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Abstract

Decreasing vehicle weight by substituting traditional steel for high-strength steel or aluminum is an
effective way to improve fuel economy and decrease greenhouse gas emissions in the transportation sector.
The optimization of a lightweight vehicle structure and subsequent prediction of forming operations and
crash performance of its components requires accurate material models that capture the anisotropic response
of sheet metals in a diversity of loading conditions, particularly in generalized plane strain. The objective
of this work is to develop and validate two novel experimental methodologies to extract the constitutive
response from sheet materials under two generalized plane strain stress states: plane strain tension and

through-thickness shear.

Plane strain tension is one of the most prominent failure conditions in formed parts, but determination
of the plane strain yield strength is complicated. Although plane strain notch experiments are simple to
perform, their analysis is not straightforward since the load distribution along the sample gauge width
transitions from plane strain tension in the middle to uniaxial tension at each edge. Existing analysis
techniques are unreliable due to the assumption of a yield function in the inverse-identification of correction
factors or the use of empirical techniques that lack a theoretical foundation. A review of the experimental
literature on cruciform tests suggests that a principal in-plane stress ratio of 0.5 applies at plane strain
tension for aluminum and steel, independent of isotropy and consistent with the theory of pressure-
independent plasticity. With the stress ratio at plane strain tension known along with the tensile R-value,
the uniaxial-to-plane strain arc of an isotropic yield surface can be controlled by a single parameter — the
yield exponent. The optimal value of the exponent occurs when the modelled stress response, from the
integration of optical strain measurements across the gauge region of a plane strain notch specimen, agrees
with the experimentally measured stress-strain curve. Multivariable optimization may be used to model
differential hardening, by assuming a distribution of the exponent with plastic strain, or non-associated
flow, by calibrating two independent exponents for the yield function and plastic potential. Four disparate
automotive materials were selected to demonstrate the plane strain notch test integration methodology:
AA6xxx-T4 (1.5 mm thick), AA6xxx-T81 (2.7 mm thick), AA5182-O (1.5 mm thick) and DP1180 (I mm
thick).

Dual phase steels and high strength aluminum alloys tend to exhibit so-called shear fracture, evidenced
by through-thickness cracking at an approximate angle of 45°. Due to the difficulty in obtaining reliable
experimental data for sheet metals, the through-thickness shear stress is often left uncalibrated in yield
surfaces leading to the inability of the analyst to accurately predict and avoid shear fracture in forming

operations. A through-thickness shear test was developed by machining two shear-promoting notches
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through the sheet thickness of each test specimen and designing a test fixture to minimize gauge region
rotation as each specimen was pulled by a standard uniaxial test frame. Experimental tests were completed
using AA6xxx-T81 and DP1180 steel to analyze a representative steel and aluminum in different sheet
thicknesses. The measured load was corrected for the friction introduced by the test fixture, using a modified
strip draw test conducted under analogous conditions as the through-thickness shear test. Normalized shear
stress ratios of 0.50 for the AA6xxx-T81 and 0.68 for the DP1180, were identified for input into three-

dimensional yield criteria.

To describe yielding of a material under all stress states and orientations, a so-called master yield surface
was calibrated to the experimental data. Despite the prevalence of plane strain and through-thickness shear
induced failures in industry, conventional yield surfaces used for formability models are usually calibrated
with the uniaxial tensile stresses, uniaxial tensile R-values (representing the strain directions) and the equal-
biaxial stress and R-value. In this analysis, Y1d2000, Y1d2004 and Vegter master yield surfaces were
calibrated to capture the complete material response in all tested loading conditions for each of the four
studied materials. The addition of the plane strain tensile and through-thickness shear yield stresses
improved the accuracy of the models compared to the conventional calibration. Optimal agreement with
the experimental data was obtained by adopting a variable yield function exponent, rather than relying on

conventional values of 6 for BCC and 8 for FCC materials.

Each of the master yield surface models was evaluated by comparing the simulated responses of plane
strain and through-thickness shear tests to experimental data. By leveraging knowledge of the yield surface
and the hardening behavior to large strains obtained from shear tests, the stress-strain response of a plane
strain notch geometry was accurately simulated beyond necking up to fracture for AA5182 and DP1180.
The plane strain notch geometry was different than the geometry used for experimental evaluation of the
plane strain yield strength. Small differences between the simulated and experimental stress-strain and
localized major strain evolution for AA6xxx-T4 and AA6xxx-T81 were attributed to post-uniform
differential hardening. Simulating the AA6xxx-T81 through-thickness shear test using the calibrated

Y1d2004 model confirmed excellent agreement with the experimental load displacement response.
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Figure 80: Stress-strain curves for clamped and unclamped tensile tests of (a) AA6xxx-T81 and (b) DP1180
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represent the available experimental data with the error bars corresponding to the experimental standard
deviations. Due to the absence of bulge or cruciform test data, the equal-biaxial yield stress was estimated
as the average of the in-plane uniaxial tensile stresses with the average of the corresponding standard
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Figure 91: (a, c, d, e) Normalized stresses, (b, f) R-values and (g) plastic strain directions for the
unweighted Y1d2004 calibrations fit to the experimental data for DP1180. Red circles and asterisks
represent the available experimental data with the error bars corresponding to the experimental standard
deviations. The equal-biaxial yield stress was estimated as the average of the in-plane uniaxial tensile

stresses with the average of the corresponding standard deviations. ..........ccccceeevveerieriereerienee e sveenenn 153
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Figure 93: Y1d2000, Y1d2004 and Vegter master yield surfaces calibrated for DP1180 comparing (a, c, d)
predicted and experimental stresses, (b) R-values, (f) plastic strain directions and (e) the overall plane stress
surface. The predicted equal-biaxial yield stresses are g, = 1.006 and g, = 1.002 for Y1d2004 and Y1d2000,
respectively. The predicted equal-biaxial R-values are R, = 0.939 and R, = (0.933 for Y1d2004 and Y1d2000,
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Figure 94: (a, ¢, d, ) Normalized stresses, (b, f) R-values and (g) plastic strain directions for the stress-
biased Y1d2000 calibrations fit to the experimental data for AA5182. Red circles and asterisks represent
the available experimental data with the error bars corresponding to the experimental standard deviations.
The equal-biaxial yield stress was estimated as the average of the in-plane uniaxial tensile stresses with the

average of the corresponding standard deVIations. .........cccceeviiriieeiiieieerierie et 161

Figure 95: (a, ¢, d, e) Normalized stresses, (b, f) R-values and (g) plastic strain directions for the
unweighted Y1d2004 calibrations fit to the experimental data for AA5182. Red circles and asterisks
represent the available experimental data with the error bars corresponding to the experimental standard
deviations. Due to the absence of bulge or cruciform test data, the equal-biaxial yield stress was estimated
as the average of the in-plane uniaxial tensile stresses with the average of the corresponding standard
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Figure 96: Calibrated (a) Y1d2004 and (b) Y1d2000 yield surfaces represented in plane stress 1, — 22 — a12
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Figure 97: Y1d2000, Y1d2004 and Vegter master yield surfaces calibrated for AA5182 comparing (a, c, d)
predicted and experimental stresses, (b) R-values, (f) plastic strain directions and (e) the overall plane stress
surface. The predicted equal-biaxial yield stresses are o,= 0.9394 and o, = 0.9568 for Y1d2004 and Y1d2000,
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respectively. The predicted equal-biaxial R-values are R, = 1.031 and R, = 1.013 for Y1d2004 and Y1d2000,
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Figure 98: (a, c, d, ¢) Normalized stresses, (b, f) R-values and (g) plastic strain directions for the
unweighted Y1d2000 calibrations fit to the experimental data for AA6xxx-T81. Red circles and asterisks
represent the available experimental data with the error bars corresponding to the experimental standard
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Figure 99: (a, c, d, e) Normalized stresses, (b, f) R-values and (g) plastic strain directions for the
unweighted Y1d2004 calibrations fit to the experimental data for AA6xxx-T81. Red circles and asterisks
represent the available experimental data with the error bars corresponding to the experimental standard
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Figure 100: Calibrated (a) Y1d2004 and (b) Y1d2000 yield surfaces represented in plane stress o;; — 022 —
012 SPACE TOT AAGKXK-TE L. ..ottt ettt ettt et e s et e st e e st e te e st eteseeeneesaeeneans 171

Figure 101: Y1d2000, Y1d2004 and Vegter master yield surfaces calibrated for AA6xxx-T81 comparing
(a, ¢, d) predicted and experimental stresses, (b) R-values, (f) plastic strain directions and (e) the overall
plane stress surface. The predicted equal-biaxial yield stresses are o, = 0.957 and o, = 0.959 for Y1d2004
and Y1d2000, respectively. The predicted equal-biaxial R-values are R, = 1.244 and R, = 1.235 for Y1d2004
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Figure 102: (a, c, d, ) Normalized stresses, (b, f) R-values and (g) plastic strain directions for the stress-
biased Y1d2000 calibrations fit to the experimental data for AA6xxx-T4. Red circles and asterisks represent

the available experimental data with the error bars corresponding to the experimental standard deviations.

Figure 103: (a, ¢, d, ¢) Normalized stresses, (b, f) R-values and (g) plastic strain directions for the
unweighted Y1d2004 calibrations fit to the experimental data for AA6xxx-T4. Red circles and asterisks
represent the available experimental data with the error bars corresponding to the experimental standard
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Figure 105: Y1d2000, Y1d2004 and Vegter master yield surfaces calibrated for AA6xxx-T4 comparing (a,
¢, d) predicted and experimental stresses, (b) R-values, (f) plastic strain directions and (e) the overall plane

stress surface. The predicted equal-biaxial yield stresses are g, = 0.966 and o, = 0.967 for Y1d2004 and
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Y1d2000, respectively. The predicted equal-biaxial R-value is R, = 0.988 and R, = 1.016 for Y1d2004 and
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Figure 108: (a) Stress and strain responses obtained from the models using 250 um, 100 pm, 50 um and
25 um element sizes compared to the experimental results, (b) FE contour plot of major strain at an
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Chapter 1 Introduction

The fabrication of the modern vehicle requires the use of advanced high strength steels and aluminums
to reduce curb weight, improve fuel efficiency, and meet emissions standards (Davies, 2012; Froes, 1994).
The process of weight reduction, or so-called lightweighting, is one of the most efficient ways to decrease
emissions since reducing the curb weight by 10% increases the fuel efficiency by 6.9-7.6% (MIT, 2008).
By substituting a higher strength steel in place of a standard plain carbon steel, components can be
downgauged to minimize weight while maintaining strength. Today, the average vehicle consists of 17.6%
high strength steel by weight compared to only 8.8% in 1995 (Oak Ridge National Laboratory, 2017).
Advanced aluminum alloys are also central to vehicle lightweighting having one third the density of steel
(Davies, 2012). As evidence of industrial adoption, the percentage of a vehicle constructed from aluminum

has increased from 6.3% in 1995 to 9.9% in 2015 (Oak Ridge National Laboratory, 2017).

Unfortunately, these advanced materials come with their own set of challenges that underline the
importance of accurate characterization techniques. Dual phase steels are a mixture of ferrite and
martensite, the latter of which increases the strength at the expense of ductility, making forming more
difficult (Billur and Altan, 2013). While AAS5xxx aluminum alloys (Al-Mg) generally have good
formability, they are not well suited for structural applications due to their lower strength and are limited
to inner closure panels due to Portevin-Le Chatelier (PLC) effect that cause stretch marks on the surface.
The stronger, heat-treatable, and increasingly popular AA6xxx alloys (Al-Mg-Si) can be used for outer
panels with a Class A finish and some structural components but generally have lower ductility than the
AAS5xxx series due to the formation of Mg-Si precipitates (Zheng ef al., 2018). Regardless of the material,
the cold rolling process used to produce sheet metal induces anisotropy — or directionally dependent

properties — that require multiple experimental characterization tests to full define a material model.

An accurate material model is necessary to avoid costly defects by simulating sheet metal forming
processes prior to production. Necking, defined as localized sheet thinning, is one of the dominant failure
modes in formed parts (Mahmudi, 1999). Other failures include wrinkling and fracture, depending on the
loading state. Experimental testing is required to produce accurate material models for crashworthiness and
formability computer models to aid in the engineering, design, and manufacturing of automotive

components.

Progress in the characterization of sheet metals has been marked by advancements in anisotropy
modelling, experimental measurement techniques, and new specimen geometries that permit obtaining
material properties in a wide array of stress states. Sections 1.1 — 1.3 introduce the underlying fundamentals

of this field. Section 1.4 then considers the relevance and contribution of the work in this thesis.



1.1 Anisotropy in Rolled Sheet Metals

An anisotropic material has different properties depending on its orientation. The preferred orientation
of grains, grain boundaries, and dislocations within a material is known as texture. In an isotropic metal,
the properties are macroscopically the same in all directions because the grains are randomly orientated.
Cold rolling of billets to produce sheet metal compresses the grains causing them to elongate along the
rolling direction and resulting in a non-random structure. The strength, defined by the yield stress, and ratio
of width-to-thickness strain under uniaxial tension, defined by the R-value, are therefore directionally
dependent. Crystallographic slip will be easier along loading directions with favorable crystal orientations,
that promote a higher resolved shear stress on slip systems, and along directions with lower grain and

dislocation densities (Cui ef al., 2013).

Perhaps the easiest visualization of sheet anisotropy is in the formation of a deep drawn cup, a typical
example of which is shown in Figure 1. Due to texture, so-called “ears” will form along the circumference
of the cup formed from an anisotropic sheet material as greater circumferential compression is promoted
along particular axes. The number of ears is directly proportional to the number of “peaks” observed in the
directional variation of the R-values (Yoon et al., 2006). Consequently, experimental tests along 15-degree
or 45-degree increments with respect to the rolling direction are necessary to obtain the yield strength and
R-values in each orientation to fully define the expected behavior in forming operations. Adopting an

anisotropic yield function permits interpolation between known experimental values.

Figure 1: Typical earring profile of an AA1200-O deep drawn cup, with the rolling direction indicated by the black lines (Engler
and Hirsch, 2007). Used with permission.



1.2 Stress and Strain

Stress is a measure of the intensity of a load, or force F acting over an area. The true (Cauchy) stress
Otrue 18 computed using the instantaneous area A; (Eq. 1.1a) while using the initial, undeformed area 4,

defines the engineering stress o,p,q4 (Eq. 1.1D).

F F
Otrue = ik Oeng = 1. (1.1a,b)
i 0

The Cauchy stress tensor of Eq. (1.2) represents the full three-dimensional state of the true stress at a

material point.

(1.2)

011 012 013
0 =0 =021 022 023
031 032 033

The diagonal components (11, 22, 33) correspond to normal stresses, and the off-diagonal components
correspond to shear stresses. The principle of complementary shear requires that ,; = 04,, 037 = 03 and
0,3 = 03, such that the tensor is fully defined by six unique stress components. When the shear terms in a
coordinate system are all zero, the stress is called “principal”. The material coordinate system is often
aligned with the axes of orthotropic symmetry (rolling, transverse, and normal direction) where, the 11-
component refers to the stress along the rolling direction, the 22-component along the transverse direction,
and the 33-component along the normal (thickness) direction. For thin sheet metal, the simplifying case of
plane stress is often valid since the through-thickness stresses are negligible relative to the in-plane stresses

such that 031 = 03, = 013 = 053 = 033 = 0.

While stress is a measure of the resistance of a material to deformation, strain is the metric used to
define the applied deformation. There are many definitions of the strain tensor that can be employed but in
the mechanics of ductile metals, the true (&¢) and engineering (&gp,4) strain are most common. Eq. (1.3)
defines a normal strain, where [ is the length of the deformed element and [, is the initial length in both
true and engineering forms.

l l
Etrue = lnl_ y€eng = A (1.3a,b)
o o
Shear strains do not produce any change in length or volume but instead a change in angle. The engineering

strain for a simple shear deformation in the 12-plane is defined as y;,, where « is the angle between the



deformed and undeformed element. In the tensorial component representation of Eq. (1.4), &;, is defined

as half of the engineering strain and the shear angle.
&1 = % =tana (1.4)

In the absence of shear strains, the principal strains are aligned with the 11, 22 and 33 directions. A state of
plane strain occurs if the normal strain along one direction is equal to zero, as is often the case in a wide
sheet where the amount of material restrains elongation or contraction along the corresponding axis. Plane

strain also occurs in shear tests where there is no thinning strain.

The uniaxial (RYT) and equal-biaxial (REE) instantaneous R-values quantify the direction of the plastic
strain increments, as shown in Eq. (1.5). It is common to calculate the average R-value by applying a linear

fit over a representative range of strain.

P P
déyy pes _ 3&2

RUT(0) = — , =
© def def

(1.5)
The R-value in uniaxial tension is the ratio of the width to the thickness strain, whereas in equal-biaxial
tension it is the ratio of the in-plane major and minor strains. Metals with relatively high formability tend
to have high uniaxial R-values such as mild steels where R > 2 because they are more resistant to thinning

and necking. An isotropic material has an R-value equal to one.

The stress triaxiality and Lode parameters are common metrics that define the type of loading as a
function of the three invariants of the stress tensor, based on the proportions of hydrostatic to deviatoric
stress. The deviatoric stress ¢’ is defined by subtracting the hydrostatic stress a;,, from the Cauchy stress
tensor. The three invariants of the Cauchy and deviatoric stress tensors are defined by I;_5; and J;_3,
respectively. As will be discussed further in Chapter 3, only deviatoric loading is responsible for slip and

plastic deformation under pressure independent plasticity theory!.

' The stress invariants are intrinsically linked with the definition of a yield surface. A pressure independent yield

surface is modelled as a cylinder of some cross-sectional shape orientated along the 7 = % é; + 5 é, + %

principal stress space, where movement parallel to 7 represents an increase in only hydrostatic stress (o, = g, = 03)
proportional to the first invariant. The second invariant describes movement perpendicular to 7 causing a stress
component to develop on the so-called octahedral or m-plane. The third invariant is related to the angle that the stress
point makes, rotated about 7. The von Mises stress is 0,4 = \/@ , a function of the magnitude of the deviatoric stress
acting on the octahedral plane. With no reliance on the third invariant, the von Mises yield surface appears as a circle
on the octahedral plane. The Tresca criterion is a function of the second and third invariants, which explains its non-
circular hexagonal shape on the octahedral plane (Kelly, n.d.).

4
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The stress triaxiality 7 quantifies the ratio of hydrostatic loading, defined by the first invariant of the
Cauchy stress tensor 11, to the deviatoric loading, defined by the second invariant of the deviatoric stress

tensor J,, as shown in Eq. (1.6).

3,/3)2

:0'" _tr(o)
— o =0—oyl, oy, = 3

L =tr(o), ;= (1.6a-e)

For plane stress loading, T = 0 in shear and T = 0.578 in plane strain tension. In uniaxial compression,

uniaxial tension, and equal-biaxial tension, the triaxiality obtains a value of -1/3, 1/3 and 2/3, respectively.

Quantifying the type of deviatoric (shear) loading, the Lode parameter (L) is defined in stress form as
(Danas and Castaneda, 2012)

33

, ]
23/

L= 3 = det(a”) (1.7a,b)

where J; is the third invariant of the deviatoric stress tensor. The stress-based Lode parameter is bounded
between -1 and 1, where a value of -1 signifies uniaxial tension and a value of 1 signifies equal-biaxial

tension.

The strain-based Lode parameter (v, ) is defined as (Lode, 1926):

_ 3deg
" de; —deg

vy (1.8)
The strain-based Lode parameters are influenced by plastic anisotropy unlike the stress-based Lode
parameter. The value of v; in uniaxial and biaxial tension depends upon the R-values. However, both the
stress and strain-based Lode parameters are equal to zero in states of shear and plane strain tension as shown

by Butcher and Abedini (2019) and briefly summarized in Chapter 3 of this thesis.

1.2.1 Measurement of Strain

Unlike stress, which is calculated from the measured load and area, the strain can be directly measured
in the lab from the applied deformation. Modern strain measurement technology, like Digital Image
Correlation (DIC) used in this work, allows for contact-free, accurate measurement of the in-plane

components of the strain tensor. A camera system tracks the movement of unique pixel regions known as



subsets based on the pixel gray values of a stochastic speckle pattern. The pattern is commonly generated
using spray paint to apply a white base coat followed by black speckles to the surface of the test specimen.
Subsets can consist of a unique pixel region or overlap with neighboring subsets by adjusting the so-called
step size. Applying a decay type filter reduces noise by smoothing the data over neighboring subsets where
the subset of interest holds the most weight in the filtering scheme (Byrne and Simonsen, 2016; Correlated
Solutions, n.d.). The number of neighboring subsets included in the filter is adjustable such that an overall

measurement length scale, known as the Virtual Strain Gauge Length (VSGL), is defined by:

VSGL = Camera Resolution [n;_xm] * Step Size [px] * Filter Size (1.9

The size of the VSGL can strongly affect the measured strain as demonstrated by Khameneh et al.
(2021). Adopting a smaller VSGL, particularly during fracture where strain concentrates into a narrow
band, captures the localized strain with less averaging over subsets that are outside the zone of interest. In
general, the VSGL should be as small as possible for measuring fracture strains or alternatively rotation-
based methods can be used for greater resolution (Khameneh ef al., 2021). For constitutive characterization
of macroscopic plastic yielding before the onset of localization or fracture and when deformation is

approximately homogeneous, the selection of the VSGL is of less importance.

1.3 Phenomenological Plasticity

Plasticity refers to irreversible deformation caused by the application of a sufficient force to initiate the
gliding of atoms across slip planes within a material’s crystal lattice structure. Plasticity modelling
approaches fall into two categories. The first category is crystal plasticity, which attempts to model the
physics at the crystallographic level by accounting for the critical shear stress required to induce slip. The
second category is phenomenological plasticity based on continuum mechanics, which attempts to fit
constitutive equations to experimental data (Hosford, 2013). Since the phenomenological approach is much
more common in practice due to its simplicity and computational efficiency, it forms the basis of this work.
Phenomenological plasticity theory is composed of three constitutive equations: a flow rule, hardening

model, and yield function.

1.3.1 Hardening Model

The hardening curve of a material quantifies the increase in flow stress as a function of the accumulated
plastic strain. Common sheet materials, like steel and aluminum, exhibit a high hardening rate after initial
yielding as dislocations are introduced into the crystal lattice that resist further slip (Hosford, 2013).

Gradually as the dislocation density increases, annihilation dominates the formation of new dislocations,

6



and the hardening rate begins to decrease. While complicated on a microstructural level, the tensile test is
macroscopically described by so-called uniform elongation between the yield strength and ultimate tensile

strength and so-called necking between the ultimate tensile strength and fracture strength.

A typical hardening curve, generated from a uniaxial tension test under quasi-static conditions, takes the
shape of Figure 2 and is defined by two distinct regions. The first region is between the onset of yielding

gy, and the ultimate tensile strength o7 taken at the point of peak load. In this region, the equivalent plastic

p

strain &g is relatively uniform along the gauge region of the specimen and the flow stress ¢ increases due

to work hardening. As defined by the Considére criterion, shown in Eq. (1.10), diffuse necking begins at

the ultimate tensile strength, where the flow stress equals the instantaneous hardening rate.

do
dely

o= (1.10)
As the test loses uniformity due to developing gradients of stress and strain, the stress state in the neck
transitions from uniaxial tension to triaxial loading. The engineering stress begins to decrease because the
increase in strength made possible by work hardening is insufficient to counteract the decrease in area due
to thinning of the sheet. The true stress in the material continues to increase. Finally, the strain concentrates
into a localized neck which ultimately leads to fracture (Hosford, 2013). Although the advent of DIC
technology permits measurement of the instantaneous cross-sectional area until fracture (Omer et al., 2020),

the equivalent stress is no longer simply equal to the true stress obtained from the cross-sectional area and

force, due to the departure from uniform uniaxial loading.

Uniform Elongation Neckinié
- :

® OyTs

: \x Fracture

Equivalent Stress (MPa)

Engineering

True

Equivalent Plastic Strain

Figure 2: True and engineering stress-strain curves showing the yield strength and ultimate tensile strength. Uniform elongation
occurs between the yield point and the ultimate tensile point, after which diffuse then localized necking develop.



Although a uniaxial tensile test only provides data on the stress-strain response until the onset of diffuse
necking, strains in typical forming operations are well above the ultimate tensile point. Other stress states,
including shear and equal-biaxial tension, suppress necking, allowing for greater forming strains than
typically seen in a uniaxial tension test. As a result, various methods exist for determining the equivalent
stress-strain response during necking. For uniaxial tension tests of cylindrical specimens, the well-known
analytical Bridgman correction (Bridgman, 1952) may be used. In the case of rectangular sheet or so-called
“dogbone” specimens, no analytical correction factor exists, but empirical corrections have been proposed
by Zhang et al. (1999), Scheider ef al. (2004) and Choung and Cho (2008). Unfortunately, these methods

are heavily dependent on the specimen aspect ratio and may not work for standard ASTM or JIS specimens.

Simple shear or equal-biaxial bulge tests may be used in place of a uniaxial tension test to determine
the equivalent stress-strain response to larger strains. Shear specimens consist of two notches machined
through the sheet, which encourage a state of shear in the gauge region when pulled using a standard
uniaxial tensile frame. The principal of equivalent plastic work is then used to equate the measured shear
stress and strain in the gauge region of the specimen to an equivalent stress and strain experienced in a
uniaxial tension test. In a bulge test, a sheet is clamped to a hydraulic reservoir using a circular die. As the
hydraulic fluid is pressurized, the sheet expands until rupture. The equivalent stress in a bulge test is
obtained using membrane theory, given a known pressure of the hydraulic fluid and measured radius of

curvature and thickness of the expanding sheet (Min et al., 2017). The onset of diffuse necking occurs at

p

geq

. . . 4 . . :
= n in a uniaxial tension test and sgq =4 (2n + 1) in a bulge test, where n is the power law hardening

exponent (Hill, 1950). Theoretically, fracture occurs without any necking or localization in a shear test
since the mechanics enforce a through-thickness strain of zero, making the test ideal for characterization to

large strains.

The hardening behavior of sheet metals is often idealized as isotropic in which hardening is independent
of the stress state, such as uniaxial or biaxial tension, and material direction. Anisotropic hardening is
observed in materials with evolving microstructures, such as in the transformation of austenite to martensite
in TRIP steels, or in HCP materials such as magnesium where a combination of slip and twinning
deformation modes are activated in different stress states. An empirical relationship called the hardening
model is often fit to the experimental data up to uniform elongation unless extended with corrections or
shear/bulge tests. Common forms include the Swift power law hardening model (Swift, 1952) shown in Eq.
(1.11) or the Modified Hockett Sherby proposed by Noder and Butcher (2019) shown in Eq. (1.12). The
parameters K, n and &y in the Swift model and C;-C5 in the Modified Hockett Sherby model must be
obtained from experimental tests. While closed form models are convenient for analysis, the flow stress

can also be fit with shape-preserving cubic splines and sampled at discrete points for entry into finite-

8



element software input decks. The choice of closed form hardening model will dictate the value of the

extrapolated flow stress outside the domain of equivalent plastic strain used for calibration.

WUt = K(eo + eby)" (1.11)

GMHS = ¢, — (C, — Cy) exp(—C3(£gq)C4) + Cs ’qu (1.12)

The extrapolation can be adjusted using a scaled exponential decay function and midpoint integration of

the hardening rate, H = d&/dsfq, as shown in Eq. (1.13).

HYY + B —ad
d - d
O'la ] — < i-1 : i Aggq + O'la_lf (ggq)i > 857.5 (1.13)

adj _ — 14 14
o, "~ =0 (Seq)i S Eyrs
The initial extrapolation may be obtained assuming Swift power law hardening (with g, = 0), fit to the last
(terminal) point in the pre-necking hardening model. At the terminal point, the instantaneous hardening

exponent used for extrapolation is calculated as:

Hterm (Sepq)

Gterm

term (1. 14)

Nextrap =

Note that if the last point in the calibrated, pre-extrapolation model is the point of uniform elongation, then
the hardening exponent used for extrapolation is simply the equivalent plastic strain at uniform elongation
as a result of the Considére Criterion. The post-uniform hardening rate can then be easily adjusted by the

variable a to model high, low, and saturated hardening materials using a single model as:

b
Hiadj _ Hie—a((sé’q)i—e{’,rs) (ggq)i > el

(1.15)
i

H" = H; (2q); < €urs

The value of b is material dependent and controls the amount of decay, with b = 0.25 suggested for
aluminums. As shown in Figure 3 for a generic power law hardening material (K = 1000 MPa, n = 0.1), a

value of @ = 0 maintains the initial power law extrapolation and a value of @ = co promotes saturation.
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Figure 3: Illustration of adjusted spline hardening model extrapolation using an exponential decay function to model the post-
necking response. A value of a = 0 results in power law extrapolation. Saturation occurs by increasing the value of a.

The value of a may be calibrated using inverse analysis or fit to converted shear or bulge tests to extend an

initial hardening curve generated from a uniaxial tensile test to higher strains.

1.3.2 Yield Function

The yield function shown in Eq. (1.16) equates any multiaxial loading state to an equivalent stress, for
instance from a uniaxial tensile test, that would cause yielding. Yielding occurs when f = 0, meaning that

the equivalent stress from the yield function o, equals the flow stress from the hardening curve at the

current level of equivalent plastic strain & (sgq).
f=0eq—d(ely) (1.16)
If f < 0, then the deformation is elastic and completely described by Hooke’s Law as

1+v v
E=——

G G—Etr(c)l (1.17)

where v is Poisson’s ratio, E is Young’s modulus, and I is the identity matrix. One way to determine the
equivalent plastic strain is through an incremental plastic work balance, which is expressed using principal

stresses and strains as:

Opqdely = 0:de? = o1del + o,de} + o3del (1.18)
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Two of the earliest and most used yield functions include those of von Mises and of Tresca, both
designed for isotropic materials. Each function may be conveniently obtained as a special case of Hosford’s
1972 generalized isotropic yield function shown in Eq. (1.19) (Hosford, 1972). An exponent of m = 2
reproduces the von Mises yield surface, an exponent of m — oo reproduces the Tresca yield surface and
intermediary exponents interpolate between the two functions. The isotropic von Mises and Tresca are
perhaps the only yield criteria used for metals that can be directly derived from mechanics with the

remainder being phenomenological variants of these models.

loy — 03|™ + |0y — 03| + |03 — 01| = 2073 (1.19)

As reviewed by Banabic (2010) and Hosford (2013), numerous anisotropic yield functions have been
proposed over the last 40 years. Particularly relevant to this work are the anisotropic Drucker (Lou and
Yoon, 2018), Y1d2000 (Barlat et al., 2003), Y1d2004 (Barlat et al., 2005), Vegter (Vegter and van den
Boogaard, 2006) and Hosford’s 1985 “HF85” function (Hosford, 1985). With the exception of Vegter and
HF85, the aforementioned yield functions extend anisotropy into existing isotropic yield functions using
linear transformations. Vegter instead adopts a Bezier curve formulation while HF85 is calibrated using
two uniaxial R-values Rg and Ry, 9o along the principal axes, where 6 represents the angle from the rolling

direction to the principal frame as shown in Eq. (1.20).

1
HF85 Rg4o0lo1|™ + Rgloz|™ + RgRg1ggloy — 0 |™\m
o HF8S =

1 Rg490(1+ Rg)

(1.20)

Recent work shows that many engineering materials experience anisotropic hardening that can be
separated into differential and distortional hardening where the yield surface expands and changes shape
with plastic flow even in proportional loading. In the present work, differential hardening refers to the
evolving differential in the hardening behavior between stress states such as between uniaxial and equal-
biaxial tension. Distortional hardening refers to the change in the plastic potential, or yield function in
associated flow, due to evolving R-values. Notable experiments by Kuwabara and collaborators have
documented these hardening mechanisms in steel (Kuwabara and Ichikawa, 2015; Kuwabara and
Sugawara, 2013), aluminum (Kuwabara ef al., 2017; Kawaguchi et al., 2015) and titanium (Nagano ef al.,

2018) using stress-controlled biaxial cruciform and tube expansion tests.

1.3.2.1 Barlat family of yield criteria

The Barlat family of yield functions applies fourth-order linear transformations upon the deviatoric

stress tensor to account for anisotropy. The linear transformations scale and stretch Hosford’s 1972
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generalized isotropic yield function to change the yield stress and plastic normal vectors related to the yield
surface curvature in associated flow. Karafillis and Boyce (1993) described these models as creating an
“isotropic plasticity equivalent stress”. Barlat’s plane stress Y1d2000 model (Barlat et al., 2003) represents
the equivalent yield stress based on the in-plane principal values S; and S, of two second-order tensors S’

and $” as shown in Eq. (1.21).

1
_vidz000 _ <|S{ — SH™ + 1285 + S |™ + 28] + S§’|m>m (1.21)

eq 2

Generating each of the tensors §’" and S” requires a linear transformation of the Cauchy stress tensor & or

deviatoric stress tensor @' as shown in Eq. (1.22).
§'=C:0'=L"o, §"=C:0'=L":0 (1.22)

The components of the transformation tensors L’ and L' are obtained by calibrating eight anisotropy

parameters &;_g to experimental data.
L'=f(ay,az,a7), L' = f(as ay, as, ag, ag) (1.23)

Barlat’s Y1d2004 (Barlat et al., 2005) function, shown in Eq. (1.24), provides greater calibration
flexibility, as well as the ability to describe a three-dimensional state of stress. Like Y1d2000, S;_5 and
S;"_5 represent the principal values of two tensors S’ and $" obtained by applying linear transformations to

the deviatoric stress as shown in Eq. (1.22).

1
0eq™ " = <Z<|51 = S{I™ 4187 = SF 1™+ IS = S5I™ + 185 = S{I™ + 185 = SF1™ + 15 = S5

1

m
+153 = 51" + 1S3 = S2'|™ + 1S3 —Sé'lm)> (1.24)

In this case, the components of the linear transformation tensors €' and C" are described by the 18

parameters in Eq. (1.25).
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0 —Ci —Ciz 0 0 0 0 —C45 —-C5 0 0 07
—Cj;; 0 —Cj3 0 0 O —C)y 0 —Cjs 0 0 0
, _|-C4 —C5 0 0 0 0 N A ] 0 0 0
€=l o 0 0 Ci O O = 0 0 C4 0 0 (1.25)
0 0 0 0 Ci O 0 0 0 0 Ci O
0 0 0 0 0 Ciel L 0 0 0 0 0 Ciel

If the two transformation tensors are equivalent (C' = € = LY'491), then Barlat’s Y1d91 model (Barlat et
al., 1991) is recovered where the components of the single linear transformation tensor are functions of the

six parameters shown in Eq. (1.26).
LY = f(a,b,c,f, g, h) (1.26)

Regardless of the choice of yield function, calibration of the anisotropy parameters typically requires
numerical optimization to minimize the least squared error between the function’s prediction and the
experimental results obtained at a consistent amount of plastic work. The experimental data points may
include yield strengths in plane strain tension (of7), uniaxial tension (o{'T), equal-biaxial tension (¢£8)
and shear ("), theoretical constraints on the plastic flow and R-values in uniaxial (RUT) and equal-biaxial

tension (RE®).

If a material is in a state of plane stress where o3 = 0, then a two-dimensional yield function like Y1d2000
is suitable and thus requires only experimental data for the in-plane loading conditions. In addition to in-
plane data, three-dimensional yield functions also require through-thickness data which can be difficult to
acquire from a thin sheet. For instance, the linear transformation tensors of the Y1d2004 yield criterion
include variables Cgs, Cgg, Css and Cgy that require out-of-plane 0y, and 0, shear stresses for calibration.
In the absence of experimental data, a common recommendation is to assume isotropy in the unknown
conditions and set these components equal to one. An alternative is to calibrate the out-of-plane variables

to crystal plasticity “pseudo experiments” (Barlat et al., 2005; Yoon et al., 2006).

The yield function exponent must also be either assumed or calibrated. Commonly recommended values
of the exponent are m = 6 for Body Centered Cubic (BCC) materials like steel and m = 8 for Face
Centered Cubic (FCC) materials like aluminum based on the crystallographic calculations of Logan and
Hosford (1980). It has since been shown that due to existing texture from sheet rolling processes, evolving
texture during deformation, and microstructural interactions between phases and precipitates, the yield
exponent may differ from the recommended values (Cai et al., 2020; Cai et al., 2016; Kuwabara et al.,
2017; Yanaga et al., 2013). Perhaps the most immediate uncertainty in applying these recommendations is

the observation that modern materials are predominantly multiphase (Aretz et al., 2007), such as a dual
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phase steel consisting of BCC ferrite and Body Centered Tetragonal (BCT) martensite. Therefore, treating
the yield function exponent as a free variable and calibrating it to match the experimental data has been

gaining acceptance within the literature.

It is worth emphasizing that the stress components in the Barlat family of yield criteria are expressed in
the material frame (xx, yy, xy, etc.), although experimental tests generally align the loading direction with
a principal stress direction. Therefore, before running the numerical optimization solver, it is important to
rotate the stress to the material frame. For an in-plane principal, plane stress state, ©*P, this rotation to the

material axes is:

gMaterial — psP. P RT R=|sinf cosf® 0 021 021 O (1.27)

0 0 1 0 0 0

cosf —sinf 0‘ [011 012 0]
) o=

where 6 is the angle between the major principal axis and the rolling direction.

1.3.2.2 Anisotropic Drucker yield criterion

The anisotropic Drucker surface is a function of linearly transformed second (J,") and third (J3")
invariants of the deviatoric stress as shown in Eq. (1.28). The resulting surface is uniquely suited for

materials with larger plane strain yield strengths and high R-values.

1
Anisotropic Drucker 3 2\6
Toq T = (2" —cJ5%)° (1.28)

The invariants J; = (§':8")/2 and J5 = detS’ are calculated using the linearly transformed deviatoric

stress S’ = L'@ where L' is shown by Eq. (1.29) and c; to ¢, are calibrated to the experimental data.

[Ccy + C3 c5 cy
-2 -2 0 0 0
3 3 3
5 5+ 1
-2 -2 0 0 0
3 3 3
L = c) g L +c 1.29
G G 1ta 5 4 ) ( )
3 3
0 0 0 ¢, 0 0
0 0 0 0 ¢ 0
0 0 0 0 0 c.l
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The von Mises function ., = ,/3/; is recovered with ¢ = 0 and ¢; — cg = /3. Isotropic FCC and BCC
materials are modelled using ¢ = 2.0 and c';_¢ = 1.8365, and ¢ = 1.226 and c¢';_¢ = 1.7909, respectively
(Lou and Yoon, 2018).

1.3.2.3 Vegter yield criterion

In a stark contrast to linear transformation-based yield functions, the Bezier-interpolation based Vegter
yield criterion (Vegter and van den Boogaard, 2006) is perhaps the most suitable plane stress yield surface
if sufficient test data is available. The Vegter criterion consists of Bezier curve interpolation between
reference “hinge” points located at simple shear, uniaxial tension, plane strain tension and equal-biaxial
tension at multiple sheet orientations. For a particular sheet orientation, normalized principal stresses f;

and f, between each of the reference points 4 and C are given by:

Vj:&l}”“ [{gj‘{ﬁi}] e Hﬁl%{%}‘%é}} u €01] (1.30)

Sweeping u from 0 to 1 describes the arc of the yield surface between the reference stresses. Stitching
together the curves between each pair of reference stresses defines the complete surface. Obtaining the
components of the hinge point B requires the normal vectors at the reference stresses, given by n and m at

stress points A and C, respectively.

{Bl} 1 {mz (n14; + npA;) —ny(my Gy + mzcz)}
B,

= 1.31
nym, —myn, (ng(myC; + myC;) — my(ngA; + nyA;) ( )

Interpolation of the reference points between sheet orientations is provided through a Fourier series written

as:

ko) = Z ¢k cos2m6 ,k € {PST,UT,Sh} (1.32)

m=0

where 7 is equal to the number of orientations tested in a particular stress state. The strain ratio (p) in

uniaxial tension and each direction are similarly interpolated as:

n
Pur = z Ym COS 26 (1.33)

m=0
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The coefficients of the Fourier series ¢, and y,, are obtained by simultaneously solving the system of
equations represented by the series. For instance, for plane strain tension (PST) in three directions, the

Fourier coefficients are obtained from:

-1

¢6°" 1 1 1 fE5T(0°)
PSTH = [1 0 —1] fiPST (45°) (1.34)
55" 1 -1 1 f457(90°)

1.3.3 Flow Rule

The flow rule relates the incremental plastic strain components to a plastic potential function 1 shown

in Eq (1.35) through a scalar multiplier dA.

oy

aO'ij

def; = dA (1.35)
The use of the gradient operator enforces coincidence of the yield surface outward normal vectors and the
direction of the plastic strain increment (the so-called Normality Principle). In three-dimensional stress
space, the result is a second-order tensor, but in principal stress space, the result is a vector easily visualized

in Figure 4.

Figure 4: Physical meaning of the Normality Principle.

The plastic potential function may be set equal to the yield function () = g,4), called the associated
flow rule (AFR), or equal to a different function altogether () # g,4), called the non-associated flow rule

(NAFR). It is common to adopt the same functional form for the plastic potential as the yield function but
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calibrate each to separate experimental data in the NAFR case (Lademo et al., 1999). The yield function is
responsible only for predicting the magnitude of the stress at each loading state that will cause yielding and
thus calibrated to only the stress-based experimental data (i.e., tensile stresses, plane strain stress, shear
stress, equal-biaxial stress, etc.). The plastic potential predicts the direction of the strain increments and is
calibrated to the strain-based experimental data (i.e., tensile R-values, equal-biaxial R-values and physical
constraints that apply at each state of generalized plane strain) as discussed in Section 1.3. Despite the
increasing popularity of non-associated models, Pucik ef al. (2015) argue that numerous instabilities are
inherent to non-associated formulations including artificial softening (Rudnicki and Rice, 1975) and
dynamic stiffening of the plastic modulus in excess of the elastic modulus (Sandler and Rubin, 1987). In
opposition, Stoughton and Yoon (2008) assert that these issues are resolved. Ultimately adopting the AFR
simplifies the analysis by calibrating only one function to the entirety of the stress and strain experimental

data, while ensuring numerical stability and uniqueness of the solution.

1.4 Objectives and Motivations of Current Work

Tremendous improvements to the characterization of anisotropic sheet metal have occurred to meet the
demands of the automotive sector over the last century. Phenomenological plasticity has provided a
mathematical framework to evaluate yielding, while advancements in experimental techniques like Digital
Image Correlation have enabled the calibration of anisotropic yield functions under increasingly diverse

experimental stress states.

However, characterization in states of generalized plane strain, defined by a state of shear or plane strain
tension that results in zero strain along one principal direction, remains an open area of research. Figure 5
shows the three generalized plane strain stress states and the corresponding experimental tests that activate
each state. In all cases, loading along the x-axis of the material generates a plane strain state where the
second principal strain is zero, as shown in the three-dimensional Mohr’s circle representation. In plane
strain tension, the strain along the y-axis is negligible due to the relatively large width of the specimen in
comparison to the thin sheet thickness. Shear tests produce a simple shear state in the gauge region between
the two notches, with the principal directions orientated along +45° from the axis of loading. For in-plane
shear, no strain occurs through the thickness while for through-thickness shear, no strain occurs through

the width.
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Figure 5: Mohr's circle visualization of states of generalized plane strain in terms of ordered principal strains €1 > &2 > €3. Consider
two specimens tested in the loading direction along the x-axis; in plane strain tension, € is in the loading direction, &3 is in the
through-thickness direction and ez is in-plane and 90° to the loading direction. In through-thickness shear, €1 and €3 are in-plane
and +45° to the loading axis, while €2 is out-of-plane along the specimen width. Plane strain tension and through-thickness shear
are the focus of the investigation in this work.

A state of plane strain tension is not only common in industrial sheet metal forming operations but also
the loading condition in which sheet metal failure generally occurs. A typical sheet metal blank is long
relative to its thickness and width. The geometric constraint afforded by the larger planar dimension results
in plane strain tension as the material can deform only along the other dimensions during stretching and
bending operations. Plane strain shows the minimum strain on a forming limit diagram, making affected
areas of a part most susceptible to failure. Plane strain is, in fact, central to necking itself as any uniaxial or
biaxial stress state will gradually shift toward plane strain tension as deformation concentrates through the

thickness (Berstad et al., 2004).

Through-thickness shear (TTS) is also common to a variety of forming, and impact processes.
Incremental forming, an advanced manufacturing process, can achieve higher forming strains than
conventional operations by utilizing through-thickness shear and normal stresses to deform a part into its

final shape by a series of small, successive indentations (Eyckens et al., 2009; Esmaeilpour et al., 2018). In
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more conventional operations, sheet bending introduces TTS (Li et al., 2018), whether it be at the folds of
an automotive structural rail during axial crush or the draw beads of a stamping die. General friction

between a die and a sheet during stamping is another source of TTS as noted by Fatemi and Dariani (2016).

Generating an accurate and complete model for stamping and incremental forming operations requires
characterization of material behavior under through-thickness shear. Particularly for dual phase steel, Billur
and Altan (2013), and Li ef al. (2018) pointed to through-thickness shear as a possible explanation for
fractures observed in bending operations. Even though three-dimensional yield functions like Y1d2004 are
available for solid element simulations, sheet metal forming processes are commonly simplified as plane
stress, both for simplicity and due to the lack of accurate through-thickness experimental data. Simple
methods for physical, experimental characterization of through-thickness shear are necessary for the

improvement of industrial sheet metal forming processes.

Although in-plane shear tests are now commonplace (Peirs ef al., 2012; Yin et al., 2014; Abedini ef al.,
2020), experimental characterization of through-thickness shear yield strength has received comparatively
little attention. In a notable exception, Herrmann et al. (2017) evaluated the through-thickness shear
strength of a roll-bonded aluminum using a double notched shear specimen and a clamping fixture to
prevent buckling under a compressive load. Other studies have been limited to only fracture and not
constitutive characterization. For instance, Li ef al. (2018) and Gu et al. (2020) evaluated the through-
thickness shear fracture strain of dual phase sheets, with a novel test fixture bolted to the specimen that

minimized friction while preventing rotation of the shear zone under tension.

To the author’s knowledge, no study has attempted to calibrate the out-of-plane shear properties of a
function like Y1d2004 using physical experiments. Attempts to calibrate the out-of-plane properties of
three-dimensional yield functions have mainly been through crystal plasticity pseudo experiments (Plunkett
et al.,2006; Grytten et al., 2008; Barlat et al., 2005; Zhang et al., 2016; Esmaeilpour et al., 2018). However,
crystal plasticity models are either computationally demanding (Zhang et al., 2016) or too simplistic to
accurately describe a real material (Grytten et al., 2008). Furthermore, crystal plasticity models rely on
precise microstructural characterization using scanning electron microscopy (Zhang et al., 2016) which is

an expensive barrier to widespread industrial adoption.

In contrast to through-thickness shear, experimental testing in plane strain tension is more mature, albeit
far from resolved. Plane strain conditions only exist in the center of the notched tensile specimen seen in
Figure 5 because the loading transitions toward a state of uniaxial tension at each edge. Suggested methods
to extract the constitutive plane strain tensile response generally encompass either correction factors

assuming isotropy, inverse finite-element analysis, or empirical relationships. Due to the experimental
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uncertainty, the plane strain yield strength is often omitted in the calibration of anisotropic yield functions
despite its fundamental relationship with necking and the mechanics of thin sheet forming. Simply adopting
the recommended exponent for the yield function, based on whether the material is FCC or BCC, does not
guarantee accuracy of the interpolated plane strain yield strength (Lenzen and Merklein, 2018). Therefore,
a need also exists for a more accurate, physically based experimental methodology to directly extract the

constitutive response from plane strain tensile tests while including effects of anisotropy.
The objectives of this thesis are as follows:

1. Introduce, validate, and apply an experimental methodology to characterize the constitutive
response along the arc of the yield surface from uniaxial to plane strain tension using plane strain
tensile tests.

2. Design, test and evaluate an experimental setup to characterize the constitutive response of a sheet
material in through-thickness shear.

3. Incorporate plane strain tensile and through-thickness shear yield strengths into the calibration of

anisotropic yield functions.

The remaining eight chapters of this thesis attempt to achieve these objectives. Chapter 2 introduces the
four materials selected for analysis, summarizes the basic constitutive characterization completed prior to
this research and describes the experimental equipment used in this work. Chapter 3 is an adaptation of a
journal article entitled “An Experimental Methodology to Characterize the Plasticity of Sheet Metals from
Uniaxial to Plane Strain Tension” written by the author, Dr. Abedini, Ms. Noder and Dr. Butcher. In Chapter
3, further background on plane strain tension is presented as well as a combined experimental-analytical
methodology to characterize the complete arc of a yield surface from uniaxial to plane strain tension.
Chapter 4 investigates the effect of geometry and extends the plane strain tension methodology developed
in Chapter 3 to differential hardening and non-associated flow. Chapter 5 describes the results of finite-
element coupon level simulations used to evaluate the accuracy of the results of Chapter 3—4. Chapter 5
also demonstrates the improvement of the current process versus an existing empirical method found in the
literature. Chapter 6 focuses on the characterization of yielding in through-thickness shear, encompassing
specimen geometry selection, fixture design, DIC pattern generation, experimental testing, and results.
Chapter 7 consolidates the work of the previous chapters into the generation of master yield surfaces to
quantify the effect of the additional plane strain tension and through-thickness shear data points on the
calibration. These master yield surfaces are validated using post-necking simulations of a different notch
geometry in Chapter 8. Chapters 9 and 10 conclude with the main findings of this thesis and

recommendations for future work.
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Chapter 2 Material Selection, Mechanical Properties, Equipment and Test

Geometries

The test geometries, materials and baseline mechanical properties are described in this chapter. Section
2.1 describes the seven geometries adopted to obtain the constitutive characterization in states of shear,
plane strain tension, uniaxial tension, and equal-biaxial tension. Section 2.2 describes the four disparate
automotive sheet alloys selected to illustrate the generalized plane strain characterization methods proposed

in this thesis: AA5182-O, DP1180, AA6xxx-T4 and AA6xxx-T81.

2.1 Equipment and Test Geometries

In addition to the through-thickness shear and plane strain tests conducted in direct pursuit of this thesis,
uniaxial tensile, shear and equal-biaxial tests were required to provide baseline mechanical properties to
support further investigations into generalized plane strain. All uniaxial tensile, shear, through-thickness
shear and plane strain experiments were conducted on either the MTS E40 Criterion 100 kN servo-electric
testing machine with hydraulic grips or the Shimadzu AG-X plus 50 kN servo-electric uniaxial test frame
with pneumatic grips available at the University of Waterloo. In all cases, the load cell data from the test
frame was synchronized with a Digital Image Correlation (DIC) full-field optical strain measurement
system. Post-processing was performed in the software Vic-3D 8® by Correlated Solutions Inc. for the
uniaxial tensile and plane strain tensile tests. Due to the lack of through-thickness deformation in shear
tests, Vic-2D 6® by Correlated Solutions Inc. was used for the post-processing of the in-plane and through-
thickness shear tests. VSGL values of between 0.1 mm and 1 mm were selected, based on the specimen
size, processing speed and degree of observed localization. A VSGL of 0.5 mm was selected for the entirety
of the plane strain analysis to allow consistent comparison of different geometries. The test geometries are

described in Figure 6 and explained further in this section.
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(d) Plane strain tension specimen (Geometry A) adapted from Vegter and van den Boogaard (2006)
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(f) Plane strain tension specimen (Triple-Scaled Geometry B)
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Figure 6: Specimen geometries adopted in this thesis. The loading conditions include (a) uniaxial tension, (b) in-plane shear, (c)
through-thickness shear and (d, e, f) plane strain tension.
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2.1.1 Disc Compression Tests

Disc compression tests were performed as part of the baseline characterization to establish the equal-
biaxial R-value, as explained by Abedini ef al. (2020). A 5-mm disc was compressed between two Teflon-
lubricated dies, and the deformation along the rolling and transverse directions measured using an optical
microscope at discrete load levels. The ratio of the true strain along the transverse direction to the true strain
along the rolling direction was then calculated to determine the average R-value over the range of

deformation.

2.1.2 Uniaxial Tensile Tests

Uniaxial tensile tests were used to determine the hardening curve, normalized yield strength and uniaxial
R-value as well as the elastic parameters Young’s Modulus and Poisson’s ratio. JIS No. 5 specimens were
adopted as shown in Figure 6(a). The longitudinal extension was measured using the average of three 50
mm long extensometers, while the transverse contraction was measured using the average of three 25 mm
long extensometers. The R-value was obtained from the horizontal and vertical extensometers, considering
volume conservation. All samples were pulled at a speed of 0.05 mm/s to maintain a quasi-static strain rate

of 0.001 s over the gauge region.

2.1.3 In-Plane Shear Tests

In-plane shear tests were conducted using the so-called “mini shear” geometry proposed by Piers et al.
(2012) and shown in Figure 6(b). The use of eccentric notches promotes a state of simple shear in the gauge
region, while the rounded notches and gauge region length are designed to improve accuracy and promote
a more homogeneous state of strain across the gauge region. A test velocity of 0.003 mm/s ensured an
equivalent von Mises quasi-static strain rate of 0.001 s™! in the center of the gauge region. The shear stress

was measured as the average load acting over the gauge region area, T = F /A.

2.1.4 Through-Thickness Shear Tests

The double-notched geometry proposed by Gu et al. (2020) was selected for through-thickness shear
investigation since the use of two notches angled at 45° to the loading direction is analogous to the well-
accepted ASTM B831-05 standard geometry for in-plane shear tests. It is also readily tested in a standard
uniaxial test frame. The specimen width was increased from the originally proposed 10 mm to 25.4 mm to
better promote plane strain conditions. The sample length was also extended to 200 mm to suit an existing
clamping fixture under development at the University of Waterloo for tension-compression testing and

modified in this work to provide the side clamping force required to minimize gauge region rotation. The
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final specimen geometry is shown in Figure 6(c). Due to the novelty of the through-thickness shear tests,

additional information on the experimental design is provided in Chapter 6.

2.1.5 Plain Strain Tensile Tests

A comprehensive investigation was performed into different plane strain notch geometries in the
literature before selecting the specimens for analysis in this thesis. The profile of plane strain tension is
controlled by two variables: the specimen width-to-thickness ratio and shape of the notches. As determined
by An et al. (2004), specimens with a large aspect ratio (width-to-thickness ratio) promote more uniform
plane-strain conditions across the sample width. Baral et al. (2018) propose through-thickness machining
as a means of increasing the aspect ratio of notch specimens. Round notches combined with a small aspect
ratio notch help promote a plane-strain fracture in the center of the specimen, although with only a small
zone of plane strain that is difficult to measure. A larger aspect ratio and square-profile notches increase
the size of the plane strain zone, but fracture instead occurs at the notches under uniaxial tension, rather

than in the specimen gauge region under plane strain (Mahmudi, 1999).

Larger aspect ratio specimens are more conducive to DIC measurement. As explained by Byrne and
Simonsen (2016), a minimum half-subset width of strain data at each edge cannot be calculated using DIC
algorithms since strain data is always reported at the center point of each subset. The missing edge data
may be minimized by adopting a smaller subset, although this approach is limited by the size of speckles
required to maintain the recommended three-speckle density per subset. Therefore, as the sample width
increases, the missing edge data makes up a smaller percentage of the overall gauge width and increases

the completeness of the measured strain profile.

Three distinct specimen geometries were adopted to investigate the effect of specimen aspect ratio on
the methodologies proposed in this thesis. Geometry A, shown in Figure 6(d), was adapted from the work
of Vegter and van den Boogaard (2006), but with the gauge width reduced from 45 mm to 39 mm to match
the grip width of the MTS E40 Criterion testing machine. In a stark contrast to the large aspect ratio of
Geometry A, Geometry B was proposed by Honda R&D Americas and is uniquely suited to fracture
characterization due its small aspect ratio and round notches. In a hybrid approach to develop a specimen
for both fracture and constitutive characterization, a triple-scaled version of Geometry B was considered to
incorporate both round notches and a large aspect ratio. The original and triple scaled Geometry B

specimens are shown Figure 6(e) and Figure 6(f), respectively.

Each specimen geometry was CNC machined and tested to fracture in the rolling, diagonal, and
transverse directions of each sheet. Crosshead velocities of 0.012 mm/s, 0.005 mm/s and 0.015 mm/s were

selected to maintain a quasi-static strain rate for Geometry A, Geometry B, and the triple-scaled Geometry
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B, respectively. Two 5 MP Point Grey® or two 12 MP Flir Systems® cameras with 180 mm or 85 mm

Tamron® lenses were adopted for DIC measurement, depending on the size of the specimen.

2.2 Mechanical Properties of Selected Materials

To illustrate that the developed processes and methodologies are applicable to various materials, four
different alloys were selected: AA6xxx-T4 (FCC), AA6xxx-T81 (FCC), DP1180 (BCC) and AA5182-O
(FCC). The chemistry and microstructural information are intentionally withheld from this thesis, to instead
focus on the mechanical performance and characterization. The two 6xxx series aluminum alloys were
provided as part of the Numisheet 2022 benchmark activity at the University of Waterloo. Basic constitutive
characterization results obtained from the slate of in-plane shear, uniaxial tension and disc compression
tests are presented in this section and used in the development of the novel works presented in subsequent
chapters. All properties are presented, at minimum, along the rolling (RD), diagonal (DD) and transverse

(TD) directions.

2.2.1 Properties of AA6xxx-T4

Alloys of the wrought aluminum 6000 series contain magnesium and silicon as the dominant alloying
elements. This series can be heat treated to form precipitates of magnesium silicide. In this case, the T4
temper designation signifies that the material has been naturally aged. A typical automotive application is

an outer body panel requiring higher strength for structural integrity and dent resistance.

Amir Zhumagulov completed the tensile and mini shear experiments of the 1.5 mm thick sheet while
Dr. Cliff Butcher analyzed the data to extract the stress ratios, R-values, elastic parameters, and hardening
curve. Since the Modified Hockett Sherby hardening model of Eq. (1.11) could not capture the small-strain
response of the materials, constrained cubic splines were employed to accurately model the equivalent stress
up to uniform elongation. The equal-biaxial R-value and yield strength were estimated using the
correlations developed by Abspoel et al. (2017) since no cruciform, bulge or disc compression data was
available. The constitutive parameters and hardening curves are shown in Table 1 and Figure 7,

respectively.
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Table 1: Anisotropic constitutive characterization results for AA6xxx-T4 at a plastic work of 58 MJ/m>. The equal-biaxial stress
and R-value were estimated using the correlations identified by Abspoel et al. (2017). Standard deviations are shown in brackets.

Angle with respect to the rolling direction (RD)

0° 15° 22.5° 30° 45° 60° 75° 90°
o /g 1.000 0.996 ) 0.986 0.975 0.992 0.986 0.980
o 0 (0.002) (0.003) (0.003) (0.005) (0.003) (0.005) (0.003)
RUT 0.600 0.690 ) 0.760 0.730 0.720 0.650 0.610
o (0.050) (0.020) (0.030) (0.020) (0.020) (0.020) (0.030)
SH 0.564 0.559 0.560
05" /o - - -
o 0 (0.007) (0.009) (0.006)
E (GPa) 70.4 - - - 69.7 - - 71.4
sk 0.199 - - - 0.215 - - 0.207
v 0.33
05/ 0 0.975
Ry 0.984
400 400
a -t b
350 ( ) /"" 350 ( ) #,,»"".,w*..m
= - ) o
% 300 - % 300 -
= »7 =
2 250 1 - 2 250 -
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Figure 7: Spline hardening curves fit to the experimental uniaxial tensile data along the (a) RD (b) DD and (c) TD of the tested
AA6xxx-T4. Experimental data is shown up to the onset of necking.
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The average uniaxial R-value in Table 1 was obtained from the linear region of the plastic width versus
thickness strain distribution in each tested direction. Figure 8 illustrates the strain path obtained by adopting
the average R-value, in comparison to each of the experimental repeats along the RD, DD and TD. The
average R-value is a reasonable assumption across the entire range of plastic deformation and in good
agreement with the experimental data for the three material orientations considered in the plane strain

integration methodology.
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Figure 8: Average uniaxial R-value along the RD, DD and TD compared to the experimental data for each repeat of AA6xxx-T4.

2.2.2 Properties of AA6xxx-T81

The 2.7 mm thick sheet of 6000 series structural aluminum in the T81 temper has been solutionized,
artificially aged to form precipitates and then cold worked. The presence of both precipitation hardening
and work hardening gives this alloy additional strength over the T4 alloy. Although this alloy is in the 6000
series, it is compositionally different than the A A6xxx-T4 material and designed for structural applications
such as rails and B-pillars.

As with the AA6xxx-T4 alloy, Amir Zhumagulov completed the experimental testing and Dr. Cliff
Butcher performed the extraction of the stress ratios, R-values, elastic parameters, and hardening curve.
The baseline constitutive characterization is presented in Table 2, with the calibrated hardening curves

presented against the experimental uniaxial tensile test data in Figure 16.
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Table 2: Anisotropic constitutive characterization results for AA6xxx-T81 at a plastic work of 59 MJ/m?. The equal-biaxial stress
and R-value were estimated using the correlations identified by Abspoel et al. (2017). Standard deviations are shown in brackets.

Angle with respect to the rolling direction (RD)

0° 15° 22.5° 30° 45° 60° 75° 90°
oV /g 1.000 0.995 0.985 0.987 0.984 0.979 0.991
o 770 (0.006) (0.006) (0.007) (0.007) (0.007) (0.006) (0.006)
RUT 0.580 0.640 0.580 0.570 0.570 0.510 0.470
0 (0.020) (0.030) (0.020) (0.040) (0.020) (0.020) (0.040)
sH 0.589 0.569 0.578
o5 /0o - - - - -
(0.008) (0.010) (0.006)
E (GPa) 70.6 - - - 69.7 - - 69.3
sk 0.174 - - - 0.174 - - 0.182
v 0.33
05/ 0 0.977
R, 1.234
450 450
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Figure 9: Comparison of spline hardening curves fit to the experimental uniaxial tensile data along the (a) RD (b) DD and (c¢) TD
of the tested AA6xxx-T81. Experimental data is shown up to the onset of necking.
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The average R-value is representative of the plastic width versus thickness strain response for AA6xxx-
T81 as shown in Figure 10 along the RD, DD, and TD. The R-value is similar along the RD and DD, with

a lower value occurring along the TD.
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Figure 10: Average uniaxial R-value along the RD, DD and TD compared to the experimental data for each repeat of AA6xxx-
T81.

2.2.3 Properties of DP1180

DP1180 is a structural dual-phase steel, with a microstructure of ferrite and martensite having an ultimate
tensile strength of 1180 MPa and relatively low ductility. Common uses for DP1180 steels are in anti-
intrusion applications such as sills, front side, and roof members (Davies, 2012). The 1.0 mm thick DP1180
sheet was provided by the Auto-Steel Partnership (A/SP) also as part of the Numisheet 2022 benchmark.
Abedini et al. (2020) determined the basic mechanical properties and anisotropy. Uniaxial tension tests,
simple shear tests, and disc compression tests were conducted to obtain the normalized stresses, tensile R-

values and equal-biaxial R-values shown in Table 3.
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Table 3: Anisotropic constitutive characterization results for DP1180 as presented by Abedini et al. (2020) for the same lot of
material. The equal-biaxial stress was estimated as the in-plane average of the uniaxial tensile stresses. The equal-biaxial R-value
was determined using a disc compression test. All values were calculated at a plastic work of 61.11 MJ/m?. Sample standard
deviations are shown in brackets.

Angle with respect to the rolling direction (RD)

0° 15° 22.5° 30° 45° 60° 75° 90°
V7 /o 1.000 0.995 i 0.996 1.004 1.008 1.013 1.025
e /%  (0.006)  (0.003) (0.003)  (0.007)  (0.008)  (0.003)  (0.007)
RUT 0.82 0.84 i 0.90 0.95 0.98 1.00 0.98
0 (0.01) 0.01) 0.01) 0.01) (0.01) (0.00) 0.01)
o5t /g 0.600 i 0.600 i 0.612 i i
6 /9%  (0.005) (0.008) (0.005)
e 0.069 - - - 0.064 - - 0.063
v 0.30
E (GPa) 210
oy/ 0, 1.008
0.94
Ry (0.03)

The hardening behavior for the rolling (RD), transverse (TD) and diagonal (DD) directions was
described using the flexible modified Hockett-Sherby (MHS) model of Noder and Butcher (2019)
previously presented in Eq. (1.11). Since the model well described the experimental data, the spline fit
model adopted for the AA6xxx alloys was unnecessary. The coefficients Ci-Cs were calibrated to the

experimental data from standard uniaxial tension tests shown in Figure 11 up to the start of diffuse necking.
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Figure 11: Modified Hockett-Sherby hardening curve fit to experimental data from standard uniaxial tension tests for DP1180
tested along the (a) RD, (b) DD and (c) TD.

The high average R-values in Figure 12 indicates good overall formability and relative agreement with
an isotropic value of 1. It should be noted that the linear range of strain for DP1180 is relatively small, due

to the limited ductility evidenced by an ultimate tensile strain of just 0.063 to 0.069.
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Figure 12: Average uniaxial R-value along the RD, DD and TD compared to the experimental data for each repeat of DP1180.
2.2.4 Properties of AAS182-O

The 5000 series of aluminum is composed of grades having magnesium as the main alloying element.
The O temper indicates that annealing was used to eliminate residual stresses and work hardening
introduced by the cold rolling process. As a result, the material possesses high ductility but relatively low
strength with dynamic strain ageing (DSA) and PLC effects that make it most appropriate for inner closure
panels requiring lower surface quality (Davies, 2012).

The basic constitutive characterization data for the 1.5 mm thick sheet material tested in this study are
shown in Table 4, as reported by Abedini et al. (2020). Based on the excellent fit to the experimental data,
the Modified Hockett Sherby model was adopted for the hardening curves shown in Figure 13. Increased

scatter in the experimental data is due to the PLC effect.
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Table 4: Anisotropic constitutive characterization results for AA5182-0 as presented by Abedini et al. (2020) for the same lot of
material. The equal-biaxial stress was estimated as the in-plane average of the uniaxial tensile stresses. The equal-biaxial R-value
was determined using a disc compression test. All values were calculated at a plastic work of 51.50 MJ/m?. Sample standard
deviations are shown in brackets.

Angle with respect to the rolling direction (RD)

0° 15° 22.5° 30° 45° 60° 750 90°
o/ 1.000 0.972 ] 0.960 0.948 0.935 0.945 0.964
e /%  (0010)  (0.003) 0.002)  (0.005)  (0.010)  (0.004)  (0.000)
RUT 0.60 0.67 ] 0.80 0.91 0.83 0.71 0.70
6 (0.04) (0.02) (0.01) (0.02) (0.01) 0.01)  (0.01)
o5/ 0.540 ] 0517 ] 0.540 ] ) )
6 /%  (0.010) (0.009) (0.007)
gUE 0.187 - - - 0251 ] ] 0.231
v 0.33
E (GPa) 69
oy/ 0, 0.965
1.03
Ry (0.03)
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Figure 13: Modified Hockett-Sherby hardening curve fit to experimental data from standard uniaxial tension tests for AA5182-O
tested along the (a) RD, (b) DD and (c) TD.
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The average R-value is a good fit for the AA5182-O alloy, showing good agreement with the
experimental data along each tested direction. The predicted strain path using the average R-value is shown

in Figure 14, in comparison to the experimental data, along the RD, DD and TD.
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Figure 14: Average uniaxial R-value along the RD, DD and TD compared to the experimental data for each repeat of AA5182-0O.
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Chapter 3 Methodology for Uniaxial to Plane Strain Tension Characterization'

Accurate knowledge of the constitutive response of sheet metals in plane strain tension is of paramount
importance to the design of metal forming operations where the majority of failures in stamping occur
(Mahmudi, 1999). Plane strain deformation in sheet metal forming is an unavoidable consequence of the
mechanics involved. Since the sheet thickness is typically small relative to its planar dimensions, the stress
state can be approximated as plane stress for many forming operations. By the same virtue, the large width
of the sheet relative to its thickness promotes the development of plane strain conditions in tensile stretching
and bending modes (Hill, 1950). In plane strain tension, the material thinning rate and yield strength are at
their apex while the strains for localization and fracture are at their lowest values. As described by Hora et
al. (2013) plane strain tension represents the terminal condition for formability because once the diffuse
necking limit is reached, the strain state will begin to transition towards plane strain where the material can
sustain a higher stress perpendicular to the neck, to maintain quasi-stable deformation during localization.
The transition towards plane strain comes at a cost of increased thinning which reduces the area of the neck
and increases the local stress that must by balanced by work hardening and a continued shift towards plane
strain. The cycle accelerates until plane strain conditions are met which corresponds to the formation of an

acute neck followed by imminent fracture.

Analytical models to predict the onset of localization such as the MK (Marciniak and Kuczynski, 1967)
model or predict fracture in a damage-based Modified Mohr Coulomb (MMC) framework (Bai and
Wierzbicki, 2008) require precise knowledge of the constitutive response in plane strain and its variation
with material direction. Advanced anisotropic yield functions such as Y1d2000 (Barlat ez al., 2003) and
BBC2005 (Banabic et al., 2005) are now routinely used in commercially available finite-element programs
such as LS-DYNA® and Autoform® to design stamping operations but the importance of plane strain has

been somewhat overlooked. Biaxial and uniaxial tension tests are commonly used to calibrate anisotropic

! Chapter 3 contains portions of a post-peer-review, pre-copyedit version of an article published in Experimental
Mechanics by Springer. Reproduced with permission from Springer Nature. The final authenticated version is
available online at:

Fast-Irvine, C., Abedini, A., Noder, J., Butcher, C. (2021). An Experimental Methodology to Characterize the
Plasticity of Sheet Metals from Uniaxial to Plane Strain Tension. Experimental Mechanics, vol 61, pp. 1381-1404.
https://doi.org/10.1007/s11340-021-00744-3.

Section 3.1.2.1 was expanded in this thesis beyond what was included in the accepted manuscript to better demonstrate
the suitability of the HF85-PSC function in predicting the intermediate stress and strain values along the uniaxial to
plane strain arc.
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constitutive models due to the relative simplicity of analyzing the results (Butcher and Abedini, 2019).
Variation in the plane strain yield strength due to anisotropy can be predicted by the model but is generally

left unvalidated due to the challenges with obtaining reliable plane strain constitutive data.

Experimental methods to determine the constitutive response in plane strain tension include elliptical
bulging, cruciform tests, bending, plane strain compression, and notched tensile tests. Elliptical bulging as
done by Lanzen and Merklein (Lenzen and Merklein, 2018) is promising but requires specialized equipment
and can be sensitive to the curvature measurements and through-thickness gradients as discussed by Min et
al. (2017) for biaxial bulging. Stress-controlled biaxial cruciform tests, as performed by Kuwabara and
Nakajima (2011) and formalized in ISO16842:2014 (International Organization for Standardization, 2014),
are perhaps the ideal test for in-plane characterization but also require custom equipment and have been
mostly limited to relatively low strain levels due to cracking outside of the gauge area. Techniques including
laser deposition can be used to increase the cruciform specimen arm thickness and delay or eliminate
cracking, but at additional cost and manufacturing complexity (Hou et al., 2018). Plane strain bending can
be performed up to large strain levels, but the mechanics are complicated to extract the constitutive response
from the test data as detailed in Yu and Zhang (1996). The shift of the neutral axis towards the concave side
of the bend in compression will activate Bauschinger effects as material layers are unloaded in compression
and re-loaded in tension. Asymmetry of the response in tension and compression may also be important to
consider depending upon the alloy of interest (Kato et al., 2014). Plane strain compression tests can be used
to large strain levels but neglect yield asymmetry in the analysis and are complicated by friction,
inhomogeneity of the strain rate and lateral spreading of the material under the indenter (Aksenov et al.,
2015). Consequently, notched tensile tests are perhaps the most accessible test for plane strain
characterization owing to their simplicity and the avoidance of friction or through-thickness strain gradients
before the necking limit is reached. Most importantly, the tests can be readily fabricated and tested on a
universal test frame at the same time as uniaxial tensile tests required for standard constitutive

characterization.

Plane strain tension tests are not without their own challenges. For an ideal geometry, plane stress
deformation is limited to the onset of diffuse necking (peak load) which is comparable to the tensile uniform
elongation (Swift, 1952). Numerous plane strain test geometries similar to Figure 15 have been proposed
based upon the early work of Wagoner (1980) who found that the gauge width, notch radius and notch
angle strongly control the size and magnitude of the plane strain region. In a departure from this traditional
notched tensile specimen design, Baral ef al. (2018) recently proposed through-thickness machining as a
way of geometrically constraining the region of plastic deformation under plane strain. Regardless of the

notched tensile geometry, gradients of strain and stress develop across the specimen width during testing
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as shown schematically in Figure 15. Theoretically these gradients are bounded by the limiting states of
uniaxial tension at the free edges and plane strain tension in the central region. The initiation of yielding at
the edges of the notch before the central region also introduces a gradient in the magnitude of the strain
across the width. As a result, every material point along the gauge width is subjected to a different stress

state and experiences a different amount of work hardening during the test.
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Figure 15: Schematic of the principal stress and strain ratios across the gauge width of an ideal plane strain notch specimen of an
isotropic material where the loading transitions from plane strain tension in the center to uniaxial tension at each edge.

Since deformation is not homogenous across the gauge width, the stress calculated by the measured
force and gauge area is only an approximation of the plane strain constitutive response. This has prompted
the development of several approximate and inverse methods to determine the plane strain yield strength
and hardening. An et al. (2004) proposed a method to determine the plane strain tensile strength by testing
multiple specimens of varying gauge widths to isolate the edge effect. Another empirical relationship
derived by Flores et al. (2010) relates the plane strain yield strength to the total force by determining the
percentage acting over a “homogeneous” zone of plane strain estimated based on the strain gradients.
Inverse finite-element analysis has also been used by Dick and Korkolis (2015) and Tian et al. (2016) to
identify correction factors to account for the non-uniform stress distribution assuming isotropy in plane

strain tension experiments.

The a priori assumption of isotropy in the numerical analysis of plane strain tests can be directly linked
to uncertainty surrounding plane strain behavior in anisotropic yield functions. As reviewed by the authors
Butcher and Abedini (2019), it is commonly assumed that the stress state in plane strain tension is unknown
and thus must be determined after the conventional calibration of the anisotropic yield function. The inverse
problem for plane strain tension is therefore underdetermined since both the magnitude of the yield strength

and its location on the yield surface are taken as unknowns. However, Butcher and Abedini (2019) have
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recently shown that the stress state for plane strain tension is actually uniquely known for pressure-
independent plasticity but is not preserved by anisotropic yield functions developed using linear
transformations. Therefore, “generalized plane strain constraints” must be imposed on the normal vectors
(or directions of the plastic strain rate) for associated plasticity. By applying these constraints, the plane
strain yield strength can be uniquely determined and identified directly from experimental plane strain notch

tests of anisotropic sheet materials using inverse analysis.

Inverse methods to identify constitutive model parameters directly from experimental data are possible
due to advancements in full-field strain measurement technologies like Digital Image Correlation (DIC)
(Rossi et al., 2018). One methodology is to use a constitutive model to calculate stresses from measured
strain or displacement data, then optimize the model parameters to balance the internal stresses integrated
over a cutting plane with the external force measured by the load cell during the test. This so-called cutting
line approach differs from the more general Virtual Fields Method (VFM) in the sense that the former
enforces equilibrium only over particular planes of interest while the latter enforces it over the entire
deformation field using the principal of virtual work. It should be noted that cutting line methods are in
general simpler and less computationally expensive because integration of the entire 2-D or 3-D
deformation field is avoided. Cutting line methods have been applied by Marth et al. (2016) and Rossi et
al. (2008) to calibrate hardening functions from tensile experiments assuming isotropic or anisotropic yield
functions but the reverse problem of calibrating a yield function given a hardening model has been barely
explored. Brosius et al. (2018) attempted to calibrate a yield function by applying a cutting line method to
shear, uniaxial and plane strain notched tensile tests, but the plane strain point was non-unique and drifted

depending on the level of plastic work used for the calibration.

The objective of the present chapter is to develop an experimental methodology to characterize the
constitutive behavior of anisotropic sheet metals from uniaxial-to-plane strain tension using standard
uniaxial tension and so-called plane strain notched tensile tests. A simple anisotropic yield function, which
adheres to the plane strain constraints, is selected to deterministically calibrate the local shape of the yield
surface between uniaxial and plane strain tension using a single independent parameter optimized through
a cutting line approach. The only inputs are the tensile R-value, elastic parameters, and the experimental
hardening curve from uniaxial tension tests until the uniform elongation. By performing uniaxial and plane
strain tensile tests in different orientations, multiple uniaxial-to-plane strain arcs of the yield surface can be
traced out and used to calibrate a more sophisticated anisotropic yield function such as Y1d2000 (Barlat et
al., 2003) or Y1d2004 (Barlat et al., 2005). The proposed methodology is applied to the four automotive
sheet metal alloys introduced in Chapter 2: DP1180, AA5182-O, AA6xxx-T4 and AA6xxx-T81.
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3.1. Selection of an Anisotropic Yield Function to Describe Uniaxial-to-Plane Strain Tension

The regions of the plane stress yield surface where deformation ranges from uniaxial tension to plane
strain tension in the rolling, diagonal, and transverse directions are shown schematically in Figure 16 for
the von Mises yield surface, along with the 2-D projection onto the RD-TD plane. By performing uniaxial
and plane strain tension tests in multiple directions, the magnitude and contours of the associated yield
surface emerge. While a uniaxial tension test can only provide a single point on the yield surface, the plane
strain notch test can provide data over an entire uniaxial to plane strain region that can be used to calibrate
anisotropic yield functions. The challenge is to determine a robust methodology to determine each local arc
of the associated yield surface without introducing bias due to the choice of yield function or assumptions
on the hardening behavior.
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Figure 16: Three dimensional schematic showing locations of uniaxial and plane strain tension on the von Mises yield surface and
projection onto the RD-TD plane.

To calibrate the arc of a plane stress yield surface from uniaxial-to-plane strain tension, for a prescribed

test orientation, the analyst requires knowledge of:

1. Hardening response in uniaxial tension until the uniform elongation
2. R-value in uniaxial tension

3. Stress state or location on the yield surface where plane strain occurs
4

Anisotropic yield function for local calibration from uniaxial to plane strain tension

The tensile R-value and hardening response in the direction of interest are readily determined from a
standard uniaxial tensile test. Each test direction of interest is taken as its own reference direction in this
proposed approach. For example, if the transverse direction of the sheet is of interest, then both the plane
strain and uniaxial tension tests are performed in that direction. The location of the stress state can be readily
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determined using the plane strain constraints of Butcher and Abedini (2019) and justified by an extensive
review of experimental biaxial cruciform tests. By modifying a general anisotropic yield function to enforce

these constraints, the local arc of the yield surface can be uniquely determined.

3.1.1 Experimental and Theoretical Basis for a Plane Strain Constraint

The analysis of Butcher and Abedini (2019), which concluded that the stress states for generalized plane
strain loading of pressure-independent anisotropic metals are known a priori, runs counter to conventional
wisdom where this is assumed to only apply to isotropic materials. In the conventional approach to calibrate
anisotropic plasticity models, the stress state for plane strain tension is permitted to occur anywhere between
uniaxial and biaxial tension. In the general case of pressure-dependent anisotropic plasticity, this is the
correct approach, but it does not apply for pressure-independent (deviatoric) plasticity. An incompressible
material that adheres to deviatoric plasticity, and is constrained to be in a simultaneous state of plane strain
and plane stress, is necessarily in plane strain tension (PST) at a minor-to-major principal stress ratio of
1:2. There does appear to be experimental support for the plane strain constraints of Butcher and Abedini
(2019) as recently noted by Banabic ef al. (2020). The present study has performed a comprehensive review
of the available biaxial cruciform test data in the literature to evaluate whether the PST points (where the
direction of normal vector to yield surface is horizontal/vertical) remain fixed at in-plane stress ratios

(ogp:orp) of 1:2 and 2:1, regardless of anisotropy.

Figure 17 and Table 5 were compiled by carefully extracting data from stress-controlled cruciform test
results of 22 steel and aluminum alloys provided in 14 different publications from Kuwabara and
collaborators to obtain the direction of the plastic strain rate, ¢, at in-plane stress ratios of 1:2 (6 = 26.57°,
see Fig. 3) and 2:1 (8 = 63.43°). The direction of the plastic strain, for a given in-plane loading angle, will
differ depending on the plastic anisotropy of the material except at PST where it collapses to a single point
at a principal stress ratio of 0,/0; = 1/2. As representative examples, experimental data for additional
stress combinations (ogp: o7p) was also extracted for Mat 5 (steel) and Mat 6 (aluminum) to illustrate how
the normal vector orientation is material-dependent due to plastic anisotropy but converges at the PST stress
states. At PST, the strain-based Lode parameter v; = 3de,/(de; — de3) is also equal to zero, since de, =
0, but will vary with plastic anisotropy for other strain states. Averaging over these 22 BCC and FCC
materials, the value of the ratio of the in-plane principal normal vectors is N, /N; = —0.020 + 0.022 which
corresponds to a deviation in the angle of the plastic strain rate from the ideal of d¢p = —0.084 + 1.69° or
a strain-based Lode parameter of v; = —0.030 £ 0.033. It is remarkable that such a wide range of sheet
metals exhibit similar behavior at the same nominal stress ratios for plane strain. Some minor deviations

from the ideal are expected due to the experimental complexities of maintaining a perfectly balanced true
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stress ratio, estimation of the true stress that is accurate to within 2% (Barlat et al., 2018), accounting for
elasticity and its change with deformation (Chen et al., 2016), and uncertainty in measuring a plastic strain
of near zero. Furthermore, the materials are only assumed to be independent of the pressure when they may
possess some measure of pressure-dependence that slightly shifts the plane strain location. Nevertheless,
the experimental evidence of Table 5 and Figure 17 clearly highlights that the stress states for plane strain
occur very close to g, /0; = 1/2, regardless of the plastic anisotropy, and is consistent with the assumption

of deviatoric plasticity for FCC and BCC materials.
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Figure 17: Experimental evidence for the existence of a plane strain constraint from cruciform tests. For plane strain tension, the
in-plane loading angle should be 8 = 26.57° in RD and 6 = 63.43° in TD with corresponding plastic strains oriented along normal
vectors at ¢ = 0° and ¢ = 90°, respectively.
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Table 5: In-plane principal normal vector ratio, strain-based Lode parameter and angle deviation at in-plane stress ratios of 1:2 and
2:1 for 22 steel and aluminum alloys obtained from biaxial cruciform tests.

N2/N4q v d¢ (°)

Crystal Eq.
Structure Strain %R0 _ - R0 _, Orp _ . CURD _ ., ORD _

orp 2 Orp orp 2 Orp orp 2 Orp

Label Material 1 ogrp 2 Reference

(Kuwabara and
Ichikawa, 2015)
(Kuwabara and

Mat 1 LC Steel BCC 0.01 -0.026 -0.043 -0.039 -0.065 -1.468 2.440

Mat2  IF Steel BCC  0.005 -0.029 -0.012 -0.044 -0018 -1.639  0.670 Sugawara,
2013)

Mat3 JSC590 Steel BCC  0.04 -0.012 -0.001 -0.018 -0.002  -0.683  0.080 (K‘;‘gi‘z;‘ra’

Mat4 DP780Steel BCC 001  -0.026 -0.026  -0.039  -0.039  -1.480  1.480 (%ngﬁrf)e’

(Kuwabara and
Mat5 DP980 Steel BCC 0.02 0.022 0.009 0.032 0.013 1.260 -0.500 Nakajima,

2011)
Mat6 AA6016-T4 FCC 001 0016 0008 0024 0012 0914  -0.450 (Ii‘}wgl(’ﬁr;‘)e’
AA6016-T4, (Yanaga et al.,
Mat7 “fiokcabe.  FCC 004 0002 0023 0003 0034 0115 1318 2012
AA6016-T4, . ) (Yanaga et al.,
Macg 0T FCC 0045 <0022 <0030 0033 -0.045  -1253 1710 2012

(Yamanaka and
Mat 9 AA5182 FCC 0.05  -0.009 0.001 -0.014 0.001 -0.540  -0.050 Kuwabara,

2015)
Mat 10 BH340Steel BCC ~ 0.02  -0.050  -0.060  -0.077  -0.094  -2.860  3.460 (A“;lgrlg;“"’
Mat11 DP590 Steel ~BCC ~ 0.02  -0.021  -0.009  -0.033  -0.014 -1230  0.530 (A“;lgrlg;“"’
Mat 12 ’;f;;j‘]\’j[’;' FCC 006 -0.056 -0002 -0.08  -0.004 -3.190  0.140 “2}?3%%%”
Mat 13 ’gf;;j‘]\’j[’;' FCC 0.06 -0.040 -0.013  -0.062 -0.020 -2310  0.750 (121;"”;‘832‘;]@’
Mat 14 Ste[ilL,CRIjg BCC  0.002 -0.030 -0.013  -0.045 -0.019 -1.690  0.720 (Izjf’vg'z)%r;)e’
Mat 15 Ste[ilL’CRI:F” BCC  0.002 -0.049 0012 -0.075 0.018 -2.810  -0.700 (Izjf’vg'z)%r;)e’
Mat 16 Kiﬁecég‘tlee] BCC ~ 0.002 -0.041  -0.025 -0.063 -0.038 -2370  1.420 (IE}.V’V;'S%I;)Q’
Mat 17 C"Dlg gt‘élelfd BCC 0002 -0.046  -0.046  -0.071  -0.071  -2.650  2.640 (12}.\?;%%%@:
Mat 18 Hgéléﬁélid BCC  0.002 0012 -0012 0018  -0.018 0700  0.700 “2}?3%%?;’
Mat19  LC Steel BCC 0.1  -0033 -0.053 -0.050 -0.081 -1.870  3.020 (LZ%T’Q;”-’
Mat20 AA6016-0  FCC ~ 0.08  0.000  0.005 -0.001 0007  -0.020  -0.280 (Iill}f’v;'(’)jr;‘)e’

(Kuwabara and
Kurita, 2000)
(Coppieters et

Mat 21 AA6xxX FCC 0.02 -0.036 -0.038 -0.055 -0.058 -2.070 2.180

Mat 22  SPCE Steel BCC 0.005 0.014 -0.028 0.021 -0.043 0.810 1.620

al., 2019)
Average 0.030 -0.020 -0.030 -0.083
(Std. Dev.) ) (0.022) (0.033) (1.689)
Absolute Average 0.030 0.024 0.037 1.382
(Std. Dev.) ) (0.017) (0.026) (0.952)
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It can also be shown that this experimental observation can be obtained theoretically from pressure-
independent anisotropic plasticity. If only the deviatoric stress is responsible for slip and plastic deformation
in a rigid-plastic metal, then by definition under plane strain tension, de, = 0 and subsequently, s, = 0. If
there is no deviatoric stress in a direction, there can be no plastic strain (displacement) induced even though
the applied stress may be non-zero, g, # 0. The condition that s, = 0 corresponds to the critical deviatoric
stress state where the third invariant vanishes, /3 = s,5,53 = 0 and the stress-based Lode parameter is zero,
L = (25, —s; —s3)/(s1 — s3) = 0 since s3 = —s; from the first invariant, /; = 0. Under plane stress
conditions, as can often be assumed for thin sheet, 03 = 0 such that s, = (20, —0,)/3 = 0and 0, /0, =
1/2 in plane strain tension. As shown previously, this conclusion is strongly supported by the experimental
cruciform data. It is important to note that materials with HCP crystal structures like titanium and
magnesium have been observed to not adhere to the plane strain constraints since deformation is governed
by complex twinning and slip mechanisms that are influenced by the hydrostatic stress (Selvarajou et al.,
2016; Nagano et al., 2018; Abedini et al., 2018; Abedini et al., 2017). The reader is referred to Butcher and
Abedini (2019) for a more rigorous derivation of the plane strain constraints on the calibration of anisotropic
yield functions in generalized plane strain stress states. In the present study, where the DP1180 and AA5182
are assumed to adhere to deviatoric plasticity, the stress states where plane strain tension occur must be

enforced upon the anisotropic yield surface.

3.1.2 Application to Yield Criteria

For the purposes of this study, HF85 (Hosford, 1985) provides a simple functional form that can be
calibrated to notch test experimental data using just a single parameter while enforcing the plane strain
constraint. Referring to Eq. (1. 21), it is straightforward to enforce the experimental and theoretical finding
that N, = 0 at 0,/0; = 1/2 if Rg,99 = 1. This so-called HF85-PSC (plane strain constrained) model is
then:

1

o HF85 _ lo1[™ + Rgla,|™ + Rglay — a,|™\™ 3.1)
eq.0 1+ Ry '
At a given yield exponent, the ratio of the plane strain yield strength to the tensile strength is
PST L
0 _ ( 1+ Ry )m (3.2)
Oeqo)  \1+2Rp(1/2)™ '
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where g, ¢ 1s the tensile strength in the direction of interest corresponding to the plane strain tensile

specimen’s orientation (rolling, transverse or diagonal). If isotropy is assumed with Rg = 1, then Hosford’s
1972 non-quadratic extension of the von Mises model is recovered (Hosford, 1972). Figure 18 demonstrates
how the shape of the yield surface arc varies with selection of the exponent and R-value at a fixed plane
strain yield strength. The R-value is generally defined from a uniaxial tension test. The yield function
exponent remains independent and can be used to calibrate the shape of the arc while still enforcing the
plane strain constraint. It is important to emphasize that the HF85 yield criterion is only valid if the principal
axes are aligned in the coordinate frame upon which the R-values are defined, Rg and Rg 9. This restriction
makes the HF85 model ill-suited for general plane stress loading, but its simple form is ideally suited to

analyze the notch tests where only the yield exponent requires calibration.
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Figure 18: Variation of the HF85-PSC yield surface with the tensile R-value and exponent for a fixed plane strain yield strength.
The stress state corresponding to plane strain tension does not vary and remains consistent for pressure-independent plasticity.

Although the HF85-PSC model is not available in common finite-element packages it can be obtained
as a special case of higher order anisotropic yield functions built upon Hosford’s 1972 model (Hosford,
1972) including the Y1d2000 model proposed by Barlat et al. (2003). It is relatively straightforward to prove
that Y1d2000 becomes equivalent to HF85-PSC by setting the eight anisotropy parameters as functions of

Rg and m to:

1 1
2Ry \m 2 \m _
a1=a2=a3=a4=< ) ,a5=a6=<1+R) , &7 = ag = undefined (3.3)
0
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The shear parameters a; and ag are activated only around the specimen notches where the principal stress
axis departs from the loading axis. A value of unity or the average of the other parameters is suggested.
More detailed optimization can be accomplished using inverse finite element analysis to match the

simulated and experimental local strain response (Narayanan ef al., 2022).

It is important to emphasize that the underlying isotropic forms of HF85-PSC and Y1d2000 are built
upon Hosford’s 1972 interpolation between the Tresca and von Mises yield functions (Hosford, 1972) as
shown in Figure 19. Consequently, upper and lower bounds for the plane strain yield strength exist based
upon the functional form of the yield criterion, the requirements to satisfy convexity, the uniaxial R-value
and the plane strain constraint. Using the Hosford-based models, depending upon the R-value and the plane
strain yield strength of the material, it may not be possible to select an appropriate yield exponent. For
example, no yield exponent exists for a material with an R-value of 0.25 and plane strain yield strength
ratio of 1.09 since the upper bound in these Hosford-based models for this condition is about 1.05. The
variation of the plane strain yield strength for materials with R-values from 0.25 to 2 within the Hosford
framework is presented in Figure 20. Overall, the range of achievable plane strain yield strengths is
relatively broad for materials with an R-value greater than 0.25 and should be appropriate for a majority of

automotive alloys.
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Figure 19: Influence of the yield exponent on the isotropic Hosford yield function. The plane strain tension point is not shown on
the Tresca yield function because it is independent of the intermediate principal deviatoric stress.
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Figure 20: Variation of the plane strain yield strength as a function of R-value and yield exponent for the Hosford-based models
of H85-PSC, Y1d91/Y1d2004 and Y1d2000.

3.1.2.1 Justification for Choice of HF85-PSC function

The choice of the Hosford-1985 criterion is not arbitrary. Other yield criteria like Hill48 (Hill, 1948)
and Hosford-1979 (Hosford, 1979) are not flexible enough to allow for a plane strain constraint while
incorporating material anisotropy. Without the plane strain constraint, the plane strain yield strength and
location will be biased to the choice of yield function instead of being an independent material parameter.
This was best demonstrated by the notched tensile test analysis of Suh et al. (1996) who showed that the
constitutive response and location of the plane strain stress state varied with the choice of a Hosford-1979
(Hosford, 1979), Hill-1979 (Hill, 1979) or Y1d91 (Barlat et al., 1991) yield function. The observation by
Suh et al. (1996) that the results from Y1d91 and Hosford-1979 were closest at an exponent of 8 directly

follows from the plane strain constraint because a higher exponent tempers the error in the model.

Enforcing the plane strain constraint forces the local arc shape to be largely independent of the choice
of yield function. To demonstrate the effect of the plane strain constraint, consider two materials with R-
values and plane strain yield strengths representative of the range of common engineering materials:
Material 1 with an R-value of 0.5 and normalized plane strain yield strength of 1.05 and Material 2 with an
R-value of 2.00 and a normalized plain strain yield strength of 1.20. The parameters of the calibrated HF85-
PSC and anisotropic Drucker functions are shown in Table 6. Applying the plane strain constraint to the
anisotropic Drucker function results in the same local arc shape as the simple HF85-PSC form illustrated

in Figure 21.
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Table 6: Coefficients of the plane strain constrained anisotropic Drucker function and exponent of the HF85-PSC function
corresponding to Materials 1 and 2.

HF85-PSC Anisotropic Drucker

Material (6/0,)PST
m Cl’ C3 - C6 C2 Cc
Mat 1 1.05 0.5 8.243 1.6493 2.0325 2.1879
Mat 2 1.20 2 5.587 1.9971 1.5015 0.5470
11
1 --- HF85-PSC

— Anisotropic Drucker

0.9

Normalized Stress: Transverse Direction

1 1.05 1.1 1.15 12

Normalized Stress: Reference Direction

Figure 21: Coincidence of local yield surface arcs between uniaxial tension and plane strain tension for the anisotropic Drucker
and HF85-PSC functions after application of the plane strain constraint. Results are shown for two materials to demonstrate
coincidence at both extremes of the property ranges encountered for common engineering materials.

Although Figure 21 suggests that the plain strain constraint reduces the UT-PST arc to a unique solution
independent of the choice of yield function, the question remains if the arc shape is representative of the
material’s behaviour at values between those of uniaxial tension and plane strain tension used in the
calibration. Fortunately, cruciform studies provide insight into the material yield stress at intermediate
points along the UT-PST arc. A typical cruciform study investigates not only the in-plane principal loading
states of 4: g, = 2:1 (plane strain tension) and o;: 0, = 1: 0 (uniaxial tension), but also an intermediate
point at gy:0, = 4:1 (B = 0,/0; = 0.25) to better define the plastic work contour. The ideal yield
function would perfectly intersect all three stresses, while also satisfying the plane strain constraint and
capturing the plastic strain directions. Consider the HF85-PSC criterion represented in the form of Eq. (3.4a,
b): the arc exponent m is defined by a normalized major stress at g;: g, = 2: 1 (f = 0.5) and the R-value

in the direction of analysis Rgy. Once the exponent is known, the predicted normalized major and minor
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stresses at the intermediate point, f = 0.25, may be compared with the experimental values from a

cruciform study.

1
o 14 RglB|™ + Rg|1 — B|™\ m o o
HF851—PSC = < : ﬁ|1 TR ° A ’ HF852—PSC =p m (3.4a,b)
O-eq,e 0 Geq,e Geq,G

The strain directions at the intermediate point may also be compared to demonstrate the accuracy of the
flow rule and normality principle. The ratio of the major and minor principal strains predicted by the HF85-

PSC function is:

de;P  Np R |BI™ tsign(B) — |1 — B|™ tsign(1 — B)
de,? N, 1+ Ry|1 — B|™ Tsign(1 — B)

p= (3.5
It is more intuitive to consider the angle the strain direction makes with the rolling direction, rather than the
strain ratio. Along the UT-PST arc, the principal strain ratio is constrained to fall between p =
—Rg/(1 + Ry) and p = 0 whereas the magnitude of the strain angle with the major principal direction will
be between ¢ = 0 and ¢p = atan[Ry/(1 + Rp)].

For each of the materials previously investigated in Table 5, the HF85-PSC exponent was identified
based on the plane strain yield strength and R-value, then used to predict the stresses and strain angle at the
intermediate cruciform loading condition. The cruciform data was obtained by carefully digitizing the
necessary figures in each respective publication. The material R-value in the direction of analysis was
obtained from a table, if provided, otherwise from the strain angle. The absolute percent error in the

predicted major and minor stresses at the intermediate stress point was evaluated as 6 =

|1Pred — 1¢XP| /1¢%P where | = /o + o2, or the Euclidean distance between the origin and the stress point.

The use of the Euclidean distance simultaneously captures the error in both the major and minor stress.

Table 7 shows that the HF85-PSC function accurately predicts the intermediate experimental loading
point from the cruciform tests. The average strain angle deviation is just 2.53°, with a stress error of 1.2%.
Four materials (Mat 15-18) were omitted since the corresponding cruciform studies did not include the
intermediate loading point. Some materials also had R-value and 65T combinations that were outside the
range of the HF85-PSC function illustrated in Figure 20: a low-carbon steel (Mat 19) along both the RD
and TD and BH340 (Mat 10) and DP590 (Mat 11) along the RD. Ultimately cruciform tests confirm that
the HF85-PSC functional form is consistent with the shape of arc of the yield surface from uniaxial to plane

strain tension, and applicable to the majority of common engineering materials.
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Table 7: Summary of major stress, minor stress and strain angle predicted by the HF85-PSC yield function compared to the
corresponding o;:02 = 4:1 experimental value obtained from biaxial cruciform tests.

. 01/0rp 02/0rp 0] lde|
Label Dir. Ry m |6] Reference
Exp. Pred. Exp. Pred. Exp. Pred. (°)

RD 130 400 1140 1130 0289 0287 -17.05 -1862 156 09% (Kuwabaraand

Mat 1 TD 150 328 1142  1.126 0286 0282 10885 111.86 3.01 1.5% Ichikawa,2015)

RD 227 560 1.132 1.156 0284 0290 -1940 -2045 105 2.1% (Klslwabaraand

Mat 2 ugawara,
TD 265 670 1.134 1.178 0284 0295 108.57 108.67 0.10 3.8% 2013)

Va3 RD 042 360 1057 1058 0252 0253 -855 919 064 0.1%  (Kywabara,
D 063 578 1126 1.117 0267 0265 99.67 9837 130 0.8% 2014)

ata RD 093 433 1099 1100 0270 0271 -14.63 -1459 004 02% (Kywabara er
‘ ™ 119 372 1139 1.110 0277 0270 107.16 108.86 1.70 2.6%  @l,2011)

RD 0.82 544 1082 1.081 0254 0253 -12.74 -1127 147 0.1% (Kuwlfbaraand

Mat 5 Nakajima,
™D 081 513 1112 1100 0272 0269 10479 10138 3.42 1.1% 2011)

Mot 6 RD 061 726 1059 1057 0264 0263 -356 -526 170 02% (Kuwabara er
™D 1001 7.1 1066 1062 0263 0262 9787 9857 070 04%  al,2017)

Va7 RD 053 1008 1048 1040 0252 0250 -439 239 199 08% (yanaga eral,
TD 062 627 1039 1.038 0246 0245 9755 9743 0.12 0.1% 2012)

Vat RD 082 461 1094 1.087 0256 0254 -10.60 -1327 267 0.6% (yanagaetal,
TD 070 475 1058 1.040 0251 0247 9872 10134 262 1.7% 2012)

RD 079 572 1075 1082 0280 0282 -10.68 -9.02 1.66 0.6% (Yamanakaand

Mat 9 Kuwabara,
TD 070 546 1.044 1.052 0263 0265 9922 99.09 0.13 0.8% 2015)

Mat 10 RD 1.52 - 1.171 - 0.289 - -18.97 - - - (Andar et al.,
™D 164 372 1187 1175 0289 0286 10897 11248 351 1.0% 2010)

Va1 RD  0.85 . 1.119 - 0.269 . 12,17 . . - (Andar et al.,
TD 1.02  3.09 1.155 1.141 0280 0276 10563 10826 2.63 12% 2010)

Vat 12 RD 078 392 1102 1088 0258 0255 986 -1433 446 12% (Kywabara er
D 066 576 1076 1.068 0252 0250 9890 9885 005 07%  al,2006)

Mat 13 RD 067 374 1087 1082 0259 0258 -11.98 -1301 103 05% (Kywabaraer
‘ ™D 079 513 1068 1.079 0252 0255 101.67 101.57 0.10 1.1%  @l,2006)

Viat 14 RD 201 833 1085 L1I8 0271 0279 -21.60 -1L13 1047 31% (Kywabara er
TD 242 850 1.133  1.164 0275 0283 11250 103.00 9.50 2.7%  al,2002)

Vet 20 RD 067 2011 1026 1026 0250 0250 -623 -0.18 604 0.0% (Kuwabara er
TD 085 80.84 1.032 1.028 0248 0247 9672 90.00 672 04%  al,2017)

Vatal RD 078 58 1074 1078 0264 0265 -12.19 -935 284 03% (Kywabaraand
TD 053 401 1045 1.050 0251 0252 102.19 10030 1.89 0.5% Kurita, 2000)

Va2 RD 185 827 1062 LIS 0275 0288 -1400 984 416 5.1% (Coppieters er
D 282 7.64 1147 1.173 0287 0294 108.11 10638 1.73 22%  al,2019)

Average 253 1.2%
(Std. Dev.) (2.57) (1.2%)
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3.2 Methodology to Analyze Notched Tensile Tests

A constitutive model was built around the HF85-PSC criterion shown in Eq. (3.2) and the principal of
force equilibrium was used as a calibration metric to determine the optimum yield function exponent. Since
plane strain notched tensile tests are conducted under quasi-static conditions, a summation of the internal
forces (F™°%€l) across a cutting plane through the gauge width of the specimen should equal the external
force measured by the load cell (Fé*P), at all values of far-field strain (ElD}fC) captured during the test.
Optimum agreement between the calculated force and measured force is achieved when the HF85-PSC

yield function exponent is properly selected. The main steps of this methodology are shown in Figure 22.

s DIC: S{)IC‘ SEIC,EE;C, Fexp ™ Fexp
L A Priori: E,v,R, Hardening Model
v

Calculate Strain Ratio, p(i, Ey g )
T Cutting

_ Line
Calculate Stress Ratio, B(i, EDy© -« °

7 aF 1238 |
Calculate Major Stress, oy (i, Efy©) ﬁ E E{";C

¥
Calculate Elemental Areas, AA(i, EL)¢ D ®-------- -

v
Calculate/Integrate Force,

N
et DI z 1 o1 EDC) MG EDE
.
v

y
Evaluate Objective Function, Fexp
AV o| k+1
0= ([ (55) — o ) x
1y

Increment m
Ax i
A

Wolo

v EdFi — Fmodel — Fexp
min(SE) %[ m at min(SE) ]

Figure 22: Flowchart showing steps of methodology to calibrate HF85-PSC exponent using strain data captured by DIC along a
cutting line through the gauge width of a plane strain notched tensile specimen.

3.2.1 Calculation of Strain and Stress Ratios

Applying the flow rule to the HF85-PSC function, as shown in Eq. (3.5), provides a direct formula for
the calculation of stresses given an experimentally measured strain ratio. Note that Eq. (3.5) could be
simplified even further for this analysis as 8 is constrained between 0 and 0.5 along the arc of the yield
surface between uniaxial and plane strain tension. The corresponding stress ratio for each strain ratio is
solved for using the Newton-Raphson method at a given yield function exponent. Instead of neglecting the
elastic strains to simplify the analysis, it is assumed that the applied strain ratio measured by DIC holds for
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both the elastic and plastic strain components. The history of the instantaneous strain ratio at every point
along the gauge region of the notched specimen is then known as:

~ de,PIC N, @)
p= de,PIC ~ N, :

The ratio of the major principal stress to the equivalent stress can then be evaluated from the HF85-PSC
yield criterion shown in Eq. (3.4). From a plastic work balance, assumed hardening model for the flow

stress, 6(£eqp ), and additive decomposition of the strain tensor into elastic and plastic components, a

relationship between the equivalent plastic strain increment, de,fq, and measured total strain, ¢, can be

derived as:

O¢q,0 Oeq,0

1—vp; oy _ 1 oy -t
&l = < E >< HF85—PSC> G+ (e17)j-1 + (1+B;p;) ( mres=psc ) (dfeq’); (3.7
jPj

where the subscripts j and j-/ correspond to the current and previous time steps (or DIC images), E is the
elastic modulus and v is Poisson’s ratio. Any hardening model could be used including the Swift model

shown in Eq. (1.9) or the Modified Hockett Sherby model shown in Eq. (1.10). Regardless of the choice of

model, at each time step the flow stress is evaluated at (efq)j = (egq)j_l + (degq)j. Newton-Raphson

iteration of Eq. (3.7) is then used to solve for the equivalent strain increment (degq)j and the magnitude of

the major principal stress is determined from Eq. (3.4).

3.2.2 Area Discretization

Each calculated major principal stress is associated with an area, AA. The gauge width, having an initial
width, w,, and thickness, t,,, is discretized into N elements corresponding to the N discrete strain data points
taken along the cutting line. Initially these elements are equally sized with side length Ax, with the exception
being the elements at the edges with side length, Ax /2. The area of each element decreases during the test
due to both transverse and out-of-plane thickness strains. The transverse strain, €27C, is directly measured

while the out-of-plane thickness true strain, €3, is reconstructed from its elastic and plastic components as:

&3 = — (slp + &P +%(ﬁ + 1)01) (3.8)

The area of each element is then calculated as:
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AA; = Axit; = Ax, t e+ (3.9)

3.2.3 Force Calculation and Stress-Strain Curve Calibration

The total normal force acting on the cutting plane is obtained by numerically integrating the major
principal stress over the cross-sectional area. It is important to emphasize that the procedure to calculate

the stress and the area outlined in Sections 3.1 and 3.2 is applied at each measured DIC data point, i, along

the gauge width of the specimen to calculate the force at a particular step in far-field strain, E ﬁfc.
N
fmodel — f o1dA ~ Z o, (i, E1yP'¢) 4A(1, By, P'€) (3.10)
i=1

Repeating this analysis at each step in far-field strain results in a stress-strain curve. Varying the
exponent of the HF85-PSC yield criterion will produce different stress-strain responses, with the correctly
calibrated result being the one that minimizes the difference between the modelled and the experimentally
obtained curves. This is quantitatively determined using the objective function shown in Eq. (3.11), which

is based on the least-squares method and written as

End 1 2
SE= [t (g, ) - e (g, P10 (310
Wot,
Ey,PTC=0

3.3 Finite-Element Model and Identification of the Range of Plane Stress Deformation

A finite-element model of the plane strain notch Geometry A was created to assess the accuracy of the
proposed methodology to integrate the constitutive response from DIC surface strain measurements. A half-
symmetry model of the specimen geometry shown in Figure 23 was created in LS-DYNA with a sheet
thickness of 1 mm and solved using an implicit dynamic formulation. The geometry was only modelled in
the free region between the grips. A prescribed motion boundary condition was applied to the nodes at the
upper grip using a constant velocity of 0.005 mm/s directed along the vertical axis. The nodes at the lower
boundary were fixed in all degrees of freedom to reflect the constraints imposed by the grip of the universal

test frame.
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3.3.1.1 Validity of Plane Stress Assumption

The proposed methodology relies on a fundamental assumption of plane stress. The validity of this
assumption was investigated by comparing the results obtained using shell and solid models, with two
different mesh sizes to evaluate mesh sensitivity. For the shell models, a fine mesh comprised of 6786 shell
elements with a characteristic dimension of 0.24 mm and a coarse mesh consisting of 263 shell elements
having a characteristic dimension of 1.2 mm were used. For both mesh sizes shown in Figure 23,
Belytschko-Tsay shell elements with thickness stretch (Type 25 in LS-DYNA) and 7 through-thickness
integration points were selected. To be consistent with the DIC measurements used in the physical tests,
Lobatto integration was selected instead of Gauss quadrature such that the upper and lower integration

points were on the surfaces of the elements.

Figure 23: (a) Coarse and (b) fine finite-element meshes of the plane strain notched tensile specimen of Vegter and van den
Boogaard (2006).

The solid models were constructed using fully integrated solid elements (Type -2 in LS-DYNA), which
are formulated for an accurate solution that is less dependent on aspect ratio. The fine solid mesh had 27,144
elements, arranged with 4 elements through the thickness. The coarse model had 789 elements, with 3

elements through the thickness. The elements had the same in-plane dimensions as the shell models.

Two generic power law hardening, von Mises materials with a strength coefficient of K = 1000 MPa
and hardening exponents n = 0.1 and n = 0.3 were considered. The dimensionless form of Swift’s
hardening model shown in Eq. (1.9) was used with an initial yield strain of &, = 0.002. As the shell model
will only be comparable to the solid model while the plane stress condition holds, some cut-off criteria must
be employed to indicate the start of diffuse necking. The maximum force criteria of Swift (1952) for the
onset of diffuse necking can be employed based upon the hardening model selected in Eq. (1.9). If the notch
geometry provides a homogeneous plane strain deformation across the gauge width, then diffuse necking

PST PST

begins at an extension strain of £1°" ~ n and an equivalent von Mises strain of €g;° ~ 1.15n. Considering

that the free edge of the notch specimen will always be in uniaxial tension (UT) by definition, then diffuse
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necking at the edge begins when ef/” = £l = n — 0.002. Since loading will vary between uniaxial and
plane strain tension, the start of diffuse necking anywhere across the gauge width occurs when e/T~P5T ~

n. Therefore, for simplicity, the range of deformation in the simulations was limited to when the first
element in the gauge region exceeded a major strain of ££!¢™ent > n,

As shown in Figure 24, the selected geometry results in strain localization at the notch radii. This
influences the strain distribution across the gauge width such that the cut-off strain does not necessarily
occur at the free ends of the cutting line, meaning that every point along the cutting line must be checked
for the onset of necking. The experimental analog to this criterion using DIC strain measurement would be
to end the analysis when the major principal strain at a point along the gauge width exceeds the true strain
at uniform elongation (UE) measured in a standard uniaxial tension test and expressed as eP/¢ > In(1 +

UE (%)/100).

Effective Strain
0.30
0.27

—-0.24

—-0.21

—0.18
0.15

—-0.12

—0.09
0.06
0.03

—0.00

(a) (b)

Figure 24: Contours of the equivalent plastic strain obtained from the half-symmetry finite-element model of the notch test using
shell elements with a mesh size of 0.24 mm at a far field strain of (a) £, = 0.028 and after localization at (b) £1, = 0.096 based on
an extensometer length of 12 mm. The model employed von Mises plasticity with a hardening exponent of n = 0.1.

A comparison of the engineering stress-strain response for solid and shell elements until e£¢ment > n

is presented in Figure 25. The engineering far-field strain was calculated using a gauge length of 12 mm
and the engineering stress calculated using the load obtained by summation of the nodal forces at the lower
grip as shown in Figure 26. Excellent agreement was observed between the shell and solid models,
indicating that the plane stress assumption was appropriate up to the cut-off criterion. Good agreement was
also observed between the coarse and fine models, indicating that the global response showed a low

sensitivity to the element sizes considered.
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Figure 25: Engineering stress-strain responses up to the start of diffuse necking &;"¢" > p for plane strain notch test simulations
comparing fine and coarse meshed shell and solid models for a von Mises material and Swift hardening exponents (a) » = 0.1 and
(b) n=0.3.

3.3.1.2 Evaluation of DIC Integration Methodology to Calculate HF85-PSC Exponent

With the plane stress assumption validated and a termination criterion identified based on the local
strains, the finite-element model was used to evaluate the proposed stress integration methodology using
the surface strain measurements across the gauge width. The major and minor strains from the surface
integration points were extracted from the model at each node along the gauge width of the modelled
specimen and at each solution time step. Analogous to the “experimental” force measured by the load cell,
the total force along the loading axis was obtained from the summation of the forces calculated by LS-
DYNA at the nodes located at the lower grip. A far field strain was computed from the displacement of two
nodes P; and P; initially 12 mm apart. These extracted values were then imported into a Matlab® script to

perform the integration procedure as if the finite-element data had come from the DIC system.

v =0.005 mm/s

Extracted nodal strains

L/

Node group for force
measurement

Calculate far-field strain based on
e displacement of two points P,
and P, initially ~12 mm apart

Figure 26: Illustration showing extracted nodal forces and strains for import into the integration script. Procedure is analogous to
the treatment of the DIC data.
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The stress-strain responses calculated by LS-DYNA and the proposed integration methodology were in
excellent agreement when inputting the same hardening curve and yield function exponent (m = 2) as shown
in Figure 27. Since similar responses were observed for the fine and coarse meshed models, the number of
discrete data points had little effect on the accuracy of the integration provided that the local strain
distribution was still captured. This suggests that the methodology should have a low sensitivity to the

choice of DIC subset and step size, as well as the number of extracted points along the cutting line.

0.9 0.6
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Figure 27: Comparison of calibrated to finite-element calculated engineering stress-strain curves for a von Mises material with
Swift hardening exponents (a) n = 0.1 and (b) n = 0.3. Results for both fine and coarse meshed shell models are shown up to the
beginning of diffuse necking.

When the yield function exponent in the LS-DYNA model was changed to reflect anisotropy, the
proposed integration methodology at the same yield function exponent accurately reproduced the global
stress-strain response. Combinations of Swift hardening exponents n = 0.1 and n = 0.3 with HF85-PSC
yield criterion exponents of m = 6 and m = 8 were considered to represent typical values for BCC and FCC
materials (Logan and Hosford, 1980). Corresponding R-values of 2.0 and 0.5 were selected as extreme
cases with the equivalent Y1d2000 coefficients for the HF85-PSC criterion calculated using Eq. (3.3). As
seen in Figure 28, excellent agreement was observed for all four anisotropic validation cases when

comparing the results from LS-DYNA and the proposed integration methodology.
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Figure 28: Comparison of calibrated to finite-element calculated engineering stress-strain curves for fine meshed shell models up
to the beginning of diffuse necking. Four generic anisotropic materials having HF85-PSC yield function exponents of 6 and 8 with

0.7

Swift hardening exponents (a) n = 0.1 and (b) n = 0.3 were considered.

In each of these anisotropic cases, the loading at each point along the gauge width was relatively
proportional and between the theoretical limiting states of uniaxial and plane strain tension. As shown in
Figure 29 up to the start of diffuse necking, the loading in the middle of the sample was closest to plane
strain tension for the higher yield exponent and hardening rate. Nonetheless, the strain state in the center of

the gauge width is sufficiently close to the plane strain point in all cases such that the plane strain yield

(®)

—— m = 6 (Calibrated)
......... m= 6 (kbA)
—— m = 8 (Calibrated)
----- m = 8 (FEA)
0.1 0.2
Far Field Strain

strength can be obtained at the intersection of the calibrated arc with § = 0.5.
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Figure 29: Strain paths corresponding to the edge, middle and centerline nodes of the half symmetry finite-element models up to
the beginning of diffuse necking. The four generic materials had Swift hardening exponents of 0.1 and 0.3 and HF85-PSC yield
function exponents of (a) 6 and (b) 8.

3.4 Experimental Application

The analysis tools in Vic-3D 8® were used to extract the strain data required for the proposed integration
methodology from tests of the Geometry A specimen. The engineering far field strain was measured using
a 12 mm virtual extensometer and the strain distribution across the width of the specimen was extracted
using the line inspector or “line slice” tool at 200 discrete points. The typical placement of the line slice
and extensometer are shown in Figure 30. On average the initial length of the line slice was 37.97 mm and
2.6% smaller than the actual measured gauge width (nominally 39 mm) due to the inability of DIC
techniques to capture strain data up to the free edge of a specimen. A scale factor was applied to uniformly
stretch the distance between the strain data points to cover the actual measured gauge width. An alternative
method of using the strain gradients, at the first and last data points on the line slice, to linearly extrapolate

the strains in the missing edge regions, was also considered and found to produce similar results.
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Figure 30: Analysis tools and setup in VIC 3D for a representative repeat of DP1180 in TD at the image corresponding to the
necking cut-off.

The extracted strain and load cell data were imported into a custom Matlab® script designed to
implement the proposed integration methodology. The DIC data was smoothed using cubic splines and
sampled at a maximum major strain increment of 0.2% strain following the work of Min ef al. (2016). Noise
in the strain data was most apparent at the beginning of the test, when strains were small, in the elastic
regime and bordering the minimum threshold for DIC measurement. Little noise was observed in the load
cell data corresponding to the DP1180, AA6xxx-T4 and AA6xxx-T81 tests, but some oscillations were
seen in the hardening response for AA5182-0 due to the Portevin-Le Chételier (PLC) effect. Therefore, the
load cell data was also smoothed with cubic splines using approximately 20-30 equally spaced knots. The
non-linear region of the hardening response was enforced to be concave down between knots, such that the
smoothed curves tracked the average path of the load cell force response between the peaks and valleys of
the oscillations. All steps of the methodology described in Section 3 were then performed and the yield
function exponent was optimized by calibrating the modelled stress-strain response to match that of the
experiment. The procedure was run until the onset of diffuse necking, which was assumed to occur when
the major principal strain at any point along the gauge width first exceeded the true strain measured at

uniform elongation in a uniaxial tension test in the same direction of analysis.

Due to the discrete nature of the hardening models for the AA6xxx alloys, the code was updated to
allow for tabular hardening curve data and improve the optimization algorithm. Rather than evaluate the
yield function exponent in increments of 0.05, minimization of the objective functioned employed the more
efficient fmincon subroutine available in Matlab®. The spline fit hardening curves were inputted as tabular
data. At each function call, the table was interpolated using a Piecewise Cubic Hermite Interpolating
Polynomial (PCHIP) and the hardening rate obtained using a second order accurate polynomial

approximation. Both changes increased the efficiency and accuracy of the integration methodology.
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3.5 Results

The modelled engineering stress-strain curve was successfully calibrated to match the experimentally
obtained engineering stress-strain curve for each tested repeat along the transverse (TD), rolling (RD) and
diagonal (DD) direction of each material. The average calculated HF85-PSC exponent for each direction
was used to locally adjust the arc of the yield surface for that material between uniaxial tension (UT) and

plane strain tension (PST) to estimate the plane strain yield strength.

3.5.1 Uniaxial-to-Plane Strain Characterization of DP1180

Table 8 shows the selected HF85-PSC yield function exponents that best capture the UT-PST arcs for
DP1180, as well as the corresponding plane strain yield strengths in each direction. The average exponents
for the TD, RD and DD are 4.89+0.21, 6.12+0.21 and 5.88+0.25, respectively. Although there is some
difference in the exponent depending on the material orientation, the results generally agree with the value
of 6 commonly taken for BCC materials.

Table 8: HF85-PSC exponents, maximum value of equivalent plastic strain at center point and plane strain yield strengths

normalized with respect to direction of analysis and reference direction (RD) for DP1180. Standard deviations are shown in
brackets.

TD RD DD

PST PST PST
o, PST (o2} » 0, PST o, » 0, PST 0, »
m — —_ Eeq m — —_ Eeq m — —_ Eeq
O, 0o a, Op a, Oo

Ref Ref Ref

4.89 1.135 1.163  0.017 6.12 1.099 1.099  0.022 5.88 1.114 1.119  0.016

DPH180 (0.21)  (0.004) (0.004) (0.001) (0.21) (0.003) (0.003) (0.002) (0.25) (0.004) (0.004) (0.001)

The selected exponent for each repeat corresponded to a minimum in the objective function shown in
Eq. (3.11). The minimum of the objective function was found by repeating the analysis across yield
exponents from 2 to 8 at intervals of 0.05 and then selecting the value of the exponent corresponding to the
lowest value of the objective function. The engineering stress-strain curves calibrated for each repeat and
direction are shown in Figure 31 through Figure 33. The objective function values are also shown to
demonstrate a clear minimization of the least-squared error when the HF85-PSC yield function exponent is
correctly selected. Good agreement was observed at the selected exponents between the calibrated and

experimental engineering stress-strain curves in each material orientation.
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Figure 31: (a) Comparison of calibrated (shown with markers) and experimental engineering stress-strain curves at the selected
HF85-PSC exponents that (b) minimize the objective function value for each individual repeat. Results are for DP1180 steel tested
in TD.
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HF85-PSC exponents that (b) minimize the objective function value for each individual repeat. Results are for DP1180 steel tested
in RD.
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Figure 33: (a) Comparison of calibrated (shown with markers) and experimental engineering stress-strain curves at the selected
HF85-PSC exponents that (b) minimize the objective function value for each individual repeat. Results are for DP1180 steel tested
in DD.

3.5.2 Uniaxial-to-Plane Strain Characterization of AA5182

Good agreement between each of the calibrated and experimental stress-strain curves was also seen for
AAS5182-0 at the calibrated yield function exponents shown in Table 9. The best calibration was obtained
for the RD tests shown in Figure 34 at an average HF85-PSC exponent of 10.68, with a standard deviation
of 1.02. In DD and TD, AA5182-0O exhibited yield behavior that approximated a Tresca yield surface,
which HF85-PSC converges as m — oo. For practical purposes, values of m up to 50 were considered
because the maximum error between the plane strain yield strength at m = 50 and as m — oo is 1.3% given
the R-values for this material. This asymptotic approach to a Tresca surface is illustrated by the objective
functions shown in Figure 35 and Figure 36, where further increases to the exponent have little effect on

the least-squared error.

Table 9: HF85-PSC exponents, maximum value of equivalent plastic strain at center point and plane strain yield strengths
normalized with respect to direction of analysis and reference direction (RD) for AA5182-0. Standard deviations are shown in
brackets.

TD RD DD
oy PST ﬂ pPST » oy PST ﬂ pPST » oy PST ﬁ pPST »
m —_ Eeq m —_ Eeq m — €eq
Ty Oo Ref Ty Jo Ref Jo Jo Ref

5000 1011 0974 0.108 1068 1.045 1.045 0.115 5000 1.013 0960  0.149
(0.00)  (0.000) (0.000) (0.0010) (1.02) (0.005) (0.005) (0.007) (0.00) (0.000) (0.000) (0.018)

AAS5182
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HF85-PSC exponents that (b) minimize the objective function value for each individual repeat. Results are for AA5182-O
aluminum tested in DD.

3.5.3 Uniaxial-to-Plane Strain Characterization of AA6xxx-T4

The selection of Geometry A results in excellent agreement between the experimental and integrated
stress strain curves for the AA6xxx-T4 alloy. The integrated curves of Figure 37 were obtained at average
HF85-PSC exponents of 4.25+0.46, 6.361+0.42 and 6.28+0.85 along the RD, DD, and TD, respectively.
The corresponding plane strain yield strengths, normalized with respect to the rolling direction yield
strength, were 1.101£0.006, 1.061+0.005 and 1.05540.009 along the RD, DD, and TD, respectively. Little
anisotropy in the plane strain yield strength was observed for this alloy and the results generally agreed

with the plane strain stress ratio of 1.09 for an isotropic FCC material as summarized in Table 10.

65



350 350
300 A F 300 A
5] 5]
S 250 - L S 250
£ 200 - 8200 14
5] w2 i
on an
£ 150 1 S 150 5l
8 0.02 0.04 8 0.02 0.04
2 =Rl (m=390)] | 2 Rl (m=621)
& 100 ~5-R2 (m = 4.51) & 100 ~5-R2 (m = 6.42)
q 5

50 1

TAA6xxx-T4 RD (Geo A)

Dotted Lines: Experiments

Solid/Markers: Integration

~-R3 (m = 4.86)
R4 (m=426)| |
—R5 (m=3.73)

50 1

AA6xxx-T4 DD (Geo A)
Dotted Lines: Experiments

Solid/Markers: Integration

~0-R3 (m = 6.91)
~4-R4 (m = 6.47)
——RS5 (m =5.77)

0.05

0.1

0.15

Engineering Far Field Strain

Engineering Stress (MPa)

0.05

0.1

Engineering Far Field Strain

350

300

250 1

200 17 -

AAG6xxx-T4 TD (Geo A)

—o—R1 (m = 5.85)
—5-R2 (m = 5.32)
~—R3 (m="7.62)

0.15

50 4 Dotted Lines: Experiments |—£-R4 (m = 6.36)
Solid/Markers: Integration | ——RS5 (m = 6.24)
0 T T
0 0.05 0.1 0.15

Engineering Far Field Strain

Figure 37: Comparison of integrated and experimental stress-strain curves for each repeat of AA6xxx-T4 tested along the (a) RD,
(b) DD and (c) TD. The results are shown for Geometry A at the exponent that minimizes the squared error for each repeat.

Table 10: HF85-PSC exponents and corresponding normalized plane strain yield strengths calibrated up to the indicated equivalent
plastic strain reached in the center of the gauge region. Results are shown for the AA6xxx-T4 tested using Geometry A.

RD DD TD
Material 01\PST (01 rsT p o\PST (01 psT P o \PST (01 FsT p
GG, o @G, )G,
Jo 0o Ref Oo O Ref o 0o Ref
AA6xxx-T4 4.25 1.101  1.101 0.152 6.36 1.087 1.060 0.159 6.28 1.077 1.055 0.148

(0.46) (0.006) (0.006) (0.002) (0.42) (0.005) (0.005) (0.010) (0.85) (0.009) (0.009) (0.008)
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3.5.4 Uniaxial-to-Plane Strain Characterization of AA6xxx-T81

For the AA6xxx-T81 alloy, the average yield exponents were found to be 5.061+0.36, 5.88+0.55 and
10.11£1.85 in RD, DD, and TD, respectively. Figure 38 illustrates the excellent agreement between the
experiments and the predicted stress-strain curve at these exponents. As summarized in Table 11,
corresponding plane strain yield strengths were 1.08740.005, 1.063+0.006 and 1.030+0.008 along the RD,
DD, and TD, respectively. The plane strain yield strength is lower than typically assumed for an isotropic

FCC material.
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Figure 38: Comparison of integrated and experimental stress-strain curves for each repeat of AA6xxx-T81 tested along the (a) RD,
(b) DD and (c) TD. The results are shown for Geometry A at the exponent that minimizes the squared error for each repeat.
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Table 11: HF85-PSC exponents and corresponding normalized plane strain yield strengths calibrated up to the indicated equivalent
plastic strain reached in the center of the gauge region. Results are shown for the AA6xxx-T81 alloy tested using Geometry A.

RD DD TD

Material o \PST (o \PST o1 \PST (o\PST o \PST (01\PST
= P 1 21 P 1 2 P
m Seq m geq m Seq

0o 00/ Ref 0o 00/ Ref 0o 00/ Ref

506 1.087 1.087 0.102 588 1.077 1.063 0.089 10.11 1.040 1.030 0.100

AAGOCTBL (0 36) (0.005) (0.005) (0.004) (0.55) (0.006) (0.006) (0.005) (1.85) (0.008) (0.008) (0.006)

3.5.3 Sensitivity to DIC Parameters and Strain Discretization

The sensitivity of the plane strain yield strength to the VSGL, number of points along the line slice and
major strain increment size is illustrated in Figure 39 for a representative repeat of DP1180 in the diagonal
direction and AA5182-0 in the rolling direction. These particular cases are included because they showed
the maximum sensitivity out of all the tested directions and materials. The VSGL was calculated as the
multiple of the step size (pixels), camera resolution (mm/pixel) and filter size, with values of approximately
0.15, 0.25, 0.5 and 1.0 mm selected for the sensitivity study. The plane strain yield strength, corresponding
to the optimized exponent obtained from the integration methodology, was calculated at each combination
of VSGL with major principal strain increments of 0.05%, 0.1%, 0.2% or 0.5% strain and with 25, 50, 100,
200 or 400 points extracted along the line slice. Convergence with respect to the number of points along
the line slice was obtained at values above 100-200 points. The strain increment had a negligible effect on
the results but the effect of the VSGL was difficult to quantify. Nonetheless across the range of parameters
considered in this sensitivity study, the maximum variation in the normalized plane strain yield strength
was 8%10-3, or a percentage difference of 0.71%. Therefore, in all cases selecting 200 points along the line
slice, a 0.5 mm VSGL and 0.2% strain increment was found to be reasonable. It is important that the same
parameters be selected for all directions and materials to allow for consistent comparison between the

results.
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Figure 39: Effect of VSGL, number of points taken along line slice and major strain increment on the normalized plane strain yield
strength for a representative repeat of (a) DP1180 tested along the DD and (b) AA5182 tested along the RD.

3.6 Discussion

The developed methodology is a novel, simple method to predict the plane strain yield strength of a
sheet metal directly from experimental data using Digital Image Correlation. It is illustrative to compare
these results to the cruciform test data available in the literature and already summarized in Table 7. While
no studies of DP1180 were found, the other dual phase steels (Materials 3, 4, 5 and 11) showed average
normalized plane strain yield strengths of 1.09 along the RD and 1.13 along the TD, within 1-3% of the
values determined in this thesis (1.099 along the RD and 1.163 along the TD). Yamanaka and Kuwabara’s
(2015) analysis of an AA5182 resulted in normalized plane strain yield strengths of 1.075 along the RD
and 1.044 along the TD, 3-7% higher than the values of 1.045 along the RD and 0.974 along the TD
identified in this thesis. The stronger Tresca-type behavior may be attributed to batch specific texture or
non-associated flow. The identified plane strain yield strengths of 1.03 to 1.101 for the AA6xxx alloys are
comparable to those obtained in the literature from cruciform tests; the average of Materials 6, 7, 8, 20 and

21 in Table 7 is 1.06 along the RD and 1.05 along the TD, within 2-4% of the results reported in this chapter.

For both the AA6xxx-T4 and AA6xxx-T81 alloys, the integrated engineering stress is lower at small
deformations than observed experimentally, while at larger strains the converse is true. Flattening of the
yield surface with increasing deformation is an expected consequence of texture evolution in AA6xxx
alloys, as reported previously by Kuwabara et al. (2017). One exponent cannot adequately model the
uniaxial-to-plane strain region of the yield surface over the entire range of deformation because the

hardening rate in plane strain tension differs from that in uniaxial tension. Better agreement would be
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obtained using a differential hardening model, where the yield surface shape and exponent changes with

deformation to match the anisotropic work hardening of different load conditions.

3.7 Summary of a Methodology for Uniaxial to Plane Strain Tension Characterization

Plane strain notch tensile tests are favorable due to their relative simplicity and ease of testing, but
accurate determination of the plane strain yield behavior is difficult using conventional means of analysis
due to a complicated stress state distribution along the gauge width that varies between uniaxial and plane
strain tension. As a novel solution, a constrained form of the Hosford’s 1985 (HF85) yield criterion (1985)
was identified as an intermediary criterion with the flexibility and simplicity to locally calibrate the arc of
a yield surface from uniaxial to plane strain tension and modified to enforce the generalized plane strain
constraints of Butcher and Abedini (2019). An elastic-plastic, associated flow constitutive model was built
around the plane strain constrained HF85-PSC yield criterion and applied to strain data captured using
Digital Image Correlation during plane strain notched tensile tests. The yield function exponent, which
controls the shape of the constrained yield surface from uniaxial-to-plane strain tension, was identified
based upon equilibrium of the numerically integrated force and experimentally measured force. Finite-
element simulations of plane strain notch tests using von Mises, BCC (m = 6) and FCC (m = 8) materials
with moderate (7 =0.1) and high hardening (n = 0.3) rates were used to show that the proposed methodology
accurately and robustly predicts the correct yield function exponent when using an analogous analysis
procedure to that developed for the experimental DIC based approach. The methodology was applied to
experimental plane strain notch tensile test data for DP1180, AA5182, AA6xxx-T4 and AA6xxx-T81 tested
along the transverse, rolling and diagonal directions. The results reported in this analysis were within 1-7%
of corresponding cruciform test data available in the literature for similar alloys.

It is important to recognise that the methodology presented in this chapter is a rather narrow application
of an associated flow, isotropic hardening model to a single geometry. Some materials are better described
by differential hardening or non-associated flow models and numerous notch geometries of different aspect
ratios exist. Chapter 4 discusses how to relax the constraints of the methodology to account for non-

associated flow and differential hardening while evaluating the choice of Geometry A versus Geometry B.
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Chapter 4 Extensions to the Plane Strain Characterization Methodology

The accurate constitutive characterization of sheet materials hinges not only on the assumptions
embedded in the analysis, for instance associated flow and isotropic hardening, but also the assumption that
the experimentally derived properties are independent of test geometry. The analysis of Chapter 3 suggests
that the proposed methodology applies to associated flow, isotropic hardening sheet materials tested using
the plane strain notch specimen developed by Vegter and van den Boogaard (2006). However, many
different plane strain notch specimens exist (Wagoner, 1980; Aretz et al., 2007; An et al., 2004) and some
materials may be better described by a non-associated flow and/or anisotropic hardening model. The intent
of this chapter is to extend the methodology from Chapter 3 to differential hardening and non-associated
flow as well as compare the results obtained using the Vegter and van den Boogaard (2006) geometry

(Geometry A) to those obtained from Geometry B used for plane strain fracture characterization.

4.1. Experimental Testing of AA6xxx-T81 and AA6xxx-T4 Plane Strain Notch Specimens
Using Geometry B

AA6xxx-T81 and AA6xxx-T4 were tested using Geometry B and the strains extracted at 200 points
along the gauge width using the line slice tool in Vic-3D 8®. However, the optimized exponent was
particularly sensitive to the placement of the line slice due to the tangential and radial orientation of the
principal stresses around the notch. Only at the notch root is the tangential (major principal) stress exactly
aligned with the loading axis. If the line slice were errantly placed higher or lower than the notch root, the
major principal stress vector at points near the notch would be at an angle to the loading axis and the overall
force would no longer be described by Eq. (3.10). Therefore, the DIC data was carefully extracted by
placing the line slice directly through the root of each notch. Geometry A is less sensitive to the placement
of the line slice since the notches are outside the area of interest, meaning that the principal stress and

loading axes coincide along the entire gauge width.

The missing strain data, between the ends of the line slice and the free edges of the Geometry B
specimen, accounts for a larger percentage of the overall gauge width compared to Geometry A. The
average line slice was 16% shorter than the measured gauge width for Geometry B, versus only 3% shorter
for Geometry A. Therefore, rather than scale the line slice data, the Fill Boundary setting in Vic-3D 8® was
used to two-dimensionally extrapolate the missing data based on the strain gradients of neighbouring
subsets (Correlated Solutions, n.d.). After employing the Fill Boundary setting, the required scaling factor
decreased to just 1.05. The difference between the strain contours, with and without the setting applied, is

clearly visible in Figure 40. Applying the Fill Boundary setting reduced the objective function error by 19-
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28%, shown in Figure 41, by improving the agreement between the integrated and experimental stress-

strain curves.
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Figure 40: Typical placement of line inspector and extensometer for Geometry B (a) without the Fill Boundary setting applied and
(b) with the Fill Boundary setting applied. Results are shown for a representative repeat of AA6xxx-T4 tested along the RD.
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Figure 41: Effect of the Fill Boundary Setting on the objective function error for a representative repeat of the AA6xxx-T4 alloy
tested along the RD, DD, and TD. The improvement was of a similar magnitude for the AA6xxx-T81 alloy.

4.2 Experimental Results for AA6xxx-T81 and AA6xxx-T4 Using Geometry B

Overall, good agreement was observed between the integrated and experimental stress-strain curves
using Geometry B as shown in Figure 42 and Figure 43 for the AA6xxx-T81 and AA6xxx-T4 alloys,
respectively. The exponents identified for AA6xxx-T4 using Geometry B were 4.4740.38, 4.4540.19 and
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4.7240.68 along the RD, DD, and TD, respectively. The corresponding normalized plane strain yield
strengths were between 1.07440.009 and 1.09840.005, and within just 2.5% of the values identified using
Geometry A. Exponents of 2.64+0.25, 3.2740.68 and 3.72+0.53 were calibrated for the AA6xxx-T81
alloy along the RD, DD, and TD, respectively. The corresponding normalized plane strain yield strengths
were 1.115,1.09340.007 and 1.07840.005 along RD, DD, and TD, respectively. Note that along the rolling
direction, the plane strain yield strength was at the upper bound of the range of the HF85-PSC function (see
Figure 20). The identified plane strain yield strengths are within 5% difference of the values identified using
Geometry A and on average are representative of the commonly assumed value of 1.09 for an isotropic
FCC alloy.
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Figure 42: Comparison of integrated and experimental stress-strain curves for each repeat of AA6xxx-T81 tested along the (a) RD,
(b) DD and (c) TD. The results are shown for Geometry B at the exponent that minimizes the squared error for each individual
repeat. Note that the lower bound of the optimized exponent is 2.64 along the RD and TD and 2.61 along the DD.
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Figure 43: Comparison of integrated and experimental stress-strain curves for each repeat of AA6xxx-T4 tested along the (a) RD,
(b) DD and (c) TD. The results are shown for Geometry B at the exponent that minimizes the squared error for each individual

repeat.

The test results for Geometry B are summarized in Table 10 and compared to Geometry A in Figure 44.

The exponent was calibrated to, on average, a ~50% higher equivalent plastic strain in the center of the

gauge region for the Geometry A, compared to Geometry B. For AA6xxx-T4, the calibrated plane strain

yield strength is relatively consistent for both geometries. However, for AA6xxx-T81, the plane strain yield

strength calibrated using Geometry B is substantially higher than the value obtained using Geometry A.
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Table 12: HF85-PSC exponents and corresponding normalized plane strain yield strengths calibrated up to the indicated equivalent
plastic strain reached in the center of the gauge region. Results are shown for the AA6xxx-T4 and AA6xxx-T81 alloys tested using
Geometry B.

RD DD D
Geo. Material o \PST (00 \PST o\PST (a0 \PST 0\PST (a0 \PST
)G, e @G, e )G,
0o 0o Ref 0o 0o Ref ) 0o Ref
AA6xxx-T4 4.47 1.098 1.098 0.079 4.45 1.115 1.087 0.086 4.72 1.096 1.074 0.083
. (0.38) (0.005) (0.005) (0.002) (0.19) (0.003) (0.003) (0.003) (0.68) (0.009) (0.009) (0.007)
AAGxxx-TS1 2.64 1.115 1.115 0.082 3.27 1.108 1.093 0.077 3.72 1.088 1.078 0.088
(0.25) (0.000) (0.000) (0.003) (0.68) (0.007) (0.007) (0.005) (0.53) (0.005) (0.005) (0.003)
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Figure 44: Normalized plane strain yield strengths for each geometry and in each tested direction for (a) AA6xxx-T4 and (b)
AA6xxx-T81.

4.3 The Aspect Ratio Effect

The choice of Geometry A or Geometry B has a large influence on the calibrated normalized plane strain
yield strength, despite the plane strain yield strength being a material property. As shown in Figure 44, the
geometry difference is statistically significant except for the tests along the rolling and transverse directions
of AA6xxx-T4. For AA6xxx-T81, there is a 2-5% difference between the normalized plane strain yield

strengths identified using each geometry.

The geometry bias is primarily due to the width-to-thickness (aspect) ratio of the specimen and
consequent validity of the plane stress assumption. Plane stress occurs if the stress in the through-thickness
direction is equal to zero across the gauge width. However, plane stress is only an appropriate assumption

for geometries having a small thickness in relation to the other dimensions. Geometry A has a gauge width
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of 39 mm, or an aspect ratio of 14.44 for the 2.7 mm thick AA6xxx-T81 material. In contrast, Geometry B
has a gauge width of 7.15 mm, or an aspect ratio of just 2.65 for the same material. The smaller the aspect
ratio, the larger the departure from plane stress. The free surfaces, where DIC is applied, remain plane stress
but a through-thickness stress-gradient develops which cannot be measured and included in the integration

which uses the surface strains.

To illustrate, half-symmetry models employing Geometry B and a von Mises material having power law
hardening behavior (n = 0.1) were simulated in LS-DYNA using explicit dynamic time integration. A shell
model and three solid models with thicknesses of 2.7 mm, 1.5 mm and 1 mm were modelled to represent
the sheet thicknesses of the actual materials used in this thesis. In all cases, the characteristic element size
was 0.25 mm with 10, 6 and 4 elements through the thickness of the 2.7 mm, 1.5 mm, and 1 mm solid
models, respectively. In all cases, reduced integration Type 1 solid/shell elements were used with Type 6
hourglass control. The force, engineering strain from using 16 mm extensometer, and major/minor strains
along the surface of the gauge width were extracted from the model. Treating each model as a “virtual
experiment”, the major/minor strains were integrated using an exponent of m = 2 following the proposed

cutting line approach.

The error between the engineering stress measured in LS-DYNA and the integrated stress increases with
the model thickness as shown in Figure 45. As expected, excellent agreement was obtained using shell
elements since they are by nature plane stress. As the thickness of the solid model increases, a 3-D stress
state develops at the notch root and promotes greater work hardening, flow stress and strain in the interior
of the specimen than measured at the surface. Integrating the surface strains underpredicts the stress-strain
response since the contribution of the larger stresses and strains acting on elements in the interior of the

specimen is not captured.
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Figure 45: (a) Actual stress-strain response obtained from the LS-DYNA simulated force compared to the integrated stress for
shell and solid models of 1 mm, 1.5 mm, and 2.7 mm thickness. All models employed a von Mises material with a power law
hardening exponent of 0.1. (b) Contours of major principal strain for the 2.7 mm thick model. At the cutoff point, the maximum
major strain on the surface of the specimen is 0.1 but the major strain in the interior of the specimen at the notch root is 0.15.

Since Geometry A does not have a rounded notch in the gauge region, the stress state remains relatively
plane stress along the entirety of the line slice where the major and minor strains are extracted for the
integration. As a result, it is less sensitive to sheet thickness due to both the absence of the notches and a
larger gauge width that promotes plane stress. By the same virtue, Geometry A is less suited for finite-
element modelling and fracture characterization since necking and fracture occur at the notch edges, not in
the center of the gauge region in plane strain. Extrapolation bias is introduced based on the choice of
hardening model as the equivalent strain at the notch is in the post-uniform region of the hardening curve,
while the strains along the gauge width are still below the cutoff point. In contrast, Geometry B yields,
necks, and fractures in the center of the gauge region making it more suitable for finite-element modelling
and especially plane strain fracture characterization. Ideally fracture and constitutive characterization could
be completed using one test, making it beneficial to determine the maximum sheet thickness for which

Geometry B may be used or alternatively a scaled geometry to suit a particular sheet thickness.

The relationship between the integration error and the specimen aspect ratio was investigated in LS-
DYNA comparing Geometry A with single, double, and triple-scaled models of Geometry B at sheet
thicknesses of 1 mm, 1.5 mm, and 2.7 mm. In all cases a von Mises material was used with power law
hardening exponents of n = 0.1 and n = 0.3. All cases employed Type 1 elements with a characteristic

dimension of 0.25 mm in the gauge region. The surface strains were extracted along a line through the
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center of the gauge region and integrated in Matlab®, analogous to the DIC based methodology. The
percentage error between the integrated and engineering stress from LS-DYNA at the necking cutoff (i.e.,

when &; = 0.1 or & = 0.3) was calculated for each material and geometry.

The relationship between the error and the aspect ratio was found to be logarithmic, as shown in Figure
46, with a coefficient of determination of 0.91. At low aspect ratios (as in the case of Geometry B), the
integration error was 3-5%. Scaling Geometry B by a factor of three decreased the error to less than 1%.
However, Geometry A consistently showed the lowest percentage error of less than 0.24%. The significance

of the aspect ratio must be considered in the selection of an appropriate geometry for a given sheet thickness.
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Figure 46: Percentage error at necking cutoff (¢; = n) as a function of width to thickness (w/t) ratio for von Mises materials with
power law hardening exponents of n = 0.1 and n = 0.3. The studied geometries include Geometry A and single, double, and triple-
scaled versions of Geometry B at sheet thicknesses of 1 mm, 1.5 mm, and 2.7 mm.

4.3.1 Aspect Ratio Correction Factor

The design chart correlation suggests an empirical correction of a given sample geometry to minimize
the error caused by a departure from plane stress conditions and a less-than-ideal aspect ratio. As shown in
Figure 45, decreasing the aspect ratio decreases the integrated stress response but the hardening rate and
percentage error at each point past the proportionality limit remain the same. It follows that a suitable

correction would be to scale the integrated stress response, prior to evaluating the objective function of Eq.
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(3.11). The modified objective function, incorporating the aspect ratio correct factor fge,, is shown in Eq.

(4.1).

1
SE= ) (o faeoP ™0 (B, ") - P (£, (4.1)

DIC_,

The value of f,, is obtained from the design chart curve fit as:

1

1-0.1337 (‘;"—;’)_1'45

fgeo = (4.2)

4.3.2 Design Chart Evaluation

To evaluate the trend shown in the design chart of Figure 39, three repeats of the triple-scaled notch
Geometry B were tested along the RD of the 2.7 mm thick AA6xxx-T81. To be consistent with the post-
processing of Geometry A, the Fill Boundary setting was turned off. At this aspect ratio of 7.94, the design
chart suggests that the percentage error in the engineering stress should be less than 1% and in relative
agreement with the results of Geometry A. In practice, the percentage error may be different due to
anisotropy and different hardening behavior. Two hundred points were extracted along the line slice through
the center of the gauge width. Measurement of the far field strain employed a 48 mm extensometer

positioned as shown in Figure 47.
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Figure 47: Typical placement of line inspector and extensometer for a representative repeat of the triple-scaled version of Geometry
B. The image shown corresponds to the point of necking cutoff.

Scaling or correcting Geometry B causes the plane strain yield strength to collapse to a single geometry-
independent value consistent with the findings from Geometry A. Without correction or scaling, the original
Geometry B specimen suggested a plane strain yield strength of 1.115 whereas the analysis of Geometry A
suggested a plane strain yield strength of 1.087 —a 2.6% error. Integrating the triple-scaled notch Geometry
B resulted in a plane strain yield strength of 1.082 4 0.011, using an exponent of 5.51 * 0.92 to match each
experimental stress response shown in Figure 48 (0.5% error compared to Geometry A). Correcting
Geometry B (w/t = 2.7) with a factor of fy,, = 1.033 from Section 4.4.1, then repeating the analysis of
Section 4.3, produced a plane strain yield strength of 1.088 % 0.005 (0.1% error compared to Geometry A).
The plane strain yield strengths calculated from Geometry A, the triple-scaled Geometry B and the
corrected Geometry B all fall within the same statistical confidence window illustrated in Figure 49. Either
physically scaling the specimen size to increase the aspect ratio or using the empirical correction in Section

4.3.1 minimizes the error introduced by a departure from plane stress conditions.
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Figure 48: Comparison of integrated and experimental stress-strain curves for each repeat of AA6xxx-T81 tested along the RD.
The results are shown for the triple-scaled version of Geometry B at the exponent that minimizes the squared error for each
individual repeat.
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Figure 49: Comparison of HF85-PSC exponent identified by applying the integration methodology to each tested geometry for
AA6xxx-T81 along the rolling direction. Increasing the gauge width promotes plane stress conditions along the majority of the
gauge width, causing the plane strain yield strength to collapse to a single, geometry independent value. By applying an aspect
ratio correction, the plane strain yield strength calculated using Geometry B agrees with the value calculated using Geometry A.

Although scaling Geometry B tailors a combined constitutive/fracture geometry to a given sheet
thickness, the selection of Geometry A allows for characterization of the plane strain tensile stress to higher

strains before the onset of diffuse necking. As shown in Figure 50, an equivalent strain of eé’q =0.102 is

reached in the center of the gauge region for the notch Geometry A versus just eé’q = 0.073 and eé’q =
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0.081 for the triple and single-scaled Geometry B, respectively. Calibrating the exponent to a larger plastic
strain ensures that the identified plane strain yield strength is representative of the large deformation seen
in typical forming applications. Based on this analysis, the geometry of Vegter and van den Boogaard
(2006) is recommended for constitutive characterization as it promotes both a higher strain in the specimen
center and plane stress conditions along the gauge width. As a result, this geometry is used for the remainder

of the analysis in Chapters 5-7 of this thesis.
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Figure 50: Plane strain yield strength and strain ratio as a function of average equivalent plastic strain at the center point along the
gauge width for the three tested geometries. Results are shown for a representative repeat of AA6xxx-T81 tested along the rolling
direction.

4.4 Differential Hardening

Adjusting the instantaneous exponent based on the plastic strain would capture differential hardening
along the arc of the yield surface from uniaxial to plane strain tension. Previous works by Yanaga et al.
(2014), Kawaguchi et al. (2015) and Ha et al. (2018) found that the exponent of a differential hardening

yield surface evolves with equivalent plastic strain eg’q according to the sigmoid relationship shown in Eq.

(4.3) with calibration parameters 4 through D. While any fitting function is technically valid, including a
polynomial or spline, the sigmoid model is most suitable as the exponent is bounded by the coefficients 4

and B, avoiding non-physical negative exponents for larger strains outside the fitting window.

A—B
m= + B (4.3)

P
€y — C
1+exp<eqT>

The plane strain yield strength, at a given instantaneous exponent, is defined by:
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ﬁPST:( 1+ Ry )% m—f(sp) (4.4)
Oeq 1+ 2Rg(1/2)™m) — e '

Figure 51 illustrates the differential hardening integration and minimization scheme. The process is the
same as the isotropic methodology, except that the coefficients A-D of the sigmoid function were optimized
using the finincon subroutine in Matlab® (blue blocks) rather than the exponent itself. Since the amount of
work hardening varies along the gauge region, direct iteration was used at each point to determine the
equivalent strain. To determine a single set of coefficients that best captures all repeats, the N experimental
repeats were also aggregated together using linear scalarization of the individual objective functions shown

in Eq. (4.5). Alternatively, the sigmoid coefficients for an individual repeat can be found by setting N = 1.

N End
se= > [spo(Ee) - seP(ERO) 5)
k

=1gPI=0

It is more convenient, for yield function calibration, to determine the yield function exponent as a function

of plastic work rather than equivalent strain. The conversion is:
W, = f Fde?, (4.6)

where ¢ is the hardening curve in the direction of analysis.
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The differential hardening model better represents the constitutive behavior of the material if the
objective function value is lower than that of the isotropic hardening model, keeping all other variables
constant. The increased objective function error shown in Table 13 for AA6xxx-T81 along the DD and TD,
and AAS5182 along all analyzed directions indicates that the isotropic model better described the constitutive
response. Conversely, the differential model for DP1180 reduced the aggregate objective function error by
66-88% in RD and DD by improving the agreement between the stress-strain curves at the onset of yielding.
Little evidence of differential hardening was observed along the TD. For AA6xxx-T81 the 9% reduction in
error observed along the RD indicates a slight differential hardening effect. For the AA6xxx-T4 alloy, the
aggregate objective function error decreased by 36-51%, showing strong evidence of differential hardening
in all three orientations. Theoretically a material could show both differential hardening and non-associative

flow (Hou et al., 2019), although this case was not observed for any of the analyzed materials.

Table 13: Percentage decrease in objective function error by adopting the differential model instead of the isotropic model.

Individual Repeats
Aggregate
1 2 3 4 5
RD -10% -6% -11% -5% -6% -9%
AA6xxx-T81 DD 7% -37% 3% 3% 2% 0%
TD 8% 9% 9% 6% 6% 0%
RD -57% -52% -49% -65% -65% -51%
AA6xxx-T4 DD -56% -54% -52% -56% -46% -48%
TD -46% -48% -56% -39% -51% -36%
RD 1% 1% 0% 1% - 0%
AA5182-0 DD 8% 5% 4% - - 0%
TD 2% 0% 3% 0% - 1%
RD -76% -87% -64% -55% - -66%
DP1180 DD -82% -66% -8% -11% - -88%
TD 12% 13% 12% 0% - 2%

Figure 52 and Figure 53 show the individual and aggregate variation in the HF85-PSC differential
hardening exponent as a function of equivalent plastic strain, in comparison to the isotropic solution for the
AA6xxx-T4 and T81 alloys. The plane strain yield strength tends to decrease with plastic deformation due
to texture evolution. The isotropic solution represents a midrange value that essentially interpolates between
the minimum and maximum exponents of the differential hardening model. Differential hardening is

relatively muted for the AA6xxx-T81 alloy along the RD but more pronounced for the T4 temper.
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Figure 52: Evolution of yield function exponent versus equivalent plastic strain for AA6xxx-T4 tested along the (a) RD, (b) DD,
and (c) TD. As shown in (d), the differential hardening plane strain yield strength is higher at low levels of plastic work than
expected under an isotropic hardening assumption. Results are shown up to the average equivalent plastic strain in the center of the

gauge region at the onset of necking.
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Figure 53: Evolution of yield function exponent versus equivalent plastic strain for AA6xxx-T81 tested along the (a) RD. As
shown in (b), the differential hardening plane strain yield strength is higher at low levels of plastic work than expected under an
isotropic hardening assumption. Differential hardening was not observed along the transverse or diagonal directions. Results are
shown up to the average equivalent plastic strain/work in the center of the gauge region at the onset of necking.

The DP1180 shows a sharp decrease in the HF85-PSC exponent at the onset of yielding, after which the
exponent plateaus, as seen in Figure 54. Similar differential behavior has been documented in equal-biaxial
tests using interstitial free steel (Mulder ef al., 2015), which the authors hypothesized was due to “anelastic
strain”. Anelastic strain is caused by reversible dislocation movement (van Liempt and Sietsma, 2016), in
contrast to linear elastic strain which is caused by the reversible stretch/compression of the intermetallic
lattice structure bonds. This dislocation movement causes the lattices to “bow”, causing local stresses to
develop at the grain boundaries (van Liempt and Sietsma, 2016; Mulder ef al., 2015). It follows that this
rapid change in lattice structure could cause an initial change in the yield surface shape. Furthermore, not
accounting for the residual work caused by the cold rolling process introduces an error that is most
prominent at small strains. Due to various yield point effects, conventional extraction of material properties
omits the response around yielding by adopting, for example, a 0.2% offset in the case of the yield strength

or a higher value of plastic work in the case of the yield surface calibration.
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Figure 54: Evolution of yield function exponent versus equivalent plastic strain for DP1180 tested along the (a) RD and (b) DD.

As shown in (c), the differential hardening plane strain yield strength is higher at low levels of plastic work than expected under an

the average equivalent plastic strain in the center of the gauge region at the onset of necking.

for accurate material characterization to strain levels typical of forming operations.
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isotropic hardening assumption. Differential hardening was not observed along the transverse direction. Results are shown up to

Table 14 shows the coefficients for each of the aggregate fits. The equivalent plastic strain represents
the average value seen in the center of the gauge region at the onset of necking and termination of the
integration and optimization methodology. The equivalent plastic strain is comparable to or greater than
that achieved in biaxial cruciform tests of similar materials (Kuwabara et al., 2017; Yanaga et al., 2012;

Kuwabara and Nakajima, 2011; Kuwabara et al., 2011), making the proposed method particularly suited



Table 14: Coefficients of the HF85-PSC differential hardening sigmoid model calibrated up to the indicated average equivalent
plastic strain at the center point of the gauge region.

Sigmoid Coefficients

Material Direction by Y B C D
RD 0.15 5.723 2.662 0.082  -0.023
AA6xxx-T4 DD 0.16 21313 47046 0220  -0.055
TD 0.15 9.256 4.796 0.110  -0.032
AA6xxx-T81 RD 0.10 4.408 6.328 0.080  0.0085
RD 0.02 49724 5334 0.0008  0.0005
DP1180
DD 0.02  49.675 5465  0.0010  0.0005

4.5 Non-Associated Flow Rule

Separate functions for the yield surface and plastic potential may be adopted to better capture the plastic
flow behavior in some materials under a non-associative flow framework (Stoughton, 2002; Stoughton and
Yoon, 2009; Cvitanic et al., 2008). Local non-associative flow along the uniaxial to plane strain arc can be
modelled using the HF85-PSC criterion as both the plastic potential and yield function. The same steps of

the original methodology apply, except that an exponent m,, is calibrated for the yield function g, and a

separate exponent m,, is calibrated for the plastic potential 1.

The modifications to the methodology needed to implement non-associated flow involve using the
plastic potential when operating on the strains and the yield function when operating on the stresses. The
DIC measured strain ratio describes the ratio of the plastic potential function normal vectors. By applying
the flow rule to the HF85-PSC plastic potential function, the strain ratio is given by:

N, 0y/oo, Rg(B™»™! — |B — 1™ _ 0

=2 = B =—= 4.7
p N1 al/)/ao-l 1 + R9|B - 1|mp_1 B 0-1 ( )

In this case, m,, is the plastic potential exponent and the stress ratio £ is found using Newton-Raphson

iteration as before. After determining f from the plastic potential function, the increment in equivalent

plastic strain at the current timestep is:

1—-vp 04
DIC _ = P
€ - ( E )(O_e[.{IF85> o+ (&‘1 )n—l +

01
(1+Bp) \ogy®®

-1
) (deeq™In (4.8)

The ratio of the major principal stress to the equivalent stress is calculated from the yield function with

exponent m,, shown in Eq. (4.9). The question becomes how to select R, since R-values are only relevant
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to the plastic potential in the non-associated case. Possible solutions include considering Rg as a free
variable and including it in the multivariable optimization, assuming isotropy (Rg = 1) or assuming

associative flow just at uniaxial tension such that R} = Ry.

1

o1 (1+Ry|BI™ +Ry|1—BI™\ ™ 19
O.HF85 - 1 _|_Ry ( ) )
eq,0 7]

Since Eq. (4.7-4.9) are based on the strain and stress ratios, calculation of the scalar multiplier dA is avoided.

The methodology described in Figure 55 was applied to all materials, considering all three solutions for
Rg . Only AA5182 exhibited non-associated flow. Conveniently, the curvature of the AAS5182 yield surface
at uniaxial tension is of little significance because the arc approximates a Tresca shape. Therefore, the
variable Rg was set equal to Rg in this analysis. However, it is stressed that this assumption may not be

appropriate for other materials.
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Figure 55: Flowchart showing non-associated flow integration methodology. The blue blocks represent the optimization and
selection of the exponents, accomplished using a grid search to visualize the objective function surfaces. Alternatively, the finincon
subroutine in Matlab® could be used as a more efficient, gradient based algorithm.
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A convenient optimization approach for two free variables is a so-called grid search over the possible
solution space, which allows for visualization of the objective function surface seen in Figure 56. The error
at each evaluation point in Figure 56 is normalized with respect to the error at the optimum point. For
AA5182 along the TD, the objective function error decreased by 30% versus the isotropic, associated flow
solution using m,, = 2.7 and m,, = 50. Note that an exponent of 2.7 is the lowest possible for the HF85-
PSCyield function given the R-value of the material. Along the DD, only a 0.5% reduction in error occurred
with m,, = 6 and m,, = 50. The low sensitivity to the plastic potential exponent in this direction indicates
that practically any exponent between m,, = 6 and m,, = 50 is a valid choice. In general, from the viewpoint
of stability in numerical simulations, lower exponents prevent spurious localizations driven by a relatively

flat yield surface.
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Figure 56: Objective function surface showing minima at the NAFR solution for AA5182 tested along the (a) TD and (b) DD. The
red line represents the AFR solution, where both the yield function and plastic potential exponents are equal.

Adopting non-associated flow also permits the direct use of a Tresca type surface for the yield function.
The HF85-PSC yield function approaches Tresca when the yield function exponent increases to infinity, as
seen in this case with m,, = 50 fixed at the upper bound of the solution space. However, a Tresca yield
surface is inadmissible in the AFR-based methodology because unique identification of the stress ratio from
the strain ratio at each point is impossible if p = 0 along the entire arc. The NAFR-based methodology
avoids this problem because the stress ratio can be determined from a lower-exponent plastic potential,

while the equivalent stress is found from the Tresca yield function. Calibrating the HF85-PSC function for
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HF85 _

the lower-exponent plastic potential and directly adopting Tresca for the yield surface with 0y /ggq g

in Eq. (4.8) further reduces the error by 25-44%.

The modelled stress-strain curves from the integration methodology are in good agreement with the
experimental responses under both non-associated flow models. Compared to the associated flow
calibrations of Figure 35 and Figure 36, the non-associated models shown in Figure 57 offer improved
agreement. Furthermore, directly adopting the Tresca criterion as the yield function visibly improves the
agreement between the modelled and experimental stress-strain curves at small strains.
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Figure 57: Comparison of experimental and integrated stress-strain curves evaluated using the NAFR model. As shown in (a), an
HF85-PSC yield function exponent of 50 and a plastic potential exponent of 2.7 capture the plastic behavior of the AA5182 material
along the TD. As shown in (c), an HF85-PSC yield function exponent of 50 and a plastic potential exponent of 6 capture the plastic
behavior of the AA5182 material along the DD. As shown in (b) for the TD and (d) for the DD, directly adopting the Tresca
criterion as the yield function improves the agreement with the experimental stress-strain curves at small strains.
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4.6 Summary of Extensions to the Plane Strain Characterization Methodology

The constitutive behavior along the uniaxial to plane strain arc was characterized for AA6xxx-T4 and
AA6xxx-T81 alloys by applying the integration methodology established in Chapter 3 to the smaller notch
Geometry B. Discrepancies between the HF85-PSC exponents identified from experimental notch tests
using so-called Geometry A, adapted from Vegter and van den Boogaard (2006), and Geometry B suggested
a geometry bias linked to the aspect ratio of the selected specimen. Using Geometry A, the A6xxx-T4 and
AA6xxx-T81 alloys showed HF85-PSC exponents of between 4.25-6.36 and 5.06-10.11, respectively. The
corresponding normalized plane strain yield strengths were between 1.030 and 1.087 for the AA6xxx-T81
alloy and between 1.06 and 1.1 for the AA6xxx-T4 alloy. In comparison, the plane strain yield strength for
an isotropic FCC material with an exponent of 8 is 1.09. Applying the integration methodology to Geometry
B suggested exponents for the AA6xxx-T4 and AA6xxx-T81 alloys of between 4.45-4.72 and 2.64-3.72,
respectively. The corresponding normalized plane strain yield strengths were between 1.078 and 1.115 for
the AA6xxx-T81 alloy and between 1.07 and 1.1 for the AA6xxx-T4 alloy. The plane strain yield strengths
calibrated using Geometry B were within just 2.5% of the results obtained with Geometry A for the
AA6xxx-T4 alloy, but up to 5% different for AA6xxx-T81.

The sensitivity of the calibrated exponent to the geometry, especially for the AA6xxx-T81 material, was
attributed to the thickness of the sheet (2.7 mm). Plane stress is only a valid approximation for thin sheet,
relative to the planar dimensions. However, the Geometry B gauge width is only 7.15 mm, making the
width-to-thickness aspect ratio of 2.65 too small to promote plane stress across much of the gauge width.
Geometry A showed less sensitivity to the material thickness because the notches, where the greatest
deviation from plane stress occurs, were outside the area subject to the integration. Furthermore, the larger
gauge width of 39 mm resulted in an aspect ratio of 14.4 which promoted plane stress conditions across the
sample width. Successive finite-element simulations showed that a triple-scaled Geometry B, with an aspect
ratio 7.95, adequately tempered the error in the plane stress approximation. Experimental tests of the triple-
scaled Geometry B confirmed that the integrated exponent was in closer agreement with that identified
from the analysis of Geometry A. Similarly applying a correction factor based on the experimental error
observed in finite element simulations collapsed the plane strain yield strength derived from the original
Geometry B to that obtained from the triple-scaled Geometry B and Geometry A specimens. Based on the

findings of the sensitivity study, Geometry A was selected for the remainder of the analysis in the thesis.

The proposed integration methodology is easily extendable to non-associated flow. Calibrating the
exponents of two separate HF85-PSC functions, one to serve as the plastic potential and one to serve as the
yield function, enables characterization of non-associated flow along the uniaxial to plane strain arc of the
yield surface. Only the AAS5182 material showed non-associated flow in the TD and DD, with an HF85-
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PSC yield function exponent of m¥Y — oo. The corresponding plastic potential exponents were 3 and 6 along
the TD and DD, respectively. Adopting non-associated flow enabled direct adoption of the Tresca yield
function, which was not possible under the associated flow model due to a lack of uniqueness between the
stress and strain ratios. Adopting the Tresca yield function reduced the error in the integrated AAS5182

stress-strain curve by 25-44% compared to the associated flow model of Chapter 3.

Based on other works in the literature, a sigmoid function was selected to represent the evolution of the
HF85-PSC yield function exponent under differential hardening as a function of the equivalent plastic
strain. Calibrating the four coefficients of the sigmoid distribution, using constrained multivariable
optimization in Matlab®, indicated the presence of differential hardening for the AA6xxx-T4 material in all
directions, AA6xxx-T81 along the RD and DP1180 along the RD and DD. Differential hardening was not
observed for the AAS5182 material, avoiding the need for a combined differential and non-associated
analysis. Adopting differential hardening reduced the aggregate objective function error by 9-88%
depending on the alloy and direction, compared to the isotropic, associated flow model. For the AA6xxx-
T4 alloy, the plane strain yield strength was inversely proportional to plastic deformation, decreasing from
1.12 t0 1.09, 1.08 to 1.04 and 1.07 to 1.04 along the RD, DD, and TD, respectively. The muted differential
hardening for AA6xxx-T81 generated a similar decrease in normalized plane strain yield strength from
1.096 to 1.074 in the RD. In the case of the DP1180, the normalized plane strain yield strength sharply
increased around initial yielding from approximately 1.01 to saturated values of 1.11 along the RD and
between 1.11-1.13 along the DD, depending on whether the instantaneous or average R-value was used.
Sources of this unique yield point behavior may include anelastic strain causing reversible dislocation

movement and residual cold work due to rolling.
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Chapter 5 Evaluation of Plane Strain Characterization Methodology

This chapter evaluates the integrated plane strain yield strength for each material determined in Chapters
3-4 against the established empirical method of Flores et al. (2010) and by comparison of detailed finite-
element simulations of the coupon tests. The finite-element method makes it possible to not only simulate
the isotropic, associated flow case (HF85-PSC-ISO), but also the differential hardening (or evolving
exponent model, HF85-PSC-EVO) and non-associated flow (HF85-PSC-NAFR) models. The differential
hardening and non-associated flow models were implemented in the finite-element software LS-DYNA as

User Defined Materials (UMATS).

5.1 Comparison to Other Experimental Methods

Based on experimental and numerical observations that there exists a linear relationship between the
size of the homogenous zone of plane strain (W) and the portion of the applied load attributed to that zone
(Fy), Flores et al. (2010) developed an empirical correlation to calculate the plane strain yield strength of
a sheet metal. Eq. (5.1) defines the size of the homogenous zone as the distance between the two boundaries
where the major principal strain gradient (de; /dx) exceeds 2% of the magnitude of the major principal
strain in the center of the specimen, ? (Flores et al., 2010).

_(d& dey _ cp 1
WH—X(E—(>—X(E——{), (—0.0281 mm (51)

Applying volume conservation with 85 = 0 and neglecting the elastic strains gives the instantaneous

thickness of the homogeneous zone as:
ty = to exp(—ef) (5.2)

where t,, is the initial measured specimen thickness. The uniform stress acting over the homogeneous zone
is:
F,
PST H
0% =—— 5.3

I = (53)
Since the load Fy is unknown, a correlation was developed between Wy, the total specimen width Wy, the
total applied force measured at the load cell F; and the homogeneous zone thickness. As done by Flores et

al. (2010), applying the correlation to Eq. (5.3) gives:
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F F.
PST — 0.978( r ) + 0.022( ! ) 5.4

% Wrty Whty (>4)
Flores et al. (2010) observed that Eq. (5.4) was relatively independent of the two studied geometries and

five materials with varying R-values and hardening exponents.

For each material studied in this thesis, all repeats of Geometry A were analyzed using the method of
Flores et al. (2010) applied in the rolling direction. The major strain distribution was smoothed using cubic
splines and constrained to have a global minimum at the center of the gauge region, where plane strain is
assumed to occur under ideal test conditions. The size and thickness of the homogeneous zone were then
estimated using Eq. (5.1-5.2) before applying Eq. (5.4) to obtain the stress history as a function of the major
principal strain at the center point of the gauge region. The coordinate data from Vic-3D 8® was exported
in the deformed configuration, to track the small specimen width change. A scale factor was applied so that

the initial width matched the measured width of the specimen, to correct for the missing DIC edge data.

Each ofT — e curve was compared with the response calibrated from the integration methodology
proposed in this thesis. Using the flow stress & and calibrated normalized plane strain yield strength

afsTy/ Ocq, the plane strain yield strength as a function of the equivalent plastic strain obsT (egq) is:

aPsT
of5T(ef,) = (5.5)
Ocq
The plane stress-plane strain plastic work balance of Eq. (5.6) applies
Oeqdelby = of*Tdef (5.6)

Integrating Eq. (5.6) assuming isotropic hardening (constant of>7 / 0eq) and proportional loading gives:

O.lPST -1
( > Eoqg = €1 (5.7)

Oeq

Figure 58 shows that the methodology of Flores et al. (2010) is in relatively poor agreement with the
proposed integration methodology for all materials, tending to predict a higher stress in plane strain tension.
Neglecting the elastic strains in the prediction of Flores ef al. (2010) causes a deviation from the integrated
response at small strains, particularly for DP1180. At the necking cutoff, the percentage difference between
the method of Flores et al. (2010) and the integration methodology proposed in this thesis is between 1%
(AA6xxx-T4) and 7% (AAS5182).
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Figure 58: Comparison of plane strain major stress versus major principal plastic strain along the rolling direction using the analysis
method of Flores ez al. (2010) and the proposed integration methodology applied to (a) AA5182, (b) DP1180, (c) AA6xxx-T4 and
(d) AA6xxx-T81. The discrepancy at initial yielding is due to neglecting the elastic strains in the method of Flores et al. (2010).

The 1-7% difference between the predicted plane strain yield stress at necking obtained from the method
of Flores et al. (2010) and the method proposed in this thesis is reflective of the restrictive assumptions
adopted in the model of Flores ez al. (2010). Elastic strains are omitted in the analysis by Flores et al. (2010)
causing large errors at low strains, more so for steel than aluminum due to a higher elastic modulus. Since
the boundary of the homogenous zone is obtained from the strain gradient, it is particularly sensitive to the
derivative of the spline fit to the experimental data. The assumption of a homogenous zone of plane strain

is convenient for empirical analysis but not applicable to many materials and sample geometries. Depending
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on the material properties (see Figure 29), the center of the gauge width may not be in exactly plane strain
tension. For conventional analysis of a notched tensile test assuming a homogeneous zone of plane strain,
the absence of plane strain tension introduces an error into the results. In the proposed integration
methodology, the deviation from plane strain is less relevant. Provided that stress states along the gauge
width sufficiently probe the envelope between uniaxial tension and plane strain tension, the exponent
identified in the integration methodology still defines the local arc shape. Applying the calibrated exponent
in the HF85-PSC yield function gives the plane strain yield strength at the intersection of the arc with a
principal stress ratio of g,/0; = 0.5. By accounting for elasticity and not making any assumptions about
the shape of the strain distribution along the specimen gauge width or degree of plane strain conditions in
the center of the specimen, the methodology proposed in this thesis provides a more accurate

characterization of the yielding response.

5.2 Finite-Element Validation

Finite-element validation permits not only simulation of the isotropic results (HF85-PSC-ISO), but also
the differential (HF85-PSC-EVO) and non-associative (HF85-PSC-NAFR) extensions to the integration
methodology. Non-associative flow and differential hardening were implemented in LS-DYNA as user-
defined materials (UMATSs). Half-symmetry, finite-element shell models of the Vegter and van den
Boogaard (2006) geometry (Geometry A) were employed to validate the HF85-PSC models calibrated in
Chapters 3-4 for all materials and directions. The model used explicit time integration and the same mesh
shown in Figure 23. Type 2 constant stress and strain elements were used as they are most consistent with
the experimental integration discretization approach. The HF85-PSC-ISO model was run for all cases, as

well as the HF85-PSC-EVO or HF85-PSC-NAFR models if also applicable.

Two metrics were selected to evaluate the agreement between the simulated and experimental responses:
the global engineering stress-strain response and local response of the major principal strain in the center
of the gauge region. Comparison of the stress-strain curves indicate how well the model captures the overall
response of the material and geometry under the applied tensile load. Since the deformation is not
homogeneous over the gauge region, comparing the local strain evolution in the center of the gauge region
indicates how well the model predicts the constitutive behavior specifically in plane strain tension and how

well the flow rule predicts the direction of the plastic strains.

The Y1d2000 model natively available in LS-DYNA was used to simulate the HF85-PSC-ISO
calibrations, by calculating the corresponding coefficients @; — ag from Eq. (3.3). The parameters a, and
ag are shear parameters, activated only around the notches of the specimen where the axes of principal

stress do not coincide with the loading axis. In this analysis, the shear parameters were selected as the
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average of @y and ag, which was close to unity. A value close to unity is recommended to promote

agreement between the experimental and simulated local strain response (Narayanan ef al., 2022).

5.2.1 Development of a UMAT for Differential Hardening

An existing Y1d2000 UMAT, written by Professor Clifford Butcher, was modified to implement
differential hardening. At each call to lookup the yield function coefficients, an additional script was added
to retrieve the values of the experimentally calibrated sigmoid coefficients and R-value from an input table,
obtain the cumulative equivalent plastic strain from the LS-DYNA data files and calculate the
corresponding instantaneous yield function exponent. The Y1d2000 coefficients were then updated using

Eq. (3.3).

Validating the UMAT with single element simulations showed good agreement between the simulated
normalized instantaneous plane strain yield strength predicted by LS-DYNA and the value expected from
the input sigmoid function at the same equivalent plastic strain. The single-element model was implemented
using a 2 mm x 2 mm shell element, with plane strain boundary conditions enforced by constraining
movement along the y-axis (v = 0). Explicit time integration with a minimum time step of 2E-4 seconds
was used to reduce simulation time. Repeating the analysis with both Type 2 and Type 16 elements
produced the same responses shown in Figure 59. The same generic materials with power law hardening
exponents of n = 0.1 and R-values of R = 0.5 and R = 2 from Chapter 3 were adopted. Selecting sigmoid
coefficients of A =3, B=50,C =0.11 and D = 0.035 represented the strongest possible case of differential
hardening, where the exponent evolved between the upper and lower bounds of m = 3 and m = 50 adopted
in this thesis. To ensure that the UMAT could represent materials with exponents that both increased and
decreased with plastic strain, additional simulations were conducted with sigmoid coefficients of A = 50, B
=3,C=0.11 and D = 0.035. Excellent agreement between the LS-DYNA predicted and expected plane
strain yield strength was observed over the entire range of deformation regardless of material, or an

increasing or decreasing exponent.
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Figure 59: Results of single shell, plane strain element simulations for an evolving yield function exponent. Regardless of whether
the HF85-PSC-EVO exponent (a) increases or (b) decreases with plastic strain, the UMAT perfectly predicts the normalized plane
strain yield strength response.

5.2.2 Comparison of Finite-Element and Experimental Results

Figure 60 compares the LS-DYNA simulated and experimental results for DP1180. One representative
integration from Chapter 3 was included in each direction for comparison. The simulations show good
agreement with the experiments in all directions, although they underestimate the initial stress-strain
response near the proportional limit. The major principal strain at the center of the gauge region also trends
higher in the models than in the experiments, possibly because the material could show some minor pressure
sensitivity that shifted the location of plane strain tension slightly from the theoretical, pressure-independent
value of § = 0.5. The differential hardening models, applicable to the RD and DD, better predicted the

stress-response at small strains but had little effect on the strain evolution.
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Figure 60: Comparison of finite-element modelled, integrated, and experimental stress and strain responses for DP1180 tested
along the (a) RD, (b) DD and (c) TD. The engineering stress-strain response is shown up to the peak load, whereas the representative

integration and local strain response are only shown up to the necking cutoff used in the integration methodology.

It is important to emphasize the difference between the integration and the finite-element method. In all

cases, the representative integration shows the best agreement with the experimental stress strain response

because it operates directly on the DIC identified strains. In contrast, both the stress and strain fields are

unknowns that must be identified from the boundary conditions and constitutive model in the finite-element

method. In the standard finite-element approach, the nodal displacements are obtained from the global

stiffness matrix and boundary conditions. The displacements are then post-processed for strains and stresses

using strain-displacement functions and a constitutive model. Consequently, any difference in the
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prediction of strains will result in a different prediction of stress compared to the integration. This layer of

uncertainty is avoided in the integration methodology since the strains are already known exactly.

By comparing the finite-element and experimental strain contours, one can assess whether the error in
the stress prediction stems from a discrepancy in the strain prediction. As can be seen in Figure 61 for
DP1180 tested along the limiting transverse direction, the strain at the notch drives the strain distribution
along the gauge width, giving rise to “humps” in the major and minor strain distributions at a distance from
the center of approximately 17 mm. The strains captured by DIC along the cutting line are higher than
predicted in the finite-element method, which result in greater work hardening and a higher flow stress at
each point. This observation explains why the integration methodology, which operates directly on the DIC
strains, can match the experimental stress-strain response whereas the finite-element software underpredicts
the strains and hence the stress. At the necking cutoff, E;,, = 0.021, the magnitude of the major strain at
the notch is 34% higher in the DIC contour image versus the strain at the corresponding finite-element

timestep.
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Figure 61: (a) Comparison of finite-element and experimental local strain distributions for DP1180 tested along the TD and (b)
comparison of finite-element and DIC major principal strain contours at the cutoff extensometer strain of £7, = 0.021.

Clearly the localization of the strain at the notch is at least somewhat responsible for the difference between

the integrated and finite-element predictions. The following sources for the discrepancy were evaluated:

e Mesh design and grid independence. A finer mesh results in greater resolution in the calculation of
the strains and stresses, especially in regions subject to high gradients like a notch. Various mesh

designs and sizes were considered down to a characteristic dimension of 0.05 mm with little effect.
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e Element type. It is well known that different element formulations have varying degrees of
accuracy. A fully integrated element results in greater local resolution than a reduced, single point
integration element. Type 16 (fully integrated), Type 25 (fully integrated with thickness stretch)
and Type 2 (reduced integration) elements were all tested, with little effect on the stress response.

e Machining Defects. The machining of the specimens could have introduced microscopic stress
raisers along the free edges (Kalpakjian and Schmid, 2008). An additional stress concentration
could promote greater localization at the notch than predicted in the finite-element model which
does not consider surface roughness or edge quality. Since CNC machining was used and the edge
quality was discernably smooth, it is unlikely that this had a pronounced effect. Furthermore, the
other materials were machined in the same manner and did not show the same discrepancy in the
stress-strain response.

e Hardening model. Necking occurs at the notch before it is detected using the cutoff criterion at the
cutting line along the gauge region. Consequently, the hardening curve is extrapolated beyond
uniform elongation for elements at the notch, which could introduce uncertainty into the results.
Since the discrepancy in the stress-strain responses is observed early in the test, when the notch
stress is still below the ultimate tensile strength, it is unlikely that post-uniform extrapolation of the
hardening curve is responsible.

e Strain rate sensitivity. The notches localize faster than elements along the gauge region, meaning
that the strain rate is higher at the notch than in the surrounding material. Rahmaan (2015)
documented the rate sensitivity of dual phase steels, observing that an increase in strain rate
prompted an increase in the flow stress. It follows that a rate sensitive model would predict higher
work hardening at the notches, driving larger strains along the gauge region and an overall higher

global stress strain response. More work is required to assess this hypothesis.

The simulated, experimental, and integrated results also agree reasonably well for AA5182 but subject
to more variation in the experimental measurements. Figure 62 compares the stress and strain responses,
showing excellent agreement between the predicted and experimental data along the rolling direction but
discrepancies in the responses obtained along the diagonal and transverse. The experimental variation in
the strain data is likely due to the PLC effect, which was particularly severe in the TD and DD, but relatively
mild in comparison along the RD. Due to this high experimental variation, the predicted strain responses
along DD and TD remain within the experimental margin of error. At the necking cutoff, the strains
predicted by LS-DYNA were sfp =0.12 along the diagonal direction and sfp = 0.13 along the transverse
direction, which are within the experimental 95% confidence interval of 0.16+0.09 and 0.1140.08,

respectively.
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While the Tresca-type yield surface is a good match for the TD yield surface arc, the exponent of m =
50 appears too high in the DD as the average experimental stress is underpredicted by a maximum of about
5%. This can be traced back to the objective function convergence characteristics illustrated in Figure 36.
Rather than a well-defined minimum, the objective function behaves asymptotically beginning at
approximately m = 30 and continuing as the exponent increases to infinity. Therefore, any exponent could

be selected along this asymptotic approach, while remaining within the experimental margin of error.

The non-associated model calibrated in the TD is reasonably consistent with the experimental results,
although it underpredicts the average experimental engineering stress-strain by a maximum of about 4%.
This is contrary to the analysis of Chapter 4 which indicated that the HF85-PSC-NAFR model showed a
lower objective function error than the HF85-PSC-ISO model. Nonetheless, both models closely predict

the experimental results considering the uncertainty introduced by the PLC effect.
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Figure 62: Comparison of finite-element modelled, integrated, and experimental stress and strain responses for AA5182 tested
along the (a) RD, (b) DD and (c) TD. The engineering stress-strain response is shown up to the peak load, whereas the representative
integration and local strain response are only shown up to the necking cutoff used in the integration methodology.

Figure 63 shows the close agreement between the experimental and simulated responses in all tested
directions of AA6xxx-T81. For simplicity, differential hardening was ignored due to the muted response
observed in Chapter 4. Nonetheless, the engineering stress and strain responses are well predicted by the

isotropic model up to the onset of necking.
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Figure 63: Comparison of finite-element modelled, integrated, and experimental stress and strain responses for AA6xxx-T81 tested
along the (a) RD, (b) DD and (c) TD. The engineering stress-strain response is shown up to the peak load, whereas the representative
integration and local strain response are only shown up to the necking cutoff used in the integration methodology.

Figure 64 shows the excellent agreement between the experimental results, integration, and isotropic

HF5-PSC-ISO models for the AA6xxx-T4 alloy up to necking in all tested directions. Differential hardening

was again ignored since the plane strain yield strength only decreased by approximately 4% over the

measured range of plastic work. The evolution of the major principal strain, as a function of engineering

strain, is in excellent agreement with the experimental results along the DD and TD. Along the RD, a non-

linearity in the experimental response develops at an engineering strain of 0.11, possibly as a result of

premature necking and localization that was not captured in the cutoff criterion.
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Figure 64: Comparison of finite-element modelled, integrated, and experimental stress and strain responses for AA6xxx-T4 tested
along the (a) RD, (b) DD and (c) TD. The engineering stress-strain response is shown up to the peak load, whereas the representative
integration and local strain response are only shown up to the necking cutoff used in the integration methodology.

5.3 Summary of Model Evaluation

The integration methodology, and its extensions to cases of differential hardening and non-associated
flow, accurately captures the stress and strain responses of the four studied materials. The isotropic
associated flow (HF85-PSC-ISO), non-associated flow (HF85-PSC-NAFR) and differential, associated
flow (HF85-PSC-EVO) models were evaluated using finite-element simulations and by comparison with

the empirical method of Flores et al. (2010). Compared to the latter, the present approach does not require
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perfect plane strain loading in the center of the specimen and is not sensitive to the size of the so-called

homogeneous zone.

Finite-element models of the tested Geometry A confirmed good agreement between the experimental,
integrated, and simulated engineering stress-strain and local strain responses for all alloys. Differential
hardening was relatively muted for all studied materials; the good agreement between the isotropic models
and the experimental results shows that it can be reasonably neglected in component level simulations for
the four studied materials. The simulated test for DP1180 was in excellent agreement with the experimental
stress and strain response outside the small strain regime of between 0.01-0.02. Greater strain localization,
on the order of 34%, occurred at the notches in the experiments compared to the simulated responses,
causing a difference in the strain distribution along the gauge region. The increased localization may be due
to strain rate sensitivity, which was omitted from the finite-element model. The AA6xxx-T81 and T4 alloys
showed excellent agreement between the calibrated models and experimental results. The presence of the
PLC effect led to small inaccuracies on the order of 5% in the calibrated DD and TD models for AA5182.
Ultimately, the proposed integration methodology acts as a complete toolkit for accurately characterizing
the local arc of a yield surface from uniaxial to plane strain tension under isotropic or differential hardening

and associated or non-associated flow.
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Chapter 6 Constitutive Characterization in Through-Thickness Shear

Through-thickness shear is the second generalized plane strain stress state evaluated in this thesis. As
reviewed in Chapter 1, limited investigations into this loading condition for metals have mostly focused on
fracture and not constitutive characterization. This chapter outlines the development of a novel test for
through-thickness shear characterization along the RD in 1 mm DP1180 and 2.7 mm AA6xxx-T81,
considering specimen geometry, test fixture design and DIC pattern generation. These alloys were selected

to evaluate both a steel and aluminum and consider the effect of widely different sheet thicknesses.

While both blanking and double notched specimens will initiate through-thickness shear, the double
notched specimen introduced in Chapter 2 was selected for experimental convenience and based on the
assumed orthotropic behavior of the selected materials. As suggested by Gu et al. (2020), the properties
identified from a setup modelling a blanking operation, with the applied load orientated parallel to the
normal axis of the sheet, may be different from the properties identified from a double-notched test with

the applied load directed along the RD or TD. For example, the yield strength may not be the same along

yield + 0 yleld and o yleld io_yleld

complimentary shear planes (i.e.: g, ) due to microstructural differences

even though the applied shear stress on perpendicular planes of a material volume element must be equal

. applied applied applied applied
(i.e.: o PPHeE = g PPHE% and O'yzpp =0,y P

and Hartmann et al. (2021) resemble blanking type setups while those of Gu ef al. (2020) and Li ef al.

). Fracture experiments by Wang and Wierzbicki (2015)

(2018) are of the double-notched variety. However, assuming orthotropy, as is common in the case of

aluminum and steel sheet, makes this distinction unnecessary.

6.1 Specimen Design, Manufacturing and Gauge Length Selection

As discussed by Gu et al. (2020), the length of the specimen gauge region h must be selected to promote
a shear fracture in the gauge region before necking occurs elsewhere in the specimen under uniaxial tension.
The maximum uniaxial tensile stress shown in Eq. (6.1) occurs at the notch root, where the cross-sectional
area is lowest.
F 2F
= = (6.1)

Oeq w (% _ r) w(t — 2r)

In Eq. (6.1), F is the applied force, t is the sheet thickness, w is the specimen width and r is the notch

radius. The average shear stress in the gauge region is:
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F

T = m (62)

Assuming the von Mises criterion for design purposes and substituting g,, = /37 defines the equivalent

stress inside the gauge region as:

V3F

Ogq = m (63)

For the specimen to fail in shear before tension, the equivalent stress in the gauge region must be greater
than the equivalent stress at the notch root. Including a design factor of ng, the design condition is defined

by the inequality in Eq. (6.4).

V3F 2F

w(h — 27r) > M w(t — 2r) (6.4)

Simplifying Eq. (6.4) leads to Eq. (6.5), which may be solved for the maximum length of the sample gauge

region for any sheet thickness.

h—2r 3
t—2r<E (6.5)

A design factor of two was adopted and the notch radius was set to » = 0.15 mm, corresponding to the
minimum commonly available wire size for the electrical discharge machining (EDM) process used to make
each specimen. Consequently h = 0.6 mm and h = 1.34 mm, for the 1 mm and 2.7 mm thick sheets,

respectively.

Wire EDM was used to make each specimen since it is uniquely suited for precision machining of parts
with small features. By creating a spark between the metal workpiece and a wire electrode, the wire EDM
process melts or vaporizes the material at temperatures between 8,000-12,000°C to form the desired
geometry (Azam et al., 2016). A dielectric fluid, often deionized water, simultaneously cools the workpiece
and flushes the eroded workpiece and electrode fragments. By measuring each machined specimen with a
Keyence VHX-5000 optical microscope, it was observed that the wire EDM process resulted in good
dimensional accuracy and repeatability. As shown in Table 15, the as-machined gauge length was, on
average, approximately 47 pum larger than nominal. The notch radii were machined 30 pum larger than

designed, but within the expected tolerances.
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Table 15: Measurements of through-thickness shear geometry features machined using wire EDM. All dimensions are in
millimeters. The average value is presented with the standard deviation in brackets.

Material Notch Radius Gauge Length
0.176 0.346
DP1180
(0.007) (0.010)
0.184 1.047
AA -T81
Groxx-18 (0.005) (0.014)

Optical microscopy revealed some other interesting features of the machined specimens. Figure 65(a)
shows typically 55 pum thick black “burn marks” around each notch of the DP1180 specimens. Some
DP1180 specimens, like the one in (b), also showed orange rust possibly because of oxidation induced by
electrolysis of the water during machining (Azam et al., 2016). The rust was removed by light sanding prior
to DIC pattern application. In contrast, the AA6xxx-T81 specimens did not show any discoloration or

visible defects as shown in (¢).

(2)

(b)

(©)

Figure 65: (a) Discoloration, or so called “burn marks”, on the surface of the DP1180 through-thickness shear specimens subjected
to wire EDM. The average measured thickness of each burn mark was 55 um. (b) Regions of orange rust on DP1180 specimens
produced by wire EDM. (c¢) Representative AA6xxx-T81 through-thickness shear specimen produced by wire EDM.
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6.2 Test Fixture Design and Parameter Selection

A clamping force is required to reduce rotation of the gauge region, decrease bending moments, and
promote a stress state of simple shear. As shown in Figure 66, localization occurs outside the gauge region
at the notch root if the sample is unrestrained. Rather than fail in a state of shear, the specimen necks in
uniaxial tension. A rigid fixture must be designed to provide clamping force that minimizes rotation and

encourages a shear failure in the center of the gauge region.
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Figure 66: Contours of equivalent plastic strain from simulated clamped and unclamped through-thickness shear tests. The solid
models consisted of Type 1 elements, with a characteristic dimension of 0.05 mm in the gauge region. The von Mises yield surface
was employed along with the material hardening curves from Chapters 3 and 4.

An existing cyclic tension-compression fixture, under development by Jacqueline Noder at the
University of Waterloo, was adapted for through-thickness shear testing. The fixture was based on a design
proposed by Kupke (2017). It consists of two steel plates compressed against the specimen using a nitrogen
spring with a maximum on-contact force of 15 kN. Suspending the entire clamping fixture from springs
allows it to move with the elongating specimen, minimizing relative velocity and sliding friction. To adapt

the fixture for through-thickness shear testing, two 25.4 mm x 45 mm x 110 mm dies were fabricated so
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that a microscope lens could be placed between the clamping plates in close proximity to the specimen

surface. Figure 67 shows the final fixture design, configured for through-thickness shear testing.

Figure 67: Through-thickness shear fixture. The nitrogen spring provides the required clamping force to minimize gauge region
rotation of the specimen.

6.2.1 Selection of a Clamping Pressure

The selection of the clamping force is subject to two competing objectives; the force must be high
enough to reduce rotation but also as low as possible to minimize friction and the superimposed biaxial
stress. A finite-element study was used to select a clamping force, F, in advance of the experimental tests
by evaluating the gauge region rotation at values between F. = 0 and F. = 12 kN. The 1 mm and 2.7 mm
sheets were modelled under half-symmetry using an explicit dynamic formulation. The actual hardening
curves for each material were used, but the yield surface was assumed to be von Mises since the through-
thickness properties were unknown in advance of the experiments. Type 1 solid elements were used with a
characteristic dimension of 0.05 mm in the gauge region. Two rigid shell plates were also modelled to be
representative of the clamping fixture. The clamping force was applied to the rigid plates and contact was
enforced between the sheet and plates assuming a coefficient of static and dynamic friction of y = 0.03.

Figure 68 shows the boundary conditions and mesh design.
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Figure 68: FE through-thickness shear model showing mesh and boundary conditions. The sheet thicknesses are not to scale to
illustrate the mesh design.

As shown in Figure 69, gauge region rotation decreases with increasing clamping force. For each value
of F_, the rotation was evaluated at the same crosshead displacement of 0.47 mm for DP1180 and 0.81 mm
for AA6xxx-T81. As a first estimate, the selected displacements correspond to the point at which the

equivalent plastic strain in the gauge region begins to exceed the equivalent fracture strain obtained from
in-plane shear tests of the same material. The equivalent in-plane fracture strain is approximately eefq =0.6
for DP1180 (Abedini ef al., 2020) and egq = 0.8 for AA6xxx-T81. Convergence was observed at F, = 4

kN for AA6xxx-T81 (8 = 4°) and F. = 8 kN (8 = 7°) for DP1180.

—@— DP1180 RD, Displ. = 0.47 mm

— B = AA6xxx-T81 RD, Displ. =0.81 mm

Gauge Region Rotation, ¢

15 1 Selected: 4 kN for AA6xxx-T81 RD
n N Selected: 8 kN for DP1180 RD
10 A N
N
\
5 . - - - —.
“Tl---—----- B = - - - ]
0 T T
0 5 10 15

Clamping Force (kN)

Figure 69: Dependency of gauge region rotation on clamping force. Convergence was obtained at a clamping force of e =4 kN
for AA6xxx-T81 and F =8 kN for DP1180.
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The force-displacement, triaxiality (7), equivalent plastic strain and Lode parameter (L) evolution were
evaluated at the selected clamping forces as shown in Figure 70. The Lode parameter, in the middle of the
specimen at the half-symmetry plane, is equal to zero for most of the deformation indicating plane strain
loading. At the free surface, the Lode parameter increases with deformation, indicating a departure from
plane strain. Similarly, the triaxiality at both locations increases with plastic strain. For both alloys, the
initial stress state is compressive due to the clamping force of the dies. The average triaxiality and Lode
parameter were calculated using Eq. (6.6) to quantify the average state of stress and strain over the range

of deformation.

p

L 3
L
favg ffdgeq TZ <‘:eq T (6-6)
eqo €eq i=1

For the AA6xxx-T81, the average Lode parameter and triaxiality were -0.018 and -0.065, respectively. For
DP1180, the average Lode parameter and triaxiality were 0.01 and 0.07, respectively. The average values
are sufficiently close to a simple shear stress state with L = T = 0 such that both specimens are appropriate

for constitutive characterization in through-thickness shear.
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Figure 70: Force, equivalent plastic strain, Lode parameter and triaxiality at the selected clamping forces for (a, b) AA6xxx-T81
and (c, d) DP1180. The dashed lines represent values extracted from the midplane of the specimen, at the element in the center of
the gauge region, while the solid lines represent values extracted from the free surface where DIC measurements occur.

6.2.2 Sensitivity to Friction

The clamping force introduces friction into the load response. If the upper grip force is denoted as F;
and the lower grip force as F, then the frictional force F is in the same direction as F,. Figure 71 represents
the free body diagram of the through-thickness shear specimen. Since the load cell is located at the upper

grip (denoted F;), the frictional force Fy must be subtracted from the measured force. Using the standard

Coulomb model, the friction-free force F, is

F, = F, — 2F; = F; — 2uF, (6.7)

where u is the coefficient of friction.
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Figure 71: Free body diagram of through-thickness shear specimen. The frictional force Fopposes the direction of the force F at
the upper grip where the load cell is located.

The challenge is in determining the value of the coefficient of friction. It is common to perform both
clamped and unclamped tensile tests in uniaxial tension-compression tests, the closest existing experimental
analogue to the proposed through-thickness shear setup. By subtracting the unclamped force value from the
clamped force at a given displacement, the friction coefficient is obtained for a given clamping force and
material. A correction for the superimposed biaxial stress, due to the clamping force, is applied before
subtraction (Boger et al., 2005; Kupke, 2017). Although the method of clamped/unclamped curve
subtraction is perhaps ideal for accurate friction measurement in uniaxial tensile specimens, it is poorly
suited for the present geometry since the gauge region rotation causes dramatic differences in the slope and

magnitude of the stress-strain response of an unclamped specimen.

A review of the tension-compression test literature, summarized in Table 16, suggests a coefficient of
friction of between 0.03 and 0.11 for a Teflon-steel or Teflon-aluminum interface. Fixture design is
responsible for some of the variation; a fixture that moves with the deforming specimen is advantageous to
limit relative velocity and friction (Kupke, 2017; Boger et al., 2005; Kuwabara et al., 2009). Ultimately,
the Coulomb model is only an approximate idealization of the complex characteristics of friction. Surface
roughness, contact interface pressure (Tamai and Manabe, 2013), velocity (Hwang and Chen, 2020),
material, lubrication, and breakdown (Noder, 2017) all affect the coefficient of friction. Therefore, it is
important that the friction coefficient is determined under test conditions as close as possible to the through-

thickness shear experiments.
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Table 16: Summary of friction coefficients reported in the literature for a Teflon-metal interface in tension-compression tests.
Tension-compression tests are perhaps the closest existing experimental setup to the proposed through-thickness shear tests.

Material Cog-fiiccti:;lnt of Clam]()li(l;%Force Conta(lc\f[ ;’;;essure Reference
AA6022-T4 0.03-0.06 7 - (Boger et al., 2005)
DQSK/HSLA/AA6022-T4 0.06-0.09 5 - (%a;ilgi;th;ini(}g%g :
DP780 0.11 5/10 - (Kupke, 2017)
DP590 0.04 2.23/3.35 0.83/1.25 (Sun and Wagoner, 2013)
DP780 0.067 2.23/3.35 0.83/1.25 (Sun and Wagoner, 2013)
DP980 0.105 2.23/3.35 0.83/1.25 (Sun and Wagoner, 2013)
DQ 0.07 2.03 - (Joo et al., 2016)
DP590 3.15 - (Joo et al., 2016)
SPCC 0.06 2.003 - (Bae and Huh, 2011)
DP590 0.08 2.275 - (Bae and Huh, 2011)

To assess the sensitivity of the through-thickness shear setup to friction, the coefficient was adjusted
between 0.03 and 0.11 in finite-element simulations to probe the change in the stress-strain response. The
maximum range of the expected measurement error can be estimated from two extreme cases: the actual
coefficient is 0.03 but the coefficient was overcorrected with 0.11 or the actual coefficient was 0.11 but it
was under-corrected with 0.03. As shown in Figure 72, there is a maximum 37 MPa, or 12% error in the
stress for the AA6xxx-T81 and a 239 MPa or 26% error in the shear stress for DP1180. The lower error for
the AA6xxx-T81 is attributable to the clamping force, which is only half the value required for DP1180 to
inhibit rotation. Although selection of the friction coefficient introduces uncertainty into the load response,
simulated fracture strains were independent of friction. Only the load cell force requires a correction for

constitutive characterization.
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Figure 72: Illustration of error caused by improper selection of the friction coefficient in simulated through-thickness shear tests
of (a) AA6xxx-T81 and (b) DP1180. The blue curves illustrate the results obtained at a friction coefficient of x = 0.11 and the red
curves illustrate the results at 4 = 0.03. The solid curves represent the stress obtained from the load at the lower grip, > which is
friction-free and the target stress for the friction correction. If 4 = 0.03, but the response is overcorrected with u = 0.11, then the
red dashed curve is obtained. If 4 = 0.11, but the response is under-corrected with u = 0.03, then the blue dashed curve is obtained.
The difference between these extremes is the range of the possible experimental error.

6.2.2.1 Friction characterization using clamped rectangular strip tests

Based on the non-negligible influence of friction on the proposed experimental setup and variability of
the coefficient in literature, a method was developed to characterize the friction coefficient under analogous
conditions to the through-thickness shear tests. Between three and four 25.4 mm x 200 mm rectangular
strips were clamped in the test fixture and tested until fracture, maintaining approximately the same contact
area, sliding velocity, lubrication, and pressure distribution as the through-thickness shear tests. As the
stress state within the strip is uniaxial tension up to uniform elongation, the true stress strain curve obtained
from the clamped rectangular strip tests can be directly subtracted from the material flow stress curve

presented in Chapters 3-4 to isolate the friction coefficient using Eq. (6.7).

The so-called friction strip test must be corrected for both biaxial stress and friction (Kupke, 2017; Boger
et al., 2005). The clamping force applied by the fixture induces a biaxial stress in the specimen, which may

be estimated using the von Mises criterion as:

Oeq = \/ag — 040t + 0} (6.8)

where o, is the stress in the axial loading direction and o; is the through-thickness stress component
introduced by the clamping pressure obtained from Eq. (6.9). The contact area, A, is 2794 mm? (25.4 mm
x 110 mm) for the dies used in this study.
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As discussed by Boger et al. (2005), adopting the von Mises yield criterion for an anisotropic material
introduces minimal error due to the small magnitude of the biaxial stress. After biaxial correction, the
Coulomb friction coefficient is iteratively adjusted to bring the clamped stress-strain curve into agreement

with the average stress-strain curve of the unclamped repeats.

6.3 DIC Pattern Generation

Considering the small size of the through-thickness shear specimen gauge regions, conventional spray
paint produces large speckles unconducive for selection of a subset size with sufficient spatial resolution of
the DIC captured strain field. A method of generating smaller speckles using an Iwata Eclipse® airbrush
with a 0.35 mm needle at 30 psi was evaluated by applying various inks and paints to the surface of the 1
mm thick DP1180 geometry. Some of the spray mediums were selected from a review of the literature
including Golden Artist® High Flow Acrylic Paint (Kramer et al., 2016) and spray paint collected from the
can and re-atomized with the airbrush (Blaber, n.d.). The other mediums tested in the airbrush were
PEBEQ® India ink and FW® acrylic ink. Two brands of conventional spray paints, with different nozzle
sizes, were also used for comparison. Images of each speckle pattern were captured at the same
magnification and field of view using a Keyence VHX-5000 digital microscope for comparison and particle

size analysis.

To quantify the speckle size distribution, a representative 1 mm x 1 mm region was extracted from each
image seen in Figure 73, binarized then analyzed using the bwlabel and imfindcircles commands in
Matlab®. The imfindcircles command employs a Circular Hough Transform (CHT) algorithm to identify
the size and center point of each circle in the image. Consider one black circle on a white background, for
simplicity: the edges of the circle are defined where the color gradient is greatest (i.e.: transition from black
foreground to white background). At each edge pixel, possible coordinates for the center of the circle are
collected by sweeping a radial line outward in all directions. By repeating this procedure at each edge pixel
around the perimeter of the circle, an array of possible center coordinates for the circle is obtained, with the
correct location being the one that is common to all of the edge pixels (MathWorks, n.d.). Whereas
application of the CHT algorithm is complicated by the presence of non-circular, coalesced “blobs” of
droplets, the bwlabel command, as used by Dong et al. (2015), simply defines the equivalent diameter of

a circle occupying the same area as each blob.
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Figure 73: Speckles generated using (a) Rustoleum® spray paint, (b) Zynolyte® spray paint, (c) PEBEO® India ink, (d) FW® acrylic
ink, (¢) Golden Artist® High Flow paint and (f) Re-atomized Rustoleum® paint. Patterns (c-f) were applied using an airbrush.
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Despite the differences in the methodologies of the two particle processing methods, both indicate a left-
skewed frequency distribution with a similar average speckle size. Table 17 shows the summary statistics
of the frequency histograms for both processing methods and all tested inks and paints. FW® acrylic ink
was selected for the present study since it resulted in a small average speckle size of ~18 pm. Although the
re-atomized Rustoleum® resulted in the smallest speckles, transferring the paint from the can to the airbrush
was impractical. Due to the fast-drying nature of spray paint, the adhesion properties may also have been
affected by transfer and re-atomization. The PEBEO® India Ink was too glossy when dry, which caused
bright spots in the DIC images. Regardless of the selected medium, the airbrush can produce a much finer
speckle pattern than conventional spray paint.

Table 17: Diameter and standard deviation (in brackets) of the speckles in six different DIC patterns analyzed using two particle
counting methods. Speckle diameter is given in micrometers.

Conventional Spray Paint Airbrush
Particle Golden Artist®

. . . rtist :

Counting Rustoleum® Zynolyte® PEBEO" India  FW" Acrylic (;Ii 6}1: FIO\IRS/ Re-atomlze(g
Method Ink Ink gh . Rustoleum
Acrylic Paint
imfindcircles 45.02 24.34 17.20 18.11 22.71 10.59
(18.99) 8.77) (6.55) (8.66) (8.50) (3.65)
45.37 25.62 19.26 17.99 19.73 9.25
bwlabel
(46.34) (20.09) (15.49) (15.74) (17.77) (7.44)

6.4 Experimental Testing

The friction and shear specimens were tested on the Shimadzu 50 kN electro-pneumatic test frame
introduced in Chapter 2. The clamping fixture was suspended from hooks attached to aluminum extrusion
side rails. The supporting side rails were bolted to the tensile frame bed. The fixture was then levelled and
plumbed to minimize rotation and bending of the specimen as shown in Figure 74. The grips of the test
frame were rotated 90 degrees from their nominal position to allow for 2-D DIC measurement on the edge

of the sheet specimens.
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Figure 74: Setup and attachment of through-thickness shear fixture to the Shimadzu uniaxial test frame.

Each specimen was carefully prepared for testing. The gauge length was measured with the optical
microscope, as discussed in Section 6.1, and the width was measured with calipers. The edge of the sample
was then cleaned with alcohol and lightly sanded to improve adhesion prior to applying the white spray
paint base coat. The FW® acrylic ink speckle pattern was applied with the airbrush as discussed in Section

6.3.

The clamping fixture and nitrogen spring were controlled using a 2000 psi [138 bar] compressed
nitrogen canister with a regulator and transducer to accurately measure the pressure. After clamping the
specimen in the Shimadzu grips, the nitrogen spring was pressurized to the target clamping pressure,
Piarger- The target clamping pressure was determined from the target force (Fiqrger) based on the rated on-
contact force (Frqteq) and pressure (Prgeeq) Of the spring as shown in Eq. (6.10). At full extension, the
nitrogen spring had a rated on-contact force of 15.7 kN at a pressure of 150 bar. The force provided by a
nitrogen spring increases as the cylinder volume decreases due to Boyle’s Law. However, since the spring
was positioned such that contact occurred at approximately full extension, the on-contact force was taken

as the rated force provided by the spring without any correction for volume compression.

FrateaPratea
Piarger = —mF:ar; e (6.10)
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Combined application of 0.1 mm thick Teflon sheets, Petrolatum and PTFE spray lubricant minimized
friction between the dies and the specimen. A thin layer of Petrolatum was applied between two Teflon
sheets, which were then inserted between the specimen and each of the PTFE lubricated dies. The
Petrolatum tended to “squeeze out” once the spring was pressurized, so the Teflon sheets were folded to

direct the excess away from the sample surface and avoid damaging the speckle pattern.

Figure 75 shows the setup of the test equipment. Images were captured at 1 frame per second (FPS) by
a single 12 MP Flir Systems® camera with an InfiniProbe® MS microscopic lens. The crosshead speed of
the uniaxial tensile frame was set to SE-4 mm/s for the DP1180 and 0.017 mm/s for the AA6xxx-T81 shear
specimens to obtain a quasi-static von Mises equivalent strain rate of approximately 0.001 s™! in the center

of the gauge region.

-~

Light g S Nitrogen Supply
B

Figure 75: Experimental setup of through-thickness shear test equipment.
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Four repeats of AA6xxx-T81 and three repeats of DP1180 through-thickness shear were performed at a
nominal clamping force of 6 kN and 12 kN, respectively. Each clamping force is 50% higher than those
identified in the finite-element study of Chapter 6.2 to implement a design factor and guard against
experimental uncertainty. Due to the low fracture strains encountered in the DP1180 tests and excessive
rotation that affected the localization of strain in the gauge region (even with the 50% larger clamping force
than simulated), one specimen was cut in half using water jet machining. The two smaller specimens were
then tested at 6 kN and 12 kN of clamping force to assess whether a higher contact pressure would decrease
rotation and increase the fracture strain and localization in the gauge region. Strains were then extracted
with 4 circle inspectors and a 6 mm extensometer as shown in Figure 76 and Figure 77. The VSGL was
selected to correspond to the width of the shear zone seen in the DIC contours. A VSGL of 0.1 mm was

used for the DP1180 and 0.3 mm for the AA6xxx-T8]1.

AA6xxx-T81 RD

, .~ 6 mm Extensometer

©0.15 mm Circle Inspector-_

¢0.15 mm Circle Inspector —

~_ 0.25 mm & $0.15 mm
Circle Inspector

Shear Strain &,

-0.24 0.026

Figure 76: Contour plot showing shear strain at the image prior to fracture for a representative through-thickness shear test of
AA6xxx-T81 tested along the RD.
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Figure 77: Contour plot showing shear strain at the image prior to fracture for a representative through-thickness shear test of
DP1180 tested along the RD.

The friction strips were tested at 0.017 mm/s for the AA6xxx-T81 and 0.083 mm/s for the DP1180.
Ideally, both the shear and friction tests should be performed at the same velocity, but the test time for the
DP1180 was over two hours to fracture at SE-4 mm/s. Therefore, the velocity was increased to 0.083 mm/s
to equalize the strain rates over the 50 mm extensometer gauge length of the friction strip specimen and the
6 mm extensometer length employed for the shear specimen. Representative DIC images and placement of
the extensometer is shown in Figure 78. Two friction strip repeats were performed at each clamping force
of 6 kN and 12 kN for both alloys. The same VSGL as the through-thickness shear tests was used for the

friction strip tests.
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Figure 78: Typical field of view for DIC of friction strip tests showing 50 mm extensometer. Images shown are for (a) DP1180
and (b) AA6xxx-T81.

6.5 Results

The coefficient of friction was first estimated from the strip tests, then used to correct the through-
thickness shear stress at the same clamping force. After correcting for friction, the normalized shear stress
was obtained using the method of Rahmaan et al. (2017) for use in yield surface calibration. To assess the
quality of the test results, post-mortem optical microscopy photographs were taken of the shear specimens.

The surface roughness of each material was also correlated with the measured coefficient of friction.

6.5.1 Friction Tests

A representative correction procedure is illustrated in Figure 79. The uncorrected, clamped friction strip
test has a higher equivalent stress than standard uniaxial “dogbone” tests in the same direction due to the
presence of friction. Subtracting the biaxial stress and friction collapses the clamped curve to those of the
unclamped dogbone tests. In all cases, the biaxial stress was negligible, and the biaxial corrected response
overlapped the uncorrected curve. For the repeat shown below, a coefficient of friction of x = 0.1 was

needed to bring the curves into agreement.
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Figure 79: Illustration of correction procedure to obtain the coefficient of friction from a clamped friction strip test.

The final friction and biaxial corrected stress versus equivalent plastic strain curves are presented in
Figure 80. The unclamped tensile curves are the same as those shown in Figure 11 and Figure 7 for the
DP1180 and AA6xxx-T81, respectively. Excellent agreement between the hardening curves fit to the
unclamped data and the corrected friction strip tests occurs with proper selection of the coefficient of

friction.
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Figure 80: Stress-strain curves for clamped and unclamped tensile tests of (a) AA6xxx-T81 and (b) DP1180 at 6 kN and 12 kN of
clamping force. After biaxial and friction correction, each clamped tensile (friction strip test) agrees well with the hardening curve
fit to the unclamped tensile tests.
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The coefficients of friction that were used to bring each clamped curve into agreement with the
hardening curve and unclamped dogbone tests are shown in Figure 81. For DP1180, u = 0.09 £+ 0.01 at
F.=6kNandu =0.02 +£ 0.03 at F, = 12 kN. For AA6xxx-T81, © = 0.08 + 0.0l at F, = 6 kN and u =
0.03 £ 0.01 at F, = 12 kN. The calculated values are in excellent agreement with the range of 0.03-0.11

suggested by the literature review of Section 6.2.2.
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Figure 81: Coefficient of friction as a function of clamping force or pressure. For both (a) AA6xxx-T81 and (b) DP1180, the
coefficient of friction decreases with clamping force holding the test velocity constant.

The surface roughness was measured using a Taylor-Hobson Surtronic 3+ meter with a characteristic
gauge length of L, = 0.25 mm to be representative of the small sliding length encountered in the actual
shear tests. Considering that the surface of a material consists of peaks and valleys, different measures can
be defined to quantity the roughness as shown in Figure 82. The parameter R, is the average deviation from
the mean line between the peaks and valleys. The parameter Ry, is the largest peak-to-valley measurement
and R, is the average of the peak-to-valley measurements over the evaluation length L,, (Taylor-Hobson,

n.d.). A minimum of six repeated measurements were taken for each alloy.
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Figure 82: Surface roughness of DP1180 and AA6xxx-T81 calculated using a gauge length of 0.25 mm. The average and standard
deviation of three parameters, Rq, Ry and R: are presented as different measures of the surface roughness.

The surface roughness measurements support the relative values of the friction coefficients estimated
for DP1180 and AA6xxx-T81. The friction coefficient is higher for DP1180, which has the higher surface
roughness. The DP1180 coefficient of friction is approximately 50% higher than that of the AA6xxx-T81,
whereas the surface roughness is approximately 70% higher. The surface roughness is not the only
independent variable affecting the coefficient of friction, but it does account for some of the difference in

the material responses and supports the relative magnitude of the coefficients estimated for each material.

6.5.2 Through-Thickness Shear Tests

The shear stress versus shear strain responses are presented in Figure 83. Excellent repeatability was
observed for the AA6xxx-T81 material at a clamping force of 6 kN, with a fracture strain of 8,);3, =030+

0.02. The responses shown below were corrected for friction using u = 0.08 for all repeats. The three

repeats of the full width DP1180 samples showed reasonable repeatability at a clamping force of 12 kN but
were limited to an average fracture strain of only e,{y = 0.05 %+ 0.02. Decreasing the width of the specimens
significantly increased the fracture strain to 83}: = (0.13 £+ 0.01. The full-width repeats clamped at 12 kN

were corrected with u = 0.02. The half width repeats were subjected to double the clamping pressure, for
the same clamping force, and as such were corrected with g = 0.02 and u = 0 for F, = 6 kN and F, = 12

kN, respectively.
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Figure 83: Through-thickness shear stress versus shear strain curves for (a) DP1180 and (b) AA6xxx-T81 after correction for
friction. The half width specimens refer to the samples that were cut in half using water jet machining to investigate the effect of a
decreased width on the fracture strain.

For both alloys, the strains paths extracted from the circle inspector in the middle of the gauge region
confim that the deformation is primarily shear. The strain ratio for AA6xxx-T81 closely tracks the
theoretical ratio of p = -1 for shear, as shown in Figure 84 and is relatively constant up to fracture. The
average strain ratio for the full width DP1180 specimens is approximately p = -0.86. The half width
specimens show initial non-linearity which quickly transitions to simple shear. The fracture strain is 78%

higher than obtained using the full width specimens.
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Figure 84: Strain path at center point of (a) DP1180 and (b) AA6xxx-T81 through-thickness shear specimens. The DP1180 results
are shown at the two tested clamping forces of Fe =6 kN and F =12 kN.

For a specimen to be valid for constitutive characterization, the stress state should be both shear and
uniform across the gauge region. The major strain distribution at fracture across the gauge region of each
specimen is shown in Figure 85. A uniform state of shear was generated across 60% of the AA6xxx-T81

gauge region, with a transition to uniaxial tension at each edge. The loading was also relatively uniform
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across the gauge region of the DP1180 full width specimens. Although cutting the specimens in half
increased the major strain at fracture, the water jet process likely introduced microscopic defects that caused

the loading to be non-uniform across the gauge region.
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Figure 85: Major strain distribution across gauge width for through-thickness shear tests of (a) AA6xxx-T81 and (b) DP1180.
Results are shown for each repeat at the DIC image immediately preceding fracture.

The post-mortem optical microscopy revealed that the specimens underwent significant gauge region
rotation, more than predicted from the finite-element simulations. The AA6xxx-T81 fracture plane was
orientated at an angle of 19°, but the free surfaces of the specimen in contact with the clamping dies only
rotated by approximately 5° which is in good agreement with the simulated response. In contrast, the free
surface of both the DP1180 full width and half width specimens rotated by approximately 15°, inducing
bending at each notch as shown in Figure 86. Bending results in a superimposed tensile stress in the gauge

region, which is the source of the combined shear-tensile strain path observed for the DP1180 in Figure 84.
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(2) DP1180 RD

Figure 86: Post-mortem optical microscope measurements of through-thickness shear specimen rotation. (a) The DP1180
specimen, clamped with a force of 12 kN, rotates more than the (b) AA6xxx-T81 specimen, clamped with a force of 6 kN.
Significant bending and deformation occur at the notches in the DP1180 tests, resulting in the combined tensile-shear loading
measured at the center of the gauge region.

6.5.3 Calculation of Shear Stress

The shear stress ratios g,3/0gp were calculated from the load and strain data following the general
approach described in Rahmaan et al. (2017). For each alloy and repeat, the plastic work was estimated
from the shear strain and friction-corrected shear stress. The ratio of the shear stress to the equivalent stress
along the rolling direction, obtained from uniaxial tensile tests, was then calculated at the same level of

plastic work.

The instantaneous stress ratio is shown in Figure 87, compared to a von Mises material with g;3/0zp =
0.577 and a Tresca material with 0,3/0zp = 0.5. At the onset of localization, as shown in Table 18, the
average normalized shear yield stress for the DP1180 and AA6xxx-T81 alloys was 0.681+0.018 and
0.5010.0006, respectively. The shear yield stress for AA6xxx-T81 is in good agreement with a Tresca type
yield surface whereas the DP1180 shows a higher yield strength in shear than expected if assuming von

Mises type behavior. In both cases, the shear yield stress is relatively independent of plastic work.
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Figure 87: Instantaneous normalized shear yield stress as a function of plastic work for (a) AA6xxx-T81 and (b) DP1180.

Table 18: Average normalized through-thickness shear stress at the onset of localization for AA6xxx-T81 and DP1180. The sample
standard deviation is shown in brackets.

Clamping Force

Material Geometry (kN) 013/0Rp
0.50

AA6xxx-T81 RD Full (w = 25.4 mm) 6 (0.006)
0.68

Full (w = 25.4 mm) 12 (0.017)
. 0.65
DP1180 RD Half (w = 12.7 mm) 0(27

12 '

)
0.68

Overall (0.018)

6.6 Discussion

The friction and shear tests presented in Section 6.5 collectively represent a novel and simple method
for constitutive and fracture characterization of through-thickness shear in sheet metals. The strip friction
tests are a simple, efficient method for accurately determining the friction correction under the same
conditions as the shear tests. The ability to minimize relative velocity is a significant advantage to the test
fixture: one repeat of the DP1180 at a clamping force of 12 kN showed a coefficient of friction of zero
because, as the DIC images revealed, the test fixture moved with the sample due to the high clamping

pressure. Therefore, little friction is reflected in the load cell measurement due to minimal relative velocity

between the components.

For both alloys, the constitutive results are reasonable and repeatable. The DP1180 shear to tensile stress
ratio of 0.6840.02 is within 12% of the average in-plane shear ratio of 0.60 shown in Table 3. Although

the half width specimens generated a higher fracture strain for DP1180, the constitutive response is in good
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agreement with the results obtained from the full width specimens. While in-plane shear constitutive results
for AA6xxx-T81 are unavailable, the ratio of 0.50+0.006 is in agreement with the in-plane Tresca-type

shear behavior of the other tested aluminum, AA5182.

Although the objective of this thesis is constitutive characterization, the through-thickness shear
specimens should also be evaluated based on fracture performance. The ideal specimen is valid for both
constitutive and fracture characterization, to limit the number of tests and fully define a material’s properties

between yielding and fracture. Furthermore, delaying fracture increases the range of plastic work over

which to evaluate the constitutive response to large strains. The fracture strain of s,{y = (.30 reported for

the AA6xxx-T81 is 58% lower than the in-plane average of S,{y = (0.71 obtained by Amir Zhumagulov

using mini-shear tests. The DP1180 fracture strain was even lower, just 0.05-0.13 versus 0.68 in-plane

(Abedini ef al., 2020).

A fracture strain of just 7-19% of the in-plane values is unrealistic for the DP1180. Although some
directional difference is expected due to microstructure and texture variation between the in-plane and out-
of-plane directions (Gu et al., 2020), the large discrepancy seen in these results warrants further discussion.
Necking initiation at the notch root in uniaxial tension could lead to premature fracture as commonly
documented for in-plane shear tests (Peirs et al., 2012). However, Figure 53 reveals that the strain state is
relatively uniform in the tested geometry. Implementing eccentricity between the notches could suppress
gauge region rotation and increase fracture strains, as observed for in-plane shear tests by Peirs et al. (2012).
The wire EDM machining process and specimen width are two other potential sources of error which are

discussed in detail in Section 6.6.1.

6.6.1 Influence of the Wire EDM Process on DP1180 Fracture Strains

Wire EDM significantly alters the properties of the material in the vicinity of the machined feature, in
this case the notches. The heating/melting caused by the electric spark, followed by quenching/re-
solidification by the dielectric fluid induces a heat-affected zone around the notch. This zone, commonly
referred to as the “white” or “recast” layer is finer grained, harder, and more brittle than the base material
(Straka et al., 2016). Inside the white layer, the water quenching encourages martensite formation in steels,
further assisted by diffusion of carbon from the electrode into the workpiece (Azam et al., 2016; Uddeholm,
2007; Arooj et al., 2014). Amplifying the situation, the machined surface is characteristically dimpled,
porous, and rough as each arc strike removes a crater of material, while some molten metal globules are re-
cast onto the surface due to the high fluid quench rate (Azam et al., 2016; Arooj et al., 2014; Holmberg et

al., 2018). Numerous cracks may also exist in this region (Azam et al., 2016). As a result, failures in steel
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components produced by EDM often initiate inside the white layer (Klocke ef al., 2016) where the material

is more brittle, and stress concentrations exist due to the roughness and machining defects.

The influence of the white layer on the measured constitutive properties depends on the depth of
penetration and the amount of base material present in the gauge region. The depth of the EDM heat affected
zone may approach 50 um (Straka et al., 2016; Uddeholm, 2007), depending on the wire speed and pulse-
time settings (Azam et al., 2016; Uddeholm, 2007), which is in close agreement with the measured depth
of the burn marks in Figure 65. Considering that the DP1180 gauge length is nominally 0.3 mm, the heat
affected material makes up 37% of the gauge length. Assuming the same depth for the AA6xxx-T81, only
11% of the gauge region consists of the heat affected material. Therefore, the characterized yield strength
and fracture strain are more typical of the base material for AA6xxx-T81 while more strongly influenced
by the brittle, heat-affected white layer for the DP1180. Future work could consider specifying and
optimizing the EDM parameters to decrease the white layer depth or adopting a micromachining method

(Mativenga, 2018).

It is also important to consider the specimen width. The larger width increases the probability of
encountering a crack or other machining defect along the notch. This could explain the three-fold increase
in fracture strains using the half width specimens versus the original 25.4 mm wide design. If the specimen
width had been machined using CNC rather than abrasive water jetting, an even higher fracture strain may
have been realized. Unfortunately, water jetting the already machined specimens produced workpiece
chatter and gouging defects due to the difficulty in clamping the small specimen in the water jet machine.
The poor surface quality of the cut, shown in Figure 88 could have negated some of the positive effects of
decreasing the specimen width. Future work could consider trials using different specimen widths to

determine the ideal dimensions.

Figure 88: Gouging defects on the surface of a representative half width through-thickness shear specimen caused by water jet
machining.
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6.7 Summary of Through-thickness Shear Test Development

This chapter presented a novel, simple method for constitutive characterization of through-thickness
shear in sheet metals. One-millimeter thick DP1180 and 2.7 mm thick AA6xx-T81 sheet metals were
selected for the experimental study to evaluate the difference in properties between a representative steel
and aluminum, as well as the influence of sheet thickness. The specimen proposed by Gu et al. (2020) for
through-thickness fracture characterization was adapted for use in an existing clamping fixture available at
the University of Waterloo. Shear was promoted by two notches machined through the sheet thickness using
wire electric discharge machining (EDM). The gauge length, between the notches, was selected to be 0.3

mm for the DP1180 and 1 mm for the AA6xxx-T81 to ensure a shear failure inside the gauge region.

The clamping fixture was required to reduce sample rotation, which promoted bending in the gauge
region rather than shear. The clamping fixture consists of two dies, with the clamping force controlled by
a nitrogen spring. Minimum clamping forces of 8 kN for DP1180 and 4 kN for AA6xxx-T81 were
determined based on a finite-element study. The potential error in the shear stress response due to friction
was estimated as 12-26%, prompting the development of a so-called friction strip test to accurately

determine the coefficient of friction under analogous conditions as the through-thickness shear tests.

DIC speckle patterns generated by airbrushing and conventional spray painting were compared to
determine a suitable medium and method for speckling the through-thickness shear and friction strip
specimens. The ideal pattern was generated using acrylic ink and an Iwata Eclipse airbrush with a 0.35 mm
needle at 30 psi. The average speckle size was 18 um, which resulted in excellent spatial resolution over

the 0.3 mm gauge length of the DP1180 shear specimens.

Four to five repeats of the through-thickness shear tests were conducted for both DP1180 and A Axxx-
T81, with the rolling direction of the sheet parallel to the loading direction. A nearly ideal and uniform
simple shear stress state was observed for the AA6xxx-T81 in the gauge region, while the DP1180 results
showed more variation and a combination of tension and shear. Each shear stress response was corrected
for friction, by identifying the coefficient of friction under a similar contact pressure, test speed and
lubrication conditions. The through-thickness shear yield strength, normalized with respect to the uniaxial
tensile yield strength in the rolling direction, was found to be 0.50 and 0.68 for the AA6xxx-T81 and
DP1180, respectively.

The measured fracture strains of 0.3 for AA6xxx-T81 and 0.05 for DP1180 were lower than expected,
possibly due to specimen width, EDM related defects and gauge region rotation. Cutting a DP1180
specimen with water jet machining to decrease the width to 12 mm increased the fracture strain to 0.13,

possibly since a smaller width decreases the statistical likelihood of defects along the notch resulting from
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the EDM process. EDM of high-strength steels produces a brittle, martensitic and defect prone heat-affected
“white layer”, in which fracture initiates at a lower strain level than otherwise expected for the base material.
The influence of this white layer was highest for the DP1180, where 37% of the gauge length consisted of
material in the heat affected zone, versus only 11% in the AA6xxx-T81. Future work could consider
optimizations to the specimen design, including implementing eccentricity between the notches to minimize
rotation, adjusting the EDM parameters to minimize the white layer depth and testing various specimen

widths.
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Chapter 7 Calibration of Advanced Anisotropic Yield Functions under States

of Generalized Plane Strain

A master yield surface that fully captures the anisotropic yielding behavior of the material across all
stress states and sheet orientations is required for entry into finite element simulations used for formability
modelling. During a typical forming operation, different areas of the component will be subjected to
different stress states, orientated along different sheet orientations. Consider again the deep drawn cup used
for illustration in Chapter 1: the walls are in plane-strain tension, center in equal-biaxial tension, flange in
shear and bends in combined uniaxial tension and through-thickness shear. Rotating around the cup
activates different sheet orientations (RD, DD, TD). To properly simulate the forming of such a component,
a master yield surface is required that accurately predicts all stress states and interpolates intermediate

values, with respect to all sheet orientations.

As shown in Figure 89, each of the tested materials shows different yield behavior along the uniaxial to
plane strain arc calibrated with the HF85-PSC function. Ideally, the calibrated master yield surface should
duplicate the local arc shape, predict the through thickness shear stress and include the baseline
characterization data provided in Chapter 2. The plane stress Y1d2000, plane stress Vegter and 3-D Y1d2004

models were selected due to their popularity in industry and calibration flexibility.

— - —--Tresca Q |
"""""""" Iso FCC
Iso BCC TR ' I
— — -von Mises . /
— AAS182 B

DP1180
— AAGXXX-T4
AA6xxx-T81

Normalized TD Stress

0.2 1

0 0.2 0.4 0.6 0.8 1 1.2
Normalized RD Stress

Figure 89: Yield surface arcs calibrated along RD and TD between uniaxial tension and plane strain tension for each of the four
studied materials. Tresca, von Mises and isotropic Hosford yield criteria with exponents of 6 (BCC) and 8 (FCC) are included for
comparison.
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For any calibration procedure, the number of experimental data points must be greater than or equal to
the number of calibration parameters. The plane stress Barlat YId2000 model has eight parameters (a; —
ag), which are commonly calibrated using three uniaxial tension yield stresses and R-values at 0°, 45° and
90° from the rolling direction (0, 045, 099, Ry, R45, Rog), plus an equal-biaxial yield stress (o}, ) and R-value
(Rp). The exponent is commonly set to 6 or 8, for a BCC or FCC material, respectively. Calibrating the 18
parameters of 3D Y1d2004 conventionally requires seven uniaxial tension yield stress and R-values in 15°
increments from the rolling direction (g, 015, 039, 045, G609, 075, 099, Ry, R15, R30, R4s, Reo, R75, Rgg). The
additional 4 data points generally include the equal-biaxial yield stress and R-value, plus through-thickness
data which is often unavailable. Therefore, the 4 parameters corresponding to the through-thickness shear
terms are conventionally set to unity (Ces = C¢g = Ces = Cé = 1), implying isotropy in these loading
conditions. Simplifying with isotropy reduces the number of parameters requiring calibration to only 14
such that the uniaxial and equal-biaxial yield stresses and R-values are sufficient. Y1d2004 may be
simplified further by recognizing that two parameters are redundant, leaving only 16 independent
calibration parameters in the case of full 3-D or 12 in the case of plane stress (van den Boogaard et al.,
2015). Including the exponent as another free variable in the calibration therefore requires a minimum of
17 data points for 3-D and 13 for plane stress. Experimental data points in plane strain tension, along each
uniaxial to plane strain arc, and through-thickness shear provide additional inputs, not commonly available
in conventional yield surface calibrations. With the addition of these parameters, the number of available

experimental data points greatly exceeds the minimum required.

At its core, a phenomenological anisotropic yield function is a non-linear interpolation technique for
which the prediction should improve with additional data and parameters. The practical limitations of the
models include balancing ease-of-calibration and accuracy with the expense of the comprehensive material
testing needed to characterize the material across a range of stress states. Therefore, it would be
advantageous to determine if some experimental tests could be eliminated with minimal effect on the
accuracy of the calibration. For instance, hydraulic bulge and cruciform testing machines are inaccessible
for the average laboratory, making it difficult to obtain the equal-biaxial R-value and yield strength.
Although the introduction of the disc compression test has permitted evaluation of the equal-biaxial R-value
on a standard test frame, friction negatively affects the accuracy (Aretz and Barlat, 2014) and the test
enforces tension-compression symmetry which is not a valid assumption for all materials. In an attempt to
eliminate the need for equal-biaxial constitutive properties, Aretz et al. (2007) predicted the equal-biaxial
yield strength and R-value using Y1d2000 and only plane strain and uniaxial tension tests along the RD,
DD and TD of four materials. While the method reasonably predicted the equal-biaxial yield strength in

each case, the error in the prediction of the equal-biaxial R-value exceeded 41% for the IF steel and 35%
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for the 5000 series aluminum (Aretz ef al., 2007). It is worth considering if the additional arc data and plane
strain constraint introduced in the present approach would improve the prediction of the equal-biaxial R-

value.

The calibration schemes considered in this analysis are shown in Table 19 and Table 20 for Y1d2000
and Y1d2004, respectively. Each subsequent calibration scheme adds an additional loading condition to the
input data to determine the effect on the prediction. A calibration with no equal-biaxial data is also included
to determine if the equal-biaxial yield strength and R-value can be predicted using only the other data. Two
calibrations with a variable exponent are also considered to assess the impact of additional calibration
flexibility. Y1d2004 schemes 5, 6, 8 and 9 consider using only data along the RD, DD, and TD rather than
the conventional 7-directions. All schemes include the generalized plane strain constraints, and five equally

spaced stresses S*~> and normal vectors N~ along each uniaxial to plane strain tension arc.

142



Table 19: Calibration schemes for Y1d2000. Recommended exponent indicates a calibration at either m = 6 or m = 8 for a BCC
and FCC material, respectively. The variable exponent calibrations include the exponent as an additional free parameter.

Calibration Scheme

Recommended Exponent Variable Exponent

1 2 3 4 5 6 7 8

car car+ G N No
Conventional + PST + res + Data Equal- All Data Equal-
PST Ares Shear Biaxial Biaxial

o X X X X

T o T T B T
XXX X X X X X X X X X X X

S
<

PST
PST
O45

PST
099

535
Si5°
Sso°
N3~5
Ngs*°
Ngo®

xy

XXX X X X

T T R R T - B B

xy
0235

xy
O4s

T T T T B T T T T T R B S e
T T T T T B R T T T R o A e

T T B T T T B B R R
T T T T B B
T T R T T B B
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Table 20: Calibration schemes for Y1d2004. Recommended exponent indicates a calibration at either m = 6 or m = 8 for a BCC
and FCC material, respectively. The variable exponent calibrations include the exponent as an additional free parameter.

Calibration Scheme

Recommended Exponent Variable Exponent
1 2 3 4 5 6 7 8 9 10
ixpg; 3xUT 3xUT+ 3xUT  7xUT
Cal 1 Cal 1 Al + Ares + PST PST + + PST + PST
Conv. + + PST Data +TTS + Ares All Data Ares + + Ares + Arcs
PST  + Ares +SH ig}? TTf E ;H ++ 7;}9 J; Z;?
+ EB
0o X X X X X X X X X X
015 X X X X X X
030 X X X X X X
O45 X X X X X X X X X X
Oe0 X X X X X X
075 X X X X X X
090 X X X X X X X X X X
Ry X X X X X X X X X X
Ris X X X X X X
R3q X X X X X X
Rys X X X X X X X X X X
Reo X X X X X X
Rys X X X X X X
Rgo X X X X X X X X X X
op X X X X X X X
Ry X X X X X X X
alsT X X X X X X X X X
afs" X X X X X X X X X
os” X X X X X X X X X
Se5 X X X X X X X X
Sis?® X X X X X X X X
S30° X X X X X X X X
N3~5 X X X X X X X X
Nis® X X X X X X X X
NS X X X X X X X X
ay” X X X X X X X
Orrs X X X X X X X
e X X X X X X X
al* Iso Iso Iso X X X X X X X
UT = uniaxial tension Arcs = HF85-PSC calibrations .
PST = plane strain tension stresses and normal vectors from UT- ?[;S_zutl;; Ztlizifiﬁl?ness shear
EB = equal-biaxial tension PST
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To properly compare the objective function error of each calibration scheme, a consistent set of
weighting parameters w; must be selected and kept constant. However, the selection of the correct
weighting parameters a priori of the calibration is unknown as adjusting the weights can affect the goodness
of fit by prioritizing different loading conditions. Often the weights are determined manually by the analyst
through trial and error. Alternatively, these weights could be set equal to one, corresponding to an ordinary
least-squares (OLS) minimization as done by Khalfallah et al. (2015), set equal to the reciprocal of the
variance to favor experimental tests with greater repeatability or biased toward the stresses to favor a more
accurate load response in subsequent simulations (Abedini ef al., 2018; Barlat et al., 2005). Four different
weighting approaches were considered in this analysis: w, = wy = wy = 1 (unweighted), w, = 0.9 and
wr = wy = 0.1 (stress-biased), w, = 0.9/n and wg = wy = 0.1/n (normalized stress-biased) and w; =
1/s? (inverse variance) where w, is the weight applied to the stresses, wy is the weight applied to the R-
values and wy, is the weight applied to the normal vectors along the UT-PST arc. The weights in the
normalized stress-biased approach are divided by the number of tests under a particular loading condition,
n. The intent of the normalized stress-biased approach is to enforce the same overall influence of each
loading condition on the calibration, regardless of the number of directions tested. For instance, in the case
of 7 uniaxial stresses, 3 plane strain stresses and 1 equal-biaxial stress, the weights would be w7 = 0.129,

wkST = 0.3 and wEB = 0.9.

To minimize dependency of the starting point on the optimization, the MultiStart Matlab® subroutine
was used to search for a global minimum in the objective function represented by Eq. (7.1). MultiStart tests
multiple trial points generated from a random scatter algorithm and reports the point with the lowest

objective function value (MathWorks, n.d.). A minimum of 20 trial points were evaluated.

Gpred 2 Rpred 2 Npred NEXP 2
error = Zl 1 Wal (Ul XD ) + Zl 1WR (R exp 1) + Zl 1WNl |Npred| |Al’exp| 1 (7-1)
i i

The squared error (SE) formula of Eq. (7.2) was used to compare each calibration and weighting scheme

to determine the best method.

SE = Z(xmodel _ xexp)2 (7_2)

The variable x represents the error under a particular loading condition, for example plane strain tension or
through-thickness shear. When comparing weighting schemes, and using the unweighted approach as a

baseline, the increase or decrease in squared error is given by Eq. (7.3).
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ASE = SEweighted _ SEunweighted (7.3)

Similarly using the conventional calibration as the baseline, the increase or decrease in squared error for

each alternate calibration method is given by Eq. (7.4).
ASE = SECali _ SECal 1 (Conventional) (7.4)

In this manner, the optimum weighting and calibration approaches may be quantitatively identified as those

which result in the lowest squared error.

7.1 Calibration of a Master Yield Surface for DP1180

The DP1180 shows relatively mild anisotropy, with normalized plane strain tensile yield stresses close
to expected for a typical BCC material. However, as will be demonstrated in this analysis, a more optimal
calibration may be obtained by adopting a variable yield function exponent, rather than using the
recommended value of m = 6. Y1d2000, Y1d2004 and Vegter criteria all capture the experimentally

measured constitutive behavior.

7.1.1 Impact of Weighting Approach for DP1180

Table 21 through Table 23 summarize the difference in objective function error for each Y1d2000
calibration scheme. Green cells/negative values indicate an improved calibration under the respective
loading condition compared to the unweighted scheme. Red cells/positive values indicate a higher error. In
general, the stress-biased approach improves the response under plane strain tension and shear at the
expense of the other loading conditions and the overall error. The normalized stress-biased approach
generally favors the equal-biaxial stress, due to its proportionally higher weight in the calibration, compared
to the other stress states. The inverse variance approach favors shear and plane strain tension, due to the
comparatively lower experimental standard deviations. Overall, the unweighted approach consistently

offers the better calibration.
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Table 21: Error between the stress-biased and unweighted Y1d2000 calibrations for DP1180. Green highlighted cells indicate
decreased error compared to the unweighted approach while red highlighted cells indicate a higher error compared to the
unweighted approach. Except for the conventional calibration, the stress-biased approach generally results in greater error than the
unweighted approach.

Description

oyr Ryr Opst O Ry Osh Overall

0 N AN W B~ W

Conventional

Cal 1 +PST

Cal 1 + PST + Arcs

Cal 1 +PST + Arcs + Shear
All Data (m = 6)

No EB (m = 6)

All Data (Variable Exponent)
No EB (Variable Exponent)

2.0E-03
1.3E-04 1.1E-03 5.0E-05
4.7E-05 4.3E-03 -1.8E-04 -2.7E-04 4.4E-03
4.8E-05 4.5E-03 -6.2E-05 3.5E-05 2.5E-03 -3.3E-04 6.6E-03
6.0E-05 3.6E-03 1.1E-02 -2.9E-04 1.4E-02
-2.6E-06 4.6E-03 6.2E-03 -8.5E-05 1.0E-02

7.0E-05
2.3E-05
-4.6E-06

-3.4E-04

Table 22: Error between the normalized stress-biased and unweighted Y1d2000 calibrations for DP1180. Green highlighted cells
indicate decreased error compared to the unweighted approach while red highlighted cells indicate a higher error compared to the
unweighted approach. Except for the conventional calibration, the stress-biased approach generally results in greater error than the
unweighted approach.

# Description oyr Ryr Opst oy Ry Osh Overall
1 Conventional -1.3E-04 m- -5.7E-04  -1.3E-03
2 Call+PST 2.5E-04 3.2E-04 2.7E-04  -13E-05 23E-04 -8.3E-05 9.7E-04
3 Cal1+PST+ Arcs 1.1E-04 8.2E-06 3.3E-04 2.9E-04 1.9E-04 9.1E-04
4 Cal 1+ PST+ Arcs + Shear 2.6E-02 3.0E-02
S AllData n =)

6 NoEB(m=06) 8.4E-04 1.8E-02 1.1E-04 -1.1E-03  2.0E-02
7  All Data (Variable Exponent) 2.3E-04 9.4E-03 3.0E-05 -7.7E-04  9.3E-03
8 No EB (Variable Exponent) 1.3E-04 1.3E-02 4.5E-05 -1.7E-04  2.3E-02

Table 23: Error between the inverse variance method and unweighted Y1d2000 calibrations for DP1180. Green highlighted cells
indicate decreased error compared to the unweighted approach while red highlighted cells indicate a higher error compared to the
unweighted approach. The calibrations improve under plane strain and shear loading, due to the low experimental variance under
these conditions, but overall have a higher error than the corresponding unweighted calibrations.

Description

oyr Ryr Opsr o Ry Osh Overall

[o- IR e LY, I N VS I

Conventional

Cal 1 +PST

Cal 1 + PST + Arcs

Cal 1 + PST + Arcs + Shear
All Data (m = 6)

No EB (m = 6)

All Data (Variable Exponent)
No EB (Variable Exponent)

-3.9E-04  -1.4E-05
3.4E-05 5.7E-03
8.6E-04 -1.2E-06 = -4.5E-04 1.6E-05 5.7E-03  -5.8E-04  5.5E-03

-3.8E-04  6.9E-05 -3.5E-04
8.4E-05  -2.1E-05

-3.9E-05  5.8E-04 -2.1E-04
1.9E-04 5.7E-04 7.3E-05

2.7E-04 7.4E-04

-2.9E-04 42E-03  -3.9E-04
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The unweighted approach also produces the optimal calibration of Y1d2004. As shown in Table 24, the

stress-biased approach predominantly favors plane strain tension and shear, although with a worse

calibration overall. The normalized stress-biased approach, summarized in Table 25, improves calibration

6 the most by eliminating oscillations in the R-values and uniaxial stresses when calibrating to data along

only the RD, DD, and TD. The inverse variance method, shown in Table 26, does not offer any consistent

improvement and is not recommended.

Table 24: Error between the stress-biased and unweighted Y1d2004 calibrations for DP1180. Green highlighted cells indicate
decreased error compared to the unweighted approach while red highlighted cells indicate a higher error compared to the
unweighted approach. The stress-biased approach generally results in greater error than the unweighted approach.

Overall

# Description oyr RUT OpsT Op Rb Osp
1 Conventional 1.2E-05 2.8E-04 - 3.1E-06 4.8E-04
2 Cal1+PST -1.4E-06 2.2E-05 -1.9E-04 4.8E-06 2.0E-03 -7.2E-05
3 Call+PST+ Arcs -2.0E-05 5.7E-04 7.9E-06 4.3E-03 -7.5E-05
4 All Data (m = 6) -2.0E-05 1.7E-03 9.4E-06 4.4E-03 -1.9E-04
5 All Data along RD/TD/DD + TTS 4.0E-05 39602 1 SE-05 4.5E-03
+EB (m = 6) OE- S Db D
6 All Data along RD/TD/DD + TTS 2 6E-04 7 OE-06 2 9E.04
(m = 6)—No EB o T e
7 All Data (Variable Exponent) 2.3E-05 3.2E-04 -5.2E-06 4.9E-04 9.9E-06
g AllDataalong ROIDIDDHTIS ) \p ooy 003 18E-06 25606 4.0B-04  2.7E-06
+ EB (Variable Exponent) o o a i o T
9 All Data along RD/TD/DD + TTS 1 1E-05 1 1E-04 37E06
(Variable Exponent) — No EB T o e
10 No EB (Variable Exponent) -3.2E-06  4.0E-05 -2.0E-06 3.0E-03
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1.8E-03
4.5E-03
5.6E-03

3.6E-02

7.2E-02

8.5E-04

1.4E-03

6.5E-03

3.1E-03




Table 25: Error between the normalized stress-biased and unweighted Y1d2004 calibrations for DP1180. Green highlighted cells
indicate decreased error compared to the unweighted approach while red highlighted cells indicate a higher error compared to the
unweighted approach. In 7 out of 10 calibrations, the normalized stress-biased calibrations have a higher objective function error
than the corresponding unweighted calibrations.

# Description oyr Ryr Opst o Ry Osp Overall
1.5E-05 9.8E-05 -m
1.7E-05 44E-04  -33E-05 = 2.9E-03
6.2E-04  -3.8E-04  2.1E-03
6.9E-04

1 Conventional
2 Call+PST
3 Call+PST+ Arcs
4 All Data (m = 6)
All Data along RD/TD/DD + TTS

2.2E-03
1.4E-03

5 4 EB (m = 6) -2.4E-05 -3.4E-04
6 All Data along RD/TD/DD + TTS 3 4E-04
(m = 6) —No EB i

3.3E-05 6.6E-04 2.1E-06 7.0E-04

7 All Data (Variable Exponent)

All Data along RD/TD/DD + TTS

8 5.3E-06 7.5E-04

+ EB (Variable Exponent) 12E-06  RZECH

-3. 1E_07 -

-7.9E-06  -9.0E-05

9 All Data along RD/TD/DD + TTS L SEL05 A3E05
(Variable Exponent) — No EB e o

10 No EB (Variable Exponent) 1.3E-05 1.7E-04

Table 26: Error between the inverse variance method and unweighted Y1d2004 calibrations for DP1180. Green highlighted cells
indicate decreased error compared to the unweighted approach while red highlighted cells indicate a higher error compared to the
unweighted approach. In all cases, the invers variance calibrations have a higher overall objective function error than the
corresponding unweighted calibrations.

# Description oyr Ryr Opsr o) R, Ogp Overall
2 Call+PST 2.4E-04 5.1E-02  4.6E-04 -2.5E-05 9.9E-04 2.5E-04 5.3E-02
3 Call+PST+ Arcs 6.0E-05 5.2E-03 1.4E-04 1.7E-04  4.8E-03 1.6E-04 1.1E-02
4 All Data (m = 6) 2.1E-02 1.3E-04 4.9E-03 2.3E-03 2.8E-02

All Data along RD/TD/DD + TTS

5 4 EB (m = 6) 7.5E-04 -49E-04  8.9E-02
6 All Data along RD/TD/DD + TTS 7 0E-04 53E.02 AJE04  7.6E-0
(m = 6) —No EB o o e o

7 All Data (Variable Exponent) 2.3E-03 1.1E-01

All Data along RD/TD/DD + TTS

8 + EB (Variable Exponent) 2.2E-04 4.8E-02  -45E-05  4.8E-05 5.2E-06  -5.3E-06  4.9E-02

9 All Data along RD/TD/DD + TTS 1 7E-04 S 2E-00 5 3E-05
(Variable Exponent) — No EB T o e

10 No EB (Variable Exponent) 1.0E-03 - 2.4E-03

1.2E-05

4.6E-05

3.9E-02

5.6E-02
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7.1.2 Impact of Calibration Scheme for DP1180

The performance of each calibration scheme is evaluated against the conventional calibration following
the same approach as Section 7.1.1. The red cells/positive values in Table 27 indicate a higher error than
the conventional calibration while green cells/negative values indicate a lower error. By adding more data,
the calibration tends to improve under each loading condition except equal-biaxial yielding. Omitting the
equal-biaxial R-value and stress in Calibrations 6 and 8 results in a large error in the prediction under these
loading conditions. Even with the plane strain tension data and additional intermediate points along the arc,
the equal-biaxial point cannot be accurately predicted. The best overall calibration, selected as the master
yield surface for this material, is obtained by including all data and adopting a variable exponent as done
in Calibration 7.

Table 27: Error between each calibration scheme and the conventional calibration for Y1d2000 and DP1180. Green highlighted
cells indicate decreased error compared to the conventional scheme while red highlighted cells indicate a higher error compared to

the conventional scheme. The additional data consistently decreased the error under most loading conditions except for the equal-
biaxial yield stress. All calibrations adopt the unweighted approach.

# Description oyr Ryr OpsT o) Ry Osp Overall
1 Conventional 0 0 0 0 0 0 0

2 Call+PST -1.9E-04 -1.5E-04 -33E-04 1.1E-06 | -2.8E-04 -6.2E-04 -1.6E-03
3 Cal1+PST+ Arcs -1.5E-04 -1.6E-04 -5.1E-04 19E-05 | -2.7E-04 -8.0E-04 -1.9E-03
4 Cal 1 +PST+ Arcs + Shear 4.1E-04 3.4E-04 -49E-04 5.5E-05 | -2.7E-04 -1.7E-03 -1.6E-03
5 All Data (m = 6) 1.4E-04 = -1.5E-04 -5.0E-04 6.3E-05 | -2.7E-04 -1.3E-03 -2.1E-03
6 NoEB (m=6) -2.0E-05 | -1.5E-04 -9.8E-04 4.9E-04 4.0E-02  -1.4E-03 | 3.8E-02
7  All Data (Variable Exponent) -1.9E-04 -1.5E-04  9.4E-05 1.8E-05 | -2.4E-04 -29E-03 -3.4E-03
8 No EB (Variable Exponent) -1.9E-04 -1.3E-04 -5.0E-04 | 1.1E-03 9.7E-03 | -3.6E-03  6.5E-03

Figure 90 shows the predicted stresses and R-values for each calibration scheme with respect to sheet
orientation. Except for calibrations 6 and 8, where the equal-biaxial data is omitted from the calibration,
the Y1d2000 model is in good agreement with the experimental data collected under each loading condition.
Calibration 7, the master yield surface for this material, still overpredicts the plane strain yield strength
along the rolling direction by 3% since the Y1d2000 model does not have enough flexibility to perfectly

capture the full anisotropic yielding behavior.
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As shown in Table 28, the best Y1d2004 model is obtained by including all data in the calibration and
adopting a variable exponent. Compared to the conventional calibration, Calibration 7 — the selected
Y1d2004 master yield surface — offers a 97% improvement in predictive accuracy under plane strain loading
and a 95% improvement under shear loading. As observed using Y1d2000, the equal-biaxial stress and R-
value cannot be predicted using plane strain, uniaxial and shear data alone. Even with the additional arc and
plane strain data, the equal-biaxial data point cannot be eliminated, nor can the number of tensile tests be

down selected to only three directions without compromising the accuracy of the calibration.

Table 28: Error between each calibration scheme and the conventional calibration for Y1d2004 and DP1180. Green highlighted
cells indicate decreased error compared to the conventional scheme while red highlighted cells indicate a higher error compared to
the conventional scheme. The additional data consistently decreased the error under uniaxial tension, plane strain tension and shear.
All calibrations adopt the unweighted approach.

# Description oyr Ryr Opsr o) R, Ogp Overall

1 Conventional 0 0 0 0 0 0 0
Cal 1 +PST -3.7E-05 -3.3E-06 -52E-04 -7.8E-06 2.8E-05 -5.7E-04 -1.1E-03

-6.1E-04 -2.7E-05  6.6E-05 -5.7E-04 -1.3E-03

-4.6E-04  8.0E-06 7.1E-05  -1.6E-03  -2.0E-03

2
3 Call+PST+ Arcs
4 All Data (m = 6)
All Data along RD/TD/DD + TTS

S YEB(m=6) 49E-04  7.6E-06 2.1E-03  6.3E-02
6 All Data along RD/TD/DD + TTS S 0E-05 ) .03
(m =6)—No EB OB -2.2E-

7 All Data (Variable Exponent)

All Data along RD/TD/DD + TTS
+ EB (Variable Exponent)

All Data along RD/TD/DD + TTS
(Variable Exponent) — No EB

2.4E-04

9

1.4E-04

-7.3E-05

4.9E-05

10 No EB (Variable Exponent)

Figure 91(c, d) illustrate how the plane strain tensile stress and shear stress are not well predicted under
the conventional approach, but near perfectly predicted by including the additional data and adopting a
variable exponent. Under the conventional approach, the error in the predicted plane strain yield strength is
up to 3%. Optimizing the exponent adjusts the local curvature of the surface, allowing the function to match
the range of plane strain tensile and shear stresses, which is not possible using the recommended exponent
of 6. Oscillations in the uniaxial stress (a) and R-value (b) predictions of Calibrations 5 and 6 result from
the inclusion of data along only the RD, DD, and TD in the calibration. The equal-biaxial point must be

included to prevent erroneous predictions of the R-value (e) and stress (f).
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7.3 Selection of Master Yield Criteria for DP1180

For both Y1d2000 and Y1d2004, the optimal master yield surfaces were obtained by calibrating to all

experimental data points, adopting a variable exponent and setting all weights equal to 1. The variable

exponent acts as an additional calibration parameter which “fine-tunes” the overall curvature of the surface,

particularly in the shear and plane strain regions. The predicted plane strain yield strengths are within 0.4%
of the experimental values using Y1d2004 and 3% using Y1d2000. Figure 92 illustrates the stark difference
in the shapes of the Y1d2004 and Y1d2000 surfaces, particularly in the shear and plane strain conditions.

Y1d2004 is also able to perfectly predict the through-thickness shear stress of orrg = 0.675 whereas

Y1d2000 is by nature plane stress and only suitable for two-dimensional applications. The coefficients of

both functions are presented in Table 29 and Table 30.
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Figure 92: Calibrated (a) Y1d2004 and (b) Y1d2000 yield surfaces represented in plane stress 077 — 622 — 012 space for DP1180.

Table 29: Coefficients of the selected Y1d2000 master yield surface for DP1180.

Material m aq a, a3 oy as o oy ag
DP1180 4.7123 0.8965 1.0527 1.0759 0.9863 1.0105 09126 0.9898  1.0090
Table 30: Coefficients of the selected Y1d2004 master yield surface for DP1180.
Material m Ci2 Cis Cyy Cjs Cy Cs, (W ('
DP1180 19.3417 0.2654 0.4864 0.8357 0.8325 0.4413 0.1913 0.5622  -0.5355
cont’d Céo C1z 13 C31 C33 C3, C3, Cia Css Céo
DP1180 -0.5355  0.8554 1.4708 1.4404 1.6083 13841 0.9212 1.1567  1.0000 1.0000
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The Vegter, Y1d2000 and Y1d2004 master yield surfaces are compared in Figure 93 with o = aggp,
0, = orp and o1, = 0. The Vegter criterion discussed in Section 1.3.2.3 is the optimal 2-D (plane stress)
model because of its flexible design. Shear, plane strain tension, uniaxial tension and equal-biaxial tension
are all perfectly predicted because they are hinge points in the Bezier curve interpolation. The generalized
plane strain constraints are straightforward to enforce in the Vegter model by setting n; = n, = —1 and
A, = A; at simple shear and n; =1, n, = 0 and A, = A,/2 at plane strain tension. The plane strain
constraints resolve a fundamental uncertainty with the original Vegter function where o257 was unknown
and had to be arbitrarily selected along the arc between uniaxial and equal-biaxial tension. Although the
calibration of the Vegter criterion does not include the points along the uniaxial to plane strain tension arc,
the intermediate stress and strain values are well captured. Coincidence of the Vegter and HF85-PSC yield
functions, between uniaxial and plane strain tension, is further evidence of the suitability of the HF85-PSC
function and the role of the plane strain constraint in collapsing the profiles of disparate yield functions

onto a single, unique arc.
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Figure 93: Y1d2000, Y1d2004 and Vegter master yield surfaces calibrated for DP1180 comparing (a, c, d) predicted and
experimental stresses, (b) R-values, (f) plastic strain directions and (e) the overall plane stress surface. The predicted equal-biaxial
yield stresses are o = 1.006 and o» = 1.002 for Y1d2004 and Y1d2000, respectively. The predicted equal-biaxial R-values are Ry =
0.939 and Ry = 0.933 for Y1d2004 and Y1d2000, respectively.



7.2 Calibration of a Master Yield Surface for AA5182

The AA5182 shows much more severe anisotropy than the DP1180, with a high plane strain yield stress
along the RD, but a transition to Tresca-like behavior along the DD and TD. No through-thickness shear
tests were conducted for this material and thus the Y1d2004 out-of-plane parameters were set equal to 1,
corresponding to their isotropic values. The Vegter criterion is preferred for 2-D simulations, since Y1d2000
cannot capture the directional variation of the plane strain yield strength. The extra flexibility of the

Y1d2004 criterion allows it to better capture the anisotropic plane strain yield strength in 3-D applications.

7.2.1 Impact of Weighting Approach for AA5182

Following the same approach described in Section 7.1, the stress-biased and normalized weighting
schemes were evaluated against the unweighted approach as a baseline. The inverse variance method was
not considered since it did not produce reliable results for the DP1180. The stress-biased approach, shown
in Table 31 for Y1d2000, resulted in a comparatively better calibration that the unweighted approach,
particularly under uniaxial tension, plane strain tension and shear. The normalized approach, shown in
Table 32 for Y1d2000, resulted in a generally higher error, particularly under plane strain tension.

Table 31: Error between the stress-biased and unweighted Y1d2000 calibrations for AA5182. Green highlighted cells indicate
decreased error compared to the unweighted approach while red highlighted cells indicate a higher error compared to the

unweighted approach. The stress-biased approach generally results in comparable, or lower overall error than the unweighted
approach.

# Description oyt Ryr Opst o) Ry Osn Overall
1 Conventional -6.9E-04  6.3E-03 4.8E-04 9.2E-05  -2.5E-04 -2.0E-05 5.9E-03
2 Call+PST -9.6E-05 | -5.1E-04  -4.0E-04 -6.2E-06 8.1E-04 -2.1E-05 -2.2E-04
3 Cal 1 +PST + Arcs -3.2E-04 | 2.6E-02 -19E-03  9.9E-05 1.1E-02  -2.3E-05 = 3.4E-02
4 Cal 1 +PST + Arcs + Shear -6.6E-04 [ 3.2E-02  -1.7E-03  2.9E-05 8.8E-03 = -2.3E-04  3.9E-02
5 AllData(m=38) -7.9E-03 1.2E-02 | -1.5E-02  4.4E-04 5.7E-03 | -3.7E-04 | -5.0E-03
6 NoEB(m=28) -3.3E-04 | 2.3E-02 -2.0E-03 | 5.1E-04 8.2E-02  -7.7E-05 1.0E-01
7 All Data (Variable Exponent) -44E-03  3.0E-03  -1.5E-03 | -1.3E-04 1.0E-04 4.1E-04 | -2.6E-03
8 No EB (Variable Exponent) -5.9E-05  2.7E-03  -4.7E-05  23E-05 | -24E-01 -2.1E-04 @ -2.4E-01
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Table 32: Error between the normalized stress-biased and unweighted Y1d2000 calibrations for AA5182. Green highlighted cells
indicate decreased error compared to the unweighted approach while red highlighted cells indicate a higher error compared to the
unweighted approach. The normalized approach generally results in higher error than the unweighted approach.

# Description

oyt Ryr Opst Op Ry Osn Overall

1 Conventional

Cal 1 +PST

Cal 1 +PST + Arcs

Cal 1 +PST + Arcs + Shear
All Data (m = 8)

No EB (m = 8)

0 N AN W B~ W

No EB (Variable Exponent)

-1.4E-04  3.7E-03
5.5E-04  2.1E-03
-7.8E-06  1.0E-02
-4.5E-04  1.3E-02

o] 15502

-4.5E-04  3.5E-02 -6.9E-04  9.9E-05

All Data (Variable Exponent) - 9.9E-03

1.1E-04 -9.6E-04 3.7E-03
-4.3E-06 3.2E-03
-1.4E-04  -2.2E-05 1.1E-02
5.9E-06 -2.4E-04 1.3E-02

-6.7E-05  -4.8E-04  -2.4E-03

-1.7E-04
-1.4E-04
7.8E-05

1.6E-04

1.8E-02

1.2E-03 1.2E-02 -2.3E+00

While the stress-biased approach offers the best overall calibrations of the Y1d2000 yield function to the

AAS5182 experimental data, the unweighted approach is preferred for the Y1d2004 function as illustrated in

Table 33 and Table 34. Seven out of the 10 calibrations were worse than the corresponding unweighted

calibration using the stress-biased approach and eight out of the 10 calibrations were worse using the

normalized approach.

Table 33: Error between the stress-biased and unweighted Y1d2004 calibrations for AA5182. Green highlighted cells indicate
decreased error compared to the unweighted approach while red highlighted cells indicate a higher error compared to the
unweighted approach. The stress-biased approach generally results in greater error than the unweighted approach.

# Description

1 Conventional

2 Call+PST

3 Call+PST + Arcs

4 All Data (m =8)
All Data along RD/TD/DD + TTS
+EB(m=38)
All Data along RD/TD/DD + TTS
(m =8)—No EB

7 All Data (Variable Exponent)

All Data along RD/TD/DD + TTS
+ EB (Variable Exponent)

All Data along RD/TD/DD + TTS

0 (Variable Exponent) — No EB

10 No EB (Variable Exponent)

- 2.6E-03 6.9E-03 2.4E-05 9.0E-06

oyr Ryr Opst Op Ry Ogp Overall

2.7E-03
-1.6E-04  7.7E-03 ~ -1.2E-03  4.1E-05 6.5E-04 6.9E-03
1.7E-05 3.5E-02 -1.9E-03  2.1E-04 8.1E-03  -3.4E-05  4.1E-02
-1.1E-04 = 3.5B-02 -1.9E-03  2.0E-04 8.1E-03 - 4.1E-02

1.7E-04 7.9E-03 1.1E-02  -1.4E-05 1.7E-02
3.1E-04 -7.8E-05
2.5E-04 4.0E-04 3.6E-04 1.2E-03

4.0E-05 3.8E-04 = -1.3E-03 5.5E-04 1.5E-05  -2.3E-05  -3.6E-04

2.1E-05 - 1.1E-05 1.5E-05  -8.2E+00 -4.3E-06 -8.8E+00

1.1E-04 2.6E-04  -4.1E-05 -7.7E-06 -1.0E-05
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Table 34: Error between the normalized stress-biased and unweighted Y1d2004 calibrations for AA5182. Green highlighted cells
indicate decreased error compared to the unweighted approach while red highlighted cells indicate a higher error compared to the
unweighted approach. The normalized approach generally results in greater error than the unweighted approach.

# Description oyr Ryr Opst o) Ry Osp Overall
1 Conventional 4.2E-04 3.5E-03 - -3.3E-05  -2.7E-06 - 2.0E-02
2 Call+PST 7.0E-04 3.6E-02 1.3E-03 = -3.1E-04 3.6E-04 -6.9E-05  3.8E-02
3 Cal1+PST + Arcs -7.2E-04  5.5E-02 1.6E-03 ~ -23E-04 6.5E-04 -8.7E-05  5.6E-02
4 AllData (m=3§) -7.6E-04  5.2E-02 1.6E-03  -2.3E-04 6.9E-04 -2.5E-04 5.3E-02

. All Data along RD/TD/DD + TTS 7 9E-00 5 SE-03 3 1504 8 OE-02
+EB (m=38) o o T o
6 All Data along RD/TD/DD + TTS 1.0B-03 3 9E-04
(m = 8) —No EB o R

1.1E-03

1.1E-05

7 All Data (Variable Exponent) -1.7E-04 1.0E-02

All Data along RD/TD/DD + TTS

+ EB (Variable Exponent) 1.8E-04

42E-06  -2.4E-04  2.3E-03

9 All Data along RD/TD/DD + TTS 9.9E-04
(Variable Exponent) — No EB o

10 No EB (Variable Exponent) 4.8E-04 5.3E-04 7.7E-04 -2.0E-04

7.2.2 Impact of Calibration Scheme for AAS182

3.3E-04 6.7E-05  -1.0E+01 -1.7E-04 -1.2E+01

Considering the stress-biased calibrations for Y1d2000, the optimal master yield surface was obtained
by including all data in the calibration and adopting a variable exponent (Calibration 7). As indicated in
Table 35, pronounced errors appear in the equal-biaxial stress and R-value when omitting these data points
from the calibration. As a result of the Tresca-like shape, a corner is promoted at the equal-biaxial point.
The R-value is therefore extremely sensitive to small changes in the curvature in this region. Without the
actual experimental data to anchor the calibration, the predicted equal-biaxial R-value tends toward

artificially high values (R, > 2).
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Table 35: Error between each calibration scheme and the conventional calibration for Y1d2000 and AA5182. Green highlighted
cells indicate decreased error compared to the conventional scheme while red highlighted cells indicate a higher error compared to
the conventional scheme. The additional data consistently decreased the error under most loading conditions except for the equal-
biaxial yield stress. All calibrations adopt the stress-biased weighting approach.

# Description oyr Ryr OpsT ap R, Ogh Overall

1 Conventional 0 0 0 0 0 0 0

2 Call+PST -6.7E-03 - -1.3E-02  43E-04 -2.1E-04 -6.8E-05 -
3 Call+PST + Arcs -7.2E-03 =~ 1.9E-02 -1.5E-02  5.3E-04 1.0E-02  -6.8E-05  7.0E-03

4 Cal1+PST+ Arcs + Shear 7.7E-03 | 26B02 | -1SE-02 4404  TOE-03 | BAE0A  1IE-02

5 AllData(m =8) -7.5E-03  9.7E-03  -1.5E-02 43E-04 5.0E-03 | -2.5E-04 -7.4E-03

6 NoEB(m=298) -7.3E-03  1.7E-02  -1.6E-02

7  All Data (Variable Exponent) -8.0E-03  -4.1E-03  -1.7E-02

8 No EB (Variable Exponent)

Figure 94 shows the predicted stresses and R-values for each calibration scheme with respect to sheet
orientation. In general, Calibration 7 accurately captures the material response along each loading
condition. The conventional calibration overpredicts the plane strain yield strength by 2-11% since the
Tresca-type yielding observed along the DD and TD cannot be captured by the recommended exponent of

8 for FCC materials.
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fit to the experimental data for AA5182. Red circles and asterisks represent the available experimental data with the error bars
corresponding to the experimental standard deviations. The equal-biaxial yield stress was estimated as the average of the in-plane
uniaxial tensile stresses with the average of the corresponding standard deviations.

161



The Y1d2004 calibrations also improve with additional data beyond that typically included in the
conventional calibration. Table 36 indicates that including the plane strain and arc data improves the
calibration accuracy in the respective regions of the yield surface. By omitting the equal-biaxial R-value,
the variable exponent calibrations tend towards a sharp-cornered Tresca-type response to suit the plane
strain yield strength along DD and TD. The sharp corner is sensitive to small changes in curvature at the
equal-biaxial point, producing an equal-biaxial R-value of 7 or higher. As observed with the Y1d2000
calibration and analysis for the DP1180, the equal-biaxial constitutive behavior cannot be accurately
predicted using only plane strain, tensile, arc and shear data. Calibration 7 is selected as the optimal

calibration for AA5182 and as the Y1d2004 master yield surface.

Table 36: Error between each calibration scheme and the conventional calibration for Y1d2004 and AA5182. Green highlighted
cells indicate decreased error compared to the conventional scheme while red highlighted cells indicate a higher error compared to
the conventional scheme. The additional data and assumption of a variable exponent consistently decreased the error under most
loading conditions except for the equal-biaxial yield stress. All calibrations adopt the unweighted approach.

# Description oyr Ryr Opsr o) R, Ogp Overall
1 Conventional 0.0E+00  0.0E+00  0.0E+00  0.0E+00  0.0E+00  0.0E+00  0.0E+00
2 Cal1+PST 28E-04  99E-04 | 2.0B-02 39E-04 24E-06 -3.0B-03 -22E-02
3 Cal 1 +PST + Arcs 41E-04  34E-03 | 22B-02 48E-04 95E-05 | 28E-03 -2.1E-02
4 Al Data (m = §) 34E-04  34E-03 | 22B-02 47B-04 84E-05 | -29E-03 -2.1E-02
5 flé}? ?Z ik:;g RDIDDD*TTS g0 04 0,102 | 20B02  44B-04  1IE-04 | 3.0B03  6.7E-02

All Data along RD/TD/DD + TTS

(m =8 —No EB 2.9E-02

9.5E-02 9.9E-02

-2.8E-03

7 All Data (Variable Exponent)

All Data along RD/TD/DD + TTS

8 4 EB (Variable Exp) 5.1E-06

9 All Data along RD/TD/DD + TTS T 3 8E+01 saEsol
(Variable Exp) — No EB i . .

10 No EB (Variable Exponent) -4 9E-04 1.6E-03

Comparing the ten Y1d2004 models in Figure 95 illustrates the effect of each calibration scheme. The
plane strain yield stresses (c) are overpredicted under the conventional calibration by 3-13%. The uniaxial
R-values (b) at 15°, 30°, 60° and 75° orientations are not well predicted by Calibrations 5, 6 and 9, which
were only calibrated to the test data captured along RD, DD, and TD. Ultimately, all available experimental

data should be included for the most accurate calibration.
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Figure 95: (a, c, d, e) Normalized stresses, (b, f) R-values and (g) plastic strain directions for the unweighted Y1d2004 calibrations
fit to the experimental data for AAS5182. Red circles and asterisks represent the available experimental data with the error bars
corresponding to the experimental standard deviations. Due to the absence of bulge or cruciform test data, the equal-biaxial yield
stress was estimated as the average of the in-plane uniaxial tensile stresses with the average of the corresponding standard

deviations.
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7.2.3 Selection of Master Yield Criteria for AAS182

Although the contours of the Y1d2000 and Y1d2004 models appear largely similar under plane stress

conditions, as illustrated in Figure 96, the Y1d2004 model offers an improved prediction under plane strain

tension and shear. The improved prediction of the Y1d2004 model is particular apparent for off-axis loading

where the principal stresses are not coincident with the RD-TD directions. Table 37 and Table 38 provide

the coefficients of the master Y1d2000 and Y1d2004 models, respectively.

1.2 L . t . . 1.2 L . t . .
AA5182 l AA5182 l
Y1d2004 Y1d2000
(a) 0.8 1 (b) 0.8 1

2 ]
£ 041 £ 041
2} 2}
= =
1) 1
N N
= 01 T = 01 T
£ g
Z Z
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= =
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Figure 96: Calibrated (a) Y1d2004 and (b) Y1d2000 yield surfaces represented in plane stress o717 — 022 — 012 space for AAS182.

Table 37: Coefficients of the selected Y1d2000 master yield surface for AA5182.

Material m aq a, a3 oy as o oy ag
AAS5182 16.6551 0.9577 1.0403 1.0576 1.0403 1.0280 1.0762 1.0550 1.0879
Table 38: Coefficients of the selected Y1d2004 master yield surface for AA5182.
Material m Ci2 13 Cyy Cys Cs, C;, Cyy Css
AAS182 38.5288 1.0890 0.8017 1.0088 0.8739  -0.6740 -0.1167 1.1160 1
cont’d Céo 12 Ci3 Cx C3 C3 Cs3, Cis Css Cés
AAS5182 1 0.8731 1.0242 0.7585 1.0745 1.2187 1.2622 0.8328 1 1

Under plane stress loading, Y1d2004 and the Vegter criterion are in good agreement, as illustrated in
Figure 97. Y1d2000 lacks the calibration flexibility to capture the highly anisotropic plane strain response.
The Vegter criterion accurately predicts the intermediate points along the uniaxial to plane strain arcs,
locally obtained from the HF85-PSC criterion. The error in the predicted plane strain yield strength is less
than 2% for Y1d2004 and 3% for Y1d2000.
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Figure 97: Y1d2000, Y1d2004 and Vegter master yield surfaces calibrated for AA5182 comparing (a, c, d) predicted and
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yield stresses are g» = 0.9394 and g5 = 0.9568 for Y1d2004 and Y1d2000, respectively. The predicted equal-biaxial R-values are R»
=1.031 and Ry = 1.013 for Y1d2004 and Y1d2000, respectively.
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7.3 Calibration of a Master Yield Surface for AA6xxx-T81

The AA6xxx-T81 alloy is mildly anisotropic and thus well modelled by the Y1d2000, Y1d2004 and
Vegter criteria. Unweighted and stress-biased weighting approaches were compared to demonstrate that the
best calibrations were consistently achieved with all weights set equal to unity. The inclusion of additional
experimental data improves the yield surface predictions, particularly under shear and plane strain loading,
which are not well captured in the conventional calibration approach. The Vegter criterion should be
employed for two-dimensional finite-element simulations using shell elements, whereas Y1d2004 must be

used for three-dimensional solid element simulations.

7.3.1 Impact of Weighting Approach for AA6xxx-T81

The unweighted approach produces the best calibrations for AA6xxx-T81. Since the normalized stress-
biased and inverse variance methods produced poor calibrations of the previous DP1180 and AA5182
master yield surfaces, only the unweighted and stress-biased approaches were considered for AA6xxx-T81
and AA6xxx-T4. As shown in Table 39, the unweighted calibration approach produced the better overall
Y1d2000 calibration in all cases except Calibration 3. Similarly, for Y1d2004, Table 40 illustrates that the

unweighted calibration produced the better overall calibration.

Table 39: Error between the stress-biased and unweighted Y1d2000 calibrations for AA6xxx-T81. Green highlighted cells indicate
decreased error compared to the unweighted approach while red highlighted cells indicate a higher error compared to the
unweighted approach. Although the predictions in plane strain tension and equal-biaxial tension are improved, the stress-biased
approach generally results in higher overall error compared to the unweighted approach

# Description oyr Ryr Opsr o) Ry Osh Overall
1 Conventional 1.6E-04 2.6E-03 | -2.6E-04 -1.2E-04 6.9E-04 1.5E-04 3.2E-03
2 Call+PST 1.5E-04 2.4E-04 | -2.0E-04 -8.9E-05 2.4E-04 3.3E-05 3.7E-04
3 Cal1+PST + Arcs 5.4E-05 | -2.7E-04  -8.9E-05 -2.9E-05 | -1.5E-05 | -3.5E-06 | -3.6E-04
4 Cal 1 +PST + Arcs + Shear 7.8E-05 8.9E-03  -3.2E-05 | 7.4E-05 5.7E-03  -7.8E-05 1.5E-02
5 AllData(m =8) 8.6E-05 1.2E-03 ~ -8.0E-05 -2.8E-05 & -1.2E-05 -5.4E-05 1.1E-03
6 NoEB(m=28) 1.4E-04 2.1E-03  -6.5E-05 -4.1E-05 4.2E-04 | -1.1E-04 | 2.5E-03
7 All Data (Variable Exponent) 1.2E-04 2.5E-03 2.5E-04  -1.1E-04  8.9E-04 5.0E-04 4.1E-03
8 No EB (Variable Exponent) 1.1E-04 1.2E-02 1.3E-03  -43E-04 6.3E-03 1.4E-03 2.0E-02
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Table 40: Error between the stress-biased and unweighted Y1d2004 calibrations for AA6xxx-T81. Green highlighted cells indicate
decreased error compared to the unweighted approach while red highlighted cells indicate a higher error compared to the
unweighted approach. The stress-biased approach generally results in greater error than the unweighted approach.

# Description oyr Ryr Opst o Ry Osp Overall
1 Conventional 3.5E-05 1.7E-03  -4.1E-05 -2.2E-05  4.8E-06 4.7E-05 1.7E-03
2 Call+PST 3.2E-05 2.3E-03  -1.8E-04 -4.6E-05 24E-06 @ -1.2E-04 2.0E-03
3 Call+PST + Arcs -4.1E-05 1.4E-03 - -5.3E-04  4.3E-04 2.1E-04 1.1E-03
4 All Data (m =8) 1.0E-04 1.9E-03 7.4E-05  -2.3E-04 1.6E-04 3.3E-04 2.3E-03

All Data along RD/TD/DD + TTS

5 _ 9.7E-05 3.0E-03  -1.3E-04 -14E-04  3.1E-04 2.9E-03
+EB(m=38)

6 All Data along RD/TD/DD + TTS 5.0E-05 7 2E-06 3 6E-04 4.5E-03
(m =8)—No EB e o B T

7 All Data (Variable Exponent) 3.3E-04 = -2.0E-04 7.3E-04

All Data along RD/TD/DD + TTS

-2.8E-06

8 iEB (Variable Exponent) IBE “SIELS
9 All Data along RD/TD/DD + TTS 1.9E-04
(Variable Exponent) — No EB o
10 No EB (Variable Exponent) 1.3E-04 4.5E-03 2.8E-05 -1.6E-04 5.1E-04 1.4E-04 5.2E-03

7.3.2 Impact of Calibration Scheme for AA6xxx-T81

The optimal calibration is achieved for Y1d2000 and Y1d2004 when all data is included in the calibration
and the yield exponent is selected to best fit the experimental data. Calibration 7 represents the master
Y1d2000 yield surface for this material. The addition of the plane strain and arc data improves the accuracy
of the fit in the plane strain region, versus the conventional calibration that lacks this data. As shown in
Table 41 and Figure 98, the equal-biaxial yield stress and R-value are inaccurately predicted when the
corresponding experimental data is omitted from the calibration.

Table 41: Error between each calibration scheme and the conventional calibration for Y1d2000 and AA6xxx-T81. Green
highlighted cells indicate decreased error compared to the conventional scheme while red highlighted cells indicate a higher error

compared to the conventional scheme. The additional data and the assumption of a variable exponent decreased the error under
most loading conditions except for the equal-biaxial yield stress. All calibrations adopt the unweighted approach.

# Description oyr Ryr Opst o) R, Osh Overall
1 Conventional 0 0 0 0 0 0 0

2 Call+PST 33E-06  -9.0B-05 [AJB08 | 14E-06 < -52E-06 7.E-06  -9.0E-05
3 Cal1+PST+ Arcs 4.6E-06 -2.2E-04 -9.1E-06 -6.0E-06 1.9E-05 1.7E-06  -2.1E-04
4 Cal 1 +PST + Arcs + Shear 6.7E-06 -5.2E-06 -2.3E-06 2.1E-06 -9.4E-06

5 AllData(m=38) -9.6E-05 2.0E-05 -1.8E-03
6 No EB (Variable Exponent) -9.0E-05 -1.7E-03
7  All Data (Variable Exponent)

8 NoEB@m=23§)
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Similarly, for Y1d2004, the inclusion of the plane strain, arc and shear data decreases the overall
objective function error versus the conventional calibration to only uniaxial tensile and equal-biaxial data.
The error in the equal-biaxial stress and R-value tends to increase as more experimental data is included in
the calibration since the Y1d2004 function is not flexible enough to completely capture all stress states.
Table 42 shows large errors in the predicted uniaxial tensile stress and R-value if experimental data along
only the RD, DD and TD is used in the calibration. Even though the equal-biaxial data is omitted from the
calibration, Calibration 10 is selected as the Y1d2004 master yield surface since it better models the plane
strain and shear constitutive responses shown in Figure 99. It should be noted that the conventional
calibration offers a particularly poor prediction of the plane strain response because the assumed exponent

of 8 is too high for the AA6xxx-T81 alloy.

Table 42: Error between each calibration scheme and the conventional calibration for Y1d2004 and AA6xxx-T81. Green
highlighted cells indicate decreased error compared to the conventional scheme while red highlighted cells indicate a higher error
compared to the conventional scheme. The additional data consistently decreased the error under plane strain tension and shear,
with the best overall calibration obtained by omitting the equal-biaxial data from the calibration. All calibrations adopt the
unweighted approach.

# Description oyr Ryr Opst o) Ry Osp Overall
1 Conventional 0 0 0 0 0 0 0

2 Call+PST 4.1E-05 - -6.8E-05 -3.1E-05  -1.3E-04
3 Cal1+PST + Arcs 5.7E-05 6.6E-04  -3.1E-04  6.3E-04 3.7E-06 2.9E-04
4 AllData (m=38) 4.3E-05 2.1E-03 ~ -5.1E-04 2.0E-04 = -14E-06 -6.2E-04 1.2E-03

All Data along RD/TD/DD + TTS
5 5.9E-05 3.4E-03 -29E-04 4.8E-05 -3.1E-04  2.9E-03
+EB(m=38)

All Data along RD/TD/DD + TTS

6 (m—8 NoEB 43E-05 = 43E-03 -6.3E-04 25E-04 22E-04 | -6.1E-04 3.6E-03

7 All Data (Variable Exponent) 25E-06  83E-04 -3 JE-04  4.5E-05 - 46E-04 5.0E-05

g AllDataalong RDOTDDDHTIS 3 0 o U asp 03 45p04 32805  -13E-07 | 61E04  2.5E-03
+ EB (Variable Exp) 0L~ B -4.0b- 2E- -1.3E- -6.1E- 5E-

All Data along RD/TD/DD + TTS
(Variable Exp) — No EB

10 No EB (Variable Exponent) -6.4E-04  2.0E-04
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7.3.3 Selection of Master Yield Criteria for AA6xxx-T81

Due to the relatively mild anisotropy of AA6xxx-T81, both Y1d2004, shown in Figure 100(a), and

Y1d2000, shown in Figure 100(b), offer comparable predictions under plane stress loading. The
corresponding parameters are shown in Table 43 and Table 44 for Y1d2000 and Y1d2004, respectively.

Under 3-D loading, the Y1d2004 model perfectly predicts the through-thickness shear stress of 6775 = 0.5.

(b) 12

(a) 12 : :
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Figure 100: Calibrated (a) Y1d2004 and (b) Y1d2000 yield surfaces represented in plane stress o717 — 622 — 012 space for AA6GXxX-

T81.

Table 43: Coefficients of the selected Y1d2000 master yield surface for AA6xxx-T81.

Material m aq a, a3 oy as o oy ag
AA6xxx-T81 6.4502 09571 09462 1.0524 1.0637 1.0310 1.0129 0.9639  1.0615
Table 44: Coefficients of the selected Y1d2004 master yield surface for AA6xxx-T81.
Material m Ci2 Cis Cy Cis Ci (% Cyy Cys
AA6xxx-T81 6.3623 1.3561 0.9821 0.9924 09145 1.2298  0.4953 1.1788  1.0237
cont’d Céo 12 Ci3 23 C33 C3y C3, Cia Css Céo
1.4586  0.7344 1.1972  1.1972

AA6xxx-T81 1.0237  0.1587  0.5191 0.7370  0.6441 1.2434

Y1d2004 approaches the predictions of the Vegter criterion, particularly for the uniaxial R-values as

evidenced by Figure 101(b). The extremes of the plane strain tensile yield stress variation, shown in Figure

101(c), cannot be captured by Y1d2000 or Y1d2004. While all three criteria accurately predict the direction

of the plastic strains along the uniaxial to plane strain arc along RD, only the Vegter criterion accurately

models the TD response seen in Figure 101(f).
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7.4 Calibration of a Master Yield Surface for AA6xxx-T4

In contrast to the AA6xxx-T81 aluminum, the AA6xxx-T4 alloy shows more anisotropy, with a higher
plane strain yield strength along the rolling direction than along the diagonal and transverse directions. The
alloy also shows substantial directional variability in the uniaxial tensile strength and R-value. The
anisotropic response is reasonably captured by Y1d2000 and Y1d2004 when employing a stress-biased
calibration approach that includes all data and a variable exponent. For two-dimensional finite-element

simulations, the Vegter criterion offers the optimal calibration.

7.4.1 Impact of Weighting Approach for AA6xxx-T4

Table 45 compares the error in the stress-biased calibrations against the corresponding calibrations
obtained using an unweighted approach. Biasing the Y1d2000 calibration to the stresses consistently
improves the prediction in plane strain, at the expense of the fit to the equal-biaxial and uniaxial tensile R-
values. Overall, the unweighted approach results in a better overall calibration that captures both the stress
and strain-based data.

Table 45: Error between the stress-biased and unweighted Y1d2000 calibrations for AA6xxx-T4. Green highlighted cells indicate

decreased error compared to the unweighted approach while red highlighted cells indicate a higher error compared to the
unweighted approach. The stress-biased approach generally results in greater overall error than the unweighted approach.

# Description oyt Ryr Opst o) Ry Osn Overall
1 Conventional 54E-04  20E-03 -2.7E-04 & -1.6E-05 | 2.6E-04 | -1.4E-04 2.4E-03
2 Call+PST -3.6E-05 | 1.3E-03 -5.1E-05 -44E-07 24E-04 -1.2E-05 1.4E-03
3 Call+PST + Arcs -9.7E-05 | -1.4E-03 -7.1E-05 1.7E-07 2.0E-03 1.4E-05 4.7E-04
4 Cal 1 +PST + Arcs + Shear 7.1E-05 1.7E-03 = -5.2E-05 1.6E-07 | -2.3E-05 | -2.7E-05 1.7E-03
5 AllData(m=38) -1.2E-04 -1.1E-04 -12E-04 -5.8E-07 2.9E-03 1.4E-06 2.6E-03
6 NoEB(m=23) -2.6E-04  8.4E-04 -2.7E-04  2.1E-08 2.0E-02 2.5E-05 2.0E-02
7 All Data (Variable Exponent) -5.2E-04 | -5.4E-05 | -6.0E-04  6.0E-05 1.0E-03 ~ -5.6E-05 | -1.6E-04
8 No EB (Variable Exponent) -4.0E-05 | 1.5E-03 -3.7E-04 -33E-06 | 2.5E-02  -2.9E-05 | 2.6E-02

Table 46 illustrates that, for Y1d2004, the unweighted calibration is preferred in 90% of the calibration
schemes. A weight of wy = 0.1 is not sufficient to capture the extreme variability in the uniaxial R-values.
However, the stress-biased approach is selected because it provides the best calibration in the plane strain

loading condition (Calibration 7), which is a focus of this thesis.
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Table 46: Error between the stress-biased and unweighted Y1d2004 calibrations for AA6xxx-T4. Green highlighted cells indicate
decreased error compared to the unweighted approach while red highlighted cells indicate a higher error compared to the
unweighted approach. The stress-biased approach generally results in greater error than the unweighted approach.

# Description oyr Ryr Opst oy R, Osp Overall
1 Conventional 7.2E-06 3.2E-04 - -4.3E-06  9.0E-05 -m
2 Call+PST 1.5B-05  17E-03 -9.1E-05 -37E-05 7.9E-04 37E-05  2.4E-03
3 Cal1+PST + Arcs [I2E04 30B03 -46B-04 -97E-05 20E-03  23E05  4.5E-03
4 All Data (m = 8) 9.1E06 = 25E-03 -3.7E-04 S8S8E-07 24E-03 -23E-05 45E-03
5 flég 2(‘2 il‘:;g RDADDD*TIS ) 0E05  0.1E-04 2.9E-04 -98E-06 23E-03  S.1E-06  2.9E-03

All Data along RD/TD/DD + TTS

(m = & - No EB 2.1E-04

3.8E-07 -3.4E-05 1.7E-02

7 All Data (Variable Exponent) 1.4E-05 -3.4E-05 2.8E-03

g All Data along RD/TD/DD + TTS 57505
+ EB (Variable Exponent) el

9 All Data along RD/TD/DD + TTS 1405
(Variable Exponent) — No EB el

10 No EB (Variable Exponent) 8.4E-06 ! -2.0E-04

7.4.2 Impact of Calibration Scheme for AA6xxx-T4

1.7E-05

83E-04  -3.9E-05

The addition of plane strain and arc data, which are ordinarily omitted in a conventional calibration,
improves the accuracy of the Y1d2000 model. Including all data and calibrating the exponent as an
additional parameter, offers the best overall prediction in Table 47. The overall error for Calibration 7 — the
selected Y1d2000 master yield surface — is 53% lower than the conventional Calibration 1. Figure 102(c)
demonstrates the anchoring effect of the equal-biaxial point. If the equal-biaxial data is omitted, as in the
case of Calibrations 6 and 8, the Y1d2000 model is better able to predict the experimental plane strain yield

strengths, at the expense of large errors in the equal-biaxial R-value and stress, seen in Figure 102(e, f, g).

Table 47: Error between each calibration scheme and the conventional calibration for Y1d2000 and AA6xxx-T4. Green highlighted
cells indicate decreased error compared to the conventional scheme while red highlighted cells indicate a higher error compared to
the conventional scheme. The additional data consistently decreased the error under uniaxial tension and plane strain tension, with
the best calibration obtained by adopting a variable exponent and including all data. All calibrations adopt the unweighted approach.

# Description oyr Ryr OpsT ap Ry Ogp Overall
1  Conventional 0 0 0 0 0 0 0

2 Call+PST PIBE05 | 68E-04 -1.8E-05 13E-07  3.6E-07 -16E-06 -6.9E-04
3 Cal 1l +PST + Arcs -1.9E-04  -42E-03 -1.2E-04 1.6E-07 1.8E-03 3.5E-05  -2.6E-03
4 Cal1+PST + Arcs + Shear -2.1E-05  -6.9E-04 -1.1E-04 -1.1E-03
5 AllData(m=38) -2.8E-04 -2.5E-04 -3.2E-03
6 NoEB(@m=38) J -4.7E-04  -2.0E-09 1.6E-02
7  All Data (Variable Exponent) -7.0E-04  6.2E-05 7.7E-04 3.5E-05

174



Uniaxial Tensile Stress

0.97 1 0.55 T T T T T
0 15 30 45 60 75 90 0 15 30 45 60 75 90
Orientation (°) Orientation (°)
L1 0.575
(©)
L1 0.57
© 1.09 1
g % 0.565
g 1.08 L i=}
£ ] T 056
A 1,07 A o i
o - 2
& “ 0.555
= 1.06 1
1.05 1 L 0.55 1
1.04 0.545
0 15 30 45 60 75 90 0 15 30 45 60 75 90
Orientation (°) Orientation (°)
0.976 LIS
(e) § <—— Input Data (f) v
0.974 1
L1r
0972
Q Q
=1
5 0971 ;3 1.05 A
o
0.968 o
° 1 *
0.966 | . 8 <«—— Input Data
0.964 — 0.95
Equa] Biaxial Stress Equa] Biaxial R-value
135
> ;
< 105 * Convent Ilonal
g X —-—-— Conventional+P ST
g 95 O — — — Conventional+PST+Arcs
3 { +eesvennns Conventional+P ST +Arcs+Shear
2 45 A ——— All Data, Recommended Exp
~ VvV — — —No EB,Recommended Exp
g 15 O rererenns All Data, Variable Exp
'% K ——e— No EB, Variable Exp
2 15¢
[a)
45 . . . . .
0 15 30 45 60 75 90

In-Plane Loading Angle, 6 (°)
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Similarly, the Y1d2004 master yield surface was selected as Calibration 7 with a variable exponent and
all the experimental data included in the calibration. Including the shear and plane strain data, as shown in
Table 48, improves the predictions under these loading conditions by upwards of 64% versus the
conventional approach.

Table 48: Error between each calibration scheme and the conventional calibration for Y1d2004 and AA6xxx-T4. Green highlighted
cells indicate decreased error compared to the conventional scheme while red highlighted cells indicate a higher error compared to
the conventional scheme. The additional data consistently decreased the error under shear and plane strain tension, with the best

overall calibration obtained by adopting a variable exponent and including all data in the calibrations. All calibrations adopt the
stress-biased weighting approach.

# Description oyr Ryr OpsT o) R, Ogp Overall

1 Conventional 0 0 0 0 0 0 0
2 Call+PST 1.3E-03
3 Call+PST+ Arcs 2.7E-03
4 AllData (m =38) 2.2E-03

All Data along RD/TD/DD + TTS

5 4 EB (m =8) -1.9E-05
6 All Data along RD/TD/DD + TTS 4.85-05
(m=38)—No EB aa
7 All Data (Variable Exponent) -3.9E-05 3.5E-03
All Data along RD/TD/DD + TTS
8 -8.6E-06 | 6.7E-03 -4.7E-03

+ EB (Variable Exp)

All Data along RD/TD/DD + TTS

? (Variable Exp) — No EB 3.6E-05

5.8E-05 7.7E-02

10 No EB (Variable Exponent) -4.4E-05

The Y1d2004 model, while more flexible than Y1d2000, cannot perfectly capture the anisotropic
constitutive response of the AA6xxx-T4 under all loading conditions. Figure 103(c, d) illustrates how the
plane strain and shear yield stresses are overpredicted in the conventional calibration, and better — albeit
imperfectly — predicted when included in Calibrations 2-10. Including only tensile data along the RD, TD
and DD in the calibration, and allowing for a variable exponent, provides the necessary flexibility to
accurately predict the anisotropy in the plane strain yield strength. Unfortunately, this approach leads to a

poor prediction of the uniaxial tensile stress and R-value shown in Figure 103(a, b).
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7.4.3 Selection of Master Yield Criteria for AA6xxx-T4

Both Y1d2004, shown in Figure 104(a), and Y1d2000, shown in Figure 104(b), offer comparable
predictions of the in-plane yielding behavior. However, Y1d2004 has more flexibility to capture the
directional dependent plane strain response than Y1d2000. The corresponding parameters are shown in
Table 49 and Table 50 for Y1d2000 and Y1d2004, respectively. Note that the Y1d2004 out-of-plane

parameters Css, Cég, Cox and Cg are set equal to unity since no through-thickness shear tests were

performed for this alloy.

t * * 1.2 * *
AA6xxx-T4
(b) Y1d2000

0.8 1

1.2
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Y1d2004

N
o
~
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Figure 104: Calibrated (a) Y1d2004 and (b) Y1d2000 yield surfaces represented in plane stress o717 — 622 — 012 space for AAGXxX-
T4.

Table 49: Coefficients of the selected Y1d2000 master yield surface for AA6xxx-T4.

Material m aq a, as ay, as ag ay ag

AA6xxx-T4 6.7671 09616  0.9707 1.0256 1.0397 1.0312 1.0366  0.9959 1.0473

Table 50: Coefficients of the selected Y1d2004 master yield surface for AA6xxx-T4.

Material m Ci2 13 € Ca3 C3 Cs2 Cis Css
AA6xxx-T4 26.3222 0.6630 1.1896 0.5511 1.1032 0.8073 0.8179 0.6303 1

cont’d Céo Cy; Ci3 €3, C33 €3, C3, Cia Css Coo
AA6xxx-T4 1 1.2518 1.0678 1.1592 1.1430 0.6593 0.8400 1.2202 1 1

Figure 105 compares the master Y1d2000 and Y1d2004 calibrations with the Vegter criterion. The
predicted plane strain yield stresses are similar for both the Y1d2004 and Vegter criteria. The sharp increase

in the uniaxial tensile yield stress at 60° from RD cannot be predicted by either Y1d2000 or Y1d2004.
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7.5 Summary of Master Yield Surface Calibration

Y1d2000, Y1d2004 and Vegter master yield surfaces were calibrated for each of the four materials
studied in this thesis. Ten Y1d2004 calibration schemes and eight Y12000 calibration schemes were
analyzed by successively adding additional data to the conventional calibration that used only uniaxial
tensile and equal-biaxial data. For each material, the calibration schemes were compared using a consistent
set of weighting parameters selected as the optimum of: w,; = wi = wy = 1 (unweighted), w, = 0.9 and
wgr = wy = 0.1 (stress-biased), w, = 0.9/n and wy = wy = 0.1/n (normalized stress-biased) and w; =
1/s? (inverse variance). The additional parameters afforded by the Y1d2004 function provide greater
calibration flexibility not available to the Y1d2000 function, and closer agreement to the Vegter criterion in

plane stress loading.

The addition of the plane strain yield strength and five arc points along the uniaxial-to-plane strain arc
improved the model accuracy in the plane strain loading condition. Without knowledge of the plane strain
tensile strength from experimental tests, the predicted value is controlled by the assumed exponent of the
yield function. Addition of the plane strain yield strength alone decreased the squared error in plane strain
tension by up to 82% (as in the case of the stress-biased calibration of Y1d2004 for AA6xxx-T4) compared
to the conventional calibration and holding the weighting method constant. Improving the accuracy of the
yield surface in plane strain tension translates to an improved prediction of the onset of necking.
Consequently, sheet metal forming processes may be optimized to avoid early failure and maximize the

utility of the selected material.

Optimal calibrations were achieved by including all the available shear, plane strain tensile and uniaxial
tensile data in the calibration while also adopting a variable yield exponent, calibrated to the experimental
data as an additional parameter. Selected Y1d2004 exponents of 26.3 for AA6xxx-T4, 6.36 for AA6XxxX-
T81, 38.53 for AA5182 and 19.34 for DP1180 challenge the conventional wisdom that exponents of m =8
and m = 6 are most appropriate for FCC and BCC materials, respectively. The use of the recommended
exponent limits the flexibility of the Y1d2004 function, particularly affecting the curvature in the uniaxial

to equal-biaxial tensile domain.

Although commonly omitted due to a lack of experimental data, calibrating the through-thickness shear
stress is important for accurate solid element simulations. The experimentally determined through-thickness
shear stress was included in the master yield surface calibration for DP1180 and AA6xxx-T81. Shear
parameters of Ces = C¢q = —0.5355 and Ceg = Céy = 1 perfectly described the through thickness shear
stress of oprg = 0.675 for DP1180 while parameters of Ceg = C¢g = 1.0237 and Ceg = Cey = 1.1972
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corresponded to the shear stress ratio of grrg = 0.5 for AA6xxx-T81 at the variable exponents noted

previously.

Despite the addition of the plane strain tensile point and constraint, it is not recommended to down select
the experimental data in other sheet and loading orientations to minimize the extent of the experimental
testing. Omitting the uniaxial tensile stress and R-value at 15, 30, 60 and 75 degrees caused oscillations in
the respective predicted responses for DP1180 and AA5182. Similarly omitting the equal biaxial stress and
R-value leads to poor predictions of the respective response, particularly for AA5182 where the R-value is
highly sensitive to the curvature along the plane strain tensile to equal-biaxial tensile arc due to the Tresca-
like shape. Poor prediction of the equal-biaxial R-value under a reduced experimental testing regime is in
line with the findings of Aretz et al. (2007). All available experimental data should be included for the most

accurate master yield surface calibration.

In each case, the Vegter criterion provided the optimal plane stress calibration to the available
experimental data. Each of the uniaxial tensile, plane strain tensile, shear and equal-biaxial stresses are
defined exactly in the model as a Bezier curve hinge point while the equal-biaxial and uniaxial tensile R-
values control the Bezier normal vector orientations. Using the plane strain constraint to fix the location of
the plane strain tensile point resolves a fundamental issue with the original Vegter criterion, in which the
location was unknown and allowed to occur anywhere on the uniaxial to equal-biaxial tensile arc.
Furthermore, the generalized plane strain constraints at shear and plane strain tension are straightforward

to enforce by controlling the direction of the Bezier normal vectors at the respective hinge points.
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Chapter 8 Evaluation of Master Yield Surfaces

A calibrated master yield surface is critical to the accurate simulation of test coupons and components.
This chapter evaluates the master yield surfaces calibrated in Chapter 7 in both plane strain tension and
through-thickness shear. In Section 8.1, notch tests of Geometry B are simulated and compared to the
corresponding experimental results along the limiting direction of each of the four materials tested in this
thesis. In Section 8.2, a through-thickness shear test of the AA6xxx-T81 alloy is simulated and compared

to the experimental load-displacement and stress-strain responses.

8.1 Evaluation in Plane Strain Tension

Post-necking simulations of the experimental tests conducted with Geometry B are ideal for evaluation
of the master yield surfaces calibrated in Chapter 7. The magnitude and profile of the stress/strain
distribution along the gauge width is sufficiently different than that of the Geometry A notch used for
calibration, such that the simulated response will only be accurate if the plane strain yield strength and
curvature of the UT-PST arc are correctly defined. Poor prediction of the response of a different geometry
could indicate that the calibrated plane strain yield strength is somehow biased towards the choice of
Geometry A used in this analysis, rather than an independent material parameter. Furthermore, like a
uniaxial tension test, strain localization through the thickness causes a shift toward plane strain tension
along much of the gauge region during necking. Assuming that the hardening curve is well calibrated to
large strains, any error in the predicted stress and strain response will be due to a poorly calibrated yield
surface. Therefore, notch Geometry B is employed for evaluation, as it was not used in the calibration of

the plane strain yield strength or development of the master yield functions.

The hardening curves for the materials analyzed in this thesis were calibrated to large strains using mini
shear tests. The post-processing of the shear tests was completed by Dr. Butcher and Dr. Abedini in each
available direction, including the calculation of the converted shear response for AA6xxx-T4 and AA6xxx-
T81. The author performed the shear conversion for DP1180 and AA5182 using the provided data. The
flow stress obtained from the converted shear tests is dependent on the sheet orientation, since rotation of
the shear band during plastic deformation activates a select range of the material’s anisotropy. For example,
a shear test conducted along the 45° direction may activate grains along the 45°-50° directions (assuming
an arbitrary rotation of 5°). Therefore, the flow stress in the reference direction is bounded between the
upper and lower converted shear stress curves, with the correct response being the one that promotes the
best agreement between the simulated and experimental results holding the yield surface parameters

constant.
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For the three aluminum materials, the adjusted spline hardening model of Dr. Butcher, shown by Eq.
(1.13), was employed and iteratively adjusted using the exponential decay function in Eq. (1.15) until good
agreement was obtained with the post-uniform response of the notch specimens. The final hardening curves
for each material are shown in Figure 106, where the solid line indicates data obtained from a standard
uniaxial tension test up to necking. The selected values are @ = 0.7 for AA5182, a =5 for AA6xxx-T4 and

a= 0.4 for AA6xxx-T81.

The hardening curve for the DP1180 steel was input in a tabular format (closely approximated using a
= 0.3 and b = 0) and corrected for shear test geometry bias as part of ongoing research into shear test
geometries. As explained by Narayanan et al. (2021), the accuracy of the equivalent stress predicted from
mini shear specimens, and need for a correction factor, is dependent on the hardening rate of the material.
The DP1180 has an approximately constant hardening exponent of n = 0.06 whereas the three aluminum
materials have non-linear hardening exponents approaching » = 0.2 to 0.3 around uniform elongation. A 4-
5% error in the predicted equivalent stress is apparent for materials with low hardening rates, such as the
DP1180 steel used in this study, compared to an error of only approximately 1% for high or medium
hardening materials like the three tested aluminums. Therefore, only the DP1180 shear curve required
correction whereas the flow curve could be fit directly to the range of the converted shear responses for the

AA6xxx-T81, AA6xxx-T4 and AA5182 materials.
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Figure 106: Spline hardening curves iteratively adjusted using an exponential decay function to provide good agreement between
the post-necking regions of the simulated and experimental plane strain notch tests while also falling within the range of converted
shear responses. The selected large-strain hardening models are shown for (a) DP1180, (b) AA5182, (¢) AA6xxx-T81 and (d)
AA6xxx-T4.

As discussed by Dunand and Mohr (2010), simulation of the post-necking response of a material requires

not only solid elements and a 3-D yield function, but also a convergence study to determine the mesh size

required to capture the through-thickness localization. Adopting the DP1180 material model for the

convergence study, the 1 mm thick Geometry B notch specimen was modelled with 250, 100, 50 and 25

um size elements in the gauge region corresponding to 2, 5, 10 and 20 elements through the half-thickness

of the specimen, respectively. One-eighth symmetry was used to decrease the computational time, with
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zero-normal displacement at each symmetry plane and a prescribed velocity of v = 0.005 mm/s at the nodes

corresponding to the upper grip. The four meshes are shown in Figure 107.

(a) (b)

(c) (d)

Figure 107: Eighth symmetry models of the Geometry B plane strain notch specimen used to assess convergence. The characteristic
dimension of the elements in the gauge region are (a) 250 pum, (b) 100 pm, (c) 50 um and (d) 25 um. The size of the elements in
the through-thickness direction is the same as the in-plane dimensions in the gauge regions.

As illustrated in Figure 108, convergence occurs at a 50 pm mesh size in exact agreement with the
conclusions of Dunand and Mohr (2010). The error between the 50 um and 25 pm mesh results at fracture
are 0.7% for the stress and 3.7% for the major strain. In contrast, the error between the 100 pm and 50 pm
results at fracture are 2.4% for the stress and 13.8% for the strain. Based on this convergence study, the 50

um mesh is also selected for analysis of the other three materials, assuming similar behavior.
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Figure 108: (a) Stress and strain responses obtained from the models using 250 pm, 100 pm, 50 um and 25 pum element sizes
compared to the experimental results, (b) FE contour plot of major strain at an engineering strain of 0.032 for the 50 um mesh
model and (c) convergence of engineering fracture stress and fracture strain as a function of the number of elements.

Both the stress and strain responses are in excellent agreement with the experimental data for DP1180.
The error in the stress is just 0.5% at fracture and the error in the strain is 11.6%. The larger error in the
strain may be due to the difference in resolution between the DIC measurements, with a VSGL of 0.5 mm,
and the FE prediction with an element size of 50 pm (0.05 mm). Decreasing the measurement gauge length
better captures the strain localization, as has been noted by other researchers including Khameneh et al.
(2021) for shear tests. In contrast, maintaining a comparable length scale, as in the case of the 100 um (0.1
mm) FE mesh and the DIC data with a VSGL of 0.5 mm, decreases the strain error to less than 1.2%. The
ability of the Y1d2004 model to capture the hardening response to fracture of an alternate notch geometry

demonstrates the accuracy of the plane strain yield strength and the overall calibration.
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The simulated stress-strain response for AA5182 shown in Figure 109(a) is within the variation of the

experimental data up to the point of fracture. The excellent agreement between the simulated and

experimental curves suggests that the master yield surface calibrated in Section 7.2 is a suitable model of

the material. The accurate prediction of the evolution of the major principal strain at the center of the gauge

region further confirms that the plane strain yield strength is correctly calibrated and associated flow is a

suitable choice.
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Figure 109: Comparison between FE predicted and experimental stress-strain responses for plane strain notch tests of (a) AA5182,
(b) AA6xxx-T81 and (c) AA6xxx-T4 using Geometry B. The Y1d2004 master yield surface, calibrated in Chapter 7, was used in
the prediction of the engineering stress and major principal strain at the center point. For AA6xxx-T4 and AA6xxx-T81, the HF85-
PSC conversion of Y1d91 was used to estimate the plane strain yield strength that promotes the best agreement with the
experimental data in the post necking region, due to the overprediction of the Y1d2004 master yield surfaces.
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For AA6xxx-T81, shown in Figure 109(b), and AA6xxx-T4, shown in Figure 109(c), the simulated and
experimental responses are in excellent agreement up to peak load but diverge at larger strains possibly due
to the complex plastic behavior of AA6xxx alloys. While differential hardening was negligible up to a
plastic work of 40 MJ/m?, it may be more pronounced at higher values of plastic work expected during
post-uniform localization. Similarly, non-associated flow may be activated at large strains but negligible in
the small range of strain studied in Chapter 4. Non-associated flow would be more important to capture in
an FE model than the integration methodology since the strains and strain directions must be predicted in
the FE model but are already known exactly from DIC in the integration methodology. The presence of
differential hardening and/or non-associated flow in the large strain region could be a source of the small

disagreement between the simulated and experimental responses.

An additional explanation for the difference in the simulated and experimental large strain responses of
the AA6xxx alloys could be the presence of so-called GP-zones, or fine-grained participates formed during
aging that serve as another obstacle to dislocation movement. As explained by Kuwabara ef al. (2017) in a
related study into the differential hardening and anisotropy of AA6xxx alloys, the contribution of GP-zones
is not completely captured in phenomenological yield functions or continuum based finite element models.
The small disagreement in Figure 109(b) and Figure 109(c) may be due to the inability of the Y1d2004
function or the finite-element method to resolve this complex microstructural hardening behavior. Consider
in contrast the non-age-hardenable AAS5182-O shown in Figure 109(a); the simulated and experimental

stress-strain responses are in excellent agreement over the entire range of deformation up to fracture.

By adopting the solid-element implementation of HF85-PSC by Narayanan et al. (2022), inverse
analysis may be used to refine the plane strain tensile yield strength in the large strain region. The AA6xxx-
T81 plane strain yield strength from inverse analysis is 1.045, 5.2% lower than the value of 1.102 calibrated
using the notch integration methodology. For AA6xxx-T4, a plane strain yield strength of 1.042 is required
to achieve good agreement with the large strain experimental response, whereas a value of 1.078 was
calibrated using the notch integration methodology (3.3% higher). When analyzing materials with complex
plastic behavior, the notch integration methodology provides an “initial guess” for further refinement by

inverse analysis if additional accuracy is required.

8.2 Evaluation in Through-Thickness Shear

A finite-element model of the AA6xxx-T81 through-thickness shear test was generated to validate the
Y1d2004 master yield surface in a state of through-thickness shear. Despite also calibrating the DP1180
yield surface in through-thickness shear, the model was left unvalidated because the low fracture strains

and experimental variability were not conducive to finite element modelling. The same AA6xxx-T81 model
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of Section 6.2 was employed, selecting Type -2 elements, and employing the large strain hardening curve
of Section 8.0. To activate the through-thickness direction, the x-axis was aligned with the RD (loading
direction), y-axis with the TD and z-axis with the ND. A clamping force of 3 kN was applied to each of
the rigid plates, consistent with the 6 kN applied in the experimental tests adjusting for half-symmetry.

The model showed relatively poor agreement with the experimental shear stress-strain curves displayed
in Figure 110. Good agreement was observed in the elastic regime, up to and including the shear yield
stress. However, a higher shear strain was realized in the simulations than in the experiments for a given
displacement, possibly because of differing predictions of transverse strain gradients, gauge region rotation
and localized thinning of the specimen near the notch root. Testing different specimen widths, notch profiles
and eccentricities is recommended to determine the source of the error and finalize the optimum specimen

geometry for experimental and numerical analysis.
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Figure 110: Comparison of simulated and experimental shear stress-strain for through-thickness shear tests of AA6xxx-T81 with
the loading direction orientated parallel with the rolling direction. The load was corrected for friction using a coefficient of 4 = 0.08
before calculating the average shear stress acting over the gauge area.

Despite errors in the prediction of the shear stress, excellent agreement was obtained between the
simulated and experimental load-displacement curves, seen in Figure 111(a), and the theoretical simple
shear strain path in the center of the gauge region, seen in Figure 111(b). Since the load-displacement
response is obtained with a 6 mm extensometer (tracking two nodes outside the gauge region) and the load
cell measurement at the upper grip, it is less sensitive to localized gauge region rotation compared to the
average shear stress responses. Therefore, agreement of the experimental and simulated load-displacement
responses suggests correct calibration of the out-of-plane parameters of the Y1d2004 master yield surface

based on the overall global material response.
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Figure 111: (a) Comparison of simulated and experimental load-displacement response and (b) strain path of the center element
in the gauge region for through-thickness shear tests of AA6xxx-T81 with the loading direction orientated parallel with the rolling
direction. The load was corrected for friction using a coefficient of = 0.08.

8.3 Summary of Master Yield Surface Evaluation

The results of Chapter 8 attest to the effectiveness of the notch integration methodology used to
determine the plane strain tensile strength. The simulated post-uniform hardening response was within the
experimental variation of the experimental tests completed on a different notch geometry (so-called
Geometry B) for DP1180 and AA5182. Inverse analysis of the FE model parameters suggested a plane
strain yield strength of within just 5% of the experimentally calibrated value for AA6xxx-T81 and 3% of
the experimentally calibrated value for AA6xxx-T4. The discrepancy between the integrated and inverse-
analyzed plane strain yield strengths is likely due to differential hardening which could only be calibrated
to 40 MJ/m? and not to the higher level of plastic work activated by the Geometry B specimen up to fracture.
Other sources of error could include the activation of non-associated flow at large strains or the presence
of GP-zones within the material that could not be well-captured by the phenomenological, continuum-based

approach adopted in the analysis.

The through-thickness shear analysis was also well-modelled for AA6xxx-T81 using the calibrated
Y1d2004 master yield surface applied in a solid-element FE model of the through-thickness shear test. The
model predicted a load-displacement response within the bounds of the experimental data and a simple

shear response in the center of the gauge region. Despite differences in the shear stress-strain response, the
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correct calibration of the Y1d2004 through-thickness shear stress directly from experimental data — and not

from virtual experiments or crystal plasticity —is a novel contribution to the study of sheet metal formability.
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Chapter 9 Conclusions

Experimental characterization of sheet materials in states of plane strain tension and through-thickness
shear is fundamental to the development of accurate material models for forming and impact processes in
the automotive industry. Inaccurate — or incomplete — characterization hinders the adoption of advanced
high strength steels and aluminums, which while necessary for light weighting, are challenging to model
due to anisotropy. Though often neglected in yield function calibration, plane strain tension defines the
formability limit of a material due to its intrinsic relationship with necking. Meanwhile bending operations,
for instance at draw beads or folds in crumple zones, promote through-thickness shear in the sheet material.
Despite the relevance of these loading conditions to modern forming challenges, experimental methods to
determine constitutive properties have been either entirely lacking, as in the case of through-thickness shear,
or plagued by inaccuracies in the empirical or inverse-analysis based techniques, as in the case of plane

strain tension.

By adopting a proposed integration methodology, the constitutive response along the yield surface arc
between uniaxial and plane strain tension was extracted from plane strain notch tests without empirical
methods or isotropic correction factors. The so-called HF85-PSC yield function, developed from Hosford’s
1985 yield function combined with the plane strain constraints of Butcher and Abedini (2019), provided
the theoretical framework needed to optimize and calibrate the exponent of the yield surface arc. Relaxing

the optimization constraints extended the model to non-associated flow and differential hardening.

Twenty-two FCC and BCC materials, characterized by Kuwabara and collaborators using biaxial
cruciform tests, were reviewed to assess the suitability of both the plane strain constraints and the HF85-
PSC yield function. According to the plane strain constraint, at a stress ratio of 0, /0y = 0.5 the strain ratio
N, /N; and strain-based Lode parameter v; should both equal zero. In close adherence with the plane strain
constraint, the experimental cruciform data indicated an absolute average strain ratio of 0.024+0.017 and
Lode parameter of 0.037+0.026 across the 22 materials. For 17 of the materials, where the data was
available, the stress and strain angle ¢ predicted by the HF85-PSC function were compared to the
experimental cruciform data at the intermediate arc point of g,/0; = 0.25. The average error in the
predicted stress was just 1.2% with a 2.53° average deviation in the strain angle. Significant experimental
evidence points to the applicability of the plane strain constraint, HF85-PSC yield function and
consequently the novel integration methodology proposed in this work. At the very least, the common
practice of allowing the plane strain location to drift in anisotropic yield function calibration appears unwise
considering the experimental evidence that its location remains close to the theoretical value for pressure-

independent plasticity.
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Four different automotive materials were used to demonstrate the ability of the proposed integration
methodology to determine the exponent of the uniaxial to plane strain arcs and corresponding plane strain
yield strength. Experimental tests were performed along the rolling (RD), diagonal (DD) and transverse
(TD) directions. In the case of isotropic hardening and associated flow, normalized plane strain yield
strengths of 0.960-1.045, 1.099-1.163, 1.023-1.087 and 1.055-1.101 were determined for AA5182-0,
DP1180, AA6xxx-T81 and AA6xxx-T4, respectively. Applying the non-associated model to the DD and
TD responses of AA5182 indicated a Tresca-type yield surface and a lower exponent HF85-PSC plastic
potential exponent of between 3-6. By allowing the HF85-PSC yield function exponent to evolve as a
function of plastic deformation, mild differential hardening behavior was captured for the DP1180,
AA6xxx-T4 and AA6xxx-T81 alloys. Testing the calibrated models in LS-DYNA illustrated good

agreement with the experimental stress-strain and local strain responses.

A through-thickness shear test was developed and applied to the constitutive characterization of DP1180
and AA6xxx-T81. Two notches were cut through the thickness of the sheets, using wire electrical discharge
machining (EDM), to promote a state of simple shear in the gauge region of the specimen. A clamping
fixture was used to decrease gauge region rotation and bending. Strains were measured on the edge of the
sheet with two-dimensional microscopic digital image correlation and an airbrush-generated microscale
speckle pattern. The shear stress response was corrected for friction, after determining the Coulomb
coefficient by comparing clamped and unclamped tensile data under analogous experimental conditions as
the shear tests. Low fracture strains of just 0.05 for DP1180 and 0.3 for AA6xxx-T81 were attributed to
wire EDM related defects and the sample width. However, for constitutive purposes the results were
considered reasonable and the normalized through-thickness shear stresses were identified as 0.50 and 0.68

for the AA6xxx-T81 and DP1180, respectively.

The plane strain yield strengths, five points along each uniaxial to plane strain tension arc, and the
through-thickness shear yield strength were included in Y1d2000 and Y1d2004 master yield surface
calibrations. Holding the weighting method constant, the addition of the experimental data points decreased
the error in the predicted stresses, R-values and plastic strain directions compared to a conventional
calibration without plane strain or through-thickness shear data. For all four materials, the best calibrations
were obtained by setting the yield function exponent as a free parameter, rather than selecting the

recommended value of 6 or 8 for a BCC or FCC material, respectively.

The flexible Vegter criterion was used as a benchmark to envision how close the calibrated Y1d2000 and
Y1d2004 master yield surfaces come to what would be considered a “perfect” calibration that fully captures
all available experimental data points, while accurately interpolating the material response in the untested

loading conditions. The addition of the plane strain constraint resolves the uncertainty of the plane strain
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tension “hinge point” location in the original Vegter criterion. With the constraint applied, the Vegter
criterion almost perfectly predicts the intermediate stresses and plastic strain directions along the arc
between uniaxial and plane strain tension. The experimentally obtained plane strain yield strength, uniaxial
tensile yield strength and R-value, shear yield strength, and equal-biaxial tensile yield strength and R-value
are perfectly predicted since each act as a hinge point in the Bezier curve interpolation scheme. For each
material, neither the Y1d2000 nor Y1d2004 calibrations could replicate the accuracy of the Vegter criterion

for plane stress loading.

The Y1d2000 and Y1d2004 master yield surfaces were evaluated in the tensile quadrant by simulating
the post-necking response of a different notch geometry until fracture in LS-DYNA. The smaller Geometry
B was simulated along the limiting direction of each material. The stress and strain responses are different
than the so-called Geometry A, adapted from Vegter and van den Boogaard (2006) and used for the
calibration of the plane strain yield strength. The eighth symmetry, fully integrated solid element, explicit
time integration simulations employed hardening curves calibrated to large strains using shear tests. The
DP1180 material was used for an initial convergence study to determine that a 50 um mesh size, with a
minimum of 10 elements through the half-thickness, was needed to capture the post-necking localization.
For each material, the predicted strain response in the center of the gauge region and global stress-strain
response were in good agreement with the experimental data. A maximum error of just 5% between the

experimental and modelled stress-strain curve was observed for the AA6xxx-T4 alloy.

To assess the validity of the AA6xxx-T81 master yield surface in through-thickness shear, the through-
thickness shear tests were simulated in LS-DYNA, using the coefficient of friction obtained from the strip
friction tests. Although a master yield surface was calibrated for DP1180 under this loading condition, the
AA6xxx-T81 tests were better suited for finite element modelling due to a higher fracture strain and greater
experimental repeatability. The excellent agreement of the AA6xxx-T81 simulated and experimental load-
displacement responses suggests accurate calibration of the master yield surface in through-thickness shear
and more broadly demonstrate the suitability of the proposed experimental characterization method. The
simulated shear stress-strain response showed poor agreement with the experimental results, driven by
greater shear strain in the model than in the experiments. More work is required to assess the influence of

transverse strain gradients, localized thinning at the notches and notch eccentricity on the analysis.

Overall, the work in this thesis has highlighted two novel experimental methodologies to better
characterize the response of anisotropic sheet materials under states of generalized plane strain, namely
plane strain tension and through-thickness shear. Inclusion of the experimentally determined yield strengths
in the calibration of master yield surfaces consistently improved the model predictions compared to the

conventional approach predominant in the literature. Extensive finite element simulations validated the
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models and explored the sensitivity of the proposed methodologies to experimental variables such as
friction and geometry. Improved constitutive characterization in plane strain tension and through-thickness
shear may improve component level forming and impact models, hastening the adoption of the advanced

sheet materials necessary for automotive light weighting and emission reduction.
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Chapter 10 Recommendations

Specific recommendations for future work include:

Chapter 3-5: Plane Strain Characterization Methodology

L.

The plane strain notch integration methodology is best applied to specimens with a large aspect
ratio (width/thickness > ~10) such as the geometry of Vegter and van den Boogaard (2006).
Correction factors can be used for alternate geometries and should be further investigated.

Further evaluate the influence of the PLC effect on the integration accuracy. The AA5182 models
in TD and DD showed the worst agreement with the experimental results, possibly due to the strong
PLC effect along these orientations.

Further evaluate reasons for the peaks in the DP1180 strain distribution along the gauge width of
Geometry A, including strain rate sensitivity. In the FE analysis, the magnitude of the predicted
peaks was only on the order of 50% of the experimentally observed response. If DP1180 shows
strain rate sensitivity, higher work hardening at the notches would result in a larger magnitude of
strain along the gauge region more consistent with the experimental observations.

Further evaluate differential hardening. On one hand, errors in the hardening curve model could
generate an illusion of differential hardening, when in fact none exists. On the other hand,
differential hardening may exist but be poorly described by the sigmoid distribution selected in this

analysis.

Chapter 6: Constitutive Characterization in Through-Thickness Shear

1.

Optimize the through-thickness shear geometry. Implementing eccentricity may decrease rotation
(Peirs et al., 2012). Decreasing the sample width may delay fracture. A convergence study using 5
mm, 10 mm, and 25 mm wide samples would likely assist in determining the ideal width to
maximize fracture strains.

Generate a specification for the wire EDM parameters and machining tolerances to minimize the
size of the heat affected zone, especially for thinner sheet specimens where the shear gauge length
is small.

Consider through-thickness shear tests in multiple orientations, rather than just along the rolling
direction, to fully define the through-thickness anisotropy.

Incorporate a load cell at the lower grip of the test frame to quantify friction in through-thickness

shear tests without additional testing. Assuming quasi-static loading, the difference between the
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load cell readings at the top and bottom grips must equal the total frictional force, applied on both
sides of the sample.

Study the impact of VSGL, element size and gauge length on the experimental and/or FE simulated
strain measurements, as applicable.

Perform virtual experiments and/or a combined numerical-experimental analysis to correlate the
force-displacement to the shear stress response in the center of the gauge region and define an

appropriate procedure for direct experimental extraction.

Chapter 7: Calibration of Advanced Anisotropic Yield Functions Under States of Generalized Plane Strain

1.

Use the Vegter criterion for materials where the Y1d2000 criterion cannot accurately model the
stress and strain response. All experimental data points and theoretical constraints are captured
since they are programmed into the model as hinge points. The plane strain constraint resolves a
fundamental issue in the original Vegter formulation where the location of the plane strain hinge
point was unknown.

Calibrate the yield function exponent as a free parameter rather than assume the recommended

values of m = 6 and m = 8 for BCC and FCC materials, respectively.
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