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Abstract

Tracking and identifying players is a fundamental step in computer vision-based ice
hockey analytics. The data generated by tracking is used in many other downstream tasks,
such as game event detection and game strategy analysis. Player tracking and identification
is a challenging problem since the motion of players in hockey is fast-paced and non-linear
when compared to pedestrians. There is also significant player-player and player-board
occlusion, camera panning and zooming in hockey broadcast video. Identifying players in
ice hockey is a difficult task since the players of the same team appear almost identical,
with the jersey number the only consistent discriminating factor between players.

In this thesis, an automated system to track and identify players in broadcast NHL
hockey videos is introduced. The system is composed of player tracking, team identification
and player identification models. In addition, the game roster and player shift data is
incorporated to further increase the accuracy of player identification in the overall system.
Due to the absence of publicly available datasets, new datasets for player tracking, team
identification and player identification in ice-hockey are also introduced.

Remarking that there is a lack of publicly available research for tracking ice hockey
players making use of recent advancements in deep learning, we test five state-of-the-art
tracking algorithms on an ice-hockey dataset and analyze the performance and failure cases.

We introduce a multi-task loss based network to identify player jersey numbers from
static images. The network uses multi-task learning to simultaneously predict and learn
from two different representations of a player jersey number. Through various experiments
and ablation studies it was demonstrated that the multi-task learning based network per-
formed better than the constituent single-task settings.

We incorporate the temporal dimension into account for jersey number identification
by inferring jersey number from sequences of player images - called player tracklets. To do
so, we tested two popular deep temporal networks (1) Temporal 1D convolutional neural
network (CNN) and (2) Transformer network. The network trained using the multi-task
loss served as a backbone for these two networks. In addition, we also introduce a weakly-
supervised learning strategy to improve training speed and convergence for the transformer
network. Experimental results demonstrate that the proposed networks outperform the
state-of-the art.

Finally, we describe in detail how the player tracking and identification models are put
together to form the holistic pipeline starting from raw broadcast NHL video to obtain
uniquely identified player tracklets. The process of incorporating the game roster and
player shifts to improve player identification is explained. An overall accuracy of 88% is

vi



obtained on the test set. An off-the-shelf automatic homography registration model and
a puck localization model are also incorporated into the pipeline to obtain the tracks of
both player and puck on the ice rink.
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Chapter 1

Introduction

Ice hockey is played by an estimated 1.8 million people worldwide [3]. As a team sport, the
positioning of the players and puck on the ice are critical to team offensive and defensive
strategy [4]. The location of players and puck on the ice is essential for hockey analysts
for determining the location of play and analyzing game strategy and events. The data
generated by player tracking is used in many other downstream computer vision tasks,
such as game event detection [5] and game strategy analysis [6].

At the time of writing this thesis, the NHL has introduced puck and player tracking
technology in 2021 season 1. The technology includes sensors fitted in pucks and player
jerseys. Also, 14-18 infrared cameras have been installed in NHL arenas to detect the
infrared signals emitted by sensors embedded in the puck and player jerseys. The infrared
signals are triangulated to track players and puck in three dimensions. This technology is
bound to come at significant costs and will not be viable for junior leagues or other major
international leagues.

Although player tracking data can be obtained manually, the process of labelling data
by hand on a per-game basis is extremely tedious and time consuming. Automated tracking
of player and puck using computer vision and deep learning can be significantly cheaper
without any additional equipment or sensors required. Therefore, an automated computer
vision-based player tracking and identification system is of high utility.

1www.sporttechie.com/nhl-starts-2021-season-with-puck-and-player-tracking-in-all-arenas/
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1.1 Problem Statement

The problem of interest in this thesis is to automate the tracking of players in broadcast
video while also identifying the players in each video frame.

Let F = {f1, f2, ....fn} denote a hockey broadcast video of n frames such that fi denotes
the i-th frame of the video. Let O = {o1, o2, ...ok} denote the player observations in F .
Each observation oj = {xj, yj, wj, hj} is a bounding box at location (xj, yj) of width and
height wj, hj in some frame fi obtained by a person detector. Let the number of players
in the video be k.

The problem of tracking consists of forming player trajectories Tl = {ol1 , ol2 , ...oln} (also
called player tracklets) , where Tl is an ordered sequence of observations {oli}. The set of
all player trajectories of k players is denoted by T = {T1, T2....Tm}.

The problem of player identification consists of assigning k unique identities I =
{I1, I2, .....Ik} : k ≤ m to each of the m player trajectories T = {T1, T2....Tm}. Note
that the number of unique identities k may be less than the number of trajectories m.
This means that more than one trajectory may belong to the same player.

1.2 Challenges

The challenges associated with player tracking and identification in ice hockey are:

1. The motion of players in hockey is fast paced as compared to the setting of pedes-
trian tracking. There is also significant camera panning, especially when the players
move from one offensive zone to the other. Player-player occlusion and player-board
occlusion is also a significant issue in hockey player tracking.

2. Compared to other sports such as soccer and basketball, uniquely identifying players
is much more challenging in ice hockey due to the players wearing bulky equipment
and helmets that occlude body characteristics and skin color, especially reducing the
discriminability between players on the same team that wear the same color uniforms
and helmets.

3. Conducting research on player tracking and identification in ice hockey is challenging
since there are no publicly available datasets for player tracking team identification,
and player identification.
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1.3 Contributions

Following are the contributions of this thesis:

1. A holistic system that combines player tracking, puck tracking, team identification,
and player identification to track players and puck in broadcast ice hockey videos
is established. Considering that there can be only between 3 and 5 players on the
ice for each team at any point in the game (plus one goalie per team), the system
only considers the players present on the ice rink for establishing player identities.
Taking into account only players present on the ice rink for identification is shown
to significantly improve identification accuracy.

2. Although commercial solutions for hockey player tracking exist [7], to the best of our
knowledge, no network architectures used, training data or performance metrics are
publicly reported. There is currently no published work for hockey player tracking
making use of the recent advancements in deep learning while also reporting the
current accuracy metrics used in literature. Therefore we compare and contrast
several state-of-the-art tracking algorithms and analyze their performance and failure
modes in ice hockey.

3. We design a multi-task loss function for jersey number recognition consisting of the
combination of (1) ”Holistic” representation loss term treating the jersey number as a
separate class (2) ”Digit-wise” representation loss term treating digits in a number as
independent classes. We conduct an ablation study to demonstrate that the holistic
and digit-wise losses complement each other with appropriate weight given to them.

4. A transformer based player identification approach is implemented that infers jersey
number from player tracklets. The model utilizes novel weakly supervised training
using approximate labels for faster convergence. Experimental results demonstrate
the effectiveness of the model by obtaining state-of-the-art results compared to other
approaches.

5. New ice hockey datasets are introduced for player tracking, team identification, player
identification from static images and player identification from tracklets. The dataset
created for player identification from static images consisting of 50, 000 images is the
biggest dataset of such kind in the literature.
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1.4 Thesis structure

This thesis is organised into eight chapters and is structured as follows:

• Chapter 2 presents a literature review of the applications of computer vision in sports
analytics focusing on the problems of player tracking and identification.

• Chapter 3 compares and contrasts several state-of-the-art tracking algorithms and
analyzes their performance and failure modes in ice hockey.

• Chapter 4 introduces the multi-task loss based network to perform jersey number
identification from static images.

• Chapter 5 discusses the methods developed to directly infer jersey numbers from
player tracklets taking into account the temporal information present in video.

• Chapter 6 presents the holistic system that combines player tracking, puck tracking,
team identification and player identification models while also utilizing team roster
and shift data to track and identify players in broadcast NHL video clips.

• Chapter 7 concludes the thesis providing a summary of the contributions and also
discusses the thesis limitations and potential for future research.
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Chapter 2

Background and related work

2.1 Multi-object tracking

The objective of multi-object tracking (MOT) is to detect objects of interest in video
frames and associate the detections with appropriate trajectories while maintaining their
identities. MOT has a variety of applications ranging from surveillance to sports player
tracking. MOT is a big challenge in computer vision, especially in crowded scenes due
to the enormous number of degrees of freedom for possible trajectories present and the
presence of occlusions.

2.1.1 Tracking by detection (TBD)

Tracking by detection (TBD) is a widely used approach for multi-object tracking. Tracking
by detection consists of three steps: (1) detecting objects (hockey players in our case) frame-
by-frame in the video (2) affinity calculation between detected objects and (3) inference -
linking player detections to produce tracks.

Object detection

In tracking by detection MOT algorithms, the first task is to detect the object in each
frame, agnostic of their actual identity. With the advent of deep learning, there has been
significant progress in deep learning based object detection methods[8, 9, 10, 11]. The
Faster RCNN [12] is one of the most popular object detection algorithm and is employed
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by many MOT algorithms [13, 14]. The Faster RCNN consists of a region-proposal convolu-
tional neural network (RPN) to calculate high quality object proposals. The RPN object
bounding box proposals are then refined and classified into appropriate object classes.
Other object detection algorithms such as Single Shot MultiBox Detector (SSD) [11] and
You Only Look Once (YOLO) [10] do not incorporate RPNs, but directly regress bound-
ing box coordinates and then does classification. RPN based object detection methods
generally perform better than direct regression/classification methods [15].

Affinity Calculation

Affinity calculation is the most crucial phase of any detection based tracking algorithm. It
consists of two steps (1) obtaining appropriate features from detections and existing tracks
(2) calculating affinity between new detections and existing tracks using the features ob-
tained. Traditionally, handcrafted features such as histogram of oriented gradients (HOG)
[16] and color-based features [17] were employed for feature extraction. Recently, deep
neural networks have been extensively used for feature extraction for affinity calculations.
These networks include convolutional neural networks (CNNs) [18, 19, 20] and recurrent
neural networks (RNNs) [21, 22, 23]. New techniques such as tracklet inpainting through
stochastic motion modelling [24] have also been introduced to calculate affinities between
existing tracks and detections.

Inference

The object detection and affinity calculation methods are plugged into an appropriate
inference method that requires object detections and affinity scores to generate final tra-
jectories. This step is also called data association. The inference process in detection based
tracking is mostly dominated by techniques such as graph based inference [1, 25, 26, 27, 28]
and probabilistic filtering [13, 14, 20, 29]. Many works in literature infer final trajectories
with the help of graph-based inference wherein the detections are represented as nodes of
a graph and the trajectories are represented by sequences/clusters of edges. Appropriate
optimization algorithms such as minimum cost flow [1, 25, 26], lifted multicut[27, 28] or
minimum cliques [30] are then employed for finding the optimal graph connectivity rep-
resenting distinct tracks for a trajectory. Recently, Braso et al. [1] formulate the MOT
problem into as a simplified min cost flow [26] and introduce a novel message passing net-
work for classifying whether the graph edge belongs to an actual target trajectory. Kalman
filter [31] and particle filter [32] are two of the most widely used filtering algorithms for
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Figure 2.1: Graph based inference proposed by Braso et al. [1] method where (a) Video
frames and detections are used as input (b) Each detection is considered a node of a graph
with all detection nodes connected with graph edges. The input embedding of each node
is obtained by a CNN (c) Graph message passing is performed to determine which edges
belong to actual trajectories (d) Classification result where green edges correspond of actual
trajectory with (e) as the tracking output.

tracking. Bayesian filtering is highly suited for online applications since it requires only
the past and present observations for inference.

2.1.2 Joint detection and tracking (JDT)

The latest trend in multi-object tracking research is the paradigm of joint detection and
tracking (JDT) [19, 33, 34, 35, 36]. These methods convert an object detector to a tracker
by estimating the location of a bounding box in the adjacent frames. Bergmann et al. [19]
use the bounding box regressor of a Faster RCNN [12] to regress the position of a person in
the next frame. The reidentification is performed using a separate siamese network. Wang
et al. [34] introduce a single network for single-shot object detection and appearance
embedding learning trained using a multi-task loss function. Zhang et al. [35] adopt an
anchor free tracking approach by augmenting the CenterNet [37] object detection model
with a re-identification branch. Peng et al. [33] introduce chained tracker that combines
object detection, feature extraction (affinity calculation) and inference into a single step of
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regressing bounding boxes of a target in two adjacent frames. Joint detection and tracking
methods enjoy high inference speeds, especially when lightweight and fast detectors are
used [34]. This is because the detection and appearance affinity calculation are combined
into a single stage step. However, these methods struggle to preserve tracking identities
since they are overly dependent on the performance of the detector used and also because
they only use temporally local information to perform data association.

2.2 Sports player tracking

Player tracking is an important problem in computer vision-based sports analytics, since
player tracking combined with an automatic homography estimation system [38] is used to
obtain absolute player locations on the sports rink. Also, various downstream computer
vision and machine learning based tasks, such as sports event detection [5, 39, 40] and
game strategy analysis [6] can be improved with player tracking data.

2.2.1 Soccer and basketball

For basketball player tracking, Sangüesa et al. [41] demonstrated that deep features per-
form better than classical handcrafted features for basketball player tracking. Lu et al. [42]
perform player tracking in basketball using a Kalman filter by making the assumption that
the relationship between time and player’s locations is approximately linear in a short time
interval. Zhang et al. [43] perform basketball player tracking in a multi camera setting.
Theagarajan et al. [44] track players in soccer videos using the DeepSORT algorithm [29]
for generating tactical analysis and ball possession statistics . Hurault et al. [45] introduce
a self-supervised detection algorithm to detect small soccer players and track players in
non-broadcast settings using a triplet loss trained re-identification mechanism, with em-
beddings obtained from the detector itself. Theiner et al. [46] present a pipeline to extract
player position data on the soccer field from video. The player tracking was performed
with the help of CenterTrack [36]. However, the major focus of the work was on detection
accuracy rather than tracking and identification. Gadde et al. [47] use a weakly supervised
transductive approach for player detection in soccer broadcast videos by treating player
detection as a domain adaptation problem. The dataset used is generated with the help
of the DeepSort algorithm [29].
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2.2.2 Ice hockey

In ice hockey, prior published research [48, 49] perform player tracking with the help of
handcrafted features for player detection and re-identification. Okuma et al. [48] track
hockey players by introducing a particle filter combined with mixture particle filter (MPF)
framework [50], along with an Adaboost [51] player detector. The MPF framework [50]
allows the particle filter framework to handle multi-modality by modelling the posterior
state distributions of M objects as an M component mixture. A disadvantage of the MPF
framework is that the particles merge and split in the process and leads to loss of identities.
Moreover, the algorithm did not have any mechanism to prevent identity switches and lost
identities of players after occlusions. Cai et al. [49] improved upon [48] by using a bipartite
matching for associating observations with targets instead of using the mixture particle
filter framework. However, the algorithm is not trained or tested on broadcast videos, but
performs tracking in the rink coordinate system after a manual homography calculation.

2.3 Player identification

Identifying players and referees is one of the most important problems in computer vision-
based sports analytics. Analyzing individual player actions and player performance from
broadcast video is not feasible without determining the identities of the tracked players.
In the literature, player identification has been performed from static images by using
features such as player appearance [2, 42] and jersey number [52, 53, 54, 55]. Prior works
also identify players by incorporating temporal context from video [42, 56].

2.3.1 Player identification from static images

In sports such as basketball, body parts such as skin-color, face and legs, not covered by
the jersey, play a key role in player re-identification. Senocak et al. [2] perform player
identification in basketball on a per-frame basis by combining multi-scale CNN features
and part-based pose features into a single vector. They conclude that body features such
as head, legs, arms etc are discriminative for basketball player identification (Fig 2.2). A
shortcoming of the work however, is that the the evaluation set was limited to only five
players of Houston Rockets NBA team.

Being one of the most prominent discriminatory feature on the jersey of any sports
player, jersey number recognition is a problem of great interest in the computer vision

9



Figure 2.2: Visualization of distinctive parts of players presented in Senocak et al. [2]. In
sports such as basketball distinctive features for player identification may come from body
parts such as foot, legs, head etc.

community. Gerke et al. [52] was the first to employ CNNs for soccer jersey number
recognition. The CNN outperformed handcrafted HOG features by a huge margin. Gerke
et al. [57] also merged their image-based jersey number identification system with player
location features on the soccer field. Li et al. [53] improve upon the method introduced
by Gerke et al. [52] by introducing a deeper CNN for recognizing jersey number and
employing the Spatial Transformer Network for proper alignment of the player so that the
jersey number is more readable. However, a limitation of the method is that it requires
additional quadrangle annotations for training the Spatial Transformer Network. Liu et al.
[54] introduce a a network for performing jersey number localization as well as recognition.
A Faster RCNN [12] is employed such that the Region Proposal Network (RPN) of the
Faster RCNN used three classes to represent the person, digit and background. Further, a
pose based supervision is also performed to improve localization of bounding boxes. Nady
et al. [55] train CRAFT text detection framework [58] to detect jersey numbers and then
use a pre-trained text recognition framework [59] to identify jersey numbers from player
images.

2.3.2 Player identification from video

Compared to inferring jersey numbers from static images, inferring jersey numbers from
player tracklets has been found advantageous [42, 56]. This is because the image sequences
provide beneficial temporal information. Lu et al. [42] construct a conditional random
field (CRF) consisting of feature nodes and identity nodes with appropriate connections and
learn the CRF with weakly-supervised learning using a variant of expectation-maximization
(EM). Player identification feature vectors are created from handcrafted features such
maximally stable extremal regions (MSER) [60], SIFT [61] and color histograms. (Fig
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Figure 2.3: Handcrafted features such as MSER [60] and SIFT [61] were used for identifying
players in basketball by Lu et al.[42].

2.3). The algorithm surpassed the results of Okuma et al. [48] on the hockey dataset.
Lu et al. [42] also incorporate play-by-play as a prior during CRF training. However, the
dataset used by Lu et al. [42] was not very diverse as it consisted of only 2 teams. Chan et
al. [56] use a network based on the Long-term Recurrent Convolutional Network (LRCN)
[62] to infer jersey numbers from player tracklets. The final tracklet scores are aggregated
using a secondary CNN. Although Chan et al. [56] obtained an accuracy of 87.01% on a
private dataset, the requirement of training a secondary network for inference can be seen
as a disadvantage.

2.4 Discussion

Previous player tracking methods in hockey [48, 49] use handcrafted methods [51, 60, 61] for
person detection and identification. Therefore in Chapter 3, we compare and contrast sev-
eral state-of-the-art tracking algorithms and analyze their performance and failure modes
in ice hockey.

Unlike sports such as basketball and soccer where player body and facial features can
be used for identification [2, 42], this is not achievable in ice hockey due to the players
wearing bulky equipment and helmets that occlude body characteristics and skin color.
For ice hockey, this leaves jersey numbers as the primary method of performing player
identification from game video. In Chapter 4 we introduce a network utilizing a novel
multi-task loss function for recognizing jersey numbers from static images in ice hockey.
Since only utilizing static images leaves out the temporal information present in video
data, therefore, in Chapter 5 we introduce networks to identify jersey number from player
tracklets that outperform the current state-of-the-art [56].

Although several studies address the problem of player tracking [48, 49] and player
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identification [56] in hockey separately, to the best of our knowledge, the two problems
have not been combined and studied in a single pipeline. In Chapter 6 we build a novel
holistic pipeline composed of player tracking component (Chapter 3), player identification
component (Chapter 4 and Chapter 5) and team identification component while also uti-
lizing the player roster and shift data to improve overall identification accuracy. Finally,
we augment the pipeline with an off the shelf homography registration model [63] and puck
tracking model (Appendix B) to track both players and puck on the ice-rink in broadcast
NHL video.
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Chapter 3

Player tracking

From Chapter 2 we found that in ice hockey, prior published research [48, 49] perform player
tracking with the help of handcrafted features for player detection and re-identification.

In this chapter, we first discuss the new hockey player tracking dataset developed for
training and testing tracking models. The dataset statistics along with the annotation
software used are explained. We then track and identify hockey players in broadcast NHL
videos and analyze performance of five state-of-the-art deep learning based tracking models
on the new ice hockey player tracking dataset. We also perform error analysis and identify
the major sources of tracking errors.

3.1 Dataset

The player tracking dataset consists of a total of 84 broadcast NHL game clips with a frame
rate of 30 frames per second (fps) and resolution of 1280 × 720 pixels. The average clip
duration is 36 seconds. The 84 video clips in the dataset are extracted from 25 NHL games.
The duration of the clips is shown in Fig. 3.2. Each video frame in a clip is annotated
with player and referee bounding boxes and player identity consisting of player name and
jersey number. The annotation is carried out with the help of the open source computer
vision annotation tool (CVAT) 1. An illustration of an annotation job using the CVAT
tool is shown in Fig. 3.1. The dataset is split such that 58 clips are used for training, 13
clips for validation, and 13 clips for testing. To prevent any game-level bias affecting the
results, the split is made at the game level, such that the training clips are obtained from

1Found online at: https://github.com/openvinotoolkit/cvat
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Figure 3.1: CVAT tool used for tracking annotations. The tool offers the ability to annotate
bounding boxes with each box having one label - home or away team. Each player bounding
box has player name and jersey number as attributes. CVAT also offers an interpolation
mode which alleviates the need to draw bounding boxes multiple times for adjacent frames.

17 games, validation clips from 4 games and test split from 4 games respectively.
Table 3.1 compares the size of the dataset with other tracking datasets in literature. The
hockey player tracking dataset is comparable in size with other tracking datasets used
in literature. As compared to pedestrian datsets (MOT 16 [64] and MOT20 [65]), the
bounding boxes per frame is less in our dataset since the maximum number of players on
the screen can be 12, with usually less than 12 players actually in broadcast camera field
of view (FOV). The NHL game videos used to create this dataset have been obtained from
Stathletes Inc. with permission.
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Table 3.1: Comparison of hockey tracking dataset with other tracking datasets in literature.
Our hockey player tracking dataset is comparable to other multi-object tracking datasets
commonly used in literature.

Dataset Videos/sequences Frames Bounding boxes Domain
MOT16 [64] 14 11, 235 292, 733 Pedestrians
MOT20 [65] 8 13, 410 2, 102, 385 Crowded pedestrian scenes
KITTI-T [66] 50 10, 870 65, 213 Autonomous driving

Ours 84 91, 807 773, 545 Ice hockey players

Figure 3.2: Duration of videos in the player tracking dataset. The average clip duration is
36 seconds. The red horizontal line represents the average clip duration.

3.1.1 Annotation process

15 annotators annotated the whole dataset using the CVAT tool. The average time taken
to annotate one minute of video is 10.45 minutes. The total time taken to annotate all
84 videos is 527 minutes. The manual annotation was done such that a bounding box
as tight as possible was drawn around a player/referee. Linear interpolation was used to
interpolate bounding box positions. Additionally, unlike other tracking datasets such as
MOT16 [64] and MOT20 [65], the same ground truth identity was assigned to a player
leaving a camera FOV at a particular frame and re-entering after some time. If a player
was occluded by board or another player, the bounding box was annotated based on the
best guess of the tightest box enclosing the full body of the player. For quality control, all
bounding boxes were checked to make sure each box has label-name(name of the player ).
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When a player enters/exits the scene, his bounding box was labeled even if he was partially
in camera FOV. Whenever players were occluded by other players, revision of annotations
was performed to ensure high quality.

3.2 Methodology

We experimented with five state-of-the-art tracking algorithms [1, 13, 19, 29, 35] on the
hockey player tracking dataset. The algorithms include four online tracking algorithms
[13, 19, 29, 35] and one offline tracking algorithm [1]. SORT [13], deep SORT [29] and
MOT Neural Solver [1] are tracking by detection (TBD) algorithms. Tracktor [19] and
FairMOT [35] are joint detection and tracking (JDT) algorithms.

In tracking by detection, the input is a set of object detections O = {o1, .....on}, where
n denotes the total number of detections in all video frames. A detection oi is represented
by {xi, yi, wi, hi, Ii, ti}, where xi, yi, wi, hi denotes the coordinates, width, and height of the
detection bounding box. Ii and ti represent the image pixels and timestamp corresponding
to the detection. The goal is to find a set of trajectories T = {T1, T2....Tm} that best
explains O where each Ti is a time-ordered set of observations. The MOT Neural Solver
models the tracking problem as an undirected graph G = (V,E) , where V = {1, 2, ..., n} is
the set of n nodes for n player detections for all video frames. In the edge set E, every pair
of detections is connected so that trajectories with missed detections can be recovered. The
problem of tracking is now posed as splitting the graph into disconnected components where
each component is a trajectory Ti. After computing each node (detection) embedding and
edge embedding using a CNN, the model then solves a graph message passing problem.
The message passing algorithm classifies whether an edge between two nodes in the graph
belongs to the same player trajectory.

The differences and similarities between the five tracking algorithms are summarized
in Table 3.2. We refer the readers to the publications of the respective tracking papers
[1, 13, 19, 29, 35] for more detail.

3.3 Results

Player detection is performed using a Faster-RCNN network [67] with a ResNet50 based
Feature Pyramid Network (FPN) backbone [68] pre-trained on the COCO dataset - a large
scale object detection, segmentation, and captioning dataset, popular in computer vision
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Table 3.2: Tracking algorithms compared for hockey player tracking.

Algorithm Description
SORT [13] Kalman filter with simple IOU based re-id.

Deep SORT [29] Kalman filter with deep CNN based re-id.
Tracktor [19] JDT algorithm with separate detection and re-id networks.
FairMOT [35] JDT algorithm with combined object detection and re-id network.

MOT Neural Solver [1] Tracking using graph message passing with edge classification.

Table 3.3: Player detection results on the test videos. AP stands for Average Precision.
AP50 and AP75 are the average precision at an Intersection over Union (IoU) of 0.5 and
0.75 respectively.

AP AP50 AP75

70.2 95.9 87.5

[69] and fine tuned on the hockey tracking dataset. The object detector obtains an average
precision (AP) of 70.2 on the test videos (Table 3.3). The accuracy metrics for tracking
used are the CLEAR MOT metrics [70] and Identification F1 score (IDF1) [71]. A ground
truth object missed by the trackers is called a false negative (FN) whereas a false alarm
is called a false positive (FP). For any tracker, a low number of false positives (FP) and
false negatives (FN) are favoured. An important metric is the number of identity switches
(IDSW), which occurs when a ground truth ID i is assigned a tracked ID j when the
last known assignment ID was k ̸= j. A low number of identity switches is an indicator
of accurate tracking performance. For sports player tracking, the IDF1 is considered a
better accuracy measure than Multi Object Tracking accuracy (MOTA) since it measures
how consistently the identity of a tracked object is preserved with respect to the ground
truth identity. The overall results are shown in Table 3.4. The best tracking performance is
achieved using the MOT Neural Solver tracking model [1] re-trained on the hockey dataset.
The MOT Neural Solver model obtains the highest MOTA score of 94.5 and IDF1 score
of 62.9 on the test videos.
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Table 3.4: Comparison of the overall tracking performance on test videos of the hockey
player tracking dataset. (↓ means lower is better, ↑ mean higher is better)

Method IDF1↑ MOTA ↑ ID-switches ↓ False positives (FP)↓ False negatives (FN) ↓
SORT [13] 53.7 92.4 673 2403 5826

Deep SORT [29] 59.3 94.2 528 1881 4334
Tracktor [19] 56.5 94.4 687 1706 4216
FairMOT [35] 61.5 91.9 768 1179 7568

MOT Neural Solver [1] 62.9 94.5 431 1653 4394

3.4 Analysis

From Table 3.4 it can be seen that the MOTA score of all methods is above 90%. This is
because MOTA is calculated as

MOTA = 1 − Σt(FNt + FPt + IDSWt)

ΣtGTt

(3.1)

where t is the frame index and GT is the number of ground truth objects. MOTA metric
counts detection errors through the sum FP +FN and association errors through IDSWs.
Since false positives (FP) and false negatives (FN) heavily rely on the performance of the
player detector, the MOTA metric highly depends on the performance of the detector. For
hockey player tracking, the player detection accuracy is high because of the sufficiently
large size of players in a broadcast video and a reasonable number of players and referees
(with a fixed upper limit) to detect in the frame. Therefore, the MOTA score for all
methods is high.

The SORT [13] algorithm obtains the least IDF1 score and the highest number of
identity switches. This is due to the linear motion model assumption and simple IOU
score for re-identification. Deep SORT [18], on the other hand uses features obtained from
deep network for re-identification resulting in better IDF1 score and lower identity switches.
For JDT based networks, performing detection and re-identification with a single network
using a multi-task loss performs better than having separate networks for detection and
re-id tasks, evident by better performance of FairMOT [35] compared to Tracktor [19].
JDT tracking algorithms, however, [19, 35] do not not show any significant improvement
over deep SORT evident by lower identity switches of deep SORT in comparison. The
MOT Neural Solver method achieves the highest IDF1 score of 62.9 and significantly
lower identity switches than the other methods. This is because the other trackers use a
linear motion model assumption which does not perform well with the motion of hockey
players. Sharp changes in player motion often lead to identity switches. The MOT Neural
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Table 3.5: Tracking performance of MOT Neural Solver model for the 13 test videos (↓
means lower is better, ↑ means higher is better).

Video # IDF1↑ MOTA ↑ ID-switches ↓ False positives (FP)↓ False negatives (FN) ↓ Duration (sec.)
1 78.53 94.95 23 100 269 36
2 61.49 93.29 26 48 519 29
3 55.83 95.85 43 197 189 43
4 67.22 95.50 31 77 501 49
5 72.60 91.42 40 222 510 40
6 66.66 90.93 38 301 419 35
7 49.02 94.89 59 125 465 48
8 50.06 92.02 31 267 220 34
9 53.33 96.67 30 48 128 29
10 55.91 95.30 26 65 193 26
11 56.52 96.03 40 31 477 45
12 87.41 94.98 14 141 252 35
13 62.98 94.77 30 31 252 22

Solver model, in contrast, has no such assumptions since it poses tracking as a graph edge
classification problem.

Table 3.5 shows the performance of the MOT Neural solver for each of the 13 test
videos. We do a failure analysis to determine the cause of identity switches and low IDF1
score in some videos. The major sources of identity switches are severe occlusions and
players going out of the camera FOV (due to camera panning and/or player movement).
We define a pan-identity switch as an identity switch resulting from a player leaving and
re-entering camera FOV due to camera panning. It is very difficult for the tracking model
to maintain identity in these situations since players of the same team look identical with
features such as, jersey color, helmet model, visor model, stick model, glove model, skate
model, tape color etc unidentifiable from bounding boxes cropped from 720p broadcast
clips. During a pan-identity switch, a player going out of the camera FOV at a particular
point in screen coordinates can re-enter at any other point. We estimate the proportion of
pan-identity switches to determine the contribution of panning to total identity switches.

To estimate the number of pan-identity switches, since we have quality annotations,
we make the assumption that the ground truth annotations are accurate and there are
no missing annotations in the ground truth. Based on this assumption, there is a signif-
icant time gap between two consecutive annotated detections of a player only when the
player leaves the camera FOV and comes back again. Let Tgt = {o1, o2, ..., on} represent a
ground truth tracklet, where oi = {xi, yi, wi, ht, Ii, ti} represents a ground truth detection.
A pan-identity switch is expected to occur during tracking when the difference between
timestamps (in frames) of two consecutive ground truth detections i and j is greater than
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Figure 3.3: Proportion of pan identity switches vs. δ plot for video number 9. Majority of
the identity switches ( 90% at a threshold of δ = 40 frames) occur due to camera panning,
which is the main cause of error.

a sufficiently large threshold δ. That is

(ti − tj) > δ (3.2)

Therefore, the total number of pan-identity switches in a video is approximately calculated
as ∑

G

1(ti − tj > δ) (3.3)

where the summation is carried out over all ground truth trajectories and 1 is an indicator
function. Consider the video number 9 in Table 3.5 having 30 identity switches and a low
IDF1 of 53.33. We plot the proportion of pan identity switches, that is

=

∑
G 1(ti − tj > δ)

IDSWs
(3.4)

against δ, where δ varies between 40 and 80 frames. From Fig. 3.3 it can be seen that
majority of the identity switches ( 90% at a threshold of δ = 40 frames) occur due to
camera panning. Visually investigating the video confirmed the statement. Fig. 3.4 shows
the proportion of pan-identity switches for all videos at a threshold of δ = 40 frames. On
average, pan identity switches account for 65% of identity switches in the videos. This
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Figure 3.4: Proportion of pan-identity switches for all videos at a threshold of δ = 40
frames. On average, pan-identity switches account for 65% of identity switches.

shows that the tracking model is able to tackle a majority of other sources of errors which
include minor occlusions and lack of detections. The primary source or errors are pan-
identity switches and extremely cluttered scenes.

3.5 Summary

In this chapter, we test five state-of-the-art tracking algorithms on the ice hockey dataset
and analyzed their performance. From the performance of trackers we infer that trackers
with a linear motion model do not perform well on the hockey dataset, evident by the
high number of identity switches occurring in models with a linear motion assumption.
The best performance is obtained by the MOT neural solver model [1], that uses a graph
based approach towards tracking without any linear motion model assumption. Also, the
IDF1 metric is a better metric for hockey player tracking since the MOTA metric is heavily
influenced by player detection accuracy. We find that the main source of error in hockey
player tracking in broadcast video are pan-identity switches - identity switches results due
to players going outside the broadcast camera FOV.
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Chapter 4

Player identification from static
images

In the literature, there exist several deep learning approaches for jersey number recognition
[52, 53, 54, 57]. These approaches consider jersey number recognition as a classification
problem and either (1) consider the jersey numbers as separate classes [52, 57], or (2) treat
the two digits in a jersey number as two independent classes [53, 54]. Since learning multiple
output representations through multi-task learning can lead to improved regularization
[72], in this chapter, we hypothesize that learning both of these representation together in
a multi-task loss can result in better performance.

We introduce a network to recognise jersey number for static images. The network
utilizes multi-task learning for simultaneously learning the digit-wise and holistic jer-
sey number representations for improving network generalization. Experimental results
demonstrate the effectiveness of the multi-task learning formulation by obtaining better
performance than the constituent single task settings.

4.1 Methodology

In this section we present the details of the network and the multi-task loss function
designed to infer jersey number from static images. We also discuss the experiment settings
used to train the network.
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4.1.1 Network design

To solve the previously described problem, i.e., players’ jersey number recognition in broad-
cast ice hockey videos, a network with a multi-task loss, as shown in Fig. 4.1, is designed
and implemented. The input image of dimension 300 × 300 pixels is passed through a
Resnet34 [73] network to obtain 512-dimensional features from the pre-final layer. The
features are then passed through three linear layers followed by softmax layers to output
three probabilities. The first linear layer outputs an 81-dimensional vector p ∈ R81 rep-
resenting the probability distribution over the 81 jersey number classes. The second and
third linear layers output an 11-dimensional vectors p1, p2 ∈ R11 representing the probabil-
ity of the first and second digit respectively. The one additional class in the 11-dimensional
vector denotes the absence of a jersey number. Let y ∈ R81, y1 ∈ R11 and y2 ∈ R11 denote
the ground truth vectors corresponding to the jersey number, first digit and second digit
respectively.

The multi-task loss consists of three components:

1. The holistic loss L.

L = −
81∑
i=1

yi log pi (4.1)

2. The first digit loss L1.

L1 = −
11∑
j=1

yj1 log pj1 (4.2)

3. The second digit loss L2.

L2 = −
11∑
k=1

yk2 log pk2 (4.3)

Each of the three losses is a cross-entropy loss between the ground truth and the predicted
distribution. The overall loss Ltot is given by

Ltot = α ∗ L + β ∗ L1 + γ ∗ L2 (4.4)

where α, β, γ denote weights given to each loss such that α + β + γ = 1. Also,

β ∗ L1 + γ ∗ L2 (4.5)
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Figure 4.1: The input image is passed through a Resnet 34[73] network after which the
512 dimensional features are extracted from the pre-final layer. {pi, i ∈ {1, 2}} and p
are 11 and 81-dimensional vectors representing the digit probabilities and holistic number
probabilities respectively. L1 and L2 denotes the individual first and second digit loss
respectively and L denotes the holistic loss.

is the overall digit-wise loss and β + γ is the total weight given to the digit-wise loss.

4.1.2 Training details

For data augmentation, we perform color jittering with high values of the hue parameter.
Affine transformations are however not performed since they led to a decrease in perfor-
mance. This is because transformations such as scaling can often make a jersey number
not visible since each image has a different scale. The training is done for 10, 000 iterations
with an Adam optimizer initial learning rate of .001 and L2 weight decay of .001. The
learning rate is decreased by a factor of 0.33 after 2000, 4000, 6000 and 7000 iterations. A
batch size 100 is used on a single 1080Ti GPU.

4.2 Experiments

In this section we describe the dataset developed for recognizing jersey numbers from static
images. The dataset is compared with other datasets in the literature[52, 54, 74]. The
results obtained by testing the network developed in Section 4.1.1 on the dataset are also
discussed. Finally we present some ablation studies to explain the impact of parameters
such as the backbone network and value of loss weights α, β, γ.
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(a) (b) (c) (d)

Figure 4.2: Examples of images from the dataset. The dataset covers many real-game
scenarios such as (a) occlusions from external objects, (b)(c) motion blur, and (d) self-
occlusion.

4.2.1 Dataset

Datasets used in recent works [52, 53, 54, 57] are not publicly available, hence we created
our own dataset. The dataset consists of 54, 251 player bounding boxes obtained from 25
National Hockey League (NHL) games. The NHL game videos are of resolution 1280×720
pixels. The dataset contains a total of 81 jersey number classes, including an additional
null class for no jersey number visible. The dataset is much bigger than the datasets used
in other works such as Gerke et al. [52] with 8,281 images and Liu et al. [54] with 3,567
images and 6,293 digit instances (Table 4.1). Although the dataset used in Li et al. [53]
has 215, 036 images, 90% of the images are negative samples (no jersey number present).
Hence, our dataset has more images with a non-null jersey number than Li et al. [53].

The player head and bottom of the images are cropped such that only the jersey number
is visible. Fig. 4.2 shows some example images from the dataset. A number was considered
readable when both constituent digits were visible, however, images with partial occlusion
due to motion blur and jersey kinks were included in the dataset since those situations are
very common and a model working in sports scenarios should handle those situations. A
digit was considered unreadable when either one/both of its constituent digits was fully
occluded/invisible. Two annotators annotated the entire dataset.
Images from 17 games are used for training, four games for validation and four games
for testing. The exact number of images in the splits is shown in Table 4.2. The splits
are constructed at a game level, so that there is no inherent in-game bias present during
validation or testing. The dataset is highly imbalanced such that the ratio between the most
frequent and least frequent class is 92. The class distribution in the dataset is illustrated
in Fig. 4.3. Fig. 4.4 shows the distribution of individual digits in the dataset. The dataset
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Figure 4.3: Class example distribution in the dataset. The total number of classes is 81
and this includes the “not visible” class. The dataset is highly imbalanced such that the
ratio between the most frequent and least frequent class is 92.

Table 4.1: Comparison of datasets in literature

Dataset Number of images
Gerke et al. [52] 8, 281
Liu et al. [54] 3, 567

Ours 54,251

Table 4.2: Number of images in train, validation and test set

Train Validation Test
38, 456 6, 770 9, 025

covers a range of real-game scenarios such as occlusions, motion blur and self occlusions.
We plan on making the dataset publicly available in future.

4.2.2 Results and discussion

We compare the proposed multi-task loss with holistic and digit-wise losses by simply
removing the other loss branch from the network. For the digit-wise setting, a predicted
number is classified correctly when both of its digits are classified correctly. From Table 4.3,
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Figure 4.4: Digit distribution in the jersey number recognition dataset. 100 denotes the
null class.

the multi-task loss gives an accuracy of 89.6% and a macro averaged F1 score of 91.2% and
outperforms the holistic (accuracy 87.6% ) and digit-wise losses (accuracy 88.1% ). Fig.
4.5 shows the validation accuracy for the three settings during 10, 000 training iterations.
The multi-task loss outperforms holistic and digit-wise losses during training.

We implemented the Gerke et al. [52] model on our dataset and found the performance
low (45.7% test accuracy). We believe that the reasons for this low performance are:
(1) The much bigger size of our dataset compared to Gerke et al. [52] that lowered the
generalizability Gerke et al.; and (2) Ice hockey is a more challenging domain for jersey
number identification than soccer due to high motion blur from fast moving-camera.

We also implemented the version of Li et. al. [53] on our dataset without using spatial
transformer localization loss since it requires ‘quadrangle’ annotations as mentioned in
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Figure 4.5: Validation accuracy vs number of iterations for the multi-task learning(MTL),
holistic and digit-wise loss settings. The multi-task setting shows the best performance
among the three settings.

Li et. al. [53]. The accuracy obtained was 80.0% with F1 score of 82.5% (Table 4.3).
We further replaced the classification cross entropy loss function in Li et al. [53] with
the proposed loss (Section 4.1.1) function and found an improvement in accuracy of 1.6%
(81.6% accuracy) and F1 score of 1.2% (83.7% F1 score) demonstrating the effectiveness
of the proposed loss function. We could not compare our model with Liu et al [54] since
training Liu et al [54] model requires digit level bounding boxes and human keypoint
annotations which our dataset does not have and there are no trained models provided by
the authors to be used publicly for testing.

Fig. 4.6 shows some interesting failure cases. Partial occlusions are common and can
result in misinterpretation of jersey numbers (Fig. 4.6 part a). Other sources of failures are
folding of the jersey leading to errors (Fig. 4.6 part b), jersey numbers not fully present
in player bounding boxes (Fig. 4.6 part c) and jersey number occluded due to camera
viewpoints (Fig. 4.6 part d).
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Table 4.3: Comparison of accuracy values with holistic, digit-wise and multi-task settings

Method Test Acc Precision Recall F1 score
Holistic 87.6 90.9 87.7 88.7
digit-wise 88.1 92.5 88.1 89.9
multi-task 89.6 93.6 89.6 91.2

Li et al. [53] 80.0 87.1 80.0 82.5
Li et al. [53](proposed loss) 81.6 87.9 81.6 83.7

Gerke et al. [52] 45.7 58.5 45.7 48.2

(a) GT:24; Predicted:21 (b) GT:16; Predicted:18 (c) GT:12; Predicted:2 (d) GT:72; Predicted:77

Figure 4.6: Some common sources of error are (a) occlusions from external sources, (b)
folding of jersey, (c) faulty bounding boxes, and (d) camera viewpoints not covering the
whole jersey.

4.2.3 Ablation study

We perform an ablation study on the loss weights α, β, and γ to determine how the digit-
wise and holistic losses affect accuracy. The analysis can be seen in Table 4.5. We observe
that giving a higher weight to the digit-wise loss (β + γ = 0.7) gives the highest accu-
racy (89.6%) and F1 score (91.2%). However, having a high value of holistic loss weight
(α = 0.8) results in a lower accuracy(87.8%) and F1 score (89.0%). This makes sense
because on its own, the digit-wise loss gives better accuracy compared to holistic loss (
Table 4.3). However, as β + γ is further increased to 0.9 the accuracy decreases (89%).
This demonstrates that holistic and digit-wise losses complement each other when an ap-
propriate weight is given to both losses. The accuracy is maximized when the digit-wise
loss is given slightly more than double the weight of the holistic loss. The best values are
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Table 4.4: Comparison of accuracy values with different backbone networks

Backbone Test Acc Precision Recall F1 score
Mobilenetv2 87.9 91.8 87.9 89.3
Resnet18 89.1 92.5 89.1 90.3
Resnet34 89.6 93.6 89.6 91.2

Table 4.5: Comparison of accuracy values with different values of loss weight coefficients
for the multi-task setting

α β γ Test Acc Precision Recall F1 score
1 0 0 87.6 90.9 87.7 88.7
0.8 0.1 0.1 87.8 92.0 87.3 89.0
0.5 0.25 0.25 89.1 92.3 89.1 90.2
0.33 0.33 0.33 88.4 92.7 88.4 90.0
0.3 0.35 0.35 89.6 93.6 89.6 91.2
0.2 0.4 0.4 89.6 92.8 89.6 90.9
0.1 0.45 0.45 89.0 92.9 89.07 90.6
0 0.5 0.5 88.1 92.5 88.1 89.9

α = 0.3, β = 0.35 and γ = 0.35.

We also do an ablation study on the backbone network used in the experiment in Ta-
ble 4.4. Two additional backbones were tested: Resnet18 [73], Mobilenetv2 [75], while
keeping other parameters including the loss weights α, β, γ fixed to their optimal values
of 0.3, 0.35, 0.35. Resnet 34 showed the best performace followed by Resnet18 and Mo-
bilenetv2. We did not test bigger networks such as Resnet 50 since it could not fit a batch
size of 100 on a single GPU.

4.3 Summary

In this chapter, we introduce a simple multi-task learning network for player’s jersey num-
ber recognition in ice hockey broadcast video frames. We also create a new dataset with
more than 50, 000 images to test the network. The network learns both the holistic and
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digit-wise representations of jersey number labels which resulted in improved regulariza-
tion and accuracy. The methodology is however, task agnostic and can be used in other
number recognition tasks.
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Chapter 5

Player identification from tracklets

In the previous chapter, we inferred player jersey number from static images. However,
inferring jersey number from static images does not take into account the valuable temporal
information present in sports videos. The temporal information present in sports broadcast
can be leveraged to recognize player jersey numbers. Suppose a player with a two-digit
jersey number has been tracked using a player tracking model. Often, only one of the
digits is visible in the tracklet due to occlusion and varying camera angles. The lack of
temporal context poses a challenge for jersey number recognition from static images since
a network recognizing jersey number from static images has access to only one image at a
time. Therefore, in this chapter, we introduce networks leveraging temporal information
by processing multiple tracklet images for jersey number recognition. In order to train and
test the networks developed, a tracklet identification dataset is used where each tracklet is
manually annotated with a ground truth jersey number. We first introduce a temporal 1D
CNN model for tracklet identification in Section 5.1. We thoroughly discuss the training
and inference techniques and data augmentations used. In Section 5.2, we introduce a
transformer network that improves upon the temporal 1D CNN model and uses weakly-
supervised learning for faster training and convergence. Both the temporal 1D CNN and
transformer model improve upon the previous state of the art [56] and do not require
training of a secondary network for inference [56].

5.1 Temporal CNN model

In this section, we describe the temporal 1D CNN developed for identifying jersey numbers
from tracklets. First, we examine the network architecture, training details and the infer-
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Figure 5.1: Network architecture for the player identification model. The networks accepts
a player tracklet as input. Each tracklet image is passed through a ResNet18 to obtain
time ordered features F . The features F are input into three 1D convolutional blocks, each
consisting of a 1D convolutional layer, batch normalization, and ReLU activation. In this
figure, k and s are the kernel size and stride of convolution operation. The activations ob-
tained from the convolutions blocks are mean-pooled and passed through a fully connected
layer and a softmax layer to output the probability distribution of jersey number p ∈ R86.

ence technique used. Then we explain the dataset developed and the experimental results.
Finally, ablations studies on the inference techniques and data augmentations used are
discussed.

5.1.1 Network architecture

Let T = {oi}ni=1 denote a player tracklet where each oi represents a player bounding box.
The player head and bottom in the bounding box oi are cropped such that only the jersey
number is visible. Each resized image Ii ∈ R300× 300×3 corresponding to the bounding
box oi is input into a backbone 2D CNN, which outputs a set of time-ordered features
F = {fi}ni=1, fi ∈ R512. The features F are input into a 1D temporal convolutional network
that outputs probability p ∈ R86 of the tracklet belonging to a particular jersey number
class.

The network consists of a ResNet18 [73] based 2D CNN backbone pretrained on the
player identification image dataset described in Chapter 4, Section 4.2.1. The weights of
the ResNet18 backbone network are kept frozen while training. The 2D CNN backbone
is followed by three 1D convolutional blocks each consisting of a 1D convolutional layer,
batch normalization, and ReLU activation. Each block has a kernel size of three and
dilation of one. The first two blocks have a larger stride of three, so that the initial
layers have a larger receptive field to take advantage of a large temporal context. Residual
skip connections are added to aid learning. The exact architecture is shown in Table 5.1.
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Finally, the activations obtained are pooled using mean pooling and passed through a
fully connected layer with 128 units. The logits obtained are softmaxed to obtain jersey
number probabilities. Note that the model accepts fixed length training sequences of length
n = 30 frames as input, but the training tracklets are hundreds of frames in length (Fig.
5.2). Therefore, n = 30 tracklet frames are sampled with a random starting frame from
the training tracklet. This serves as a form of data augmentation since at every training
iteration, the network processes a randomly sampled set of frames from an input tracklet.

Table 5.1: Network architecture for the temporal 1D player identification model. k, s, d
and p denote kernel dimension, stride, dilation size and padding respectively. Chi, Cho and
b denote the number of channels going into and out of a block, and batch size, respectively.

Input: Player tracklet b× 30× 3× 300× 300

ResNet18 backbone
Layer 1: Conv1D

Chi = 512, Cho = 512
(k = 3, s = 3, p = 0, d = 1)

Batch Norm 1D
ReLU

Layer 2: Conv1D
Chi = 512, Cho = 512

(k = 3, s = 3, p = 1, d = 1)
Batch Norm 1D

ReLU
Layer 3: Conv2D

Chi = 512, Cho = 128
(k = 3, s = 1, p = 0, d = 1)

Batch Norm 1D
ReLU

Layer 4: Fully connected
Chi = 128, Cho = 86

Output b× 86

5.1.2 Training details

To address the severe class imbalance present in the tracklet dataset, the tracklets are
sampled intelligently such that the null class is sampled with a probability p0 = 0.1. The
network is trained with the help of cross entropy loss. We use Adam optimizer for training
with a initial learning rate of .001 with a batch size of 15. The learning rate is reduced
by a factor of 1

5
after iteration numbers 2500, 5000, and 7500. Several data augmentation
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techniques such as random cropping, color jittering, and random rotation are also used.
All experiments are performed on two Nvidia P-100 GPUs.

5.1.3 Inference

During inference, we need to assign a single jersey number label to a test tracklet of k
bounding boxes Ttest = {o1, o2....ok}. Here k can be much greater than n = 30. So, a
sliding window technique is used where the network is applied to the whole test tracklet
Ttest with a stride of one frame to obtain window probabilities P = {p1, p2, ...pk} with
each pi ∈ R86. The probabilities P are aggregated to assign a single jersey number class
to a tracklet. To aggregate the probabilities P, we filter out the tracklets where the
jersey number is visible. To do this we first train a ResNet18 classifier Cim (same as the
backbone of discussed in Section 5.1.1) on the player identification image dataset. The
classifier Cim is run on every image of the tracklet. A jersey number is assumed to be
absent on a tracklet if the probability of the absence of jersey number Cim

null is greater than
a threshold θ for each image in the tracklet. The threshold θ is determined using the
player identification validation set. In the tracklets where the jersey number is visible, the
probabilities are averaged to obtain a single probability vector pjn, which represents the
probability distribution of the jersey number in the test tracklet Ttest. For post-processing,
only those probability vectors pi are averaged for which argmax(pi) ̸= null.

The rationale behind using visibility filtering and post-processing step is that a large
tracklet with hundreds of frames may have the number visible in only a few frames and
therefore, a simple averaging of probabilities P will often output null. The proposed
inference technique allows the network to ignore the window probabilities corresponding
to the null class if a number is visible in the tracklet. The whole algorithm is illustrated
in Algorithm 1.

5.1.4 Tracklet dataset

The player identification tracklet dataset consists of 3510 player tracklets. The tracklet
bounding boxes and identities are annotated manually. The manually annotated tracklets
simulate the output of a tracking algorithm. The tracklet length distribution is shown in
Fig. 5.2. The average length of a player tracklet is 191 frames (6.37 seconds in a 30 frame
per second video). It is important to note that the player jersey number is visible in only
a subset of tracklet frames. Fig. 5.4 illustrates two tracklet examples from the dataset.
The dataset is divided into 86 jersey number classes with one null class representing no
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Algorithm 1: Algorithm for inference on a tracklet.

1 Input: Tracklet Ttest = {o1, o2....ok}, image-wise jersey number classifier Cim,
Tracklet id model P, Jersey number visibility threshold θ

2 Output: Identity Id, pjn
3 Initialize: vis = false
4 P = P(Ttest) // using sliding window

5 for oi in Ttest do
6 if Cim

null(oi) < θ then
7 vis = true
8 break

9 end

10 end
11 if vis == true then
12 P′ = {pi ∈ P : argmax(pi) ̸= null} // post-processing

13 pjn = mean(P′)
14 Id = argmax(pjn)

15 end
16 else
17 Id = null
18 end
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Figure 5.2: Distribution of tracklet lengths (in frames) of the player identification dataset.
The distribution is positively skewed with the average length of a player tracklet as 191
frames.

Figure 5.3: Class distribution in the player tracklet identification dataset. The dataset
is heavily imbalanced with the null class (denoted by class 100) consisting of 50.4% of
tracklet examples.

jersey number visible. The class distribution is shown in Fig. 5.3. The dataset is heavily
imbalanced with the null class consisting of 50.4% of tracklet examples. The training set
contains 2829 tracklets, 176 validation tracklets and 505 test tracklets. The game-wise
training/testing data split is identical to the tracking dataset in Chapter 3 and the image-
based player identification dataset in Chapter 4 such that 17 games are used for training
and 8 games are used for validation and testing.

5.1.5 Results

The proposed player identification network attains an accuracy of 83.17% on the test
set. We compare the network with Chan et al. [56] who use a secondary CNN model for
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Figure 5.4: Examples of two tracklets in the player identification dataset. Top row:
Tracklet represents a case when the jersey number 12 is visible in only a subset of frames.
Bottom row: Example when the jersey number is never visible over the whole tracklet.

aggregating probabilities on top of an CNN+LSTM model. Our proposed inference scheme,
on the contrary, does not require any additional network. Since the code and dataset for
Chan et al. [56] is not publicly available, we re-implemented the model by scratch and
trained and evaluated the model on our dataset. The proposed network performs 9.9%
better than Chan et al. [56]. The network proposed by Chan et al. [56] processes shorter
sequences of length 16 during training and testing, and therefore exploits less temporal
context than the proposed model with sequence length 30. Also, the secondary CNN used
by Chan et al. [56] for aggregating tracklet probability scores easily overfits on our dataset
evident by a high training accuracy of 98% with low testing accuracy of 73.27%. Adding
L2 regularization while training the secondary CNN proposed in Chan et al. [56] on our
dataset also did not improve the performance. This is because our dataset is half the size
and is more skewed than the one used in Chan et al. [56], with the null class consisting of
half the examples in our case. The higher accuracy indicates that the proposed network
and training methodology involving intelligent sampling of the null class and the proposed
inference scheme works better on our dataset. Additionally, temporal 1D CNNs have been
reported to perform better than LSTMs in handling long range dependencies [76], which
is verified by the results.

The network is able to identify digits during motion blur and unusual angles (Fig. 5.6).
Upon inspecting the error cases, it is seen that when a two digit jersey number is misclas-
sified, the predicted number and ground truth often share one digit. This phenomenon is
observed in 85% of misclassified two digit jersey numbers. For example, 55 is misclassified
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Figure 5.5: Jersey number presence accuracy vs. θ (threshold for filtering out tracklets
where jersey number is not visible) on the validation set. The values of θ tested are
θ = {0.0033, 0.01, 0.03, 0.09, 0.27, 0.81}. The highest accuracy is attained at θ = 0.01.

as 65 and 26 is misclassified as 28 since 6 often looks like 8 (Fig. 5.7) because of occlusions
and folds in player jerseys.

The value of θ (threshold for filtering out tracklets where jersey number is not visible)
is determined using the validation set. In Fig 5.5, we plot the percentage of validation
tracklets correctly classified for the presence of jersey number versus the parameter θ. The
values of θ tested are θ = {0.0033, 0.01, 0.03, 0.09, 0.27, 0.81}. The highest accuracy of
95.64% at θ = 0.01. A higher value of θ results in more false positives for jersey number
presence. A θ lower than 0.01 results in more false negatives. We therefore use the value
of θ = 0.01 for doing inference on the test set.

5.1.6 Ablation studies

We perform ablation studies in order to study how backbone pretraining, data augmenta-
tion and inference techniques affect the player identification network performance.
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Figure 5.6: Some frames from a tracklet where the model is able to identify the number
20 where 0 is at a tilted angle in majority of bounding boxes.

Figure 5.7: Some frames from a tracklet where 6 appears as 8 due to motion blur and folds
in the player jersey leading to error in classification.

Backbone pretraining

In Section 5.1.1, the Resnet18 [73] network used as a backbone for temporal 1D CNN
network was pretrained on the player identification image dataset (Section 4.2.1). We
perform an ablation study to understand the effect of pretraining by considering two more
settings (1) removing the pretrained Resnet18 and replacing it with an identical Resnet18
without any pretraining (random weight initialization) and (2) using Resnet18 pretrained
on Imagenet dataset [77] which is a widely used practice in literature. From Fig. 5.8,
it can be seen that the player identification model trained using the randomly initialized
backbone converges to a low training accuracy of 10%. For the player identification model
trained using the backbone pretrained on Imagenet dataset, the learning is very slow
(green curve in Fig. 5.8). The fastest learning and convergence is shown by the model
using the backbone pretrained on player identification image dataset (Section 4.2.1) as
seen by the orange curve in Fig.5.8. This is because the backbone pretrained on player
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Figure 5.8: Effect of backbone pretraining on the training of player identification network.
With a randomly initialized backbone network, the player identification network converges
to a low training accuracy of 10%. The fastest training and convergence is obtained by the
model using the backbone network pretrained on jersey number dataset.

identification image dataset possesses important domain knowledge of jersey numbers that
readily transfers to the task of recognizing jersey numbers from video.

Data augmentation

We perform several data augmentation techniques to boost player identification perfor-
mance such data color jittering, random cropping, and random rotation by rotating each
image in a tracklet by ±10 degrees. Note that since we are dealing with temporal data,
these augmentation techniques are applied per tracklet instead of per tracklet-image. In
this section, we investigate the contribution of each augmentation technique to the overall
accuracy. Table 5.2 shows the accuracy and weighted macro F1 score values after remov-
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Table 5.2: Ablation study on different kinds of data augmentations applied during training.
Removing any one of the applied augmentation techniques decreases the overall accuracy
and F1 score.

Accuracy F1 score Color Rotation Random cropping
83.17% 83.19% ✓ ✓ ✓
81.58% 82.00% ✓ ✓
81.58% 81.64% ✓ ✓
81.00% 81.87% ✓ ✓

ing these augmentation techniques. It is observed that removing any one of the applied
augmentation techniques decreases the overall accuracy and F1 score.

Inference technique

We perform an ablation study to determine how our tracklet score aggregation scheme
of averaging probabilities after filtering out tracklets based on jersey number presence
compares with other techniques. Recall from section 5.1.3 that for inference, we perform
visibility filtering of tracklets and evaluate the model only on tracklets where jersey number
is visible. We also include a post-processing step where only those window probability
vectors pi are averaged for which argmax(pi) ̸= null. The other baselines tested are
described:

1. Majority voting: after filtering tracklets based on jersey number presence, each win-
dow probability pi ∈ P for a tracklet is argmaxed to obtain window predictions
after which a simple majority vote is taken to obtain the final prediction. For post-
processing, the majority vote is only done for those window predictions with are not
the null class.

2. Only averaging probabilities: this is equivalent to our proposed approach without
visibility filtering and post-processing.

The results are shown in Table 5.3. We observe that our proposed aggregation technique
performs the best with an accuracy of 83.17% and a macro weighted F1 score of 83.19%.
Majority voting shows lower performance with accuracy of 80.59% even after the visibility
filtering and post-processing are applied. This is because majority voting does not take
into account the overall window level probabilities to obtain the final prediction since it
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Table 5.3: Ablation study on different methods of probability aggregation.

Method Accuracy F1 score Visiblility filtering Postprocessing
Majority voting 80.59% 80.40% ✓ ✓

Probability averaging 75.64% 75.07%
Proposed w/o postprocessing 80.80% 79.12% ✓

Proposed w/o visibility filtering 50.10% 48.00% ✓
Proposed 83.17% 83.19% ✓ ✓

applies the argmax operation to each probability vector pi separately. Simple probability
averaging without visibility filtering and post-processing obtains a 7.53% lower accuracy
demonstrating the advantage of visibility filter and post-processing step. The proposed
method without the post-processing step lowers the accuracy by 2.37% indicating post-
processing step is of integral importance to the overall inference pipeline. The proposed
inference technique without visibility filtering performs poorly when post-processing is
added with an accuracy of just 50.10%. This is because performing post-processing on
every tracklet irrespective of jersey number visibility prevents the model to assign the null
class to any tracklet since the logits of the null class are never taken into aggregation.
Hence, tracklet filtering is an essential precursor to the post-processing step.

5.2 Transformer model

Transformers [78] are the existing standard in natural language processing (NLP) and are
swiftly gaining traction in computer vision [79, 80, 81]. Motivated by the increasing success
of transformers in computer vision, in this section, we introduce a transformer network for
recognizing players through their jersey numbers. The transformer model takes player
tracklets as input and outputs the probabilities of jersey numbers present.

In previous works [56] all images in a tracklet are annotated with the same label with
the tracklet consisting of hundreds of frames. As a result, when sampling a fixed number
of frames for training, it is possible that the frames may not have a jersey number visi-
ble. This leads to inconsistent and slow training. To address the issue, we implement a
weakly-supervised training approach by generating approximate frame-level labels for jer-
sey number presence (Section 5.2.3) and use the frame-level labels for faster training. The
proposed transformer network performs better than the temporal 1D CNN model discussed
in the previous section.
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Figure 5.9: Network architecture for the proposed network. The input to the network is
a temporal sequence of m images Tm. Each image in the tracklet is passed through a
ResNet18 network to obtain 512 dimensional features F. The features are prepended with
the [class] token and combined with learnable positional encoding.
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5.2.1 Network architecture

The input to the network is a temporal sequence of m images Tm = {Ii ∈ R3×300×300}mi=1

sampled from a player tracklet T = {Ik : Ik ∈ R300×300×3}nk=1 of n images. The m images
are randomly sampled from the tracklet T serving as a form of data augmentation. The
sampling technique is discussed in Section 5.2.3. The images Tm are passed through a 2D
CNN (Resnet18 [73]) to obtain m features F = {fi ∈ R512}mi=1. The Resnet18 is pretrained
on static jersey number images using the image based jersey number dataset introduced
in Chapter 4. The features F are input into a transformer encoder consisting of l layers
with h multi-headed self-attention heads per layer. Each attention head has a constant
dimension of Dh ∈ R64. Positional encoding pi ∈ R512 are added to the features fi. Instead
of using fixed positional encoding, the positional encoding is learned. As per the Vision
transformer [82], a [class] token similar to BERT [83] is prepended to the CNN features
F. The state of the [class] token at the final transformer layer is fed to three multi-layer
perceptron (MLP) heads consisting of a layernorm [84] and linear layer. The output of
the three MLP heads are three vectors. The first vector p0 ∈ R86 denotes the probability
distribution of the predicted jersey number considering each jersey number in the dataset
as a separate class. The other two vectors p1 ∈ R11 and p2 ∈ R11 denote the probability
distribution of the first and second digit of the predicted jersey number. The one additional
class in the 11-dimensional vectors p1 and p2 denotes the absence of a jersey number

We utilize the multi-task loss for jersey number recognition introduced in Chapter 4
for training the network. Concretely, we let y0 ∈ R86 denote the ground truth vector for
the holistic jersey number class, and we let y1 ∈ R11 and y2 ∈ R11 denote the first digit
and second digit ground truth vectors respectively. Let

L0 = −
86∑
i=1

yi0 log pi0 (5.1)

be the holistic jersey number component of the loss and

L1 = −
11∑
j=1

yj2 log pj1 (5.2)

and

L2 = −
11∑
j=1

yj1 log pj2 (5.3)
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be the digit-wise losses. Instead of using fixed weights for the three losses, the loss weights
are learned using the technique introduced in Kendall et al. [85], with the overall loss L
given by:

L =
1

σ2
1

L0 +
1

σ2
2

L1 +
1

σ2
3

L2 + log(σ1) + log(σ2) + log(σ3) (5.4)

where {σi}3i=1 are trainable parameters. The overall network architecture is illustrated in
Fig 5.9.

5.2.2 Training details

Same as the temporal 1D CNN in the previous section, for handling the severe class im-
balance in the dataset, the null class tracklets are sampled with a probability of ps = 0.1.
The network is trained with an Adam optimizer with an initial learning rate of 0.0001
and a batch size of 16. The learning rate is reduced by a factor of 1

5
after 2500 iterations

and again after 5000 iterations. Several data augmentation techniques such as random
rotation by ±10 degrees, randomly cropping 300 × 300 pixel patches from the tracklet
images and color jittering are used while training. Each augmentation technique is used
on a per-tracklet basis instead of a per-frame basis. The experiments are performed on
two NVIDIA P-100 GPUs.

5.2.3 Training with approximate labels

The tracklets present in the training set can contain hundreds of frames such that the jersey
number is only visible in a small subset of frames. Previous approaches in the literature
[56] sample a fixed number of frames randomly from a tracklet without any information
of where the jersey number is actually visible. Therefore certain sampled tracklets with
a non-null jersey number class may not have a jersey number visible. A toy example
depicting such a scenario is shown in Fig. 5.10. This leads to inconsistent training signals
which results in slow/unstable training as we demonstrate in experiments. To address this
issue, we create frame-level labels indicating the frames in the tracklet where the jersey
number is visible.

To generate these frame level labels, let M be a model trained to predict a jersey
number in static images and let T = {Ik : Ik ∈ R300×300×3}nk=1 be a training tracklet
consisting of n images Ik. The model M is run on every image Ik to obtain the probability
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pk of whether a jersey number is visible in the image Ik. This gives n probability scores
{pk ∈ [0, 1]}nk=1. The n probability scores are thresholded with a binary threshold ϕ to
obtain n binary values B = {bk ∈ {0, 1}}nk=1. The value of bk denotes the presence of jersey
number in a tracklet frame.

bk = 1 if jersey number present in frame (5.5)

bk = 0 otherwise (5.6)

The algorithm to obtain approximate labels in summarized in Algorithm 2. The model
M is a ResNet18 [73] pretrained on a a jersey number dataset consisting of static images
introduced in Chapter 4.

After precomputing B, let Tm = {Ii ∈ R300×300×3}l+m
i=l where l >= 1 and l + m <= n

be the m images randomly sampled from a tracklet T for training. The corresponding
Bm = {bi ∈ {0, 1}}l+m

i=l where l > 1 and l + m <= n has at least one bi = 1. This ensures
that at least one image with a visible jersey number is present in the sampled tracklet.

For implementation, we let I denote the indices in the vector B for which bk = 1. We
randomly sample an index start idx from I and then sample m frames from the tracklet
T starting from index start idx to start idx+m. A random offset o ∈ [0,m) is subtracted
from start idx to ensure that the sampled tracklet Tm may have a non-zero jersey number
label at any sampled frame (and not necessarily always at the beginning). The algorithm
is provided in Algorithm 3.

Algorithm 2: Algorithm for creating approximate frame-wise jersey number la-
bels.
1 Input: Player tracklet T, Image-wise jersey number model M , Threshold ϕ
2 Output: Frame for labels B
3 Initialize: B = null
4 for Ik ∈ T do
5 pk = M(Ik)
6 if pk > ϕ then
7 B.append(1)
8 else
9 B.append(0)

10 end

11 end
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Figure 5.10: Toy exampling for a tracklet (of length n = 9 frames) where sampling m = 3
consecutive frames from the start leads to a sequence with ground truth 12 with no jersey
number visible.

5.2.4 Results

The tracklet dataset discussed in Section 5.1.4 is used for training and testing. The infer-
ence for each tracklet is carried out using the interference technique explained in Section
5.1.3. We compare the performance of the proposed network the temporal 1D CNN model.
The network performs better demonstrating the effectiveness of the proposed approach.
The results are shown in Table 5.4.

We also re-implement Chan et al. [56] from scratch due to the unavailability of publicly-
available code and dataset. The proposed approach obtains 10.1% more accuracy than
Chan et al.. The reasons for better accuracy of the proposed approach compared to Chan
et al. are: (1) Chan et al. use a temporal receptive field of only 16 frames whereas the
proposed approach has a more than double receptive field of 40 frames; (2) lack of data
augmentation such as such as random rotation, color jittering in Chan et al.; (3) the dataset
used in our work is half the size and much more skewed (50.4% null class) compared to
Chan et al. due to which their late fusion network overfits on our dataset and (4) Chan et
al. does not incorporate techniques to handle dataset class imbalance.

We also compare the proposed weakly-supervised training scheme making use of ap-
proximate labels to sampling frames randomly from any point in the tracklet (not using
approximate frame labels) [56]. The proposed scheme of training with the help of approx-
imate labels improves the training convergence as illustrated in Fig. 5.11. The validation
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Algorithm 3: Algorithm for sampling m frames Tm for a tracklet T .

1 Input: Player tracklet T, Frame-wise jersey number labels B , Sampling sequence
length m

2 Output: Sampled tracklet images Tm

3 Initialize: Tm = null
// numpy function

4 I = np.where(B == 1)
5 start idx = random sample(I)
6 o = randint(m)
7 start idx = max(0, start idx− o)
8 Tm = T[start idx : start idx + m]

Table 5.4: The result of the best performing model compared to temporal 1D CNN.

Model Accuracy F1 score
Proposed 83.37 % 84.14 %

Temporal 1D CNN 83.17% 83.19%

accuracy curves are shown in Fig. 5.12. The reason for improved convergence with the
proposed training scheme is that all the tracklet mini-batches sampled using approximate
labels have the jersey number visible which results in a consistent training signal.

5.2.5 Ablation studies

The number of transformer layers l, the number of attention heads h and length of se-
quence for training/evaluation m are important parameters affecting the overall perfor-
mance. Hence, an ablation study is performed to determine the best value for each param-
eter.

Attention heads

We perform an ablation study to determine to best value of the number of attention heads
per transformer layer h. The values of h ∈ {2, 4, 6, 8, 10} were tested while keeping the
number of transformer layers l and sequence length for training/evaluation m constant
(l = 2,m = 30). The value of h = 8 showed the best performance with an accuracy
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Figure 5.11: Training curves corresponding to a network with transformer layers l = 2,
attention heads per layers h = 8 and training sequence length m = 40 Training with
approximate labels makes the network converge faster while training.

of 83.6% and a weighted F1 score of 84.2%. Table 5.5 shows the accuracy and F1 score
values at the different values of h tested. Using more than 8 attention heads resulted in a
performance decrease due to overfitting.

Transformer layers

We determine to best value of the number of transformer layers l by testing l ∈ {2, 4, 6, 8}
while keeping the number of attention heads per layer h and the sequence length used
for training/evaluation m constant (h = 8,m = 30). From Table 5.6, the best accuracy
value of 83.37% and F1 score of 83.85% was obtained with l = 2. The performance of
the network declines after increasing the transformer layers from l = 2 to l = 8. This is
because of overfitting since the number of parameters in the model increases around four
times from ∼ 3.2 million when l = 2 to ∼ 12.6 million when l = 8 with no significant
improvement in accuracy.
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Figure 5.12: Validation accuracy curves corresponding to a network with transformer layers
l = 2, attention heads per layers h = 8 and training sequence length m = 40. The initial
accuracy at iteration number 500 is 6.2% higher when training with approximate labels
(blue color curve). The network also converges faster and obtains a higher accuracy value
with approximate label based training.

Sequence length

We determine the best value of the training and evaluation sequence length m by keeping
the transformer layers and number of attention heads per layer constant. The values of
m ∈ {10, 20, 30, 40, 50}. From Table 5.7, the lowest performance was shown by m = 10
with an accuracy of 81.58%. Increasing m to 20 improved the accuracy and F1 score due
to to increase in receptive field of the network. However, the accuracy between m = 20
to m = 50 remained the same. The best performance was obtained by m = 40 with an
accuracy of 83.37% and F1 score of 84.14%. Further increasing sequence length m beyond
40 did not improve performance.
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Table 5.5: Ablation study to determine the best value of attention heads per layer h keeping
number of layers l and sequence length m constant (l = 2,m = 30).

h Accuracy F1 score
2 82.97% 83.65%
4 82.97% 83.32%
6 83.17% 83.74%
8 83.37 % 83.85%
10 82.38% 82.90%

Table 5.6: Ablation study to determine the best value layers l keeping number of attention
heads h and sequence length m constant (h = 8,m = 30).

l Accuracy F1 score
2 83.37 % 83.85%
4 81.98% 82.74%
6 81.58% 82.17%
8 82.77% 83.17%

Table 5.7: Ablation study to determine the best value of training and evaluation sequence
length m keeping number of attention heads h and number of layers l constant (h = 8, l =
2).

m Accuracy F1 score
10 81.58% 81.75%
20 83.37% 83.76%
30 83.37% 83.85%
40 83.37% 84.14%
50 83.37% 84.07%

5.3 Summary

In this chapter we introduced two networks for identifying player jersey numbers from
player tracklets to incorporate temporal information available in broadcast video. The
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first network is a 1D temporal CNN network that makes use of a series of residual 1D
temporal convolutional blocks to output the probability of the jersey number present in a
tracklet. An inference technique based on visibility filtering is implemented that outper-
forms majority voting and probability averaging. Additionally, data augmentation methods
such as random cropping, color jittering and random rotation are also implemented to im-
prove overall accuracy by approximately 2%. Appropriate ablation studies are conducted
to demonstrate the effectiveness of the inference technique and data augmentations used.
The second network is a transformer that takes tracklet frame CNN features and output
the jersey number probability. The transformer makes use of the same data augmentation
and inference techniques used in the temporal 1D CNN network. In addition, weakly super-
vised learning is performed by generating labels for visibility of jersey numbers in tracklet
images which leads to faster training and convergence. The two networks are tested on a
new player tracklet dataset where player tracklets are manually annotated with the jersey
number present. Experimental results demonstrate that the transformer network performs
better than the previous state-of -the-art[56] by almost 10%.
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Chapter 6

Overall system

The player tracking and identification techniques introduced in the previous chapters dis-
cussed the result of each component separately. In this chapter, we integrate the player
tracking (Chapter 3) and player identification (Chapter 5) methods into a holistic pipeline
(Fig 6.4). Concretely, the player tracklets obtained from the tracking model and used as
input for player identification. Remarking that the team roster and/or player shifts are of-
ten available through the NHL play-by-play data, we incorporate the roster and shift data
into the pipeline to reduce the search space of the player identification method. However,
incorporating team roster requires team affiliations of each player. Therefore, in this chap-
ter, we introduce a team-identification method which is integrated into the pipeline. For
team identification, away-team jerseys are grouped into a single class and home-team jer-
seys are grouped in classes according to their jersey color. A convolutional neural network
is then trained on the team identification dataset. Finally, the player tracking done in im-
age coordinate system is converted to ice rink coordinated using an automatic registration
network [63] to obtain position of players on ice rink.

6.1 Team identification

In this section, we present the team identification model used to get team affiliations. We
discuss the dataset used, methodology including training details for team identification
and the results obtained.

54



Figure 6.1: Classes in team identification and their distribution. The ‘ref’ class denotes
referees.

6.1.1 Dataset

The team identification dataset is obtained from the same games and clips used in the
player tracking dataset 3). The train/validation/test splits are also identical to player
tracking data. We take advantage of the fact that the away team in NHL games usually
wear a predominantly white colored jersey with color stripes and patches, and the home
team wears a dark colored jersey. For example, the Toronto Maple Leafs and the Tampa
Bay Lightning both have dark blue home jerseys and therefore can be put into a single
‘Blue’ class. We therefore build a dataset with five classes (blue, red, yellow, white, red-
blue and referees) with each class composed of images with same dominant color. The
data-class distribution is shown in Fig. 6.1. Fig. 6.2 shows an example of the blue class
from the dataset. The training set consists of 32419 images. The validation and testing
set contain 6292 and 7898 images respectively.

6.1.2 Methodology

For team identification, we use a ResNet18 [73] pretrained on the ImageNet dataset [77],
and train the network on the team identification dataset by replacing the final fully con-
nected layer to output six classes. The images are scaled to a resolution of 224×224 pixels
for training. During inference, the network classifies whether a bounding box belongs to
the away team (white color), the home team (dark color), or the referee class. For inferring
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Figure 6.2: Examples of ‘blue’ class in the team identification dataset. Home jersey of teams
such as (a) Vancouver Canucks (b) Toronto Maple Leafs and (c) Tampa Bay Lightning are
blue in appearance and hence are put in the same class.

the team for a player tracklet, the team identification model is applied to each image of
the tracklet and a simple majority vote is used to assign a team to the tracklet. This way,
the tracking algorithm helps team identification by resolving errors in team identification.

6.1.3 Training details

We use the Adam optimizer with an initial learning rate of .001 and a weight decay of
.001 for optimization. The learning rate is reduced by a factor of 1

3
at regular intervals

during the training process. We do not perform data augmentation since performing color
augmentation on white away jerseys makes it resemble colored home jerseys.
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Figure 6.3: Team identification results from four different games that are each not present
in the team identification dataset. The model performs well on data not present in dataset,
which demonstrates the ability to generalize well on out of sample data points.

6.1.4 Results

The team identification model obtains an accuracy of 96.6% on the team identification test
set. Table 6.1 shows the macro averaged precision, recall and F1 score for the results. The
model is also able to correctly classify teams in the test set that are not present in the
training set. Fig. 6.3 shows some qualitative results where the network is able to generalize
on videos absent in training/testing data. We compare the model to color histogram
features as a baseline. Each image in the dataset was cropped such that only the upper half
of jersey is visible. A color histogram was obtained from the RGB representation of each
image, with nbins bins per image channel. Finally a support vector machine (SVM) with an
radial basis function (RBF) kernel was trained on the normalized histogram features. The
optimal SVM hyperparameters and number of histogram bins were determined using grid
search by doing a five-fold cross-validation on the combination of training and validation
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Table 6.1: Team identification accuracy on the team-identification test set.

Method Accuracy Precision Recall F1 score
Proposed 96.6 97.0 96.5 96.7

SVM with color histogram 82.0 81.7 81.5 81.5

set. The optimal hyperparameters obtained were C = 10 , γ = .01 and nbins = 12.
Compared to the SVM model, the deep network approach performs 14.6% better on the
test set demonstrating that the deep network (CNN) based approach is superior to simple
handcrafted color histogram features.

6.2 Holistic pipeline

In this section, we explain the holistic pipeline combining the tracking, team identification
and player identification models. We discuss the methodology used, results obtained and
the failure cases for the pipeline.

6.2.1 Methodology

Given a test video, the player tracking, team identification, and player identification meth-
ods discussed are combined together for tracking and identifying players and referees in
broadcast video shots. Given a test video shot, we first run player detection and tracking
to obtain a set of player tracklets τ = {T1, T2, ....Tn}. For each tracklet Ti obtained, we
run the player identification model to obtain the player identity.

To incorporate player shifts for improving player identification performance, the game
time in the video needs to be synced with the player shifts database, denoted by S. S
contains player shifts according to game time along with the corresponding jersey number
and team affiliations. To read game time from broadcast video clips, the EasyOCR1 library
was used. Let ts denote the starting game time and te denote the ending game time of
a short video clip obtained using OCR. The player shifts S ′ that are present in the game
time between ts and te are extracted from the player shift database S. The set S ′ can be
expressed as a union S ′ = Sh∪Sa where Sh and Sa are the subsets of home and away shifts
present in the set S ′. Let the sets H and A denote the jersey numbers corresponding to
Sh and Sa respectively. We then construct shift vectors vh ∈ R86 and va ∈ R86 that encode

1Found online at: https://github.com/JaidedAI/EasyOCR
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the jersey numbers present in the home and away teams. Let null denote the no-jersey
number class and j denote the index associated with jersey number nj in pjn vector.

vh[j] = 1, if nj ∈ H ∪ {null} (6.1)

vh[j] = 0, otherwise (6.2)

similarly,

va[j] = 1, if nj ∈ A ∪ {null} (6.3)

va[j] = 0, otherwise (6.4)

Based on whether the player tracklet belongs to the home or the away team, the final
player identity Id is computed as

Id = argmax(pjn ⊙ vh) (6.5)

,(where ⊙ denotes element-wise multiplication) if the tracklet belongs to the home team,
otherwise,

Id = argmax(pjn ⊙ va) (6.6)

, if the player belongs to the away team. If instead of the player shifts, the game roster is
available, sets H and A denote the jersey numbers of the home and away team respectively
present in the roster. The overall algorithm is summarized in Algorithm 4. Fig. 6.4 depicts
the overall system.
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Algorithm 4: Holistic algorithm for player tracking and identification.

1 Input: Input Video V , Tracking model Tr , Team ID model T , Player ID model
P , vh , va

2 Output: Identities ID = {Id1, Id2.....Idn}
3 Initialize: ID = ϕ
4 τ = {T1, T2, ....Tn} = Tr(V )
5 for Ti in τ do
6 team = T (Ti)
7 pjn = P(Ti)
8 if team == home then
9 Id = argmax(pjn ⊙ vh)

10 else if team == away then
11 Id = argmax(pjn ⊙ va)
12 else
13 Id = ref
14 end
15 ID = ID ∪ Id

16 end
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Figure 6.5: Top row: Example of a ’hard’ tracklet where the ground truth jersey number
2 is tilted. There is also a heavy occlusion with the opposition player with jersey number
12. Note that the original tracklet contains 89 frames, however, only a subset of frames is
shown here due to space constraints. Bottom row: For the tracklet shown in the top row,
pjn is the probability of jersey number present in the tracklet (blue color). Orange color
line is the normalized probability pjn ⊙ va, i.e, the probability of jersey number multiplied
by the shift vector va. For pjn the highest confidence value exists for jersey number 12 (first
vertical line from left), which is incorrect. Multiplying with the shift vector va corrects the
mistake by making the system focus only on the jersey number present in the away team
during the game shift, after which the probability of the correct jersey number 2 (second
vertical line from left) becomes the greatest.

6.2.2 Results

We evaluate the network on the player tracklets obtained by running a tracking algorithm
[1, 86] on the 13 test videos. This evaluation is different from the evaluation done in Chapter
5, since the player tracklets are now obtained from the player tracking algorithm (rather
than being manually annotated). The accuracy obtained by incorporating player shifts
using OCR into player identification is compared to two baselines: (1) not incorporating
any kind of roster/shift information, and (2) using player rosters available at the start of
the game instead of player shifts.
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From Table 6.2, not using any shifts/roster data using the transformer network obtains
a mean accuracy of 82.02%, that is 4.12% greater than the temporal CNN network . With
the transformer network, incorporating player shifts obtains the best mean accuracy of
87.97%, which is ∼ 6% more than not using any shift or roster data. In fact, every video
except the first video in the test set obtains equal or more accuracy when using the player
shift data. This is because using player shifts helps the algorithm focus on a smaller subset
of possible players present at a particular time. The lower accuracy of the first test video is
due to inaccuracies in the shifts database. Using the player roster with transformer network
obtains an accuracy 86.32%, which is just 1.65% lower than the accuracy obtained when
using player shifts, which demonstrates that even if player shifts are not available, using
the available roster can provide performance comparable to using player shift data. Fig.
6.5 shows an example of a tracklet where incorporating player shifts corrects the prediction
of the model that does not use any shift or roster information.

Figure 6.6: Example of a tracklet where the same identity is assigned to two different
players due to an identity switch. These kind of errors in player tracking gets carried
over to player identification, since a single jersey number cannot be associated with this
tracklet.

6.2.3 Failure cases

There are three main sources of error:

1. Identity switches of the tracking model, where the same ID is assigned to two different
player tracks. These are illustrated in Fig. 6.6;

2. Misclassification of the player’s team, as shown in Fig. 6.7, which causes the player
jersey number probabilities to get multiplied by the incorrect roster vector; and

3. Incorrect jersey number prediction by the network.
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Figure 6.7: Example of a tracklet where the team is misclassified. Here, the away team
player (white) is occluded by the home team player (red), which causes the team identifi-
cation model to output the incorrect result. Since the original tracklet contains hundreds
of frames, only a subset of tracklet frames is shown.

6.3 Tracking on ice-rink

In the previous section players were tracked in the image pixel coordinate system. However,
in order to calculate on-rink metrics such as player velocities, analyzing player formation
and also for downstream computer vision tasks such as game event recognition, the player
locations need to be obtained in ice-rink coordinates. Therefore in this section, we explain
how a homography registration system [63] can be used in conjugation with the system
developed to obtain player locations on ice. A puck localization system (Appendix B) may
also be used to obtain locations puck on the ice-rink.

To calculate the position of the player on ice rink, in a video frame fi, let Ximg ∈ R2

denote the position of the player in image coordinates. Let H ∈ R3×3 be the homography
matrix obtained using the automatic homography registration model from Fani et. al. [63]
that maps the image pixel coordinates to ice rink coordinates in each video frame fi using a
Resnet18 [73] based regressor. Then the rink location of the player Xrink ∈ R2 is calculated
as:

Xrink = HXimg (6.7)

Fig. 6.10 shows some qualitative results of the player tracking and identification system
combined with a homography registration model on a test set video. Red circles denote
home team player, cyan circles represent away team player and yellow circles denote the
referee. Fig 6.8 shows the magnified version of the first image in Fig 6.10. The numbers
in each frame denote the player jersey number. In Fig 6.8, the system identifies the player
with jersey number 24 when the jersey number is not yet visible. This is because the jersey
number becomes visible in a future frame after which the system assign the number to the
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Figure 6.8: The system identifies the player with jersey number 24 when the jersey number
is not yet visible. This is because the jersey number becomes visible in a future frame after
which the system assign the number to the whole tracklet.

whole tracklet. The system allows a seamless analysis of the players skating on the ice
ring along with their team affiliations and identities. Additionally, Fig. 6.9 shows the puck
trajectory in the video.

6.4 Summary

In this chapter, we have introduced and implemented an automated offline system combin-
ing player tracking, team identification and player identification models for the challenging
problem of player tracking and identification in ice hockey. If available, the systems makes
use of game roster or shift data to further increase player identification accuracy by al-
lowing the system to focus on a smaller subset of possible players present at a particular
time for identification. The system takes as input broadcast hockey video clips from the
main camera view and outputs player trajectories on screen along with their teams and
identities. In order to obtain player trajectory location on the ice rink, an automatic ho-
mography registration system can be used. Additionally, the location of puck on the ice
rink can be obtained by using a separate puck localization model. In this way both player
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Figure 6.9: The predicted puck trajectory for the test video.

and puck locations on the ice rink may be obtained from broadcast video which can be
used for further high level analysis by analysts and scouts.

67



F
ig

u
re

6.
10

:
Q

u
al

it
at

iv
e

re
su

lt
s

of
th

e
p

la
ye

r
tr

ac
k
in

g
an

d
id

en
ti

fi
ca

ti
on

sy
st

em
co

m
b

in
ed

w
it

h
a

h
om

og
ra

p
h
y

re
gi

st
ra

ti
on

m
o
d

el
on

a
te

st
se

t
v
id

eo
.

T
h

e
fr

am
es

ar
e

sa
m

p
le

d
at

0.
5

fp
s

b
ec

au
se

of
sp

ac
e

co
n

st
ra

in
ts

.
R

ed
ci

rc
le

s
d

en
ot

e
h

om
e

te
am

p
la

ye
r,

cy
an

ci
rc

le
s

re
p

re
se

n
t

aw
ay

te
am

p
la

ye
r

an
d

ye
ll

ow
ci

rc
le

s
d

en
ot

e
th

e
re

fe
re

e.

68



Chapter 7

Conclusion and future work

In this chapter, we summarize the contributions of the thesis. We discuss the limitations
of the proposed system and also consider the possible future research directions.

7.1 Summary of contributions

The contributions of this thesis can be summarized as as follows:

1. Holistic tracking and identification system: A player tracking and identification
system is designed and implemented to track and identify players in broadcast NHL
videos. NHL broadcast videos are input to the systems after which players are
tracked and identified. A network trained to identify player team affiliations is further
incorporated to make use of the game roster and player shifts data, further improving
the overall accuracy by 6%. Further, a trained automatic homography registration
model [63] and puck localization model (Appendix B) are utilized to obtain the
positions of the players and puck on the ice rink.

2. Hockey player tracking : Five state-of-the-art algorithms are tested on hockey
dataset and their performance and failure cases are analysed. It is concluded that
algorithms with a simple linear motion model do not perform well for hockey player
tracking in broadcast video, demonstrated by the best performance of the graph
formulation based MOT neural solver model [1] on the hockey dataset. The main
source of player re-id failure were identity switches resulting from player going in and
out of broadcast camera field-of-view (accounting for 65% of total identity switches).
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3. Multi-task network for jersey number identification: A multi-task loss func-
tion is designed and implemented to recognize jersey numbers from images. Remark-
ing that the player jersey number in ice hockey are either one or two digit numbers,
they can wither be modelled as two separate classes or a single holistic class for
classification. After hypothesizing that learning both representation together is a
multi-task loss function could improve generalization [72], the multi-task network
was implemented and it was experimentally demonstrated that the multi-task net-
work performed better than the digit-wise and holistic setting. The experiments were
followed by a thorough ablation study further verifying the hypothesis.

4. Transformer based tracklet identification network: A transformer based
tracklet identification network is introduced and implemented to identify player jer-
sey number for player tracklets obtained from the player tracking model. Weak labels
indicating the presence of the jersey number in individual tracklet frames are gen-
erated. Utilizing the weak labels for training led to faster training and convergence.
The network is compared to Chan et al. [56] and a temporal CNN network developed
as a baseline. Experiments results demonstrate better performance of the proposed
network compared to Chan et al. [56] and the temporal CNN network.

5. New dataset for player tracking and identification: There are no publicly
available datasets for hockey player tracking, jersey number identification from im-
ages, tracklet identification and team identification. Therefore, new datasets for the
aforementioned problems are created. The player tracking dataset is obtained from
25 NHL games encompassing 84 videos. The dataset created for player identification
from static images consisting of 50, 000 images is the biggest dataset of such kind in
the literature.

7.2 Limitations

Although the tracking and identification system developed in this thesis achieves good
results, it is not perfect. This section discusses the major limitations associated with the
system.

7.2.1 Pan identity switches

As previously mentioned in Chapter 3 identity switches which result from the player going
outside and coming back into the camera field of view due to panning pose a big challenge
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Jersey number inferred

Jersey number not inferred

Figure 7.1: In online tracking and identification systems, jersey number can only be inferred
for the frames after the number becomes visible.

to the tracking system. This is because when the player goes out of the field of view on
screen, there are no reliable features to determine when and where the player will re-enter.

7.2.2 Identification in absence of jersey number

Although the player identification model introduced in the thesis achieves good results,
especially when player shift data is available (87%), the identification problems becomes
much more difficult when player jersey number is not visible in a given tracklet. This issue
can be resolved by incorporating features such as player handedness for player identification
explained in the next section.

7.2.3 Offline nature of the system

The player tracking and identification system introduced in this thesis is offline by design.
The player detection model is first used to generate player detections for input into the
tracking model. The overall system uses an offline tracking model that makes use of
future video to generate player tracklets. Also, the player identification is also offline since
the tracklet identification model is run once the full tracklets are obtained from tracking
results. However, an offline systems is unsuitable for real-time tasks where tracking and
identification results are desired on the go while the broadcast game video is streaming.
The online setting is a more difficult problem since unlike the system developed in this
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Train model with
labelled data

Infer pseudo
labels on

unlabeled data

Retrain on
combined

augmented data

Figure 7.2: General pseudo labelling technique for semi supervised learning. A model is
first trained on limited labeled data, which is used to infer labels on unlabeled data. Then
the model is re-trained on combined data with data augmentations applied. The process
is repeated in cyclic manner to obtain acceptable results.

thesis, the algorithm has no knowledge of the future video information. In online tracking,
if the jersey number is encountered in the middle of a player track, the identity can’t simply
be propagated in the previous frames, however, propagating the result is straightforward
in offline setting since tracklets identity has to be computed once the whole tracklet has
been observed (Fig 7.1).

7.2.4 Propagation of errors in pipeline

The system developed is a pipeline where there is likely that an error in one component
affects the other. For instance, in Chapter 6, Section 6.2.3, the failure cases of the overall
pipeline included identity switches arising from tracking and incorrect team identification.
Such errors may be minimized by a single network for tracking, team identification and
player identification such that a single multi-task loss function is optimized for the three
problems. A possible formulation of such a system is briefly explained in the next section.

7.3 Future work

The research done in this thesis opens several directions for future work. The important
ones are listed in this section:
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Backbone

Detection

Jersey
Identification

Re-ID

Team ID

Figure 7.3: Potential architecture for a unified tracking and identification network. Two
additional heads for jersey number identification and team identification can be added to
a backbone network so that a single multi-task loss function can be optimized for player
tracking and identification

7.3.1 Player handedness for player identification

Techniques such as player handedness can help in situations where the jersey number is
not visible. Similar to other racquet/stick based sports such as tennis and cricket, an ice
hockey player can left-handed, right-handed or ambidextrous. Although unique identifica-
tion would not be possible only on the basis of handedness, however, the search space for
identification maybe reduced by using player handedness as a feature for identification. In
addition, player handedness features can also be combined with RGB features to improve
player identification model accuracy. The challenge with identifying handedness is that the
hockey stick blade is often occluded and it is hard to estimate the orientation of the blade
with accuracy. Player handedness based features can further be used to recover identities
lost due to pan identity switches discussed in Section 7.2.1.

7.3.2 Unsupervised/ semi-supervised learning techniques

In this thesis, the player and team identification networks used are fully supervised. This
means that the models are trained and tested on a fixed, annotated train and test set.
However, for testing the models on broader data consisting of new seasons and leagues
unsupervised/semi-supervised methods may be used to improve generalization. Assuming
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that there is availability of large amount of unlabelled data, semi-supervised learning tech-
niques such as pseudo labelling [87, 88, 89] (Fig. 7.2) and active learning [90, 91] techniques
can be use to improve the generalization of player identification and team identification
models. Additionally fully unsupervised techniques such as clustering can also be used for
team identification.

7.3.3 Unified network for tracking and identification

The limitation discussed in Section 7.2.4 may be addressed by using a single network for
player tracking, team identification and player identification. One realization of this ap-
proach can be the addition of a team and player identification branch into a joint detection
and tracking (JDT) based network. Concretely, several JDT approaches [19, 33, 34, 35]
have separate detection and re-identification heads for detecting objects and learning re-
identification embeddings. Two additional heads for jersey number identification and team
identification can be added to the network so that a single multi-task loss function can be
optimized for player tracking and identification (Fig. 7.3).
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Appendix A

Accuracy metrics for tracking

To evaluate the effectiveness of any MOT algorithm, many metrics have been introduced
in the literature [117, 118]. Among these metrics, the most widely used are the Clear MOT
metrics [117], and ID-based metrics [118]. The details of these metrics are explained next:

A.1 Clear MOT metrics

Consider a frame t of a video. Let {h0, h1, ..hn} be the set of hypotheses for targets
{o0, o1, ..on} present in the frame t. Each hypothesis {hi : i ∈ [0..n]} and target {oi : i ∈
[0..n]} is represented by bounding boxes. The objective in mind is to develop a set of
metrics that:

1. A correspondence between {h0, h1, ..hn} and {o0, o1, ..on} needs to be established for
every frame t. The correspondence has to be as good as possible.

2. The errors that need to be calculated are :

• Localization error between the ground truth and detections.

• False positives(FP) - Detections not suitable for being assigned to any target.

• False negatives (FN)- Target location without any hypothesis

• Identity switches(IDSW) - Switching of hypotheses for a given target com-
pared to the previous frames.
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Figure A.1: Motivation for ID-based measures. CLEAR MOT metrics charge one identity
switch error to (a) and two identity switch errors to (b). However applications such as
sports player tracking favour (b) instead of (a) since (b) maintains the identity for a
longer time.

The correspondence {hi, oj} in a frame t is labelled as valid if the distance di,j is less than
a threshold T . The distance di,j is generally defined as the IOU intersection between the
hypothesis hi and the object oj bounding boxes. The mapping procedure is as follows:

1. Let Ψt denote the mappings {hi, oj} until frame t. If the hypothesis hi is present in
frame t + 1 along with the object oj, make the correspondence between hi and oj
provided that the distance di,j does not exceed the threshold T .

2. For all the objects oj for which a correspondence could not be made, use the Hungar-
ian algorithm [106] for making the minimum weight assignment which minimizes the
hypothesis distance between the objects and the hypothesis. In case the hypothesis
for a particular object changes between Ψt and Ψt+1, it is counted as an identity
switch (IDSW).

3. Label the targets with no matches as False negatives (FN), detections without any
matched target as False positive (FP).

4. Let ct denote the number of correspondences(matches) at time t. For these matches
calculate the distance(IOU overlap) dit between the target oi and its corresponding
hypothesis.

The multi-object tracking accuracy (MOTA) is then defined as :

MOTA = 1 − Σt(FNt + FPt + IDSWt)

ΣtGTt

(A.1)
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where FNt, FPt, IDSWt and GTt denote the false negatives, false positives, identity
switches and ground truth objects in frame t respectively. The multi-object tracking pre-
cision (MOTP) is defined as:

MOTP =
Σi,td

i
t

Σtct
(A.2)

A.2 Identity preserving metrics

In many real world scenarios such as airport security surveillance and sports tracking,
one is more interested in preserving identities of a particular object rather than merely
minimizing the number of identity switches. Consider Fig. A.1, let A denote the identity
of a sports player who needs to be tracked and let 1 and 2 denote the predicted identities.
Since Fig. A.1 (a) has fewer identity switches than A.1 (b), CLEAR MOT metrics report
higher MOTA score for (a) than (b), even though (b) provides the position of the player for
a longer time and hence, is more likely to be preferred by a sports player tracking system.

To calculate identity preserving metrics, first of all, a bipartite graph G = (Vt, Vc, E)
is constructed such that the set Vt has a regular node for each true trajectory and a false
positive node for each computed trajectory. The vertex set Vc contains a regular node
for each computed trajectory and a false negative mode for each true trajectory. An edge
e ∈ E connects two regular nodes if their trajectories overlap in time. Connections are
also made between a regular true node and corresponding false positive node and a regular
computed node and corresponding false negative node.

After constructing the graph, appropriate weights are assigned to the graph edges.
When one of the nodes corresponding to an edge is an irregular node(false positive or false
negative node), then a miss is counted. An edge connecting two regular nodes in sets Vc

and Vt is counted as a miss if the overlap between them is less than a threshold ∆. The
weight of an edge is defined as the number of binary misses incurred on connecting an edge.
A minimum weight matching on the above graph defines a one-to-one mapping minimizing
the overall misses. A match between two regular nodes is a True Positive ID (IDTP), a
match between a regular and an irregular node is either a False Positive ID (IDFP) or
a False Negative ID (IDFN). A match between two irregular nodes is counted as a True
Negative ID (IDTN). The ID preserving F1 score (IDF1) is defined as:

IDF1 =
2IDTP

2IDTP + IDFN + IDFP
(A.3)
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Appendix B

Puck localization

We introduce a network for localizing hockey puck on the ice rink. Remarking that humans
can locate the puck position from video with the help of contextual cues and temporal
information, our method incorporates temporal information in the form of RGB video
and leverages player location information with heatmaps using an attention mechanism
to help localize the puck (Fig. B.1). As such, the network developed is tasked with
simultaneously (1) localizing the puck in RGB video and (2) learning the homography
between the broadcast camera and the static rink coordinate system. Additionally, our
method differs from Pidaparthy et al. [100] in that instead of annotating data on a frame-
by-frame basis, we utilize the existing NHL data available on a play-by-play basis annotated
by expert annotators.

Experimental results demonstrate that the network is able to locate the puck with an
AUC of 73.1% on the test set. The network is able to localize the puck during player and
board occlusions. At test-time, the network is able to perform inference using a sliding
window approach in previously unseen untrimmed broadcast hockey video at 5 frame per
second (fps).

B.1 Methodology

In this section we discuss the components of the network designed to localize the puck
from broadcast video. We also discuss the loss function used along with other parameters
used during training.
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B.1.1 Network architecture

The overall network architecture consists of four components: Video branch, Player branch,
Attention and Output. The architecture is illustrated in Fig. B.1. The next four subsec-
tions explain the components in detail.

Video branch

The purpose of the video branch is to obtain relevant spatio-temporal information to es-
timate puck location. The video branch takes as input 16 frames {fi ∈ R256×256×3, i ∈
{1..16}} sampled from a short video clip V of two second duration. The frames are passed
through a backbone network consisting of four layers of R(2+1)D network [119] to ob-
tain features Fv ∈ R4×32×32×256 to be used for further processing. The R(2+1)D network
consists of (2+1)D blocks which splits spatio-temporal convolutions into spatial 2D convo-
lutions followed by a temporal 1D convolution.

Player branch

The location of puck on the ice rink is correlated with the location of the players since
the puck is expected to be be present where the player ”density” is high. We make the
assumption that the location of players remains approximately the same in a short two
second video clip. In order to encode the spatial player location, we take the middle frame
fm of the video V and pass it through a FasterRCNN [12] network to detect players. After
player detection, we draw a Gaussian with a standard deviation of σp at the centre of the
player bounding boxes to obtain the player location heatmap H. An advantage of using
this representation is that the player location variability in the video clip can be expressed
through the Gaussian variance. The player location heatmap H is passed through a player
location backbone network to output player location features Fp ∈ R32×32×8 . Please
refer to Table B.1 for the exact configuration of the player location backbone. The player
location features Fp are passed to the attention block for further processing.

Attention

The purpose of attention is to make the network incorporate player locations by considering
the relationship between video features Fv and player location features Fp. The player
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Figure B.1: The overall network architecture. Green represents model layers while pink
represents intermediate features. The network consists of four components: (1) Video
Branch, (2) Player Branch, (3) Attention, and (4) Output. The Video Branch extracts
spatio-temporal features from raw hockey video. The Player Branch extracts play location
information from player Gaussian heatmaps. The Attention component fuses the player
location and spatio-temporal video information. The Output component produces the
puck location output from the features obtained from the attention component.

location features Fp and video features Fv are concatenated along the the channel axis by
repeating the player location features along the temporal axis. The concatenated features
Fcat ∈ R4×32×32×264 are then passed through a variation of the squeeze and excitation [? ?
] network consisting of a 3 × 3 convolution, non-linear excitation and 1 × 1 convolution.
The 3 × 3 squeeze operation learns the spatial relationships between player locations on
the rink and video features. The squeeze operation outputs features F ′

cat ∈ R4×32×32×132.
The squeeze operation is followed by non linear activation and 1× 1 convolution to obtain
features Fa ∈ R4×32×32×256. The 1 × 1 convolution learns the channel wise relationships
between the feature maps in F ′

cat. Finally, the output of the attention block is the hadamard
product of the attention features Fa and the video features Fv followed by a skip connection.

Fo = Fa ⊗ Fv + Fv (B.1)
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Figure B.2: Construction of ground truth for a training sample with puck located at
w = 44 ft and h = 5 ft. (a) Ground truth distribution vector wgt ∈ R200 (b) Ground
truth distribution vector hgt ∈ R85

Output

The features Fo obtained from the attention component are finally passed through two Reg-
Blocks to output the probability of puck location on the ice rink. Global average pooling
is done at the end of the two RegBlocks to squash the intermediate output to one dimen-
sional vectors. This is done independently for rink width and height dimensions through
two separate branches. The overall network outputs two vectors, pw ∈ R200 and ph ∈ R85,
in accordance with the dimension of the NHL rink. The exact details of RegBlocks 1 and 2
are given in Table B.2. Regblocks 3 and 4 have a similar architecture, the only difference is
that instead of a R200 vector pw, a R85 vector ph is output by changing the output channels
to 85.

B.1.2 Training details

We use the cross entropy loss to train the network. In order to create the ground truth,
we use a one dimensional Gaussian with mean at the ground truth puck location and a
standard deviation σ for both directions. The Gaussian variance encodes the variability in
ball location in the short video clip (Fig. B.2) . The total loss Lpuck is the sum of the loss
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Table B.1: Network architecture of player location backbone. k,s and p denote kernel
dimension, stride and padding respectively. Chi, Cho and b denote the number of channels
going into and out of a block and batch size respectively.Additionally each layer contained
a residual-skip connection with a 1 × 1 convolution.

Input: Player heatmap b× 256× 256

Layer 1
Conv2D

Chi = 1, Cho = 2
(k = 3× 3, s = 2, p = 1)

Batch Norm 2D
ReLU

Layer 2
Conv2D

Chi = 2, Cho = 4
(k = 2× 2, s = 2, p = 0)

Batch Norm 2D
ReLU

Layer 3
Conv2D

Chi = 4, Cho = 8
(k = 2× 2, s = 2, p = 0)

Batch Norm 2D
ReLU

Output b× 32× 32× 8

in horizontal axis Lw and vertical axis Lh, which is given by:

Lpuck = Lw + Lh (B.2)

Lpuck = − 1

200

200∑
i=1

wgt log pw − 1

85

85∑
j=1

hgt log ph (B.3)

Where wgt ∈ R200 and hgt ∈ R85 denote the ground truth probabilities and pw ∈ R200 and
ph ∈ R85 denote the predicted probabilities.
For data augmentation, each frame is sampled from a uniform distribution U(0, 60) so that
the network sees different frames of the same video when the video sampled different times.
The data augmentation technique is used is all experiments unless stated otherwise. We
use the Adam optimizer with an initial learning rate of .0001 such that the learning rate
is reduced by a factor of 1

5
at iteration number 5000. The batch size is 15.
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Table B.2: Network architecture of Regblocks 1 and 2 for output pw ∈ R200. k,s and
p denote kernel dimension, stride and padding respectively. Chi, Cho and b denote the
number of channels going into and out of a block and batch size respectively. Additionally
each layer contained a residual-skip connection with a 1 × 1 × 1 convolution.

Input: F0 b× 4× 32× 32× 256

Reg Block 1
Conv3D

Chi = 256, Cho = 200
(k = 2× 2× 2, s = 2× 2× 2, p = 0)

Batch Norm 3D
ReLU

Reg Block 2
Conv3D

Chi = 200, Cho = 200
(k = 2× 2× 2, s = 2× 2× 2, p = 0)

Batch Norm 3D
ReLU

Global average pooling
Sigmoid activation
Output b× 200

B.2 Experiments

In this section we describe the dataset created to train and evaluate the puck tracking
network. We also discuss the accuracy metric used and the results obtained. Finally
be perform an ablation study the study the influence of various factors on the network
performance.

B.2.1 Dataset

The dataset consists 8,987 broadcast NHL videos of two second duration with a resolution
of 1280 × 720 pixels and a framerate of 30 fps with the approximate puck location on
the ice rink annotated. The annotations are rough and approximate such that the puck
location corresponds to the whole two second video clip rather than a particular frame.
The videos are split into 80% samples for training and 10% samples each for validation and
testing. Fig B.3 shows the distribution of a subset of puck location data. The videos are
also annotated with an event label which can be either Faceoff, Advance (dump in/out),
Play ( player moving the puck with an intended recipient e.g., pass, stickhandle ) or Shot.

97



Figure B.3: Subset of 1500 puck locations in the dataset. The puck locations on the ice rink
are highly correlated with the event label. Faceoffs(red) are located at the faceoff circles,
shots(blue) are located in the offensive zones and dump in/outs (yellow) are presents in
the neutral zone.

B.2.2 Accuracy metric

A test video is considered to be correctly predicted at a tolerance t feet if the distance
between the ground truth puck location z and predicted puck location zp is less than t
feet. That is ||z − zp||2 < t. Let ϕ(t) denote the percentage of examples in the test set
with correctly predicted position puck position at a tolerance of t. We define the accuracy
metric as the area under the curve (AUC) ϕ(t) at tolerance of t = 5 feet to t = 50 feet.

B.2.3 Results - trimmed video clips

The network attains an AUC of 73.1% on the test dataset illustrated in Fig. B.5 (b). The
AUC in the horizontal direction is 81.4% and AUC in vertical direction is 87.8%. From Fig.
B.5 (a), at a low tolerance of t = 12 ft, the accuracy in vertical(Y) direction is 76% and
the accuracy in horizontal(X) direction is 63%. At a tolerance of t = 20 ft, the accuracy
in both directions is greater than 80% .
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Figure B.4: Zone-wise accuracy. The figure represents the hockey rink with the text in
each zone represents the percentage of test examples predicted correctly in that zone. The
position of the camera is at the bottom. In (b), the accuracy is low in the lower halves of
the defensive and offensive zones since the puck gets occluded by the rink board.

Fig. B.4 show the zone wise accuracy. A test example is classified correctly if the
predicted and ground truth puck location lies in the same zone. From Fig. B.4 (a), the
network gets an accuracy of ∼ 80% percent in the upper and lower halves of the offensive
and defensive zones. From Fig. B.4 (b), after further splitting the ice rink in nine zones,
the network achieves an accuracy of more than 70% in five zones. The network also has
failure cases. From Fig. B.4 (b), it can be seen that accuracy is low (less than 60% ) in the
bottom halves of the defensive and offensive zones. This is due to the puck being occluded
by the rink boards.

B.2.4 Results- untrimmed broadcast video

We also test the network on untrimmed broadcast videos using a sliding window of length
l and stride s. The window length l is the time duration covered by the sliding window
and stride s is the time difference between two consecutive application of the sliding win-
dow. Due to the difficulty of annotating puck location frame-by-frame in 720p videos, we
do not possess the frame-by-frame ground truth puck location. Therefore, we perform a
qualitative analysis in this section. The videos used for testing are previously unseen video
not present in the dataset used for training and testing the network.

To determine the optimal values of stride s validation is performed on a 10 second clip.
Some frames from the validation 10 second clip are shown in Fig. B.6. Whenever visible,
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Figure B.5: (a) Accuracy (ϕ) vs threshold (t) curve. (b) The best performing model gets
an overall AUC of 73.1% on test set.

the location of the puck is highlighted using a red circle. Fig B.7 (a) shows the trajectories
obtained. The network is able to approximately localize the puck in untrimmed video
within acceptable visual errors, even though the network is trained on trimmed video clips
where puck location is annotated approximately. The puck is not visible during many
frames of the video, but the network is still able to guess the puck location. This is be-
cause the network takes into account the temporal context and player location. Since the
network is originally trained on 2 second clips, the window length l is fixed to 2s. Fig B.7
(a) , shows that as the stride s is decreased, the puck location estimates become noisy.
Since between two passes, the puck motion is linear, we do not decrease stride below 0.5s
as it leads to very noisy estimates (Fig. B.7 (b)). The optimal stride s = 1s gives the most
accurate result. A lower stride results in noisy results and higher strides produces very
simple predictions. The inference time of the network on a single GTX 1080Ti GPU with
12GB memory is 5 fps.
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Figure B.6: Some frames from the 10 second validation video clip. Whenever visible, the
location of the puck is highlighted using the red circle. The initial portion of the clip is
challenging since the puck is not visible in the initial part of the clip.

B.2.5 Ablation studies

We perform an ablation study on the number of layers in the backbone network, puck
ground truth standard deviation, presence/absence of player branch consisting of player
locations and data augmentation .

Puck ground truth standard deviation

The best value of standard deviation σ of puck location ground truth 1D Gaussian is
determined by varying σ from 20 to 35 in multiples of five. From Table B.3, the number of
layers in the backbone is fixed to three while player location based attention is not used.
Maximum AUC of 69% is attained with σ = 30 feet. A lower value of σ makes the ground
truth Gaussian more rigid/peaked which makes learning difficult. A value of sigma greater
than 30 lowers accuracy since a higher σ makes the ground truth more spread out which
reduces accuracy on lower tolerance values.

Layers in backbone

We determine the optimal number of layers in the R(2+1)D backbone network by extract-
ing the video branch features from different layers without using the player location based
attention. The puck ground truth standard deviation is set to the optimal value of 30.
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Figure B.7: (a) Puck trajectory on the ice rink for the validation video. The trajectory
becomes noisy with s = 0.5s and lower. (b) Puck trajectory for the validation video with
a very low stride of 0.125 seconds. The trajectory is extremely noisy and hence is not a
good estimate.

Table B.3: Comparison of AUC with different values of σ with a three layer backbone
network. Network with σ = 30 shows the best performance

σ AUC AUC(X) AUC(Y)
20 62.5 71.3 85.07
25 68.5 77.9 85.6
30 69.0 78.5 85.5
35 68.9 78.8 85.4

Table B.4: Comparison of AUC with different number of layers of the backbone R(2+1)D
network. A four layer backbone shows the best performance.

Layers AUC AUC(X) AUC(Y)
2 56.3 73.2 74.1
3 69.0 78.5 85.5
4 72.5 81.3 87.3
5 72.4 81.0 87.3

From Table B.4, the maximum AUC of 72.5% is achieved by using 4 layers of R(2+1)D
network. Further increasing the number of backbone layers to 5 causes a decrease of 0.1
in AUC due to overfitting.
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Table B.5: Comparison of AUC values with/without player branch. The player branch
with σp = 15 shows the best performance.

Player detection σp AUC AUC(X) AUC(Y)
No - 72.5 81.3 87.3
Yes 15 73.1 81.4 87.8
Yes 20 72.8 81.5 87.3
Yes 25 72.2 80.4 87.9

Table B.6: Comparison of AUC values with uniform and random sampling

Sampling method AUC AUC(X) AUC(Y)
Constant interval 70.3 79.4 86.4

Random 73.1 81.4 87.8

Player location based attention

We add the player branch and the attention mechanism to the network with 4 backbone
layers and σ = 30. Three values of player location standard deviation σp = {15, 20, 25} are
tested. From Table B.5, adding the player location based attention mechanism brought an
improvement in the overall AUC by 0.6% with σp = 15. Further increasing σp causes the
player location heatmap to become more spread out obfuscating player location informa-
tion.

Data augmentation

We compare the data augmentation technique done using randomly sampling frames from a
uniform distribution (explained in Section B.1.2) to sampling frames at a constant interval.
From Table B.6, removing random sampling decreases the overall AUC by 3.2% which
demonstrates the advantage of the data augmentation technique used.

B.3 Summary

We introduced a network to localize puck in broadcast hockey video. The model makes
use of temporal information and incorporated player locations trough an attention mech-
anism to localize puck. We perform ablation studies on the network parameters and data
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augmentation used. We attain an AUC of 73.1% on the test set and qualitatively localize
the puck in untrimmed broadcast videos. We also report an ice rink region based average
accuracy of 80.2% with the ice rink split into five zones and 67.3% with the rink split into
nine regions.
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