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Abstract

The cancer stem cell hypothesis claims that tumor growth and progression are driven
by a (typically) small niche of the total cancer cell population called cancer stem cells
(CSCs). These CSCs can go through symmetric or asymmetric divisions to differentiate
into specialised, progenitor cells or reproduce new CSCs. While it was once held that this
differentiation pathway was unidirectional, recent research has demonstrated that differenti-
ated cells are more plastic than initially considered. In particular, differentiated cells can
de-differentiate and recover their stem-like capacity. Two recent papers have considered how
this rate of plasticity affects the evolutionary dynamic of an invasive, malignant population
of stem cells and differentiated cells into existing tissue [64, 109]. These papers arrive at
seemingly opposing conclusions, one claiming that increased plasticity results in increased
invasive potential, and the other that increased plasticity decreases invasive potential. Here,
we show that what is most important, when determining the effect on invasive potential,
is how one distributes this increased plasticity between the compartments of resident and
mutant-type cells. We also demonstrate how these results vary, producing non-monotone
fixation probability curves, as inter-compartmental plasticity changes when differentiated
cell compartments are allowed to continue proliferating, highlighting a fundamental dif-
ference between the two models. We conclude by demonstrating the stability of these
qualitative results over various parameter ranges.

Imaging flow cytometry is a tool that uses the high-throughput capabilities of conven-
tional flow cytometry for the purposes of producing single cell images. We demonstrate
the label free prediction of mitotic cell cycle phases in Jurkat cells by utilizing brightfield
and darkfield images from an imaging flow cytometer. The method is a non destructive
method that relies upon images only and does not introduce (potentially confounding) dies
or biomarkers to the cell cycles. By utilizing deep convolutional neural networks regularized
by generated, synthetic images in the presence of severe class imbalance we are able to
produce an estimator that outperforms the previous state of the art on the dataset by
10-15%.

The in-silico development of a chemotherapeutic dosing schedule for treating cancer relies
upon a parameterization of a particular tumour growth model to describe the dynamics
of the cancer in response to the dose of the drug. In practice, it is often prohibitively
difficult to ensure the validity of patient-specific parameterizations of these models for any
particular patient. As a result, sensitivities to these particular parameters can result in
therapeutic dosing schedules that are optimal in principle not performing well on particular
patients. In this study, we demonstrate that chemotherapeutic dosing strategies learned
via reinforcement learning methods are more robust to perturbations in patient-specific
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parameter values than those learned via classical optimal control methods. By training a
reinforcement learning agent on mean-value parameters and allowing the agent periodic
access to a more easily measurable metric, relative bone marrow density, for the purpose of
optimizing dose schedule while reducing drug toxicity, we are able to develop drug dosing
schedules that outperform schedules learned via classical optimal control methods, even
when such methods are allowed to leverage the same bone marrow measurements.
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Chapter 1

Introduction

Machine Learning and Neural Networks have a long history of use in the mathematical
sciences, for instance Simon Haykin’s classic book on neural networks [43] was originally
published in 1994. Over the last few decades, the applicability of learning machines has
grown substantially. As a result of improvements to consumer computer hardware and
advancements in programming techniques, training large scale neural networks is now
feasible without the need for overly advanced equipment. This research proposal is focused
on the application of this mathematical tool to a particular biological area. In particular,
we wish to investigate a few ways that machine learning in the context of artificial neural
networks can be leveraged in mathematical oncology.

Mathematical Oncology as a discipline is concerned with applying various mathematical
techniques to describe, model, and predict the behaviour of various biological phenomena
under the umbrella of oncology. To mention but a few applications, mathematical oncology
can be focused on the use of ordinary and partial differential equations for the purposes of
describing behaviours of cancer cells [109], stochastic processes describing invasion of mutant
type stem cells [58], models of the evolution of solid tumours [33, 83], or the optimisation
of chemotherapeutic delivery [113]. The end goal of these applications may be to gain
predictive insights that can be leveraged in the clinical community or to replicate observed
results with phenomenological models in order to better understand the key components
that drive biological problems. As such, the discipline of mathematical oncology is focused
on using any applicable mathematical tool to describe, or understand, any number of
complex biological behaviours.

This thesis will focus on a select handful of applications of neural networks and stochastic
modeling techniques applied to particular problems in mathematical oncology. In particular,
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leveraging the strengths of neural networks as universal function approximators for image
recognition techniques in imaging flow cytometry, using deep neural networks to approximate
valuation functions in optimising the schedules of cancer treatment plans, and using
stochastic models to investigate invasion and metastasis in models of invasive tumours.

1.1 Cancer Biology Background

Cancer is a complicated family of diseases that share certain key characteristics [40, 41, 39].
The hallmarks of cancer include (1) evading growth suppressors, (2) avoiding immune
destruction, (3) enabling replicative immortality, (4) tumour promoting inflammation, (5)
activating invasion and metastasis, (6) inducing angiogenesis, (7) genome instability and
mutation, (8) evading cell death, (9) deregulating cellular energies, and (10) sustaining
proliferative signalling. Moreover, in [39] Hannahan goes on to denote four emerging
hallmarks and enabling characteristics: unlocking phenotypic plasticity, nonmutational
epigenetic programming, polymorphic microbiomes, and the presence of senescent cells.

Hence while cancers themselves differ quite a bit from one another in how they present,
cancer cells have been observed to exhibit characteristics from the set described in the
above hallmarks. Importantly it is the replicative immortality, genome instability, and
phenotypic plasticity hallmarks that motivate the subject of study in Chapter 3 when we
investigate the invasive potential of mutant stem cells as a function of phenotypic plasticity.
Not only is there heterogeneity in the way in which differing cancer cells behave, there is
also considerable inter-patient variability in response to treatment. This can be due to age,
gender, etc [69]. This inter-patient variability and the tendency for cancer cells to evade cell
death is a key factor for the multi-compartment model used to predict a patient’s response
to chemotherapy used in Chapter 5.

1.1.1 Cancer Stem Cells

In healthy tissue, stem cells are pluripotent cells with the unique capacity of being able to
differentiate into specialised cell types. This differentiation pathway was once considered to
be unidirectional, however it is now known that differentiation is a bi-directional process
[100, 15]. In particular, stem cells are progenitor cells from which increasingly more
specialised cells are derived. While this differentiation process, from stem or stem-like
cells to more specialised cells, is often unidirectional, a backwards reaction referred to as
de-differentiation is possible. Another difference between stem and differentiated cells is the
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capacity for replicative immortality. While differentiated cells are subject to the Hayflick
limit, stem cells can divide a sufficiently large number of times [95]. Similarly, stem cells
exhibit self renewal wherein division can allow for stem-like progenitor cells in order to
maintain a balance of stem to differentiated cells within the particular cellular niche.

Previously, the explanation of heterogeneous cell populations in tumours was explained
via clonal evolution [75]. In this traditional view, the heterogeneity is the result of genetic
heterogeneity within the tumour. As a result, mutations occur during mitosis that provide
an adaptation to the cell within the local microenvironment. Due to the hallmarks of
cancer, cancer cells exhibit increased proliferation and genetic instability which further
increases the likelihood of advantageous mutations fixating within a particular cellular niche.
Hence the heterogeneity of solid tumours is explained by mutations driven by evolutionary
natural selection. In the cancer stem cell hypothesis, it is instead assumed that cells exist
in a hierarchy. In this hierarchy, there are cells that behave in a stem-like manner. These
so called cancer stem cells (CSCs) drive tumour initiation and are responsible for the
varied phenotype of a cancerous niche. Importantly, cancer stem cells exhibit resistance to
chemotherapy, especially quiescent cancer stem cells [104]. This informs the tumour growth
inhibition model of Chapter 5.

Cancer stem cells are observed in various proportions within a tumour. Since cancer stem
cells have a high degree of self renewal and un-bounded proliferation potential, they are an
incredibly important niche to target by therapeutics. In Chapter 3 it is observed that large
probabilities of invasion can be achieved by introducing even a single cancerous stem cell
into an otherwise established tumour niche. Hence, since cancer stem cells evade destruction
by therapy, cancer stem cells are an incredibly important component of reinfection. Even if
radiotherapy or chemotherapy results in a large reduction in tumour mass, those quiescent
stem cells that survive can seed an reintroduction of the tumour in the patient.

Cellular plasticity is the subject of study in Chapter 3 and refers to the capacity for cells
to change their phenotype. This phenotypic plasticity can be acquired due to randomly
occurring genetic or epigenetic changes to the cancer stem cells and hence informs treatment.
In the absence of phenotypic plasticity, particular cancer stem cell niches can be targeted
for destruction by the clinician. However, in the presence of plasticity cancer stem cell
niches are incredibly unlikely to be destroyed as the pool of available stem cells can be
refilled via de-differentiation.
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1.1.2 Cell Cycle

The eukaryotic cell cycle is an ordered series of events that describe and control cellular
division. During division the cell prepares for mitosis, the event by which one cell creates
two new daughter cells. Roughly, the cell cycle can be described by three main phases.
In the first, G0, cells are quiescent. During quiescence, cells are non dividing. These
inactive cells have exited the cell cycle. Some cells enter quiescence in the presence of
an external signal (for instance, cancerous stem cells enter quiescence in the presence of
chemotherapeutics). Similarly some terminally differentiated cells do not divide and so
enter quiescence permanently.

𝐺2 𝑆

𝐺1

Figure 1.1: Phases of the cell cycle. In G0 phase the cell is said to be quiescent - this
represents a stable, non-dividing state. Then G1, S, and G2 represent the growth and
synthesis phases. These interphases describe when a cell is preparing for division. Finally
M , the mitotic phase, is split into four distinct parts: prophase, metaphase, anaphase, and
telophase.

As cells prepare for division, they enter what is known as the “interphase” state of
the cell cycle. During interphase cells progress through three sub phases: G1, S, and
G2. Roughly speaking G1 and G2 are the two growth phases of the cell. During G1
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the cell is accumulating chromosomal DNA, proteins, and energy reserves to replicate
each chromosome within the nucleus. During G2, the cell refreshes its energy stores and
synthesises the proteins necessary for mitosis. In between these growth stages the cell enters
S, or synthesis, phase. In S phase the DNA undergoes replication resulting in two identical
copies of each chromosome.

Finally, the cells enter the mitotic phase. In M phase there are (at least) four sub-phases
that must be completed in order for the successful division of the cell into two daughter
cells. The first of these sub-phases is the prophase during which the nuclear envelope breaks
down and chromosomes condense and become visible. Next is metaphase, during which the
chromosomes are lined up with one another at the metaphase plate. It is during metaphase
that the chromosomes are maximally condensed. During anaphase, the chromatids are
split apart and pulled rapidly towards the center, resulting in a visual elongating of the
cell. Finally, in telophase, the chromosomes reach the opposite poles and begin to unravel.
During this process the results of the previous mitotic phases are undone until nuclear
envelopes form around the chromosomes.

1.2 Summary of Thesis

The thesis is laid out as follows: in Chapter 2 we introduce and describe some of the
mathematical methods used throughout this work. In Chapter 3 we examine two models
of cancer stem cell invasion in a heterogeneous population of stem and differentiated
cells. We reconcile two seemingly contradictory results and extend the model to include
transit amplifying cells. In Chapter 4 we present a method for performing label free
classification of the mitotic phase of Jurkat cells without the need for biomarkers or dyes.
In Chapter 5 we present an ordinary differential equation model of cancer stem cell response
to chemotherapeutics and use reinforcement learning to find model free schedules for
chemotherapy delivery in an adaptive, patient specific manner. Finally, in Chapter 6 we
summarize and conclude the results. Code for the various numerical experiments performed
in this thesis is hosted at https://github.com/brydon/phd_thesis.
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Chapter 2

Methods Background

2.1 Introduction

The interplay of mathematical modeling and experimental data in investigating problems in
mathematical biology can lead to new insights and techniques that can then be further in-
vestigated experimentally. In many cases in mathematical biology, the underlying structures
and phenomena are influenced by stochasticity. Moreover the phenomena themselves are
often far too complicated for rigorous analysis to be done by hand. Hence computational
and statistical techniques are often employed to perform in silico experiments. In this
chapter we present some of the mathematical and statistical techniques used throughout
this thesis.

2.2 Stochastic Model Processes

There are many ways by which one can model biological systems and processes. A standard
approach that has seen great success is to use differential equations [25]. Differential
equations assume that whatever is being modeled can be effectively represented by a
continuous function. In part, then, the appropriateness of differential equations in modeling
depends upon how appropriate the continuity assumption is. For instance, if one is modeling
the interactions of bacteria in a chemostat, the bacteria populations themselves do not
actually obey a continuous function in practice as each bacterium is itself a discrete
agent. However, as long as the size of the bacteria population is sufficiently large, the
approximation by a continuous function can be a reasonable choice. However, any entropy
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or stochasticity involved by aggregating the many individual bacterium into a continuous
function is lost. Often these stochastic effects only slightly effect the quantitative dynamics
of the phenomenon being modeled, but in some cases large qualitative changes can occur
(such as when stochasticity drives the model into a different basin of attraction). Moreover,
if the number of bacterium being modeled is small, then the continuity assumption breaks
down further. In effect, continuous differential equation models of fundamentally stochastic
processes only produce predictions of the mean value of the process. There are many
situations in modeling single cell behaviour in which noise plays a large role. In [44] the
authors model both single cells and populations of cells stimulated by TNFα to produce
oscillations in NF-κB. In this case if one only models the mean oscillatory behaviour, one
ends up with model predictions that are both different in amplitude and phase from the
oscillations observed in single cell experiments. However, by employing stochastic models
the correct amplitudes and phases are re-discovered.

2.2.1 Gillespie’s Algorithm

Gillespie’s algorithm allows one to solve stochastic differential equations (SDEs) numeri-
cally [34]. Instead of modeling a population by gradually, continuously evolving through
various states, instead Gillespie’s algorithm models the population as undergoing various
discontinuous jumps between discrete states in time. Gillespie’s algorithm is quite useful for
a variety of reasons. For instance, in systems biology applications the number of reactions
being considered can be exceptionally large. Furthermore many of these reactions considered
can be highly nonlinear in their components. For such a system calculating the master
equation or solving the partial differential equation that satisfies the generating function
is often far too complicated to be solved in any manner other than numerically. In these
situations numerical techniques like Gillespie’s algorithm are quite useful. In 1977 Gillespie
showed that the solution created by his numerical algorithm is equivalent to the solution of
the master equation [34].

Gillespie’s algorithm produces an ensemble of solutions. By combining a sufficiently
large number of Gillespie simulations, one can approximate an empirical distribution of
the model trajectories for each compartment. Suppose we are modeling the population
of n cell types interacting with one another. Further, suppose these n different types of
cells can interact producing m different reactions. These reactions could be apoptosis given
the interaction of two cells, or spontaneous mitosis of a single cell without interaction,
etc. Each of these interactions updates the total state vector of the system. Let ~P (t) be

the n-dimensional state vector and ~Ai(t) be the change to this state vector effected by

reaction i. For example, if ~P (t) corresponds to the number of cells of each cell type and
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reaction i corresponds to cell death of cell type j then ~Ai(t) = −~ej (where ~ej refers to
the vector where every element is zero except element j which is unitary). Further, define

the propensity function of each reaction, ai, such that ai(~P (t)) dt is the probability, given
~P (t), that reaction i is the single reaction that will occur in the infinitesimal time interval
[t, t + dt). The “sojourn time”, or time between reactions, then follows an exponential
distribution.

There are many simplifications of the algorithm to ease computational complexity [35].
The method presented here is the so-called direct method. A single run of the direct method
of Gillespie’s algorithm follows the following method:

1. Initialize the system by assigning to ~P (0) some starting state

2. For each k do

(a) Sample r1 and r2 uniformly independently from (0, 1)

(b) Calculate τ , the sojourn time

τ = −

(
m∑
i=1

ai(~P (tk−1))

)−1

ln(r1)

(c) Calculate µ, the index of the next reaction type by determining the value of µ
that satisfies

µ−1∑
i=1

ai(~P (tk−1)) ≤ r2

m∑
i=1

ai(~P (tk−1)) ≤
µ∑
i=1

ai(~P (tk−1))

(d) Take tk = tk−1 + τ and ~P (tk) = ~P (tk−1) + ~Aµ(k)

3. Stop if tk is bigger than some maximum stop time, if a maximum number of iterations
have taken place, or if an equilibrium solution is reached

Typically this process is repeated a large number of times until a distribution can be
reasonably resolved.
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2.2.2 Moran Model

A Moran model [73] is a discrete model of stochastic events for finite population sizes. If
there are two or more species competing with one another for domination, then a Moran
model can be simulated (or in some simple cases algebraically solved) to determine the
fixation probability of the species. For instance, in a 2 species birth-death process one
species has its reproductive rate normalised to 1 and the other at a varied rate r. In such
a model at each discrete time moment an individual is chosen randomly (weighted by its
proliferation probability) to reproduce and another is chosen to die in a similarly biased
manner. From such a process the proliferation probabilities and fatality probabilities can be
analytically calculated as a function of the number of members of the relevant species and
their relevant fitnesses. Simulation of such a model is performed via Monte-Carlo updates
at each individual time step in order to construct a Markov chain based on the proliferation
and fatality probabilities of the species. Let K represent the fixed capacity of the Moran
model, then it is the case that 0 and K are absorbing states of the system. Hence any
state that is not 0 or K is necessarily a transient state and as such the probability of the
system not converging to 0 or K for a species on an infinite time horizon is 0 [57]. Hence a
Moran model will almost certainly become absorbed in 0 or K as the number of time steps
approaches infinity.

2.3 Data Driven Models

Many statistical learning methods are data driven. In this regard one must be careful of
how the algorithms interact with the data in order to ensure the trustworthiness of the
results.

2.3.1 Data Folding and Generalisation

The essence of statistical learning methods is to generate a mapping between inputs and
outputs by regressing onto training data. The goal of this process is to create a method
that can utilize lessons from the past and project forward into generalisation in the future.
Hence in order to ensure that the algorithm is not “teaching to the test”, we should
be careful in the way we partition the data we consider. For instance, by evaluating a
machine learning network on the same data that it was trained on we can achieve effectively
perfect classification importance. Indeed what is happening in such situations is the
overparameterised model is learning to effectively memorize each sample and not generalize
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between samples well. This is an undesirable quality in machine learning methods and
there are many ways to deal with it. Hence the statistical tool of cross validation provides a
necessary framework in which to operate. In such a framework supervised machine learning
algorithms have the data split into training, test, and validation sets. Training sets, which
typically are composed of the largest chunk of the data, are the samples the algorithm will
use to set the parameters of the model. Then, testing data is a separate data set upon which
the algorithm is evaluated. The quality of our algorithm is more readily demonstrable by
ensuring these are separate. Similarly, the validation set is a separate data set upon which
any of the hyperparameters of the method are tuned. This includes things like the number
of iterations for which the model is trained and any various hyperparameters intrinsic to the
model selection process (the architecture of a neural network or the number of neighbours
to consider in a k-Nearest Neighbours classifier, for instance). For the same reason that it is
important to ensure that the training and testing sets are different, it is also important to
ensure that the testing and validation sets are distinct. If they were not, then the supposed
performance of our model can be spurious and suspect. Figure 2.1 demonstrates this effect
wherein the error rate on the training set continues to decrease even though the error on
the held-out validation set is increasing. Such a model is called over-fit. By monitoring the
validation error one can strop training early so as to ensure that the model can generalize
well.

The goal of machine learning algorithms is to provide strong generalisation. This means
that we want to ensure that our method behaves similarly well irrespective of particulars
about the metadata. For instance, some machine learning techniques do not perform well
in the presence of noise in the data, some algorithms are highly dependent upon the order
on which data is presented to it, etc. These drawbacks are not desirable for a model to
possess. Much effort has been devoted to ensuring the generalizability of the input data
so that issues of domain shift do not occur. For instance, regularisation techniques often
induce a stronger generalisation potential, ensemble learning similarly produces models
that tend to generalize more strongly, the use of repeating cross-validation of multiple
randomly selected subsets of the data and averaging the final results also similarly helps
safeguard against issues in generalisation [36, 43, 19]. Furthermore, the success of the
machine learning algorithm can be assessed by cross validating on a variety of differing
subsets of the data. When the variance in these scores is large, it can be evidence of poor
generalisation.
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Figure 2.1: An example of early stopping based on validation data in machine learning. If
one were to instead blindly minimize the training error, then the resulting model would be
overfit to the particular training data and would not generalize well.

2.4 Classical Classification Algorithms

2.4.1 Decision Tree Classifiers and CART

Decision trees are a supervised learning model that utilize a graph theoretic framework for
solving classification or regression problems. There are many algorithms by which one can
generate decision trees such as CART, ID3, and C4.5 [96]. All of these methods follow the
same basic structure but differ in the loss function utilised. The trees are constructed in a
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way that minimizes the cost function over the binary tree. The basic algorithm involves
collecting all the training samples (represented as vectors) and segmenting them into two
classes by determining two numbers: the index of the vector component being considered by
the cost function, and the threshold value by which the samples are stratified. Performing
this process once will then stratify the N training samples into two separate groups. For
each of those two groups the process is repeated again, recursively, as long as continuing
to split the nodes results in a reduced cost function value or until a particular stopping
criterion is met. Usually the stopping criterion is either: the maximum depth of the tree,
the number of samples in each parent node, or the number of samples in each leaf node.
For instance, one may only consider splitting a node if there are more than 10 samples in
the node, however this splitting process can be further restricted so that at least 5 samples
remain in each class. If one instead allows leaf nodes to contain single samples, then there
is a danger of overfitting to the data. In effect, it is unlikely that the process is learning
features and thresholds that are general for the problem and more likely that the process is
just uniquely identifying each sample based on the training data. An example is presented
in Figure 2.2 using data from Chapter 4.

The cost function considered is the so-called Gini impurity [61]. The Gini impurity is
the sum of the probability pi of an item of class i being chosen times the probability of
the item being miscategorised. The Gini impurity then takes values in the range [0, 0.5]
reaching a minimum value when all samples are correctly classified (and a maximum when
all samples are exactly incorrectly classified). Suppose there are K classes being considered
for classification. Then for a given threshold α and index λ, we let pi be the weighted
proportion of samples labeled with class i in the set as determined by the partition defined
by α and λ. Then

G(p) =
K∑
i=1

(
pi
∑
k 6=i

pk

)
= 1−

K∑
i=1

p2
i

is the Gini impurity of the partition p. Hence at each split of the tree, all samples are
categorised into two classes and for each of these categorisations there is an associated Gini
impurity for that partition p. If it is possible to split the samples again, without having too
few samples in either the parent node or the leaves, then such a split is computed. If the
resultant split results in a larger weighted average Gini impurity between the two nodes,
then the split is rejected.
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x50 < 0.76

x66 < 1.40

x67 < 1.52

x146 < 8.63

x49 < 0.36

Interphase x83 < 1.08

Interphase Prophase

Interphase

Prophase

x75 < 1.27

Prophase Anaphase

x3 < 3.21

x160 < 0.37

x59 < −0.28

Interphase Prophase

x157 < −0.85

Anaphse x1 < 1.63

Interphase Metaphase

Telophase

Figure 2.2: Example of a decision tree classifier used for the image classification task in
Chapter 4. For input vectors ~x, the tree bins the vector into various classification groups
depending on the magnitude of certain entries. The convention is that left handed branches
of the binary tree are followed when xλ < α and right handed branches when xλ ≥ α.

2.4.2 k-Nearest Neighbours

The k-Nearest Neighbours algorithm is another supervised learning technique used in
classification and regression. Despite its simplicity the algorithm is quite successful in many
applications. For instance, in [7], the authors concern themselves with reconstructing a two-
dimension bifurcation diagram using the combinatorial structure of Conley-Morse graphs
and a 1-nearest neighbour algorithm. In effect, the k-Nearest Neighbours classifier assumes
that samples from the same class can be considered as inhabiting the same neighbourhood
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as one another under a particular metric. Often the lp metrics are used for determining the
distance between samples, for an appropriate choice of p. The method works by assigning
for every element of the testing data a label determined by weighted consensus voting of
the k samples from the training data that posses the smallest distance under the metric.
The weighting of the voting can either be determined via pre-allocated sample weights,
distance between the samples (the closer of the k nearest samples having a proportionally
higher vote in the consensus voting process), or a combination of the two. Hence k, the
distance metric, and whether to weight the consensus voting are hyperparameters of the
k-nearest neighbours process.

2.5 Artificial Neural Networks

2.5.1 Multilayer Perceptrons

The Rosenblatt-McCulloch-Pitts Perceptron was a simple mathematical model of how
neurons in the brain process signals [43]. The simple idea was that a perceptron took in a
collection of binary signals x1, x2, · · · , xn. The output of the perceptron was either a 1 or a
0 decided by calculating a weighted sum and comparing it to some threshold (or, equivalent,
adding a bias term and thresholding against 0). For weights w1, w2, · · · , wn and bias b, the
perceptron obeyed the following function

p(~x) =

{
0 if

∑n
i=1wixi + b ≤ 0

1 otherwise

This process was then extended into what are known as multilayer perceptrons, or artificial
neural networks, by feeding the same input signal ~x through multiple perceptrons and
collecting all their outputs into a single output vector ~y. This output vector is then the
output of one layer of the neural network which can then be fed into another layer of
perceptrons to form deeper and deeper neural networks. In this sense, the number of
perceptrons per layer is often referred to as the width or breadth of the network while the
number of discrete layers is referred to as the depth of the network. The discontinuous binary
signal of the original perceptron model was relaxed to instead allow for various continuous
functions. However, due to Hahn-Banach theorem, for the purposes of universality it is
only required that the activation function has points of discontinuity whose closure is a
Lebesgue null-set [6, 16]. While originally the discontinuous step function was replaced
with various sigmoid functions like tanh(x) or (1 + e−x)−1, recently the most popular form
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of function used is the so-called ReLU function, or rectified-linear-unit.

σ(x) =

{
0 if x ≤ 0
x otherwise

These functions, either the step function or the ReLU function or otherwise, are referred
to as the activation function (see, for example, Table 1 of [6] for examples of commonly
used activation functions). The notation is slightly easier if we consider vectorizing these
functions. In that sense σ(~x) is the vector achieved by component-wise applying σ(x) to
each element xi of the vector. Then, σ(~x)i refers to the ith value of such an operation.

In multilayered networks, the input vector is often referred to as the input layer and
the output vector as the output layer. Any additional layers in between are called the
“hidden layers” as the values of the neurons at this layer are not directly observed. It is
common to use one activation function for the interior layers and a different activation
function for the output layers. For instance, in binary classification tasks the output layer
is typically a single neuron whose values range between 0 and 1 where the value of the
output neuron corresponds to the confidence that the input vector belongs to one class or
the other. Similarly, for multi-class classification tasks there are typically as many output
neurons as there are classes and the output neurons then represent the probabilities of the
input vector inhabiting a particular class. Hence a different activation function is used as
the output neurons should sum to 1. Hence the “softmax” function is often used for the
neurons in the output layer where

σ(~x)i =
exi∑
j e

xj
.

Notationally, if ~a(0) refers to the input vector ~x, ~a(l) to the value of the lth layer in the
neural network, and σ(l) to the activation function of the lth layer, then for weight matrices
W (l) and bias vectors b(l), the value of the ith layer of the network can be computed as

a(l) = σ(l)
(
W (l)a(l−1) + b(l)

)
.

That is, the value of each layer is computed by applying the weights and biases of the layer
with the output of the previous layer and then feeding that as input into the activation
function.

Hence for a given input vector computing the output of the neural network is trivial
give a set of weights and biases. The problem then in machine learning is to determine
the value of these weights and biases. Typically these weights and biases are initialised as
Gaussian data [43] and are then trained via stochastic gradient descent optimisation.

15



To define the optimisation problem various loss functions can be considered for minimi-
sation. For a given n dimensional output value y of our neural network and target value
ŷ, the two loss functions we use most commonly in this thesis are the mean-squared-error
(MSE)

L(y, ŷ) =
n∑
i=1

(yi − ŷi)2

which measures the Euclidean distance between the two signals and the categorical-cross-
entropy function for multi-class classification problems

L(y, ŷ) = −
n∑
i=1

yi log (ŷi)

which is a measure of how distinguishable two discrete probability distributions are from
one another. In this sense the categorical-cross-entropy loss function is only used when the
final layer is activated via the softmax function so as to ensure a positive, real valued loss
function.

Oftentimes machine learning problems are further regularised by including various other
terms in the loss function. Typically this takes the form of averaging multiple loss functions.
For instance, in [84, 85] the authors train the so-called physics-informed-neural-networks
by averaging a MSE loss function with a custom loss function representing how well the
function defined by the network solves a partial differential equation.

While the loss functions so far have been represented as functions of the input and output
data, in the optimisation context we truly think of them as functions of the weights and
biases of the network. Numerous optimisation algorithms can be used to minimize this loss
function, in the aforementioned [84, 85] papers the authors used L-BFGS, a quasi-Newton
method, to train their networks. In practice, however, it is much more common to use a
variant of stochastic gradient descent. The training problem then attempts to estimate
the gradient of the loss function with respect to these weights and biases by computing a
numerical gradient for each training sample via automatic differentiation and averaging
these results to achieve an estimate of ∇W (l)L and ∇b(l)L. Importantly, neural networks lend
themselves well to automatic differentiation instead of computing such a gradient estimate
using finite-difference equations or similar (as such methods would be computationally
intractable). Then for a given learning weight η the weights are updated in accordance to
the backpropagation algorithm (where “�” refers to the entrywise, Haddmard product):

1. Feed the input ~x through the network, calculating z(l) = W (l) a(l−1) + b(l) and a(l) =
σ(z(l)) at each layer.
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2. Output the error between the output y and target output ŷ as δ = ∇L � σ(l)′(z(l))
for the output layer.

3. Propagate the error backwards through the network by computing
δ(l) = ((W (l+1))T δ(l+1) � σ(l)′(z(l))

4. The gradient of the cost function is then calculated as ∂L
∂W

(l)
ij

= a
(l−1)
j δ

(l)
i and ∂L

∂b
(l)
i

= δ
(l)
i .

5. Update the weights at each layer by W (l) → W (l)−η∇W (l)L and b(l) → W (l)−η∇b(l)L

In stochastic gradient descent, the gradients are calculated by randomly splitting the
training data into various batches of a particular size bs. For each batch, the weights are
fixed and the gradients are calculated via backpropagation as above. Then, the weights are
updated via the gradient rule above but with a learning rate η/bs. This process is repeated
until all training samples have been seen. That constitutes one epoch of training. Typically
training is continued for many epochs until the loss function has stopped decreasing or
achieved a minimal value. This batching process is performed due to the fact that neural
networks lend themselves quite well to parallelisation especially on modern GPU or TPU
hardware. Hence this is primarily a computational concern. A popular variant of the
stochastic gradient descent algorithm is that of Adam optimisation. The Adam optimizer is
very similar except it uses a per-parameter learning rate that is adaptively selected based on
both the average and the variance of recent magnitudes of the gradients for the weights [54].

It can be shown (for instance in [43]) that a neural network with sigmoid activation
functions and only a single hidden layer can arbitrarily approximate any continuous function
by taking the width of the network sufficiently large. This is sometimes referred to as the
“arbitrary-width” case of the universal approximation theorem. It was later shown, that
for ReLU activated neural networks that any function f : Rn → Rm can be arbitrarily
approximated by a neural network F with width of max(n+1,m) for any Bochner-Lebesgue
p-integrable function [53] by taking the depth of the network sufficiently large. This is
sometimes referred to as the “arbitrary-depth” case of the universal approximation theorem.

2.5.2 Convolutional Neural Networks

The neural networks considered in the previous section are referred to as “fully connected”
neural networks as each neuron in a layer is connected with each neuron in subsequent
layers. This results in an exceptionally large number of training parameters that greatly
slows down training for very deep neural networks. Moreover, in certain contexts it is
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natural to assume that there would be correlations between the weights. For instance, in
computer vision tasks instead of connecting every single pixel in a 25× 25 image to every
single neuron, instead pixels in a small window (for instance 5 × 5) are convolved and
then pooled together and connected to a single neuron. There are many ways that this
pooling is achieved, i.e. averaging or taking maximal values, and there are many sizes of this
window that can be considered. Furthermore, often the window is not moved pixel-by-pixel
throughout the image but instead jumps by various strides, further reducing the number
of trainable parameters. Importantly, the weights used in the 5× 5 convolution filter are
the same across the entire image. This vastly reduces the number of learnable parameters
and as a result many convolution filters and pooling layers can be included in the depth of
the network. The intuition behind this approach is that the local connectivity follows the
concept of receptive fields. By moving the convolution filter across the image in strides,
we ensure that the features selected by the convolution filter are translation invariant.
This is desirable in vision tasks as individual convolution filters can learn properties like
edge detection, brightness detection, or other features that ought to be exhibit translation
invariance. Hence CNNs exploit spatial locality of vision problems without the need for
many learnable parameters.

2.5.3 Generative Adversarial Networks

Generative adversarial networks, or GANs, are an example of a deep-learning based
framework for creating synthetic data. GANs were first described in the seminal 2014
paper by Goodfellow et al. [37]. GANs are but one example of generative frameworks,
there are others such as variational auto-encoders, flow-based generative models, or (more
recently) diffusion models [55, 88, 89]. GANs have seen incredible applications creating
synthetic images that are nearly indistinguishable from real images. For instance, the
website www.this-person-does-not-exist.com showcases generated random human faces
created using StyleGAN [52] that, to the naked eye, appear real.

Generative modeling is an unsupervised learning problem where two models are trained
simultaneously. Each GAN consists of a discriminator and a generator model. The
discriminator model is fed input from two sources: a collection of real images and a
collection of synthetic images from the generator model. The discriminator then attempts
to determine which of the images are synthetic and which are real outputting a confidence
score in [0, 1] where 0 corresponds to a synthetic sample and 1 to a real sample. As the
discriminator is trained it gets better at telling the difference between the two images,
however simultaneously the generator network becomes more adept at creating realistic
looking synthetic images. It should be noted that while generative models are overwhelmingly
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Figure 2.3: An overview of the GAN framework. A discriminator and generator network are
trained in tandem. The input to the network is a collection of random input samples with
labels 0 and real input samples with labels 1. Throughout learning the generator becomes
a more adept counterfeiter while the discriminator becomes increasingly less confident of
the veracity of the input.

used to generate imaging data, they could be used to generate any type of synthetic data
(be it random vectors from a particular distribution or text tokens in the style of a particular
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author).

The GAN framework can naturally be analyzed with the tools of game theory, hence the
nomenclature of “adversarial” networks. In effect, the two competing models are playing
a zero-sum game. When the discriminator is able to successfully classify samples as real
or fake, its weights are not updated (or, in a game theoretic sense, there is no reward).
Conversely, the generator model would undergo large changes to the weights in such a case
as successful discrimination is emblematic of unrealistic synthetic data. At convergence,
the output of the discriminator network is perfectly undecided, outputting a classification
score of 0.5. Convergence of this type can be thought of as a Nash equilibrium [30]. When
convergence is achieved, the discriminator aspect of the model is discarded and the generator
is kept for the creation of synthetic data.

Generative models are useful for a variety of reasons but the primary use-case we
consider is for data augmentation during classification problems. In situations where one
has limited real data, additional synthetic data can assist in the convergence of many deep
learning algorithms. Perhaps more importantly, however, inclusion of synthetic data also
provides a strong regularisation effect by increasing the generalisation of the model [42].

GANs are enticing in how simple and natural the framework is, however they can
be quite difficult in practice to achieve convergence due to an extreme sensitivity to
hyperparameter values [90]. In particular, in situations where the discriminator converges
too quickly, both the generator and discriminator networks can exhibit the notorious
“vanishing gradient” problem wherein updates to the gradients are too small to move the
network out of any local minima in the loss landscape [1]. Another common issue that
generative models face is mode collapse. In this situation the generator early in training
produces a sufficiently plausible output. In an attempt to continue to fool the discriminator
the generator converges on producing only that output. This results in the discriminator
effectively memorizing that this one particular output is synthetic. Each iteration of the
generator over-optimizes for the discriminator and the generator ends up rotating through
a small set of output types. The issue of mode collapse is problematic as it is desirable
for each random input to produce a sufficiently different, but plausible, random output.
Indeed, without additional regularisation techniques many GAN optimisation problems
lack Nash equilibria all together [90, 29].

One sub-type of generative problem that we concern ourselves with in Chapter 4 is that
of image-to-image translation. In such a task, one considers inputs from two distribution.
The classical example is that of pictures of horses and zebras. The translation task is then
concerned with taking images of horses and modifying the pixel data to produce an image
of a zebra via a process referred to as in-painting. In this problem, we wish to maintain
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other features of the original horse picture such as pose, background, relative size, etc. One
such regularisation technique used in this problem is that of cycle-consistency [118, 81]. In
cycle-consistency the loss function has an additional term wherein the samples attempt to
minimize the difference between an original source image and the result of first translating
the source image to the output distribution and then translating the output back to the
source distribution. In the horse-to-zebra example this would result in first in-painting a
horse to appear as a zebra and then in-painting the zebra output to appear as a horse. By
ensuring that this cycle-consistency is maintained, image translation problems avoid the
issues of mode collapse.

Image translation problems also allow for interpolation between input and output images.
For pixel data, it would be natural to assume that interpolation follows a linear interpolation
between image pixels, but for translation problems this interpolation takes place over the
approximation of the latent manifold of the data. One classic image dataset for use in
machine learning is the MNIST dataset of handwritten digits. In this domain pictures of the
numeral 0 in a particular handwriting style can be thought of as the source distribution and
pictures of the numeral 1 as the target distribution. If we were to merely linearly interpolate
between these images, the intermediary steps would not be recognizable as handwritten
digits. However, when interpolating over the latent approximation each intermediary step
is a plausible digit. It is in this manner that generative networks are able to translate
random input data into plausible human faces – by interpolating along the latent manifold
between training samples. As a result, each image generated by a GAN implicitly contains
information about its training data [19, 115].

2.6 Ensemble Boosting

A standard approach to improving the performance of a classification or regression algorithm
is to employ ensemble boosting [116]. In this thesis we are primarily concerned with using
ensemble boosting for classification. The most famous ensemble method is probably
ADABoost, upon which many ensemble boosting algorithms are based [92]. In ensemble
boosting one combines many classification algorithms sequentially in order to improve
performance. These classifiers are trained iteratively with each subsequent classifier updating
the sample weights during training based upon the successes and failures of the prior
iterations. In the end, the outputs of all the classifiers are combined in a weighted sum
where the weight depends upon the individual loss values of each classifier. Hence ensemble
boosting is not only learning to classify the data, but it is also learning how to improve
each classifier from its previous mistakes, and its learning which of these classifiers to
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trust most. In imbalanced datasets, it is desirable to use random undersampling. Random
undersampling is a process by which one selects samples randomly from each class so that
the classes during training are balanced even if the data during testing are imbalanced. The
downside to random undersampling is that the algorithm is not leveraging all the available
data. In RUSBoosting (Random UnderSample Boosting) the adaptive weights are used
to weight the random undersampling selection process. The process follows the following
algorithm from [94] for the case where there are nclf classifiers.

1. Initialise the weights W1(i) = 1/nclf for all i

2. For i = 1 · · ·nclf

(a) Use the weights Wt(i) to randomly select, as weighted by Wt(i), an equal amount
of samples from each class.

(b) Fit the classifier ft to the undersampled dataset

(c) Calculate the pseudo-loss εt =
∑

(i,y):yi 6=yWt(i) (1− ft(xi, yi) + ft(xi, y)).

(d) Calculate the weight update parameter αt = εt
1−εt

(e) Update Wt(i) according to Wt(i+ 1) = Wt(i)α
1
2

(1+ft(xi,yi)−ht(xi,y:y 6=yi))
t

(f) Normalize Dt+1(i)

3. Return the final ensemble classifier hypothesis F (x) = argmaxy
∑nclf

t=1 ft(x, y) log(α−1
t )

2.7 Reinforcement Learning

In contrast to supervised or unsupervised learning methods, reinforcement learning occupies
its own classification of machine learning algorithm. The classical example of reinforcement
learning algorithms are those of reinforcement learning agents learning to play video games
[71]. As an illustration consider if one wished to use reinforcement learning (or RL) to
play a game of Pong. All one needs to provide the environment with is the rules of what
actions it can take (in this case, the buttons that can be pressed in pong) and allowing it
feedback in the form of rewards (in this case, the score of the pong game). An RL agent
will then interact with the environment in an exploratory manner, attempting random
actions in order to assess the impact on rewards. In a long time frame, the agent will begin
to ascertain which actions result in positive rewards (scoring a point) and which resulted
in negative rewards (allowing the opponent to score a point). Hence there is a trade off
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between exploration and exploitation: exploration allows the agent to experiment with
the effects of its actions and exploitation capitalizes on the high value actions it has taken
so far. To this end, often an epsilon-greedy algorithm is employed for choosing actions
(see, for instance, [99]). In an epsilon-greedy algorithm, the action that seems best given
previous experience is chosen with probability 1 − ε (the so-called greedy choice), and
a random action is chosen with probability ε. In this way exploration is still occurring
(through the random actions) and the algorithm is still exploiting its knowledge (through
the greedy actions). While ε can be kept constant during training, in practice ε is usually
set as a number close to (or equal to) 1 initially and is decayed as training progresses. In
this way, the algorithm becomes less exploratory as it gains more insight into the value
function during training. Interestingly RL approaches achieve impressive performance at
these tasks even in the absence of a direct model of the environment. Model-free RL treats
the environment as a black box in the process of solving the control problem. This makes
RL of particular interest to mathematical modelers. In the presence of ample enough
patient data, an RL agent could learn the actions of chemo-therapy dosing and scheduling
without the need of a patient specific model of the drugs effects on the particular patients
body. Moreover, a hybrid approach of data and multiple models whose accuracy is different
at certain scales can theoretically be employed. The goal of reinforcement learning is to
acquire a value function by which the effect of different actions on the long-term cumulative
reward can be assessed, this value function can then give rise to a policy of what action to
perform in any particular state of the environment. This policy then maximizes not only
the immediate benefit, but the long term cumulative desirability of environment states. In
terms of cancer modeling, this is desirable for ensuring long term desirability of patient
states instead of short term rewards of patient states. In this regard reinforcement learning
is a computational approach to automating decision making in a directed manner. In
contrast to other approaches, RL emphasizes the learning of an agent with direct interaction
with an environment in the absence of supervision or models of the environment.

Reinforcement learning tasks can be described via the framework of Markov decision
processes [99]. There are many ways to solve this RL problem including policy iteration,
temporal-differenc learning, and deep Q learning. It is the method of deep double Q learning
(DDQN) that we employ in this work. In DDQN, the following particular form of the
Bellman equations are solved

Q∗(st, at) = R(st, at) + γ
∑
s′∈S

p(s′ | st, at)Q∗(s′, argmax
a′∈A

(Q∗(s′, a′))) (2.1)

in order to derive an optimal policy as defined by

π(st) = argmax
a∈A

Q∗(st, a). (2.2)
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In Equation 2.1 Q represents the perceived long term value of performing action at
in state st where R(st, at) is the initial, short term reward, p(s′ | st, at) is the probability
of transitioning into state s′ by taking action at in state st, and γ ∈ (0, 1] is a discount
factor for long term rewards. In effect, small values of γ place more importance on
maximizing immediate reward and larger values of γ are more concerned with a longer-
horizon maximisation of long term, cumulative reward. Note that the form of the optimal
Q, denoted Q∗, is highly nonlinear. As such, representing Q∗ by artificial neural networks
is a powerful approach to solving the Bellman equations in Q learning. The DDQN method
from [102] employs two versions of Q∗ that lag temporally behind one another. There is the
target network and the evaluation network. The target network is periodically updated after
a set number of iterations to take the same form as the evaluation network. By updating it
less frequently, we avoid the issue of over-estimation of action-state pairs. In contrast, when
only using one Q network there is the tendency to spuriously over-estimate Q values which
leads to unstable training and a low quality policy [102]. In DDQN the target network is
used for action selection and the evaluation network for action evaluation. This changes
Equation 2.1 slightly to the following:

Qeval(st, at) = R(st, at) + γ
∑
s′∈S

p(s′ | st, at)Qeval(s
′, argmax

a′∈A
(Qtarget(s

′, a′))). (2.3)

2.8 Hyperparameter Optimisation

Often we use data to train a function towards a particular response. In effect, we desire to
fit a function f to some training data Dtr in order to maximize some metric g(f(Dte)) over
the testing data. As the previous sections in this chapter have mentioned, f often depends
not only on the parameters we select in our training process, but also upon the so-called
hyperparameters of the training process. Hence, our optimisation problem becomes: given
a set of hyperparameters θtr use training data Dtr to find training parameters θtr in order to
maximize our metric g(f(Dte; θtr, θhp)) over the testing data. Hence we first must tune our
hyperparameters before we can tune the model parameters. This hyperparameter tuning
process should be evaluated on a different set of data than the testing data in order to ensure
that spurious overfitting is not occurring. There are many methods for hyperparameter
tuning. In situations wherein there are a (small) finite number of hyperparameter options,
one can brute force the method by trying all possible combinations over hyperparameters
evaluated on the held-out validation set. Even if the hyperparameter space is continuous
and infinite dimensional, sometimes selecting a lattice of points for a hyperparameter sweep
is computationally feasible. However, if the data do not lend themselves to a natural lattice
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or if the number of potential points to brute force is prohibitively large, then other methods
should be considered.

Suppose we have some function f : Ω→ R that we wish to maximize on some domain
X ⊆ Ω. As an aside, in the context of hyperparameter optimisation usually we are choosing
our hyperparameters such that a particular metric is maximised. If instead, one was
concerned with minimizing f , then one could employ the usual trick of maximizing an
auxiliary function g defined as g(x) = −f(x) where the maximum of g coincides with the
minimum of f . In cases where we know the function f there are various methods we can
use for optimisation (for instance, if we additionally know that f is convex, then the greater
class of convex optimisation algorithms apply). If, instead, f is a black-box function, then
we can still optimize f using Bayesian optimisation. In particular, Bayesian optimisation is
especially useful when the black-box function is particularly expensive to evaluate (as is
often the case when f is obtained via fitting a neural network).

In Bayesian optimisation, we construct a probabilistic belief about f and design an
acquisition function a(x). Broadly speaking, a(x) is an inexpensive function whose value is
related to how desirable evaluating the original function f at x is for the purpose of the
maximisation function. As such, to determine the next candidate point x to evaluate, we
have to solve a (related, and much less computationally expensive) optimisation problem
on the acquisition function a(x). In principle, many acquisition functions could be used. In
practice, the so-called “Upper Confidence Bound” acquisition function is typically used [32].

Given observations D = 〈X,y〉 we condition a Gaussian process prior as

p(f) = G P(y;µ, V ). (2.4)

where µ is the mean value of the data conditioned on the data D and V is the noise-free
variance of the data conditioned on D.

The acquisition function for the optimizer is defined as follows where β > 0 is a tradeoff
parameter such that larger values of β correspond to a more explorative optimizer.

aUCB(x; β) = β
√
V (x)− µ(x) (2.5)

This acquisition function is then maximised over the predefined hyperparameter space in
order to choose the next candidate hyperparameter tuple for optimisation. Hence as the
Bayesian optimizer encounters the true value of g(f(x)) for various hyperparameter points,
it estimates the value of g(f(x)) over the entire hyperparameter space in order to only
evaluate the computationally expensive function f(x) at candidate points that are more
likely to produce higher values under the metric g.
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2.9 Why does Deep Learning Work so Well?

There is much about deep learning that is counter-intuitive. This small section of this
thesis can not hope to explain all of these issues or even fully survey all the literature on
such subjects. Deep learning in particular is overburdened with no shortage of examples
of success. Deep learning has presented a categorical leap forward in the applications of
statistical learning to various tremendously complex regimes, however there is still as of
yet not a truly deep theoretical understanding of why deep learning continues to work
so well. The bedrock for deep advancements in learning theory is being laid and certain
long-standing hypotheses about machine learning are starting to develop theoretical backing.

The question of why highly overparameterised neural nets do not result in overfitting is a
complicated one. Indeed state of the art generalisation performance is observed when almost
2 million parameters are used to fit a CNN to a dataset of 50,000 training images [6, 22]. In
the wonderful review article [6] the authors note that this question of the “generalisation
puzzle” seems to contradict the standard bias-variance tradeoff of statistical learning [65, 20].
A statistical learning algorithm demonstrating high bias fails to recognize relevant relations
between input and output data and is sometimes referred to as underfitting. Similarly, an
algorithm with high variance is incredibly sensitive to small perturbations in the training
set and may result in regressing to the noise in the training data. Such an algorithm is
called over-fit. Typically overparameterisation leads to overfitting and poor generalisation,
however empirical evidence abounds suggesting that deep learning techniques avoid this
issue.

More issues seem to be avoided in modern neural network learning as well. In particular,
stochastic gradient descent and its variants are näıve first order methods that will almost
certainly converge to local minima in the presence of non-convex loss landscapes. Indeed,
many statistical learning tasks are non-convex [91]. However it has been shown that gradient
descent converges with exponential rate arbitrarily well insofar as the width of the neural
network is sufficiently large. In addition, during training the weights achieved by the
gradient descent algorithm stay nearby the initialisation points [18]. Indeed, in [103] the
authors demonstrate that in the case of linear or quadratic activation functions (allowing
for piecewise linear activation functions, insofar as the closure of the points of discontinuity
form a measure zero set), simply increasing the overparamaterisation of a network actually
rids the loss landscape of spurious local minimal. This is not true of non-polynomial,
non-negative activation functions in general though, as the authors construct multiple
counter-examples where spurious local minima occur. However, the measure of these
minima decreases as the width of the network increases at a rate inversely proportional to
the hidden layer size.

26



In part, neural networks avoid the curse of dimensionality due to what is referred to
as the manifold hypothesis [63, 10]. The manifold hypothesis supposes that natural data
forms lower-dimensional manifolds within its embedding space. In this viewpoint, the task
of a classification algorithm is fundamentally to disentangle multiple manifolds in order to
stratify data between classes. As such, as long as a network is sufficiently overparameterised
such that the dimensionality of the network is larger than the intrinsic dimension of the
data, then the lower dimensional manifold can be recovered. Much work (see for instance
[63, 10, 60] and especially [31]) has been done to try and verify the manifold hypothesis
for various datasets, but at least to our knowledge no such general approach has been
developed. Hence, it is best to think of the manifold hypothesis as a heuristic. (Indeed,
deep learning in general “approximates solutions to NP-hard problems via heuristics” [5].)
In effect the veracity of the manifold hypothesis for a particular deep learning problem
appears to rely heavily on intrinsic features of the datasets themselves and less due to
particulars of network architecture.
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Chapter 3

The Effects of Phenotypic Plasticity
on the Fixation Probability of
Mutant Cancer Stem Cells

In this chapter we examine two models of phenotypic plasticity using in silico experiments.
We demonstrate that two contradictory results can be reconciled by considering different
mechanisms of varying the rates of plasticity in the models. We demonstrate that increasing
fixation probability is not merely due to blindly increasing the plasticity rate of mutant
stem cells. Indeed, the fixation probability of a mutant depends in a non-monotone manner
on its plasticity rate.

Dr. Dominik Wodarz assisted in the design and interpretation of the study. The work
presented in this chapter is published in the Journal of Theroetical Biology [24].

3.1 Introduction

Cancer invasion is a complex process of the cellular ecosystem and micro-environment.
Typically, cancerous cells achieve evolutionary success by mimicking, and subverting,
the behaviour of regular, healthy tissues in the host [58]. In healthy tissue a distinct
stratification of tissue structure is observed where the self-renewal capabilities of terminally
differentiated cells rely upon a discrete subclass of the cellular population deemed stem cells
[107]. In particular, these stem cells can behave invasively through the process of division
and specialisation [9]. As healthy, specialised (or differentiated) cells die, the stem cells
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divide producing the required differentiated cell as a byproduct of mitosis. In this way the
population of specialised, terminally differentiated cells is maintained [9, 106]. However, in
order to maintain tissue homeostasis, this mechanism must be controlled by both positive
and negative feedback loops. To that effect there is mounting evidence that differentiated
cells can de-differentiate back into adult stem cells in both healthy and non-healthy tissue
[106, 100, 15].

This process of cellular invasion in the tissue driven by a particular niche of cells is very
similar to the dynamics observed in invasive cancers. This has led to the cancer stem cell
hypothesis that posits that the invasion, metastasis, and regulation of solid tumours are
driven by a (typically) small sub-population of cells that behave very much like stem cells
[76, 87, 97, 67]. In particular, this same behaviour of differentiated cells undergoing some
process of de-differentiation and recovering some stem-like properties has been implicated
in many forms of cancers experimentally [38, 13, 48, 82].

Many models have been proposed to examine the mechanics of the invasion of these
plastic cancer cells in tissue for instance in [117] the authors discover conditions under which
de-differentiation is selected while in [51] the authors discuss how de-differentiation influences
the time to acquisition of mutations. Another two papers that have mathematically modeled
the effect of this stem-cell plasticity and de-differentiation on the evolutionary dynamics of
cancer stem cells [64, 109] arrived at contradictory results given similar starting assumptions.
Both papers are concerned with how the invasive efficacy of mutated stem cells depends
upon the degree of de-differentiation considered. In particular, both investigate a situation
where a resident type of stem cells and differentiated cells have fully saturated within a
population and by introducing a single mutant type within the population the fixation
probability of these mutants is recovered. In [64] the authors conclude that as the rate of
plasticity increases in a population of cancer stem cells, the fixation probability of mutant
stem cells increases. In [109], however, the author concludes that as the plasticity increases
in a population of cancer stem cells, the fixation probability of mutant stem cells decreases.
These results are evidently at odds with one another and it is the purpose of this chapter
to reconcile and explain the differing dynamical predictions of these models.

3.2 Modeling

The structure of the models is the same in both papers [64, 109]. The authors consider a
population of resident stem cells in an equilibrium state. They then introduce a mutant,
cancerous stem cell into the wild-type population and investigate the probability that the
single mutant achieves fixation as a function of the plasticity of the mutant stem cell. That
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is, the probability ρS that as time t tends to infinity the wild type stem cells have all either
died or differentiated and the mutant type stem cells remain for a given de-differentiation
rate η.

3.2.1 A Discrete Moran Model

In [64] the authors consider modeling the birth-death process by way of a Moran model.
In particular, the authors consider two types of cells, stem cells (Si) and differentiated
cells (Di) where i ∈ {1, 2} denotes whether the cells in question are wild-type (i = 1) or
mutant-type (i = 2). Cells can react and transition between compartments according the
following rules (summarised in Figure 3.1a). Stem cells undergo division at a rate ri. There
is a probability ui that the stem cell produces both a stem cell Si and a differentiated cell
Di during division. Similarly, with probability (1− ui), the stem cell produces two stem
cells as the result of this division. Moreover, differentiated cells can reproduce as well at a
rate r̃i. There is a probability ηi that this division is asymmetric, producing one stem cell
Si and one differentiated cell Di, and a probability (1− ηi), that the division is symmetric,
producing two differentiated cells Di. Similarly, with probability di and d̃i, the stem cells
and differentiate cells die.

Note that in each of these events the population of stem cells and differentiated cells
changes by at most 1 in either direction. Moreover, as births and deaths of cells are assumed
to occur instantaneously, the state of the system at any point in time is determined entirely
by the state at the previous time. Hence, the particular stochastic process being considered
is Markovian. Further, the authors assume that each individual compartment has constant
population size across wild and mutant types: i.e. the number of stem cells and the number
of differentiated cells remain static, merely what proportion of these stem or differentiated
cells are wild or mutant type is the variable.

It is important to note that in [64], the model is developed to assume the Si and Di

compartments correspond to positive and negative biomarker cells. Current biomarkers
used do not necessarily correspond directly to stem or non-stem cells. In particular,
negative-biomarker (or differentiated-analogue) cells can still be observed to proliferate, as
represented in the model. In reality it is often assumed that the only cells capable of driving
the growth and invasive potential of a tumour are stem cells and hence differentiated cells
cannot proliferate to any meaningful degree. However, since biomarkers are imperfect, some
stem-like cells may be classified as differentiated [114]. This is a natural consequence of
imperfect biomarkers, but is worth mentioning explicitly to justify why differentiated cells
are allowed to proliferate in the model represented in Figure 3.1a.
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(b) The suite of reactions captured by the
Wodarz model. Stem cell division is always
assumed to be symmetric, producing either
two new stem cells or two progenitor cells.

Figure 3.1: In both models the differentiation, de-differenation, and death events corre-
sponding to a four-compartment model where Si and Di are the stem-cells and differentiated
cells for the wild-type (i = 1) and mutant-type (i = 2) respectively.

Let NS denote the size of the stem cell compartment, ND the size of the differentiated
compartment, and N = NS + ND the total number of cells considered. Further, we are
concerned primarily with the invasion of mutant types; that is, when the number of S2 or D2

cells is at a maximum (equal to NS or ND). Hence we let nS and nD represent the number
of S2 or D2 cells. Therefore, the number of S1 or D1 cells is given by NS−nS and ND−nD,
respectively. Let W+

S (nS, nD),W−
S (nS, nD),W+

D (nS, nD), and W−
D (nS, nD) represent the

transition probabilities corresponding to an increase or decrease by one (represented by the
+ or − in the superscript) in the number of stem cells or differentiated cells (represented by
the S or the D in the subscript). Then, if 1/N is the duration of each time step in this
model, one can represent the following master equation for the probability density function
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of the stochastic process as follows [64]:

1

N

∂p(nS, nD; t)

∂t
= W+

S (nS − 1, nD) p(nS − 1, nD; t) +W−
S (nS + 1, nD) p(nS + 1, nD; t)

+W+
D (nS, nD − 1) p(nS, nD − 1; t) +W−

D (nS, nD + 1) p(nS, nD + 1; t)

− (W+
S (nS, nD) +W+

D (nS, nD) +W−
S (nS, nD)

+W−
D (nS, nD)) p(nS, nD; t) , (3.1)

where the transition probabilities are given as follows:

W+
S (nS, nD) = (r2 (1− u2)nS + r̃2 η2 nD)

(
NS − nS
NS

)
(3.2)

W−
S (nS, nD) = (r1 (1− u1) (NS − nS) + r̃1 η1 (ND − nD))

(
nS
NS

)
(3.3)

W+
D (nS, nD) = (r̃2 (1− η2)nD + r2 u2 nS)

(
ND − nD
ND

)
(3.4)

W−
D (nS, nD) = (r̃1 (1− η1) (ND − nD) + r1 u1 (NS − nS))

(
nD
ND

)
. (3.5)

The results of Figure 3.2a clearly demonstrate that fixation probability increases as
plasticity of the mutant increases. In particular, when the resident wild type cells were
given no plasticity and the mutant type cells plasticity was treated as a variable it was
observed that increasing the mutant types plasticity gave these mutant types a greater
invasive potential when placed in a population dominated by wild types population.

3.2.2 A Continuous Gillespie Model

On the other hand, in [109] the author aims to describe the dynamics of stem cell invasion
not merely by considering births and deaths and the selective pressures therein, but by
directly considering the positive and negative feedbacks that control differentiation and
de-differentiation in the stem cell hierarchy. To this end, the author constructs multiple
systems of differential equations that model the behaviour of stem cells and differentiated
cells under various assumptions. The key differences between this paper and [64], are in the
details of these models. In particular, the author does not limit themselves to a constant
population size of stem cell and differentiated cell compartments. Moreover, the author
does not explicitly allow differentiated cells to proliferate, as the categories Si and Di in
this model do directly correspond to stem and differentiated cells directly, and not by way
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(b) The Continuous Gillespie Model

Figure 3.2: This Figure shows the results of a simulation of both the discrete Moran model
from [64] and the continuous Gillespie model from [109] where the wild-type differentiated
cells are completely non-plastic. The figures show the contrasting results where in 3.2a the
fixation probability increases as mutant-type plasticity increases and in 3.2b the fixation
probability decreases as mutant-type plasticity increases. The figures are recreated from
similar figures in [64, 109]

.

of a biomarker analogue as in [64]. As before, the author considers a four compartment
model where Si represents the stem cells and Di represents the differentiated cells:

dSi

dt
= r̂i Si (2 pi − 1) + giDi

dDi

dt
= 2 r̂i Si (1− pi)− αiDi − giDi

(3.6)

where i ∈ {1, 2} represents the wild type (i = 1) and mutant type (i = 2), as before.

While the author of [109] does not frame the model as a reaction network, it is not hard
to recover the set of reactions from the differential equations. These are presented in Figure
3.1b.

One should note that if pi 6= αi−gi
2αi

, then the only equilibrium is Si = Di = 0. Otherwise,
the entire set [Si, Di] = [Si, (ri/αi)Si] is an equilibrium. These results do not coincide with
what is observed in experiments. The author argues that feedback on the division rate,
self-renewal probability, and de-differentiate rate occurs in order to maintain finite-size cell
populations. To model this, it is assumed that r̂i, pi, and gi are decreasing functions of the
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cell population sizes in the following way:

r̂i =
r̂′i

1 + hi,1D
ki,1
i

, pi =
p′i

1 + hi,2D
ki,2
i

, gi =
g′i

1 + hi,3 S
ki,3
i

In this case, the model permits an equilibrium point internal to the first quadrant that is
stable when pi >

αi−gi
2αi

.

To numerically establish the fixation probability the following experiments were run.
The author begun by placing S1 and D1 at the equilibrium values and then introduced a
single mutant stem cell, S2 = 1 and D2 = 0. Gillespie simulations were then performed [34]
for many realisations (more than 108). The fraction of simulations in which the mutants
fixated was recorded and from this the fixation probability was estimated. This was done
for various values of de-differentiation rates g = g1 = g2.

In contrast to the results of the discrete Moran model in Figure 3.2a, Figure 3.2b shows
that the fixation probability of a neutral mutant decreases when the de-differentiation rate
increases in the continuous Gillespie model.

3.3 Reconciliation of Previous Results

In the Wodarz model there are four parameters considered for each cell-type (mutant or
wild) (pi, r̂i, αi, gi) while in the Shirayeh model there are six (ri, r̃i, di, d̃i, ηi, ui). The biggest
difference between these parameters is that in [109] the numbers pi and ri are both functions
of Di, and gi is a function of Si.

Moreover, [109] considers four reactions between stem cell and differentiated cell com-
partments

Si → Si + Si , Si → Di +Di , Di → Si , Di → ∅.

Whereas in [64] there are six

Si → Si + Si , Si → Si +Di , Di → Di +Di , Di → Di + Si , Si → ∅ , Di → ∅.

However, all the reactions from [64] can be recovered in the Wodarz model [109].
In particular, in order for stem cells to die they must first differentiate and then the
differentiated cells must both die. In order to obtain asymmetric stem cell division, the
stem cells must first divide into two differentiated cells, then one of the differentiated cell
must de-differentiate back into a stem cell. Suppose a differentiated cell first differentiates
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into a stem cell and then the resultant stem cell symmetrically differentiates. Therefore,
the differentiated cell has symmetrically divided. Further, suppose one of those resultant
differentiated cells de-differentiates back into a stem cell, then the differentiated cell has
asymmetrically divided. In this way all the reaction dynamics of the model from [64] have
been recovered by multiple reactions from the model by [109].

This realisation lends credence to the theory that the models should, hopefully, predict
similar qualitative dynamics. To that end, we begin by creating differential equations via
the reactions given in Figure 3.1a and compare them to the differential equations presented
in [109]. By making the mass-action assumption, we derive

dSi

dt
= r̃i ηiDi + ri (1− ui)Si − di Si

dDi

dt
= r̃i (1− ηi)Di + ri ui Si − d̃iDi.

(3.7)

Contrasting (3.7) with (3.6) it is not hard to derive the following relations. To frame the
Wodarz model [109] in terms of parameters from [64],

pi = 1− ri ui
2 (ri − di)

r̂i = ri − di
αi = d̃i − r̃i
gi = r̃i ηi

conversely, framing the model in [64] in terms of parameters from the Wodarz model [109]
we leave di and d̃i as free parameters, then

ri = di + r̂i

r̃i = d̃i − αi
ηi =

gi

d̃i − αi

ui = 2
r̂i (1− pi)
di + r̂i

.

Hence the qualitative dynamics of (3.7) are dynamically equivalent to those of (3.6),
under a renaming of parameters. Moreover, these formulae allow us to more carefully
compare the two systems predictions under differing notations and parameter choices, as
the formulae provide a way to transcribe parameter values and notational choices from one
system into the notation of the other. In particular, note that the two plasticity parameters
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gi and ηi can be compared directly, as they are just linear, increasing functions of one
another. Hence an increase in gi is analogous to an increase in ηi (and vice versa). Moreover,
ηi = 0 is analogous to gi = 0.

Negative feedback on production rates is modeled in the model put forth by [64], but
not as explicitly as in [109]. In particular, the last factor in the transition probabilities
of [64] provide this bias. If nS is high, or the number of stem cells is close to maximum,
then the transition probability W+

S is near zero, due to the (NS − nS)/NS factor at the
end. Hence when the number of mutant stem cells is high, the probability of making more
mutant stem cells is lowered (this mimics the behaviour observed in the g2(S2) function
in the Wodarz model [109]). Similarly the nS/NS term in the W−

S transition probability
creates pressure where creating more wild-type stem cells is less likely in the presence
of many wild-type stem cells (similar to the g1(S1) function in the Wodarz model [109]).
Analogous behaviour occurs in the W±

D probabilities, mimicking the behaviour of the r̂i
and pi functions decreasing as Di increases.

In the finite population size model, negative feedback on (de–)differentiation rates and
production rates are governed by the select pressures inherit in finite population sizes,
whereas in the unbounded population size model these same feedback mechanisms are
modeled by non-constant, non-linear reaction rates.

A more subtle difference between the two systems is due, in part, to a lack of clarity in
notational differences. In the original presentation of [109] the i subscripts were not present
(though different values of the same parameter between compartments was implied in the
figure descriptions). Among other things, this obscures the fact that g (the parameter
representing de-differentiation, or plasticity) is being altered at the same rate for both the
mutant-type population and for the resident-type population. Hence, the plots in Figure
3.2b really plot the fixation probability ρ(g1, g2) along the diagonal cross-section of the first
quadrant, that is the plots show

∂

∂g

(
ρ(g1, g2)

∣∣
g1=g2=g

)
< 0

whereas the plots in Figure 3.2a show

∂

∂η2

(
ρ(η1, η2)

∣∣
η1=0

)
> 0.

The tacit assumption in [64] is that part of the phenotypic difference between the mutant
stem cells and the resident stem cells is that resident stem cells have no plasticity and
mutant stem cells do have plasticity. The analysis then focuses around qualifying the
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effects of this plasticity. Contrast this, the tacit assumption in [109] is that the mutant
and resident stem cells are phenotypically different in some other way and share the same
plasticity rate.

To conclude, we wished to consider measuring ρ(η, η) for 0 ≤ η ≤ 1 in the discrete
Moran model (that is, the fixation probability from [109] in the model by [64]) and to
measure ρ(0, g) for 0 ≤ g ≤ 1 in the continuous Gillespie model (that is, the fixation
probability from [64] in the model by [109]). In particular, as can be seen in Figure 3.3, we
have recovered the results of the contrasting models. That is, in Figure 3.3a we see that
ρ(η, η) is a decreasing function of η as was seen in [109] (Figure 3.2b) and in Figure 3.3b
that ρ(0, g) is an increasing function of g as was seen in [64] (Figure 3.2a).
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(b) The Continuous Gillespie Model

Figure 3.3: The figure indicates that when varying both the wild-type and mutant-type
plasticity parameters at the same rate in the discrete Moran models, the fixation probability
function is negatively sloped. Similarly, when increasing only the mutant-type plasticity
parameter and keeping the wild-type plasticity parameter at zero in the continuous Gillespie
model, the fixation probability function increases. Note that these results are similar to
what was observed in Figure 3.2, just with the modeling framework switched.

3.4 Further Results

The results of Section 3.3 demonstrate that it is vitally important to consider how a
change in plasticity in a mutant type affects a change in plasticity of a wild type, if at
all. In particular, the authors of [64] and [109] were effectively answering different research
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questions. In [64] the authors were concerned with what the effect of increased plasticity
in a mutant-type would have on fixation probability assuming the wild-type stayed the
same. This corresponds to a case where the mutant-type gains increased plasticity as part
of the mutation. Moreover, this assumes that this increased plasticity in the mutant type
does not have any effects on the plasticity in the resident type. Contrarily, in [109] the
authors assume that the increased plasticity is common to both the mutant and wild type
stem cells. This could be the case where an increased mutant-type plasticity affects the
wild-type stem cells by some kind of increased selective pressure, or via a change in the
micro-environment thus influencing the wild-type to also become more plastic.

A natural extension to the results of Section 3.3 is to consider decoupling the plasticity
parameters all together and contrast the behaviour of the models over this larger parameter
range. For computational reasons we proceed by examining the discrete Moran model and
derive non-monotone (see Figure 3.4) behaviour before concluding in Section 3.4.2 that this
behaviour can not be observed in the continuous Gillespie case.

We consider varying both η1 and η2 (the plasticity of the wild-type and mutant-type
cells) independently of one another. Since η1 and η2 are probabilities, we varied them
over the closed unit square [0, 1] × [0, 1] in a 36 × 36 grid. At each point in the grid we
calculated the fixation probability of the mutant-type stem cells. Further details of the
numerical simulation can be found in Appendix A.1. Note that allowing η1 > 0 corresponds
to de-differentiation of healthy, wild-type tissue. Mathematically, this is motivated by
the original model strategy of [109] but biologically this choice is reasonable in light of
experimental evidence that de-differentiation is present not only in malignant tissue, such
as was studied in [117], but in healthy tissue as well [100, 15]. Moreover, especially in the
case of the discrete Moran model, we wish to reemphasise that the compartment labels of
stem and differentiated cells can be thought of as positive and negative stem biomarker
cells, in which case the assumption that η1 > 0 could be understood to represent imperfect
sorting of such compartments by modern biomarkers [114].

The purpose of the experiment was to further investigate the exact interplay between
plasticity in the two compartments on the fixation probability. However, there are 6 other
parameters to consider, ri, r̃i, and ui. In order to investigate the direct effect of a change
in plasticity on the fixation probability in isolation, we considered the case where relative
fitness was the same in the stem and differentiated cells (that is, ri = r̃i).

We further considered experiments where the relative fitness of the mutant-type cells
(r2 = r̃2) were varied along with the de-differentiation probabilities (η1 and η2). Moreover,
to further analyse the stability, we considered varying the differentiation probability (u2) of
the mutant-type cells along with the de-differentiation probabilities.
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Figure 3.4: A plot demonstrating the presence of a saddle point in the fixation probability
as a function of both de-differentiation parameters. It indicates that increasing the mutant-
type de-differentiation parameter does not always result in increased fixation of mutant-type
stem cells, even when keeping the wild-type de-differentiation parameter constant.
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In the case of the neutral mutant (where r2 = r̃2 = r1 = r̃1 and u2 = u1), the results
are summarised in Figures 3.4, 3.5, and 3.7. The plot in Figure 3.4 indicates the fixation
probability as a function of both de-differentiation parameters. It indicates that in general,
increasing η2, the de-differentiation probability of the mutant cells, increases the fixation
probability. Moreover, this fixation probability is maximal for (η1, η2) = (0, 1). However,
it also shows that for large enough η1, increasing η2 will not always result in an increased
fixation probability. In the extreme case, where η1 = 1, increasing η2 initially increases the
fixation probability, but eventually this fixation probability decreases as η2 is closer to 1.

This result can be seen more clearly in Figure 3.5, where the fixation probability is
plotted for constant values of η1 as a function of varying η2. When η1 = 0 the fixation
probability is a concave down, increasing, saturating function of η2. However, for η1 = 0.2
the fixation probability is no longer strictly increasing and undergoes a change in concavity
early on. As η1 is increased further the fixation probability is no longer a strictly increasing
function of η2 but initially increases and eventually decreases as η2 becomes larger. For larger
η1 the fixation probability function decreases over a larger range of η2 and decreases more
drastically. Conversely, as η1 is increased, the average fixation probability of the mutant-
type cells is increased. That is, for η1 = 0.8, the maximum of ρ(0.6, η2) is around 0.045 (or
4.5%), but the maximum of ρ(1, η2) is closer to 0.075 (or 7.5%). This can be recovered
by recognising the saddle-like behaviour of Figure 3.4. This symmetry can be explained
similarly, as η1 increases, more wild-type differentiated cells are de-differentiating into
stem-cells. This removes selective pressure from mutant-type differentiated cells, allowing
these mutant-type cells to grow larger and, for appropriate values of η2, de-differentiate
back into mutant-type stem cells.

This non-monotonic fixation probability function is an interesting phenomenon. This
implies that for particular parameter sets, it is actually worse for mutant type stem cell
fixation to increase the rate at which mutant differentiated cells de-differentiate into mutant
stem cells. This is non-obvious, as one would assume increasing the pool of mutant stem
cells, by decreasing the pool of mutant differentiated cells, is vital to the fixation of the
mutant stem cells. However, by decreasing the pool of mutant differentiated cells, the wild
type differentiated cells have a selective pressure removed and can see an increased response
in growth. For large enough η1, these wild type differentiated cells can de-differentiate back
into wild type stem cells and thus provide a selective disadvantage to the mutant stem cells.
This is an important phenomenon to fully understand. Much of the results of Section 3.4.1
is to indicate that this phenomenon persists over a wide range of parameter space and is
not the result of a particular, lucky set of parameters.

The original paper by [64] considered only a particular constant η1 value while allowing
η2 to vary. Thus far we have considered various constant η1 values and noted interesting
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Figure 3.5: A stackplot demonstrating the fixation probability as a function of the de-
differentiation probability η2 for various choices of η1. The solid line is the calculated
fixation probability and the dashed lines indicate one deviation by the standard error of
the mean.

41



dynamics occurring. In the paper by [109], they considered varying η1 as a linear function
of η2 (in their particular case, η1 was identically η2). In the next set of experiments we
considered varying η1 as other linear functions of η2.

In the first plot in Figure 3.6, we note that, compared to the η1 = η2 case, in general
the effect is a decrease in fixation probability for η2 smaller than, approximately, 0.55, and
an increase in fixation probability as η2 reaches its maximum. In this scenario, the initial
decrease in fixation probability is intuitive. A more plastic wild-type compartment would
allow more wild-type stem cells to be created and hence result in a selective pressure on
mutant-type stem cells, resulting in less probable fixation for the mutant cells. However,
when η2 is sufficiently large, than the difference between η2 and η1 is less pronounced.
This is similar to the theme observed in Figure 3.5. For large enough values of η2 the
selective pressures from the more plastic wild-type stem cells are reduced. Moreover, in
these scenarios the smaller de-differentiation value compartment has a selective advantage
in production of differentiated cells, and both differentiated and stem cell compartments
are necessary for fixation.

In the second plot in Figure 3.6, we note that in general for η1 smaller than η2 we,
mostly, observe that the fixation probability is increased (compared to the η1 = η2 case).
This is intuitive, when η1 is smaller, wild-type stem cells are being produced less quickly
than mutant-type stem cells. Hence mutant-type stem cells have a selective advantage for
invading. However, when η2 is near 1.0 we observe a very slight dip in fixation probability.
In these scenarios, the mutant cells are almost always de-differentiating. Hence the S2

compartment is filling faster while the D2 compartment is draining faster. Even though
η1 < η2, η1 is still appreciably non-zero, hence the D1 compartment has a selective advantage
due to the small size of the D2 compartment. Therefore, both wild types perform well and
fixate with slightly more frequency.

In the third and fourth plots of Figure 3.6, the situation behaves similarly to the first
two plots. When η1 > η2 there is an initial advantage for the wild-type cells that disappears
as η2 becomes sufficiently large. Contrarily, for η1 < η2 there is an initial advantage for the
mutant-type cells that disappears only when η2 becomes sufficiently large. What is unique
about these two cases is the loss of monotonicity. In each experiment in the third plot of
Figure 3.6, increasing the plasticity parameter η2 also increases η1, but in this experiment
η1 initially increases fast enough that the selective disadvantage for wild-type cells imposed
by larger η2 is offset by the selective advantage for wild-type cells granted by larger η1.
However, past a certain point the benefit in fixation success for the wild-type cells as a
function of η1 begins to saturate and become outpaced by the selective advantage imposed
by larger η2. The fourth plot behaves in a similar fashion to the third plot. For smaller η1

initially the fixation probability increases. As η2 first begins to increase, η1 increases too
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but at a slower rate. The effect of this initial slow increase in η1 is offset by the growing of
η2, hence the fixation probability function is positively sloped. As η2 becomes larger yet,
the increase in η1 starts to effect the evolutionary dynamics and the fixation probability
starts to decrease.
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Figure 3.6: The effects on fixation probability by varying η1 as a function of η2.

When examining Figure 3.4, it appears that in general the fixation probability increases.
Moreover, when the fixation probability is increasing, it obtains a larger value. That
is, for increasing η1 the fixation probability is, in general, decreasing. This effect raises
the question that in general, in a heterogeneous population of wild-type stem cells where
deviations in de-differentiation probability η1 can be observed, what might be the expected
effect on the fixation probability. To that end, we modeled the average fixation probability
as a function of η2 averaged over all values of η1. That is,
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〈ρ(η2)〉 =

∫ 1

0

ρ(η1, η2) f(η1) dη1

where f(η1) is the probability density function for η1 in this case taken to be uniform. The
result, as presented in Figure 3.7, is a non-monotone function of η2 with a unique maximum,
suggesting that in general, increasing the plasticity rate of the mutant-type stem cell will
not always result in increased fixation probability, but may be harmful to the mutant-type
cells.
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Figure 3.7: The mean fixation probability as a function of η2 with the mean taken over the
parameter η1 assuming a uniform distribution. The dashed bars indicate a single deviation
by standard error of the mean.

44



3.4.1 Stability Analysis

The previous results were all obtained for the neutral mutant. To demonstrate the generality
of these results and their independence on particular parameter choices, we repeated the
analysis for varying parameters. In particular, we varied the relative fitness of the mutant-
types, r2 = r̃2, and the probability of differentiation of the mutant types, u2. The technical
details can be found in Appendix A.1.

The results of Figure 3.8 show that for general mutant increasing the relative fitness
increases the fixation probability. For cases where the relative fitness is lower, the de-
differentiation parameter η2 is more important. It is only for relatively larger relative fitness
levels that these fixation probability curves begin to demonstrate saturation and diminishing
returns as a response to increased mutant cell plasticity. In these cases, saturation is reached
quicker for larger r2 = r̃2 values. Thus even small values of η2 are sufficient to maximise
the chances of fixation.

However, for relative fitness values that are closer to neutral (i.e. r2 = r̃2 = 0.75) we
recover the non-monotone behaviour. That is, when there is no substantial advantage
between the wild-type and mutant-type stem cells, fixation probability is more complicated
than just maximising the plasticity. In these cases, as seen in Section 3.4, the behaviour
of the stem cells is governed by competing evolutionary pressures and results in a greater
need to balance parameters than to maximise parameters.

In Figures 3.9 the probability parameter u2 was varied. This parameter corresponds to
the probability a mutant stem cell will differentiate. These results corroborate the claim
that the non-monotonicity of the fixation probability function is a general phenomenon
and not a result of careful parameter choice. For smaller u2 values the fixation probability
function is more right-skewed and for larger u2 values the function is more left-skewed. In
fact, for sufficiently large enough u2 values the resulting function is monotone increasing.

The left-skew of the small u2 functions indicates that when the mutant cells do not
differentiate often, increasing the de-differentiation parameter is worse for fixation. This
could be because in order for the wild-type cells to fixate they must selectively eliminate all
mutant stem cells and differentiated cells. Hence, if there are few mutant differentiated cells
to begin with, removing them from the micro-environment provides a selective advantage
to the wild-type cells. When u2 is larger, there are enough differentiated cells in the micro-
environment that allowing some to de-differentiate (equivalent to 0 < η2 < 1) provides
a selective advantage for the mutant-type cells. However, allowing too many mutant
differentiated cells to de-differentiate (equivalent to η2 ≈ 1) results in the differentiated
cell pool depleting too quickly and the resultant selective advantage for the wild-type cells
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Figure 3.8: Average fixation probability for various relative fitness levels of the mutant-type
cells, r2 = r̃2. The dashed lines indicate one deviation of the standard error of the mean.
The average was taken over wild-type de-differentiation probability η1.
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Figure 3.9: Average fixation probability for various values of u2, the probability the mutant
type stem cell differentiates. The dashed lines indicate one deviation of the standard error
of the mean. The average was taken over wild-type de-differentiation probability η1.

47



provides a selective disadvantage to the mutant-type cells. For sufficiently large u2 as in the
plots for u2 = 0.8 and u2 = 1, mutant stem cells are almost always de-differentiating, hence
the only way to refill the mutant stem cell pool is to increase the rate of de-differentiation.
For these scenarios the bottle-neck for fixation is recovering enough stem cells to create
a selective disadvantage on the wild-type cells. Hence, increasing η2 is always the most
evolutionary effective means of increasing fixation.

3.4.2 Monotone Response Curves

The non-monotonicity observed in Figure 3.4, among others, can be seen as arising from
the competing reactions Di →r̃i ηi Si + Di and Di →r̃i (1−ηi) Di + Di. Both reactions are
beneficial to the species, as increasing both the differentiated and stem cell compartment
is necessary to achieve fixation. As such, one could imagine the non-monotonicity as
arising out of an implicit choice being made to further fixate by either creating a new
stem cell, with the expectation that this will result in later increases in the differentiated
cell compartment, or, instead, by creating a new differentiated cell immediately. This,
evidently, is a process unique to the Moran model outlined in Figure 3.1a that has no
obvious analogue in the continuous Gillespie model outlined in Figure 3.1b. In particular,
in the continuous Gillespie model differentiated cells are not permitted to proliferate, and
while the two models produce equivalent dynamical systems, up to a change of parameters,
the particulars of the implementation of both are not equivalent due to the differing process
by which the models enforce selective pressure (in particular, the selective pressure from the
Moran model is a result of fixed population sizes whereas in the Gillespie model selective
pressure is governed by feedback on reaction rates). As a result, the continuous Gillespie
model cannot achieve non-monotone fixation probability curves.

To illustrate how this behaviour is extended by the discrete Moran model, consider
setting ηi = 1 and using r̃i as the plasticity parameter. In this context the reaction that
allows differentiated cells to proliferate is removed, and de-differentiation is governed by the
parameter r̃i. Figure 3.11 demonstrates that this process results in a fixation probability
curve ρ(r̃1, r̃2) that is strictly increasing in r̃2, strictly decreasing in r̃1, and strictly decreasing
for r̃1 = r̃2 = r̃ (as was observed in [109], seen more clearly in Figure 3.12).

Similarly, in [109], the author introduces a model using transit amplifying cells (Figure
3.10). In this model, stem cells either proliferate on their own, or differentiate into an
intermediary state called transit amplifying cells. Transit amplifying cells then either
de-differentiate back into stem cells, or fully differentiate into differentiated cells. The
only reaction differentiated cells can undergo is death. In particular, note that this model
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Figure 3.10: A model where stem cells first differentiate into transit amplifying cells before
fully differentiating. Transit amplifying cells can then govern the de-differentiation process.

includes similar competition, based on the plasticity parameter qi, between reactions
Ti →r2,i (1−p2,i) qi Si + Si and Ti →r2,i (1−p2,i) (1−qi) Di + Di. However, since differentiated
cells, in this model, do not provide a selective advantage to the species, only one of these
reactions directly increases the evolutionary fitness of the species. As a result, varying the
plasticity parameter q results in strictly monotone response curves.

In effect, this demonstrates that when differentiated cells are not allowed to proliferate
increasing the plasticity of mutant-type cells (or, equivalently, decreasing the plasticity of
wild-type cells) results in an increase in fixation probability of the mutant-type cells. This
is analogous to the results observed in [64] when η1 = 0.

3.5 Summary

In summary, two, apparently contradictory, stochastic models of cancer stem cell behaviour
were considered. Both models were questioning the invasive capacity of mutant stem cells
in the presence of a pre-existing stem cell and differentiated cell strata. The models were
concerned with how the phenotypic plasticity, or de-differentiation rate, affected the invasive
potential of these mutant stem cells. A Moran birth-death model was considered and
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Figure 3.11: A contour plot demonstrating the fixation probability as a function of both plas-
ticity parameters when differentiated cell propagation has been removed. The plot indicates
that increasing the mutant-type de-differentiation parameter always increases the fixation
probability of mutant-type cells. Likewise, decreasing the wild-type de-differentiation
parameter increases the fixation probability of mutant-type cells. In contrast with Figure
c3.4, no saddle point is observed.
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Figure 3.12: A plot indicating that when mutant and wild-type plasticity parameters are
kept coupled increasing this plasticity parameter decreases the fixation probability of the
mutant-type cells. Dashed lines indicate a difference of one standard error of the mean.
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Gillespie simulations of a reaction network were considered. The apparent discrepancy
between these models was discovered to be hidden within assumptions determining how
both the resident type and mutant type plasticity rates alter. This apparent contradiction
was resolved and the behaviour of the Gillespie simulation model was recovered in the
Moran context, and vice versa.

It was also observed that increasing plasticity in the mutant type differentiated cells
can result in both positive and negative effects for the fixation probability of the mutant
stem cells, as long as differentiated cells are allowed to proliferate at some nonzero rate.
This seeming contradiction was demonstrated to be stable across differing parameter sets
indicating that this phenomenon may be observed in general. Further, when differentiated
cells are not permitted to proliferate, then the system is entirely dependent on increasing
the fixation efforts of the stem cells. Hence, when differentiated cells are not permitted to
proliferate, increasing mutant plasticity results in increased mutant fixation probability. The
continuous Gillespie model of [109] is an example of a stem cell model where non-monotone
response curves can not be realised as a result of this inability for differentiated cells to
proliferate. This elucidates a fundamental difference between the models of [64] and [109];
namely that since the former allows differentiated cells to proliferate, competitive behaviour
between stem and differentiated compartments is observed that the latter model does not
experience. These results indicate that while the initial contradiction between the two
models has been resolved in this chapter, further differences between the two have been
revealed, and explained, as a result of differing assumptions regarding the modeling of
differentiated cell populations. Moreover the discrete Moran model was shown to be able
to recover the non-monotone response curve behaviour of the continuous Gillespie model
under a suitable change of parameters.
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Chapter 4

Classification of Cells via Imaging
Flow Cytometry

In this chapter we develop a method for identifying the mitotic phase of Jurkat cells. We
compared the method with previously published approaches and classical machine learning
techniques. The effects of the additional layers of complexity are investigated in order to
benchmark the predictive accuracy of the method. A manuscript of this work is being
prepared for publication.

4.1 Introduction

With techniques like imaging flow cytometry, thousands of images of cells can be acquired
relatively quickly. One thing that makes these methods attractive is that the cells themselves
need not be destroyed or damaged by the process. Traditionally, binning these cellular
images into various classification classes can be accomplished by applying various biomarkers
or fluorescent dyes to the cells [12]. Flow cytometry can then quantify the proportion of cells
that satisfy the particular biological stratification of interest (for instance, the proportion
of mitotic cells within the sample [8, 49]). However, while imaging flow cyotmetery itself
does not damage the cell, the addition of biomarkers and dyes can negatively effect the
cell in many ways. For instance, the addition of certain fluorescent dyes can cause histone
dissociation, damaging the DNA of the live cell [110]. Moreover, even if the cell itself is
not destroyed, the addition of these biomarkers can introduce confounding effects in the
classification of cells. So while the methodology of flow cyotometry is non-destructive,
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learning information about the proportion of single cells in certain biological tasks often
requires the cell to be either destroyed or irreparably damaged. Thus, it is desirable to
develop methodologies that do not require constant damage being done to the cells in order
to perform classification.

In 2017 Blasi. et al [8] produced a methodology that uses the open source software
package CellProfiler [14] combined with random forest ensembles to classify cell cycle stages
in a label-free, non-destructive manner. By first employing traditional dyes and biomarkers
in imaging flow cytometry to produce a ground truth, the authors then train their machine
learning classifier to predict the cell cycle phase of these cells with reasonable true positive
rates across all classes of interest. A benefit of this method is that while the original dataset
required the addition of these dyes and biomarkers to train the algorithm, further cell data
can be classified by the algorithm in a biomarker free manner. As a result, this reduces
the total cost of performing cell binning. The algorithm relies upon an important step in
the process known as “feature engineering”, performed by CellProfiler, wherein a biologist
produces a pipeline of important features to be extracted from the image. As such, the
raw cell image is then transformed into a vector of descriptive features. The strength of
the classifier, then, depends critically upon the correct features having been chosen at
the outset. This strength also disguises a weakness of these methods: if a classifier is not
performing well is it a problem with the classifier, are the wrong features being selected, or
is it perhaps just a fundamental intractability of the problem? To this end, much work has
been done in the direction of automated feature engineering [68, 28, 74].

Computer vision and image classification tasks have seen rapid advancements in the
past five to ten years, with deep learning based approaches ushering in new benchmarks
and state of the art performances on classic datasets such as MNIST, Fashion-MNIST and
ImageNet [45, 17, 112]. One of the largest strengths of these approaches lie in their capacity
to correctly classify the images without the need of a hand tuned, feature engineering
step. Indeed, by using neural networks to perform the feature engineering step directly
as a part of the classification problem, the neural network is able to not only learn how
to classify the data based on the features but also how to extract the correct features
for such a task. The difference between these two approaches is visualised in Figure 4.1.
While training these complicated neural networks often requires powerful hardware, there
are advancements being made to allow inference to be performed on incredibly low-power
computing hardware [2, 21, 59]. In effect, once trained these vision based cell-sorting models
can be used towards classification on much more mobile, power-friendly hardware.

To that end, we develop a methodology to detect the cell cycle phase of Jurkat cells
without the need for feature engineering steps and produce a method that not only produces
a higher balanced accuracy score, but also a higher true positive rate and a more diagonally
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Figure 4.1: Figure demonstrating the difference in training between the manual feature
extraction methods and the automatic feature extraction methods. Note the backwards
grey arrow denoting the process of backpropagation during model training. In (a) features
are extracted from the cell image and the feature extraction process is unaffected by
backpropagation. In (b) backpropagation informs what features are being extracted as well
as their role in classification.

dominant confusion matrix.

4.2 Methods

4.2.1 Imaging Flow Cytometry

Imaging flow cytometry is an experimental method for obtaining single cell images in a
high-throughput, non-destructive manner. This method suspends cells in a fluid that are
then injected into the instrument where the sample is focused such that one cell at a time
is filtered through a laser beam. Cells that have been stained with biomarkers or other
chemical dyes scatter the light in characteristic bands of wavelengths for identification.
This data is then fed into the IDEAS software package for darkfield and brightfield image
acquisition and ground truth labelling.
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4.2.2 Experimental Data

The dataset we considered is courtesy of Blasi et al. [8]. The dataset consists of 32,255
asynchronously growing fixed Jurkat cells treated with 50 µM Nocodazole, a mitotic blocking
agent, as well as a PI stain and MPM2 (mitotic protein monoclonal #2) antibody in order
to provide a ground truth stratification of these cells into five groups: interphase, prophase,
metaphase, anaphase, and telophase. Each of these groups represents the stage of the cell
cycle that the particular cell was in during the imaging process. The images themselves are
brightfield and darkfield images of the cells in a 55× 55× 2 pixel array.

While the dataset itself is quite large, the class membership itself is very imbalanced.
In Figure 4.2 this class imbalance is visualised by plotting a histogram on a log-scale.
Indeed, nearly 98% of the dataset is comprised of cells in the interphase compartment.
For the purposes of classification, this requires care in dealing with the metrics tracked to
measure the performance of a classifier. Consider the näıve classifier that assigns a label
of “interphase” for every input. Evidently such a classifier is incapable of determining the
difference between cells, however if merely the accuracy of the classifier were assessed on
the dataset one could erroneously assume the classifier has successfully solved the problem
to a high degree of accuracy.

There are metrics other than accuracy that one can consider. One such common metric
in the case of an imbalanced dataset is the so-called “balanced accuracy score”. This score
weights the accuracy for each label by the number of instances within that class. As a
result, for the näıve classifier that only assigns a label of “interphase”, a balanced accuracy
score of 20% would be achieved. The balanced accuracy score is calculated by Equation 4.1
where 1 (·) represents the identity function whose output is 1 if the argument is true and 0
otherwise.

ba =
∑
i

1 (f(g(Xi)) = λi)

nλi
(4.1)

For the purposes of tuning the hyperparameters of the classification methods, a validation
set of 2933 images was selected from the data. In an effort to ensure that the validation
data is representative of the larger dataset, the validation data was selected in a stratified
manner such that the distribution of labels approximately matches the distribution of the
labels in the entire dataset (as visualised in the rightmost plot of Figure 4.2).

For training the classification algorithms, we used stratified 10-fold cross validation on
the remaining data. The remaining data were stratified into 10 different subsets whose
distribution approximately matches the distribution of the larger dataset, as with the
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Figure 4.2: A log-histogram as an example of the imbalanced dataset. In total, there are
31,542 cells in interphase, 605 cells in prophase, 68 cells in metaphase, 15 cells in anaphase,
and 25 cells in telophase split into a training set (left) and a validation set (right). The
training set is further split via 10-fold cross validation where each cross validated fold is
roughly the same size and features the same distribution as the validation set.

validation data. In this way, we are able to obtain not only point estimates of the classifiers
balanced accuracy score but also distributional information about the metric.

During training we employed random undersampling [94] to further address the class
imbalance issue. In random undersampling, one selects the largest subset of the data such
that every class is represented the same number of times. While the model is trained on
these smaller, balanced datasets, the model is assessed on the larger, imbalanced dataset
using Equation 4.1.
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Data Augmentation

For the most sparsely populated class of the training data, anaphase, there are only 13
examples to be used in training. Hence, for the 5 classes considered, a random undersample
used in training would consist of only 65 training samples. As such, we artificially increased
the size of the dataset using data augmentation. This process of data augmentation
is sometimes referred to as synthetic oversampling. However, in a traditional synthetic
oversampling scheme, one synthetically augments the minority classes until all classes have
the same representative size. Given how large the gap is between the majority class and
the minority class in our training examples (the ratio of interphase to anaphase samples
is approximately 2206) purely using synthetic oversampling would result in a training set
where the minority classes are composed almost entirely of synthetic data. Not only would
this drastically increase the training time of the methods, the resultant synthetic anaphase
class would contain examples that are much more highly correlated with one another than
the examples in the interphase class. Instead, we choose an augmentation factor φ and
sample φ · nanaphase examples from each class. If the class itself is not populous enough for
us to acquire this many samples, we simply sample all examples from that class and fill in
the remaining samples with synthetic data.

Our augmentation techniques considered include the following 4 options chosen uniformly
at random. First, we employ random rotations, where a random image is rotated at a
random angle in [0, 2 π). Any missing pixels are filled in via nearest neighbours sampling.
Given the nature of the data, these pixels that need filling represent the background of
the image (and not the actual cell body) and hence the information contained is of little
consequence. Secondly, we employ random reflections of the image, randomly selected as
either vertical or horizontal reflections at random. Thirdly, we employ a random zoom and
crop procedure, where the size of an image is first increased via bi-cubic interpolation from a
55× 55× 2 image to a 69× 69× 2 image and randomly cropped back to a 55× 55× 2 image.
These first 3 procedures were selected with the following biological justification: during
the imaging flow cytometry process, the orientation of the cell is not guaranteed to be
fixed in any way, hence the random rotations and random reflections produce equally valid
views of the same cellular information. Moreover, by randomly zooming into the images we
provide our algorithms with a different view of the same information. In all 3 examples, the
pixel-level data is drastically different between the source image and the augmented image,
but the cellular information contained is the same between the two images. Finally, for
the fourth procedure, we synthetically generate new images using a generative adversarial
network (GAN). This GAN process is accomplished via Contrastive-Unpaired-Translation
(CUT) [81], a variant of CycleGAN [118]. CUT, CycleGAN, and other similar methods
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operate by translating images of distribution A into images of distribution B. In the
context of this work, we can take an image of a cell earlier in the cell cycle (prophase, for
instance) and translate it into an example of an image from the next phase of the cell
cycle (metaphase). This process results in an image that is unique from the others in the
class, interpolating not only the class features from the elements of the target class but
also those features from the origin class that are likely to show up in the latter distribution
(B). An important aspect of these methods, compared to their progenitors, is that they do
not require paired examples of each class (in this context, a paired example would be an
image of a cell in prophase and an image of the same cell in metaphase). CUT is especially
appropriate for this implementation as the convergence speed is substantially quicker than
other GAN methods [81]. Since, in order to avoid spurious overfitting, the GAN needs to be
trained independently on each fold of training data, the computational benefit of the faster
convergence speed is especially crucial. Furthermore, CUT has been shown to be uniquely
adapted to few-shot learning, including impressive results given only a single example of
images from each class. In the context of these cellular images, on a single training fold
there may be as few as 11 examples of a particular class, hence the capacity to perform
few-shot learning is exceptionally important.

If p(X) ∈ [0, 1]5 represents the logit prediction of the input image X and Xrot represents
a random rotation of the target image, Xflip a random flip of the target image, et cetera,
then, for the purposes of prediction, we considered the following function

p̃(X) =

∑wrot

i=1 p(Xrot) +
∑wflip

i=1 p(Xflip) +
∑wzoom

i=1 p(Xzoom) +
∑wid

i=1 p(X)

wrot + wflip + wzoom + wid

where the weights wrot, wflip, wzoom, and wid were selected by choosing the integer values (not
all 0) in [0, 5]4 such that the balanced accuracy score averaged over 3 random seeds of the
CNN classifier was maximised over the held-out validation set. The best values coincided
with the case such that wrot = wzoom = 2, wflip = wid = 1. Note that

∑wrot

i=1 p(Xrot) 6=
wrotp(Xrot) as each rotation is sampled independently. This is similar for the other random
augmentation methods.

4.2.3 Manual Feature Selection

The method of Blasi et al. [8] utilizes a manual feature extractor. This method works
by importing the raw imaging data from the imaging flow cytometer into the software
CellProfiler [14]. CellProfiler then outputs 128 features for the brightfield images and 85
features for the darkfield images. These features include things like granularity, Zernlike
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Figure 4.3: Examples of authentic data from the data augmentation process
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polynomials, intensity, radial distribution, mean radius, perimeter, area, etc. (for a full list,
see the supplementary information in [8]). These morphological features are then used as the
input to the classifier algorithms. In effect, CellProfiler acts as a step to convert 2 channel
cell images into feature vectors. Once these feature vectors have been selected, we can
digitally sort the cells into classification bins using any number of classification algorithms.
As in Blasi et al. [8] we a random undersampled boosted ensemble (RUSboost [94]), however
Blasi et al. only utilised a hand tuned DTC as a weak learner and we consider various
hyper-parameter tuned weak learners for comparison.

Decision Tree Classifiers (or DTCs) are a popular method to use in conjunction with
ensemble algorithms for solving classification algorithms. Indeed, these random forests are
incredibly powerful tools for solving a variety of classification tasks due to their capacity to
produce classifiers with flat loss functions around the optimum (and hence tend to generalize
well) [11]. Moreover, DTCs are quite computationally inexpensive to fit, hence in ensemble
boosting contexts a large number of classifiers can be combined to produce an ensemble
method.

k-Nearest Neighbours classifiers (or KNNs) are another simplistic weak learner to
consider. We consider using KNNs for a variety of reasons. Firstly, as a point of comparison
to the previously employed DTCs. Secondly, because the KNN algorithm is a sufficiently
nav̈e classifier it provides a helpful baseline of a minimal score of the metric of interest.
For instance, for a 2-class classification problem an accuracy score of 0 technically encodes
nearly as much information as an accuracy score of 1. Similarly, because the truly most
näıve classifier is a random classifier, and a random classifier would expect a 1/n on average
for an n-class classification problem, considering 1/n as a baseline for balanced accuracy
score is more useful than 0. As a result, the score obtained by a random classifier represents
the “true bottom” of a metric. The KNN algorithm is similarly utilised to provide context
towards a “reasonable bottom” of a metric. While random selection is the most näıve
classifier, the KNN classifier represents an incredibly näıve classifier that actually uses the
feature data for classification. As a result, the KNN score provides a more helpful baseline
minimal score.

Finally, we also consider using an artificial neural network (ANN) as a classifier for these
feature vectors. ANNs have achieved state of the art scores on various image classification
tasks. Moreover, evaluating an ANN on the manually feature selected data allows for a
very natural comparison with the automatic feature selection methods. The architecture
considered is in part informed by the hyperparameter optimisation performed in Section 4.2.5
but broadly consists of a number of fully connected layers, all activated by ReLU functions,
ending in a layer of 5 neurons activated by the softmax function. For a loss function we
considered the categorical cross-entropy function. As such, the output of the ANN is a logit
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vector where the ith entry corresponds to the probability of the sample inhabiting the ith
class.

4.2.4 Automatic Feature Selection

For automatic feature selection these algorithms generally consist of two portions. The
first portion represents a feature extractor and the latter portion is responsible for the
classification of the output. In this sense, there is a similarity in structure to the method
described in Section 4.2.3. However, whereas the feature extractor role of CellProfiler
can, in principle, be tuned to select different features, such a process is done manually
before training. Whereas by leveraging automatic feature selection algorithms, local
spatial information about the image gained by convolution kernels is directly a part of the
optimisation problem. Hence, during training the machine learning algorithm can tune the
weights to focus the convolution kernels on different aspects of the images in question. As a
result, the particular feature vector being used by the classification portion of the algorithm
is changing constantly in order to help minimize the loss of the algorithm. While there
is not a one-to-one analogue with the manual feature selectors, in practice the methods
perform similar roles.

One can train a feature extractor from scratch to perform these tasks, but we employed
a popular pre-trained CNN based architecture called ResNet [45]. ResNet is pre-trained on
the ImageNet dataset – a dataset consisting of over 14 million images of everyday objects.
While ImageNet does not contain any cell images, we are not interested in the classification
portion of the network merely the feature selection portion. This feature selection portion
is quite similar across many classification problems as the fundamental features needed to
be evaluated are similar. That is to say, ResNet has been trained to produce features by
recognizing fundamental shape and edge information of objects that is similar in any image
classification task. Hence, using a pre-trained ResNet as a starting point will reduce the
training time and computational cost of the classification problem. The final structure of
our CNN based architecture consists of the pre-trained ResNet base to perform feature
selection followed by a number of ReLU activated fully connected layers (informed by the
results of Section 4.2.5) and finally, a softmax activated output layer of 5 neurons for each
class considered.
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4.2.5 Hyperparameter Optimisation

There are numerous hyperparameters to these methods that we need to consider. Not
only are there hyperparameters for each of the individual weak learners θwl, there are
also hyperparameters for the ensemble boosting algorithm θens. The performance of these
methods depends on the values of these hyperparameters - in some cases this dependence is
quite crucial. While these hyperparameters can be hand-picked, often better performance
is observed when the hyperparameter values are determined via the data in some manner.
However, if the hyperparameters were tuned by choosing the values that best improved the
metric of choice on the whole dataset, then one could find themselves with spuriously high
balanced accuracy scores due to overfitting. Hence, we tune the hyperparameters by only
evaluating the methods on the held out validation dataset.

The computational cost of performing hyperparameter optimisation in an end-to-end
manner (i.e. by training an entire ensemble on all 10 folds of the cross-validated dataset) is
computationally quite expensive, so instead we consider tuning the hyperparameters in a
multi-stage process.

1. First we pretune the weak learner by determining θwl by training on a single learner
on random undersamples of the training data. We then evaluate this learner by
calculating the balanced accuracy score on the validation data.

2. Then we take the tuned weak learner (tuned according to the values of θwl discovered
previously) and determine θens for the ensemble.

The particular hyperparameters that need to be tuned for each weak leaner, θwl, depend
on the particulars of each weak learner being investigated. However θens = 〈αe, nwl〉 for
each weak learner. That is, while the values of αe and nwl will change for each weak learner,
there are not any additional ensemble hyperparameters to consider for any of the weak
learners. Note the relationship between nwl and αe is such that the two vary as the inverse
of one another. As a result, we choose αe manually and train an ensemble for a large
number of learners nwl. Then, we calculate the cumulative validation loss of the ensemble
as a function of nwl and minimize this function on the ith fold of the data by setting n∗wl

(i)

as the argmin of the validation loss. This training process is repeated for multiple splits
over the training data and the final value of n∗wl is taken as the nearest integer to the mean
of the n∗wl

(i)s.

We first present the results of pre-tuning the weak learners. For the DTC we considered
the hyperparameters θwl = 〈nss, nsl〉 where nss is the minimum number of samples required
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at a parent node and nsl is the minimum number of samples required at a leaf. We
optimised the values of θwl by brute forcing over the lattice nss ∈ {2, 3, · · · , 40} and
nsl ∈ {1, 2, · · · , 20}. This hyperparameter space was selected based on a meta-analysis of
DTC methods that determined the likely hyperparameters for a classification task fall in
this region [66]. For each of the 780 possible hyperparameter combinations, we trained DTC
classifiers on 200 different random undersamples of the training data and evaluated these
classifiers on the validation data. The results of which are presented in Figure 4.4. Note
that for a large portion of the hyperparameter space, roughly bounded by 2 ≤ nss ≤ 32,
1 ≤ nsl ≤ 11 the classifier performed similarly well. In effect, this suggests that while there
may not be one perfect choice of hyperparmeters, there are certainly sub-obtimal choices of
hyperparameters by taking values outside of this region.

For the KNN classifier, we considered θwl = 〈k, p, w〉 where k is the number of neighbours
to consider, p is used for calculating the distance between features x and y in Rd via the

lp norm ‖x − y‖p =
(∑d

i=1 |xi − yi|p
) 1

p
, and w is the weighting scheme for determining

contributions from neighbours in prediction. We considered k ∈ {1, 2, · · · , 30}, p ∈ {1, 2},
and w to correspond neighbouring contributions being either uniform or distance weighted.
(For uniform-weighted contributions, the effects of all k neighbours are considered evenly;
in contrast, for distance-weighted contributions, the closer of the k neighbours are weighted
heavier than those of the k neighbours that are further away). We brute forced over the
entire 120 hyperparameter space by training classifiers on 200 different random undersamples
of the training data evaluated on the validation data. The results are presented in Figure
4.5. Note the sharp decrease in the balanced accuracy score for the uniform weighted curves
suggesting that such methods may not generalize as well in situations where the nearest
neighbour is far away from training examples. However, in the two distance weighted curves,
the balanced accuracy score plateaus briefly before decreasing, allowing for the algorithm
to consider the input of multiple sources. In particular, the optimum choice observed on
the validation data corresponds to k = 2 with p = 2 and distance weighting.

For the neural network approaches, brute forcing the hyperparameter space would be
computationally infeasible given the size of the hyperparameter space to consider combined
with the computational cost of fitting these methods. As such, we consider a Bayesian
optimizer with an upper confidence bound acquisition function. For the ANN we considered
θwl = 〈α, nhd, d1, · · · , dnhd

〉 where α refers to the learning rate of the neural network, nhd

represents the number of hidden layers (the depth of the network), and the dis represent
the dimension of these hidden layers (the breadth of the network). Ostensibly, there are
other hyperparameters to consider. For instance, the number of epochs trained, the batch
size, and the optimizer are all hyperparameters to consider. In the case of our method,
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Figure 4.4: A contour plot presenting the results of hyperparameter tuning for a single
decision tree classifier. The red box indicates the hyperparameter set that gives the
largest predicted balanced accuracy score on the validation data. Note the large swath of
hyperparameters for which the metric score achieved is similar.

65



1 4 7 10 13 16 19 22 25 28
Number of Neighbours

0.45

0.50

0.55

0.60

0.65

0.70

Ba
la

nc
ed

 A
cc

ur
ac

y 
Sc

or
e

p = 1 with Uniform weighting

1 4 7 10 13 16 19 22 25 28
Number of Neighbours

0.45

0.50

0.55

0.60

0.65

0.70

Ba
la

nc
ed

 A
cc

ur
ac

y 
Sc

or
e

p = 2 with Uniform weighting

1 4 7 10 13 16 19 22 25 28
Number of Neighbours

0.45

0.50

0.55

0.60

0.65

0.70

Ba
la

nc
ed

 A
cc

ur
ac

y 
Sc

or
e

p = 1 with Distance weighting

1 4 7 10 13 16 19 22 25 28
Number of Neighbours

0.45

0.50

0.55

0.60

0.65

0.70

Ba
la

nc
ed

 A
cc

ur
ac

y 
Sc

or
e

p = 2 with Distance weighting

KNN Hyperparameter Tuning

Figure 4.5: Results of hyperparameter tuning for the k Nearest Neighbours classifier. The
orange circle indicates the hyperparameter set that gives the largest predicted balanced
accuracy score on the validation data. Shaded regions represent 95% confidence intervals.

66



we fixed the batch size of the network to 32, the number of epochs to 100, and used
the Adam optimizer. To justify the choice of fixing the number of epochs, we note that
there is an inverse relation between the number of epochs and the learning rate [36]. For
a smaller learning rate, more epochs are needed to sufficiently train the network. We
took 10−6 ≤ α ≤ 10−1 and sampled α in a log-sampling manner such that each order of
magnitude was equally likely. We considered nhd ∈ {0, 1, 2} with di ∈ {32, 64, . . . , 512}.
Note that the choice of nhd determines the architecture of the network and so determines
how many of the di also need to be chosen. In particular, the choice of nhd = 0 results in a
shallow perceptron with no hidden layers (and hence, no hidden dimensions to determine).
All hidden layers are activated by the ReLU function and the final layer is activated by
the softmax function. We first seeded the Bayesian optimizer by selecting 3 · (nhd + 1)
hyperparameters at random. Then, we allowed the Bayesian optimizer to select the next
hyperparameter choice in the search space to evaluate. We allowed this process to continue
for 100 such trials. For each hyperparameter the data was fit on the 10-fold cross validated
training data and evaluated on the validation data. The results of this optimisation are
visualised in Figure 4.6. In particular, note that there is an increase in balanced accuracy
score between the nhd = 0 and the nhd = 1 case, but no such increase is observed in the
nhd = 2 case.

In [98] the authors presented a method called highway networks that uses gated residual
connections to increase the number of layers without having performance saturate. To that
end, we also considered hyperparameter optimizing a highway network with three hidden
layers with dropout on the hidden layers. Here the dropout rate of these hidden layers
was considered as an additional hyperparameter in the interval [0, 1) to optimize and was
kept as the same rate between all three hidden layers. This approach did not increase the
accuracy of the classifier, suggesting that the accuracy of the classifier has saturated due to
a fundamental inability to learn more from the data rather than from difficulties in training
deep networks.

For the CNN approach we considered θwl = 〈α, d, φ〉 where 10−6 ≤ α ≤ 10−1 is the
learning rate of the neural network (log-sampled as in the ANN case), d ∈ {32, 64, · · · 512} is
the dimension of the single hidden layer, and φ ∈ {2, 3, . . . , 32} is the augmentation factor.
As in the case of the ANN we consider an Adam optimizer with a batch size of 32 where
training is performed over 100 epochs. Similarly, the hidden layer is activated by the ReLU
function and the final layer is activated by the softmax function. Note that only 1 layer is
considered for the CNN as informed by the results of the ANN hyperparameter optimisation.
We seeded the Bayesian optimizer by first evaluating 8 separate hyperparameters at random
before allowing the optimizer to select the next hyperparameter choice in the search space
to evaluate for 100 total trials. Each trial was similarly fit on the 10-fold cross validated
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Figure 4.6: Histograms of scores from the ANN hyperparameter optimisation process
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training data and evaluated on the validation data.
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Figure 4.7: A contour plot of validation balanced accuracy scores from the CNN hyperpa-
rameter optimisation process. Circles indicate hyperparameters chosen by the Bayesian
optimizer. The red circle indicates the hyperparameter set with the highest validation
balanced accuracy score.

The result of the hyperparameter optimisation for each method is summarised in
Table 4.1

Finally, for each classifier we performed ensemble boosting. In the case of the decision
tree, k nearest neighbours, and artificial neural network classifier we further tuned the
ensemble specific parameters. An example of the loss function for the KNN classifier is
presented in Figure 4.8. The plots look similar for the other classifiers. Note that while
the ensemble originally contained 3000 weak learners, the loss function is minimised by
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Method Model HPs Ensemble HPs
DTC nss = 18, nsl = 9 αe = 0.1, nclf = 4706
KNN p = 2, k = 2, Distance Weighted αe = 0.1, nclf = 911
ANN α = 0.0056578, nhd = 1, d1 = 320 αe = 0.1, nclf = 113
CNN α = 0.0040482, d = 192, φ = 32 αe = 0.1, nclf = 25

Table 4.1: Table of the hyperparameters used for each classifier

instead selecting 911 weak learners. These results are included in Table 4.1. For the CNN
classifier, we instead ensemble boosted 25 classifiers. The loss function remained flat after
25 classifiers and the training time was exceptionally long such that the expected benefit
from continuing to tune the number of classifiers in the ensemble is minimal compared to
the computational cost required to construct such a large ensemble. This quick saturation
of accuracy as a function of nclf has been observed elsewhere (for instance Figure 5 of [111]).
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Figure 4.8: Loss curve for the KNN ensemble. Note the characteristic non-monotone shape
of the loss function. The orange dot indicates the minimum and hence the optimal number
of classifiers to use in the ensemble to maximize accuracy. Moreover, the relatively flat area
around the optimum is indicative of a strong generalisation capacity.

70



4.3 Results

4.3.1 Manual Feature Selection

The results obtained by the various methods are reported in Table 4.2. To generate these
results we first compared the output of a single classifier with hyperparameters obtained in
3 ways: their default values, random values from the hyperparameter space, and finally the
tuned values. We then compared the ensembled classifiers under the same environment. In
effect, this demonstrates the benefit of the (often costly) process of ensemble boosting and
hyperparameter tuning on the models.

Classifier Default HP Score Random HP Score Tuned HP Score
KNN 61.83%± 0.22% 49.45%± 0.16% 66.59%± 0.15%
DTC 70.00%± 0.19% 42.83%± 0.17% 67.08%± 0.21%
ANN 63.47%± 0.34% 69.88%± 0.38% 69.29%± 0.37%

Ens. KNN 74.35%± 0.27% 72.66%± 0.28% 75.19%± 0.15%
Ens. DTC 76.76%± 0.19% 74.38%± 0.20% 75.02%± 0.21%
Ens. ANN 73.92%± 0.45% 79.51%± 0.44% 80.30%± 0.40%

Table 4.2: Results for the manual feature selected methods. Error is calculated as the width
of the 95% intervals of the value of the mean balanced accuracy score achieved by each
classifier. Bold values represent the best version of each classifier.

Note for the ensembled classifiers, pre-tuning the classifier provides a benefit in all but
the decision tree classifier case. Given the results of Figure 4.4, it is not surprising that the
decision tree classifier performs similarly irrespective of hyperparmeter tuning.

4.3.2 Automatic Feature Selection

For the CNN based classifier the results are presented in Table 4.3. In comparing the results
of the classifier with those from the feature engineered data, we note that a single CNN
classifier outperforms all the feature engineered examples. Ensemble boosting the CNN
classifier increases this advantage even further.

For the ensembled CNN classifier we note that this increased performance comes at a
computing cost. Ensemble boosting adds an nclf computing expense not only during training
but also during inference. Given the already impressive performance of the CNN classifier,
this additional performance benefit is only marginal and incurs a great computational cost.
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Classifier Balanced Accuracy Score
CNN 87.44%± 2.41%

Ens. CNN 90.08%± 0.97%

Table 4.3: Results for the automatic feature selection methods, error is given by the width
of the 95% confidence intervals of the value of the mean balanced accuracy score (obtained
by bootstrapping the cross validated balanced accuracy scores).

However, beyond just the increase in accuracy, the ensembled classifier tends to provide
a more robust classifier. Indeed, the standard deviation of the balanced accuracy scores
obtained on each fold of the 10-fold cross validation for the ensembled CNN is 0.0309
as compared to the 0.0767 obtained by the single CNN classifier. For comparison, the
ensembled ANN and ensembled DTC classifiers have standard deviations of 0.0350 and
0.0333, respectively.

Finally, comparing balanced accuracy scores is only one such way to evaluate these
classifiers. We also present a selection of the confusion matrices for these classifiers.

χens
D =


0.93 0.04 0.02 0 0
0.29 0.48 0.21 0.01 0
0.21 0.18 0.40 0.21 0

0 0 0 1.00 0
0 0 0 0 1.00

 χens
A =


0.84 0.08 0.06 0 0.01
0.12 0.53 0.33 0.01 0.01
0.03 0.19 0.66 0.11 0

0 0 0 1.00 0
0 0 0 0 1.00



χC =


0.91 0.08 0.01 0 0
0.14 0.69 0.16 0.01 0
0.02 0.06 0.87 0.05 0

0 0.08 0 0.92 0
0 0 0 0.05 0.95

 χens
C =


0.92 0.08 0 0 0
0.11 0.77 0.11 0.01 0

0 0.06 0.87 0.06 0
0 0 0 1.00 0
0 0 0 0.05 0.95


where χens

D represents the confusion matrix of the ensembled decision tree classifier, χens
A

the confusion matrix of the ensembled ANN classifier, χC the confusion matrix of the
single CNN classifier, and χens

C the confusion matrix of the ensembled CNN classifier. The
rows and columns of each confusion matrix correspond to interphase, prophase, metaphase,
anaphase, and telophase cells, respectively. In effect, the first two matrices compare the
feature engineered result using a tuned version of the model from [8] with the best feature
engineered result seen in this study. Similarly, the final two matrices compare the results
of a single classifier without feature engineering with the best ensembled result without
feature engineering.

We note that, when compared with the DTC ensemble, the ANN ensemble sacrifices
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accuracy in the interphase compartment for increased accuracy in both the prophase and
metaphase compartments. Comparing the feature selected methods, we see that the en-
sembled CNN classifier outperforms (or matches) the single CNN classifier in true positive
accuracy for all cell phases. Moreover, the ensembled CNN classifier outperforms all the
classifiers observed for true positive accuracy in all but one case: the ensembled DTC
classifier achieves a 1% better true positive accuracy for the interphase compartment. More-
over, the ensembled DTC classifier achieves perfect accuracy in the minority compartment
(anaphase) and strong accuracy of 95% and 87% in the next two smallest compartments
(telophase and metaphase) and produces a more diagonally dominant confusion matrix
than the other methods considered.

4.4 Summary

By utilizing the power of convolutional neural networks a classifier is built that can correctly
classify the mitotic phase of Jurkat cells with a balanced accuracy score of over 90% as
compared to the score achieved by a previous, feature engineering approach of roughly 77%.
By comparing the CNN ensemble with an ANN ensemble on the feature engineered data we
demonstrate that this increase in score is due to more than just the additional complexity
of neural network classifiers, but is directly linked to the capacity of allowing features to
be learned for cellular identification. The trustworthiness of this method is validated due
to the strong agreement between the predictions and the ground-truth data known in this
supervised learning task. The method was further validated by how tight the distribution
of balanced accuracy scores was when calculated over multiple different training folds (as
presented in the error bounds in Table 4.2 and Table 4.3.
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Chapter 5

Reinforcement learning derived
chemotherapeutic schedules for
robust patient-specific therapy

In this chapter we develop a method for producing schedules of chemotherapy delivery in
a model-free manner and contrast this with classical control methods. We demonstrate
that the proposed reinforcement learning method is robust to perturbations in individual
patient response. In effect, this allows for an adaptive, patient specific chemotherapy
schedule to be developed that behaves strongly even when evaluated on patients that differ
substantially from those patients to whom the model was originally calibrated. This method
uses an underlying ordinary differential equation model to drive the in silico experiments,
but the chemotherapy scheduling method is in fact model free. This means that such a
scheduling approach could be applied to patients in clinic without the need to first calibrate
an underlying mathematical model to the individual patient. Dr. Michelle Pzedborski
assisted in the design of the study. The work presented in this chapter was published in
Scientific Reports [23].

5.1 Introduction

In mathematical models of cancer treatment, one is often concerned with finding a chemother-
apeutic dosing schedule that is optimal in some capacity [80, 113, 50]. Each different model
allows distinct forms of this optimality metric. This shaping of optimality metric will often

74



involve a trade-off of some variety: incredibly high doses of a potent chemotherapeutic
can certainly annihilate the cancerous cells in tissue but in so doing will largely cause a
great deal of harm to the patient. Modelers, then, are concerned with mathematically
formulating this optimality metric in a way that preserves the health and longevity of
their patient (virtual or otherwise). For instance, in [113] the authors were concerned with
maximizing the reduction in the total number of cancerous cells with the minimal total
chemotherapeutic dose. They achieved this control by sampling 200 virtual patients from
a particular parameter distribution, training 50 different reinforcement learning agents
on differential equations representing the tumour growth of these patients, and applying
these agents to these patients. In contrast, in [80] the authors concerned themselves with
maximizing the chemotherapeutic dose while minimizing the damage to healthy, proxy cells
in the bone marrow. Practically, these are two (similar and related) methods for achieving
the same ends, but the particulars of their formalisation can lead to drastically different
qualitative results.

In any situation, the models used to represent the delivery of the chemotherapeutic and
the associated reduction in cancer cells can inform the choice of optimality metric. So too
can the choice of model inform the method by which a modeler can find such an optimal
dosing schedule of a chemotherapeutic. One such method, as employed in [80], is that of
optimal control theory. When the model that governs the behaviour we are trying to assert
some control over is codified by differential equations, optimal control theory can provide
a methodology for finding the dose delivery function that maximizes whatever optimality
metric the modeler chooses (if such a metric has a maximum) [86]. In some situations, this
optimal control can be accomplished analytically as in [80], in others (such as the objective
functional presented in (5.3)) numerical techniques such as those employed by the GEKKO
package may be required [3].

A reinforcement learning approach can also be employed to maximize a given optimality
metric (see, for instance, [113]). In a reinforcement learning context, when the state of the
model at a given time t is known, one can construct a controller function via the learned
optimal policy. In contrast to optimal control, reinforcement learning more easily lends itself
to situations where the model behaviour is governed by systems more complicated than
just those that can be represented with differential equations (for instance, reinforcement
learning has had great success in solving Atari games, arcade games, Backgammon, etc.
[102, 101, 4]). In particular, as illustrated in Figure 5.1, a reinforcement learner need only be
provided with the action space of the environment; all other details about the environment
are effectively a black-box. The agent takes an action, the environment then changes as
a result according to some rule-set the learner need not have access to, and a reward is
issued. The reinforcement learner then evolves to maximize total cumulative reward, not
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just the immediate reward benefit. Importantly, the environment may be governed by a
deterministic set of differential equations, by a stochastic agent-based model, or by rules
entirely determined by data. In this capacity, the black-box nature of the reinforcement
learner environment is enticing to applied mathematicians as it allows the capacity to
perform numerical learning experiments in a regime that was previously untractable. Indeed,
recent advancements in computing power have allowed for the tractability of model-free
reinforcement learning [77]. With the advent of big data sets and quantitative medicine,
reinforcement learning can be used to leverage real world data as well as deterministic,
validated models in order to learn a control in complicated contexts. Presently, we consider
the environment to be governed by a system of simple differential equations to establish
a framework methodology that can, in the future, be extended to other, more realistic
domains.

Figure 5.1: A reinforcement learning agent interacts with an environment as if the environ-
ment were a black-box. This process potentially changes the state of the environment and
results in some reward for the learner. All that the learner needs to be provided with is the
action space and a suitable reward function to determine an optimality metric.

In this study, we consider a simple differential equation model [80, 79, 78, 26]. This
phenomenological model describes the growth of breast and ovarian solid tumours at a
cellular level within a particular patient. The parameters of the model describe rates of
cell-to-cell interaction and are incredibly difficult to measure in practice. In particular, the
methods used in [78, 80] to parameterize this model only allow the discovery of nominal,
mean values of such parameters from multiple mouse models. While these parameters
can help to capture the qualitative behaviour of the response of a tumour to a particular
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chemotherapeutic, the model can certainly not be considered to be a validated model
in human cancers. However, even for a validated phenomenological model the issue of
patient-specific parameter identification still remains. Whenever the parameter values used
for these models are determined by population-level data the modeler may not know a-
priori the particular patient-specific parameters. In contexts where there is a demonstrable
sensitivity to small perturbations in the parameter values, there is a concern that the
nominal parameters (and any chemotherapeutic control thereby derived) may not robustly
describe the most optimal response for a particular parameterisation. To that end, in this
paper we explore how chemotherapeutic controls derived from mean value parameters can
be used on models of patients with perturbed, unknown parameter values. In particular,
we leverage the power of deep double Q learning [102] to derive the chemotherapeutic
control in a manner that provides learned dosing schedules that are robust to perturbations
in parameter values in this sensitive system. Importantly, the reinforcement learning agent
is unaware during training of the patient-specific parameter values on which it is evaluated.
This is in contrast to [113] where multiple agents were trained on systems encoded by these
parameter values exactly. In [27] a continuous control problem is considered for both single
and combination therapy of chemotherapeutics where the dynamics are described by an Ito
stochastic differential equation (SDE). Importantly, the author employs a reinforcement
learning method (the deep deterministic policy gradient method [62]) and notes that the
corresponding control appears robust to the stochasticity inherent in the SDE. In [80] the
authors analytically derive the continuous optimal control of the tumour growth model used
in this work under a particular objective functional. Here we consider a similar optimal
control problem but wherein both the drug dose and time are discretised.

The chapter is organised as follows. In Section 5.2 we first introduce the differential
equation model and provide the mean parameter values that comprise the nominal virtual
patient. We then define the optimal control problem considered and the objective functional
by which the optimal scores are deduced. We then describe the method by which virtual
patients were created for testing and training purposes. Next, we lay out the training
process used for solving the reinforcement learning problem and the discrete optimal control
problem. Finally, we discuss the hyperparameter tuning process of the deep double Q
learning algorithm.

In Section 5.3, we first derive an analytic characterisation of the initial conditions used
in the model simulations as a function of these parameter values. Then, we perform local
sensitivity analysis demonstrating that the model we consider is quite sensitive to local
perturbations of the parameter values. We next present the results of the control agents by
first allowing the agents to learn offline on an environment parameterised by the nominal
patient. We then apply these agents to environments parameterised by the perturbed testing
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patients. We measure the optimality of these schedules by logging the value of the objective
functional achieved divided by the theoretical maximal value of this objective functional for
each testing patient. We consider the optimality of schedules proposed for these perturbed
testing patients for both the reinforcement learning agent and the traditional nominal
optimal controller. In the former case, the relative bone marrow of these unknown patients
was leveraged for the purpose of customizing the dosing schedule and reducing drug toxicity
whereas, in the latter case, the same, nominal schedule is applied to all testing patients.
We then extend the optimal schedules to leverage relative bone marrow measurements as
well by employing a version of nearest neighbour interpolation on the optimal control of
various training patients (whose particular patient specific parameter values are treated as
known) to personalize dose schedules for testing patients. This nearest testing neighbour
optimal control is then compared with the previous reinforcement learning agent. Finally,
we present commentary and a summary of the work in Section 5.4.

5.2 Methods

5.2.1 Tumour Growth Inhibition Model

We consider the two-compartment mathematical model of cell-cycle specific chemotherapy
first introduced in [78], which is an extension of earlier work [79]. The model consists
of a population of proliferating cells and a population of quiescent cells, where the time
evolution of cell populations is depicted in Figure 5.2 and is governed by the following set
of coupled ordinary differential equations:

P ′(t) =
(
γ − δ − α− s f(t)

)
P (t) + β Q(t)

Q′(t) = αP (t)− (β + λ)Q(t)
(5.1)

In the model, P (t) represents proliferative cells and Q(t) represents quiescent cells. The
model captures the growth of proliferative cells at a constant rate γ, the transformation of
proliferative cells into quiescent cells at a constant rate α, and the apoptosis of proliferative
cells at a constant rate δ. Similarly, quiescent cells leave quiescence and become proliferative
at a constant rate β and undergo apoptosis at a constant rate λ. The time-dependent
function f(t) represents the dosing schedule of a chemotherapeutic where s represents the
relative strength of the administration of such a chemotherapeutic. In particular, it is
assumed that f(t) ∈ [0, 1]. While parameters γ, δ, α, β, and λ are patient-specific parameters
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Figure 5.2: The two-compartment tumour growth inhibition model described by (5.1).
Proliferative (P ) cells and quiescent (Q) cells can both die naturally at the constant rates δ
and λ, respectively. However, only proliferative cells can self-renew (at the constant rate
γ) and be killed by the dose of a chemotherapeutic f(t). Moreover, proliferative cells are
allowed to become quiescent (at constant rate α) and quiescent cells are allowed to become
proliferative (at constant rate β).

depending on the nature of the disease being modeled, parameter s is a phenomenological
hyper-parameter of the model describing the relative strength of the chemotherapeutic.

The proliferating cell compartment contains cells at each of the four phases of cell
cycle (gap period G1, synthetic period S, second gap period G2, and mitosis M) to reduce
the complexity of the cellular states. While resting cells are affected to a small extent
by cell-cycle specific chemotherapy, the model (5.1) assumes that the chemotherapy f(t)
affects only the proliferating cells. The model does not include details from other aspects
of the patient’s context, notably it ignores the effects of age, sex, spatial information of the
tumour, and any applicable comorbidities.

In [79] the authors parameterize (5.1) with values that are suitable for describing breast
cancer and ovarian cancer, as determined by mouse models. In [80] the authors provide
an additional parameter set for determining the effect of chemotherapy on healthy bone
marrow cells. This allows one to, for a given chemotherapy dosing schedule f(t), model
the effect of chemotherapy on both the healthy bone marrow cells and the malignant
cancerous cells. Hence, by evolving two de-coupled copies of (5.1), one parameterised with
values corresponding to a particular cancer and the other with bone marrow parameter
values, we can monitor the cancer-killing effects of a chemotherapeutic schedule and the
associated chemotherapeutic toxicity in the patient. The parameter values are summarised
in Table 5.1. The system in (5.1) has only one equilibrium point: the extinction equilibrium
when P = Q = 0. Under the parameter values from Table 5.1 the system in (5.1) has at
least one negative eigenvalue irrespective of the value of s f(t) (as long as s > 0, which is
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a reasonable constraint given that s represents a relative strength of chemotherapy and
is non-negative by assumption). In the absence of treatment, s = 0, the system has one
positive eigenvalue as well. This indicates that the equilibrium is unstable in the absence
of treatment. Indeed, the system predicts exponential growth under all parameter sets in
the absence of treatment. If treatment is instead taken to be maximal f(t) = 1 and the
eigenvalues are considered in the limit as s→∞, then under all three parameter sets both
eigenvalues are negative. Hence, for strong enough treatment, the disease free equilibrium
is achieved, otherwise the cell compartments grow without bound.

Bone marrow
Parameter Nominal value Units

γ 1.470 days−1

δ 0.000 days−1

α 5.643 days−1

β 0.480 days−1

λ 0.164 days−1

ρ∗p 0.103 -

Breast cancer
Parameter Nominal value Units

γ 0.500 days−1

δ 0.477 days−1

α 0.218 days−1

β 0.050 days−1

λ 0.000 days−1

ρ∗p 0.200 -

Ovarian cancer
Parameter Nominal value Units

γ 0.6685 days−1

δ 0.4597 days−1

α 0.2225 days−1

β 0.0500 days−1

λ 0.0000 days−1

ρ∗p 0.3600 -

Table 5.1: Parameter values for breast cancer cells, ovarian cancer cells, and bone marrow
cells as obtained from [79, 80], and values of ρ∗p as determined by (5.10).
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5.2.2 Chemotherapeutic Control

To determine the optimal chemotherapeutic control, we follow [80] and introduce an
objective functional with the form

Jb(f) =

∫ T

0

[
Pbm(t) +Qbm(t)− b

2
(1− f(t))2

]
dt. (5.2)

Maximizing this objective functional enables the derivation of an optimal chemotherapy
dosing schedule of duration T days for a particular patient. In the notation of (5.2), Pbm

and Qbm refer to the proliferative and quiescent compartments of (5.1) parameterised to
describe the behaviour of bone marrow. In effect, this leads to a chemotherapeutic schedule
that biases the optimizer toward applying a larger dose of chemotherapeutic, as governed by
f(t), while also maximizing the total number of bone marrow cells in the patient (to reduce
drug toxicity). The non-negative hyperparameter b is then a scaling factor representing
the relative importance of these two mechanisms. If b � 1, then delivering the largest
chemotherapeutic dose possible is the most desirable action for the optimizer, even at the
cost of decimating the bone marrow cell count. Contrarily, if 0 ≤ b� 1 then the optimizer
is biased toward preserving bone marrow even at the cost of lower cancer kill. Plots of such
a chemotherapeutic dosing function f , obtained via the analytical method for deriving the
continuous optimal control as in [80], for various b values are presented in Figure 5.3.
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(c) b = 2

Figure 5.3: A plot of the proliferative cell proportion (black), the quiescent cell proportion
(blue), and the optimal chemotherapeutic control f ∗(t) (dashed red) for different values of
b. The objective functional used to achieve this optimal control is given via (5.2). Small
values of b correspond to weighting preservation of the bone marrow as more important
and larger values of b correspond to weighting total drug delivery as more important.

In this work, the particular functional form of (5.2) is not of primary concern. In
particular, the presence of power of 2 in (5.2) ensures that the objective functional is

81



concave (and so has a unique maximizer) [80]. Certainly other forms could be suggested to
achieve similar qualitative goals. For instance, consider the functional

Jb(f) =

∫ T

0

[Pbm(t) +Qbm(t)− b (Pbc(t) +Qbc(t))] dt. (5.3)

In the notation of (5.3), Pbc and Qbc refer to the proliferative and quiescent compartments
of (5.1) parameterised to describe the behaviour of solid breast cancer tumours. Hence, the
functional in (5.3) describes the minimisation of breast cancer cells while preserving the
healthy, bone marrow cells. In this functional, the dependence on the chemotherapeutic
dosing schedule f is implicitly included in the trajectories of Pbm, Qbm, Pbc, and Qbc. In
any case, the exact formulation of this objective functional is an incredibly important choice
for any modeler in a clinical context as it determines the metric by which the control is
considered maximal and is outside the scope of this chapter.

While there are many methods in the field of optimal control theory that provide a
methodology for obtaining such schedules, one could also employ techniques from reinforce-
ment learning to discover chemotherapeutic dosing schedules. For instance, for a time t
given the state vector st, to be defined later, and chemotherapeutic dose at ∈ [0, 1], we
define the immediate reward function as

R(st, at) =

∫ t+1

t

[
Pbm(s) +Qbm(s)− b

2
(1− at)2

]
ds (5.4)

in order to elicit an analogous response in the reinforcement learner as achieved by the
objective functional in (5.2). Explicitly, Jb(f) =

∑T−1
t=0 R(st, at), where Jb is given in (5.2)

for appropriate piecewise constant functions f . To proceed, we use the reward function
in (5.4) in the following form of the Bellman equations (see, for instance, [99])

Q∗(st, at) = R(st, at) + γ
∑
s′∈S

p(s′ | st, at)Q∗(s′, argmax
a′∈A

(Q∗(s′, a′))) (5.5)

to derive an optimal policy as defined by

π(st) = argmax
a∈A

Q∗(st, a). (5.6)

This policy can then be used to derive an optimal chemotherapy dosing schedule according
to

f ∗(t) = π(st). (5.7)

We provide a brief explanation of Equations (5.5-5.7 but direct readers to a more
thorough source such as [99] for full details. As mentioned earlier, R(st, at) represents the
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immediate reward an agent receives for performing action at while in state st. In contrast,
Q∗(st, at) represents a valuation of performing action at while in state st. Notably, Q∗(st, at)
encodes the immediate reward R(st, at), but also encodes the discounted future rewards.
Similarly, for a given Q∗ function the policy π(st) describes the optimal action to perform
in a given state st. As a result, π(st) chooses an action at to maximize Q∗(st, at) in a global
manner as compared to the local process of choosing at to maximize immediate reward
R(st, at). As such, the maximal action in a given state, as valued by Q∗, may be one for
which the payoff is not immediately obvious for multiple timesteps. The factor γ in (5.5) is
the discount factor of future rewards. The parameter γ is taken such that γ ∈ [0, 1] where
γ = 0 corresponds to an agent that is focused on maximizing the immediate reward of their
action and γ = 1 corresponds to an agent more concerned with increasing future reward
than immediate. In general, a model describing a reinforcement learning environment
may not be deterministic. In that regard, p(s′|st, at) corresponds to the probability of
ending up in state s′ after taking action at in state st. For the model in (5.1), no such
stochasticity exists. As such, it is assumed that p(s′|st, at) = 1 for exactly one s′ ∈ S
(namely s′ = st+1). One can derive the drug dosing schedule f ∗(t) as in (5.7) by observing
the state in some manner and then evaluating the policy at this state. For the case of the
nominal patient, where the patient specific parameters are known, observing the state is as
simple as integrating (5.1). For an already trained model, one would construct the state
vector (5.8) for a patient (virtual or otherwise) and then evaluate the policy at this state.

For a continuous time reinforcement learning agent, the optimal dosing schedule learned
by this process for a given parameterisation of (5.1) is identical to that derived via optimal
control theory for that same parameterisation, as in [80]. Of particular importance, however,
is that as (5.7) demonstrates, once a policy has been learned, one can derive an optimal
chemotherapy schedule by merely evaluating the policy at the state. Importantly, the
state one evaluates the policy at need not be a state seen during the learning process.
Indeed, in our study we concern ourselves with training the reinforcement learning agent on
only the nominal virtual patient and developing chemotherapy schedules for 200 different
testing virtual patients. By leveraging state vector information from these 200 different
testing virtual patients (patients which encode an environment over which the agent has not
trained) the reinforcement learning agent is able to personalize the dose delivery function.
As a result, it is important that we define our state vector as something that is both
practically measurable and phenomenologically linked to the objective functional we wish to
optimize. As indicated by (5.8), when deriving the optimal chemotherapy dosing schedule
according to (5.7), we are passing the optimal policy a wl length window of measurements
corresponding to bone marrow count relative to a time before treatment began as well as
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the current day of treatment (in order to satisfy the Markov property).

st = 〈t, Pbm(t)+Qbm(t), Pbm(t−1)+Qbm(t−1), . . . , Pbm(t−wl+1)+Qbm(t−wl+1)〉 (5.8)

The particular value of wl is another hyperparameter to the process to consider. In
contrast with the other hyperparameters listed in Table 5.2, this hyperparameter was chosen
empirically to be wl = 10 as in [113] wherein the authors used a length 10 window of mean
tumour diameters as the state vector of their learning agent.

5.2.3 Perturbed Virtual Patients

We generate sets of virtual patients according to the following strategy. We consider
parameter values from Table 5.1 and construct virtual patients by perturbing these parameter
values. To begin we note that δ = 0 for the bone marrow parameters. As a result, we do not
consider perturbing this value and treat δ as zero for all virtual patients. These perturbations
are performed by scaling the mean parameter values in Table 5.1 by factors sampled from
the space [1− k, 1 + k] uniformly with Latin hypercube sampling [56]. Latin hypercube
sampling, a space filling technique for drawing random samples, is especially important
when the number of samples drawn is small in comparison to the size of the sample space
and when the parameters of interest are uncorrelated. Given the phenomenological nature
of the remaining parameters we can assert that these parameters are uncorrelated. In
particular, modifying any one of these parameters will create a distinct system under (5.1)
that cannot be recovered by modifications to any number of the remaining parameters.

We now introduce some notation for describing the virtual patients. To begin, we
let ξ0 represent the nominal virtual patient. That is, ξ0 = (γbm, δbm, αbm, βbm, λbm) from
Table 5.1 where the “bm” subscript refers to the bone-marrow parameter values. In
this work, we generated virtual patients at perturbation levels of k = 0.15, 0.20, and
0.25, where k corresponds to the percent-change strength of perturbation. We generated
six total sets of virtual patients. For the purpose of interpolating the nearest training
neighbour optimal controller, we generated 1000 virtual patients at the 15%, 20%, and 25%
perturbation strength level for testing purposes which we denote by ζki where 1 ≤ i ≤ 1000
denotes the index of the virtual patient and k ∈ {0.15, 0.20, 0.25} denotes the maximal
strength of the perturbation. Similarly, we generated 200 virtual patients at the 15%,
20%, and 25% perturbation strength level for the purpose of testing the controllers, these
patients we denote by θki where 1 ≤ i ≤ 200 again represents the index of the virtual
patient and k ∈ {0.15, 0.20, 0.25} represents the maximal strength of the perturbation. The
reinforcement learning agent was only trained on the nominal virtual patient and not virtual

84



patients from the training or testing sets. The training virtual patients were only utilised
for the crafting of the NTNOC optimal control strategy discussed in Section 5.3. In this
regard, the testing virtual patients serve as a metaphor for the unknown patient-specific
parameters of any particular patient in clinic. Both the testing and training virtual patients,
for the non-zero parameters γ, α, β, and λ, are visualised in Figure B.1.

5.2.4 Training Process

We numerically solve the Bellman equation, (5.5), by employing neural networks as in the
deep double Q-learning algorithm [102]. Double deep Q-learning is not the only algorithm
by which one can solve this form of the Bellman equation. We chose this algorithm for a
number of reasons: primarily, we expect that both the presence of the experience-replay
buffer and the Q(s, a) valuation is crucial for the algorithm to be able to successfully
approximate the optimal action in the presence of environmental noise. Indeed, the success
of this method relies on the ability of the algorithm to approximate the value of state/action
pairs that differ from those seen in the optimal treatment of the nominal patient. By
maintaining a buffer and valuation of the state/action pairs explored while deriving the
nominal treatment, the algorithm is able to better approximate a larger swathe of the
domain of Q. There are many algorithms that satisfy these requirements such as deep
deterministic policy gradient or (single) deep Q-learning [62, 72]. However, deep policy
gradient is a more computationally expensive method that can produce continuous controls,
whereas we are primarily concerned with discrete dose values in this study. Similarly, deep
Q-learning has been observed to be more likely to select overestimated values, resulting in
overtly optimistic value estimates, in a capacity that is avoided in deep double Q-learning.
[102]. In particular, we represent the Q function from the Bellman equation, (5.5), as
a neural network. As a result, after training the network, the specific form of Q is the
same for each testing virtual patient. However, as in (5.7), by supplying the bone marrow
measurements for the testing virtual patient, the network can produce a personalised dose
schedule that is different for each virtual patient. In terms of the architecture of the Q
network, we take the network to have 10 inputs neurons (as determined by the length of
the state vector), hd1 neurons in the first hidden layer, hd2 neurons in the second hidden
layer, and 11 neurons in the output layers (corresponding to dose strength range from
0 to 1 inclusive in 0.1 increments). Each neural layer is activated with a rectified linear
unit. We use batch-learning with a batch size of bs to minimize the mean squared error
between the right and left hand sides of (5.5) via an Adam optimizer with learning rate
α. In Section 5.2.5 we discuss how we decide upon the values of these hyperparameters
and list the particular values in Table 5.2. To train the network we first parameterize the
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system in (5.1) by the nominal parameter set ξ0. Next, we run 5,000 exploratory time
steps of the simulation performing random actions in order to fill the experience replay
buffer. After every T = 21 time steps, the environment is reset by returning the differential
equation model, (5.1), back to its initial conditions (as dictated by (5.10)). In particular,
the initial state for the reinforcement learning algorithm is a length eleven vector where the
first entry is a 0 and the remainder are unit entries (as the (5.10) initial conditions sum to
1). This window length of 10 for the bone marrow measurements was chosen empirically, as
in [113]. For each time step of the simulation we choose a chemotherapy dose according
to our network via an ε-greedy algorithm. We anneal ε linearly from ε = 1 to ε = 0.01
over 25,000 time steps. The ε-greedy algorithm was only implemented during training, i.e.
during evaluation the policy selection is deterministic as in (5.6). After selecting a dose
a ∈ A = {0, 0.1, . . . , 1}, we apply the chemotherapy dose to the patient by holding f(t) = a
constant over the timestep and evolving (5.1) (as such, we discretize not only in dose but
in time as well). Next, we record a tuple of the state, action, reward, new state values. We
then select a random batch of previously observed tuples and use them to approximate the
right hand side of the Bellman equation, (5.5), in order to obtain a target for training the
network.

Hyperparameter Values
Parameter Value Description

hd1 64 Dimension of first hidden layer in the neural network
hd2 96 Dimension of second hidden layer in the neural network
γ 0.9553 Discount factor from the Bellman equation (5.5)
α 0.003809 Learning rate for the Adam optimizer
bs 96 Batch size for the Adam optimizer
wl 10 Window length for relative bone marrow measurements

Table 5.2: Hyperparameter values for the learning process. The parameters hd1, hd2, γ, α,
and bs were determined by the Bayesian optimizer whereas wl was chosen empirically.

This process is eventually stopped if the differential equation environment has been
reset 50,000 times or if the best reward has not improved over the last 500 epochs. This
constitutes one training run of the system. We perform 5 such training runs recording the
run that achieved the largest objective functional score under (5.2).
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5.2.5 Hyperparameter Tuning

While our system has many model specific parameters, there are also a number of hyper-
parameters introduced during the training process. These are the learning rate for the
Adam optimizer (α), the dimension of the two hidden layers (hd1 and hd2, respectively),
the discount rate γ in the Bellman equation (Eq. (5.5)), and the batch size of the Adam
optimizer used for learning (bs). In order to ensure optimal convergence and stability of
the resultant networks, we must carefully select these values. For a single set of these five
hyper-parameters we must execute the entire training process over again. Such a process is
computationally extensive rendering a brute-force grid-search approach to hyperparameter
optimisation unfeasible. To that end, we instead use Bayesian optimisation to explore this
five-dimensional hyperparameter space more efficiently. We allow our Bayesian optimizer
to sample 100 such hyperparameter samples from this hyperparameter space and perform
the training process for each hyperparameter set. The Bayesian optimizer chose hd1 and
hd2 from the set {64, 96, . . . , 256}, bs from the set {32, 64, . . . , 128}, α from the interval
(10−4, 10−1), and γ from the interval (0, 1).

In Figure 5.4 we see the distribution of the objective functional score under (5.2) for the
100 reinforcement learning agents under this hyperparameter tuning process. In particular,
we note the cluster of 36 agents that converged to the network architecture with the
theoretical maximal objective functional value, as determined by running a discretised
version of the optimal control problem from [80] with the APOPT algorithm (as implemented
by GEKKO [3, 46]). For a point of comparison, we calculated the expected score achievable
by a random agent by calculating the mean value of the score obtained in 1,000,000
simulations where a dose from {0, 0.1, . . . , 1.0} was uniformly selected at each time step.
This resulted in a mean objective functional value of 0.6806 with a standard deviation of
the mean of 0.04811.

To ascertain the identifiability and stability of these parameters, we consider the
distribution of parameters that result in such objective functional value. To that end, in
Figure 5.5 we consider the distribution of each individual hyperparameter and contrast this
with the distribution of such hyperparameters from the agents that converged to network
architecture that achieve an objective functional value value within 5% of the maximal
possible reward. Importantly, we recognize that of the five hyperparameters, there is not a
tight distribution after conditioning on objective functional value score. In fact, only the
discount factor γ produces a conditioned distribution that is statistically different than the
un-conditioned distribution (two-sample Kolmogorov-Smirnov p-value of approximately
0.001 [47]). This suggests that the particular values of the size of the hidden dimensions,
learning rate, and batch size are not terribly sensitive parameters for the training of this
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reinforcement learning agent.

The Bayesian optimizer determined an optimal hyperparameter choice of hd1 = 64,
hd2 = 96, γ = 0.9553, α = 0.003809, and bs = 96. Though, as the above discussion
demonstrates, it is only the choice of γ that appeared to have any particularly strong impact
on the convergence of the training process. A γ value close to 1 can be interpreted as
representing an agent with a far horizon [99]. In particular, such an agent is less concerned
with the immediate reward of a particular action and more concerned with the long-term,
cumulative reward obtained by maximizing (5.2) over all time.

5.3 Results

5.3.1 Derivation of the Proliferative Fraction

We begin modeling the proliferative and quiescent components of (5.1) under the assumption
that the tumour has evolved in the absence of any chemotherapeutic agent until a steady
state, in terms of the proportion of these cells, has been reached. To that end, we define
the proliferative ratio of the tumour at time t and the steady-state proliferative ratio as

ρp(t) =
P (t)

P (t) +Q(t)
and ρ∗p = lim

t→∞
ρp(t),
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Figure 5.4: A histogram demonstrating all the scores obtained via the reinforcement learning
process. The red dotted line indicates the expected score of a random agent.
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(b) Distributions of the discount factor γ
used in the Bellman equation, (5.5).
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Figure 5.5: In all figures, the distributions on the left represent the total distribution of
the hyperparameter explored by the Bayesian hyperparameter optimizer. In contrast, the
distributions on the right in each figure indicate the distribution of the hyperparameter
conditioned on the objective functional value being within 5% of the maximal theoretical
score.

respectively. To analytically calculate the closed form solution of the steady-state prolifera-
tive ratio in the absence of a chemotherapeutic, we set s = 0 and consider
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0 = ρ′p(t)

=
P ′(t)

P (t) +Q(t)

Q(t)

P (t) +Q(t)
− Q′(t)

P (t) +Q(t)

P (t)

Q(t) + P (t)

=
P ′(t)

P (t) +Q(t)
(1− ρ∗p)−

Q′(t)

P (t) +Q(t)
ρ∗p

= (δ − γ − λ) ρ∗p
2 + (γ + λ− β − α− δ) ρ∗p + β. (5.9)

Thus, ρ∗p is a root of the quadratic in (5.9). For the parameter values presented in
Table 5.1 the quadratic in (5.9) has only one positive (real) root, namely

ρ∗p =
1

2

−λ− γ + α + δ + β −
√

(λ+ γ − α− δ − β)2 − 4 (δ − λ− γ) β

δ − λ− γ
. (5.10)

The values of ρ∗p corresponding to the parameters for ovarian cancer, bone marrow, and
breast cancer are included in Table 5.1. Thus the initial data for (5.1) considered in this
study are given by P (0) = ρ∗p and Q(0) = 1− ρ∗p.

5.3.2 Local Sensitivity Analysis

Here we investigate the sensitivity of the outputs for the tumour growth inhibition
model, (5.1), to perturbations in the nominal parameter values of the model-specific
parameters presented in Table 5.1. To compute the sensitivities, we change the values of the
parameters γ, δ, α, β, and λ one-at-a-time by a small amount, ∆p. We take ∆p to be +1%
of the nominal parameter value p0. Then the relative sensitivity of each model population
x = 〈P (T ), Q(T )〉 for the parameter is calculated as follows:

Rx,p =
(x− x0)/x0

(∆p)/p0

, (5.11)

where subscripts denote nominal values. The initial conditions of the simulations were
recalculated according to (5.10) for each perturbed parameter value and the simulations
were run until T = 21 days. While a different value of T could have been chosen, the results
are qualitatively similar. In particular, in [80] the authors consider T = 7, 14, and 21 and
demonstrate the similarity of all three choices. By taking T = 21, we are allowing more
time for the drug to accumulate ensuring a greater degree of cell kill. However, if T were

90



taken to be very large, then the exponential growth due to the instability of the equilibrium
would become a more dominant effect. In this way the choice of T = 21 is a convenient
trade-off that matches previous work and is qualitatively similar to other, nearby, values of
T . Certainly other choices of T are possible. In practice, treatment length is something
that would be informed by both standard of care for the particular cancer and other factors
from the particular patient and clinician. As a result, we did not consider optimizing the
choice of T in any capacity. We plot the results in Figure 5.6.

Importantly, the results of Figure 5.6 indicate that the model exhibits substantial
sensitivity due to relatively small perturbations in the patient-specific parameter values.
This type of sensitivity is common in models that experience regimes of exponential growth,
which are common in cellular models of cancer [26]. For the parameter sets corresponding
to breast cancer, Figure 5.6a indicates a mean (absolute) change of roughly 2.3% in P
cells, 0.97% in Q cells, or 1.14% in all cell types given a 1% perturbation to a singular
parameter. For ovarian cancer the model is even more sensitive, demonstrating a mean
(absolute) change of roughly 5.3% in P cells, 3.4% in Q cells, or 4.1% in all cell types given
a 1% perturbation to a singular parameter. For bone marrow, similar extreme sensitivities
are observed with a mean (absolute) change of roughly 4.1% in P cells, 3.5% in Q cells,
or 3.6% across all cell types. Importantly, Figure 5.6 demonstrates that even for the least
sensitive parameter set (the breast cancer parameter set), small perturbations to individual
parameters can still elicit large differences in the evolution of a tumour if one is unlucky
enough that such a perturbation occurred in either γ or δ (the self-renewal and death rate
of proliferative cells, respectively). Perturbing parameters in this way also perturbs the
initial conditions, which is contrary to what is typically seen in the sensitivity analysis.
The reason we consider this is because we consider the initial conditions (the proliferative
fraction of the tissue) to be a noisy measurement as well. If instead we were to perform the
above sensitivity analysis but using the initial conditions of the unperturbed parameters
for a model with perturbed parameters, the results will not change quantitatively by much
at all. The maximum P + Q change would go from roughly 2.32% in breast cancer to
2.28% when the initial conditions are not perturbed. Similarly the maximum change in
P +Q for the ovarian cancer parameter set would decrease from 8.7% to 7.9% and for the
bone marrow parameter set from 4.24% to 4.23%. Hence this choice of perturbing initial
conditions is experientially informed by the particular context and does not have a large
quantitative effect on the output of the sensitivity analysis.
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Figure 5.6: Relative sensitivity of (5.1) under the parameter sets from Table 5.1. Parameters
with zero value (δ for bone marrow and λ for breast and ovarian cancer) were ignored and
not displayed in this figure.
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5.3.3 Contrasting a nominal reinforcement learning agent with
a nominal optimal controller

We first begin by training a reinforcement learner on the nominal parameter set from
Table 5.1 using the hyperparameters for the training method from Table 5.2. During
training, the reinforcement learning agent only interacted with the environment from (5.1)
parameterised by the nominal set. Similarly, as a point of comparison, we used the APOPT
algorithm from the GEKKO Python library to solve the discretised optimal control problem
on the nominal parameter set [3, 46]. These two agents, one a reinforcement learning
agent and the other a traditional optimal controller, were kept blind to the testing and
training virtual patients. That is, the reinforcement learning agent was trained offline on
an environment parameterised by ξ0 before the policy derived was tested on environments
parameterised by θki for all i and k. Similarly, the traditional optimal control was derived
for patient ξ0 before being applied to the testing patients θki for all i and k. We then
applied chemotherapeutic dosing schedules derived from both methods on the 600 testing
virtual patients (200 virtual patients each at the 15%, 20%, and 25% perturbation strength
level). We define σRL(θki ; ξ0) to refer to the value under the objective functional in (5.2)
achieved by this reinforcement learning agent when applied to patient θki after training the
agent on an environment parameterised by the nominal patient ξ0. We similarly define
σOC(θki ; ξ0) to be the score achieved by applying the optimal control for patient ξ0 to patient
θki . In order to scale the scores of these trials, we separately solved the discretised optimal
control problem on these testing virtual patients using the APOPT algorithm from GEKKO.
Importantly, these 600 solutions were only used to ascertain the maximal possible objective
functional value in order to scale the result of the blind agents. We define σ(θki ) denote
the maximal value of the objective functional in 5.3 when parameterised by patient θki .
We let σ̂RL(θki ; ξ0) = σRL(θki ; ξ0)/σ(θki ) denote this scaled objective functional score. As
a result, a score of 1 is the maximal score theoretically obtainable under the objective
functional for the discrete problem by either solution method. In general, σ̂RL(θki ; ξ0) ≤ 1.
Similarly σ̂OC(θki ; ξ0) = σOC(θki ; ξ0)/σ(θki ) ≤ 1 represents the scaled score of the optimal
control agent. Finally, we compared the blind agents results by applying their derived
chemotherapy strategies to the testing virtual patients, scaling the output according to
the previously ascertained maximal possible reward. The results of this are presented in
Figure 5.7 for the 3 different perturbation strength levels.

Notably, the chemotherapy dosing schedule determined via optimal control for the
nominal parameter set is a particular function f ∗ that is the same for each virtual patient.
In effect, each virtual patient is treated with the therapy schedule that is optimal for the
mean-valued patient. In contrast, in the reinforcement learning derived schedule, the policy
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(a) Difference in scaled objective functional
score for virtual patients at 15% perturbation
strength.
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score for virtual patients at 25% perturbation
strength.

Figure 5.7: Bar plots of the difference between the scores obtained by the reinforcement
learner derived policy and the scores obtained by the optimal control derived policy on all
test virtual patients (i.e. bar plots of σ̂RL(θki ; ξ0)− σ̂OC(θki ; ξ0)). Testing patients where the
reinforcement learner outperformed the optimal controller are marked in blue and patients
where the optimal controller outperformed the reinforcement learner are marked in red.
The dotted grey lines in each plot indicate the difference of the median scaled scores of the
reinforcement learner and the optimal controller.
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from (5.6) is the same for each virtual patient, but that policy is being fed a 10 day window
of relative bone marrow cell counts from each virtual patient as a state vector. In particular,
the nominal optimal controller is an open-loop controller whereas the reinforcement learning
agent is a feedback controller. As a result, we are allowing the reinforcement learner to
refine its dosing schedule given this information. By doing so we are able to acquire a
dosing schedule that is more robust to perturbations in these unknown, assumed to be
unmeasurable, patient-specific model parameters by allowing refinements to be made based
on a more easily measurable aggregate metric. Hence, the fact that the reinforcement
learning agent is a feedback controller is exactly why it is able to utilize information from
the state vector in the design of these dose delivery schedules. Importantly, the state
vector for the reinforcement learner is the sum of the Pbm and Qbm compartments of (5.1)
at discrete time points (in this case, daily) and not the individual measurements of Pbm

and Qbm separately. Given the scaling of (5.1) under the initial conditions from (5.10),
these measurements are taken relative to the bone marrow mass prior to treatment, and
so absolute measurements are not required. See Figure B.4 for a visualisation of these
schedules on different virtual patients.

To quantify the performance differences of the two dose schedule processes over the
testing virtual patients, we compared the distributions of scores with the non-parametric
one-sided Wilcoxon signed-rank test [108]. For the cases represented in Figures 5.7a, 5.7b,
and 5.7c we considered the alternative hypothesis to be that the median scaled score obtained
by the reinforcement learner is larger than the median scaled score obtained by the optimal
controller (i.e. the alternative hypothesis is median (σ̂RL(θ; ξ0)) > median (σ̂OC(θ; ξ0))). We
found at the 15% perturbation strength level a Wilcoxon statistic of 14681 corresponding
to a p-value on the order of 10−9, at the 20% perturbation strength level we found a
Wilcoxon statistic of 16528 corresponding to a p-value on the order of 10−15, and at the
25% perturbation strength level we found a Wilcoxon statistic of 17551 corresponding to a
p-value below machine precision. In all cases, we reject the null hypothesis and conclude that
the reinforcement learning agent produces chemotherapeutic schedules with a higher median
score on perturbed patients than the optimal controller. We notice that as the perturbation
strength increases, the difference in the median and mean scaled scores increases as well
from a difference in medians of 0.011 in the 15% case (difference of means of 0.045) to
a difference in medians of 0.044 (difference of means of 0.108) in the 25% case. Hence,
as the strength of the perturbation increases over this range, the reinforcement learner
outperforms the optimal controller even further.

In Figure 5.8 we present the histograms of the scaled scores for each blind agent on
the 600 different virtual patients. The histograms are semi-transparent in order to aid
comparison where the blue colour represents the reinforcement learning agent and the
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orange colour the APOPT derived optimal controller agent. We note that the reinforcement
learning agent has a large cluster of treatments in the 97.5% – 100% optimal bin (164 out
of 200 in the 15% case, 165 out of 200 in the 20% case, and 161 out of 200 in the 25% case)
and all treatments fall within 7.5% of the theoretical maximum. These scores are achieved
without training on these virtual patients directly. In contrast, the optimal controller
derived treatment is much more diffuse. As the strength of perturbation increases, the
average score of the reinforcement agent derived schedule remains within 1.2% of optimum,
while the average optimal control derived score decreases dramatically from 0.941 in the
15% case, to 0.902 in the 20% case, and finally to 0.879 in the 25% case. In particular,
this suggests that the increase in performance of the reinforcement learner as a result
of perturbation strength is due to the reinforcement learning agents’ capacity to remain
non-sensitive to these perturbations, in contrast to the sensitivity seen in the schedules
derived by the optimal controlling agent.

5.3.4 Contrasting a nominal reinforcement learning agent with
a nearest neighbour interpolated optimal controller

The results of the previous subsection indicate that the reinforcement learning agent
produces schedules that are more robust to perturbations in the unknown parameters. We
noted that the reinforcement learning agent is capable of customizing these schedules for
each individual patient, not by measuring the patient specific parameters directly, but by
customizing the response via a more easily measurable metric. In this section, we consider
a different training process that allows the optimal controller agent a comparable level of
customisation.

For this comparison, we kept the reinforcement learning agent exactly the same as in
the previous section: the agent was trained offline on an environment parameterised by ξ0

before being applied as a test to environments parameterised by θki for all k and i. For the
optimal controller comparison, we begin by solving the discrete optimal control problem on
all 1000 training virtual patients for each perturbation strength (i.e. the optimal control
was determined for patient ζki for all k and all i). We then log the state vector from (5.8)
for each timestep of treatment. For a fixed perturbation strength k we first calculated the
state vector sti for each of the 200 testing patients. We then applied a chemotherapeutic
dose by consulting the table of states from the training patients at time ti. The dose was
selected from the training patient whose state vector was closest to the current testing
patient state vector (where distance was measured by the Euclidean metric). Note that the
state vector is as in 5.8 and as such contains a length wl = 10 moving window of relative
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(b) At 20% perturbation strength the rein-
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(c) At 25% perturbation strength the rein-
forcement agent produces a schedule that pro-
duces median scaled scores of 0.991 while the
optimal controller derived schedule produces
median scaled scores of 0.940.

Figure 5.8: Histograms of the scores achieved by the various agents on the 200 testing virtual
patients. Bin sizes were chosen to correspond to 0.025. In particular, the reinforcement
learning agent is much more robust toward perturbation in parameter values, consistently
producing dosing schedules scoring within 7.5% of the theoretical maximal score.
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bone marrow measurements. The result of this nearest training neighbour optimal controller
(NTNOC) was an agent that could also customize chemotherapeutic dosing strategies for
each of the 200 testing virtual patients (θki ) based off of knowledge gained by traversing the
training virtual patient space (ζki ). Hence, while the optimal controller presented in the
previous section was an open-loop controller, the NTNOC is able to incorporate feedback
from the environment. We define σNTNOC(θki ; ζ

k) to represent the score obtained in an
environment parameterised by patient θki under the objective functional in 5.2 achieved
by an NTNOC agent trained on the set ζk = {ζki | 1 ≤ i ≤ 1000}. Similarly, we define
σ̂NTNOC(θki ; ζ

k) = σNTNOC(θki ; ζ
k)/σ(θki ) ≤ 1 to be the scaled objective functional score.

The reinforcement learning agent that the NTNOC agent is being compared to only ever
interacted with a differential equation environment parameterised by the nominal parameter
set ξ0. Ostensibly, more distribution level information is directly afforded to the NTNOC
than was afforded to the reinforcement learning agent. The reinforcement learning agent
is only able to customize treatment strategies based off the states learned by providing
non-optimal doses to the nominal virtual patient (ξ0) during training. The results of this
comparison are presented in Figure 5.9. In particular, we note that the same general trend
from Figure 5.7 is repeated: namely, as the perturbation strength increases the relative
performance of the reinforcement learning agent also increases. However, in contrast to
Figure 5.7, we note that at the 15% level the nearest training neighbour optimal controller
outperforms the reinforcement learning agent (with a one-sided Wilcoxon signed-rank
test p-value on the order of 10−5). Indeed, the mean value of the differences plotted in
Figure 5.9a occurs at approximately -0.007, indicating that, in a mean value sense, the
nearest training neighbour optimal controller produces strategies that are 0.007 points closer
to the optimal score of 1 than the scores of the schedules produced by the reinforcement
learning agent.

Again we compare the distributions of scores with the one-sided Wilcoxon signed-
rank test, though for the case represented in Figure 5.9a, we consider the alternative
hypothesis to be that the nearest training neighbour optimal controller produces schedules
with higher median scaled score than that of the reinforcement learning agent (i.e. the
alternative hypothesis is median

(
σ̂NTNOC(θ; ζk)

)
> median (σ̂RL(θ; ξ0))). We found at the

15% perturbation strength level a Wilcoxon statistic of 6315 corresponding to a p-value
on the order of 10−5. Hence we reject the null hypothesis and conclude that, at the 15%
perturbation level, that the NTNOC produces chemotherapeutic schedules with higher
median scaled score than those produced by the reinforcement learning agent. For the cases
represented in Figures 5.9b and 5.9c we consider a different alternative hypothesis: namely
that the reinforcement learning agent produces chemotherapeutic schedules with higher
median scaled score than those produced by the NTNOC (i.e. the alternative hypothesis
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Figure 5.9: Bar plots of the difference between the scores obtained by the reinforcement
learner derived policy and the scores obtained by the nearest training neighbour optimal
controller on all test virtual patients (i.e. bar plots of σ̂RL(θki ; ξ0)− σ̂NTNOC(θki ; ζk)). Testing
patients where the reinforcement learner outperformed the optimal controller are marked
in blue and patients where the optimal controller outperformed the reinforcement learner
are marked in red. The dotted grey lines in each plot indicate difference in the median
values of the scores obtained by the reinforcement learning agent and those obtained by
the nearest training neighbour optimal controller.
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is median (σ̂RL(θ; ξ0)) > median
(
σ̂NTNOC(θ; ζk)

)
). Then, at the 20% perturbation strength

level we found a Wilcoxon statistic of 13023.5 corresponding to a p-value on the order
of 10−8, and at the 25% perturbation strength level we found a Wilcoxon statistic of
14593.5 corresponding to a p-value on the order of 10−9. In these two cases we reject the
null hypothesis and conclude the reinforcement learning agent produces chemotherapeutic
schedules with higher median scaled score on perturbed patients than the NTNOC. In this
situation, the nearest training neighbour optimal controller is able to produce schedules
more competitive with the reinforcement learning agent than those produced by the nominal
optimal controller. In the 15% case, the NTNOC outperforms the reinforcement learning
agent by a small margin (difference in median scores of 0.003 in favour of the NTNOC)
whereas the reinforcement learner outperforms the NTNOC in the 20% case (difference in
median scores of 0.077 in favour of the reinforcement learner) and the 25% case (difference
in median scores of 0.060 in favour of the reinforcement learner). While the NTNOC
produces more robust schedules for small perturbations, such schedules seem to only slightly
outperform the schedules produced by the reinforcement learning agent. In contrast, for
medium perturbations around 20% and 25%, the reinforcement learning agent outperforms
the NTNOC.

In Figure 5.10 we concern ourselves with, once again, examining the histograms of
the scores of these two agents. As before, we note that the reinforcement learner derived
schedules are robust to these perturbations in patient specific parameter values, which is
the source of the success in Figure 5.9b and Figure 5.9c. However, in contrast to Figure 5.8,
we note that the nearest training neighbour optimal controller produces schedules whose
scores produce a histogram that is less diffuse than that produced by the nominal optimal
controller (standard deviations of (0.007, 0.06, 0.06) for the nearest training neighbour
optimal controller at the 15%, 20%, and 25% perturbation strength compared to standard
deviations of (0.09, 0.14, 0.16) for the nominal optimal controller and (0.01, 0.01, 0.01) for
the reinforcement learning agent). The end result is, by allowing the optimal controller
access to more distribution-level data, it is capable of customizing schedules in a way that
is more robust to perturbations in the patient specific parameters. However, for sufficiently
high perturbations in the strength of the parameters, these personalised schedules are still
less optimal than the personalised schedules produced by the reinforcement learning agent.
Again, we note that the success of the reinforcement learning agent is due to the increased
diffusivity of the distribution of scores obtained by the NTNOC as perturbation strength
increases as contrasted with the more stable distribution of reinforcement learning agent
derived scores under the same perturbation strengths.

100



0.0 0.2 0.4 0.6 0.8 1.0
Scaled Objective Functional Score

0

25

50

75

100

125

150

175

200 Reinforcement Learner Derived Treatment
NTNOC Derived Treatment

(a) At 15% perturbation strength the rein-
forcement agent produces a schedule that
produces median scaled scores of 0.991 while
the optimal controller derived schedule pro-
duces median scaled scores of 0.995

0.0 0.2 0.4 0.6 0.8 1.0
Scaled Objective Functional Score

0

20

40

60

80

100

120

140

160 Reinforcement Learner Derived Treatment
NTNOC Derived Treatment

(b) At 20% perturbation strength the rein-
forcement agent produces a schedule that
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(c) At 25% perturbation strength the rein-
forcement agent produces a schedule that
produces median scaled scores of 0.991 while
the optimal controller derived schedule pro-
duces median scaled scores of 0.986.

Figure 5.10: Histograms of the scores achieved by the various agents on the 200 testing
virtual patients with a 0.025 bin size. While the reinforcement learning agent is more robust
towards perturbation in parameters at the 20% and 25% perturbation level, the NTNOC
produces schedules within 5% of the theoretical maximum at the 15% perturbation level.
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5.4 Discussion

In summary, we examined a model of breast cancer, ovarian cancer, and bone marrow
density under treatment by a chemotherapeutic for which the continuous time optimal
control has been analytically derived. We discretised the optimal control problem of
chemotherapeutic dosing schedule under the objective functional in (5.2) to apply different
doses every day with dose strength discretised to be in 0 to 1 inclusive by steps of size 0.1.
By solving this discretised problem on 200 testing virtual patients, we were able to establish
ground truth levels for theoretical maximal objective functional scores. We then contrasted
a reinforcement learning agent trained on the nominal parameter set with a traditional
optimal controller on the nominal parameter set. We noted that since the reinforcement
learning agent trains a fixed policy, it can customize the corresponding dose schedule to
testing virtual patients, even when the patient-specific parameterisation of the differential
equation environment from (5.1) is unknown, by leveraging additional data that is easier in
practice to collect. In this case, this meant providing the reinforcement learning agent with
a window of relative bone marrow density mass (relative to before the treatment process
began). We noted that the reinforcement learning agent produces schedules that are closer
to the theoretical optimum in a mean sense when measured against unknown patients
who differ from the nominal parameter set by 15%, 20%, and 25%. In particular, we note
that as the strength of perturbation increases, the net benefit of using the reinforcement
learning derived schedules also increases. Moreover, as the perturbation strength increases,
the collection of scaled optimality scores stay clustered between 0.925 and 1. In contrast,
as the perturbation strength increases, the collection of scaled optimality scores for the
optimal controller become more diffuse. The fact that the optimal control problem can
be uniquely solved (due to the convexity in (5.2)) is what allows us to scale these scores.
The fact that these scores stay so tightly clustered around 1 validates that this method is
producing near-optimal treatments even in the absence of patient specific parameters.

We also allowed the optimal controller derived schedules to leverage the longitudinal
relative bone marrow density information by training 1000 such optimal controllers on
perturbed parameter values that were treated as known. When we compared this nearest
training neighbour agent to the reinforcement learning agent, we discovered that the
reinforcement learning agent still outperformed the other agent at the 20% and 25%
perturbation strength level, but at the 15% perturbation strength level the nearest training
neighbour agent was more optimal. However, this nearest training neighbour optimal
controller was still prone to reduced performance level and a more diffuse histogram of
dose-schedule scores at the higher perturbation levels, something that we did not observe
in the reinforcement learning agent.
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We conclude by noting that reinforcement learning provides an agent that can be used
to personalize dosage schedules in the absence of patient specific parameter data in a
manner that is not prone to wild fluctuations (as evidenced by the tight histograms of
Figure 5.8 and Figure 5.10) and did so by only requiring the mean values of the patient
specific parameter distributions. In contrast, an optimal control derived agent could be
improved to allow personalisation of dosing schedule as well, but at the cost of requiring
more samples from these patient specific distributions and the end result was still prone to
fluctuations in schedule optimality.

While this particular study was focused on a situation where little patient data was used
(outside of the data used to determine the nominal parameters from Table 5.1) one could
also extend this work by allowing a reinforcement learner to learn directly from patient
data, since the environment a reinforcement learning agent interacts with is effectively a
black box. This approach might still require an underlying mathematical model in order to
predict the effects when an agent chooses an action that results in a tumour state outside of
the training data. This model could be a validated differential equation model or, if data is
ample enough, a simple interpolation model could be employed. Moreover if a reinforcement
learning agent has been trained on a model-driven environment, then that Q network could
be used for transfer learning to the real data in order to speed up convergence and increase
accuracy. This method described is general and can be used for optimising schedules for
other treatments as well (i.e. radiotherapy fractions or immunotherapy treatment schedules).
Moreover, this study was focused on a particular model in a mathematical oncology context,
however we believe this result can be applied to other mathematical models used in cancer
research and can also be extended easily to other mathematical biology contexts, or into
any context wherein one needs to create a control for a system where high level distribution
information about the parameters is known, but particular parameter values are unknown
or prohibitively difficult to ascertain.
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Chapter 6

Conclusion

In this thesis we used mathematical theory combined with in silico experiments to investigate
various aspects of mathematical oncology especially as it relates to cancer stem cells and
inter-patient variability.

In Chapter 3 we investigated cancer stem cells and the confusing role of phenotypic
plasticity on the fixation probability of mutant cancer stem cells. In particular, we demon-
strated that phenotypic plasticity produces a non-monotone effect on the invasion potential
of mutant cancer stem cells. CSCs play a key role in the invasion of various cancers in
an otherwise healthy tissue micro-environment. Cells that select for a greater degree of
phenotypic plasticity, then, are not necessarily more invasive. The non-monotonicity of the
response functions demonstrates that blindly increasing plasticity can result in cells that
are less likely to fixate in an otherwise stable environment.

Initially, cellular plasticity is important and increasing the plasticity results in increased
fixation probability. In regimes where the plasticity is expected to be low, then local
increases result in increased fixation probability, however as the plasticity increases cells are
more likely to de-differentiate. This results in less selective pressure in the differentiated
cells compartment resulting in a decrease in fixation probability. However, when de-
differentiation is governed by transit amplifying cells, varying the plasticity rate results
in a strictly monotone increase in fixation probability due to the removal of competition
between differentiated cells.

Moreover, in Chapter 3 we demonstrated that the two models considered were able
to produce differing qualitative effects. In particular, the seeming contradiction observed
between the Moran and Gillespie models was reconciled by an appropriate change of
parameters. However, these differences highlight the effect that particular assumptions in
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the model selection process have on the potential qualitative behaviour of the model. In
particular, when the method by which de-differentiation is modeled gives rise to competition
between compartments, then non-monotone response curves were observed. However, when
de-differentiation was investigated absent of any competition (either by taking η1 = η2 = 1
and varying r̃1 and r̃2 instead or by modeling de-differentiation via transit amplifying cells),
then the response curves were strictly monotone.

To expand upon the work of Chapter 3 it would be interesting to investigate the role
of spatiality on the fixation probability. That is, it would be interesting to investigate in
models of mutant stem cell invasion if the inclusion of spatiality effect the monotonicity of
the fixation probability curve. Finally, it was observed that including an extra heterogeneous
compartment between stem and regular cells (in the form of transit amplifying cells) changed
the monotonicity of the fixation probability curve, if this heterogeneity/pluripotency of the
cell type was instead considered as an additional continuous, dimension then the system
could be thought of as dynamic in both time and pluripotency. It would be interesting to
see if the monotonicity of the fixation probability curve remains in such a partial differential
equation model.

In Chapter 4 we explored the cell cycle of Jurkat cells and demonstrated a technique
capable of predicting the mitotic phase of the cell cycle with a high degree of accuracy. By
examining this technique, and the effects of various refinements, we develop a framework
capable of producing high throughput cell binning based on the mitotic phase without the
need of various biomarkers or additional experimental agents. We also demonstrated that
even in this niche regime, automatic feature selection outperforms the biologist-informed
tabular data.

For a future addition to Chapter 4 we could consider applying the approach to other
datasets from the imaging flow cytometer. For instance, determining if the the distinction
between stem and differentiated cells or between drug resistant and drug sensitive cells can
be determined via imaging alone.

In Chapter 5 we produce a method to schedule chemotherapeutic delivery in patients
with breast or ovarian cancer. Importantly, while the model requires a nominal patient
during training, we demonstrate that it is incredibly resilient to perturbations in patient-
specific parameter values. In effect, by training the model on representative virtual patients,
we can apply the therapy in an adaptive manner to patients without needing to calibrate a
patient specific model. Moreover, the approach does not require a specific tumour growth
inhibition model to be employed. In effect, this means that the model can be tuned directly
from data. This intersection of data driven models with theory-informed models is incredibly
attractive for the deployment of patient specific therapies, especially as patient specific data
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becomes more easily accessible. Finally, we compared this approach with various models
using classical optimal control and noted that the reinforcement learning based approach is
robust to inter-patient variability.

As a future work, the model of Chapter 5 could be extended to a more complicated
model of spatial optimisation of radiation beams (such as in [70]). In such a case, we
would be optimising not only the schedule of delivery but also the shape of the beam.
Moreover in cases of chemotherapy delivery, it would be interesting to investigate the
effect of updating the RL environment according to multiple governing models on the
generation of chemotherapeutic delivery schedules. For example by employing an agent
based model of chemotherapeutic delivery to update the state of the tumour site at one
time scale immediately after treatment and then employing a coarse grained, ODE based
model initialised by the state of the agent based model for the larger time scale between
treatments.

In each of the chapters we employ stochastic models of cancer at various levels: tumour
invasion, cell cycle phase identification, and tumour eradication. We also consider the effects
of heterogeneity of cell types, heterogeneity of data, and heterogeneity of patients in these
applications. By employing mathematical analysis and in silico simulations to describe the
biological phenomena, we were able to investigate the mechanisms at play in the biology
and identify additional areas for investigation. In Chapter 3, the stochastic process was
completely model driven, in Chapter 4 the process was completely data driven, and in
Chapter 5 the process was model driven (via the underlying tumour growth inhibition
model) but data informed (via the relative measurements of bone marrow density).
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Appendix A

Numerics for Stochastic Simulations
of Cancer Stem Cells

A.1 Numerics

The Moran simulations were run until fixation occurred or until 15,000 iterations were
achieved – whichever came first. A total of 500,000 such simulations were run in 50 batches
of 10,000. For each batch of 10,000 simulations, fixation probability was estimated by
logging what percentage of the 10,000 iterations achieved fixation. The error of these
probabilities was estimated as the standard error of the mean calculated between the 50
different batches. This process was completed once for every unique set of parameter values.

Similarly, the two Gillespie simulations (in Figures 3.2 and 3.3) were run until fixation
of or until 108 iterations were achieved. For each parameter set, these simulations were
run in 10 batches of 3000 simulations with the fixation probability being calculated for
each individual batch of 3000 simulations. The error was calculated from these 10 different
fixation probabilities as the standard error of the mean.

A.1.1 Figure Information

In Figure 3.2a the plot was generated by Moran simulations with the following parameters:
NS = ND = 10, u1 = u2 = 0.5, r1 = r2 = r̃1 = r̃2 = 1, η1 = 0, d1 = d2 = d̃1 = d̃2 = 1, and
η2 varying over 36 discrete values evenly placed between 0 and 1, inclusive.
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Similarly, for Figure 3.2b was generated by Gillespie simulations (as in c[109]) with the
following parameters: r′1 = r′2 = 0.5, p′1 = p′2 = 0.8, h1,1 = h2,1 = h1,2 = h2,2 = h1,3 = h2,3 =
0.01, k1 = k2 = k3 = 1, α1 = α2 = 0.5 , and g′1 = g′2 = g. The initial condition for these
simulations was (S1, D1, S2, D2) = (S∗1 , D

∗
1, 1, 0) where S∗1 and D∗1 are defined as (within

rounding to nearest integer) the equilibrium point of the deterministic differential equations
in S1 and D1 (where S2 and D2 are assumed to be zero for the purpose of obtaining the
equilibrium values) and vary depending on the value of g. The stochastic simulation was
then repeated for each g value in {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3} corresponding to initial
conditions (S∗1 , D

∗
1) ∈ {(114, 68), (132, 75), (101, 62), (166, 88), (183, 94), (200, 100)}. Note

that while the Moran simulations in Figure c3.2a use finite, discrete population sizes, the
simulations in Figure c3.2b make no such assumptions, allowing continuous, unbounded
population sizes.

In Figure 3.3 the leftmost plot was generated by Moran simulations with the following
parameters: NS = ND = 10, u1 = u2 = 0.5, r1 = r2 = r̃1 = r̃2 = 1, d1 = d2 = d̃1 = d̃2 = 1,
and η1 = η2 = η where η varies over 36 discrete values evenly placed between 0 and 1,
inclusive.

Similarly, the rightmost plot was generated by Gillespie simulations with the following
parameters:r′1 = r′2 = 0.5, p′1 = p′2 = 0.8, h1,1 = h2,1 = h1,2 = h2,2 = h1,3 = h2,3 = 0.01, k1 =
k2 = k3 = 1, α1 = α2 = 0.5 , g′1 = 0, and g′2 taking values in {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}.
As in Figure 3.2, the initial condition was taken to be (S1, D1, S2, D2) = (S∗1 , D

∗
1, 1, 0) with

S∗1 and D∗1 defined as the equilibria points of the (S1, D1) system calculated similarly to
the above.

In Figure 3.4 the data was generated with Moran simulations with the following
parameters: NS = ND = 10, u1 = u2 = 0.5, r1 = r2 = r̃1 = r̃2 = 1, d1 = d2 = d̃1 = d̃2 = 1,
and both η1 and η2 vary, independently, from 0 to 1 in 0.1 increments. A cubic spline was
generated from the resulting data points (and their standard errors) and used to create the
plots in Figures 3.5 and 3.6.

In Figure 3.7 the data was generated, for each fixed η2 value, by averaging over all 36 η1

values.

Figures 3.8 and 3.9 were generated similarly. In both figures Moran simulations were
run with parameters NS = ND = 10, d1 = d2 = d̃1 = d̃2 = 1, and η1 and η2 independently
varying over 36 discrete values evenly placed between 0 and 1, inclusive. In Figure 3.8
r2 = r̃2 = r where r takes on values in {0.25, 0.50, 0.75, 1, 2, 3, 4, 5} while u1 = u2 = 0.5.
Similarly, in Figure 3.9 u2 was allowed to vary between 0.1 and 0.9 inclusive in increments
of 0.1, while r2 = r̃2 = 1 and u1 = 0.5 were kept constant. The averages were calculated
from the resulting data points as in Figure 3.7.
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Figures 3.11 and 3.12 were generated with Moran simulations run with NS = ND = 10
where η1 = η2 = 1 and r̃1 and r̃2 were varied over 36 discrete values evenly placed between
0 and 1. For Figure 3.11, the values of r̃1 and r̃2 were varied independently, for Figure
3.12 they were varied together. The data were generated by averaging the results of 100
simulations 5000 times. The remaining parameters were set as r1 = r2 = 1, u1 = u2 = 0.5.
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Appendix B

Additional Details to Chapter 5

In Figure B.1 we present a visualisation of the virtual patients used for testing of all three
algorithms and the training virtual patients used for training of the NTNOC algorithm.
These figures demonstrate the parameter values chosen via Latin hypercube sampling for
the four non-zero bone marrow parameters from Table 5.1 required to parameterise (5.2).

In Figure B.2 we present the trajectories of the bone-marrow and the control obtained
via the objective functional in (5.3).

In Figure B.3 we produce a plot similar to Figure 5.3 with the proliferative fraction
of both the healthy bone-marrow cells and the proliferative fraction of the malignant
breast-cancer cells. For this plot, the bone marrow compartments and breast cancer
compartments are parameterised with the nominal parameters from Table 5.1. Notably, in
all three scenarios the schedule is able to drive the proliferative fraction of malignant cells
down while maintaining the proliferative fraction of the healthy cells. In Figure B.3 ρbm

p (t)
corresponds to the proliferative fraction of the bone-marrow cells and ρbc

p (t) corresponds to
the proliferative fraction of the breast-cancer cells.

Figure B.4 demonstrates various dosing schedules on testing patients. We plot the
schedules obtained via employing the reinforcement learning agent trained on the nominal
parameter set, the mean optimal controller derived treatment, the NTNOC treatment,
and the optimal treatment (which was treated as unknown) acquired by solving the
optimal control problem on each particular testing patient (achieved by treating the model
parameters as known and employing the APOPT algorithm as implemented in GEKKO
[46, 3]).

In Figure B.5 we present plots of chemotherapy schedules along with the trajectories of
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Figure B.1: Visualisation of the 4 non-zero virtual patient parameters for various perturba-
tion strengths. The orange dots indicate the 200 virtual patients used in testing, the blue
dots the 1000virtual patients used in training, and the red dot indicates the location of the
nominal virtual patient.

the effected bone marrow cells. These plots are generated for the same virtual patients as
in the first column of Figure B.4.

The results presented in Figures 5.7 – 5.10 all depend upon the particular sample
of testing patients (the values of θki for all k and i). In order to investigate how these
results change with differing batches of testing virtual patients, we now present the results
of Figure 5.7 and Figure 5.9 for five additional batches of 200 testing virtual patients.
Explicitly, we independently sampled five batches of 200 testing virtual patients in addition
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Figure B.2: A plot of the (5.1) parameterised for bone-marrow under the optimal control
achieved by maximizing the objective functional in (5.3) with b = 2. Solved numerically
using IPOPT in GEKKO [105, 3].
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Figure B.3: A plot of the proliferative fraction ρp(t) = P (t)/(P (t)+Q(t)) for both the healthy
bone-marrow cells and the malignant breast-cancer cells under the optimal chemotherapeutic
control f ∗(t) (dashed red) for different values of b. The objective functional used to achieve
this optimal control is given via (5.2). Small values of b correspond to weighting preservation
of the bone marrow as more important and larger values of b correspond to weighting total
drug delivery as more important.

to the batch used in the main manuscript text using the same method as described in
Section 5.2.3. For ease of notation, let Bk

0 = {θki | 1 ≤ i ≤ 200} denote the original batch of
virtual patients used in the manuscript text at perturbation levels k ∈ {0.15, 0.20, 0.25}. Let
Bk

1 , B
k
2 , . . . , B

k
5 represent the 5 additional batches of testing patients sampled independently.

124



0 5 10 15 20
0.0

0.5

1.0

15
%

 P
er

tu
rb

at
io

n

Nominal OC Nominal RL NTNOC

0 5 10 15 20
0.0

0.5

1.0

0 5 10 15 20
0.0

0.5

1.0

20
%

 P
er

tu
rb

at
io

n

0 5 10 15 20
0.0

0.5

1.0

0 5 10 15 20
0.0

0.5

1.0

25
%

 P
er

tu
rb

at
io

n

0 5 10 15 20
0.0

0.5

1.0

Figure B.4: Various chemotherapy dosing schedules obtained on various virtual patients by
the three blind methods. In dotted black lines, we also present the theoretically optimal
schedule for each patient as a comparison. While the nominal OC schedules remain static
(blue lines), the RL and NTNOC schedules adapt to each patient (orange and green lines).
In fact, the tendency for the RL schedules (orange lines) to be “closer” (visually) to the
theoretical maximal value (dotted lines) visually can demonstrate the tendency for the RL
agent to be more robust to perturbations in the parameter values.

In Figure B.6a we present Figure 5.7b as a probability distribution. Next, in Figures B.6b
we present the same histogram as displayed as displayed in Figure B.6a except B0.20

1 was
used as the testing set in place of B0.20

0 . Histograms created with batches B0.20
2 to B0.20

5 are
presented in Figures B.6c–B.6f. We note the similarities in shape between the histograms
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Figure B.5: Plots of the proliferative and quiescent bone marrow cells in various virtual
patients under chemotherapeutic schedules acquired by the three different learning agents
considered in this work.

presented. In fact, we performed two statistical tests to demonstrate the similarity of
the histograms produced by batch B0.20

0 with those produced by batches B0.20
1 to B0.20

5 .
Explicitly, we considered a two sample Kolmogorov-Smirnov test and a two sample Anderson-
Darling test [47, 93]. Both tests have the null hypothesis that the two samples are from the
same distribution. In all five cases we are unable to reject the null hypothesis (p > 0.25).

Similarly, in Figure B.7 we present a related visualisation. In Figures B.7a–B.7c we
present the results of comparing the reinforcement learner derived treatments from the
nominal optimal controller derived treatments on all 6 batches Bk

0 to Bk
5 at all perturbation

strengths. The data for batch Bk
0 are presented as solid lines while the data for batches

Bk
1 to Bk

5 are presented as semi-opaque filled histograms stacked on top of one another.
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This allows one to easily compare the relative shapes of the distribution of these data. In
Figures B.7d–B.7f we present similar data for comparing the reinforcement learner derived
treatments with those from the NTNOC derived treatments in the same manner. In all 6
cases, we note that the histograms appear similar to one another via the naked eye. We
again applied a two sample Kolmogorov-Smirnov test and a two-sample Anderson-Darling
test to formally compare the samples. For all 6 experiments we compared the five new
testing batches Bk

1 to Bk
5 with the reference testing batch Bk

0 under the null hypothesis
that the two samples are from the same distribution. In all 30 of these such cases we were
unable to reject the null hypothesis with either test (p > 0.25).
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Figure B.6: Histograms of σ̂RL(θ0.20
i ; ξ0)− σ̂OC(θ0.20

i ; ξ0) where the testing patients θ20
i are

from batches B0.20
0 to B0.20

5 .
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Figure B.7: A plot comparing the histograms of the difference in scaled objective functional
scores. Figures B.7a – B.7c show histograms of σ̂RL− σ̂OC for various batches while Figures
B.7d – B.7f show histograms of σ̂RL− σ̂NTNOC for various batches. In all plots the histogram
of batch Bk

0 is represented by the solid outlines and the histograms of batches Bk
1 to Bk

5 are
represented by the semi-opaque filled bars. Neither the Kolmogorov-Smirnov 2-sample test
nor the Anderson-Darling 2-sample test could distinguish Bk

0 from any of Bk
1 to Bk

5 .
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