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Abstract

We explore various ways in which a robust, nonparametric statistical tool, the data depth
function can be used to conduct inference on data which could be described as difficult.
This can include data which are difficult in structure, such as multivariate, functional, or
multivariate functional data. It can also include data which are difficult in the sense that
published statistics must satisfy privacy constraints.

We begin with multivariate data. In Chapter 2, we develop two robust, nonparametric
methods for multiple change-point detection in the covariance matrix of a multivariate se-
quence of observations. We demonstrate that changes in ranks generated from data depth
functions can be used to detect certain types of changes in the covariance matrix of a
sequence of observations. In order to catch more than one change, the first algorithm uses
methods similar to that of wild-binary segmentation (Fryzlewicz, 2014). The second algo-
rithm estimates change-points by maximizing a penalized version of the classical Kruskal
Wallis ANOVA test statistic. We show that this objective function can be maximized via
the well-known pruned exact linear time algorithm. We show under mild, nonparametric
assumptions that both of these algorithms are consistent for the correct number of change-
points and the correct location(s) of the change-point(s). We demonstrate the efficacy
of these methods with a simulation study and a data analysis. We are able to estimate
changes accurately when the data are heavy tailed or skewed. We are also able to detect
second order change-points in a time series of multivariate financial returns, without first
imposing a time series model on the data.

In Chapter 3 we extend these methods to the setting of functional data, where we
develop a group of hypothesis tests which detect differences between the covariance kernels
of J samples. These tests, called functional Kruskal Wallis for covariance tests, are based
on functional data depth ranks, which are combined using the classical Kruskal Wallis
test statistic. These tests are very robust; we demonstrate that these tests work well
when the data are very heavy tailed, both in simulation and theoretically. Specifically, in
order for the test to be consistent there is no need to assume that the fourth moment of
the observations is finite, which is a typical assumption of existing methods. These tests
offer several other benefits: they have a simple distribution under the null hypothesis,
they are computationally cheap and they posses linear invariance properties. We show via
simulation that these tests have higher power than their competitors in some situations,
while still maintaining a reasonable size. We characterize the behavior of these tests under
the null hypothesis and show consistency of the several versions of the tests under general
alternative hypotheses. We also provide a method for computing sample size and provide
some analysis under local alternatives when the ranks are based on L2-root depth.
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In Chapter 4 we present methods for detecting change-points in the variability of a
sequence of functional data, thus, combining the methods of Chapter 2 and Chapter 3.
Our methods allow the user to test for one change-point, to test for an epidemic period,
or to detect an unknown amount of change-points in the data. Since our methodology is
based on depth-ranks, we have no need to estimate the covariance operator, which makes
our methods computationally cheap. For example, our procedure can identify multiple
change-points in O(n log n) time. Our procedure is fully non-parametric and is robust
to outliers through the use of data depth ranks. We show that when n is large, our
methods have simple behaviour under the null hypothesis. We also show that the functional
Kruskal Wallis for covariance change-point procedures are n−1/2-consistent. In addition to
asymptotic results, we provide a finite sample accuracy result for our at-most-one change-
point estimator. In simulation, we compare our methods against several other methods
from the literature. We also present an application of our methods to intraday asset returns
and f-MRI scans.

In Chapter 5 we investigate differentially private estimation of depth functions and
their associated medians. We then present a private method for estimating depth-based
medians, which is based on the exponential mechanism (McSherry and Talwar, 2007). We
compute the sample complexity of these private medians as a function of the dimension,
prior parameters and privacy parameter. As a by-product of our work, we present a
smooth depth function, which we show has the same depth-like properties as its non-smooth
counterpart. Another by-product of our work is uniform concentration for several depth
functions. We also present methods and algorithms for estimating private depth values
at in-sample and out-of-sample points. In addition, we extend the propose-test-release
methodology of (Brunel and Avella-Medina, 2020) to be used with depth functions and the
exponential mechanism. We show that when using propose-test-release to projection depth
values, the probability of no reply is small, and the private depth values concentrate around
their population counterparts. We also give an algorithm to approximate the “test” step in
propose-test-release, since it is computationally difficult. We show that this approximation
maintains the low probability of no-reply as in the original propose-test-release.

Chapter 6 presents some possible directions for future research related to network data
and shape data.
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Chapter 1

Introduction

On the real line R, there is a natural ordering of the numbers, which makes it straight-
forward to define quantiles, order statistics, ranks and centrality. Such concepts underlie
much of nonparametric univariate inference, think boxplots, medians, rank tests et cetera.
In higher dimensional Euclidean spaces Rd and in many general Banach spaces, there is no
natural linear ordering. As a result, defining quantiles, order statistics, ranks and central-
ity is inherently more difficult and there is no agreed upon definition. However, extending
many existing univariate, nonparametric methods to higher dimensional spaces requires a
method of ordering the points in a sample; some way of relating multiple points to each
other in the space. This is because nonparametric procedures must rely on the properties of
the space and not those of a parametric model. This predicament has led to many different
generalisations of order statistics and surrounding concepts to Rd, and, consequentially, to
general spaces.

In Rd, data points can be represented as d-dimensional vectors, say Xi = (xi1, . . . , xid).
This representation inspires the tendency to use a component-wise approach. For exam-
ple, to estimate location we could use the component-wise mean and the component-wise
median. We can also define component-wise ranks by computing the univariate rank of
each point for each variable, giving Ri = (Ri1, . . . , Rid) and then averaging the ranks over
the variables or components (Bickel, 1965). There are documented problems with the
component-wise median and component-wise ranks, which can be summarised by two de-
ficiencies. The first of which is a failure to account for the correlation structure of the
data. Hypothesis tests based on component-wise averaged ranks can be problematic when
several of the variables are highly correlated (Bickel, 1965). Suppose we are computing,
say a rank-sum test for a difference in distribution between two groups. If there are numer-
ous, highly correlated components which have no marginal differences then any differences
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between remaining components will be washed out by noise. Further, if one component
sees consistently high ranks and one low ranks for some group, then these may be washed
out in the average rank. Some early works that account for this first issue are (Horrell and
Lessig, 1975; Katz and McSweeney, 1980).

The second issue with many component-wise procedures is that they are not affine
equivariant/invariant or even similarity equivariant/invariant. If we represent a multivari-
ate sample Xn with an n × d matrix, we then say that a d-dimensional statistic T (Xn) is
affine equivariant if

T (AXn + b) = AT (Xn) + b,

where A is an invertible matrix and b is some column vector. A statistic T (Xn) is affine
invariant if

T (AXn + b) = T (Xn),

for the same A and b. Similarly, a statistic is similarity equivariant/invariant if the above
holds for orthogonal A. In a practical sense, affine equivariance implies that if the data
are translated, re-scaled, rotated or reflected, the statistic is also translated, re-scaled,
rotated or reflected. Similarly, affine invariance means the statistic is unchanged by such
transformations. Affine invariance/equivariance enforces the idea that changing our mea-
surement scales or coordinate system should not affect the inference procedure. Similarity
invariance/equivariance is a weaker property and ensures that the statistic is immune to
homogeneous scaling (scaling all variables by the same number), translations, rotations
and reflections.

The component-wise median is not affine equivariant or even similarity equivariant, nor
are the component-wise ranks affine invariant or similarity invariant. The component-wise
median has also been shown to fall outside the convex hull of the data (Serfling, 2006). As
a result of these flaws, nonparametric procedures that both take the correlation structure
into account and are affine invariant/equivariant were then developed for individual testing
and estimation problems (see, e.g., Oja, 1983; Randles and Peters, 1990). Such procedures
were standalone, and restricted to solving one inference problem, e.g., location estimation.
It was later presented that nonparametric description and inference could be performed
from within a single framework if the procedures were derived from an underlying data
depth function (Liu et al., 1999; Serfling, 2006).

A data depth function gives meaning to centrality, order and outlyingness in spaces
beyond R. Data depth functions do this by giving all points in the working space a rating
based on how central the point is in the sample. For example, restricting to Rd, multivariate
depth functions can be written as D: Rd × X → R+; given a sample and a point in the
domain, the depth function assigns a real valued depth to that point. Figure 1.1(a) shows

2
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Figure 1.1: (a) Sample halfspace depth values, i.e., D(Xi;Fn), are displayed in white text.
The heatmap of the sample depth function, i.e., D(·;Fn), is also displayed. This sample
is drawn from a standard, two dimensional normal distribution. (b) Theoretical halfspace
depth contours for the standard, two dimensional normal distribution.

a sample of 20 points labelled by their depth values, we can see that the points in the
centre of the data cloud have larger values. Note that it is not necessary to restrict the
domain of the depth function to points in the sample; we can compute depth values for
each point in the sample space. The heatmap in Figure 1.1(a) gives the depth value for
each point in the plot.

The concept of depth predates its extensive study by two decades, first studied by Tukey
(1974), where his goal was to picture data in a way such that we can learn from it, rather
than imposing what we suspect to be true on the data and creating an affirmative picture.
Tukey recognized the usefulness of order statistics, and what they tell an analyst about
univariate data. However, he also commented that direct generalisations of order statistics
‘fail miserably’ in the multivariate setting. He instead represented the information carried
by order statistics in the univariate setting with a picture in the bivariate setting, using
the concept of depth.

How is Figure 1.1(a) akin to univariate order statistics? First, we know that points
in the lightest, triangle shaped region are very central, and can serve as medians or near
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medians of the data. Further, the shape of the regions tells us that the data is spread
somewhat symmetrically about the centre. This is akin to the distance of certain univariate
quantiles from the centre. Lastly, we can see the observations which are outlying: those
observations which have low depth. Obviously, we cannot create such a picture beyond 3-
dimensions, however, we shall see that the principle ideas laid out by Tukey (1974) underlie
many depth functions and their associated data visualization and inference procedures.

1.1 Multivariate depth functions

So far, the depth of a point has been taken to be with respect to some set of sample of
points Xn ∈ X . We will now identify samples with empirical measures Fn and the depth of
a point will be reinterpreted as depth with respect to a measure rather than a sample. This
formulation provides a natural definition for population values of depth D(·;F ) and makes
it easy to write down mathematically. If we let F be the set of distributions on Rd we can
write multivariate depth functions as D: Rd×F → R+. Figure 1.1(b) shows the theoretical
halfspace depth contours D(·;F ) when F = N2(0, I); F is the bivariate standard normal
distribution. Notice the shape is circular like that of the normal distribution, and that the
depth is largest in the centre.

We have not discussed how depth functions measure centrality. To do this, we must
present a list of precise mathematical properties that, when possessed, ensure a function
does indeed measure centrality of a point with respect to a distribution. In their seminal
paper Zuo and Serfling (2000a) give a concrete set of mathematical properties which a
multivariate depth function should satisfy in order to be considered a statistical depth
function. These properties include:

1. Affine invariance: This implies any depth based analysis is independent of the co-
ordinate system. Particularly, the analysis is independent of the scale on which the
data is measured.

2. Maximality at centres of symmetry: If a distribution is symmetric about a point,
then surely this point should be regarded as the most central point.

3. Decreasing along rays: This property ensures that as one moves away from the
deepest point, the depth decreases.

4. Vanishing at infinity: As a point moves toward infinity along some ray, the depth
vanishes.
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A function D: Rd ×F → R+ which satisfies these four properties is known as a statistical
depth function. The last three properties are all related to centrality, where the first is
to ensure there is no dependence on the measurement system. Not all popular depth
functions satisfy all four of these properties, but they typically satisfy most of them. We
have already discussed affine invariance, let us discuss each of the remaining properties in
detail. Maximality at centre means that if a distribution is symmetric about some point θ,
the depth is maximal at that point. Think of the median coinciding with the mean in the
univariate case. There are multiple definitions of symmetry in the multivariate setting (see
Zuo and Serfling, 2000b, for more details.) Decreasing along rays means that as one moves
away from the deepest point along some ray, i.e., moves away from the centre, the depth
decreases. This property can be replaced by quasi-concavity. Suppose that α ∈ (0, 1) and
x, y ∈ X . Then, a depth function is quasi-concave if

D(αx+ (1− α)y;F ) ≥ D(x;F ) ∧D(y;F ),

where x ∧ y = min{x, y} for two real numbers x and y. It is clear that quasi-concavity
implies the decreasing along rays property; suppose that D(θ;F ) = supxD(x;F ), then:

D(θ;F ) ≥ D(αθ + (1− α)x;F ) ≥ D(x;F ).

Vanishing at infinity means that as the point moves along a ray to infinity, its depth
approaches zero. If all four of these properties are not satisfied, it does not necessarily
mean that a depth function is invalid or not useful in data analysis. It is merely a limitation
to consider.

Aside from coordinate invariance and centrality, there are other properties that are
desirable for a depth function to satisfy:

• Robustness: A robust depth function implies subsequent inference will be robust.
For example, robust depth functions generally lead to high breakdown multivariate
medians (Chen and Tyler, 2002; Zuo, 2003).

• Consistency/Limiting Distribution: Consistency of the sample depth values for pop-
ulation depth values and existence of a limiting distribution of the sample depth
values is useful for developing hypothesis tests and confidence intervals.

• Continuity: Continuity can be a building block for asymptotic inference and for
optimizing the depth function.

• Computation: Obviously, we would want the function to be quickly computable.
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From the list above, it is certainly not surprising that there are many depth functions;
there are many desirable properties, making it difficult to cover them all. We now intro-
duce several depth functions, the first of which being the halfspace depth (Tukey, 1974;
Rousseeuw1 and Ruts2, 1999).

Definition 1 (Halfspace depth). Let Sd−1 = {u ∈ Rd : ∥u∥ = 1} be the set of unit vectors
in Rd. Define the halfspace depth HD of a point x ∈ Rd with respect to some distribution
X ∼ F as,

HD(x;F ) = inf
u∈Sd−1

Pr(X⊤u ≤ x⊤u) = inf
u∈Sd−1

Fu(x),

where Fu is the distribution of X⊤u.

Halfspace depth is the minimum of the projected mass above and below the projection of
x, over all univariate projections. Halfspace depth satisfies all four properties corresponding
to a statistical depth function, including the stronger version of decreasing along rays:
quasi-concavity. The halfspace sample depths are uniformly consistent and, in some cases
outlined in (Massé, 2004), these sample depth values each weakly converge to some non-
normal random variable. Halfspace depth is an upper semi-continuous function which
identifies the distribution in certain cases (but not always) (Zuo and Serfling, 2000a; Nagy,
2018). However, halfspace depth is frequently cited as being computationally complex
(Serfling, 2006), especially for moderate dimensions. Recently an algorithm for computing
halfspace depth in high dimensions has been proposed (Zuo, 2019) that may aid in this
regard.

We can replace the infimum in Definition 1 with an average (Ramsay et al., 2019).

Definition 2 (IRW Depth). Define integrated rank-weighted depth as

IRW(x;F ) =

∫
Sd−1

Pr(X⊤u ≤ x⊤u) ∧ (1− Pr(X⊤u ≤ x⊤u)) dν(u),

where ν denotes the Haar measure.

IRW depth vanishes at infinity and is maximal at points of symmetry of F . It is
invariant under similarity transformations, which is a weaker than affine invariance. It
is conjectured that this function also has the decreasing along rays property. This depth
function does not have as many desirable depth-like properties as halfspace depth, but
instead it can be approximately computed quickly, even in high dimensions, with statistical
guarantees. This depth function also has a natural extension to functional spaces (Fraiman
and Muniz, 2001), which will be covered later. IRW sample depths are also uniformly
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consistent and asymptotically normal, under mild assumptions and this depth function is
continuous except at atoms of the distribution (Ramsay et al., 2019). We can replace the

Pr(X⊤u ≤ x⊤u) ∧ (1− Pr(X⊤u ≤ x⊤u))

in Definition 2 with
Pr
(
X⊤u ≤ x⊤u

) (
1− Pr

(
X⊤u < x⊤u

))
.

This is integrated dual depth, which we denote by IDD. Integrated dual depth which has
many of the same properties of IRW depth and was introduced by Cuevas and Fraiman
(2009).

After halfspace depth, simplicial depth was introduced (Liu, 1988).

Definition 3 (Simplicial Depth). Suppose that X, Y1, . . . , Yd+1 are independent, Rd-valued
random variables, each having distribution F . Define simplicial depth as

SMD(x;F ) = Pr(X ∈ Sim(Y1, . . . , Yd+1)),

where Sim(Y1, . . . , Yd+1) is the simplex with vertices Y1, . . . , Yd+1.

The sample simplicial depth values are asymptotically normal under some conditions,
which can make inference based on simplicial depth values easier to work with (Liu, 1988).
Simplicial depth is, however, difficult to compute in even moderate d > 3 dimensions.
This depth function is a statistical depth function if F is angularly symmetric (see Zuo
and Serfling, 2000b), but fails to satisfy the maximality at centre and decreasing along
rays for some discrete distributions. Seeing as we are typically concerned with continuous
distributions in a depth-based inference context, this is not a major issue (Liu, 1988; Zuo
and Serfling, 2000a).

The investigation of depth functions by Zuo and Serfling (2000a) lead to the study
of a general and powerful statistical depth function based on outlyingness functions. An
outlyingness function O : Rd × F → R measures the degree of outlyingness of a point.
Intuitively, we can then define a depth as

D(x;F ) =
1

1 +O(x;F )
,

which is referred to as a Type C depth by Zuo and Serfling (2000a). A particular version
of a Type C depth function is projection depth.
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Definition 4 (Projection Depth). Given a univariate, translation equivariant and scale
equivariant, location measure ϱ and a univariate, scale equivariant and translation invari-
ant measure of scale σ, we can define projected outlyingness as

O(x;F ; ϱ, σ) = sup
u∈Sd−1

∣∣u⊤x− ϱ(Fu)
∣∣

σ(Fu)

and thus, projection depth as,

PD(x;F ; ϱ, σ) =
1

1 +O(x;F ; ϱ, σ)
.

Typically, ϱ and σ refer to the median and median absolute deviation, but most prop-
erties of projection depth have been investigated for general ϱ and σ. In this work, we will
typically use

O1(x;Fn) = sup
∥u∥=1

∣∣u⊤x−MED
(
X⊤
nu
)∣∣

MAD(X⊤
nu)

or O2(x;Fn) = sup
∥u∥=1

∣∣u⊤x−MED
(
X⊤
nu
)∣∣

IQR (X⊤
nu)

,

where we use a slight abuse of notation and let X⊤
nu refers to the sample {X⊤

1 u, . . . , X
⊤
n u}.

Projection depth was discussed in various forms by Stahel (1981); Donoho (1982); Liu
(1992); Zuo and Serfling (2000a) but a thorough investigation of the properties of projection
depth was done in the successive papers Zuo (2003, 2004). As a result of these papers,
it has been shown that projection depth is a statistical depth function, is quasi-concave
and is Lipschitz continuous under very mild conditions on σ and ϱ. Computation is again
difficult; there are approximation algorithms for moderate to large dimensions, but they do
not have any statistical guarantees (Liu, 2017; Dyckerhoff et al., 2021; Shao et al., 2022).

Another popular depth function is spatial depth (Serfling, 2002), see also (Small, 1990)
for more background on the spatial median and spatial depth. Let u ∈ Sd−1, where Sd−1

is as defined in Definition 1. Spatial depth is based on spatial quantiles:

Q(u;F ) = min
y∈Rd

E [∥X − y∥+ ⟨u,X − y⟩ − ∥X∥ − ⟨u,X⟩] . (1.1)

Spatial quantiles are extensions of univariate quantiles. Inverting this function at a point
x ∈ Rd gives a measure of outlyingness: ∥Q−1(x;F )∥ (Serfling, 2002). Let

S(x) =

{ x
∥x∥ x ̸= 0

0 x = 0
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and then define ∥∥Q−1(x;F )
∥∥ = ∥E [S(x−X)]∥ .

We can now define spatial depth.

Definition 5 (Spatial Depth). Define the spatial depth of a point x ∈ Rd with respect to
some distribution X ∼ F as,

SD(x;F ) = 1−
∥∥Q−1(x;F )

∥∥ . (1.2)

Spatial depth satisfies three of the above four properties required for a depth function
to be classified as a statistical depth function. Spatial depth is invariant under similarity
transformations but is not invariant under all affine transformations. One useful feature
of spatial depth is that it has a natural extension to Banach spaces, since it’s definition is
based on a norm. In addition, the norm-based definition makes it easier to compute.

Related to spatial depth is Mahalanobis depth. Instead of using the Euclidean norm
in Definition 5, we can obtain affine invariance by using ∥x∥Σ =

√
x⊤Σ−1x, where Σ is the

covariance matrix related to F .

Definition 6 (Mahalanobis Depth). Define the Mahalanobis depth MH of a point x ∈ Rd

with respect to some distribution F as,

MH(x;F ) =
1

1 + ∥x− E [X]∥2Σ
. (1.3)

Mahalanobis depth satisfies all four properties required to be a statistical depth func-
tion. One criticism of Mahalanobis depth is that Σ and E [X] are usually replaced by
estimators which are not robust, such as the sample covariance matrix and sample mean,
respectively. In order for the Mahalanobis depth function to remain robust, it is necessary
to use robust estimators of Σ and E [X]. Examples of such estimators are the re-weighted
MCD estimators studied by Rousseeuw and van Zomeren (1990). We denote the depth
values computed using these MCD estimators by MH75, where the 75% comes from the
fact that we are using the 25% breakdown version of the MCD estimators. There exists
other multivariate depth functions, not covered here, but we have tried to cover ones that
are popular and are useful for inference procedures proposed in this thesis.

9



0.0 0.2 0.4 0.6 0.8 1.0t

In
tr

ad
ay

 L
og

 R
et

ur
ns

 o
f S

N
A

P
 s

to
ck

−
0.

00
2

−
0.

00
1

0.
00

0
0.

00
1

0.
00

2

Figure 1.2: Intraday log returns of SNAP stock for 50 days. Data were smoothed to fit
50 basis functions and each edge was trimmed by 10%.

1.2 Functional depth functions

Figure 1.2 shows 50 curves, each curve is one trading day of logarithmic returns per minute
for SNAP stock, these curves are a sample of functional data. The analysis of functional
data is one of the most active research areas developed in recent decades (Ullah and
Finch, 2013; Wang et al., 2016). In this setting, the observed data are not vectors but
smooth functions on some domain. Generally, functional data comes in vector form or
discretized form, and so it can appear multivariate at first glance. The difference from
multivariate data is that there is reason to assume there is some underlying smoothness
relating the columns of the vectors; there is reason to assume we have observed pieces of a
function rather than separate variates. Incorporating the smoothness condition often leads
to improved inference on such data. Observed functions are often assumed to have domain
[0,1], we adopt that assumption as well, but the domain can be multivariate as well. For
example, an image can be viewed as a function on a bivariate domain.

The analysis of functional data can be involved; the data generally have to be smoothed
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(Ramsay and Silverman, 2006) and sometimes aligned (Srivastava et al., 2011) before an
inference procedure is applied. There is a large amount of literature simply regarding the
smoothing and aligning process, (see e.g., Ramsay and Silverman, 2006; Srivastava et al.,
2011). After prepossessing, inference procedures then often require at least an elementary
understanding of functional analysis and stochastic processes, which makes such procedures
not as easily accessible as univariate methods. For example, functional principle component
analysis (Dauxois et al., 1982), a central technique in functional data analysis, requires some
understanding of the Karhunen–Loeve expansion; spectral decomposition of functions. To
aid the reader, we provide a brief introduction to some of these concepts in Appendix B.
In addition, there is lack of well-known parametric models for functional data outside of
Gaussian process models. This has lead to the wide-spread development and application
of nonparametric inference procedures for functional data (Wang et al., 2016). As a result,
in the past two decades, depth functions have been extensively developed for functional
data.

We can define depth in general spaces as follows: Let F be the set of measures on some
space F, then, we can write depth functions generally as D: F × F → R+, where larger
values of D imply that the point x ∈ F is deep with respect to some F ∈ F . In the setting
of functional data, typically F is a subset of one of two spaces. First, F may be a subset
of L 2([0, 1],B, µ), the space of all Borel measurable, square integrable functions on the
interval [0,1]. We denote the Borel sets over [0, 1] by B and the Lebesgue measure over
[0, 1] by µ. We may write L 2([0, 1],B, µ) as L 2 for short when the context is clear. F
would then be the set of measures on L 2. The other popular choice for the working space
F is the space of continuous functions C ([0, 1]). One may also interpret functional data as a
continuous time stochastic processes indexed by t ∈ [0, 1]. We typically assume conditions
on the observations such that they may be interpreted equivalently as random draws from
L 2 or as stochastic processes characterized by their finite dimensional distributions X(t),
see Section 2.3.

The space F could also be a Cartesian product of function spaces L 2 or C , which would
mean that the observations are vectors of functions. Such data are known as multivariate
functional data, we will see that many functional depths are defined for such data. To
avoid confusion, we use Fp to represent the space of multivariate functional observations,
that is p-dimensional vectors of F-valued functions. We will reserve F for representing a
function space. Note that multivariate functional data encompasses the case where p = 1.

The interpretation of depth in the functional setting differs from that of the multivariate
setting. In earlier work on functional depth measures, for univariate functions, a function
would be ‘deep’ if that function was ‘surrounded’ by many other functions contained in
the sample (Fraiman and Muniz, 2001; López-Pintado and Romo, 2009). The definition of
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Figure 1.3: A sample of Gaussian processes with a shape outlier highlighted in pink.
Notice that the outlier is deep in terms of magnitude but the shape is different from the
rest of the sample.

depth in the functional context evolved to include the shape of the function as well (Hubert
et al., 2015; Serfling and Wijesuriya, 2017; Dai and Genton, 2018; Harris et al., 2020). In
other words, a function is considered ‘deep’ if it is both surrounded by many functions in
the sample and similar in shape to many functions in the sample. Figure 1.3 shows an
example of a shape outlier. Notice that the outlier is deep in terms of magnitude but the
shape is different from the rest of the sample. Such an observation may have a low depth
value due to its shape.

Beyond the meaning of deep, there are other differences between the functional setting
and the multivariate setting. Functional depth functions have different transformation
invariance requirements (Gijbels and Nagy, 2017; Serfling and Wijesuriya, 2017). We can
characterize transformation invariance properties as follows,

D(X;F ) = D(g(X); g(F )), for g ∈ G , (1.4)

where G is a class of function mappings g from F → F and g(F ) can be interpreted as
the distribution of g(Y ) if Y ∼ F . Note that g(Fn) results in the empirical measure of g
applied to the random sample of size n. We state two types of invariance, following the
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notation of Gijbels and Nagy (2017), the first of which is scalar invariance

P1-S: G = {g : g(X) = aX + b, a ∈ R, b ∈ F},

and the second is affine invariance in the sense that

P1-F: G = {g : g(X) = aX + b, a, b ∈ F, a(t) ̸= 0, t ∈ [0, 1], aX ∈ F}.

The need for translation invariance is obvious, but it is not obvious that P1-F is necessary
as opposed to only P1-S. The scale invariance property P1-S has the same motivation
as that of affine invariance in the multivariate setting; we would like the inference to be
unaffected by changes in measurement units. It is difficult to understand the motivation for
invariance under scaling all sample functions by an arbitrary function. Since the columns
of the observed vectors are thought to be smoothly related, it may seem strange to have
the depth function invariant with respect to some arbitrary, heterogeneous column scaling,
in fact, Serfling and Wijesuriya (2017) argues this is not desirable. It could be desirable to
have the depth function be unaffected by reflections and rotations of the sample, neither
of which are covered by P1-F. For many existing functional depth functions, it is trivial to
show that they are invariant under reflections of the data, so this is not much of a concern.
Rotational invariance, however, could be added, as its own property. We can also define
an equivalent property of P1-F for multivariate functional data, that is, for X ∈ Fp, affine
invariance could mean

P1-Fb: G = {g : g(X) = AX + b, AX + b ∈ Fp, A(t) is invertible ∀t ∈ [0, 1]}.

A popular method is to incorporate the derivatives of the observations1 into the analysis
by defining a new depth function as follows: For some differentiable function x, consider
the pair (x, x(1)). Take the depth of x to be the multivariate functional depth of (x, x(1))

with respect to the sample {(X1, X
(1)
1 ), . . . , (Xn, X

(1)
n )}. This method often provides sub-

stantially better results (Cuevas et al., 2007; Hubert et al., 2012), one can also incorporate
higher orders of derivatives or other functions related to the observations. However, com-
puting depth this way creates a transformation invariance issue; this new depth function
will not satisfy P1-F, even if the multivariate functional depth used satisfies P1-Fb. In-
deed, scaling each Xi by a ∈ F results in a different transformation of the derivative and

1Of course, the observations are then assumed to be differentiable, which technically modifies the
assumed space F.
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produces different observations

(aXi, aX
(1)
i + a(1)Xi),

which would not give the same depth values. However, in order for X
(1)
i to be affected

overly by arbitrary scaling, the derivatives of a must be large relative to function Xi,
suggesting the scaling function a is quite steep in some places. It is hard to see a reason
to scale the data by steep functions in practice. If a is a constant function, then scaling
the data corresponds to scaling the derivative and all is well; P1-S will still be satisfied.

As seen by the discussion on transformation invariance, it is not straightforward to
provide an analogue of Zuo and Serfling (2000a) for the functional setting. There have
been some properties, which were first outlined by Nieto-Reyes and Battey (2016) and then
later expanded and refined in Gijbels and Nagy (2017). Some desirable properties have
also been discussed by Serfling and Wijesuriya (2017). Summarizing all such properties is
somewhat complex and so instead we can list a set of criteria we deem suitable for using
functional depth measures in a hypothesis testing problem, which is conducive to the work
in Chapters 3 and 4.

Namely, we would like the depth measures to admit definitions on multivariate func-
tional data. Choosing depth measures that admit definitions for multivariate functional
data allows for the use of derivatives, warping functions or other functions in the depth
computation.

It is also desirable for the depth measures to be uniformly consistent with a rate of
O(n−1/2) under some general conditions, which gives that for large n. So far, this has only
been shown for the depth of Fraiman and Muniz (2001) by Nagy and Ferraty (2019). We
extend their result to the random projection depth and a special case of the multivariate
halfspace depth in Chapter 3 and Chapter 4. Uniform consistency allows for asymptotic
critical values for test statistics based on depth values and eliminates the computational
burden of re-sampling methods. Lastly, we use functional data depth measures which have
implementations in R or software that can be integrated into R. This last restriction allows
us to readily provide simulation results for the hypothesis tests, as well as implementations
that can be used in practice.

We first discuss multivariate functional halfspace depth (Hubert et al., 2012; Claeskens
et al., 2014), which was introduced in the thesis by Slaets (2011). This depth is defined for
multivariate functional data, so we can assume that each observation can be represented as
Xi : [0, 1] → Rp. To compute the multivariate functional halfspace depth of x : [0, 1] → Rp

we need to compute the pointwise multivariate halfspace depth (Definition 1) of each
x(t) with respect to Ft,n, the empirical distribution of {Xi(t), . . . , Xn(t)}. For each t,
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HD(x(t);Ft,n) then gives one depth value. The pointwise depth values HD(x(t);Ft,n) are
then combined by computing a weighted average of them, where the weight function down-
weights regions where all curves are similar in amplitude.

Definition 7 (Multivariate Functional Halfspace Depth). Let α ∈ [0, 1/2), Ft be the dis-
tribution of X(t) if X ∼ F and HDα(Ft) = {y ∈ Rp : HD(y;Ft) ≥ α}. Then, multivariate
functional halfspace depth is defined as

MFHD(x;α;F ) =

∫
wα(t)HD(x(t);Ft)dt, where wα(t) =

vol(HDα(Ft))∫
vol (HDα(Ft)) dt

.

Here, α is a parameter that controls the degree of ‘downweighting’. If we choose α = 0
and p = 1, multivariate functional halfspace depth reduces to the functional depth measure
of Fraiman and Muniz (2001). Multivariate functional halfspace depth is invariant under
transformations of the type P1-Fb. The sample depth values of this depth measure are
also uniformly almost sure consistent under fairly mild conditions (see Claeskens et al.,
2014). We can use the R package MFHD or the fda.usc package via depth.FMp to compute
the MFHD sample depth values. We opt for the latter in our simulations in Section 3.4.
We use α = 0 throughout this thesis and thus suppress the notation to MFHD(x;F ).

We next consider modified band depth. For some x ∈ F and a set of functional obser-
vations Y1, . . . , Yj we can define

B (x;Y1, . . . , Yj) =

{
t ∈ [0, 1] : min

r=1,...,j
Yir(t) ≤ x(t) ≤ max

r=1,...,j
Yir(t)

}
,

as the set such that x is in the j-band delimited by Y1, . . . , Yj.

Definition 8 (Modified band depth). If Y1, . . . , Yj are independent and come from the
distribution F , we can define

MBD
(x)
j = EF [µR(B (x;Y1, . . . , Yj))]

where µR is the standard Lebesgue measure on R. Then the ‘modified’ band depth with
parameter J is equal to

MBDJ(x;F ) =
J∑
j=2

MBD
(x)
j .

This depth measure is invariant under transformations described by P1-F. The sample
modified band depths are uniformly consistent under very mild conditions (see Gijbels
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and Nagy, 2015, 2017). There are two multivariate functional extensions of this depth
measure, Ieva and Paganoni (2013) and Lopez-Pintado et al. (2014). We use that of
Ieva and Paganoni (2013) because of its existing implementation in R. This multivariate
extension of modified band depth is defined as

MMBDJ(x;F ) =

p∑
k=1

wkMBDJ(x;F
k), and

p∑
k=1

wk = 1,

where F p is the marginal distribution pertaining to the pth univariate functional argument
in the vector of observations.

Functional spatial depth, described in Chakraborty and Chaudhuri (2014), is the infinite
dimensional extension of multivariate spatial depth. Define spatial depth to be

SD(x;F ) = 1− ∥E [s(x−X)]∥ ,

where

s(y) =

{
y/ ∥y∥ ∥y∥ ≠ 0

0 o.w.
.

Here, ∥·∥ refers to the L 2 norm, but this definition is valid on any Banach space. An
interesting extension of spatial depth is the kernelized spatial depth (Sguera et al., 2014).
Consider a mapping into a feature space φ : L 2 → F and some kernel function on L 2, say
γ : L 2 × L 2 → R defined as

γ(x, z) = ⟨φ(x), φ(z)⟩.

We can now define the kernel depth as

KSD(x;F ) = 1− ∥E [s(φ(x)− φ(X))]∥ .

Spatial depth and kernelized spatial depth are invariant as in P1-F if a is surjective, which
is a fairly mild restriction. The sample versions of these depth measures are also uniformly
consistent, (see Gijbels and Nagy, 2015, and the references therein). We can extend these
depth measures to the multivariate functional setting by computing the spatial functional
depth values marginally and then taking an equally weighted average of such marginal
depth values; analogous to what is done above for the modified band depth (Ieva and
Paganoni, 2013). One might also take a multivariate depth of the marginal functional
depths, but this is more computationally expensive. Both kernelized and standard spatial
functional depths are implemented in the R package fda.usc.

The last of the functional depth measures we discuss is the random projection depth
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of Cuevas et al. (2007). The idea behind this depth measure is to choose many, say M ,
random unit functions according to some valid measure P on the unit sphere S in L 2.
Then, for each direction um, compute a separate depth value based on the projections onto
um, i.e., D(⟨x, um⟩;Fum). Recall that Fum is the CDF of the random variable ⟨X, um⟩ where
X ∼ F . The depth values D(⟨x, u⟩;Fu) are then averaged to give a final depth value, viz.

RPM(x;F ) =
1

M

M∑
m=1

D(⟨x, um⟩;Fum) ≈
∫
S

D(⟨x, u⟩;Fu) dP (u). (1.5)

We will denote the right hand term as simply RP. In this work, we take D(⟨x, u⟩;Fu) =
Fu(x)(1 − Fu(x)), use M = 20 projections and u1, . . . , uM are Gaussian processes with
exponential variogram γ(s, t) = exp(−5|s−t|), standardized such that they have unit norm.
Cuevas et al. (2007) introduce a second version in which they calculate both the projection
of the function and the projection of the function’s first derivative, which provides pairs of
observations. They then use a multivariate depth on the couples:

RP′
M (x;F ) =

1

M

M∑
m=1

D((⟨x, um⟩, ⟨x(1), um⟩);Fum,(1)) ≈
∫
S
D((⟨x, u⟩, ⟨x(1), u⟩);Fu,(1)) dP (u),

where Fu,(1) is the bivariate distribution of (⟨X, u⟩, ⟨X(1), u⟩) if X(1) is the first derivative
of X ∼ F . For D (·) we take the likelihood depth (Müller, 2005). Note that this depth
does not have any consistency or invariance properties presented in the original paper.
However, the random projection depth is a version of integrated dual depth (Cuevas and
Fraiman, 2009) for which consistency and invariance are established. The R function to
compute the sample depth values can be found in the fda.usc package.

In Chapter 3 and Chapter 4 we use depth values computed on the pair (x, x(1)). We
take the depth of x to be the multivariate functional depth of (x, x(1)) with respect to

the sample {(X1, X
(1)
1 ), . . . , (Xn, X

(1)
n )}. When we used the derivative of the function in

the depth computation, we will denote the depth by D′. For example, when computing
the multivariate functional halfspace depth with the derivative, we denote the depth by
MFHD′.

1.3 Inference based on depth functions

Precisely how can we use these depth functions to gain insights from data? Depth func-
tions provide definitions of order statistics because observations can be ordered by their
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depth values. This idea provides immediate analogues of the aforementioned visualization,
estimation and hypothesis testing procedures. Since the ordering is center outward, the
definitions are modified. For example, the definition of the depth-based median is:

MED(F ) = argmax
x∈F

D(x;F ).

These medians are usually robust, much more so than the sample mean vector (Fraiman
and Muniz, 2001; Chen and Tyler, 2002; Zuo, 2004). Furthermore, they inherent any
transformation invariance properties possessed by the depth function. We can subsequently
define sample depth ranks as

R̂i = #{Xj : D(Xj;Fn) ≤ D(Xi;Fn) for j ∈ {1, . . . , n}}, i ∈ {1, . . . , n}. (1.6)

Depth-based ranks are a building block of various multivariate and functional rank tests
(Liu and Singh, 1993; Serfling, 2002; López-Pintado and Romo, 2009; Chenouri et al.,
2011). Ranks also give a means with which to construct multivariate, trimmed means
(Fraiman and Muniz, 2001; Zuo, 2002).

The depth values can also be directly used in testing procedures (Li and Liu, 2004;
López-Pintado and Wrobel, 2017; Flores et al., 2018). We have also seen depth used for
functional boxplots (Serfling and Wijesuriya, 2017) and multivariate bagplots (Rousseeuw
et al., 1999). In the same vein, we can visualise multivariate distributions through one
dimensional curves based on depth values (Liu et al., 1999). Such curves describe scale,
kurtosis, skew and more. In summary, depth functions facilitate a framework for robust,
nonparametric inference in F-space. In fact, in the past decade this depth-based inference
framework has expanded to include solutions to clustering (Jörnsten, 2004; Jeong et al.,
2016; Baidari and Patil, 2019), classification (Jörnsten, 2004; Cuevas et al., 2007; Sguera
et al., 2014; Hubert et al., 2017), outlier detection (Hubert et al., 2015; Sguera et al.,
2016; Kuhnt and Rehage, 2016), change-point and process monitoring problems (Liu, 1995;
Chenouri et al., 2020b) and discriminant analysis (Chakraborti and Graham, 2019). We
further expand this framework in this thesis.

1.4 Contributions

Starting in Chapter 2, we develop a method for detecting multiple change-points in the
variability of a series of multivariate observations. In change-point problems, the goal is
to detect sudden changes in the underlying distribution of the data; the idea is to identify
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points in time in which the model from which the data is generated changes. This can
be a detection in real time (online change-point detection) or retrospectively (offline). In
the offline setting, there is a distinction between methods that can detect at most one
change-point, and methods that can detect multiple change-points.

Change-point detection problems originate from quality control (Page, 1954), but they
have since been developed for a multitude of applications. Some of these include climate
change (Reeves et al., 2007), health (Aston et al., 2017), speech recognition (Aminikhang-
hahi and Cook, 2017) and finance (Galeano and Wied, 2017). Despite being an old prob-
lem, there have even been some rather large innovations in the univariate setting quite
recently (Killick et al., 2012; Fryzlewicz, 2014). We have also seen developments for higher
dimensional data (Aston et al., 2017; Wang et al., 2020) including functional data (Aue
et al., 2009a; Horváth and Kokoszka, 2012; Gromenko et al., 2017; Aue et al., 2019; Li and
Ghosal, 2018; Sonmez, 2018).

Moving from univariate to multivariate data, detecting change-points becomes more
difficult. This is a result of both the ‘usual problems’, which include visualization, com-
putation and model complexity, as well as the fact that in the multivariate setting there
exists additional types of structural changes which can occur; changes in the dependence
structure of the data. In addition, we wish to consider the robustness of the procedure,
especially since the lack of visualization can make detecting outliers difficult.

In fact, robustness is often ignored in the analysis of statistical techniques, including
that of change-point estimation methods. It can be easy for a change-detection method to
fail on an outlier, since methods are designed to set off alarms when relatively large values
are observed. Despite this, many authors do not consider robustness when evaluating their
change-point methodologies. In a recent comparison of popular change-point methods van
den Burg and Williams (2020) consider fourteen methods, but only four (Knoblauch and
Damoulas, 2018; Taylor and Letham, 2018; Fearnhead and Rigaill, 2019) of the original
papers consider robustness and even less are actually robust. It is not however, that real
data do not contain outliers. For example, Figure 1.4 contains the returns of four European
stocks, originally analysed by Galeano and Wied (2017). Notice the two large outliers in
the Siemens returns.

In addition to robustness, many multivariate change-point algorithms are not concerned
with changes in the second order properties of the data. Many of the algorithms for
multivariate change-point detection in the covariance or correlation matrix are very recent,
e.g., (Aue et al., 2009b; Galeano and Wied, 2014; Wang et al., 2020). There does not exist
one procedure which robustly and nonparametrically accounts for multiple changes in the
variability of multivariate data. In Chapter 2 we present such a procedure, applying it
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Figure 1.4: Financial returns for four European stocks. Notice the outliers in the bottom
left panel.

to the data in Figure 1.4. Our method combines ideas from data depth ranks (Chenouri
et al., 2020b), the PELT and wild binary segmentation algorithms (Killick et al., 2012;
Fryzlewicz, 2014) and classical Kruskal Wallis k-sample testing (Kruskal, 1952). We are
able to match some change-points detected by Galeano and Wied (2017) for these returns,
without modelling the underlying time series.

In Chapter 3 we again use the classical Kruskal Wallis k-sample test, this time in the
context of functional data. We make use of functional data depth functions to detect dif-
ferences in the covariance kernels of k-samples. Equality of covariance kernels is analogous
to testing for a difference in variance in the univariate set up; the covariance kernel of a
continuous time stochastic process X(t) is defined as:

K(s, t) = E [X(t)X(s)]− E [X(t)] E [X(s)] .

Tests of this type have been applied to problems in engineering (Jarušková, 2013), DNA
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microcircles (Panaretos et al., 2010) and biology (Fremdt et al., 2013). In this thesis, we
apply our procedure to the curves in Figure 1.4, as part of applying a functional GARCH
model (Cerovecki et al., 2019). There have been a few tests of this type proposed (Panaretos
et al., 2010; Fremdt et al., 2013; Pigoli et al., 2014; Paparoditis and Sapatinas, 2016; Guo
and Zhang, 2016; Cabassi et al., 2017; López-Pintado and Wrobel, 2017; Boente et al.,
2018; Guo et al., 2018; Kashlak et al., 2019), but they typically have not been evaluated
for robustness. In Chapter 3, we show that under some heavy tailed observations, many
of these tests break down.

Many of these tests also involve estimation of the covariance kernel for each group,
and/or resampling procedures which can be computationally expensive (Fremdt et al.,
2013; Cabassi et al., 2017). Additionally, some of these tests do not possess desirable
transformation invariance properties, which means they may depend on the coordinate
system (Guo and Zhang, 2016). Through the use of functional data depth functions and
ranks, we provide a robust nonparametric test that possesses desirable invariance properties
and is computationally efficient. We show with simulation that, in some scenarios, our test
is more powerful than many existing tests.

The results of the Chapters 2 and 3 can be combined to give a method for detecting
change-points in the covariance kernel of a sequence of functional observations. This is
the subject of Chapter 4. Detecting the presence and location of change-points in the
covariance operator of a sequence of observed functions has received some recent interest
in the statistics literature, see, e.g., (Aston et al., 2017; Harris et al., 2021). For example,
recently change-point methods have been developed and applied to f-MRI data where the
authors aim to detect many change-points, each occurring at the subject level within the
data (Aston et al., 2017). This data is not only very high dimensional, but it is dependent,
noisy and computationally difficult since the change-point algorithm must be run once for
each subject. In Chapter 4 we introduce three procedures to perform covariance operator
change-point detection: a hypothesis test for the presence of at most one change-point,
a hypothesis test for the presence of an “epidemic period” and an algorithm to estimate
the locations of multiple change-points when the number of change-points is not known.
We may call these methods FKWC methods, or Functional Kruskal-Wallis Covariance
operator methods. Since our methodology does not include estimation of the covariance
operator our methods are computationally cheap. For example, our procedure can identify
multiple change-points in O(n log n) time. Our procedure is fully non-parametric and is
robust to outliers through the use of data depth ranks. We show that when n is large,
our methods have simple behaviour under the null hypothesis. We also show that the
FKWC change-point procedures are n−1/2-consistent. In addition to asymptotic results,
we provide a finite sample accuracy result for our at-most-one change-point estimator. In
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simulation, we compare our methods against several others. We also present an application
of our methods to intraday asset returns and f-MRI scans.

In Chapter 5 we explore ways in which depth-based methods can be used to conduct
differentially private inference. Analyses that satisfy differential privacy protect study par-
ticipants from harmful adversaries who wish to learn sensitive information about them. It
has been shown in numerous papers, e.g., (Sweeney, 2007) that removing metadata from a
database does not necessarily make a dataset private. In fact, in large data sets, given little
information about the user, it is possible to identify them in the database (Narayanan and
Shmatikov, 2008; Sankararaman et al., 2009; Dwork et al., 2017). For example, Narayanan
and Shmatikov (2008) show that in the Netflix prize dataset, a dataset which contains
the movies ratings of half of a million subscribers, knowing around 8-12 ratings is enough
to identify the entire record in the database with very high certainty (>99%). They ad-
ditionally argue that such a case study is valuable, in that it may be possible to learn
sensitive information based on movie ratings. For example, a user may have rated movies
with “predominantly gay themes” highly, which obviously may be sensitive information to
some users. Further, once a released database is non-private, it is ”forever non-private”.
By this, it is meant that any new online identity can be linked back to the database, if
that new identity reveals information about their movie preferences. As a result of this
work, and many related works, differential privacy was developed (Dwork et al., 2006).

Differential privacy gives the database participant the guarantee that an adversary
cannot (virtually) determine whether or not they were part of the database, even if the
adversary is given auxiliary information. Such a guarantee implies that there is no privacy
cost (aside from leaks by say, the data curators) to participating in the database. Some
other privacy definitions have been presented, however differential privacy has several ad-
vantages that have lead to its recent extensive study. First, it is resistant to many types of
database attacks. Determining, or attempting to determine whether or not an individual
is in a database is called a tracing attack. As a result of being resistant to tracing attacks,
differentially private databases and analyses are also resistant to ‘larger’ privacy breaches,
such as database reconstruction attacks (Dwork et al., 2017). Secondly, the definition of
differential privacy is very general; it does not make rigid assumptions about what infor-
mation the attacker has. The attacker can have as much information about the individual
as possible; for example they may know the values of all but one of the attributes included
in the dataset about the individual they are trying to trace.

To be precise, the meaning of “a study is differentially private” is that any statistic
or sanitized database made public satisfies the mathematical definition of differential pri-
vacy, which we defer until Chapter 5. A non-private statistic or database is privatized
through differentially private mechanisms, which are stochastic algorithms used to com-
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pute statistics or sanitized databases. A major goal when developing both private inference
procedures and private database release schemes, is to estimate and limit the information
or utility loss endured as a result of privatization.

In this interest, one area of statistics that has been shown to be amenable to priva-
tization is robust statistics. In robust statistics, the goal is to limit the influence of a
small group of observations, deemed outliers. In the private setting, the goal is to limit
the influence of any single observation, rather than that of a small group. Clearly, these
two goals are closely related. The relationship to robust statistics has been identified and
studied in a few recent works (Dwork and Lei, 2009; Lei, 2011; Sarwate and Chaudhuri,
2013; Hsu et al., 2014; Avella-Medina, 2019; Avella-Medina and Brunel, 2019; Brunel and
Avella-Medina, 2020). We continue this line of work by exploring to what extent data
depth functions and associated inference procedures can be privatized.

In Chapter 5 we investigate the differentially private estimation of depth functions and
their associated medians. We then present a private method for estimating depth-based
medians, which is based on the exponential mechanism (McSherry and Talwar, 2007). We
compute the sample complexity of these private medians as a function of the dimension,
prior parameters and privacy parameter. We show that, even for a decreasing privacy
parameter in the dimension, the sample complexity is polynomial in the dimension. As a
by-product of our work, we develop a smooth depth function, which we show has the same
depth-like properties as its non-smooth counterpart. Another by-product of our work is
uniform concentration inequalities for several depth functions. We also present methods
and algorithms for estimating private depth values at both in-sample and out-of-sample
points. We further extend the propose-test-release methodology of (Brunel and Avella-
Medina, 2020) to be used with depth functions and the exponential mechanism. We show
that when using propose-test-release to projection depth values, the probability of returning
a ‘null value’ is small, and the private depth values concentrate around their population
counterparts. We also give an algorithm to approximate the “test” step in propose-test-
release, since it is computationally difficult. We show that this approximation maintains
the small probability of returning a ‘null value’ mentioned above.

In the last chapter, we present some directions for future research. Recently, depth
functions have been introduced on Riemennian manifolds (Fraiman et al., 2019; Harris
et al., 2020). These depth functions allow for, among other things, the use of depth-based
inference on shape spaces. There are also depth methods described for general Banach
spaces (Cuevas and Fraiman, 2009; Chakraborty and Chaudhuri, 2014), networks Small
(1997) and Hermitian positive definite matrices (Chau et al., 2019). We have yet to see
serious study of inference procedures based on such concepts, and we hope to develop some
of these in the future.
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Chapter 2

Kruskal-Wallis type statistics for
multivariate change-point problems

2.1 Introduction

The manufacturing industry motivated the development of change-point methods, that is,
methods for detecting and dating distributional changes in a sequence of observations
(Page, 1954). Change-point methods have since been applied to a much wider vari-
ety of research areas including climate change (Reeves et al., 2007), speech recognition
(Aminikhanghahi and Cook, 2017) and finance (Wied et al., 2012), among others. With
respect to a sequence of observations, the terms ‘structural break’ and ‘change-point’ refer
to time points in the sequence during which there is a sudden change in the distribution
from which the data is being generated. Change-point detection can be separated into two
settings: ‘online’ and ‘offline’. In the online setting, the data are being received by the
analyst one datum at a time, and the goal is to detect a change as soon as possible, without
too many false alarms. In the offline setting, the analyst has access to the entirety (or at
least enough) of the data set, and the goal is to identify if and when changes occurred over
the course of observation. In this thesis, we focus on the offline setting, for a summary of
nonparametric methods in the online setting see (Chakraborti and Graham, 2019).

There are different variants of the offline change-point problem. Instead of identifying
general changes in distribution, one might only be interested in identifying changes in the
mean of the sequence (Chenouri et al., 2020a; Fryzlewicz, 2014), changes in the correlations
of the sequence (Galeano and Wied, 2014) or changes in the covariance matrix of the
sequence (Chenouri et al., 2020b; Wang et al., 2021). One may also be interested in
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another type of distributional change entirely. In this chapter, we aim to detect changes
in the variability of a sequence of multivariate observations.

To elaborate, suppose that the analyst suspects that there may exist time point(s) at
which there are increases or decreases in the variance of one or more variates, or that
there may exist time point(s) at which there is a change in the strength of the relationship
between at least two variates. One can think of an analyst looking for changes in the
variability and/or correlation strength of several financial asset returns. We call this type of
change-point a multivariate variability change-point. For example, changes in a commonly
used norm of the covariance matrix would be considered a change in variability. Another
way to interpret changes in variability is through how the data cloud is affected; changes
in variability produce changes in the magnitude and/or shape of the data cloud, rather
than say, rotations or translations of the data cloud. A change in variability is the result
of expansions and/or contractions of one ore more parameters of the covariance matrix.
Note that this type of change-point differs from a change in the covariance matrix; it
doesn’t include cases where the covariance matrix is multiplied by an orthonormal matrix.
For example, it does not include the situation where the correlation between two variates
switches signs.

In order to detect changes in the variability of the data, we first compute the depth
value of each of the datum in the sequence. This transforms the sequence of multivariate
observations into a univariate sequence of depth values. We then compute the linear ranks
of the depth values to form a sequence of ranks. We then try to detect multiple changes
in the mean of this univariate sequence of ranks. We introduce two methods to complete
this procedure, the first of which is a wild binary segmentation type algorithm based on
rank CUSUM statistics (Fryzlewicz, 2014; Chenouri et al., 2020b). The second method
is based on finding the set of change-points which maximize a penalized version of the
classical Kruskal-Wallis test statistic used in nonparametric ANOVA (Kruskal, 1952). The
implementation of this second method is based on the “pruned exact linear time” algorithm
(Killick et al., 2012). To see the benefits of our proposed methods, we must first review
existing methods.

There is a vast literature relating to the change-point problem, going back almost a
century (Shewhart, 1931; Page, 1954). The literature includes a variety of approaches
for both univariate, multivariate, single and multiple change-point detection methods (see
the following review papers Reeves et al., 2007; Aue and Horváth, 2013; Aminikhanghahi
and Cook, 2017, and the references therein). Much of the literature, especially in the
multivariate setting, has focused on the detection of shifts in the mean of the process, e.g.,
(Truong et al., 2020).

25



Considerably less attention has been given to shifts in the second order behaviour of
a sequence of observations. When second order change-points in the multivariate setting
have been studied, the bulk of the literature has been concerned with detecting changes in
the correlation structure. Galeano and Peña (2007) proposed a parametric framework for
detecting changes in the correlation and variance structure of a multivariate time series,
using both a likelihood ratio and a CUSUM statistic approach. Wied et al. (2012) proposed
a nonparametric approach based on cumulative sums of sample correlation coefficients to
detect a single change-point in the correlation structure of bivariate observations. This
was later extended to multiple change-points (Galeano and Wied, 2014) and further to the
multivariate setting (Galeano and Wied, 2017). Posch et al. (2019) has further extended
the methods of Galeano and Wied (2017) to the high-dimensional setting by first apply-
ing dimension reduction techniques. One draw-back to the methods of Galeano and Wied
(2014) is that they assume constant variances and expectations over time. Rather recently,
a few alternative methods have been proposed, which include methods related to eigenval-
ues (Bhattacharyya and Kasa, 2018), residuals (Duan and Wied, 2018), semi-parametric
CUSUM statistics (Zhao, 2017) and kernel methods (Cabrieto et al., 2018).

Literature related to estimating a change-point in the covariance matrix is quite recent,
and relatively sparse. Aue et al. (2009b) take a CUSUM statistic approach similar to that of
Galeano and Wied (2014). Kao et al. (2018) suggested a CUSUM statistic procedure based
on eigenvalues. Chenouri et al. (2020b) considered a CUSUM based on ranks generated by
data depth functions for detecting a single change-point. The high-dimensional setting has
been tackled by Dette et al. (2018) and Wang et al. (2021). Dette et al. (2018) considers
a two-step procedure based on dimension reduction techniques and a CUSUM statistic.
Wang et al. (2021) is the only paper, to the best of our knowledge, seeking to identify mul-
tiple change-points, rather than a single change-point. They compare binary segmentation
procedures (Venkatraman, E., 1992) and wild binary segmentation procedures (Fryzlewicz,
2014) based on a CUSUM statistic, under the assumption of sub-gaussian observations.

Fryzlewicz (2014) developed wild binary segmentation as an improvement on the well-
known univariate multiple change-point algorithm binary segmentation (Venkatraman, E.,
1992). Binary segmentation has been used to extend single change-point algorithms to mul-
tiple change-point algorithms in many settings (such as Aue and Horváth, 2013; Galeano
and Wied, 2014, 2017; Duan and Wied, 2018; Wang et al., 2021; Chenouri et al., 2020a).
The extension and study of wild binary segmentation in the multivariate setting, with
respect to changes in the covariance structure of a time series has only been done by Wang
et al. (2021).

In addition to methods where the change-point type is specified, there exists several
nonparametric algorithms designed to detect general changes in the distribution of the ob-
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servations. Matteson and James (2014) studied the e-divisive algorithm, which can detect
the location and number of change-points in the distribution of a sequence of multivariate
observations. Their method is based on distances between characteristic functions and
a hierarchical clustering inspired iteration. Their methods are extended in Zhang et al.
(2017), where a pruning component is added to an existing, dynamic programming-based
change-point algorithm. These authors apply this pruning method to the e-divisive algo-
rithm and the kernel change-point methods of Arlot et al. (2012). This group of methods
are implemented in the ecp R package (James and Matteson, 2015). At first the rank-
based multiple change-point method of Lung-Yut-Fong et al. (2011) may seem similar to
our methods, but their procedure requires the number of change-points to be known. Fur-
ther, their methods are based on component-wise ranks, which have several known issues,
such as a lack of transformation invariance (Bickel, 1965).

The change-point literature lacks methods for specifically detecting multiple changes in
the variability of multivariate data. Many of the papers discussed focus on the at most one
change problem, or are not designed to detect changes in variability, or even changes in the
covariance matrix of the data. The only directly comparable paper is that of Wang et al.
(2021). Even this method is designed for the high dimensional setting; in our simulation
study, when the dimension is low to moderate, our method outperforms this method. The
other comparable methods would be those that detect multiple, general changes in the
distribution of the data, such as those of Zhang et al. (2017). We demonstrate that our
method is able to outperform these general methods in simulation, when the change-points
are all variability change-points. This is not surprising; our method sacrifices generality
for accuracy.

In addition, the aforementioned change-point methods do not consider robustness to
outlying observations. For example, many of the existing methods assume that the data
are sub-gaussian (Dette et al., 2018; Wang et al., 2021). Furthermore, existing papers
often present no simulation results concerning a method’s performance under heavy tailed
data. For example, we show in simulation that the methods of Matteson and James (2014);
Wang et al. (2021) do not perform well when the data are heavy tailed. By contrast, our
theoretical and simulation results show that our method works well in scenarios where the
data are heavy tailed.

The rest of the chapter is organized as follows, Section 2.2 introduces the data model.
Section 2.3 outlines the proposed change-point detection procedures. Section 2.4 presents
consistency results (with rates) for both of our presented methods. Section 2.5 presents
simulation results, including a discussion of the tuning parameters. We test the proposed
change-point methods in a variety of scenarios and compare the methods to one another
as well as to the methods of Matteson and James (2014); Zhang et al. (2017); Wang et al.

27



(2021). In Section 2.6 we analyze four European daily stock returns. This is the same data
set analyzed by Galeano and Wied (2017) and we compare our results to theirs.

2.2 The data model, variability changes and their re-

lation to depth ranks

We now describe the change-point model that we will focus on. Suppose that X1, . . . , Xn

is a sequence of zero mean, independent random variables such that Xki−1+1, . . . , Xki have
law Fi, with, k0 = 0 < k1 < · · · < kℓ < kℓ+1 = n for some fixed, unknown ℓ. Suppose that
ki = ⌊nθi⌋ for all i ∈ {0, 1, . . . , ℓ + 1}. Let ϑi = θi −

∑i−1
j=0 θj be the approximate fraction

of the observations coming from Fi and define

F∗ := ϑ1F1 + ϑ2F2 + ϑ3F3 + · · ·+ ϑℓFℓ + ϑℓ+1Fℓ+1.

The aim is to estimate ℓ and each ki; the correct number of change-points along with their
location, given only the sample. We further suppose that for any i = 1, . . . , ℓ, Fi differs
from Fi+1 only in variability. That is, if we let Σi be the covariance matrix corresponding
to Fi, recall that we can write Σi = RiSiSiR⊤

i , where Ri is an orthonormal matrix and Si
is a scale matrix. If Si ̸= Si+1, then there is a difference in variability between Fi and Fi+1.

We will use depth based ranks to assess the change in variability. The relationship
between variability and combined sample depth values has already been explored by several
other authors, e.g., (Li and Liu, 2004) and we give a more mathematical discussion in
Chapter 3. For now, we give an intuitive explanation. The reader may also view a short
simulation study of the distribution of the depth ranks under different covariance changes
in Appendix A.2.

The fact that changes in the variability of the data produce a change in the mean of
the data depth values is guaranteed from the construction of depth functions, specifically
the maximality at center property combined with the quasi-concavity property. Since
we assume that the pre-change and post-change data have the same location, we can
also assume that the combined sample depth function will be maximized roughly at that
location. Additionally, recall that a change in variability is a change in the magnitude
and/or shape of the post-change data cloud. The change in the magnitude and/or shape
of the data cloud will result in the post-change data being, on average, a different distance
from the centre. Due to the quasi-concavity property, this change in distance will result in
the post-change data having higher/lower combined sample depth values, on average.
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Figure 2.1: Two samples of 1000 points with different covariance matrices. The differences
can be characterised as (a) an expansion difference (b) a sub-matrix expansion difference
(c) a sign change. Notice the magnitude or shape of the data cloud changes in panes (a)
and (b), but not in pane (c).

For example, panel (a) of Figure 2.1 shows two bivariate normal samples overlaid. The
blue sample has an expanded covariance matrix relative to the black sample. Notice that
both data clouds have the same shape, but the magnitude differs between them. It is
easily seen that the black points are more central, relative to the shared center of the
samples. Therefore, when we compute the depth values with respect to the combined
sample, the black points will have, on average, higher depth values. Panel (b) shows again
two bivariate normal samples overlaid, but this time the expansion is only in one parameter
of the covariance matrix. In this case, the shapes of the two data clouds differ, which results
in the black points being more central. This results in the black points having generally
higher depth values in the combined sample. Panel (c) of Figure 2.1 shows again two
bivariate normal samples overlaid, except only the sign of the correlation between the two
variates differs between the two samples. Notice that the data cloud does not change in
size or shape, it is simply rotated. The combined sample depth values will not change in
this case, since one sample is not more central relative to the other.

It is entirely possible that changes in the direction of outlyingness, e.g., a sign change
in correlation, are outside of the scope of interesting, or plausible changes in a particular
dataset. For example, the hypothesis that the spread of the data is increasing or decreasing
in a particular direction is considerably different from the hypothesis that the relationship
between two or more variates has reversed. If there is reason to believe that the only plau-
sible changes in the data process are variability changes, rather than say, general changes,

29



or even general covariance changes, it is beneficial to use the depth-based procedure. This
is reflected in our simulation study where we compare our method to some change-point
methods which make less assumptions about the type of change in the data (see Section
2.5). This is intuitive; including more information about the data into the assumptions of
the procedure should improve the results of the procedure. The downside of course would
be missing other types of changes if they are not suspected to be present.

2.3 Proposed change-point algorithms

In this section we describe two multiple change-point algorithms that can be used to detect
changes in the variability of multivariate data. The first algorithm, takes a local approach,
in the sense that the idea is to look at small sections of the data and treat the problem as
a single change problem within each small section. The second algorithm takes a global
approach, such that all of the change-points are simultaneously estimated. We will compare
the methods in the subsequent sections.

2.3.1 WBS and a depth rank CUSUM statistic

Wild binary segmentation, introduced by Fryzlewicz (2014) was originally developed for
detecting multiple change-points in the mean of univariate data. Seeing as the problem here
is essentially to detect changes in the mean of the depth-based ranks, it seems natural to
use a similar approach. In fact, Chenouri et al. (2020a) combined wild binary segmentation
with univariate rank statistics with quite favourable results. In the ‘at most one change’
setting Chenouri et al. (2020b) proposed using the following rank CUSUM statistic

Z1,n(m/n) :=
1√
n

m∑
i=1

R̂i − (n+ 1) /2√
(n2 − 1) /12

to detect scale changes in a sequence of multivariate data. Recall from Chapter 1 that
R̂i are the depth-based ranks, see (1.6). Our first algorithm pairs this CUSUM statistic
with wild binary segmentation. Let [k] = {1, . . . , k} for any integer k and let e, s ∈ [n]
and s < e. We define the following rank CUSUM statistic for the set {Xs, . . . , Xe} of size
ns,e = e− s+ 1

Zs,e(m/ns,e) :=
1

√
ns,e

m∑
i=1

R̂i,s,e − (ns,e + 1) /2√(
n2
s,e − 1

)
/12

,
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where R̂i,s,e are the linear ranks resulting from ranking the depth values of the observations
in the subsample {Xs, . . . , Xe}, with respect to only the observations in {Xs, . . . , Xe}. More
precisely, the depth values are taken with respect to the empirical distribution generated
by {Xs, . . . , Xe}. These ranks range from 1, . . . , ns,e.

Following the lines of Fryzlewicz (2014) we can now outline our algorithm as follows.
First choose many, say J , uniformly random intervals and let

INT = {(sj, ej) : j ∈ [J ], ej − sj > ∆̃n, sj, ej ∈ [n]}

be the set of those intervals whose length is at least ∆̃n. Note that ∆̃ is an algorithm
parameter. After choosing the intervals, the algorithm runs recursively. In one recursive
iteration, the algorithm starts with a supplied interval (s, e) and the aim is to detect the
prominent change-point in this interval, if one exists. First, INTs,e ⊂ INT is computed;
INTs,e is the set of intervals (sj, ej) such that ej ≤ e and sj ≥ s. This is the set of sub-
intervals whose end-points are in (s, e). Then for each sub-interval (sj, ej) ∈ INTs,e, the
maximal CUSUM statistic is computed:

sup
sj≤m<ej

|Zsj ,ej(m/ns,e)|.

This produces | INTs,e | change-point estimates paired with their respective CUSUM statis-
tics, where |A| denotes the cardinality of a set A. The change-point estimate which pro-
duces the maximal CUSUM statistic out of all the computed CUSUM statistics is then
selected as the candidate change-point

(j∗,m∗)s,e = argmax
(j,m) : (sj ,ej)∈INTs,e, m∈{sj ,...,ej−1}

∣∣∣∣Zsj ,ej (m− sj + 1

ns,e

)∣∣∣∣ .
If it holds that ∣∣∣∣Zsj∗ ,ej∗ (m∗ − sj∗ + 1

ns,e

)∣∣∣∣ > T, (2.1)

for some threshold T , then the algorithm adds the index m∗ to the list of change-points.
Additionally, if (2.1) holds then the algorithm calls itself twice, once with the new supplied
interval being (s,m∗) and once with the new interval being (m∗ + 1, e). If (2.1) does not
hold then the algorithm stops and returns the set of current change-points. Pseudo-code
for this algorithm is summarized in Algorithm 1.
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Algorithm 1 Rank-Based Wild Binary Segmentation

procedure WBS Rank(e, s, T, INT)

if e− s < 1 then

STOP

else

INTs,e := intervals (sj, ej) ∈ INT such that (sj, ej) ⊂ (s, e)

(j∗,m∗) := argmaxB

∣∣∣Zsj ,ej (m−sj+1

ns,e

)∣∣∣,
with B := {(j,m) : (sj, ej) ∈ INTs,e, m ∈ {sj, . . . , ej − 1}}

if
∣∣∣Zsj∗ ,ej∗ (k∗−sj∗+1

ns,e

)∣∣∣ > T then

Append m∗ to the list of change-points k̂

WBS Rank(s,m∗, T, INT)

WBS Rank(m∗ + 1, e, T, INT)

else

STOP

end if

end if

return k̂

end procedure
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2.3.2 KW-PELT: A Kruskal-Wallis change-point algorithm

As mentioned above, Algorithm 1 takes a local approach to the problem, utilising only
sections of the data to estimate each change-point. Additionally, there is the issue of
subjectivity with regard to choosing the number of intervals. As an alternative, we can
instead maximize a single objective function based on the whole data set. Recall from
Section 2.2 that a mean change in the depth values is implied by a change in variability of
the original data. Recall that the Kruskal-Wallis test statistic is used to check for median
differences among multiple groups of univariate data. In other words, if there is a median
difference among the groups then it is expected that the Kruskal Wallis statistic will attain
a large value. It is very natural to then base the objective function on the Kruskal-Wallis
ANOVA test statistic. To this end, we propose using the following as an estimator of the
change-points

k̂ := argmax
k0=0<k1<···<kℓ<n=kℓ+1

12

n(n+ 1)

ℓ+1∑
i=1

(ki − ki−1)R̂
2

i − 3(n+ 1)− βn(ℓ+ 1), (2.2)

where βn is a parameter for which higher values correspond to higher penalization on the

number of estimated change-points and R̂i is the mean of the sample depth ranks in group
i, viz.

R̂i =
1

ki − ki−1

ki∑
j=ki−1+1

R̂j .

One can recall that R̂j are defined in (1.6), or, also in relation to the wild binary segmen-

tation algorithm R̂j = R̂j,1,n. Note that the penalization is necessary to avoid overfitting;
without it the solution to this maximization problem is simply choosing every point as a
change-point. It is apparent that (2.2) is a difficult maximization problem in the sense that
the number of possible solutions is 2n. However, we can circumvent this issue by applying
the pruned exact linear time algorithm (Killick et al., 2012). Indeed, rewrite the objective
function, in (2.2), by which we denote G(n), as

G(n) :=
ℓ+1∑
i=1

−c(ki−1 + 1 : ki)− βnℓ

where

c(s+ 1 : e) = −12(e− s)

n(n+ 1)

[
1

e− s

e∑
i=s+1

R̂i −
n+ 1

2

]2
. (2.3)
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Letting k0 = 0 and kℓ+1 = e, we can write the maximization problem in (2.2) as

max
0<k1<···<kℓ<e

G(e) = min
0<k1<···<kℓ<e

12

n(n+ 1)

ℓ+1∑
i=1

−(ki − ki−1)

(
R̂i −

n+ 1

2

)2

+ βn(ℓ+ 1)

= min
s

{
min

k0<k1<···<kℓ<s

ℓ∑
i=1

(c(ki−1 + 1 : ki) + βn) + c(s+ 1 : e) + βn

}
= min

s
{−G(s) + c(s+ 1 : e) + βn} .

It is straightforward to show that (2.2) satisfies the assumption in (Killick et al., 2012)
required for PELT to be applicable: We need to show for 0 ≤ s < e < e′ ≤ n that there
exists a constant C ′′

c(s+ 1 : e) + c(e+ 1 : e′) + C ′′ ≤ c(s+ 1 : e′).

Letting µn = (n+ 1)/2, observe that this condition is equivalent to

e− s

e′ − s

[
1

e− s

e∑
i=s+1

R̂i − µn

]2
+

e′ − e

e′ − s

 1

e′ − e

e′∑
i=e+1

R̂i − µn

2

+ C ′′ ≥

 1

e′ − s

e′∑
i=s+1

R̂i − µn

2

.

Let p ∈ (0, 1) and a, b, c ∈ R. The above expression can be written in the form

p(a− c)2 + (1− p)(b− c)2 + C ′′ ≥ (pa+ (1− p)b− c)2

=⇒ pa2 + (1− p)b2 + C ′′ ≥ (pa+ (1− p)b)2

=⇒ p(1− p)a2 + ((1− p)− (1− p)2)b2 − 2pa(1− p)b+ C ′′ ≥ 0.

We can view the expression

p(1− p)a2 + ((1− p)− (1− p)2)b2 − 2pa(1− p)b

as a quadratic form in a. The discriminant of this quadratic form is

(2p(1− p)b)2 − 4p(1− p)(p(1− p))b2 = 0

which means that the quadratic form has one root. Additionally, the quadratic form opens
upward since p(1 − p) > 0, implying that this function is positive for all a, b. Therefore,
the condition

c(s+ 1 : e) + c(e+ 1 : e′) + C ′′ ≤ c(s+ 1 : e′)
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is satisfied. Algorithm 2 outlines this procedure, which we call KW-PELT, in pseudo-code.

Algorithm 2 KW-PELT

procedure KW PELT(R, β,∆̃)

n := length(R)

k̂(0) = NULL

N0 := {0}
G(0) = −β
for k ∈ 1, . . . , n do

G(k) = mins∈Nk
{G(s) + c((s+ 1) : k) + β}

k1 = argmins∈Nk
{G(k) + c((s+ 1) : k) + β}

k̂(k) = (k̂(k1), k1)

Nk+1 := {k} ∪ {s ∈ Nk : G(s) + c((s+ 1) : k) ≤ G(k)}
end for

return k̂(n)\{0}
end procedure

We end this section with a remark about computation time. Computationally, the lim-
iting factor for both procedures will (in general) be the computation time for the sample
depths. Consequentially, we expect Algorithm 2 to be faster, due to the fact that sample
depth functions need only be calculated once rather than once for every sampled interval.
If f(n; d) is the time it takes to compute the sample depths, then Algorithm 1 would take
O(Jn log n + Jf(n; d)) time as opposed to O(n log n + f(n; d)) time for Algorithm 2. It
is worth noting that Algorithm 2 was implemented partially in C++ whereas Algorithm 1
was implemented completely in R (except for possibly the depth computations, for which
existing packages were used) so the empirical times in simulation are not directly compa-
rable. This being said, both algorithms ran within minutes on a desktop computer when
applied to the data set analyzed in Section 2.6.

2.4 Consistency of the algorithms

In this section we provide consistency results for both algorithms under some assumptions.
For j ∈ [ℓ + 1], let Yj ∼ Fj, let Hj(x) = Pr(D(Yj;F∗) ≤ x), let pi,j = Pr(D(Yi;F∗) >
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D(Yj;F∗)) for i, j ∈ [ℓ] and let F∗,n denote the empirical distribution invoked by the com-
bined sample X1, . . . , Xn. The following assumptions are used in the consistency theorems
that follow.

Assumption 1. Hj(x) are Lipschitz continuous with constant C, that is

|Hj(x)−Hj(y)| ≤ C|x− y|,

for x, y ∈ Rd.

Assumption 2. It holds that

E

[
sup
x∈Rd

|D(x;F∗,n)−D(x;F∗)|
]
= O(n−1/2).

Assumption 3. The number of change-points ℓ and their locations ⌊nθi⌋ = ki are fixed
for all i ∈ {1, . . . , ℓ}.

Assumption 4. There exists p0 > 0 such that for all i ∈ [ℓ], it holds that

|1/2− pi,i+1| ≥ p0.

Assumption 5. The threshold T is such that T = o(
√
n) and T → ∞ as n→ ∞.

Assumption 6. There exists p0 > 0 such that for any j ∈ [ℓ+ 1] it holds that∣∣∣∣∣
ℓ+1∑
i=1

ϑipi,j −
1

2

∣∣∣∣∣ ≥ p0.

Assumptions 1 and 2 are satisfied by most depth functions under absolutely continuous
F , including those defined in Section 1.1 (see Liu et al., 1999, and the references therein).
Assumption 3 says that the number of change-points is fixed, and their positions are fixed
in n. This assumption is restrictive, but we hope to relax it in the future. Assumptions 4
and 6 are concerned with the type of changes that can be detected. In the setting of rank
statistics the size of each the change-point is measured by |pi,i+1 − 1/2|. Assumption 4
says that the size of the change must be greater than some quantity fixed in n. Similarly,
Assumption 6 assumes that for each segment j, the weighted average change-size between
segment j and another segment is non-zero and fixed.

For example, suppose there is a single change-point and thatX1, . . . , Xk1 ∼ Nd(0, I) and

that Xk1+1, . . . , Xn
d
=

√
aX1 with a > 1. Clearly, if X ∼ F∗ then we have that EF∗ [X] = 0
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and Σ∗ = (ϑ1 + a(1− ϑ1))I = σ2
∗I. Here, Σ∗ is the covariance matrix corresponding to the

distribution F∗. It follows that

∥X1 − EF∗ [X]∥Σ−1
∗

∼ 1

σ2
∗
χ2
d and ∥Xn − EF∗ [X]∥Σ−1

∗
∼ a

σ2
∗
χ2
d.

Now, for any x ∈ R+ we have that

Fχ2
d

(
σ2
∗x
)
> Fχ2

d

(
σ2
∗x/a

)
,

where Fχ2
d
represents the cumulative distribution function of a χ2

d random variable. It

follows immediately that p1,2 = 1− p2,1 ̸= 1
2
. Additionally, if Y ∼ χ2

d/σ
2
∗, then

Eσ2
∗χ

2
d

[
Fχ2

d

(
σ2
∗Y/a

)]
< Eσ2

∗χ
2
d

[
Fχ2

d

(
σ2
∗Y
)]

=
1

2
;

both Assumption 4 and Assumption 6 are satisfied. Clearly, neither Assumption 4 or
Assumption 6 hold if a = 1.

Theorem 1. Suppose that ∆̃ < mini∈[ℓ+1] |θi − θi−1|. Let the estimated change-points

k̂1 < k̂2 < · · · < k̂ℓ̂ be as in Algorithm 1. Suppose that Assumptions 1-5 hold, and that the
number of intervals Jn → ∞ as n → ∞. Then, there exists a universal constant C > 0
such that the following holds

Pr

({
ℓ̂ = ℓ

}
∩
{
max
i∈[ℓ]

|k̂i − ki| ≤ Cn1/2 log n

})
→ 1 as n→ ∞.

Theorem 1 states that for large n, it is highly probable that the change-point estimates
produced by Algorithm 1 will be close to the location of the true change-points and that
the number of these estimates is equal to the true number of change-points. The next
theorem gives a similar, but weaker result for Algorithm 2 under a wide range of penalty
terms.

Theorem 2. For βn as in (2.2), assume that βn → ∞ as n→ ∞ and that βn = o(n). Let
r be a constant such that 1/2 < r < 1. Provided Assumptions 1-3 hold and Assumption 6

holds, for k̂ and ℓ̂ as in Algorithm 2, there exists a constant C > 0 such that

Pr

({
ℓ̂ = ℓ

}
∩
{
max
i∈[ℓ]

|k̂i − ki| ≤ Cnr
})

→ 1 as n→ ∞.

The rate given in Theorem 1 is better than that of Theorem 2. In addition, Assumption
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3 is restrictive and could be relaxed in the future, to account for an increasing number of
change-points and varying locations of the change-points. Additionally, 4 and 6 could ac-
count for p0 → 0, analogous to that of Fryzlewicz (2014). We have kept simple assumptions
to lay the theoretical groundwork and will improve the results in the future by adjusting
the current proofs. Once we relax the assumptions, we can compare our results to the
optimal rates of convergence given by Hernan Madrid Padilla et al. (2019).

2.5 Simulation study

In this section we use a simulation study to compare our methodology to existing proce-
dures as well as to investigate different choices of the algorithm parameters: the penalty
βn and the threshold T . Specifically, we compare our method to the Binary Segmentation
in Operator Norm (BSOP) algorithm and the Wild Binary Segmentation through Inde-
pendent Projection (WBSIP) algorithm developed by Wang et al. (2021), as well as to the
methods in the R package ecp (James and Matteson, 2015). It should be noted that the
aim of Wang et al. (2021) was to detect change-points in the high dimensional setting, and
not necessarily in low or moderate dimensions. The WBSIP algorithm performed much
better than the BSOP algorithm, and so we only present the results of the WBSIP algo-
rithm. As mentioned above, we also compare to the nonparametric change-point methods
in the ecp R package (James and Matteson, 2015). These methods are designed to detect
general types of change-points; time points where there was a change in distribution. We
compared our methods with the e.divisive, e.cp3o delta and e.kcp3o methods. The
other methods in the package were either too slow to run with our simulation set-up or
performed much worse than the chosen methods. The best of these three methods in our
simulation set-up was by far the e.divisive method, and so we do not present the results
of the other two methods.

The threshold parameter for the WBSIP algorithm was chosen to be 561, which was
based on visually assessing the error ℓ̂ − ℓ so that the median was zero in most of the
scenarios. We also tried choosing the threshold in order to minimize the empirical mean
squared error of the estimate ℓ̂ (which would not be known in practice) and the results
were similar. For Algorithm 1 and the WBSIP algorithm we used 100⌊log n⌋ intervals.

The simulation study is limited to evenly spaced change-points, from distributions with
independent marginals. Note that the transformation invariance properties possessed by
the depth functions imply the results from similarity transformations of the data would
be the same. This transformation invariance implies that the study also covers some cases

38



where the marginal distributions of the data are not independent. We set the mean of all
distributions to be 0.

The simulation study consisted of several scenarios. The first scenario is a set of ex-
pansions and contractions controlled by the parameter σ2. We let Σj = σ2

j Id for each Fj,
j ∈ [ℓ+ 1]. We set

σ2
1 = 1, σ2

2 = 2.5, σ2
3 = 4, σ2

4 = 2.25, σ2
5 = 5, σ2

6 = 1,

e.g., for 2 change-points, σ2 would vary as follows 1 � 2.5 � 4. The second scenario is
another set of expansions and contractions, of which the results were so similar that we do
not present them here.

We simulated data from three different distribution types, normal, Cauchy and skewed
normal with skewness parameter γ = 0.1/d. We ran the simulation for values of d =2, 3,
5 and 10 under 2, 3 and 5 change-points. To see results on zero change-points and one
change-point (see Chenouri et al., 2020b). We used sample sizes of n =1000, n =2500, and
n =5000, running each scenario 100 times. We tested our methods with halfspace depth,
spatial depth and both kinds of Mahalanobis depth introduced in Section 1.1.

Lastly, we ran several simulations designed to assess the performance of our methods
under sparsity and/or high dimensions. In these scenarios, d was at most 500 and/or the
expansions/contractions were only applied to a submatrix of the covariance matrix.

R codes to replicate this simulation study, as well as implementations of Algorithm
1, Algorithm 2, the WBSIP algorithm and the BSOP algorithm are available (Ramsay,
2019b).

2.5.1 Choosing the algorithm parameters

In order to have consistency of the estimates produced by Algorithm 1, the threshold must
satisfy T = o(

√
n). One option is to choose a fixed threshold T ∗, which will produce a set of

change-point estimates and their corresponding CUSUM statistics. The final set of change-
points could then be chosen by testing each change-point for significance using a Bonferroni
correction or Benjamini-Hochberg correction (Benjamini and Hochberg, 1995) along with
the quantiles of sup |B(t)|, where B(t) is the standard Brownian bridge. This would imply
a threshold T ≥ T ∗. However, it might be that smaller sampled intervals are not large
enough for the asymptotic approximation to work well. Additionally, one has to choose the
significance level, and the threshold T ∗. As a result of these considerations, we suggest a
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Figure 2.2: Empirical root mean squared error of ℓ̂ for different values of C1 under spatial
depth for all the simulation parameter combinations, under Algorithm 2.

data driven thresholding approach, based on the generalized Schwartz Information Criteria,
as done by Fryzlewicz (2014).

Algorithm 1 produces a nested set of models, indexed by the threshold parameter. Low-
ering the threshold can only add new change-points to the model; all previously estimated
change-points remain. In other words, as the threshold decreases, new change-points are
added to the model one at a time. It is then easier to re-index the models by the number
of estimated change-points ℓ̂. The threshold problem can then be reformulated as a model
selection problem.

Suppose we have a univariate sample Z1, . . . , Zn and the goal is to estimate a change-
point in the mean. For this problem, Fryzlewicz (2014) chooses the ‘best’ model by mini-
mizing the following criteria:

G(ℓ̂) = n

2
log(ς̂2

ℓ̂
) + ℓ̂ logα n, (2.4)

with ς̂2
ℓ̂
equal to the average within group squared deviation (a group is an estimated period

of constant mean) and ℓ̂ is the estimated number of change-points. Let Z̄i, for i ∈ [n], be
the empirical, within group mean for the group that contains univariate observation Zi.
Then we can write

ς̂2
ℓ̂
=

1

n

n∑
i=1

(Zi − Z̄i)
2.

Here, α is a parameter such that the larger α, the larger the penalty against choosing a
model with many change-points.

The only difference for the multivariate, variability problem is that ς̂ must be modified.
As mentioned previously, each of the nested models produced by Algorithm 1 will produce
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Figure 2.3: Each curve shows the empirical root mean squared error of ℓ̂ for different
values of α under Algorithm 1 paired with Mahalanobis depth, for a given simulation
parameter combination, following the legend of Figure 2.2. Mahalanobis depth is used
rather than spatial depth because of computational efficiency.

a candidate set of change-points 0 = w0 < w1 < . . . < wr < wr+1 = n. We recall from
Section 2.2 that a variability change is equivalent to a change in the mean depth-based
ranks. We can treat the sample depth-based ranks produced by the depth functions as a
univariate sample and thus, for a given model, define the within group deviation as

ς̂2
ℓ̂
=

1

n

r+1∑
j=1

wj∑
i=wj−1

(R̂i − R̂j)
2.

We then choose the model with the smallest value of G(ℓ̂), out of all of the nested models

produced by Algorithm 1. We remark that the use of ranks ensures G(ℓ̂) is still robust.

In order to make a practical recommendation for the parameter α, we rely on the
simulation study. Figure 2.3 shows the empirical root mean squared error of ℓ̂ under
Algorithm 1 for a range of α values. Each curve is for a different combination of parameters
in the first simulation scenario. The depth function used was Mahalanobis depth, which was
chosen for computational ease. Figure 2.3 shows that choosing α in the range (0.75, 1.25)
works well.

For consistency of Algorithm 2 to hold, the penalty term should satisfy βn → ∞ and
βn = o(n); this gives a wide range of choices for the penalty term. In practice what penalty
term should be used? The results of the simulation study suggested using a penalty term
of the form βn = C1

√
n + C2. Figure 2.2 plots the empirical root mean squared errors of

ℓ̂ under spatial depth for different values of C1 and n, with C2 fixed at 3.74. Each curve
represents one combination of the parameters in the first simulation scenario described
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above. Notice that the curves are not shifting laterally as n increases, meaning that an
increase in n is sufficiently captured by the

√
n term in the penalty. Additionally, Figure

2.2 also shows a flattening of the RMSE curves with increased n, which is expected from the
consistency theorem. Based on low root mean squared error in simulation, we recommend
to fix C2 = 3.74 and run Algorithm 2 for a grid of penalties defined by C1 ∈ (0.15, 0.25).
One can then choose the set of change-points according to a model selection criteria or by
visual inspection. In the simulation study, we fix C1 at 0.18.

It should also be noted that a non-linear penalty could be applied, as discussed in Killick
et al. (2012). Some non-linear penalties were tested in the simulation study, such as log ℓ,
but the results were not as good as when using a linear penalty. Our investigation into
non-linear penalties was fairly limited, as such, more investigation into non-linear penalties
could be done in the future.

2.5.2 Analysing and comparing the algorithm performance

We only present the results of the simulation when the algorithms were paired with spatial
depth. Spatial depth was the best performing depth function when taking into account
computational speed and estimation accuracy. Halfspace depth performed similarly to
spatial depth, but computationally it was much slower. Halfspace depth is affine-invariant
whereas spatial depth is only similarity-invariant, therefore if affine invariance is desired
in the analysis the analyst should use the halfspace depth function. Modified Mahalanobis
depth and Mahalanobis depth both performed slightly worse than the other two depth
functions if the data was Gaussian, but performed considerably worse when the distribution
of the data was Cauchy, which could be attributed to the robustness considerations of
Mahalanobis depth discussed in Section 1.1.

Figure 2.4 shows boxplots of ℓ̂−ℓ under Algorithm 1, Algorithm 2, the WBSIP algorithm
and the e.divisive algorithm, for the first simulation scenario with n = 1000. Recall that
ℓ̂− ℓ is the estimated number of change-points minus the actual number in the simulation
run. Each boxplot represents a different combination of simulation parameters, e.g., the
first boxplot represents the (empirical) distribution of ℓ̂−ℓ with simulated two-dimensional
Gaussian data that had 2 change-points. The empirical distributions are computed over
the 100 replications of each combination of simulation parameters.

Figure 2.4 shows that both Algorithm 1 and Algorithm 2 estimate the number of change-
points more accurately than theWBSIP algorithm and the e-divisive algorithm. One reason
for this is that our method is less general in terms of the types of changes it can detect
when compared to the other two algorithms; our method trades generality for accuracy.
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Figure 2.4: Boxplots of ℓ̂ − ℓ for the rank-basd algorithms (row 1) and the competing
algorithms (row 2) with α = 0.9, C1 = 0.18 and C2 = 3.74 when n = 1000. Each boxplot

represents the values of ℓ̂− ℓ for a particular simulation parameter combination. Here, the
color of the boxplot represents the distribution. The top number on the horizontal axis
represents the number of true change-points and the bottom number on the horizontal axis
represents the dimension. The colors follow the legend of Figure 2.2.
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Figure 2.5: Boxplots of k̂/n− θ for the different algorithms with α = 0.9, C1 = 0.18 and
C2 = 3.74. The distribution of the data was made up of independent normal marginals
with d = 10. Each boxplot represents the ability to estimate a particular change-point
for a fixed number of true change-points. For example, the first two boxplots are the
empirical distributions of k̂1/n− θ1 and k̂2/n− θ2 when there were two true change-points.
The numbers on the horizontal axis represent the number of true change-points in that
simulation parameter combination. Each boxplot represents the ability to estimate a single
change-point in a run.
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Figure 2.6: Boxplots of ℓ̂ − ℓ for the third simulation scenario under spatial depth,
where the colours indicate the different values of b, the size of the submatrix to which the
expansion/contraction was applied. In other words, the submatrix in which an expansion
or contraction was applied had dimension b × b. The numbers on the horizontal axis
represent the number of true change-points in the simulation.

A second reason for these results is robustness. When the data is Cauchy, neither of the
competing algorithms perform very well. Neither the WBSIP nor the e.divisive algorithm
are designed to handle outliers or heavy-tailed data. For example, when the data have
Cauchy marginals, the assumptions for consistency of the WBSIP procedure are violated.
One should also recall that WBSIP was designed for high dimensional data which is not
the main focus of this simulation study. In Figure 2.4 it is easily seen that as the dimension
increases WBSIP performs better. Speaking of dimension, both Algorithms 1 and 2 were
very insensitive to the dimension and the number of change-points.

In terms of accuracy when the change-point was detected, both algorithms performed
very well. Figures 2.5 shows boxplots of k̂/n − θ for Algorithm 1, Algorithm 2, WBSIP
and the e-divisive algorithm when d was 10 and the distribution was normally distributed.
Boxplots under other simulation parameters were similar.1 Generally, the estimates were
at most about 5% off of the true break fraction, with the majority of biases being in the
1% range.

This corresponds to 10 time units away when n = 1000; k̂ was typically within 10 time

1They were of course worse when the data came from a Cauchy distribution.
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Figure 2.7: (a) Empirical root mean square error of ℓ̂ as the dimension increases, but

the size of the change remains fixed. (b) Empirical root mean square error of k̂ as the
dimension increases, but the size of the change remains fixed. The change-points were
estimated using the KW-PELT algorithm paired with spatial depth.

units of the true change-point k. Again our methods were insensitive to the dimension and
the number of change-points. When compared with the WBSIP algorithm and e-divisive
algorithm, we see that both Algorithm 1 and Algorithm 2 appear to estimate the location of
the change-points more accurately. We can then conclude that our algorithms outperforms
the WBSIP algorithm and e-divisive algorithm when the data only contains changes in
variability.

In a different simulation scenario, we fixed d = 5 and applied the expansions and
contractions of the first scenario to a b× b submatrix of the covariance matrix. Figure 2.6
shows boxplots of ℓ̂ − ℓ for both algorithms, under this simulation scenario. Figure 2.6
shows the results for spatial depth, with n = 1000. The colour of the boxplot in Figure 2.6
represents b, the size of the submatrix to which the expansion/contraction was applied, i.e.,
the submatrix in which an expansion or contraction was applied had dimension b× b. The
numbers on the horizontal axis represent the number of change-points in that particular
simulation scenario. We see that as b decreases, the ability to detect the changes decreases.
This is expected, since a smaller change should be more difficult to detect. We can also see
that here, the KW-PELT algorithm performs better than the WBS algorithm. One remedy
for detecting changes in relatively low dimensions might be to subsample dimensions of
the data and run the procedure on each of the subsampled dimensions. We leave that for
future work.

Lastly, we ran simulations designed to assess the performance of our methods in high
dimensions. We use the KW-PELT algorithm with spatial depth, due to both its perfor-
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mance and the fact that spatial depth can be computed quickly in high dimensions. We
simulated normal data, with one change-point and with two change-points, at n = 1000
for d = 50 and d = 500. The KW-PELT algorithm estimated both the number of change-
points and the location of the change-points were detected with 100% accuracy. This is not
surprising since we might view an expansion of a very large matrix as a very large change
in variability. For example, the trace of the expanded matrix is increasing as the dimension
is increased, and so the signal is increasing with the dimension under an expansion-type
change. The story changes if the data is high dimensional and the data is sparse, i.e., the
change only occurs in a submatrix of the covariance matrix which has a fixed dimension.
We ran another simulation where there was a single change-point, and the change only
occurred in a 5 × 5 submatrix. Figure 2.7 shows that as we increase the dimension, the
algorithm has a more difficult time estimating the change-point accurately. This suggests
that when the data is suspected to be very sparse, we may wish to develop a depth function
that accounts for sparsity.

In summary, both algorithms performed very well relative to competitors in this simula-
tion set-up. The results also show that the rank based WBS algorithm and the KW-PELT
algorithm are very comparable. The KW-PELT algorithm is computationally faster, and
can be more accurate under sparsity. However, its tuning parameter requires some subjec-
tivity. Furthermore, both algorithms have the same theoretical rate of convergence. We
are tempted to recommended the KW-PELT algorithm with the understanding that the
performance of the algorithms is very similar. In terms of the depth functions, halfspace
depth and spatial depth performed better than the two Mahalanobis depth variants. Since
halfspace depth takes longer to compute, we would ultimately recommend using spatial
depth with either algorithm in practice.

2.6 An application to financial returns

In this section we apply the methodology to four daily stock returns. R codes for this
analysis can be found on Github at (Ramsay, 2019b). We analyze the same data set
analyzed by Galeano and Wied (2017) and compare our results to those produced by their
method. It is expected that algorithms will produce different results, due to the fact that
the aim of Galeano and Wied (2017) was to detect changes in the correlation structure
of the returns; not necessarily the covariance matrix. For example, they assume constant
variances over time. The results should be seen as complementary to those of Galeano and
Wied (2017).

It is clear that this data has some serial dependence; it does not fit the independence
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Figure 2.8: Left : Change-points estimated by Algorithms 1 and 2. ND stands for not
detected by the Algorithm. Right : Covariance matrix parameters at each interval for both
Algorithm 1 (pink dashed) and Algorithm 2 (blue solid) connected by lines to emphasize
the change in the parameter values.

assumption. That being said, we feel that the results still provide some insight into the
data. For example, the data appears to admit a weak dependence structure. As a result of
the concentration inequality for rank statistics for m-dependent data (Wang et al., 2019),
we only need Assumption 2 to hold under m-dependence in order for the consistency
properties to hold. In fact, the consistency of many depth functions is, in part, a result
of Glivenko-Cantelli type theorems. Seeing as extensions of such theorems exist for m-
dependent data (Bobkov and Götze, 2010) it is likely possible to extend the results of
Section 2.4. The convergence of depth functions for dependent data is an interesting topic
for further research.

We applied Algorithm 1 and Algorithm 2 to the raw daily returns. We ran the WBS
algorithm with 700 intervals (100⌊log n⌋) using all depth functions with α = 0.9. When
running Algorithm 2, we used penalty constants C1 = 0.24 and C2 = 3.74, these were
chosen according to the discussion in Section 2.5.1. The results did not vary at all among
the different depth functions for the Algorithm 1, and were virtually the same under
Algorithm 2, the only difference was that the modified Mahalanobis depth predicted the
December 2008 change-point on December 9th rather than on the 8th.

Table 2.8 contains the estimated change-points produced by the Algorithms. Figure
2.9 plots the estimated change-points on the data from both Algorithms. Observe that
algorithms are also both unaffected by the outliers in the Siemens returns, which can
be seen to the left and right of January 2008. Some of the change-points have a clear
interpretation. For example, the first change-point (July 18, 2007) signifies the beginning
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Figure 2.9: Returns with estimated change-points from Algorithm 2 marked by solid,
blue lines and Algorithm 1 marked by dashed pink lines.

of the global financial crisis and the second (September 05, 2008) is associated with the
collapse of Lehman brothers. In the following months, measures to stem the effects of
the crisis may contribute to the next two change-points. For example, in early December
2008 the EU agreed to a 200 billion dollar stimulus package. The later change-points are
associated with the Greek government debt crisis; in July 2011, the Troika approved a
second bailout (of the Greek government).

The algorithms reproduced both change-points found by (Galeano and Wied, 2017)
(July 18, 2007 and September 05, 2008). Changes in correlation could be accompa-
nied by expansions or contractions in the covariance matrix of these returns. It is pos-
sible that these changes (correlation and covariance) are byproducts of a general in-
crease/decrease in systematic volatility. Many financial returns are generally thought to
have some systematic/market-wide dependence (Bodie et al., 2017). Figure 2.8 shows the
estimated pairwise covariances as well as the estimated variances of each stock within each
period of ‘no change’. The uniform movement of the parameters indicate contractions and
expansions, rather than some other type of change. Additionally, we note that all changes
under Algorithm 1 were significant when the Bonferoni correction was applied to the set
of test statistics at the 5% level of significance.
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Chapter 3

Kruskal-Wallis type statistics
covariance kernel testing problems

3.1 Introduction

Data such that the observations are each a smooth curve, deemed functional data, is being
increasingly observed in a variety of fields. For example, medical images (López-Pintado
and Wrobel, 2017; Aston et al., 2017), intraday financial asset returns (Cerovecki et al.,
2019) and environmental “omics” data (Piña et al., 2018) can all be interpreted as func-
tional data. As such, many functional analogues of univariate and multivariate statistical
tools are needed. One such tool is the notion of common variance in the functional context;
common covariance operator or covariance kernel. In this chapter, we introduce new, non-
parametric functional k-sample tests for equality of covariance structures. We call this class
of tests the functional Kruskal-Wallis tests for covariance structure, or for short, FKWC
tests.

Before introducing the FKWC tests, we review the existing, related works. Early related
works include (James and Sood, 2006), who presented a test for a difference in the shape
of the mean function between two populations of curves and (Gabrys and Kokoszka, 2007;
Aue et al., 2009b; Horváth et al., 2010) who all consider tests related to serial dependence,
or time series characteristics.

Panaretos et al. (2010) were the first to discuss comparing the covariance structures
of two populations of functional data. They present a two sample test based on the
Hilbert-Schmidt norm for integral operators and restrict their attention to that of Gaus-
sian processes. Fremdt et al. (2013) later extended the methods of Panaretos et al. (2010)
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to compare two populations of non-Gaussian data. In a related work, Jarušková (2013)
proposed a modification of the test of Panaretos et al. (2010), used for covariance operator
change-point detection. Zhang and Shao (2015) re-normalized the test statistic of Panare-
tos et al. (2010) to account for dependence in the data. Gaines et al. (2011) later proposed
a test for equality of two covariance operators based on univariate likelihood ratios and
Roy’s union intersection principle.

Up until this point, existing tests were based on the Hilbert-Schmidt metric. Pigoli
et al. (2014) presented a discussion of distances between covariance operators, including
criticisms of using finite dimensional distances on functional data. They argued that us-
ing a Hilbert-Schmidt metric ignores the geometry of the space of covariance kernels, and
therefore is not an appropriate distance. As a result, they introduced a two sample per-
mutation procedure, which Cabassi et al. (2017) later extended to the multi-sample case.
In the same vein of resampling, Paparoditis and Sapatinas (2016) proposed a k-sample
bootstrap test that can detect differences in the mean and/or the covariance structure
simultaneously.

Guo and Zhang (2016) further studied a multi-sample test, which was first proposed by
Zhang (2013). When the data comes from a Gaussian process, under the null hypothesis,
their test statistic is a χ2-type mixture. This distribution must be approximated in prac-
tice. They also provided a random permutation method to be used in the case of small
samples and/or non-Gaussian data. Guo et al. (2018) developed a k-sample test inspired
by functional ANOVA. One feature of this test is that it does not require some form of
dimension reduction. Further, their method is scale invariant in the sense that re-scaling
the data at any time t does not affect the test statistic. Similar to that of Guo and Zhang
(2016), the distribution of the test statistic under the null hypothesis must to be estimated.
The estimation of the critical value relies on parameters estimated from the data, which
may pose problems if the data are contaminated.

Boente et al. (2018) studied a new type of bootstrapping method to calibrate crit-
ical values for the covariance kernel testing problem. They focused on norms between
covariance operators and the resulting distribution under the null hypothesis is based on
eigenvalues of fourth moments, which must be estimated. They suggested bootstrapping
the eigenvalues of fourth moment operators. This can be problematic if the data is heavy
tailed or contaminated.

Kashlak et al. (2019) provided a concentration inequality based analysis of covariance
operators, which includes a k-sample test and a classifier. They used concentration results
to develop confidence sets based on p-Schatten norms. They then used ‘tuned’ confidence
sets to define rejection regions for k-sample tests. This test tends to underestimate the
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confidence level in the case where the data is heavy tailed.

Some other related works include the following: López-Pintado and Wrobel (2017) used
a version of band depth defined on images to test for a difference in dispersion between two
sets of images. The measure of dispersion ignores shape or ‘wigglyness’ differences between
the two samples. Sharipov and Wendler (2019) extended the bootstrapping procedures of
Paparoditis and Sapatinas (2016) to change-point problems and dependent data. Rice
and Shum (2019) introduced a test for change-points in the cross-covariance operator of
two functional time series. Flores et al. (2018) presented a test for homogeneity of two
distributions based on depth measures. They explicitly stated that the paper was not
focused on means or covariance operators. They provided four test statistics, based on the
deepest functions or absolute values of differences in the depth distributions. Aston et al.
(2017) focused on testing for a condition called separability which is specific to hypersurface
data such as f-MRI.

FKWC tests have several advantages over these other methods. First, FKWC tests are
very robust, a feature that has not often been discussed in other works. FKWC tests are
based on rank statistics, generated via functional data depth measures. Functional data
depth measures are, among other things, used for outlier detection and trimmed means;
data depth measures are designed to produce robust inference procedures. A test statistic
based on ranks of data depth measures would thus, inherent the robustness properties of
both the depth measure and of rank statistics in general. We demonstrate this robustness
via simulation in Section 3.4.

Aside from being robust, many functional data depth measures are invariant under
certain transformations of the data (Gijbels and Nagy, 2017). If the functional observations
are all scaled by an arbitrary function, we would like the test statistic to remain unchanged.
Guo et al. (2018) points out that many existing tests for equality of covariance structures
are not invariant under this type of transformation, e.g., those of (Panaretos et al., 2010;
Guo and Zhang, 2016). On the contrary, many data depth measures remain unchanged if
the data are scaled by an arbitrary function. Such invariance properties are then inherited
by the FKWC test statistic, provided derivatives are not included in the calculation of the
depth, see Section 1.2. If derivatives are included, the FKWC test satisfies a weaker form
of transformation invariance.

Furthermore, using data depth measures allows us to leverage existing consistency
results (Nagy and Ferraty, 2019) and provide asymptotic analysis of the FKWC tests
under both the null and alternative hypotheses. We show that under the null hypothesis
the test statistic is a chi-squared random variable. This is a particularly nice feature,
as it circumvents the need to estimate the distribution of the test statistic under the
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null hypothesis using the data, which many other tests require, e.g., (Pigoli et al., 2014;
Paparoditis and Sapatinas, 2016; Cabassi et al., 2017; Guo et al., 2018; Boente et al., 2018;
Kashlak et al., 2019). To elaborate, for many of the existing methods, under the null
hypothesis, the theoretical distribution of the test statistic contains unknown parameters
that must be estimated from the data. If this is not the case, then most existing methods
require data-driven bootstrap or permutation methods. Using the data to estimate the
distribution of the test statistic under the null hypothesis can be complicated when the
data are contaminated. This can also be computationally expensive if resampling methods
are used.

Not only is there no need to use the data to estimate the distribution of the FKWC test
statistic under the null hypothesis, there is also no need to estimate the sample covariance
operators in the computation of the FKWC test statistic. This fact implies that one
does not need to reduce the dimension of the data via truncated basis expansions of the
covariance kernels, as is needed by the methods of (Fremdt et al., 2013; Pigoli et al., 2014;
Paparoditis and Sapatinas, 2016; Boente et al., 2018). An additional byproduct of avoiding
estimation of the covariance operators is that we do not require finite fourth moments or
any fourth moment related assumptions for our theoretical analysis. Such assumptions are
required for many other tests, for example, (Panaretos et al., 2010; Gaines et al., 2011;
Fremdt et al., 2013; Paparoditis and Sapatinas, 2016; Guo et al., 2018; Boente et al., 2018)
all require some type of fourth moment assumption on the data.

In terms of the alternative hypothesis, we show that under some mild conditions, the
FKWC tests are consistent under a wide class of alternatives. We also provide a method
for estimating the power and sample size under general alternatives. Some recent works
have explored various local alternatives for this testing problem (Gaines et al., 2011; Guo
and Zhang, 2016; Guo et al., 2018; Boente et al., 2018). We also provide a class of local
alternatives under which a particular FKWC test is consistent. This FKWC test is based
on a new depth measure L2-root depth, for which we prove several elementary properties.
This depth measure has a particular interpretation in this testing problem, which provides
the basis for its development.

The rest of the chapter is organised as follows. Section 3.2 covers the methodology of
the hypothesis tests, including the data model and the intuition behind the test statistic.
Section 3.3 presents asymptotic results on the behaviour of the test statistic under both
the null and alternative hypotheses. Section 3.4 presents a simulation study, in which we
compare the FKWC tests to some competing tests, including those of (Guo et al., 2018;
Boente et al., 2018). The last section, Section 3.5 shows an application of the FKWC
test to two data sets. We first compare several samples of intraday financial asset return
curves. Here, we test to see if the residuals of a functional GARCH model have similar
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covariance structure. We next analyse speech recognition data, where the observations
are log periodograms of five groups of recorded syllables. We perform FKWC multiple
comparisons on these data to determine which pairs of syllables are similar in terms of
covariance structure.

3.2 Model and test statistic

Suppose that we have observed J independent, random samples and that for each sample
j ∈ {1, . . . , J} we have Xj1, . . . , Xjnj

functional observations. The combined sample size

is then n =
∑J

j=1 nj, where we assume that nj/n → ϑj as n → ∞. We define ‘functional’
observations by the following assumptions: First, we assume that each Xji is a mean
square continuous stochastic process, meaning for each t ∈ [0, 1], Xji(t) is measurable
with respect to some probability space (Ω,A , P ) and that limt→s E [|X(t)−X(s)|2] = 0.
Secondly, for each ω ∈ Ω, Xji(·, ω) is a continuous function. We use F to denote the
space of such processes. These assumptions imply that Xji(t, ω) is jointly measurable with
respect to the product σ-field B ×A , where B denotes the Borel sets of [0, 1]. This joint
measurability implies that each Xji can be interpreted as a random element which lies in
L 2([0, 1],B, µ), where µ is the Lebesgue measure on [0, 1]. We will write L 2([0, 1],B, µ)
as L 2 for brevity. For more details see Appendix B or Chapter 7 of Hsing and Eubank
(2015). We also assume that E [Xji] = 0 where 0 is the zero function. If necessary, in
practice, data can be centered by a robust estimator of the mean. Some variants of the
proposed test involve derivatives, and for those tests we will additionally require that the
derivative of Xji, by which we denote X

(1)
ji (t), exists on the interval (0, 1) and satisfies

the same continuity assumptions imposed on Xji. We remark that our methods extend
to higher dimensional domains and range, i.e., Xji : [0, 1]

d → Rp on which functional data
depths are defined, but we restrict our study to the univariate domain and range setting.

The covariance kernel of a mean square continuous stochastic process X, whose mean
is 0, is defined as

K(s, t) := E [X(t)X(s)]

and the associated covariance operator is defined as

(K f)(t) :=

∫
[0,1]

f(s)K(s, t)ds .
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The goal is to construct a test statistic for testing the following hypothesis

H0 : K1 = · · · = KJ v.s. H1 : Kj ̸= Kk, for some j ̸= k.

Here Kj refers to the covariance kernel of group j. The assumptions on the random
functions Xji imply that this is equivalent to the hypothesis

H0 : K1 = · · · = KJ v.s. H1 : Kj ̸= Kk, for some k ̸= j,

where Kj is the covariance operator of group j. We can denote the probability measure
over L 2 which describes the random behaviour of Xji by Fj. Let

F∗ := ϑ1F1 + ϑ2F2 + ϑ3F3 + · · ·+ ϑℓFℓ + ϑJFJ ,

which is a mixture of probability measures over L 2. Alternatively, this can be interpreted
in the stochastic process sense, such that the finite dimensional distributions of an element
from the combined sample X: (X(t1), . . . , X(tk)) for k ∈ N, are mixtures of the J finite
dimensional distributions of each group, with weights {ϑj}Jj=1. Note that these finite
dimensional distributions can be identified by F∗ and Fj.

Typically, testing this hypothesis involves estimating Kj. In order for estimates of Kj

to converge weakly, it is typically required that E
[
∥Xji∥4

]
< ∞, in some cases it is not

desirable to make this assumption. Estimation of Kj is also high dimensional, and can be
computationally intensive if repeated a number of times, such as in a bootstrap procedure.
We take a different approach, and do not aim to estimate Kj. Instead, the idea is to
reduce each observation to a one dimensional rank via a data driven ranking function. The
ranking function is designed such that differences in the samples’ mean ranks are implied
by differences in underlying covariance kernels. We can then use the classical Kruskal
Wallis test statistic (Kruskal, 1952) and perform a rank test. Specifically, the test statistic
proposed is

Ŵn :=
12

n(n+ 1)

J∑
j=1

nj

(
R̂j −

n+ 1

2

)2

.

Here, R̂j is the mean rank of the observations in group j, where the ranking mechanism
will be explained in the next section. This test statistic also gives, for each sample j, a
measure of how much its covariance kernel differs from the average sample kernel via(

R̂j −
n+ 1

2

)2

.
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Alternatively, we can perform FKWC multiple comparisons, see Section 3.5.2.

We can further modify this test statistic using the methods of Gastwirth (1965), who
presented powerful versions of several univariate rank tests. These more powerful tests were
later extended to multivariate, depth-based rank tests (Chenouri et al., 2011). We further
extend these methods to the functional setting. The percentile modification is predicated
on the fact that it is actually the extreme rank values that allow us to detect differences
between samples. The idea is to remove the middle portion of the data, and only use the
outlying data or, equivalently, the low depth-based ranks. To this end, let r ∈ (0, 1) and
let n′ = ⌊rn⌋. Let δj(s) = 1 if the observation which has rank equal to s is in group j and
let δj(s) = 0 otherwise. Define the percentile modified test statistic as

M̂n,r :=
n∑
j=1

(
1− nj

n

)
Kj with Kj =

1

σ2
j

(
n′∑
s=1

(n′ − s+ 1)δj(s)− ϱj

)2

, (3.1)

where

ϱj =
njn

′ (n′ + 1)

2n
and σ2

j =
nj (n− nj)n

′ (n′ + 1) [2n (2n′ + 1)− 3n′ (n′ + 1)]

12n2(n− 1)
.

Choosing r is a matter of simulation and will be taken up in Section 3.4.

Like in Chapter 2, we use ranks based on data depth measures. In this setting, we use
ranks based on the functional depth measures discussed in Chapter 1. Precisely, for some
j ∈ {1, . . . , J} and some i ∈ {1, . . . , nj}, define the sample depth-based rank of Xji to be

R̂ji := #{Xℓm : D (Xℓm;F∗,n) ≤ D(Xji;F∗,n) , ℓ ∈ {1, . . . , J}, m ∈ {1, . . . , nℓ}} .

Note that in this chapter we rank the observations with respect to F∗,n, which places equal
weight on each element of the combined sample. This means that the sample depth values
describe centrality with respect to the combined sample. Recall that in the setting of
functional data, central relates to both the location and the shape of the data.

Indeed, differences between the covariance kernels are often exhibited by changes in the
shape and/or scale of the data, precisely the features captured by functional data depth
functions. For example, Figure 3.1 shows two samples of 10 Gaussian processes and their
derivatives. Each sample has the same mean but a different covariance kernel. Visually, the
distinguishing factor between these two samples is the scale and shape of the curves and
their derivatives. Notice that the difference is more pronounced in the derivatives. In fact,
depth measures have already been shown to have good power for detecting scale changes
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Figure 3.1: Two samples of Gaussian processes (a) and their derivatives (b) each with the
same mean but a different covariance kernel. The samples have an exponential covariance
kernel with α = 0.3 in the first sample and α = 1 in the second sample (see Section 3.4).
Notice that the difference in covariance structure is exhibited by a changed in shape of the
original curves and a change in shape and scale of the derivatives.

in surface data (López-Pintado and Wrobel, 2017). In fact, it appears that ranks based on
depth measures capture second order differences better in the functional setting than in the
multivariate setting. For example, recall from Chapter 2 that we cannot detect changes in
the rotation matrix of the covariance matrix. This is not the case in the functional setting;
the FKWC test based on the random projection depth can detect a difference of the type
K1 = U K2U ∗ for some unitary operator U , and U ∗ denotes the adjoint of U .

In addition to the random projection depth, we combine our methodology with mul-
tivariate halfspace depth and the modified band depth. As discussed in Chapter 1, these
depth measures that meet criteria suitable for the hypothesis testing problem. Using the
ranks of the norms of the observations is another natural approach to this problem. How-
ever, the scope of differences captured by the norms of the observations is limited. We will
see in Section 3.3 that some of the existing functional depth functions capture a much wider
scope of differences. Nevertheless, we compare using the depth-based ranks to ranking the
norms of the observations.

We can actually show that ranking the squared norms is a depth-based rank. If we
define depth as follows:

LTR(x;F ) =
(
1 + EF

[
∥x−X∥2

]1/2)−1

, (3.2)
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then the ranks from this depth function are equivalent1 to ranking the squared norms,
provided the observations have mean equal to zero. We call this depth L2-root depth,
or LTR depth for short. We demonstrate that LTR depth actually measures depth in
Section A.3. Framing norm-based ranks as depth-based ranks, allows us to easily extend
the norm-based ranks to include the derivative information. L2-root depth can be extended
to account for p derivatives with

LTRp(x;F ) =

(
1 +

1

p

p∑
k=0

1

MADk

EF

[∥∥x(k) −X(k)
∥∥2]1/2)−1

,

where MADk is the median absolute deviation with respect to the law of the norm of the
kth derivative of X which has law F .

3.3 Theoretical results

This section is devoted to characterizing the behaviour of the FKWC tests under the null
and alternative hypotheses when the sample size is large. Note all proofs of theorems
presented in this section can be found in Section A.5. We also remind the reader that
throughout the chapter, including in all theorem statements, we have assumed that the
observations have zero mean and that nj/n→ ϑj as n→ ∞.

Theorem 3. Suppose that Pr(R̂ji = R̂kℓ) = 0 for all ji ̸= kℓ, i.e., there are no tied ranks.
Then, under the null hypothesis

Ŵn
d→ χ2

J−1 as n→ ∞ and M̂n,r
d→ χ2

J−1 as n→ ∞.

Tied ranks can be randomly broken to meet the requirements of Theorem 3. The be-
haviour under the null hypothesis is remarkably simple for such a complex testing problem.
Therefore, the critical values can easily be obtained independently of the data and thus,
this aids accuracy and computation time. The fact that the critical values are independent
of the data is important for robustness, as there is no need to assess the robustness of
procedures used to approximate the null distribution. Under the alternative hypothesis,
we must impose additional assumptions in order to have consistency of the test.

1By equivalent, we mean that inferences produced by each set of these ranks are equivalent. In actuality,
the ranks produced by the LTR depth function are the reverse of the ranks generated from the squared
norms; an LTR rank is equal to n minus the rank generated from the norms.
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Assumption 7. For all j, it holds that Pr(D (Xj1;F∗) ≤ v), as a function of v, is a
Lipschitz function.

Assumption 8. It holds that E
[
supx∈F |D(x;Fn,∗)−D(x;F∗) |

]
= O(n−1/2).

Assumption 9. Let F∗,u be the distribution of ⟨X, u⟩ if X ∼ F∗. It holds that E
[
∥Xji∥3

]
<

∞. In addition, it holds that for any u, F∗,u is three times differentiable, and that the first
three derivatives of F∗,u are bounded functions in u. We will denote the density of F∗,u by
f∗,u.

Assumption 10. Suppose that

E [D(Xj1;F∗)−D(Xk1;F∗)] ̸= 0 =⇒ MED(D(Xj1;F∗)−D(Xk1;F∗)) ̸= 0,

for j ̸= k and j, k ∈ {1, . . . , J}.

Assumption 7 is generally satisfied when the finite dimensional distributions corre-
sponding to F∗ are continuous. Assumption 8 has been shown to be satisfied for MFHD,
see (Nagy and Ferraty, 2019). We can extend the results of Nagy and Ferraty (2019) to RP
depth. Recall from Chapter 1 that S = {u ∈ F : ∥u∥ = 1} and that Fu is the univariate
distribution associated with ⟨X, u⟩ is X ∼ F . Suppose that the unit vectors u1, . . . , uMn

in the definition of RPMn (see (1.5)) are drawn from some probability measure ν on S and
that Mn = O(n). Recall that

RP(x;F ) =

∫
S

Fu(⟨x, u⟩)(1− Fu(⟨x, u⟩))dν(u). (3.3)

Then it follows easily that2,

E

[
sup
x∈F

|RPMN
(x;FN)− RP∞(x;F )|

]
= O(N−1/2). (3.4)

Note that the same analysis applies when Fu(⟨x, u⟩)(1−Fu(⟨x, u⟩)) is replaced with 1/2−
|1 − Fu(⟨x, u⟩)| in (3.3). Assumption 8 need not be satisfied for LTR depth since the
sample ranks are already based on LTR(·;F ). Assumption 9 is essentially a smoothness
condition on the projected distributions. In addition, we require the existence of a third
moment. For example, Assumption 9 is satisfied by Gaussian processes. Lastly, we impose
Assumption 10. This means that the distribution of the differences of the depth values

2For proof see Appendix A.5
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is not of the special kind where the mean is non-zero but the median is zero. This is
a common assumption for a rank test; for example, for the Wilcoxon Rank-Sum test to
consistently detect a difference in mean between two distributions, the distribution of the
differences must have a non-zero median. Now, if there exists k ∈ {1, . . . , J} such that

J∑
j=1

ϑj Pr (D (Xk1;F∗) > D(Xj1;F∗)) ̸=
1

2
, (3.5)

then, under Assumptions 7-8, it holds that

Pr
(
Ŵn > δ

)
→ 1, as n→ ∞, (3.6)

for any δ > 0. This result shows that the set of alternative hypotheses which induce
consistency are contained completely in by (3.5). Firstly, for the FKWC test to detect a
difference in covariance operator, we must have that a difference in covariance operator
between groups implies that if there is a difference in the location of the depth values
between groups.3 Specifically, the median of D (Xℓ1;F∗)−D(Xj1;F∗) is non-zero for some
ℓ ̸= j. The condition (3.5) has an additional caveat that says the differences between the
groups do not perfectly ‘cancel’ each other out. This caveat applies to all tests based on
the Kruskal-Wallis statistic, and is a minor technicality. This is not an issue if J = 2.

As previously mentioned, we must demonstrate that changes in the covariance kernels
produce, on average, a location difference in the depth values. This can be argued qualita-
tively, seeing as changes in the covariance operator elicit changes in the shape or magnitude
of the data. Since depth measures rate the observation on how close it is in shape and
magnitude to the combined sample, then it is intuitive that observations with a different
covariance kernel will have different depth values.

Beginning with the two sample case, we analyse the relationship between the covariance
operator and the depth values for the RP depth. Let the sample rank of Xji based on the
true distribution F∗ be defined as

Rji := # {Xℓm : D (Xℓm;F∗) ≤ D(Xji;F∗) , ℓ ∈ {1, . . . , J}, m ∈ {1, . . . , nj}} .

Then we define Wn as the test statistic based on these ranks, which are unknown except
in the special case of the L2-root depth-based ranks. Let G be the set of all cumulative
distribution functions on R that are three times differentiable. Then, define H : G → R as
H(F ) := 1

2
f (1)(0)− (F (0)f (1)(0)− f 2(0)).

3We only need at least one pair of groups to differ in depth location.

60



Theorem 4 (Random Projection Depth). Suppose that J = 2, u1, . . . , uMn
are drawn

independently from a probability measure ν on S and that Mn = O(n). Suppose that
Assumptions 7-10 hold for RP and define

Rj =
1

6

∫
S

E

[∫ ⟨Xj1,u⟩

0

(
f (2)
u,∗(t)(1− 2Fu,∗(t))− 6fu,∗(t)f

(1)
u,∗(t)

)
(⟨Xj1, u⟩ − t)3 dt

]
dν(u).

Then FKWC test based on Ŵn using RPMn with D(z;F ) = F (z)(1 − F (z)) is consistent
in the sense of (3.6) under alternatives of the form

H1 :

∫
S

H(F∗,u)⟨K1u, u⟩dν(u) +R1 ̸=
∫
S

H(F∗,u)⟨K2u, u⟩dν(u) +R2.

Remark 1. The interpretation of H1 being true is that on average (according to ν),
⟨K1u, u⟩ differs from ⟨K2u, u⟩, which can only be true if the covariance kernels are different
between the groups. Indeed, the other terms H and Rj are minor nuisances. For example,
we expect Rj to be small in this context because Xj1 have zero mean; the expected length
of the interval (0, ⟨Xj1, u⟩) is 0. We discuss H below.

The function H(Fu,∗) is a weighting function which has two components. First, there

is a departure from symmetry term: f
(1)
u (0)(1

2
− Fu(0)). This component will only play a

role in the procedure the skewness of the projected distributions varies considerably across
directions. In fact, as Fu,∗ approaches symmetry, H(Fu,∗) approaches f

2
u,∗(0), the squared

height of the projected density at zero. This is the second component ofH(Fu,∗), which says
that H(Fu,∗) gives more weight to directions where the height of the projected density is
large at the mean, thus, directions with low spread are magnified. Therefore, the integral
in H1 can be described as a weighted average of the projections

∫ ∫
K(s, t)u(s)(t)dsdt.

Symmetry of the projected distributions implies a form of symmetry on F∗. This is a
natural definition of symmetry, in the sense that it is analogous to halfspace symmetry in
the multivariate setting (Zuo and Serfling, 2000a). For example, consider the case where
Xji = gj(t)Zji for some deterministic functions g1 and g2, with and Zji ∼ N (0, 1). If the
groups are equal sized it follows that

F∗,u(x) =
1

2
Φ

(
x

⟨g1, u⟩

)
+

1

2
Φ

(
x

⟨g2, u⟩

)
,

where Φ is the probit function. Therefore, H(Fu,∗) ∝
(

1
⟨g1,u⟩ +

1
⟨g2,u⟩

)
, and it follows that
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if ∫
S

(
⟨g1, u⟩+

⟨g1, u⟩2

⟨g2, u⟩

)
dν ̸=

∫
S

(
⟨g2, u⟩+

⟨g2, u⟩2

⟨g1, u⟩

)
dν,

which is equivalent to∫
S

(√
⟨K1, u⟩+

⟨K1, u⟩√
⟨K2, u⟩

)
dν ̸=

∫
S

(√
⟨K2, u⟩+

⟨K2, u⟩√
⟨K1, u⟩

)
dν,

then the procedure will be consistent4.

Theorem 4 highlights an important difference between the functional data setting and
the multivariate setting. Suppose that K1 is unitarily equivalent to K2, i.e., K1 = U K2U
for some unitary operator U . Assume that our samples are multivariate: Xi ∈ Rb. The
covariance operators can then be represented by the covariance matrices Σ1, Σ2. Unitary
equivalence in the multivariate setting corresponds to Σ1 = UΣ2U⊤ for a rotation matrix
U . Letting ũ = u⊤U , where one notes that ∥ũ∥ = 1, it is then easy to see that∫

Sb−1

H(F∗,u)u
⊤Σ1udu =

∫
Sb−1

H(F∗,u)ũ
⊤Σ2ũdu ≈

∫
Sb−1

H(F∗,ũ)ũ
⊤Σ2ũdu,

which is why we are unable to detect changes characterized by rotations of the data via
data depth functions based on projections in the multivariate setting. This equivalence
does not exist in the functional setting, since the measure ν is not uniform on S. Therefore,
it is not necessarily true that∫

S

H(F∗,u)⟨K1u, u⟩dν(u) ≈
∫
S

H(F∗,u)⟨K2u, u⟩dν(u).

We verify this fact in Section 3.4; in the eigenvalue simulation scenarios 1-3, the covariance
operators differ between the samples, but are unitarily equivalent. We see that the FKWC
test based on the RP depth detects the difference.

Theorem 5 (L2-root Depth). Suppose Assumptions 7 and 10 hold and that J = 2. Then
the test based on Wn, using ranks based on the squared norms, is consistent in the sense
of (3.6) under alternatives of the form H1 : ∥K1∥TR ̸= ∥K2∥TR , where ∥·∥TR refers to the
trace norm.

Note that, by assumption, Kj are trace class since the observed processes are mean

4Provided the remainder is small.
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square continuous; the kernel is continuous. Theorem 5 shows that the FKWC test using
the ranks of the squared norms is consistent if the trace norm of the covariance operators dif-
fer. The alternative hypothesis ∥K1∥TR ̸= ∥K2∥TR is equivalent to

∑∞
k=1 λk,1 ̸=

∑∞
k=1 λk,2,

where {λk,1}∞k=1 and {λk,2}∞k=1 are the decreasing sequences of singular values resulting
from the singular value decomposition of K1 and K2, respectively.

It is useful to mention a few cases where Assumption 10 is surely satisfied. If, for all j,
∥Xji∥2 has a symmetric distribution then Assumption 10 is satisfied. If

∥K1∥TR − ∥K2∥TR ≥ Var
(
∥X11∥2

) 1
2 +Var

(
∥X21∥2

) 1
2

then Assumption 10 is satisfied (Page and Murty, 1982). If the distribution of the squared
norms is instead unimodal, Basu and DasGupta (1997) gives a sharper bound:

∥K1∥TR − ∥K2∥TR ≥
(
3

5

(
Var

(
∥X11∥2

)
+Var

(
∥X21∥2

))) 1
2

.

If Xji are Gaussian processes GP(0,Kj), then we have that

∥X11∥2 =
∞∑
k=1

λk,1Vk and ∥X21∥2 =
∞∑
k=1

λk,2V
′
k , where Vk, V

′
k
iid∼ χ2

1.

It follows that the random variables ∥X11∥2 , ∥X21∥2 are stochastically ordered, implying
that Assumption 10 is satisfied.

To give more insight into the behaviour of the test statistic, we provide some analysis
under local alternatives. Suppose Assumption 8 and (3.5) hold. A direct application of a
result in Fan et al. (2011) implies that Wn is approximately distributed as a non-central
chi-squared random variable χ2

J−1(τn) with non-centrality parameter

τn =
12

n(n+ 1)

J∑
j=1

nj

{
n
∑
k ̸=j

ϑk

(
Pr (D (Xj1;F∗) ≤ D(Xk1;F∗))−

1

2

)}2

. (3.7)

For L2-root depth, we are able to compute Pr(D (Xk1;F∗) ≤ D(Xj1;F∗)), which is the same
quantity as Pr(∥Xk1∥ ≤ ∥Xj1∥). Therefore one can compute the power and consequently
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sample sizes for any assumed F∗, using

Pr

(
p∑

m=1

[∥∥∥X(m)
k1

∥∥∥− ∥∥∥X(m)
j1

∥∥∥] ≤ 0

)
.

This could of course be done by Monte Carlo simulation for complicated models.

Theorem 6 (Local Alternative Analysis L2-root depth). Suppose that for all i, j, k, ℓ

∥Xji∥2
d
=

[√
n+ δk√
n+ δj

]
∥Xkℓ∥2 ∼ G, (3.8)

where G has a continuously differentiable density g for some real-valued δjs. Let δ =∑J
j=1 ϑjδj then, when based on the ranks of the squared norms,

Wn
d→ χ2

J−1(τ) with non-centrality parameter τ = 12

(∫
R
zg(z)2dz

)2 J∑
j=1

ϑj
(
δj − δ

)2
.

Note that (3.8) holds when Kj = K0

[
1 + n−1/2δj

]
and ∥Xji∥2 form a scale family. For

example, if Xji ∼ GP(0,K0

[
1 + n−1/2δj

]
), then Theorem 6 is applicable.

Due to the fact that Euclidean spaces are Hilbert spaces, the previous results provide
some consequences for similar methods based on depth-based ranks in the multivariate
setting. For example, Theorem 5 provides justification for assuming the hypothesis of
Theorem 2 of Chenouri et al. (2020b) as well as for Assumption 4 of Chapter 2, when the
ranks are based on L2-root depth. Note that the definition of spatial depth in (Chenouri
et al., 2020b) provides equivalent ranks to those of L2-root depth. Theorem 5 then implies
that the methods of Chapter 2 can detect changes in the sum of the eigenvalues of the
covariance matrix. Similarly, Theorem 4 provides justification for assuming the hypothesis
of Theorem 2 of (Chenouri et al., 2020a) and Assumption 4 of Chapter 2 under integrated
dual depth. Liu and Singh (2006) provide a k-sample test for the covariance matrix of
multivariate data. Theorems 5, 4 and 6 give analogous results for this multivariate k-
sample test.

64



0.0 0.2 0.4 0.6 0.8 1.0

-1
0

1
2

3

0.0 0.2 0.4 0.6 0.8 1.0
-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

0.0 0.2 0.4 0.6 0.8 1.0

-2
0

2
4

6
8

10

Figure 3.2: Five observations generated from the uncontaminated distribution compared
to a drift outlier (left), wavy outlier (middle) and scale outlier (right).

3.4 Simulation results

3.4.1 Models and settings

In this section we evaluate the finite sample performance of the FKWC tests on both
infinite and finite dimensional models. We compare the performance of the tests using
the different functional depth functions, as well as the effect of the percentile modifica-
tion discussed in Section 2.3. We further compare the FKWC test against seven other
tests: the test of Boente et al. (2018) Boen, the L2-norm tests (Guo and Zhang, 2016)
Tmax, L2nv, L2br, L2rp and the ANOVA inspired tests of Guo et al. (2018) GPFnv,
GPFrp, Fmax. For the test of Boente et al. (2018) we used 10 principal components and
5000 bootstrap samples. For the tests of Guo and Zhang (2016); Guo et al. (2018) we used
1000 permutations.

We simulated data from both infinite and finite dimensional models. For the infinite
dimensional models, we simulated observations from J = 2 and J = 3 samples. The results
from the simulations with three groups were the same as with two groups, and are omitted.
We tested sample sizes of n = 100, n = 200 and n = 500 for the two sample case, where
the first sample size was n1 = ⌊qn⌋ for q ∈ {0.2, 0.3, 0.4, 0.5}. For the three sample case,
we used n = 150 and n = 300, with n1 = N3 and n2 = ⌊qn⌋ for q as above. In each infinite
dimensional case, the data were sampled from either a Gaussian process GP , a student-t
process with three degrees of freedom t3, or a skewed Gaussian process SG. For the infinite
dimensional runs we used a squared exponential covariance kernel

K(s, t;α, β) = β exp

(
−(s− t)2

2α2

)
,
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Gaussian Student t Skewed Gaussian
n1/n : 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4

FKWC

MFHD 1.00 1.00 1.00 0.87 0.95 0.98 1.00 1.00 1.00
RP 1.00 1.00 1.00 0.88 0.94 0.98 1.00 1.00 1.00
MBD 1.00 1.00 1.00 0.88 0.96 0.98 1.00 1.00 1.00
LTR 1.00 1.00 1.00 0.88 0.96 0.98 1.00 1.00 1.00
RP† 1.00 1.00 1.00 0.87 0.94 0.96 1.00 1.00 1.00

Competing

Boen 1.00 1.00 1.00 0.17 0.15 0.04 0.99 1.00 1.00
L2br 0.48 0.93 0.99 1.00 1.00 1.00 0.49 0.94 0.99
L2rp 0.35 0.92 0.99 0.00 0.00 0.03 0.36 0.93 0.99
Tmax 0.68 0.97 0.99 0.01 0.01 0.06 0.63 0.97 1.00
GPFrp 0.03 0.56 0.91 0.01 0.00 0.04 0.01 0.54 0.87
Fmax 0.12 0.47 0.83 0.00 0.01 0.10 0.11 0.51 0.85

Table 3.1: Empirical power of the different tests for J = 2, n = 500 when the group
sample sizes were unequal, under scale differences when β1 = 0.5 and β2 = 0.71. Notice
that when the sample sizes differ greatly, the competing tests do not perform as well. Note
that RP† is the FKWC test with the likelihood depth, rather than the simplicial depth.

and the sample differences were controlled via α (shape difference) and β (scale difference).

For the finite dimensional models, the data were simulated from a Gaussian process
where we directly specified K non-zero eigenvalues of the covariance operator. A Fourier
basis was used for the eigenfunctions. Here, we only tested the case of two samples and
we used the same sample sizes as described above for the infinite dimensional simulation
scenarios. We ran six scenarios, which resulted from combining short linear, long linear,
and long exponential eigenvalue decay with either a scale difference or a unitary operator
difference. See Appendix A.4 for details.

We also simulated the effects of different kinds of outliers on the different tests at
different levels of contamination. The contamination level was measured as a percentage
of the total sample size n and we tested levels of 0.01, 0.025, 0.05. We present the results
from 2.5%, since these are the most illustrative. The three kinds of outliers were: linear
drift, oscillating outliers and spike outliers, see Figure 3.2. We simulated the case where
there were outliers in both samples as well as the case where there were outliers in only one
sample. Lastly, we considered the affect of missing portions of the curves and the affect of
the number of directions on the random projection depth. The results of these simulations
can be seen in Appendix A.4.
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Figure 3.3: Empirical power curves of the different tests as the β parameter (left) and
α parameter (right) of the second sample moves away from the null hypothesis. Here,
nj = 100. The black curves correspond to the FKWC tests and the blue curves correspond
to the existing tests.
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Simulation Scenario
Test 1 2 3 4 5 6
MFHD 0.90 1.00 1.00 0.99 1.00 1.00
RP 0.92 1.00 1.00 1.00 1.00 1.00
MBD 0.80 1.00 1.00 1.00 1.00 1.00
LTR 0.79 1.00 1.00 1.00 1.00 0.99
RP† 0.26 0.90 0.86 1.00 1.00 1.00
Competing 1.00 1.00 1.00 1.00 1.00 1.00

Table 3.2: Empirical power of the different tests under the finite dimensional models
when n1 = n2 = 100. The first row indicates the scenario number. “Competing” stands
for the competing tests; all competing tests had the same empirical power. Note that RP†

is the FKWC test with the likelihood depth, rather than the simplicial depth.

We ran each simulation scenario 200 times, a grid size of 100 was used to simulate the
functions. The codes can be seen on Github (Ramsay, 2019a). Note that the FKWC tests
require the observations to be on the same grid in order to compute the sample depth
values. If the observations are not observed on the same grid, then it will be necessary to
interpolate the curves in some way, such that they can be brought to the same grid. For
example, one can smooth the curves and then re-discretize them if necessary. To test the
affect of missing portions of the curve, we interpolated the data with splines using the zoo
package in R.

3.4.2 Results

Unanimously, the methods that incorporated the derivatives performed better than the
non-derivative methods. This includes when the data contained outliers or had unequal
group sizes. Also, one should note that with the exception of RP depth, the non-derivative
methods do not work for shape differences. In addition, the percentile modification had
little effect on the power and size in all simulation runs. Therefore, we proceed by only
presenting the results from the FKWC methods based on W that incorporated the deriva-
tives. In terms of which depth function was the best, they were all relatively similar in all
respects. That being said, the LTR and the MBD had the most power for detecting scale
differences, see Figure 3.3. Figure 3.3 also shows that for detecting shape differences, the
random projection depth with the likelihood depth has the highest power, especially under
heavy tails. The LTR depth and the MBD depth also performed well under shape differ-
ences. Under the very low dimensional models (three non-zero eigenvalues), the random

68



Test
Gaussian Student t Skewed Gaussian

50 100 250 50 100 250 50 100 250

FKWC

MFHD 0.06 0.03 0.06 0.03 0.06 0.07 0.08 0.07 0.06
RP 0.07 0.04 0.06 0.04 0.04 0.06 0.05 0.06 0.06
MBD 0.05 0.02 0.04 0.03 0.04 0.08 0.06 0.06 0.06
LTR 0.05 0.04 0.06 0.04 0.04 0.08 0.06 0.06 0.04
RP† 0.06 0.03 0.07 0.04 0.03 0.07 0.07 0.04 0.06

Competing

Boen 0.21 0.24 0.34 0.00 0.00 0.00 0.16 0.21 0.32
L2br 0.04 0.06 0.06 1.00 1.00 1.00 0.04 0.04 0.08
L2rp 0.06 0.06 0.06 0.05 0.04 0.04 0.04 0.04 0.07
Tmax 0.04 0.06 0.07 0.04 0.04 0.04 0.04 0.03 0.06
GPFrp 0.06 0.06 0.06 0.06 0.04 0.04 0.05 0.03 0.06
Fmax 0.03 0.04 0.05 0.04 0.04 0.03 0.06 0.02 0.06

Table 3.3: Empirical sizes for J = 2 for different tests under the infinite dimensional
models. The first row indicates the underlying process and the second row indicates the
sample size of each group. Note that RP† is the FKWC test with the likelihood depth,
rather than the simplicial depth.

projection depth with the likelihood depth did not work as well as the others. The best
performing depth functions in this scenario were the random projection depth with the
simplicial depth and the multivariate half-space depth, see Table 3.2. In terms of when the
group sizes differed or outliers were present, the depths were all comparable, see Table 3.1
and Figure 3.4. Computationally, the LTR and the modified band depth were the fastest,
followed by the random projection depths and lastly the multivariate half-space depth.
Overall, we recommend using the random projection depth with simplicial depth because
of its theoretical interpretation, or, if computation is a concern then the modified band
depth or the LTR depth can be used.

We now compare the FKWC tests to the competing tests. Note that the naive versions
of the L2 and GPF tests are omitted, since their performance was similar to that of their
biased-reduced counterparts. In addition, we only present the results from the FKWC tests
based on the derivatives without the percentile modification. For the infinite dimensional
models Figure 3.3 shows the power of the FKWC tests compared to the competing tests
under the Gaussian and Student t processes for the two-sample case when n1 = n2 = 100.
Note that the skewed Gaussian results were similar to the Gaussian results, and the results
at other sample sizes were similar to Figure 3.3. Clearly, under the infinite dimensional
models, the FKWC tests outperform the competing tests, especially when the distribution
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Figure 3.4: Empirical power of the tests for detecting scale differences for J = 2 with
n1 = n2 = 100 under the infinite dimensional Gaussian process model such that 5% each of
the sample was contaminated. Note that the legend follows that of Figure 3.3. The black
curves correspond to the FKWC tests and the blue curves correspond to the competing
tests.

is heavy tailed. In addition, the heavy tails corrupt the L2pr test. Table 3.1 shows the
power of the tests for a fixed scale difference between the samples. Notice that many of the
competing tests do not work well under very imbalanced group sizes, whereas the FKWC
tests are unaffected. The tables for imbalanced group sizes with a shape change or under
the finite dimensional models are given in Appendix A.4. Table 3.2 shows the power of
the tests for the finite dimensional models. The competing tests all had power equal to 1,
this was also generally the case for the FKWC tests except in one case. When the model
had three non-zero eigenvalues, such that the covariance operators in the first and second
sample were unitarily equivalent, the FKWC test paired with the likelihood depth variant
of RP depth did not perform well. We can conclude that competing tests work better
for very low-dimensional, light tailed models. These results could be due to the fact that
the lower complexity allowed for easier approximation of the null distributions. Table 3.3
shows the size of the tests under the infinite dimensional models, note that the sizes of both
the FKWC tests and the competing tests are relatively close to 0.05, with the exception
of the Boen test and the biased-reduced L2 test.

As mentioned previously, we also simulated models where portions of the data were
contaminated with outliers. Figure 3.2 shows the three different kinds of outliers the data
were contaminated with. Figure 3.4 shows the power of the tests for detecting Gaussian
scale differences for J = 2 with n1 = n2 = 100 under 5% contamination of each of the
samples. For reference, this is 5 curves in in the context of Figure 3.4. Note that we expect
contamination in both samples to reduce the power of the test. The drift and spike outliers
have the most negative effects on the power of the competing tests. When there are drift
or spike outliers in both samples, we see that the power of the competing tests is reduced,

70



MFHD RP MBD LTR RP† L2br L2rp Tmax GPFrp Fmax
Drift 0.04 0.04 0.04 0.05 0.03 0.81 0.47 0.25 0.36 0.09
Wavy 0.04 0.06 0.04 0.04 0.03 0.08 0.10 0.06 0.10 0.08
Spike 0.04 0.06 0.04 0.05 0.02 0.29 0.08 0.06 0.05 0.03

Table 3.4: Sizes of the tests when one sample was contaminated by the different kinds of
outliers. Specifically, 5% of the first sample was contaminated. We see that the size of the
competing tests is inflated in almost all scenarios. Note that RP† is the FKWC test with
the likelihood depth, rather than the simplicial depth.

while the power of the FKWC tests is roughly the same as it was for uncontaminated data.

Consider the case where the contamination is only in one sample. We expect contami-
nation in only one samples to increase the size of the test. Table 3.4 shows the size of the
tests when one sample was contaminated by the different kinds of outliers. Notice that the
size of the competing tests is inflated in almost all of the scenarios, even under the wavy
outliers. The drift outlier seems to have especially negative effects on the competing tests,
with the exception of the Fmax test. Note that we have omitted the Boen test in Table
3.4, as it did not perform well on the uncontaminated data. In conclusion, the FKWC tests
perform very well compared to the existing tests. This is especially true in the presence of
imbalanced groups, heavy tails and drift or spike type outliers. As mentioned previously,
we recommend always incorporating the derivative information in the test, and for choosing
a depth function we recommend using the random projection depth with simplicial depth
because of its theoretical interpretation and simulation performance, or, if computation is
a concern then the modified band depth or the LTR depth should be used.

3.5 Applications to real data

In this section we present an application of our methodology to two different functional
datasets. One is comprised of intraday stock prices and the other is comprised of digitized
speech.

3.5.1 F-GARCH residual analysis of intraday stock price curves

We analyse the daily asset price curves of J = 3 different stocks (twtr, fb and snap)
starting on June 24th 2019 and ending March 20th 2020, which gives n1 = 207 and n2 =
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n3 = 208. Precisely, for each stock the price was measured over the course of the trading
day in one minute intervals, for a total of 390 minutes per day. In order to account for edge
effects from smoothing the curves, we trimmed 10% of the minutes from the beginning of
the day and 5% of the minutes from the end of the day. This resulted in 332 minutes of
stock prices. In actuality, we analysed the log returns, viz.

Xji(t) = ln(Yji⌊331t⌋+1)− ln(Yji⌊331t⌋),

where Yjik is the j
th asset price on the ith day at minute k. Figure 3.5(a) shows the intraday

log return curves {X2i(t)}208i=1 of Facebook (fb) stock. The data was fit to a B-spline basis,
using 50 basis functions, see smooth.basis in the fda R package.

Notice that the magnitudes of the curves vary widely. Figure 3.5(b) displays the squared
norms of the daily curves as a function of the day i. We can see that the magnitude of each
observation is related to the day on which it was observed. For example, around March
2020 the norms are higher, likely due to the volatility which resulted from the COVID-19
pandemic.

To handle the heteroskedasticity and any serial correlation present in the data, we
employ a functional GARCH(1,1) model (Aue et al., 2017; Cerovecki et al., 2019) and apply
the FKWC test to the residuals. The idea is to decompose the data into the conditional
volatility η2i and the independent error ϵji(t), which can be approximated by the residuals
ϵ̂ji(t). Unlike in the univariate GARCH model, the second order behaviour of ϵji(t) can
differ between different assets; E

[
ϵ2ji(t)

]
= 1 for all t is assumed for an identifiable model

(Cerovecki et al., 2019) but nothing is assumed about E [ϵji(t)ϵji(s)] for s ̸= t. Thus, it is
also of interest to investigate the properties of E [ϵji(t)ϵji(s)]. For example, if the errors
come from the same distribution, then the residuals can be pooled and bootstrapped to
provide standard errors.

Since this type of data is typically heavy tailed, a robust test is suitable. In order to
check the condition that η2ji completely encapsulates the serial dependence in the data, we
use the tests described by Rice et al. (2019). Specifically, we fit the functional GARCH(1,1)
to each series of intraday returns using quasi-maximum likelihood (Cerovecki et al., 2019).
We assumed that the volatility curves could be represented as linear combinations of M
Bernstein basis functions. These were chosen based on a combination of the Box-Jenkins
type test for the functional GARCH model (Rice et al., 2019), assessing the fit of the raw
mean of the squares graphically (see Cerovecki et al. (2019)) and keeping the number of
basis functions similar between assets. This resulted in choosing M = 4, and our results
were insensitive to the number of basis functions in terms of testing the residuals for a
difference in covariance. Figure 3.5(c) shows the resulting residuals of the GARCH(1,1)
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Figure 3.5: (a) Daily log differenced intraday return curves for fb stock, starting on June
24th 2019 and ending March 20th 2019. (b) Daily squared norms of the intraday returns.
Notice that these norms vary with the time period; the curves exhibit heteroskedastic
features. For example, the most recent month of returns are much more variable. (c)
Residuals for the fb log returns after fitting a functional GARCH(1,1) model (d) squared
norms of the residuals over time.
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Figure 3.6: Covariance kernels K(s, t) of the residuals of (a) twtr, (b) fb and (c) snap
log returns.

model fitted to the fb stock log returns and Figure 3.5(d) shows the norms of those residuals
as a function of the day i. Notice that both the residuals and their norms are fairly uniform
over time, especially when compared with the raw data. Figure 3.5(d) also shows that there
are some outliers in the data.

Figure 3.6 shows contour plots of the estimated covariance kernels of the residuals of
each functional time series, where 5% of the lowest random projection depth (with deriva-
tives) observations were trimmed to account for the outliers. Notice that the estimated
covariance kernels of the residuals of fb differs from the other two assets visually. We con-
ducted the FKWC test at the 5% level of significance, using ranks based on the random
projection depth which incorporates the derivatives. The means of the ranks are 244.4203,
424.2837, and 266.9712 for the twtr, fb, and snap residuals, respectively; Ŵn = 120.37
and we reject the hypothesis that these three series have the same covariance kernels. The
means of the ranks are similar for that of the twtr and snap stock, but the fb stock differs,
which matches Figure 3.6.

3.5.2 Comparing speech variability with phoneme periodograms

In this section we analyse the Phoneme data, where the observations are log peroidograms
of digitized speech. The data can be retrieved as part of the fda R package (Hastie et al.,
1995). The data is split into five groups representing the syllables ‘aa’, ‘ao’, ‘dcl’, ‘iy’
and ‘sh’. The goal is to characterize differences between the syllables’ distributions in
order to aid understanding of speech as well as to help improve the performance of speech
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Figure 3.7: Log periodograms for the syllables ‘aa’ and ‘dcl’. After centering, we see a
difference in magnitude at different times between the curves. There is also a large outlier
in the ‘dcl’ group.

recognition models. The data has obvious location differences, for example Figure 3.7(a)
shows the periodograms for two different syllables on the same plot. We centered the data
by the deepest curve, as measured by random projection depth, within each group. We
used a robust measure of centre to account for outliers, for example, there is a large outlier
in the ‘dcl’ syllable group. From Figure 3.7(b) we might suspect that there are differences
in the covariance kernels between the curves. To this end, we can run the FKWC test on
the five groups of syllables, we run two versions of the test and compare the results. We run
the FKWC test with random projection depth including the derivative information and as
well as the FKWC test with L2-root depth. These tests will differ if there are differences
of the form Kj(s, t) ̸= Kk(s, t), s ̸= t, j ̸= k. Both tests result in incredibly small p-values,
smaller than 2.2×10−16. We can further examine differences between groups, by performing
multiple comparisons. Suppose we would like to compare the covariance kernels of groups
j and k, then there are two obvious routes for multiple comparisons. One method is to
directly use the pre-calculated joint sample ranks, analogous to the univariate method of
Dunn (1964). Here, for large n, one is essentially assessing the behaviour of the random
variables D (Xj1;F∗) − D(Xk1;F∗), through combined sample ranks. The other method
is to extend the methods of Steel (1960) and compare the mean ranks of D (Xji;Fjk) and
D (Xkℓ;Fjk), where

Fjk =
ϑj

ϑj + ϑk
Fj +

ϑk
ϑj + ϑk

Fk.
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RP′ LTR
Syllable aa ao dcl iy sh aa ao dcl iy sh

aa 1.00 0.85 0.00 0.97 0.00 1.00 0.13 0.40 1.00 0.00
ao 0.85 1.00 0.00 0.27 0.00 0.13 1.00 0.00 0.18 0.00
dcl 0.00 0.00 1.00 0.00 0.00 0.40 0.00 1.00 0.29 0.11
iy 0.97 0.27 0.00 1.00 0.00 1.00 0.18 0.29 1.00 0.00
sh 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.11 0.00 1.00

Table 3.5: Šidák corrected p-values of pairwise functional Steel tests performed on the
centred curves.

Since Theorem 5 and Theorem 4 imply that differences in covariance structure will be
exhibited in the pairwise ranks of the depth values, when the depth values are taken with
respect to the empirical estimate of Fjk, it seems natural to use the methods of Steel (1960).
A second argument in support of the methods of Steel (1960) is as follows. Suppose that
one group, say j′ ̸= k, j has a very different covariance structure when compared to the
remaining groups, if the depth values are computed with respect to the combined sample,
then the group j′ may then ‘wash away’ any differences between the remaining groups. In
other words, it is possible that there is a difference between the random variables D (Xji;F∗)
and D (Xkℓ;F∗), but this difference is small relative to the combined sample and therefore
may not be detected. The multiple comparisons procedure is as follows. For each pair of
groups, j, k, compute the combined, two-sample depth values:

{D(Xj1;Fjk,n) , . . . ,D
(
Xjnj

;Fjk,n
)
,D(Xk1;Fjk,n) , . . . ,D(Xknk

;Fjk,n)},

where Fjk,n is the empirical distribution of {Xj1, . . . , Xjnj
, Xk1, . . . , Xknk

}. Next, perform
the Wilcoxon rank-sum test on the depth values for each pair. Lastly, correct the final p-
values using the S̆idák correction (Sidak, 1967) (or any other multiple testing correction).
Again, Theorems 3, 5 and 4 justify this procedure. Table 3.5 shows Šidák corrected p-
values of pairwise ‘functional Steel tests’ performed on the centered curves. The p-values
are corrected for the tests done across both hypothesis tests, i.e., across 22 tests. We see
that the results show that the syllables ‘dcl’ and ‘sh’ differ from the remaining syllables and
from each other in terms of the variability of the magnitude of their log-frequencies. We
can also see that under the LTR test, ‘dcl’ is similar to the other tests. This implies that
the trace norm of the covariance operator of ‘dcl’ is similar to that of the other syllables,
with the exception of ‘ao’. Under the RP′ test, the syllable ‘dcl’ differs from all other
syllables. We could interpret this as the log-periodograms of ‘dcl’ are more or less ‘wiggly’
when compared to the other syllables, or that the frequencies that have high variability
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are different for the syllable ‘dcl’ than the other syllables.
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Chapter 4

Kruskal-Wallis type statistics for
functional change-point problems

4.1 Introduction

Detecting the presence and location of change-points in the covariance operator of a se-
quence of observed functions has received some recent interest in the statistics literature,
see, e.g., (Harris et al., 2021). In this chapter, we combine the methods of Chapter 2
and Chapter 3 and use data depth ranks to detect change-points in the covariance ker-
nel of functional data. We introduce three procedures to perform covariance operator
change-point detection: a hypothesis test for the presence of at most one change-point, a
hypothesis test for the presence of an “epidemic period” and an algorithm to estimate the
locations of multiple change-points when the number of change-points is not known. We
may call these methods FKWC methods, or Functional Kruskal-Wallis Covariance operator
methods, following the naming convention in Chapter 3

In order to contextualize our procedure, we first review existing procedures for detection
of change-points in the covariance structure of functional data. Jarušková (2013) is the
first to discuss change-point detection for the covariance operator in the functional data
setting. Under the assumption of independent observations, they introduce a test for at
most one change-point. Their test is based on the first K <∞ eigenvalues of the empirical
covariance operator. Later, Aue et al. (2019) proposed a method to detect changes in
the eigenvalues of the covariance operator, where the observations are assumed to be a
dependent time series. In a similar vein, Dette and Kutta (2021) presented methodology
which can detect change-points in the eigensystem of a functional time series. Sharipov
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and Wendler (2019) investigated a bootstrap technique for conducting inference on the
covariance operator of a functional time series, which does not require dimension reduction.
They apply their bootstrapping technique to test for the presence of at most one change-
point in a functional time series. They present two test statistics, both based on empirical
covariance operators and the Hilbert-Schmidt norm. Stoehr et al. (2021) present CUSUM
statistics combined with a bootstrap procedure in order to test for the presence of changes
in the covariance operator of f-MRI data. They provide methods for detecting at most one
change, as well as methods for detecting an epidemic-type change. Their methods are based
on CUSUM statistics of projection scores, i.e., the CUSUM is computed from projections
of the data onto the first few eigenfunctions of the estimated covariance kernel, combined
with an estimate of the long-run covariance kernel. They also present a fully functional
method which uses all of the eigenfunctions of the estimated covariance kernel in order
to compute the test statistic. Dette and Kokot (2020) present change-point estimation
and hypothesis testing methodology for detecting relevant differences in the covariance
operators of functional time series. By relevant differences, it is meant that one may only
wish to detect a change-point if the magnitude of the change is above a certain threshold.
Their test statistic can be thought of as an adjusted estimate of the infinity norm distance
between covariance kernels, which is then combined with a bootstrap procedure in order
to perform the hypothesis test. These methods are generalised by Dette et al. (2020).
Jiao et al. (2020) present a fully functional method for detecting changes in the covariance
operator of functional data. The test statistic is an integrated univariate CUSUM-statistic,
for which the null distribution must be estimated from the data. The procedure presented
for estimating the null distribution relies on dimension reduction techniques. Recently,
Harris et al. (2021) used a fused Lasso and a CUSUM statistic to detect multiple change-
points in the mean and/or covariance operator of an observed sequence of functions. Their
method can be computed in linear time and they show via simulation that their method
is robust against heavy tailed data. However, their method also lacks theoretical results,
and thus, the ability to test for the presence of a change-point without using resampling
techniques.

Aside from Harris et al. (2021), previous works have not considered the robustness of
their procedure. For example, many previous works require fourth moment assumptions
(Stoehr et al., 2021; Dette and Kokot, 2020; Sharipov and Wendler, 2019), are based on
CUSUM statistics and long-run covariance estimators which are not robust (Dette and
Kokot, 2020; Sharipov and Wendler, 2019; Jiao et al., 2020) and/or rely on bootstrapping
or other data-driven methods to estimate the null distribution of the test statistic (Sharipov
and Wendler, 2019; Dette and Kokot, 2020; Jiao et al., 2020). Additionally, Stoehr et al.
(2021) mentioned the need for a robust change-point procedure for the covariance operator.
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The FKWC change-point procedure is robust against heavy tails and outliers, through
the use of both ranking methods and functional data depth functions. Functional data
depth functions lend themselves easily to robust methods, for example, they naturally
define functional medians. Additionally, the use of ranks allows us to further robustify the
procedure. For example, there is no need to assume finite third and fourth moments in
our theoretical results, and in simulation our method performs well when the data is heavy
tailed.

On top of being robust against outliers and distributional assumptions, the FKWC
methods are easily computable. Many of the previous works do not consider computation,
or rely on bootstrap methods (Stoehr et al., 2021; Sharipov and Wendler, 2019; Dette
and Kokot, 2020) which can be computationally burdensome. There is a parallel version
of the FKWC algorithm in which we can estimate the number and locations of multiple
change-points in linear time. In the non-parallel version, we can compute the number and
locations of multiple change-points in O(n log n) time. The FKWC methods are also easy
to implement. These computational features make the FKWC methods suitable to be used
with surface data; data whose domain is Rd, d > 1, such as f-MRI data. We provide an
implementation of our methods on Github (Ramsay, 2021).

Additionally, our FKWC methods are comprehensive, in the sense that they provide
both the functionality to test for the presence of a change-point and also to detect an
unknown number of change-points. Previous works typically perform only one of these
tasks. We also provide a finite sample result for our at-most-one change-point estimator,
where only asymptotic results have been considered thus far.

The rest of the chapter is organised as follows. Section 4.2 gives the assumed change-
point model and our proposed change-point procedures. Section 4.3 presents our finite
sample and asymptotic results. Section 4.4 contains a simulation study, where we compare
our methods to those of Sharipov and Wendler (2019); Dette and Kokot (2020); Harris
et al. (2021). Section 4.5 presents applications of our methods to intraday stock returns
and resting state f-MRI scans. Technical proofs and additional simulation results can be
viewed in Section A.6 and Section A.7, respectively.

4.2 Changepoint model and methodology

In this chapter we assume that each observed function Xi is a zero mean, real-valued
function whose domain is [0, 1]d for fixed d ∈ N. We additionally assume that each observed
function is a mean square continuous stochastic process, and that we may only observe Xi
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which are continuous functions. When the derivatives of the observations are involved in
the inference procedure, it is assumed that each observation is differentiable on (0, 1)d and
that its derivative meets the same continuity conditions just described. As in Chapter 3,
we denote this space of functions as F.

We suppose that we have observed a sequence of observations X1, . . . , Xn, such that
Xki−1+1, . . . , Xki have a common covariance operator Ki, with k0 = 0 < k1 < · · · <
kℓ < kℓ+1 = n for some fixed, but possibly unknown ℓ. Suppose that ki = ⌊nθi⌋ for all
i ∈ {1, . . . , ℓ}. Let ϑi = θi −

∑i−1
j=0 θj be the fraction of the observations with covariance

kernel Ki and define

K∗ := ϑ1K1 + ϑ2K2 + ϑ3K3 + · · ·+ ϑℓKℓ + ϑℓ+1Kℓ+1.

The goal is to estimate each ki; the location of the change-points. If we assume that ℓ = 1,
this is the at-most one-change (AMOC) model. If we assume that ℓ = 2 and that K1 = K3

then this is the epidemic model. If ℓ is unknown, then this is the multiple change-point
detection model. We focus on these three models in this chapter. Like in Chapter 2 and
Chapter 3, our test statistic is based on the Kruskal Wallis ANOVA test statistic, where
the ranks are the depth-based ranks.

We choose three depth functions, based on the results of Chapter 3. We choose the
the best performing depth function in Chapter 3, the random projection depth (Cuevas
et al., 2007). Due to its nice theoretical properties, we also use our procedure with the
multivariate halfspace depth (Slaets, 2011) with α = 0 otherwise known as the integrated
functional depth (Fraiman and Muniz, 2001). Lastly, if there is a reason to believe that
the changes in the covariance kernel are of the form

Kj =

{
ajK1 t ∈ Ij
K1 t /∈ Ij

for some Ij ⊂ [0, 1]d and some aj > 0, then we could use a summary of the observations
more directly related to the magnitude of the observations. For this reason, we also run
our procedure on the ranks of the squared norms, which we may refer to as the L2-root
depth-ranks (see Chapter 3). As in Chapter 3, we incorporate the derivative information.

We now present our change-point detection methodology. Consider a candidate set
of change-points r = {r1, . . . , rJ}, which we will always assume to be ordered by their
indices, i.e., r0 = 0 < r1 < . . . < rj < rJ+1 = n. Let µn = (n+ 1)/2, σ2

n = (n2 − 1)/12 and
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σ̃2
n = n(n+ 1)/12. All of our test statistics are based on the Kruskal Wallis test statistic:

W(r) =
1

σ̃n

J+1∑
j=1

(ri − ri−1)R̂
2

j − 3(n+ 1), where R̂j =

rj−1∑
i=rj−1

R̂i. (4.1)

Recall from Chapter 2 that the bigger the differences between segments {R̂1, . . . , R̂r1−1},
{R̂r1 , . . . , R̂r2−1}, et cetera, the bigger (4.1) will be. Therefore, maximizing a version of
(4.1) over r should give a set of time intervals which differ in median depth values. Due
to the relationship between depth values and covariance kernels (see Section 4.3), this
procedure will simultaneously give a set of time intervals in which the covariance operators
differ. If the number of true change-points ℓ is known, it suffices to use

k̂ = argmax
r1,...,rℓ

W(r),

as an estimate of the change-points. For example, if we assume the number of true change-
points ℓ = 1 this is the at most one change (AMOC) setting. In this context, we often wish
to conduct a hypothesis test to determine whether there exists a single change-point or no
change-point. Our proposed hypothesis test uses sup1<r1<nW(r1), as the test statistic. If

the test is significant, we can then use k̂1 = argmax1<r1<nW(r1) as the estimated change-
point. This procedure is equivalent to using a Wilcoxon rank-sum based CUSUM:

sup
t∈(0,1)

|Ẑn(t)| :=

∣∣∣∣∣∣ 1√
n

⌊tn⌋∑
i=1

R̂i − µn
σn

∣∣∣∣∣∣ ,
as the test statistic and then defining the change-point estimate as

k̂1 = inf

{
r : |Ẑn(r/n)| = sup

t
|Ẑn(t)|

}
, (4.2)

if the test is significant. It follows that |Ẑn(k̂1/n)| → supt |B(t)| as n → ∞, where B(t) is
a standard Brownian bridge (Chenouri et al., 2020b). Since it easy to obtain the quantiles
of supt |B(t)|, we suggest using the Wilcoxon rank-sum version of the test statistic. This
Wilcoxon rank-sum version of the test statistic and associated change-point estimator
are defined in the same manner as the multivariate change-point procedure proposed by
Chenouri et al. (2020b).

Another change-point setting is the epidemic change-point model, where we conduct a
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hypothesis test to determine whether there exists two change-points or no change-points.
There is the additional assumption that the distribution in the first and third segment
remain the same, and the middle segment is the “epidemic period”, during which the data
comes from a different distribution. In this case, we propose the following test statistic:

(k̂1, k̂2) = argmax
1<r1<r2<n

1

σ̃n


 n∑

1≤i<r1
r2≤i≤n

R̂i√
n− r2 + r1


2

+

(
r2−1∑
i=r1

R̂i√
r2 − r1

)2
−3(n+1). (4.3)

We can easily show that when there are no change-points

sup
1<r1<r2<n

Wn(r1, r2)
d→ sup

t1,t2∈(0,1)

(
1

(t2 − t1)(1− t2 + t1)

)
(B(t2)−B(t1))

2, (4.4)

which can be used to obtain critical values for the hypothesis test.

If the number of true change-points ℓ is unknown then maximizing the objective function
W over all possible candidate sets of change-points is a degenerate problem. Therefore, we
must add a penalty term on the number of change-points:

k̂ = argmax
r1,...,rj

W(r)− jλn. (4.5)

Just like in Chapter 2, this estimate can be computed with the PELT algorithm (Killick
et al., 2012). The PELT algorithm allows the change-point estimates to be computed in
linear time given the sample depth-based ranks. Much of the computational speed will
depend on computing and ranking the depth values. For example, if we let N represent
the number of points in the grid on which the functions are discretized to, then the random
projection depth values of a sample of size n can be computed in O(nMN +Mn log n)
time. Ranking the functional depth values will always take n log n time, and therefore,
theoretically, the best time for the FKWC change-point algorithm is O(n log n). One
may be able to improve this result to linear time by using the parallel ranking algorithm
developed by Anderson and Miller (1990).

Practically, it seems as though the majority of the computational burden comes in
the form of computing the sample depth values. For example, 1 million observations
can be ranked in R in 0.37 seconds1 even if the algorithm for the rank function in R is
not implemented in parallel. By contrast, computing the RP depth values of one million

1using an Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz microchip and 32 Gb of RAM.
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observations would take considerably longer with existing implementations in R. Therefore,
it is important to consider the functional depth function used with the FKWC change-point
method if computation is of high concern, such as in the context of f-MRI data.

4.3 Theoretical results

In this section we present the theoretical results for our change-point procedures. We
remind the reader that throughout the chapter we assume that data satisfy E [Xi] = 0
and that the locations of the change-points is fixed θi = ⌊nki⌋. We first introduce some
assumptions on the data.

Assumption 11. The change-points are bounded away from the boundaries of the observed
data; n c0 < ki < n(1 − c0) where 0 < c0 << 1 and one recalls that k1, . . . , kℓ are the
locations of the true change-points.

Assumption 12. For X ∼ F and z, y ∈ R, the distribution function of D(X,F ) is a
Lipschitz function;

|Pr(D (X,F ) < z)− Pr(D (X,F ) < y)| ≤ K ′|z − y|.

Assumption 13. The functional depth function D satisfies

sup
x∈F

∣∣∣D(x; F̂n)−D(x;F )
∣∣∣ = Op(n

−1/2).

Assumption 11 ensures that the change-points are bounded away from the edges of
the sequence of observations. Assumption 12 is a smoothness condition on the distribution
function of the depth function. Assumption 13 is satisfied by all three of the depth functions
discussed in this chapter, see (Nagy and Ferraty, 2019) and Chapter 3. The type of change
captured by the procedure is entirely encapsulated in the following condition: If there
exists a changepoint at time ki, then

pi := Pr(D (Xki ;F ) < D(Xki+1;F )) ̸= 1/2. (4.6)

It is necessary to connect the distribution of the depth values D (Xki ;F )−D(Xki+1;F ) to
the covariance operators. For example, suppose that there is only one change-point which
occurs at time k1. If we use the ranks of the squared norms of the observations with our
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change-point procedure, then condition (4.6) translates to

MED(∥Xk1∥
2 − ∥Xk1+1∥2) ̸= 0.

If we further assume that the distributions of the norms have the same shape, then we can
translate this condition to

∥Kk1∥tr ̸= ∥Kk1+1∥tr .

Therefore, using the ranks of the squared norms can only detect changes in the trace norms
of the covariance operators. When we instead use ranks generated from the functional
depth functions MFHD and RP, condition (4.6) translates to

MED(D (Xk1+1;F )−D(Xk1 ;F )) ̸= 0.

Both the integrated functional depth with D (x(t);Ft) = Ft(x)(1− Ft(x)) and the random
projection depth can be written in the form of

D(Xi;F ) =

∫
A
F∗,a(g(Xi, a))(1− F∗,a(g(Xi, a)))dPA :=

∫
A
Da(Xk1)dPA,

where A represents a compact set, PA is the uniform measure on A, g is some function
g : F → R such that E [g(Xi, a)] = 0 and

Da(Xk1) = F∗,a(g(Xk1 , a))(1− F∗,a(g(Xk1 , a))).

Suppressing the F in D, we can write

D(Xk1+1)−D(Xk1) =

∫
A
Da(Xk1)−Da(Xk1+1)dPA.

Now, define σ2
1,a and σ2

2,a as the variance of g(X, a) for X observed before and after the
change-point, respectively. To be clear, σ2

1,a = E [g(X1, a)
2] and σ2

2,a = E [g(Xn, a)
2]. In

the case of the random projection depth, we have that A is a compact subset of S and
σ2
j,a = ⟨Kja, a⟩. In the case of the integrated functional depth we have that A = [0, 1]d and
σ2
j,a = Kj(a, a). If we assume that F∗,a is thrice differentiable for all a and let f∗,a be the
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density corresponding to F∗,a, we can write

E [F∗,a(g(X1, a))] = F∗,a(0) +
1

2
f (1)
∗,a (0)σ

2
1,a +Ra,1,1

E
[
F 2
∗,a(g(X1, a))

]
= F 2

∗,a(0) + (f∗,a(0)f
(1)
∗,a (0) + f 2

∗,a(0))σ
2
1,a +Ra,1,2

E [F∗,a(g(Xn, a))] = F∗,a(0) +
1

2
f (1)
∗,a (0)σ

2
2,a +Ra,2,1

E
[
F 2
∗,a(g(Xn, a))

]
= F 2

∗,a(0) + (f∗,a(0)f
(1)
∗,a (0) + f 2

∗,a(0))σ
2
2,a +Ra,2,2.

The remainders are defined as

Ra,1,1 = E

[
1

6

∫ g(X1,a)

0

f (2)
∗,a (t)(g(X1, a)− t)3dt

]

Ra,1,2 = E

[
1

3

∫ g(X1,a)

0

(3f∗,a(t)f
(1)
∗,a (t) + f∗,a(t)f

(2)
∗,a (t))(g(X1, a)− t)3dt

]

Ra,2,1 = E

[
1

6

∫ g(Xn,a)

0

f (2)
∗,a (t)(g(Xn, a)− t)3dt

]

Ra,2,2 = E

[
1

3

∫ g(Xn,a)

0

(3f∗,a(t)f
(1)
∗,a (t) + f∗,a(t)f

(2)
∗,a (t))(g(Xn, a)− t)3dt

]
.

Note that we expect Ra,j,i to be small from the fact that the mean of g(Xi, a) is 0. After
some manipulation, it follows that

E [D (g(X1, a);F∗,a)−D(g(Xn, a);F∗,a)] = H(F∗,a)(σ
2
1,a − σ2

2,a) +Ra,1,3 −Ra,2,3,

where, if F is a univariate CDF, then

H(F ) =
1

2
f (1)(0)− (F (0)f (1)(0)− f 2(0)) and Ra,j,3 = Ra,j,1 −Ra,j,2.

We must now impose the following assumption:

Assumption 14. The distribution F is such that

E [D (Xk1+1;F )−D(Xk1 ;F ))] ̸= 0 =⇒ MED(D (Xk1+1;F )−D(Xk1 ;F ))) ̸= 0.

This assumption says that if the distributions of D (Xk1 ;F ) , D(Xk1+1) differ in mean,
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then they also differ in median. This assumption is akin to the assumption made in the
univariate Kruskal-Wallis procedure, where we assume that the distributions in each group
are not of the special form where the group means differ but the group medians do not. If
Assumption 14 holds, then we see that changes in the covariance operator which can be
described by ∫

H(Ft)K2(t, t)dt ̸=
∫

H(Ft)K1(t, t)dt, (4.7)

will be captured, in the case of the integrated functional depth. In the case of the random
projection depth, changes in the covariance operator of the type∫

S

H(Fu)⟨K2u, u⟩dP ̸=
∫
S

H(Fu)⟨K1u, u⟩dP, (4.8)

will be captured. The full proof of these results can be seen in the proof of Theorem 4
in Chapter 3. Looking at the case of random projection depth, if it is assumed that the
observed functions can be written as

X =
b∑
i=1

ciϕi

for some integer b ∈ N, then theoretically, the procedure could detect any type of change
in the covariance operator. This is of course provided that P is chosen to be uniform
on {u⊤Φ: u ∈ Sp−1}. From (4.7) it follows that the integrated functional depth-based
procedure can only detect changes that occur on the diagonal of the covariance kernel. If
one aims to detect changes characterised by E [Xn(s)Xn(t)] ̸= E [X1(s)X1(t)]

2, then we
recommend using the random projection depth based change-point procedure. Otherwise,
using either of these depth functions is acceptable. If we want to use half-space depth for D
in the integrated functional depth, i.e., the multivariate functional half-space depth, then
the procedure can detect differences in a quantity which is akin to the univariate mean
absolute deviation. In this case, a change of the form∫

[0,1]d
E [|(Xk1(t)−MED(Ft))|] dt ̸=

∫
[0,1]d

E [|Xk1+1(t)−MED(Ft)|] dt, (4.9)

will be detected by the procedure, provided that f
(1)
t evaluated at MED(Ft) is small. For

2In this expression we can replace Xn with any observation that comes after the change-point, and we
can replace X1 with any observation that falls before the change-point.
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example this will hold when the univariate distributions ft are symmetric. We may produce
something analogous to (4.9) for the random projection depth if we wish to use half-space
depth instead of simplicial depth for the univariate depth function D. Of course, this
analysis applies to the FKWC methods which do not incorporate the derivatives, though
we expect the procedure that includes the derivative information to be able to detect these
types of change-points as well as additional types of change-points. The motivation for
incorporating the derivatives is based both on the successful results of (Claeskens et al.,
2014), the results of Chapter 3 and the qualitative argument that increased oscillations in
the observations should produce a change in the magnitude of the derivatives. We can now
present our theoretical results for the FKWC change-point methods. We begin with the
behaviour of our proposed test statistics under the null hypothesis.

Theorem 7. If Assumption 13 holds and there are no change-points present in the data,
then the estimator (4.2) satisfies

|Ẑn(k̂1/n)|
d→ sup

t∈(0,1)
|B(t)|,

and the estimator (4.3) satisfies

Wn(k̂1, k̂2)
d→ sup

0<t1<t2<1

(B(t2)−B(t1))
2

(t2 − t1)(1− t2 + t1)
.

The proof of this theorem can be seen in Section A.6.

Theorem 8. Suppose that Assumptions 11-13 and (4.6) hold. For λn as in (4.5), assume
that limn→∞ λn = ∞ and that λn = o(n). Then the following two results hold:

1. The estimator (4.2) satisfies

|k̂1/n− θ| = Op(n
−1/2).

2. For the estimates (4.3) and the multiple change-point estimates (4.5), we have that
for all r > 0, there exists a constant C > 0 such that

Pr

({
ℓ̂ = ℓ

}
∩
{
max
i∈[ℓ]

|k̂i − ki| ≤ Cn1/2+r

})
→ 1 as n→ ∞.

The proof of this theorem follows directly from the proof of Theorem 2 in Chapter 2 and
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the proof of Theorem 3.2 in (Chenouri et al., 2020b). Next we give a finite sample result
for univariate rank-based change-point detection.

Theorem 9. Suppose that there are n independent, univariate data points X1, . . . , Xn,
with a change-point at time k1. Additionally, assume that p = Pr(X1 < Xn) ̸= 1/2. Let

k̂1 be the proposed AMOC change-point estimator based on the univariate, linear sample
ranks. Then for all t, θ > c0 > 0, there exists constants C1 and C2 which depend on θ and
c0 such that

Pr(|k̂1 − k1| > tn) < C1e
−C2nt2(p−1/2)2 .

Theorem 9 applies to our functional data change-point estimator when we use the
norms of the observations to rank the functions. If one used a different one dimensional
summary of the functional data in our change-point procedure, rather than the depth
values, Theorem 9 could be applied. In fact, Theorem 9 can also be used on other kinds
of data, such as a sequence of one-dimensional summaries of multivariate or shape data.
Theorem 9 does not cover the FKWC procedure when used with depth functions since
depth functions produce dependent depth values, but it applies to the method based on
the ranks of the squared norms. We now present a finite sample result for the procedure
which accounts for the dependency among the sample depth values.

Theorem 10. Suppose that Assumptions 11-12 hold and that there exists a change-point
at k1 in the sense of (4.6). Suppose that the data satisfy Xi = c⊤i Φ for a vector Φ of b

orthonormal basis functions. Let k̂1 be the proposed AMOC change-point estimator (4.2)
paired with the random projection depth or the MFHD depth. Then for all t, θ > c0 > 0,
there exists constants C1, C2 > 0 which depend on θ, c0, p1, K

′, the depth function choice,
and F such that

Pr(|k̂1 − k1| > nt) ≤ C1e
−C2nt2(p1−1/2)2 .

In order to have concentration of the sample ranks around the ‘population ranks’, it
is required that the empirical processes

∫
A
F̂n,ada also concentrates around

∫
A
Fada, which

at this time requires the finite dimensional assumption. Seeing as many functional data
analyses make this assumption implicitly through smoothing methods, we do not see this as
a particularly troublesome assumption. We remark that this finite dimensional assumption
is only necessary for the finite sample result, and not for consistency of the change-point
estimator. Recall that we have assumed that the observations are independent. In order
to extend these results to dependent observations, we require three results. The first of
which is a maximal inequality for ranks based on weakly dependent random variables,
such as discussed in (Hoffmann-Jørgensen, 2016). The second is a concentration result for
dependent U -statistics, which may be seen in (Han, 2018).
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4.4 Simulation

In order to test our methodology, we simulated observations from several change-point
models. To test the AMOC setting, we simulated data with 0 change-points as well as with
1 change-point in the middle of the sample. To test the epidemic change-point setting,
we simulated data with 2 uniformly random change-points, where we required that the
change-points were at least 10% of the sample size apart. Sample sizes of 100, 200, and
500 were used for these scenarios and all tests are carried out at the 5% level of significance.
Finally, to test the multiple change-point procedures, we used the simulated data for the
AMOC and epidemic scenarios, as well as a simulation where there were five randomly
placed change-points which also had to be at least 10% of the sample size apart. In the
five change-point case, we simulated sample sizes of 200, 500, 1000 and 2500. In each case,
the data were sampled from either a Gaussian process GP , a Student-t process t3 with
degrees of freedom equal to three, or a Skewed Gaussian process SG. We used a squared
exponential covariance kernel

K(s, t;α, β) = β e
−(s−t)2

2α2 ,

and the sample differences were controlled by adjusting α and β. Changes in α correspond
to a ‘shape’ difference in the data, while changes in β correspond to a magnitude difference.
In the AMOC cases, we compare our methods to the methods of Sharipov and Wendler
(2019); Dette and Kokot (2020). The code for these methods was kindly provided by
the authors. We compare our multiple change-point algorithm to the functional multiple
change-point isolation (FMCI) algorithm of Harris et al. (2021), whose code was also
provided. We feel this is the most comparable algorithm, as it is computationally fast and
can detect multiple change-points. We use the package fmci provided on Github (Harris,
2020) with the default parameters for this algorithm.

We discuss the AMOC and epidemic scenarios first, the FKWC methods which include
the derivatives performed universally better than those without the derivatives, therefore
we only present the results of the FKWC methods which use the derivatives. It should be
noted that the MFHD and squared norm based FKWC procedures cannot detect shape
changes without including the derivative information, see Section A.7. We also only present
the results from the AMOC runs, since the results from the epidemic scenarios resulted in
the same conclusions. The results from the epidemic scenarios can be seen in Section A.7.

Figure 4.1 shows the power curves for the AMOC FKWC test when the data had
magnitude changes (panel (a)) and when the data had shape changes (panel (b)). Here,
n = 500 and the results from other sample sizes were similar. (It was observed that a
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Figure 4.1: Power curves and accuracy boxplots when there is one change-point in the
data and n = 500. Each curve represents the empirical power of the AMOC FKWC hypoth-
esis test, for a given depth function (line type) when the data had a particular underlying
distribution (line color). For example, the solid green line is the power of the procedure
paired with the MFHD depth when the data came from a skewed Gaussian process. The
boxplots represent the empirical distribution of k̂ − k based on the 200 simulation runs.
The data model for each of the boxplots was (c) Gaussian with a magnitude change, (d)
student t with a magnitude change, (e) Gaussian with a shape change and (f) student
t with a shape change. Note that “L2-root” refers to the case where our procedure was
paired with the ranks of the sum of the squared norms of the observations and their first
derivative.

higher sample size indicates a higher detection power.) Figure 4.1 shows that the power
of the test is lower when the underlying data comes from a heavy tailed distribution,
but the method does not break down. We also see that performing the test on skewed
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Gaussian data performs similarly to when performed on non-skewed Gaussian data. When
the change-point altered the shape of the data, using the squared norm-based ranks did
not work as well as the other two depth functions if the data was not Gaussian, even if the
derivative information was incorporated. The performance of the test using ranks based on
RP′ and MFHD′ was similar, with MFHD′ being slightly better for magnitude differences
and RP′ being slightly better for shape differences. The empirical sizes of the test, were
always within 2%− 3% of the nominal size, being within 1%− 2% most of the time. The
bottom row of Figure 4.1 contains boxplots of k̂1−k1 when the change-point was detected.
We observe again that when the data is heavy tailed, the estimation is less accurate, but
still works. For example, the estimated change-point is often within 4 observations instead
of 2 when the change-point was a magnitude change. The estimation accuracy results
mirror those of the power curves; RP′ and MFHD′ perform the best with slight differences
depending on whether or not the change type was shape or magnitude.

Figure 4.2 compares the power of the methods of Sharipov and Wendler (2019); Dette
and Kokot (2020) to the power of the FKWC methods. We used 200 bootstrap samples
with a block length of 1 for both of the competing methods. We only report the results
for the integrated test of Sharipov and Wendler (2019), since it had generally higher power
than the other test proposed in their paper. For the Dette method, we used 49 B-spline
basis functions to smooth the data first and, note that using a Fourier basis resulted in
slightly lower power. We did not smooth the data for use with the method of Sharipov
and Wendler (2019). It can be seen in Figure 4.2 that the FKWC test has a higher power
than its competitors for the data models in this simulation study. We also notice that the
heavy tailed distribution breaks down the competing methods. We remark that though
the FKWC methods have higher power than competing methods under these simulation
models, the competing methods have some features that the FKWCmethods do not. These
methods have theoretical results for dependent data and the method by Dette and Kokot
(2020) can test for “relevant” changes in the covariance operator, rather than the standard
hypothesis of any change in the covariance operator.

In order to test the performance of the FKWC tests when the data are not independent,
we also compared the three tests under a model where the data had some dependency. We
simulated functions from the autoregressive model as discussed in the simulation section
of Sharipov and Wendler (2019) and ran the FKWC test on those time series. Table A.4
in Section A.7 shows the results under this model. We see that the FKWC tests (which
incorporate the derivatives) have higher power than competing methods, though they tend
to have higher type one error. The RP′ test is an exception; it had an empirical size of 0.06,
which is very close to the nominal level of 0.05. Overall, the performance of the FKWC
test is better than its competitors under these simulation models.
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Figure 4.2: Power curves of the FKWC method compared to the methods of Sharipov
and Wendler (2019); Dette and Kokot (2020) when there was one change-point in the data
and n = 100. Each curve represents the empirical power of a particular change-point
procedure when the data had a particular distribution. For example, a green curve with
a dashed line is the empirical power curve of the method of Sharipov and Wendler (2019)
when the data was generated from a skewed Gaussian process.

We now discuss the results from the multiple change-point algorithm. When there were
five change-points, we ran four different simulation scenarios, two where the change-points
were shape-type and two where the changes were magnitude-type. Within these groups,
the set of change-points was either “ascending”, i.e., α or β was increasing with each change
or “alternating”, i.e., α or β was oscillating between a high and low value with each change.

We first discuss choosing the value of λn. It was observed in Chapter 2 that λn ∈
(3.74+0.15

√
n, 3.74+0.25

√
n) performs well in the multivariate setting. In this study, we

tested λn = 3.74 + λ′n
√
n for λ′n ∈ (0.1, 0.4) to see if the same parameter settings apply to

the functional data setting. We ran the PELT algorithm on the simulated data for all of
the scenarios, i.e., for data which had 0, 1, 2 and 5 change-points. We observed that the
best choice of λ′n was consistent across the different depth functions, and so we only present
the results from RP′ depth. Figure 4.3 shows the mean absolute error in the estimated
amount of change-points, i.e., |ℓ− ℓ̂|, of the simulation scenarios for different values of λ′n
for n = 500. It is clear that the functional data context requires higher values of λ′n, with
the best parameters being in 0.25− 0.4 range. The algorithm is less sensitive to the choice
of λ′n with increased sample sizes. The group of curves presenting large errors at the top
of panel (a) of Figure 4.3 are from the shape difference and/or heavy tailed scenarios with
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Figure 4.3: (a) Mean absolute error |ℓ− ℓ̂| of the simulation scenarios for different values
of λ′n under the RP′ depth for n = 500. (b) Boxplots of ℓ̂ − ℓ when the data contains
different amounts of change-points (as labelled on the horizontal axis) under the Gaussian
simulation scenario. (c) Boxplots of ℓ̂ − ℓ when the data contains different amounts of
change-points under the t3 simulation scenario.
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Figure 4.4: Energy distance between the estimated and true change-points when n = 500
for the FKWC method and the FMCI method. The FKWC method was used with RP′

depth and λ′n = 0.3 and the FMCI method was used with the default parameters. Only
the runs in which there were five change-points are represented. The numbers at the top of
the graph are the proportion of runs in which the algorithm failed to identify any change-
points. The labels on the horizontal axis represent the distribution of the underlying data
and the change-point scenario; either alternating or ascending.

five change-points, where there was not enough samples to detect all of the change-points.
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We now compare the RP′ version of the FKWC multiple change-point method to the
FMCI method of Harris et al. (2021). We chose to compare to Harris et al. (2021) because
of FMCI’s ability to detect multiple change-points, as well as its accessible implementation
and computational speed. We use the default parameters provided in the fmci package.
We remark that the FMCI method can detect changes in both the mean function and
covariance kernel, whereas the FKWC method can only detect changes in the covariance
kernel. It should be noted that we used the same simulation to evaluate the best parameter
choice for the FKWC method, and so the results could be biased in favor of the FKWC
method. We do not feel this plays a major in the conclusions drawn from the comparison.

Figure 4.3 contains boxplots of ℓ̂ − ℓ for different data models in the simulation. The
results of skewed Gaussian and Gaussian were similar so we only present those of Gaussian
and student t. We see that the results of both methods are similar under the Gaussian
setting (while slightly favoring the FMCI method), but favor the FKWC method when the
data is heavy tailed. Both methods tend to underestimate the number of change-points
in the heavy-tailed case. We observed that both of these methods had more difficulty in
the ascending scenarios, i.e., the simulation runs where either the α or β parameters were
increasing at each change-point.

To evaluate the accuracy of the algorithms, we also look at the energy distance between
the estimated change-point set and true change-point set for each method. The energy
distance between the estimated and the true change-point set can written as

2

ℓ̂ℓ

ℓ̂∑
i=1

ℓ∑
j=1

|k̂i − kj| −
1

ℓ̂2

ℓ̂∑
i=1

ℓ̂∑
j=1

|k̂i − k̂j| −
1

ℓ2

ℓ∑
i=1

ℓ∑
j=1

|ki − kj|.

As done by Harris et al. (2021), we use the energy distance to evaluate the multiple change-
point methods. We use this distance because, as discussed in Appendix B.3 of Harris et al.
(2021), the energy distance measures the average error in estimating each change-point,
rather than the error of the most poorly estimated change-point in the set. One criticism
is that if the algorithm fails to identify any change-points, then the energy distance to a
set of true change-points will not be defined.

Figure 4.4 shows boxplots of the energy distance between the estimated change-point
set and true change-point set, for each method. The numbers along the top of the graph
indicate the proportion of simulation runs in which the algorithm failed to identify any
change-points. Figure 4.4 shows that the FMCI method performs better in the Gaussian
and skewed Gaussian scenarios when the change-points are ‘ascending’. However, the FMCI
method can perform poorly in the heavy-tailed scenario. Notice that in the alternating
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Figure 4.5: (a) Twitter differenced log returns and (b) norms of the Twitter differenced
log returns over time, with the FKWC detected change-points and change-point interval
means overlaid.

scenario, under the heavy-tailed distribution, the FMCI method fails to identify a change-
point over 90% of the time. We conclude that the FMCI method performs better when the
data are not heavy tailed, but the FKWC performs better when the data are heavy tailed.
In other words, the FKWC method sacrifices some of the accuracy of the FMCI method
for robustness to outliers.

4.5 Data analysis

4.5.1 Changes in volatility of social media intraday returns

In this section we present an application of the multiple change-point algorithm to intraday
differenced log returns of twtr stock. We analyse 207 daily asset price curves of twtr

starting on June 24th 2019 and ending March 20th 2020. The price was measured in one
minute intervals, over the course of the trading day, resulting in a total of 390 minutes per
day. In order to account for edge effects from smoothing the curves, we trimmed 10% of
the minutes from the beginning of the day and 5% of the minutes from the end of the day.
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This resulted in 332 minutes of stock prices. The differenced log returns are defined as

Xji(t) = ln(Yji⌊331t⌋+1)− ln(Yji⌊331t⌋),

for t ∈ (0, 1] and where Yjik is the j
th asset price on the ith day at minute k. The data was

fit to a B-spline basis, using 50 basis functions, see smooth.basis in the fda R package.
These data are shown in Figure 4.5. The assumption of zero mean appears to be satisfied
here. Notice the outliers, which indicates that this data may require robust inference.
Obviously, these data are not independent, however, we feel that this will not overtly
affect our procedure. As long as the intervals between change-points are big enough, we
expect the depth values after a change to also change, even if there is say, m-dependence
in the data. We would expect that m-dependence could blur the change for a short period
of time and cause the change-point estimate to be biased.

We ran the PELT algorithm with λn = 3.74+0.3
√
n = 8.06, as per Section 4.4. We ran

the algorithm under all of the depth functions with the derivatives. The FKWC method
using the MFHD depth identified a change-point on Jan 15, 2020 which the other two
depth functions did not. If we include this change-point, the algorithm identified four
change-points, as given in Table 4.1. The algorithm using the ranks of the squared norms
without the derivatives identified the same set of change-points3. We could then infer that
there were change-points in the magnitude of the observations. We remark that other,
additional changes in the covariance operator may have also occurred at these times. For
example, the magnitude change may also have been accompanied by a change in the shape
of the curves.

Figure 4.5 displays the norms of the curves over time, with the estimated change-points
added as vertical lines and the means of the norms in each interval overlaid. We can see
clear changes in the mean of the norms during these periods. We may also notice that
our procedure was unaffected by the outlier at the beginning of the series and the one
just before the last estimated change-point. Table 4.1 gives the magnitude and sign of the
changes as well. We can see that the largest change-point is the last one; clearly attributed
to the instability caused by the coronavirus pandemic. It is interesting to see whether
or not the other change-points occurred due to market wide behaviour, or events specific
to social media or even just Twitter itself. For example, running the same algorithm on
snap stock over the same period of time reproduces the change-points on Nov 07, 2019
and Feb 21, 2020 but not the other two change-points. One possibility for the estimated
change-point on July 2019 could be the Twitter earnings report released just prior, e.g.,
(Feiner, 2019).

3The estimated November change-point was said to be two days earlier.
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Interval Centered Rank Mean

Jun 24, 2019 - Jul 24, 2019 19.73
Jul 24, 2019- Nov 07, 2019 -15.64
Nov 11, 2019- Jan 15, 2020 46.04
Jan 15, 2020- Feb 21, 2020 1.08
Feb 21, 2020 - Mar 20, 2020 -90.80

Table 4.1: Change-points and centered MFHD′ rank means. Notice the largest change
occurs at the last change-point.

Aside from determining possible causes for change-points, from a modelling perspective,
one may wish to avoid using a functional GARCH model. This could be due to the fact
that in order to fit a functional GARCH model at the present time, one must choose to
fit the functional data to a relatively small number of basis functions in order to keep
to the number of parameters in the GARCH model small. If no clear basis exists, and
the principle component analysis does not work well due to outliers, one may wish for
an alternate approach. Instead one can remove the heteroskedasticity in the data by
re-normalizing the curves in each interval, and then proceed with alternative time series
modelling from there. Of course, this would not estimate future change-points; one could
model the change-point process and the return curves separately.

4.5.2 Resting state f-MRI pre-processing

Functional magnetic resonance imaging, or f-MRI, is a type of imaging for brain activity.
f-MRI uses magnetic fields to determine oxygen levels of blood in the brain in order to
produce 3-dimensional images of the brain. Many of these images are taken over a period
of time, which results in a time series of 3-dimensional images. Note that each MRI in a
given subject’s f-MRI can be viewed as a function on [0, 1]3. Resting state f-MRI is a type
of f-MRI data where no intervention is applied to the subject during the scanning process.
f-MRI scans go through extensive pre-processing before being analysed.

One assumption commonly made is that, after several pre-processing steps, each sub-
ject’s resulting functional time series is stationary. It is therefore important to check the
scans at an individual level in order to ensure that each time series is stationary. For
subjects whose time series is not stationary, we must make the necessary corrections or
exclusions from the ensuing data analysis. The covariance kernel of an f-MRI time se-
ries is a 6-dimensional function. Existing methods make a separability assumption on
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the covariance kernel (Stoehr et al., 2021), which we do not make here. Additionally,
Stoehr et al. (2021) mentions the need for a robust method of detecting non-stationarities
in f-MRI data, which leads us to apply our rank based method to this data. We anal-
yse several scans from the Beijing dataset, which were retrieved from www.nitrc.org.
These scans were also analysed by Stoehr et al. (2021). Following instruction provided
by https://johnmuschelli.com/, we performed the following pre-processing steps to the
data. We trimmed the first 10 seconds from the beginning of the scan, in order to have a
stable signal. We then performed rigid motion correction using antsMotionCalculation

function in the ANTsR R package. A 0.1 Hz high-pass Butterworth filter of order 2 was
applied voxel-wise to remove drift and trend from the data. We then removed 15 obser-
vations from either end of the time series in order to remove the edge effects of the filter.
The gradient of each scan was then estimated using the numDeriv package, which resulted
in four time series of functional data, where each function is a three-dimensional image.

We then computed the RP′ sample depth values as follows. First we projected each
of the four time series’ onto 50 unit functions. Then, for each of the 50 projected time
series, we computed the half-space depth values of each four-dimensional observation. We
then averaged these depths over the 50 unit vectors. We use the half-space depth since
it is faster to compute than the simplicial depth for four-dimensional data. We then
applied the FKWC hypothesis tests and the FKWC multiple change-point algorithm to
the resulting depth values. In addition, we restricted estimated change-points to be at
least 10 observations away from either boundary. Code to run the FKWC procedure on
three-dimensional functional data can be retrieved from Github (Ramsay, 2021).

AMOC Epidemic
Subject Estimate p-value Estimate 1 Estimate 2 p-value

sub08455 116.00 0.36 34.00 54.00 0.95
sub08992 35.00 0.00 36.00 175.00 0.00
sub08816 39.00 0.20 43.00 94.00 1.00
sub34943 159.00 0.10 21.00 173.00 0.01
sub12220 30.00 0.09 31.00 127.00 0.25
sub06880 116.00 0.00 24.00 117.00 0.00

Table 4.2: Change-point estimates and p-values resulting from running the FKWC
change-point tests on the different subjects.

Figure 4.6 contains the ranks of the random projection depth values for several f-MRI
scans, with the resulting change-point intervals identified by the FKWC multiple change-
point algorithm overlaid. Table 4.2 contains the p-values and change-point estimates re-
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Figure 4.6: Ranks of the random projection depth values for several f-MRI scans with
detected change-point means overlaid.

sulting from running the hypothesis testing procedures. We see that changes are detected
in four of the six subjects analysed, two of which appear to be an epidemic type change; the
ranks return to their previous means after the second interval. This is consistent with the
idea that the epidemic model is more suitable for some resting state f-MRI scans (Stoehr
et al., 2021). For subject sub08455, we do not detect any changes in the sequence, even
though this subject’s f-MRI has an outlier early in the sequence. This outlier can create
a false positive for the AMOC alternative, as discussed by Stoehr et al. (2021). Notice
that the p-values are not small for this subject when running our test. The rank sequence
for subject sub08992 was estimated to have two change-points, though the distribution
of ranks in the first and third intervals are clearly different. This is why the estimates
from the epidemic model and the multiple change-point procedures differ. Though, the
null hypothesis is rejected by both the AMOC and epidemic model tests, even if we were
to use any p-value correction procedure. In addition, the FKWC procedure ignores the
outlier at the beginning of the sequence for subject sub08992, which showcases the ro-
bustness of the FKWC method. The FKWC methods did not detect any change-points
for subject sub08816, whereas the methods of (Stoehr et al., 2021) detected an epidemic
period. This could be due to differences in pre-processing, trimming, or the nature of the
different methods’ assumptions. For subject sub34943 we see that an epidemic change is
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detected by the multiple change-point procedure, and the p-value from the hypothesis is
borderline significant with p-value corrections (0.01). In the case of the AMOC test, the
null hypothesis is not rejected. We note that no change was detected by the functional pro-
cedure in (Stoehr et al., 2021), but a change was detected in the multivariate procedure.
For subject sub12220, one change is detected, by the multiple change-point procedure,
though the hypothesis testing yields non-significant results. We remark that the test of
Stoehr et al. (2021) detects a change. The location of the change detected by Stoehr et al.
(2021) occurs early in the sequence, and, as a result of the trimming we applied to the
sequence, occurs very early in our time series. This makes it difficult to detect by our
procedure. For subject sub06880 we see that all three FKWC procedures agree that there
are change-points, and the epidemic model and the multiple change-point procedure agree.
We remark that Stoehr et al. (2021) also detected change-points in this subjects sequence
of observations.
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Chapter 5

Depth Methods for Private Data
Analysis

5.1 Introduction

There is a large body of literature that shows simply removing the identifying information
about subjects from a database is not enough to ensure data privacy (see Dwork et al.,
2017, and the references therein). Even if only certain summary statistics are released,
an adversary can still learn a surprising amount about individuals in a database (Dwork
et al., 2017). This phenomena is largely due to auxiliary information that is known by
the adversary. Given the large amount of information about individuals that is publicly
available, it is not infeasible to assume that an adversary already knows some information
about the individual they wish to learn about. On the contrary, if a statistic is differentially
private an adversary cannot learn about the attributes of specific individuals in the original
database, regardless of the amount of initial information the adversary possesses. This
property, coupled with the lack of assumptions on the data itself needed to ensure privacy,
accounts for the volume of recent literature on differentially private statistics.

One part of this literature represents a growing interest in the statistical community
in differentially private inference, e.g., (Wasserman and Zhou, 2010; Awan et al., 2019;
Cai et al., 2019; Brunel and Avella-Medina, 2020). In particular, there are connections
between robust statistics and differentially private statistics, first discussed by Dwork and
Lei (2009). Dwork and Lei (2009) introduced the propose-test-release algorithm for com-
puting private estimators. This algorithm works particularly well with robust statistics.
Brunel and Avella-Medina (2020) greatly expanded the propose-test-release paradigm of
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Dwork and Lei (2009), using a concept from robust statistics called the finite sample break-
down point. The same authors use this idea to construct private median estimators with
sub-Gaussian errors (Avella-Medina and Brunel, 2019). There are connections to other con-
cepts from robust statistics; Chaudhuri and Hsu (2012) formalized a connection between
private estimators and gross error sensitivity. The connection between private estimators
and gross error sensitivity has been further exploited in order to construct differentially
private statistics (Avella-Medina, 2019). Furthermore, private M-estimators were studied
by several authors (Lei, 2011; Avella-Medina, 2019).

This chapter is inspired by these recent papers, where we explore the privatization of
depth functions, a robust and nonparametric data analysis tool; given the recent success of
robust procedures in the private setting, it is worthwhile to develop and study privatized
depth functions and associated medians.

We present algorithms for computing differentially private depth values and depth-
based medians. We study the cost of privacy of these methods; how the level of privacy
protection affects the statistical utility of the depth function. Specifically, we consider
generating a depth-based median via the exponential mechanism (McSherry and Talwar,
2007). We present the sample complexity of this estimator and show that it is polynomial
in the dimension d. Furthermore, privatizing the estimator only increases the sample
complexity by a factor of log d for a given error level comparable to that of the privacy
parameter. Another important feature of our private median is that the range of the data
can be unbounded. Many existing estimators require that the range of the data lie in a
known ball or hypercube (Wasserman and Zhou, 2010; Cai et al., 2019). For many existing
estimators, if the range is unknown one must sacrifice privacy budget to approximate the
range of the data and the quality of the estimator depends on the size of this range. By
contrast, our procedure allows for the data to have an unknown or unbounded range. In
addition to private medians, we also present methods for computing private depth values
and compute the associated cost of privacy. As a by-product, we extend the propose-test-
release procedure of Brunel and Avella-Medina (2020) to be used with the exponential
mechanism. We show that one can use propose-test-release to compute a private version
of projection depth and the projection depth median. We show that the probability of
returning a “null” value for the private projection depth values is small and give the cost
of privacy for the projection depth values. As a by-product of this work, we present a
smooth version of integrated dual depth as well as uniform concentration inequalities for
several depth functions.

Note that some work has been done on the private computation of halfspace depth
regions and the halfspace median (Beimel et al., 2019; Gao and Sheffet, 2020), mainly
from a computational geometry point of view. Though Beimel et al. (2019) mentions that
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the halfspace depth function can be used with the exponential mechanism, they do not
study the estimator’s properties from a statistical point of view; it is used as a method of
finding a point in the convex hull of a set of points.

5.2 Differential privacy

Before getting into the fundamentals of differential privacy, it is useful to first introduce
some notation. For two sets A and B, let A△B be the symmetric difference of A and B.
In addition, recall that |A| is the cardinality of A. We denote the open d-dimensional ball

of radius r around x by Br(x). Given x ∈ Rd we define the p-norm as ∥x∥p =
(∑d

j=1 x
p
j

)1/p
and given some function ϕ : Rd → R, we set ∥ϕ∥∞ = supy∈Rd ϕ(y). We represent the data
with Xn = {X1, . . . , Xn} and assume that the data is a random sample of size n such that
each observation is in Rd. We use Fn to represent the empirical measure determined by Xn.
For a univariate distribution F , we use F−1 to denote the left continuous quantile function.
Throughout the chapter we define the median of a continuous, univariate distribution by
MED(F ) = F−1(1/2). Both MED(Xn) and MED(Fn) are taken to be the usual sample
median. In other words, MED(Fn) is the usual sample median and not F−1

n (1/2). We
use QXn to represent a measure that depends on the data set Xn. Differentially private
statistics will be denoted with the ∼ symbol, e.g., T̃ . Given a database Xn, we let D(Xn, k)
be the set of all databases of size n which differ from Xn by k observations. In other words,
define the space of all databases of size n containing points in Rd to be Dd

n, then

D(Xn, k) = {Yn ∈ Dd
n : |Yn△Xn| = k}.

A first essential concept when studying differential privacy is that of a mechanism. It
has been shown that all differentially private statistics T̃ (Xn) must admit (non-degenerate)
measures given the data QXn . This means that conditional on the observed dataset, a
differentially private statistic (or database) is a random quantity (Dwork and Roth, 2014).

We call the procedure that determines QXn and then outputs a random draw T̃ (Xn) from

QXn a mechanism. We may also refer to the mechanism by T̃ with an abuse of notation.
A second essential concept for studying differential privacy is that of adjacent databases.
Recall that Xn is a set of n d-dimensional vectors. Say Yn is adjacent to Xn if Yn is also a
set of n d-dimensional vectors and the symmetric difference between Xn and Yn contains
one element. Colloquially, we say that Xn and Yn (another random sample of size n) are
adjacent if they differ by one observation; Yn ∈ D(Xn, 1). Equipped with these concepts,
we can now define differential privacy:
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Definition 9. A mechanism T̃ is ϵ-differentially private for ϵ > 0 if

QXn(B)

QYn(B)
≤ eϵ (5.1)

holds for all measurable sets B and all pairs of adjacent datasets Xn and Yn.

The parameter ϵ should be small, implying that

QXn(B)

QYn(B)
≈ 1,

which gives the interpretation that the two measures QXn and QYn are almost equivalent.
To understand this definition, it helps to think of the problem from the adversary’s point
of view. Suppose that we are the adversary and that we have access to all the entries in the
database except for one which we are trying to learn about. Therefore there is an unknown
observation θ ∈ Rd which we are trying to infer about. If T̃ is released, how can we use
it to conduct inference about θ? Suppose we want to know whether or not θ belongs to
some set of observations Θ0. For example, Θ0 could be the set of all observations where
the subject has blue eyes and has a specific rare disease. Thus, we want to test

H0 : θ ∈ Θ0 vs. H1 : θ /∈ Θ0.

To conduct this test, we would then ask two questions:

How likely was it to observe T̃ under H0? and How likely was it to observe T̃ under H1?

Differential privacy stipulates that both of these questions have practically the same answer,
making it impossible to infer anything about θ from T̃ . Definition 9 implies that if someone
in the dataset was replaced, we are just as likely to have seen T̃ (or some value very close

to T̃ if QXn is continuous). Another way to interpret the definition is to observe that
differential privacy implies that KL(QXn , QYn) < ϵ, where KL is the Kullback–Leibler
divergence; implying that the distributions are necessarily close.

One may observe that the inequality (5.1) must hold for all pairs of adjacent databases
and all possible outcomes of the estimator in order for the procedure to be differentially
private. This inequality is then a worst case restriction, in the sense that (5.1) must hold
for even the worst possible database and the worst possible outcome of the mechanism.
Definition 9 can be difficult to satisfy because the umbrella of ‘all databases and mechanism
outputs’ can include both some extreme databases and extreme mechanism outputs. One
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may wish to relax this definition over unlikely mechanism outputs; one way to do this is
if B is such that QXn(B) is very small, then the bound could be allowed to fail. This is
called approximate differential privacy or (ϵ, δ)-differential privacy, in which we have

QXn(B) ≤ eϵQYn(B) + δ (5.2)

in place of the condition (5.1). Typically, δ << ϵ, and δ can be interpreted as the proba-
bility under which the bound is allowed to fail. To see this, observe that for B such that
QXn(B) < δ, (5.2) holds regardless of ϵ. We mention that for remainder of the chapter, ϵ
and δ are always assumed to be positive and that sometimes we may have that the privacy
parameters are a function of the sample size or dimension. Taking the privacy parameter
to be decreasing in n is a very safe assumption in terms of privacy; given enough samples,
the database participants will surely be protected.

An important feature of differentially private statistics is that they are immune to post-
processing (Dwork and Roth, 2014). Functions of differentially private estimates maintain
the same level of privacy:

Proposition 1 (Dwork and Roth (2014)). Let T̃ ∼ QXn be (ϵ, δ)-differentially private,

then f(T̃ ) is also (ϵ, δ)-differentially private for any data-independent map f .

We can also compose multiple private statistics together; a vector of N differentially private
procedures will also be differentially private.

Proposition 2 (Dwork and Roth (2014)). Suppose we have T1, . . . , TN differentially pri-
vate statistics, with privacy parameters (ϵ1, δ1), . . . , (ϵN , δN). Then the vector (T1, . . . , TN)

is
(∑N

j=1 ϵj,
∑N

j=1 δj

)
-differentially private.

Central to differentially private algorithms is the concept of sensitivity. Then the global
sensitivity GSn of a statistic T : X n → S is the maximum distance between T evaluated
at two adjacent databases of size n:

GSn(T ; ∥·∥S) = sup
Xn∈Dd

n,
Yn∈D(Xn,1)

∥T (Xn)− T (Yn)∥S .

The norm used depends on T and the mechanism, therefore we may use the notation
GSn(T ; ∥·∥S). When the norm is clear from the context, we will simply write GSn(T ).
Note that T does not have to be Euclidean valued; the range of T (Xn) can lie in any
normed space.
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We can now introduce some important building blocks of differentially private algo-
rithms. Let W1, . . . ,Wk, . . . and Z1, . . . , Zk, . . . represent a sequence of independent, stan-
dard Laplace random variables and a sequence of independent, standard Gaussian random
variables, respectively. The Laplace and Gaussian mechanisms are essential differentially
private mechanisms; they define how much an estimator must be perturbed in order for it
to be differentially private.

Mechanism 1 (Dwork et al. (2006)). Given a statistic T : X → Rk, the mechanism that
outputs

T̃ (Xn) = T (Xn) + (W1, . . . ,Wk)
GSn(T ; ∥·∥1)

ϵ
,

is ϵ-differentially private.

Mechanism 2 (Dwork et al. (2006); Dwork and Roth (2014)). Given a statistic T : X →
Rk, the mechanism that outputs

T̃ (Xn) = T (Xn) + (Z1, . . . , Zk)

√
2 log(1.25/δ)GSn(T ; ; ∥·∥2)

ϵ

is (ϵ, δ)-differentially private.

This can be improved in strict privacy scenarios (Balle and Wang, 2018). We can
also add noise based on smooth sensitivity (Nissim et al., 2007). Using smooth sensitivity
allows the user to leverage improbable, worst case local sensitivities. Often in practice,
statistics are computed by maximizing a data driven objective function ϕXn(·). We can
privatize such a procedure via the exponential mechanism. The exponential mechanism
can be defined as follows:

Mechanism 3 (McSherry and Talwar (2007)). Given the data, consider a function ϕXn :
Rk → R. Then a random draw from the density f(x;ϕXn , ϵ) that satisfies

f(x;ϕXn , ϵ) ∝ exp

(
ϵ ϕXn(x)

2GSn(ϕXn ; ∥·∥∞)

)
,

is an ϵ-differentially private mechanism. It is assumed that∫
Rk

exp

(
ϵ ϕXn(x)

2GSn(ϕXn ; ∥·∥∞)

)
dx <∞.
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The factor of 2 can be removed if the normalizing term is independent of the sample.
All of the mechanisms discussed so far require that the non-private statistic or objective
function has finite global sensitivity. This is a somewhat strict requirement; under the
Gaussian model neither the sample mean nor sample median have finite global sensitivity,
even when d = 1. Instead, we might check the local sensitivity. For a fixed database Xn

the local sensitivity of T is defined as

LSn(T,Xn; ∥·∥S) = sup
Yn∈D(Xn,1)

∥T (Xn)− T (Yn)∥S .

Note that LS depends on the sample. Instead of requiring that the statistic has small
global sensitivity we can instead leverage the local sensitivity, provided it is small with
high probability. For example, the sample median has, on average, low local sensitivity,
viz.

LS(MED(Xn)) ≤ |F−1
n (1/2− 1/n)− F−1

n (1/2 + 1/n)|,

when d = 1. Since 1/n→ 0, we expect this value to be small (assuming the sample comes
from a distribution which is continuous at its median).

The propose-test-release mechanism, or PTR, can be used to generate private versions of
statistics with infinite global sensitivity but highly probable low local sensitivity. Propose-
test-release was introduced by Dwork and Lei (2009) but was greatly expanded in the
recent paper by Brunel and Avella-Medina (2020). The PTR algorithm of Brunel and
Avella-Medina (2020) relies on the truncated breakdown point Aη, which is the minimum
number of points that must be changed in order to move an estimator by η:

Aη(T ;Xn) = min

{
k : sup

Yn∈D(Xn,k)

∥T (Xn)− T (Yn)∥ > η

}
, (5.3)

where one recalls that D(Xn, k) is the set of all samples that differ from Xn by k obser-
vations. Unlike for the traditional breakdown point, the dependence of Aη(T ;Xn) on Xn

is important. PTR works by proposing a statistic, testing if it is insensitive and then
releasing it if it is, in fact, insensitive. A private version of Aη(T ;Xn) is used to check the
sensitivity.

Mechanism 4. Given a statistic T : X → Rk, the mechanism that outputs

T̃ (Xn) =

{
⊥ if Aη(T ;Xn) +

1
ϵ
W1 ≤ 1 + log(2/δ)

ϵ

T (Xn) +
η
ϵ
W2 o.w.

(5.4)
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is (2ϵ, δ) differentially private and the statistic

T̃ (Xn) =

 ⊥ if Aη(T ;Xn) +

√
2 log(1.25/δ)

ϵ
Z1 ≤ 1 + 2 log(1.25/δ)

ϵ

T (Xn) +
η
√

2 log(1.25/δ)

ϵ
Z2 o.w.

(5.5)
is (2ϵ, 2eϵδ + δ2) differentially private.

The release of ⊥, i.e., a “null” value, means that the dataset was too sensitive for the
statistic to be released. The goal is to choose a T such that releasing ⊥ is incredibly
unlikely; Aη(T ;Xn) should be large with high probability.

5.3 A smooth depth function

We will be constructing differentially private statistics from depth functions. We will
focus mainly on halfspace depth, projection depth, integrated rank-weighted depth and
integrated dual depth. We also discuss simplicial depth in Section A.8. One may notice
that the sample versions of all of these depth functions are not smooth functions. We
may wish to have a smooth sample depth function in order to use certain Markov chain
Monte Carlo computational techniques to draw private estimates. For example, in the
exponential mechanism, the Hessian of the objective function can be used to produce
computational guarantees for Langevin dynamics. The existing depth functions are not
smooth because they rely on empirical distribution functions, or EDFs, which are not
smooth. One way to produce a smoothed version of the depth function is to replace the
indicators in the EDF with the “Sigmoid” or “expit” function: 1 (Y ≤ x) ≈ σ (β(x− Y )),
where σ(x) = (1+e−x)−1. The parameter β controls the smoothness of the depth function,
increasing β reduces the smoothness of the depth function. The smoothed depth is then
defined as

Definition 10 (β-Integrated Dual Depth). Define β-integrated dual depth as

IDDβ(x;F ) =

∫
Sd−1

E
[
σ
(
β(x−X)⊤u

)]
·
(
1− E

[
σ
(
β(x−X)⊤u

)])
dν(u),

where ν is the uniform measure on Sd−1.

Observe that as β → ∞, this depth function converges to the integrated dual depth. We
show that β-integrated dual depth satisfies the same “depth”-like properties as integrated
dual depth. Let AF + b represents the distribution of AX + b if X ∼ F .
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Theorem 11. The β-integrated dual depth satisfies the following properties:

1. Vanishing at infinity: limc→∞ IDDβ(cu;F ) = 0 for any unit vector u.

2. Maximality at centre: If X ∼ F and F is such that X − θ
d
= θ − X, it holds that

supx IDDβ(x;F ) = IDDβ(θ;F ).

3. Similarity invariance: For all orthogonal matrices A and vectors b ∈ Rd it holds that
IDDβ(x;F ) = IDDβ(Aθ + b;AF + b).

4. Decreasing along rays: If X ∼ F and F is such that X − θ
d
= θ − X, then for all

0 < α < 1 IDDβ(αθ + (1− α)x;F ) > IDDβ(x;F ).

In practice, computing the integral in Definition 10 is infeasible for even moderate
dimensions. Instead, we compute a Monte Carlo estimate of the depth values:

ÎDDβ(x;Fn) =
1

M

M∑
m=1

1

n

n∑
i=1

σ
(
β(x−Xi)

⊤um
) (

1− σ
(
β(x−Xi)

⊤um
))
.

We now show that the approximation ÎDDβ maintains the same uniform convergence rate
of IDD when M > n log n:

Theorem 12. Suppose that for some positive integerM , u1, . . . , uM are sampled uniformly
from the d-dimensional unit sphere. Then, for all t > 0, there exists a universal constant
K such that

Pr

(
sup
x

∣∣∣ÎDDβ(x;Fn)− IDDβ(x;Fn)
∣∣∣ ≥ t

)
≤ 2e(d+n+1) log( KM

2(d+n+1))−Mt2/2,

We have now confirmed that the smoothed depth is indeed a depth function and is
computable with statistical guarantees.

5.4 Estimating private depth-medians

We now discuss estimating private depth-based medians. It may seem intuitive to start
with estimating private depth values, but we will see that we may use techniques from this
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section in order to estimate private depth values. The goal of this section is to produce
a private estimate of the depth-based median: argmaxD(x;F ). There are several ways
in which we could approach privatizing depth-based inference. A natural and easy way
to do this is to start with a differentially private estimate of the distribution of the data
F̃n and use D(x, F̃n), which is differentially private. Computing F̃n relies on existing
methods for generating private multidimensional empirical distribution functions, which
are independent of the concept of depth. Since they do not rely on the properties of the
depth function, methods based on differentially private estimates of the distribution fail to
take advantage of any robustness properties of depth functions.

Therefore, we opt for an algorithm based on the global sensitivity of D. Take D(x;Xn)
to be the depth of x with respect to the empirical distribution determined by Xn. Then the
global sensitivity GSn of D is the maximum distance between the sample depth functions
for two adjacent databases of size n:

GSn(D) = sup
Xn∈Dd

n,
Yn∈D(Xn,1)

sup
x

|D(x;Xn)−D(x;Yn)|.

We observe that the global sensitivity GSn(D) of the halfspace, simplicial, integrated dual,
integrated rank-weighted and β-integrated dual depths satisfy GSn(D) = C/n1. For exam-
ple, halfspace depth has global sensitivity 1/n. Since estimating depth-based medians is
an optimization problem whose objective function has small global sensitivity, it is natural
to use the exponential mechanism to compute a private estimate.

However, all of the depth functions we consider lie in some bounded, positive interval.
This fact implies that the density given by the standard exponential mechanism is not
valid: ∫

Rd

exp

(
ϵ

2GSn(D)
D(x;Fn)

)
dx = ∞.

To remedy this, we add a prior π on the median:

f(x;Fn) =

exp

(
ϵ

2GSn(D)
D(x;Fn)

)
π(x)

∫
Rd exp

(
ϵ

2GSn(D)
D(x;Fn)

)
π(x)dx

. (5.6)

Mechanism 5. Suppose that GSn(D) = C(D)/n. Suppose also that π(x) is a density

1For the proof of this, see Section A.9
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chosen independently of the data and that

f(x;Fn) =

exp

(
nϵ

2C(D)
D(x;Fn)

)
π(x)

∫
Rd exp

(
nϵ

2C(D)
D(x;Fn)

)
π(x)dx

, (5.7)

is a valid Lebesgue density. Suppose that T̃ (Xn) is a random draw from f(x;Fn). Then

T̃ (Xn) is an ϵ-differentially private estimate of the D-based median of Xn.

It is given by differential privacy of the exponential mechanism that one sample from
f is ϵ-differentially private. The next step is to assess the accuracy of the private median
estimate. The following is a general concentration result for one draw from the exponential
mechanism, given an objective function ϕn. We will use this to assess the accuracy of our
private median estimate.

Theorem 13. Let π be a measure on Rd. Suppose that ϕn(ω, x) : Ω × Rd → R+ is a
sequence of random functions on the probability space (Ω,A , P ) and λn is a sequence of
positive real numbers. Assume that

1. Pr (∥ϕn − ϕ∥∞ > t) ≤ C1(ϕ, d, n)e
−C2(ϕ)nt2 for all t > 0.

2. ϕ is uniquely maximized at x = θ, ∥θ∥ <∞.

3. ϕ is uniformly continuous with modulus of continuity ωϕ.

4. Suppose that mink∈[0,1][ωϕ(k) ∧ 1− λ−1
n log π(Bk(θ))] exists.

Let T̃ (Xn) be a draw from the measure

Qn(A) =

∫
Ω

∫
A

eλnϕn(ω,x)dπ∫
Rd eλnϕn(ω,x)dπ

dP,

for A ∈ B(Rd). Then,

Pr
(∥∥∥T̃ (Xn)− θ

∥∥∥ > t
)
≤ C1(ϕ, d, n)e

−C2(ϕ)n(ϕ(θ)−sup{x : ∥x−θ∥>t} ϕ(x))
2
/16

+ e−λn(ϕ(θ)−sup{x : ∥x−θ∥>t} ϕ(x))/2+λn mink∈[0,1][ωϕ(k)∧1−λ−1
n log π(Bk(θ))].
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In order to apply Theorem 13 to the depth functions, we need to check conditions 1-3
hold for the considered depth functions. We begin with condition 1. In the following we
let Fu denote the law of X⊤u where X ∼ F .

Theorem 14. Let D denote either IRW, HD, IDDβ or IDD. Then there are some universal
K, c > 0 such that

Pr

(
sup
x∈Rd

|D(x;Fn)−D(x;F )| > t

)
≤ Ke(d+1) log(K n

d+1)−cnt2 .

Now that condition 1 is settled, we need to verify condition 2 and condition 3. Let
αD(t) = D(θ;F ) − supBc

t (θ)
D(x;F ). In the following if F is a law on Rd and we let fu

denote the density of the law of X⊤u with respect to the Lebesgue measure.

Theorem 15. Suppose that D is one of the four depth functions discussed above, F is
such that D has a unique maximizer, θ, and that fu is well-defined with supu ∥fu∥∞ < ∞.

Let C ′, C be some universal constants and let T̃n be as in (5.7). Let N0 be such that for
n ≥ N0, we have

min
k>0

[
(C ′ · ||f ||∞ · k) ∧ 1− C

nϵ
log π(Bk(θ))

]
< αD(t)/4.

Then there are some K = K(F,D) and some universal c, c′ > 0, such that for any t > 0
and n ≥ N0,

Pr
(∥∥∥T̃n − θ

∥∥∥ > t
)
≤ Ke(d+1) log(K n

d+1)−cnαD(t)2 +Ke−c
′nϵαD(t).

Remark 2. Halfspace depth has a unique median when F is absolutely continuous with
connected support. Note that F being symmetric about a point θ is sufficient for integrated
rank-weighted, β-integrated dual depth and integrated dual depth to have unique medians.

Remark 3. The assumption supu ∥fu∥∞ < ∞ adds little restriction. Note that fu(x) =∫
U⊥ f(xu + z)dz (see the proof of Theorem 15 in Section A.9 for details). Since f is the
density of F , we know that 1 =

∫
R

∫
U⊥ f(xu+ z)dzdx, which implies that fu(x) is bounded

almost surely; the inner integral has to converge except on null sets of R. Therefore, the
assumption eliminates the case where fu(x) is unbounded on sets of measure 0.

Remark 4. The dependence of the bound on the prior is encapsulated in the condition

min
k>0

[
C ′ · ||f ||∞ · k ∧ 1− C

nϵ
log π(Bk(θ))

]
< αD(t)/4.
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For example, if π is sub-gaussian with mean µ and coordinate variances ς2, then we require
n to be such that

min
k>0

[
C ′ · ||f ||∞ · k ∧ 1− C

nϵ
C2 log

(
1−Ke

− k2

C3∥θ−µ∥+C4ς(1+
√

d)

)]
< αD(t)/4.

Note that as nϵ grows, mink>0

[
C ′ · ||f ||∞ · k ∧ 1− C

nϵ
log π(Bk(θ))

]
generally approaches 0;

as nϵ→ ∞, the dependence on the prior becomes negligible.

We can use Theorem 15 to compute the sample complexity of these medians:

Corollary 1. Suppose that ϵ > 0, t > 0 and 0 < γ < 1, and the conditions of Theorem
15 hold. Let N0 be as in Theorem 15. Suppose Mechanism 5 is paired with the four depths
discussed above. Then, there are constants K1 = K1(F,D), K2 = K2(F,D) and some
universal K3 > 0 such that the number of samples needed to estimate the private median
within an error of t, with probability 1− γ, is less than

n(t, γ, d, ϵ) = max

{(
K1 log(1/γ) +K2d

αD(t)2

) 1
1−r

,
K3 log (1/γ)

ϵ · αD(t)
, N0

}
,

for any r > 0.

Remark 5. If the depth function is decreasing along rays that emanate from the deepest
point, then we have that αD(t) = D(θ)−sup∥x−θ∥=tD(θ). Therefore, αD(t) can be interpreted
as the smallest difference in depth between the median and a point whose distance to the
median is t. In other words, if x is a distance of t from the median, then the depth of x is
at least αD(t) shallower than the median.

Corollary 2. Suppose that t > 0 and 0 < γ < 1, and the conditions of Theorem 15
hold. Let K1, K2 be as in Corollary 1. Suppose Mechanism 5 is paired with the four depths
discussed above and that π = N (µ, ς2I). Then there exists universal constants K3, K4 such
that the number of samples needed to estimate the private median within an error of t, with
probability 1− γ, is less than

n(t, γ, d, ϵ) = max

{(
K1 log(1/γ) +K2d

αD(t)2

) 1
1−r

,

K3 log (1/γ) ∨
[
K4 ∥µ− θ∥2 +K4d log

(
ς

αD(t)
∨ d
)]

ϵ · αD(t)

}
,
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for any r > 0. If instead π ∝ 1 (x ∈ Ck), where Ck is a cube with side lengths k, then the
number of samples needed is

n(t, γ, d, ϵ) = max


(
K1 log(1/γ) +K2d

αD(t)2

) 1
1−r

,
K3 log (1/γ) ∨

[
K4d log

(
1

αD(t)
∨ d
)]

ϵ · αD(t)

 ,

for any r > 0.

The Gaussian prior allows for estimation of the median when one does not want to
assume the data lies in a compact set. On the other hand, the assumption that the data
lies in a compact set can be incorporated by setting π = 1 (x ∈ Ck). The sample complexity
when using a Gaussian prior is comparable to that of trimming the data, provided we have
a starting point that is within c

√
d log d of θ and variance such that ς/αD(t) is polynomial

in d. The first term in the sample complexity is a bound on the non-private sample
complexity of the depth-based median, notice it does not contain features of the prior or
the privacy parameter. On the other hand, the second term captures the cost of privacy.
If the prior is either some compact set which contains θ or is Gaussian with ς/αD(t) ∝ d
and ∥µ− θ∥ ≤

√
d log d then the private estimate adds at most a multiplicative factor of

αD(t) log d/ϵ to the sample complexity.

For example, consider the case where F = Nd(θ,Σ) and π = N (µ, I). Suppose that λd
is the smallest eigenvalue associated with Σ. Then, we have that

αHD(t) = 1/2− sup
∥x∥=t

inf
u
Φ

(
(x− θ)⊤u

u⊤Σu

)
= Φ(t/λd)− 1/2.

Therefore, under halfspace depth, we have that

n(t, γ, d, ϵ) = max

{(
K1 log(1/γ) +K2d

(Φ (t/λd)− 1/2)2

) 1
0.99

,

K3 log (1/γ) ∨
[
C ∥µ− θ∥2 + Cd log

(
1

(Φ(t/λd)−1/2)
∨ d
)]

ϵ (Φ (t/λd)− 1/2)

}
.

Suppose we would like to achieve some fixed level of error t with success rate 1 − e−d at
constant privacy level ϵ. For large d, the right hand term dominates the sample com-
plexity. Therefore, if the prior is relatively accurate, say, ∥µ− θ∥ ≤

√
d log d, we only

need n to grow slightly faster than the dimension: n ≳ d log d. There is also a trade-off
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Distribution: Nd(θ,Σ) d-version symmetric

αHD(t) 1/2− Φ(−t/
√
λd) 1/2− supv∈Sd−1 infu F0

(
−tv⊤u
a(u)

)
αIRW(t)

∫
|1/2− Φ

(
tv⊤d u√
u⊤Σu

)
|dν infv∈Sd−1

∫
|1
2
− F0

(
tv⊤u
a(u)

)
|dν

αIDD(t)
1
4
−
∫
Φ
(

−tv⊤d u√
u⊤Σu

)
Φ
(
tv⊤u
u⊤Σu

)
dν infv∈Sd−1

1
4
−
∫
F0

(
tv⊤u
a(u)

)
F0

(
−tv⊤u
a(u)

)
dν

Table 5.1: Table of αD for different depth functions and underlying distributions. Note
that vd is the eigenvector associated with the smallest eigenvalue of Σ. Recall that X is

d-version symmetric about zero if X⊤u
d
= a(u)Z where Z has law F0 and Z

d
= −Z and

a(u) = a(−u).

between the error tolerance t and the privacy parameter ϵ. For example, for very small
error: (Φ (t/λ)− 1/2) ≤ ϵ/ log d, then the privatization does not contribute to the sample
complexity. Table 5.1 contains α for different depth functions and distributions. Recall

that X is d-version symmetric about zero if X⊤u
d
= a(u)Z where Z has law F0 and Z

d
= −Z

and a(u) = a(−u) (Eaton, 1981). For example, elliptically symmetric distributions have
a(u) =

√
u′Σu and F constructed from independent Cauchy marginals with mean 0 and

scale γi gives a(u) =
∑d

j=1 |ui|γi. It is easy to see that the largest depth is then in the
direction with the smallest scale. Without loss of generality, suppose the direction with

the smallest scale is in the x-direction,2 it follows that αHD(t) = 1/2− 1
π
arctan

(
−t
γ1

)
.

5.5 Computing private depth values

There are several methods for computing private depth values. If we know a-priori at which
values we would like to compute the depth value at, then we can use the Laplace/Gaussian
mechanisms:

Corollary 3. Let D denote either IRW, HD, IDDβ or IDD. For x given independently of
the data, the following estimators

D̃1(x;Fn) = D(x;Fn) +W
C

nϵ
and D̃2(x;Fn) = D(x;Fn) + Z

C
√
2 log(1.25/δ)

nϵ

are ϵ-differentially private and (ϵ, δ)-differentially private, respectively. In addition, there

2In other words, the direction (1, 0, . . . , 0).
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are some universal constants K, c, C1, C2 > 0 such that

1. Pr
(∣∣∣D̃1(x;Fn)−D(x;F )

∣∣∣ > t
)
≤ Ke(d+1) log(K n

d+1)−cnt(t∧ϵ).

2. Pr
(∣∣∣D̃2(x;Fn)−D(x;F )

∣∣∣ > t
)
≤ C1e

−C2t2(nϵ)2/ log(1.25/δ) +Ke(d+1) log(K n
d+1)−cnt2.

Note that Corollary 3 follows from Theorem 14. However, many inference procedures
require that we compute the depth values at the sample points. How we can estimate the
vector of depth values at the sample points, i.e.,

D̂(Fn) = (D(X1;Fn),D(X2;Fn), . . . ,D(Xn;Fn)) (5.8)

privately? The sample values now appear in both arguments of D and so we must do a bit
more work to compute the global sensitivity. It works out that the global sensitivities of
the vector of sample depth values for the considered depth functions with finite GSn are
all close to 1. This implies that for the full vector of sample depth values we do not get
privacy for free in the limit. For the considered depth functions we have that

sup
x

|D(x;Fn)−D(x;F )| = Op(n
−1/2),

which gives that

∥D(Fn)−D(F )∥ ≤

√
n

(
sup
x

|D(x;Fn)−D(x;F )|
)2

= Op(1).

Let W = (W1, . . . ,Wn). Then, if D̃ is Mechanism 1 applied to (5.8), we have that∥∥∥D̃(Fn)−D(F )
∥∥∥ ≤

∥∥∥D̃(Fn)−D(Fn)
∥∥∥+ ∥D(Fn)−D(F )∥

= ∥WGSn(D)/ϵ∥+Op(1) = Op(n
1/2).

Applying the Gaussian mechanism with δ ∝ n−k instead gives that∥∥∥D̃(Fn)−D(F )
∥∥∥ ≤ Op(n

1/2 log1/2 n).

The level of noise is greater than that of the sampling error for both of these private
estimates of the vector of depth values at the sample points. This result is somewhat
intuitive; these vectors reveal more information about the population as n grows, which
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differs markedly from the single depth value case, where the amount of information received
is fixed in n. In fact, for large n the vector of depth values at the sample points contains
a significant amount of information about F ; the population depth function can, under
certain conditions, characterize the distribution of F or Fn (see Struyf and Rousseeuw,
1999; Nagy, 2018, and the references therein). To release so much information about the
population privately, we need to inject greater than negligible noise.

We cannot then, simply plug in the n private sample depth values into an inference
procedure and proceed, since even large n will produce a lot of noise. If there is an obvious
prior for the population, say from a previous study, then we can sample n values from
such a prior and use Corollary 3 to generate sample depth values. If there is no obvious
prior, then we can instead sample N values from the Mechanism 5 using a very small ϵ
and then apply Corollary 3. We can then use those N values are the sample depth values,
and compute ranks, perform inference and data visualization.

5.6 Propose-test-release and Projection Depth

We may wish to use another depth function in our inference procedures, such as projec-
tion depth (see Definition 4). For example, other depth functions and their associated
estimators may possess more desirable properties in certain contexts. For example, pro-
jection depth is affine invariant and its median has a higher breakdown point that that
of the halfspace or simplicial median3 (Zuo, 2003). For notation simplicity, in this section
we let ξ̂1/2,u = MED

(
X⊤
nu
)
, γ̂u = MAD

(
X⊤
nu
)
and τu = IQR

(
X⊤
nu
)
. Similarly, we let

ξr,u = F−1
u (r), γu = MAD(Fu) and τu = IQR(Fu).

Recall that to approximate projection depth in practice, we use an algorithm which
relies on the outlyingess computed on a finite set of unit vectors UM (Liu, 2017; Dyckerhoff
et al., 2021). Therefore, we work under the assumption that we have a fixed set of M unit
vectors UM and define outlyingness as

O1(x;Fn) = sup
u∈UM

∣∣∣x⊤u− ξ̂1/2,u

∣∣∣
γ̂u

or O2(x;Fn) = sup
u∈UM

∣∣∣x⊤u− ξ̂1/2,u

∣∣∣
τ̂u

.

This assumption is restrictive, in the sense that we should consider the generating mecha-
nism for UM . However, to extend our current proofs beyond a fixed set of unit vectors we

3with appropriately chosen scale and location estimators
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only need to derive uniform concentration inequalities for ξ̂1/2,u, γ̂u and τ̂u over u. This is
left for future work.

Recall that PD(x;F ) = (1 + O(x;F ))−1, and so we only need to compute a private
version of outlyingness in order to compute a private version of projection depth. It is
immediately obvious that the global sensitivity of the outlyingness function is not finite.
Therefore, we cannot use the exponential mechanism without injecting a significant level
of noise into the estimator.

However, the MED, IQR and MAD are all robust statistics, in the sense that they are
not perturbed by extreme data points. This implies that for most samples, the outlyingness
function will have low local sensitivity. This fact makes projection depth a good candidate
for the propose-test-release framework (Dwork and Lei, 2009; Brunel and Avella-Medina,
2020). For this section, we stick to the Laplace version of PTR introduced by Brunel and
Avella-Medina (2020), but our results easily extend to the Gaussian version. With this in
mind, we first consider computing the projection depth of fixed point x. We refer to the
private version of Oℓ produced by the Laplace version of PTR in Mechanism 4 by Õℓ for
ℓ = 1 or ℓ = 2. The following two theorems show that the probability of returning a “null”
value is unlikely, and that the private estimates of outlyingness concentrate around their
population values:

Theorem 16. Suppose that for all u ∈ Sd−1 it holds that γu is unique, 0 < k1 < γu < k2 <
∞ and Fu is continuous and increasing in a neighborhood of ξ1/2,u. Define

• ρ′n =
⌊2 log(2/δn)

ϵn
⌋+1

n

• κu(t, r, c) = (⌊n(r + c)⌋ /n− Fu(ξr − t))+ ∧ (Fu(ξr + t)− ⌊n(r + c)⌋ /n)+

• ∆u(t, c) = κu(
t
2
, 1
2
, c) ∧∆1,u(

t
2
, c) ∧∆2,u(

t
2
, c)

• ∆1,u(t, c) =
(

1
2
+ 2c− Fu(ξ 1

2
,u + γu + t) + Fu(ξ 1

2
,u − γu − t)

)+
• ∆2,u(t, c) =

(
1
2
− 2c− Fu(ξ 1

2
,u + γu − t) + Fu(ξ 1

2
,u − γu + t)

)+
.

Then, there exists constants k3, c1, . . . , c7 > 0 that depend on F such that for all δ, ϵ, η, t > 0
it holds that

Pr(Õ1(x;Fn) =⊥) ≤ δ +Mc1e
−c2n +Mc3e

−n infu

[
κu

(
k21η

2k2
,1/2,ρ′n

)
∧∆u

(
k21η

2∥x∥2+4k3
,ρ′n

)]2

119



and

Pr(|Õ1(x;Fn)−O1(x;F )| > t) ≤Mc4e
−c5n+Mc6e

−c7n infu

[
κu

(
2k21t

k2
.1/2,0

)
∧∆u

(
2k21t

∥x∥2+2k3
,0

)]2
+e−

tϵ
2η

Theorem 17. Define the quantities h1(t) = infu
[
κu(

t
2
, 1/4, 0) ∧ κu( t2 , 3/4, 0)

]
and

h2 (t) = inf
u

[
κu

(
t

4
,
3

4
,−ρ′n

)
∧ κu

(
t

4
,
3

4
, ρ′n

)
∧ κu

(
t

4
,
1

4
,−ρ′n

)
∧ κu

(
t

4
,
1

4
, ρ′n

)]
.

Suppose that for all u ∈ Sd−1 it holds that 0 < k1 < τu < k2 <∞. In addition, suppose for
all u ∈ Sd−1 that Fu is continuous and increasing in some neighborhood of each of ξ1/2,u,
ξ1/4,u and ξ3/4,u. Then there exists constants k3, c1, . . . , c6 > 0 that depend on F such that
for all δ, ϵ, η, t > 0 it holds that

Pr(Õ2(x;Fn) =⊥) ≤ δ +Mc1e
−c2n +Mc3e

−n
[
infu κu

(
k21η

2k2
,1/2,ρ′n

)
∧h2

(
2k21η

∥x∥2+2k3

)]2
,

and that

Pr(|Õ2(x;Fn)−O2(x;F )| > t) ≤Mc4e
−nc5 +Mc6e

−n
(
infu κu

(
k21t

k2
, 1
2
,0

)
∧h1

(
2k21t

∥x∥2+2k3

))2

+ e−
tϵ
2η .

Computing the truncated breakdown point is difficult, so, when one uses the IQR with
the PTR-projection depth mechanism, we propose the following procedure: Suppose that
Yn ∈ D(Xn, k

∗), where k∗ = 1 + bδ
ϵ
− aδ

ϵ
V1. In addition, let ξ̃u,1/2 = MED(Y⊤

nu). We want

to check if Aη

(
Ôu

2 (x);Xn

)
> k∗. It is easy to see that that

|x⊤u− ξ̃u,1/2| ≤ |x⊤u− ξ1/2+k∗/n,u| ∨ |x− ξ1/2−k∗/n,u|

and that

|x⊤u− ξ̃u,1/2| ≥ min
{
|x⊤u− ξ1/2+k∗/n,u|, |x⊤u− ξ1/2−k∗/n,u|,
|x⊤u−m1(u, k

∗)|, |x⊤u−m2(u, k
∗)|
}
,

with m1(u, k
∗) being the median of a dataset the same as X⊤

nu, except that the smallest
k∗ observations of X⊤

nu are replaced with x⊤u and m2(u, k
∗) being the same as m1(u, k

∗),
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except instead the largest k∗ observations of X⊤
nu are replaced. Define

E(u, k∗) = {F−1
n,u(3/4 + k1/n)− F−1

n,u(1/4 + k2/n);−k∗ ≤ k1, k2 ≤ k∗, |k1|+ |k2| = k∗},

with
min E(u, k∗) ≤ IQR(Y⊤

nu) ≤ max E(u, k∗).

We can summarise these bounds by letting

up(MED, u, k∗) = max{|x− ξ1/2+k∗/n,u|, |x− ξ1/2−k∗/n,u|},

lo(MED, u, k∗) = min

{
|x− ξ1/2+k∗/n,u|, |x− ξ1/2−k∗/n,u|, |x−m1(u, k

∗)|, |x−m2(u, k
∗)|

}
,

lo(IQR, u, k∗) = min E(u, k∗),
up(IQR, u, k∗) = max E(u, k∗).

Using this notation, we can write

Ôu
2 (x) ∈

[
lo(MED, u, k∗)

up(IQR, u, k∗)
,
up(MED, u, k∗)

lo(IQR, u, k∗)

]
=
[
lo(Ôu

ℓ (x, k
∗)), up(Ôu

ℓ (x, k
∗))
]

and we can check if

sup
u∈UM

[(
Ôu

2 (x)− lo(Ôu
2 (x))

)
∨
(
up(Ôu

2 (x))− Ôu
2 (x)

)]
< η. (5.9)

Then, if (5.9) holds, we must have that Aη(Ô2(x;Fn),Xn) > k∗, which gives a lower bound
on the truncated breakdown point.

Remark 6. Note that we are releasing ⊥ if (5.9) fails to hold instead of the original
condition in Mechanism 4. It is important to point out that privacy levels of the procedures
remain the same. This is due to two facts, the first of which is that

1

(
sup
u∈UM

[(
Ôu

2 (x)− lo(Ôu
2 (x))

)
∨
(
up(Ôu

2 (x))− Ôu
2 (x)

)]
< η

)
+
aδ
ϵ
V

is still a differentially privacy estimator. The second fact is that Aη(Ô2(x;Fn),Xn) = 1
implies that

1

(
sup
u∈UM

[(
Ôu

2 (x)− lo(Ôu
2 (x))

)
∨
(
up(Ôu

2 (x))− Ôu
2 (x)

)]
> η

)
= 1.
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Remark 7. Let UM be a set of M of unit vectors and let the concentration functions be
as in Theorem 16 and Theorem 17. Using the proof of Theorem 17, we can show that this
approximation of the truncated breakdown point still gives a low probability of no-reply. Let

W1 = sup
u∈UM

(
Ôu

2 (x)− lo(Ôu
2 (x))

)
and W2 = sup

u∈UM

(
up(Ôu

2 (x))− Ôu
2 (x)

)
.

Then there exists constants k3, c1, c2, K1, K2 which depend on the distribution F such that
for all η, δ > 0 it holds that

Pr (W1 ∨W2 ≥ η) ≤ δn +M · c1e−c2n +M ·K1e
−K2n

[
h2

(
2k21η

∥x∥+|2k3|

)
∧κu

(
k21η

2k2
,ρ′n

)]2
.

Now that we know how to compute a private depth value, we can use the same ideas
combined with the exponential mechanism to compute a private version of the projection
depth median. We first extend the propose-test-release framework to be used with the
exponential mechanism. Suppose ϕXn : Rd → R+ is some objective function which we
would like to maximize. We can define the truncated breakdown point of the objective
function:

Aη(ϕXn ;Xn) = min

{
k ∈ N : sup

Yn∈D(Xn,k)

sup
x

|ϕXn(x)− ϕYn(x)| > η

}
.

This is a direct extension of the truncated breakdown point of Brunel and Avella-Medina
(2020) to be used with an objective function. The following mechanism extends PTR to
be used with the exponential mechanism:

Mechanism 6. Suppose that
∫
Rd exp(ϕXn(x)

ϵ
2η
)dx < ∞ and let aδ, bδ and V be as in

Mechanism 4. Let QXn be the measure defined by the density

dQXn

dx
=

exp(ϕXn(x)
ϵ
2η
)∫

Rd exp(ϕXn(x)
ϵ
2η
)dx

.

Then the estimator

T̃ (Xn) =

{
⊥ if Aη(ϕXn ;Xn) +

aδ
ϵ
V ≤ 1 + bδ

ϵ

T̂ (Xn) ∼ QXn o.w.
,

is differentially private. Under the Laplace version, the estimator is (2ϵ, δ)-differentially
private and under the Gaussian version, the estimator is (2ϵ, 2δ)-differentially private.
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For the proof of privacy, see the Section A.9. Mechanism 6 shows that we can still use
the exponential mechanism when the objective function is highly likely to have low local
sensitivity, rather than finite global sensitivity. In fact, the the Gaussian version of Mecha-
nism 6 uses slightly less of the privacy budget than that of the original propose-test-release
mechanism, which is due to the pure differential privacy of the exponential mechanism. In
order to extend Theorem 13 to Mechanism 6 one simply needs to show that

Pr

(
Aηn(ϕXn ;Xn) + V

aδn
ϵn

≤ bδn
ϵn

+ 1

)
is small, either asymptotically or in a finite sample sense.

We now use Mechanism 6 with ϕ equal to the outlyingness function in order to privatize
the projection depth-based median. Let ς be either IQR or MAD. A first question is
whether or not the following probability density function

f(x) =

exp

(
−
ϵ supu |x⊤u− ξ̂1/2,u|/ς(X⊤

nu)

2η

)
∫
Rd exp

(
−
ϵ supu |x⊤u− ξ̂1/2,u|/ς(X⊤

nu)

2η

)
dx

even exists. Zuo (2003) gives that

sup
u

|x⊤u− ξ̂1/2,u|
ς(X⊤

nu)
≥

∥x∥ − supu ξ̂1/2,u
supu ς(X⊤

nu)
.

It follows that if supu ξ̂1/2,u <∞, then∫
Rd

exp

(
−
ϵ supu |x⊤u− ξ̂1/2,u|/ς(X⊤

nu)

2η

)
dx ≤ C1

∫
Rd

exp

(
−C2 ∥x∥

2

)
dx <∞,

where the last inequality follows from the fact that exp (−C3 ∥x∥ /2) is proportional to a
Gaussian density function. Unfortunately, immediately using PTR with the exponential
mechanism gives no gains in estimating the projection median over using the global sensitiv-
ity of projection depth (which is 1). This is because, if the points in Xn are distinct, we have
that Aη(Oℓ(·;Xn);Xn) = 1 for any η. To see this, suppose that Yn = {X ′

1, X2, . . . , Xn},
with X ′

1 being some observation such that ς(Y⊤
nu) ̸= ς(X⊤

nu) for u ∈ UM . Then, it holds
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for any u ∈ UM , that

sup
x

|Ou
ℓ (x;Xn)−Ou

ℓ (x;Yn)| ≈ sup
x

∣∣∣∣x⊤uς(X⊤
nu)− ς(Y⊤

nu)

ς(X⊤
nu)ς(Y⊤

nu)

∣∣∣∣ = ∞.

In order to estimate the projection depth-based median privately, we must then truncate
the outlyingness function O in the following manner

Oℓ(x;Xn, ψn) =

{
Oℓ(x;Xn) ∥x∥ < ψ

∞ ∥x∥ ≥ ψ
.

One might recognize that this is the same as putting a prior on the median proportional
to 1 (x ∈ Bψ(0)). We can then apply Mechanism 6 to O in order to privately estimate the
projection depth-based median:

Theorem 18. Let ςu represent either γu or τu. Suppose that for all u ∈ Sd−1 it holds that
ς(Fu) is unique, 0 < k1 < ς(Fu) < k2 < ∞ and that Fu is continuous and increasing in a
neighborhood of ξ1/2,u. Suppose that θ ∈ Bψ(0) is the unique minimizer of Oℓ(x;F ), and
define αOℓ

(t) = sup∥x∥=tOℓ(x;F )−Oℓ(θ;F ). Suppose

n ≥

d log
(

1
αOℓ

(t)
∨ d
)

ϵ · αOℓ
(t)


1

1−r

,

for some r > 0. Let T̃n be the private estimate of the projection depth median, with
η = log n/n. Then, there exists constants c1, . . . , c8 > 0 that depend on F such that for all
ϵ, δ, t > 0 it holds that

Pr(T̃n =⊥) ≤ δ +Mc1e
−c2n +Mc3e

−nh3(logn/n,ψ),

and that

Pr
(∥∥∥T̃n − θ

∥∥∥ > t
)
≤Mc4e

−c5n +Mc6e
−c7nh4(αOℓ

(t),ψ) + e−c8
nϵ

logn
αOℓ

(t),

where h3 and h4 are the corresponding bounds given in Theorem 16 for ℓ = 1 or Theorem
17 for ℓ = 2 with x = ψ.

Suppose that δ = n−k, in order to maintain a probability of returning a “null” value
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proportional to δ, we must choose η such that

h3(η, ψ) ≥ k log(nM/c)/n.

For example, in the case of the standard Gaussian, we have that

h3(η, ψ) = 1/2− Φ

(
Φ−1(1/2)− c

η

ψ2 + ck3

)
− ρ′n.

Therefore,

η ≥ (ψ2 + ck3)(Φ
−1(1/2)− Φ−1(1/2− k log n/n− ρ′n))/c.

Since the probit function is roughly linear around the median, we should choose η =
O(log n/n) to ensure that the probability of no-reply is bounded about by δ.

Corollary 4. Suppose the conditions of Theorem 18 hold and η = C log(nM)/n for some
C > 0. Then, given we do not output ⊥, there exists constants K1, K2, K3 > 0 that depend
on F such that the number of samples needed to estimate the private projection depth
median within an error of t > 0, with probability 1− γ > 0, is less than

n(t, γ, d, ϵ) = max

 K1 log(M/γ)

h4(αOℓ
(t), ψ) ∧K3

,

K2

log (M/γ) ∨ d log
(

1
αOℓ

(t)
∨ d
)

ϵ · αOℓ
(t)


1

1−r

 ,

for any r > 0.

The sample complexity depends on the dimension throughM , for example, if we choose
exponentially many unit vectors in the dimension, then M = ed and we have that

n(t, γ, d, ϵ) = max

K1 log(1/γ) +K1d

h4(αOℓ
(t), ψ) ∧K3

,

dK3 log (1/γ) ∨ log
(

1
αOℓ

(t)
∨ d
)

ϵ · αOℓ
(t)


1

1−r

 .

Once again, we see that if the error level is fixed and the success rate is 1 − e−d, then we
have the sample complexity scales morally like d log d.
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5.7 Brief discussion of future directions

We have presented several algorithms for computing differentially private depth-based me-
dians and depth values, along with their respective private and non-private sample com-
plexities. Under mild assumptions, for most of the presented mechanisms the cost of
privacy is a multiplicative factor of log d on the sample complexity. There still remains
many unanswered questions. For example, concerning the interpretation of the privacy
parameter, how can we determine the appropriate choice of ϵ in practice? In addition,
the construction of traditional depth functions implies that depth functions cannot be
concave, which makes computation of both the non-private and private depth-based es-
timators challenging. Even in the case where the depth values are computable, such as
for the integrated depths, sampling from the exponential mechanism remains challenging.
Therefore, the next steps are to come up with objective functions that produce robust,
accurate medians but are also computationally compatible with the exponential mecha-
nism. In this direction, it may be helpful to construct depth functions that are more suited
to high dimensional analysis. In fact, high dimensional datasets are more susceptible to
privacy breaches because the dataset contains more external information to exploit.

126



Chapter 6

Future Directions

6.1 Extensions for private depth-based inference

After deriving the sample complexity of the private projection depth values and projection
depth median, the next step is to develop strategies to compute these private estimators.
We have started this with the algorithm to compute a lower bound on the truncated
breakdown point for the outlyingness function. However, we would like to develop an
algorithm to compute the estimates that involve the exponential mechanism. Algorithms
for private estimators are non-trivial. Suppose we wish to sample from an approximate
version of QXn , denoted Q̂Xn . Then we must have a means of measuring

d(QXn , Q̂Xn),

since this distance will affect the privacy of the procedure. For example, suppose we wish
to implement Mechanism 5. Let d be the total variation distance. If we use, say, Markov
chain Monte Carlo to draw from the exponential mechanism, then we should ensure that

d(QXn , Q̂Xn) ≤ δ,

for some δ. This would ensure that the estimator satisfies (ϵ, δ) differential privacy.
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6.2 Extensions to manifold valued data

It is interesting to generalize depth functions and related inference to data which lie on a
manifold. Network data, matrix data and shape data can all be modeled as objects on a
manifold. Such observations are amenable to nonparametric models, since it is difficult to
represent them parametrically. Some notions of depth have been introduced for manifold-
valued data (Small, 1997; Fraiman et al., 2019; Chau et al., 2019; Harris et al., 2020).
However, this area is still very new and there are a number of fundamental questions that
are not well established. For example what does it mean to be outlying in these spaces.
Just as outlyingness differs between functional and multivariate data, it will be different
for manifold valued random variables. For example, outlying shapes could be abnormally
shaped curves rather than high magnitude observations. It could also be a discoloured
shape if the shape is ‘filled in’. We need to define distances and thus, depth, between the
shapes such that they are large when the shape satisfies the corresponding definition of
outlyingness. Similar concepts can be discussed for network and matrix valued data. We
must also incorporate the appropriate transformation invariance; if the shape is rotated,
or angled to the side, the inference should not change. Some of these ideas have been
explored extensively for shape data (Srivastava and Klassen, 2016). Here, each shape is
part of an equivalence class that includes all valid transformations of that shape. Those
transformations can include rotations, scaling, and reparameterization. This equivalence
class is then considered the observation, rather than the orientation of the shape itself.
The inference is then completed in the quotient space. Some of the ideas in Srivastava and
Klassen (2016) can be translated to the depth-based framework, which has been started
by Harris et al. (2020), but there are still things to investigate. For example, we could use
depth functions to describe the variability of shape data, like we have done for multivariate
data in Chapter 2 and functional data in Chapter 3.

For example, in additive manufacturing, or 3D printing, it is of interest to monitor
the printing process (Tapia and Elwany, 2014). The data is of course, the object being
printed, which can be represented by closed contours or a 3D surface. Given the large
variety of parts that may be printed, it is useful to have a nonparametric model that can
be applied to many parts. We could potentially use the methods of Chapter 2 or those
of Liu (1995) in combination with those of Srivastava and Klassen (2016) to monitor the
objects for changes as they are being printed. We could use hypothesis tests for variability
to compare printers as well.
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Dümbgen, L. (1992). Limit theorems for the simplicial depth. Statistics & Probability
Letters, 14(2):119 – 128.

Eaton, M. L. (1981). On the Projections of Isotropic Distributions. Annals of Statistics,
9(2):391–400.

Fan, C., Zhang, D., and Zhang, C.-H. (2011). On sample size of the kruskal-wallis test
with application to a mouse peritoneal cavity study. Biometrics, 67(1):213–224.

Fearnhead, P. and Rigaill, G. (2019). Changepoint detection in the presence of outliers.
Journal of the American Statistical Association, 114(525):169–183.

Feiner, L. (2019). Twitter shares surge after earnings report shows growth in daily users.
www.cnbc.com.

Flores, R., Lillo, R., and Romo, J. (2018). Homogeneity test for functional data. Journal
of Applied Statistics, 45(5):868–883.

Fraiman, R., Gamboa, F., and Moreno, L. (2019). Connecting pairwise geodesic spheres
by depth: DCOPS. Journal of Multivariate Analysis, 169:81–94.

Fraiman, R. and Muniz, G. (2001). Trimmed means for functional data. Test,
10(2):419–440.

133
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Horrell, J. F. and Lessig, V. P. (1975). A note on a multivariate generalization of the
kruskal-wallis test. Decision Sciences, 6(1):135–141.
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Appendix A

Chapter Appendices

A.1 Proofs from Chapter 2

Note that I call it a proof sketch, since I refer to sections of Fryzlewicz (2014) where which
the details for our context are not explicitly written, but all of the conclusions should be
correct.

Sketch of the proof of Theorem 1. The proof of Theorem 1 follows the format of the proof
of consistency for the original WBS algorithm, specifically, the proof of Theorem 3.2 in
(Fryzlewicz, 2014). However, in their setting they use properties of the Gaussian distribu-
tion, where here we must use tools which apply to the rank based setting. We also remark
that we have simpler assumptions than Fryzlewicz (2014), which simplifies some steps of
the proof. Let ∆ = mini,j∈[ℓ] |θj − θi|. We first define the following ranks based on the
population depth functions

Ri,s,e := # {Xj : D(Xj;F∗,s,e) ≤ D(Xi;F∗,s,e), j ∈ {s, . . . , e}} , i ∈ {s, . . . , e}.

The distribution F∗,s,e is a mixture distribution with weights proportional to the number
of observations coming from Fj in the subsample {Xs, . . . , Xe}. It should be noted that
these weights depend on n, since they depend on the subsample. More specifically, for
some interval with length that satisfies ns,e > ∆̃ · n we have that F∗,s,e =

∑ℓ+1
j=1 ϑ̃j,s,eFj, for
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some ϑ̃j,s,e ≥ 0. We also define the quantities

Z̃s,e(k/ns,e) :=
1

√
ns,e

k∑
i=1

Ri,s,e − (ns,e + 1) /2√(
n2
s,e − 1

)
/12

Gs,e(k/ns,e) := Z̃s,e(k/ns,e)− Zs,e(k/ns,e) =
1

√
ns,e

k∑
i=1

Ri,s,e − R̂i,s,e√(
n2
s,e − 1

)
/12

.

Recall that ns,e ≥ ∆̃n. We first show that max s<k<e
e−s>∆̃n

|Gs,e(k/ns,e)| ≲
√
log n:

Lemma 1. Let

An =

 max
s<k<e
e−s>∆̃n

|Gs,e(k/ns,e)| ≤ c
√
log n

 ,

then it holds that limn→∞ Pr (An) = 1.

Proof. We can now write

max
s<k<e
e−s>∆̃n

|Gs,e(k/ns,e)| ≤ max
s<k<e
e−s>∆̃n

1
√
ns,e

k∑
i=1

∣∣∣∣∣∣ Ri,s,e − R̂i,s,e√(
n2
s,e − 1

)
/12

∣∣∣∣∣∣
≤ 1

∆̃
√
n

n∑
i=1

∣∣∣∣∣∣ Ri,1,n − R̂i,1,n√
∆̃2 (n2 − 1) /12

∣∣∣∣∣∣
≤ 1

K
√
n

n∑
i=1

∣∣∣∣∣ Ri,1,n − R̂i,1,n√
(n2 − 1) /12

∣∣∣∣∣ ,
for some absolute constant K. From (A5) on page 439 of Chenouri et al. (2020b) we have,
under Assumptions 1 and 2, that

E

[∣∣∣∣∣ Ri,1,n − R̂i,1,n√
(n2 − 1) /12

∣∣∣∣∣
]
= Op(n

−1/2).
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This gives that

E

 max
s<k<e
e−s>∆̃n

|Gs,e(k/ns,e)|

 = O(1),

and it follows by Markov’s inequality that

max
s<k<e
e−s>∆̃n

|Gs,e(k/ns,e)| = Op(1).

Next, we show that max1≤s≤k≤e≤n
e−s>∆̃n

|Z̃s,e(t)− E[Z̃s,e(t)]| ≲
√
log n:

Lemma 2. There exists K > 0 such that

Pr (A′
n) := Pr

 max
1≤s≤k≤e≤n
e−s>∆̃n

|Z̃s,e(k/ns, e)− E[Z̃s,e(k/ns, e)]| ≤ K
√

log n

 ≥ 1− C/n.

Proof. Let λn = K
√
log n and σ̃ns,e =

√
(n2

s,e − 1)/12. We can then write

1

σ̃ns,e

√
ns,e

(Rk,s,e − E [Rk,s,e]) =
1

√
ns,e

ℓ∑
j=1

Zj,

where Zj are sums of γn,j ≥ 0 terms of i.i.d. random variables which have mean 0, variance
bounded by c and a bounded range. It follows that

Pr

(
1

√
ns,e

∣∣∣∣∣
ℓ∑

j=1

Zi

∣∣∣∣∣ > λn

)
≤

ℓ∑
j=1

Pr

(
|Zj| > Cλn

√
∆̃n/γn,j

)
≤ ce

−C n logn
maxj γn,j ≤ ce−C logn,
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for some c, C = C(K) dependent on K. We now use the Bonferroni inequality to get that

Pr (A′
n) = Pr

 max
1≤s≤k≤e≤n
e−s>∆̃n

|Z̃s,e(k/ns, e)− E[Z̃s,e(k/ns, e)]| ≤ K
√

log n


≤ Cn3 max

1≤s≤k≤e≤n
e−s>∆̃n

Pr

(
1

σ̃ns,e

√
ns,e

|Rk − E [Rk] | ≤ K
√

log n

)
≤ ce−C(K) logn ≤ C/n,

where the last inequality holds with appropriately chosen K.

Now, we can use the triangle inequality to show that maxt |Zs,e(t) − E
[
Z̃s,e(t)

]
| ≲

c log n. Precisely, limn→∞ Pr (A′′
n) → 1, where

A′′
n = {max

t
|Zs,e(t)− E

[
Z̃s,e(t)

]
| ≤ c log n},

where we let λn = c log n for the remainder of the proof.

The next step is to show that with high probability “nice” intervals are sampled. Define
Ii to be the interval [ki−1 +

1
3
(ki − ki−1), ki−1 +

2
3
(ki − ki−1)]. It follows from (Fryzlewicz,

2014) and our assumptions that

Dn = {∀i ∈ [ℓ] ∃ m ∈ [M ] : (sm, em) ∈ Ii × Ii+1}. (A.1)

In addition, Fryzlewicz (2014) gives that Pr (Dn) → 1 as n → ∞. We now condition on
A′′
n and Dn.

Let s, e be such that

ki0 ≤ s < ki0+1 < . . . < ki0+ℓ′ ≤ ki0+ℓ′+1,

for 0 ≤ i0 ≤ ℓ− ℓ′. Observe the following conditions on the interval (s, e)

s < ki0+y − C · n < ki0+y + C · n < e for some 1 ≤ y ≤ ℓ′ (A.2)

max(min(ki0+1 − s, s− ki0),min(ki0+ℓ′+1 − e, e− ki0+ℓ′)) ≤
Cn1/2 log n

∆2p20
. (A.3)

First, suppose an interval (sm, em) ∈ Ii × Ii+1 contains the change-point k∗. It is easy
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to see that:

E
[
Z̃s,e(k/ns,e)

]
=

{
1
as,e

k(ns,e − k∗)(p− 1/2) k ≤ k∗

1
as,e

k∗(ns,e − k)(p− 1/2) k > k∗
.

Clearly, |E
[
Z̃s,e(k/ns,e)

]
| is maximized at the change-point k∗. It is also clear from As-

sumptions 3 and Assumption 4 that |E
[
Z̃s,e(k

∗/ns,e)
]
| > Cn1/2p0.

Suppose that (A.2) and (A.3) hold. We make the following arguments conditional on
the set A′′

n. Consider

(m0, k̂0) = argmax
m∈INTs,e, sm≤k<em

|Z̃sm,em(k/nsm,em)|.

Note that eventually, ∆ · n ≥ 3Cnr. When this is true, we have that for any undetected
change-points ki ∈ (s, e) it holds that Ii ∪ Ii+1 ⊂ (s, e). Denote this set of change-point
indices by Ks,e. By conditioning, we know that for each i ∈ Ks,e, there exists mi ∈ INTs,e

such that (smi
, emi

) ∈ Ii ∪ Ii+1. Now,

|Z̃sm0 ,em0
(k̂0/nsm,em)| ≥ max

smi≤k<emi

|Z̃smi ,emi
(k/nsm,em)|

≥ |Z̃smi ,emi
(ki/nsm,em)| ≥ |E[Z̃smi ,emi

(ki/nsm,em)]| − λn ≥ Cn1/2p0,

which holds for large n. It easily follows that

|E[Z̃sm0 ,em0
(k̂0/nsm,em)]| ≥ |Z̃sm0 ,em0

(k̂0/nsm,em)| − λn ≥ C ′n1/2p0.

Now, |E[Z̃sm0 ,em0
(k̂0/nsm,em)]| has a local maximum at |E[Z̃sm0 ,em0

(ki0+y/nsm,em)]|, where
ki0+y is the nearest change-point to either the left of k̂0 or the right of k̂0.

To see this, suppose that ki∗ is immediately to the right of k̂0. Then, letting n0 =
nsm0 ,em0

, we have that

E
[
Z̃sm0 ,em0

(ki∗/n0)− Z̃sm0 ,em0
(k̂0/n0)

]
=

ki∗−sm0∑
j=k̂0−sm0+1

E

[
Rj,sm0 ,em0

− n0 + 1

2

]
= (ki∗ − k̂0)K,

which is monotonic as a function of k̂0 with ki∗−1 < k̂0 ≤ ki∗ . An analogous argument
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applies for ki∗−1 immediately to the left of k̂0:

E
[
Z̃sm0 ,em0

(ki∗−1/n0)
]
− E

[
Z̃sm0 ,em0

(k̂0/n0)
]
= (k̂0 − ki∗−1)K.

Now it is clear that either ki∗−1 or ki∗ maximizes

|E
[
Z̃sm0 ,em0

(k/n0)
]
|,

on the interval (ki∗−1, ki∗). Therefore,

|E[Z̃sm0 ,em0
(ki0+y/nsm,em)]| ≥ |E[Z̃sm0 ,em0

(k̂0/nsm,em)]| ≥ C ′n1/2p0,

where ki0+y is the nearest change-point to either the left of k̂0 or the right of k̂0. Using the
same argument in (Fryzlewicz, 2014) on page 2273, it must hold that (sm0 , em0) satisfies
(A.2). Then, following the same argument in Lemma A.2 of Fryzlewicz (2014), we have
that |k̂0 − ki0+y| ≤ Cn1/2 log n/p0.

Therefore, we have shown that A′′
n and Dn both occur with probability approaching

1. Obviously, at the start of the algorithm (A.2) and (A.3) are satisfied. Furthermore,
we have that each detected change-point k̂i satisfies |k̂i − ki| ≤ Cn1/2 log n/p0. Therefore,
(A.2) and (A.3) are always satisfied when there are undetected change-points. It remains
to show that when there are no change-points remaining, the algorithm does not return
false positives.

We now prove that there will be no false positives: Suppose some interval (s, e) contains

no change-points. Let σ̃ns,e =
√

(n2
s,e − 1)/12. We can then write

σ̃ns,e

√
ns,eZ̃s,e(k/cn) =

k(k + 1)

2
+ k(ns,e − k)U1,

where U1 is a one sample U -statistic with E [U1]. It holds that E
[
σ̃ns,e

√
ns,eZ̃s,e(k/cn)

]
=

k(ns,e+1)

2
− k(k+1)

2
+ k(ns,e−k)

2
= 0. Now, note that σ̃ns,e

√
ns,e ≥ c0

√
n, for some universal c0.

Now, eventually 0 < T < c0
√
n. We have from (Hoeffding, 1963) that

Pr
(
Z̃s,e(k/cn) > T

)
= Pr

(
U1 − 1/2 > T

σ̃ns,e

√
ns,e

k(ns,e − k)

)
≤ Pr

(
U1 − 1/2 > T

K√
n

)
≤ 2e−KT

2
,

for some universal K. Clearly, Z̃s,e(k/cn)/T
p→ 0 for all e− s > ∆̃n.
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Proof of Theorem 2. Let ∆ = mini,j∈[ℓ] |θj − θi|. Let Ci be fixed positive constants inde-
pendent of n, |A| represent the cardinality of the set A, and

σ̃2
n =

n(n+ 1)

12
.

To complete the proof, we first prove two lemmas.

Lemma 3. For i ∈ [n], it holds that

Var(R̂i)/Var(Ri) = O(1) and Var(Ri)/σ̃
2
n = O(1). (A.4)

Proof. The right-side identity follows easily from Assumption 3; Var(Ri) = O(n2), for any
i ∈ [n]. Using (A.6), we can write

Var
(
R̂i

)
= Var (Ri + Ei)

= Var (Ri) + Var (Ei) + 2Cov (Ei, Ri)

≤ Var (Ri) + Var (Ei) + 2E [|Ei − E [Ei] |]n
= Var (Ri) + Var (Ei) +O(n3/2).

We also have that

Var (Ei) = E

( n∑
m=1

1 (Bi,m)−
n∑

m=1

1 (Ai,m)

)2
+O(n)

= E

[
n∑

m1=1

n∑
m2=1

[1 (Bi,m1)− 1 (Ai,m1)] [1 (Bi,m2)− 1 (Ai,m2)]

]
+O(n)

≤ E

[
n∑

m1=1

n∑
m2=1

[1 (Bi,m1) + 1 (Ai,m1)]

]
+O(n)

≤ O(n3/2),

where the first line comes from applying equation (A5) of Chenouri et al. (2020b) and
the last line is from the the fact that E [1 (Bi,m)] = O(n−1/2) and E [1 (Ai,m)] = O(n−1/2)
(Chenouri et al., 2020b). Now,

lim
n→∞

Var(R̂i)

Var(Ri)
= lim

n→∞

Var(R̂i)/n
2

Var(Ri)/n2
= lim

n→∞

Var(Ri)/n
2 + o(1)

Var(Ri)/n2
= 1.
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Define the set Xn = 2[n−1] × {0} × {n}; elements of Xn are sets of indices ranging
from 0 to n, which represent locations of change-points. A member of Xn is a set x that
contains 0 and n joined with an element of the power set of [n− 1]. We will represent such
an element with x = {x0, . . . , xp+1} where x0 := 0 < x1 < . . . < xp < xp+1 := n. Xn forms
the space of possible sets of change-points for a fixed n. We can then write the objective
function based on the population depth ranks T and the objective function based on the
sample depth ranks T̂ as follows:

T̂ (x) :=
1

σ̃2
n

|x|∑
i=1

(xi − xi−1)R̂
2

i − 3(n+ 1)− βn(|x| − 1) := Ĉ(x)− βn(|x| − 1)

T (x) :=
1

σ̃2
n

|x|∑
i=1

(xi − xi−1)R
2

i − 3(n+ 1)− βn(|x| − 1) := C(x)− βn(|x| − 1), (A.5)

where x ∈ Xn and

Ri =
1

xi − xi−1

xi∑
j=xi−1+1

Rj and R̂i =
1

xi − xi−1

xi∑
j=xi−1+1

R̂j.

Lemma 4. Let xn ∈ 2[n−1] × {0} × {n} be such that for each xj ∈ xn\n, it holds that
mini∈ℓ,ki>xj xj + 1− ki > cn. Additionally impose that |xn| = O(1). Then,

|T̂ (xn)− T (xn)| = Op(1).

Proof. First, we remind the reader that each xj ∈ xn depends on n, which we omit in
the notation for brevity. Note that Rki+1, . . . , Rki+1

is a triangular array of exchangeable

random variables, for any i ∈ {0} ∪ [ℓ]. The same holds for R̂ki+1, . . . , R̂ki+1
. It follows

that for any j ∈ [cℓ] the sequences Rxj−1+1, . . . , Rxj and R̂xj−1+1, . . . , R̂xj are both sums
of segments of triangular arrays of exchangeable random variables. Specifically, suppose
without loss of generality that the segment (xi−1+1, xi) contains 0 ≤M ≤ ℓ change-points,
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by which we denote k1, . . . , kM . Then, we have that

xi∑
j=xi−1+1

Rj =

k1∑
j=xi−1+1

Rj +

k2∑
j=k1+1

Rj + . . .+

xi∑
j=kM+1

Rj.

This form allows us to apply the central limit theorem of Weber (1980); for any interval
(s, e) which contains no change-points and is such that e− s > cn , it holds that

1

σ̃n
√
e− s

e∑
j=s

Rj = Op(1) +
(e− s+ 1)E[Rs]

σ̃n
√
e− s

.

This result follows from Lemma 3. In addition, note that

E
[
Ri

]
=

M+1∑
j=1

cjnE[Rkj ]

xi − xi−1

,

where cj is the proportion of points in segment j. It immediately follows that

√
xi − xi−1

σ̃n

xi∑
j=xi−1+1

(Ri − E
[
Ri

]
) = Op(1).

The same argument gives that

√
xi − xi−1

σ̃n

xi∑
j=xi−1+1

(R̂i − E[R̂i]) = Op(1).

We now relate these to quantities. Consider the representation of R̂i

R̂i = Ri +
n∑

m=1

1 (Bi,m)−
n∑

m=1

1 (Ai,m) := Ri + Ei, (A.6)

where

Ai,j = {D (Xj, F∗) ≤ D (Xi, F∗)} ∩ {D (Xj, F∗,n) > D (Xi, F∗,n)}
Bi,j = {D (Xj, F∗) > D (Xi, F∗)} ∩ {D (Xj, F∗,n) ≤ D (Xi, F∗,n)} .
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We can use this representation, Assumption 1 and Assumption 2 to show that

E[Ei] = E[R̂i]− E[Ri] = O(n1/2).

For more details, see pages 436-437 of Chenouri et al. (2020b).

It then follows from Slutsky’s theorem, continuous mapping theorem and the central
limit theorem of Weber (1980) that

T̂ (xn)− T (xn) =
1

σ̃2
n

ℓ+2∑
i=1

(xi − xi−1)

(
R̂

2

i −R
2

i

)

=

|xn|∑
i=1

(√
(xi − xi−1) R̂i

σ̃n

)2

−

(√
(xi − xi−1)Ri

σ̃n

)2

= Op(1) +
1

σ̃2
n

|xn|∑
i=1

(xi − xi−1)[E[R̂i]
2 − E[Ri]

2 + E[Ri]Ri − E[R̂i]R̂i]

= Op(1) +
1

σ̃2
n

|xn|∑
i=1

(xi − xi−1)[E[R̂i](E[R̂i]− R̂i)− E[Ri](E[Ri]−Ri)]

= Op(1) +
1

σ̃2
n

|xn|∑
i=1

(xi − xi−1)[E[Ri](E[E i]− E i) + E[E i](E[R̂i]− R̂i)]

= Op(1).

This analysis gives the result that

T̂ (xn)− T (xn) = Ĉ(xn)− C(xn) = Op(1), (A.7)

when xn is as described.

Proceeding with the proof, we make an argument by contradiction, similar to that of
Wang et al. (2021). However, we use the previously discussed exchangeablility results,

i.e., (Weber, 1980) which were not used in their paper. Recall, k̂ is the estimated set of

change-points and k is the true set of change-points. We examine the events {ℓ̂ < ℓ},
{ℓ̂ > ℓ} and

{
maxk∈kmink̂∈k̂ |k̂ − k| ≥ Cnr

}
separately. We start with {ℓ̂ < ℓ}:

Lemma 5. It holds that Pr(ℓ̂ < ℓ) → 0 as n→ ∞.
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Proof. Assume ℓ̂ < ℓ; by Assumption 3, there is at least one change-point 0 < ki∗ < n such
that for any j ∈ [ℓ̂] it is true that |ki∗ − k̂j| ≥ ∆n/2 with ∆ independent of n. Now, define

w1 = {ki∗ −∆n/2, ki∗ +∆n/2} ∪ k\ki∗ and w2 = w1 ∪ k̂.

Clearly, Ĉ(w2) ≥ Ĉ(k̂) (which is the necessary condition for PELT, recall that Ĉ is the

portion of the objective function without the penalty) and so we work with Ĉ(w2). The

goal is to show that following contradiction to the assumption that some k̂ such that ℓ̂ < ℓ
is the maximizer of T̂ . To see this, we have

T (k)− T̂ (k̂) = C(k)− Ĉ(k̂)−O(βn)

≥ C(k)− Ĉ(w2)−O(βn)

= C(k)− Ĉ(w1) +Op(1)−O(βn)

= C(k)− C(w1) +Op(1)−O(βn)

= Op(n)−O(βn) +Op(1)
p→ ∞,

as n→ ∞, since βn = o(n).

First, we show that
Ĉ(w2) = Ĉ(w1) +Op(1).

To this end, letting w0 = 0, wℓ+ℓ̂+2 = n and w2 = {w0, w1, w2, . . . , wℓ+ℓ̂+1, wℓ+ℓ̂+2} where
wm < wj for m < j, we can write

Ĉ(w1)− Ĉ(w2) =
1

σ̃2
n

|w2|∑
j=1

(wj − wj−1)
[
R̂j(w1)

2 − R̂j(w2)
2
]

where

R̂j(x) =
1

nj,2(x)− nj,1(x)

nj,2(x)∑
i=nj,1(x)+1

R̂i,

and
nj,1(x) = argmin

x∈x : x≤wj−1

|x− wj−1|, nj,2(x) = argmin
x∈x : x≥wj

|x− wj|.
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In this context,

R̂j(w2) =
1

(wj − wj−1)

wj∑
m=wj−1+1

R̂m and R̂j(w1) =
1

nj,2(w1)− nj,1(w1)

nj,2(w1)∑
m=nj,1(w1)+1

R̂m .

To elaborate, ordering the points in w1 defines ℓ+2 disjoint groups of ranks and therefore

ℓ + 2 group means. The value R̂j(w1) is the mean of such a group of ranks which also

contains the ranks {R̂wj−1
, . . . , R̂wj

}.

Let j∗ represent wj∗ = ki∗ +∆n/2. Then we have that

Ĉ(w1)− Ĉ(w2) =
1

σ̃2
n

|w2|∑
j=1

(wj − wj−1)
(
R̂j(w1)

2 − R̂j(w2)
2
)

=
1

σ̃2
n

∑
j∈[ℓ+ℓ̂+1]\j∗

(wj − wj−1)
(
R̂j(w1)

2 − R̂j(w2)
2
)
. (A.8)

For any j ̸= j∗ Lemma 3 gives

(wj − wj−1)

σ̃2
n

(
R̂j(w1)

2 − R̂j(w2)
2
)
= O(1)

(wj − wj−1)

Var
(
Rwj

) (R̂j(w1)
2 − R̂j(w2)

2
)
.

Now, it is easy to see that the central limit theorem of Weber (1980) gives that

(wj − wj−1)

Var
(
Rwj

) R̂j(w1)
2 = Op(1) +Op(1)

√
(wj − wj−1)

Var
(
Rwj

) E[R̂wj
] +

(wj − wj−1)

Var
(
Rwj

) E[R̂wj
]2,

and similarly

(wj − wj−1)

Var
(
Rwj

) R̂j(w2)
2 = Op(1) +Op(1)

√
(wj − wj−1)

Var
(
Rwj

) E[R̂wj
] +

(wj − wj−1)

Var
(
Rwj

) E[R̂wj
]2.

Now, we have that

Ĉ(w1)− Ĉ(w2) = Op(1). (A.9)

It follows immediately from Lemma 4 that Ĉ(w1)−C(w1) = Op(1); w1 satisfies the condi-
tions of xn in Lemma 4.
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Now, we want to show that

lim
n→∞

C(k)− C(w1) = Op(n).

Let ki∗−1 and ki∗+1 be the true change-points immediately preceding and following ki∗
respectively. Recall ki∗ is the change-point that is at least ∆n/2 points away from any
estimated change-point. Note that k−w1 = {ki∗} and w1 − k = {ki∗ ±∆n/2}. We have

n+ 1

n
(C(k)− C(w1)) =

12ϑi∗n

n2

 1

nϑi∗

ki∗∑
j=ki∗-1+1

Rj

2

+
12ϑi∗+1n

n2

 1

nϑi∗+1

ki∗+1∑
j=ki∗+1

Rj

2

− 12∆n

n2

 1

n∆

ki+∆n/2∑
j=ki∗ -∆n/2

Rj

2

− 12n(ϑi∗ −∆/2)

n2

 1

n(ϑi∗ −∆/2)

ki∗−∆n/2∑
j=ki∗-1+1

Rj

2

− 12n(ϑi∗+1 −∆/2)

n2

 1

n(ϑi∗+1 −∆/2)

ki∗+1∑
j=ki∗+∆n/2

Rj

2

.

For arbitrary km ∈ k choose j ∈ {km−1 + 1, . . . , km}, then

E [Rj] =
∑

j∈[ℓ+1]\m

nϑjpm,j −
nϑi − 1

2
= n

[
ℓ+1∑
j=1

ϑjpm,j −
1

2

]
Var (Rj) ≤ n− 1 + n(n− 1)/2.
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It follows from continuous mapping theorem and (Weber, 1980) that

1

n2

 1

nϑi

ki∗∑
j=ki∗−1+1

Rj

2

p→

[
ℓ+1∑
j=1

ϑjpi∗,j −
1

2

]2
,

1

n2

 1

n(ϑi −∆/2)

ki∗−∆n/2∑
j=ki∗−1+1

Rj

2

p→

[
ℓ+1∑
j=1

ϑjpi∗,j −
1

2

]2
,

1

n2

 1

nϑi+1

ki∗∑
j=ki∗−1+1

Rj

2

p→

[
ℓ+1∑
j=1

ϑjpi∗+1,j −
1

2

]2
,

1

n2

 1

n(ϑi+1 −∆/2)

ki∗+1∑
j=ki∗+∆n/2

Rj

2

p→

[
ℓ+1∑
j=1

ϑjpi∗+1,j −
1

2

]2
,

1

n2

 1

n∆

ki∗+∆n/2∑
j=ki∗−∆n/2

Rj

2

p→ 1

4

[
ℓ+1∑
j=1

ϑjpi∗,j −
1

2
+

ℓ+1∑
j=1

ϑjpi∗+1,j −
1

2

]2
.

Slutsky’s lemma and continuous mapping theorem directly imply that

n+ 1

n2
(C(k)− C(w1))

p→ 12∆

4


ℓ+1∑

j=1

ϑjpi∗,j −
1

2

2

+

ℓ+1∑
j=1

ϑjpi∗+1,j −
1

2

2

− 2

ℓ+1∑
j=1

ϑjpi∗+1,j −
1

2

ℓ+1∑
j=1

ϑjpi∗,j −
1

2




= 3∆

ℓ+1∑
j=1

ϑjpi∗+1,j −
1

2
−

ℓ+1∑
j=1

ϑjpi∗,j +
1

2

2

> 0.

We can then conclude that C(k)− C(w1) → +∞ in probability at a rate of Op(n). Then,
we have that

T (k)− T̂ (k̂) = Op(n) +Op(1)− βn → ∞,

providing a contradiction to the assumption that ℓ̂ < ℓ.

Lemma 6. It holds that Pr(ℓ̂ > ℓ) → 0 as n→ ∞.

159



Proof. Now assume that ℓ̂ > ℓ. It is easy to see that Ĉ(k̂) ≤ Ĉ(k̂ ∪ k). Using this fact and

a similar analysis as to that of the event {ℓ̂ < ℓ}, we can write that

C(k)− Ĉ(k̂) ≥ C(k)− Ĉ(k̂ ∪ k) = C(k)− C(k̂ ∪ k) +Op(1) = Op(1).

We then have that

T (k)− T̂ (k̂) = C(k)− Ĉ(k̂) + βn(ℓ̂− ℓ) ≥ C(k)− Ĉ(k̂ ∪ k) + βn(ℓ̂− ℓ) = O(βn) +Op(1) → ∞,

as n→ ∞.

Lemma 7. It holds that maxk∈k mink̂∈k̂
1

Cnr |k̂ − k| p→ 0 as n→ ∞.

Proof. We take the contradiction approach again; consider there exists ki∗ ∈ k such that
mink∈k |k̂ − ki∗ | > Cnr. Define w′

1 in the same way as w1 but replace ∆ with C:

w′
1 = {ki∗ − Cnr/2, ki∗ + Cnr/2} ∪ k\ki∗ and w′

2 = w′
1 ∪ k̂.

Similar to the analysis of {ℓ̂ < ℓ}, we can write

n+ 1

n
(C(k)− C(w′

1)) =
12ϑi∗n

n2

 1

nϑi∗

ki∗∑
j=ki∗-1+1

Rj

2

+
12ϑi∗+1n

n2

 1

nϑi∗+1

ki∗+1∑
j=ki∗+1

Rj

2

− 12Cnr

n2

 1

Cnr

ki+Cnr/2∑
j=ki∗ -Cnr/2

Rj

2

− 12n(ϑi∗ − Cnr−1/2)

n2

 1

n(ϑi∗ − Cnr−1/2)

ki∗−Cnr/2∑
j=ki∗-1+1

Rj

2

− 12n(ϑi∗+1 − Cnr−1/2)

n2

 1

n(ϑi∗+1 − Cnr−1/2)

ki∗+1∑
j=ki∗+Cnr/2

Rj

2

.

We can let µk∗i −1 = E
[
Rk∗i

]
and µk∗i = E

[
Rk∗i +1

]
be the means of the ranks before and

after the change-point ki∗ . Similarly, we can let ς2k∗i −1 = Var
(
Rk∗i

)
and ς2k∗i = Var

(
Rk∗i +1

)
be the variances of the ranks before and after the change-point ki∗ . We also define bn,k∗i −1 =
12ς2

k∗
i
−1

n2 = O(1) and bn,k∗i =
12ς2

k∗
i

n2 = O(1). Now, let

R̃j =
Rj − E [Rj]

Var (Rj)
.
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It follows that

12ϑi∗n

n2

 1

nϑi∗

ki∗∑
j=ki∗-1+1

Rj

2

= bn,k∗i

√nϑi∗

ki∗∑
j=ki∗-1+1

R̃j +
√
nϑi∗

µk∗i
ςk∗i

2

= bn,k∗i nϑi∗

(
µk∗i
ςk∗i

)2

+Op(n
1/2).

The last line follows from the central limit theorem of (Weber, 1980) and the previous
paragraph. Let an = (n+ 1)/n. We can produce similar analyses as above to give

an (C(k)− C(w′
1)) = bn,k∗i −1nϑi∗

(
µk∗i −1

ςk∗i −1

)2

+ bn,k∗i nϑi∗+1

(
µk∗i
ςk∗i

)2

− Cnr

4
bn,k∗i −1

(
µk∗i −1

ςk∗i −1

)2

− Cnr

4
bn,k∗i

(
µk∗i
ςk∗i

)2

− bn,k∗i −1(ϑi∗ − Cnr−1/2)

(
µk∗i −1

ςk∗i −1

)2

− bn,k∗i n(ϑi∗+1 − Cnr−1/2)

(
µk∗i
ςk∗i

)2

+Op(n
1/2)

p→ ∞,

where the conclusion follows from the fact that r > 1/2 and the Op(n) term is positive.
From which it follows that

T (k)− T̂ (k̂) = C(k)− Ĉ(k̂) ≥ C(k)− Ĉ(w′
2) = C(k)− C(w′

1) +Op(1)
p→ +∞.

The result follows directly from Lemma 5, Lemma 6 and Lemma 7.

A.2 Simulation on the rank distributions

We show here that more types of changes in the covariance matrix are exhibited by changes
in the depth rankings. Consider two samples each from a 6-dimensional multivariate normal
distribution. We fix

Σ1 =


1 0.4 0.4 0 0 0
0.4 1 0.4 0 0 0
0.4 0.4 1 0 0 0
0 0 0 1 0 0.4
0 0 0 0 1 0
0 0 0 0.4 0 1
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as the covariance matrix of the first sample. Additionally, let σd1,d2,m be the (d1, d2)
th

entry of the covariance matrix for sample m (where d1, d2 ∈ {1, . . . , 6} and m ∈ {1, 2}).
We test four specifications of Σ2, the covariance matrix of the second sample, and check
for a difference in the distribution of ranks:

1. Submatrix on the diagonal change: σd1,d2,2 = 2σd1,d2,1 for d1, d2 > 3 and σd1,d2,2 =
σd1,d2,1 otherwise.

2. Submatrix off the diagonal change: σ6,4,2 = σ4,6,2 = 2σ6,4,1 and σd1,d2,2 = σd1,d2,1
otherwise.

3. Mixed change scenario: σ6,4,2 = σ4,6,2 = −σ6,4,1, σ4,4,2 = 0.2σ4,4,1, σd1,d2,2 =
2σd1,d2,1 for d1, d2 ≤ 3, d1 ̸= d2 and σd1,d2,2 = σd1,d2,1 otherwise.

4. Offsetting Expansion and Contraction: σ4,4,2 = 0.5σ4,4,1, σ6,6,2 = 2σ6,6,1 and
σd1,d2,2 = σd1,d2,1 otherwise.

We drew samples of size n = 5000 from each population and computed the combined
sample depth ranks. We then repeated this 100 times for each scenario. Figure A.1 shows
histograms of each samples’ depth ranks, one graph for each scenario. We see that ex-
pansions and contractions of submatrices correspond to changes in the rank distribution.
Scenario three represents a mixture of these expansions and contractions (of different sub-
matrices) and a change in the rank distributions is still exhibited. Scenario four shows
that if we have two simultaneous contractions and expansions that ‘perfectly’ offset each
other, there won’t be a change in the rank distributions. We note that if the offset is not
perfect, (such as σ4,4,2 = 0.49σ4,4,1 instead) a change in the rank distribution will appear.
This is fairly intuitive; since depth functions focus on the magnitude of outlyingness and
not necessarily the direction of outlyingness. We can summarize the results as follows:

• Expansions/contractions in the submatrices produce a change in the rank distribu-
tions.

• The smaller the submatrix, the smaller the change in rank distribution.

• Certain combinations of expansions/contractions also admit changes in the rank dis-
tribution, provided the expansion(s) does not offset the contraction(s).

• Sign changes cannot be detected.
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Figure A.1: Normalised histograms of the depth ranks of sample 1 (red) and sample 2
(blue) under a (a) submatrix on the diagonal change, (b) submatrix on the off diagonal
change, (c) mixed change and (d) offsetting expansion and contraction.

In conclusion, we aim to detect changes that can be expressed as contractions or expan-
sions of submatrices. Additionally, we remark that many combinations of contractions and
expansions can be detected, with the caveat that offsetting combinations of such changes
make the change more difficult to detect, or in a special case, impossible.

A.3 L2-root depth

The following theorem lists some properties of the L2-root depth.

Theorem 19. Let X ∼ F , where F is a measure over L 2([0, 1],B, µ), Fn be the empirical
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measure corresponding to a random sample of size n from F , a, b ∈ F and c, c′ ∈ R+, then
LTR depth satisfies the following properties

1. Sample ranks based on LTR depth are invariant when the sample is transformed by
a linear function h, such that h(x) = a x+ b.

2. If X
d
= −X, then supx LTR(x;F ) = LTR(0;F ).

3. If X
d
= −X, then LTR(c x;F ), is decreasing in c.

4. lim
c→∞

LTR(c x;F ) = 0.

5. Suppose that E
[
∥X∥2

]
<∞, then sup

x
|LTR(x;Fn)− LTR(x;F )| = o(1) a.s. .

The proof of this theorem is given in Section A.5. We remark that LTR(x;F ) is not
invariant under linear transformations as given by h in property 1. of Theorem 19. It is
easy to see that if

LTR(x;F ) =
1

1 + c′
then LTR(ax; aF ) =

1

1 + ∥a∥ c′
,

where aX ∼ aF , with X ∼ F . This fact implies that hypothesis tests based on LTR depth
values themselves won’t be invariant under linear transformations. However, Theorem 19
shows that hypothesis tests based on ranks of these depth values invariant under linear
transformations. Further, a median based on this depth would be equivariant under linear
transformations as given by h in property 1. .

In this setting, we see that ranking the observations based on LTR-depth is equivalent
to ranking the observations based on their norms. Under the assumption of zero mean, we
have that

EF∗

[
∥Xji −X∥2

]
= EF∗

[
∥Xji∥2

]
+ EF∗

[
∥X∥2

]
= ∥Xji∥2 +

J∑
j=1

ϑjKj + o(1),

from which it is easily seen that the ranks are equivalent to those based on EF∗

[
∥Xji∥2

]
.

We emphasize that this relationship relies on the assumption of zero mean, and the data
must be centred. In this context, ranks generated from this depth function do not need to
be estimated; we can compute ranks based on D (·;F∗) directly.
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A.4 Additional information surrounding the simula-

tion study in Chapter 3

This section contains some additional simulation results. The finite dimensional models
are as follows: Specifically, we ran six scenarios, which, letting λjk be the eigenvalues of
the covariance operator of group j, are

1. Reversed short linear decay: λ1k = k, λ2k = 3− k + 1, k < 4, λjk = 0, k ≥ 4.

2. Reversed long linear decay: λ1k = k, λ2k = 11− k + 1, k < 12, λjk = 0, k ≥ 12.

3. Reversed long exponential decay: λ1k = 2k, λ2k = 211−k+1, k < 12, λjk = 0, k ≥ 12.

4. Scaled short linear decay: λ1k = k, λ2k = 1.5λ1k, k < 4, λjk = 0, k ≥ 4.

5. Scaled long linear decay: λ1k = k, λ2k = 1.5λ1k k < 12, λjk = 0, k ≥ 12.

6. Scaled long exponential decay: λ1k = 2k, λ2k = 1.5λ1k, k < 12, λjk = 0, k ≥ 12.

We also have extra tables for imbalanced group sizes:

A.4.1 On the number of directions for the random projection
depth

We also studied the effect of the number of directions in the random projection on the test.
Figure A.2 shows that the test is stable under the number of directions.

A.4.2 If the curves have missing values at random time points

Figure A.3 shows that the results are essentially the same if the curves have missing points.
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Figure A.2: Power of the FKWC test paired with the random projection depth to detect
scale and shape differences for J = 2 with n1 = n2 = 50, using different amounts of
sampled directions. In the top row the data were Gaussian, in the middle row the data
were student t data with 3 degrees of freedom, and in the final row the data were skewed
Gaussian data.
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Gaussian Student t Skewed Gaussian
n1/n : 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4

FKWC

MFHD 1.00 1.00 1.00 0.85 0.92 0.94 1.00 1.00 1.00
RP 1.00 1.00 1.00 0.91 0.94 0.97 1.00 1.00 1.00
MBD 1.00 1.00 1.00 0.88 0.94 0.97 1.00 1.00 1.00
LTR 1.00 1.00 1.00 0.96 0.97 0.98 1.00 1.00 1.00
RP† 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Competing

Boen 0.95 0.99 0.99 0.11 0.08 0.04 0.95 0.98 0.99
L2br 0.81 0.94 0.97 1.00 1.00 1.00 0.78 0.92 0.99
L2rp 0.78 0.92 0.97 0.04 0.04 0.08 0.73 0.92 0.98
Tmax 0.34 0.62 0.70 0.06 0.07 0.06 0.35 0.63 0.78
GPFrp 0.71 0.92 0.97 0.05 0.07 0.13 0.70 0.90 0.96
Fmax 0.60 0.82 0.90 0.07 0.18 0.32 0.57 0.82 0.92

Table A.1: Empirical power of the different tests for detecting a shape difference with
α1 = 0.05 and α2 = 0.071. Here J = 2, n = 500 and the group sample sizes were unequal.
Notice that when the sample sizes differ greatly, the competing tests do not perform as
well.

A.5 Proofs from Chapter 3

Proof. Proof of (3.4) Let

ZN = sup
x∈F

|RPMN
(x;FN)− RP∞(x;F )|.

Observe that

E [Zn] = E

[∣∣∣∣M−1
n

Mn∑
m=1

D⟨x, um⟩;Fn,um −
∫
S

D⟨x, u⟩;Fudν(u)

∣∣∣∣∣
]

≤ E

[
M−1

n

Mn∑
m=1

|D⟨x, um⟩;Fn,um −D⟨x, um⟩;Fum|

]
+O(n−1/2)

≤ E

[
4M−1

n

Mn∑
m=1

E

[
sup
z∈R

|Fn,um(z)− Fum(z)|

∣∣∣∣∣u1, . . . uMn

]]
+O(n−1/2)

= O(n−1/2),

167



n1/n = 0.2

Scen. MFHD RP MBD LTR RP† Boen L2br L2rp Tmax GPFrp Fmax
1 0.90 0.85 0.72 0.68 0.92 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 0.98 0.98 0.98 0.98 0.97 0.97 0.82 0.78 0.68 0.74 0.41
5 1.00 1.00 1.00 1.00 1.00 1.00 0.88 0.72 0.51 0.41 0.01
6 0.97 0.98 0.97 0.96 0.97 0.97 0.80 0.74 0.68 0.74 0.31

n1/n = 0.3

Scen. MFHD RP MBD LTR RP† Boen L2br L2rp Tmax GPFrp Fmax
1 0.93 0.88 0.78 0.70 0.97 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.92 0.97 0.91
5 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.97 0.73
6 0.99 1.00 0.99 0.99 0.99 0.99 0.97 0.94 0.92 0.96 0.88

n1/n = 0.4

Scen. MFHD RP MBD LTR RP† Boen L2br L2rp Tmax GPFrp Fmax
1 0.94 0.89 0.80 0.76 0.97 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.98
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
6 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.98 0.96 0.99 0.98

Table A.2: Empirical power of the different tests for n = 200 when the group sample
sizes were unequal, under the finite dimensional models.
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Figure A.3: Power of the two sample versions of the tests when n1 = n2 = 100 when 20%
of the curves were uniformly, randomly missing. The missing values were first interpolated
with splines. The top row is the infinite dimensional Gaussian process model and the
bottom row is the infinite dimensional student t model. Note that the legend follows that
of Figure 3.3.

where the first inequality is from the triangle inequality and Hoeffding’s inequality, and
the last equality results from the Dvoretzky–Kiefer–Wolfowitz inequality.

Proof of Theorem 19. Let aF + b be the measure associated with aX + b. We have that

LTR(ax+ b; aF + b) =

(
1 + EF

[
∥ax+ b− aX + b∥2

]1/2)−1

=

(
1 + ∥a∥EF

[
∥x−X∥2

]1/2)−1

.

The function (1 + c′x)−1 is monotonic for any c′ > 0. Therefore, for any x, y ∈ F such
that LTR(x;F ) < LTR(y;F ), it holds that LTR(ax + b; aF + b) < LTR(ay + b; aF + b).
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This gives the first property. For the second property, observe that

LTR(x;F ) =
(
1 + EF

[
∥x−X∥2

]1/2)−1

=
(
1 + 2−1/2EF

[
∥x−X∥2 + ∥x+X∥2

]1/2)−1

=
(
1 + 2−1/2EF

[
2 ∥x∥2 + 2 ∥X∥2

]1/2)−1

=
(
1 + 2−1/221/2 ∥x∥2 + 2−1/221/2E

[
∥X∥2

]1/2)−1

= (1 + ∥x∥+ c′)
−1
,

which is maximized at x = 0. For the third and fourth properties, we have in similar
fashion

LTR(cx;F ) =
(
1 + EF

[
∥cx−X∥2

]1/2)−1

= (1 + c ∥x∥+ c′)
−1
,

which is decreasing toward 0 as c increases. Lastly, if X1, . . . , Xn is a random sample from
F , then it holds that

1

n

n∑
i=1

∥x−Xi∥2 = ∥x∥2 + 1

n

n∑
i=1

∥Xi∥2 − 2⟨x, 1
n

n∑
i=1

Xi⟩ := ∥x∥2 + Y x,n.

We have that

|LTR(x;Fn)− LTR(x;F )| =
∣∣∣(1 + (∥x∥2 + Y x,n)

1/2
)−1 −

(
1 + (∥x∥2 + ∥K ∥TR)

1/2
)−1
∣∣∣

=

∣∣∣∣∣ (∥x∥2 + ∥K ∥TR)1/2 − (∥x∥2 + Y x,n)
1/2(

1 + (∥x∥2 + Y x,n)1/2
) (

1 + (∥x∥2 + ∥K ∥TR)1/2
)∣∣∣∣∣

≤

∣∣∣∣∣ | ∥K ∥TR − Y x,n|1/2(
1 + (∥x∥2 + Y x,n)1/2

) (
1 + (∥x∥2 + ∥K ∥TR)1/2

)∣∣∣∣∣ ,
where the third line comes from the fact that

√
x − √

y ≤
√

|x− y|. Now, suppose that
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∥x∥ < c′n1/2(log n)−1.

|LTR(x;Fn)− LTR(x;F )| ≤ | ∥K ∥TR − Y x,n|1/2

≤

∣∣∣∣∣∥K ∥TR − 1

n

n∑
i=1

∥Xi∥2 − c′n−1/2(log n)−1

n∑
i=1

∫
Xidt

∣∣∣∣∣
1/2

= o(1) a.s. ,

where the last line is from the strong law of large numbers and the law of the iterated
logarithm. Note that

∫
Xidt has finite variance for all i ∈ {1, . . . , n} and that the second

inequality does not depend on x. Suppose now that ∥x∥ ≥ c′n1/2(log n)−1. Then, it is easy
to see that |LTR(x;Fn)− LTR(x;F )| → 0 by the vanishing at infinity property.

Proof of Theorem 3. Observe that R̂ji are identically distributed under the null hypothesis.
This implies that the rank vector has the uniform distribution with probability of each
outcome being 1/n!. This is the same setup as in (Kruskal, 1952) and so it is immediate

that Wn
d→ χ2

J−1. Similarly, it follows directly from Theorem 2 of (Chenouri et al., 2011)

that Mn,r
d→ χ2

J−1.

Proof of Equation (3.6). Let

σ̃2
n =

n(n+ 1)

12
.

We can rewrite Ŵn as follows

Ŵn =
1

σ̃2
n

J∑
j=1

njR̂
2

j − 3(n+ 1).

Now, define

Wn :=
1

σ̃2
n

J∑
j=1

njR
2

j − 3(n+ 1) with Rj :=
1

nj

nj∑
i=1

Rji.

Under the alternative hypothesis, Assumption 7 and (3.5), D (Xji;F∗) are equivalent to
the univariate random variables studied by Kruskal (1952). For all δ > 0, it then holds
that

P (Wn > δ) → 1, as n→ ∞.
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We just need |Ŵn − Wn| = Op(1), which will complete the proof. However, this follows
directly from Lemma 4 in Chapter 2.

Proof of Theorem 4. First, let u ∈ S, where S = {u : ∥u∥ = 1, u ∈ F} and let Yu,j =
⟨Xj1, u⟩. Observe that E [Yu,j] = 0 and that

σ2
j,u := E

[
Y 2
u,j

]
= E

[∫
[0,1]

∫
[0,1]

Xj1(t)u(t) ·Xj1(s)u(s) dsdt

]
= ⟨Kju, u⟩,

where we can take the expectation inside due to Lebesgue’s dominated convergence theo-
rem. Namely, ⟨Xj1, u⟩2 ≤ ∥Xj1∥2 which has finite expectation. One should also recall that
we take

D (⟨x, u⟩;Fu) = Fu(⟨x, u⟩)(1− Fu(⟨x, u⟩))

for the univariate depth. For the remainder of the proof, we will suppress the F∗ in
RP(x;F∗). In view of (3.6), it is only necessary to verify that

Pr (RP(X11) > RP(X21)) ̸=
1

2
. (A.10)

Which, under Assumption 10, this is equivalent to showing

E [RP(X11)− RP(X21)] ̸= 0.

We can write

E [RP(X11)− RP(X21)] = E

[∫
S
D(Yu,1;Fu,∗) dν(u)−

∫
S
D(Yu,2;Fu,∗) dν(u)

]
= E

[∫
S
Fu,∗(Yu,1)(1− Fu,∗(Yu,1))− Fu,∗(Yu,2)(1− Fu,∗(Yu,2)) dν

]
.

Clearly, since 0 < Fu,∗(Yu,1) < 1, we have that

Fu,∗(Yu,1)(1− Fu,∗(Yu,1))− Fu,∗(Yu,2)(1− Fu,∗(Yu,2)) ≤ 1/2.

Using Lebesgue’s dominated convergence theorem,

E [RP(X11)− RP(X21)] =

∫
S
E [Fu,∗(Yu,1)(1− Fu,∗(Yu,1))− Fu,∗(Yu,2)(1− Fu,∗(Yu,2))] dν(u).
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Using the fact that F∗,u is thrice differentiable for all u, we can write

E [Fu,∗(Yu,j)] = Fu,∗(0) +
1

2
f (1)
u,∗(0)σ

2
j,u +Ru,j,1

E
[
F 2
u,∗(Yu,j)

]
= F 2

u,∗(0) + (Fu,∗(0)f
(1)
u,∗(0) + f 2

u,∗(0))σ
2
j,u +Ru,j,2

with

Ru,j,1 := E

[
1

6

∫ Yu,j

0

f (2)
u,∗(t)(Yu,j − t)3dt

]
Ru,j,2 := E

[
1

3

∫ Yu,j

0

(3fu,∗(t)f
(1)
u,∗(t) + Fu,∗(t)f

(2)
u,∗(t))(Yu,j − t)3dt

]
.

Note that we expect Ri
u,j to be small from the fact that the mean of Yu,j is 0. It follows

that

E [D (Yu,j;Fu,∗)] = Fu,∗(0) +
1

2
f (1)
u,∗(0)σ

2
j,u − F 2

u,∗(0)− σ2
j,u(Fu,∗(0)f

(1)
u,∗(0)− f 2

u,∗(0)) +Ru,j,3

= H(F∗,u)σ
2
j,u + Fu,∗(0)− F 2

u,∗(0) +Ru,j,3,

where

H(F ) :=
1

2
f (1)(0)− (F (0)f (1)(0)− f 2(0)) and Ru,j,3 = Ru,j,1 −Ru,j,2.

We can now write

E [D (Yu,1;Fu,∗)−D(Yu,2;Fu,∗)] = H(F∗,u)(σ
2
1,u − σ2

2,u) +Ru,1,3 −Ru,2,3.

To conclude, under univariate simplicial depth it holds that

E [RP(X11)− RP(X21)] =

∫
S

H(F∗,u)(σ
2
1,u − σ2

2,u) +Ru,1,3 −Ru,2,3 dν(u)

=

∫
S

H(F∗,u)⟨K1u− K2u, u⟩+Ru,1,3 −Ru,2,3 dν(u)

=

∫
S

H(F∗,u)⟨K1u− K2u, u⟩dν(u) +R1 −R2,

where Rj <∞ by the fact that the integrand is bounded in u.
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Proof of Theorem 5. In view of (3.6), it is only necessary to show that under the alterna-
tive, (3.5) holds. However, by Assumption 10, this is equivalent to

E
[
∥X11∥2 − ∥X21∥2

]
,

from which it is well known that E
[
∥Xj1∥2

]
= ∥Kj∥TR if ∥Kj∥TR <∞ and so

E
[
∥X11∥2 − ∥X21∥2

]
= ∥K1∥TR − ∥K2∥TR ̸= 0.

We know that by assumption Kj are trace class. Indeed, Xji are mean square continuous,
which means they have a continuous kernel K. This implies immediately that ∥Kj∥TR <
∞.

Proof of Theorem 6. Now, Yji are univariate observations from a scale family, meaning

that Zji := (1 + δj/
√
n)

−1
Yji with Zji ∼ G. Now, let τ := limN→∞ τn. It follows from (Fan

et al., 2011) that the test statistic Wn → χ2
J−1(τ). We have that

τn =
12

n(n+ 1)

J∑
j=1

nj

{
n
∑
k ̸=j

(ϑk + o(1)) (Pr(Yk1 ≤ Yj1)− 1/2)

}2

.

We have that

Pr(Yk1 ≤ Yj1) = Pr

(
Zk1 ≤ Zj1

[√
n+ δj√
n+ δk

])
=

∫
R

Pr

(
Zk1 ≤ z

[√
n+ δj√
n+ δk

])
g(z)dz.

(A.11)

Now, note that z
[√

n+δj√
n+δk

]
is in a neighborhood of z we can write the Taylor expansion of

G about z at the point z
[√

n+δj√
n+δk

]
as

Pr

(
Zk1 ≤ z

[√
n+ δj√
n+ δk

])
= G(z) + z

[
1−

[√
n+ δj√
n+ δk

]]
g(z) +O(n−1).
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Substituting into (A.11), we have that∫
R

Pr

(
Zk1 ≤ z

[√
n+ δj√
n+ δk

])
g(z)dz =

∫
R

[
G(z) + z

[
1−

[√
n+ δj√
n+ δk

]]
g(z) +O(n−1)

]
dG

= 1/2 +

[
1−

[√
n+ δj√
n+ δk

]]∫
R

zg(z)2dz +O(n−1)

= 1/2 +

[
1−

[√
n+ δj√
n+ δk

]]
∆G +O(n−1),

where

∆G =

∫
R

zg(z)2dz.

Now, substituting the above identity into (3.7), gives

τn =
12

n(n+ 1)

J∑
j=1

nj

[
n
∑
k ̸=j

(ϑk + o(1))

([
1−

[√
n+ δj√
n+ δk

]]
∆G +O(n−1)

)]2
,

which then immediately implies that

lim
n→∞

τn = 12∆2
G

J∑
j=1

ϑj
(
δj − δ

)2
,

which completes the proof.

A.6 Proofs from Chapter 4

Proof of Theorem 7. The first equation follows from (Chenouri et al., 2020b). Therefore,
we must only prove that

Wn(k̂1, k̂2)
d→ sup

t1,t2∈(0,1)

(B(t2)−B(t1))
2

(t2 − t1)(1− t2 + t1)
.
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Directly from (Chenouri et al., 2020b), see also (Billingsley, 1968), we have that

Ẑn(t) =
1√
n

⌊tn⌋∑
i=1

R̂i − µn
σn

d→ B(t),

for t ∈ [0, 1]. Let qn = σ2
n/σ̃

2
n and note that limn→∞ qn → 1. We write Wn as a function

of partial sums which are in a similar form to that Ẑn(t). Consider the first term in (4.3).
For 0 < t1 < t2 < 1, we have that

Wn(⌊t1n⌋, ⌊t2n⌋) =
1

σ̃n

n∑
1≤j<⌊t1n⌋
⌊t2n⌋≤j≤n

R̂j − µn√
n− ⌊t2n⌋+ ⌊t1n⌋

=

(
qn

1− ⌊t2n⌋/n+ ⌊t1n⌋/n

)1/2
1√
n

⌊t1n⌋−1∑
j=1

R̂j − µn
σ2
n

+
n∑

j=k2

R̂j − µn
σ2
n


=

(
qn

1− ⌊t2n⌋/n+ ⌊t1n⌋/n

)1/2
1√
n

⌊t1n⌋−1∑
j=1

R̂j − µn
σ2
n

−
k2−1∑
j=1

R̂j − µn
σ2
n


= −

(
qn

1− ⌊t2n⌋/n+ ⌊t1n⌋/n

)1/2
1√
n

⌊t2n⌋−1∑
j=k1

R̂j − µn
σ2
n

 .

For the second term in (4.3), we have that

1

σ̃n

k2−1∑
j=⌊t1n⌋

R̂j − µn√
⌊t2n⌋ − ⌊t1n⌋

=

(
qn

⌊t2n⌋/n− ⌊t1n⌋/n

)1/2
1√
n

⌊t2n⌋−1∑
j=k1

R̂j − µn
σ2
n

 .

So, it follows that

Wn(⌊t1n⌋, ⌊t2n⌋) =
qn

(⌊t2n⌋/n− ⌊t1n⌋/n)(1− ⌊t2n⌋/n+ ⌊t1n⌋/n)

 1√
n

⌊t2n⌋−1∑
j=k1

R̂j − µn
σ2
n

2

.

We can then write
Wn(t1, t2) := gn(t1, t2)W ′

n(t1, t2),
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where

gn(t1, t2) =
1

(t2 − t1)(1− t2 + t1)
+ o(1) and W ′

n(t1, t2) =

 1√
n

⌊nt2⌋−1∑
j=⌊nt1⌋

R̂j − µn
σ2
n

2

.

Recall that Ẑn(t)
d→ B(t) and observe that W ′

n(t1, t2) = (Ẑn(t1)− Ẑn(t2))
2. The quantity

W ′
n(t1, t2) is a continuous functional of Ẑn(t), and so continuous mapping theorem gives

that

W ′
n(t1, t2) =

 1√
n

⌊nt2⌋−1∑
j=⌊nt1⌋

R̂j − µn
σ2
n

2

d→ (B(t2)−B(t1))
2.

and

sup
t1<t2

W(⌊nt1⌋, ⌊nt2⌋)
d→ sup

t1<t2

(
1

(t2 − t1)(1− t2 + t1)

)
(B(t2)−B(t1))

2.

Lemma 8. Suppose that there are n, independent univariate data points, with a change-
point at observation k1. Let R1, . . . , Rk1 denote the first k1 combined sample ranks. For
1 ≤ m < k1 and δ > 0, consider Sm =

∑m
i=1Ri. Then,

Pr(|Sm − E [Sm] | > δ) ≤ 4e
−2min(m,k1−m,n−k1)

(
δ

2max(k1−m,n−k1)m

)2
.

Proof. Let P (X1 > Xn) = p. It holds that

m∑
j=1

Rj =
m(m+ 1)

2
+

m∑
j=1

k1∑
i=m+1

1 (Xj ≤ Xi) +
m∑
j=1

n∑
i=k1+1

1 (Xj ≤ Xi)

:=
m(m+ 1)

2
+ (k1 −m)mU1,n +m(n− k1)U2,n,

where U1,n, U2,n are two sample U -statistics. Note that E [U1,n] = 1/2 and E [U1,n] = p.
We make use of (Hoeffding, 1963) which gives, for a two sample U -statistic U related to
the sample sizes n1 and n2, it holds that

Pr(|U − E [U ] | > δ) ≤ 2e−2min(n1,n2)t2 . (A.12)
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Continuing,

Pr(Sm − E [Sm] > δ) = Pr ((k1 −m)m(U1,n − 1/2) +m(n− k1)(U2,n − p) > δ)

≤ Pr

(
U1,n − 1/2 >

δ

2(k1 −m)m

)
+ Pr

(
U2,n − p >

δ

2m(n− k1)

)
≤ e

−2min(m,k1−m)
(

δ
2(k1−m)m

)2
+ e

−2min(m,n−k1)
(

δ
2m(n−k1)

)2

≤ 2e
−2min(m,k1−m,n−k1)

(
δ

2max(k1−m,n−k1)m

)2
.

Note that taking

Pr(|Sm − E [Sm] | > δ) ≤ Pr(Sm − E [Sm] > δ) + Pr(−Sm + E [Sm] > δ),

and −Sm + E [Sm] has the same U -statistic format as Sm − E [Sm]. Thus, the previous
analysis applies and we get

Pr(|Sm − E [Sm] | > δ) ≤ 4e
−2min(m,k1−m,n−k1)

(
δ

2max(k1−m,n−k1)m

)2
.

Lemma 9. Suppose that there are n univariate data points, with a change-point at obser-
vation k1. Let R1, . . . , Rk1 denote the first k1 combined sample ranks and let

Zn(t) =
1√
n

⌊tn⌋∑
i=1

Ri − µn
σn

.

It holds that

Pr(Zn(k1/n) < an) ≤ e
−2n2 min(θ1,1−θ1)

(
p−1/2− anσn

n2θ1(1−θ1)

)2
,

for an <
k1(n−k1)(p−1/2)

σn
and k1 = ⌊nθ1⌋.

Proof. Note that

√
nE [Zn(k1/n)] =

k1(k1 + 1)

2σn
+
k1(n− k1)p

σn
− k1(n+ 1)

2σn
= k1(n− k1)

p− 1/2

σn
.

We then have that

√
nZn(k1/n) =

k1(k1 + 1)

2σn
+
k1(n− k1)

σn
U ′ − k1(n+ 1)

2σn
,
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where U ′ is a two sample U -statistic. We then have that

Pr(E [Zn(k1/n)]− Zn(k1/n) > t) ≤ e
−2n2 min(θ,1−θ)

(
tσn

k1(n−k1)

)2
,

for t > 0 (Hoeffding, 1963; Pitcan, 2017). Using this fact,

Pr(Zn(k1/n) < an) = Pr

(
Zn(k1/n)− E [Zn(k1/n)] < an − k1(n− k1)

p− 1/2

σn

)
= Pr

(
E [Zn(k1/n)]− Zn(k1/n) > k1(n− k1)

p− 1/2

σn
− an

)
≤ e

−2n2 min(θ,1−θ)
(
p−1/2− anσn

n2θ(1−θ)

)2

where the second line uses the fact that

an − k1(n− k1)
p− 1/2

σn
< 0.

Theorem 9. The outline of our proof follows that of the proofs in (Yu and Chen, 2017),
but the details differ since we are using ranks. To keep the notation simple, we let k1 = k
and k̂1 = k̂ for the remainder of the proof. Let σn =

√
(n2 − 1)/12 and µn = (n + 1)/2.

The aim is to show that Pr(|k̂ − k| > tn) < C1 exp(−nt2C2). To start, note that

Pr(|k̂ − k| > tn) = Pr(k̂ − k > tn) + Pr(k − k̂ > tn). (A.13)

We start with showing a bound on Pr(k − k̂ > tn). Note that

Pr(k − k̂ > tn) ≤ Pr

(
max

c0n≤i<k−tn
|Zn(i/n)| > |Zn(k/n)|

)
≤ Pr

(
max

c0n≤i<k−tn
|Zn(i/n)| > Zn(k/n)

)
≤ Pr

(
max

c0n≤i<k−tn
|Zn(i/n)| − Zn(k/n) > 0

)
≤ Pr(A1) + Pr(A2), (A.14)
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where

Pr(A1) = Pr

(
max

c0n≤i<k−tn
Zn(i/n)− Zn(k/n) > 0

)
Pr(A2) = Pr

(
min

c0n≤i<k−tn
Zn(i/n) + Zn(k/n) < 0

)
.

First consider event A1:

Pr(A1) = Pr

(
max

c0n≤i<k−tn
Zn(i/n)− Zn(k/n) > 0

)
= Pr

(
max

c0n≤i<k−tn
−

k∑
j=i+1

Rj − µn
σn

> 0

)

= Pr

(
max

tn≤i<k−c0n
−Zn(i/n) > 0

)
,

where the last line follows from exchangeability of R1, . . . , Rk. Without loss of generality
we can assume that

max
tn≤i<k−c0n

−Zn(i/n) = −Zn(i∗/n),

occurs for some i∗. Then, in order for {maxtn≤i<k−c0n−Zn(i/n) > 0} to also occur, we
must have

−Zn(i∗/n) + E [Zn(i
∗/n)] > E [Zn(i

∗/n)] .

We will make use of this fact shortly, but first it helps compute E [Zn(i/n)]. At this point,
it is helpful to recall from the proof of Lemma 9 that Zn(i/n) can be written in terms of
a generalised, two sample U -statistic. It follows that

√
nE [Zn(i/n)] =

i(i+ 1)

2σn
+
i(k − i)

2σn
+ pi(n− k)− i

n+ 1

2σn

=
i

σn
(n− k)

(
p− 1

2

)
≥ tn

σn
(n− k)

(
p− 1

2

)
, := bn.

for tn ≤ i < k− c0n. Pruss (1998) provides a maximal inequality for sums of exchangeable
random variables. Note that we can extend the sequence R1, . . . , Rk−c0n to one of length
k. Which, in the notation of Pruss (1998), means that γ = k/(k − c0n) = θ/(θ − c0) and
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we have that

c(γ) = C3
γ2

(γ − 1)2
= C3

θ2

c20
,

where C3 is an absolute constant. We can now apply Theorem 1 of (Pruss, 1998) and
Lemma 8, which gives that

Pr

(
max

tn≤i<k−c0n
−Zn(i/n) > 0

)
≤ Pr

(
max

tn≤i<k−c0n
−Zn(i/n) + E [Zn(i/n)] >

bn√
n

)
≤ C3

θ2

c20
Pr

(
|Zn(θ − c0)− E [Zn(θ − c0)] | >

bnc
2
0

C3θ2
√
n

)

≤ C3
θ2

c20
e

−2min(n(θ−c0),n−k)

 (n−k)tnc20
C3θ

2 (p− 1
2)

2(n−k)n(θ−c0)


2

= C3
θ2

c20
e
−2min(n(θ−c0),n−k)

(
tc20(p− 1

2)
2C1θ

2(θ−c0)

)2

= C3θ
2e

−C1nmin(θ−c0,1−θ)
(

t(p− 1
2)

θ2(θ−c0)

)2

= C3θ
2e−C1nt2(p− 1

2)
2

,

where the constants depend on θ, c0. We can now show a similar bound for Pr(A2). To this
end, we have that

Pr(A2) = Pr

(
max

c0n≤i<k−tn
−Zn(i/n)− Zn(k/n) > 0

)
≤ Pr

(
max

c0n≤i<k−tn
−Zn(i/n) > 0

)
+ Pr (Zn(k/n) < 0) .

Now, it is easy to see from Lemma 9 that Pr (Zn(k/n) < 0) is quite small, viz.

Pr (Zn(k/n) < 0) ≤ e−2nmin(θ,1−θ)(p−1/2)2 .

Concerning Pr (maxc0n≤i<k−tn−Zn(i/n) > 0), we use Corollary 2 of (Pruss, 1998). Again,
in the notation of Pruss (1998), we take ρ = c0 and

c(ρ) = c(c0) = C4
1

c0(1− c0)2
,
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for some absolute constant C4. It follows that

Pr

(
max

c0n≤i<k−tn
−Zn(i/n) > 0

)
≤ Pr

(
max

c0n≤i<k−tn
E [Zn(i/n)]− Zn(i/n) >

c0n(n− k)√
nσn

(
p− 1

2

))
≤ c(c0) Pr

(
|Zn(θ)− E [Zn(θ)] | >

tc0n(n− k)√
nσnc(c0)

(
p− 1

2

))
≤ 2c(c0)e

−2nmin(θ,1−θ)
(

tc0
θc(c0)

)2
(p−1/2)2

≤ C1e
−C2nt2(p− 1

2)
2

,

where C1, C2 depend on c0 and θ. To conclude this part of the proof, we have that

Pr(k − k̂ > tn) ≤ C1e
−C2nt2(p−1/2)2 . (A.15)

It now remains to consider Pr(k̂ − k > tn). We have that

Pr(k̂ − k > tn) ≤ Pr

(
max

k+tn≤i<n
|Zn(i/n)| > |Zn(k/n)|

)
≤ Pr

(
max

k+tn≤i<n
|Zn(i/n)| > Zn(k/n)

)
≤ Pr

(
max

k+tn≤i<n
|Zn(i/n)| − Zn(k/n) > 0

)
≤ Pr(A3) + Pr(A4),

where

Pr(A3) = Pr

(
max

k+tn≤i<n
Zn(i/n)− Zn(k/n) > 0

)
Pr(A4) = Pr

(
min

k+tn≤i<n
Zn(i/n) + Zn(k/n) < 0

)
.

Once again, we start with Pr(A3). Observe

Pr(A3) = Pr

(
max

k+tn≤i<n
Zn(i/n)− Zn(k/n) > 0

)
= Pr

(
max

k+tn≤i<n

i∑
j=k+1

Rj − µn
σn

> 0

)
.
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Now, note that

E

[
−

i∑
j=k+1

Rj − µn
σn

]
= (i− k)k

(p− 1/2)

σn
> tnk

(p− 1/2)

σn
= b′n.

So, it follows that

Pr

 max
k+tn≤i<n

i∑
j=k+1

Rj − µn
σn

> 0

 ≤ Pr

 max
k+tn≤i<n

i∑
j=k+1

Rj − µn
σn

− E

 i∑
j=k+1

Rj − µn
σn

 > b′n


≤ C1 Pr

∣∣∣∣∣∣
k+c0n∑
j=k+1

Rj − µn
σn

− E

 i∑
j=k+1

Rj − µn
σn

∣∣∣∣∣∣ > C2b
′
n

 .

We can write

k+c0n∑
j=k+1

Rj =
c0n(c0n+ 1)

2
+ c0n(n− c0n− k)V1 + c0nkV2,

where V1, V2 are two sample U -statistics. As above, Lemma 8 gives that

Pr

(∣∣∣∣∣
k+c0n∑
j=k+1

Rj − µn
σn

− E

[
i∑

j=k+1

Rj − µn
σn

]∣∣∣∣∣ > t

)
≤ C1e

−C2n
(

tσn
n(n−c0n−k)

)2
+ 2e−C3nc0( tσn

nk )
2

≤ C1e
−C2n

(
tσn

nmax(n−k−c0n,k)

)2
.

It then follows that

Pr (A3) ≤ C1e
−C2nt2(p−1/2)2 .
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Consider now,

Pr(A4) = Pr

(
max

k+tn≤i<n
−Zn(i/n)− Zn(k/n) > 0

)
= Pr

(
max

k+tn≤i<n
−

k+i∑
j=k+1

Rj − µn
σn

> 2Zn(k/n)

)

≤ Pr

(
max

k+tn≤i<n
−

k+i∑
j=k+1

Rj − µn
σn

> 2an

)
+ Pr (Zn(k/n) < an)

≤ Pr

(
max

k+tn≤i<n
−

k+i∑
j=k+1

Rj − µn
σn

> 2an

)
+ e

−2nmin(θ,1−θ)
(
p−1/2− anσn

n2θ(1−θ)

)2

:= Pr (A5) + e−C2n(p−1/2)2 ,

where the second last line is an application of Lemma 9 if an = cn = 3k(n−k)(p−1/2)
4σn

.

e
−C2n

(
p−1/2− anσn

n2θ(1−θ)

)2
= e

−C2n(p−1/2)2− anσn
n2θ(1−θ)

Looking at Pr (A5), we have that

Pr (A5) = Pr

(
max

k+tn≤i<n
−

k+i∑
j=k+1

Rj − µn
σn

> cn

)

≤ Pr

(
max

k+tn≤i<n
−

k+i∑
j=k+1

Rj − µn
σn

+ E

[
i∑

j=k+1

Rj − µn
σn

]
> (n− k)k

(p− 1/2)

2σn

)
,

≤ 2c(c0)e
−2nc0

(
(n−k)k(p−1/2)

4c0c(c0)nmax(n−k−c0n,k)

)2
≤ C1e

−C2n(p−1/2)2 .

We then have that

Pr(k̂ − k > tn) ≤ C1e
−C2nt2(p−1/2)2 + C1e

−C2n(p−1/2)2 . (A.16)

Therefore, combining (A.15) and (A.16) we have that

Pr(|k̂ − k| > tn) ≤ C2e
−nC1t2(p−1/2)2 .
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Proof of Theorem 10. The proof is complete after proving the following Lemma:

Lemma 10. Assume the conditions of Theorem 10. We have that

Pr
(∣∣∣Ẑn(i/n)− E [Zn(i/n)]

∣∣∣ > t
)
≤ C1e

−C2t2 ,

for some constants C1, C2 that depend on b, K ′, the depth function and the distribution of
the data.

Simply replace Lemma 8 with Lemma 10 in the arguments of the proof of Theorem 9
and Lemma 9 and the result follows.

Proof of Lemma 10. We first show that

|D(x; F̂n)−D(x;F )| ≤ K sup
y∈Rd, a∈A

∣∣∣F̂n,a(g(y, a))− Fa(g(y, a))
∣∣∣ , (A.17)

holds for all x ∈ F, where A, g are as described in Section 4.3. To begin,

|D(x; F̂n)−D(x;F ) | =
∣∣∣∣∫
A
Fn,a(g(x, a)(1− Fn,a(g(x, a)))− Fa(g(x, a))(1− Fa(g(x, a)))dPa

∣∣∣∣
≤
∫
A
|Fn,a(g(x, a))(1− Fn,a(g(x, a)))− Fa(g(x, a))(1− Fa(g(x, a)))| dPa

≤
∫
A
3 sup

y
|Fn,a(y)− Fa(y)| dPa

≤ 3 sup
a∈A

sup
y

|Fn,a(y)− Fa(y)| .

We can show an analogous inequality if half-space depth is used as the univariate depth
function. Continuing with the proof, for brevity, we will now denote C1 and k̂1 by k and
k̂, respectively. In addition, let

hij(F ) = D (Xi;F )−D(Xj;F ) .
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It holds that

Sm =
m∑
j=1

Rj

=
m(m+ 1)

2
+

m∑
j=1

k∑
i=m+1

1 (hij(F ) ≥ 0) +
m∑
j=1

n∑
i=k+1

1 (hij(F ) ≥ 0)

:=
m(m+ 1)

2
+ (k −m)mU1

n +m(n− k)U2
n,

where U1
n, U

2
n are two sample U-statistics. Note that E [U1

n] = 1/2 and E [U2
n] = p.

Similarly,

Ŝm =
m∑
j=1

R̂j

=
m(m+ 1)

2
+

m∑
j=1

k∑
i=m+1

1

(
hij(F̂n) ≥ 0

)
+

m∑
j=1

n∑
i=k+1

1

(
hij(F̂n) ≥ 0

)
:=

m(m+ 1)

2
+ (k −m)mÛ1

n +m(n− k)Û2
n,

where Û1
n, Û

2
n are dependent two sample U-statistics. Consider

Û2
n − U2

n =
1

m(n− k)

m∑
j=1

n∑
i=k+1

1

(
hij(F̂n) ≥ 0

)
− 1 (hij(F ) ≥ 0) .

Let
Yn = sup

y∈Rd, a∈A

∣∣∣F̂n,a(g(y, a))− Fa(g(y, a))
∣∣∣ .

It easily follows from (A.17) that

1

(
hij(F̂n) > 0

)
− 1 (hij(F ) > 0) ≤ 1 (hij(F ) > −KYn)− 1 (hij(F ) > 0)

≤ 1 (−KYn < hij(F ) < 0) .
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We can now write

Û2
n − U2

n ≤ 1

m(n− k)

m∑
j=1

n∑
i=k+1

1 (−KYn < hij(F ) < 0)

≤ 1

m(n− k)

m∑
j=1

n∑
i=k+1

1 (−Kt < hij(F ) < 0) + 1 (Yn > t/K) . (A.18)

Looking only at the left hand terms, notice that this is a U -statistic. Assumption 12 gives
that

E

[
1

m(n− k)

m∑
j=1

n∑
i=k+1

1 (−Kt < hij(F ) < 0)

]
= Pr(−Kt < hij(F ) < 0) ≤ tK ′.

Using this, and (A.12) we have that

Pr

 1

m(n− k)

m∑
j=1

n∑
i=k+1

1 (−Kt < hij(F ) < 0) > t

 ≤ e−2min(m,n−k)(t(1−K′))2 . (A.19)

Looking at the right hand term of (A.18) we have that

Pr

(
1

m(n− k)

m∑
j=1

n∑
i=k+1

1 (Yn > t/K) > δ

)
≤ Pr

(
1

m(n− k)

m∑
j=1

n∑
i=k+1

1 (Yn > t/K) > 0

)
= Pr (Yn > t/K)

≤ K3e
−K4n( t

K )
2

, (A.20)

where K3, K4 are constants which depend on the depth function and b. The last inequality
comes from the finite dimensional assumption on the data. To elaborate, letting c =
(c1, . . . , cb), the sets {{

b∑
i=1

ciϕi(t) ≤ z, c ∈ Rb

}
t ∈ [0, 1], z ∈ R

}

and {{
b∑
i=1

ci⟨ϕi, u⟩ ≤ z, c ∈ Rb

}
u ∈ S, z ∈ R

}
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Figure A.4: Comparison of the FKWC methods with the derivatives to the FKWC
methods without the derivatives under (a) magnitude changes and (b) shape changes.

both have finite VC-dimension, which gives uniform concentration of F̂n,a. If we consider

Û1
n−U1

n, we can use the same technique to provide an analogous bound. Combining (A.19)
and (A.19) gives that

Pr
(∣∣∣Ẑn(i/n)− E [Zn(i/n)]

∣∣∣ > t
)
≤ Pr

(∣∣∣Ẑn(i/n)− Zn(i/n)
∣∣∣ > t/2

)
+ Pr (|Zn(i/n)− E [Zn(i/n)] | > t/2)

≤ C1e
−C2t2 .

As stated above, with the proof of Lemma 10 complete, the proof of Theorem 10 is
complete using the logic of the proof of Theorem 9.

A.7 Additional simulation results from Chapter 4

Below we have some additional simulation results.
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A.8 On simplicial depth and privacy

Many of the results from Section 5.4 apply to simplicial depth (Liu, 1988). However, the
sensitivity, asymptotics and computation of simplicial depth all scale worse with respect
to the dimension than the other considered depth functions. However, we summarize the
results in the case of simplicial depth below: The sensitivity of simplicial depth is (d+1)/n,
see the proof in Section A.9. The proof of Theorem 14 also shows that, for all F ,

Pr(sup
x

| SMD(x;Fn)− SMD(x;F )| > t) ≤ 8e(d
2 log d) log(n+1)−nt2/32.

In addition, the proof of Corollary 15 shows that if F is such that the SMD-median θ is
unique, then using SMD with Mechanism 5 results in

Pr
(∥∥∥T̃ (Xn)− θ

∥∥∥ ≥ t
)
≤ 8ed

2 log(d) log(n+1)e−nαSMD(t)2/512 +Ke−nϵαSMD(t)/4(d+1).

The sample complexity can be computed in the same manner as the sample complexities
computed in the proof of Corollary 1.

A.9 Proofs from Chapter 5

A.9.1 Proofs related to the properties of the depth functions

Proof of sensitivities of depth functions. The sample halfspace depth value of some point
x is the minimum normalised, univariate, centre-outward rank of x’s projections amongst
the samples’ projections, over all univariate directions. Therefore, if a point is exchanged,
all the ranks are shifted by at most one, and the global sensitivity of the unnormalised
halfspace depth is 1. We get GSn(HD) = 1/n. Following the same argument, the IRW
depth is the average, normalised, centre-outward rank, and so we can conclude that
GSn(IRW) = 1/n.

Changing one observation changes Fn by at most 1/n, and (A.21) gives that |Fn(x)(1−
Fn(−x))−F ∗

n(x)(1−F ∗
n(−x))| ≤ 3|Fn(x)−F ∗

n(−x)| and so we have that GSn(IDD) = 3/n.
Similarly, for IDDβ, it holds that GSn(IDDβ(x;Fn)) = 3/n.

For simplicial depth, note that changing one observation can influence a maximum of(
n−1
d

)
terms of the type 1

(
x ∈∼ (Xi1 , . . . , Xid+1

)
)
, and each term has a sensitivity of 1. It

follows that GSn(SMD) = (d+ 1)/n.
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Proof of Theorem 14. We use empirical process techniques. First, note that:

Pr(sup
x

| IRW(x;Fn)− IRW(x;F )| > t) ≤ Pr(4 sup
u

∥Fn,u − Fu∥ > t− 1/2n).

Consider:
F =

{
g(y) = 1

(
y⊤u ≤ x⊤u

)
: x ∈ Rd, u ∈ Sd−1

}
⊂ Hd,

where
Hd =

{
g(y) = 1

(
y⊤u ≤ c

)
: c ∈ R, u ∈ Sd−1

}
.

It is well-known that V C(Hd) = d+ 1. Therefore, we can use results on the concentration
of the supremum of an empirical process (Talagrand, 1994). If K is a varying absolute
constant, we have that

N (ϵ,Hd, L1(Q)) ≤ (K(d+ 1))(8e/ϵ)d+1 ≤
(
(K(d+ 1))1/(d+1)8e

ϵ

)d+1

≤
(
K

ϵ

)d+1

.

This gives that

Pr(
√
n ∥Fn,u − Fu∥ > t) ≤ K

t

(
Kt2

d+ 1

)d+1

e−2t2

≤ t2d+1Kd+2

(
1

d+ 1

)d+1

e−2t2

≤ e(2d+1) log(t)−(d+1) log(d+1)+(d+2) log(K)−2t2

≤ e(d+1/2) log(n)−(d+1) log(d+1)+(d+2) log(K)−2t2

≤ e(d+1) log( n
d+1)+(d+2) log(K)−2t2

≤ Ke(d+1) log(K n
d+1)−2t2 .

We see that

Pr(sup
x

| IRW(x;Fn)− IRW(x;F )| > t) ≤ Pr(sup
u

∥Fn,u − Fu∥ > t/4− 1/8n)

≤ Ke(d+1) log(K n
d+1)−2(

√
nt/4−1/8n)

2

≤ Ke(d+1) log(K n
d+1)−

√
nt2/8−t/16

√
n+1/32n

≤ Ke(d+1) log(K n
d+1)−nt2/8.
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For integrated dual depth, we first need the following result. Let G(x) = F (x)(1− F (x))
and Gn(x) = Fn(x)(1 − Fn(x)) for some F, Fn such that ∥F∥∞ ≤ 1 and ∥Fn∥∞ ≤ 1. It
then holds that

|G(x)−Gn(x)| = |F (x)(1− F (x))− Fn(x)(1− Fn(x))|
= |F (x)− Fn(x)− F (x)2 + Fn(x)

2|
≤ |F (x)− Fn(x) + Fn(x)F (x)− F (x)2 − Fn(x)F (x) + Fn(x)

2|
= |F (x)− Fn(x) + F (x)(Fn(x)− F (x)) + Fn(x)(Fn(x)− F (x))|
≤ 3|F (x)− Fn(x)|. (A.21)

Using this, we can then write

Pr

(
sup
x

| IDD(x;Fn)− IDD(x;F )| > t

)
≤ Pr(sup

u
∥Fn,u − Fu∥ > t/3)

≤ Ke(d+1) log(K n
d+1)−2nt2/9.

To prove something similar for halfspace depth, we need Fu to be a continuous function
in u. It suffices to choose F to be absolutely continuous with a bounded density f . To see
this, observe that for some sequence um → u, we may have that∣∣∣∣∫

Hu

f(x)dx−
∫
Hum

f(x)dx

∣∣∣∣ ≤ ∫
Hu△Hum

f(x)dx ≤ sup
x
f(x)vol(Hu△Hum) → 0.

We can then say that

Pr(sup
x

|HD(x;Fn)− HD(x;F )| > t) = Pr

(
sup
x

∣∣∣inf
u
Fn,u − inf

u
Fu

∣∣∣ > t

)
.

Now, we know that Fn,u(x) can take a finite number of values as a function of u, and
so infu Fn,u(x) = Fn,u∗n,x

(x) for some, non-unique u∗n,x. Suppose that | infu Fn,u(x) −
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infu Fu(x)| = infu Fu(x)− infu Fn,u(x), it follows that

| inf
u
Fn,u(x)− inf

u
Fu(x)| = inf

u
Fu(x)− inf

u
Fn,u(x)

= inf
u
Fu(x)− Fn,u∗n,x

(x)

≤ Fu∗n,x
(x)− Fn,u∗n,x

(x)

≤ sup
u

|Fu(x)− Fn,u(x)|

≤ sup
x

sup
u

|Fu(x)− Fn,u(x)|.

which holds for all x. Similar to above, if | infu Fn,u(x) − infu Fu(x)| = infu Fn,u(x) −
infu Fu(x) then

| inf
u
Fn,u(x)− inf

u
Fu(x)| ≤ sup

x
sup
u

|Fu(x)− Fn,u(x)|.

It follows immediately via the same VC-dimension argument that

Pr(sup
x

|HD(x;Fn)− HD(x;F )| > t) ≤ Pr(sup
u,x

|Fn,u(x)− Fu(x)| > t)

≤ Ke(d+1) log(K n
d+1)−2t2 .

We now prove the bound for the smoothed dual depth. If t > 1/4 then it is trivial that

Pr

(
sup
x

| IDDβ(x;Fn)− IDDβ(x;F )| > t

)
= 0,

Now, assume that t < 1/4. We see that

F =
{
σ(β(x−Xi)

⊤u) : x ∈ Rd, u ∈ Sd−1
}
⊂
{
σ(AXi + b) : A ∈ Rd, b ∈ R

}
:= F∗,

where F∗ is a monotone function applied to a finite dimensional vector space of measurable
functions. Therefore V C(F∗) = d+ 2 and so V C(F) ≤ d+ 2. Let

Zn =
√
n sup

F

∣∣∣∣∣ 1n
n∑
i=1

σ(β(x−Xi)
⊤u)− E

[
σ(β(x−X1)

⊤u)))
]∣∣∣∣∣ .
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It follows from Talagrand (1994) that

Pr (Zn ≥ t) ≤
(

Kt√
2d+ 4

)2d+4

e−2t2 ≤ e
(2d+4) log

(
Kt√
2d+4

)
−2t2

,

where K is a universal constant. Now, we have that

Pr

(
sup
x

| IDDβ(x;Fn)− IDDβ(x;F )| > t

)
≤ Pr

(
3Zn ≥

√
nt
)
≤ e

(2d+4) log
(

K
√

n

4
√
2d+4

)
−2nt2/9

.

For simplicial depth, a VC-dimension concentration argument and (Dümbgen, 1992) gives
that

Pr(sup
x

| SMD(x;Fn)− SMD(x;F )| > t) ≤ 8(n+ 1)d
2 log de−nt

2/32 = 8e(d
2 log d) log(n+1)−nt2/32.

A.9.2 LDP theorem, concentration and sample complexity for
the private medians

Proof of Theorem 13. Let En,m = {∥ϕn − ϕ∥ < m} for short. Then,

Pr
(∥∥∥T̃ (Xn)− θ

∥∥∥ > t
)
= Pr

(
Ec
n,m

)
+ Pr

(∥∥∥T̃ (Xn)− θ
∥∥∥ > t ∩ En,m

)
≤ C1(ϕ, d, n)e

−C2(ϕ)nm2

+ Pr
(∥∥∥T̃ (Xn)− θ

∥∥∥ > t ∩ En,m
)
,

We now focus on the right hand term above:

1

λn
log Pr

(∥∥∥T̃ (Xn)− θ)
∥∥∥ > t ∩ En,m

)
=

1

λn
log

∫
En,m

∫
Bc
t (θ)

exp (λnϕn(x))dπ∫
Rd exp (λnϕ(x))dπ

dP

≤ 2m+
1

λn
log

∫
Bc
t (θ)

exp (λnϕ(x))dπ∫
Rd exp (λnϕ(x))dπ

.
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First, we lower bound the denominator of the right-hand term:

1

λn
log

∫
Rd

exp (λnϕ(x))dπ ≥ 1

λn
log

∫
Bk(θ)

exp (λnϕ(x))dπ

= ϕ(θ) +
1

λn
log

∫
Bk(θ)

exp (λn(ϕ(x)− ϕ(θ)))dπ

≥ ϕ(θ)− ωϕ(k) ∧ 1 + λ−1
n log π(Bk(θ)).

Using this,

1

λn
log Pr (Bct (θ) ∩ En,m) ≤

1

λn
log

∫
Bc
t (θ)

exp (λnϕ(x))dπ − ϕ(θ)

+ ωϕ(k) ∧ 1− λ−1
n log π(Bk(θ)) + 2m.

≤ sup
x∈Bc

t (θ)

(ϕ(x)− ϕ(θ)) + ωϕ(k) ∧ 1− λ−1
n log π(Bk(θ)) + 2m

:= −f(t) + g(ϕ, π, θ, λn) + 2m,

where we set k = argmink∈[0,1][ωϕ(k)∧ 1− λ−1
n log π(Bk(θ))], where the minimum exists by

assumption. We have that

g1(ϕ, π, θ, λn) = min
k∈[0,1]

[ωϕ(k) ∧ 1− λ−1
n log π(Bk(θ))].

In addition, note that
f(t) = ϕ(θ)− sup

x∈Bc
t (θ)

ϕ(x) > 0.

It follows then that

Pr
(∥∥∥T̃ (Xn)− θ)

∥∥∥ > t ∩ En,m
)
≤ exp(−λnf(t) + λng(ϕ, π, θ, λn) + 2λnm).

Letting m = f(t)/4, we can write

Pr
(∥∥∥T̃ (Xn)− θ)

∥∥∥ > t
)
≤ Pr(∥ϕn − ϕ∥ > f(t)/4) + exp(−λnf(t)/2 + λng(ϕ, π, θ, λn))

≤ C1(ϕ, d, n)e
−C2(ϕ)nf(t)2/16 + e−λnf(t)/2+λng(ϕ,π,θ,λn).

Proof of Theorem 15. We first show that our assumptions on F imply the considered depth
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functions are Lipschitz continuous, which requires the following auxiliary Lemma:

Lemma 11. If F has a density, then Fu does.

Proof. First, we show that Fu has a density if F does. We use the fact that for any real,
measurable function g, if

E
[
g(X⊤u)

]
=

∫
R
g(x)fu(x)dx,

then fu(x) is the density for X⊤u. In order to do this, we start with

E
[
g(X⊤u)

]
=

∫
Rd

g(x⊤u)f(x)dx.

Recall that we can write Rd = U × U⊥, where U = span({u}) and U⊥ is the orthogonal
compliment of U . Recall from linear algebra that we can write every vector as the sum of
two vectors: x = au + z, where a ∈ R, z ∈ U⊥. Now, |Jx| = 1 because u is a unit vector
and z ∈ U⊥. We have that

E
[
g(X⊤u)

]
=

∫
Rd

g(x⊤u)f(x)dx.

=

∫
R

∫
U⊥

g((au+ z)⊤u)f(au+ z)dzda

=

∫
R

∫
U⊥

g(a)f(au+ z)dzda

=

∫
R
g(a)

∫
U⊥

f(au+ z)dzda,

so then fu(x) =
∫
U⊥ f(xu+ z)dz.

Lemma 12. Suppose supu fu <∞. Then all of the considered depth functions are lipschitz
functions.

Proof. Now since, Fu has bounded a density, we can conclude both that the CDF Fu is a
lipschitz function (it has a bounded derivative) and that Fu is a continuous function in u
(see the proof of Theorem 14). We sometimes will suppress the F in D(·, F ), since it is
clear from the context. Note that for halfspace depth consider two points x, y ∈ Rd. If Fu
are lipschitz continuous, then

|Fu(x⊤u)− Fu(y
⊤u)| ≤ ∥fu∥∞ |(x− y)⊤u| ≤ ∥fu∥∞ ∥x− y∥ . (A.22)
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Now, without loss of generality, suppose that HD(x, F ) > HD(y, F ). Suppose further that
u∗ is such that Fu∗(y

⊤u) = infu Fu(y
⊤u). There exists such a u∗ because F is continuous,

implying that Fu is continuous in u, thus, Fu is continuous function on a compact set. It
follows that

|HD(x)− HD(y)| = inf
u
Fu(x

⊤u)− Fu∗(y
⊤u) ≤ Fu∗(x

⊤u)− Fu∗(y
⊤u) ≤ ∥fu∥∞ ∥x− y∥ .

For IRW depth, it holds that

| IRW(x)− IRW(y)| ≤
∫
Sd−1

|Fu(x⊤u) ∨ (1− Fu(x
⊤u))− Fu(y

⊤u) ∨ (1− Fu(y
⊤u))|dν

≤
∫
Sd−1

2|Fu(x⊤u)− Fu(y
⊤u)|+ 2|1− Fu(x

⊤u)− Fu(y
⊤u)|dν

≤ 4 ∥fu∥∞ ∥x− y∥
∫
Sd−1

2dν,

which is a result of (A.22) and the fact that |1− Fu(x
⊤u)− Fu(y

⊤u)| ≤ 1.

For simplicial depth, if F is lipschitz continuous, then we must show that Pr(x ∈
∆(X1, . . . , Xd+1) is also lipschitz continuous. It is easy to begin with two dimensions.
Consider Pr(x ∈ ∆(X1, X2, X3)) − Pr(y ∈ ∆(X1, X2, X3)), as per (Liu, 1990), we need to
show that Pr(X1X2 intersects xy) ≤ ∥fu∥∞ ∥x− y∥. In order for this event to occur, we
must have that X1 is above xy and X2 is below xy, but both are projected onto the line
segment xy when projected onto the line running through xy. The affine invariance of
simplicial depth implies we can assume, without loss of generality, that x and y lie on the
axis of the first coordinate. Let x1 and y1 be the first coordinates of x and y. Suppose
that X11 is the first coordinate of X1. It then follows from Lipschitz continuity of F that

Pr(X1X2 intersects xy) ≤ Pr(x1 < X11 < y1) ≤ ∥fu∥∞ |x1 − y1| ≤ ∥fu∥∞ ∥x− y∥ .

In dimensions greater than two, a similar line of reasoning can be used. We can again
assume, without loss of generality, that x and y lie on the axis of the first coordinate. It
holds that

Pr(x ∈ ∆(X1, X2, X3))− Pr(y ∈ ∆(X1, X2, X3)) ≤
(
d+ 1

d

)
Pr(Ad),

where Ad is the event that the d− 1-dimensional face of the random simplex, formed by d
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points randomly drawn from F , intersects the line segment xy. It is easy to see that

Pr(Ad) ≤ Pr(x1 < X11 < y1) ≤ ∥fu∥∞ |x1 − y1| ≤ ∥fu∥∞ ∥x− y∥ .

We can use these results to write ωD(k) = C ′ · supu ∥fu∥ · k. Therefore the depth
functions satisfy condition 3 of Theorem 13. Note that

Pr
(∥∥∥T̃ (Xn)− θ

∥∥∥ > t
)
≤ e−λnαD(t)/2+λn mink∈[0,1][(C

′·supu∥fu∥·k)∧1−λ
−1
n log π(Bk(θ))]

+ C1(D, d, n)e
−C2(D)nαD(t)2/16.

By assumption, we have that infk∈[0,1][(C
′ · supu ∥fu∥ · k)∧ 1−λ−1

n log π(Bk(θ))] < αD(t)/4,
which gives that

Pr
(∥∥∥T̃ (Xn)− θ

∥∥∥ ≥ t
)
≤ C1(D, d, n)e

−C2(D)nαD(t)2/16 + e−λnαD(t)/4..

The second step is to show that the depth functions satisfy conditions 1 and 2 in Theorem
13. All of the considered depth functions satisfy condition 1 as a result of Theorem 14

with C1(D, d, n) = Ke(d+1) log(K n
d+1), λn = ϵ/GSn(D) = nϵ/C, C2 = c. Condition 2 is

assumed.

Proof of Corollary 1. Let α(t) = ϕ(θ) − sup∥x−θ∥≥t ϕ(x) and suppress the D in αD for
brevity. We will use K to represent constants independent of the dimension and C to
represent constants dependent on the dimension. For fixed t > 0 and 0 < γ < 1, we want
to find n to ensure

γ ≤ C1(ϕ, d, n)e
−K1(ϕ)nα(t)2/16 + e−K2(ϕ)nϵα(t)/4.

Looking at the first term, for the depth functions, we have that

C1(ϕ, d, n)e
−K1(ϕ)nα(t)2/16 = K3e

(d+1) log( K3
d+1)e(d+1) log(n)−K1(ϕ)nα(t)2/16

≤ K3e
(d+1) log(n)−K1(ϕ)nα(t)2/16.
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We can now write

γ < K3e
(d+1) log(n)−K1(ϕ)nα(t)2/16 =⇒ n >

K1 log(1/γ) +K3(d+ 1) log(n)

α(t)2

=⇒ n1−r >
K1 log(1/γ) +K3(d+ 1)

α(t)2
=⇒ n >

(
K1 log(1/γ) +K3(d+ 1)

α(t)2

) 1
1−r

,

for small r > 0. The second term gives that

n >
4 log (1/γ)

K2ϵα(t)
.

Now, we can clean up the definitions of the constants, and write

n(t, γ, d, ϵ) =

(
K1 log(1/γ) +K2(d+ 1)

α(t)2

) 1
1−r

∨ K3 log (1/γ)

ϵα(t)
.

Proof of Corollary 2. Suppress the D in αD for brevity. We need only need to assess N0.
We need:

−C

nϵ
log π(BCα(t)(θ)) < α(t)/8 =⇒ n > − 8C

α(t)ϵ
log π(BCα(t)(θ)).

Therefore, we would like to lower bound log π(BCα(t)(θ)). First, suppose π ∼ Nd(θ, I).
Recall that Cα(t) < C/2 in the case of HD. Let Y ∼ χ2

d, then we are interested in lower
bounding

Pr (∥X − θ∥ ≤ α(t)/8) = Pr
(
Y ≤ α(t)2/64

)
.

Suppose that d > 2, so the mode of the distribution is at d− 2 > 1. Now, for some small
0 < r < α(t)2/64, we write ,

Pr
(
Y ≤ α(t)2/64

)
=

∫ α(t)2/64

0

yd/2−1e−y/2

2d/2Γ(d/2)
dy

≥ 1

2d/2Γ(d/2)

∫ α(t)2/64

r

yd/2−1e−y/2dy

> (α(t)2/64− r)
rd/2−1e−r/2

2d/2Γ(d/2)
.
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Now, choose r = α(t)2/128, this gives

− log π(BCα(t)(θ)) ≤ C · d log(2/Kα(t)) + Cα(t) + log Γ(d/2) ≤ C · d log
(

1

α(t)
∨ d
)
.

Now suppose that π ∼ Nd(µ, I), then we can let Y ′ ∼ χ2
d(∥µ− θ∥2). First, recall that

the density of X ∼ χ2
d(λ) which we denote by f(y, d, λ) has the property:

f(y) ≥ e−∥µ−θ∥2/2y
d/2−1e−y/2

2d/2Γ(d/2)
= e−∥µ−θ∥2/2f(y, d, 0).

Using this, it is easy to see that

Pr
(
Y ≤ α(t)2/64

)
= Pr

(
Y ′ ≤ α(t)2/64

)
≥ e−∥µ−θ∥2/2(α(t)2/64− r)

rd/2−1e−r/2

2d/2Γ(d/2)
.

Once again,

− log π(BCα(t)(θ)) ≤ ∥µ− θ∥2 /2 + C · d log(2/Kα(t)) + Cα(t) + log Γ(d/2)

≤ ∥µ− θ∥2 /2 + C · d log
(

1

α(t)
∨ d
)
.

This gives the bound:

n >
C ′

α(t)ϵ

[
∥µ− θ∥2 /2 + C · d log

(
1

α(t)
∨ d
)]

.

To incorporate the scale parameter, replace α(t) with α(t)/ς. To prove the second bound
we have

− log π(BCα(t)(θ)) = − log
(Cα(t))d

Γ(d/2 + 1)
= log Γ(d/2 + 1)− d logCα(t) ≥ C · d log

(
1

α(t)
∨ d

)
.

199



A.9.3 Proofs related to the smoothed dual depth

Proof of Theorem 11. Consider cu for any unit vector u, then

lim
c→∞

IDDβ(cu;F ) = lim
c→∞

∫
Sd−1

(
E
[
σ
(
β(cu−X)⊤u

)]) (
1− E

[
σ
(
β(cu−X)⊤u

)])
dν(u)

=

∫
Sd−1

lim
c→∞

(
E
[
σ
(
β(cu−X)⊤u

)]) (
1− E

[
σ
(
β(cu−X)⊤u

)])
dν(u)

= 0,

by bounded convergence theorem and the fact that limx→∞(1+e−x)−1(1+ex)−1 = 0. For the

next property, suppose that θ−X d
= X−θ. We use the fact that (1−σ(x−X)) = σ(X−x).

Then,

IDDβ(θ;F ) =

∫
Sd−1

(
E
[
σ
(
β(θ −X)⊤u

)]) (
1− E

[
σ
(
β(θ −X)⊤u

)])
dν(u)

=

∫
Sd−1

(
E
[
σ
(
β(X − θ)⊤u

)])2
dν(u)

=

∫
Sd−1

(
1− E

[
σ
(
β(X − θ)⊤u

)])2
dν(u),

which implies that

IDDβ(θ;F ) = 1/4.

For the invariance property, it is easy to see that (Ax+b−AX−b)⊤u = A⊤(x−X)⊤u =
A⊤u⊤(x −X) = ũ⊤(x −X), where ũ is another unit vector. From this fact, and the fact
that we are integrating strictly a function of the expression u⊤(x−X) over Sd−1, similarity
invariance holds.

Assume without loss of generality that θ = 0; we want to show that if X− d
= −X, then

IDDβ(αx;F ) > IDDβ(x;F )) for 0 < α < 1. We use the same symmetry tools as in the
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proof of maximality at center. It follows that

IDDβ(αx;F ) =

∫
Sd−1

E
[
σ(αβx⊤u)

]
(1− E

[
σ(αβx⊤u)

]
)dν

=

∫
Sd−1

E
[
σ(αβx⊤u)

]2
dν

≥
∫
Sd−1

E
[
σ(βx⊤u)

]2
dν

=

∫
Sd−1

E
[
σ(βx⊤u)

]
(1− E

[
σ(βx⊤u)

]
)dν

= IDDβ(x;F ).

Proof of Theorem 12. For brevity let

Gn,u,β(x) =
1

n

n∑
i=1

σ
(
β(x−Xi)

⊤u
)
,

and

Z = sup
x

∣∣∣∣∣ 1M
M∑
m=1

Gn,um,β(x)(1−Gn,um,β(x))−
∫
Gn,u,β(x)(1−Gn,u,β(x))dν(u)

∣∣∣∣∣ .
First, we have that

Z ≤ sup
x

∣∣∣∣∣ 1M
M∑

m=1

Gn,um,β(x)−
∫

Gn,u,β(x)dν(u)

∣∣∣∣∣+ sup
x

∣∣∣∣∣ 1M
M∑

m=1

Gn,um,β(x)
2 −

∫
Gn,u,β(x)

2dν(u)

∣∣∣∣∣ .
This is the sum of two supremums of two empirical processes. First, for the left-hand
process, we have that

F =

{
1

n

n∑
i=1

σ
(
(β(x−Xi)

⊤u)
)
: x ∈ Rd

}
⊂

{
1

n

n∑
i=1

σ(A⊤u+ ci) : A ∈ Rd, c1, . . . , cn ∈ R

}
:= F∗.

The set F∗ is a vector space of functions, so we have that V (F∗) = d+n+1. This implies
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that V (F) ≤ d+ n+ 1. Assume that t < 1. We then have that

Pr

(
sup
x

∣∣∣∣∣ 1M
M∑
m=1

Gn,um,β(x)−
∫
Gn,u,β(x)dν(u)

∣∣∣∣∣ > t/
√
M

)
≤ e

2(d+n+1) log

(
Kt√

2(d+n+1)

)
−2t2

≤ e
2(d+n+1) log

(
K

√
M√

2(d+n+1)

)
−2t2

,

which implies that

Pr

(
sup
x

∣∣∣∣∣ 1M
M∑
m=1

Gn,um,β(x)−
∫
Gn,u,β(x)dν(u)

∣∣∣∣∣ > t

)
≤ e

2(d+n+1) log

(
K

√
M√

2(d+n+1)

)
−2Mt2

.

The same logic gives that

Pr

(
sup
x

∣∣∣∣∣ 1M
M∑
m=1

Gn,u,β(x)
2 −

∫
Gn,u,β(x)

2dν(u)

∣∣∣∣∣ > t

)
≤ e

2(d+n+1) log

(
K

√
M√

2(d+n+1)

)
−2Mt2

.

Therefore,

Pr (Z > t) ≤ 2e
2(d+n+1) log

(
K

√
M√

2(d+n+1)

)
−Mt2/2

= 2e(d+n+1) log( KM
2(d+n+1))−Mt2/2.

If t ≥ 1 then the inequality is trivial.

A.9.4 Propose-test-release proofs

Proof of Theorem 16. Note that it follows from the assumptions that k1 < MAD(Fu) <
k2 and MED(Fu) < k3 < ∞, for all u ∈ Sd−1. We start by proving or listing several
concentration results about the sample median and the median absolute deviation. We
will use ξq,u to represent the qth (left-continuous) quantile of the projected distribution Fu.
We require the following result on concentration of the sample median:

Lemma 13. Suppose that X1, . . . , Xn is a univariate, i.i.d. sample from F whose median
is uniquely ξ1/2. For all t > 0, the sample median ξ̂1/2 concentrates according to

Pr(|ξ̂1/2 − ξ1/2| > t) ≤ 2e−np(t)
2

,

where p(t) = (F (ξ1/2 + t)− 1/2) ∧ (F (ξ1/2 + t)− 1/2).
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Proof. From sub-additivity we have that

Pr(|ξ̂1/2 − ξ1/2| > t) ≤ Pr(ξ̂1/2 − ξ1/2 > t) + Pr(ξ1/2 − ξ̂1/2 > t)

≤ Pr(Y1(t) > n/2) + Pr(Y2(t) > n/2),

where Y1 and Y2 are the number of points in the sample which are greater than ξ1/2 + t
and less than ξ1/2 − t respectively. It follows from a Hoeffding inequality that

Pr(Y1(t) > n/2) = Pr(Y1(t)/n− (1− F (ξ1/2 + t)) > 1/2− (1− F (ξ1/2 + t))) ≤ e−n(F (ξ1/2+t)−1/2)2 ,

where one notes that F (ξ1/2 + t) > 1/2 and so −1/2 + F (ξ1/2 + t) ≥ 0. Similarly,

Pr(Y2(t) > n/2) = Pr(Y2(t)/n− F (ξ1/2 − t) > 1/2− F (ξ1/2 − t)) ≤ e−n(F (ξ1/2−t)−1/2)2 .

Now, let p(t) = (1/2− F (ξ1/2 − t)) ∧ (F (ξ1/2 + t)− 1/2). It is clear that

Pr(|ξ1/2 − ξ1/2| > t) ≤ 2e−np(t)
2

.

Note that Fu has a unique median from the assumption that ξ1/2,u is continuous and
increasing in a neighborhood of MED(Fu). Lemma 13 then gives that

Pr(|ξ̂1/2,u − ξ1/2,u| > t) ≤ 2e−nκu(t/2,1/2,0)
2

. (A.23)

Let Yn ∈ D(Xn, ρn) for some ρn > 0 and ξ̃1/2,u = MED(Y⊤
nu).

Lemma 14. Suppose that Yn ∈ D(Xn, ρn), Fu(ξ1/2,u+ t)− 1/2 > ρ′n and 1/2−Fu(ξ1/2,u−
t/2) > ρ′n, then

Pr
(∣∣∣ξ̃1/2,u − ξ̂1/2,u

∣∣∣ ≥ t
)
≤ 4e−nκu(t/2,1/2,ρ

′
n)

2

.

Proof. Recall that Fn,u is the empirical distribution corresponding to X⊤
nu. Let ξ̂r,u =

F−1
n,u(r). It holds that∣∣∣ξ̃1/2,u − ξ̂1/2,u

∣∣∣ ≤ |ξ̂1/2,u − ξ1/2,u|+ |ξ1/2,u − ξ̂1/2+ρn/n,u| ∨ |ξ1/2,u − ξ̂1/2−ρn/n,u|.

Let
An =

{
|ξ1/2,u − ξ̂1/2+ρn/n,u| ∨ |ξ1/2,u − ξ̂1/2−ρn/n,u| ≥ t/2

}
.
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We then have that

Pr
(∣∣∣ξ̃1/2,u − ξ̂1/2,u

∣∣∣ ≥ t
)
≤ Pr

(
|ξ̂1/2,u − ξ1/2,u| ≥ t/2

)
+ Pr (An) .

Equation (A.23) gives that:

Pr(|ξ̂1/2,u − ξ1/2,u| > t/2) ≤ 2e−nκu(t/2,1/2,0)
2

.

We must now show that the quantiles close to the median also concentrate around the
median. Note that

Pr (An ≥ t/2) = Pr
(
|ξ1/2,u − ξ̂1/2+ρn/n,u| > t/2 ∪ |ξ1/2,u − ξ̂1/2−ρn/n,u| ≥ t/2

)
.

Define the events

B1,n,u(t) = {|ξ1/2,u − ξ̂1/2+ρn/n,u| > t} and B2,n,u(t) = {|ξ1/2,u − ξ̂1/2−ρn/n,u| > t}.

We see that

Pr (B1,n,u(t)) = Pr (Y1(t) > n/2− ρn, Y2(t) > n/2 + ρn) ,

where Y1(t) and Y2(t) are the number of points in the projected, univariate sample which
are greater than ξ1/2,u + t and less than ξ1/2,u − t, respectively. In addition,

Pr (B2,n,u(t)) = Pr (Y1(t) > n/2 + ρn, Y2(t) > n/2− ρn) ,

We then have that

Pr(B1,n,u(t) ∪B2,n,u(t)) ≤ Pr(Y1(t) > n/2− ρn, Y2(t) > n/2− ρn).

It follows from a Hoeffding inequality that

Pr(Y1(t) > n/2− ⌊ρn⌋ − 1) = Pr
(
Y1(t)− E [Y1(t)] > 1/2− ρn/n− (1− Fu(ξ1/2,u + t))

)
= Pr

(
Y1(t)/n− E [Y1(t)] /n > Fu(ξ1/2,u + t)− ρn/n− 1/2

)
≤ e−n(Fu(ξ1/2,u+t)− ρn

n
−1/2)

2

,
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provided that Fu(ξ1/2,u + t)− 1/2 > ρn
n
. Similarly,

Pr(Y2(t) > n/2− ρn) = Pr((Y2(t)− Fu(ξ1/2,u − t))/n > 1/2− ρn/n− Fu(ξ1/2,u − t))

≤ e−n(1/2−Fu(ξ1/2,u−t)− ρn
n )

2

,

provided that 1/2− Fu(ξ1/2,u − t) > ρn
n
. It follows that

Pr(B1,n,u(t) ∪B2,n,u(t)) ≤ e−n(Fu(ξ1/2,u+t)− ρn
n
−1/2)

2

+ e−n(1/2−Fu(ξ1/2,u−t)− ρn
n )

2

≤ 2e−nκu(t/2)
2

,

and we must have that Fu(ξ1/2,u+ t/2)−1/2 > ρn
n
and 1/2−Fu(ξ1/2,u− t/2) > ρn

n
. Putting

everything together gives that

Pr
(∣∣MED

(
Y⊤
nu
)
−MED

(
X⊤
nu
)∣∣ ≥ t

)
≤ 2e−nκu(t/2,1/2,ρ

′
n)

2

+ 2e−nκu(t/2,1/2,ρ
′
n)

2 ≤ 4e−nκu(t/2,1/2,ρ
′
n)

2

.

Using the proofs of the previous two lemmas, we can show that:

Pr
(
ξ̂1/2,u > 2k3

)
≤ Pr

(
Y1(2k3 − ξ1/2,u) > n/2

)
≤ e−n(Fu(2k3)−1/2)2 , (A.24)

for all u. We now prove similar concentration results for the MAD. First, we review a
concentration inequality for the median absolute deviation:

Lemma 15 (Serfling and Mazumder (2009)). The median absolute deviation γ̂ of a uni-
variate, i.i.d. sample from F , where MAD(F ) is unique, concentrates according to

Pr(|γ̂ −MAD(F )| > t) ≤ 2e−n∆(t)2 ,

where ∆(t) = min {a0, b0, c0, d0} and

a0 = (F (ξ1/2 + t/2)− 1/2)+,

b0 = 1/2− F (ξ1/2 − t/2),

c0 = (F (ξ1/2 + γ + t/2)− F (ξ1/2 − γ − t/2)− ⌊(n+ 1)/2⌋/n)+,
d0 = 1/2− [F (ξ1/2 + γ − t/2)− F (ξ1/2 − γ + t/2)].

(A.25)

Recall we let γu = MAD(Fu), let γ̂u = MAD(X⊤
nu) and let γ̃u = MAD(Y⊤

nu). Using

205



Lemma 15 it is easy to see that

Pr(|γ̂u − γu| > t) ≤ 2e−n∆u(t,0)2 . (A.26)

We can then show that the median average deviation of two similar samples concentrates:

Lemma 16. Suppose that Yn ∈ D(Xn, ρn). Then, for all u ∈ Sd−1, it holds that

Pr (|γ̂u − γ̃u| > t) ≤ 12e−n∆u(t/4,ρ′n)
2

.

Proof. Our proof follows the outline of the proof of Theorem 1 of (Serfling and Mazumder,
2009). To this end,

Pr (|γ̂u − γ̃u| > t) ≤ Pr (|γ̂u − γu| > t/2) + Pr (|γu − γ̃u| > t/2)

≤ 2e−n∆u(t/2,0)2 + Pr (|γu − γ̃u| > t/2) .

We must only resolve Pr (|γu − γ̃u| > t/2). Let Gn,u be the empirical distribution of Y⊤
nu.

Clearly it holds that

Pr(|γu − γ̃u| > t/2) = Pr(γ̃u > t/2 + γu) + Pr(γ̃u < γu − t/2)

:= Pr(LH) + Pr(RH).

We can start with the left hand term. First, note that
(
Gn,u(x)− ρn

n

)+ ≤ Fn,u(x) ≤
Gn,u(x) +

ρn
n
. Using this, and page 5 of (Serfling and Mazumder, 2009), we have that

Pr(LH) ≤ Pr

(⌊
n+ 1

2

⌋
/n > Gn,u (γu + γ̃u + t/2)−Gn,u (γ̃u − γu − t/2)

)
≤ Pr

(⌊
n+ 1

2

⌋
/n > Gn,u(γu + ξ1/2,u + t/4)−Gn,u(ξ1/2,u − γu − t/4)

)
+ Pr

(
|ξ̃1/2,u − ξ1/2,u| > t/4

)
≤ Pr

(⌊
n+ 1

2

⌋
/n > −2

ρn
n

+ Fn,u(γu + ξ1/2,u + t/4)− Fn,u(ξ1/2,u − γu − t/4)

)
+ 4e−nκu(t/8,1/2,ρ

′
n)

2

≤ Pr

(
n

(⌊
n+ 1

2

⌋
/n+ 2

ρn
n

− E [Zi]

)
>

n∑
k=1

Zi − E [Zi]

)
+ 4e−nκu(t/8,1/2,ρ

′
n)

2

≤ 2e−n∆1,u(t/4,ρ′n)
2

+ 4e−nκu(t/8,1/2,ρ
′
n)

2

,
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where Zi = 1
(
γu − ξ1/2,u − t/4 < Xi ≤ γu + ξ1/2,u + t/4

)
. Similarly, we have that

Pr(RH) ≤ Pr

(⌊
n+ 1

2

⌋
/n ≤ Gn,u(γu + ξ1/2,u − t/4)−Gn,u(ξ1/2,u − γu + t/4)

)
+ 4e−nκu(t/8,1/2,ρ

′
n)

2

≤ Pr

(⌊
n+ 1

2

⌋
/n ≤ 2

ρn
n

+ Fn,u(γu + ξ1/2,u − t/4)− Fn,u(ξ1/2,u − γu + t/4)

)
+ 4e−nκu(t/8,1/2,ρ

′
n)

2

≤ 2e−n∆2,u(t/4,ρ′n)
2

+ 4e−nκu(t/8,1/2,ρ
′
n)

2

.

Bringing everything together, we have that

Pr(|γ̂u − γ̃u| > t) ≤ 2e−n∆u(t/2,0)2 + 2e−n∆1,u(t/4,ρ′n)
2

+ 2e−n∆2,u(t/4,ρ′n)
2

+ 8e−nκu(t/8,1/2,ρ
′
n)

2 ≤ 12e−n∆u(t/4,ρ′n)
2

.

Lemma 17. It holds that

Pr(MAD(X⊤
nu) < k1/2) ≤ 2e−n∆u(γu−k1/2,0)2

Pr(MAD(X⊤
nu) > 2k2) ≤ 2e−n∆u(2k2−γu,0)2

Pr(MAD(Y⊤
nu) < k1/2) ≤ 2e−n∆u((γu−k1/2)/4,ρ′n)2

Pr(MAD(Y⊤
nu) > 2k2) ≤ 2e−n∆u((2k2−γu)/4,ρ′n)2 .

Proof. The result follows from Lemma 15 and the proof of Lemma 16.

We now proceed with the proof of Theorem 16. We will write Aη (O1 (x;Fn) ;Xn) = Ân,η
for brevity. We want to show that

Pr

(
Ân,η ≤ 1 +

log(2/δn)−W1

ϵn

)
(A.27)

is small. To this end, note that

Pr(|W1| > log(2/δn)) = 2e− log(2/δn) = δn,
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from the properties of the Laplace distribution. We can then write

Pr

(
Ân,η ≤ 1 +

log(2/δn)−W1

ϵn

)
≤ Pr

(
Ân,η ≤ 1 +

log(2/δn)−W1

ϵn
,W1 > − log(2/δn)

)
+ Pr

(
Ân,η ≤ 1 +

log(2/δn)−W1

ϵn
,W1 < − log(2/δn)

)
≤ Pr

(
Ân,η ≤ 1 + 2

log(2/δn)

ϵn

)
+ δn. (A.28)

Now, let ρn = ⌊2 log(2/δn)
ϵn

⌋+ 1 and we want to show that

Pr
(
Ân,η ≤ ρn

)
(A.29)

is small, which, together with (A.28) implies (A.27) is small. To this end, it holds that

Pr
(
Ân,η ≤ ρn

)
= Pr

(
ρn⋃
j=1

{
sup

Yn∈D(Xn,j)

|O1(x;Xn)−O1(x;Yn)| ≥ η

})

≤ Pr

(
sup

Yn∈D(Xn,ρn)

|O1(x;Xn)−O1(x;Yn)| ≥ η

)
, (A.30)

where the last line follows from the fact that{
sup

Yn∈D(Xn,j+1)
|O1(x;Xn)−O1(x;Yn)| ≥ η

}
⊂

{
sup

Yn∈D(Xn,j)
|O1(x;Xn)−O1(x;Yn)| ≥ η

}
,

for j ∈ {1, . . . , ρn}. We now must only show that

Pr

(
sup

Yn∈D(Xn,ρn)

|O1(x;Xn)−O1(x;Yn)| ≥ η

)
, (A.31)

is small. Combining this with (A.30) and (A.29) implies that (A.27) holds from the previous
argument. Define

Ou(x;Xn) =
|x⊤u− ξ̂1/2,u|

γ̂u

and note that O1(x;Xn) = supu∈UM
Ou(x;Xn). We first look at |Ou(x;Xn) − Ou(x;Yn)|.
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Let

c2,u = min

{
Fu(2k3)− 1/2,∆u((γu − k1/2)/4, ρ

′
n)∆u((2k2 − γu)/4, ρ

′
n)

}
.

As a result of Lemma 17 and (A.24), it holds with probability ≥ 1− c1e
−nc22,u that

|Ou(x;Xn)−Ou(x;Yn)| =

∣∣∣∣∣ |x⊤u− ξ̂1/2,u|
γ̂u

−
|x⊤u− ξ̃1/2,u|

γ̃u

∣∣∣∣∣
≤ (2k1)

−2

∣∣∣∣∣γ̃u|x⊤u− ξ̂1/2,u| − γ̂u|x⊤u− ξ̃1/2,u|

∣∣∣∣∣
≤ (2k1)

−2|x⊤u|

∣∣∣∣∣γ̃u − γ̂u

∣∣∣∣∣+ (2k1)
−2

∣∣∣∣∣γ̃uξ̂1/2,u − γ̂uξ̃1/2,u

∣∣∣∣∣
≤ (2k1)

−2(|x⊤u|+ 2k3)

∣∣∣∣∣γ̃u − γ̂u

∣∣∣∣∣+ (2k1)
−22k2

∣∣∣∣∣ξ̂1/2,u − ξ̃1/2,u

∣∣∣∣∣,
≤ (2k1)

−2

(
(∥x∥2 + 2k3)

∣∣∣∣∣γ̃u − γ̂u

∣∣∣∣∣+ 2k2

∣∣∣∣∣ξ̂1/2,u − ξ̃1/2,u

∣∣∣∣∣
)

:= (2k1)
−2En.

Now write

Pr
(
En > 4k21η

)
≤ Pr

(∣∣∣∣∣γ̃u − γ̂u

∣∣∣∣∣ > 2k21η

∥x∥2 + 2k3

)
+ Pr

(∣∣∣∣∣ξ̂1/2,u − ξ̃1/2,u

∣∣∣∣∣ > k21η

k2

)
.

Looking at each term individually:

Pr

(∣∣∣∣∣γ̃u − γ̂u

∣∣∣∣∣ > 2k21η

∥x∥2 + 2k3

)
≤ 12e

−n∆u

(
k21η

2∥x∥2+4k3
,ρ′n

)2

,

holds from Lemma 16 and

Pr

(∣∣∣∣∣ξ̂1/2,u − ξ̃1/2,u

∣∣∣∣∣ > k21η

k2

)
≤ 4e

−nκu
(

k21η

2k2
,1/2,ρ′n

)2

,
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holds from Lemma 14. It then immediately follows that

Pr
(
En > k21η

)
≤ 16e

−nmin

{
κu

(
k21η

2k2
,1/2,ρ′n

)
,∆u

(
2

k21η

2∥x∥2+4k3
,ρ′n

)}2

:= c3e
−nh1,u(ϵ,δ,η,x)2 .

It follows that

Pr(|Ou(x;Xn)−Ou(x;Yn)| ≥ η) ≤ c1e
−nc22,u + c3e

−nh1,u(ϵ,δ,η,x)2 .

Note that ∣∣∣∣ sup
u∈UM

Ou
2 (x;Xn)− sup

u∈UM

Ou
2 (x;Yn)

∣∣∣∣ ≤ 2 sup
u∈UM

|Ou
2 (x;Xn)−Ou

2 (x;Yn)| .

Let c2 = infu c2,u and h1 (ϵ, δ, η, x) = infu h1,u (ϵ, δ, η, x), then a Bonferroni inequality gives
that

Pr(|O(x;Xn)−O(x;Yn)| ≥ η) ≤ m · c1e−nc
2
2 +m · c3e−nh1(ϵ,δ,η,x)

2

.

We must now prove the bound on Pr(|Õ1(x;Fn)−O(x;F )| > t). First, it is clear that

Pr(|Õ1(x;Fn)−O1(x;F )| > t) ≤ Pr(|O1(x;Fn)−O1(x;F )| > t/2) + Pr

(
|W | > tϵ

2η

)
≤ Pr(|O1(x;Fn)−O1(x;F )| > t/2) + e−

tϵ
2η .

We just need to prove that the outlyingness concentrates. From Lemma 17, we have with
probability 1− c1e

−n(∆u(γu−k1/2,0)∨∆u(2k2−γu,0))2 , that

|Ou
1 (x;Fn)−Ou

1 (x;F )| ≤ (2k1)
−2

(
(∥x∥2 + 2k3)

∣∣∣∣∣γu − γ̂u

∣∣∣∣∣+ 2k2

∣∣∣∣∣ξ̂1/2,u − ξ1/2,u

∣∣∣∣∣
)
.

We also have that

Pr

(∣∣∣∣∣ξ̂1/2,u − ξ1/2,u

∣∣∣∣∣ ≥ 2k21t

k2

)
≤ 2e

−nκu
(

2k21t

k2
.1/2,0

)2

,

and that

Pr

(
|γu − γ̂u| ≥

2k21t

∥x∥2 + 2k3

)
≤ ce

−n∆u

(
2k21t

∥x∥2+2k3
,0

)2

.
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It follows that

Pr(|O1(x;Fn)−O1(x;F )| > t/2) ≤ m · c1e−c2nh2(t,x)
2

,

where

h2 = inf
u
h2,u(t, x) = inf

u
min

{
κu

(
2k21t

k2
.1/2, 0

)
,∆u

(
2k21t

∥x∥2 + 2k3
, 0

)}
.

So, combining all of the results, we have that

Pr(|Õ1(x;Fn)−O1(x;F )| ≥ t) ≤ m · c1e−c2n +m · c3e−c4nh2(t,x)
2

+ e−
tϵ
2η .

Proof of Theorem 17. We follow the same outline as that of the proof of Theorem 16. Let
τu = IQR(Fu), τ̂u = IQR(X⊤

nu) and τ̃u = IQR(Y⊤
nu) for brevity. We require upper bounds

on the following probabilities:

Pr (|τ̂u − τu| > t) , Pr (|τ̂u − τ̃u| > t) , Pr (τ̂u > 2k2) , and Pr (τ̂u < 2k1) .

We start by bounding the deviation of ξ̂r,u around ξr,u:

Lemma 18. Suppose that the quantile F−1
u (r) = ξr,u is unique. It holds that

Pr(|ξ̂r,u − ξr,u| > t) ≤ e−2n(Fu(ξr,u+t)−r)2 + e−2n(⌊nr⌋/n−Fu(ξr,u−t))2 ≤ 2e−2nκu(t,r,0)2 .

Proof. We omit the dependence on u for brevity. It is easy to see that

Pr(|ξ̂r − ξr| > t) = Pr(ξ̂r > t+ ξr) + Pr(ξ̂r < ξr − t).

Starting with the first term,

Pr(ξ̂r > t+ ξr) = Pr(Zt,r > n− ⌊nr⌋),

where Zt is the number of points greater than t+ ξr. A Hoeffding inequality gives that,

Pr(Zt,r > n− ⌊nr⌋) = Pr (Zt,r − n+ nF (ξr + t) > nF (ξr + t)− ⌊nr⌋)
≤ e−2n(F (ξr+t)−⌊nr⌋/n)2

≤ e−2n(F (ξr+t)−r)2 .
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Applying the same technique to the right hand term gives that

Pr(ξ̂r < ξr − t) ≤ e−2n(⌊nr⌋/n−F (ξr−t))2 .

Using Lemma 18, we can bound the deviation of the inter-quartile range:

Lemma 19. Suppose that ξ1/4,u, ξ3/4,u are the unique 1/4 and 3/4 quantiles of Fu. Then
it holds that

Pr(|τ̂u − τu| > t) ≤ 4e−2n[κu(t/2,3/4,0)∧κ(t/2,1/4,0)]2 .

Proof. Again, omit the dependence on u. It follows from the standard and the reverse
triangle inequality that

|τ̂ − τ | ≤ |ξ̂3/4 − ξ̂1/4 − ξ3/4 + ξ1/4 ≤ |ξ̂3/4 − ξ3/4|+ |ξ̂1/4 − ξ1/4|.

Using this fact and Lemma 18, we see that

Pr(|τ̂ − τ | > t) ≤ Pr(|ξ̂3/4 − ξ3/4| > t/2) + Pr(|ξ̂1/4 − ξ1/4| > t/2)

≤ 2e−2nκ(t/2,3/4,0)2 + 2e−2nκ(t/2,1/4,0)2

≤ 4e−2n[κ(t/2,3/4,0)∧κ(t/2,1/4,0)]2 .

We now aim to bound Pr (|τ̂u − τ̃u| > t). To do this, we need the following intermediate
lemma:

Lemma 20. Suppose that ξr,u is a unique r-quantile of Fu and c ∈ R, t > 0 such that
0 < r + c < 1, ⌊nr⌋ /n − Fu(ξr+c − t) > 0 and Fu(ξr+c + t) − ⌊nr⌋ /n > 0. Then it holds
that

Pr(|ξr,u − ξ̂r+c,u| > t) ≤ 2e−2nκu(t,r,c)2 .

Proof. Omit the dependence on u for brevity. It is easy to see that

Pr(|ξ̂r+c − ξr| > t) = Pr(ξ̂r+c > t+ ξr) + Pr(ξ̂r+c < ξr − t).

212



Starting with the first term,

Pr(ξ̂r+c > t+ ξr) = Pr(Zt,r > n− ⌊n(r + c)⌋),

where Zt,r is the number of points greater than t+ ξr. A Hoeffding inequality gives that,

Pr(Zt,r > n− ⌊n(r + c)⌋) = Pr (Zt,r − n+ nF (ξr + t) > nF (ξr + t)− ⌊n(r + c)⌋)
≤ e−2n(F (ξr+t)−⌊nn(r+c)⌋/n)2

≤ e−2n(F (ξr+t)−r−c))2 .

Applying the same technique to the remaining term, we get that

Pr(ξ̂r+c < ξr − t) ≤ e−2n(⌊n(r+c)⌋/n−F (ξr−t))2 .

We now bound Pr(|τ̂u − τ̃u| > t):

Lemma 21. Suppose that Yn ∈ D(Xn, ρn). It then holds that

Pr(|τ̂u − τ̃u| > t) ≤ 16e−2nh2,u(t)
2

,

where

h2,u (t) = min

{
κu

(
t

4
,
3

4
,−ρn

n

)
, κu

(
t

4
,
3

4
,
ρn
n

)
, κu

(
t

4
,
1

4
,−ρn

n

)
, κu

(
t

4
,
1

4
,
ρn
n

)}
.

Proof. Once again, omit the dependence on u. Note that

|ξ̂3/4−ρn/n − ξ̂1/4+ρn/n| ≤ τ̃ ≤ |ξ̂3/4+ρn/n − ξ̂1/4−ρn/n|. (A.32)

We see that

Pr(|τ̂ − τ̃ | > t) ≤ Pr(τ̂ − τ̃ > t) + Pr(τ̃ − τ̂ > t).

Starting with the left hand term, using (A.32) and both the standard and the reverse
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triangle inequality,

Pr(τ̂ − τ̃ > t) ≤ Pr(τ̂ − |ξ̂3/4−ρn/n − ξ̂1/4+ρn/n| > t)

≤ Pr(|ξ̂3/4 − ξ̂3/4−ρn/n| − |ξ̂1/4 − ξ̂1/4+ρn/n| > t)

≤ Pr(|ξ̂3/4 − ξ̂3/4−ρn/n| > t/2) + Pr(|ξ̂1/4 − ξ̂1/4+ρn/n| > t/2).

Starting with the left-hand term, Lemma 20 gives that

Pr(|ξ̂3/4 − ξ̂3/4−ρn/n| > t/2) ≤ 2e−2nκ(t/4,3/4,− ρn
n )

2

+ 2e−2nκ(t/4,3/4,0)2

≤ 4e−2nκ(t/4,3/4,− ρn
n )

2

,

provided that ⌊3n/4⌋/n−F (ξ3/4− ρn
n
− t) > 0 and F (ξ3/4− ρn

n
+ t)−⌊3n/4⌋/n > 0. It is easy

to follow the same logic for the remaining terms, such that

Pr(|τ̂ − τ̃ | > t) ≤ 16e−2nh2(t)
2

,

where

h2 (t) = min

{
κ

(
t

4
,
3

4
,−ρn

n

)
, κ

(
t

4
,
3

4
,
ρn
n

)
, κ

(
t

4
,
1

4
,−ρn

n

)
, κ

(
t

4
,
1

4
,
ρn
n

)}
.

Lastly, we have the following Lemma:

Lemma 22. Let
h1,u(t) = [κu(t/2, 3/4, 0) ∧ κu(t/2, 1/4, 0)] .

It follows that

Pr (τ̂u > 2k2) ≤ 4e−2nh1,u(k2)2

Pr (τ̂u < k1/2) ≤ 4e−2nh1,u(k1)2

Pr (τ̃u < 2k1) ≤ 8e−2nh2,u(k1)2 .

Proof. The first two statements follow from Lemma 19:

Pr (τ̂u > k2) = Pr (τ̂u − τu > k2 − τu) ≤ 4e−2nh2,u(k2−τu)2
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and

Pr (τ̂u < k1) = Pr (τu − τ̂u > τu − k1) ≤ 4e−2nh2,u(τu−k1)2 .

For the last statement, we use Lemma 20

Pr (τ̃u < k1) = Pr (τu − τ̃u > τu − k1) ≤ 8e−2nh1,u(2(τu−k1))2 .

We are now in a position to apply the techniques of the proof of Theorem 16. Define

Ou(x;Xn) =
|x⊤u− ξ̂1/2,u|

τ̂u

and note that O2(x;Xn) = supu∈UM
Ou(x;Xn). From (A.24) and Lemma 22, it holds with

probability ≥ 1− c1e
−c2n that

|Ou(x;Xn)−Ou(x;Yn)| ≤ (2k1)
−2E ′

n,

where

E ′
n =

(
(∥x∥2 + 2k3)

∣∣∣∣∣τ̃u − τ̂u

∣∣∣∣∣+ 2k2

∣∣∣∣∣ξ̂1/2,u − ξ̃1/2,u

∣∣∣∣∣
)

We have that

Pr
(
E ′
n > 4k21η

)
≤ Pr

(∣∣∣∣∣τ̃u − τ̂u

∣∣∣∣∣ > 2k21η

∥x∥2 + 2k3

)
+ Pr

(∣∣∣∣∣ξ̂1/2,u − ξ̃1/2,u

∣∣∣∣∣ > k21η

k2

)
.

Looking at each term individually, it follows from Lemma 21 that

Pr

(∣∣∣∣∣τ̃u − τ̂u

∣∣∣∣∣ > 2k21η

∥x∥2 + 2k3

)
≤ 16e

−2nh2,u

(
2k21η

∥x∥2+2k3

)2

,

and from Lemma 14 that

Pr

(∣∣∣∣∣ξ̂1/2,u − ξ̃1/2,u

∣∣∣∣∣ > 4k21η

k2

)
≤ 4e

−nκu
(

k21η

2k2
,1/2,ρ′n

)2

.
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It then immediately follows that

Pr
(
E ′
n > k21η

)
≤ 20e

−n
[
κu

(
2k21η

k2
,1/2,ρ′n

)
∧h2,u

(
8k21η

∥x∥2+2k3

)]2
.

It follows that

Pr(|Ou(x;Xn)−Ou(x;Yn)| ≥ η) ≤ c1e
−c2n + C1e

−n
[
κu

(
k21η

2k2
,1/2,ρ′n

)
∧h2,u

(
2k21η

∥x∥2+2k3

)]2
.

Recall that

|supOu(x;Xn)− supOu(x;Yn)| ≤ 2 sup |Ou(x;Xn)−Ou(x;Yn)| ,

since O is continuous in u. It then follows from a simple Bonferroni inequality that

Pr(|O2(x;Xn)−O2(x;Yn)| ≥ η) ≤ m · c1e−c2n +m · C1e
−n infu

[
κu

(
k21η

2k2
,1/2,ρ′n

)
∧h2,u

(
2k21η

∥x∥2+2k3

)]2
.

We must now prove the bound on Pr(|Õ2(x;Fn)−O2(x;F )| > t). First, it is clear that

Pr(|Õ2(x;Fn)−O2(x;F )| > t) ≤ Pr(|O2(x;Fn)−O2(x;F )| > t/2) + Pr

(
|W | > tϵ

2η

)
≤ Pr(|O2(x;Fn)−O2(x;F )| > t/2) + e−

tϵ
2η .

We just need to prove that the outlyingness concentrates. From Lemma 22, we have with
probability ≥ 1− c1e

−c2n, that

|Ou(x;Fn)−Ou(x;F )| ≤ (2k1)
−2

(
(∥x∥2 + 2k3)

∣∣∣∣∣τu − τ̂u

∣∣∣∣∣+ 2k2

∣∣∣∣∣ξ̂1/2,u − ξ1/2,u

∣∣∣∣∣
)
.

It then follows from Lemma 19 that

Pr

(∣∣∣∣∣τu − τ̂u

∣∣∣∣∣ ≥ 2k21t

∥x∥2 + 2k3

)
≤ 4e

−2n infu h1,u

(
2k21t

∥x∥2+2k3

)2

.

Lemma 13 gives that

Pr

(∣∣∣∣∣ξ̂1/2,u − ξ1/2,u

∣∣∣∣∣ ≥ k21t

k2

)
≤ 2e

−n infu κu

(
k21t

k2
,1/2,0

)
.
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We can now conclude via a Bonferroni inequality that

Pr(|O2(x;Fn)−O2(x;F )| > t/2) ≤ m · c1e−nc2 +m · C1e
−n
(
infu

[
h1,u

(
2k21t

∥x∥2+2k3

)
∧κu

(
k21t

k2
,1/2,0

)])2

.

So, combining all of the results, we have that

Pr(|Õ2(x;Fn)−O2(x;F )| > t) ≤ m·c1e−nc2+m·C1e
−n
(
infu

[
h1,u

(
2k21t

∥x∥2+2k3

)
∧κu

(
k21t

k2
,1/2,0

)])2

+e
− tϵ

2η .

Proof of Remark 7. First,

Pr

(
k∗ ≤ 1 + 2

log(2/δn)

ϵn

)
= δn,

and note that both

W1,u(k
∗) = Ôu(x)− lo(Ôu(x), k∗) and W2,u(k

∗) = up(Ôu(x), k∗)− Ôu(x)

are increasing in k∗. As such, letting ρn = 1 + 2 log(2/δn)
ϵn

, we have that

Pr (W1,u(k
∗) ∨W2,u(k

∗) ≥ η) ≤ δn + Pr (W1,u(ρn) ≥ η) + Pr (W2,u(ρn) ≥ η) .

Starting withW1,u(ρn) and letting m̂(u, ρn) be such that lo(MED, u, k∗) = |x⊤u−m̂(u, ρn)|,
we see that:

W1,u(ρn) =
|x⊤u− ξ̂1/2,u|

τ̂u
− lo (MED, u, ρn)

max E (u, ρn)

≤
|(max E (u, ρn)− τ̂u)x

⊤u+ τ̂um̂(u, ρn)−max E (u, ρn) ξ̂1/2,u|
τ̂umax E (u, ρn)

≤
(max E (u, ρn)− τ̂u)|x⊤u− ξ̂1/2,u|+ τ̂u(m̂(u, ρn)− ξ̂1/2,u)

τ̂umax E (u, ρn)

≤
(max E (u, ρn)− τ̂u)|x⊤u− ξ̂1/2,u|+ τ̂u(m̂(u, ρn)− ξ̂1/2,u)

τ̂ 2u

≤ 1

4k21

[
(∥x∥+ |2k3|)(max E (u, ρn)− τ̂u) + 2k2(m̂(u, ρn)− ξ̂1/2,u)

]
,

217



where the last inequality holds with probability ≥ 1−c1e−c2n. This follows from Lemma 22
and (A.24). In order to show the remaining quantity is small, we must bound the following
probabilities:

Pr(B1) = Pr

(
max E (u, ρn)− τ̂u >

2k21η

∥x∥+ |2k3|

)
Pr(B2) = Pr

(
m̂(u, ρn)− ξ̂1/2,u ≥

k21η

k2

)
.

Stating with the first term:

Pr(max E (u, ρn)− τ̂u > t) ≤ 16e
−2nh2,u

(
2k21η

∥x∥+|2k3|

)2

,

from Lemma 21. For the second term, we have that

Pr(|m̂(u, ρn)− ξ̂1/2,u| > t) ≤ 4e
−np̂u

(
k21η

2k2

)2

,

which follows from Lemma 14.

Now, we see that

Pr(B1) + Pr(B2) ≤ K1e
−K2n[h2,u

(
2k21η

∥x∥+|2k3|

)
∧p̂u

(
k21η

2k2

)
]2

,

for some absolute constants K1, K2. Putting it all together,

Pr(W1,u(ρn) ≥ η) = c1e
−c2n +K1e

−K2n[h2,u

(
2k21η

∥x∥+|2k3|

)
∧p̂u

(
k21η

2k2

)
]2

,

We can make the same arguments for W2,u(ρn), resulting in

Pr(W2,u(ρn) ≥ η) = c1e
−c2n +K1e

−K2n[h2,u

(
2k21η

∥x∥+|2k3|

)
∧p̂u

(
k21η

2k2

)
]2

,

Now, using a Bonferroni inequality we can write

Pr (W1 ∨W2 ≥ η) ≤ δn +m · c1e−c2n +m ·K1e
−K2n[h2,u

(
2k21η

∥x∥+|2k3|

)
∧p̂u

(
k21η

2k2

)
]2

,
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Proof of Differential Privacy of Mechanism 6. The proof has the same outline as that of
(Brunel and Avella-Medina, 2020), as well as the proof that the exponential mechanism
is differentially private, which can be found in (McSherry and Talwar, 2007; Dwork and
Roth, 2014). First, assume that it holds |ϕXn(x)− ϕYn(x)| ≤ η ∀x, then

fXn(x)/fYn(x) =
exp(−ϕXn(x)

ϵ/2
η
)

exp(−ϕYn(x)
ϵ/2
η
)

∫
exp(−ϕYn(x)

ϵ/2
η
)dx∫

exp(−ϕXn(x)
ϵ/2
η
)dx

≤ eϵ/2

∫
exp(−ϕYn(x)

ϵ/2
η
)dx∫

exp(−ϕXn(x)
ϵ/2
η
)dx

≤ eϵ/2eϵ/2

∫
exp(−ϕXn(x)

ϵ/2
η
)dx∫

exp(−ϕXn(x)
ϵ/2
η
)dx

= eϵ.

Note that, for B ∈ B(Rd) (the Borel sets with respect to Rd) this implies that

Pr(T̂ (Xn) ∈ B) ≤ eϵ Pr(T̂ (Yn) ∈ B). (A.33)

It follows from Brunel and Avella-Medina (2020) that Aη(ϕXn ;Xn) has global sensitivity
equal to 1, since changing one point can at most change the breakdown by 1. Then

Pr
(
T̃ (Xn) ∈ B

)
= Pr

(
Aη(ϕXn ;Xn) +

1

ϵ
V ≥ 1 +

log(2/δ)

ϵ
, T̂ (Xn) ∈ B

)
≤ eϵ Pr

(
Aη(ϕYn ;Yn) +

1

ϵ
V ≥ 1 +

log(2/δ)

ϵ

)
Pr(T̂ (Xn) ∈ B)

≤ e2ϵ Pr

(
Aη(ϕYn ;Yn) +

1

ϵ
V ≥ 1 +

log(2/δ)

ϵ

)
Pr(T̂ (Yn) ∈ B)

= e2ϵ Pr
(
T̃ (Yn) ∈ B

)
.

The first inequality is from independence and the fact that Aη(ϕXn ;Xn) +
1
ϵ
V is an ϵ-

differentially private estimator. The second inequality is from (A.33). Now what if there
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exists an x such that |ϕXn(x)− ϕYn(x)| ≥ η ? This implies that Aη(ϕXn ;Xn) = 1 and

Pr
(
T̃ (Xn) ∈ B

)
≤ Pr

(
Aη(ϕXn ;Xn) +

1

ϵ
V ≥ 1 +

log(2/δ)

ϵ

)
= Pr (V ≥ log(2/δ))

= δ

≤ δ + e2ϵ Pr
(
T̃ (Yn) ∈ B

)
.

This implies that we get (2ϵ, δ) differential privacy if B is restricted to B(Rd). For com-
pleteness, we need to include sets of the form B = B′ ∪{⊥}, where B′ ∈ B(Rd). Consider

Pr
(
T̃ (Xn) ∈ B

)
= Pr

(
T̂ (Xn) ∈ B′, Aη(ϕXn ;Xn) +

1

ϵ
V ≤ 1 +

log(2/δ)

ϵ

)
+ Pr

(
Aη(ϕXn ;Xn) +

1

ϵ
V > 1 +

log(2/δ)

ϵ

)
≤ e2ϵ

(
Pr
(
T̃ (Yn) ∈ B′

)
+ Pr

(
Aη(ϕYn ;Yn) +

V

ϵ
> 1 +

log(2/δ)

ϵ

))
+ δ

= e2ϵ Pr
(
T̃ (Yn) ∈ B

)
+ δ.

The first inequality comes from the fact that we get (2ϵ, δ) differential privacy if B is
restricted to B(Rd) and the fact that Aη(ϕYn ;Yn) +

1
ϵ
V is ϵ-differentially private.

Now, suppose that V, aδ and bδ correspond to the Gaussian version of PTR. Then,
following the same steps as for the Laplace version gives, for B ∈ B(Rd),

Pr
(
T̃ (Xn) ∈ B

)
≤ e2ϵ Pr

(
T̃ (Yn) ∈ B

)
+ δ,

when ∥ϕXn − ϕYn∥∞ < η. When ∥ϕXn − ϕYn∥∞ ≥ η,

Pr
(
T̃ (Xn) ∈ B

)
≤ Pr

(
Z ≥

√
2 log(1.25/δ)

)
≤ δ.

We then have that

Pr
(
T̃ (Xn) ∈ B

)
≤ e2ϵ Pr

(
T̃ (Yn) ∈ B

)
+ δ.

Again, we need to include sets of the form B = B′ ∪ {⊥}, where B′ ∈ B(Rd). Recall that
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aδ =
√

2 log(1.25/δ) and bδ = 2 log(1.25/δ). Consider

Pr
(
T̃ (Xn) ∈ B

)
= Pr

(
T̃ (Xn) ∈ B′

)
+ Pr

(
Aη(ϕXn ;Xn) +

aδ
ϵ
Z > 1 +

bδ
ϵ

)
≤ e2ϵ

(
Pr
(
T̃ (Yn) ∈ B′

)
+ Pr

(
Aη(ϕYn ;Yn) +

aδ
ϵ
Z > 1 +

bδ
ϵ

))
+ 2δ

= e2ϵ Pr
(
T̃ (Yn) ∈ B

)
+ 2δ.

Proof of Theorem 18. The probability of no-reply follows directly from Theorem 16 for
ℓ = 1 or Theorem 17 for ℓ = 2. Using the techniques of Theorem 13, where λn = ϵ/η, one
can show together with the proof of Corollary 2, the condition

n ≥ C

d log
(

1
αOℓ

(t)
∨ d
)

ϵ · αOℓ
(t)


1

1−r

,

for some r > 0 and universal constant C > 0, gives that

−αOℓ
(t) + g(Oℓ,Bψ, θ, ϵ/η) ≤ −αOℓ

(t)/4.

Following the logic of the proof of Theorem 13, we have that

Pr
(∥∥∥T̃n − θ

∥∥∥ > t
)
≤ m · c1e−nc2 +m · C1e

−nh4(αOℓ
(t)/4,ψ)

2

+ e−c
′ ϵ
η
αOℓ

(t).

Proof of Corollary 4 follows from the techniques of the previous sample complexity results.
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change type Magnitude (β)
dist. G t3 SG
n 100 200 500 100 200 500 100 200 500

MFHD 0.80 0.99 1.00 0.14 0.45 0.96 0.78 1.00 1.00
RP 0.44 0.89 1.00 0.12 0.44 0.95 0.40 0.90 1.00

LTR 0.90 1.00 1.00 0.16 0.51 0.97 0.90 1.00 1.00
MFHD′ 0.92 1.00 1.00 0.14 0.49 0.98 0.88 1.00 1.00

RP′ 0.83 0.99 1.00 0.14 0.48 0.96 0.86 1.00 1.00
LTR′ 0.93 1.00 1.00 0.16 0.52 0.98 0.93 1.00 1.00

change type Shape (α)
dist. G t3 SG
n 100 200 500 100 200 500 100 200 500

MFHD 0.00 0.00 0.02 0.00 0.00 0.03 0.00 0.00 0.01
RP 0.04 0.26 0.84 0.00 0.00 0.01 0.04 0.28 0.83

LTR 0.01 0.01 0.06 0.00 0.00 0.02 0.00 0.00 0.02
MFHD′ 0.73 0.96 1.00 0.07 0.37 0.92 0.70 0.98 1.00

RP′ 0.76 0.96 1.00 0.13 0.49 0.95 0.76 0.97 1.00
LTR′ 0.04 0.25 0.82 0.00 0.01 0.18 0.05 0.23 0.80

change type No Change
dist. G t3 SG
n 100 200 500 100 200 500 100 200 500

MFHD 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.01
RP 0.01 0.00 0.02 0.00 0.00 0.01 0.00 0.01 0.00

LTR 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01
MFHD′ 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.01

RP′ 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.00
LTR′ 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02

Table A.3: Table of the empirical power for each of the epidemic FKWC tests when there
was an epidemic-type magnitude change, an epidemic-type shape change and no change.
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(d1, d2) (0,0) (0.4,0) (0.8,0) (0,0.4) (0,0.8) (0.4,0.4)
MFHD 0.08 0.59 0.98 0.54 0.94 0.97

RP 0.07 0.77 0.99 0.68 0.99 0.99
LTR 0.09 0.70 0.98 0.57 0.97 0.98

MFHD′ 0.10 0.98 1.00 0.98 1.00 1.00
RP′ 0.06 0.97 1.00 0.97 1.00 1.00

LTR′ 0.09 0.76 0.99 0.66 0.99 0.99

Table A.4: Table of empirical powers at the 5% level of significance for the AMOC
FKWC test under the functional autoregressive model discussed in the simulation study
of Sharipov and Wendler (2019).
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Appendix B

Select Topics from Functional
Analysis

To facilitate understanding in Chapter 3 and Chapter 4, it is useful to review some of
the results from functional analysis. These materials are closely adapted from Hsing and
Eubank (2015) and we refer the read there for more details (Hsing and Eubank, 2015).

B.1 Bochner integrals

The mean and covariance elements of a probability measure on a Hilbert space are written
in terms of Bochner integrals. We present the construction of the Bochner integral, and
list some properties at the end of this subsection. Define a simple function f : E → X as

f(ω) =
k∑
i=1

1 (ω ∈ Ei) gi

for some finite k, Ei ∈ B and gi ∈ X.

Definition 11 (Bochner integrable). Any simple function with µ(Ei) <∞ for all i is said
to be Bochner integrable and the Bochner integral is defined as∫

E

fdµ =
k∑
i=1

µ(Ei)gi.
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A measurable function is Bochner integrable if there exists a sequence of functions fn which
are simple and Bochner integrable, such that

lim
n→∞

∫
E

∥f − fn∥ dµ = 0.

The integral is defined as ∫
E

fdµ = lim
n→∞

∫
E

fndµ.

It is obviously difficult to check if a function is integrable via the definition, and so the
following theorem can be useful.

Theorem 20. Suppose that f is a measurable function with∫
E

∥f∥ dµ <∞.

Suppose that for each n there exists a finite dimensional subspace Xn ⊂ X such that

lim
n→∞

∫
E

∥f − gn∥ dµ = 0

for gn taking values in Xn. Then f is Bochner integrable.

This is even simpler in a Hilbert space:

Theorem 21. Suppose that X is a separable Hilbert space and f is a measurable function
from E to X with

∫
∥f∥ dµ <∞. Then f is Bochner integrable.

So, if we are working in a Hilbert space in order for f to be Bochner integrable, we
must have that the norm of f is Lebesgue integrable. There also exists an extension of the
dominated convergence theorem to Bochner integrals.

Theorem 22. Let {fn} be a sequence of Bochner integrable functions that converges to
some f . If there is a non-negative Lebesgue integrable function such that ∥fn∥ ≤ g for all
n a.e. µ then f is Bochner integrable and

∫
fdµ = limn→∞

∫
fndµ.

Another important feature of the Bochner integral is that∥∥∥∥∫
E

fdµ

∥∥∥∥ ≤
∫
E

∥f∥ dµ.
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B.2 Linear operators and functionals

B.2.1 Operators

The covariance operators discussed in Chapters 3 and 4 are bounded linear transformations.
Bounded linear transformations T : X1 → X2, are uniformly continuous. They form a
Banach space if X2 is a Banach space with the operator norm: ∥T ∥ = sup∥u∥=1 ∥T u∥.
The space of all bounded operators will be denoted by B(X1,X2).

• In finite Euclidean space, the operator norm is given by maxx′x=1 x
′T ′T x

• In L 2, we have that

T f =

∫ 1

0

K(·, u)f(u)du

is a linear operator. You may notice this looks similar to a covariance operator.

In addition, define the following

1. Dom(T ) = the subset of X1 on which T is defined

2. IM(T ) = {T x : x ∈ Dom(T )}

3. ker(T ) = {x ∈ Dom(T ) : T x = 0}

B.2.2 Adjoint operator

In this section we restrict our attention to Hilbert spaces.

Definition 12. Suppose T ∈ B(H1,H2). Then, there is a unique element T ′ ∈ B(H2,H1)
such that

⟨T x1, x2⟩2 = ⟨T ′x2, x1⟩1,

for all x1 ∈ H1, x2 ∈ H2. T ′ is called the adjoint operator.

Definition 13. Suppose T ∈ B(H,H). We say that T is self-adjoint if T ′ = T .

Any symmetric matrix is self-adjoint in Rp. Note that

⟨T x, y⟩ = x′T ′y = x′T y = ⟨x,T y⟩.
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Recall the integral operators:

T f =

∫
K(·, t)f(t)dt.

It follows that:

⟨T f, g⟩ = ⟨
∫

K(·, t)f(t)dt, g⟩ =
∫
⟨K(·, t)f(t), g⟩dt =

∫ ∫
K(s, t)f(t)g(s)dsdt = ⟨f,T ′g⟩,

with

T f =

∫
K(t, ·)f(t)dt.

So, if K is symmetric, then it is self-adjoint. The covariance operator discussed in Chapter
3 and Chapter 4 is an integral operator which a symmetric kernel. Therefore, it is self-
adjoint.

Theorem 23. If T ∈ B(H) and the sequence xn converges weakly to x (meaning all linear
functionals of xn converge weakly) then T xn also converges weakly.

We have the following list of properties of the adjoint operator between two Hilbert
spaces:

1. (T ′)′ = T .

2. ∥T ′∥ = ∥T ∥

3. ∥T ′T ∥ = ∥T ∥2

4. ker(T ) = (IM(T ′))⊥

5. ker(T ′T ) = ker(T ) and IM(T ′T ) = IM(T ′)

6. H1 = ker(T )⊕ IM(T ′)

7. rank(T ∗) = rank(T ) (recall that rank(T ) = dim(IM(T )).)

It is useful to prove these results, to get a feel for the adjoint operator.

Proof. The first property is very simple. For the second, recall that

∥T ′x2∥21 = |⟨T ′x2,T
′x2⟩| = |⟨x2,T T ′x2⟩2| ≤ ∥T ∥ ∥x2∥ ∥T ′x2∥ .
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This gives that
∥T ′x2∥1 ≤ ∥T ∥ ∥x2∥ ,

which implies that
∥T ′∥ ≤ ∥T ∥

and vice versa by symmetry. Part 2 gives that ∥T ′T ∥ ≤ ∥T ∥2. To show the other way,

∥T x1∥2 = ⟨T ′T x1, x1⟩ ≤ ∥T ′T ∥ ∥x1∥2 .

Suppose that x1 ∈ ker(T ). Then ⟨x1,T ′x2⟩ = ⟨T x1, x2⟩ = 0. Which means that x1
is orthogonal to IM(T ′). If x1 ∈ (IM(T ′))⊥, then T ′T x1 ∈ IM(T ′) and so 0 =
⟨T ′T x1, x1⟩ = ∥T x1∥.

B.2.3 Non-negative, square-root and projection operators

Definition 14 (Positive definite). We say an operator is positive definite if it is self-
adjoint, and ⟨T x, x⟩ > 0 for all x ∈ H. We say that T1 < T2 if T2 − T1 is positive
definite. If we replace the strict inequalities with non-strict inequalities then we say the
operator is non-negative definite.

For example, for any T , T ′T is non-negative definite because it is self-adjoint and
⟨T ′T x, x⟩ = ∥T x∥2. Covariance operators are non-negative definite. Non-negative defi-
nite operators admit a square-root-type decomposition.

Theorem 24 (Existence of a square root operator). Let T ∈ B(H). If T is non-negative,
then there is a unique non-negative operator T 1/2 such that T 1/2T 1/2 = T and T 1/2

commutes with any operator that commutes with T .

We can re-imagine the projection of x onto some subspace M as an operator. Suppose
that PMx is the projection of x onto M . If M is a closed subspace, then PMx is a
self-adjoint linear operator such that PMPM = PM . The projection operator is also non-
negative. To see this, note that ⟨PMx, x⟩ = ⟨PMx,PMx⟩ ≥ 0. We have that ∥PM∥ = 1.
If the subspace M has dimension 1 and is spanned by x, with ∥x∥ = 1, then PM can be
written as x⊗ x, with

(x⊗ x)y = ⟨y, x⟩x.

This gives rise to the tensor product.
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Definition 15. The tensor product operator (x1 ⊗ x2) between H1 and H2 is defined as

(x1 ⊗ x2)y = ⟨x1, y⟩x2.

Note this reduces to the outer product in the finite dimensional, Euclidean case. In
L 2, we have that

(f1 ⊗ f2)g =

∫ ∫
f1(s1) g(s2)ds1ds2f2.

Theorem 25. For x1, x2 ∈ H, it holds that

∥(x1 ⊗ x2)∥ = ∥x2∥ ∥x1∥ .

B.2.4 Operator inverses

Recall that a linear mapping is one-to-one if ker(T ) = {0} and onto if IM(T ) = X2.
When both of these are satisfied, then the linear map is a bijection and it is invertible.

Theorem 26. If a bounded linear mapping between two Banach spaces has an inverse,
then the inverse is bounded.

Theorem 27. Let H be a Hilbert space. If T ∈ B(H) and T is self adjoint, and ∥T f∥ ≥
C ∥f∥ then T is invertible.

It follows from the above theorem that

Theorem 28. It ∥T ∥ < 1 then I − T is invertible and

(I − T )−1 = I +
∞∑
i=1

T i

B.3 Compact operators and singular value decompo-

sition

B.3.1 Compact operators

Definition 16. A linear operator is compact if for any bounded sequence xn, T xn contains
a convergent sub-sequence.
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Theorem 29. The identity operator is not compact on an infinite dimensional normed
space.

Some facts about compact operators are as follows:

• The closure of the range of any compact operator is separable

• Operators with finite rank are compact

• The composition of two operators is compact if either operator is compact

• The set of compact operators that map to any Banach space is closed

We also have that

Theorem 30. A bijective operator between two infinite dimensional Banach spaces is not
compact.

We now present a result specific to Hilbert spaces.

Theorem 31. Suppose that T ∈ B(H1,H2). T is compact if there exists a sequence of
finite dimensional operators such that ∥Tn − T ∥ → 0 as n→ ∞ and T is compact if T ′

is compact.

B.3.2 Eigenvalues of compact operators

We need the following definition

Definition 17 (CONS). We can define a complete orthonormal system as an orthonormal
sequence whose closed span is equal to H. It can be shown that an orthonormal sequence
{ei} is a CONS if ⟨x, ei⟩ = 0 for all i implies that x = 0.

Definition 18. For some T ∈ B(H), we say that λ is an eigenvalue and e is an eigenvector
for T if it holds that

T e = λe.

We call
ker(T − λI)

the eigenspace of λ.
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Note that the eigenspace is a closed linear space.

Theorem 32. Suppose λj are distinct and non-zero, then, ej ∈ ker(T − λjI) are linearly
independent and, if T is self-adjoint, they are mutually orthogonal.

Theorem 33 (Eigenvalues of compact operators). For some T ∈ B(H), we have that

1. ker(T − λI) is finite dimensional for all positive λ

2. The number of distinct eigenvalues greater than any positive number is finite

3. The set of non-zero eigenvalues is countable

Theorem 34 (Eigenvalue decomposition of compact operators). If T is compact and
self-adjoint, then the set of non-zero eigenvalues for T is finite or tends to 0. Each
nonzero eigenvector has finite multiplicity, and eigenvectors corresponding to difference
eigenvalues are orthogonal. Then the set of eigenvectors obtained from the Gram-Schmidt
decomposition is a CONS for IM(T ) and

T =
∑
j≥1

λjej ⊗ ej, which means that T x =
∑
j≥1

λj⟨x, ej⟩ej.

Theorem 35. If T is compact and non-negative definite, then

λk = max
x∈{e1,...,ek−1}⊥

⟨T x, x⟩
∥x∥2

,

where {e1, . . . , ek−1} is H when k = 1.

Theorem 36. If T is compact and self-adjoint then

|λk| = max
x∈{e1,...,ek−1}⊥

∥T x∥
∥x∥

,

where {e1, . . . , ek−1} is H when k = 1.

Theorem 37 (Courant-Fischer minimax). If T is compact and non-negative definite,
then,

λk = max
v1,...,vk

min
v∈span(v1,...,vk)

⟨T v, v⟩
∥v∥2

λk = min
v1,...,vk

max
v∈span(v1,...,vk)⊥

⟨T v, v⟩
∥v∥2
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Theorem 38. Let T , T̃ be non-negative definite, compact operators, then

sup
k≥0

|λk − λ̃k| ≤
∥∥∥T − T̃

∥∥∥ .
These results can be used on self-adjoint operators, by splitting the operator into pos-

itive and negative components.

B.3.3 Singular value decomposition

The following gives singular value decomposition in the context of compact operators:

Theorem 39. If T is a compact operator, then,

T =
∑
j

λj(f1j ⊗ f2j) (B.1)

where

• λ2j are the non-ascending eigenvalues of T T ′

• {f1j} are the eigenvectors of T ′T

• {f2j} are the eigenvectors of T T ′ satisfying T ′f2j = |λj|f1j.

We refer to λj as the singular values of T . Note that the largest singular value λ1
satisfies ∥T ∥ = λ1.

Theorem 40. An operator T is compact if an only if (B.1) holds.

B.3.4 Hilbert-Schmidt operators

Definition 19. Let {ei} be a CONS for H1 and T ∈ B(H1,H2). If T satisfies

∞∑
i=1

∥T ei∥22 <∞,

then T is called a Hilbert-Schmidt operator. We can denote the collection of Hilbert-
Schmidt operators by BHS(H1,H2).
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Note that Hilbert-Schmidt operators are compact. In addition, BHS(H1,H2) is a linear
space with the following inner product

⟨T1,T2⟩HS =
∞∑
i=1

⟨T1ei,T2ei⟩2,

where {ei} is a CONS for H1. See Theorem 4.4.1 in Hsing and Eubank (2015) to see that
this result is independent of the chosen CONS. Therefore, we can choose the CONS to be
the singular vectors of T to get that

∥T ∥2HS =
∞∑
i=1

λ2i ,

where λi are the singular values of T . This is the Frobenius norm for matrices! The
following theorem shows that truncating the sve approximates HS operators well:

Theorem 41. Let T be a self-adjoint HS operator between H and itself, with singular
system {λj, ej}. Then, for any finite integer k, it holds that∥∥∥∥∥T −

k∑
j=1

xj ⊗ yj

∥∥∥∥∥
HS

≥

∥∥∥∥∥T −
k∑
j=1

λjej ⊗ ej

∥∥∥∥∥
HS

,

for any set of functions xj, yj ∈ H.

B.3.5 Trace class operators

For this section, we focus on self-adjoint, non-negative definite linear operators.

Definition 20. Let T ∈ B(H) for a separable H. Then, T is trace class if for some
CONS {ei}, the quantity

∥T ∥TR =
∞∑
i=1

⟨T ei, ei⟩ <∞.

We call ∥T ∥TR the trace norm of T .

Note that trace class operators are HS operators. In addition, we can then write

∥T ∥TR =
∞∑
i=1

λi,

233



where λi are the singular values of T . Therefore, ∥T ∥HS ≤
√
λ1 ∥T ∥TR.

B.3.6 Integral operators

Let (E,B, µ) be a probability space. Suppose that K is a measurable function on E × E
and ∫ ∫

K2dµdµ <∞.

Then define the integral operator K by

K f(·) =
∫

K(s, ·)f(s)dµ,

for f ∈ L 2(E,B, µ). Note that K is the kernel of K . Note that K f is measurable and
that K ∈ B(L 2(E,B, µ)). Suppose now that we only consider K which is continuous.
If E is compact then K is uniformly continuous. This implies that K f(·) is uniformly
continuous. Note that K is compact. If K is symmetric, then K is self-adjoint and
admits

K =
∞∑
i=1

λiei ⊗ ei.

In addition, K is non-negative definite if and only if K is. We can finally present Mercer’s
theorem:

Theorem 42 (Mercer’s Theorem). Let K be a continuous kernel which is non-negative
definite and symmetric. Let K be the corresponding integral operator. Then if (λj, ej) are
the eigenvalue-eigenfunction pairs of K , K has the representation

K(s, t) =
∞∑
j=1

λjej(s)ej(t),

for all s, t and the sum converges absolutely and uniformly.

We can then use Mercer’s Theorem and the results of the previous section to show that
K is trace class with

∥K ∥TR =

∫
K(s, s)dµ(s) and ∥K ∥2HS =

∫ ∫
K(s, t)2dµ(s)dµ(t).
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We then have from the previous section that

K̂(s, t) =
r∑
j=1

λjej(s)ej(t)

approximates K(s, t) optimally. Lastly, we discuss unitary operators, these are the exten-
sion of orthonormal matrices in Euclidean space. A unitary operator (on a Hilbert space)
is a bounded linear operator which is surjective and preserves inner products. We can also
define a unitary operator as a bounded linear operator such that U U ∗ = U ∗U = I. We
have that if K1 is unitarily equivalent to K2, then

⟨K1u, u⟩ = ⟨K2u
∗, u∗⟩,

so if the space is such that the uniform measure on S exists, then∫
S

⟨K1u, u⟩du =

∫
S

⟨K2u
∗, u∗⟩du =

∫
S

⟨K2u, u⟩du.

B.4 What are the observations in the setting of func-

tional data?

We can either assume that the functions are random elements which lie in some Hilbert
space, or we could assume they are continuous time stochastic processes. When do these
assumptions coincide?

B.4.1 Probability on a Hilbert space

For this section consider L 2-valued random elements.

Theorem 43. If X is a mapping from Ω → L 2, then

• X is measurable if ⟨X, f⟩ is measurable for all f in L 2.

• If X is measurable then its distribution is uniquely determined by the marginal dis-
tributions of ⟨X, f⟩ over f in L 2.
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Definition 21. Suppose that E [∥X∥] < ∞, the mean of X is defined as the Bochner
integral:

E [X] =

∫
Ω

XdP.

We also have that

Theorem 44.
E
[
∥X − E [X]∥2

]
= E

[
∥X∥2

]
+ ∥E [X]∥2 .

We can then define the covariance operator as follows:

Definition 22. Suppose that E
[
∥X∥2

]
< ∞, then the covariance operator for X is the

element in BHS(L 2), given by:

K = E [(X − E [X])⊗ (X − E [X])] =

∫
Ω

(X − E [X])⊗ (X − E [X]) dP.

We also have that

E [(X − E [X])⊗ (X − E [X])] = E [X ⊗X]− E [X]⊗ E [X] .

One may recall that in L 2, we have that

(x⊗ y)(·) =
∫
x(·)ds y.

Theorem 45. Suppose that E [X] = 0 and that E
[
∥X∥2

]
<∞. For f, g ∈ L 2,

1. ⟨K f, g⟩ = E [⟨X, f⟩⟨X, g⟩]

2. K is non-negative definite, trace class operator with ∥K ∥TR = E
[
∥X∥2

]
3. Pr(X ∈ IM(K)) = 1

As a result, we have that

K =
∞∑
j=1

λjej ⊗ ej.
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In addition, it holds with probability 1 that

X =
∞∑
j=1

⟨X, ej⟩ej,

where ⟨X, ej⟩ are uncorrelated with mean zero and variance λj. In addition, the best
approximation of X in terms of mean squared error is

k∑
j=1

k∑
j=1

⟨X, ej⟩ej,

see Theorem 7.2.8 in Hsing and Eubank (2015).

B.4.2 Stochastic process viewpoint

Suppose instead we view some observed function as a stochastic process: X = {X(t) : t ∈
[0, 1]}. Recall that we assume that X(t) is defined on a probability space (Ω,A , P ) and
each X(t) are all measurable for fixed t. It is then simple to define E [X(t)] as the mean
and K(s, t) = E [X(t)X(s)] as the covariance kernel, where we assume the expectations
exist. Note that K is non-negative definite.

Definition 23 (Mean square continuous process). We say X is mean square continuous
if

lim
n→∞

E
[
|X(tn)−X(t)|2

]
= 0

for any sequence in [0, 1] converging to t.

Theorem 46. X is mean square continuous if and only if its covariance kernel and mean
function are continuous.

Actually, if the mean function is continuous, then K is continuous at all points if it is
continuous on the diagonal. Define K as the associated integral operator corresponding
to K. Then, Mercer’s theorem gives that

K(s, t) =
∞∑
j=1

λjej(s)ej(t).
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Theorem 47 (Karhunen-Lòeve Theorem). Let X(t) be a mean square continuous process
with mean zero. There exists a random variable IX(ej) such that Then

lim
n→∞

E

∣∣∣∣∣
n∑
i=1

IX(ej)ej(t)−X(t)

∣∣∣∣∣
2
 .

IX(ej) are the principle component scores of X.

B.4.3 Combining the viewpoints

One assumption that allows us to consider X as both a random element in a Hilbert space
and a mean square continuous stochastic process is joint measurability. We would assume
that X(t, ω) is measurable with respect to the product field B([0, 1])×A . This assumption
is somewhat opaque, so it is useful to provide a simple condition where joint measurability
is implied.

Theorem 48. Suppose that for each t, X(t, ·) is measurable and that X(·, ω) is continuous
for each ω ∈ Ω. Then, X is jointly measurable, and is defined by its finite dimensional
distributions.

Now one only needs to verify that X(t, ·) is continuous. One way to do this is with the
Kolmogrov condition:

E [|X(t1)−X(t2)|α] ≤ C|t1 − t2|1+β,

holds for all t1, t2 ∈ [0, 1]. If X is a mean square continuous process that is jointly measur-
able, then

1. The mean function and mean element coincide

2. The covariance operator coincides with the integral operator described previously

3. The scores satisfy IX(f) = ⟨X, f⟩

Restating the Karhunen-Lòeve theorem, we have that if X(t) is a jointly measurable mean
square continuous stochastic process with mean zero, then it holds that Then

lim
n→∞

E

∣∣∣∣∣
n∑
j=1

⟨X, ej⟩ej(t)−X(t)

∣∣∣∣∣
2
 .
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Now, one may recall that in Chapter 3 and Chapter 4 we assumed that the the observed
functions are mean zero, mean square continuous stochastic processes that satisfy the
conditions of Theorem 48. Therefore, the covariance operators considered are trace class
and the trace norm exists. Further, we may make use of Mercer’s theorem to expand the
covariance kernel in terms of its eigenfunctions and eigenvalues.
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