr(k) · pc for (IV).

Similarly, the conditional expectation of agent i’s reward given θi,0 = 1 is:

Ea,θ[Ri(a, θ) | θi,0 = 1] =
Kmax∑
ℓ=1

P(K(θ) = ℓ)
ℓ∑

k=1

R̄b(k),

31

where R̄b(k) is defined as:

R̄b(k) =

Rb(k) · pc · pb +Rc(k) · pc +Rr(k) · pc for (I),

Rb(k) · pc · pb +Rc(k) · pc +Rr(k) · pc · pb for (II),

Rb(k) · pc +Rc(k) · pc +Rr(k) · pc · pb for (III),

Rb(k) · pc +Rc(k) · pc +Rr(k) · pc for (IV).

Proof. Using the same techniques in the proof of Lemma (6), we can write:

Ea,θ[Ri(a
∗(θ), θ) | θi,0 = 0]

= sc · Eθ

K(θ)∑
k=1

Ri(a
∗(θ), θ)

∣∣∣ θi,0 = 0

= sc ·

Kmax∑
ℓ=1

ℓ∑
k=1

P(K(θ) = ℓ) · Eθ [Ri(a
∗(θ), θ) | θi,0 = 0, K(θ) = ℓ] .

For the remaining of the proof, we focus on case (I) in the definition of Ri(a, θ). The proof
easily extends to other three cases. We first consider agent i with θi,0 = 0.

P(K(θ) = ℓ) · Eθ [Ri(a
∗(θ), θ) | θi,0 = 0, K(θ) = ℓ]

= (Rb(k)/nrs)
∑
j∈Ni

P(K(θ) = ℓ) · P(θj,k ≤ pc, a
∗
j(θ) ∈ {C,M} | θi,0 = 0, K(θ) = ℓ)

+Rc(k) · P(K(θ) = ℓ) · P(θi,k ≤ pc | θi,0 = 0, K(θ) = ℓ)

+ (Rr(k)/|N̂i|)
∑
j∈N̂i

P(K(θ) = ℓ) · P(θj,k ≤ pc, a
∗
j(θ) = C | θi,0 = 0, K(θ) = ℓ)

= (Rb(k)/nrs)
∑
j∈Ni

P(K(θ) = ℓ) · P(θj,k ≤ pc |K(θ) = ℓ)

+Rc(k) · P(K(θ) = ℓ) · P(θi,k ≤ pc |K(θ) = ℓ)

+ (Rr(k)/|N̂i|)
∑
j∈N̂i

P(K(θ) = ℓ) · P(θj,k ≤ pc, θj,0 = 0 |K(θ) = ℓ)

32

= (Rb(k)/nrs)
∑
j∈Ni

P(θj,k ≤ pc) · P(K(θ) = ℓ | θj,k ≤ pc)

+Rc(k) · P(θi,k ≤ pc) · P(K(θ) = ℓ | θi,k ≤ pc)

+ (Rr(k)/|N̂i|)
∑
j∈N̂i

P(θj,k ≤ pc, θj,0 = 0) · P(K(θ) = ℓ | θj,k ≤ pc, θj,0 = 0)

= (Rb(k)/nrs)
∑
j∈Ni

pc · P(K(θ) = ℓ)

+Rc(k) · pc · P(K(θ) = ℓ)

+ (Rr(k)/|N̂i|)
∑
j∈N̂i

pc · (1− pb) · P(K(θ) = ℓ)

= (Rb(k) · pc +Rc(k) · pc +Rr(k) · pc · (1− pb)) · P(K(θ) = ℓ).

The second equality holds because there is no dependency between any two elements of θ.
Moreover, given the definition of a∗, a∗j(θ) ∈ {C,M} for all θ, and a∗j(θ) = C if and only
if θj,0 = 0. The third equality follows from Bayes’ rule. The fourth equality holds due to
Equation (5.2) and the fact that K(θ) = ℓ is independent from θi,k ≤ pc for all i.

Next, we consider agent i with θi,0 = 1. When agent i is corrupted by the adversary, it
strictly prefers action M . We can write the conditional expectation of agent i’s reward for
(si, s

∗
−i) as:

Ea,θ[Ri(a
∗(θ), θ) | θi,0 = 1]

= Eθ

K(θ)∑
k=1

Ri(a
∗(θ), θ)

∣∣∣ θi,0 = 1

=

Kmax∑
ℓ=1

ℓ∑
k=1

P(K(θ) = ℓ) · Eθ [Ri(a
∗(θ), θ) | θi,0 = 1, K(θ) = ℓ] .

Given the definition of Ri(a, θ), we have the following for case (I). The derivation of equa-

tions is analogous to the above case when θi,0 = 0.

P(K(θ) = ℓ) · Eθ [Ri(a
∗(θ), θ) | θi,0 = 1, K(θ) = ℓ]

= (Rb(k)/nrs)
∑
j∈Ni

P(K(θ) = ℓ) · P(θj,k ≤ pc, a
∗
j(θ) = M | θi,0 = 1, K(θ) = ℓ)

33

+Rc(k) · P(K(θ) = ℓ) · P(θi,k ≤ pc | θi,0 = 1, K(θ) = ℓ)

+ (Rr(k)/|N̂i|)
∑
j∈N̂i

P(K(θ) = ℓ) · P(θi,k ≤ pc | θi,0 = 1, K(θ) = ℓ)

= (Rb(k)/nrs)
∑
j∈Ni

P(K(θ) = ℓ) · P(θj,k ≤ pc, θj,k = 1 |K(θ) = ℓ)

+Rc(k) · P(K(θ) = ℓ) · P(θi,k ≤ pc |K(θ) = ℓ)

+ (Rr(k)/|N̂i|)
∑
j∈N̂i

P(K(θ) = ℓ) · P(θi,k ≤ pc |K(θ) = ℓ)

= (Rb(k)/nrs)
∑
j∈Ni

P(K(θj,k ≤ pc, θj,k = 1) · P(K(θ) = ℓ | θj,k ≤ pc, θj,k = 1)

+Rc(k) · P(θi,k ≤ pc) · P(K(θ) = ℓ | θi,k ≤ pc)

+ (Rr(k)/|N̂i|)
∑
j∈N̂i

P(θi,k ≤ pc) · P(K(θ) = ℓ | θi,k ≤ pc)

= (Rb(k)/nrs)
∑
j∈Ni

pc · pb · P(K(θ) = ℓ)

+Rc(k) · pc · P(K(θ) = ℓ)

+ (Rr(k)/|N̂i|)
∑
j∈N̂i

pc · P(K(θ) = ℓ)

= (Rb(k) · pc · pb +Rc(k) · pc +Rr(k) · pc) · P(K(θ) = ℓ).

Given the expected rewards, we formulate the expected utility of each agent in the
following lemma.

Lemma 9. Consider any agent i. Suppose that the strategy profile of all agents except agent
i is s∗−i where for each agent j ∈ N \ i, if θj,0 = 0, then s∗j(C | θj) = 1, and s∗j(M | θj) = 1
otherwise. Suppose further that agent i adopts strategy si which plays M if θi,0 = 1 and
plays C with probability sc and D with probability 1− sc if θi,0 = 0. Let a∗(θ) be an action
profile where a∗i is C if θi,0 = 0 and M otherwise. Define K(θ) = K(a∗(θ), θ). Under IRS
with referral rewards, the expected utility of agent i is:

EU i((si, s
∗
−i)) = sc · (1− pb) ·

Kmax∑
ℓ=1

P(K(θ) = ℓ)
ℓ∑

k=1

R̄(k)− C̄b(k)− Cc(k) · pc,

34

where R̄(k) is defined similar to Lemma (8).

Proof. Using the same techniques in the proof of Lemma (6), we can write:

EU i((si, s
∗
−i)) = Eθ

K(θ)∑
k=1

ui(a
∗(θ), θ, k)

∣∣∣ θi,0 = 0

=

Kmax∑
ℓ=1

ℓ∑
k=1

P(K(θ) = ℓ) · Eθ [Ri(a
∗(θ), θ, k)− Ci(a

∗(θ), θ, k) | θi,0 = 0, K(θ) = ℓ] .

Substituting conditional expectation of rewards from Lemma (8) and conditional expecta-
tion of costs from Equation (5.3) completes the proof.

Given the two lemmas, we next prove that cooperation is a BNE strategy for non-
Byzantine agents under IRS with referral rewards under certain conditions.

Theorem 10. Let s∗ be a strategy profile where for each agent i, if θi,0 = 0, then s∗i (C |θi) =
1, and otherwise, s∗i (M | θi) = 1. Given pc, pb, C̄

b(k), and Cc(k) for k = 1, . . . ,Kmax, s
∗ is

a BNE under IRS with referral rewards if:

Rb(k) · (1− pb) +Rc(k) +Rr(k) · (1− pb) ≥ C̄b(k)/pc + Cc(k), ∀k = 1, . . . ,Kmax .

Proof. For R̄(k) defined in Lemma (8), it is easy to show that for all four cases:

R̄(k) ≥ Rb(k) · pc · (1− pb) +Rc(k) · pc +Rr(k) · pc · (1− pb), ∀k = 1, . . . ,Kmax .

Therefore, the condition of the theorem implies:

R̄(k)− C̄b(k) + Cc(k) · pc ≥ 0.

Consequently, EU i((si, s
∗
−i)) is maximized when sc = 1. In this case, we have s = s∗ which

means s∗ is a BNE.

We conclude this section by showing that Byzantine agents cannot gain more expected
rewards under IRS with referral rewards than non-Byzantine agents for all four cases when
certain conditions on referral and baseline rewards are met.

35

Theorem 11. Let s∗ be a strategy profile where for each agent i, if θi,0 = 0, then s∗i (C |θi) =
1, and otherwise, s∗i (M | θi) = 1. Under IRS, with the referral reward mechanism, the
expected reward of each Byzantine agent for strategy profile s∗ is less than or equal to that
of non-Byzantine agents if:

Rb(k) · (1− pb) ≥ Rr(k) · pb and Rr(k) · (1− pb) ≥ Rb(k) · pb, ∀k = 1, . . . ,Kmax .

Proof. Given Lemma (8), to ensure that the expected reward of any Byzantine agent
is less than or equal to that of non-Byzantine agents (i.e. Ea,θ[Ri(a, θ) | θi,0 = 0] ≥
Ea,θ[Ri(a, θ) | θi,0 = 1]), the following inequalities must hold for all k = 1, . . . ,Kmax.

Rb(k) +Rr(k) · (1− pb) ≥ Rb(k) · pb +Rr(k),

Rb(k) · (1− pb) +Rr(k) · (1− pb) ≥ Rb(k) · pb +Rr(k) · pb,
Rb(k) · (1− pb) +Rr(k) ≥ Rb(k) +Rr(k) · pb,
Rb(k) +Rr(k) ≥ Rb(k) +Rr(k).

The first inequality (corresponding to case (I)) can be simplified as Rb(k)(1−pb) ≥ Rr(k)pb.
The second inequality (corresponding to case (II)) always holds since 0 ≤ pb < 1/3. The
third inequality (corresponding to case (III)) can be written as Rr(k)(1 − pb) ≥ Rb(k)pb.
Finally, the fourth inequality (corresponding to case (IV)) always holds.

36

Chapter 7

Implementation Details

In this section, we briefly discuss the detailed considerations required to implement IRS.

7.1 Gossip Protocol in IRS

To implement IRS, three main modifications to Algorand’s default gossip protocol are
needed. First, we require the randomness of the peer-selection mechanism to be verifiable
(e.g., through verifiable pseudo-random peer selection [53]). This requirement prevents the
adversary from gaining unauthorized baseline and referral awards. Byzantine nodes cannot
be rewarded for propagating messages to nodes that are not among their randomly selected
peers. Byzantine committee members also cannot refer other Byzantine nodes that are not
randomly connected to them.

Second, we require nodes to disable selective propagation. Selective propagation is an
optimization technique that prevents nodes from propagating low-priority block proposals
[40, 24]. Although this technique reduces network congestion, it prevents low-priority
block proposals from reaching all nodes in the gossip network. This in turn prevents
the Algorand Foundation from tracking cooperation of some committee members at step
1. One optimization that could be implemented to replace selective propagation is to
only send the committee member’s credential for the low-priority block proposals without
sending the entire block proposal.

Third, we require nodes to track the identity of all nodes from which they have received
a valid message, even if the message is a duplicate message. For example, suppose that
agent i receives message m at step k first from agent j and later from agent j′. Agent i

37

propagates messagem to its peers only the first time it receives it from agent j. However, it
saves the identity of both agents j and j′ as propagators for m at step k. If agent i becomes
a committee member at step k + 1, it includes the identity of both agents j and j′ in its
generated vote. This allows the Algorand Foundation to not only track the cooperation of
the committee members but also the cooperation of their peers. Since committee members
are selected randomly, their cooperating peers can be considered as random samples of the
non-voting agents that cooperate.

7.2 Consideration of Assets in IRS

Cryptographic sortition. Extending the sortition algorithm to the case where agents
have more than one sub-node is straightforward. Assume agent i has wi sub-nodes, it can
run the sortition algorithm on each of its sub-nodes by adding the index of the sub-node
as an input when generating the credential σ. However, this method is computationally
intensive. One optimization is to use the inverse transform sampling method, which is
used by Algorand [24]. In this method, the interval of [0, 1) is partitioned into consecutive
intervals of the following form.

IMwi,p
=

[
B(M ;wi, p), B(M + 1;wi, p)

)
, ∀M ∈ {0, 1, . . . , wi − 1}.

If .xi falls in the IMwi,p
interval, then node has exactly M selected sub-users.

Adversary model. Instead of assuming that the adversary corrupts each node with
probability pb < 1/3, we assume each sub-node of an agent is corrupted with probability
pb. Again, the results in §5–§6 still hold because non-Byzantine agents constitute more
than 2/3 of the committee with high probability.

Non-Byzantine majority of assets. Each agent i has wi sub-nodes. The number
of sub-nodes for each agent is known to all agents. The total number of sub-nodes for all
agents is W =

∑
i∈N wi. W assume that the adversary can corrupt each sub-node with

probability pb < 1/3. We further define W−i =
∑

j∈N\i wj for all agents i and require

W−i to go to infinity as n goes to infinity. We also require that wi/W < (1 − 3 × pb)
for all agents i. This requirement ensures that if any single agent is removed from the
set of agents, in expectation, the adversary would not control more than one-third of the
remaining sub-nodes. For example, if pb = 0.3, then no single agent should have greater
than or equal to one-tenth of all sub-nodes.

Gossip network. When each agent has more than one sub-node, we assume the gossip
network is constructed among the sub-nodes. This means agents need to select a subset

38

of random peers for each of their sub-nodes. This can be achieved by adding the indexes
of the sub-nodes as part of the inputs when conducting the verifiable pseudo-random peer
selection [53].

Gossip protocol. When a sub-node propagates a message to another sub-node, it
is required to include the identities of both the sender and the receiver sub-nodes in the
message. When an agent receives a message, it will verify if the sender sub-node and the
receiver sub-node are indeed connected.

IRS. The simplest method to extend IRS to consider the case where agents have more
than one sub-node is to reward each sub-node independently. In this way, the total reward
of an agent is the sum of the rewards of its sub-nodes.

39

Chapter 8

Related Works

The incentive compatibility of the reward-distribution scheme is crucial to the security of
the blockchain. Nakamoto [57] analyzes the incentive mechanism of Bitcoin informally.
Bitcoin provides incentive for the miners by providing the block creator with two kinds
of rewards. First, the block creator will get a newly mined coin (called block rewards).
Second, when the input value is larger than the output value in a transaction, the difference
(called transaction fees) will be awarded to the block creator. These rewards incentivize the
miners to put more hashing power to the system and thus maintain the safety of Bitcoin.
It is believed that the Bitcoin protocol is incentive compatible if majority (more than 50%)
of the hashing power is possessed by the honest miners [57]. However, if an attacker has
more than 50% of hashing power in Bitcoin, it can successfully double-spend its bitcoins
and violates the safety property of the system (this is known as 51% attack).

8.1 Selfish Mining

A celebrated work [34] from Eyal and Sirer proves a negative result against the incentive
compatibility of Bitcoin. They model the competitive mining among the miners as a
strategic game and propose a novel mining strategy called selfish mining. While the original
Bitcoin protocol requires the miners to broadcast the new block immediately, the selfish
miner can actually gain more rewards in expectation by withholding the block and release
it based on the difference between the public chain and the private chain of the selfish
miner. For example, as shown in Fig 8.1, the selfish miner could hide the mined blocks
until the honest miners are close to catch up (when the lead is only 1 block). This will
invalidate the block mined by the honest players based on the Bitcoin chain selection

40

Block H Block H+1

Block H+2

Block H+2 Block H+3

Block H Block H+1

Block H+2

Block H+2 Block H+3

Common Blocks Blocks mined by
honest miners

Blocks mined by
selfish miners

Published blocks Hidden blocks

Figure 8.1: Selfish Mining

rule. The authors examine how much computation power the selfish miner needs to gain
more revenue using the selfish mining threshold, and they call this amount the profitable
threshold. In the extreme case, the profitable threshold of selfish mining is 0, which means
a selfish miner with an arbitrarily small amount of the mining power can earn more profit
by hiding the blocks instead of publishing them immediately. A modification to the Bitcoin
chain selection protocol has been proposed by the authors to fix the profitable threshold
of selfish mining strategies at 1

4
.

Since the publication of [34], there are a series of subsequent works on the optimality
and the profitable threshold of selfish mining strategies. Sapirshtein, Sompolinsky and
Zohar [62] propose an algorithm to find the optimal selfish mining strategies that are more
profitable compared to the selfish mining strategy mentioned in [34]. They also show that
the modification proposed by [34] cannot in fact guarantee a 1

4
threshold. Attackers with

strictly less than 1
4
of computation resources can still be profitable from selfish mining

under the modified chain selection rule. Nayak et al. [58] generalize the selfish mining
strategy to the stubborn mining strategy by the intuition that the selfish miner should not
give up easily when the public chain is longer than the private chain of the selfish miner.
They demonstrate that stubborn mining earns the miner more revenue compared to selfish
mining. Zhang, Zhang and Kemme [69] build a simulator based on the Markov Decision
Process to analyze the profitable threshold of selfish mining when there exist two attackers.
They claim that the profitable threshold will be dropped to 21% in this case. Recent work
from Hou et al. [45] builds a general simulator by combining the Markov Decision Process
with Reinforcement Learning. The simulation result suggests that the strategies found in

41

[62] are not optimal and that no profitable Nash Equilibrium exists when there are more
than two competing selfish miners.

Pass and Shi [60] propose a new PoW blockchain protocol called the FruitChain protocol
to avoid the potential selfish mining attacks. The FruitChain protocol is based on the
original Bitcoin protocol. However, instead of recording transactions in the blocks, the
miners put the transactions inside “fruits”, which can be considered as another kind of
block. The miners of FruitChain need to mine the fruits and the block at the same time.
When a miner successfully resolve the puzzle of the fruit, it will add a link in the fruit to
an existing recent block and broadcast the fruit. When a miner mined a new block, it will
add all known fruits, which have not been added to any blocks yet, inside the block. The
intuition behind is that even if a selfish miner fools the network to abandon a block mined
by a honest player, a subsequent honest miner will include the fruits in its newly mined
block. The block reward is evenly distributed among the miners of a certain number of
previous blocks. The authors prove that in FruitChain protocol, the selfish miner can only
get a small portion of extra profit than mining honestly thus honest mining is an ϵ-Nash
Equilibrium. Whether selfish mining can be completely avoided is still an open question.

8.2 Mining Gap

The works have been discussed so far mainly focus on the block rewards. This is reasonable
since the block rewards is usually much larger than the transaction fees. However, the block
rewards will keep decreasing and eventually becomes 0 [57]. After that, the only incentive
will be the transaction fees. Carlsten et al. [22] create a simple game model where there
are no block rewards and only the transaction fees matter. They build a simulator to
run the game where the miners in the simulator perform no-regret learning to explore the
strategy space. The result shows several potential deviations that could happen and harm
the security of Bitcoin.

First, they predict that the mining gap, as shown in Fig. 8.2, will happen in this
model. Without block rewards, rational miners will not start solving the puzzle until there
are enough transaction fees to compensate the mining costs. This will reduce the hashing
power of the whole system for a while and increase the proportion of the hashing power of
the malicious miner.

Second, rational miners can change the default chain selection rule, which requires
the miners to mine on the block it receives first, to mine on the block which left most
transaction fees unclaimed. The successful miner can add the unclaimed transactions into

42

Value

Time

Expected cost

Block reward

Block mined

Block mining

Figure 8.2: Mining Gaps

its own block and earn more rewards. The authors name this strategy PettyCompliant.
Once there exists some PettyCompliant miners, a more harmful attack, called Undercutting
attack, can be performed by intentionally creating a fork on the head of the chain which
leaves a lot of transaction fees unclaimed. They showed that there exists a Nash equilibrium
where miners only include a part of unclaimed transactions into the blocks. This will lead
to a infinite large amount of unclaimed transactions as time grows to infinite. In addition,
both the simulation and the analysis showed that even if 66% of the miners are honest,
the undercutting attack is still profitable.

Third, they revisit selfish mining proposed by [34] in transaction-fee-only reward model
and show that a modified selfish mining strategy performs better than the original selfish
mining strategy. More importantly, this strategy works even when the hashing power of
the selfish miner is arbitrarily small and the network connectivity of the selfish miner is
poor.

Tsabary and Eyal [66] analyze the mining gap as a Gap Game in a realistic setting. The
result shows that the mining gap will arise even before the block reward becomes 0 and
the mining utilization will decrease by up to 90% in extreme case. This implies that block
rewards are necessary for the blockchain security and they claim that the ratio between
the block rewards and the transaction fees should be at least 6 to avoid the mining gaps.

43

8.3 Bribery Attacks

Bonneau [18] outlines three kinds of bribery attacks which are possible on Bitcoin and
other cryptocurrencies using longest-chain proof-of-work consensus protocols. The basic
ideas is that the attacker rents the hashing power from the miners instead of buying the
computation resources. It is assumed that the attacker only cares about the short-term
profit rather than the long-term health of Bitcoin. The first one is through out-of-band
payment such that the attacker rents the hashing power from the miners by directly paying
the miners with bitcoins or any other (crpto)currencies. The second attack is conducted by
forming a negative-fee mining pool. Due to the probabilistic nature of Bitcoin, miners with
little mining powers tend to collect their hashing power together and form a mining pool
to reduce the variance of the expected revenue [25]. The block rewards won by the pool
will be distributed among the small miners in the pool based on their hashing power [63].
These kinds of pools often charge some participation fees from the miners in the pools. A
negative-fee mining pool can incentivize miners to join the pool and rent the hashing power
to the attacker temporarily. The last kind of attack can be conducted through in-band
payment on Bitcoin. The idea is that the attacker can create a fork itself and include a
script to distribute bribe to miners of subsequent blocks of the fork.

Liao and Katz [54] proposed another kind of bribery attack which also use the in-band
payment on Bitcoin. The idea is that the attacker can incentivize the miners to mine on
its fork by publishing whale transactions which contain enormous amount of transaction
fees.

8.4 Information Propagation

Most permissionless blockchains [57, 67, 40] rely on a peer-to-peer gossip protocol to prop-
agate transactions. However, these protocols do not provide an incentive for the nodes in
the blockchains to participate in the gossip of transactions. Moreover, Babaioff et al. [16]
argue that these protocols provide an incentive for the nodes not to propagate transactions.
Taking transaction propagation in Bitcoin as an example, every node who is aware of the
transaction will try to include it in their own mined block. If a node that is aware of the
transaction broadcasts it to other nodes, it increases the number of nodes who are aware
of the transaction and thus decreases the probability of itself claiming the transaction fees.
The authors of [16] propose almost-uniform reward schemes to solve this incentive issue.
The result is a hybrid almost-uniform reward scheme that combines two almost-uniform re-
ward schemes with different parameters. They prove that under the hybrid almost-uniform

44

reward scheme, the strategy where all nodes propagate transactions and do not create fake
identities (Sybil attacks) is a Nash Equilibrium. In addition, the scheme guarantees that
most of the nodes in the network will be aware of the transaction. The additional rewards
required to implement the scheme are a constant in expectation and the user only needs
to send the transaction to a small number of nodes in the beginning.

However, the model in [16] is highly restricted and not realistic in the real world. The
authors assume the network is a forest of d-ary directed trees with height H and each node
has the same hashing power. Abraham et al. [10] propose a new consensus protocol called
Solidus in which they design an incentive mechanism to encourage transaction propagation
and puzzle propagation. The incentive mechanism in [10] has fewer restrictions on the
network model. Moreover, they also discuss how to enforce the proposed reward scheme,
which allows nodes to freely choose how much to pay the propagators of their transactions
or puzzles. However, [10] does not consider Sybil attacks and the analysis of the incentive
mechanism is limited to the competition among the nodes with same neighbors. Ersoy et
al. [33] propose another incentive mechanism for transaction propagation under a network
model with minimal restrictions. The resulting reward scheme encourages propagating
without creating fake identities.

8.5 Algorand

Amoussou-Guenou et al. [12, 13] analyze a simplified committee-based consensus protocol.
They propose to make some committee members pivotal such that they have incentives
to participate. In this case, a rational node can unilaterally determine the result of the
consensus protocol. If a pivotal node does not follow the protocol, consensus will not be
reached and a penalty will be applied. As a result, all pivotal nodes participating in the
protocol as required is a Nash equilibrium. Nevertheless, the solution is not practical in Al-
gorand because the assumptions in [12, 13] do not hold. For example, the solution proposed
by [13] assumes that all nodes are treated equally and have the same voting power, which
is not the case in Algorand. Also, the solution assumes that all the committee members
are ordered by publicly known indexes, while the membership is private in Algorand until
nodes publish it. In addition, each node communicates with all other nodes directly in the
simplified protocol while Algorand adopts a gossip protocol to disseminate messages.

Fooladgar et al. [38] analyze the Algorand protocol as a static non-cooperative game.
They demonstrate that all nodes participating the protocol is not a Nash equilibrium
under Algorand’s original reward scheme. If all other nodes are participating the protocol,
a node can free-ride to get its reward while not paying the cost of running an Algorand

45

node. They propose a new reward scheme where only participating nodes are rewarded.
However, the analysis is limited to the rational-agent-only case. In addition, their method
incentivizes all committee members but fails to incentivize message propagation for all
nodes. Under their method, only nodes whose participation is necessary for the network
to remain synchronous are incentivized to propagate messages. All other nodes are not
incentivized to propagate messages in the network. In real-world deployments, however,
no single node’s participation should be necessary for keeping the network synchronous. In
contrast, in this paper, in addition to incentivizing committee members, we incentivize all
nodes to propagate messages. Moreover, our analysis considers Byzantine agents corrupted
by an adversary.

In summary, compared to the previous work [38, 12, 13], our model captures some
important features of the Algorand protocol, such as randomized membership selection and
private membership information. Second, we propose a new reward scheme and prove that
all nodes participating faithfully is a Bayesian Nash equilibrium under certain conditions for
with Byzantine agents. Finally, our work is the first to consider fairness under a Byzantine
setting: we propose a commission mechanism to ensure that malicious nodes cannot gain
more than their fair share of reward.

46

Chapter 9

Conclusion & Future Works

In this thesis, we solve the problem of Algorand where nodes do not have enough incentive
to participate the protocol. We first model the Algorand protocol as a Bayesian game
which captures the facts that the selection is random and the results are private until
nodes publishing them. Then, we describe our proposed reward-distribution scheme and
derive necessary conditions such that all nodes participating in the protocol is a Bayesian
Nash equilibrium. This means agents cannot increase their utility by unilaterally deviating
from participating in the protocol. In the end, we propose another commission mechanism
to ensure the fairness of the reward scheme such that the malicious nodes cannot earn
more than their fair share of reward.

In terms of future work, there remain some open problems in designing incentive-
compatible reward schemes for Algorand:

• Like Algorand’s original reward scheme, our proposed reward scheme relies on a
central authority to collect messages to identify the role of nodes and to verify the
participation of nodes. A more decentralized reward scheme is preferred where nodes
in the Algorand network determine how the rewards are distributed without a central
authority.

• Although our model captures some important features of Algorand, a sequential
model, which considers the strategies at the step level, and the corresponding analysis
will be a interesting direction for future work.

• Our analysis is based on the assumption that the network is synchronous. Extending
the analysis to a setting where the network is not synchronous would be a possible
future work.

47

References

[1] Algorand developer portal. https://metrics.algorand.org/.

[2] Bitcoin energy consumption index. https://digiconomist.net/

bitcoin-energy-consumption/.

[3] BitShares technology – open-source blockchain-based software solutions. https://

bitshares.org/.

[4] The Diem Association. https://www.diem.com/en-us/.

[5] EOS blockchain software & services. https://eos.io.

[6] Introducing Governance: Earn rewards for your participation in the decision making.
https://algorand.foundation/governance.

[7] Proof of stake instead of proof of work. https://bitcointalk.org/index.php?

topic=27787.0.

[8] Script - bitcoin wiki. https://en.bitcoin.it/wiki/Script.

[9] Solidity programming language. https://soliditylang.org/.

[10] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman.
Solida: A blockchain protocol based on reconfigurable byzantine consensus. In Pro-
ceedings of the 21st International Conference on Principles of Distributed Systems
(OPODIS), page 25, 2018.

[11] Amitanand S Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-Philippe Mar-
tin, and Carl Porth. Bar fault tolerance for cooperative services. In Proceedings of the
twentieth ACM symposium on Operating systems principles, pages 45–58, 2005.

48

https://metrics.algorand.org/
https://digiconomist.net/bitcoin-energy-consumption/
https://digiconomist.net/bitcoin-energy-consumption/
https://bitshares.org/
https://bitshares.org/
https://www.diem.com/en-us/
https://eos.io
https://algorand.foundation/governance
https://bitcointalk.org/index.php?topic=27787.0
https://bitcointalk.org/index.php?topic=27787.0
https://en.bitcoin.it/wiki/Script
https://soliditylang.org/

[12] Yackolley Amoussou-Guenou, Bruno Biais, Maria Potop-Butucaru, and Sara Tucci-
Piergiovanni. Rational behaviors in committee-based blockchains. In Proceedings of
the 24th International Conference on Principles of Distributed Systems (OPODIS),
pages 12:1–12:16, 2020.

[13] Yackolley Amoussou-Guenou, Bruno Biais, Maria Potop-Butucaru, and Sara Tucci-
Piergiovanni. Rational vs byzantine players in consensus-based blockchains. In Pro-
ceedings of the 19th International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), pages 43–51, 2020.

[14] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Chris-
tidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov
Manevich, Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari
Singh, Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić,
Sharon Weed Cocco, and Jason Yellick. Hyperledger fabric: A distributed operating
system for permissioned blockchains. In Proceedings of the 13th EuroSys Conference,
pages 1–15, 2018.

[15] Nick Arnosti and S Matthew Weinberg. Bitcoin: A natural oligopoly. Management
Science, 2022.

[16] Moshe Babaioff, Shahar Dobzinski, Sigal Oren, and Aviv Zohar. On Bitcoin and red
balloons. In Proceedings of the 13th ACM Conference on Electronic Commerce (EC),
page 56, 2012.

[17] Michael Ben-Or. Another advantage of free choice (extended abstract) completely
asynchronous agreement protocols. In Proceedings of the second annual ACM sympo-
sium on Principles of distributed computing, pages 27–30, 1983.

[18] Joseph Bonneau. Why buy when you can rent? In International Conference on
Financial Cryptography and Data Security, pages 19–26. Springer, 2016.

[19] Gabriel Bracha. An asynchronous [(n-1)/3]-resilient consensus protocol. In Proceedings
of the third annual ACM symposium on Principles of distributed computing, pages
154–162, 1984.

[20] Gabriel Bracha and Sam Toueg. Resilient consensus protocols. In Proceedings of the
second annual ACM symposium on Principles of distributed computing, pages 12–26,
1983.

49

[21] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT consensus.
arXiv:1807.04938 [cs], 2019.

[22] Miles Carlsten, Harry Kalodner, S Matthew Weinberg, and Arvind Narayanan. On
the instability of bitcoin without the block reward. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 154–167,
2016.

[23] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings
of the Symposium on Operating Systems Design and Implementation (OSDI), pages
173–186, 1999.

[24] Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger.
Theoretical Computer Science, 777:155–183, 2019.

[25] Xi Chen, Christos Papadimitriou, and Tim Roughgarden. An axiomatic approach to
block rewards. In Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, pages 124–131, 2019.

[26] Lin William Cong, Zhiguo He, and Jiasun Li. Decentralized mining in centralized
pools. The Review of Financial Studies, 34(3):1191–1235, 2021.

[27] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable con-
sensus and applications to provably secure proof of stake. In International Conference
on Financial Cryptography and Data Security, pages 23–41. Springer, 2019.

[28] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
pages 66–98. Springer, 2018.

[29] Danny Dolev and H. Raymond Strong. Authenticated algorithms for Byzantine agree-
ment. SIAM Journal on Computing, 12(4):656–666, 1983.

[30] John R Douceur. The sybil attack. In Proceedings of the 1st International Workshop
on Peer-to-peer Systems (IPTPS), pages 251–260, 2002.

[31] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of
partial synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

[32] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In
Proceedings of the Advances in Cryptology (CRYPTO), pages 139–147, 1993.

50

[33] Oguzhan Ersoy, Zhijie Ren, Zekeriya Erkin, and Reginald L. Lagendijk. Transaction
propagation on permissionless blockchains: Incentive and routing mechanisms. In
Proceedings of the Crypto Valley Conference on Blockchain Technology (CVCBT),
pages 20–30, 2018.

[34] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable.
In Proceedings of the International Conference on Financial Cryptography and Data
Security (FC), pages 436–454, 2014.

[35] Michael J Fischer. The consensus problem in unreliable distributed systems (a brief
survey). In Proceedings of the International Conference on Fundamentals of Compu-
tation Theory (FCT), pages 127–140, 1983.

[36] Michael J Fischer, Nancy A Lynch, and Michael Merritt. Easy impossibility proofs
for distributed consensus problems. Distributed Computing, 1(1):26–39, 1986.

[37] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–
382, 1985.

[38] Mehdi Fooladgar, Mohammad Hossein Manshaei, Murtuza Jadliwala, and Moham-
mad Ashiqur Rahman. On incentive compatible role-based reward distribution in
Algorand. In Proceedings of the 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 452–463, 2020.

[39] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert van Renesse, and Emin Gün
Sirer. Decentralization in Bitcoin and Ethereum networks. In Proceedings of the
International Conference on Financial Cryptography and Data Security (FC), pages
439–457, 2018.

[40] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
Algorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the
26th Symposium on Operating Systems Principles (SOSP), pages 51–68, 2017.

[41] Oded Goldreich. Foundations of cryptography: Volume 1, basic tools. Cambridge
university press, 2007.

[42] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,
Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. SBFT:
A scalable and decentralized trust infrastructure. In 2019 49th Annual IEEE/IFIP

51

international conference on dependable systems and networks (DSN), pages 568–580,
2019.

[43] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse attacks
on Bitcoin’s peer-to-peer network. In Proceedings of the 24th USENIX Security Sym-
posium (USENIX Security), pages 129–144, 2015.

[44] Christine V Helliar, Louise Crawford, Laura Rocca, Claudio Teodori, and Monica
Veneziani. Permissionless and permissioned blockchain diffusion. International Jour-
nal of Information Management, 54:102–136, 2020.

[45] Charlie Hou, Mingxun Zhou, Yan Ji, Phil Daian, Florian Tramèr, Giulia Fanti, and Ari
Juels. SquirRL: Automating attack analysis on blockchain incentive mechanisms with
deep reinforcement learning. In Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2021.

[46] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual interna-
tional cryptology conference, pages 357–388. Springer, 2017.

[47] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-of-
stake. 2012.

[48] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus
Gasser, and Bryan Ford. Enhancing bitcoin security and performance with strong
consistency via collective signing. In 25th usenix security symposium (usenix security
16), pages 279–296, 2016.

[49] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems,
pages 133–169, 1998.

[50] Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing
Column) 32, 4 (Whole Number 121), 2001.

[51] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems, pages 382–401, 1982.

[52] Jacob Leshno and Philipp Strack. Bitcoin: An impossibility theorem for proof-of-work
based protocols. SSRN Electronic Journal, 2019.

52

[53] Harry C. Li, Allen Clement, Edmund L. Wong, Jeff Napper, Indrajit Roy, Lorenzo
Alvisi, and Michael Dahlin. BAR Gossip. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation (OSDI), page 191–204, 2006.

[54] Kevin Liao and Jonathan Katz. Incentivizing blockchain forks via whale transactions.
In International conference on financial cryptography and data security, pages 264–
279. Springer, 2017.

[55] Ziyao Liu, Nguyen Cong Luong, Wenbo Wang, Dusit Niyato, Ping Wang, Ying-Chang
Liang, and Dong In Kim. A survey on blockchain: A game theoretical perspective.
IEEE Access, 7:47615–47643, 2019.

[56] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In Pro-
ceedings of the 40th Annual Symposium on Foundations of Computer Science (FOCS),
pages 120–130. IEEE, 1999.

[57] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[58] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn mining: Gen-
eralizing selfish mining and combining with an Eclipse attack. In 2016 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 305–320, 2016.

[59] Diego Ongaro and John Ousterhout. In search of an understandable consensus al-
gorithm. In Proceedings of the USENIX Conference on USENIX Annual Technical
Conference (USENIX ATC), pages 305–320, 2014.

[60] Rafael Pass and Elaine Shi. FruitChains: A fair blockchain. In Proceedings of the
ACM Symposium on Principles of Distributed Computing (PODC), pages 315–324,
2017.

[61] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

[62] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish mining
strategies in Bitcoin. In Proceedings of the International Conference on Financial
Cryptography and Data Security (FC), pages 515–532, 2016.

[63] Okke Schrijvers, Joseph Bonneau, Dan Boneh, and Tim Roughgarden. Incentive com-
patibility of Bitcoin mining pool reward functions. In Proceedings of the International
Conference on Financial Cryptography and Data Security (FC), pages 477–498, 2016.

53

[64] Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-
theoretic, and logical foundations. Cambridge University Press, 2008.

[65] Nick Szabo. Formalizing and securing relationships on public networks. First monday,
1997.

[66] Itay Tsabary and Ittay Eyal. The Gap Game. In Proceedings of the 2018 ACM
SIGSAC conference on Computer and Communications Security, pages 713–728, 2018.

[67] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151(2014):1–32, 2014.

[68] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham.
HotStuff: Bft consensus with linearity and responsiveness. In Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing, pages 347–356, 2019.

[69] Shiquan Zhang, Kaiwen Zhang, and Bettina Kemme. A simulation-based analysis of
multiplayer selfish mining. In Proceedings of the IEEE International Conference on
Blockchain and Cryptocurrency (ICBC), pages 1–5, 2020.

54

APPENDICES

55

Appendix A

Notations

Table A.1: Notations

Parameters Description
σk Committee credential of a node
xk Hash of σk

.xk Interpretation of xk as a number between 0 and 1
τ Expected number of sub-nodes selected at each step
T Fraction of τ that defines Algorand’s voting threshold
pc Probability that an agent is selected as a committee member
pb Probability that an agent is corrupted by the adversary
Kmax Maximum number of steps to add a new block
Ni Set of agent i’s randomly selected peers

N̂i Set of agents of which agent i is a randomly selected peer
nrs Number of each node’s randomly selected peers (nrs = |Ni)
N Set of all agents
ai Action taken by agent i
Ai Set of actions available to agent i
a Joint action profile of all agents (a = (a1, . . . , an))
A Set of possible joint action profiles
θi,0 Binary variable indicating whether agent i is Byzantine or not
θi,k Number of agent i’s sub-nodes selected at step k > 0
θi Type vector of agent i (θi = (θi,1, . . . , θi,Kmax))
Θi Type space of agent i

Continued on next page

56

Table A.1 – continued from previous page
Parameters Description
θ Joint type vector of all agents (θ = (θ1, . . . , θn))
Θ Set of possible joint type vectors
si Strategy of agent i
si(ai | θi) Probability assigned to action ai by si given θi
Si Set of all strategies for agent i
s Joint strategy profile for all agents
S Set of possible joint strategy profiles
EUi(s) Expected utility of agent i given strategy profile s
BRi(s−i) Best response of agent i given s−i

s∗ Desired strategy profile where all non-Byzantine agents cooperate
Cb

i (k) Baseline cost incurred by agent i at step k
C̄b(k) Average baseline cost incurred by any agent at step k
Cc(k) Committee cost incurred by any committee member at step k
Ci(k) Total cost incurred by agent i at step k
Rb

i(a, θ, k) Baseline reward of cooperating agent i at step k
Rc

i (a, θ, k) Committee reward of cooperating agent i at step k
Rr

i (a, θ, k) Referral reward for referring a neighbour at step k
Ri(a, θ, k) Total reward of cooperating agent i at step k
wi Number of sub-nodes of agent i
W Total number of sub-nodes for all agents (W =

∑
i∈N wi)

57

Appendix B

Algorand

In this section we present a summary of the Algorand protocol [40, 24]1. The protocol
maintains a public, permissionless blockchain. Adding a new block to the blockchain re-
quires multiple steps. At each step, a committee of randomly selected nodes is formed.
Committee members play different roles at different steps. Each committee member pro-
poses a new block at step 1 (see §B.1). At the subsequent steps, committee members vote
to reach consensus on the block that should be added to the blockchain (see §B.2–§B.3).

B.1 Step 1 (Block Proposal)

Algorithm (3) summarizes the procedure executed by all nodes at step one. First, nodes
run the sortition algorithm to determine whether they are in the committee at step 1.
A node is in the committee if at least one of its sub-nodes is selected by the sortition
algorithm. A node that is in the committee generates a candidate block2 and propagates
the block to other nodes using a peer-to-peer gossip protocol3).

Nodes also propagate the output hash and the proof. This allows other nodes to
verify the sortition of committee members. The hash is also used to prioritize committee

1We only present the details that are needed for our game-theoretic model. Interested readers could
see [40, 24] for a detailed description and analysis of the protocol

2A candidate block contains a set of pending transactions that a node has heard about.
3A gossip protocol is a communication process that disseminates data to all nodes in the system. In

the most common implementation, upon receiving a message, a node selects a small random set of peers
to gossip the message to. To prevent loops, nodes do not relay the same message twice.

58

Algorithm 3: Step-1 procedure

(M , hash, proof) ← Sortition(1);
if M ≥ 1 then

B ← Generate block proposal;
Propagate(B, hash, proof);

end

members. The priority of each node in the committee is the highest priority of the node’s
selected sub-nodes. The priority of each selected sub-node is calculated by hashing the
output hash concatenated with the sub-node’s index. The smaller this hash is, the higher
the priority of the sub-node will be. Prioritizing committee members enables nodes to
reach consensus on a single block proposed by the highest-priority committee member.

B.2 Step 2 & 3 (Graded Consensus)

At step 2, nodes run the first step of the Graded Consensus (GC) protocol. The main
goal of the graded consensus (GC) protocol is to reduce the number of candidate blocks
to one and to convert the problem of reaching consensus on an arbitrary value (the hash
of a block) to reaching consensus on a single bit. Algorithm (4) shows the pseudo-code
for step 2. Nodes wait a fixed time period to receive block proposals. While waiting,
nodes validate any received blocks and gossip valid ones to their neighbors according to
the gossip protocol. Once the time period expires, nodes invoke the sortition algorithm to
check whether they are in the committee for this step. If at least one sub-node of a node
is selected, then the node generates its vote according to the first step of the GC protocol.
The node then propagates its vote. The node also propagates the hash and the proof to
allow other nodes to verify its sortition. Note that if M sub-nodes of a node are selected,
then the node’s vote is counted as M sub-votes.

Algorithm (5) summarizes the procedure for step 3. In this step, nodes run the second
step of the GC protocol. First, nodes validate and gossip any received votes from step 2
while waiting a fixed period of time. Nodes then run the sortition algorithm. If a node is
in the committee for this step, then it generates its vote according to the second step of
the GC protocol. The node then propagates its vote, hash, and proof.

59

Algorithm 4: Step-2 procedure

Validate and gossip received block proposals for a fixed time period;
(M , hash, proof) ← Sortition(2);
if M ≥ 1 then

v ← Generate vote according to GC’s 1st step;
Propagate(v, hash, proof);

end

Algorithm 5: Step-3 procedure

Validate and gossip received step-2 votes for a fixed time period;
(M , hash, proof) ← Sortition(3);
if M ≥ 1 then

v ← Generate vote according to GC’s 2nd step;
Propagate(v, hash, proof);

end

Algorithm 6: Step-4 procedure

Validate and gossip received step-3 votes for a fixed time period;
(v, b) ← Output of GC protocol;
(M , hash, proof) ← Sortition(4);
if M ≥ 1 then

Propagate((v, b), hash, proof);
end

B.3 Step 4 to Kmax (Binary Byzantine Agreement)

At step 4, nodes compute the output of the GC protocol and start the first step of the
Binary Byzantine Agreement (BBA*) protocol. The main goal of the Binary Byzantine
Agreement BBA* protocol is to reach consensus among all nodes on a binary value. The
pseudo-code for step 4 is shown in Algorithm (6). Nodes first validate and gossip the
received votes from step 3 for a fixed time period. After this period expires, each node
computes the output of the GC protocol, (v, b), where v is a string and b is a single bit.
Nodes then start the first step of the BBA* protocol by invoking the sortition algorithm.
If a node is selected as a committee member, it propagates its GC output.

60

Algorithm 7: Step-k procedure for 5 ≤ k ≤ Kmax and k ≡ 2 (mod 3)

Validate and gossip received step-(k - 1) votes for a fixed time period;
if more than T · τ sub-votes are received for b = 0 then

Terminate;
end
(M , hash, proof) ← Sortition(k);
if M ≥ 1 then

v ← Get v from step 4;
b ← Generate binary according to BBA*’s coin-fixed-to-0 step;
Propagate((v, b), hash, proof);

end

Algorithm 8: Step-k procedure for 6 ≤ k ≤ Kmax and k ≡ 0 (mod 3)

Validate and gossip received step-(k - 1) votes for a fixed time period;
if more than T · τ sub-votes are received for b = 1 then

Terminate;
end
(M , hash, proof) ← Sortition(k);
if M ≥ 1 then

v ← Get v from step 4;
b ← Generate binary according to BBA*’s coin-fixed-to-1 step;
Propagate((v, b), hash, proof);

end

Starting from step 5, until a termination condition is met, nodes iterate three steps of
the BBA* protocol: (i) coin-fixed-to-0, (ii) coin-fixed-to-1, and (iii) coin-fixed-to-flip. In all
three steps, nodes validate and gossip votes from the previous step for a fixed time period.
In coin-fixed-to-0 steps, nodes terminate if they receive more than T ·τ sub-votes for b = 0,
where 2

3
< T < 1 is a fraction of τ that defines Algorand’s voting threshold. Otherwise,

they run the sortition algorithm to check whether they are in the committee. Nodes in
the committee then calculate their new b and propagate it. The procedure is similar in
coin-fixed-to-1 steps except that the termination condition is on b = 1. Algorithm (7) and
Algorithm (8) show the procedure for these steps.

If nodes do not terminate in coin-fixed-to-0 and coin-fixed-to-1 steps, they run the coin-
fixed-to-flip step. In this step, nodes that are selected in the committee calculate a new

61

Algorithm 9: Step-k procedure for 7 ≤ k ≤ Kmax and k ≡ 1 (mod 3)

Validate and gossip received step-(k - 1) votes for a fixed time period;
(M , hash, proof) ← Sortition(k);
if M ≥ 1 then

v ← Get v from step 4;
b ← Generate binary according to BBA*’s coin-fixed-to-flip step;
Propagate((v, b), hash, proof);

end

b and propagate it. Algorithm (9) summarizes the procedure for coin-fixed-to-flip steps.
These steps do not have a termination condition. Therefore, after a coin-fixed-to-flip step,
nodes start running the next coin-fixed-to-0 step.

62

	List of Figures
	List of Tables
	Introduction
	Background
	Communication Model
	Adversary Model
	The Consensus Problem
	Blockchain
	Proof-of-work Protocols
	Proof-of-stake Protocols
	Finality
	The Algorand Protocol

	Proposed Cost Model
	Operational Costs
	Total Cost Model

	Proposed Game Model
	The Algorand Game
	Strategies and Equilibria

	Incentive Analysis in Algorand Game
	Algorand's Original Reward Scheme
	Incentive-compatible Reward Scheme

	Expected Rewards under IRS
	Referral Mechanism

	Implementation Details
	Gossip Protocol in IRS
	Consideration of Assets in IRS

	Related Works
	Selfish Mining
	Mining Gap
	Bribery Attacks
	Information Propagation
	Algorand

	Conclusion & Future Works
	References
	APPENDICES
	Notations
	Algorand
	Step 1 (Block Proposal)
	Step 2 & 3 (Graded Consensus)
	Step 4 to K_max (Binary Byzantine Agreement)

