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Abstract

A separating set of a connected graph G is a set of vertices S such that G − S is
disconnected. S is a minimum separating set of G if there is no separating set of G with
fewer vertices than S. The size of a minimum separating set of G is called the vertex
connectivity of G. A separating set of G that is a cycle is called a separating cycle of G.

Let G be a planar graph with a given planar embedding. Let Λ(G) be a supergraph
of G obtained by inserting a face vertex in each face of G and connecting the face vertex
to all vertices on the boundary of the face. It is well known that a set S is a minimum
separating set of a planar graph G if and only if the vertices of S can be connected together
using face vertices to get a cycle X of length 2|S| that is separating in Λ(G).

We extend this correspondence between separating sets and separating cycles from
planar graphs to the class of bowtie 1-plane graphs. These are graphs that are embedded on
the plane such that each edge is crossed at most once by another edge, and the endpoints of
each such crossing induce either K4, K4 \{e} or C4. Using this result, we give an algorithm
to compute the vertex connectivity of a bowtie 1-plane graph in linear time.
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Chapter 1

Introduction

A graph is a mathematical structure that models relationships between objects, with the
objects being represented as vertices and relations between objects as edges that connect
vertices. The class of planar graphs, which are graphs that can be drawn on the plane with
no edge crossing another, are fundamental to both graph theory and graph algorithms. The
structural properties of planar graphs have been extensively studied, and have been used in
the development of many efficient algorithms, even where the more general problem is NP-
hard. However, most real-world graphs, such as social networks and biological networks,
are non-planar. Consequently, we need to address structural and algorithmic challenges
for non-planar graphs.

A natural starting point in the study of non-planar graphs is the class of near planar
graphs, i.e., graphs that are close to being planar in some sense. The class of 1-planar
graphs is a very frequently studied class of near planar graphs. A graph is 1-planar if it
can be drawn on the plane such that each edge is crossed at most once. (Precise definitions
will be given in Chapter 2.) This graph class was first introduced by Ringel in 1965 [Rin65]
and has excited much interest recently, both with respect to the structural properties of
these graphs and for developing algorithms tailored to this graph class. A large number
of results are available for 1-planar graphs; refer to an annotated bibliography [KLM17] as
well as some chapters in a recent book [HT20].

In this thesis, we look at the problem of vertex connectivity for 1-planar graphs. The
problem of vertex connectivity is fundamental in graph theory: given a connected graph
G, what is the smallest number of vertices that need to be removed from G to make it dis-
connected? Such a set of vertices is called a minimum separating set of G, and the number
of vertices in the set is denoted by κ(G). Vertex connectivity has numerous applications;
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for example, in network reliability, it measures the resilience of a communication network,
and in sociology, vertex connectivity is a measure of social cohesion.

1.1 Existing results

1.1.1 Vertex connectivity in general graphs

Since 1969, there has been a long line of research on efficient algorithms for deciding k-
connectivity (i.e. deciding κ(G) ≥ k) or computing the connectivity κ(G) of general graphs.
For a general graph G on n vertices and m edges, it is very easy to test in linear time (i.e.
O(m + n) time) whether κ(G) ≥ 1 by running any graph traversal algorithm. In 1969,
Kleitman [Kle69] showed that vertex connectivity can be decided in time O(k2nm). In
particular, when m ∈ O(n) and k ∈ O(1), vertex connectivity can be decided in O(n2) time
[Kle69]. Subsequently, [Tar72] and [HT73] presented O(m) time algorithms to decide k-
connectivity when k = 2 and k = 3 respectively. (The algorithm for deciding 3-connectivity
had some errors which were pointed out and corrected in 2000 by Gutwenger and Mutzel
[GM00].)

In 1974, Aho, Hopcroft and Ullman [AHU74, Problem 5.30] conjectured that there
exists an O(m) time algorithm for computing κ(G). For a long time, the fastest known
algorithms to decide whether κ(G) ≥ 4 ran in O(n2) time. For κ(G) = 4, the first
O(n2) algorithm was by Kanevsky and Ramachandran [KR91]. For κ(G) ∈ O(1), the first
O(n2) algorithm was by Nagamochi and Ibaraki [NI92]. For general k and m, the fastest
running times are Õ(nω + nkω) 1 by Linial, Lovász and Wigderson [LLW88] and Õ(kn2)
by Henzinger, Rao and Gabow [HRG00]. Both algorithms are randomised and are correct
with high probability. The fastest deterministic algorithm is by Gabow [Gab06] and takes
time O(m · (n+min{k5/2, kn3/4})).

The last few years have seen some breakthroughs for deciding k-connectivity when k is
small. Recently, Forster et al. [FNY+20] used fast local-cut algorithms to show that there is
a randomised algorithm that takes time Õ(m+nk3) to decide whether κ(G) ≥ k. A graph is
called sparse if m = Õ(n), and hence, k = O(polylog(n)). For sparse graphs, the algorithm
runs in near-linear-time. By combining this with the previous results ([LLW88, HRG00]),
the best running time for k ≥ 4 is Õ(m+min{nk3, n2k, nω + nkω}).

1Õ(g(n)) = O(g(n) logc n) for some constant c, and ω is the matrix multiplication exponent; currently,
ω < 2.372.
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As for deterministic algorithms, the algorithm due to Gabow [Gab06], which was the
fastest until recently, has running time no better than Õ(n2) even for sparse graphs. How-
ever, for such graphs, the Õ(n2) bound dates back to the result of Kleitman in 1969
[Kle69]. Recently, Gao et al. [GLN+19] used a sub-quadratic time algorithm for com-
puting balanced sparse cuts to give an algorithm for deciding k-connectivity in time
Ô(m + min{n1.75k1+k/2, n1.9k2.5})2 when k < n1/8. This algorithm runs in sub-quadratic
time for sparse graphs and hence improves the quadratic bound by Kleitman.

Very recently, Li et al. [LNP+21] gave a randomised algorithm that solves the vertex
connectivity problem by reducing it to a set of maxflow instances. This implies that if
there is a mα time maxflow algorithm, for any α ≥ 1, then vertex connectivity can be
solved in Õ(mα) time. The current fastest randomised maxflow algorithm is by Chen et

al. [CKL+22] and takes time Ô(m). This implies that vertex connectivity of a general

graph can be decided in Ô(m) time with high probability. On the other hand, the problem
of obtaining a deterministic linear time algorithm for deciding vertex connectivity is still
open.

We now briefly review some of the literature on topics related to vertex connectivity,
but which we will not study in the thesis. The notion of vertex connectivity in directed
graphs is slightly different from undirected graphs. A set of vertices S form a separating
set of a directed graph G if there are two vertices u, v in G − S such that there is no
directed path from u to v in G− S. For directed graphs, an O(m) time algorithm is only
known for k ≤ 2 by Georgiadis [Geo10]. For general k and m, the fastest randomised
algorithms are Õ(nω + nkω) by Cheriyan and Reif [CR94], Õ(mn) by Henzinger et al.
[HRG00] and Õ(min{mk2, k3n + k3/2m1/2n}) by Forster et al. [FNY+20]. More recently,
Li et al. [LNP+21] gave a randomised mn1−1/12+o(1) time algorithm for vertex connectivity
of directed graphs which improves upon the Õ(mn) bound by Henzinger et al. [HRG00].
The fastest deterministic algorithm for directed graphs is by Gabow [Gab06] and takes
time O(m · (n+min{k5/2, kn3/4})).

There have also been some approximation algorithms developed for vertex connectiv-
ity. There is a deterministic O(min{

√
n, k}n2) time 2-approximation algorithm by Hen-

zinger [HRG00] and a randomized Õ(m) time O(log n)-approximation algorithm by Censor-
Hillel, Ghaffari and Kuhn [CHGK14]. While these two algorithms work only on undirected
graphs, Forster et. al [FNY+20] give a (1 + ϵ)-approximation Õ(min{mk/ϵ, nω/ϵ2}) time
randomised algorithm for both directed and undirected graphs.

2Ô(g(n)) = O(g(n)1+o(1))
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(a) A planar graph G (b) The radialisation of G

Figure 1.1: A planar graph and its radialisation.

1.1.2 Vertex connectivity in planar graphs

Any simple planar graph has at most 3n− 6 edges. Hence, any planar graph G contains a
vertex with at most five distinct neighbours, implying that κ(G) ≤ 5. Since k-connectivity
can be decided in linear time for k ≤ 3, it only remains to decide whether κ(G) = 4
or κ(G) = 5 in linear time. In 1990, Laumond [Lau90] gave a linear time algorithm to
compute κ(G) for maximal planar graphs, which are planar graphs in which every face is
a triangle. In [Epp99], Eppstein gave an algorithm to test vertex connectivity of general
planar graphs in linear time.

Eppstein’s algorithm is the crucial inspiration for the work in this thesis, and so we
review it briefly here. The algorithm is based on the following approach. Given a planar
graph G with a fixed planar embedding, let the radialisation Λ(G) be the planar graph
obtained by adding a new face vertex inside each face of G and connecting the face vertex
to all the vertices on the boundary of the face (Figure 1.1). Let S be a separating set
of G such that |S| = k. Then there exists a cycle X of length at most 2k in Λ(G) that
satisfies the following properties: (a) X separates two vertices of G, and (b) X uses only
edges added during the radialisation. Observe that for any cycle X in Λ(G) that satisfies
these two properties, the vertices of G on X form a separating set of G of size |X|/2.
Thus, computing a minimum separating set of a planar graph G reduces to the problem of
finding a shortest separating cycle of length 2k (for k ≤ 5) in Λ(G) that satisfies the above
properties.

The algorithm to obtain a shortest separating cycle is based on the separating subgraph
isomorphism algorithm developed in [Epp99]. In this algorithm, Λ(G) is viewed as a planar
host graph and a separating cycle is viewed as a pattern graph. The algorithm searches
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(a) Full crossing (b) Almost full crossing (c) Bowtie crossing

Figure 1.2: Some types of crossings in a 1-planar embedding

the host graph for an instance of the pattern graph, and outputs the instance if it exists.
The algorithm runs in linear time when the size of the pattern graph is bounded. Since
a minimum separating set of a planar graph corresponds to a shortest separating cycle
in Λ(G), the size of the shortest separating cycle is at most 10. Therefore, a shortest
separating cycle of Λ(G) can be computed in linear time, and a minimum separating set
of G can be then be extracted from the cycle. Thus, κ(G) can be computed in linear time.

Although we only study sequential algorithms for vertex connectivity, it is worth
mentioning that Gianinazzi and Hoefler [GH20] presented a parallel separating subgraph
isomorphism for planar graphs. Their algorithm shows that planar vertex connectivity
can be answered in O(n log n) work and O(log2 n) depth. While 2-connectivity and 3-
connectivity have long been solved for general graphs with linear work and logarithmic
depth [MR92, TV85], no sub-quadratic work and polylogarithmic depth bound was known
previously for 4-connected and 5-connected planar graphs.

1.2 Our results

The goal of this thesis is to generalise the correspondence between separating sets and
separating cycles from planar graphs to 1-planar graphs and hence obtain a linear time
algorithm to compute the vertex connectivity of 1-planar graphs. To our knowledge, there
are no previous results for computing connectivity in 1-planar graphs faster than for general
graphs.

A 1-planar embedding can contain different types of crossings (Figure 1.2). A crossing
is called full if its endpoints induce K4. A crossing is called almost full if its endpoints
induce K4 \ {e}, where e is an edge of K4. A crossing is called a bowtie crossing if its
endpoints induce C4. A bowtie 1-plane graph is a 1-planar graph with a given 1-planar
embedding such that each crossing in the embedding is full, almost full or bowtie.
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Theorem 1 is the main result of the thesis.

Theorem 1. A minimum separating set of a bowtie 1-plane graph can be computed in
linear time.

To prove Theorem 1, we reduce the problem of finding a minimum separating set to
one of finding a shortest “constrained separating cycle” in the “radial planarisation” of the
bowtie 1-plane graph. In Chapter 3, we give a precise definition of the terms “constrained
separating cycle” and “radial planarisation”. For now, the following approximate defini-
tions suffice. The radial planarisation Λ(G) of a 1-plane graph G is obtained by planarising
the embedding by adding dummy vertices at all crossing points, and then radialising the
resulting embedding. A constrained separating cycle of Λ(G) is a separating cycle that sat-
isfies a given list of constraints that tell which type of vertices, crossing points and edges
of Λ(G) can belong to the cycle.

To prove Theorem 1, we prove Theorems 2 and 3 that may be interesting in their own
right. Theorems 2 and 3 show that the vertex connectivity of a bowtie 1-plane graph G is
half the length of a shortest constrained separating cycle of Λ(G). Theorem 4 shows that
a shortest constrained separating cycle of Λ(G) can be obtained in linear time. The proofs
of the the three theorems form the content of Chapters 3, 4 and 5 respectively.

Theorem 2. Let G be a bowtie 1-plane graph. If Λ(G) contains a constrained separating
cycle of length 2k, then G contains a separating set of size at most k. Moreover, the
separating set can be computed from the constrained separating cycle in time O(k).

Theorem 3. Let G be a bowtie 1-plane graph. If G contains a separating set of size k,
then Λ(G) contains a constrained separating cycle of length at most 2k.

Any 1-planar graph G is at most 7-connected [BSW83]. Therefore, by Theorem 3,
Λ(G) has a constrained separating cycle of length at most 14. With this, we can show the
following theorem.

Theorem 4. Let G be a bowtie 1-plane graph. A shortest constrained separating cycle of
Λ(G) can be computed in linear time.

As for planar graphs, the algorithm to obtain a shortest constrained separating cy-
cle is based on the separating subgraph isomorphism algorithm developed by Eppstein in
[Epp99]. However, the presence of constraints on the separating cycle necessitates mod-
ifications to the separating subgraph isomorphism algorithm. In Chapter 5, we give a

6



detailed explanation of Eppstein’s algorithm and the modifications required in the algo-
rithm so that it outputs a shortest constrained separating cycle of Λ(G). (It also turns
out that there were some errors in Eppstein’s algorithm; we list these in Appendix A.) We
conclude the thesis with open questions in Chapter 6.
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Chapter 2

Preliminaries

2.1 Graphs

A graph G is a triple consisting of a vertex set V (G), an edge set E(G), and an incidence
relation that associates with each edge two vertices called the endpoints of the edge. We
use n to denote |V (G)| and m to denote |E(G)|. A vertex v is incident with an edge e if v
is an endpoint of e; we also say that e is an edge at v. Two vertices u and v are adjacent if
they are the endpoints of an edge. A loop is an edge whose endpoints are the same. Two
edges are parallel if they have the same pair of endpoints. A simple graph is a graph having
no loops or parallel edges. An edge of a simple graph is determined by its endpoints, so
we can name an edge e by its endpoints e = (u, v). An edge of a graph that is not simple
can also be named by its endpoints if the edge under consideration is clear from context.
The degree of a vertex v is the number of edge-incidences at v (loops count twice). The
neighbourhood of v, written N(v), is the set of vertices adjacent to v.

A walk in a graph is a sequence of alternating vertices and edges v0, e1, v1, e2, . . . , ek, vk
such that the endpoints of each edge ei are vi−1 and vi. A path is a sequence of distinct
vertices v0v1 . . . vk with the property that each vertex in the sequence is adjacent to the
next vertex. Equivalently, a path is a walk with no repeated edges or vertices. A cycle is
a sequence of vertices v0v1 . . . vkv0 where v0v1 . . . vk is a path and vk is adjacent to v0. The
length of a path or a cycle is the number of edges in the path or the cycle; a path or a
cycle of length k is called k-path or a k-cycle.

A subgraph of a graph G is a graph H such that V (H) ⊆ V (G), E(H) ⊆ E(G) and the
incidence relation of H is a restriction of the incidence relation of G onto V (H). If H is a
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subgraph of G, we write H ⊆ G; we also say that G is a supergraph of H. Deleting a vertex
of a graph deletes the vertex and all edges at that vertex. We write G − v or G − S for
the subgraph obtained by deleting a vertex v or a set of vertices S. An induced subgraph
H of a graph G is obtained by deleting all vertices of V (G) − V (H). Equivalently, E(H)
consists of all those edges of G whose endpoints are in V (H).

Contracting an edge of a graph refers to the operation of deleting the edge and simul-
taneously identifying its two endpoints. (Contracting a loop is the same as deleting it.) A
graph H is called a minor of a graph G if H can be obtained from G by deleting edges and
vertices and by contracting edges. The subdivision of an edge (u, v) of a graph is obtained
by adding a new vertex w and replacing the edge (u, v) by two edges (u,w) and (w, v). A
graph that is derived from a sequence of subdivisions of the edges of a graph G is called a
subdivision of G. If G contains a subgraph that is a subdivision of H, then H is a minor
of G.

A complete graph on n vertices, denoted by Kn, is a simple graph where every pair
of vertices is adjacent. A graph is bipartite if its vertex set can be partitioned into two
non-empty sets A,B such that all edges of the graph have one endpoint in A and the other
endpoint in B. A graph G is called a complete bipartite graph if it is bipartite with a
bipartition A,B such that every vertex in A is adjacent to every vertex in B. If |A| = a
and |B| = b, we write G = Ka,b.

A graph is connected if each pair of vertices belongs to a path; otherwise, it is dis-
connected. A component of a graph G is a maximal connected subgraph, i.e., it is not
contained in any other connected subgraph of G. A connected graph has a single compo-
nent which is the graph itself. A separating set of a connected graph is a set S ⊆ V (G)
such that G − S has more than one component; each such component is called a flap of
S. The connectivity of G, written κ(G), is the minimum size of a vertex set S such that
G− S is disconnected or has only one vertex. A graph is k-connected if its connectivity is
at least k. A set S is a minimal separating set if S−v is not a separating set for any v ∈ S.
S is a minimum separating set if it is a separating set with the fewest possible number of
vertices. By definition, every minimum separating set is also minimal.

We assume familiarity with algorithms, asymptotic notation, and NP-hardness, see e.g.
[CLRS09]. We say that an algorithm operating on a graph with n vertices and m edges
takes linear time if its run-time is in O(m+ n).
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Figure 2.1: Different drawings of the same planar embedding

2.2 Graph drawings

Let G = (V,E) be a graph. A drawing of G on the plane is a pair of functions (ΓV ,ΓE),
where ΓV maps each vertex v to a distinct point ΓV (v) in R2, and ΓE maps each edge
(u, v) to a curve ΓE(u, v) in R2 whose endpoints are ΓV (u) and ΓV (v). A good drawing of
a graph is one in which each edge is drawn as a simple curve (i.e., non-self-intersecting),
and any two non-parallel edges intersect at most once, either at a common endpoint or
in the interior of the edges. Parallel edges must intersect exactly twice at their common
endpoints. Moreover, not more than two edges can cross at a single point. Degenerate
drawings having edges touching each other tangentially or vertices lying in the interior of
edges are also not considered good drawings. Therefore, if two edges without a common
endpoint intersect, then they properly cross each other. Hereafter, we assume that all
graph drawings are good.

2.3 Planar and 1-planar embeddings

A drawing of a graph G is planar if no two edges of the drawing cross. A planar graph is a
graph that admits a planar drawing. A planar drawing of a graph G divides the plane into
connected regions called faces. The infinite region is called the outer-face. Every other
face is called an inner face. A face is identified by its facial circuit which is a walk along
the boundary of the face such that the face lies to the left of all the edges in the walk. The
set of facial circuits of a planar drawing gives a planar embedding of the graph. A planar
graph with a given planar embedding is called a plane graph. The set of embeddings of a

10



(a) K4 (b) K6

Figure 2.2: Planar and 1-planar graphs

planar graph G partition the set of all planar drawings of G into equivalence classes, where
two drawings are equivalent if and only if they have the same set of facial circuits. Figure
2.1 shows three drawings of a planar graph that have the same embedding. Observe that
drawings which are equivalent under the same embedding could have different outer-faces.

The data structure commonly used to store a planar embedding is called a rotation
system. The rotation at a vertex in a drawing is a cyclic order of edges at that vertex.
A rotation system is the set of all rotations at all vertices. The rotation at a vertex v
is denoted by ρ(v). An angle at v is a sequence ⟨u, v, w⟩, where (v, w) and (v, u) are
consecutive edges in ρ(v). A bigon is a closed face that contains exactly two vertices and
two angles.

The class of planar graphs is minor-closed, which means that a minor of a planar graph
is also planar. A well-known theorem in graph theory, known as the Wagner’s theorem,
states that a graph is planar if and only if it does not contain a minor of K5 or K3,3. In
fact, a stronger forbidden characterisation is true: a graph is planar if and only if it does
not contain a subgraph that is a subdivision of K5 or K3,3. This is famously known as
Kuratowski’s theorem.

A drawing of a graph G is 1-planar if each edge is crossed at most once by another edge.
A 1-planar graph is a graph that admits a 1-planar drawing. Figure 2.2a shows a 1-planar
drawing of K4. Although the drawing is 1-planar, one can draw K4 without a crossing
because it is a planar graph. Figure 2.2b shows a 1-planar drawing of K6. Unlike K4, any
drawing of K6 must have a crossing since it contains K5 which is not a planar graph (by
Kuratowski’s theorem). The planarisation of a 1-planar drawing is obtained by placing a
dummy vertex at each crossing point, thereby making the resulting drawing planar. The
set of facial circuits of a planarised 1-planar drawing gives a 1-planar embedding of the
graph. For a 1-planar embedding, the terms rotation system, bigon, and angle, all refer to
their counterparts in the planarisation of the embedding. A 1-planar graph with a given
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1-planar embedding is called a 1-plane graph.

Given a planar graph, one can derive a planar embedding in linear time [HT74]. In
contrast to planar graphs, testing 1-planarity is NP-hard [KM13]. Hence, in all the algo-
rithms for 1-planar graphs that we present here, we assume that the input is a 1-plane
graph, that is a 1-planar graph with a given 1-planar embedding.

12



Chapter 3

Toolbox

In this chapter, we discuss the essential tools and ideas needed to prove Theorems 2-4. We
conclude the chapter with a proof of Theorem 2.

Assumptions on the input graph. Throughout the thesis, we assume that we are
given a bowtie 1-plane graph G that is connected, loopless, has no bigons, but may have
parallel edges (Section 3.1). If G has loops or bigons, they can all be detected and removed
in linear time; this does not affect the vertex connectivity of the graph.

3.1 Crossings in 1-plane graphs

u w

vx

c

Figure 3.1: A crossing in a 1-plane graph

A crossing in a 1-plane graph G is a pair of edges that intersect at a point which is not
a vertex. The point of intersection is called the crossing point. An endpoint of a crossing
is a vertex that is incident with either edge of the crossing. Since G has no loops and we
assume a good drawing, all the four endpoints of a crossing are distinct. Figure 3.1 shows

13



(a) Full crossing (b) Almost full crossing (c) Bowtie crossing

Figure 3.2: Some types of crossings in a 1-planar embedding

a crossing {(u, v), (w, x)} with c as the crossing point. The endpoints of the crossing are
u, v, w, x.

A crossing is called full if its endpoints induce K4. A crossing is called almost full if its
endpoints induce K4 \ {e}, where e is an edge of K4. A crossing is called a bowtie crossing
if its endpoints induce C4 (Figure 3.2). The crossing point of a full crossing, almost full
crossing and a bowtie crossing are called full crossing point, almost full crossing point and
bowtie crossing point respectively.

A full 1-plane graph is a 1-plane graph in which every crossing is full. An almost full
1-plane graph is a 1-plane graph in which every crossing is either full or almost full. A
bowtie 1-plane graph is a 1-plane graph in which every crossing is full, almost full or a
bowtie crossing.

u

v

w

x

ce

Figure 3.3: Adding the kite edge e to the crossing {(u, v), (w, x)}

Let {(u, v), (w, x)} be a crossing in a 1-plane graphG with c as the crossing point. A kite
face of the crossing is a face of degree 3 incident with c in the planarisation of G. The edge
of a kite face that is not incident with c is called a kite edge of the crossing. For example,
in Figure 3.3, (u,w, c) and (x, v, c) are two kite faces of the crossing {(u, v), (w, x)} with
kite edges (u,w) and (x, v) respectively. However, (u, x) is not a kite edge of the crossing
since it does not bound a face of degree 3 at c. However, note that we can always add
an edge e to G with endpoints u, x so that e, (c, u), (c, x) form a kite face of the crossing.
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(a) An almost full crossing with wing
tips u,w and spine (v, x)
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(b) A butterfly crossing with spine
(x, v)

Figure 3.4: An almost full crossing and a butterfly crossing

(Note that the parallel edge added does not create a bigon.) Hence, we assume that in the
given bowtie 1-plane graph, a full crossing has 4 kite faces, an almost full crossing has 3
kite faces, and a bowtie crossing has 2 kite faces that touch each other only at the crossing
point.

Let {(u, v), (w, x)} be an almost full crossing with (u,w) /∈ E(G). The vertices u,w
are called wing tips of the crossing and the edge (v, x) is called the spine of the crossing
(Figure 3.4a). Vertices v, x are called spine vertices of the crossing. The kite face of the
crossing incident with the spine is called the spine face of the crossing.

Let {(u, v), (w, x)} and {(x, y), (v, z)} be two crossings with kite edges (u, x), (w, v) and
(x, z), (v, y) respectively. Moreover, the crossings do not have kite edges (u,w) and (y, z).
Let c and c′ be their crossing points respectively. If there is no vertex inside the region
bounded by (x, c), (c, v), (v, c′), (c′, x), the pair of crossings is called a butterfly crossing
(Figure 3.4b). The vertices x, v are called the axial vertices of the butterfly crossing. If the
edge (x, v) is present, then the edge is a spine of both almost full crossings, and is called
the spine of the butterfly crossing. Note that in a butterfly crossing, the vertices u,w, y, z
need not be distinct.

3.2 Minimal separating sets

Recall that a separating set of a graph is a set S ⊆ V (G) such that G− S has more than
one component; each such component is called a flap of G − S. A set S is a minimal
separating set if S − {v} is not a separating set for any v ∈ S.
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Let G be a 1-plane graph and S be a minimal separating set of G. To prove Theorem 3,
we alter the graph G by adding, removing or contracting edges. Whenever we perform such
alterations, we will refer to the following observation to show that S remains a minimal
separating set in the altered graph.

Observation 5. Let S be a separating set of a graph G. Then S is a minimal separating
set of G if and only if every vertex of S is adjacent to some vertex in every flap of G− S.

Proof. Let ϕ1, . . . , ϕk be the flaps of G− S, where k ≥ 2. We prove the forward direction
by its contrapositive. Suppose that there is a vertex v ∈ S and an index i ∈ {1, . . . , k}
such that v has no neighbour in ϕi. Then the graph ϕ1 ∪ . . . ϕk ∪ {v} is disconnected,
with vertices of ϕi belonging to one component and the vertex v belonging to another.
Therefore, S − {v} is a separating set. This shows that S is not minimal.

Now, we prove the reverse direction. Suppose that for every vertex v ∈ S and every
index i ∈ {1, . . . , k}, v has a neighbour in ϕi. Consider the graph G−S ′, where S ′ = S−{v}
for some v ∈ S. For any two vertices ui ∈ ϕi and uj ∈ ϕj, G − S ′ has a path connecting
ui and uj passing through v. Therefore, G − S ′ is connected. Hence, S − {v} is not a
separating set for any v ∈ S, showing that S is minimal.

3.3 Radial planarisation

Recall from Section 1.1 that Eppstein [Epp99] used the radialisation of a planar graph for
testing vertex connectivity. We now generalise this concept to bowtie 1-plane graphs with
some non-trivial modifications at butterfly crossings. For a given bowtie 1-plane graph G,
the radial planarisation Λ(G) is obtained as follows.

1. Planarise G by inserting a dummy vertex at each crossing point.

2. Delete the spines from all butterfly crossings that have a spine.

3. Insert a face vertex inside each face, and add edges to the face vertex bisecting every
angle of the planarised face.

(Figure 3.5b illustrates Step 3 above.) The resulting graph is called the radial planari-
sation Λ(G). The subgraph of Λ(G) formed by the edges incident with face vertices is
called the radial graph of G, denoted by R(G). (The term ‘radial graph’ is borrowed from

16



(a) Butterfly crossing (b) A normal face

Figure 3.5: Radial planarisation at a butterfly crossing (after removing the spine, if it
existed) and at a normal face

[FT06], where radial graph is defined for plane graphs. In the context of plane graphs,
that definition is the same as the one here.) Note that if G is a plane graph, then Λ(G) is
the same as the radialisation of G discussed in Section 1.1.

Note that Λ(G) has three types of vertices: vertices ofG, dummy vertices at the crossing
points of G, and face vertices. Throughout the thesis, the term vertices of G in Λ(G) will
refer to only the vertices of G, and not dummy vertices or face vertices. If X is a cycle of
Λ(G), we use the notation VG(X) to denote the set of vertices of G on X. We also use the
term face vertex at a butterfly crossing to refer to the face vertex that is adjacent to the
axial vertices and the crossing points of a butterfly crossing (Figure 3.5a).

The following observations about the radial graph R(G) follow from the construction
of Λ(G).

Observation 6. R(G) is a plane graph.

Observation 7. R(G) does not contain any bigons.

Observation 8. R(G) is a bipartite graph, with the face vertices on one side of the bipar-
tition, and the remaining vertices on the other.

3.4 Constrained separating cycles

Recall that the major goal of the thesis is to generalise the correspondence between sepa-
rating sets and separating cycles from plane graphs to bowtie 1-plane graphs. For a plane
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(b) Constrained separating cycle

Figure 3.6: Unconstrained and constrained separating cycles

graph G and a separating cycle X of Λ(G), it is easy to see that VG(X) forms a separating
set of G. However, such a relation does not extend to 1-plane graphs for arbitrary separat-
ing cycles. For example, Figure 3.6a shows a separating cycle in the radial planarisation
of a bowtie crossing {(u, v), (w, x)} that separates u and v; however, the vertices of G on
the cycle, namely w, x, do not separate u and v. Hence, to be able to extract a separating
set from a separating cycle, we need suitable restrictions on the separating cycle. These
restrictions must also mark vertices suitably so that it becomes easy to extract a sepa-
rating set from the separating cycle. So we define a separating cycle X of Λ(G) to be a
constrained separating cycle if and only if X satisfies the following constraints.

• (Ψ1): X is a subgraph of the radial graph R(G) and separates two vertices of G.

• (Ψ2): There exists a marking function β : V (G) 7→ {△,□} such that for any crossing
point that X visits:

1. The endpoints of each edge of the crossing are marked with opposite symbols.

2. The endpoints of the crossing marked △ are not adjacent in G (Figure 3.7a).

3. If an endpoint of the crossing is on X, then the endpoint marked □ (Figure
3.7b).

4. If no endpoint of the crossing is on X, then the crossing is part of a butterfly
crossing with the endpoints marked □ as the axial vertices (Figure 3.7c).

The cycle in Figure 3.6a satisfies (Ψ1), but there is no marking function β that satisfies
(Ψ2), since (Ψ2.3) requires β(x) = β(w) = □ but this violates (Ψ2.1). Figure 3.6b shows
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Figure 3.7: The marking function. (Filled diamonds denote vertices and crossing points
on X.)

an example of a constrained separating cycle along with the marking function. Notice that
the vertices marked □ give a separating set of the graph. In fact, as we will see in Section
3.5, the set of vertices in VG(X) together with the endpoints of those crossings visited by
X that are marked □ give a separating set of G.

We now make some useful observations that follow from (Ψ2).

Observation 9. Let G be a bowtie 1-plane graph and X be a constrained separating cycle
of Λ(G). Then

1. X does not visit full crossing points of G.

2. If X visits an almost full crossing point of G, then the wing tips of the crossing are
marked △ and the spine vertices are marked □.

3. If X visits a bowtie crossing point of G, then one set of non-adjacent endpoints of
the crossing is marked △ and the other set is marked □.

Proof. We only prove Observation 9(2) here. The proofs of Observations 9(1) and 9(3)
follow similarly, and are left to the reader. Suppose that X visits an almost full crossing
point. From (Ψ2.2), the wing-tips must be marked△ since that is the only pair of endpoints
which are not adjacent. Consequently, from (Ψ2.1), the spine vertices must be marked
□.

3.5 Separating sets from separating cycles

In this section, we prove Theorem 2 which states that for a given bowtie 1-plane graph G,
if Λ(G) contains a constrained separating cycle of length 2k, then G contains a separating
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set of size at most k. Moreover, the separating set can be computed from the constrained
separating cycle in time O(k).

The following claim gives the essential idea for obtaining separating sets from separating
cycles.

Claim 10. Let G be a bowtie 1-plane graph, and let X be a constrained separating cycle
in Λ(G). Let S ⊆ V (G) be a set of vertices that satisfy the following conditions:

1. There are at least two flaps of Λ(G) \X each of which contain a vertex of G that is
not in S.

2. Every vertex of G that belongs to X also belongs to S.

3. If X visits a crossing point, then one endpoint of each edge of the crossing belongs to
S.

4. If X visits the face vertex at a butterfly crossing that has a spine, then one axial
vertex of the butterfly crossing belongs to S.

Then S is a separating set of G.

Proof. Since X is a constrained separating cycle of Λ(G), there exist two vertices u,w ∈
V (G) that belong to different flaps of Λ(G) \ X (by Ψ1). From Condition 10(1), we can
assume that u,w /∈ S. Consider a simple path P connecting u and w in G. Let P ′ be
the path in Λ(G) corresponding to P defined as follows (see Figure 3.8 for an illustration):
for each edge e ∈ P , (a) if e is uncrossed and also exists in Λ(G), add e to P ′; (b) if e
is crossed, add the two edges of Λ(G) corresponding to e to P ′; and (c) if e is uncrossed
but does not exist in Λ(G), then e must be the spine of a butterfly crossing; add the two
edges of Λ(G) connecting the face vertex at the butterfly crossing to the axial vertices of
the butterfly crossing to P ′. Note that P ′ contains at most three types of vertices of Λ(G):
(a) vertices of G; (b) crossing points of G; (c) face vertices at butterfly crossings that have
a spine in G.

Since X separates u and w in Λ(G), the path P ′ intersects X at some vertex v′ ∈ X.
We now have three cases: (a) v′ ∈ V (G); (b) v′ is a crossing point; (c) v′ is the face vertex
at a butterfly crossing that has a spine. For each of these cases, we show that there is a
vertex v ∈ V (G) on the path P such that v ∈ S.

• Suppose that v′ ∈ V (G). Then by Condition 10(2), v′ ∈ S. Set v := v′.
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(a) A path P in G.
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(b) Corresponding path P ′ in Λ(G).

Figure 3.8: Paths P in G and P ′ in Λ(G).

• Suppose that v′ is a crossing point of G. Let (x, v′), (y, v′) be the edges of P ′ incident
with v′. By our method of constructing P ′ from P , (x, y) must be an edge of P
containing the crossing point v′. By Condition 10(3), either x ∈ S or y ∈ S. By
symmetry, suppose that x ∈ S. Set v := x.

• Suppose that v′ is a face vertex at a butterfly crossing that has a spine. Let
(x, v′), (y, v′) be the edges of P ′ incident with v′. By our method of constructing
P ′ from P , (x, y) must be an edge of P that is the spine of the butterfly crossing.
By Condition 10(4), either x ∈ S or y ∈ S. By symmetry, suppose that x ∈ S. Set
v := x.

In all of the above cases, P contains a vertex v ∈ V (G) such that v ∈ S. Since u,w /∈ S,
v is in the interior of P . Since P is arbitrary, every path connecting u and w contains a
vertex of S in its interior. This shows that S ⊆ V (G) separates u and w. Thus, S is a
separating set of G.

We now prove Theorem 2. Let X be a constrained separating cycle of Λ(G). We
construct a separating set S of G as follows.

For each vertex v ∈ VG(X), add v to S. If X visits a crossing point, add
the endpoints of the crossing marked with □ to S (unless already added).

We now use Claim 10 to show that S is a separating set of G. The constraint (Ψ1)
implies that there are two vertices of G, say s and s′, which are separated by X. If s, s′ /∈ S,
then Condition 10(1) holds. Otherwise, we cannot use s, s′ for Condition 10(1), but as we
will show now, we can use the same two flaps. Without loss of generality, suppose that
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s ∈ S. To show that Condition 10(1) holds, we show that there is a vertex t of G such that
t /∈ S and s, t belong to the same flap of Λ(G) \X. Since s ∈ S but s /∈ X, the vertex s
must have been added due to the second rule, i.e., s is an endpoint of a crossing through
which X passes and β(s) = □. By Observation 9, the crossing cannot be a full crossing.
Also, from Observation 9 (see also Figure 3.7), there is a vertex t such that (s, t) is a kite
edge of the crossing and β(t) = △. As β(t) = △, t /∈ VG(X) (by Ψ2.3), and since each
vertex of S \ VG(X) is marked □, t /∈ S \ VG(X). Therefore, t /∈ S. Since (s, t) is an edge
of Λ(G) and s, t /∈ VG(X), they belong to the same flap of Λ(G) \X. Therefore, Condition
10(1) holds.

Condition 10(2) holds trivially by the construction of S. Condition 10(3) follows from
Observation 9 and the construction of S. Now we show that 10(4) holds. Suppose that
X visits the face vertex of a butterfly crossing that has a spine. If X visits one of the
two axial vertices, then that vertex is in S. Otherwise X visits one crossing point of the
butterfly crossing. From Observation 9, the axial vertices are marked □ since the butterfly
crossing has a spine, and by the construction of S, the axial vertices belong to S. Thus,
Condition 10(4) holds. As all the four conditions of Claim 10 hold, S is a separating set
of G.

To complete the proof of Theorem 2, we now show that |S| ≤ k. Since R(G) is bipartite
(Observation 8) and X ⊆ R(G) (by Ψ2), if |X| = 2k, then there are k vertices and crossing
points of G that X visits. As VG(X) ⊆ S, to prove that |S| ≤ k, it suffices to show that
for each crossing point c that X visits, at most one vertex of V (G) \ VG(X) is added to S.
We break this down into 2 cases.

Case 1: Suppose that X also visits at least one endpoint of the crossing at c. From
(Ψ2.3), this endpoint is marked □. From Observation 9, exactly two endpoints of the
crossing are marked □. Therefore, from the construction of S, at most one vertex of
V (G) \ VG(X) is added to S.

Case 2: Suppose that X visits no endpoint of the crossing at c. From (Ψ2.4), the
crossing is a part of a butterfly crossing with the endpoints marked □ as the axial vertices.
Let {(u, v), (w, x)} and {(x, y), (v, z)} be the pair of crossings forming the butterfly crossing.
Let (u, x), (w, v) and (x, z), (v, y) be their kite edges respectively, and let c and c′ be
their crossing points respectively (Figure 3.9). Note that v, x are the axial vertices of the
butterfly crossing, and β(x) = □ = β(v). As X does not visit any of endpoint of the
crossing {(u, v), (w, x)}, it must visit c′. From Observation 9, β(z) = △ = β(y). From
(Ψ2.3), this implies that X does not visit the endpoints y, z of the crossing (x, z), (v, y).
Therefore, X does not visit any endpoint of the crossing {(x, y), (v, z)} either. From the
construction of S, both x, v are added to S. Therefore, the set of crossing points that
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Figure 3.9: An illustration for Case 2

X visits without visiting any other endpoint of the crossing can be partitioned into pairs
of crossing points at butterfly crossings, and for each such pair, at most 2 vertices of
V (G) \ VG(X) are added to S.

The two cases above show that for each crossing point that X visits, at most one vertex
of V (G) \ VG(X) is added to S. This proves that |S| ≤ k.

Now, we show that S can be computed in O(k) time. (We assume that we are given
the marking function β along with the constrained separating cycle. In fact, as we will see
in Chapter 5, the algorithm that outputs a separating cycle also outputs the corresponding
marking function.) Note that all vertices of S either belong to VG(X) or belong to the
endpoints of a crossing through which X passes. Since a crossing has only 4 endpoints,
for each crossing point through which X passes, the endpoints to be added to S can be
computed in O(1) time. Therefore, S can be computed in O(k) time. This proves Theorem
2.
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Chapter 4

Separating cycles from separating
sets

In this chapter, we prove Theorem 3, which states that if a bowtie 1-plane graph G contains
a separating set of size k, then Λ(G) contains a constrained separating cycle of length at
most 2k. Nearly all the work will be to find the cycle; finding the marking function will be
very easy given the separating set. Figure 4.1 shows the steps that we will follow to obtain
the constrained separating cycle X in Λ(G). (The terms used in the figure will be defined
later in the chapter.)

Throughout this chapter, we let S be a separating set of G of size k, and ϕ1, ϕ2 be two
flaps of G − S. We assume that S is a minimal separating set, since otherwise we can
choose a subset of S that is a minimal separating set and apply the proof to it.

4.1 Refined 1-plane graphs

To prove Theorem 3, it is convenient to consider a “refinement” of G with respect to S,
ϕ1, and ϕ2 that restricts the crossings to have some special structures. The refined graph
is denoted by Gref := Gref(S, ϕ1, ϕ2), and is obtained as follows.

1. For each crossing {(u, v), (w, x)}, if (u, x) /∈ E(G) and u, x do not belong to ϕ1 and
ϕ2 respectively, add the kite edge (u, x). Then update the graph, the flaps ϕ1 and
ϕ2, and repeat the above steps until no new edge can be added. Let G+ be the graph
obtained after this step (Figure 4.2).
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Figure 4.1: A flowchart showing the steps to obtain a constrained separating cycle in Λ(G).
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Sϕ3
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S

Figure 4.2: Transforming G to G+

2. For each full crossing {(u, v), (w, x)} of G+, if one endpoint, say u, does not belong
to S, then delete the crossing edge not incident with u, that is (w, x). (We will see
soon that this step does not affect the flaps.) The graph obtained after applying this
step to all full crossings is Gref (Figure 4.3).

ϕ1 ϕ1

Sϕ1

ϕ1 ϕ1

Sϕ1

G+ Gref

Figure 4.3: Transforming G+ to Gref

We now make a number of observations about Gref.

Observation 11 follows from the assumption that G does not contain bigons and we
add parallel edges only if they do not bound a kite face.

Observation 11. Gref does not contain bigons.

Observation 12 follows from the transformation G+ to Gref.

Observation 12. All the four endpoints of a full crossing of Gref belong to S.

Observation 13 shows that Gref has no bowtie crossings, and the almost full crossings
of Gref are “special” in some sense.

Observation 13. Gref is an almost full 1-plane graph. Moreover, for any almost full
crossing of Gref, the spine vertices belong to S and the two wing tips belong to ϕ1 and ϕ2.
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Proof. Consider a bowtie crossing {(u, v), (w, x)} of G with kite edges (u,w), (v, x). If
vertices u, x do not belong to ϕ1 and ϕ2 respectively, then the edge (u, x) was added in
G+, and the crossing becomes full or almost full. If u ∈ ϕ1 and x ∈ ϕ2, then v, w ∈ S
since no path connects two flaps in G− S. This implies that the edge (v, w) was added in
G+, and the crossing becomes almost full. Therefore, every crossing is full or almost full
in G+. Since deleting a crossed edge of a full crossing does not create a bowtie crossing,
every crossing is full or almost full in Gref.

Now we prove the second part. Consider an almost full crossing {(u, v), (w, x)} of Gref

with (u, x) as the spine. Since v and w are not adjacent, they must belong to ϕ1 and ϕ2.
Since u and x are common neighbours of v and w, the vertices u, x belong to S.

Claim 14. S is a minimal separating set of Gref.

Proof. First, we show that S is a separating set of Gref. By construction, the edges added
to G do not connect vertices of ϕ1 and ϕ2. Therefore, S is a separating set of G+. Deleting
edges cannot make a graph more connected. Hence, S is a separating set of Gref.

Now we show that S is a minimal separating set of Gref. Since S is a minimal separating
set of G, every vertex of S has a neighbour in every flap of G − S (Observation 5). Note
that in the transformation from G to G+, we only add edges to G. Therefore, each vertex
of S has a neighbour in each flap of G+ − S. This shows that S is a minimal separating
set of G+ (Observation 5). Consider the transformation from G+ to Gref, and consider a
vertex s ∈ S; we must show that s is still adjacent to all flaps in Gref.

Let (w, x) be an edge that is deleted. Then (w, x) is crossed by an edge (u, v) of G+,
where {(u, v), (w, x)} is a full crossing and u /∈ S. Deleting (w, x) can affect whether s is
adjacent to all flaps only if deleting (w, x) creates a new flap or if s ∈ {w, x} and the other
vertex of {w, x} belongs to a flap.

We first show that deleting (w, x) creates no new flap. Suppose otherwise, for contra-
diction. Then w, x /∈ S. However, since u /∈ S, all of x, u and w must belong to the same
flap due to edges (x, u), (w, u) of G+. But edges (x, u), (u,w) remain also in G+ \ {w, x},
so x,w remain in the same flap. This is a contradiction.

Now assume s ∈ {w, x}, say s = w, and x belongs to a flap. Then u, x are in the same
flap of G+ −S since u /∈ S and (u, x) ∈ E(G+). Since w is adjacent to u, the vertex s = w
still has a neighbour in the flap that contains x.

Since each vertex of S in G+−{(w, x)} has a neighbour in each flap of G+−S, the set
S is a minimal separating set of G+ − {(w, x)} (Observation 5). By induction on the set
of all the deleted edges, S is a minimal separating set of Gref.
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Observation 15 shows that no edge within ϕ1 or ϕ2 is crossed in Gref.

Observation 15. The induced embeddings of the flaps ϕ1 and ϕ2 of Gref − S are planar.

Proof. Let e be an edge of Gref that is crossed. If e is a part of a full crossing, both of its
endpoints belong to S (Observation 12), and if e is a part of an almost full crossing, one
of its endpoints belong to S (Observation 13). Thus, no edge of ϕ1 or ϕ2 is crossed.

Recall that if {(u, v), (w, x)} is an almost full crossing of Gref with (u,w) /∈ E(Gref),
then (v, x) is called a spine of the crossing. Let a spine component be a maximal connected
subgraph of Gref that consists of only spines.

Claim 16. For each spine component H of Gref, there are at most two almost full crossings
whose spines belong to H.

Proof. Suppose, for contradiction, that there are three almost full crossings whose spines
belong to H. We will show a K3,3 minor in the planarisation of Gref, say Gp

ref. Let x1,
x2 and x3 be three dummy vertices in Gp

ref at the crossing points of the three almost full
crossings. From Observation 13, vertex xi has neighbours in ϕ1, ϕ2 and H. Since ϕ1 and
ϕ2 are connected and drawn without crossings (Observation 15), we can contract each of
them into a single vertex, say v1 and v2, respectively. Since the edges of H are spines, they
are uncrossed. As they are connected in Gref, we can contract H to a single vertex h in
Gp

ref. Consequently, each xi is adjacent to v1, v2 and h. This is a K3,3 minor in Gp
ref, which

is a contradiction.

Corollary 17. Every spine component of Gref has at most two spines.

Corollary 18. If a butterfly crossing of Gref has a spine, then the spine itself forms a
spine component.

4.2 Plane and full 1-plane graphs

We first prove Theorem 3 for plane and full 1-plane graphs. That is, we prove that if a plane
or a full 1-plane graph G has a separating set of size k, then Λ(G) contains a separating
cycle of length at most 2k. Since a plane graph is also full 1-plane, it is sufficient to prove
the theorem for full 1-plane graphs.

We first introduce some definitions. Let Gref := Gref(S, ϕ1, ϕ2), and v be a vertex of
Gref. Let ρref(v) denotes the clockwise order of edges of Gref at v. An edge (v, u) is said
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Figure 4.4: e1 and e2 form a closest (ϕ1, ϕ2)-pair.

to lie between (v, w1) and (v, w2) in ρref(v) if ρref(v) contains ⟨(v, w1), (v, u), (v, w2)⟩ as a
subsequence. A pair of edges (v, w1), (v, w2) forms a closest (ϕ1, ϕ2)-pair in ρref(v) if v ∈ S,
w1 ∈ ϕ1, w2 ∈ ϕ2, and there is no edge between (v, w1) and (v, w2) in ρref(v) that is incident
with a vertex of ϕ1 ∪ ϕ2. Note that there can be edges between (v, w1) and (v, w2) that
connect v to vertices of S or to flaps other than ϕ1, ϕ2 (Figure 4.4).

A fence of Λ(G) is a cycle in R(G) such that there is a vertex of G inside and a vertex
of G outside the cycle. Note that a fence is a separating cycle of Λ(G) that separates the
vertices of G inside the cycle from the vertices of G outside, but not every separating cycle
is a fence.

We now give a construction to obtain a constrained separating cycle in Λ(G) of length
at most 2k. For this, we first construct a fence in the radial planarisation of Gref, that is
Λ(Gref), and then show how to map the fence to a constrained separating cycle in Λ(G).

Consider the graph Λ(Gref). Mark all the face vertices of Λ(Gref) whose faces contain
at least two angles at vertices of S, and mark all the vertices of S on the face. (Recall from
Chapter 2 that an angle at a vertex or crossing point in a 1-planar embedding refers to an
angle at the corresponding vertex or crossing point in the planarisation of the embedding.
In particular, the edges that define angles are edges of the planarisation and hence may
connect a vertex and a crossing point, so may be ‘half’ of an edge of G.)

Observation 19 follows immediately from the procedure above.

Observation 19. Each marked face vertex has at least two edges in R(Gref) connecting it
to marked vertices of S on the face.

Observation 20 will be used to prove Claim 21.

Observation 20. Let ⟨u, v, w⟩ be an angle of some face F of Gref with v ∈ S. If (a) u ∈ S
or w ∈ S, or (b) u and w are vertices of G that belong to different flaps of Gref − S, then
the face vertex of F is marked.
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Proof. If u ∈ S or w ∈ S, then F has two vertices of S (including v), and therefore the face
vertex of F is marked. Suppose that u and w belong to different flaps of Gref−S. Consider
a directed walk along the boundary of F , starting from the edge (v, w) in the direction v
to w. Since F has at least three vertices of G, it is not a kite face, and since Gref is full
1-plane, F does not contain any crossing points. Since u and w belong to different flaps,
the walk must switch from “in the flap of w” to “not in the flap of w”. Since no vertices
in different flaps can be adjacent, the walk either sees a vertex of S different from v before
seeing u, or sees v again at another angle of the face. This implies that F has at least two
angles at vertices of S. Therefore, the face vertex of F is marked.

Claim 21 shows that each marked vertex of S is adjacent to two marked face vertices
in a particular way. For a vertex v ∈ G, we let ρΛ(v) := ρΛ(Gref)(v), which is the clockwise
order of edges at v in Λ(Gref). For an edge (v, t) of Gref, let (v, t̄) refer to the edge in Λ(Gref)
that is incident with v and corresponds to (v, t). That is, t̄ = t if (v, t) is uncrossed; else t̄
is the dummy vertex on (v, t).

Claim 21. Let v be a marked vertex of S. Let (v, t1) and (v, t2) be two edges of Gref at v
such that t1 ∈ ϕ1 and t2 ∈ ϕ2 (these exist by Observation 5). Then there exist marked face
vertices f1, f2 adjacent to v in Λ(Gref) such that (v, f1) is between (v, t̄1) and (v, t̄2), and
(v, f2) is between (v, t̄2) and (v, t̄1) in ρΛ(v).

Proof. Since v is a marked vertex of S, there exists an edge (v, f) in R(Gref) where f is
a marked face vertex. Assume without loss of generality that (v, f) is between (v, t̄2) and
(v, t̄1) in ρΛ(v). Let f2 := f . We need to show that there is a marked face vertex f1 such
that (v, f1) is between (v, t̄1) and (v, t̄2) in ρΛ(v). Since t1 ∈ ϕ1 and t2 ∈ ϕ2, there is a pair
of edges (v, w1), (v, w2) between (v, t1) and (v, t2) in ρref(v) that form a closest (ϕ1, ϕ2)-pair.
If we show that there is a marked face vertex f1 between (v, w̄1) and (v, w̄2), we are done.

Case 1. Suppose that (v, w1) and (v, w2) are consecutive in ρref(v). Since w1, w2 /∈ S, both
(v, w1) and (v, w2) are uncrossed (Observation 12). Therefore, ⟨w1, v, w2⟩ form an angle in
some face F of Gref. By Observation 20, the face vertex of F is marked. By letting f1 be
this face vertex, we are done.

Case 2. Suppose that (v, w1) and (v, w2) form a closest (ϕ1, ϕ2)-pair but are not consecu-
tive in ρref(v). Then there is an edge (v, v′) between (v, w1) and (v, w2) in ρref(v). Choose
(v, v′) to be the first edge that comes after (v, w1). Note that v

′ /∈ ϕ1∪ϕ2 since (v, w1) and
(v, w2) form a closest (ϕ1, ϕ2)-pair.

First we show that (v, v′) is uncrossed. Suppose, for contradiction, that (v, v′) is crossed
by an edge (u, u′). Since the crossing is full, there exist kite edges (v, u) and (v, u′). Without
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Figure 4.5: Illustration for Case 2

loss of generality, suppose that (v, u) comes after (v, u′) in ρref(v) (Figure 4.5). Since (v, v
′)

was chosen to be the first edge after (v, w1) in ρref(v), u
′ = w1. This contradicts Observation

12 since w1 /∈ S.

As (v, v′) and (v, w1) are both uncrossed (Observation 12), the edges (v, w1) and (v, v′)
form an angle in some face F of Gref. Since v′ /∈ ϕ1 ∪ ϕ2 and w1 ∈ ϕ1, by Observation 20,
the face vertex of F is marked. By letting f1 be this face vertex, we are done.

Constructing a fence in Λ(Gref). Now, we show how to construct a fence Xref in
Λ(Gref). Construct a simple path P = v1 . . . vk that alternates between marked face vertices
and marked vertices of S that is maximal in the following sense: vk ∈ S, and there does
not exist a marked face vertex, say vk+1, and a marked vertex of S, say vk+2, such that
P ∪ {(vk, vk+1), (vk+1, vk+2)} is a simple path. Since vk ∈ S, there exist vertices t1 ∈ ϕ1

and t2 ∈ ϕ2 that are adjacent to vk (Observation 5). From Claim 21, there are marked face
vertices f1 and f2 such that (vk, f1) is between (vk, t̄1) and (vk, t̄2) and (vk, f2) is between
(vk, t̄2) and (vk, t̄1) in ρΛ(v). Without loss of generality, we may assume that the edge
(vk, f1) does not belong to P . Let f := f1.

• Suppose that f = vi ∈ P , for some 1 ≤ i ≤ k − 1 (Figure 4.6a). Consider the cycle
Xref := vivi+1 . . . vkvi. Since t1 ∈ ϕ1 and t2 ∈ ϕ2, so they cannot be in S, and hence
are not on Xref. Hence, Xref is fence separating t1 from t2 since they are on opposite
sides of the cycle.

• Suppose that f /∈ P . Since P is maximal, and each face vertex is adjacent to two
marked vertices of S (Observation 19), f has an edge to a vertex vi ∈ P , for some
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Figure 4.6: Constructing a fence in Λ(G)

1 ≤ i ≤ k. If 1 ≤ i ≤ k − 1 (Figure 4.6b), then Xref := vivi+1 . . . vkfvi is a fence
separating t1 from t2. If i = k, then there must exist a vertex u ∈ Λ(G) inside the
2-cycle vkfvk because R(Gref) does not contain bigons (Observation 7). We now show
that there must be a vertex w of G inside the 2-cycle vkfvk (Figure 4.6c). If u is
a vertex of G, we are done by simply setting w := u. Otherwise, if u is a crossing
point of G, then all four endpoints of the crossing (possibly excluding vk) must lie
inside the cycle vkfvk since R(G) is a plane graph (Observation 6). Set w to be one
of these endpoints that lie inside the cycle vkfvk. Therefore, Xref := vkfvk is a fence
separating w from t1 (and t2).

Observation 22 follow immediately from the construction of Xref. (Recall the notation
that VG(X) denotes the vertices of G on X.)

Observation 22. Xref is a fence of Λ(Gref), VG(Xref) ⊆ S and Xref does not visit any
crossing points.

Observation 23 follows by noting that |S| ≤ k, and that Xref alternates between vertices
of S and face vertices.

Observation 23. |Xref| ≤ 2k.

From Xref to a fence in Λ(G). We now show how to map Xref to a fence X that is a
constrained separating cycle of Λ(G) with |X| ≤ 2k. The mapping is described algorithmi-
cally by giving a step-by-step transformation from Λ(Gref) to Λ(G). This transformation
essentially involves undoing the steps that were done to obtain Gref from G.
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Figure 4.7: Transforming Xref to X

Lemma 24. If G is full 1-plane, then any fence Xref of Gref that does not visit crossing
points can be converted into a fence X of G that does not visit crossing points with |X| =
|Xref|.

Proof. Recall that Gref was obtained from G by inserting some kite edges to get G+, and
then by deleting crossed edges of some full crossings of G+. Since G is full 1-plane, G+ = G,
and Λ(G+) = Λ(G). Since G = G+, we only need to add to Gref all those crossed edges of
G that were deleted during refinement to get back G.

Suppose that an edge (w, x) of G was deleted. Then (w, x) was part of a full crossing
{(u, v), (w, x)} of G in which at least one of u, v, say u, did not belong to S. This implies
that u does not belong to Xref (Observation 22). In G − {(w, x)}, we have faces (u,w, v)
and (u, x, v); let f1 and f2 be the two corresponding face vertices of Λ(G+). Nothing needs
to be changed if f1, f2 /∈ Xref, so suppose that f1 ∈ Xref. Since u /∈ Xref, this implies that
w, v ∈ Xref. Then Xref can modified at the corresponding full crossing of G to use the face
vertex of the kite face incident with the edge (w, v) (Figure 4.7). This local modification of
Xref at the full crossing does not change the set of vertices of G that lie inside and outside
of Xref. Therefore, Xref still remains a fence. Furthermore, |Xref| ≤ 2k since one vertex
was added and one removed. Similarly, if f2 ∈ Xref, then x, v ∈ Xref, and Xref can be
modified to use the face vertex at the kite face incident with (v, x). When the above steps
are repeated for all face vertices at the crossings that were deleted during refinement, we
get back Λ(G), and a cycle corresponding to Xref, say X.

Observation 25. If G is a full 1-plane graph, then there is a fence X of Λ(G) such that
VG(X) ⊆ S, X does not visit any crossing points, and |X| ≤ 2k.

We now show that X is a constrained separating cycle of Λ(G). As X is a fence of
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Figure 4.8: Constructing Xref when there is an uncrossed edge parallel to a spine

Λ(G), it is separates the vertices of G inside the cycle from the vertices of G outside.
Therefore, (Ψ1) holds. Since X does not visit any crossing points (Observation 25), (Ψ2)
holds vacuously for any marking function. Therefore, X is a constrained separating cycle
of Λ(G). This proves Theorem 3 for plane and full 1-plane graphs.

4.3 Almost full 1-plane and bowtie 1-plane graphs

In this section, we prove Theorem 3 for almost full 1-plane and bowtie 1-plane graphs.
That is, we prove that if an almost full 1-plane or a bowtie 1-plane graph G contains a
separating set of size k, then Λ(G) has a constrained separating cycle of length at most
2k. Since an almost full 1-plane graph is also bowtie 1-plane, it is sufficient to prove the
theorem for bowtie 1-plane graphs. We prove the theorem by first constructing a fence Xref

of length at most 2k in Λ(Gref), and then mapping the fence to a constrained separating
cycle X in Λ(G). (Recall that we had assumed the given separating set S to be minimal,
and Gref := Gref(S, ϕ1, ϕ2), where ϕ1 and ϕ2 are two fixed flaps of G− S.)

A special case. We already know how to find a constrained separating cycle if Gref is
full 1-plane. We now dispense here with another special case which will be needed later.

Claim 26. If Gref has two parallel edges e1 and e2, where e1 is the spine of an almost full
crossing and e2 is an uncrossed edge, then Λ(Gref) has a fence Xref such that |Xref| ≤ 2k,
VG(Xref) ⊆ S and Xref does not visit any crossing points.

Proof. Let a, b be the endpoints of e1 and e2. Since e1 is a spine edge, a, b ∈ S (Observation
13). Since Gref does not contain bigons (Observation 11), there are vertices u and v inside
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and outside the 2-cycle formed by e1 and e2. Since e1 and e2 are uncrossed, a and b form
a separating set of Gref that separate u from v; since S is minimal, S = {a, b} and k = 2.

Since e1 is a spine, e2 cannot be a spine of a butterfly crossing because otherwise the
spine component {e1, e2} would have three almost full crossings, contradicting Claim 16.
So e2 also exists in Λ(Gref) and has two incident faces in Gref. Let f2 be the face vertex
of Λ(Gref) that belongs to the face incident with e2 and is outside the 2-cycle (e1, e2). If
e1 is not the spine of a butterfly crossing, let f1 be the face vertex in the spine face of
the crossing (Figure 4.8a); otherwise let f1 be the face vertex at the butterfly crossing
(Figure 4.8b). The 4-cycle Xref := (a, f1, b, f2, a) is a fence that separates u, v, and such
that |Xref| ≤ 2k, where k = 2.

Contractions. From now on, we assume that Gref has no uncrossed edge parallel to a
spine. From Observation 13, all crossings of Gref are either full crossings or almost full
crossings. The plan is to remove all the almost full crossings of Gref so that the resulting
graph becomes full 1-plane. We achieve this by contracting all spine faces of Gref into
vertices; i.e., we contract all the edges in the planarisation of Gref that correspond to
the boundary of spine faces of Gref. However, care needs to be taken to ensure that
the resulting drawing is good and loopless so that we can apply the method for finding
constrained separating cycles from Section 4.2 to the resulting full 1-plane graph.

We distinguish two types of contractions to remove almost full crossings. Let (u, v) be
a spine in Gref. From Claim 16, there are at most two almost full crossings with (u, v)
as the spine. Let (u, v, c) be the spine face of one such crossing with crossing point c. If
(u, v, c) is the only kite face incident with (u, v), then a triangular contraction at (u, v)
deletes (u, c) and then contracts (v, c) and (v, u) to a single vertex zuvc (Figure 4.9). On
the other hand, if there is another kite face (u, v, d) (of a full crossing or an almost full
crossing) incident with (u, v), then a quadrangular contraction at (u, v) deletes (u, c), (u, d)
and contracts (v, c), (v, d), (v, u) to a single vertex zuvcd (Figure 4.10 and 4.11). We use the
term contracted vertex to mean the vertex obtained after a triangular or a quadrangular
contraction; the remaining vertices are uncontracted vertices.

Claim 27. If Gref has no uncrossed edge parallel to a spine, then a triangular or a quad-
rangular contraction at a spine (u, v) of Gref produces a loopless good 1-planar drawing.

Proof. Let (u, v, c) be a spine face incident with (u, v). Let D be the drawing obtained
by either a triangular or a quadrangular contraction at (u, v). (D is essentially the same
drawing as Gref except at the spine face that undergoes contraction.) Since either type of
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Figure 4.10: Quadrangular contraction at a spine incident with a full crossing
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Figure 4.11: Quadrangular contraction at a butterfly crossing

36



u

v

b (u, v)

(u, v)′

a c

Figure 4.12: A contraction at a spine does not create loop-crossings

contraction does not create new crossing point, D stays 1-planar. Let z be the contracted
vertex in D.

To show that D has a good drawing, the only non-trivial property that we need to verify
is that no two edges incident with z cross. Suppose, for contradiction, that there are two
edges (a, z) and (b, z) crossing at some point, say x. Since the drawing of Gref was good,
this crossing must correspond in Gref to a crossing {(a, u), (b, v)} with x as the crossing
point. Since u, v ∈ S, the crossing has a kite face bounded by u, v and x. However, by our
assumption that Gref has no uncrossed edge parallel to a spine, it follows that (u, v, x) and
(u, v, c) must be two kite faces incident with the common kite edge (u, v). This implies that
the contraction at (u, v) must have been quadrangular, but then this contraction eliminates
the crossing point x, which is a contradiction.

To show that D is loopless, we only need to show that there is no loop at z. Suppose, for
contradiction, that there is a loop at z. Then this loop must be crossed, since otherwise the
loop corresponds to an uncrossed edge parallel to (u, v). Let (a, b) be the edge that crosses
the loop. This implies that Gref contains a crossing {(a, b), (u, v)′}, where (u, v)′ is an edge
parallel to (u, v). Since (u, v, c) is a spine face, u, v ∈ S (Observation 13). Since u, v ∈ S,
the crossing {(a, b), (u, v)′} must be full (Observation 13), and a, b ∈ S (Observation 12).
Therefore, {a, u, b, v} ⊆ S. We shall arrive at a contradiction by showing that S is not a
minimal separating set. Assume without loss of generality that b lies inside the triangle
(u, v), (v, a), (a, u) (Figure 4.12). Since |S| ≥ 4, Gref has at least 6 vertices. Let y be
a vertex of Gref that is distinct from {a, u, b, v}. The vertex y cannot lie inside any of
the four kite faces of the crossing {(a, b), (u, v)′}. If y lies inside the triangle (u, v), (v, b),
(b, u), then {u, v, b} is a separating set (since (u, v), (v, b), (b, u) is an uncrossed triangle)
that separates a and y. If y lies outside the triangle (u, v), (v, b), (b, u), then {u, v, a} is a
separating set (since (u, v), (v, a), (a, u) is an uncrossed triangle) that separates b and y.
Either way, this contradicts the minimality of S.
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We now give a procedure to find a fence Xref in Λ(Gref) using repeated triangular and
quadrangular contractions at spines. (Refer also to Figure 4.1.)

(C1) For each spine component of Gref, do a triangular or a quadrangular contraction at
exactly one spine, and delete any resulting bigons. Let G1 be the resulting graph.
Let S1 be the set of all contracted vertices of G1 together with the uncontracted
vertices of G1 that belonged to S in Gref. Let this graph be G1. If G1 is full 1-plane
or has an uncrossed edge parallel to a spine, stop further contractions; otherwise, go
to (C2).

(C2) Now, there is only one spine left in each spine component in G1 (Corollary 17).
Do a triangular or a quadrangular contraction at each of the remaining spines, and
delete any resulting bigons. Let G2 be the resulting graph. Let S2 be the set of all
contracted vertices of G2 together with the uncontracted vertices of G2 that belonged
to S1 in G1. Let this graph be G2.

We need a few observations about the resulting graphs.

Observation 28. G2 is a full 1-plane graph.

Observation 29. G1 has no butterfly crossings.

Proof. The spine faces of a butterfly crossing in Gref get contracted during (C1) since there
can be no other spine in the same spine component (Corollary 18). Moreover, a triangular
or a quadrangular contraction at a spine cannot create a new butterfly crossing as this
would imply a spine component in Gref with three spines, contradicting Claim 16.

Observation 30. S1 (resp. S2) is a minimal separating set of G1 (resp. G2).

Proof. We show that S1 is a minimal separating set of G1. The proof that S2 is a minimal
separating set of G2 follows similarly. Every edge (u, v) of Gref with u /∈ S and v ∈ S
corresponds to an edge (u,w) of G1, where either w = v, or w is a contracted vertex
resulting from a contraction at some spine component containing v. Therefore, deleting v
from Gref has the same effect upon u as deleting w from G1. Therefore, the flaps of Gref−S
are the same as the flaps of G1 − S1. By Observation 5, S1 is a minimal separating set of
G1.
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Figure 4.13: Extending X2 to X1: Case 1

We now find a fence X1 in Λ(G1) or a fence X2 in Λ(G2) as follows. If G1 is full 1-plane,
we construct a fence X1 using the method in Section 4.2, and leave X2 undefined. Else if
G1 has an uncrossed edge parallel to a spine, we construct a fence X1 using the method
in Claim 26, and leave X2 undefined. Else, G2 is full 1-plane (Observation 28), and we
construct a fence X2, again by the method in Section 4.2, and leave X1 undefined. By
construction, the cycles X1 and X2 have the following properties.

Observation 31. For i = 1, 2, if Xi exists, then Xi is a fence of Λ(G−
i ), VG(Xi) ⊆ Si,

|Xi| ≤ 2|Si|, and Xi does not visit full crossing points of G−
i .

Proof. See Observation 25 and Claim 26.

Expansions. Suppose that G1 is neither full 1-plane nor has an uncrossed edge parallel
to a spine. In this case, we constructed X2 in Λ(G2) and left X1 undefined. We show how
to extend X2 into a cycle X1 in Λ(G1).

(E1) Add the deleted bigons of G2, and expand each contracted vertex of G2 to get G1.
The extension of X2 into a fence X1 of Λ(G1) through the expanded spine faces
depends upon the type of contraction that occurred. Let (u, v) be a spine of G1

at which the contraction occurred. By Observation 29, only the following cases are
possible.
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Figure 4.14: Extending X2 to X1: Case 2

(a) Case 1: A triangular contraction occurred at (u, v).

Let (u, v, c) be the spine face of G1 that is contracted into a vertex z. Each
edge of R(G2) at z corresponds to an edge of R(G1) at u, v or c (Figure 4.13).
Suppose that X2 uses the edges e, e′ at z. Let f, f ′ be the edges of R(G1) that
correspond to e, e′ of R(G2). Include f, f ′ in X1. If f and f ′ do not have a
common endpoint in {u, v}, connect the two edges via the face vertex of the
spine face and its three edges to {u, v, c}, and add the connecting edges to X1.

(b) Case 2: A quadrangular contraction occurred at (u, v), where (u, v) is the kite
edge of a full crossing.

Suppose that (u, v, d) is a kite face of a full crossing {(u, s), (v, r)} with crossing
point d. Let (u, v, c) and (u, v, d) be the two kite faces of G1 that are contracted
into a vertex z. The kite face (r, s, d) remains a face after the contraction, so
(r, s, z) is a face of G2; let g be the corresponding face vertex of R(G2).

We can assume that X2 does not use the edge (g, z) for the following reason.
Without loss of generality, suppose that X2 uses the edges (s, g), (g, z). Let g′

be the face vertex of R(G2) inside the other face incident with (s, z). Then X2

can be re-routed to use the edges (s, g′), (g′z) instead. Since we can assume
that X2 does not use the edge (g, z), each edge of R(G2) at z that X2 could use
corresponds to an edge of R(G1) at u, v or c (Figure 4.14). Suppose that X2

uses the edges e, e′ at z. Let f, f ′ be the edges of R(G1) that correspond to e, e′

of R(G2). Include f, f ′ in X1. If f and f ′ do not have a common endpoint in
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Figure 4.15: Extending X1 to Xref: Case 3.

{u, v}, connect the two edges via the spine face vertex and its three edges to
{u, v, c}, and add the connecting edges to X1.

Now, we have a cycle X1 in Λ(G1) which is obtained either by the construction in
Section 4.2 applied to G1 (when G1 is full 1-plane) or Claim 26 (when G1 has an uncrossed
edge parallel to a spine), or by the extension of X2 in Λ(G2) to X1. We show how to extend
X1 into a cycle Xref in Λ(Gref).

(E2) Add the deleted bigons of G1, and expand each contracted vertex of G1 to get Gref.
Let (u, v) be a spine of Gref at which the contraction occurred. The extension of X1

to Xref is similar to (E1), and either Case 1 or Case 2 can occur. However, since Gref

can have butterfly crossings, there is also a Case 3.

Case 3: A quadrangular contraction occurred at (u, v), where (u, v) is the spine of
a butterfly crossing in Gref.

Let (u, v, c) and (u, v, d) be the kite faces that are contracted into a vertex z. Each
edge of R(G1) at z corresponds to an edge of R(Gref) at u, v, c or d (Figure 4.15).
Suppose that X1 uses the edges e, e′ at z. Let f, f ′ be the edges of R(Gref) that
correspond to e, e′ of R(G1). Include f, f

′ in Xref. If f and f ′ do not have a common
endpoint in {u, v}, connect the two edges via the face vertex in Λ(Gref) at the spineless
butterfly crossing and its four edges to {u, v, c, d}, and add the connecting edges to
Xref.
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Figure 4.16: The expansion step crucially ensures that |Xref| ≤ 2k.

By studying the cases of the expansion (Figures 4.13 - 4.15), we can verify the following
observations. (Refer Figure 4.16 for Observation 32.)

Observation 32. If Xref visits a crossing point of an almost full crossing, then it visits at
most one spine vertex of the crossing.

Observation 33. If Xref visits a crossing point without visiting a spine vertex of the
crossing, then the crossing must be a part of a butterfly crossing of Gref.

In Claim 34, we show that the properties of Xi, for i = 1, 2, shown in Observation 31
continue to hold for Xref. These properties will be useful to prove that the extension of Xref

to a cycle X in Λ(G) is a constrained separating cycle of length at most 2k. Note that the
properties of Xref listed in Claim 34 also apply when Xref is obtained directly from Λ(Gref)
without the contraction-expansion procedure (Claim 26.

Claim 34. Xref is a fence of Λ(Gref) such that Xref does not visit crossing points of full
crossings of Λ(Gref), VG(Xref) ⊆ S and |Xref| ≤ 2k.

Proof. Before the two expansion steps, we started with X1 or X2 (depending on Λ(G1)).
We will only show here that the properties are maintained as we expand from X1 to Xref.
This proves that they always hold because if we started the expansion at X1, then they
hold for X1 (Observation 31), and if we started at X2, then they hold for X2, and a similar
argument shows that they are maintained as we expand from X2 to X1.

Since X1 is a fence, there exist vertices inside and outside of X1. Let w be a vertex
inside X1. If w is an uncontracted vertex, it remains inside Xref as well. If w is a contracted
vertex, then the spine vertices of Gref that were a part of the contraction into w are inside
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Xref. Either way, there is a vertex of Gref inside Xref. Similarly, there is a vertex of Gref

outside Xref. This shows that Xref is a fence of Λ(Gref).

To show that Xref does not visit crossing points of full crossings of Λ(Gref), note that
X1 does not visit crossing points of full crossings (Observation 31). After the expansion,
Xref may only visit crossing points of almost full crossings, but not crossing points of full
crossings.

We now show that VG(Xref) ⊆ S. Note that VG(X1) ⊆ S1 (Observation 31), where
S1 consists of uncontracted vertices of S from Gref and contracted vertices. After the
expansion steps, Xref passes through the same set of uncontracted vertices as X1, and
additionally passes through some spine vertices, which also belong to S (Observation 13).

Next we show that |Xref| ≤ 2k. Note that |X1| ≤ 2|S1| (Observation 31). During each
step of the expansion, we crucially maintain that for every crossing point of an almost full
crossing that the cycle visits (after the expansion), there is a distinct spine vertex of the
crossing that the cycle does not visit (Observation 32 and Figure 4.16). This ensures that
the total number of crossing points and vertices of S through which Xref passes is at most
the total number of vertices of S. Therefore, |Xref| ≤ 2k.

From Xref to a constrained separating cycle in Λ(G). We now show how to map
Xref to a constrained separating cycle X of Λ(G) such that |X| ≤ 2k. The mapping is
described algorithmically by giving a step-by-step transformation from Λ(Gref) to Λ(G).
This transformation essentially involves undoing the steps that were done to obtain Gref

from G.

Recall that Gref was obtained from G by inserting some kite edges to get G+, and then
by deleting crossed edges of some full crossings of G+. Therefore, to get back from Λ(Gref)
to Λ(G), we first add all those crossed edges of G+ that were deleted during refinement, and
locally modify the radial graph and the cycle Xref at the crossings (exactly as in Lemma
24; see Figure 4.7). The resulting graph is Λ(G+), and let X+ be the resulting fence.

We now give the broad idea for transforming Λ(G+) to Λ(G), and then fine-tune it so
that the transformation works correctly. The broad idea is as follows. First, we delete kite
edges of G+ that are not in G. Since deleting edges of G+ merges faces, this step results
in some faces of G having more than one face vertex. For each such face, we identify all
the face vertices in the face (i.e., temporarily add edges connecting the face vertices and
contract all of these edges into a single loopless vertex) and delete the resulting bigons. If
this process results in two face vertices of X+ getting identified, one of the resulting smaller
cycles must be a fence. (See Figure 4.17 for an illustration. Here, the bold edges depict
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Figure 4.17: Identifying two face vertices on a fence gives a smaller fence.

the fence X+ in Λ(G+) that separates u and v. If the face vertices b, d are in the same face
of G, then identifying them into one vertex zbd gives rise to a smaller fence (c, zbd) that
separates u and v.) Update X+ to be this smaller cycle, and repeat this step for all faces

of G. Let X be the resulting fence and Λ̂ be the resulting graph.

Although the transformation above mostly works correctly, we fine-tune the above
procedure so that we get a constrained separating cycle in Λ(G).

First, Λ̂ may not exactly be Λ(G) because building Λ(G) involves a special rule near
butterfly crossings with a spine, but not all such crossings in G remain butterfly crossings in
G+. Specifically, assume that G has a butterfly crossing {(u, v), (w, x)} and {(w, y), (v, z)}
with spine (v, w). Recall that Λ(G) removes edge (v, w) and creates one face vertex in its
place (Figure 4.18b). But it may happen that G+ adds one or both of the kite edges (u, x)
and (z, y), which means that the pair of crossings {(u, v), (w, x)} and {(w, y), (v, z)} are
not a butterfly crossing in G+. Hence, edge (v, w) remains in Λ(G+) and has two incident
face vertices (Figure 4.18a). To obtain Λ(G), we must delete the spine (v, w), identify the
two face vertices, delete the bigons, and choose one of the smaller cycles that is a fence.
Update the cycle X and the graph, and repeat for all such instances. The graph that we
get after this step is Λ(G).

Second, we will need the equivalent result of Observation 33 for X to prove (Ψ2.4) (for a
suitable marking function below). However, if X+ visits an almost full crossing point and a
spine vertex of the crossing, we may lose the part of X+ that visited the spine vertex when
we update X+ to be a much smaller subcycle. Hence, the equivalent of Observation 33
does not automatically hold for X. This problem can be addressed by adding the following
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Figure 4.18: Modifying the radial graph at butterfly crossing to get Λ(G), which may
involve shortening the cycle X.

modification step after (E2).

(M) Assume Xref visits an almost full crossing point c, and uses the edges (c, f1), (f1, u),
where f1 is the face vertex at the spine face and u is a spine vertex (Figure 4.19).
Then re-route Xref to use the edges (c, f2), (f2, u), where f2 is the other face vertex
at (u, c). Repeat this step at all such almost full crossings.

Clearly, Observation 33 and Claim 34 continue to hold even for the modified Xref. The
following claim is essential to prove that X satisfies (Ψ2.4) (for a marking function defined
later).

Claim 35. If X visits a crossing point c in Λ(G) without visiting any other endpoint of
the crossing, then X visits c in Λ(Gref) and the crossing is part of a butterfly crossing in
Gref.

Proof. First, note that the transformation from Xref to X does not add crossing points,
so c also belongs to Xref. Now, we prove the claim by its contrapositive. Suppose that c
is not part of a butterfly crossing of Gref. Then the crossing must be almost full in Gref

(Claim 34). Let {(u, v), (w, x)} be the crossing where (u, x) is the spine. Xref does not
visit the face vertex at the spine face since the modification (M) above re-routes Xref to
avoid the face vertex at the spine face. Therefore, Xref must visit a face vertex f of a kite
face that is not a spine face. Since (u, x) is the spine, the kite edge at f also exists in G,
which means that the face vertex f never undergoes a contraction as we modify Xref into
X. Since f belongs to X, one endpoint of the kite edge at f must belong to X. Hence, X
visits an endpoint of the crossing.
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Figure 4.19: Re-routing Xref at an almost full crossing to avoid spine faces.

Finding the marking function. With the above modifications in place, we now prove
that X is a constrained separating cycle of Λ(G) after defining a suitable marking function.

• (Ψ1): Since X is a fence of Λ(G), it is a subgraph of R(G) and separates two vertices
of G.

• (Ψ2): Let the marking function β : V (G) 7→ {△,□} be the function that assigns all
vertices of S to □ and the other vertices to △.

Suppose that X visits a crossing point c. Since the non-facial vertices of X are
a subset of the non-facial vertices of Xref, the cycle Xref also visits c in Λ(Gref).
Therefore, the crossing is an almost full crossing of Gref (Claim 34). Now observe the
conditions on β.

1. Since the spine vertices of almost full crossings belong to S and wing tips do
not belong to S (Observation 13), the endpoints of each edge of the crossing are
marked with opposite symbols as required for (Ψ2.1).

2. The vertices marked △ are wing tips of almost full crossings which are not
adjacent, so (Ψ2.2) holds.

3. If X visits an endpoint of the crossing, so does Xref. Since VG(Xref) ⊆ S (Claim
34), this endpoint must be a vertex of S and marked □. Hence, (Ψ2.3) holds.

4. If no endpoint of the crossing is on X, then the crossing is a part of a butterfly
crossing of Gref (Claim 35). By Observation 13, Gref has no bowtie crossings,
so this butterfly crossing must have a spine. Also, by Observation 13, the axial
vertices (which are endpoints of the spine) belong to S, and hence are marked
□. The transformation from G to Gref does not add butterfly crossings, so the
crossing is also part of a butterfly crossing in G. Hence, (Ψ2.4) holds.
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This proves that X is a constrained separating cycle of Λ(G). Since |Xref| ≤ 2k (Claim
34), |X| ≤ 2k. This concludes the proof of Theorem 3.
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Chapter 5

Computing constrained separating
cycles in linear time

In this chapter, we give a linear time algorithm that takes a planar graph as its input, and
outputs a constrained separating cycle of a given fixed length (if it exists) in the graph.
The problem of finding constrained separating cycles in a planar graph can be solved by
solving the more general planar subgraph isomorphism problem. An isomorphism from a
graph H to a graph G is a bijection f : V (H) 7→ V (G) such that (u, v) ∈ E(H) if and
only if (f(u), f(v)) ∈ E(G). A graph H occurs in a graph G if there is an isomorphism
from H to a subgraph of G. The problem of subgraph isomorphism is to find and list (if
it exists) an occurrence of H in G. When the host graph G and the pattern graph H are
both planar, the problem is called the planar subgraph isomorphism problem.

In [Epp99], Eppstein gives a linear time algorithm for solving the planar subgraph
isomorphism problem. The algorithm is based on a technique of partitioning the host
graph G into pieces of bounded treewidth (Section 5.1 defines the treewidth of a graph),
and then applying a dynamic programming algorithm to find the pattern graph within each
piece. [Epp99] also contains adaptations of the dynamic programming algorithm and/or
the planar subgraph isomorphism algorithm for solving various problems associated with
planar subgraph isomorphism. These include the problem of finding a bounded length
(unconstrained) separating cycle in a planar graph. More formally, given a planar host
graph G and a pattern graph H that is a cycle of bounded length, find a subgraph J ⊆ G
isomorphic to H (if it exists) such that the vertices of J form a separating set of G. In
general, we call the problem of finding separating subgraphs as the separating subgraph
isomorphism problem.
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One alternative to doing explicit dynamic programming algorithm for finding separating
cycles is to use Courcelle’s Theorem [Cou90]. This theorem states that every graph property
definable in a logic form, called the monadic second order logic (MSOL), can be decided
in linear time if the treewidth of the graph and the size of the logic formula are bounded.

MSOL of graphs allows the following logic operations:

• Variables that are vertices and vertex sets, for example v ∈ V and I ⊆ V .

• Membership tests, for example, v ∈ I.

• Boolean operations such as ¬,∧,∨,⇒.

• Second-order predicates, for example, adj(u, v) which is true if and only if u and v
are adjacent.

• Quantifiers such as ∃ and ∀ for variables (but not for predicates).

When describing MSOL formulas, it is acceptable to use expressions such as “v1, v2, v3
are distinct”, or “for all i = 1, 2, 3” provided that it is clear how one could translate such
expressions into MSOL.

We now formulate the problem of finding a separating cycle of length p in a graph of
bounded treewidth using MSOL. Let Zp = {0, 1, . . . , p− 1} be the set of integers modulo
p.

∃ distinct vertices vi for i ∈ Zp such that:

• adj(vi, vi+1) for i ∈ Zp and

• ∃A,B ⊆ V (G) such that:

– A ̸= ∅ and B ̸= ∅
– ∀v ∈ A ∪B and i ∈ Zp: v ̸= vi

– ∀v ∈ V (G) \ {vi : i ∈ Zp}: v ∈ A ⇔ v /∈ B and

– ∀v, w ∈ V (G): adj(v, w) ⇒ (v /∈ A ∨ w /∈ B)

The standard proof of Courcelle’s theorem is to construct an automaton that recog-
nizes a tree decomposition of the graph. However, the size of the automaton can become
extremely large, making the problem hard to tackle in practice. The hidden constant in
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the running time, which is the running time’s dependence on the graph’s treewidth and the
formula describing the problem, is in fact (in the worst case) a tower of exponentials. For
this reason, we do not use MSOL and instead resort to the explicit dynamic programming
approach taken by Eppstein [Epp99].

For the separating cycle problem, [Epp99] only sparingly discusses the details. More-
over, there are some errors in the overall separating subgraph isomorphism algorithm (Ap-
pendix A). In this chapter, we give a comprehensive description of the complete dynamic
programming algorithm, and discuss how to incorporate the constraints (Ψ1)-(Ψ2) in the
dynamic programming to obtain constrained separating cycles. Finally, we give the overall
separating subgraph isomorphism algorithm for finding constrained separating cycles, giv-
ing corrections to the errors in the separating subgraph isomorphism algorithm of [Epp99].

5.1 Separating cycles in graphs of bounded treewidth

To compute separating cycles of a graph G, we follow the same overall idea as Eppstein:
partition the graph into pieces of bounded treewidth and then looking for a separating
cycle within each piece by dynamic programming. In this section, we describe the dynamic
programming algorithm for finding (unconstrained) separating cycles in graphs of bounded
treewidth. While this section is mostly a review of the work by Eppstein, we fill in many
details and proofs that were left to the reader. We begin by formally describing the tree
decomposition of a graph.

5.1.1 Tree decomposition

A tree decomposition of a graph G = (V,E) is a tree T where

1. Each node of T , referred to as a bag, is labelled by a subset of V .

2. Each edge of G is in the subgraph induced by the vertices of some bag of T . This is
called the edge coverage property.

3. For each vertex v of G, the set of bags containing v forms a connected subtree of T .
This is called the coherence property.

Figure 5.1 shows an example of a tree decomposition. Tree decompositions are generally
not unique, and a graph may have several different tree decompositions. The width of a
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Figure 5.1: A graph and its tree decomposition. For the indicated bag N , the subgraph
GN is also shown.

tree decomposition is one less than the maximum bag size of that tree decomposition. For
example, the width of the tree decomposition in Figure 5.1 is 2. The treewidth of a graph
is the minimum integer k such that there exists a tree decomposition of the graph having
width k.

Claim 36 gives a simple way to modify a tree decomposition to obtain another tree
decomposition. This claim will be useful later in Section 5.2 where we discuss how to
incorporate constraints (Ψ1) - (Ψ2) into the dynamic programming algorithm.

Claim 36. Let T be a tree decomposition of a graph G. Let (u, v) be an edge of G. Adding
v to each bag of T containing u gives another tree decomposition T ′ of G.

Proof. The only property of tree decompositions that is non-trivial to verify is the coherence
property for v in T ′. As T is a tree decomposition of G, the bags containing u and v each
form a connected subtree of T , say Tu and Tv respectively. Since (u, v) is an edge of G, Tu

and Tv intersect in at least one bag. Adding v to all bags of Tu maintains the coherence
property for v since Tu ∪ Tv is also a subtree. Thus, T ′ is a tree decomposition of G.

Without loss of generality, we may assume that the tree decomposition of G is a rooted
binary tree with O(n) bags, where n = |V (G)| ([Klo94]). If N is a bag in a given tree
decomposition T , we let GN be the subgraph of G induced by the vertices in all the bags
of the sub-tree of T rooted at N (Figure 5.1). We use L(N) to denote the set of vertices
in a bag N of the tree decomposition. (These notation are borrowed from [Epp99]).
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Figure 5.2: An extended partial isomorph.

5.1.2 Extended partial isomorphs and extended partial isomorph
boundaries

The dynamic programming algorithm constructs an isomorphism from the pattern graph
H (which for our application is a cycle of some fixed length, but the results in this section
work for an arbitrary graph H) to a subgraph of GR, where R is the root of the tree,
using what we call “partial isomorphs” (defined next) at the children of R, which is in turn
constructed using partial isomorphs of their children, and so on. A partial isomorph of H
at a bag N of the tree is an injective function I : V (H ′) 7→ V (GN), where H

′ is an induced
subgraph of H, such that for every edge (u, v) ∈ E(H ′), (I(u), I(v)) ∈ E(GN). See Figure
5.2 for an illustration. The graph on the left is the host graph; its tree decomposition is
on the right. The pattern graph is in the middle and the dotted arrows show the partial
isomorph at node FHKM .

The dynamic programming algorithm also outputs a certificate that gives a partition
of the vertices of V (G) \ H. This is achieved by defining separator functions. For a set
U ⊆ V (G), a function S : U 7→ {−1, 0, 1} is a separator function if for any two vertices
u, v with S(u) = −1 and S(v) = 1, (u, v) /∈ E(G). Note that if the pre-image sets S−1(1)
and S−1(−1) are both non-empty, then the pre-image set S−1(0) gives a separator of G.
Since we are interested in obtaining a separating cycle along with a certificate that gives
the separation, our objects of interest are a combination of both a partial isomorph and a
separator function.

An extended partial isomorph I at a bag N of the tree decomposition is a pair of
functions I = (I, S) where I is a partial isomorph at N , and S is a separator function with
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dom(S) = V (GN) and S(v) = 0 if and only if v ∈ Range(I). (Here, ‘dom’ and ‘Range’
refer to the domain and the range of the functions respectively.) The functions I and S are
respectively called the component partial isomorph and the component separator function
of I.

It is important to note a fundamental difference between partial isomorphs and sepa-
rator functions, namely, the domain of a partial isomorph is a subgraph of H, whereas the
domain of a separator function is a subgraph of G. In Figure 5.2, the separator function
is illustrated by the three different ways in which vertices of G are marked. The disks
are vertices mapped to 0, the circles are vertices mapped to (say) 1, and the squares the
vertices mapped to −1.

The following observation shows that a separating subgraph in G that is isomorphic to
H naturally gives rise to a corresponding extended partial isomorph at the root node in
the tree decomposition of G.

Observation 37. If G contains H as a separating subgraph, then there is an extended
partial isomorph I = (I, S) at the root node where dom(I) = H, and S−1(1) and S−1(−1)
are both non-empty.

Proof. Since G contains H as a separator, the vertices of V (G) \H has at least two flaps.
Let F1 be the set of vertices in one flap and F2 be the set of vertices in all other flaps. Let
I be the isomorphism from H to the given separating subgraph of G. Let S(u) = −1 for
all u ∈ F1, S(u) = 1 for all u ∈ F2 and S(u) = 0 for all vertices in the image of I. Then
I = (I, S) is an extended partial isomorph with the desired property.

An efficient dynamic programming algorithm that computes extended partial isomorphs
at a bag N would work locally on the set of vertices in N and its children, rather than
all the vertices of GN . For this purpose, we define “partial isomorph boundaries”. A
homomorphism from a graph H to a graph G is a function f : V (H) 7→ V (G) such
that if (u, v) ∈ E(H), then (f(u), f(v)) ∈ E(G). (Note that unlike an isomorphism, a
homomorphism need not be a bijection, and (f(u), f(v)) ∈ E(G) does not imply that
(u, v) ∈ E(H).) Recall that L(N) denotes the set of vertices in a bag N of the tree
decomposition. Let G′

N be the graph which contains the subgraph of G induced by L(N),
and contains two additional vertices xN and yN each of which is connected to all the vertices
in L(N). Furthermore, xN and yN are joined by an edge and are each given a self loop.
A partial isomorph boundary B at a bag N is a homomorphism from H to G′

N with the
property that the restriction of B on the set {v : B(v) ∈ L(N)} is an injective function
Figure 5.3 shows a partial isomorph boundary at bag FHKM in the tree decomposition
shown in Figure 5.2.
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Figure 5.3: A partial isomorph boundary

Analogous to extended partial isomorphs, we define extended partial isomorph bound-
aries. An extended partial isomorph boundary B is a pair of functions B = (B, T ), where B
is a partial isomorph boundary, and T is a separator function where dom(T ) = {v ∈ L(N)}
and T (v) = 0 if and only if v ∈ Range(B). The functions B and T are respectively called
the component boundary and component separator function of B.

As the names suggest, there is a strong relationship between partial isomorphs and
partial isomorph boundaries, which we explore now. From a given extended partial iso-
morph I = (I, S) at N , we can create an extended partial isomorph boundary B = (B, T )
as follows. Let I : V (H ′) 7→ V (GN). For each vertex v in H ′, if I(v) ∈ L(N), then set
B(v) = I(v). For any other vertex v in H ′, set B(v) = xN , and for all vertices in H −H ′,
set B(v) = yN . We say that B is the summary of I, and write I ⇝ B. (Figure 5.3 shows
the partial isomorph boundary that is the summary of the partial isomorph in Figure 5.2.)
Define T be the restriction of S onto L(N). That is, dom(T ) := {v ∈ L(N)}, and for each
vertex v ∈ dom(T ), T (v) := S(v). We say that B = (B, T ) is the summary of I, and write
I ⇝ B.

For a given a partial isomorph boundary B at a node N , we will frequently need
the restrictions of B onto L(N), xN , yN , or a combination of them. For this purpose,
we introduce the following notations. The restriction of B on L(N) is denoted by BN .
If B = (B, T ) is an extended partial isomorph boundary, we let BN denote the pair of
functions (BN , T ). For a partial isomorph boundary B at a bag N , the restriction of B
onto the set {v : B(v) ∈ L(N) ∪ {xN}} is denoted by Bx

N . Note that if I ⇝ B, then
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dom(I) = dom(Bx
N).

Throughout this section, we will follow some notational conventions:

• Calligraphic fonts such as B or I denote extended boundaries and extended partial
isomorphs, whereas normal fonts such as B or I denote the usual boundaries and
partial isomorphs.

• If I is an extended partial isomorph, then I represents the component partial iso-
morph of I, and if B is an extended partial isomorph boundary, then B represents
the component boundary of B.

• We use the letters S and T to denote the component separator functions of extended
partial isomorphs and extended boundaries respectively.

5.1.3 Leaf boundary, consistent boundaries and compatible triples

In Observation 37, we saw that a separating subgraph in G gives rise to a corresponding ex-
tended partial isomorph at the root node. Consider the restriction of this extended partial
isomorph to the subtrees at different nodes of the tree decomposition. The summaries of
these extended partial isomorphs must be “consistent” in some sense with the summaries
of the extended partial isomorphs at their children. In this section, we formalise this no-
tion of consistency through the definitions of leaf boundaries, consistent boundaries and
compatible triples. (The meaning and necessity of these conditions will become clearer in
the next subsection.)

We begin with the following definition. A pair of functions f1 and f2 with the property
that f1(v) = f2(v) for all v ∈ dom(f1) ∩ dom(f2) is said to be gluable. If f1 and f2 are a
pair of gluable functions, then the gluing of f1 and f2 gives the function f1 ⊕ f2 such that
dom(f1⊕f2) = dom(f1)∪dom(f2), and for all v ∈ dom(f1), (f1⊕f2)(v) = f1(v), and for all
v ∈ dom(f2), (f1 ⊕ f2)(v) = f2(v). We can similarly define the gluing operation for tuples
of functions. Two tuples of functions (f1, g1) and (f2, g2) are said to be gluable if f1, f2 and
g1, g2 are gluable; the gluing of (f1, g1) and (f2, g2) gives the function (f1, g1) ⊕ (f2, g2) =
(f1 ⊕ f2, g1 ⊕ g2).

We now give the formal definitions of leaf boundaries, consistent boundaries and com-
patible triples.

1. Leaf boundary. An extended boundary B at a bag N is a leaf boundary if
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(LB1) N is a leaf.

(LB2) There is no v ∈ H such that B(v) = xN .

2. Consistent boundaries. Two boundaries B = (B, T ) and B1 = (B1, T1) at bags N
and N1 are consistent if

(CB1) N1 is the only child of N .

(CB2) For any vertex v ∈ H, if B(v) = xN , then B1(v) ̸= yN1 .

(CB3) T and T1 are gluable.

(CB4) B and B1 agree on their shared range in L(N)∩L(N1). That is, for any vertex
v ∈ H, if B(v) ∈ L(N1) or B1(v) ∈ L(N), then B(v) = B1(v).

(CB5) For any vertex v ∈ H, if B1(v) = xN1 or B1(v) ∈ L(N1)\L(N), then B(v) = xN .

(CB6) For every (u, v) ∈ E(H[dom(Bx
N)]), either B(u), B(v) ∈ L(N) or B1(u), B1(v) ∈

{xN1} ∪ L(N1).

3. Compatible triple. Three boundaries B = (B, T ), B1 = (B1, T1) and B2 = (B2, T2)
at bags N , N1 and N2 form a compatible triple if:

(CT1) N1 and N2 are the two children of N .

(CT2) For any vertex v ∈ H, if B(v) = xN , then exactly one of B1(v) = yN1 and
B2(v) = yN2 occurs.

(CT3) B, B1 and B, B2 both satisfy conditions (CB3), (CB4), (CB5), and at least one
of B, B1 and B, B2 satisfies (CB6).

5.1.4 From extended partial isomorphs to extended boundaries

In the previous section, we hinted at how the summaries of extended partial isomorphs at
a node and its children must be consistent in some sense. We formalise this notion through
the Lemmas 38-40. (In [Epp99], these lemmas were not explicitly stated and their proofs
were not given.)

Lemma 38. Let I = (I, S) be an extended partial isomorph at a bag N that is a leaf.
Then the summary B = (B, S) of I is a leaf boundary.
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Proof. Since N is a leaf, I(v) ∈ L(N) for all v ∈ dom(I). Therefore, there is no v ∈ H
such that B(v) = xN . Hence, B is a leaf boundary.

Let I = (I, S) be an extended partial isomorph at a bag N . Let N1 be a child of N .
The restriction of I onto GN1 is the partial isomorph J1 = (J1, S1) where: (i) dom(J1) :=
{v : I(v) ∈ GN1} and J1(v) := I(v) for all v ∈ dom(J1), and (ii) dom(S1) := V (GN1) and
S1(v) := S(v) for all v ∈ dom(S1).

Lemma 39. Let I = (I, S) be an extended partial isomorph at a bag N with a single child
N1. Let J1 = (J1, S1) be the restriction of I onto GN1. Let B = (B, T ) and B1 = (B1, T1)
be the summaries of I and J1 respectively. Then B and B1 consistent and I = BN ⊕ J1.

Proof. Since J1 is the restriction of I onto GN1 and B is the summary of I, we have
S = T ⊕S1 and I = BN ⊕J1. Hence, I = BN ⊕J1. To show that B and B1 are consistent,
we show that they satisfy all the conditions necessary to be consistent.

1. As N1 is the only child of N , it follows that B and B1 satisfy (CB1).

2. If there is a vertex v ∈ H such that B(v) = xN , then I(v) ∈ GN \ L(N). But as
N1 is the only child of N , I(v) ∈ GN1 \ L(N). This implies that v ∈ dom(J1), and
therefore, B1(v) ̸= yN1 . Hence, B and B1 satisfy (CB2).

3. T and T1 are gluable because they are just the restrictions of S onto L(N) and L(N1)
respectively. Hence, B and B1 satisfy (CB3).

4. For any vertex v ∈ H, if B(v) ∈ L(N1), then B(v) /∈ {xN , yN}. Hence B(v) ∈ L(N).
This implies B(v) ∈ L(N) ∩ L(N1), and therefore, B(v) = I(v) = J1(v) = B1(v).
Similarly, if B1(v) ∈ L(N), then B1(v) ∈ L(N) ∩ L(N1), and therefore, B1(v) =
J1(v) = I(v) = B(v). Hence, B and B1 satisfy (CB4).

5. For any vertex v ∈ H, if B1(v) = xN1 or B1(v) ∈ L(N1) \ L(N), then I(v) = J1(v) ∈
GN1 \ L(N). Therefore, B(v) = xN . Hence, B and B1 satisfy (CB5).

6. Since I ⇝ B, we have dom(I) = dom(Bx
N). As I is a partial isomorph, if (u, v) ∈

E(H[dom(Bx
N)]), then (I(u), I(v)) is an edge of GN . From the edge coverage property

of tree decompositions, either I(u), I(v) ∈ L(N) or I(u), I(v) ∈ GN1 . Correspond-
ingly, either B(u), B(v) ∈ L(N) or B1(u), B1(v) ∈ {xN1} ∪ L(N1) occurs. Therefore,
B and B1 satisfy (CB6).

Thus, B and B1 are consistent.
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Lemma 40. Let I = (I, S) be an extended partial isomorph at a bag N with two children
N1 and N2. For i = 1, 2, let Ji = (Ji, Si) be the restrictions of I onto GNi

. Let B = (B, T ),
and for i = 1, 2, let Bi = (Bi, Ti) be the summaries of I and Ji respectively. Then B, B1

and B2 form a compatible triple and I = BN ⊕ J1 ⊕ J2.

Proof. Since J1 and J2 are the restrictions of I onto GN1 and GN2 , and B is the summary
of I, we have S = T ⊕ S1 ⊕ S2 and I = BN ⊕ J1 ⊕ J2. Hence, I = BN ⊕J1 ⊕J2. To show
that B, B1 and B2 form a compatible triple, we show that they satisfy all the conditions
necessary to be compatible.

1. Since N has two children N1 and N2, it follows that B, B1 and B2 satisfy (CT1).

2. If there is a vertex v ∈ H such that B(v) = xN , then I(v) /∈ L(N). This implies
that I(v) ∈ GN1 or I(v) ∈ GN2 , but not both (from the coherence property of tree
decompositions). That is, v ∈ dom(J1) or v ∈ dom(J2), but not both. Therefore,
exactly one of B1(v) = yN1 and B2(v) = yN2 occurs. Hence, B, B1 and B2 satisfy
(CT2).

3. T, T1 and T, T2 agree on their respective shared domains because T , T1 and T2 are
just the restrictions of S onto L(N), L(N1) and L(N2) respectively. Hence, B,B1

and B,B2 satisfy (CB3)

4. For i = 1, 2 and any vertex v ∈ H, if B(v) ∈ L(Ni), then B(v) ∈ L(N) ∩ L(Ni), and
therefore, B(v) = I(v) = Ji(v) = Bi(v). If Bi(v) ∈ L(N), then Bi(v) ∈ L(Ni)∩L(N),
and therefore, Bi(v) = Ji(v) = I(v) = B(v). Hence, B,B1 and B,B2 satisfy (CB4).

5. For i = 1, 2 and any vertex v ∈ H, if Bi(v) = xNi
or Bi(v) ∈ L(Ni) \ L(N), then

I(v) = Ji(v) ∈ GNi
\ L(N). Therefore, B(v) = xN . Hence, B,B1 and B,B2 satisfy

satisfy (CB5).

6. Since I ⇝ B, we have dom(I) = dom(Bx
N). Therefore, if (u, v) ∈ E(H[dom(Bx

N)]),
then (I(u), I(v)) is an edge of GN . From the edge coverage property of tree de-
compositions, either I(u), I(v) ∈ L(N) or I(u), I(v) ∈ GN1 or I(u), I(v) ∈ GN2 .
Correspondingly, either B(u), B(v) ∈ L(N) or B1(u), B1(v) ∈ {xN1} ∪ L(N1) or
B2(u), B2(v) ∈ {xN2} ∪ L(N2) occurs. Therefore, at least one of B,B1 and B,B2

satisfy (CB6).

Thus, B, B1 and B2 form a compatible triple.
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5.1.5 From extended boundaries to extended partial isomorphs

In the previous section, we saw that an extended partial isomorph I with a summary
B at a non-leaf bag N gives rise to extended partial isomorphs at the children of N
whose summaries are either consistent or compatible with B. However, to find a separator
isomorphic to H in G, we need to work in the reverse direction. That is, we need to
search for extended partial isomorphs at each node of the tree, from the leaves to the root,
looking at all possible leaf boundaries, consistent boundaries and compatible triples, and
finally reporting a complete isomorphism at the root node (if it exists). For this strategy
to work correctly, we need to prove some lemmas. We start with the simplest case of leaf
boundaries.

Lemma 41. Let N be a bag that is a leaf, and let B = (B, T ) be a leaf boundary at N .
Then I := (BN , T ) is an extended partial isomorph at N with I ⇝ B.

Proof. Recall from the definition of a partial isomorph boundary thatB is a homomorphism
and that the restriction of B onto L(N) is an injective function. Therefore, BN is a partial
isomorph. This immediately implies that I is an extended partial isomorph. Next, we show
that I ⇝ B. Since B is a leaf boundary, there is no vertex v ∈ H such that B(v) = xN .
Moreover, B(u) = BN(u) for all u such that B(u) ̸= yN . Hence, I ⇝ B.

In the following lemmas, we show that for any extended boundary B at a non-leaf bag
N , gluing BN together with extended partial isomorphs whose summaries are consistent
or compatible with B gives an extended partial isomorph.

Lemma 42. Let N be a bag that has a single child N1, and let B = (B, T ) and B1 = (B1, T1)
be a pair of consistent boundaries at N and N1 respectively. If there exists an extended
partial isomorph J1 = (J1, S1) such that J1 ⇝ B1, then BN and J1 are gluable, and
I = (I, S) = BN ⊕ J1 is an extended partial isomorph at N with I ⇝ B.

Proof. First we prove that BN and J1 are gluable. For this, we need to show that BN and
J1 are gluable, and T and S1 are gluable. First, we show that BN and J1 are gluable. Let
v be a vertex such that v ∈ dom(BN) ∩ dom(J1). Then, B(v) ∈ L(N) and B1(v) ̸= yN1

(since J1 ⇝ B1). If B1(v) /∈ L(N), then from (CB5), B(v) = xN , which is a contradiction.
Therefore, B1(v) ∈ L(N). From (CB4), B1(v) = B(v). Therefore, J1(v) = BN(v). Thus,
BN and J1 are gluable. Next, we show that S and T1 are gluable. Let v be a vertex such
that v ∈ dom(T )∩ dom(S1). Since v ∈ dom(T ) = L(N), by the coherence property of tree
decompositions, v ∈ dom(T1), where T1 is the component separator function of B1. From
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(CB3), we have that T and T1 agree on their shared domain. Hence, T (v) = S1(v), and
hence, T and S1 are gluable. Thus, we can construct I = (I, S) such that I = BN ⊕ J1.

For the remaining parts of the proof, it will be helpful to first show that dom(I) =
dom(Bx

N). Since I = BN ⊕ J1, we have dom(I) = dom(BN) ∪ dom(J1). For any vertex
v ∈ dom(J1), either J1(v) ∈ L(N) or B(v) = xN (CB5), and if J1(v) ∈ L(N), we have
B(v) ∈ L(N) (CB4). Moreover, for any vertex v such that B(v) = xN , v ∈ dom(J1)
(CB2). Therefore, dom(I) = dom(BN) ∪ dom(J1) = {v : B(v) ∈ L(N)} ∪ {v : B(v) =
xN} = dom(Bx

N).

To show that I = (I, S) is an extended partial isomorph, we need to show that I
is a partial isomorph. Let H ′ := H[dom(I)]. We show that for every (u, v) ∈ E(H ′),
(I(u), I(v)) ∈ E(G). As dom(I) = dom(Bx

N), H
′ = H[dom(I)] = H[dom(Bx

N)]. From
(CB6) of consistent boundaries, it follows that for every (u, v) ∈ E(H ′), B(u), B(v) ∈ L(N)
or B1(u), B1(v) ∈ {xN1}∪L(N1). If B(u), B(v) ∈ L(N), then (B(u), B(v)) = (I(u), I(v)) ∈
E(G) since B is a homomorphism. If B1(u), B1(v) ∈ {xN1} ∪ L(N1) then u, v ∈ dom(J1),
which implies that (J1(u), J1(v)) = (I(u), I(v)) ∈ E(G) since J1 is a partial isomorph.

To complete the proof that I is a partial isomorph, we also need to show that I is an
injective function. Assume for contradiction that there are two distinct vertices u and v
such that I(u) = I(v). Since BN and J1 are both injective functions, it must follow that
u ∈ dom(BN) and v ∈ dom(J1) (or vice-versa). Therefore, I(u) ∈ L(N) and I(v) ∈ GN1 .
Since I(u) = I(v), it must follow from the coherence property of tree decompositions that
I(v) = J1(v) ∈ L(N1), and therefore B1(v) ∈ L(N1). Now, we have that B(u) ∈ L(N),
B1(v) ∈ L(N1) and B(u) = B1(v). From (CB4), B(v) = B1(v) = B(u) ∈ L(N). This
shows that BN is not injective, which is a contradiction. Therefore, I is an injective
function.

We have shown that I is a partial isomorph. To show that I = (I, S) is an extended
partial isomorph, we show that S = T ⊕ S1 is a separator function. First we show that
S(u) = 0 if and only if u ∈ Range(I). To see this, note that S(u) = 0 if and only
if T (u) = 0 or S1(u) = 0 if and only if u ∈ Range(BN) or u ∈ Range(J1) if and only if
u ∈ Range(I). Next, we show that there do not exist two vertices u, v such that S(u) = −1,
S(v) = 1, but (u, v) ∈ E(G). Suppose not, for contradiction. Since T and S1 are both
separator functions, u and v cannot both belong to dom(T ) or dom(S1), and u ∈ dom(T )
and v ∈ dom(S1) (or vice-versa). This implies that u ∈ L(N) \GN1 and v ∈ GN1 \ L(N).
From the edge coverage and coherence property of tree decomposition, this implies that
(u, v) /∈ E(G). This is a contradiction. Hence, S is a separator function. Since we have
already shown that I is a partial isomorph, it follows that I = (I, S) is an extended partial
isomorph.
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Next, we prove that I ⇝ B. For this, we need to show that I ⇝ B. Since I = BN ⊕J1,
I(u) ∈ L(N) implies that either BN(u) ∈ L(N) or J1(u) ∈ L(N). If J1(u) ∈ L(N),
then B1(u) ∈ L(N) which implies that B1(u) = B(u) ∈ L(N) (CB4), which in turn
implies that BN(u) ∈ L(N). Therefore, if I(u) ∈ L(N), then BN(u) ∈ L(N). Since
I = BN ⊕ J1, this shows that I(u) = B(u). On the other hand, if B(u) ∈ L(N), then
I(u) = BN(u) = B(u) (since I = BN ⊕ J1). Since dom(I) = dom(Bx

N) and I(u) ∈ L(N) if
and only if B(u) ∈ L(N), we have I(u) /∈ L(N) if and only if B(u) = xN . This shows that
I ⇝ B.

To complete the proof that I ⇝ B, we show that T is the restriction of S onto L(N).
For this, we need to show that for all v ∈ dom(T ), T (v) = S(v). This follows from noting
that S = T ⊕ T1. Hence I ⇝ B.

Lemma 43. Let N be a bag that has two children N1 and N2, and let B, B1 and B2 be
a set of compatible triples at N , N1 and N2 respectively. If there exist extended partial
isomorphs J1 and J2 such that J1 ⇝ B1 and J2 ⇝ B2, then BN , J1 and J2 are gluable,
and I = BN ⊕ J1 ⊕ J2 is an extended partial isomorph at N with I ⇝ B.

Proof. The proof is similar to the proof of Lemma 42, and is left to the reader.

5.1.6 The dynamic programming algorithm

In this section, we present a dynamic programming algorithm that solves the decision
version of the problem of finding separating subgraphs in a graph with a given tree decom-
position. That is, the algorithm only reports whether the host graph contains a separating
subgraph of a given size (number of vertices). The constructive version of the algorithm
can be obtained from the decision version in the usual way for dynamic programming
by keeping track of values at each step of the algorithm (see [Epp99, Lemma 3] for an
example).

For the dynamic programming algorithm, we classify separator functions into four
classes according to their range.

• S0 = {S : S(u) = 0 for all u ∈ dom(S)}

• Sp = {S : S(u) ∈ {0, 1} for all u ∈ dom(S), and there exists a vertex u with
S(u) = 1}. (The subscript ‘p’ in Sp stands for ‘positive’.)

• Sn = {S : S(u) ∈ {0,−1} for all u ∈ dom(S), and there exists a vertex u with
S(u) = −1}. (The subscript ‘n’ in Sn stands for ‘negative’.)
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• S2 = {S : there exist two vertices u, v with S(u) = −1 and S(v) = 1}.

In a similar vein, we categorise extended partial isomorphs according to the type of the
component separator functions. An extended partial isomorph I = (I, S) is of type i if
S ∈ Si, where i ∈ {0, p, n, 2}.

The algorithm

For an extended boundary B and i ∈ {0, p, n, 2}, let χi(B) be an indicator variable such
that χi(B) = 1 if and only if there exists an extended partial isomorph of type i whose
summary is B. We write χi when the extended boundary is clear from context. The
algorithm computes χi(B) for each boundary B at each bag N . These values are computed
in a bottom-up fashion from the leaf bags to the root bag.

1. Let N be a leaf bag. Compute and store all extended partial isomorph boundaries
B = (B, T ) at N . For each i ∈ {0, p, n, 2}, if B is a leaf boundary and T ∈ Si, then
set χi(B) := 1; otherwise set χi(B) := 0. Store all the computed values of χi along
with B.

2. Let N be a bag with a single child N1. Compute all extended boundaries B = (B, T )
at N . For each such extended boundary, set χi := 0 for all i. For each boundary B1

at N1 consistent with B, and for each i ∈ {0, p, n, 2}, do the following. Look up the
value χ1

i := χi(B1). Let χ
1
⋆ := max{χ1

0, χ
1
p, χ

1
n, χ

1
2}.

(a) If T ∈ S0, then for all i ∈ {0, p, n, 2}, set χi := max{χi, χ
1
i }

(b) If T ∈ Sp, then set χp := max{χp, χ
1
0, χ

1
p} and set χ2 := max{χ2, χ

1
n, χ

1
2}

(c) If T ∈ Sn, then set χn := max{χn, χ
1
0, χ

1
n} and set χ2 := max{χ2, χ

1
p, χ

1
2}

(d) If T ∈ S2, then set χ2 := max{χ2, χ
1
⋆}

Store all the computed values of χi along with B.

3. Let N be a bag with two children N1 and N2. Compute all extended boundaries
B = (B, T ) at N . For each such extended boundary, set χi := 0 for all i. We update
χi by iterating through all extended boundaries at N1 and N2 that are compatible
with B.
For each pair of boundaries B1 and B2 compatible with B, and for each i ∈ {0, p, n, 2},
do the following. Look up χ1

i := χi(B1) and χ2
i := χi(B2). For a, b ∈ {0, p, n, 2}, let

χab := χ1
a · χ2

b . For a ∈ {0, p, n, 2}, let χa⋆ := max{χa0, χap, χan, χa2} and χ⋆a :=
max{χ0a, χpa, χna, χ2a}. For k ∈ {1, 2}, let χk

⋆ := max{χk
0, χ

k
p, χ

k
n, χ

k
2}.
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(a) If T ∈ S0, then set χ0 := max{χ0, χ00}, χp := max{χp, χ0p, χp0, χpp}, χn :=
max{χn, χ0n, χn0, χnn} and χ2 := max{χ2, χpn, χnp, χ2⋆, χ⋆2}.

(b) If T ∈ Sp, then set χp := max{χp, χ00, χ0p, χp0, χpp} and
χ2 := max{χ2, χn⋆, χ⋆n, χ2⋆, χ⋆2}.

(c) If T ∈ Sn, then set χn := max{χn, χ00, χ0n, χn0, χnn} and
χ2 := max{χ2, χp⋆, χ⋆p, χ2⋆, χ⋆2}.

(d) If T ∈ S2, then set χ2 := max{χ2, χ
1
⋆ · χ2

⋆}.

Store all the computed values of χi along with B.

Finally, at the root bag, output the maximum of all the values of χ2(B) over all boundaries
B = (B, T ) such that B(v) ̸= yN for all v ∈ H.

Running time

We will use the above algorithm only in the special case when the width of the tree
decomposition is in O(w), where w = |V (H)|, and so analyze the algorithm only for this
case. Since we assumed in the beginning that the tree decomposition has O(n) bags, where
n = |V (G)|, the running time of the algorithm is O(n · t), where t is the time taken to
generate all possible extended boundaries B and calculate χi(B) for all i ∈ {0, n, p, 2} at
each bag. Calculating χi(B) at a bag requires generating all possible extended boundaries
at the children of the bag, and then testing for consistency/compatibility with B.

The number of homomorphisms from H to a bag of the tree decomposition is wO(w) =
2O(w logw) since the width of the tree decomposition is O(w), where w = |V (H)|. Therefore,
the number of partial isomorph boundaries at each bag is 2O(w logw). The number of sepa-
rator functions whose domain is the set of vertices in a bag is 3O(w) = 2O(w). Therefore, the
number of extended partial isomorph boundaries at a bag is 2O(w logw) · 2O(w) = 2O(w logw).
The time taken for testing consistency and compatibility of boundaries is polynomial in
w. Therefore, the time taken to calculate χi(B) at each bag is t = 2O(w logw). Hence, the
running time is O(t · n) = 2O(w logw)n.

Thus, when the number of vertices w of the pattern graph is constant and when the
width of the tree decomposition is bounded, the running time of the dynamic programming
algorithm is linear in n.
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Proof of correctness

Lemma 44. For each bag N and each extended boundary B at N , the algorithm sets
χi(B) = 1 if and only if there is an extended partial isomorph I of type i at N with I ⇝ B.

Proof. We prove the lemma by induction on the height of bags in the tree decomposition,
where the height of a bag N is the number of edges in the longest path connecting N with
a leaf bag in the subtree rooted at N .

Basis: Let N be a bag at height 0, i.e., let N be a leaf bag. Suppose that I = (I, S) is an
extended partial isomorph of type i at N . From Lemma 38, the summary B = (B, S) of I
is a leaf boundary. Since S ∈ Si, from Step (1) of the algorithm, χi(B) = 1. For the other
direction, let B = (B, T ) be a leaf boundary such that the algorithm sets χi(B) = 1 for
the first time. From Lemma 41, I = (BN , T ) is an extended partial isomorph with I ⇝ B.
Since the algorithm set χi(B) = 1, T ∈ Si. Since T ∈ Si, I is of type i.

Induction step: Suppose that the lemma holds true for all bags at height at most h− 1.
Let N be a bag at height h > 0 in the tree. We prove the lemma for the case when N has
two children N1 and N2, and when i = 2; the proof for the remaining cases is similar (and
easier) and left to the reader.

Let I = (I, S) be an extended partial isomorph of type 2 at a bag N with I ⇝ B,
where B = (B, T ). Let J1 = (J1, S1) and J2 = (J2, S2) be the restrictions of I onto GN1

and GN2 respectively. Let J1 ⇝ B1 and J2 ⇝ B2. From Lemma 40, B, B1 and B2 form
a compatible triple. Depending upon the type of the separator function T , the following
scenarios can occur:

• T ∈ S0

Since I is of type 2, we have S(u) = −1 and S(v) = 1 for some u, v ∈ dom(S). But
since T ∈ S0, we have u, v /∈ L(N). Therefore, u and v are in GN1 ∪ GN2 . This
gives rise to the following sub-cases: (a) one of S1 and S2 belong to S2; (b) S1 ∈ Sp

and S2 ∈ Sn (or vice-versa). Correspondingly, by induction hypothesis, one of the
following occur: (a) χ2(B1) = 1 or χ2(B2) = 1; (b) χp(B1) = 1 and χn(B2) = 1 (or
vice-versa). In either case, from Step (3a) of the algorithm, we have χ2(B) = 1.

• T ∈ Sp

Since I is of type 2, one similarly argues that one of the following sub-cases occur: (a)
one of S1 and S2 belong to S2; (b) one of S1 and S2 belong to Sn. Correspondingly,
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by induction hypothesis, one of the following occur: (a) χ2(B1) = 1 or χ2(B2) = 1;
(b) χn(B1) = 1 or χn(B2) = 1. In either case, from Step (3b) of the algorithm, we
have χ2(B) = 1.

• T ∈ Sn

(This is symmetric to the previous case.)

• T ∈ S2

Let S1 ∈ Sj and S2 ∈ Sk, where j, k ∈ {0, p, n, 2}. By induction hypothesis, χj(B1) =
1 and χk(B2) = 1. From Step (3d) of the algorithm, χ2(B) = 1.

Thus, in all the cases above, χ2(B) = 1.

Now, we prove the other direction. Let B = (B, T ) be an extended boundary at a bag
N with two children N1 and N2 such that the algorithm sets χ2(B) = 1. There are various
possible ways in which χ2(B) could have been set equal to 1 for the first time. For example,
from Step (3a) of the algorithm, one possible way is that T ∈ S0 and χpn = 1. For this
case, we show that there exists an extended partial isomorph I of type 2 such that I ⇝ B.
The proof for the remaining cases is similar, and we omit it.

From the algorithm and the case assumption, there exist extended boundaries B1 at N1

and B2 at N2 that are compatible with B, and such that χp(B1) = 1 and χn(B2) = 1. By
induction hypothesis, there exist extended partial isomorphs J1 of type p and J2 of type
n such that J1 ⇝ B1 and J2 ⇝ B2. From Lemma 43, there exists an extended partial
isomorph I at N such that I = BN ⊕ J1 ⊕ J2 and I ⇝ B. Since I = BN ⊕ J1 ⊕ J2, and
J1 and J2 are of of type p and type n, I is of type 2. This proves the lemma.

Theorem 45. The algorithm outputs 1 if and only if there is a separating subgraph iso-
morphic to H in G.

Proof. Suppose that the algorithm outputs 1. From the last step of the algorithm, there
is an extended boundary B such that χ2(B) = 1 and B(v) ̸= yN for any v ∈ H. From
Lemma 44, there is an extended partial isomorph I of type 2 at the root with I ⇝ B.
Since B(v) ̸= yN for any v ∈ H, I(v) ∈ GN for all v ∈ H. Therefore, I is an isomorphism
between H and some subgraph of G. Since I is of type 2, the subgraph isomorphic to H
in G is a separator, with the separated sets of vertices being F1 := {v : S(v) = −1} and
F2 := {v : S(v) = 1}.

Suppose that there is a separating subgraph X isomorphic to H in G. Let I be the
isomorphism from H to X. Since X is separator, V (G \X) = F1 ∪ F2, where F1 and F2
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are two sets of flaps of G \X such that no vertex of F1 is adjacent to a vertex of F2. Let S
be the separator function with dom(S) = V (G) such that S(u) = 0 for all u ∈ Range(I),
S(u) = −1 for all u ∈ F1 and S(u) = 1 for all u ∈ F2. Then I = (I, S) is a type 2 extended
partial isomorph at the root, and the summary B = (B, T ) of I is such that B(v) ̸= yN
for all v ∈ H. From Lemma 44, the algorithm sets χ2(B) = 1. This extended boundary
causes the algorithm to output 1 in the last step.

We put everything together into one theorem that we will need in the next section.

Theorem 46. Let H be a cycle on w vertices, and G be a graph with a given O(w)-width
tree decomposition. There exists an algorithm that tests in 2O(w logw)n time whether G
contains H as a separator.

5.2 Constrained separating cycles in graphs of bounded

treewidth

In the previous section, we discussed a dynamic programming algorithm to find (uncon-
strained) separating cycles in graphs of bounded treewidth (Theorem 46). In this section,
we explain how to modify the algorithm to find constrained separating cycles in graphs of
bounded treewidth.

Recall that for our application, the host graph is the radial planarisation Λ(G) of a
given bowtie 1-plane graph G. The pattern graph is a bounded length cycle X (length at
most 14) that must also satisfy the following constraints.

• (Ψ1): X is a subgraph of R(G) and separates two vertices of G.

• (Ψ2): There exists a marking function β : V (G) 7→ {△,□} such that for any crossing
point that X visits:

1. The endpoints of each edge of the crossing are marked with opposite symbols.

2. The endpoints of the crossing marked △ are not adjacent in G (Figure 5.4a).

3. If an endpoint of the crossing is on X, then the endpoint marked □. (Figure
5.4b).

4. If no endpoint of the crossing is on X, then the crossing is part of a butterfly
crossing with the endpoints marked □ as the axial vertices (Figure 5.4c).
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Figure 5.4: The marking function. (The filled diamonds denote vertices and crossing points
on X.)

(See Section 3.1 for the definition of a butterfly crossing and axial vertices of a butterfly
crossing.)

Now, we discuss modifications to the dynamic programming algorithm to incorporate
the constraints (Ψ1)-(Ψ2). Let X be a cycle on w vertices. We assume that Λ(G) has
treewidth O(w), and that we are given an O(w)-width tree decomposition of Λ(G). (As
we will see in Section 5.3, the real input to the dynamic programming algorithm will be
a modified bounded treewidth subgraph of Λ(G). The input graph will also have a list of
edges that need to be excluded from being considered for partial isomorphs and a list of
face vertices and/or crossing points that are to be treated like vertices of G. Enforcing
these additional restrictions in the dynamic programming algorithm is relatively simple,
and we do not take these into consideration for the following discussion.)

Constraint (Ψ1)

To restrict X to be a subgraph of R(G), we define a variant of partial isomorphs and
partial isomorph boundaries, called R(G)-partial isomorphs and R(G)-partial isomorph
boundaries, which are basically partial isomorphs and partial isomorph boundaries that
map edges of X only to edges of R(G).

To enforce the constraint that X separates two vertices of G, we define a variant of
separator functions, called V (G)-separator functions, which can distinguish vertices of G
from other types of vertices of Λ(G) (such as face vertices and crossing points). For a set
U ⊆ V (Λ(G)), a function S : U 7→ {−1,−1/2, 0, 1/2, 1} is a V (G)-separator function if:
(a) for any v ∈ U that is a vertex of G, S(v) ∈ {0,−1, 1}, and for any other vertex v ∈ U
(i.e., face-vertices, crossing points), S(v) ∈ {0,−1/2, 1/2}; (b) for any two vertices u, v with
S(u) > 0 and S(v) < 0, (u, v) /∈ E(Λ(G)). As before, if S is a component V (G)-separator
function of an R(G)-extended partial isomorph or an R(G)-extended partial isomorph
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boundary, then S(u) = 0 if and only if u is in the range of the component R(G)-partial
isomorph or the component R(G)-partial isomorph boundary. Similar to the four classes
of separator functions seen before, we define four classes of V (G)-separator functions S0,
Sp, Sn and S2. (We retain the same names so that the dynamic program can be applied
verbatim.)

• S0 = {S : S(u) ∈ {0,−1/2, 1/2} for all u ∈ dom(S)}.

• Sp = {S : S(u) ∈ {0,−1/2, 1/2, 1} for all u ∈ dom(S), and there exists a vertex u
with S(u) = 1}.

• Sn = {S : S(u) ∈ {0,−1/2, 1/2,−1} for all u ∈ dom(S), and there exists a vertex u
with S(u) = −1}.

• S2 = {S : there exist two vertices u, v with S(u) = −1 and S(v) = 1}.

With these changes, the dynamic programming algorithm outputs 1 if and only if there
is a type 2 R(G)-extended partial isomorph at the root of the tree decomposition. If such an
R(G)-extended partial isomorph exists, then the component R(G)-partial isomorph gives
a subgraph of R(G) that is isomorphic to X, and the component V (G)-separator function
gives the set of vertices of G that are separated by the R(G)-partial isomorph.

Constraint (Ψ2)

To implement (Ψ2), we assume that for each crossing point, we have a list that tells which
pairs of its endpoints (if any) are the axial vertices of a butterfly crossing. This list is of
size at most two, and can be computed in total linear time for all crossing points of Λ(G).

As a pre-processing step, we modify the tree decomposition of Λ(G) as follows. For
each bag that contains a crossing point, include all the four endpoints of the crossing in the
bag. This step yields another tree decomposition (Claim 36) with a width that increases
at most by a factor of 5, and is hence still in O(w).

To implement (Ψ2), we expand the definitions of R(G)-extended partial isomorphs and
R(G)-extended boundaries by introducing partial marking functions. The domain of a
partial marking function β is a subset of V (G) and the range is the set {△,□}. A marking
R(G)-extended partial isomorph at a bag N is a 3-tuple of functions I = (I, {S, βI}), where
I is an R(G)-partial isomorph, S is a V (G)-separator function, and βI is a partial marking
function such that dom(βI) = dom(S)∩V (G). A marking R(G)-extended partial isomorph
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boundary at a bag N is a 3-tuple of functions B = (B, {T, βB}), where B is an R(G)-partial
isomorph boundary, T is a V (G)-separator function, and βB is a partial marking function
such that dom(βB) = {v ∈ L(N)}. In addition, a marking R(G)-extended partial isomorph
boundary B = (B, {T, βB}) must satisfy the following conditions that express (Ψ2). If a
crossing point c is in the range of B, then

1. The endpoints of each edge of the crossing are marked (by βB) with opposite symbols.

2. The endpoints of the crossing marked △ are not adjacent in G (Figure 5.4a).

3. If an endpoint of the crossing is in the range of B, then the endpoint is marked □.
(Figure 5.4b).

4. If no endpoint of the crossing is in the range of B, then the crossing is part of a
butterfly crossing with the endpoints marked □ as the axial vertices (Figure 5.4c).

The first three conditions are easy to test since each bag that contains a crossing point
also contains the four endpoints of the crossing. To test the fourth condition, we use the
list that we created for each crossing point that tells which pairs of its endpoints are the
axial vertices of a butterfly crossing.

The summary of a marking R(G)-extended partial isomorph is defined as before: if
I = (I, {S, βI}) and B = (B, {T, βB}), then I ⇝ B if and only if: (a) I ⇝ B; (b) T is
the restriction of S onto L(N); (c) βB is the restriction of βI onto L(N). For two marking
R(G)-extended boundaries to be consistent/compatible, we additionally require that the
component marking functions agree on their shared domain.

With these changes in place, the dynamic programming algorithm outputs 1 if and only
if there is a constrained separating cycle isomorphic to X in Λ(G).

5.3 The separating subgraph isomorphism algorithm

In the previous section, we saw that when Λ(G) has a tree decomposition of bounded width,
we can find a bounded length constrained separating cycle in linear time. In this section,
we show that even when Λ(G) does not have a bounded treewidth, we can find a bounded
length constrained separating cycle in linear time. We achieve this by partitioning Λ(G)
into pieces of bounded treewidth, and then searching each of the pieces for a constrained
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S7

S8

v0

(a) Bold edges show T (v0), and the white
circles are vertices of G. The dashed edges
show Λ[S0 ∪ · · · ∪ S2] and Λ[S5 ∪ · · · ∪ S8].

S2

S3

S4

S5
φ ϑ

ϑR(U2)

(b) Construction of Λ3 with w = 2. The
dotted edges are added to obtain U2 and
L5.

Figure 5.5: Construction of the graphs Λi

separating cycle using dynamic programming. The ideas for this are taken from [Epp99],
but the details are quite different. See Appendix A for further discussion.

As before, our pattern graph is a bounded length cycle on w vertices. We give a
procedure to partition the host graph Λ(G) into pieces that have treewidth O(w). Let v0
be a vertex of G in Λ(G). For i ≥ 0, let Si consist of the vertices at distance i from v0.
Note that Si is the set of vertices at depth i in the breadth first search (BFS) tree with v0
as the root (Figure 5.5a). We denote this BFS tree by T (v0). Let Sp be the last layer of
the BFS tree. When i < 0 and i > p, we let Si = ∅. For each i ≥ 0, we construct a graph
Λi on the vertex set Si−1 ∪ · · · ∪ Si+w, where Λi is the union of the following graphs: (a)
a graph Ui−1 (defined below) on the vertex set Si−1, (b) the subgraph of Λ(G) induced by
Si−1∪· · ·∪Si+w, and (c) a graph Li+w (defined below) on the vertex set Si+w. (Henceforth,
for notational convenience, we write Λ[Si∪· · ·∪Sj] to denote the subgraph of Λ(G) induced
by Si ∪ · · · ∪ Sj.) As we will show below, our construction of Li+w is done such that two
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vertices of Li+w are in the same component if and only if there is a path connecting the
two vertices that uses only vertices of St, t ≥ i+ w. Similarly, two vertices of Ui−1 will be
in the same component if and only if there is a path connecting the two vertices that uses
only vertices of St, t ≤ i− 1.

In essence, each component of Li+w (resp. Ui−1) represents the contraction of a com-
ponent of Λ(G) induced by St, t ≥ i + w (resp. St, t < i) into the layer Si+w (resp. Si−1)
(Figure 5.5b). If this component of Λ(G) contains a vertex of V (G), we label all the ver-
tices of the corresponding component of Li+w (resp. Ui−1) with the symbol ϑ (we will use
this later to indicate that these vertices should be treated as if they were original vertices
of G, hence the v-like symbol). The set of edges in Li and Ui, and the labels ϑ for their
components, are computed for all Si in a single pass through the layers of S0, . . . , Sp.

ϑ

ϑ

ϑ

Li+1

Li

Figure 5.6: Constructing Li inductively. The bold edges belong to T (v0) and the white
circles are vertices of G. The dotted edges are added to Li. The label ϑ for the components
denote the labels of all vertices of that component.

We construct Li inductively in the reverse order, starting from the last layer Sp. For
Sp, the graph Lp is simply Λ[Sp]. If a component of Lp contains a vertex of V (G), label all
vertices of the component with ϑ. Suppose that Li+1 has been constructed for the layer
Si+1, where i + 1 ≤ p, and the label ϑ is assigned for its components. We describe the
construction of Li for the layer Si (Figure 5.6). Initially, add all the edges of Λ[Si] to Li.
For each vertex u in Si+1, let Ni(u) be the set of neighbours of u in Si. Let π(u) be the
parent of u in T (v0). Add edges to Li that connect π(u) to Ni(u) \ {π(u)}. If u is labelled
ϑ, mark π(u) with ϑ. Next, for every edge (u, v) in Li+1, add an edge to Li connecting
π(u) and π(v), unless π(u) = π(v). Finally, remove all parallel edges from Li by doing a
bucket sort on the adjacency list of each vertex of Li. Compute all connected components
of Li and for each component, if there is a vertex of V (G) or if there is a vertex marked ϑ,
label all vertices of the component with ϑ.

Lemma 47. The total time for computing Li for all the layers Si is O(n).
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Proof. The construction of Li imitates the process of contracting the edges of T (v0) in
Li+1 ∪ Λ[Si ∪ Si+1]. Hence, each Li is a minor of Λ(G). Since Λ(G) is planar and has no
bigons, and Li+1 is planar (being a minor of Λ(G)) and simple, the number of edges in
Li+1∪Λ[Si∪Si+1] is O(|Si|+ |Si+1|). Therefore, by construction, the number of edges in Li

is O(|Si|+ |Si+1|). Hence, the time taken to construct Li, remove parallel edges from Li by
bucket sort, and compute and parse connected components is O(|Si| + |Si+1|). Note that
we compute Li for all the layers Si in a single pass through the layers S0, . . . , Sp. Thus,
the total time to construct all the Li is O(

∑p
i=0 |Si|) = O(n).

As the construction of Li imitates the process of contracting the edges of T (v0) in
Li+1 ∪Λ[Si ∪Si+1], by induction, two vertices are in the same component of Li if and only
if they are connected by a path that only uses vertices of layers St, t ≥ i.

Likewise, to construct Ui, we must add edges to Λ[Si] so that two vertices of Si are in
the same component if and only if they are connected by a path that only uses vertices of
the layers St, t ≤ i. Note that Ui must have a single component since each vertex of Si is
connected to every other vertex of Si via a path through the root v0 of T (v0). Moreover,
all vertices of the component must be labelled ϑ since v0 was chosen to be a vertex of G.
Therefore, to construct Ui, fix an arbitrary vertex of Si, calling it R(Ui), and connect it to
all the other vertices v of Si.

Lemma 48. The total time for computing Ui for all the layers Si is O(n).

Proof. The time to construct Ui for each layer is simply O(|Si|). Therefore, the time taken
to compute Ui for all the layers is O(

∑p
i=0 |Si|) = O(n).

Having constructed Li and Ui for each layer Si, we obtain a graph Λi by taking the
union of Ui−1, Λ[Si−1 ∪ · · · ∪ Si+w] and Li+w. As we will see in Lemma 52, testing whether
Λ(G) has a constrained separating cycle is equivalent to testing whether some Λi has a
constrained separating cycle. We first show that each Λi has treewidth O(w), and that an
O(w)-width tree decomposition of Λi can be computed in time O(w|Λi|). To prove this,
we will need the following lemma.

Lemma 49 ([Bak94] and [Epp99, Lemma 4]). If a planar graph G has a rooted spanning
tree of height at most l, then a tree decomposition of G with width at most 3l can be found
in time O(ln), where n = |V (G)|.

Now, we prove the following lemma.
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Lemma 50. Each Λi has treewidth O(w), and an O(w)-width tree decomposition of Λi can
be computed in time O(w|Λi|).

Proof. From Lemma 49, it is sufficient to show that Λi is planar and has a spanning tree
of height O(w). First we show that Λi is planar. The graph Li+w can be thought of as
being obtained by contracting the edges of T (v0) whose endpoints are in St, t ≥ i+w, and
then simplifying the resulting graph. On the other hand, the graph Ui−1 can be thought
of as being obtained by contracting all edges of Λ(G) with endpoints in St, t < i− 1 into a
supervertex, and then contracting the supervertex into R(Ui−1). Therefore, Λi is a minor
of Λ(G). Since planar graphs are closed under taking minors, Λi is also planar.

Note that the edges incident with R(Ui−1) in Ui−1 together with the edges of T (v0) in
Λ[Si ∪ . . . Si+w] form a spanning tree of Λi of height w + 2. Therefore, by Lemma 49, Λi

has treewidth O(w), and an O(w)-width tree decomposition of Λi can be computed in time
O(w|Λi|).

In Lemma 51, we show that the total time to compute all the Λi and their O(w)-width
tree decompositions is linear in n, where n is the number of vertices in the given bowtie
1-plane graph G.

Lemma 51. The total time for finding the Λi and computing their O(w)-width tree de-
compositions is O(w2n).

Proof. To compute Λi, we first need to compute Λ(G), then the BFS tree T (v0), and then
the graphs Li and Ui for each layer Si. Since G is a bowtie 1-plane graph on n vertices
without bigons, the number of edges in G is O(n). This implies that the number of vertices
and edges of Λ(G) is O(n). Hence, the time to compute Λ(G), and its BFS tree T (v0), is
O(n). Since computing Li and Ui for all the layers take O(n) time in total (Lemma 47
and 48), the time taken to compute all the Λi is O(n). Since the time for finding a tree
decomposition of width O(w) for each Λi is O(w|Λi|) (Lemma 50), the total time for finding
all Λi and computing their O(w)-width tree decompositions is O(n) + O(w

∑p
i=0 |Λi|) =

O(w2n) since each vertex of Λ(G) is included in at most w + 2 graphs of Λi (as each Λi

intersects only w + 2 layers of S0, . . . , Sp).

5.3.1 Finding a constrained separating cycle in Λ(G)

Suppose that Λ(G) has a constrained separating cycle X on w vertices. Let Si, . . . , Si+w−1

be w consecutive layers of Λ(G) that contain X (they may not be unique). Consider the
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graph Λi = Ui−1 ∪Λ[Si−1 ∪ · · · ∪Si+w]∪Li+w. Let Xi denote the cycle in Λi isomorphic to
X. We will show that Xi is also a constrained separating cycle of Λi (under some suitable
assumptions).

First consider the constraint (Ψ2). Since Xi is restricted only to Si ∪ · · · ∪ Si+w−1, it
does not contain any vertex of Li+w or Ui−1. So for every crossing point that Xi visits, all
the four endpoints of the crossing are in Λi. Let β be the marking function that satisfies
(Ψ2) for X in Λ(G). Then the restriction of β on Λi must also satisfy (Ψ2) for Xi in Λi.
Therefore, Xi satisfies (Ψ2). Next, consider the constraint (Ψ1). Since X is a subgraph of
R(G), Xi must also be a subgraph of R(G) in Λi. Let u, v be two vertices of G that X
separates in Λ(G). If both u, v are in Λi, then Xi also separates u, v in Λi. Suppose that
one of the vertices, say u, is not in Λi. Then there must be a component of Λ(G) induced
by St, t > i + w or St, t < i − 1 that contains u. Without loss of generality, suppose that
u ∈ Λ[Si+w+1∪· · ·∪Sp]. Let C(u) denote the component of Λ[Si+w+1∪· · ·∪Sp] that contains
u. Since u is a vertex of G, by construction, all vertices of C(u) must be labelled ϑ. Then
the cycle Xi either separates C(u) from v, or separates C(u) from C(v), where C(v) is the
analogue of C(u) for v. (Note that v /∈ C(u) and C(u) ̸= C(v), since otherwise this would
imply that u and v are connected by a path outside Λ[Si ∪ · · · ∪ Si+w−1] contradicting the
fact that X separates u and v in Λ(G).) This shows that if the vertices of the components
of Li+w and Ui−1 labelled ϑ are treated like vertices of G, then Xi separates two vertices
of G in Λi. Therefore, Xi satisfies (Ψ1) in Λi. In summary, Xi is a constrained separating
cycle of Λi if the vertices labelled ϑ are considered vertices of G.

The other direction is similar. Suppose that Λi contains a constrained separating cycle
Xi that only uses the edges of Λ[Si∪· · ·∪Si+w−1] and that separates two vertices of G in Λi

or two vertices of Λ(G) labeled ϑ, then the corresponding cycle X must be a constrained
separating cycle of Λ(G) (details are left to the reader).

We summarise this through the following lemma.

Lemma 52. Λ(G) has a constrained separating cycle of length w if and only if some Λi,
for 0 ≤ i ≤ p, has a constrained separating cycle in Λ[Si ∪ · · · ∪ Si+w−1] assuming that
vertices marked ϑ are considered vertices of G (for purposes of Ψ1).

By Lemma 52, the search for constrained separating cycles in Λ(G) can be restricted to
the bounded treewidth graphs Λi. Theorem 53 shows that searching for a bounded length
constrained separating cycle in all of Λi takes O(n) time in total.

Theorem 53. Let X be a cycle on w vertices. If Λ(G) contains X as a constrained sepa-
rating cycle, then the subgraph of Λ(G) isomorphic to X can be found in time 2O(w logw)n.
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Proof. From Lemma 51, all the graphs Λi and their O(w)-width tree decompositions can
be computed in time O(w2n). For each Λi and its tree decomposition, use the dynamic
programming algorithm (Section 5.2) to find a constrained separating cycle isomorphic to
X, but with a small modification: pre-process the graph Λi so that all vertices labelled ϑ
are treated as vertices of G, and restrict the range of a partial isomorph only to the edges
of Λ[Si ∪ · · · ∪ Si+w−1]. The dynamic programming algorithm takes time 2O(w logw) · |Λi|.
Therefore, the total running time isO(w2n)+

∑
2O(w logw)·|Λi| = O(w2n)+2O(w logw)·

∑
|Λi|,

which is equal to O(w2n) + 2O(w logw) · O(wn), because each vertex of G is included in at
most w + 2 subgraphs of Λi. Thus, the total running time is 2O(w logw)n.

5.4 Computing vertex connectivity in linear time

We now put things together and give an algorithm to test the vertex connectivity of
bowtie 1-plane graphs in linear time (Figure 5.7). Let G be a given simple bowtie 1-
plane graph. Compute all kite edges and the radial planarisation Λ(G). This can be
done in linear time (Section 3.3). For each w = 2, 4, . . . , 14, use the separating subgraph
isomorphism algorithm to test for a constrained separating cycle of length w (Theorem
53 and Figure 5.7) 1 Since a 1-plane graph is at most 7-connected, Theorem 3 ensures
that Λ(G) must contain a constrained separating cycle of length at most 14. Output
the shortest constrained separating cycle together with the corresponding separator and
marking functions. Then use Theorem 2 to extract a separating set from the constrained
separating cycle and the marking function. From Theorem 2 and 3, the separating set must
be a minimum separating set of G. This proves Theorem 1, and shows that the vertex
connectivity of a bowtie 1-plane graph can be computed in linear time.

1Actually, w = 6, 8, 10, 12 would be enough because k-connectivity can be tested in linear time for
k ≤ 3. If w ≤ 12 fails, then G is 7-connected, and a vertex of degree 7 can be found in linear time.
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G: A bowtie
1-plane graph

Compute Λ(G)
(Section 3.3)

Choose a vertex of G, say v0, and compute
T (v0). Also, compute the layers S0, . . . , Sp.

For i = p downto 0, compute Li, Ui, and
the labels ϑ for their vertices (Section 5.3).

For w =
2, 4, . . . , 14

For i =
0, 1 . . . , p

Compute Λi = Ui−1 ∪
Λ[Si−1∪· · ·∪Si+w−1]∪Li+w

Compute an O(w)-
width tree decomposi-
tion of Λi (Lemma 49)

Run the dynamic
programming

algorithm to look
for a constrained
separating cycle
of length w in

Λ[Si ∪ . . . Si+w−1]
while reading each
vertex labelled
ϑ as a vertex of
G (Section 5.2).

Found
the cycle?

Extract and output a separating
set from the cycle (Section 3.5)

Is i = p?

yes

nono

yes

Figure 5.7: The algorithm for computing vertex connectivity of bowtie 1-plane graphs in
linear time.
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Chapter 6

Conclusion

In this thesis, we explored the correspondence between separating sets and separating cycles
of bowtie 1-plane graphs. More specifically, we proved that every separating set of size k in
a bowtie 1-plane graph G corresponds to a constrained separating cycle of length at most 2k
in the radial planarisation Λ(G) (Theorem 2 and Theorem 3). This correspondence implies
that the vertex connectivity of G is half the length of a shortest constrained separating cycle
of Λ(G). To find a shortest constrained separating cycle of Λ(G), we used techniques from
the separating subgraph isomorphism algorithm of [Epp99], where we partition Λ(G) into
pieces of bounded treewidth graphs and use dynamic programming to search for constrained
separating cycles in each of the pieces. The algorithm runs in linear time (Theorem 4) since
the length of a shortest constrained separating cycle is bounded (it is at most 14, since the
vertex connectivity of a 1-planar graph is at most 7). Thus, the vertex connectivity of a
bowtie 1-plane graph can be computed in linear time (Theorem 1).

It is unlikely that this correspondence between separating sets and separating cycles
extends to all 1-plane graphs. Consider Figure 6.1a for example. The figure shows a 1-plane
graph where the endpoints of every crossing induce K1,3 ∪ {e} (and hence are not bowtie
crossings). The graph is 4-connected and a minimum separating set is shown by vertices
marked with white circles. Figure 6.1b shows the radial planarisation of the graph, and
one can see that there can be no 8-cycle in R(G) that connects all the four white vertices.

In the example of Figure 6.1, even though the vertices of the separating set do not lie
on a short cycle, they lie close to each other in the radial planarisation. This however does
not extend to arbitrary 1-plane graphs. Consider the example in Figure 6.2. Figure 6.2a
shows two copies of a graph that are interleaved to produce a 1-planar embedding such that
the endpoints of each crossing form an independent set. When these two graphs are fused
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(a) (b)

Figure 6.1: An example of a 4-connected 1-plane graph that does not have a separating
8-cycle in its radial planarisation passing through a minimum separating set (white circles).

(a) A 1-planar embedding of two interleaved
3-connected graphs.

(b) A 1-plane graph formed by identifying
two pairs of vertices.

Figure 6.2: An example of a 1-plane graph where the vertices of a minimum separating set
are far apart from each other.
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(a) A 2-planar embedding of two interleaved
4-connected graphs

(b) A 1-plane graph formed by identifying
three pairs of vertices.

Figure 6.3: An example of a 2-plane graph where the vertices of a minimum separating set
are far apart from each other.

together by identifying two pairs of vertices where one pair is diametrically opposite to the
other (shown by grey blobs in Figure 6.2a), we get the graph in Figure 6.2b. The two fused
vertices form a separating set of the graph. Moreover, this is the only separating set since
both the graphs in Figure 6.2a are 3-connected. This example can be extended (by adding
more concentric layers and more vertices within each layer) to show that the distance
between the two fused vertices can be made arbitrarily large in the radial planarisation of
the graph.

In the example of Figure 6.2, the vertices of the separating set lie far away from each
other; however, the graph is only 2-connected, and the separating pair of vertices can be
obtained in linear time ([HT73]). We tried to extend this example to 3-connected 1-planar
graphs but could not find an example with a unique separating set of size 3. If we allow for
some edges to be crossed twice (i.e., the graph is 2-planar), we can construct a 3-connected
graph with a unique separating set of size 3, where the distance between the three vertices
is not bounded. Consider Figure 6.3 for example, which is constructed similar to Figure
6.2. Figure 6.3a shows two copies of a 4-connected graph that are interleaved to produce a
2-planar embedding. When three pairs of vertices of this graph are identified together, we
get the 2-planar graph in Figure 6.3b. By adding more concentric layers and more vertices
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within each layer, we can make the the distance between vertices of the separating set
arbitrarily large.

We conclude this section with a some open questions. We begin with the most natural
question.

Open problem 1. Let G be an arbitrary 1-plane graph. Can the vertex connectivity of G
be computed in linear time?

Throughout the thesis, we assumed that the input was always a 1-plane graph, that
is, a 1-planar graph with a given 1-planar embedding. This is because testing 1-planarity
in general is NP-hard [KM13]. However, some classes of 1-planar graphs, such as optimal
1-planar graphs, can be recognised in linear time. A 1-planar graph is called optimal if it
has exactly 4n − 8 edges, which is the maximum possible for any 1-planar graph. Given
any graph G with 4n − 8 edges, there exists an O(n) time algorithm to decide whether
G is optimal 1-planar, and if it is optimal 1-planar, then the algorithm returns a valid
embedding of G [Bra18]. Since an optimal 1-planar graph G must be full 1-planar, we
can obtain a full 1-planar embedding of G in linear time, and then run our linear time
algorithm to compute the vertex connectivity of G. But for arbitrary 1-planar graphs, we
have no algorithm to find a 1-planar embedding, and so the following question is natural.

Open problem 2. Let G be a given 1-planar graph (without a 1-planar embedding). Can
the vertex connectivity of G be computed in linear time?

This thesis explored the connection between vertex connectivity of a 1-planar graph
and its geometric properties, and used it to obtain a linear time algorithm for vertex
connectivity of bowtie 1-planar graphs. As part of future work, it would be interesting
to explore other structural properties (related to graph cuts) such as edge connectivity
and minimum bisection for graph classes that are defined via geometric properties such as
k-planar graphs, quasi-planar graphs and fan-planar graphs (see [HT20]).
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Appendix A

List of corrections to Eppstein’s paper

The contents of Chapter 5 are strongly inspired by Eppstein’s paper [Epp99]. A major
contribution of this chapter is a detailed explanation of the dynamic programming algo-
rithm, which was omitted from [Epp99]. The process of expanding out the details of the
dynamic programming algorithm revealed some errors in [Epp99]. In this section, we list
the main errors and discuss how these were rectified and incorporated in Chapter 5.

{v}

{u, v} {v, w}

a b

a b a b

xN1
yN1

xN2
yN2

xN yN

T

N

N1 N2

a b

u v w

H :

G :

Figure A.1: A figure that illustrates the necessity of Condition (CB6) for consistent bound-
aries.

Condition (CB6) for consistent boundaries. The definitions of consistent boundaries
(and compatible triples) in Section 5.1 include the Condition (CB6), which is missing in
[Epp99]. This condition says that if two extended partial isomorph boundaries B = (B, T )
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a b

cd

e f
w

x

y

z

Figure A.2: A figure that illustrates that searching for separating cycles in R(G) is not
sufficient to find a separating set for G.

and B1 = (B1, T1) at nodes N and N1 are consistent, then for any edge (u, v) of H
whose endpoints map to Bx

N , we must either have B(u), B(v) ∈ L(N) or B1(u), B1(v) ∈
{xN1}∪L(N1). This condition is essential to generate partial isomorphs correctly. Consider
Figure A.1 for an example. (The example omits separator functions and only considers
partial isomorph boundaries.) The host graph and pattern graph are represented by G and
H respectively. The tree T is the tree decomposition of G. The three partial isomorph
boundaries B, B1 and B2 at the nodes N , N1 and N2 are depicted by arcs from H to the
the three nodes. If Condition (CB6) is omitted, then B, B1 and B2 form a compatible
triple. Therefore, the three boundaries generate a partial isomorph that maps a to u and
b to w. This is absurd because G has no edge with endpoints u and w.

Host graph as Λ(G) instead of R(G). The algorithm for finding separating cycles in
[Epp99] uses R(G) as the host graph instead of Λ(G). This is problematic since a cycle
X that separates two vertices u, v of G in R(G) does not guarantee that VG(X) separates
u, v in G. See Figure A.2 for an example. The solid edges belong to G and the dashed
edges belong to R(G). In this example, the cycle (a, x, b, y, c, z, d, w, a) separates e, f in
R(G), but {a, b, c, d} is not a separating set of G. The approach of having only R(G) as the
host graph succeeds if one can find a separating cycle in R(G) that separates two vertices
of G such that one vertex is inside the cycle and the other outside the cycle. (Recall
from Chapter 4 that such a cycle is called a fence.) In fact, Lemma 8 of [Epp99] uses
this approach and assumes that one can find a fence of R(G) by simple modifications to
the dynamic programming algorithm. However, it is not clear how one can modify the
algorithm that outputs only those separating cycles that form a fence in R(G).
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S0

S1

S2

S3

S4

S5

S6

S7

S8

(a) BFS tree of G and the layers Si

S3

S4

S5

S6

(b) Construction of the graph Λ3

Figure A.3: Construction of the graphs Λi

The graphs Li and Ui. In Section 5.3, we computed the graphs Li and Ui for each
layer Si. The main objective of constructing these graphs was to ensure that a cycle is
separating in Λ(G) if and only if it is separating in Λi = Ui−1 ∪Λ[Si−1 ∪ · · · ∪ Si+w]∪Li+w

for some i = 0, . . . , p. The construction of these graphs is a novel idea and does not
appear in [Epp99]. The approach taken in [Epp99] to compute Λi (the graph is actually
called Gi in [Epp99]) is to contract each component of Λ(G) in the layers St, t ≤ i − 1
and St, t ≥ i + w into a supervertex. But it is not immediate how one could compute
the contractions for all Λi in O(n) time. The paper [HIK+17] by Holm et al. gives a
data structure that can maintain a planar graph under edge contractions in O(n) time.
However, to compute Λ1, . . . ,Λp in overall O(wn) time, we cannot afford to do contractions
separately for i = 1, . . . , p. Instead, we need to compute Λi from Λi+1 (or vice-versa) by
contracting some edges and uncontracting others. Even with the powerful data structure
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by Holm et al., it is not clear how the uncontractions can be done. Hence it is not clear
how to compute Λ1, . . . ,Λp in linear time via contractions.

In our algorithm, we also had to maintain the labels ϑ for vertices of Λi as an indicator
that certain vertices of Λ(G), which may well be face vertices and crossing points, count
as vertices of G. This was necessary since components of Li+w can have vertices of G
contracted into it and a cycle that separates a vertex of Li+w from another vertex of G in
fact separates two vertices of G. This aspect of the algorithm is new and was not part of
[Epp99].
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