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Abstract

Modern mobile devices allow users to access various applications and services anywhere.
However, high mobility also exposes mobile devices to device loss, unauthorized access, and
many other risks. Existing studies have proposed a variety of explicit authentication (EA)
and implicit authentication (IA) mechanisms to secure sensitive personal and corporate
data on mobile devices. Considering the limitations of these mechanisms under different
circumstances, we expect that future authentication systems will be able to dynamically
determine when and how to authenticate users based on the current context, which is
called adaptive authentication. This thesis investigates adaptive authentication from the
perspectives of context sensing techniques, authentication and access control adaptations,
and adaptation modeling.

First, we investigate the smartphone loss scenario. Context sensing is critical for trig-
gering immediate device locking with re-authentication and an alert to the owner before
they leave without the phone. We propose Chaperone, an active acoustic sensing based
solution to detect a user’s departure from the device. It is designed to robustly provide
a user’s proximity and motion contexts in real-world scenarios characterized by bursting
high-frequency noise, bustling crowds, and diverse environmental layouts. Extensive eval-
uations at a variety of real-world locations have shown that Chaperone has high accuracy
and low detection latency under various conditions.

Second, we investigate temporary device sharing as a special scenario of adaptive au-
thentication. We propose device sharing awareness (DSA), a new sharing-protection ap-
proach for temporarily shared mobile devices. DSA exploits natural handover gestures
and behavioral biometrics as contextual factors to transparently enable and disable a de-
vice’s sharing mode without requiring explicit input of the device owner. It also supports
various access control strategies to fulfill sharing requirements imposed by an app. Our
user study has shown the effectiveness of handover detection and demonstrated how DSA
automatically processes sharing events to provide a secure sharing environment.

Third, we investigate the adaptation of an IA system to shared mobile devices to reject
imposters and distinguish between legitimate users in real-time. We propose a multi-user
IA solution that incorporates multiple modalities and supports adding new users and au-
tomatically labeling new incoming data for model updating. Our solution adopts a score
fusion strategy based on Dempster-Shafer (D-S) theory to improve accuracy with consid-
ering uncertainties among different TA mechanisms. We also provide an evaluation frame-
work to support IA researchers in the evaluation of multi-user, multi-modal TA systems.
We present two sample use cases to showcase how our framework helps address practical
design questions of multi-user TA systems.



Fourth, we investigate a high-level organization of different adaptation policies in an
adaptive authentication system. We design and build a multi-stage risk-aware adaptive
authentication and access control framework (MRAAC). MRAAC organizes adaptation
policies in multiple stages to handle various scenarios and progressively adapts authentica-
tion mechanisms based on context, resource sensitivity, and user authenticity. We present
three use cases to show how MRAAC enables various stakeholders (device manufactur-
ers, enterprise and secure app developers) to provide adaptive authentication workflows on
COTS Android with low processing and battery overhead.

In conclusion, this thesis fills the gaps in adaptive authentication systems for shared
mobile devices and adaptation models for authentication and access control. Our frame-
works and implementations also benefit researchers and developers to develop and evaluate
their adaptive authentication systems efficiently.
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Chapter 1

Introduction

1.1 User Authentication on Mobile Devices

Modern mobile devices, such as smartphones and tablets, have brought great convenience,
strong connectivity, and high mobility to people’s work and life. While people tend to use
mobile devices for a variety of tasks, these devices also store sensitive personal or business
data or provide access to sensitive operations. Despite benefiting from high mobility, mobile
devices are also at high risks of unauthorized access and device loss. User authentication is
usually required to unlock a mobile device when a user makes access attempts. Although
password authentication is the most classic and widely adopted user authentication mech-
anism, it is poor in usability [12,67] and suffers from shoulder surfing attacks [14, 165].
Researchers have devoted to replace password authentication with other authentication
mechanisms [3, 19]. Biometrics-based authentication mechanisms, such as fingerprint and
face recognition, have become popular in modern mobile devices since they make significant
improvements in usability by reducing users’ time and effort in doing user authentication.
However, all these authentication mechanisms require a user’s attention or explicit inputs.
Moreover, once a device is unlocked, most authentication mechanisms cannot provide fur-
ther identity verification to ensure the validity of the user identity throughout a session.

1.1.1 Implicit Authentication

Implicit authentication (IA) transparently authenticates a user’s identity to improve the
security and usability of user authentication. Note that we refer to the aforementioned



user authentication methods as Explicit Authentication (EA) in contrast. IA leverages
users’ distinct device usage or behavioral patterns to distinguish a user from others in a
non-intrusive way. On the one hand, TA provides an additional authentication factor to
supplement EA mechanisms. Many TA mechanisms [17,100,104] can continuously verify a
user’s identity in the background during the device usage. For example, an attacker may
launch a shoulder surfing attack to obtain the PIN code to unlock a device. Behavioral
biometrics based IA mechanisms can still block the attacker from accessing the device by
comparing the attacker’s touch patterns [37] or keystroke dynamics [118] to the device
owner’s. On the other hand, TA helps reduce unnecessary EA requests for alleviating a
user’s burden on doing user authentication. As long as an IA mechanism can verify the
current user’s identity, it can maintain the authentication status of the user and keep the
device unlocked. Once it detects a mismatch in device usage or behavioral patterns, it can
activate a specific EA mechanism to authenticate the user.

However, IA mechanisms still have the following limitations:

e Accuracy. According to the evaluation conducted by existing studies [52,92], the
error rate of behavioral biometrics based IA mechanisms is not negligible. A false
rejection may interrupt a user’s normal device usage and ask for re-authentication,
while a false acceptance may temporarily expose sensitive resources to an attacker.

e Availability. TA mechanisms rely on certain patterns to verify a user’s identity,
while these patterns may be related to specific activities. The absence of the required
activities and patterns will result in the unavailability of an IA mechanism.

e Detection latency. IA mechanisms may need to collect sufficient device usage data
to determine if the current user is legitimate or not. Thus, it may take time for [A
mechanisms to detect an attacker.

e Power consumption. To provide continuous authentication, an IA mechanism
may need to continuously collect and process sensor data. The additional power
consumption of IA computation and sensor activities is not negligible for mobile
devices.

In spite of continuous effort in looking for new behavioral biometrics to address these
limitations, a possible avenue is to combine different IA mechanisms, which is multi-modal
IA. Compared to single-modal IA, multi-modal TA provides higher accuracy, broader cov-
erage of continuous authentication, and defense against attacks targeting single modalities.
However, multi-modal TA also leads to more overhead given that multiple [A mechanisms



collect and process sensor data continuously. In trade-off, the authentication system is
supposed to control each TA mechanism to reduce unnecessary computation while maxi-
mizing the accuracy of combining the available modalities. We review the multi-modal A
techniques in § 2.4.2.

1.1.2 Adaptive Authentication

The emergence of TA shows a trend for adapting user authentication on mobile devices
to use context to balance security and usability. More generally, a mobile authentication
system is expected to dynamically choose the appropriate authentication method(s) or
adjust its behaviors according to its operating circumstances, which is called an adaptive
authentication system.

Adaptive authentication consists of two key elements: context and adaptation. Ac-
cording to Arias-Cabarcos et al. [10], context changes make an authentication system fail
to satisfy the security or usability requirements. Consequently, the authentication system
needs to apply changes to its authentication mechanisms to fit into the current circum-
stance. Taking Android Smart Lock [32] as an example, a user’s departure from the secure
location (secure context) implies higher risk of unauthorized access, which results in the
activation of EA for the next access (adaptation).

Contexts are characterized by contextual factors [187], which involve:

e Device-related contextual factors describe the device status, including network
connectivity, signal strength, nearby/connected devices, etc.

e User-related contextual factors describe the current device user, including physical
movements, activities, user’s proximity, social relationship, etc.

e Physical contextual factors describe the physical environment in which the device
is located, including locations, ambient light, ambient noise, temperature, etc.

e Temporal contextual factors describe the time information, including date, time,
etc.

Context sensing techniques leverage various sensors of mobile devices to obtain contextual
factors and recognize the current context. For the example of Android Smart Lock, a
mobile device can determine the current location via location sensors (e.g., GPS) and
compare it to the user-defined trusted location to determine if it is secure or not.



The adaptation of an authentication system should fulfill the security and usability
requirements of the new context. Intuitively, a less secure context needs stricter authen-
tication to defend against higher risk of unauthorized access. Moreover, the adaptation
scheme should target low authentication overhead and reduce time and effort of a user on
authentication. The adaptation process involves all aspects of an authentication system.
Based on the taxonomy of Arias-Cabarcos et al. [10], we divide the adaptation process into
the following levels:

e Parametric adaptation is mainly about tuning the parameters of an authentication
mechanism. For example, an TA mechanism for continuous authentication can tune
down its frequency for less battery consumption.

e Algorithmic adaptation is to change the algorithm or model of an authentication
mechanism for a different one when it does not work well (e.g., low accuracy) for
the current context. For example, a face recognition based authentication mecha-
nism may need to apply additional data pre-processing [76] to mitigate the accuracy
degradation under a poor illumination condition.

e Structural adaptation is about activation and de-activation of authentication
mechanisms. An authentication system may include a variety of authentication mech-
anisms, and need to determine which mechanism(s) to adopt for the current context.
For example, if a user is using the device while walking, the authentication system
can choose to activate a gait-based authentication mechanism for TA.

e Systematic adaptation changes the behaviors of an authentication system, in-
cluding how to make decisions and how to respond to certain authentication results
and context sensing results. For example, the system can choose to restrict access
to sensitive resources instead of locking out a non-owner user when the device is
temporarily shared with a guest.

1.1.3 Two Illustrative Examples

Adaptive authentication is a very broad concept that involves various context sensing tech-
niques, authentication mechanisms, and adaptation methods. We start with two example
scenarios to illustrate how context sensing techniques make mobile device aware of risks
and how an authentication system adapts itself to these risks.

Smartphone loss. Smartphone loss is a common scenario where a smartphone is left
unattended and incurs high risks of unauthorized access from nearby opportunistic attack-
ers. Following the concept of adaptive authentication, the authentication system of the
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device should be able to detect potential device loss and automatically lock the device
(i.e., de-authenticate the user and trigger a specific authentication mechanism) to defend
against unauthorized access. A user’s proximity to a device is an important context factor
for device loss detection since a user is usually physically far away from the device at a
device loss event. However, proximity is not sufficient to determine a device loss event.
We still need to incorporate other contextual factors. For example, a user’s motion trajec-
tory may imply that the user is moving away from the device. Besides, since smartphone
loss is not likely to occur at secure locations (e.g., home), adding location restrictions can
avoid unnecessary loss detection. We further investigate context sensing techniques for loss
detection and provide a loss prevention solution in Chapter 3.

Device sharing. In practice, device owners share their devices with other people in daily
life, where non-owner users are allowed to access the device. (We use the terms “owner” to
refer to a smartphone owner sharing their device and “sharee” to refer to people a device is
shared with.) The device sharing scenario breaks the assumption of many TA mechanisms
that the device owner is the only legitimate user. Besides, most mobile devices and apps
follow a single-user design and adopt all-or-nothing access control [1,71] — once the device
is unlocked, a non-owner may have access to most sensitive resources during sharing. In
this scenario, a mobile device is supposed to detect a sharing event and adjust the behaviors
of its IA mechanisms to prevent them from blocking the non-owner user upon a mismatch
in device usage or behavioral patterns. It is also necessary to impose access control to
prevent unauthorized access to sensitive resources on the device. In Chapter 4, we study
context sensing techniques for the detection of temporary sharing with the incorporation
of IA mechanisms for owner detection. Chapter 5 further investigates the adaptation of
IA mechanisms to shared devices for multiple legitimate users.

1.2 Thesis Statement and Objectives

The thesis statement is stated as follows:

Context sensing and implicit authentication enable authentication systems of mobile
devices to identify various risks resulting from real-world device usage practices and to
adapt to varying security and usability requirements imposed by context changes.

This thesis includes four research objectives, which can be classified into two categories:
1) Proposing new adaptive authentication solutions to address practical scenarios, and 2)
Designing new systems and frameworks to facilitate researchers and developers to develop



adaptive authentication systems. Each research objective consists of a series of research
problems.

For the first category, we mainly investigate how to make mobile devices aware of a
specific scenario and then decide what to adjust in their authentication systems to handle
this scenario. We first need to determine the contextual factors that characterize the risk
and design context sensing techniques to capture these factors. Then, we need to identify
the risk of the scenario and apply adaptations to the authentication systems based on the
security and usability requirements.

e Objective 1 (Smartphone loss prevention): Identify contextual factors that in-
dicate potential smartphone loss, and design context sensing techniques accordingly.
Determine when to automatically lock the device for re-authentication and how to
alert a user to prevent smartphone loss.

Smartphone loss detection is related to the user’s proximity context. As smartphone
loss happens when the device is not with the owner, a context sensing technique for
loss prevention is required to detect a user’s movement from a distance. Besides, to
make context sensing reliable and robust, we need to consider possible environmental
factors that may interfere with the sensing process. Evaluating a prevention solution
should be performed under real-world conditions as well. Besides, a prevention so-
lution should produce few false positives and effectively alert a user of smartphone
loss in addition to locking the device.

e Objective 2 (Device sharing awareness): Identify contextual factors that indi-
cate the starting and end of temporary device sharing, and design context sensing
techniques accordingly. Enable mobile device to proactively detect device sharing
with little to no inputs of users. Adapt authentication and access control of mobile
devices to device sharing.

Temporary device sharing allows a non-owner user to temporarily access the device,
which is a special case for the authentication system. The goal of device sharing
awareness is to adapt the authentication system to a detected sharing event swiftly.
From the perspective of context sensing, the device needs to detect the handover
event from the owner to another person as the starting of device sharing, which
involves hand movement detection via motion sensors. Furthermore, it is critical to
determine the end of a sharing event to ensure that the device has been returned to
the owner. During sharing, the authentication system should not block the user from
accessing non-sensitive resources.



For the second category, we investigate the complicated adaptations of an adaptive
authentication system. On the one hand, an adaptive authentication system can involve
adaptations at multiple levels. For example, adapting an TA system to multi-user scenarios
requires algorithmic and systematic adaptations. On the other hand, an adaptive authen-
tication system can adopt multiple adaptation policies to handle different scenarios. Thus,
we need to design a framework to organize various adaptations.

e Objective 3 (Multi-user TA system): Adapt IA mechanisms to shared mobile
devices for multiple users. Combine multiple [A mechanisms for multi-user authenti-
cation systems. Enable multi-user IA model update with new users and data. Provide
a workflow for evaluating IA mechanisms for the multi-user scenarios.

Another device sharing scenario is where multiple users mutually use a single mobile
device. As most existing TA systems are designed for single-user scenarios, we need
to design multi-user A systems to prevent unauthorized access of strangers or other
legitimate users proactively. For algorithmic adaptation, we need to extend single-
user A mechanisms for multi-user scenarios and make the IA models adapt to new
incoming users and data. Besides, we also need to fuse various IA mechanisms with
adaptation to their uncertainties, which change with model updates. For systematic
adaptation, the system should be able to support new user enrollment, label the
incoming data automatically, and process possible exceptions. In addition, an evalu-
ation framework is essential to help IA researchers construct trace-based evaluation
tasks to compare different multi-user IA schemes.

e Objective 4 (Multi-stage adaptive authentication): Model adaptive authenti-
cation systems for complicated adaptations. Design a framework to support multiple
adaptive authentication schemes for different scenarios. Develop adaptive authen-
tication libraries for developers to build adaptive authentication systems on mobile
devices.

When enabling multiple adaptations in an authentication system, it is essential to
ensure that they do not conflict with each other or result in potential loopholes that
enable attackers to bypass the authentication system. Also, an adaptive authentica-
tion system should be extensible to enable developers to handle different scenarios.
Thus, our goal is to first propose an adaptation model to organize various adaptations.
Possible problems include what factors to consider for risk modeling, how to model
the behaviors of authentication mechanisms and context sensing techniques, and how
to organize adaptations on multiple levels. Then, we aim to propose a framework
that helps developers build adaptive authentication systems with low development
and computation overhead.



1.3 Main contributions

This thesis contributes new methods and systems to implicit and adaptive authentica-
tion domains. We start with two practical scenarios, smartphone loss and device sharing,
respectively, by investigating the related context sensing techniques. For a follow-up to
device sharing, we investigate how to adapt an IA system to shared mobile devices with
multiple users, which involves changes in both algorithmic and systematic levels. Finally,
we provide a general adaptive authentication framework that supports adaptive authenti-
cation and access control for different risk types. Also, we provide the implementation of all
the frameworks and systems presented in this thesis to benefit developers and researchers.

The main contributions of this thesis include the following four aspects:

1. We provide a novel context sensing technique that uses active acoustic sensing to
detect a user’s departure and absence from a mobile device without the help of addi-
tional hardware and devices. Based on the context sensing technique, we propose a
smartphone loss prevention solution, Chaperone. According to extensive evaluation
with lab experiments, real-world experiments, and user study, Chaperone can proac-
tively detect potential device loss under complicated environmental conditions, and
automatically lock the device and effectively alert the user.

Related Publication:

[30] Jiayi Chen, Urs Hengartner, Hassan Khan, and Mohammad Mannan. Chap-
erone: Real-time locking and loss prevention for smartphones. In 29th USENIX
Security Symposium. USENIX Association, 2020.

2. We combine handover detection and IA-based owner detection to make smartphones
proactively and implicitly detect device sharing events. We then propose device
sharing awareness (DSA) to help secure sensitive data during device sharing with
considering human factors of forgetfulness and mistrust. An extensive evaluation
shows that DSA can accurately detect and process sharing events with low battery
consumption.

3. We investigate multi-user A for shared mobile devices and propose an architecture for
multi-user, multi-modal TA systems with considering new incoming users and data.
We also provide a Dempster-Shafer theory based score fusion method to fuse the
scores from different multi-user IA mechanisms for better accuracy. In addition, we
design an evaluation framework, SHRIMPS, to help TA developers and researchers to
build trace-based tasks with real-world datasets and evaluate multi-user A schemes.



4. We propose multi-stage adaptation modeling for adaptive authentication, which sup-
ports the design of complex and stateful adaptation schemes. We design a multi-stage
framework, MRAAC, for adaptive authentication and access control for secure app
and system developers. The framework supports automatic generation of multi-stage
adaptation models. A demonstration of three use cases shows that MRAAC can help
build adaptive authentication systems with low overhead and battery consumption.

5. We release the source code of our solutions, frameworks, and tools, as well as data sets
collected for evaluation at the following URL: https://github.com/cryspuwater
loo/jiayi thesis code. It helps other researchers reproduce our evaluation results
and also benefits developers to design their own adaptive authentication systems.

1.4 Thesis Organization

The remainder of the thesis is organized as follows: Chapter 2 provides the background and
a literature review of context sensing, implicit authentication, device sharing, and adap-
tive authentication and access control. Chapter 3 presents an active acoustic sensing based
device loss prevent solution, which addresses Objective 1. Chapter 4 addresses Objective 2
by proposing a device sharing awareness solution that uses both handover detection and
behavioral biometrics based owner detection to capture device sharing events. Chapter 5
first extends and adapts multi-modal TA systems for multi-user scenarios and then pro-
vides a simulation framework for evaluating multi-user IA, which address Objective 3. To
address Objective 4, Chapter 6 proposes multi-stage adaptation models and provides a gen-
eral adaptive authentication and access control framework for mobile devices. Chapter 7
concludes the thesis with a summary and future avenues.


https://github.com/cryspuwaterloo/jiayi_thesis_code
https://github.com/cryspuwaterloo/jiayi_thesis_code

Chapter 2

Background and Literature Review

In this chapter, we first provide background and existing solutions for the two illustrative
examples, smartphone loss and device sharing, respectively. Then, we review the existing
studies of context sensing techniques, implicit authentication, and adaptive authentica-
tion, which are related to our approaches and systems. Finally, we review the evaluation
methodology and metrics.

2.1 Smartphone Loss

2.1.1 Background

Smartphone loss is a serious security risk that has affected millions of users. In 2018,
Kaspersky Lab [91] reported that on average, 23,000 Android devices are being lost or
stolen each month. In 2016, half a million UK residents had a mobile phone stolen, and
35% of these phones were stolen while they were being left out and unattended [110]. A
2017 study reported that 6% of Australians lost their device in the previous five years [50].
Most stolen phones are never recovered—e.g., 68% US users failed to retrieve their phones
in 2014 [102]. Users were more likely to lose their smartphones in public places, e.g., coffee
shops and bars, where strangers can steal them [39]. In 2019, smartphones were the most
commonly lost item in the ride-hailing service Uber [170]. Wiese et al. [178] observed that
49% of office workers put their phone unattended on a desk, which incurs unauthorized
access of co-workers to sensitive data [161]. Beyond privacy threats, stolen or lost devices
can also significantly affect enterprise security [25, , 166]. Smartphone loss is highly
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related to a user’s absence. Furthermore, if a device does not get locked in time, sensitive
or confidential data on the device will be vulnerable to unauthorized access.

2.1.2 Existing Smartphone Loss Solutions

Many solutions have been designed to secure a lost smartphone or its data. We term
these solutions as post-loss solutions. These solutions aim to prevent unauthorized access
to the sensitive data stored on lost devices. This goal is mostly achieved by locking the
phone’s screen after a configurable idle period. However, an adversary, like a co-worker,
may be able to pick up the phone before it locks. Ideally, the phone screen should be
locked as soon as its owner steps away. Prozimity-based solutions [59, 137, 181] target this
goal by making the owner carry an additional device, and use RFID or Bluetooth to detect
proximity to the phone. However, these solutions do not provide a very accurate measure
of distance [105]. Yang et al. [I81] proposed Surround-See, a smartphone equipped with
an omni-directional camera for peripheral vision. One suggested application is warning
users when they leave their phone behind. However, such special purpose cameras are
unavailable on current smartphones. A is another option since it can detect when a non-
owner is using the phone, and subsequently locks the phone. Mirsky et al. [130] investigated
the scenario where an attacker picks up an unattended phone and starts using it. They
showed that within seven seconds, continuous authentication could detect the change in
behavior and lock the phone. However, it may fail in certain cases, in particular, against
mimicry attacks [94].

Some other solutions assist with the recovery of lost devices. “Find My iPhone” and
“Find My Device” are device tracking services available from Apple and Google, respec-
tively. Once the device owner realizes that they have lost the device, they can use these
services to locate, recover, or disable their smartphone. Yu et al. [185] presented a post-
loss solution that uses emergency call mechanisms to allow the device owner to wipe their
device remotely after a loss. This solution works even if a thief removes the SIM card from
the device. However, the solution is not designed to prevent the physical loss of the device.
Usually there is some delay between the device loss event and the owner’s realization of
it. For devices lost in public places, this delay is sufficient for strangers to steal the device
and turn on airplane mode to render such solutions ineffective. Therefore, a phone that is
about to become unattended in a public place should try to prevent this loss by alerting
its owner (e.g., playing an alarm sound), in addition to locking its screen.

To address the limitations of post-loss solutions, we aim to enable mobile device to
proactively detect and prevent potential device loss. Our solution is to use active acoustic
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sensing to track a user’s motion and determine whether a device loss event is likely to
happen. We review acoustic sensing and other wireless sensing techniques in § 2.3.1.

2.2 Device Sharing

This section first reviews device sharing surveys to understand the nature of device sharing
and then reviews existing device sharing solutions.

2.2.1 Device Sharing Surveys

According to recent surveys, mobile device sharing is common in people’s daily life [124]
and even a systemic practice in some regions (e.g., South Asia [1,7,151]). These survey
have investigated common device sharing practices and suggested how mobile operating
systems or apps should be designed to secure the device owner’s private and sensitive data.
Hence, we provide an overview of the nature of device sharing following the four aspects:
why to share, what to share, whom to share with, and how to share.

Why to share. Prior research has shown that it is common for smartphone users to
temporarily share their devices for trust and convenience [90,1241]. Matthews et al. [121]
conducted a survey of 99 households and a diary study with 25 participants. The results
have shown that most recorded sharing events were intentional and could be classified
into five sharing types (note: accidental sharing is excluded): borrowing, mutual use,
setup, helping, and broadcasting. Borrowing and helping types are usually unplanned,
and convenience is the primary motivation. The setup type is a sharee performing device
setup or configuration activities on behalf of the device owner. Broadcasting occurs when a
device owner and a sharee (or multiple sharees) view specific content on the device together.
Different from the other four types, mutual use is a long-term sharing practice where two
or more users have regular access to the device.

What to share. In the early years (e.g., the surveys conducted by Kalson et al. [90] in
2009 and Hayashi et al. [71] in 2012), a sharee tended to borrow a phone for communica-
tion (e.g., making phone calls, sending messages) and entertainment (e.g., playing games,
watching videos). According to the survey conducted by Matthews et al. [124], people have
been sharing various apps, including social networking apps, camera apps, browsers, etc.
Notably, many shared apps contain both essential functions and sensitive information. For
example, a camera app provides an essential photo-taking function, while it also connects
to the albums of the owner’s photos.
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Whom to share with. As household sharing is a common social and cultural practice,
mobile devices are usually shared with family members and friends who are socially close to
a device owner. It is driven by the need for maintaining social relationships and signaling
trust among people [4,7,123]. We elaborate on the trust implication in the next section and
how it impacts the design of device sharing solutions. Besides, shared mobile devices are
also common in workspaces, especially for front-line workers and medical workers [12,10],
where the sharing type is mutual use.

How to share. While providing the required resources by sharees, device owners should
take measures to protect sensitive resources from unauthorized access. For household
sharing, a device owner tends to supervise a sharee’s device use during sharing [124].
Besides, they may adopt app locks to protect sensitive apps with individual passwords [71].
However, extensive qualitative studies [1, 90, 1241] have shown that people have privacy
concerns over sharing their mobile devices because of possible device misuse and exposure
of sensitive or private data. For example, a social networking app may keep a user logged
in due to its single-user design. A sharee can move to that app during sharing and access
restricted data or functionality. Hang et al. [65] reported that the majority of participants
in their user study wanted the ability to share some apps, but not others. Furthermore,
participants desired to grant sharees access to only specific features of a shared app.

2.2.2 Trust

Trust is an important motivation for device sharing. According to Matthews et al. [124],
device owners are willing to share their devices unsupervised with trusted sharees. A device
owner’s trust in a sharee is usually based on their relationship and experience. Despite
trust, accidental exposure of sensitive resources is still possible during sharing. Moreover,
device owners also share their devices with others to signal trust, i.e., making sharees feel
trusted [123,124]. Liu et al. [113] reported that 86% of the participants in their user study
always kept their phone in their sight when sharing, which puts an extra burden on the
owner and may make the sharee feel mistrusted. A guest account for socially close sharees
has been deemed inappropriate since it signals mistrust [90, 123]. Explicitly hiding certain
apps or data may also arouse suspicion and imply a lack of trust [4,7]. Thus, it is necessary
to take trust into account when designing device sharing solutions.

Recent device sharing proposals have been exploring how to protect sensitive resources

while not compromising trust among people. Seyed et al. [155] proposed a modular smart-
phone comprised of multiple access-controlled hardware components to address the trust
and convenience issues of device sharing. PrivacyShield [111] provided a subtle just-in-
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time privacy provisioning system, which enables the owner to quickly configure an access
control rule by entering pre-defined touch gestures. Ahmed et al. [5] adopted two accounts
for shared use and secret space, respectively, which can be accessed via the same interface
but with different passwords. To address the trust issue, we focus on taking control of the
entire sharing process proactively and automatically so that smartphone users do not need
to specify or enable access control rules in front of a sharee.

Note that we emphasize the subtlety of enabling a device sharing solution. We do not
try to hide from a sharee that the device is currently in a restricted environment, which is
a design problem [1]. Achieving this goal requires tremendous efforts of app developers to
redesign their apps [5].

2.2.3 Device Sharing Control Solutions

Many technical solutions have been proposed to protect sensitive information from unau-
thorized access on a shared device. We classify these solutions into four categories based
on their scopes and methods:

1. Guest accounts create an independent environment for sharees without access to the
personal data of a device owner. However, it prevents sharees from accessing non-
sensitive resources only available on the owner’s account (e.g., non-sensitive photos,
a public post on the owner’s social networking app).

2. App locks (e.g., Samsung S Secure [15], Norton App Lock [103]) make an app require
credentials (e.g., a PIN) for launching the app. App locks provide all-or-nothing
access control: a device owner can only choose from sharing the entire app or noth-
ing. It introduces unnecessary authentication overhead and does not apply to many
common apps with personal data (e.g., browser apps, streaming apps).

3. App pinning (e.g., Android Screen Pinning [75], iOS Guided Access [77]) restricts a
sharee’s access to the current foreground app only. While it is handy for single app
sharing, it fully blocks access to other apps but imposes no restrictions on accessing
in-app content of the foreground app.

4. Vaults (e.g., Xiaomi’s App Vault [85], Huawei’s Private Space [115]) allow owners to
hide apps and files from sharees. A common practice is to provide two interfaces for
shared access and private access, respectively. It provides finer-grained control over
the shared resources compared to the other methods. However, vault solutions have
been found to provide limited stealth functionality [5]: 1) Most vault apps on the
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market still provide an entry point that reveals the existence of a hidden vault. 2)
They may only apply to specific file types (e.g., photos, text, videos).

Existing studies [65, 90, , 151] have studied owners’ security and privacy concerns
with sharing different apps and called for access control mechanisms for device sharing.
Studies [65, 71, 90] have shown that all-or-nothing access control cannot meet the need
for device sharing from both security and convenience aspects. xShare [113] enabled the
owner to specify the resources to share and offered a restricted mode by modifying the
mobile operating system. DiffUser [135] established a multi-user security model for An-
droid by creating different accounts to apply different access control rules. SnapApp [2/]
adopted a time-constrained access control model where a short sliding gesture can activate
a 30-second usage session. This scheme reduces the authentication overhead and enables
quick device sharing, but the attacker can still launch an attack within the session. Trea-
surePhone [153] was proposed to combine both environmental and user contexts to realize
context-dependent access control to groups of apps.

Overall, most existing systems need manual activation and lack interaction with third-
party apps to secure sensitive resources. In Chapter 4, we propose device sharing awareness
(DSA) as a novel solution to determine when to change the behavior of the authentication
system (i.e., stop blocking a non-owner user) and impose access control (i.e., prevent a
non-owner user from accessing sensitive data during sharing). DSA enables smartphones
to proactively detect device sharing without being manually activated by an owner and
provides flexible access control. It provides a new direction to ensure the subtlety of sharing
control solutions for the consideration of trust, and prevents a user’s failure in activating
these solutions.

2.3 Context Sensing Techniques

This section reviews the literature regarding the context sensing techniques for human
activity detection and gesture detection.

2.3.1 Wireless Sensing
Wireless sensing techniques leverage wireless signals to sense objects or human activities

in the surroundings. Based on the availability consideration, acoustic signals and WiFi
signals are possible candidates for mobile devices since most are equipped with speakers,
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microphones, and WiFi modules. Although we mainly use active acoustic sensing for
motion detection in this thesis, we also review WiFi sensing and passive acoustic sensing
related studies and explain why we choose active acoustic sensing over them.

WiFi sensing. A common approach of using WiFi signals for activity detection is to ana-
lyze changes in the channel state information (CST) [3,57,72, 107,117,136, 175,177,182,195].
Extensive studies have investigated using distinct patterns of CSI amplitude variations in
the time domain to detect a user’s presence [3, 136], hand gestures [72, 107], and mo-
tion [57,182]. A typical WiFi sensing technique requires a transmitter (which is usually a
wireless access point) and a receiver (which is a mobile device such as a laptop or a smart-
phone). When the transmitter sends a signal to the receiver, the signal can be reflected
by floor, ceiling, walls, people, etc., and form multiple transmission paths (i.e., multipath
effect [111]). If a person is walking in between the transmitter and the receiver, propa-
gation paths are affected by the movements of that person’s body, and consequently, the
CSI values on the receiver change. The goal is to find out the correlations between hu-
man movements and CSI changes. For example, Xu et al. [182] adopted time-frequency
analysis techniques to segment and recognize the walking movement, and applied wavelet
decomposition to extract the speed information of different body parts. One advantage of
WiF'i sensing is its non-obtrusiveness, where WiF'i signals can be easily transmitted though
objects and obstacles. However, it also make it challenging to identify and track a specific
user (e.g., the device owner) given that there might be several people moving within the
range. Besides, it is difficult to extract CSI on commodity smartphones [195], which may
require the root privilege or be not supported [60]. WiFi sensing techniques also require
separate sender and receiver devices, and impose placement requirements, which makes
them infeasible for context sensing in public places.

Acoustic sensing. Acoustic sensing techniques can be broadly classified into two cat-
egories based on their working principles: passive acoustic sensing and active acoustic
sensing.

In passive acoustic sensing, the device continuously records the ambient sound and then
detects ongoing events [32,110]. For example, Chu et al. [32] proposed the matching pursuit
(MP) algorithm to extract features from the environmental sounds to recognize the audio
context (e.g., to characterize a location). However, for human activity recognition, passive
acoustic sensing can only sense activities characterized by certain sounds (e.g., human
breathing sound while sleeping [116]), and cannot be used to detect user movements.

Active acoustic sensing techniques require mobile devices to send and receive acoustic
signals. It can operate in a transmitter-receiver mode for multi-device applications similar
to WiFi sensing: A transmitter plays acoustic signals via its speaker, and a receiver records
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the sounds via its microphone and extracts acoustic signals. Due to the Doppler effect,
the frequency of the received acoustic signal changes with the relative motion between
a transmitter and a receiver. The receiver can estimate the speed of the transmitter
accordingly. Zhang et al. [18%] tracked the Doppler shift to detect the encountering of two
people and then identify the user based on the acoustic signal. CAT [120] took advantage
of both the Doppler effect and the frequency modulated continuous waveform (FMCW)
signals to accurately estimate distance and speed for hand movement. However, all these
techniques require another device to send acoustic signals, which is not always available in
practice.

Active acoustic sensing can also work in a standalone mode where a single mobile
device plays an acoustic signal and senses its echoes. Extensive studies [108, , , ,

, , , , 1941] have investigated using single-device active acoustic sensing for a
variety of acoustic sensing tasks on commodity off-the-shelf smartphones. Based on their
applications, we classify these studies into the following five categories:

1. Static object sensing. Since a static object can reflect acoustic signals, it is feasible
to sense the device-object distance: we can record the time of flight (ToF) of an
acoustic signal, which makes a round trip between the device and the object, and

calculate the distance For example, Zhou et al. [191] used a two-pulse signal to
measure the distance from a smartphone to nearby objects and then identify the
geometry of corridors and rooms. Tung et al. [169] proposed BumpAlert to detect

nearby objects and alert a distracted pedestrian of a possible collision.

2. User presence and activity detection. Human movements can lead to dynamics
in the reflected signals, making it possible to detect human activities using active
acoustic sensing. Li et al. [108] used active acoustic sensing to detect a user’s pres-
ence within a pre-defined distance and designed iL.ock, an automated device locking
solution based on the user presence information. Lian et al. [109] proposed EchoSpot
to locate a user in an indoor environment by extracting the echoes reflected from
walls and the user’s body. However, this solution require multiple devices to obtain
a precise 2D location of the user.

3. Gesture recognition and hand movement detection. Active acoustic sensing
is more sensitive to the human movements close to the device since there is less
path loss [26]. Thus, researchers have also used active acoustic sensing to detect
in-air hand movements and recognize gestures. Wang et al. [176] proposed LLAP
that leverages the distance measurements between the device and a user’s finger to
obtain fine-grained finger movements. Sun et al. [163] considered both air-borne and
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structure-borne (i.e., sound transmission through solid materials) signal transmission
to track the finger movements on the back of smartphones. In summary, due to path
loss and multipath effect, precise gesture detection is only possible when the user is
very close to the device.

4. Fingerprinting. As an acoustic signal is reflected by multiple objects, the received
signal is a combinations of various echoes from nearby objects. Thus, the difference
between the original signal and the received signal is unique. Based on this idea,
Tung et al. [168] investigated how to generate acoustic signatures to tag the indoor
locations so that a mobile device can remember its current location with lecm reso-
lution. Zhou et al. [192] proposed EchoPrint that applied acoustic fingerprinting for
user authentication. EchoPrint extracted unique features from the echoes reflected
by a user’s face, which are dependent on the user’s 3D facial geometries.

In Chapter 3, we propose Chaperone that uses active acoustic sensing to detect potential
smartphone loss proactively. Specifically, our solution aims to capture a user’s departure
from the device as a signal of potential smartphone loss. In terms of methodology, more
close to Chaperone is iLock by Li et al. [108]. The basic idea of iLock is to automatically
lock a device based on the user-device distance estimated by the FMCW-based sensing
technique [2]. However, iLock was only evaluated in two relatively ideal environments: a
lab and a library. Our experiments show that it fails to work reliably in some common sce-
narios due to environmental factors (see Figure 3.1, and details in §3.1.2). High-frequency
noise, movement of nearby people, and the presence of obstacles may interfere with iLock’s
distance estimation and result in false positives. In comparison, the design of Chaper-
one takes these environment factors into consideration to make our solution robust under
real-world scenarios.

2.3.2 DMotion Sensor Based Sensing

Many mobile devices are equipped with motion sensors to track device movements. Com-
mon sensors include:

e An accelerometer sensor provides the acceleration measurements in relation to the
three coordinate axes.

e A gyroscope sensor provides the rotation rate measurements for the three coordinate
axes.
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e A magnetometer sensor (or a geomagnetic field sensor) provides the magnetic
field strength measurements for the three coordinate axes. Usually, it determines the
orientation of a device with the help of accelerometer.

Mobile operating systems also provide software-based motion sensors, which aggregate raw
sensor data from hardware-based sensors. For example, linear acceleration on Android [%3]
is derived from the measurements of an accelerometer, which excludes the gravity compo-
nent using a gyroscope or magnetometer sensor.

Mobile device movements, measured by motion sensors, can reflect a user’s input while
the user is using the device in hand. It enables a user to control a device via motion and
gestures. For example, a user can rotate the device to simulate steering in a racing game
app. Device movements can also imply the physical environment or the user’s activity even
when a user is not interacting with the device. For example, Android Activity Recogni-
tion [84] can detect if a user is walking, running, or driving according to measurements of
multiple motion sensors. Thus, the applications of motion sensors can be classified into
two categories based on their goals: 1) motion detection and 2) activity recognition.

Motion detection. It usually involves detecting a series of meaningful movements of a
specific body part (e.g., hand, arm, leg, and head). A representative application is gesture
detection and recognition [0, 111,116, 156]. Different from acoustic sensing, motion sensor
based gesture detection requires a user to hold (e.g., smartphones) or wear (e.g., smart-
watches) the device so that motion sensors can capture the user’s hand movements through
the device movements. Liu et al. [111] designed uWave to detect personalized gestures
based on acceleration only. Since the uWave model is highly user-dependent, it requires a
training stage for each user for each gesture pattern, which brings a non-negligible burden
on the user side. Akl et al. [(] provided an accelerometer-only gesture recognition scheme
to recognize 18 user-independent hand gestures using dynamic time warping and affin-
ity propagation. Kim et al. [96] proposed deepGesture to use a recurrent neural network
(RNN) to learn user-independent gesture models from both accelerator and gyroscope data.
Avery et al. [11] used accelerometer, gravity, and orientation sensors to determine a user’s
handedness based on a moving gesture when the user picks up the device. In Chapter 5,
we try to detect a user’s natural handover gesture for triggering a device sharing solution.
Different from the above existing studies, this handover gesture involves two people and
does not follow a pre-defined hand movement trajectory.

Other applications of motion detection techniques include detecting a specific action of
a user. Here, we focus on the actions related to our two example scenarios in § 1.1.3:

1. Device theft detection. Liu et al. [112] proposed a machine learning based method to
detect pickpocket and grab-and-run phone theft events. The basic idea is to extract
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features that are related to the motion patterns of the two theft events. However,
their solution was limited to these two theft events and did not address unattended
phone scenarios.

2. Gait detection and extraction. For gait-based authentication, it is necessary to deter-
mine the existence of gait data and then recognize each step to segment the motion
data. Zou et al. [196] proposed a convolutional neural network (CNN) and Long short-
term memory (LSTM) based solution to identify gaits from a piece of accelerometer
and gyroscope data.

Activity recognition. Human activity recognition (HAR) is a time-series classification
problem that determines the high-level activity (e.g., walking, running, riding bikes) of a
user based on motion sensors [174]. Here, we formulate a simplified binary classification
problem for detecting if a certain activity happens or not (i.e., A = {ag, a1}, where ag
means that the activity does not happen, and a; means the activity happens):

Given a sequence of time-series sensor data with n data points: s = {do,d1,...,d,_1},
where d; is the sensor measurements at time ¢;, train a model {y}7= = F(s),y; € A, where
{y;}1=) is the predicted labels (i.e., activities), to minimize the gap between the prediction
and the ground-truth label denoted by {y;}7=.

A typical HAR solution slides a window over the time-series sensor data (i.e., signals)
and extracts features from each window. According to existing studies [22,49, 101,162, 172],
we list common features used by HAR and categorize them into two main categories: 1)
Time-domain features include:

o Statistical features provide a basic statistical summary of the sensor data, which are
widely adopted as the most fundamental features [22, 73, , 172]. They include
mean, variance, standard deviation, maximum, minimum, range, n'" percentile, etc.

e Correlation features describe the relationships between two signals from different sen-
sors or different axes [22,19]. Common correlation based features include correlation
coefficient (for measuring the strength of the relationship between two signals) and
cross-correlation (for measuring the similarity between two signals):

cov(z,y)
X = ) 21
Py 720, (2.1)
1 n—1
CCoy = | 1%, 2 Tibies 2.2
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where x = {zg,x1,...,2,-1} and y = {yo, Y1, - - ., Yn—1} are the two signals, cov(x,y)
is the covariance between z and y, o is the standard deviation of a signal.

e Integration features measure the area under the signal curve, which are usually ap-
plied to accelerometer and gyroscope data [62,106]. They provide rough estimates of
velocity (i.e., single integration of acceleration), distance (i.e., double integration of
acceleration), and rotation angle (i.e., single integration of rotation rate). Note that
the significant accumulative errors from sensor measurements make it unreliable to
measure these metrics accurately without compensations from other sensors [119].
Nevertheless, they are still useful for learning patterns related to velocity, distance,
and rotation angle.

2) Frequency-domtain features require applying the Fourier transform to the time-series
signals. The common features include:

o Spectral coefficients reflect the magnitude and phase at their corresponding frequen-
cies. The related features are about the spectral coefficients at the key frequencies
related to the target activity (e.g., 0.5 to 3 Hz for detecting walking and running [19]).

e Fnergy is calculated as the normalized squared sum of the spectral coefficients, which
is used to determine if a user is walking, running, riding, or driving [I 19].

e FEntropy is a measure of uncertainty of a distribution. Spectral entropy measures
the spectral power distribution [15]. It is applied for distinguishing signals that have
similar energy level. The entropy of the time-series data can obtain reflect the sudden
changes during a window [172].

After extracting the feature vectors, we need to label the data and then train a model with
a specified machine learning algorithm.

To obtain more informative contexts, existing studies usually involve other sensors in
addition to motion sensors. Vaizman et al. [I71,172] proposed a multi-modal system that
uses various sensors (e.g., camera, microphone, location sensors, etc.) on smartphones and
smartwatches to recognize a person’s behavioral context in natural environments. Cruciani
et al. [30] used data from both audio and motion sensors to train a convolutional neural
network for high accuracy across different HAR tasks.

As introduced in § 1.2, it is possible to track users’ hand movements and recognize
sharing gestures to detect the starting of a sharing event. However, unlike behavioral
contexts, such as walking and running, a sharing gesture lasts only several seconds and is
not a repetitive or periodical activity. Nevertheless, we follow the feature selection from
existing work [101,171] to train our gesture detection model.
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Type Features

Time inter-stroke time, stroke duration

start x, start y, stop x, stop y, direct end-to-end distance,

mean resultant length, length of trajectory, mid-stroke area,

ratio of end-to-end distance and length of trajectory,

Trajectory | largest deviation from end-to-end line,

20th percentile of deviation from end-to-end line,

50th percentile of deviation from end-to-end line,

80th percentile of deviation from end-to-end line

average direction, average velocity, 20th percentile of pairwise velocity,
50th percentile of pairwise velocity, 80th percentile of pairwise velocity,
Movement | 20th percentile of acceleration, 50th percentile of acceleration,

80th percentile of acceleration, direction of end-to-end line,

median velocity at last 3 points, median acceleration at first 5 points
Other phone orientation, mid-stroke pressure

Table 2.1: Features for Touch-based TA [52].

2.4 Implicit Authentication

The thesis investigates IA for shared mobile devices and incorporates IA into the framework
of adaptive authentication. In this section, we review the behavioral biometrics based IA
techniques that are involved in this thesis, and then introduce the existing literature about
multi-modal TA and multi-user TA.

2.4.1 Behavioral Biometrics

One of the thesis objectives is to extend existing IA mechanisms for shared mobile devices
instead of proposing new behavioral biometrics. Hence, we choose to exemplify the usage
of our proposed frameworks and systems with existing IA techniques. Researchers have
investigated various behavioral biometrics for IA, including touch [17,52, 190], gait [38,

], keystroke [104], breath [27], etc. Considering the availability of common behavioral
biometrics, we mainly use touch and gait for this thesis.

Touch based IA. For mobile devices with a touch screen, touch events can be captured
while a user is interacting with the device. By analyzing the patterns of each touch event,
a touch-based TA mechanism can distinguish a user from others. Given that touch events
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are very common during a session, touch-based behavioral biometrics can be used to au-
thenticate a user continuously.

In this thesis, we choose Touchalytics [52] for touch-based IA. A touch event (i.e., a
stroke) consists of a sequence of touch points, and each touch point is described with a
tuple of its timestamp, position (x, y), pressure, area, and orientation. After connecting
these touch points, we can observe the trajectory of this touch event. Touchalytics ex-
tracts 30 features for each touch event, and we select 28 of them in Table 2.1, which are
available across different devices. Then, we apply the Random Forest machine learning
algorithm [138] with 100 estimators for model training.

Gait based IA. When a user is walking with a mobile device, motion sensors can collect
the user’s motion data to obtain gait patterns. The basic idea is to first capture a periodic
repetition every two steps (i.e., a cycle) and then extract features for each cycle. Given
that the time intervals between every two steps are not always the same, time interpolation
is required to make each cycle have the same sample number [38]. Other signal processing
techniques, such as weighted moving average [3%], low-pass filtering [35], etc., are also used
for data smoothing and noise filtering. Then, a gait based IA scheme extracts features for
each cycle and compares them to the owner’s to determine if the current user is the owner.

We choose a deep neural network based gait-based TA scheme proposed by Zou et
al. [196] (we call it DeepGait in this thesis). DeepGait trains a gait extraction model
to determine if a sequence of motion data contains gaits. Then, it segments the motion
data and extracts all gait cycles. For training and authentication, DeepGait uses an gait
identification model that consists of a CNN network and an LSTM network. The CNN
network adopts convolution kernels to abstract the feature of the gait curve along the time
series, while the LSTM network is to memorize information interaction along the time
series.

Sliding window strategy. To reduce false positives, we also use a (m, n)-sliding-window
strategy [75] to aggregate the TA results: If m out of n instances are accepted as the owner’s,
the IA mechanism will accept the current user as the owner. However, the sliding window
strategy may take more time (i.e., at least m data points) for the system to make decisions.
Thus, it is necessary to include both accuracy and detection latency in the evaluation.

2.4.2 Multi-modal TA

Multi-modal authentication combines multiple biometric modalities to reduce false ac-
ceptances and false rejections. Most existing work on multi-modal authentication, with
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the exception of DriverAuth [63], has focused on single-user scenarios. Extensive stud-
ies [14,50,80, 128, 161] have investigated combining multiple physiological biometrics such
as face, voice, or fingerprint. For example, Gofman et al. [50] combined both face recog-
nition and voice recognition to authenticate a smartphone user to achieve good overall
accuracy even with poor quality face images and voice samples. Similarly, combining mul-
tiple behavioral biometrics enables IA to identify a user’s identity with high confidence
and lowers the chance of spoofing attacks.

The key problem of multi-modal TA is how to fuse different behavioral biometrics to

achieve better performance. Abuhamad et al. [1] classified the fusion methods into three
levels:
e Feature-level [63,104,173]. The basic idea of feature-level fusion is to construct a

large feature vector combines the features of each modality. Vhaduri et al. [173]
designed a multi-modal solution for wearable devices with feature-level fusion of step
counts, heart rate, calorie burn and metabolic equivalent of task. Shrestha et al. [158]
proposed ZEMFA to extract gait features from multiple devices to perform zero-effort
authentication. Feature-level fusion is challenging when the modalities to be fused
are not compatible with each other, i.e., their feature vectors are not computed in a
similar way. For example, features of voice samples are usually in the form of Mel-
Frequency Cepstral Coefficients (MFCC) [132], while features for face recognition
are extracted from image pixels [37]. Combining the features of these two biometrics
requires normalization and feature selection [50].

o Score-level [23,34,71,150]. Score-level fusion collects and aggregates the classification
scores from different models. One advantage of score-level fusion is that it relies on
results only without changing the model of each modality. In general, a modality
with higher confidence should have more weight in making decisions. Crawford et
al. [31] proposed a score-level weighted average fusion method that gives more weight
to more recent detection scores. Buriro et al. [23] calculated the weight based on the
classifier performance for their weighted average fusion method. Smith et al. [160]
adopted the Dempster-Shafer theory based score fusion for single-user scenarios. Our
work extends the application of the D-S theory to cover multi-user scenarios. COR-
MORANT [71] was designed to provide risk-aware continuous authentication for
single-user cross-device scenarios. It proposed two weighted score threshold fusion
methods and a Kalman filter based score fusion method to fuse the authentication
score from different devices.

e Decision-level [53,110]. Decision-level fusion collects decisions made by individual
modalities separately and makes the final decision with adopting certain rules or
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voting. Fridman et al. [53] used two low-level modalities (i.e., keystrokes and mouse
movements) and a high-level modality of stylometry and applied decision-level fusion
that minimizes the global Bayes’ risk. Lin et al. [I10] fused the decisions from six
classifiers using a compound-voting mechanism to improve the accuracy.

2.4.3 Multi-user TA

Although most of the existing A studies regarded the IA problem as a binary or one-class
classification problem [(3], a few studies conducted preliminary explorations of multi-user
scenarios recently. Specifically, these existing studies have focused on addressing multi-
user TA as a multi-class classification problem. Ehatisham et al. [13] leveraged physical
activity patterns to identify the device owner and secondary users who have partial access
to the device. However, the proposed IA scheme does not consider a general attacker class.
DeepGait proposed by Zou et al. [196] slightly changed the deep neural networks of its
gait authentication model to perform multi-user identification (i.e., identify the current
user from a number of candidates). However, in practice, the system is expected to de-
tect unauthorized access and track user switches simultaneously. ContAuth [28] adopted
iCaRL [115] and EWC [97] to address the incremental learning problem for DNN-based
single-modal TA mechanisms to improve cross-session performance for multi-user scenar-
ios. It considers the attacker class for model training and adopts incremental learning
techniques for new user enrollment. Gupta et al. [63] proposed DriverAuth to provider
multi-user and multi-modal authentication for ride-sharing platforms. However, Driver-
Auth only authenticates a user at the beginning of a ride.

Chapter 5 investigates the challenges of designing a multi-user TA system, which is
not limited to a multi-class classification problem. A multi-user IA system should be
also able to 1) incorporate multiple modalities to ensure good accuracy for continuous
authentication, 2) process and label new incoming data for existing users, and 3) support
the enrollment of new users. Existing studies have not covered all these aspects.

2.5 Adaptive Authentication

According to Arias-Cabarcos et al. [10], an adaptive authentication system should be able
to dynamically adjust its behavior in response to the operating environment. For example,
Primo et al. [139] proposed a gait-based authentication mechanism that adapts to the
position in which the phone is held to optimize the accuracy in the real-world scenarios.
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Similarly, Crawford et al. [33] investigated the impact of movements on the accuracy of the
keystroke dynamics based TA mechanisms and design. However, these studies only focus
on the impact of context factors on a specific authentication mechanism.

This section mainly reviews the existing studies that provide a high-level architecture
for adaptive authentication, which allows mobile app developers and device users to cus-
tomize adaptation schemes. Table 2.2 lists the studies that satisfy the criteria and compares
these studies with our adaptive authentication and access control framework, MRAAC (see
Chapter 6). TreasurePhone [153] proposed “spheres” to manage access control rules based
on location and user activity. It determines the visibility or availability of a certain file or
app based on the current context, whose idea is close to the in-app control of MRAAC.
Hayashi et al. [70] proposed CASA, a probabilistic framework for dynamically determin-
ing whether to explicitly authenticate a user and how to select an explicit authentication
mechanism based on the user’s location data. ConXsense [129] combined both locations
and nearby Bluetooth devices to calculate the familiarity of the current context and decide
whether to lock the device. However, it only considers three location tags (i.e., public,
work, and private) and two safety levels (i.e., safe and unsafe), which lacks extensibility.
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PRISM [112] proposed a context modeling approach that used HARD-BN [113] to auto-
matically extract patterns from location, user activities, etc. It can automatically generate
policies to determine if an EA mechanism is required to unlock a device. Besides, it also
allows users to manually make policies. Progressive authentication [147] employed behav-
ioral biometrics as a contextual factor to estimate the user authenticity level. However,
it did not involve the adaptation of behavioral biometrics based IA mechanisms. Woj-
towicz and Joachimiak [179] built a generic model for the contextual factors that affect
the performance of biometrics-based authentication mechanisms. CORMORANT [71] is a
multi-modal authentication framework that incorporates contextual factors into the fused
score of several biometrics-based EA and TA mechanisms. It supports the adaptation of IA
mechanisms — when fusing the different modalities, it dynamically adjusts their weights
based on other contextual factors.

All above methods follow a single-stage design of adaptive authentication, which does
not support complicated adaptation logic. In Chapter 6, we introduce a novel multi-stage
adaptation framework to organize both IA and EA mechanisms as well as fine-grained
access control.

2.6 Common Threat Model

User authentication primarily targets unauthorized access to sensitive resources on the de-
vices. Sensitive resources include apps (e.g., banking apps, messaging apps), files (e.g., pho-
tos, videos), and related critical operations (e.g., modifying or deleting files, making trans-
actions). We assume that there is only one primary user (i.e., owner) who has full access
to a mobile device. Unauthorized access can be initiated by any non-owner user, including
strangers, sharees, and secondary users (for multi-user scenarios, see Chapter 5). These
attackers are physically close to the device so that they can directly operate the device.
Most unauthorized access happens when the device owner does not pay attention to the
device or the device is out of sight of the device owner. However, a sharee’s accidental
access to sensitive resources on a shared device is also considered unauthorized access even
if a device owner supervises the device sharing. For example, when a device owner tem-
porarily shares the device with a sharee for entertainment, a pop-up message notification
may expose sensitive information.

We describe attackers based on their relationship with the owner and their knowledge
about the authentication system:

Opportunistic attackers are usually nearby strangers in the same premises as the owner.
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They have little knowledge about the security measures adopted by the device, and there-
fore, use the device following their usual habits. A common example scenario is that a
stranger picks up an unattended mobile device and tries to access random resources on the
device.

Informed attackers are mainly social insiders who socially close to the device owner
(e.g., family members, friends, co-workers) and may have knowledge of the owner and
the security measures adopted by the device. Compared to strangers, social insiders have
more opportunities to access an unlocked device and launch targeted attacks. For example,
Marques et al. [123] referred to the shower time attack where an individual tries to access
their intimate partner’s smartphone when the partner is temporarily absent. For temporary
device sharing, a device owner usually needs to unlock their device before giving it to a
sharee. Based on an attacker’s knowledge, they may attempt to access sensitive resources
directly and launch attacks before the detection. A knowledgeable attacker may try to
bypass the authentication system or our proposed methods.

We make the following assumptions for the common threat model. We trust the device
owner and focus on the attacks launched by non-owner users. we assume the operating
systems running on mobile devices are trusted, and the device owner installs app from
trusted sources. Therefore, we assume an attacker cannot install malicious apps, modify
the operating system (e.g., tampering sensor measurements), or exploit the root privilege.
Besides, we assume the EA mechanisms are not compromised by an attacker (e.g., an
attacker does not know the master password of the owner). As noted by several surveys [7,

, 124], a non-owner user may know the passcode for the lockscreen of a device through
shoulder surfing or other means. We assume the EA mechanisms triggered by an [A
rejection do not use the same credential as the one for the lockscreen.

2.7 Public Datasets

The thesis involves the evaluation of context sensing techniques and authentication systems
via lab experiments, real-world experiments, trace-based evaluation, and user studies. For
lab and real-world experiments and user studies, we collected data while participants were
asked to complete a series of tasks. For trace-based evaluation, we ran our approaches or
systems over our collected data and public datasets and analyzed the results. The public
datasets used in this thesis include:

HMOG [159] collected sensor data from 100 Android smartphone users while they were
reading, writing, or doing map navigation session with the phone in their hands. The
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HMOG data provides multi-user, multi-modal, and multi-session data, which meets most
data requirements of this thesis. Thus, we use the HMOG [159] dataset as the main public
data source for Chapters 4, 5, and 6. We list the dataset details as follows:

e Activities: document reading (i.e., reading), text production (i.e., writing),navigation
on a map to locate a destination (i.e., map navigation)

e Motion conditions: walking, sitting

e 7# of tasks per user: 24 (8 reading tasks, 8 writing tasks, and 8 map navigation
tasks)

e Range of task lengths: 5 to 15 minutes

e Sensor data: accelerometer, gyroscope, magnetometer, touchscreen input (includ-
ing raw touch events, tap gestures, scale gestures, scroll gestures, fling gesture), key
press events

BB-MAS [16] collected sensor data from 117 users across desktops, smartphones, tablets
while they were walking or typing. Different from the HMOG dataset, BB-MAS users did
not perform typing/browsing tasks while walking, and therefore, gait events and touch
events were not available at the same time. Besides, in comparison to HMOG, the length
of each walking task in BB-MAS is significantly shorter (i.e., less then 10 minutes per user
per device), which may be insufficient to provide training and testing data for good model
accuracy. We list the dataset details as follows:

e Activities: typing, browsing, walking, climbing stairs

e # of tasks per user: 12 (3 typing/browsing tasks, 6 walking tasks, 3 climbing
tasks).

e Range of task lengths: 25 to 50 minutes (typing/browsing tasks), 1 minute (walk-
ing/climbing tasks)

e Sensor data: accelerometer, gyroscope, magnetometer, raw touch events, key press
events

IDNet [54] collected accelerometer data and gyroscope data from 50 users while they
were walking with the device in the right front pocket of their trousers. Thus, the IDNet
dataset contains gait data only. We list the dataset details as follows:
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e Activities: walking
e # of tasks per user: 1 to 14 walking tasks
¢ Range of task lengths: 5 minutes

e Sensor data: accelerometer, gyroscope

Touchalytics [52]. collected touch events from 41 users while they were interacting with
Android smartphones. Since the screen interaction tasks are mainly about navigation ma-
neuvers, touch data collected by Touchalytics is mainly for up-down and left-right swipes.
We list the dataset details as follows:

Activities: article reading, image comparison game.

# of tasks per user: 5 to 7 (3 to 4 reading tasks, 2 to 3 game tasks)

Range of task lengths: not specified

Sensor data: raw touch events

2.8 Common Metrics

We adopt a set of common metrics to evaluate the performance of our approaches and
compare to the state of the art. Both authentication and context sensing problems can
be regarded as classification problems. Each time when a feature vector is extracted from
collected sensor data, the system classifies it to a certain category. For binary classification,
the sign of an instance indicates whether the current user is legitimate (i.e., positive) or
not (i.e., negative), or whether a specific context (e.g., device loss context) is happening
(i.e., positive) or not (i.e., negative). There are four outcomes depending on whether a
classification result is true or not:

e A true positive or true acceptance (TP/TA) means that an authentication system
accepts a legitimate user, or a context sensing technique successfully detects a specific
context.

e A true negative or true rejection (TN/TR) means that an authentication system
rejects an attacker/stranger, or a context sensing technique correctly detects that a
specific context is not happening.
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e A false positive or false acceptance (FP/FA) means that an authentication system
falsely accepts an attacker/stranger, or a context sensing technique falsely detects a
specific context.

e A false negative or false rejection (FN/FR) means that an authentication system
falsely rejects a legitimate user, or a context sensing technique misses a specific
context.

We adopt different sets of metrics to measure the accuracy of context sensing techniques
and authentication systems, respectively. For evaluating context sensing techniques, we
focus on its ability of retrieving the positive instances, i.e., detect a context. Thus, we use
precision and recall for accuracy measurement.

e Precision: the fraction of all detected instances that truly contains the target con-

text:
# of TP

# of TP + # of FP’ (2:3)

Precision =

e Recall: the fraction of all instances with the context target that are successfully

detected:
# of TP

# of TP + # of FN'

Precision =

(2.4)

e Fl-score: a measure that combines precision and recall:

Precision * Recall
Precision = 2 ) 2.5
recision * Precision + Recall (2.5)

As authentication systems are supposed to make minimal false detections, we emphasize
their error rate in terms of false acceptance rate and false rejection rate.:

e False Acceptance Rate (FAR): the fraction of an attacker or stranger being falsely
accepted:
# of FA

FAR = # of TR + # of FA

(2.6)

e False Rejection Rate (FRR): the fraction of a legitimate user being falsely re-

jected:
# of FR

# of TA + # of FR’

FRR = (2.7)
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Besides, for multi-user scenarios, it is possible for an authentication system to accept the
current legitimate user but mistakenly identify this user as another legitimate user, which
is a false identification (FT). Although both FA and FI cause the security problem of
exposing a user’s sensitive resources to another user, we differentiate two error types given
the difference in attacker roles. Thus, we introduce False Identification Rate (FIR) to
measure the fraction of a legitimate user being falsely identified as another legitimate user:

# of FI
FIR = : 2.8
# of TA + # of FR 4+ # of FI (28)
Also, FRR for multi-user scenarios is updated to:
fF
FRR = 7 of FR (2.9)

# of TA + # of FR + # of FI’

For comparisons among different classification models with various threshold settings,
we also use a receiver operating characteristic (ROC) curve to evaluate their performance,
where the x-axis is the false positive rate (i.e., FPR, also known as FAR) and the y-axis is
the true positive rate (i.e., TPR, also known as recall). There are two related metrics to
summarize the ROC curve:

e Area under curve (AUCQC): the area under the ROC curve, which is the probability
of the classification score for a random attacker being lower than that for a random
legitimate user [60].

e Equal error rate (EER): the intersection point on the ROC where FPR =1 —
TPR. It determines the threshold where the FPR and the FNR have the same value.

Eberz et al. [11] propose to use the Gini coefficient (GC) to analyze the error distri-
butions among users and quantify systematic errors. GC is calculated between the area
between the Lorenz Curve and the Line of Equality. For evaluating A systems, the Lorenz
Curve plots the percentiles of the users on the x-axis according to an error rate and plots
the cumulative error rate on the y-axis. A point (z,y) on the curve indicates the normal-
ized total error rate y contributed by the bottom x users. The Line of Equality is a straight
diagonal line with a slope of 1, which represents that all users contribute to the same error
rates. A high Gini coefficient means that errors are concentrated in a small group of users.
In this thesis, we use GC and Lorenz Curve to investigate how the accuracy of a system is
improved and what is the bottleneck for further improvement.
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Chapter 3

Active Acoustic Sensing Based
Smartphone Loss Prevention

3.1 Introduction

In this chapter, we address Objective 1 by proposing a smartphone loss prevention solution.
A smartphone loss prevention solution first needs to address a comprehensive context
sensing problem that involves two user-related context factors: proximity and activity.
Then, the solution should automatically lock the device and alert the owner of a potential
loss event. The main challenge is how to make the phone track the user’s departure in
a contactless way, where the phone senses the user’s motion without the user carrying it.
Given that smartphones are equipped with at least a pair of microphone and speaker, they
are capable of active acoustic sensing. Hence, we adopt active acoustic sensing to detect
the user-related contextual factors for smartphone loss prevention. The basic idea is to
make a device continuously send acoustic signals and analyze the reflected signals from
nearby object to determine a user’s proximity and movement.

3.1.1 Threat Model

Our focus is on the threat posed to an unattended smartphone by nearby opportunistic
attackers. We assume the attackers do not have any knowledge of our loss prevention
solution, and their target is to access the unattended smartphone. To start with, the
smartphone is placed stationary on a surface intentionally (e.g., the owner puts it on a
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table), or unintentionally (e.g., the phone slips from the owner’s pocket). Its microphone
and speaker are not covered by other objects so that the transmission of sound is not
blocked. (We examine the impact of nearby objects that partially block sound transmission
in §3.5.3.) We assume the device owner is initially closer to the phone than others, including
nearby people and the attacker, and the initial distance between the owner and the device
is under 1m. This condition ensures that the device is initially in a relatively secure
context compared to the later unattended status. We discuss active attackers and other
complicated situations in §3.7 (e.g., when a stranger is closer to the device than the owner).

After the initial placement, the owner may move away from the device, thereby exposing
it to theft or unauthorized access. The attack may happen within a few seconds after the
phone becomes unattended (i.e., when the owner moves away from the phone). A potential
smartphone loss is defined as a smartphone owner leaving the phone behind in a public or
untrusted place. We propose a preventive approach that can detect a potential smartphone
loss situation, lock the phone, and generate an alert before the owner leaves the place. More
than just putting a threshold on the distance from the smartphone, our approach detects
the owner’s departure and absence from the phone (i.e., the owner keeps moving away
from the phone and is eventually absent). Therefore, in our experiments, we do not have
a specific attacker role given that the detection should occur before the attack happens.
Instead, we consider the influence of nearby people on our sensing approach, which captures
the reflected signals from the owner (see §3.2) and other people and objects. Note that we
use the terms owner and user interchangeably.

3.1.2 Design Goals

An effective smartphone locking and loss prevention solution should have the following
desirable properties:

Standalone. While leveraging specialized hardware (e.g., Surround-See [151]) can provide
the required sensing ability to detect a nearby owner’s movement, a solution that works
on common off-the-shelf smartphones is more likely to be adopted. Similarly, while an
accessory (e.g., a smartwatch) connected to the smartphone can detect smartphone loss, a
standalone solution relieves users from carrying an additional device.

Low detection delay with low energy consumption. We use the term detection
delay to refer to the time period during which the owner is unaware of the device loss.
For post-loss solutions, this delay may be large as they are dependent on the owner’s
realization of the device loss. In a loss prevention solution, the detection delay corresponds
to the time duration between the device owner leaving, and the solution realizing that the
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Figure 3.1: Potential factors that affect acoustic sensing. The green area depicts the
detection range. The smartphone owner enters the detection-blind area caused by the
obstacle while still being within the distance threshold, making the detector fail to follow
the owner and track a nearby person instead.

owner is not present near the device, in turn, locking the phone. Thus, it is desirable to
have low detection delay. However, low detection delay requires frequent sensing to ensure
real-time detection. The local analysis of the acoustic data on the mobile device could
be computationally intensive and consume significant battery power. Thus, we need to
balance detection performance and energy consumption.

Few false positives and false negatives. A closely related usability aspect is the number
of false positives. For example, the smartphone owner may move to grab something from
across the table in a restaurant, which may be misconstrued as the owner leaving by
a solution with low detection delay. False positives are inconvenient and may negatively
affect the adoption of a solution. Therefore, the solution should notify the user in real-time,
while limiting the number of false positives. Similarly, the solution should have few false
negatives, i.e., failure to detect actual user leave events. False negatives may cause device
loss; therefore, the system should minimize false negatives even at the cost of increasing
false positives.
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Robust. In practice, smartphones are lost at a variety of locations including coffee shops,
restaurants, cars, etc. [39, 170]. Location diversity implies different levels of background
noise, nearby moving people, and obstacles in the physical layout of the location. Figure 3.1
shows an example of these factors in a small lounge scenario. In terms of background noise,
active acoustic sensing for smartphones usually uses the high-frequency band up to 24kHz
(see §3.2), and as a result, high-frequency background noise poses a threat. Such noise is
often encountered in real-world scenarios, e.g., slamming of a door. A high-frequency noise
source may emit noise for a short period of time, but it is likely to happen more often
at certain locations (e.g., a restaurant). Therefore, it is important for a robust system to
deal with high-frequency noise. The movements of other nearby people introduce more
reflections of sound signals, and thus require careful consideration. In terms of layout, a
location’s physical layout may introduce obstacles, limiting the effective operational range
of acoustic sensing. In Figure 3.1, the range where active acoustic sensing can effectively
receive the echoes is limited by the lounge layout since the acoustic signal is blocked or
reflected by the obstacles. If the owner follows the blue arrow, the phone fails to track the
echo from the owner after the owner moves behind the obstacle. In summary, the solution
should robustly operate across a variety of locations, and require minimal or no location
and environment-specific tweaking.

3.1.3 Contributions

We present Chaperone, a real-time smartphone locking and loss prevention solution using
active acoustic sensing. Chaperone focuses on capturing a user’s departure patterns and
addresses the aforementioned challenges by tracking the departure procedure of the device
owner across three dimensions (in reference to the smartphone): the motion state of the
owner, the intensity of the motion, and the distance of the owner from the device. By
incorporating multiple factors, Chaperone provides a robust real-time mechanism to detect
when the user is about to leave the premise. The contributions include:

1. We design and implement Chaperone, a standalone, active acoustic sensing-based
system that detects possible smartphone loss incidents in real-time on commodity
smartphones. Chaperone requires no per-user training to operate in a new situation.
Although it needs access to the device’s microphone and speaker, Chaperone’s stan-
dalone nature preserves privacy of the device owner and bystanders, as our carefully
designed implementation does not offload any computation from the smartphone.

2. We conduct 1,345 experiments to demonstrate Chaperone’s ability to operate un-
der different conditions (including device orientations and positions, user leaving
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speeds, distances to nearby stranger, close objects, and concurrent sensing by multi-
ple devices), and cover various real-world scenarios characterized by high-frequency
ambient noise, crowded locations, and diverse layouts (including academic venues,
restaurants, offices, cars, and transit stations). This is the first such comprehensive
evaluation of active acoustic sensing in real-world scenarios compared to existing
literature [26,108,120,121,146,163,169,176,186,188,191,192,194].

3. Chaperone provides an overall precision of 93% and an overall recall of 96%, outper-
forming iLock [10%] (see §3.4 for details) by 14% in both precision and recall scores.
Specifically, in complex real-world scenarios (e.g., lounge and bus stop), the perfor-
mance gain is up to 32% in the recall score. For 95% of the successful loss detection
experiments, Chaperone can lock the phone and alert the owner within 0.5 seconds.
The experimental results provide strong indication that Chaperone is robust and
effective in many everyday scenarios.

4. We conduct a user study (n = 17) to investigate people’s smartphone loss experiences,
collect feedback on using Chaperone, and study user perceptions of different alert
methods for smartphone loss prevention. The results indicate that the participants
are satisfied with the detection performance of Chaperone. We also report on the
suitability of five alert methods for different locations.

5. We release Chaperone as an opensource, standalone Android app, and our collected
dataset from both lab and real-world experiments, to help reproduce our findings,
and improve acoustic sensing-based device loss prevention solutions. The project link
is https://github.com/cryspuwaterloo/chaperone.

3.2 Chaperone

We leverage active acoustic sensing based on a high-frequency acoustic signal, which is
inaudible to most humans and is not interfered by common noise in the lower-frequency
band. The speed of sound is orders of magnitude greater than the speed of a person
moving away from the device—sufficient for real-time detection. Chaperone consists of
four main modules: trigger, acoustic sensing, user tracking, and decision making module;
see Figure 3.2.
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Figure 3.2: Workflow of Chaperone.

3.2.1 Trigger Module

Chaperone does not need to continuously perform active acoustic sensing for many scenarios
including the following;:

1. The user is holding the device, or it is on the user’s body. Google’s Activity Recog-
nition API provides this information using low-power sensors [31].

2. The user is using the device while it is lying on a surface, e.g., playing a video while
the device is on a desk. This can be determined by querying the device state to
establish whether the device screen is off and it is in idle state.
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Figure 3.3: Signal processing in the acoustic sensing module (note: magnitude in the figure
is normalized).

3. The device is at a trusted location, e.g., the user’s home; such locations can be
configured by the device owner.

In summary, the trigger module invokes active acoustic sensing only when the device is
not in use (i.e., idle), not on the user’s body, and in a potentially untrusted or public
environment. This reduces the acoustic sensing overhead.

3.2.2 Acoustic Sensing Module

This module performs active acoustic sensing to keep track of the user’s movement. It sends
a particular acoustic signal, and processes the received echo signal to make meaningful
conclusions about the user’s movement (if any). It consists of an acoustic signal generator,
audio manager (controlling the speaker and the microphone), and a signal processor.

The signal generator produces an inaudible acoustic signal based on sampling rate,
frequency, length, and signal type, and then passes the audio data to the audio manager.
We use a sampling rate of 48kHz for supporting the acoustic signal up to 24kHz and a
sensing period (i.e., a frame) of 50 milliseconds for real-time detection. In the first phase
of the sensing period, the device emits a 1,200-sample acoustic signal and keeps recording
the sound; see Figure 3.3a. In the following 1,200-sample idle phase, the device emits no
signal but continues to sense for the reflection of the signal emitted during the first phase.
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The default acoustic signal used in Chaperone is a frequency sweep from 19-23kHz with
fading at the start and the end of the signal, which is inaudible to most humans [10].

The audio manager interfaces with the smartphone’s speaker and microphone. It si-
multaneously uses the speaker to periodically play the acoustic signal and the microphone
to record the sound; see Figure 3.3b for an example of the raw sound. Since the recorded
sound covers the whole frequency range, including environmental noise, the audio manager
continuously passes the raw sound data to the signal processor to extract the reflected
acoustic signal.

The signal processor is designed to obtain a magnitude vector m of the echoes. It first
applies two filters, a band-pass filter and a matched filter, to the raw sound data to match
the original acoustic signal. The band-pass filter keeps the dedicated frequency band, and
the matched filter highlights the original acoustic signal by calculating the convolution of
the filtered sound signal and the reversed original acoustic signal. Since it is impossible for
an echo to occur before the direct transmission, we only keep the samples after the first
peak (i.e., the sample with the locally highest magnitude caused by the direct transmission
from the speaker to the microphone), and then obtain the processed acoustic data; see
Figure 3.3c. The signal processor then calculates the magnitude vector m for the clipped
signal. Since the delay of an echo is the round-trip time of sound traveling between the
phone and an object (or user), each index of the vector can be mapped to the corresponding
distance d according to the following time-of-flight distance measurement formula:

Mc
d= 2_fs © 1, (3].)
where c is the speed of sound, f, is the sampling rate of the acoustic signal and M is the
downsampling rate. For example, given that ¢ = 340 m/s, f; = 48kHz and M = 4, the
10th element of vector m is the magnitude of the matched signal that is approximately
0.142m away from the phone. Finally, the signal processor passes the magnitude vector m
for the current frame to the user tracking module.

3.2.3 User Tracking Module

This module locates the user by filtering echoes reflected from surrounding objects and
background noise, and tracking the user among other moving bodies.

Pre-processing. In the first step, the pre-processing sub-module filters the echoes re-
flected from other objects. Figure 3.4a shows that the magnitude vectors capture echoes
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Figure 3.4: Distance estimation procedure: (a) the bright part represents the captured
echoes from nearby objects and people; (b) after excluding echoes from static objects, the
user’s movement from time 0-2.5s is highlighted, but we can still observe the echo from
nearby people, e.g., 85cm away from the device during the time period 2.5-5s; (c) by
using our candidate selection algorithm, we can track the user’s movement and predict the
movement when there is no valid observation (e.g., at time 3s).

from the user as well as objects. We remove echoes from static objects by using the differen-
tial magnitude vector Am; =| m; —m;_; |,¢ € N*, which is the absolute difference between
the current and the previous magnitude vectors. Figure 3.4b shows that this step excludes
static objects and highlights echoes from the user. The pre-processing sub-module also
determines if the current frame is affected by background noise. The overall magnitude of
the differential magnitude vectors at the corresponding moments may become irregularly
large due to high-frequency noise (see §3.1.2); we thus set a threshold on the average value
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Algorithm 1 Candidate Selection Algorithm

Input: All m candidate tuples C,, = {(Sm,hm,ln)} where s is starting distance, h:
peak magnitude, [: cluster size; d: predicted distance ; n history speeds v =
{vo,v1,...,Vn_1}; Rmax: max range; ¢: base discount

Output: Observed distance obs

1: function CANDIDATE_SELECTION(C, d, V)

2 0bs < —1, pmax < —1,e <0 > Initialization
3 Ko < getDirection(v, 1)

4 for i < n—2to 0 do

5: K < getDirection(v;)

6 if Kk = kg and k # 0 then > If direction changes
7 e<—e+1 > Add to discount exponent
8 else break

9: for i< 0tom—1do

10: Sishiy l; < Ci, 1 ¢°Rinax > discounted range r
11: if |s; —d|<ror |s+1—d|<rthen

12: if h; > pmax then

13: 0bs < 5;, Pmax < h;
return obs

to exclude such noisy frames. Note that if a frame is regarded as noisy, there is no valid
observation at that moment. This error is adjusted by predicting the current distance
based on the values from the previous frames using a Kalman filter.

Outlier detection. This sub-module detects potential dynamic movements of the user.
Intuitively, an outlier (i.e., an exceptionally large magnitude) in a differential magnitude
vector implies the existence of motion at the corresponding distance. We use median-
absolute-deviation (MAD) outlier detection to obtain the outliers in the current frame.
However, our outlier detection may be negatively affected by the motion of the user’s body
parts and the motion of other nearby people. Specifically, the intense motion of a user’s
body parts results in a non-trivial number of outliers; see the blue dots in Figure 3.4c. We
handle these outliers by clustering them based on their relative distance, so that they are
merged into a single candidate.

Candidate selection and Kalman filter. From the clustered candidates, we choose
the candidate that corresponds to the user and use it to estimate the user-device distance
and the user’s speed. For the first frame (at ¢ = 1), we choose the candidate closest to the
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Figure 3.5: Example of distance tracking failure: the user tracking module can only track
the user up to about 85cm.

phone, assuming that the user is the closest, and then feed the corresponding distance into
the Kalman filter as the initial distance. Once the user is in motion, our assumption that
the user is closest to the device may no longer be valid. For example, in Figure 3.4c, we
can observe movement of another person at the distance mark of 0.8m (and at time 2.5s),
while the user is actually 1.7m away from the phone. To address this scenario, we make the
candidate selection and the Kalman filter work together to decide which candidate point
to choose as the observed distance d; at time ¢t. The Kalman filter is also used to estimate
both distance and speed. For candidate selection among the following frames, we reduce
the candidate selection range if the user keeps the previous motion state; see Algorithm 1.

Since the Kalman filter itself predicts the current distance and speed at each round,
we incorporate the a priori estimate of distance cfﬂt_l (i.e., “predicted distance”) from
the Kalman filter to calculate the possible range for the next distance. The candidate
selection module chooses the most consistent candidate based on the magnitude and uses
its corresponding distance as the observed distance. Then, the Kalman filter updates the a
posteriori estimate of distance cim and speed ¥y at time ¢. (We denote them as “estimated
distance” and “estimated speed”.) Note that if the user is stationary, or out of the detection
range, there might be no matching candidate points. In that case, the Kalman filter is
fed with the previous distance as the observation, assuming that the user is idle. After
combining multiple frames, we obtain a trace of the user’s movement based on the distance
estimated by the Kalman filter (the yellow line in Figure 3.4c). All the distance and speed
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values, together with the magnitude vectors, are passed to the decision making module to
determine whether to generate an alert.

3.2.4 Decision Making Module

This module detects whether the user is about to leave the device, based on the informa-
tion obtained from the acoustic sensing and user tracking modules. As noted in §3.1.2,
several environmental factors can limit the detection capabilities in real-world scenarios;
see Figure 3.5, where the user tracking module fails when a distance-only approach is em-
ployed with the distance threshold set at 1m. As a result, a simple distance-only approach
is unable to determine whether the user is stationary at that point or is behind the wall.
Therefore, dealing with obstacles requires a more comprehensive analysis than relying on
the estimated distance alone.

Classifiers for user state estimation. We rely on three classifiers: the motion state
classifier determines whether the user is approaching, leaving, or stationary; the activity
intensity classifier determines whether the user’s activity is intense or moderate; and the
user presence classifier determines whether the user is close to the device or far away.
The features for these classifiers are derived from distance, speed, magnitude vector and
differential magnitude vector estimates of the user tracking module; Table 3.1 lists our
features and their usage in the classifiers. Feature values are populated by combining
data from multiple continuous frames into one window. The window size w is set to
five frames (i.e., 250ms), containing sufficient information to perform meaningful analysis
without affecting the real-time capability of Chaperone. Within each window, we denote
the first frame as t; and the last frame as ¢,,. As for the (differential) magnitude vectors,
we focus on movements in the 15cm—1m range. A lower bound of 15cm excludes any
direct transmissions from the speaker to the microphone, and our experiments show that
an upper bound of 1m provides sufficient data to reliably detect smartphone loss.

Features for classification. Intuitively, speed and distance features are correlated to
the user’s motion and presence state. From the user tracking module, we know whether it
has a valid observation on the user’s motion, and then we can obtain both observed and
estimated distances and speeds. We also calculate the relative distance to the median of
historical user-device distances, approximating the user’s initial distance to reduce fluctu-
ations caused by the user’s activity. Besides, we employ the average speed, which is the
slope of the line connecting the distances of the first and the last frames.

We also consider intensity-related features. Figure 3.5b shows that when the user is
performing activities, such as typing or standing up, the movement of different body parts
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Table 3.1: Features for three classifiers. C1: motion state; C2: activity intensity; C3: user
presence. A circle means a classifier uses the corresponding feature (empty indicates no
use).

leads to the average differential magnitude close to the phone being dramatically larger
(called a “hot area”) than the ambient magnitude. Therefore, to describe the user’s activity
intensity, we use the average differential magnitude and the hot area rate, the proportion
of the area whose magnitude is larger than a threshold 6. Besides, these activities may
result in some fluctuations in the speed and distance estimation, which can be observed in
frequent changes of the direction.

The magnitude vector also provides information about user presence; see Figure 3.5a.

45



Even slight movement of the user can still cause an increase of variance in magnitude at
the corresponding distance, implying the user’s presence. Furthermore, it is possible to
infer the user’s presence based on the static objects nearby. When the user is near the
phone, parts of the acoustic signal will be blocked by the body, and the objects behind the
user may not appear on the spectrum. But after the user has left, these objects will begin
to reflect the signal, and thus change the raw magnitude vector.

Decision maker. This sub-module determines the user state, and reacts based on the
classification results of the three classifiers. We adopt a sliding window mechanism to make
a decision across three windows, which improves the detection accuracy without sacrificing
the real-time nature of the system. The decision maker uses the following criteria to decide
whether a departure activity of the user happens: The user is leaving (i.e., the motion state
classified as “leaving”), the activity intensity is fading (i.e., the activity intensity changed
from “intense” to “moderate”), and lastly the user is no longer close to the device (i.e., the
user presence state changed from true to false). Only when the user’s movements satisfy
all criteria, Chaperone will make a positive detection. This strategy helps reduce false
positives by a distance-only approach.

As a reaction to a potential smartphone loss, Chaperone locks the phone immediately
and triggers an appropriate alert method using, e.g., a ringtone, vibration, notification
sound, or screen flashing. The alert scheme is chosen based on the contextual information
collected by the trigger module. For example, if the environmental noise level is low, a
gentle ringtone will be sufficient to get the user’s attention. In §3.6, we systematically
investigate user preferences for alert methods in terms of effectiveness and annoyance in
different scenarios.

3.2.5 Implementation

We implement a Chaperone prototype as a standalone Android app. To help reproducibil-
ity, we also implement a remote-mode option, where the smartphone is responsible only
for acoustic sensing, and a remote server stores and analyzes the raw acoustic data for user
tracking and decision making.

For acoustic sensing, we use LibAS [167], an opensource framework for the rapid devel-
opment of acoustic sensing apps. LibAS outputs the acoustic signal used by Chaperone and
performs acoustic sensing. The operations required for user tracking and decision making
(see Figure 3.2) are not provided by LibAS, so we had to implement them ourselves. The
minimum SDK supported by Chaperone is API level 21. Audio data is collected in the
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raw audio mode for Android 7.0 and up or using the microphone audio source for below
Android 7.0.

Support for different smartphones. For most experiments, we use a Google Pixel
(2.15GHz quad-core CPU, 2016) for data collection to train the classifiers in the decision
making module. We successfully tested the prototype on Samsung S8, Huawei AL-10, and
Google Pixel, Pixel 3, Nexus 5x, and Nexus 6P phones. Because of hardware differences,
the magnitude scales of acoustic signals vary on different devices. To make Chaperone
work on different devices, an additional configuration step is needed. First, we adjust the
volume of the target phone to approximate the original acoustic signal strength to the
Pixel. Then, we sample the received signal and map the magnitude scale of the target
phone to it. This one-time configuration step is needed before deployment so that the
classifiers can be used on other devices without retraining.

Latency. To balance detection performance and signal processing overhead, we set the
sensing period to 50 ms (see §3.2.2) and implement filters in native C for efficiency. It
takes 25-35ms on the Pixel to generate raw magnitude vectors from the acoustic signal.
User tracking considers echoes only within two meters from the device, which is sufficient
for device loss detection, and takes less than 1ms to extract features. The decision making
module uses pre-trained models and takes about 1-2ms for classification (see §3.4 for
details). As a result, the overall latency of Chaperone for each sensing period is about
45ms on the Pixel. On the Nexus 5x (1.8GHz hexa-core CPU, 2015), processing takes 60ms,
while on the Pixel 3 (2.54+1.6GHz octa-core CPU, 2018), it takes only 35ms. Therefore,
Chaperone is effective for new and old devices.

Silent mode. When acoustic sensing is triggered on a device in silent mode, the media
volume is set to high for exclusively sending inaudible acoustic signals. The ringtone
volume remains on silent. Since silent mode implies that the user is in a quiet environment,
Chaperone can adopt vibration or flashing for alerts, instead of a ringtone. When acoustic
sensing is terminated, the device resumes the normal silent mode.

3.3 Evaluation Setup

Logistics. To evaluate the detection performance of Chaperone, we conducted experiments
that simulated different smartphone loss scenarios. For the ground truth, we need labeled
acoustic data that indicates when a user is at a certain distance from the device. This
requires at least an experimenter and an observer. The experimenter acted as the device
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owner and performed a series of departing and everyday activities. We include scenario-
specific everyday activities as they may introduce false positives (see §3.5 for details). The
observer was responsible for real-time labeling of the departure events, t4, and absence
events, t,. The departure event indicates that the experimenter is leaving the device,
and the absence event indicates that the experimenter is 1m away from the device. The
observer also labeled the user state information, which is used for the model training
for the three classifiers. In total, eight experimenters (one undergraduate student and
one graduate student who have no security background, six graduate students who have
security background) simulated the device loss events in the experiments and one observer
labeled the events for consistency.

Data collection. Our objective is to collect data from a diverse set of evaluation condi-
tions and scenarios. We first controlled device orientation and the user’s departing speed
in lab experiments. Intuitively, when the microphone is facing the user, the echo reflected
from the user is most effectively captured. But if a user puts the phone horizontally (i.e.,
90°) on a table, the received echo signal is likely weak. As for departing speed, if the user
departs quickly, the system’s reaction time may be inadequate for real-time alerts. We
collected 135 departure and 135 everyday activity events from an experimenter to evaluate
nine combinations of these conditions (see §3.4.1). Another aspect that requires careful
control is the effect of a nearby stranger on Chaperone—e.g., whether the departure of a
nearby stranger results in a false positive, or the existence of the stranger when the user
has departed results in a false negative. We collected 54 user-departure events and 54
nearby stranger-departure events with an experimenter and a stranger separated by three
distances in a lab-based setup (see §3.4.2). Finally, we evaluated real-world conditions
with varying factors (e.g., crowd, noise, and physical layout) at eight locations (library,
office, restaurant, coffee shop, lounge, bus stop, in-vehicle, and academic venue). Eight
volunteers helped to collect 366 departure events and 391 idle events; see Table 3.2. We
comment on the environmental conditions of each location when we present the results
in §3.5. In addition, we evaluated the effects of other interference factors by collecting
75 departure events in close-object experiments and 135 departure events in concurrent
sensing experiments.

Each data collection experiment consists of two parts. In each scenario, the exper-
imenter put the phone on a surface (e.g., dining table at a restaurant) within one-arm
distance from the body. In the first part, the experimenter performed some everyday
activities matching the given scenario. In the second part, the experimenter left at the
requested speed. Each activity is about 2.5-10 seconds long. For layouts with multiple
departing paths, the experimenter also took different paths. The observer was far away
from the experimenter (more than 2m for lab experiments, at least 1m for real-world ex-
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Figure 3.6: The ROC curve of the three classifiers.

periments) to capture the departing procedure. Finally, to measure the performance of
Chaperone over longer idle periods, we collected 15-20 minutes of data in locations where
the user stayed for a long time, such as libraries, meeting rooms, or restaurants. For these
experiments, we count the total number of false positives in the given time duration.

Algorithms for comparison. We compare Chaperone with iLock’s user-phone distance
estimation approach [108]. We contacted the iLock authors for their implementation. Al-
though we did not receive it, they provided implementation details missing from the paper.
Combining with details from the related papers [2, 108], we implement iLock’s distance es-
timation approach including background subtraction, peak finding, and a Kalman filter
with outlier rejection. Given the available details, our implementation is close to the one
by Li et al., although there may be minor differences. We label this algorithm as “iLock”
for simplicity. We assume the phone will be locked and an alert will be raised whenever
the estimated distance exceeds the threshold of 1m, as set by iLock [108]. iLock is prone to
raise a positive detection for more involved scenarios to avoid false negatives. For example,
when more than two users’ movements are detected but only one exceeds the threshold,
iLock locks the device without knowing whether it was the owner who crossed the thresh-
old; this causes many false positives in the real-world experiments (see §3.5). To reduce
false positives, we merge the candidate selection strategy from Chaperone into iL.ock, which
we label as “iLock+-+". This change improves the peak selection of iLock to better track
the owner’s movement.

Metrics. We use precision and recall to measure the detection performance. We denote
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a departing activity as a positive instance and an idle activity as a negative instance. We
define a successful detection as one made after the moment ¢; when the user starts to leave.
Note that if a positive detection is made before t; due to false tracking, it is counted as
both a false positive and false negative (i.e., it creates a false alarm and fails to detect the
true event). We also evaluate the time delay of the alerts. We use human observations as
reference points and correct them based on acoustic sensing to offset the human reaction
time. An alert is deemed valid if it is sent after t;. We use the moment ¢, when the
user is observed to pass the 1m line as the zero-point for calculating the delays. Then the
detection delay can be calculated as ty — ta, where t4 is the time when Chaperone detects
the departure. A negative delay means an early detection before the human observation
of the user passing the 1m line.

Hyper-parameter tuning. Our three classifiers are responsible for interpreting the user’s
current status from a variety of features. The performance of the classifiers is critical for
the final decision making. Therefore, it is necessary to tune the hyper-parameters of
these classifiers before conducting the experiments. We adopt Randomized Search Cross
Validation [138] to tune the three hyper-parameters of the Random Forest algorithm: tree
size d, minimum sample number for splits n,, and minimum sample number of each leaf
n;. We use the lab experiment dataset for tuning, and manually label 6,118 data points
(i.e., windows) with the current user state. This dataset is also used to train the model
used in real-world experiments. The tuning objective is to maximize the area under the
receiver operating characteristic curve (AUROC). Figure 3.6 shows the average ROC curve
of 20-fold cross-validation with the best hyper-parameter settings for the three classifiers.
In the following experiments, we always adopt the hyper-parameters for model training
listed in Figure 3.6.

3.4 Lab Experiments

3.4.1 Device Orientation and Departure Speed

We conducted experiments on nine different combinations of the following two factors—
three phone orientation angles: 0° (vertical), 45°, and 90° (horizontal); and three departure
speeds for the experimenter: slow, normal, fast. The logged departing speeds were exper-
imenter dependent, and the average speeds were 1.25m/s (slow), 1.67m/s (normal), and
2.22m/s (fast). These experiments were conducted in a lab with a 70cm high desk. For
each experiment, the phone was placed at the given angle on the desk in front of the ex-
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Figure 3.7: Precision and recall of iL.ock, iL.ock with Chaperone’s candidate selection strat-
egy (iLock++), and Chaperone.

perimenter and the experimenter stood at the desk about 20cm away from the phone. For
each angle-speed combination, we logged 15 departure and 15 idle events.

Since Chaperone requires training the three classifiers, we use ten-time four-fold cross-
validation to evaluate its detection performance. Namely, we split the data for all com-
binations into four subsets where data samples from different combinations are evenly
distributed. We use three subsets for training and the fourth one for testing. The splitting
is repeated for ten times, and eventually, we calculate the average precision and recall for
each angle-speed combination. For iLock and iLock++, which are model-free, we directly
evaluate their performance over each combination.

For angle-speed combinations (0°, fast/normal/slow), (45°, normal/slow), (90°, slow),
all three algorithms achieved both 100% precision and 100% recall. Figure 3.7 shows the
evaluation results for the three algorithms under the other three combinations. Even when
the user departed at a fast speed and the phone orientation angle was 90°, the precision and
the recall of Chaperone are 100% and 89%, respectively—a strong indication of robustness
against different phone orientation angles and departure speeds. In comparison, if the user
left at a normal or fast speed and the phone orientation angle was 90°, the recall scores of
iLock and iLock++ decrease significantly. For the (90°, fast) combination, the recall score
of iLock drops to only 29%, and iLock++'s is about 35% with successfully tracking two
more departing activities based on the improved tracking strategy. The reason for the drop
is that the strength of echoes from the user becomes weaker when the angle is larger, and
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Figure 3.8: Detection delay (in seconds) for three algorithms.

the detection window is reduced due to the fast departing speed, where few valid measure-
ments can be made by iLock and iLock-++. They lost track of the user’s trace before the
1m threshold under these conditions, which shows the ineffectiveness of the distance-only
approach. Chaperone can still detect such situations based on the user state classifiers of
the decision making module. All three algorithms have a very high precision score (i.e.,
no false positives for iLock++ and Chaperone), because the idle events performed in the
ideal experiments were always close to the phone, which are easy to differentiate from a
departure event. The experiment has shown that Chaperone, with the help of both the user
tracking and decision making modules, outperforms iLock and iLock++ when handling a
more complicated situation.

Figure 3.8 shows the detection delay for the three algorithms. Ideally, we expect an
alert to be emitted within 1-2 seconds after leaving the phone to get the user’s attention
on time, i.e., while the user is still close. Chaperone consistently reacts within 400ms (95
percentile) for all nine combinations after the user passed the 1m line; in contrast, iLock
and iLock++ can react within 200ms due to their simpler detection strategy. Chaperone’s
window-based decision mechanism incurs a delay of 400ms, but it is still fast enough for
real-time use.

In summary, Chaperone performs significantly better under several angle-speed com-
binations. Both iLock and iLock++ perform poorly when the orientation angle is large
and the user’s departing speed is high. Chaperone handles this situation well by track-
ing the user’s departure pattern instead of relying on user-phone distance only. All three
algorithms manage to detect departure events in real time.

3.4.2 Effects of a Nearby Stranger

We conducted controlled lab experiments to investigate how a nearby stranger affects
the detection performance. We used the same layout as in §3.4.1, and conducted the
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Figure 3.9: One-hour energy consumption when Chaperone is continuously sensing.

experiments as follows: Both the stranger and the user initially stood at the desk, and
kept distances of 30cm, 75cm, and 100cm between them for different tests. The phone was
vertically placed 20cm in front of the user on the desk. The user and the stranger were
asked to alternatively depart from their positions.

For all three distance settings, Chaperone is able to detect all departure events with no
false positives (precision and recall of 100%). iLock and iLock++, which are designed to
defend against nearby attackers, also perform very well: among the 108 events, both algo-
rithms had two false positives and one false negative for the 75cm user-stranger distance,
and one false positive and one false negative for the 100cm user-stranger distance. The
results show that interference from a nearby stranger has little impact on the detection in
the lab environment. However, in real-world scenarios, there may be more than one person
near the user. In addition, the activities from nearby people are unpredictable in terms
of direction, intensity, timing, etc. Therefore, we further studied the potential of false
positives /negatives resulting from nearby people in the real-world experiments; see §3.5.

3.4.3 Energy Consumption

Active acoustic sensing of Chaperone is triggered only when the Trigger module detects a
potentially vulnerable contezt (e.g., at a bus stop). If the phone is in a private environment,
e.g., home, Chaperone’s processing needs will be negligent (i.e., no active acoustic sensing).
However, Chaperone may still be occasionally triggered for a long period of time—e.g.,
the user is attending a conference, while leaving the phone on a table. Therefore, we use
Android Battery Historian [5&] to profile Chaperone’s energy consumption on the Pixel with

93



O e s o [0 S —
0.8
o 0.6
5 — iLock
o ] i
S I D Y2 Y A A iLock++
0.21 B Precision ——- Chaperone
B Recall :
0.0/ : _ — -1.0 =05 0.0 05 1.0 15
iLock iLock++  Chaperone Delay (s)

Figure 3.10: Overall performance of three al-Figure 3.11: Detection delay. Negatives indi-
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a 2770mAh battery. We fully charged the phone and kept it idle with no other applications
running, except Chaperone and system services. We placed the phone on a table with the
maximum volume, while Chaperone was continuously conducting detection; the battery
level dropped from 100% to 92.3% in an hour—see Figure 3.9. The peak discharging
rate was about 0.2% per minute, with an average of 0.13% per minute. For comparison,
one-hour music playing with the same volume consumed about 4% of the battery, while
one-hour movie playing consumed about 9% (the idle phone took about 0.3%). Although
Chaperone’s battery consumption during active acoustic sensing is significant, it is still
acceptable for daily use with help of the trigger module — low-frequency sensing with
motion and location sensors can help avoid unnecessary acoustic sensing and save battery.
Our survey (see § 3.6) also showed that the extra battery consumption was acceptable
for most participants considering their smartphone usage habits and Chaperone’s trigger
mechanism.

3.5 Real-World Experiments

We evaluated Chaperone against a variety of real-world scenarios. We did not employ
scenario-specific data for training the classifiers. Instead, we trained them using the data
that we collected from one experimenter during the lab experiments (§3.4), following our
“Robust” design goal (§3.1.2, require minimum tweaking for unseen scenarios). Figure 3.10
shows the overall detection performance of the three algorithms over 366 departing activ-
ities and 391 idle activities in real-world scenarios. The precision and recall scores of
Chaperone are 93% and 96%, respectively, compared to iLock’s 79% and 82%, respec-
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tively. With using Chaperone’s candidate selection strategy, the precision of iLock+-+
increases up to 91% and the recall is slightly improved to 85%. Figure 3.11 shows the
cumulative distribution function of the delay for the three algorithms; over 95% successful
detection instances happen within 500 ms after the user crosses the 1m threshold. Al-
though Chaperone has a longer delay than iLock, the delay gap is still acceptable. These
results demonstrate Chaperone’s efficacy in previously unseen real-world scenarios. Ta-
ble 3.3 shows the precision and recall scores of eight experimenters in different locations.
The three classifiers were trained with only one experimenter’s (i.e., #3) data collected
during the lab experiments. From the results, we can see that the pre-trained classifiers
worked well for all eight experimenters, indicating that Chaperone is user-independent.
We now discuss the results for the individual scenarios (summarized in Table 3.2).

3.5.1 Evaluation under Different Scenarios

Library. The experimenter shared a group study table with two or three students at
our university library. Occasionally, strangers passed by near the table. The background
noise came from people’s chatting and the building’s ventilation. The everyday activities
involved reading and writing by the experimenter. In this environment, the detection
rates of the three algorithms are mostly identical. As this scenario is close to the setting
in the ideal experiments but with a few nearby strangers, iLock and iLock++ can also
handle it well. The three algorithms shared a common false negative, caused by the
simultaneous movements from both the user and a passer-by. The false positives were
caused by interference from a nearby stranger’s abrupt movements.

Office. The experimenter was alone in a narrow office cubicle and performing activities,
such as using the keyboard and monitor, and standing up to fetch documents from a shelf.
There was background noise from computers, typing, and a regular office swivel chair. The
cubicle has a semi-open structure, and we placed the phone at different positions on the
table. When it was placed close to a cubicle divider, the acoustic signals were partially
blocked. iLock has significantly lower precision and recall scores since it failed to handle
partially blocked signals well, or was misled by changes in the magnitude of the echoes
from the chair. With Chaperone’s tracking strategy, iLock++ has the same recall score as
Chaperone and a slightly higher precision score. For Chaperone, ten false positives were
a result of the user’s movements matching the preset departure pattern of Chaperone.
For example, three false positives came from the eight document fetching cases—when the
experimenter momentarily came close to the 1m line and then returned. All the three false
negatives were related to the false positives in departure activities where Chaperone sent
alerts before t4 (see “Metrics” in §3.3).
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Restaurant and coffee shop. Since the layouts and results for the restaurant and coffee
shop scenarios (one restaurant and two coffee shops) are similar, we present them together.
For these scenarios, the experimenters were eating/drinking at different tables (e.g., round,
corner, bar counter), and shared the tables with one or two nearby people (within 1m).
Both types of places were noisy, crowded, and other customers were passing by. There was
high-frequency noise from the entrance door, dragging of chairs, and dining carts in the
restaurant; an espresso machine also sometimes produced high-pitched noise in the coffee
shops. Chaperone performs very well in the restaurant: precision 100% and recall 99%. In
coffee shops, three false positives from two experimenters have been observed when they
temporally moved away from the counter seat, but the precision score is still 92%. iLock’s
precision is lower in the coffee shop than in the restaurant because of the interference
from the occasional high-frequency noise from the espresso machine, while iLLock++ is less
affected. However, both iLock and iL.ock++ do not perform well in tracking the departure
activities in some specific layouts where the experimenters passed by a near obstacle (e.g.,
a pillar) on their departure trace.

Lounge. We used a spacious, quiet lounge, where the experimenter was sitting on a couch,
and the phone was placed either on a coffee table, or a couch (to simulate the phone being
dropped from the pocket). The couch was shared with a stranger, and occasionally, there
were people passing by. iLock and iLock++ do not perform well in the lounge with low
recall scores of 64% and 60%. Due to the combination of the environmental factors (signal
partially blocked by the furniture), and the user’s departure trace (walking in a direction
where the signal transmission is weak), iLock and iLock++ can hardly capture the user’s
movement as they highly rely on distance estimation. In contrast, Chaperone detects 96%
of the departure activities. We record six false positives (including two in actual departure
activities but where Chaperone sent alerts before t4) for situations where the user reclined
on the couch while the smartphone was on the coffee table. Similar to the document
fetching cases in the office scenarios, the body reclining movement pattern is similar to
the departure pattern, which misled Chaperone. One false positive is recorded when the
smartphone was left on the couch and the user stood up from the couch, where a significant
moving-away event was captured by Chaperone.

Bus stop. We experimented at two types of bus stops: an open-air bench and a small
glass-enclosed waiting area. The experimenter left the phone either on the bench or a seat
in the waiting area. There was high-frequency noise from passing vehicles and alert signals
from trams. Several other people were also waiting for a bus or passing by. In this scenario,
Chaperone significantly outperforms iLock and iLock++, detecting all the departure activ-
ities (recall: 100%). We note four false positives for Chaperone (the precision is still 92%)
when the phone was placed between a stranger and the user, where the stranger-phone dis-
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tance was very close to the user-phone distance. When the stranger moved away, Chaperone
tracked their movement and resulted in a false positive. iLock and iLock-++ were prone to
be misled by the stranger’s movement, especially when the user’s movement range was in-
tersected by the stranger’s. In addition, the high-frequency noise sometimes interfered with
the detection of iLock and iLock++ and produced false positives. Chaperone was unaf-
fected by such high-frequency noise thanks to its noise handling strategy. Results from this
scenario strongly suggest that Chaperone can operate reliably in such noisy environments.

In-vehicle. Since a significant number of smartphone losses happen during ride hail-
ing [170], we specifically target this scenario, which includes several challenges: the car
space is much smaller than other scenarios, and the leaving procedure is very short—the
user opens the car door, steps out, and closes the door. Also, when exiting the car, friction
noise is produced by clothes and the seat, as well as the clunking noise from the car door.
We simulated the cases where the user leaves the phone on either the front or back seat in a
sedan with different noise conditions for the state of the engine, radio, and air-conditioner.
Chaperone has no false positives, and the recall reached 91%, outperforming iLock and
iLock—++. The false positives for iLock and iLLock++ were the result of noise in the narrow
car space when the user was stationary. However, the common noise in the car did not
affect Chaperone’s user tracking (due to the incorporation of noise detection, candidate
selection algorithms and three user state classifiers). The false negatives for Chaperone
primarily came from the short leaving procedure, and the movement of the car door when
the user was closing it. To reduce false negatives, one possible solution is to shorten the
decision window when the phone detects that it is in a vehicle. Nevertheless, Chaperone
provides overall good performance for the car scenario.

Academic venue. We collected data at a workshop (a lecture room with over 50 peo-
ple), and a conference keynote (a large hall with over 900 people). We tested the keynote
scenario at the end of the talk when the conference participants were leaving from the hall
(crowded and very noisy). Due to the limited data collection time, we only collected three
departing activities for each place. Chaperone worked well without any false negatives.
One common false positive for iLock and iLock++ in the keynote hall is that they lost
track of the user because the echo strength dropped quickly to the same level as the noise
before the user was reaching the 1m line.

Summary. ilock resulted in more false positives for real-world conditions than in lab
experiments. Using Chaperone’s candidate selection strategy, iLock++ offers higher preci-
sion, especially in restaurant and coffee shop scenarios where environmental factors intro-
duced more noise; iLock++ also improved in detecting more departure activities in office
and in-vehicle scenarios. Chaperone outperforms both il.ock and iLock++ in complicated
scenarios like the lounge and bus stop. The decision making module determines the user’s

o8



departure activities based on user’s motion state and activity intensity, rather than es-
timating user-phone distance only. In general, Chaperone consistently performs well in
terms of recall rate. However, among the eight locations, Chaperone has lower precision
scores in the office and lounge scenarios, apparently, because users have a large movement
range in these scenarios, and some specific activities (e.g., document fetching) are similar
to the preset departure pattern of Chaperone. A possible solution is to enable different
departure patterns for different types of locations.

3.5.2 Evaluation under Longer Idle Periods

The experiments in §3.5.1 evaluated false positives during everyday activities of short
duration. In some scenarios, acoustic sensing may be triggered for a longer period of
time while the phone is idle on a table with the user around, e.g., in a meeting room
at an untrusted place. In this case, a false positive can be quite annoying. Therefore,
we evaluated false positives with Chaperone running for 15-20 minutes in the following
scenarios: office, library, restaurant, and meeting room. We configured Chaperone to
continue to run after detecting a departure event. The experimenter performed everyday
activities matching the scenarios. We observed no false positives in the office, library,
and restaurant scenarios, while two false positives occurred in the meeting room scenario.
Both false positives happened when the user was stationary, and the closest colleague,
sitting around 30cm away, did some movements (e.g., adjusted their seat), misleading the
detection. Overall, the false positive rate of Chaperone is acceptable for longer acoustic
sensing sessions under different situations.

3.5.3 Effects of Other Interference Factors

As Chaperone relies on acoustic sensing, it may be affected by the following scenarios:

1. The sound transmission is partially blocked by an object very close to the speaker
and microphone of a smartphone.

2. Multiple nearby Chaperone-enabled smartphones are conducting acoustic sensing
concurrently.

We evaluate these cases by running Chaperone in the standalone mode with the trained
classifier models used in the real-world experiments. In each experiment, the smartphone(s)
are placed in front of the experimenter with 0 degree orientation angle (i.e., vertical) and
the experimenter moves at a normal speed. For each setting, we conduct 15 experiments.
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Close-object Experiments

For the real-world experiments, we did not control the environment, including the pres-
ence/absence of nearby objects. We further perform controlled experiments to study the
effect of nearby objects that partially block transmission. The Pixel phone that we use in
these experiments, utilizes the bottom speaker and microphone for acoustic sensing. (We
discuss smartphones with different hardware layouts in § 3.7.) Intuitively, if an object
that is wider and thicker than the smartphone is placed very close to the bottom of the
smartphone, the sound transmission will at least be partially blocked.

Although many factors, such as object numbers, surface materials, and placements,
may affect the sound transmission, our main focus is to test Chaperone under different
blocking effects. Therefore, we change the distance between the object and the phone to
study the blocking effects. We conducted the close-object experiments in an office, and
placed the Pixel (8.5mm thick) on a desk with a laptop on its left side and two books
on its right (within 50cm to the phone). We investigated the effect of a single object in
front of the bottom speaker and microphone. We used two objects—a 200-page notebook
(landscape-oriented, height: 19mm, width: 266mm) and a 16-oz steel coffee mug (height:
198mm, width: 84mm), and phone-object distances of 5cm and 15c¢cm. Besides, we tested
the situation where the notebook was stacked on top of the Pixel (placed at the notebook’s
centre) with an 8mm gap between the desk and the notebook. When the notebook was
placed 5em away from the phone, the departure of the experimenter was detected in 13/15
cases; for the coffee mug at the same distance, 11/15 cases were detected. Since the coffee
mug has a larger surface than the notebook to reflect the signal, it becomes more difficult
to track the user’s movement. However, when the mug was placed 15cm away, 14/15 cases
were detected. When the phone was covered by the notebook, Chaperone detected 12/15
cases. Overall, Chaperone can still function when signal transmission is partially blocked.

Concurrent Sensing Experiments

Another situation of interest is when multiple Chaperone-enabled devices conduct acoustic
sensing with the same acoustic signal at the same time. Intuitively, the interference caused
by the direct transmission (from the speaker of a phone to the microphone of the other) can
be offset by the differential magnitude, since both acoustic signals have identical period,
and the overlying signals are constant in each sensing period. Our pilot tests show that
the acoustic signal generated by another phone, together with its echoes, could also be
detected as additional noisy frames by Chaperone, which is not considered in our design.
One solution is to adopt a higher noise threshold when Chaperone detects another identical
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acoustic signal close-by. In the experiments, we tuned the threshold and made no other
changes in the noise detection sub-module to handle concurrent sensing.

We follow the basic setting used in the nearby stranger experiments: two Chaperone-
enabled phones (the Pixel and Pixel 3, using the same classifiers) are placed in parallel on
the desk and two experimenters stand in front of the two phones and leave alternatively.
Each experimenter repeats the departure activity for 15 times. The shoulder-to-shoulder
distance between the two users was 30cm, while the distance between the two phones was
75cm. No false positives were detected, while one false negative on the Pixel 3 and three
false negatives on the Pixel were observed. To simulate the case where two Chaperone users
are very close to each other, we reduced the distance between the phones and the distance
between the users by 10cm: to 65cm and 20cm, respectively. Both phones detected 11/15
cases without any false positives. In comparison, when only the Pixel was conducting
acoustic sensing, and the other conditions remained the same, we still observed five false
negatives. Since the two users shared a largely overlapping activity range, it became
more difficult to distinguish them. Nevertheless, there is no significant change in detection
performance brought by concurrent sensing.

We added another Pixel (and an experimenter) to conduct concurrent sensing experi-
ments with three devices by placing them in parallel, 75cm apart, with the Pixel 3 in the
middle. For the 45 experiments, there was one false negative on each Pixel and three false
negatives on the Pixel 3, with no false positives on any device. These results indicate that
Chaperone can function concurrently on multiple devices with limited performance penalty.
Similar to the close-object experiments, we cannot exhaust all possible settings and related
factors, such as more smartphones (and users) and different placements. However, our ex-
perimental results have shown the feasibility of Chaperone in common concurrent sensing
situations.

3.6 User Study

Our real-world device loss experiments show promising results for Chaperone. To validate
the subjective nature of some of the results (e.g., the acceptability of the detection delay to
the users) and to understand users’ concerns for the adoption of Chaperone, we conducted
an IRB approved user study.
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3.6.1 Objectives and Methodology

We divide our objectives for the user study into three main themes: investigating device
loss experiences and users’ reactions, acceptability of Chaperone, and effective alert mech-
anisms for device loss. For device loss experiences, we collected data about the occurrence,
location, reaction, and the final outcome of the event. For the acceptability of Chaper-
one, we collected data on detection ability, detection accuracy, power consumption, and
overall effectiveness. We also collected data on what participants liked or disliked about
Chaperone and whether they would use Chaperone on their devices. Finally, we asked
participants regarding their preferred alert mechanisms for different environments based
on perceived effectiveness and annoyance.

To achieve these objectives we conducted a three-part study: a semi-structured inter-
view on smartphone loss experiences, a hands-on experience of Chaperone, and a semi-
structured interview for their feedback on Chaperone. While a longer field study may have

provided better insights, the nature of smartphone loss events cannot be controlled in a
field study.

We recruited participants from the campus (excluding our research lab) and local com-
munity through word-of-mouth. We did not require participants to have experienced
smartphone loss. For a realistic evaluation of Chaperone, the user study was held in a
busy campus cafeteria during weekdays. At the cafeteria, participants responded to a brief
demographic survey and the smartphone loss experiences interview.

For the hands-on experience, participants were asked to test Chaperone with real-time
distance-tracking display on both the Pixel and the Pixel 3. They could test Chaperone
freely and/or under the guidance of the investigator. At this stage, Chaperone alerted
the user only through a pop-up message when it detected a potential smartphone loss.
Then, we enabled a ringtone-and-vibration based alert without telling the participants
about it, asked the participants to simulate a smartphone loss scenario, and observed their
reaction to the alert. We chose the Pixel’s “Nudge” as the alarm sound with alarm volume
at 100%. We then demonstrated participants different alert methods including a strong
ringtone (i.e., Pixel’s “Classic Bell”), screen flashing, and notification sound to get their
feedback on their preferences for each method for different locations. Finally we conducted
the semi-structured interview to get their feedback on the acceptability of Chaperone and

their preference for alert methods. We provide detailed interview questions in our project
link.
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3.6.2 Findings from the User Study

We have 17 participants (7 females, 10 males) in the study. 13 participants are 18-25 years
old, and the rest are 26-30 years old; 15 are with Computer Science or I'T background.

Smartphone loss and unattended experiences. In the first semi-structured inter-
view, 11/17 participants reported having experienced smartphone loss. Four participants
reported more than one loss. Among the 15 reported loss cases, two were due to pickpock-
eting (beyond Chaperone’s threat model), ten were due to participants forgetting their
phones, and three were due to phones slipping out of participants’ pockets. Besides, 7/17
participants reported that they had unintentionally left their phones unattended to do
something quick (e.g., go to a washroom) in public places. None of these unattended
phone cases resulted in device theft or unauthorized access. Thus, we focus on the 15
smartphone loss cases.

The reported locations of the loss incidents include: library (four cases), street (three),
washroom (two), in-vehicle (two) and one each for bus stop, meeting room, semi-open
dormitory area, and gym. The participants realized the absence of the phone within 30
minutes for five cases (including two pickpockets), and more than one hour for eight cases.
In two cases, the participants realized only when someone found the phone and returned
it. Except two pickpockets and a forgotten phone in the semi-open dormitory area (later
stolen by someone), the participants eventually recovered their phones.

In nine cases, participants went back to all possible places to look for their phone, which
reportedly took them another one hour (four cases), or more than two hours (three cases)
to recover their phone. Three participants used “Find My Device” services; one of them
managed to recover the lost phone, while the other two failed.

This short survey indicates the importance of a preventive approach: finding lost phones
is time-consuming, and in some cases, such phones may never be found.

Feedback on Chaperone. For the device loss simulation, the researcher noted that
11/17 participants reacted (e.g., stopped leaving, turned/moved back) to the ringtone-
and-vibration based alarm and another five participants mentioned that they had heard
the alarm but they thought it was from somebody else’s phone. (Recall that tests were
done in a busy cafeteria.) In practice, Chaperone users would be aware of their alert sound
so this confusion would unlikely happen; we did not inform participants about the type
of alert to prevent them from explicitly waiting for it and biasing the results. 15 partici-
pants heard only the ringtone, but not the vibration; only one participant reported hearing
the vibration. As for the inaudible acoustic sensing signal, all participants reported not
noticing it during the whole demonstration.

63



s 5 4 3 s 2 [l

overall effectiveness 6 4
detection ability 11 1
detection accuracy 2 3
battery consumption . : 7 . Bl -
0 5 10 15

# of participants

Figure 3.12: Participants’ rating of Chaperone on a 5-point Likert scale (5: Very satisfied,
1: Not satisfied at all)

During the interview, when asked what participants liked about Chaperone, all reported
liking the idea of alerting a smartphone user when leaving the phone behind to prevent
smartphone loss. In terms of dislikes, nine participants suggested the ringtone used in
the hands-on experience should be more noticeable. Five thought the real-time distance
tracking was not very accurate because they noticed small fluctuations in the real-time
trace display although they did not lead to any false positive or false negative.

To measure Chaperone’s acceptability, participants rated Chaperone on a 5-point Likert
scale, as shown in Figure 3.12 (a higher score means a higher satisfaction), for its over-
all effectiveness (Assuming that you want to use a device loss prevention solution, do you
think Chaperone is an effective system?), detection ability (How do you rate the Chaper-
one’s ability to capture a smartphone loss?), and detection accuracy (How do you rate the
Chaperone’s detection accuracy? (a counterexample is that Chaperone sends an unwanted
alert when the owner is not actually leaving). The average effectiveness score is 4.2, the
average detection ability score is 4.2, and the average detection accuracy score is 4.5. The
results show that the participants were satisfied with the performance of Chaperone.

For the power consumption, we first shared with participants the battery consumption
rate of Chaperone conducting detection reported in §3.4.3, and then explained that it is
only triggered when all conditions (see §3.2.1) in the trigger module are satisfied; i.e., the
real power consumption will depend on smartphone usage habits. Therefore, we asked the
participants to rate the impact of Chaperone’s power consumption based on their habits
from 1 (i.e., significant) to 5 (i.e., negligible). The average score is 3.88, implying that the
power consumption is acceptable for most participants. Participants mentioned that they

64



N
o

Il ringtone (strong) B ringtone (gentle) I vibration screen flashing I notification sound

ey
wu

# of participants
w o

office library restaurant coffee shop in-vehicle meeting room transit station

Figure 3.13: Participants’ preferences of alert methods for different locations.

usually do not spend a long time in untrusted or public places, and therefore, the extra
power consumption by Chaperone is still acceptable considering the potential benefits.
Two participants rated the power consumption impact as 2. Their reported reason was
that they are heavy smartphone users and their smartphones can hardly accommodate any
additional battery consumption.

Alert. We also asked participants to comment on the alert they received during the
hands-on experience. Among 16 participants who perceived it, twelve thought the timing
of the alert was good to attract their attention, three thought the alert was a little late
and they might miss it if the alarm sound was not loud enough in a noisy environment,
and one participant thought Chaperone sent the alarm a little early and suggested to allow
adjustable sensitiveness for the alert.

For participants’ rating of different alerts, 13 participants rated the effectiveness of a
strong ringtone as “Very effective” or “Effective,” while eleven participants thought vi-
bration was “Not effective at all” since the vibration was too weak to alert the user in
a noisy environment. As for screen flashing, ten participants rated it as “Not effective
at all” since the phone is usually behind a leaving user. Participants were also asked to
choose their preferred alert methods for seven location types based on their perceived ef-
fectiveness and annoyance. They were allowed to choose none or multiple alert methods
for each location. Most participants chose noticeable alert methods like strong ringtones
for noisy places, while for the quiet places gentle ringtones and vibrations were preferred;
see Figure 3.13. Five participants chose screen flashing for the in-vehicle scenario as a
complementary alert method since it can make the phone noticeable in a dark environ-
ment. The results suggest that the trigger module can help Chaperone to determine an
appropriate alert method based on the current context. Ten participants mentioned they
needed a customized ringtone for device loss and nine participants expected the volume of
the ringtone to be automatically adjusted based on the ambient noise level. Three partici-
pants requested further actions like e-mail notifications if the user failed to respond to the
alert within a pre-specified time. These comments and suggestions are useful in designing
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a context-aware alert mechanism for Chaperone.

Adoption. We asked the participants: Would you like to install Chaperone as a device
loss prevention app on your phone? (Yes/No/Maybe). 8/17 participants answered “yes”
because they thought Chaperone helped reduce the risk of smartphone loss. Eight partic-
ipants answered “maybe”; four of them believed they had a good habit of always keeping
their phones with them but they still wanted to try it to record how often they leave their
phones behind, two had privacy concerns due to Chaperone requesting the microphone per-
mission, one was worried about the effectiveness of the alarm in very noisy environments,
and the other one expected that Chaperone could learn from a user’s habits to trigger the
sensing smartly and save battery. Only one participant answered “no” as they did not
need a device loss prevention application due to the perceived low probability of losing the
device.

Threats to validity. Our user study has some reasonable limitations similar to other
studies involving human subjects including the limitation of scope to people willing to
participate, self reported and subjective views, and participants might be inclined to pro-
vide favorable responses to the researchers. More specific limitations follow. Most of our
participants are current undergraduate or graduate students in Computer Science, lacking
diversity in participants’ background. Although we did not require participants to have
smartphone loss experiences, the advertised content for the user study mentions the study
is to “test the context-aware techniques on smartphones to prevent smartphone loss”, which
may have attracted users with such experiences. Another threat to validity is that the first
interview about smartphone loss experiences may have primed participants for adoption
of Chaperone. During the user study, we used a Pixel and a Pixel 3 as the demonstration
phones. The participants reported their perceptions of different alert methods based on
their experience of using these two devices. These results may not be fully applicable to
other devices due to hardware differences (e.g., max volume difference, vibrator difference).
In addition, since our user study focuses on collecting smartphone users’ perception about
Chaperone and its alert mechanism based on one demo session, it may not cover potential
issues regarding long-term usage of a product-ready Chaperone.

3.7 Discussion

We discuss a few issues relevant to the deployment and usage of Chaperone, including
limitations of our current prototype.

Very close attackers. In §3.1.1, we assume that the attacker is initially farther away
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from the phone than the owner. If an attacker who is initially closer to the device than the
owner, the system may track the wrong person since it assumes that the initially closest
person is the owner. To defend against such an attacker, Li et al. [108] adopt a dedicated
approach that requires two microphones and inertial measurement sensors to distinguish
the attacker from the owner. However, it provides acceptable accuracy only when the
owner and the attacker are facing each other, i.e., not side-by-side. Their approach also
requires the owner following a straight path away from the phone with a consistent relative
user-phone orientation (unlike Chaperone). Finally, both microphones may not always be
available at the same time, since the top or rear microphone could be covered when the
phone is lying on a surface. For Chaperone, a potential defense against such an attacker
is to trigger sensing right after the user puts down the phone on a surface to track the
user’s hand movement immediately, assuming the user’s hand is the closest moving object
at that moment.

Active attackers. As mentioned in the threat model (§3.1.1), Chaperone targets nearby
opportunistic attackers, not Chaperone-aware active attackers. An active attacker may at-
tempt to disarm Chaperone so that the auto-lock and alert mechanisms are not triggered.
We briefly discuss two types of active attacks here. 1) Jamming attack: If an attacker
continuously generates loud noise over the inaudible high-frequency band used by Chap-
erone, the echo of Chaperone’s own acoustic signal will be lost. However, it is possible to
measure the ambient noise to detect such an attack and alert the user before conducting
acoustic sensing. 2) Misleading attack: A nearby attacker makes significant movements
to produce strong reflected signals so that Chaperone tracks the attacker instead of the
user. When the owner is leaving, the signal reflected by the owner becomes weaker and the
nearby attacker’s movements overlap the owner’s departure trace. Note that, the attacker
must be very close to the target smartphone (i.e., within one meter) and make significant
movements before the owner moves too far away. For a better defence against the mislead-
ing attack, a potential avenue is to improve the motion tracking algorithm (e.g., include
motion history), or use additional detection methods (e.g., RF sensing [175]) to distinguish
different people.

False positives and negatives. We noticed some common false positives caused by (rel-
atively) longer range user movements (e.g., reclining on the couch) in the lounge scenarios,
and false negatives caused by moving objects (e.g., the car door) in the in-vehicle cases.
Since our models were trained with data from the lab-based experiments, it was challeng-
ing to handle these special cases. An apparent solution is to train the models with more
real-world data covering these situations. We use only lab data for our models to measure
Chaperone’s robustness in newly encountered situations—which we assume Chaperone to
face frequently in practice.
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Smartphone hardware differences. We focus on the environmental factors that affect
acoustic sensing. Most experiments were conducted on a Pixel, while a few concurrent
sensing experiments were done with a Pixel 3. To support different devices, we explain
how to transfer the classification model in § 3.2.5. A systematic study on how hardware
differences affect Chaperone’s sensing ability and the necessary parameter adjustments
due to these differences is future work. Two possible areas are the following: 1) Sensing
ability: given differences in microphones and speakers, the recording quality above 19kHz
may vary on different smartphones, directly affecting the magnitude of the received signal.
2) Hardware layout: the positions of speakers and microphones may differ for different
smartphones. Even for the bottom microphones, some may be placed on the bottom edge
(e.g., Pixel) while some may be on the bottom front (e.g., Pixel 3). Such differences may
result in different sensing ranges because of the directionality of microphones.

Measurement inaccuracies. During our data collection, a human observer marked the
reference points for the moment ¢, when the user passes the 1m line. A standalone distance
sensor may have provided a more accurate labeling. However, setting up such a sensor in
public places, like restaurants and coffee shops, is inconvenient, and therefore, we settled
for labeling by a human observer.

3.8 Conclusion

This chapter mainly addressed Objective 1 by presenting Chaperone as a standalone, open-
source Android app that uses acoustic sensing to detect smartphone loss in real-time. From
the perspective of adaptive authentication, Chaperone provided a context sensing technique
for detecting a user’s departure and absence, which implies an unattended device. It deter-
mines when to lock the device with mandatory authentication. Our real-world experiments
showed that Chaperone could operate reliably in diverse real-world scenarios characterized
by high ambient noise, crowded locations, and diverse physical layouts, without retraining
our classifiers for specific scenarios. Our user study provided positive evidence that Chap-
erone can indeed be made into a practical tool to help prevent device loss, and thereby
reduce serious privacy and security threats caused by lost smartphones. Beyond device
loss, Chaperone’s design and our extensive real-world datasets will help advance acoustic
sensing research.
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Chapter 4

Device Sharing Awareness

4.1 Introduction

This chapter investigates temporary device sharing from the second illustrative example
in § 1.1.3 and addresses Objective 2 by proposing device sharing awareness (DSA). During
temporary device sharing, a non-owner user, i.e., sharee, is temporarily allowed to access
non-sensitive resources on the device. While lockscreens are employed to secure sensitive
data with mandatory EA, they offer no protection when the owner temporarily shares their
unlocked device. The single-user design of most mobile devices and apps may expose sen-
sitive resources to sharees [71]. For example, an e-mail app may keep the owner’s account
logged in and pop up notifications new e-mails during sharing. Thus, authentication and
access control for mobile devices should be adjusted to support temporary device sharing.
The system should prevent unauthorized access to sensitive resources (e.g., via hiding or
requiring EA) but not block a sharee from using the resources to be shared. Besides,
changes in authentication and access control should take effect only during sharing and be
automatically revoked once the device is returned to the owner.

4.1.1 Limitations of Existing Sharing Control Solutions

In § 2.2, we review the existing device sharing control solutions. Most of them emphasize
how to impose access restrictions on sensitive apps and data during sharing. They allow
the owner to add a guest account [79], pin an app [77, 78], or launch apps with limited
features (e.g., a camera app without a view of existing pictures) when the device is locked.
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However, most of these solutions require an explicit action from the owner before sharing
the device. Vulnerabilities arise when humans are forgetful [152] or lack risk perception
of certain situations [7]. Owners may forget to switch to the guest account or to pin an
app before sharing. Furthermore, sharing behavior is closely related to trust [155]. An
owner explicitly enabling these solutions signals mistrust for device sharing between the
owner and sharee [1, 71,90, , 125]. Besides, these solutions are inadequate for some
sharing scenarios. A guest account works well to entertain children with a game but not
for temporary sharing with spouses. Pinning an app grants access only to the current
foreground app. It is insufficient when a sharee needs access to multiple shareable apps.

In summary, we list the following limitations of existing sharing solutions:

1. Lack of subtlety. Ahmed et al. [1] have found that the act of locking or pinning an
app or data may incur social challenges and raise suspicion, especially when it comes
to device sharing with family members. Thus, a device sharing solution should be
activated subtly and automatically by the device.

2. Relying on a user’s explicit input. Many device sharing solutions require a user
to manually trigger them. A user’s forgetfulness or lack of risk perceptions [7] can
cause inaction to device sharing, resulting in the exposure of sensitive data. Besides,
relying on a user’s input can also result in poor usability since an owner may need
to take additional steps (e.g., enter a PIN for app locks) to access certain resources
during regular phone use.

3. Coarse-grained access control. Many solutions follow a simple access control
model to grant all or nothing access to each app. However, it is preferable to give apps
the option to adapt their own fine-grained access control strategies during sharing.
For example, a browser app provides the essential web browsing function and may
store the owner’s passwords for auto-filling. In this case, the browser app should
allow a sharee to browse the web without having access to the owner’s data.

4.1.2 Design Goals

We introduce device sharing awareness (DSA) to address when to enable device sharing
solutions. A device sharing awareness solution should:

1. proactively detect device sharing instead of requiring an owner to remember perform-
ing a predefined action to enable a control,
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2. continuously identify the owner to prevent unauthorized access and ensure that only
the owner has full access to the device,

3. be exception-resistant to automatically handle possible false detection or exceptions
and mitigate the exposure of sensitive resources.

For an outcome of device sharing awareness, the solution should involve the change in the
behavior of the authentication system (e.g., an IA mechanism should not block the sharee)
and provide flezible access control to automatically determine what resources are available
to the sharee. We present the following example to illustrate how DSA is expected to
handle device sharing automatically:

In a coffee shop, Owen shares with his friend, Shannon, a bunch of travel photos stored
on his smartphone. When he hands over the phone to Shannon, DSA automatically detects
the sharing activity and notifies the gallery app so that the app can hide all photos labeled
as private. At the same time, all notifications from messaging apps are silenced. During
sharing, DSA allows Shannon to be redirected to the Map app by the location metadata
of photos but not to move to any social networking apps to post photos. After Shannon
finishes browsing the photos and returns the device, the system recovers as before the
sharing activity.

4.1.3 Contributions

To fulfill the above requirements, we present a DSA solution that automatically deals with
all aspects of a device sharing event with little to no input from the device owner. For
subtle and fast sharing detection, DSA continuously senses for device handover gestures
using motion sensors and verify the owner’s identity using behavioral biometrics with high
accuracy and low power consumption. Behavioral biometrics alone may make it hard
to distinguish a sharing event from unauthorized access and rapidly react to the sharing
event. When detecting a sharing event (or upon manual activation by an owner), DSA
can enable app-level access control using allowlisting or blocklisting. Besides, it allows the
shared app to adopt its sharing-specific access control strategies (if available). Other apps
are also notified of the device sharing by DSA and can adopt their own sharing reaction
(e.g., de-authenticating a user).

We conducted a user study and collected data from 18 participants to evaluate DSA.
Our evaluation over 3,700 motion data clips shows that DSA can detect handover gestures
accurately for 95% of the sharing events. On a public dataset containing 81-hour phone
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usage data from 100 users [159], DSA only generated 0.9 false positives per hour of contin-

uous device use. For an average daily smartphone use of about three hours [01], DSA will
generate about three false positives a day. We also tested the device sharing processing
ability of our DSA implementation with a popular touch-based TA mechanism [52], which

includes 50 complete device sharing sessions. DSA succeeded in detecting handover ges-
tures in 48 sessions, and automatically handled 42 sessions without exceptions while its
exception processing recovered six out of the eight sessions. DSA adopts an adaptive sens-
ing strategy and only consumes 0.11% of battery per half hour at high-frequency sensing
when there is significant movement, and consumes only 0.06% of battery per half hour at
low-frequency sensing.

The contributions are fourfold:

1. A demonstration of the ability of low-cost proactive sharing detection using smart-
phone built-in sensors.

2. An open-source solution for Android that automatically enables sharing protection
during device sharing, while mitigating human factors of forgetfulness and mistrust.

3. An extensive evaluation of DSA to demonstrate its practicality in terms of accuracy
to detect sharing and battery consumption.

4. A public, labeled motion sensor dataset with over 3,700 sharing events for the research
community.

4.2 Device Sharing Awareness

4.2.1 Modeling Temporary Device Sharing

The device sharing scenario targeted by our work is: The device is initially with its owner,
and the owner temporarily hands it over to a sharee as a signal of granting access. During
sharing, a sharee should not have access to sensitive resources, including personal data
(e.g., messages, photos) and critical operations (e.g., delete files). We do not study device
sharing where the device is initially not with its owner, or where a sharee can access the
device without the owner’s presence. Traditionally, this kind of sharing is enabled with
separate user accounts or PIN sharing [1, 123]. We discuss this case in § 4.6.

We describe a sharing event with the following three-stage device sharing model:
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1. Pre-sharing. The owner initially holds the phone. The owner unlocks the device
and opens the app that contains the resources to be shared. Then, the owner passes
the device to the sharee.

2. Sharing. The sharee holds the device and starts using the opened app. During
sharing, the sharee should be able to access only the specified resources for sharing.
For the multi-sharee scenario, sharees may pass around the device, but we still regard
it as a single sharing event.

3. Returning. The (last) sharee finishes using the device and returns it to the owner.
A sharing event ends only when the current user is confirmed to be the owner.

We define the shared app as the foreground app at the moment when sharing is initiated.
Based on the owner’s preferences, a sharee may be allowed to access further apps during
sharing. The term shared app always refers to the original one.

4.2.2 Sharing Detection

For minimizing the restrictions on an owner, a device sharing solution is supposed to take
effect only when there is an ongoing sharing event. Therefore, an important requirement
of device sharing awareness is to proactively determine the beginning and the end of a
device sharing event. According to the device sharing model, we emphasize two factors for
sharing detection: sharing gestures and owner detection. A sharing gesture is an indicator
of a sharing event and implies that the owner authorizes the sharee to access the phone.
We regard manual activation methods adopted by existing sharing solutions as explicit
sharing gestures (e.g., buttons, touchscreen swipe gestures, and shortcut keys [77,78,111]).
They explicitly indicate the beginning of a sharing event and trigger sharing solutions
immediately. However, for subtlety and less reliance on explicit input, we also exploit an
implicit sharing gesture, the device handover gesture, which can be directly sensed from
the natural hand movements when the device is handed from one person to another.

While a handover gesture indicates the beginning of a sharing event, we cannot use it
to determine the end of a sharing event since there may be multiple sharees passing around
the device. Therefore, verifying the user’s identity is also essential for sharing detection:
While a non-owner user is temporarily allowed to access the device during sharing, the
device should ensure that the current user changes back to the owner at the end of a
sharing event. A common practice for de-activating the sharing mode is to ask for explicit
authentication (e.g., a PIN) to ensure the device has been returned to the owner. For
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DSA, device sharing solutions should be able to determine if the current user is the owner
proactively and transparently. It can be achieved by IA techniques: A mobile device can
distinguish the device owner from other people based on biometrics, including continuous
facial recognition [17, 18], voice recognition [189], or behavioral biometrics [38,92]. In
addition to determine the end of device sharing, owner detection can complement a device
sharing solution in cases where a handover gesture is detected erroneously and can avoid
false activation of the sharing mode.

Detecting sharing events based on owner detection alone, ignoring handover gestures,
is insufficient. It is hard to distinguish a sharing event from unauthorized access of a
stranger (e.g., a stranger using an unattended, unlocked phone without permission) since
a non-owner can be detected in both cases. Besides, continuous facial recognition may
cause significant power consumption; voice recognition and behavioral biometrics require
sufficient input data for identification, making the device slow to react to a sharing event.
Thus, a crucial problem is how to combine handover detection and owner detection for
detecting sharing events.

4.2.3 App Types

Most sharing solutions impose access control on sharees to avoid access to sensitive re-
sources. We name this restricted environment for device sharing as the sharing mode.
Many apps contain both shareable and non-shareable content, while some apps may in-
volve redirection to other apps to process specific requests. Thus, existing solutions that
only restrict the sharee to the current foreground app cannot fulfill these requirements.
Based on whether resources in an app are shareable and existing taxonomies [71, 113], we
classify apps into the following three categories:

e Shareable apps. Apps that are completely shareable without any sensitive re-
sources, such as games or weather apps. A sharee has full access to such apps.

e Semi-shareable apps. Apps that contain both shareable and non-shareable re-
sources, such as social networking or photo gallery apps. A sharee can access the
shareable resources during sharing without access to personal data and sensitive op-
erations in such apps.

e Non-shareable apps. Apps that contain no shareable content, such as system
settings, banking, or corporate apps. During sharing, a sharee should have no access
to such apps. Specifically, corporate apps have higher security requirements and need
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to react to the sharing event even when running in the background (e.g., terminate
the session, disconnect from a remote service).

Our goal is to design a device sharing access control strategy that meets the require-
ments of different kinds of apps. Moreover, we need to consider some special apps or
components such as the home screen and the notification bar, most of which are provided
by the system launcher in Android.

4.2.4 Threat Model

Temporary device sharing involves two kinds of roles: an owner and one or more sharees.
We assume that owners are not malicious and focus on attacks from sharees. We classify
sharees into two categories: A benign sharee only uses the specified resources without
any intention of accessing sensitive information or other apps during sharing. However, a
benign sharee can do accidental mis-operations that expose private data (e.g., switch to
other apps). It is also possible that some apps may push notifications that contain sensitive
information to a benign sharee (e.g., an email notification with a preview). A malicious
sharee targets other apps than the shared app and intends to access private information
during sharing. They may try to leave the current app and access unauthorized resources.
A malicious sharee may be aware of the existence of the protection mechanisms, such as
screen lock and TA, and attempts to bypass them. A malicious sharee may also know of
the existence of our proposed solution and launches attacks accordingly.

4.3 Owur Approach

We now introduce the design of our framework. We present how DSA works based on
different states, its main modules, complete workflow, and exception handling strategies.

4.3.1 State Transition

We define three states of a device: normal, sharing, and locked. In state “normal”, the user
has full access to the device. In state “sharing”, the user has limited access to the device
and cannot access sensitive resources. In state “locked”, the user has no access to the
device and needs to explicitly authenticate. Figure 4.1 shows the state transition among
the three states. Existing app pinning solutions fully rely on manual operations to switch
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Figure 4.1: State transition of device sharing. Three sharing loops: (I) explicit sharing
loop (manual option), (2) implicit sharing loop (handover gesture + owner detection), (3)
hybrid sharing loop (handover gesture + manual unlock).

among the three states (see Figure 4.1 Loop (I)): 1) pin an app to start sharing (i.e., limit
access only to the current foreground app), 2) unpin an app to end sharing and lock the
device, 3) authenticate the user to return to normal state. DSA keeps this loop to allow
users to start or end the device sharing manually.

Following § 4.2.2, we introduce an implicit sharing loop (see Figure 4.1 Loop (2)) as a
new trigger mechanism:

1. Sharing: If DSA detects a handover gesture, the state changes from “normal” to
“sharing”.

2. Returning: If DSA confirms the owner’s identity, the state changes back to “normal”.

Note that detecting a handover gesture, which may occur when a sharee returns the device,
cannot be used to end a sharing event given possible multi-sharee cases or gesture spoofing
attacks (i.e., the sharee fakes a handover gesture). In the implicit sharing loop, DSA can
handle device sharing and secure sensitive resources without locking the device or asking
for manual actions by the owner. However, state “locked” is still useful for processing
violations (see § 4.4.2). DSA allows a hybrid sharing loop (see Figure 4.1 Loop (3)) where
DSA detects a handover gesture to move into sharing state while the owner or sharee have
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Figure 4.2: Handover patterns. 1. (horizontal movement): the device travels a distance
in the xy-plane, where acceleration follows a sine curve like pattern; 2. (spike): When the
sharee catches the device, a spike appears on the z-axis of acceleration; 3. (rotation): the
device is rotated either by the owner or by the sharee to adjust the orientation.

to manually end sharing, and explicit authentication is required to move back into state
“normal”.

4.3.2 Handover Detection

We use the device handover gesture as a trigger of an implicit sharing loop. A handover
gesture lasts only a few seconds and does not occur frequently. Compared to the typical
gesture recognition problem, a handover gesture is performed in a natural manner rather
than a specified motion (e.g., drawing a circle). The key to handover gesture detection
is to study the common patterns of handover gestures and distinguish them from similar
motions (e.g., switch hand).

Pilot experiments. We conducted a pilot experiment to investigate possible handover
gesture patterns for feature selection: one experimenter, acting as a device owner, handed
over a Google Pixel phone to another person (i.e., sharee) with two different position
settings:

1. The owner handed over the phone from their right hand to the sharee sitting in front
of them.
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2. The owner handed over the phone from their right hand to the sharee sitting next to
them.

Each setting was repeated ten times. We collected data from the accelerometer and gyro-
scope at a sampling rate (denoted as fs) of 50Hz. We use a software linear acceleration
sensor provided by Android, which isolates gravity from raw acceleration data with the
help of the gyroscope. The collected data includes linear acceleration and rotation speed
on the three axes.

According to the collected sensor data, we observed that the length of a handover
gesture is about two to four seconds. We also observed three patterns and exemplify them in
Figure 4.2. The observation shows the possibility to detect a handover gesture with motion
sensors. It also helps us in determining features and targeting possible misleading activities
that share similar patterns with handover gestures. For example, the acceleration readings
of a horizontal hand movement follow a sine curve like pattern, which can be described
by time-domain waveform features. A spike on the z-axis of acceleration resulting from
a slight fluctuation of catching a device can be captured by entropy-based features. A
misleading activity with similar patterns is a user’s passing the device from their left hand
to their right hand (i.e., switching hand).

Feature extraction. To proactively detect handover gestures, the device continuously
collects motion data from the accelerometer and the gyroscope. We first divide the collected
time series data into fixed-size segments, where the sampling rate is f,, the segment length is
d seconds (equal to fs-d samples). Since feature extraction and classification are conducted
on each data segment, the interval between two consecutive segments can be regarded as
the period of gesture detection, which is denoted as ¢, where ¢ = d — p. The choices of d
and p affect the detection performance (further investigated in § 4.5). For example, if d is
too small, it is hard to capture the handover patterns from a data segment; if d is too large
and p is too small, then interval ¢ becomes too large to detect a handover gesture and make
the device react to it in time. Therefore, we use the following default settings: d = 2s and
p = 1s. We investigate the impact of different settings on detection performance in § 4.5.

After segmenting the raw data, we extract the following features for each segment: We
first calculate the magnitude of linear acceleration:

m = /a3 + a2 + a2. (4.1)

For the magnitude, m, and each axis of linear acceleration and gyroscope data, we use
common statistics widely adopted in gesture detection [0] and activity recognition [101]
(see details in § 2.3.2) including: average, standard deviation, maximum, 25" percentile,
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median, 75" percentile, sum, and range of a data segment. Also, we measure root mean
square (RMS) [19] of the readings to capture time-domain wavelet patterns:

RMS(v) = /(o + 07 + -+ 03_1)/m, (4.2)

where v = {wg,v1,...v,_1} is a series of n sensor readings. We calculate value entropy
and time entropy [171], which measures sudden changes in a signal. We calculate the
value entropy by quantizing all magnitude values to a 20-bin histogram for a moderate
granularity covering all magnitude ranges. For time entropy, we normalize the magnitudes
of sensor readings to form a probability distribution and then calculates:

H(lv|) = Z |U’ Z|UIZ‘|1| (4.3)

Furthermore, to include correlations between different axes, we calculate the correlation
coefficient between every two axes as Eq. 2.2.

Classification. Based on the extracted features, DSA uses a pre-trained classifier to
determine if the current segment belongs to a handover gesture. We adopt an offline
learning strategy and train a generic classifier before deploying the system. For an online
strategy, data labeling is challenging — Although a user’s feedback can help correct a
missed sharing event (see § 4.4.2), it is hard to position a sharing gesture exactly. Besides,
our evaluation results in § 4.5 show the feasibility of applying a generic classifier to different
users. To reduce false positives, we use a sliding window strategy that makes decisions
based on several consecutive segments: if two consecutive segments are classified as positive,
the system concludes that a sharing event is happening.

Adaptive sensing. Given that proactive handover detection is always running in the
background, its power consumption is a concern for smartphone users. Therefore, we adopt
an adaptive sensing strategy to reduce the battery consumption. The accelerometer and
gyroscope initially collect raw motion data at a sampling rate at 10 Hz. When significant
movement is detected (i.e., the acceleration magnitude exceeds a pre-defined activation
threshold), it switches to a high sampling rate at 50 Hz and conducts handover detection.
When the device is stationary for a period of time, the sampling rate is lowered to 10Hz.
This strategy reduces unnecessary computations when the device is stationary.

4.3.3 Owner Detection

Owner detection is provided by IA mechanisms. DSA relies on TA results to determine if
the current user is the owner or not. Biometric mismatch results in a negative TA result,
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indicating that the current user is not the owner. In state “normal”, A mechanisms are
running continuously to prevent unauthorized access from non-owner users. They will
lock out the current user upon negative A results. In state “sharing”, IA mechanisms
are automatically configured not to block users upon negative results as they indicate an
ongoing sharing event. Once the TA results change from negative to positive at this state,
DSA regards it as the end of a sharing event.

We incorporate existing IA mechanisms for owner detection and do not design a new ITA
mechanism. The selection of IA mechanisms should take accuracy, availability, detection
latency and battery consumption into consideration. Ideally, IA mechanisms with low false
rejection rate and low battery consumption are preferred in state “normal” since a device is
not under sharing most of the time. In contrast, IA mechanisms with low false acceptance
rate and short detection latency are preferred in state “sharing” to determine if the device
has been properly returned to the owner. Owner detection can adopt multiple modalities
to ensure accuracy and availability. For example, if touch-based IA produces a positive
result, the device can automatically conduct face recognition to determine if the current
user has changed back to the owner. It helps to ensure high accuracy with avoiding battery
consumption of continuous facial recognition.

Considering the availability of various behavioral biometrics on smartphones, we use the
touchscreen input biometric and adopt Touchalytics [52] (see § 2.4.1) whose reported equal
error rate is below 4%, as the default scheme in our evaluation. It performs classification for
each touch event and authenticates the user based on the results of several consecutive touch
events. According to the evaluation done by Khan et al. [92], the battery consumption
of touch-based IA is low enough to keep running in the background for continuous owner
detection.

4.3.4 Access Control for Device Sharing

For improved usability, DSA adopts different strategies for enforcing app-level access con-
trol based on the shared app type. It also notifies apps of sharing status changes so that
a shared app can change its behaviors to a shared mode. The common app-level access
control strategies involve:

1. Blocklist. A device owner can determine a list of non-shareable apps that cannot
be accessed by a sharee. In state “sharing”, the system rejects all access attempts
to the apps on the blocklist. Besides, hiding non-shareable apps is also applicable to
block a sharee’s access in a subtle way.
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2. Allowlist. A sharee is only allowed to access a list of shareable or semi-shareable
apps. App pinning methods can be regarded as a kind of allowlist that makes only
the current foreground app available to a sharee.

3. Profile switching. Mobile operating systems (e.g., Android) organize user data in
profiles and allow the programmatic switching of an app’s profile [9]. In the context
of device sharing, DSA switches to a guest profile that does not contain any owner’s
data. It enables a sharee to use a semi-shareable app without accessing the owner’s
data. If this feature is not available, an app can switch a profile as part of in-app
sharing control (see below).

While an owner can configure access control strategies for different apps, DSA can infer
what access control strategy to adopt: In most cases, DSA sets the current foreground app
as a shared app and automatically adopts an allowlist-based strategy to restrict a sharee’s
access to the shared app and any shareable or semi-shareable apps redirected to from the
shared app. If there is “no app” running in the foreground (e.g., the current foreground
app is a launcher or home screen), DSA enables blocklist-based access control.

In addition to app-level access control, an app may have its own device sharing control
strategies. Possible options include switching to guest mode, disabling user-specific content,
logging out the owner’s account, etc. For example, a camera app can provide only the
camera function without revealing any local photos. As suggested by existing studies [/,

|, it is important for apps to incorporate the “shared use” paradigm into their current
design to provide more fine-grained in-app sharing control. In this case, DSA can provide
important device sharing notifications to these apps to help them decide whether to enable
such a shared use design.

4.4 System Design

4.4.1 DSA Workflow

Figure 4.3 shows the architecture of DSA. It consists of four components:

e DSA service is responsible for the coordination of all other modules. It also accepts
user inputs to switch between normal and sharing states manually.

e Sharing gesture detector continuously collects raw motion data, extracts features,
and conducts classification for handover gesture detection introduced in § 4.3.2.
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Figure 4.3: DSA architecture.

e Owner detector uses behavioral biometrics to determine if the current user is the
owner. It also helps apps block non-owner users when there is no sharing event.

e Access control manages a sharee’s access to apps and notifications during sharing.
The foreground app scanner keeps tracking the current foreground app. During
sharing, it detects when a sharee attempts to access non-shareable apps and then
redirects the sharee to the shared app or locks them out. The notification listener
intercepts notifications from all apps and blocks sensitive ones during sharing. The
blocked notifications are temporarily stored until the device is returned to the owner.

The high-level workflow of DSA follows the three stages introduced in the device sharing

model in § 4.2.1.

Pre-sharing. The sharing gesture detector and the owner detector run continuously. At
state “normal”, the owner detector is performing continuous authentication to reject non-
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owner users. Once a handover gesture is detected or the owner explicitly starts the sharing
mode, the DSA service updates the current state to “sharing” and adopts an access control
strategy according to the current foreground app. It also broadcasts the device sharing
signal to other apps so that they can enable their own sharing mode or other reactions
such as requesting re-authentication for the next access.

Sharing. The device is in state “sharing” and the sharing mode is enabled. The fore-
ground app scanner continuously checks if the current foreground app can be accessed by a
sharee. It rejects any unauthorized access to sensitive resources based on the access control
strategy by redirecting a sharee to the shared app given possible mis-operations. If the
mis-operations reach a pre-defined threshold, the DSA service locks the device. The noti-
fication listener intercepts incoming notifications to filter out the ones from non-shareable
and semi-shareable apps to prevent potential exposure during sharing. The blocked noti-
fications are temporarily stored during sharing. The owner detector keeps verifying if the
current user is the owner and stops blocking non-owner users (i.e., negative IA results).

Post-sharing. Once the current user is identified as the owner or the owner manually ends
sharing and passes explicit authentication, the DSA service updates to state “normal”. The
DSA service notifies the foreground app scanner and the notification listener for lifting the
access restrictions. The notification listener shows the owner all cached notifications that
were missed during sharing. The owner detector resumes to defend against unauthorized
access from non-owner users. The DSA service then broadcasts the state change to other
apps so that they can revoke the changes made for device sharing.

4.4.2 Exception Processing

As the implicit sharing loop allows DSA to handle device sharing automatically without a
user’s explicit input, exceptions may occur, resulting from false detection, mis-operations,
or attacks, and cause security or usability issues. It is critical to have an exception process-
ing mechanism to recover from exceptions and mitigate their negative impact. Specifically,
it needs to minimize the chance of sensitive resources exposed to a sharee. We classify
exceptions into four types and provide solutions accordingly. In addition, in our user study
(see § 4.5.3), we investigated the exceptions that DSA may encounter and how efficiently
it handled these exceptions.

Non-owner detected in state “normal”. When the owner detector detects a non-
owner, it locks the device and asks for re-authentication, such as a PIN code or password.
There are three situations:
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1. The current user is an attacker, and the owner detector successfully prevents unau-
thorized access, which is not an exception of device sharing.

2. The current user is the owner, and the owner detector falsely rejects the owner, which
is a failure of the adopted IA mechanisms.

3. The current user is the sharee, and the owner detector makes a correct detection,
but the sharing gesture detector failed to capture the sharing event.

Therefore, we need to distinguish the second and third situations. If the user passes the
re-authentication, the DSA service prompts a dialog to confirm if a sharing event was
initiated. If so, it updates the sharing state and starts the sharing mode.

App exception. An app exception happens when a sharing event is detected but the
current foreground app is invalid. It can be one of the following invalid apps: 1) a non-
shareable app: DSA blocks the access and re-authenticates the owner. If the non-shareable
app is logged in with the owner’s account, the current session of the app will be immedi-
ately ended. 2) system launcher: it provides entry points to all apps on the smartphone.
Since no app is specified for sharing, DSA applies a blocklist-based access control strat-
egy. The sharee is prevented from accessing non-shareable apps, and the notifications of
non-shareable apps are hidden.

False positives of the handover detector. If the handover detector falsely detects
a handover gesture when there is no sharing event, the DSA service still moves to state
“sharing”, which causes inconvenience to owners. However, the owner detector can help
correct false positives. If the owner continues using this app, the owner detector can
identify the owner, and the system moves back to state “normal”. Even if the owner
detector also happens to make a false detection and mistakenly regards the owner as a
sharee, the owner can still explicitly end the sharing mode and do a re-authentication.
Another similar exception is that the handover detector makes a true positive while the
owner detector falsely accepts the sharee. Since the owner detector keeps verifying the
user’s identity even after a temporary false acceptance, it may be still able to reject the
non-owner afterward. Nevertheless, to avoid possible exposure, a possible solution is to
require EA when the owner is detected immediately after the detection of a sharing event.
In § 4.5.2, we evaluate how the owner detector addresses false positives of the handover
detection.

App redirection. A shared app may involve resources that redirect to other apps, such as
a URL to be opened in a browser. DSA allows redirection to shareable and semi-shareable
apps. Note that an app can activate its own sharing mode by acquiring the sharing state
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15:45:25.300 I/HandoverDetection: Sharing detected
15:45:25.353 I/AccessControl: Sharing mode
15:45:25.354 I/DSAService: Broadcast sharing state
15:46:19.588 I/OwnerDetection: IA result: owner
15:46:19.588 I/DSAService: Return confirmed
15:46:19.660 I/AccessControl: Normal mode

Figure 4.4: DSA Service Example: 1) At 3:45, DSA detected a sharing event and enabled
the sharing mode; 2) During sharing, sensitive notifications were hidden, and DSA broad-
cast the sharing signal; 3) At 3:46, DSA identified the owner and ended the sharing mode
with recovering the hidden notifications. Note: the first icon in the notification bar means
the device is connected to a computer (for the logging purpose); the second icon indicates

that DSA Service is running; the third and fourth icons are the sensitive notifications to
hide.

from the DSA service at startup. A special situation is when the sharee switches to the
home screen. There are two options to handle this situation: 1) redirect the sharee to the
shared app since it may be a mis-operation; 2) allow the sharee to access the shared app
and other shareable apps and only redirect to the shared app or lock the screen when a
non-shareable app is accessed. We adopt the second solution for our implementation.
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4.4.3 Implementation

We implement our demo DSA solution on Android as a service. Developers and researchers
can incorporate DSA into their device sharing solutions for automatic (de-)activation. De-
velopers of third-party apps can set up a broadcast receiver to obtain the sharing notifica-
tions from the DSA service for enabling their in-app sharing control. Figure 4.4 illustrates
the log view and the changes of the notification bar at different states of an implicit sharing
loop to reflect how DSA automatically handles device sharing. From the figure, we can see
that DSA automatically hid the sensitive notifications after detecting a handover gesture
and recovered them once the user changes back to the owner. During this process, the
owner did not need to manually enable and disable the sharing mode.

4.5 Evaluation

We first evaluate handover detection as it plays an important role in starting the implicit
sharing loop. Then, we test how DSA coordinates handover detection and owner detec-
tion to automatically handle sharing events. We also report the performance and battery
overhead of DSA. We received approval from our IRB for the user study reported in this
work.

4.5.1 Evaluation Setup

Study description. We conducted a user study advertised as “the evaluation of context
detection techniques for smartphone sharing”, and recruited 18 participants (5 females
and 13 males) through word-of-mouth advertising. Eleven participants were between 18—
29 years, five were between 30-39 years, and two were above 40 years of age. 13 participants
were related to the field of Computer Science and the rest were in non-related fields. The
study consists of two parts: handover detection and device sharing. Participants chose to
complete the first part only or both parts. 10 of 18 participants completed both parts.
Participants received $25 remuneration for completing the whole study ($15 for completing
the first part only). Due to the pandemic, most experiments happened remotely and par-
ticipants were instructed and supervised using a videoconferencing platform. Participants
could choose to use a provided experiment smartphone or to install a data collection app
on their devices. The phones recorded in the evaluation include Google Pixel, Google Pixel
3, Samsung S8, Xiaomi Redmi 5, and Huawei P9.

86



Model setup. We used both Support Vector Machines (SVM) and Neural Networks (NN)
for model training. Considering the NN model’s superior performance and the increasingly
mature support for NN on today’s smartphones, we adopt NN in our evaluation. The
input layer of the NN is the feature vector of each segment. The model includes two
hidden fully-connected layers using ReLU as the activation function: one 64-neuron layer
and one 48-neuron layer. We apply 10% dropout in between two hidden layers to reduce
overfitting. The output layer uses Sigmoid as the activation function since our gesture
detection is a binary classification task. We use the cross entropy loss function and Adam
optimizer for model training. In our experiments, we set the number of epochs as 120 and
the batch size as 128.

As for the training data, we adopt a balanced setting where the positive and negative
instances are evenly distributed in the training data, even if handovers are rare in the
real world (i.e., extremely skewed distribution). If using the imbalanced training set that
reflects the true distribution for training, the model would focus on detecting non-handover
gestures. To show that our model can handle an extremely imbalanced testing set, we also
evaluate the accuracy of handover detection over an all-negative dataset in § 4.5.2.

Metrics. Handover detection involves segmenting motion data, performing classification
on each segment, and making decisions based on a number of consecutive segments. Thus,
for segment-level classification, we evaluate the classifier performance based on its ROC
curve, and therefore use AUC and EER. For event-level detection, we use precision, recall,
and fl-score to evaluate the overall detection performance under different settings. To
measure the reaction time of each positive gesture detection, we use its elapsed time after
the moment when the participant receives the instruction to hand over the device.

4.5.2 Evaluation of Handover Detection
Handover detection evaluation tasks required participants to work in pairs. Participants
were asked to hand over a smartphone from either their left or right hand in two different

positions:

1. Face-to-face: the owner was in front of the sharee.

2. Side-by-side: the owner was next to the sharee (including right-to-left and left-to-
right directions).

Participants also performed the handover tasks with random directions to provide diverse
handover data, where they randomly adjusted their relative positions each time. For each
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User# | 1 2 3 4 5 6 7 8 9 10 11 12
AUC |[098 098 098 098 0.99 0.99 097 097 097 0.96 0.97 0.96
EER 0.07 0.05 0.06 0.07 0.03 0.02 0.07 0.08 0.03 0.07 0.04 0.09

Table 4.1: Per-user model experiment.

User# | 1 2 3 4 5 6 7 8 9 10 11 12
AUC 094 096 098 097 099 095 090 090 097 093 094 0.97
EER 0.11 0.10 0.09 0.10 0.04 0.12 0.16 0.15 0.07 0.15 0.11 0.09

Table 4.2: Cross-user experiment.

pair, one participant handed over the device to the other at least 20 times per direction.
Then, they swapped roles and repeated. We also recorded motion data for activities that
share similar patterns with handover gestures, such as switching hand, putting the device
down, rotating the device, and other random movements with combining device rotations
and movements at different directions. All participants completed each single-participant
task (e.g., switching hand) 20 times. Each data clip of both handover and non-handover
lasts 5s to 10s. We label data clips with handover events as positive events and other data
clips as negative events. For positive clips, we asked the participants to start the handover
activity at the 2" second. In total, we collected 2044 positive and 1737 negative clips.

Model Transferability Evaluation

According to our design, we adopt a pre-trained handover gesture model that is supposed
to work on a new user or a new device without retraining. Thus, we first evaluate the
model transferability to different users and different smartphones and then evaluate the
overall accuracy and reaction time. Since handover detection conducts classification over
a fixed size of time segment, we divide each data clip into 2s segments and every two
consecutive segments have 50% overlap. For positive events, we focus on data segments
that have 50% overlap with this time interval and label them as positive segments. We
label all the segments from negative events as negative segments.

Cross-user experiments. Ideally, a personalized gesture detection model trained with
the owner’s data should provide the highest accuracy, i.e., the model should be user in-
dependent. We expect a cross-user model, which is pre-trained with hybrid data from
multiple users, to work on a new user and have a comparable accuracy as a personalized
gesture model. As a reference, we first run a 10-fold cross validation to test the performance
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Figure 4.5: One-to-multi test (Pixel) Figure 4.6: Multi-to-one test

of per-user classifiers for 12 participants using the same Google Pixel phone. As shown
in Table 4.1, the AUCs of all classifiers are above 0.96 while the EERs are below 10%.
Then, for the cross-user model, we use several users’ motion data for training. We adopt
the following protocol: for each participant, we train a model with 11 other participants’
data and then test it on the chosen participant’s data. Table 4.2 shows that the cross-user
model can still provide a high AUC and a low EER when it is applied to a new user, where
the worst AUC is 0.90 and the worst EER is 16%. We can observe an increase in EER by
comparing cross-user models to per-user models, which implies a weaker ability to distin-
guish a new user’s handover gesture from their other movements. Nevertheless, we apply
a sliding window-based strategy for sharing event detection (see § 4.5.2) and additionally
apply IA based owner detection (see § 4.5.3) to further mitigate false detection.

Cross-device experiments. In addition to being transferable across different users,
the gesture detection model is also expected to work across different phone models. In the
cross-device experiments, we added four other Android phone models: Samsung S8, Redmi
5, Google Pixel 3, and Huawei P9 and collected motion data of two participants for each
phone model. We adopt the following two protocols to test cross-device accuracy:

1. We train a model with all 12 participants’ training data on the Google Pixel and
test it on the other four phones. As shown in Figure 4.5, the model trained with
one phone’s data shows a consistently good performance on other phones, where the
AUCs are always above 0.92 and the EERs are around 10 to 16%.
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Figure 4.7: Event-level experiments: impact of different parameter on the detection per-
formance and latency.

2. We use mixed training data from four phone models to train the model and test it
on the fifth phone. As shown in Figure 4.6, the cross-device gesture detection model
provides a consistently good performance across different phone models.

All the above experimental results have shown the transferability of the gesture detection
model and also motivated us to use mixed data from different phones and users for model
training.

Impact of Different Settings

Since we adopt a sliding window-base strategy, handover detection is performed over more
than one segment to ensure the detection accuracy. Besides, DSA adopts adaptive sensing
to balance detection accuracy, latency, and battery consumption. Therefore, we conduct
controlled experiments to evaluate the impact of four factors: segment size d, interval
p, window size w, and activation threshold #. We divide all events into 10 subsets and
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adopt 10-fold cross validation. We enable adaptive sensing only for the adaptive sensing
experiments.

Segment size and interval. Intuitively, a larger segment size and a smaller interval
provide better ability to cover a sharing gesture. We set the window size to two segments
and the overlap between two segments as half of the segment size. We test different segment
sizes: 1s, 2s, 3s, and 4s (intervals: 0.5s, 1s, 1.5s, and 2s, respectively). As shown in
Figure 4.7(a) the 3s segment provides higher precision compared to the 2s segment setting,
but it takes longer to make a detection. To balance the reaction time and accuracy, we set
the segment size to 2s. Then, we test three different intervals with the same segment size.
Figure 4.7(b) shows that a shorter interval has higher recall, while the precision is low. A
larger overlap allows more classifications conducted in the same time period, so it helps
improve recall and capture a gesture earlier.

Window size. Considering the length of a sharing gesture, we change the window size
from one to three segments: the length of a window varies from 2s to 4s where the segment
size is 2s and the interval is 1s. Figure 4.7(c) shows fl-score reaches the highest (median:
98%) when the window size is two segments. When the window size is three, the average
recall decreases to 81%, and the average elapsed time is only 2s. When the window size is
one, the average precision drops to 92%. This result shows the necessity of a window-based
strategy to avoid false positives instead of directly using segment-level results.

Adaptive sensing. We set up the evaluation environment as follows: 1) low frequency
mode: f, = 10H z without classification task. 2) mode switch: if the acceleration exceeds 6,
high frequency mode is activated; if the acceleration is below 0.1m/s?, low frequency mode
is activated; there is a 90ms latency when mode switch happens, which is the maximum of
50 measurements on Google Pixel. 3) high frequency mode: f; = 50Hz with feature ex-
traction and classification. We test five different thresholds: 0, 0.3m/s?, 0.6m/s?, 0.9m/s?,
1.2m/s*. Figure 4.7(d) shows that the recall score drops with the increment of 6. Due to
the delay brought by frequency switching, it is likely to miss data at the beginning of a
gesture. Nevertheless, when 6 = 0.3m/s?, the recall score is still acceptable (mean: 95%).

Summary. According to the above experimental results, we use the following default
settings, d = 2s,p = ls,w = 2,0 = 0.3m/s? to balance precision (mean: 0.98), recall
(mean: 0.95), and reaction time (mean: 2.33s).

False Positive Evaluation

We train the model with the training data and the settings in the event-level evaluation
and evaluate its long-term false positive rate using the HMOG dataset [159, 183]. The
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testing data involves 493 sessions (about 81 hours) of 100 smartphone users’ reading and
writing activities, but no sharing activities, while standing or sitting. For each session,
we keep detection running even after a false positive is detected. The result shows that
the hourly false positive rate for continuous device use is 0.9 per hour. Although a false
positive makes DSA move to state “sharing” falsely, DSA can still switch back to state
“normal” once the owner’s identity is confirmed.

4.5.3 Device Sharing Processing

For the second part of our user study, we tested if DSA is able to automatically detect the
sharing and the returning of a smartphone with the help of both handover detection and
owner detection. Besides, we want to capture potential exceptions during the study.

Task description. We adopted the touch-based IA scheme [52] and used a (m, n)-sliding-
window-based strategy (see § 2.4.1). Here, we set m = 4,n = 7 for balancing false rejection
rate and false acceptance rate of touch-based IA. For TA enrollment, we collected 200 swipes
from each participant to train the per-participant IA models. For handover detection, we
train a model with the training data from the controlled experiments in § 4.5.2 and use
the default settings. In each session, a group of two participants was asked to perform
a web page sharing event: the owner shared a web page on the phone and handed the
device to the sharee; after reading the page, the sharee returned the phone to the owner.
Each participant was required to swipe at least 10 times during reading once the phone is
in their possession. Once they completed the reading task, they swapped their roles and
repeated the above process for 10 times in total. Note that we did not specify the position
of each participant and how they handed over the device so that participants can hand
over the device in their natural manner. In total, we collect 50 device sharing sessions from
five groups of participants for analysis.

Results. DSA properly detected handover gestures and entered state “sharing” in 48
out of 50 sessions, which shows the effectiveness of handover detection. With the touch-
based TA owner detection, DSA automatically detected the end of the sharing event and
completed the implicit sharing loop in 42 sessions, which means an owner user did not need
to explicitly start and end the sharing mode in these sessions. We note that the results
were related to the performance of the selected IA scheme, which can be improved by using
IA schemes with higher accuracy. Figure 4.8a shows an example of a successful procession:
The owner was using the phone during the first 9 seconds and then handed it over to the
sharee; DSA detected a handover gesture and switched to state “sharing” at 12s; after the
sharee finished using the phone and returned the phone to the owner, the owner detector
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Figure 4.8: A user study session consists of three stages: 1. owner uses the device and then
hands it to sharee; 2. sharee uses the device and then returns it; 3. owner receives the
device. The grey plot shows the intensity of the movements measured by the accelerometer.
Green area: the device is in state “normal”. Yellow area: the device is in state “sharing”.
Red area: the device is locked. Blue and orange points are the per-swipe results of touch-
based IA, representing owner and non-owner, respectively.

detected the owner at 24.5s and switched back to the normal state.

Exception procession. We recorded all sessions with exceptions and exhibited how DSA
processed them. In two sessions, handover detection failed to detect handover gestures but
DSA blocked the sharee according to the negative IA results (see Figure 4.8b). In six
sessions, DSA initially falsely identified the sharee as the owner. However, in four of
these sessions, it correctly identified the sharee as non-owner within several seconds after
obtaining more touch events from the sharee. For example, in Figure 4.8c, DSA falsely
identified the sharee as the owner, and consequently, state “sharing” was left at 21.2s.
However, after DSA detected several non-owner touch events, it locked the sharee out at
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24.4s to prevent potential unauthorized access. For both cases, a sharee was temporarily
recognized as the owner and might be able to access sensitive resources before the owner
detector blocks the sharee. A possible solution to mitigating potential security threats
brought by IA false detection is to set up stricter detection criteria for identifying the owner
(e.g., requiring more positive swipes in a window size) in state “sharing”. In addition to the
above exceptions, DSA failed to recognize the owner after the device had been returned in
only one session. In this case, the owner could still manually exit from state “sharing” by
passing re-authentication. Note that these errors or exceptions may be specific to touch-
based TA owner detection. Using or combining different biometrics may improve accuracy.
Furthermore, the training data was collected from only brief reading tasks, which lacks
diversity and may result in more false detections.

4.5.4 Performance Evaluation

Since DSA provides real-time detection of sharing activity, we need to consider CPU usage
and battery consumption. Handover detection adopts an adaptive sensing strategy. Thus,
we evaluated the performance for both high-frequency sensing and low-frequency sensing.

CPU overhead. We instrument the DSA service with Android Profiler and measure the
CPU overhead on Google Pixel. We run the CPU profiling for 60 seconds and repeat this
process for 10 times. For low-frequency sensing, the average CPU overhead in a 60-second
session is 13.5ms (SD: 7.4ms). For high-frequency sensing, its average CPU overhead is
275.7ms (SD: 35.6ms) where the average CPU overhead of the classification process is
57ms (SD: 26.8ms). Other computations, such as using linear acceleration sensor, account
for the remaining overhead. The result shows that adaptive sensing can effectively avoid
unnecessary computations.

Battery consumption. We run the DSA service on Google Pixel in airplane-mode for
30 minutes without other running apps and repeat 5 times for both high-frequency sensing
and low-frequency sensing. We use Battery Historian to estimate the battery consumption
of DSA Service. As a reference, we leave the phone with screen always on, and the phone
discharges 3% of battery in 30 minutes. The results show that the average estimated
battery consumption of DSA Service alone for high-frequency sensing is 0.11% per half
hour; the rate for low-frequency sensing is 0.06% per half hour. Therefore, the battery
consumption is very small while adaptive sensing can further reduce battery consumption.
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4.6 Discussion

Defending against unauthorized access. Given the observed latency of handover
detection, we can conclude that DSA can swiftly activate the sharing mode and a sharee
can hardly conduct effective attacks during such a short time interval. Even if handover
detection fails to detect the handover gesture, owner detection can prevent a sharee from
accessing sensitive resources upon negative IA results. As observed in the user study (see
§ 4.5.3), we found that the IA-based owner tracking was limited by the performance of
its IA scheme. False acceptance of the TA scheme may temporarily deactivate the sharing
mode so that a sharee can move to sensitive apps at this moment. Given the exception
procession of DSA, it is possible to reject a sharee if the TA result is negative again.
However, similar situations may result from a malicious sharee launching specific attacks
on the adopted IA scheme (e.g., mimicry attacks [95]). A promising countermeasure is to
adopt multiple modalities (i.e., multi-modal IA) to improve overall accuracy so that the
failure of one modality is not likely to make owner detection fail. Chapter 5 shows how
multi-modal TA provides better accuracy in terms of false rejections and false acceptances
compared to single modalities. Besides, how to incorporate multi-modal TA into DSA will
be our future work.

Limitations of sharing detection. We mainly investigate handover gestures as the
trigger of an implicit sharing loop. We acknowledge the following two limitations: 1) The
handover detection evaluation tasks involve two fixed positions and a random position.
Therefore, they do not cover conditions such as a sitting owner handing a device to a
standing sharee, in a vehicle, etc. 2) An owner may adopt other sharing actions, e.g.,
passing a device via a table, instead of handover gestures. As DSA’s sharing detection
is extensible, a feasible solution is to add models for these sharing actions. For better
security, sharing mode can be enabled for these cases only if a non-owner is detected under
certain contexts (e.g., at home).

PIN sharing. For DSA, we assume that a device owner initially holds the device and
performs a sharing gesture, indicating a device sharing event. However, PIN sharing,
another way of device sharing, breaks the assumption. An owner directly shares their
PIN /password with a sharee in advance so that the sharee can unlock the device without
any additional involvement of the owner. From the perspective of DSA, owner detection
cannot distinguish PIN sharing from unauthorized access since it only captures non-owner
access for both cases. However, a device sharing solution can be made aware of PIN sharing
through two ways: 1) The shared PIN can reveal a user’s identity. A device owner can set
up two different PINs [5] for themselves (i.e., private use) and sharees (i.e., shared use),
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respectively. If a user is using the PIN for sharees, it implies a sharing event. 2) A sharee
can register their biometrics (e.g., fingerprint, face, touch) in the system so that they can
be identified. The device sharing solution can activate the sharing mode once the current
user’s biometrics match any registered sharee’s record. Otherwise, it identifies the current
user as illegitimate and locks the device.

Evaluation limitations. To collect sufficient device sharing events in a short period, we
asked participants to execute tasks in the second part of our user study. Some handovers in
the first part of the user study required participants to follow specific position and direction
instructions. These may have influenced their device sharing behaviors during the tasks in
the second part. Besides, our analysis focused on how DSA handles a sharing device from
a system’s perspective. A potential avenue is to conduct a field study with our prototype
DSA implementation so that we can investigate how DSA handles sharing events in the
wild and collect smartphone users’ perceptions about DSA.

4.7 Conclusion

This chapter investigates the device sharing context and presents DSA, a device sharing
awareness solution for temporary smartphone sharing, which addresses Objective 2 of this
thesis. DSA enables smartphones to conduct continuous and proactive device sharing
detection with low latency and low power requirements. It provides flexible access control
strategies to protect sensitive apps and resources from unauthorized access during sharing.
Extensive experiments show that DSA can detect device sharing with high recall and low
false positive rates.

For temporary device sharing, a sharee is a guest user who likely cannot be recognized
via behavioral or physiological biometrics by the authentication system. However, as in-
dicated by Matthews et al. [124], it is also common for multiple people to mutually use
a single device for household sharing. In this case, if a mobile device adopts behavioral
biometrics based IA, its IA mechanism should be extended to support multiple legitimate
users. Thus, in Chapter 5, we investigate the multi-user A problem and propose a multi-
modal solution.

On the other hand, we also notice that an authentication system may need distinct
policies to handle various contexts or risks. For example, while an authentication system
is devised to lock out a non-owner user, it needs to temporarily allow the sharee to access
the device for device sharing despite biometric mismatch. In this chapter, we adopt a
transition diagram to determine the workflow of our DSA solution so that it can support
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multiple sharing loops and enable exception processing. Chapter 6 extends the idea and
proposes a general adaptive authentication and access control framework that uses graph-
based models to organize adaptation policies for different risks.
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Chapter 5

Design and Evaluation of Multi-user
Implicit Authentication Systems

5.1 Introduction

In Chapter 4, we proposed DSA to handle temporary device sharing where a sharee is not
a registered user on the device. In this chapter, we investigate another type of sharing sce-
nario where multiple (registered) users share the same device. Although many companies
have introduced shared device modes (e.g., Microsoft Authentication Library [12], Cisco
Meraki [127]) to smart devices to enable multi-user access, an open issue for shared smart
devices is when to de-authenticate/log out a user. For example, when several shift workers
alternatingly use the same device, user accounts need to be switched during a shift change.
However, user logout and login often rely on manual operations. Failure in logging out
from a shared device may expose one user’s data to another user and incur impersonation.

Ideally, an automatic logout mechanism can detect user switches and reject illegitimate
users in real time. IA is a potential solution for shared smart devices to detect user
switches. However, most IA mechanisms were designed for the single-user scenario where
the device owner is the only legitimate user. Few studies have investigated the design of
A systems for multi-user shared devices (i.e., multi-user IA). Thus, in this chapter, we
propose multi-user TA for shared mobile devices to address Objective 3.
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5.1.1 Requirements of Multi-user TA

Multi-user IA requires 1) rejecting a stranger from a pool of legitimate users and 2) dis-
tinguishing the legitimate users from each other continuously throughout a session. For
instance, at a medical center, a shared device with patients’ information should reject op-
portunistic intruders while accurately identifying different legitimate medical staff. Exist-
ing studies [28,43,63,196] have proposed algorithms to solve multi-user TA as a multi-class
classification problem. However, designing a multi-user IA system should additionally solve
how to combine different IA algorithms for better identification accuracy and how to adapt
IA models to new incoming users and data to mitigate performance loss over time [28,52].
Also, it is necessary to consider the impact of these aspects on accuracy when evaluating
a multi-user TA system.

5.1.2 Challenges

The research problem is how to design and evaluate a multi-user IA system that fuses
multiple modalities and adapts to new users and incoming data. The main challenges
include:

1. Due to the differences in the uniqueness of behavior biometrics and training data
amount and quality, A mechanisms based on different modalities may have different
accuracy in identifying each user. Therefore, a challenging problem is incorporating
the accuracy differences into the fusion of different modalities.

2. TA models are updated upon adding new users (i.e., user enrollment) and new data.
A multi-user TA system should provide different model updating strategies to fit IA
mechanisms based on various machine learning techniques.

3. Since new incoming data is collected during device usage, automatic data segmenta-
tion and labeling is another challenge given possible mid-session user switches.

4. For evaluation, measuring classification accuracy over individual data points is in-
sufficient to test the performance of a multi-user IA system. It is essential to com-
pose evaluation tasks using real-world traces to simulate common scenarios such as
lunchtime attacks [89] and user switches. Also, evaluating model updating and data
labeling requires tracking the accuracy of the system over time.
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5.1.3 Contributions

We propose SHRIMPS!, a multi-user, multi-modal IA evaluation framework that consists
of an architecture for multi-user, multi-modal implicit identification and authentication
and of an evaluation environment. SHRIMPS is targeted at A researchers and developers
and allows them to rapidly compose and evaluate different multi-user, multi-modal TA
schemes.

SHRIMPS offers the following features: 1) a general extension of single-user IA mech-
anisms for multi-user; 2) a variety of score fusion strategies including a Dempster-Shafer
(D-S) theory [151] based approach to combine different modalities for continuous authen-
tication; 3) an automatic segmenting and labeling strategy to update IA models with new
incoming data, 4) multi-user management supporting adding and removing users. The
evaluation framework enables researchers to test and compare different IA schemes with
consideration of different metrics, score fusion strategies, sufficiency of training data, and
addition of new users. It also helps researchers and developers readily determine answers
to key questions such as “Which fusion strategy provides the highest accuracy for the given
set of multi-modal biometrics?”, “How accurately does the system identify a newly added
user?”, “How much data is sufficient to train the new user?”, or “How much performance
gain does model updating bring to the system?”. These questions can be answered by
creating simple storyboards where researchers and developers can rapidly compose simula-
tion tasks by concatenating data segments from public datasets. SHRIMPS also provides
insightful metrics to measure session-level performance to understand the impact of false
detections.

In summary, our contributions include:

e We propose a multi-user, multi-modal TA evaluation framework, SHRIMPS. It sup-
ports the design and evaluation of multi-user TA schemes that leverage multiple
modalities to continuously detect unauthorized access from strangers and identify
the user from a group of legitimate users in real-time.

e SHRIMPS provides model updating with new data and user enrollment and removal
to ensure high accuracy for multiple users across a session. It can automatically
segment and label newly collected behavioral data based on authentication results
and user feedback.

e SHRIMPS supports different score fusion methods, including a score fusion method
based on D-S theory [151], to combine authentication scores from multiple modalities.

!SHaRing-oriented IMPlicit authentication System
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e Storyboards enable easy and flexible construction of evaluation tasks using public
datasets, which allows TA researchers and developers to evaluate their IA schemes
based on simulating complicated practical scenarios.

e We provide two use cases of SHRIMPS to showcase how it supports designing and
evaluating different multi-user IA schemes. We test the effectiveness of our multi-
modal, multi-user IA solution in these use cases based on four public datasets:
HMOG [159], BB-MAS [16], IDNet [51], and Touchalytics [52]. In addition to com-
monly reported metrics (e.g., false acceptance/rejection rate), we show how to use an
additional metric, Gini Coefficients [11], to analyze error distributions in SHRIMPS.

5.2 Multi-user IA Problem

In this section, we formulate the multi-user, multi-modal TA problem and provide the
threat model.

5.2.1 Authentication Model

Definitions and Assumptions

In a multi-user IA system, two or more users are allowed to access a device. We define
a user who is registered and has full or partial access to the device as a legitimate user.
We define a session as the period of user-device interaction that starts from when the
device is unlocked with EA, such as a PIN, to when the device is locked. The TA system
continuously identifies the current user and verifies their identity throughout a session. As
a consequence of failed IA, the system locks the device and asks for EA. Inspired by recent
device/account sharing studies [7, 123, 124], we consider multiple users sharing the same
smart device, and therefore, participate in the same session alternatively, where there may
be more than one legitimate user during a session. We assume that there is only one user
interacting with the device at any moment. For example, a shared tablet is running a
kiosk app for medical staff to look up and process patients’ data. A session starts when
a medical worker turns on the tablet, and any legitimate medical worker can access the
device afterwards. A session ends when the tablet is turned off or detects unauthorized
access. It requires continuously and implicitly (re-)identifying the new user from all other
legitimate users in real-time during a session.
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Problem formulation

The multi-user A problem is a multi-class classification problem. We denote the legitimate
user set as Ut = {ug,uq,...,u, 1}, where n is the number of legitimate users, user uq is
the primary user (i.e., owner) of the device, and users u;,i > 0 are secondary users. We
define a null user or attacker as a user who is not registered and has no access to the
device, which is denoted as u_;. The whole user space for a multi-user authentication
system is defined as U = UT U {u_,}.

For accurate identification and authentication, the system adopts multiple IA mecha-
nisms (i.e., authenticators). The basic workflow of each authenticator is to extract features
from sensor measurements and perform multi-class classification. An authenticator can
be described as a function s = M(f), where s = {s_1,S0,51,...,S4—1} represents the
normalized scores of all instances in U, and f is the feature vector. Then, each authentica-
tor obtains a series of feature vectors with timestamps {(to, fo), (t1, f1), -, (tx, fx)} and
generates a series of score vectors {(to, So), (1, 81), - - -, (tx, Sx) } accordingly, where k is the
number of the classification times performed within a given period. The system then iden-
tifies the user and decides whether to lock the device. Thus, the multi-user, multi-modal
IA problem is about combining different authenticators to obtain who is the most likely
user.

5.2.2 Threat Model

For multi-user IA, possible attackers include strangers and legitimate users. A stranger
attacker is physically close to the unlocked device and attempts to access sensitive re-
sources, which is a lunchtime attack [$9]. A legitimate user attacker may intentionally
or accidentally access the previous legitimate user’s personal resources. For both cases,
the authentication system should reject their access and de-authenticate the current user.
We assume attackers do not have or know the victim’s credentials (e.g., password, PIN)
for explicit authentication. We make the assumptions about the device and its operating
system as § 2.6. Since our work focuses on a general multi-user TA framework, mimicry at-
tacks [95] that target specific behavioral biometrics are out of our scope. Nevertheless, we
test the system under the scenario where the accuracy of one authenticator is significantly
lower than other authenticators (see § 5.6.3).
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5.3 QOwur Approach

SHRIMPS first addresses the multi-user IA problem in § 5.2.1 from the following three
aspects: 1) a general extension strategy to extend existing [A algorithms into multi-user,
2) a score fusion method to combine multiple modalities, and 3) new incoming data and
user enrollment for model updating.

5.3.1 Multi-user Identification

A multi-user TA model is an n + 1-class classifier for a system with n legitimate users,
where negative instances (i.e., imposters) in a binary classification problem are now u_;.
Extending an TA mechanism based on binary classification requires an imposter training
set to provide negative training data. In SHRIMPS, the imposter training set is sampled
from multiple random users’ data to represent a “general” user’s behavioral biometrics.
Besides, the machine learning technique adopted by a multi-user IA mechanism should
support multi-class classification. We can adopt the generic “one-vs-the-rest” strategy to
extend their models into multi-class classifiers:

1. For each class u;, we construct a training set with labeling u; as positive class and
all other classes as negative class.

2. We train n 4 1 sub-classifiers for all n 4 1 classes using the training sets constructed
in step 1.

3. For authentication, the authenticator calculates the normalized scores of the positive
classes from all sub-classifiers and constructs a score vector as the output.

Multi-user scenarios also result in the user data imbalance problem, where we have
different amounts of training data for different users. For example, a multi-user system
may collect more training data for the owner compared to the other users since the owner
usually spends more time doing various activities with the device. Thus, we need to
balance the training data by resampling techniques, including downsampling the data for
the majority classes and oversampling the minority classes (e.g., SMOTE [29]). But the
resampling techniques cannot fully address the accuracy degradation problem [18]. We
still need to consider the accuracy imbalance among different users for decision making.
We elaborate on this challenge as a part of the score fusion strategy in § 5.3.2.
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To achieve multi-user identification, SHRIMPS handles the generation of balanced
training data from a user’s historical data and the imposter training set, and provides
a generic wrapper to extend existing IA mechanisms into multi-class classification (see
§5.4.1).

5.3.2 Multi-modal Score Fusion

We fuse the results of multiple authenticators at score-level to provide accurate identifi-
cation for multiple users since it allows each modality to work separately. SHRIMPS is
designed to support various score fusion methods to aggregate the results from multiple
modalities to make decisions. However, the scores produced by different modalities may
have different implications such as the likelihood of each user, the similarity to a user’s
behavioral profile, etc. Also, it is necessary to take the uncertainty of each modality into
account. Thus, calculating the average score is not sufficient. In SHRIMPS, we also adopts

the Dempster-Shafer theory [151] for score fusion since it is proposed to combine evidence
(i.e., scores) from different sources (i.e., modalities) with uncertainty, which is usually ap-
plied for sensor fusion problems [180]. Smith et al. [160] adopted a D-S theory based score

fusion method for multi-modal TA schemes in the single-user scenario. In our study, we
explore the multi-user D-S theory based score fusion method by decomposing the problem
into n + 1 binary cases.

For u; € U, there are two mutually exclusive states: positive S; and negative S;.
The frame of discernment €; is defined as €; = {5, Si}_ All subsets in the power set
2% = {0,{S;},{S:},Q} are assigned a basic belief mass within [0, 1], denoted by m,
where m(0) = 0, Y 490, m(A) = 1. For an authenticator M that outputs a score vector

s = {5.1,50,51,---,5-1}, we define its uncertainty on each class (i.e., user) as v =
{v_1,v9,v1,...,v,_1}. For each class, we construct the masses attributed for all hypotheses
in 2% as:

m(0) = 0,m({S:}) = (1 —vi)s:,
To combine the masses of hypothesis A = {P;} from two authenticators M, and M,

(the belief functions are denoted by m, and m,, respectively), we use Dempster’s rule of
combination to calculate its joint mass as

Brc—azg Mp(B)mg(C
() = my(4) & () = = S e m£<B)>mq(<c/3>'
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The combined belief Bel({S;}) = >_ 4 acqs,; m(A) = m({S;}) is the fused score for u; from
multiple authenticators.

We determine the uncertainty v of each authenticator by their model accuracy based
on the following observations: 1) An authenticator may have a better accuracy detecting
certain classes compared to others. 2) Different authenticators may have different accuracy
for the same class. Intuitively, a higher accuracy on a certain user u; should contribute
to a lower uncertainty v;. In our work, the system leaves 10% of the collected data out
of the training data for each authenticator to construct their validation sets. Then, it
evaluates all IA models with their corresponding validation sets at each model training
or updating. The accuracy metrics include the per-user area under the receiver operating
characteristic curve (AUROC) and equal error rate (EER), the threshold value for the
equal false acceptance rate and false rejection rate of each user. We adopt two uncertainty
functions based on either AUROC or EER. Given the authenticator M and the target user
u;, the uncertainty is calculated as:

v =min(0,1 — AUROC,y,),
U]];:/[]?iR = max(1,2 * EERy;). (5.2)

Assume there are k authenticators M = {My, M,..., My 1}, and the average score
vector of all authenticators is denoted as {Sg, 81,...,8,_1}. We use the D-S theory to
merge the average score vectors of all authenticators. For each class, we obtain the fused
score for each user §; = mo({S;}) ®m1({Si}) ® ... ®my_1({S:}), i € {-1,0,1,...,u—1}.

Finally, we choose the most likely user by res = argmax §; as the current user.
i€{=1,0,1,....u—1}

5.3.3 New Incoming Data and Users

In practice, TA models are not constant: 1) When a new user is added to the system
(i.e., user enrollment), IA models need to be updated to identify new users. For user
enrollment, the new user needs to complete a series of tasks or use the device for a pe-
riod of time, while the system is collecting and labeling behavioral data for initial model
training. In a deployed system, user enrollment would be initiated by an administrator.
In SHRIMPS, user enrollment is indicated in the storyboard underlying the evaluated IA
scheme. Different from the single-user scenario, adding a new user introduces a new class
to the existing IA models. 2) IA mechanisms require model updating with new incoming
data to mitigate accuracy degradation over time. During normal device usage, the system
is also collecting biometric data while authenticating and identifying the user. Unlike user
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enrollment, the system does not always know the ground truth of who is currently using
the device. Thus, we need to address the following problems:

Auto labeling. The common labeling strategy of single-user TA systems [34,92] is to label
all incoming data as the owner’s if no attack is detected. However, for multi-user systems,
a piece of behavioral data may involve several users given possible user switches. Thus,
the system needs to split the data into segments, where each segment contains only one
user’s usage data. Then, it finds out the corresponding user for each segment. Although
external signals (e.g., screen-on/off ) may imply user switches and indicate the start and end
moments of a segment, they are insufficient to cover all user switches in a shared session. A
multi-user [A system can continuously identify the current user and provide coarse-grained
segmentation—knowing who is using the device during which segment. However, the time
taken to collect sufficient data for decision-making is not negligible (evaluated in § 5.5). If a
user switch is detected based on identification results without the help of external signals,
the system discards the data collected during a time period (e.g., maximum detection
latency) before the detected user switch since its ownership is uncertain. For the remaining
data, the system labels the pre-switch part as the former user and the post-switch part as
the latter user.

Model updating. User enrollment and new incoming data correspond to class incremen-
tal learning and data incremental learning, respectively. There are three types of model
updating strategies:

1. Full retraining is applicable for all TA mechanisms. Models are retrained with all
new and historical data. However, it occupies the most space.

2. Partial fitting is applicable for implementing data incremental learning to specific
machine learning techniques, such as SGD-based techniques [131] and Naive Bayes
classifiers. They can update a trained model with new data without keeping the
historical data.

3. Incremental learning techniques are applicable for DNN-based TA mechanisms [157,
]. ContAuth uses EWC [97] and iCaRL [115] to update a model without storing
all historical data.

In SHRIMPS, we determine the suitable model updating strategy based on the machine
learning techniques adopted by the IA mechanisms: we apply incremental learning based
solutions for DNN-based IA mechanisms; for other IA mechanisms, we adopt full retraining
for class/data incremental learning or partial fitting for data incremental learning.
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Figure 5.1: Architecture of the SHRIMPS framework

SHRIMPS handles user enrollment and new incoming user in two steps: automatically
segmenting and labeling the collected data, and updating IA models for all authenticators
with appropriate strategies. Besides, it listens to the user’s feedback to correct falsely
labeled data. We describe the detailed workflow in § 5.4.1.

5.4 The SHRIMPS Framework

In this section, we propose a multi-user, multi-modal TA evaluation framework, SHRIMPS,
which consists of a multi-user TA system and an evaluation environment.

5.4.1 Multi-user IA System
We abstract the main components and behaviors of a multi-user [A system for shared smart

devices, including user management, model training and updating, sensor data processing,
and authentication.

Architecture

Figure 5.1 shows the architecture of a multi-user IA system, which comprises of four mod-
ules: the scheduler, the authenticators, the aggregator, and the storage.
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Scheduler receives sensor events and external signals, and coordinates authenticators and
the storage module. The scheduler receives and caches the incoming sensor events in the
sensor buffer. The authenticator controller is responsible for activating authenticators and
invoking authentication or model training. Whenever there is sufficient sensor data for a
specific authenticator, the authenticator controller activates that authenticator and dis-
patches the required sensor data. The scheduler also maintains a set of event listeners to
receive and process external signals for auto labeling, model updating, and error handling
(see § 5.4.1). External signals, such as screen-off, imply the end of a session or a pos-
sible user switch, resulting in clearing cached data, data segmentation and resetting the
authentication status of the system. Besides, user feedback that occurs after an erroneous
rejection or user switch decision is an important signal for error handling. In response,
the scheduler fixes wrong labels of the cached data and sets the authentication status as
authenticated.

Authenticators are responsible for providing the essential functions, including feature
extraction, model training, and classification. Researchers can provide their own IA mech-
anisms by specifying these essential functions. If a provided IA mechanism is based on
binary or one-class classification, SHRIMPS applies the multi-user extension introduced
in § 5.3.1. For each authenticator, the feature extraction function takes raw sensor data
as input and produces feature vectors as output. The authentication function feeds the
feature vectors to the trained IA models to calculate the authentication scores. The model
training function takes two sets of labeled feature vectors as input for training and testing,
respectively. Internally, the model training function can further sample a subset of the
training dataset for validation, which is usually used for tuning the hyperparameters of
IA models. The testing dataset is used to pre-evaluate the accuracy of an authenticator.
An authenticator needs to store the pre-evaluation results for the certainty calculation of
multi-modal fusion.

The training set generation function is responsible for generating training and testing
data for the authenticator. The function loads the history feature data of each user in the
training storage and samples negative training data from the imposter training set. All
the fetched data is used to construct a labeled dataset. It is optional to apply resampling
techniques to produce a balanced dataset (i.e., all classes have the same data size). The
processed data is divided into two parts in a configurable ratio for training and testing,
respectively, which is provided for the model training function.

Aggregator collects and fuses authentication scores. Since score vectors from various
authenticators arrive at the aggregator asynchronously, our strategy is to let the aggregator
cache the recent score vectors within a specified time interval and fuse the scores based on
the steps in § 5.3.2 (note: the multi-user also supports other score fusion methods such as
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average and weighted average). The cache is cleared at the session end or a user switch
through final decisions or external signals. In addition, we adopt a (m, n)-sliding window:
If at least m out of n results are the same, the aggregator adopts that result as the final
decision; otherwise, it waits for more scores to make decisions. There are three types of
decisions: accepting the user as the identified one, rejecting the user, and detecting a user
change from one to another. Accordingly, there are three types of false decisions: 1) false
acceptance (FA): the system falsely accepts an attacker, 2) false rejection (FR): the system
falsely rejects a valid user, and 3) false identification (FI): the system identifies a valid user
as another. We explore error handling in the next subsection.

Multi-user IA System Workflow

We present the workflow of a multi-user A system performing the following operations:

User enrollment & removal. SHRIMPS support user enrollment and removal events as
external signals. For user enrollment, the system does not conduct authentication and only
collects behavioral data for the new user. A piece of labeled behavioral data is directly
added into the training storage. Model training is triggered as follows: authenticators fetch
the training data from the storage, generate training datasets, and train their models. The
models and their pre-evaluation reports are stored in the storage. User removal requires
indicating the target user. SHRIMPS supports the following two options for removing a
user: 1) If the system stores users’ historic behavioral data, authenticators fully retrain IA
models with all data except for the removed user. 2) If an IA model consists of several per-
user classifiers, the system can remove the removed user’s classifier. The removed user’s
behavioral data is removed from the training storage and excluded from any future model
updating.

Authentication. The authentication system continuously collects sensor data in the
scheduler. Once the authenticator controller detects sufficient data for a certain modality,
it calls the corresponding authenticator with the cached sensor data. The authenticators
extract features, load the saved model from the storage, and then conduct classification to
obtain score vectors. Score vectors from different authenticators are sent to the aggregator
for score fusing. Finally, the system determines whether to accept or reject the current
user based on the fused score.

Model updating. SHRIMPS takes both external signals and identification results to seg-
ment and label the data automatically and dynamically. Whenever the scheduler receives
an external signal or the aggregator detects a user switch, SHRIMPS labels the collected
data as a segment with the previously identified user and stores them in the training stor-
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age. It can automatically correct the misclassified data points of individual authenticators
based on the overall decisions. For example, if a single data point is u_; (i.e., attacker) and
the overall decision is acceptance, the system will fix the label of this single data point. If
the device mistakenly locks the user out, it can correct the detection as well as the labels
for cached features based on the user’s feedback (see error handling below). Once sufficient
new data is collected, the authenticators update the models for the existing users based on
their data incremental learning strategy (see § 5.3.3).

Error Processing. Error processing of an TA system takes the following measures based
on the error types: 1) False acceptance may temporarily expose the device to an attacker.
Since the system is continuously authenticating the user, it will stop the attacker whenever
a rejection decision is made. 2) False rejection leads to explicit authentication. If SHRIMPS
receives a legitimate user’s feedback (i.e., the user has passed EA), it can correct the labels
of the collected features and update the IA models. 3) False identification is not as obvious
as the other two errors. Immediate user feedback is not guaranteed if there is no mandatory
EA to verify a user’s identity. Nevertheless, we can handle false identification using the
following strategy: if the system detects frequent user switches within a short time (e.g.,
the user has changed more than two times in five consecutive decisions), it will issue a
rejection decision and a request for identity confirmation. Once the system receives the
user’s feedback, it will correct the labels accordingly.

5.4.2 FEvaluation Framework

Motivation

Evaluating a multi-user IA system requires testing under various conditions. It involves
measuring accuracy with different user numbers and different training data sizes, and
detection latency for identifying a user after a user switch. As an TA system updates
its models with new incoming data and users, it is also necessary to track the overtime
accuracy change considering the impact of auto labeling. Moreover, the impact of a false
decision may have different implications for continuous authentication: For example, a user
is more sensitive to false rejections since they interrupt device use, while an individual false
acceptance is tolerable as long as the system rejects an attacker within a reasonable time.
A real-world user study is usually adopted to test the system usability under practical
settings. However, it is hard to capture unauthorized access and device theft in the real
world [74]. Specifically, it is challenging to conduct user studies for multi-user scenarios
(e.g., controlling the conditions for valid users and attackers). To trade off, trace-based
evaluation is a good option for conducting tasks using real-world public datasets.
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Figure 5.2: Evaluation framework

SHRIMPS enables researchers to stitch together data from public datasets and easily
compose evaluation tasks based on specific requirements without falling into two common
evaluation pitfalls [55]: 1) Non-contiguous training data selection, and 2) attacker data in
training. It supports external signals, user enrollment and user feedback (i.e., reactions to
decisions). Besides, we introduce session-level metrics in addition to decision-level metrics
to compare different strategies and understand the practical performance of the system.

Evaluation Process

As shown in Figure 5.2, the evaluation process is divided into three stages. We introduce
the components of the evaluation framework and their functions at each stage:

Setup. Researchers determine the data source. A data provider manages the connection
to a public dataset, parses raw sensor data, and provides an interface for data retrieval.
Internally, a user’s data is stored in blocks, where each block contains sensor data of a
user collected over a continuous period of time. It ensures contiguous data selection in
chronological order, and no data in the training data blocks will appear in the evaluation
tasks. The actor generator fetches a complete list of users via a data provider and randomly
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selects a specified number of actors from the list. There are three actor types: legitimate
users, trainers, and attackers. As defined in § 5.2.1, legitimate users should be enrolled in
and identified by the TA system. Trainers provide negative training data to construct an
imposter training set. Attackers attempt to access the device and should be blocked by
the system. The user splitting of SHRIMPS ensures the attackers’” data will not be used
in the model training of legitimate users.

Initialization. The initialization stage determines the initial status of the authentication
system. An enrollment script is required to determine which legitimate users have en-
rolled and how much training data has been collected for each user. The enrollment data
generator parses the enrollment script and fetches training data via the data provider.
Then, SHRIMPS instantiates the multi-user IA system, and adds the specified legitimated
users and their training data for the initial model training. Multiple instances that adopt
different schemes can co-exist in the same environment so that we can compare different
schemes with the same conditions and inputs.

Evaluation. We introduce a storyboard to help researchers quickly design evaluation tasks.
A storyboard lists one or a series of data blocks with specifying the actor, the selection
criteria (e.g., activity, location), and the duration of each block. It provides the ground
truth of data segmentation. To describe a session with the participation of multiple users,
one can concatenate multiple data blocks of different actors. External signals, such as
“screen off” and “screen on”, can be added in between two data blocks to mark the start
and end of a session. Besides, SHRIMPS supports adding user enrollment events during
an evaluation task. We show simplified storyboards in § 5.6 and § 5.7.

According to the storyboard, SHRIMPS can fetch the matched sensor data and auto-
matically generate a timeline comprised of a series of events in chronological order. The
timeline automatically adjusts the sensor event timestamps of each block to ensure that
the new timestamps of every two consecutive blocks are coherent. Assume that a new
block with m events, sess = {(to, datay), (t1,datay), ..., (t;m—1,datay,_1)}, is appended to
a timeline, where the last event timestamp of the timeline is T'. The new timestamps are
adjusted as follows: ¢, =t;, —to+ 71T + At,i =0,1,...,m — 1, where At is the customized
interval between two segments. The presenter is responsible for processing the timeline
and communicating with the instances: While passing each event to the instances, it also
receives and answers their decisions. If a false decision is made, the presenter records it and
produces a user’s feedback for correction. After traversing the entire timeline, SHRIMPS
saves all scores and decisions. The result analytics module generates the metrics by com-
paring each decision with the ground truth provided by the timeline.

Measures & Metrics. Multi-user A systems are evaluated at two levels: decision-level
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and session-level. For decision-level, all accuracy metrics are defined in terms of decisions.
Based on the three error types, we use three basic metrics based on the three types:
FAR, FRR, and FIR, respectively; see § 2.8. SHRIMPS uses Gini coefficient (GC) [41]
to supplement decision-level FAR, FRR, and FIR for analyzing error distribution. A high
Gini coefficient means that errors are concentrated in a small group of users. Session-level
metrics aim to help understand the practical impact of false decisions on the whole session.
We define session-level errors based on the following criteria:

e False acceptance: the system fails to reject an attacker within a specific time period
(i.e., valid attack window).

e False rejection: the system makes at least one decision to reject a valid user during
the whole session.

e False identification: the system makes at least one false identification during the
whole session. For user switches where the user changes from one to another without
any external signals, we allow the system to take a specific delay (i.e., uninformed
switch window) before making the correct decision. During this period, any false
identification is ignored since it does not block the user.

Accordingly, we define session-level FAR, FRR, and FIR by dividing the corresponding
error number by the total session number. In addition, we record the moment t; of the
first correct decision to measure the detection latency, which is calculated by subtracting
the starting timestamp of the session ¢y from ¢,.

5.4.3 Evaluation Workflow

IA developers and researchers can use SHRIMPS to design and evaluate multi-user TA
schemes according to the following steps: The first step is to build and configure the multi-
user IA system, including adding authenticators, specifying the score fusion strategy, and
adjusting the auto labeling and model updating behaviors. Researchers can choose to
add their own TA mechanisms/score fusion strategies or use the built-in ones provided
by SHRIMPS. The second step is to connect to a data source and generate actors. Re-
searchers need to provide the source dataset and its data provider. SHRIMPS includes
example data providers for the HMOG dataset [159], the BB-MAS dataset [10], the IDNet
dataset [54], and the Touchalytics dataset [52]. Actor generation requires a random seed
and the numbers of each actor type. The third step is to design an enrollment script and a
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storyboard. Then, SHRIMPS can run the evaluation task and output the raw results ac-
cordingly. Based on the external signals in the storyboard, the result analyzer can segment
the evaluation results into sessions and produce the per-session results automatically.

5.5 Evaluation Setup

We present two sample use cases that use SHRIMPS to design trace-based tasks and
evaluate multi-user A schemes. This section introduces the common evaluation setup for
sample use cases.

IA mechanisms. For demonstration, we choose touch-based and gait-based IA mech-
anisms (see § 2.4) and use SHRIMPS to adapt state-of-the-art algorithms to multi-user
identification: 1) touch-based IA is based on the feature extraction algorithm of Touch-
alytics [52], and SHRIMPS enables the multi-class classification following the extension
strategy in § 5.3.1. 2) gait-based TA adopts the DeepGait algorithm [196], which already
supports multi-user identification. For the gait authenticator, the sampling rate of motion
sensors is set to 50Hz. The authenticator extracts gaits from a 1024-sample segment and
is set to perform authentication every 512 samples (=10.24s). Thus, every two consecu-
tive segments have 50% overlap. The training data generation for each authenticator is
delegated to SHRIMPS. We adopt the same settings for data balancing: using SMOTE
to oversample minority classes and ensuring that all classes (including the negative class)
have the same training size. Note that SHRIMPS also supports researchers to compare
different balancing methods and parameters to find the best settings.

Data source. In the evaluation, we use the four public datasets introduced in § 2.7:
HMOG, BB-MAS, IDNet, and Touchalytics. For all datasets, we set the trainer size to
ten users so that SHRIMPS randomly select ten users to provide behavioral data for the
negative class. As introduced in § 5.4.2, SHRIMPS excludes these users from the legitimate
user and attacker selections, ensuring no overlap between trainers and attackers to avoid
the attacker-data-in-training pitfall. The datasets for evaluation should include multiple
users, sufficient cross-session sensor data for each user, and multiple modalities. Since only
the HMOG dataset meets all requirements, our sample use cases use only it for most of
the evaluations.

BB-MAS does not provide sufficient gait data (i.e., only one 10-minute task for a user),
while Touchalytics only provides touch data and IDNet only provides gait data. Due to the
lack of qualified public datasets, a compromise solution adopted by existing studies [63,0,

, 114] is to fuse multiple datasets for different modalities that are independent of each
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other and rely on different sensors (e.g., touch and gait). Therefore, we fuse the IDNet
dataset and the BB-MAS (or Touchalytics) datasets as follows:

1. We map the 14 users who provided three or more tasks from IDNet to 14 users
randomly selected from BB-MAS (or Touchalytics).

2. We randomly select ten other users from both datasets to provide data for the neg-
ative class.

3. For data fusion, we use each IDNet motion data block as a basis and extract the
BB-MAS (or Touchalytics) touch events in the same duration.

4. We adjust the timestamps of the touch events to align them to those of the motion
data.

We acknowledge the limitation that merged user behavioral data may not be realistic.
However, the fused dataset is only used to test the accuracy gain of different fusing methods
for the multi-modal scenario where an authenticator is failing. It also demonstrates that
SHRIMPS support various public datasets.

5.6 Use Case 1: Fusion Method Comparison

A multi-user TA system is expected to identify each legitimate user and reject imposters
under different settings. SHRIMPS enables IA researchers to compare different multi-user
IA schemes and choose the best one in terms of accuracy and detection latency. Specifically,
a multi-user system should detect user switches, which are common in household sharing
activities [7, 124]. It is also possible that an attacker grabs the device from the owner,
causing a sudden user change. In this use case, we address the following questions:

1. How does adopting multiple modalities benefit multi-user TA compared to single
modality solutions?

2. What score fusion method provides the highest overall accuracy considering false
acceptance rate and false rejection rate?

3. Is it necessary to set the maximum user size for a multi-user TA system?

4. How fast and accurately can a multi-user TA system capture an uninformed user
switch during a shared session?
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We first explain what fusion methods we add to SHRIMPS. Then we describe the
evaluation tasks that we execute in the framework.

5.6.1 Fusion Methods

We test different score fusion methods and compared them to single modalities to examine
how they balance FAR, FRR, and FIR. The two baseline methods include single-modal
gait-based TA and single-modal touch-based TA. The most widely used score fusion method
is average-based fusion. Moreover, weighted average methods also take the authenticator’s
performance into consideration. To compare D-S theory based methods to the average-
based methods, we apply the per-user AUCs and EERs as the weights for the average-based
methods.

CORMORANT [71] proposed a Kalman filter based score fusion method that is resis-
tant to the noise of detection. We extend it into a multi-user fusion method by applying
Kalman filter to multi-user scores for each user with the following settings: 1) Measure-
ment uncertainty R is determined by the per-user EER, 2) Process uncertainty ¢ = 0.25:
a large () makes the estimated score emphasize on new scores [74] (the selection of @ is
explained in Appendix A.1). In summary, we compared the following methods:

e Touch. Applying the touch authenticator only.

e Gait. Applying the gait authenticator only.

e Mean. Calculating the average score of all authenticators.

e Mean-AUC. Calculating the weighted average score using AUC as the factor.
e Mean-EER. Calculating the weighted average score using 1-EER as the factor.
e Kalman. Applying Kalman Filter based score fusion.

e DS-AUC. Applying multi-user D-S theory based score fusion with the AUC-based
uncertainty function (Eq. 5.1)

e DS-EER. Applying multi-user D-S theory based score fusion with the EER-based
uncertainty function (Eq. 5.2)
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5.6.2 FEvaluation Tasks

We design two groups of evaluation tasks to address the above questions. Given the limited
data amount we use two fused datasets, IDNet+BB-MAS and IDNet+Touchalytics, only
for the first group and adopt different settings for this dataset than for the HMOG dataset.

Group 1 (Accuracy evaluation) tests if the system can reject an attacker in a lunchtime
attack and verify the identity of a legitimate user. The accuracy evaluation adopts a
balanced static setting: there are equal numbers of legitimate users n, and attackers n, in
each setup; each legitimate user has a fixed number of data blocks for initial enrollment
and contributes to one fixed-length block for testing; therefore, there are n, 4+ n, blocks for
each setup; we set an external signal between blocks to reset the authentication status. For
HMOG, we used six enrollment data blocks for each user and set the testing block length as
three minutes; we tried four different actor sizes, n, = n, = 3,5, 7,10 and tested 50 different
actor combinations for each actor size. For IDNet+BB-MAS and IDNet+Touchalytics, we
used two enrollment data blocks for each user and set the testing block length as two
minutes; we tested n, = n, = 3 for 25 different actor combinations. In addition, given the
length of the IDNet motion data blocks is much shorter than HMOG, we also reduce the
segment size and the detection interval of the gait authenticator to 512 and 256 samples,
respectively.

Group 2 (User switch evaluation) tests how each method detects user switches from a
legitimate user to another legitimate user or an attacker in real-time. There is no external
signal that informs the system of user switches. We assume that there are three legitimate
users and three attackers in the task, where each legitimate user has six data blocks for
initial enrollment. We composed three device sharing events and three attack events in the
following storyboard:

1. wg’s block, uy’s block, [external signall;
2. ug’s block, us’s block, [external signall;
3. wuy’s block, usy’s block, [external signall;
4. wug’s block, ag’s block, [external signall;
5. uy’s block, ay’s block, [external signall;

6. uy’s block, ay’s block, [external signall,
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Figure 5.3: Accuracy evaluation on HMOG. For each setting, the number of legitimate
users (n,) and attackers (n,) are equal

touch | gait | mean | mean-EER | mean-AUC | kalman | DS-EER | DS-AUC
GC-FAR | 0.70 |0.70 | 0.70 0.66 0.69 0.74 0.78 0.81
GC-FRR | 0.89 |0.86 | 0.86 0.89 0.87 0.93 0.93 0.92
GC-FIR | 091 [0.94| 0.95 0.95 0.95 0.94 0.98 0.98

Table 5.1: Gini Coefficient of FAR, FRR, and FRR at n, = n, = 3.

where a1 2 are three different attackers (i.e., u_1). As shown in the storyboard, each event
(i.e., session) consists of two blocks from two different actors without any external signal
in between to describe an uninformed user switch. The external signals in the storyboard
only mark the end of each session.

5.6.3 Result Analysis

We provide the result analysis as follows:

Group 1. Figure 5.3a shows the results of the first group of evaluation tasks on HMOG,
which includes the decision-level accuracy distributions of all eight methods at n, = n, = 3.
The D-S theory based methods have lowest FAR, FRR and FIR, which means they can ef-
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Figure 5.5: Accuracy evaluation on IDNet+Touchalytics.

fectively reject attackers with less chance to falsely reject a legitimate user. Table 5.1 shows
the GC of each error type (the error distribution curves are presented in Appendix A.2).
High GCs on D-S theory based solutions imply that most errors were contributed by fewer
users after applying the D-S theory based solution. The performance of score fusion meth-
ods is bounded by the fused modalities — The error rate concentrated on the users for
whom both modalities have low accuracy. Session-level comparisons are in Figure 5.3b.
We find that the impact of FRs and FIs is magnified at session-level. Specifically, the
touch-based method has a significantly high FIR. Among all methods, D-S theory based
methods achieve the lowest overall false detection rate: FRR (0.13) and FIR (0.03), which
means about 84% of the legitimate users’ blocks are error-free. Although Kalman filter
based fusion also achieves a low FRR (0.12), its FIR is significantly higher (0.10). We mea-
sure the latency as shown in Figure 5.3c. Detection latency is determined by the adopted
IA mechanisms: the touch authenticator relies on a user’s interaction with the screen, and
the gait authenticator using the default settings [196] performs authentication at a low
frequency. Both take much time to collect sufficient data for making decisions. Since all
multi-modal methods are implemented in SHRIMPS with the same configuration, there is
no significant latency difference. Compared to single modalities, they improve the latency
because they receive results from both modalities to make decisions earlier.

Figure 5.4 shows the results on IDNet+BBMAS. This evaluation task aims to compare
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the accuracy gain of different fusion methods when one modality performs significantly
worse than the other. Due to the task setup, different swipe types (i.e., vertical swipes on
the left and right parts of a screen and horizontal swipes on the bottom) are not evenly
distributed in the time series. Consequently, patterns for some swipe types are not well
learned by the touch based IA, which leads to poor accuracy. From Figure 5.4a, we can see
that the FAR of the touch authenticator was very high. However, the D-S theory based
solutions still significantly reduced the FAR (the session-level FARs of DS-AUC and DS-
EER are 0.07) compared to the other approaches. Besides, they can also improve the FIR.
We can draw the same conclusion from the session-level results in Figure 5.4b. For detection
latency, we see the same trend for IDNet+BB-MAS as for HMOG. However, due to the
shorter detection interval and earlier touch events, the overall latency for IDNet+BB-MAS
is much shorter than for HMOG.

Figure 5.5 shows the results in IDNet+Touchalytics. The decision-level FAR and FRR
of the touch-based TA are significantly lower than IDNet+BB-MAS. At the session level,
the FAR and FRR+FIR of the touch-based TA are more balanced. After applying the
score-level fusion, we can see lower FAR, while D-S theory based methods can achieve the
lowest session-level FAR (DS-AUC:0.07). However, due to the gait-based IA, all fusion
methods have a higher FRR than the touch-based IA. However, DS-AUC can still achieve
the lowest FRR+FIR among all methods.

Based on the above results, we can answer questions 1 and 2: 1) Multi-modal meth-
ods achieve significantly better accuracy and balancing FAR, FRR and FIR than single
modalities, and 2) Among the tested fusion methods, D-S theory based methods have the
lowest false detection rate.

When the legitimate user size is increased to 5, 7, and 10, we observe an increase
in false decisions for all methods in Figs. 5.3d, 5.3e, and 5.3f. In particular, the FAR
rises significantly, which implies that the ability of detecting attackers is weakened when
classifying more classes. Nevertheless, DS-AUC can still well balance FAR and FRR/FIR,
(FAR: 0.19, FRR: 0.26, FIR: 0.05, when u, is 10). From the result, we can answer the third
question: it is necessary to control the user size of a system to ensure high overall accuracy.
IA researchers need to specify a threshold for the system accuracy and test different user
sizes to determine the system capacity.

Group 2. Figure 5.6a shows the results of the second group of tasks: the decision-
level results for both pre-switch blocks and post-switch blocks are similar to the accuracy
evaluation results. For attack events, DS-EER has the lowest FAR at both decision-
level and session-level. However, for sharing activities, we can observe an increase in
FIR and FRR for the post-switch blocks for all methods at session-level because of the
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Figure 5.6: User switch evaluation results

detection latency — although the current user has changed to a different legitimate user, the
authentication system still has no sufficient confidence in identifying this user. According to
Figure 5.6b, DS-AUC and mean-EER still have better FRRs (0.19, 0.16) and FIRs (0.04,
0.04) compared to the other methods. However, the FAR of mean-EER (0.23) is much
higher than that of DS-AUC (0.12). The high FIR (0.16) of Kalman filter based fusion
shows that it is not a good option for handling user switches because its noise resistance
makes it slow in handle sudden score changes. The detection latency results in Figure 5.6¢
are similar to the first group of tasks. DS-AUC can provide a low and stable detection
latency (mean=37.7s, std=10.8).

The results have shown that D-S Theory based fusion methods can capture user switches
during shared sessions with balancing FAR, FRR, and FIR compared to the other methods,
which answers the fourth question. In addition, the results also imply the importance of
the external signals. If a signal, such as Android’s Screen Pinning signal [78], may imply
a user switch event, the system can then determine the end of a user’s device use and
reset the authentication status. Then, a user switch task can be simplified as an accuracy
evaluation task, where external signals assist in data segmentation to improve accuracy
(see the second use case).

5.7 Use Case 2: Multi-user Model Updating

Compared to the balanced and static settings adopted in the first use case, the second use
case considers more factors: First, given that the owner usually spends more time with the
device and contributes more training data than a secondary user, we test how the system
handles imbalanced user data. Second, as new incoming data is used for model updating
and new users are added into the system, the detection accuracy of the system may change
over time. Third, user feedback towards false decisions may influence the identification
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and auto labeling processes. In addition, a user’s lifting and putting down the device and
other events may indicate the starting and the end of device usage and can be used to
segment the data, which are considered as external signals to the multi-user TA system.
The evaluation tasks should address the following questions:

1. What is the accuracy difference of the system identifying the owner and the secondary
users?

2. How does new incoming data affect the accuracy of the system identifying different
users?

3. How does external signals and user feedback benefit data segmenting and labeling in
term of the overall accuracy?

5.7.1 Comparison Strategies

From the first use case, we conclude that the D-S Theory based methods can accurately
detect attackers and identify legitimate users. Thus, we adopt DS-EER for score fusion.
To address the above questions, we compare three strategies:

1. baseline: the system only supports user enrollment and does not learn from historical
data (i.e., no model retraining after each part);

2. uninformed: the system makes decisions and performs auto labeling based on iden-
tification results and user feedback, and ignores external signals;

3. informed: the system additionally uses external signals for detecting a user switch
and auto labeling.

5.7.2 Evaluation Tasks

For setup, there are three legitimate users: the owner uy and the secondary user u; have
already enrolled in the system, and a new user us will enroll in the system during the
task. For initial enrollment, uy has three blocks, and u; only has one. The length of each
segment is randomly sampled, ranging from two to five minutes based on the high variance
reported by Harbach et al. [68]. To show the accuracy change over time, we split the task
into three parts at each model re-training and design the following storyboard:
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Part 1 Part 2 Part 3
user

FRR | FIR | FR | FRR | FIR | FR | FRR | FIR | FR

Ug 0.25 0 025 | 043 | 0.05 | 048 | 048 | 0.03 | 0.51

Baseline Uy 0.47 0 0.47 | 0.5 0.05 | 0.55 | 0.53 | 0.02 | 0.55

Us - - - 043 | 0.03 | 0.46 | 0.53 | 0.02 | 0.55

U 021 | 0.01 | 0.22 | 0.38 | 0.11 | 049 | 0.37 | 0.10 | 0.47

Uninformed Ug 0.43 0 043 | 037 | 0.03 | 0.40 | 0.43 | 0.07 | 0.50

Us - - - 0.38 | 0.03 | 0.41 | 0.29 | 0.04 | 0.33
Ug 023 | 0.01 | 0.24 | 043 | 0.04 | 047 | 0.33 | 0.03 | 0.36
Informed Uy 0.38 | 0.01 | 0.39 | 0.27 | 0.02 | 0.29 | 0.26 0 0.26
Us - - - 0.27 | 0.02 | 0.29 | 0.25 | 0.01 | 0.26

Table 5.2: Per-part results for use case 2. Three legitimate users: wug: primary user; u;:
secondary user; us: new legitimate user. False decision rate (FR) is the sum of FRR and

FIR.

1. (2 blocks): ug’s block, [external signal|, u;’s block, [external signal], model retraining;

2. (3 blocks): uy’s enrollment, [external signall, uy’s block, [external signall, u;’s block,
[external signal|, us’s block, [external signal], model retraining;

3. (3 blocks): ug’s block, [external signal], u;’s block, [external signal], uy’s block, [ex-
ternal signal.

External signals are only used in the informed strategy, while user feedback is used in
both the informed and the uninformed strategies: External signals indicate device handoff
where a legitimate user passes the device to another. User feedback indicates the current
user has successfully passed the explicit authentication, which means the TA system made
a false rejection. As a result, the evaluation framework will notify the system of the false
decision. Model retraining is not applied to the baseline strategy. For each part, we
measure the accuracy over all the blocks within. We repeat the task with 150 different
actor combinations.

5.7.3 Result Analysis

Table 5.2 shows the per-user results for each part. In Part 1, we can observe that the system
had a lower false detection rate at identifying the owner than a secondary user when there
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is not much training data. Such difference becomes smaller when more training data is
available for secondary users due to the data balancing strategy, which answers the first
question.

After uy’s enrollment at the start of Part 2, the multi-user IA system updated all TA
models. By the end of Part 2, the system experienced significant accuracy degradation in
identifying uy compared to Part 1. However, due to score fusion and data balancing, the
accuracy of identifying the new user is close to identifying u;. At the end of Part 2, the
system retained all models with new data collected in Part 2. In Part 3, the false decision
rate dropped. Compared to the baseline, the FRR and FIR of the informed strategy were
lower for all users. The results have addressed the second question: model updating can
help improve the cross-session accuracy significantly.

To answer the third question, we compare the uninformed and informed strategies
across all parts. The results have shown that external signals can further improve accuracy
because 1) they enabled the system to reset the authentication status at a user switch to
avoid false identification, and 2) they provided precise data segmentation, which makes
the system correctly label more behavioral features. Despite the benefits of improving the
accuracy, IA researchers also need to consider the usability of the system. For example,
frequently asking for a user’s feedback makes the system hard to use. With SHRIMPS, TA
researchers can observe the frequency of the external signals and optimize the workflow by
modifying the auto labeling and model update mechanisms.

5.8 Discussion

Limitations. We list the following limitations of SHRIMPS or sample use cases: 1) The
design of simulation tasks is restricted by the dataset. For example, for HMOG, we limit
the length of use case 2 to three parts to satisfy the cross-session requirement, which leads to
high error rate for all strategies. 2) Although SHRIMPS supports simulated user feedback,
there is still a gap between simulation and user studies in usability evaluation. Nevertheless,
SHRIMPS can be used for tuning and evaluating a multi-user IA system before user studies.
3) Since SHRIMPS is a simulation framework, it is not for implementing and developing
a deployable multi-user TA system on smart devices. However, it can be easily connected
with the real systems for parameter tuning.

Applications. We present two use cases to exemplify how SHRIMPS helps A researchers
and developers design and evaluate multi-user IA schemes. We note that SHRIMPS can be
applied in diverse scenarios. For example, it is feasible to use the simulation environment
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to generate a long simulation task consisting of random sensor data blocks and random
external signals to test the robustness of a multi-user IA scheme. Besides, A researchers
can explore how much training data is required for different user types (e.g., owner and
secondary users) to help balance the per-user accuracy by modifying the training set gen-
eration module.

Multi-user concurrent usage. We assume only one user operating the device at the
same time. Matthews et al. [124] listed broadcasting as a type of device sharing, where
multiple people are co-using a single device simultaneously. Recognizing all present legiti-
mate users can be regarded as a multi-label classification problem. However, if the system
is always assuming the device is under concurrent usage and performing multi-label classi-
fication, its accuracy is very likely to suffer given the problem complexity. Thus, we need a
certain external signal indicating the concurrent usage context and then trigger multi-label
classification.

Contextual information. According to the user switch simulation tasks, an TA system
may falsely reject a legitimate user if it is uninformed. However, if it knows the context of
user switch through external signals, the problem can be simplified as a general identifica-
tion task. Existing studies [74, 129] also use contextual information to adapt IA systems
for better accuracy or less battery consumption. A future avenue is to embed contextual
information into SHRIMPS and establish connections between context and authenticators.

User removal. The user removal problem involves three steps: 1) excluding the target
user from the legitimate user set, 2) purging the training data and models of the target
user, 3) eliminating the impact of the target user’s data on other IA models. SRHIMPS
adopts full retraining to achieve these goals, which is time-consuming. A potential solution
is to apply machine unlearning techniques [20, 133] to let IA models forget the removed
user’s training data with balancing training time, space, and accuracy.

5.9 Conclusion

In this chapter, we proposed a multi-user, multi-modal TA solution to provide continuous
identification and authentication for shared mobile devices. We applied the Dempster-
Shafer theory based score fusion methods to combine multiple modalities. To support TA
researchers, our proposed SHRIMPS provides an architecture of a multi-user TA system
and an evaluation framework for designing and evaluating multi-user TA schemes. We
presented two use cases that use SHRIMPS to design multi-user IA schemes with touch-
based and gait-based IA mechanisms and address practical design questions. For example,
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we composed a storyboard using the HMOG dataset to test how a multi-user IA captured
sudden user change during a session, which was not covered by the single-user scenario. The
evaluation results of the use cases also showed the effectiveness of our proposed multi-user
IA solution: the D-S theory based fusion methods can significantly reduce false detections
compared to existing score fusion strategies. Besides, we also tested how our solution
automatically segmented and labeled new incoming data and updated the IA models with
new incoming users. With the involvement of external signals and user feedback, our
solution can ensure the cross-session performance of the multi-user A system.

In this chapter, our multi-user TA solution applies both algorithmic and systematic
adaptations to shared mobile devices. In practice, an authentication system many also
require multiple adaptations to handle various scenarios. They can be triggered by different
contextual factors and apply different levels of changes to authentication systems. Thus, we
need to build an adaptation model to organize various adaptations to make them co-exist
in the system, which will be covered in Chapter 6.

126



Chapter 6

Multi-stage Adaptive Authentication
and Access Control

6.1 Introduction

This chapter aims to address the fourth research objective of modeling adaptive authenti-
cation systems. The key research question is how to organize adaptations of authentication
and access control in one adaptation model and enable the deployment of adaptive authen-
tication to handle various risks. Upon addressing this research question, we implement a
framework to help developers enable adaptive authentication and access control for their
systems and apps.

6.1.1 Limitations of Existing Adaptive Authentication Solutions

Existing adaptive authentication solutions have the following limitations that could lead to
severe problems and restrict their applications in various scenarios: First, most existing
adaptive authentication solutions adopt a simple single-stage adaptation structure that
can be summarized as multiple “if condition then adaptation” statements. This structure
may introduce conflicts and vulnerabilities. Different contextual factors may hold simul-
taneously and drive opposite adaptation outcomes. For example, Android Smart Lock has
conflicting interoperation between contextual factors [99]: Leaving a trusted location is ex-
pected to trigger the automatic lock, whereas a device’s connection to a trusted device may
make it remain unlocked. Second, some adaptive authentication schemes [70,126,129] use
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contextual factors to unlock a device, which may allow an attacker to bypass EA mecha-
nisms. For example, Smart Lock before Android 10 [30] allowed trusted places or devices
to unlock a locked device, which may be exploited by social insiders [126]. As of Android
10, Smart Lock can be used only to extend access to an unlocked device. Third, most
adaptive authentication systems are difficult to extend or reuse [10]. However, an app may
employ multiple authentication mechanisms and apply different adaptations for each. For
example, a corporate app for Bring-Your-Own-Devices (BYODs) may adapt IA mecha-
nisms to their data availability (e.g., activate gait-based IA only when a user is on foot)
and tune their sensitivity based on the current location (e.g., onsite or offsite). To the best
of our knowledge, there is no existing framework that supports various adaptations.

6.1.2 Challenges

The main challenges involve the following aspects:

1. Authentication and access control adaptations are driven by various factors and affect
different components of an authentication system. Therefore, organizing them in one
model is challenging.

2. An adaptation model should be extensible: it should allow adding adaptation policies
for a new scenario with minimal conflicts with the existing policies.

3. An adaptive authentication system should accommodate various context factors and
authentication mechanisms. Adding, removing, and modifying a component should
not affect other components or adaptation logic.

4. Integration of the adaptation framework in mobile apps and systems should introduce
minimal change to the existing code.

6.1.3 Contributions

We present a multi-stage risk-aware adaptive authentication and access control (MRAAC)
framework. MRAAC targets three types of stakeholders: Designers of authentication sys-
tems for mobile operating systems, developers of mobile device management (MDM) solu-
tions, and developers of mobile apps with high security requirements. MRAAC organizes
authentication and access control adaptations in three levels: the top level determines when
to explicitly authenticate a user; the second level handles the adaptations driven by changes
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in security contexts to choose an appropriate set of authenticators for the current risk type
and level; the third level focuses on the adaptation of individual authenticators to ensure
usability. The multi-level structure ensures that the system prioritizes security-related
adaptations to prevent unauthorized access. MRAAC adopts a graph-based organization
where adaptation policies are organized in multiple stages and take effect only at their
affiliated stages to avoid possible conflicts with policies in other stages. The multi-stage
design also enables the statefulness of MRAAC, which allows the system to progressively
adjust its behaviors based on the feedback of a previous adaptation.

The contributions are fourfold:

e An opensource, multi-stage framework for adaptive authentication and access control
for Android. Our approach supports automatic generation of multi-stage adaptation
models and enables the design of complex and stateful adaptation schemes based on
contextual factors, resource sensitivity, and authentication results.

e Two libraries for developers of authentication systems and sensitive apps to enable
adaptive authentication and granular in-app access control with low development
overhead.

e Three use cases, Smarter Lock, guest-aware continuous authentication and BYOD
corporate app, to demonstrate how to design multi-stage adaptation model for dif-
ferent use cases.

e An evaluation of MRAAC based on two implemented MRAAC-enabled apps. The
performance evaluation results show that MRAAC introduces low overhead and bat-
tery consumption. A use case simulation on the public HMOG dataset [159] shows
that the multi-stage design can balance the false rejection rate and detection latency
of continuous authentication.

6.2 Motivation

This section presents two motivating examples to show the limitations of existing adap-
tive authentication systems and then summarizes the requirements of a desired adaptive
authentication and access control framework.
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6.2.1 Motivating Examples

Smart Lock. To reduce unnecessary EA, Android Smart Lock [32] leverages three con-
textual factors to determine whether to ask for EA when a user starts a new session: 1)
On-body Detection (BODY): whether the device is with a user in movements, 2) Trusted
Places (PLACE): whether the current location is trusted, 3) Trusted Devices (DEVICE):
whether any trusted devices is connected with the device. Smart Lock (before Android 10)
uses the following five adaptation policies:

1. If the device is not on body (BODY == false), then activate EA for a new session.

2. If the current location is trusted (PLACE == true), then de-activate EA for a new
SesSIon.

3. If the current location is not trusted (PLACE == false), then activate EA for a new
session.

4. If any trusted device is connected (DEVICE
session.

= true), then de-activate EA for a new

5. If no trusted device is connected (DEVICE
session.

false), then activate EA for a new

Note that “activating EA” does not mean an immediate device locking, and the user can
still use the device for the current session.

We observe several limitations: (P1.1) Policy conflicts. If the device is connected to a
trusted device in an untrusted location, Policies 3 and 4 are satisfied simultaneously. But
the adaptation outcomes of the two policies are contradictory. The system has to prioritize
one outcome over another or set an explicit policy for the situations where both conditions
hold. (P1.2) Misusing contextual factors for unlocking. The contextual factors in Policies
2 and 4 result in the de-activation of EA. However, contextual factors do not provide
as strong evidence as EA mechanisms that the current user is legitimate. As a result,
using contextual factors to unlock a locked device makes it easier for an attacker to bypass
authentication. Specifically, it introduces a higher risk of social insider attacks [120] where
an attacker is in the trusted environment set by the owner and unlocks a locked device
without EA. Therefore, Android 10 and later changed the behavior of Smart Lock to only
extending unlock, which prevents an attacker from bypassing the EA of a locked device.
However, social insiders can still take advantage of the extended unlock to access the device.
For example, the owner sets the workplace as trusted to keep the smartphone unlocked
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at work. A co-worker can wait for the owner’s temporary absence (e.g., coffee break) and
access the unlocked device during the extended unlock interval. (P1.3) Stateless. The above
policies take effect regardless of the device state as long as their conditions are satisfied. It
is hard to implement complex adaptations such as the “low watermark” adaptation [129]:
If the three factors are all negative at the same time, the device is considered in the insecure
state. EA should be required even if either Policy 2 or Policy 4 is satisfied. The insecure
state ends only after the user has passed EA.

§ 6.5 presents Smarter Lock to address the above problems and provides an IA-enabled
option to incorporate continuous authentication (CA) into Smarter Lock. To further show
the extensibility of our solution, we implement the guest-aware CA use case that adapts
authentication and access control to guest access, which is a special scenario derived from
the social insiders.

BYOD. Itus [92] is a general TA framework for BYOD apps that supports various behav-
ioral biometrics based TA mechanisms (e.g., Touchalytics [52], SilentSense [17]). Assume
an enterprise E-mail client app is using Itus to enable TA. It uses a location contextual
factor to determine if the device is within the company or not, and extracts behavioral
biometrics from body movements and touch events. To coordinate them, the app adopts
the following adaptations:

1. If a mismatch in behavioral biometrics (i.e., a negative IA result) is detected, then
lock the device and activate EA.

2. If the current location is not within the company (i.e., offsite), then activate IA.

3. If the current location is within the company (i.e., onsite), then de-activate TA.

The adaptations supported by Itus mainly include two types: using IA mechanisms to
determine when to activate EA and using context factors to determine when to activate a
certain IA mechanism. However, they are insufficient from the following aspects: (P2.1)
Conditions. An adaptation can be driven by multiple reasons. As location implies the
risk level of the current context (i.e., Policies 2 and 3), data availability and resource
sensitivity are other possible conditions to determine whether to activate an IA mechanism.
For example, if there is no significant movement, de-activate body movement based TA and
activate keystrokes or touch events based IA instead. Accessing sensitive resources requires
stricter TA mechanisms to prevent unauthorized access. (P2.2) Adaptation outcomes. The
outcomes of the above policies are all about activation and de-activation. In practice,
it is also feasible to tune the parameters of an authentication mechanism and change
access control policies. For example, IA mechanisms for the offsite scenario can switch
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to a more sensitive configuration than the onsite scenario to defend against higher risk of
unauthorized access. The system can also block access to specific resources when a user’s
identity is uncertain. (P2.3) False rejection. According to Policy 1, a negative TA result
immediately locks a device and requires EA. False rejection will make an authentication
system less usable. It is preferrable to have an intermediate step before locking a device
in order to mitigate false rejection while securing sensitive resources.

In § 6.5.3, we present the BYOD use case that provides a comprehensive solution to
enable adaptive authentication and access control for a real E-mail client app.

6.2.2 Summary

The motivating examples have shown that adaptations can be driven by various factors
and applied to multiple authentication mechanisms. Multiple adaptations can co-exist
in the same system to handle a variety of scenarios. Unorganized adaptations can hardly
fulfill the security and usability requirements. As reviewed in § 2.5, no existing studies have
proposed an adaptation model to organize various adaptations of authentication and access
control. To address the above issues and limitations, our adaptation model is expected to:

1. Categorize adaptations based on their conditions and organize them in a multi-level
structure to reduce possible conflicts (P1.1);

2. Model risks from the perspectives of user authenticity, resource sensitivity, and threat
to describe the system states (P1.3) and cover various conditions that imply risk
changes (P2.1);

3. Regulate adaptations so that attackers cannot exploit contextual factors to bypass
the authentication system (P1.2);

4. Enable progressive adaptations that adjust authentication and access control based
on the feedback of a previous adaptation (P2.2) instead of directly imposing EA to
mitigate false rejections (P2.3).

6.2.3 Threat Model

User authentication and access control defend against unauthorized access. We trust the
device owner or the primary user (for corporate-owned devices). Attackers are other people
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who are physically near the device and can physically access it. Their goal is to access
(sensitive) resources on the device.

We follow the general threat model in § 2.6 and focus on nearby strangers (i.e., oppor-
tunistic attackers) and social insiders (i.e., informed attackers). Social insiders may share
a trusted environment (based on a device owner’s trust perception) with the owner (e.g.,
a home) and take advantage of contextual factors to bypass the authentication system. A
special type of social insiders are guest users (i.e., sharees in temporary device sharing),
who are allowed to access non-sensitive resources, but not sensitive resources.

Since we provide an Android implementation of the adaptive authentication and access
control framework (see § 6.4), we make the same assumptions as mentioned in § 2.6.
Moreover, the framework allows communications with apps, it is possible for them to
acquire sensitive resources or send false information. We discuss such attacks in § 6.4.2
and § 6.7.

6.3 Modeling

In this section, we give the definition of a multi-stage adaptation model and the model
construction process.

6.3.1 Definition

Three levels of adaptive authentication. Adaptive authentication can be divided into
three levels based on the adaptation reasons (i.e., what leads to changes in an authentica-
tion system). The top level of adaptive authentication is to address when to authenticate
a user. Both EA and TA assist an adaptive authentication system: EA provides manda-
tory identity verification when a user logs into the system, and IA continuously verifies a
user’s identity throughout a user’s access and provides weak authentication for low risk
levels. Since IA rejection causes EA [52,92], switching between EA and TA is an adaptation
process based on the user’s identity.

The other two levels address how to authenticate a user based on the security context
and the usability context, respectively. Changes in the security context imply changes to
the risk of attacks and determine the requirements of the authentication mechanisms to
handle the risk. For example, a higher risk (e.g., accessing sensitive resources) calls for a
stricter set of IA mechanisms that are more sensitive to imposters. In comparison, changes
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Default Capped

auth vl|IA+ |TA- | EA+ |EA- |[TA+ |IA- | EA+ | EA-
ao - - a2 Qg - - ) ao
ai az | ap - - ap | 4o - -
a2 Gz | 41 - - Q| a1 - -

Table 6.1: Two examples of authentication transition functions. Default: a negative [A
result decreases the authentication level by one, while an EA acceptance raises it to the
maximum. Capped: a positive IA result cannot raise the authentication level from a; to
as.

in the usability context are related to the availability and performance of the authentication
mechanisms, which help determine the (de-)activation and tuning of these mechanisms. For
example, low ambient brightness may result in choosing an authentication mechanism other
than facial recognition. Thus, based on the scale of impact from the adaptation outcome,
we define the security-driven (or risk-driven) adaptation as high-level adaptation and the
usability-driven adaptation as low-level adaptation.

Risk. We describe the risk from three factors: the risk type of the scenario, the authen-
tication level of the user, and the sensitivity level of the current resource. Risk types
are characterized by contextual factors, such as locations and activities, and have distinct
adaptation requirements. Authentication levels indicate the confidence of identifying a
user as the owner. A low authentication level calls for stricter [A mechanisms or even EA.
Adopting multiple authentication levels gives flexibility when processing an TA rejection.
For example, the first TA rejection may trigger further verification and restrict access to
sensitive resources, instead of a direct lockout, to mitigate the impact of false rejections.
Sensitivity levels and authentication levels determine whether a user can access a resource.
If the authentication level fails to match the sensitivity level of the target resource, the
system rejects the access and asks for EA. Besides, an authentication system should impose
stricter authentication mechanisms for access to resources with higher sensitivity levels.

6.3.2 Multi-stage Adaptation Model

Risk Model. We define the three factors as: the risk type set R = {ro,71,..., -1},
the authentication level set A = {ag,aq,...,a,,-1}, and the sensitivity level set C' =
{co,c1,. .., Cno—1}, where ng, na, and ne are the sizes of the three sets. The risk type is
a categorical variable that characterizes the variety of attack risks by contextual factors.
An example are risk types based on location: if the current location is home or workplace
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then apply different adaptation strategies for each of them. We reserve ry as the comple-
ment of all defined risk types, which represents the risk of general unauthorized attacks.
Authentication levels and sensitivity levels can be expressed as two ascending sequences
where a9 < a; < ... < ap,—1 and ¢y < ¢; < ... < cp—1. We reserve aqg and ¢y for the
Locked state, which represent the lowest authentication level and the lowest sensitivity
level, respectively.

For each risk type, we use two functions to describe the authentication and access
control behaviors: 1) Authentication results lead to changes in authentication levels, and
the mapping between them is a function A\, : A x I' — A, where T" is the authentication
result set (e.g., IA acceptance/rejection). Table 6.1 shows two examples of authentication
transition functions. 2) Mandatory access control is a function pu, : A x C' — {True, False},
which determines if the user’s authentication level is insufficient to access resources at a
specific sensitivity level. If the function returns False, the user should be rejected and may
need further authentication (usually EA) for a higher authentication level. The default
access control function is i, (a;, ¢;) = 1;>;.

To describe transitions among risk types, we use a function x : R x ® — R, where ® is
the set of transition signals, including contextual factors and authentication results. For
example, if the location sensors detect that the device is not at a safe place, the system
changes the risk type for adaptation to public locations.

Multi-stage model. The design of an adaptation model follows the three adaptation
levels introduced in § 6.3.1. On the top adaptation level, an adaptation model can be
divided into the unlocked and locked states of a binary access control model [71], where IA
is activated in the unlocked state and EA is activated in the locked state. For the high-level
adaptation, the system dynamically adjusts its behaviors in response to the input signals
that change the current authentication level, sensitivity level, and risk type. We use a
finite-state machine (FSM) based multi-stage model to describe the adaptation process.
Each stage (i.e., state) hosts a set of adaptation policies to apply the low-level adaptation.

The multi-stage model M is a quadruple (3,5, sg,d): X is the set of all input signals
for high-level adaptation, S is the stage set: each stage s € S is a combination of (r,a,c) €
R x A x C s is the initial stage for the unlocked state, which is by default (1o, an,—1,c1)
(i.e., general risk type, highest authentication level, low sensitivity level); 6 : S x ¥ — §
is the transition function that determines the next stage based on an input x € ¥ and the
current stage s. We reserve the locked stage [ for EA (e.g., Android Keyguard). The stage
transition from [ to sq is triggered by positive EA results (denoted by et): (I,e™) = s,
while negative EA results (denoted by e™) trigger a self-transition: §(l,e”) = .

We define that any input signal € ¥ may change only one of the three factors (r, a, c)
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at a time. An event that causes changes in the security context can be broken down into
a series of input signals in chronological order. For example, when the system detects a
guest access event, it issues an authentication signal to lower the authentication level and
then produces a context signal to change the risk type. If §(s, z) is not defined, the system
processes it as an exception (i.e., x is an invalid input at stage s) and moves to the locked
stage.

To build a multi-stage model, developers first need to prepare a threat model specifying
the following information: the risk type set R, the authentication level set A, the sensitivity
set C, the authentication result set I', the context signal set ®, the risk transition function s
and the authentication and access control functions under each risk: {\, },cr and {iu, },er,
respectively. Then, a multi-stage model is automatically generated from a risk model
according to the following steps:

1. Construct the input set ¥ = T'(JCJ P to include all valid inputs that change any
of (r,a,c). Note: a sensitivity level ¢ € C, as an input, means “the user attempts to
or is currently using a resource of sensitivity level=c".

2. Obtain all valid combinations of three factors 2 C R x A x C where the authentication
level is sufficient for accessing resources of the sensitivity level under the risk type:
Q = U,erl(r,a,c)|u(a,c) = True,Va € A,c € C}. Then, the stage set isS =

3. Set the initial stage so to (ro, an,—1,c1) and all outgoing transitions from the Locked
stage [ (i.e., [ to so and self-transition) in .

4. Generate the stage transition function § by traversing all stages s € €2 and inputs

T E X
(r, \r(a,z),c) =€l
5(s,z) = (rya,x z € C, u,(c,z) = True,
’ (k(r,z),a,¢c) z € ®, (k(r,x),a,c) € Q,
l otherwise.

The generated multi-stage model defines the high-level adaptation behaviors of the system.
The stage transition process enables the system to dynamically capture the risk change
and change its adaptation scheme in response to the input signals. By traversing all valid
combinations of the three risk factors and all acceptable inputs, the completeness of the
model is ensured to cover all possible situations. The deterministic property of stage
transition (i.e., given the current stage and the input, the outcome stage is deterministic)
avoids possible ambiguity or conflicts. The stateful property provides the flexibility of
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adopting different reactions to the same signal. For example, a negative IA result does not
always trigger de-authentication if the user is accessing a non-sensitive resource.

In § 6.5, we present three use cases to show in detail how to design risk models and
generate the multi-stage adaptation models accordingly.

6.3.3 Adaptation Policies

Adaptation policies determine how to change the authentication and access control mech-
anisms. A multi-stage model enables designing per-stage adaptation policies to handle the
corresponding risk type and level of each stage. The adaptation policies are classified into
two categories based on how they are triggered: general adaptation policies and condi-
tional adaptation policies. General adaptation policies take effect once a stage transition
happens. They determine the default authenticators and access control rules of a stage.
For authentication adaptation, the system activates the authentication mechanisms listed
in the general adaptation policies of the current stage. It also deactivates the ones that are
activated in the previous stage but not listed in the current stage. For access control, the
multi-stage adaptation model determines resource availability based on sensitivity levels
and authentication levels. The access control policies within each stage can further adjust
the availability of individual resources. Conditional adaptation policies are a set of “if-
then” statements — once the conditions are satisfied, the corresponding adaptation takes
effect. They mainly handle the low-level authentication adaptation process to determine
when to activate and deactivate authentication mechanisms and how to tune the parame-
ters in response to the usability context (e.g., if no significant movement is detected, then
deactivate gait authenticator.)

The multi-stage adaptation model also supports the design of the adaptation policies.
By comparing the risk type, authentication level, and sensitivity level, one can determine
if a stage is “riskier” than its neighboring stages (i.e., stages connected to it by a transition
edge). A stage at higher risk should have no less secure authentication and no more avail-
able resources than a stage at lower risk. Following the security metrics of biometric-based
authentication mechanisms [$1], it is feasible to compare the authentication mechanisms
between two stages and determine if the proposed adaptation policies are reasonable.

6.3.4 Revocation of Adaptation Policies

In practice, some adaptations policies may no longer meet the security or privacy require-
ments, which calls for revocation. We use different revoking strategies for adaptations at
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different levels. For the security level, revocation implies removing certain authentication
levels, sensitivity levels, or risk types. It requires the re-generation of the multi-stage adap-
tation model. It is easy to obtain what stages are revoked by comparing the current and
former models. All usability-level adaptation policies in the revoked stages automatically
become invalid while other stages remain unchanged. For the usability level, the revocation
of an adaptation policy is done by dropping the corresponding item from the adaptation
scheme. It does not affect the security-level adaptations.

6.4 System design

6.4.1 Target Audience

We design MRAAC to provide a general adaptation framework for authentication and
access control on mobile devices and apps. Our audiences are: 1) developers of mobile
authentication systems, 2) security developers of mobile device management (MDM) and
enterprise mobility management (EMM) solutions, and 3) developers of sensitive apps.

Authentication system developers can use MRAAC to manage the adaptation process
to enhance their systems. As a mobile authentication system provides authentication APIs
(e.g., Android’s BiometricManager) for apps, MRAAC also enables risk awareness for in-
app adaptation. We propose a “client-server” structure for MRAAC: the “server” is a
centralized service that performs risk evaluation and provides system-wide adaptive au-
thentication and app-level access control, and the “clients” are apps that receive signals
from the “server” to enable risk-awareness and adjust the availability of in-app resources
accordingly. Since the server handles most operations, clients can obtain the digested risk
information without accessing sensitive permissions or performing expensive computations.
Such a structure also works for MDM/EMM solutions. They require an endpoint man-
agement agent or are integrated with the operating system (e.g., Android Enterprise) to
collect contextual information and enforce security policies, while a list of corporate apps
are under its control.

Individual, sensitive apps may require custom adaptive authentication and access con-
trol without relying on an external service. For example, corporate apps for BYODs require
dedicated adaptive authentication systems to manage a user’s access based on their loca-
tion and network. Thus, MRAAC needs to be integrated into these sensitive apps (called
host apps) to enable risk awareness and adaptation management. Besides, MRAAC should
help developers to implement granular in-app access control. For example, a user can only
perform sensitive operations when strongly authenticated.
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Figure 6.1: System design of the MRAAC framework.

6.4.2 Architecture

Figure 6.1 shows the architecture of MRAAC in the client-server design, which consists of
a global service (“MRAAC Service”) and a client library (“MRAAC Client”). Note that
the “server” is deployed locally on mobile devices as an Android service. For single apps,
we propose the MRAAC Integration library to include the components of both MRAAC
Service and MRAAC Client.
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MRAAC Service

MRAAC Service provides context detection and adapts authentication mechanisms and
access control. It consists of four modules, and each module contains a service handling
the communication with other modules:

Adaptation module is the core of MRAAC. It provides the multi-stage model builder
to help developers generate adaptation models and design adaptation schemes. As intro-
duced in § 6.3.2, a multi-stage adaptation model defines all stages and transitions. With
the model, the adaptation service can manage the adaptation process: It listens to au-
thentication results, sensitivity changes, and contextual signals from the other modules.
According to the stage transition table, the adaptation service performs stage transitions
and enforces adaptation policies based on the current stage and the received signal. It sends
the adaptation outcome as a control signal to the other modules for changing their behav-
iors. In addition, the adaptation module provides an interface to handle communications
with MRAAC client apps.

Context module hosts a list of context detectors to collect and process data from vari-
ous sensors and generate contextual factors used in adaptation conditions. Each context
detector works independently as a service, and a context provider is bound to it to convert
its results into context signals. The context service manages a list of context providers and
forwards context signals to the adaptation service. During the initialization, the context
service activates all context detectors via the control interface provided by the correspond-
ing providers.

Authentication module manages and adapts all authentication mechanisms. Similar to
the context module, each authenticator runs as a service and binds to an authentication
provider. The authentication service aggregates results from authenticators and sends au-
thentication signals to the adaptation module. Besides, it receives adaptation signals from
the adaptation service to (de-)activate or adjust the target authenticators or tune its aggre-
gation method. Note that EA mechanisms provided by the operating system (e.g., Android
keyguard) also require an authentication provider as an interface for activation and receiv-
ing authentication results. In addition, a client app may have its own authenticators (see
§ 6.4.2). We can also instantiate providers for client authenticators to receive their scores
and involve them in the adaptation loop.

Access control module determines the current sensitivity level and manages access
control policies. The access control service tracks the current resource and notifies the
adaptation service of sensitivity changes. The resource sensitivity manager maps resources
to sensitivity levels for each stage. The enforcement of access control policies is performed
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by the adaptation service and the external access control enforcement point: 1) the adap-
tation service determines whether to move to the locked stage after receiving the sensitivity
change; 2) the access control service receives the adaptation scheme of the current stage
from the adaptation service, and then the policy translator translates each access control
rule into the policy format accepted by the external access control enforcement point (e.g.,

FlaskDroid [21], ASF [13]).

MRAAC Client

Given that an app may contain resources at different sensitivity levels, it is more flexible
to control access to in-app resources than to fully block access to the app [71]. Instead
of offloading context detection to apps, a better approach is to enable apps to receive
contextual cues from the adaptive authentication system through a library. Client apps
are the apps that depend on MRAAC Service to obtain the stage information for the
adaptation of in-app authentication and access control. MRAAC provides a client library
for client apps, which consists of the following components:

Client service manages communications with MRAAC Service and parses the stage in-
formation. The service is activated at the startup of the app and automatically sets up
the connections to MRAAC Service and pulls the current stage information. While the
client app is running, the service keeps listening to broadcasts regarding stage changes from
MRAAC Service. Besides, if the app adopts the IA mechanisms provided by the library,
the client service can forward authentication results to MRAAC Service via Android IPC.
Sending authentication results is a security-sensitive operation since malicious apps may
send false results to deceive the system. MRAAC only allows forwarding authentication
results when the identity of the client app is verified or the client app is signed with the
same key as the service.

SecureActivity is a generic Android application component that client apps are supposed
to extend to easily receive the stage change signal. The client library provides optional TA
APIs based on the generic [A framework Itus [92] to enable IA within the app scope. It also
provides UI control APIs to support in-app access control. App developers can delegate
the control of specified Ul elements to the SecureActivity so that it can automatically
adjust the availability and visibility of Ul elements based on the current stage.

MRAAC Integration

We provide the MRAAC Integration library to enable standalone adaptive authentication
and access control for individual apps. It enables third-party apps to integrate the full
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MRAAC Service and SecureActivity to provide a complete adaptation workflow within
the host app. The locked stage means that the user needs to pass EA to continue using
the app. The authentication process of the associated online service of the host app can
be involved in the adaptation loop. For example, assuming that the host app is associated
with an OAuth2 service [69], the locked stage for the host app can trigger the revocation
of the authentication token. As a result, the host app logs the user out to secure the user’s
personal information. For the access control module, the host app needs to provide the
currently accessed resource (e.g., view, file, etc.) to the service. Besides, in-app access
control replaces the external access control enforcement point of MRAAC Service.

6.4.3 Development Workflow

This section lists the development workflow of using MRAAC to enable adaptive authen-
tication and access control for MDM/EMM solutions and individual apps.

The first step is to generate the multi-stage adaptation model, which determines the
high-level adaptation behaviors of the system. Developers need to specify authentication
levels, sensitivity levels, and risk types based on the security requirements of their projects.
Then, they define the authentication and access control functions for each risk type in table
form. MRAAC provides several common functions to reduce the development efforts.
However, developers still need to provide all possible context signals (related to the risk
type transitions) and the risk transition functions. Once the above information is prepared,
MultiStageModelBuilder (see Figure 6.1) constructs the multi-stage model based on a
configuration file. Figures 6.3 and 6.5 show two example configuration files.

The second step is to set up the four main modules of MRAAC Service. MRAAC
ships with a number of common authenticators (e.g., touch, gait) and context detectors
(e.g., locations, activities) so that developers can choose from them and rapidly build
their adaptive authentication system. Given that developers may have their own imple-
mentation of authenticators and context detectors, MRAAC provides two abstract classes
BaseAuthenticator and BaseContextDetector to define the essential methods required
for communication and controlling their customized components. Then, developers need to
register all selected authenticators and context detectors in the authentication service and
context service via addAuthenticator() and addContextProvider (), respectively. For
the access control service, developers need to override the acquireCurrentResource()
method to provide the current resource and direct the output of the policy translator to
their access control enforcement point. For the adaption module, the developer only needs
to load the model generated in the first step without touching other parts.
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The third step is to make adaptation schemes and enable MRAAC Service. Ac-
cording to § 6.3.3, each Scheme object involves two kinds of adaptation policies: 1)
defaultAdaptation takes effect at each stage transition, and 2) conditionalAdaptation
takes effect when the condition is satisfied. Developers need to make adaptation schemes
for each stage, and it is possible to set the same scheme for several stages. After scheme
making, developers register all the services in the Android manifest file and start them at
app/system startup.

Development workflow for client apps. Developers only need to make their base
activities extend the SecureActivity and override onStageChanged () to implement their
adaptation solution. Besides, the activity provides the getCurrentStage() method for
developers to actively acquire the current stage. App developers can change the visibility of
view objects and block access to sensitive methods (e.g., methods related to file operations)
to protect user data privacy and security. App developers can delegate the Ul control to the
client library by registering target view objects for automatic control. Since the MRAAC
Integration library includes the components of the client library, host app developers can
enable in-app control in the same way.

6.5 Use Cases

This section presents three use cases for MRAAC: Smarter Lock, Guest-aware Continuous
Authentication, and Corporate App for BYOD. Smarter Lock follows a minimal adaptation
model where both the maximum authentication level and the maximum sensitivity level
are one. For the latter two use cases, we use the following common settings: resources
are classified into non-sensitive ¢; and sensitive ¢y, and two authentication levels, a; and
as, represent weakly and strongly authenticated states, respectively. The authentication
transition functions follow the default scheme in Table 6.1. We adopt the default access
control function (i.e., geq): To access a resource of ¢;, the authentication level a; should
satisfy j > 1.

6.5.1 Smarter Lock

We first present Smarter Lock to show how to use MRAAC to improve Smart Lock while
addressing the issues and limitations mentioned in § 6.2.1. The basic idea of Smarter Lock
is to keep a device unlocked if it is in a trusted environment. If any of BODY, PLACE,
and DEVICE is positive, the device remains unlocked. However, if all the three factors
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Figure 6.2: Multi-stage model for Smarter Lock. Stages: T: Trusted, U: Untrusted, L:
Locked. Note: Signals (3)(4) are available only when IA is adopted.

are negative at any moment, the device will activate EA for the next session. Similar
to Android Smart Lock, negative factors will not lead to an immediate device lock if the
device is currently unlocked. We present this use case in two steps. In the first step, the
adaptation model only adopts the contextual factors used by Smart Lock, i.e., BODY,
PLACE, and DEVICE to address when to end the unlocked state of a device and activate
EA.

In the second step, we show the extensibility of MRAAC by handling social insiders that
are not covered by Android Smart Lock (including Android 10 and later). Social insiders
may take advantage of the unlocked state extended by contextual factors to access the
device as introduced in § 6.2.1. As a countermeasure, we enable behavioral biometrics based
IA to proactively defend against social insiders. In particular, IA is used to immediately
lock out an attacker upon behavioral mismatches (rather than unlock a device).

Risk model. There are two risk types in the unlocked state: Trusted and Untrusted.
They indicate whether a device is in a trusted environment. In an untrusted environment,
the device is more likely to be targeted by unauthorized access. For simplicity, we set both
the maximum authentication level and the maximum sensitivity level to 1 since the use

144



case only addresses whether to lock. More complicated models are presented in the next
two use cases.

We use a high-level context provider TrustedContextProvider (TC) to aggregate the
results of the three contextual factors. It also adopts a timer (TIMEOUT) to track if
the duration of being in a trusted environment exceeds a predefined value. The timeout
interval is configurable by the device owner. The resulting aggregation can be expressed
as the following logic expression:

TC = (BODY v PLACE v DEVICE) A = TIMEOUT

TrustedContextProvider outputs two signals: TRUSTED and UNTRUSTED for transition
between the two risk types. When UNTRUSTED is issued, the risk type changes from Trusted
to Untrusted. However, TRUSTED cannot change the current risk type from Untrusted
to Trusted since Smarter Lock adopts the low water mark strategy. Another signal is
SCREEN_ACTION, which indicates if any screen action is performed (i.e., screen on or screen
off). This signal implies a user starts or stops using the device, and the system needs
to determine whether to activate EA. For Android, it relies on a system event context
provider that listens to ACTION_SCREEN_ON and ACTION_SCREEN_OFF.

Multi-stage model. Based on the risk model, we obtain a three-stage adaptation model
as shown in Figure 6.2. According to the model (without TA), the device keeps unlocked
if it stays in a trusted environment, i.e., 7. When TrustedContextProvider issues a
UNTRUSTED signal (i.e., untrusted environment or the time limit exceeded), the current
stage changes to U (T' — U) where the user needs to pass EA for the next session. After
that, the device cannot move back to 1" even if it receives the TRUSTED signal (i.e., low
watermark). To add or remove a contextual factor for trusted environments, a developer
needs to only change TrustedContextProvider without changing the topology of the
multi-stage model, which helps reduce possible conflicts.

Adaptation. Since only EA is available in the first step, the adaptation is about whether
to activate EA. To avoid misusing contextual factors for unlocking, MRAAC makes EA
acceptance the only signal that can let the system leave the locked stage (i.e., L — T').
It also shows that the statefulness of MRAAC makes it simple to track the state of the
system and make adaptations based on both the current stage and the input signal.

Incorporating IA. Smarter Lock can employ behavioral biometrics based IA mechanisms
in Stages 7" and U to continuously defend against unauthorized access from social insiders.
We enable the TA mechanisms and add adaptation policies to activate them at 7" and U. If
there is a negative IA result, the system will immediately lock the device and activate EA
(i.e., T — L and U — L). Incorporating IA can help defend against knowledgeable social
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insiders: even if they know the device keeps unlocked in a trusted environment and find a
chance to access the unlocked device, IA mechanisms can still block them. However, false
IA rejections will immediately block a legitimate user, which may affect the usability. The
next use case illustrates how we use MRAAC to mitigate false rejections.

6.5.2 Guest-aware CA

Enabling TA to continuously authenticate a user can proactively defend against unautho-
rized access. However, the first use case shows the necessity of adapting IA mechanisms
to mitigate false TA results. Also, as introduced in Chapter 4, the authentication system
should adapt to temporary device sharing where a sharee should not be blocked by IA.
Thus, in this use case, we use MRAAC to implement a guest-aware CA system covering the
following four aspects: 1) using the current resource sensitivity to dynamically adjust the
parameters to balance false rejection and false acceptance rates; 2) incorporating access
restrictions as a reaction to biometric mismatch; 3) activating authenticators only when
the corresponding biometric traits are available; and 4) not blocking a guest user upon
biometric mismatches while restricting a guest’s access to sensitive resources.

Risk model. Figure 6.3(a) shows the configuration file of the risk model. Guest-aware CA
is supposed to handle the general risk type (i.e., general unauthorized access attacks) and
the guest risk type (i.e., authorized access from a guest user). A GuestContextProvider
detects specific actions that indicate a user change (e.g., Android’s Screen Pinning [75])
and issues the GUEST signal to enter the guest risk type. We note that guest access also
implies a change in authentication level since the user changes to a non-owner. Thus,
the guest context provider needs to issue an authentication signal DE_GUEST ahead of the
context related GUEST signal, which de-authenticates the user to a; for guest access. In
addition to the default scheme in Table 6.1, we add two DE_GUEST related transitions to the
authentication transition function authTran of the general risk type. As for the authTran
function of the guest risk type, the authentication level is fixed to a; in response to all the
signals except for TA_ACC. Because an [A acceptance implies that the user changes back
to the owner, we use it as the context signal for exiting from the guest risk type to the
general risk type.

Multi-stage model. In Figure 6.3(b), the MultiStageModelBuilder builds a five-stage
model based on the risk model: From the model, we can observe several adaptation flows: 1)
Sensitive resource access: Only a strongly authenticated user is allowed to access sensitive
resources (A21 — A22), and the system blocks a weakly authenticated user or a guest
(A1l — L, B11 — L). In addition, TA rejection or switching to a guest will trigger

146



maxAuthLvl: 2 Signals:
maxSensLvl: 2 @ EA_ACC: EA acceptance
riskTypes: [general, guest] @ EA REJ: EA rejection
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(a) Example of model configuration
file for Adaptive CA

(b) Generated multi-stage adaptation
model (self-transitions are hidden)

Figure 6.3: Model generation for Guest-aware CA. Except the locked stage L, a stage
id consists of risk type (A: general, B: guest), authentication level, and sensitivity level.
E.g., B11 represents guest, weakly authenticated, and low sensitivity. Stages with different
colors adopt different adaptation schemes.

EA during the access (A22 — L). 2) IA rejection: to mitigate false IA rejection, All
acts as a buffer for further verifying the user’s identity (A21 — A11l) and only restricting
access to sensitive resources instead of a direct lockout. If IA in A1l accepts the user, the
system automatically addresses the previous false reject (A11 — A21). 3) Guest access:
guest access context produces two signals DE_GUEST and GUEST, and results in two-hop
adaptation flows: A21 — A1l — B11 and A1l — A1l — B11. The system downgrades
the authentication level in the first hop to prevent a guest from accessing sensitive resources
(i.e., A22 — L). In the second hop, the system adapts to the guest risk type. When
the guest finishes using the device, the current user changes back to the owner, which is
captured by a positive IA result (B11 — All).
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Figure 6.4: Demo: MRAAC Client Camera Roll

Adaptation. Assume that gait and touch authenticators are available. Given the low
power consumption of touch-based A [92], we activate it for all stages except for L. The
default adaptation policy is expressed as a tuple (TOUCH_IA, start, default), which
means activating the touch authenticator with the default parameters. For the guest
stage, we still need the touch authenticator to track the user’s identity to determine when
to exit from the guest stage. For higher-risk stages (i.e., A11 and A22), we additionally
adopt the gait authenticator, which is activated when the user is on foot. We set up
an OnFootContextProvider (based on the Google Activity Recognition API) to provide
the context signal ON_FOOT. The conditional adaptation policy is ON_FOOT — (GAIT_IA,
start, default). We adopt a sliding-window strategy (see § 2.4.1) for result aggregation:
If m out of n instances are accepted as the owner’s, the authenticator will accept the current
user as the owner. An example policy is (AUTH_AGG, tune, "--reset --m=3 --n=5"),
which means resetting the sliding window and set m = 3,n = 5. As for access control
adaptation, the device user can customize an allowlist or a blocklist for the guest stage to
determine what can or cannot be accessed by a guest user.

Demonstrative example. MRAAC Service is supposed to be a system-level service that
enables Guest-aware CA for the device authentication systems. We add all authenticators
and context detectors and load the risk model and the adaptation schemes to initialize
MRAAC Service. To show how it works with third-party apps with MRAAC Client, we
modified an open-source photo gallery app, Camera Roll [9%] (see Figure 6.4). Our goal is
to hide the file operation buttons, delete and edit at the guest risk type. Most changes were
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made to the app’s activity classes. ItemActivity provides a single photo view with file
operation buttons. Client app developers only need to import the MRAAC Client library
and make activities inherit from SecureActivity. Internally, it automatically starts Client
Service to connect to MRAAC Service, sends A results and receives the stage updates. In
ItemActivity, we overrode onStageChanged () and set the visibility of target buttons to
View.GONE at the guest risk type. In the onCreate method of the main activity, we added
acquireRiskType () to pull the current risk type for initialization.

6.5.3 Corporate App for BYOD

Companies adopt BYOD policies to authorize employees to use their own devices for work
purposes. FEmployees need to use a corporate app to access corporate resources. It is
essential to deploy an app-wide authentication solution to secure sensitive data. In ad-
dition to EA for login, corporate apps and services also need continuous authentication
to determine when to de-authenticate a user upon suspect unauthorized access during a
session. Besides, as discussed in § 6.2.1, existing [A frameworks are insufficient when it
comes to a complicated adaptation model: the authentication solution should adopt dif-
ferent strategies according to whether a user is accessing the app onsite or offsite: if the
user is accessing the app from the company, which is considered secure, it is unnecessary
to adopt heavy more stringent IA mechanisms; otherwise, if the user is offsite, stricter [A
is required, and more restrictions are imposed on access to corporate resources. For this
use case, we use the MRAAC Integration library to enable self-contained MRAAC services
and demonstrate it with FairEmail, a popular open-source e-mail client [15].

Risk model. Figure 6.5(a) shows the risk model for the BYOD use case. We adopt
the capped authentication transition function (see Table 6.1) for the offsite risk type — a
positive TA result cannot raise a low authentication level to the maximum. It ensures that
a weakly authenticated user must be explicitly authenticated to access sensitive resources.
At the same time, the user can still access non-sensitive resources in the app. We adopt
a location-based context provider OnsiteContextProvider to determine if the device is
in the company or not. It generates two context signals, ONSITE and OFFSITE, to switch
between the two risk types.

Multi-stage model. Figure 6.5(a) shows the multi-stage model generated from the above
risk model. We can see that most stage transitions are identical between the two risk
types except that it is impossible to move from C11 back to C'21 because of the capped
authentication function. The other parts are similar to the general risk type of the Guest-
aware CA use case.
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Figure 6.5: Model generation for BYOD corporate app. C': offsite, D: onsite. Stages with
different colors adopt different adaptation schemes.

Adaptation. Authentication adaptation involves two aspects: 1) Activation. Given that
the onsite context is secure, we only need to activate the touch-based authenticator. As
the offsite context implies a higher risk of unauthorized access and a user’s mobility, we
additionally activate the gait-based authenticator using the same conditional adaptation
policy in the Guest-aware CA use case. 2) Aggregation. Since the sliding-window strategy
helps balance false rejection rate and false acceptance rate, we adopt a larger window for
the onsite risk type reduce false rejections and a smaller window for the offsite risk type for
a low false acceptance rate. Moreover, we can further adapt the aggregation strategy to
each stage within a risk type. The access control adaptation scheme for the offsite risk type
is mainly about adjusting the sensitivity level of specified resources based on the current
stage. For example, it is considered non-sensitive to use a corporate e-mail address to send
e-mails in the company. However, it becomes sensitive for the offsite scenario because of
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Figure 6.6: Demo: MRAAC Integrated FairEmail

possible imposter attacks. Thus, we can raise its sensitivity level to ¢y to require a high
authentication level.

MRAAC Integrated FairEmail [18]. We implemented the BYOD use case on FairEmail
using the MRAAC Integration library. As introduced in § 6.4.3, we created the four main
services to inherit from the base services. In the adaptation service, we loaded the con-
figuration file of the risk model and set up adaptation schemes for all stages. All the
context providers and the authenticators (together with the aggregation method) should
be registered in the context and authentication services, respectively. The access con-
trol service requires a resource sensitivity map for each stage so that the service can up-
date the sensitivity accordingly. Similar to the MRAAC Client library, we extended the
base activity from SecureActivity to enable MRAAC. The difference is that we added
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reportResourceName () to the callbacks related to resource changes so that the access
control service can receive the current resource. Developers can also report the current
file, document, or data and assign a sensitivity level. For example, the e-mail app can
report the details (e.g., tag, sender) of the current message. Then, e-mails from specific
senders can be assigned with a higher sensitivity level. With the above process, we inte-
grate MRAAC into the FairEmail app. Figure 6.6 shows how we enabled in-app access
control of FairEmail. As described in the access control adaptation scheme, we adjusted
the sensitivity level of the compose activity as high for the offsite scenario. As shown in
the figure, a weakly authenticated user can view the inbox list. However, if the user wants
to compose a new e-mail, they need to provide their fingerprint to proceed.

6.6 Evaluation

6.6.1 Evaluation Setup

Devices. To show the compatibility of MRAAC, we used three different Android smart-
phones for performance evaluation to cover both old and recent hardware and software: 1)
Google Pixel (2016, CPU: 2*2.15GHz + 2 *1.6GHz, RAM: 4GB, Android 9.0), 2) Samsung
S8 (2017, CPU: 4*2.3GHz + 4*1.7GHz, RAM: 4GB, Android 7.0), 3) Google Pixel 3 (2018,
CPU: 4*2.5GHz + 4*1.6GHz, RAM: 4GB, Android 12).

Performance metrics. For general performance evaluation, we measured the CPU time
of critical operations and the memory overhead in terms of heap size. We also measured
the inter-service communication latency to evaluate how fast the adaptation service can
react to a signal. In addition, we evaluated the battery consumption of MRAAC.

Configurations. Our evaluation covered the guest-aware CA and corporate app use
cases in § 6.5. We evaluated the performance of the MRAAC Service integrated in the
FairEmail app and evaluated the MRAAC Client using the demo Camera Roll app. Au-
thenticators: We used touch- and gait-based IA mechanisms since they rely on common
sensors (i.e., touchscreen, accelerometer, gyroscope) available on most smartphones and
are related to common activities (i.e., swiping, walking). The touch-based IA adopts the
Touchalytics [52] algorithm and conducts classification over each touch event. The gait-
based TA adopts a deep neural network based model [196] and conducts authentication
every five seconds (the sampling rate of the motion sensors is 50Hz). For result aggre-
gation, we aligned the results from two authenticators in chronological order and applied
a sliding window for decision making. Context detectors: We adopted a threshold-based
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inter-service inter-process

devices|auth. context (ms)|adaptation (ms)| pull (ms) [broadcast (ms)[IA update (ms)

Pixel |1.15 (

)
1)[ 1.23(0.53) | 10.20 (8.74) [2.17 (1.02)] 9.74 (5.09) | 2.18 (0.88)
) 0.40 (0.12) | 5.04 (1.45) |1.61 (0.64)] 7.32 (3.65) | 1.69 (0.75)

(
0
S8 10.71 (0.
0

Pixel 3[0.50 (0.15)] 0.56 (0.14) | 2.70 (0.66) |0.58 (0.09)] 4.30 (0.73) | 1.53 (0.25)

Table 6.2: Mean latency (standard dev. in parentheses) of inter-service and inter-process
communication.

OnFootService to tell if the user is walking. It issues a context signal every 15 seconds.
The ON_FOOT_ENTER signal activates the gait-based IA while ON_FOOT _EXIT triggers the de-
activation. We deployed a location context provider for the BYOD use case to detect if
the user is onsite. The location update frequency was once per 15 seconds. For the Guest-
aware CA use case, we manually triggered the GUEST signal to measure the client-server
communication latency.

6.6.2 Development Overhead

To show that MRAAC provides a rapid development of adaptive authentication, we mea-
sured the development overhead of MRAAC Service and Client in term of lines of code
(LOC) for the modified FairEmail and Camera Roll apps. All code changes are in Java.
For FairEmail, we count the LOC of four main services of MRAAC Service: 1) Adaptation
service: 25, 2) Authentication service: 51, 3) Access control service: 33, 4) Context service:
32. We add 22 lines in the base activity of FairEmail to control the four services and enable
in-app access control. To bind an existing authenticator or context detector to MRAAC,
developers need to implement an authentication provider or context provider. The LOC
of the provider for the gait authenticator is 24, and the LOC of the provider for the onsite
context detector is 30. For Camera Roll, which only enables the MRAAC Client, there are
only 15 lines added to receive the risk changes and adapt the Ul components.

6.6.3 Performance Evaluation Results
CPU overhead. The critical operations of MRAAC are related to the adaptation process.

Thus, we instrumented the adaptation service to measure the CPU time of the following
aspects and repeat ten times to calculate the average:
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1. Model construction overhead: The adaptation service first needs to build the
multi-stage model from the configuration file for initialization, which is a one-time
operation. The results show that the average CPU time was about 35.0ms (std:
0.3ms) for Google Pixel 3, while Google Pixel needed 111.9ms (std: 6.4ms).

2. Low-level adaptation overhead: We measured the CPU time of the adaptation
service processing a low-level adaptation, which was using the ON_FOOT_ENTER signal
to activate the gait authenticator. Most cases were below 1ms for Google Pixel 3 and
Samsung S8. Even for Google Pixel, the adaptation overhead was only 1.6ms (std:
0.1 ms), which is negligible.

3. Stage transition overhead. We tested with the stage transition C21 — D21 trig-
gered by the ONSITE context signal in the BYOD use case, which involves enforcing
three default adaptation policies (i.e., low-level adaptation): de-activating the gait
authenticator, activating the touch authenticator, and adjusting the sliding window
for aggregation. The results show that the CPU time of a stage transition was about
3.3ms (std: 0.1ms) for Google Pixel 3 and about 8.6ms (std: 0.8ms) for Google Pixel.
Given that all stage transitions were pre-computed during model construction, it cost
low CPU overhead to perform stage transitions. Based on the low-level adaptation
overhead, we can see that the enforcement of default adaptation policies took the
most overhead in the stage transition.

Memory overhead. We used the Android Profiler to measure the heap size of these
services. Note that we excluded the extra memory overhead from each authenticator,
given that developers can choose different sets of authenticators and may produce very
different results. Specifically, machine learning models and buffered sensor data may take
a significant amount of memory space. The results show that MRAAC Service introduced
22kB memory overhead and MRAAC Client introduced only 2kB memory overhead. For
comparison, the motion data buffer (250 samples with six double variables for each sample)
used by the gait authenticator was 12kB.

Latency analysis. Authenticators and context detectors, as services, need to communi-
cate with the authentication service or the context service to reach the adaptation service.
MRAAC adopts an event bus for all signal exchanges among internal services. We mea-
sured the following inter-service latency types and repeated each experiment 100 times:

1. Authentication latency: the elapsed time from when an authenticator sends an
authentication score to when the adaptation service receives the signal.
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2. Context latency: the elapsed time from when a context detector sends a context
signal to when the adaptation service receives the signal.

3. Adaptation latency: the total elapsed time from when a context detector generates
a context signal to when the target authenticator receives the adaptation signal (i.e.,
context detector — context service — adaptation service — authentication service
— authenticator).

Table 6.2 shows that both the authentication latency and the context latency were only
around 1ms for all three phone models. For newer phones like Google Pixel 3, they were
always below 1ms. The adaptation latency was longer since it involves more hops and
adaptation policy processing. Nevertheless, even for Google Pixel, the average adaptation
latency was around 10ms, which means the authenticator can adapt to the context change
within a negligible time interval.

In the client-server structure, an MRAAC Client app needs to communicate with
MRAAC Service via the Android IPC mechanism for obtaining the risk information and
sending the client TA results. We also measured the following inter-process latency types:

1. Pull: MRAAC Client obtains the current risk information from MRAAC Service via
Android Binder.

2. Broadcast: MRAAC Service broadcasts the stage updates to all MRAAC Client
apps.

3. TA update: MRAAC Client sends its client IA results to MRAAC Service via
Android Binder.

Table 6.2 shows that the pull operation and the TA update had very short latency given
that they both rely on Android Binder. The broadcast latency was acceptable given that
in 95% of the experiments, the client app received the stage update from MRAAC Service
within 20ms on the Google Pixel phone.

Battery consumption. We used the Battery Historian [58] to measure the battery con-
sumption of the adaptation process of MRAAC Service on Google Pixel 3. We made the
context detectors and the gait authenticator run at a fixed rate. We tested the following
two settings and measured one-hour battery consumption five times for each setting: 1)
Enabling adaptation. MRAAC was forced to perform one high-level adaptation (i.e., pro-
cessing the ON_SITE and OFF_SITE signals) and one low-level adaptation (i.e., processing
the ON_FOOT_ENTER and the ON_FOOT_EXIT signals) every 15 seconds (i.e., the maximum
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adaptation frequency). However, the gait authenticator was set to ignore the adaptation
outcome and keep running. 2) Disabling adaptation. MRAAC did not process any adap-
tations. From the result, the average hourly consumption of the first setting was 2.95%
and the second setting was 2.92%. It shows that the adaptation process introduced very
low battery consumption to the device.

6.6.4 Use Case Evaluation

We conducted a trace-based evaluation based on the BYOD use case to show how MRAAC
helps defend against unauthorized access with reducing false rejections. We used real-
world sensor data to generate simulation traces and fed them into the MRAAC-integrated
FairEmail app running on Google Pixel 3 in real-time so that we can simulate unautho-
rized access and daily device usage events and log the adaptations, stage transitions, and
authentication results of MRAAC. As introduced in § 6.5.2, the multi-stage design enables
us to implement an adaptive sliding window that adopts different (m,n) pairs based on
the current stage. For simulation settings, we chose the majority vote as the final decision
(m = [n/2]) and selected three different n’s: 5,9,11. A larger n targets a lower false
rejection rate at the cost of longer reaction time and higher false acceptance rate, which is
suitable for lower-risk stages. Thus, for onsite stages, we set n = 11 for D21 and n = 9 for
D11, D22; for offsite stages, we set n =9 for C21 and n = 5 for C11,C22 (note: given the
high risk of C'11 and C'22; we chose a small n to ensure low reaction time.) In addition to
the adaptive sliding window, we adopted the touch authenticator for all stages except the
locked stage and adopted the gait authenticator only at C'11, C21, C22.

For the simulation task, we randomly selected 10 users from the HMOG dataset [159],
which includes motion sensor data and touch data of reading activities on a smartphone
while walking or sitting. For each user, we used six sessions of data to train the authenti-
cator models and used another two sessions (one “walking + reading” and one “sitting +
reading” ) for simulation. We replaced raw sensor data with the HMOG data and matched
the timestamp to real-world time. Since HMOG did not provide location data and app
access data, we randomly generated location switch events (switching between onsite and
offsite) and app switch events (switching between sensitive and non-sensitive resources).
The interval between two switch events followed exponential distributions. We set the
average intervals as one and two minutes for location switch events and app switch events,

respectively. We chose short intervals to trigger more adaptations to test the robustness
of MRAAC.

Attack detection experiments. In the first set of experiments, we chose one user as
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Figure 6.7: The per-user raw false rejection numbers of authenticators and the EA numbers
of baseline methods and MRAAC.

the device owner and all the other users as attackers and repeated it for all users. We
ensured the attackers’ data was not used in the negative training data of the owner user.
An attacker is supposed to access the sensitive resources under the offsite context. We
measured how long the adaptive authentication system took to lock out the attacker. We
study two locking durations: 1) ¢ is the duration between the attacker picking up the
device and the device locking out the attacker. 2) ¢; is the duration between the attacker
performing the first touch event and the device locking out the attacker. We study ¢;
separately since the attacker might not operate on the device immediately after picking
up the device. Among 90 attack events, MRAAC failed to detect only one attack when
both the gait-based and touch-based authenticators falsely accepted the attacker. The
average t, was 33.2s (95th percentile = 60.6s). The average ¢, was 11.0s (95th percentile
= 36.0s), which implies that attackers did not have much time to launch an active attack
before being blocked. Other biometrics based IA mechanisms may be able to detect an
attack even faster. Importantlyy, MRAAC is oblivious to the type of mechanism being
used. Of course, without the use of an IA mechanism, the attack would not get detected at
all. In summary, with MRAAC managing the authentication adaptation and performing
multi-modal authentication, the authentication system can efficiently detect unauthorized
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access.

Usability experiments. Another adaptation goal is to reduce unnecessary detection and
false TA rejection, which may interrupt the user and activate EA. In the second set of
experiments, we ran the complete trace of each user (the length of each trace was 10-15
minutes). The baseline methods for comparison are adopting two constant-size sliding win-
dows, (3, 5) and (6, 11), which are the smallest and the largest window sizes of the adaptive
sliding window, respectively. We assume the user immediately passes EA and continues
using the device if the system triggers EA. MRAAC performed 361 stage transitions for
all ten users without any undefined transitions. EA was triggered 15 times in total: 12
cases occurred at the access to sensitive resources and 11 cases occurred at offsite (eight
common cases when both conditions hold). Besides, no EA was triggered for four out of
the ten users. Figure 6.7 compares the raw authentication results of the gait and touch
authenticators as well as two baseline methods to the aggregated results using the adaptive
sliding window strategy enabled by MRAAC. The result shows that individual authenti-
cators were prone to make false rejections due to their low model accuracy. Note that the
gait authenticator produced fewer false rejection decisions because the user was not always
walking. A sliding window with larger window size (n = 11) can help reduce the false
rejections of individual authenticators. However, MRAAC made the fewest false rejections
among all methods for nine out of ten users. Only for user 998757, MRAAC activated
EA once while (6, 11)-SW did not activate any EA. It was triggered when MRAAC was
adopting a small window size at a high risk stage. We also note that the performance of
MRAAC was bounded by the performance of individual authenticators. Nevertheless, we
can see significant performance gain brought by the multi-stage design of MRAAC. Then,
we measured the activation times of the gait-based authenticators. Due to the adaptation
mechanism, the gait authenticator was only active for 33.7 minutes out of 122 minutes for
all experiments. The above simulation results have shown that MRAAC can help schedule
authenticators to reduce unnecessary detection and false rejection rate.

6.7 Discussion

Client-server communications. To support MDM/EMM solutions, MRAAC proposes
a client-server structure, which involves communications between the client app and the
MRAAC service. Potential attacks may happen during the communication. One the one
hand, the stage information broadcast to a client app may include or imply sensitive in-
formation (e.g., a user’s location). Thus, the MRAAC service can only send digested or
coarse-grained risk information that is essential to the client app. The client app should
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also declare the required permissions of sensitive risk information. On the other hand,
the client app can send fake authentication results to MRAAC, which may lead to im-
personation attacks (fake IA acceptance) and denial of service attacks (fake TA rejection).
Thus, MRAAC only allows verified and trusted client apps to send authentication results
(see § 6.4.2) to avoid these attacks.

Accommodation of existing adaptive mechanisms. We propose MRAAC as a gen-
eral adaptive authentication framework that is compatible with existing adaptive systems.
Most existing adaptive authentication mechanisms [70,112,1417] can be accommodated and
abstracted as conditional policies. For example, CASA and PRISM use machine learning
techniques to learn context models from sensor data, and map the model output to a
certain adaptation scheme that (de-)activates an authenticator or changes its parameters.
Each model is a context provider and provides a signal for stage transition or an adaptation
policy in MRAAC.

Modeling and policy making. MRAAC is primarily provided for developers to design
a multi-stage adaptive authentication system. Developers are responsible for designing
use cases and using MRAAC to build the multi-stage model for their authentication sys-
tem. However, end users may have their own preferences and requirements of security and
usability and may want to configure the adaptive authentication system. Existing stud-
ies [31,51] have investigated how to enable users to customize authentication mechanisms.
Thus, it should be possible for end users to configure some components, such as authen-
ticators and context providers (e.g., setting up a geofence for the trusted place [31]). End
users should also be able to determine what use cases to enable, but cannot modify the
multi-stage model to change the adaptation flow of a certain use case. A possible avenue
is to implement a usable configurable adaptive authentication system for end users based

on the MRAAC framework.

For deployment, all stages except the locked stage are transparent to end users, i.e.,
stage transitions and adaptations are performed automatically and internally. End users
may perceive the existence of MRAAC only when EA is activated. Thus, the complexity
of a multi-stage model is not a direct factor affecting end users’ normal device usage.

Usability study. Our simulation used traces generated from a real-world dataset to
evaluate the usability of MRAAC in terms of the number of EA triggered. Existing stud-
ies [93] have covered the usability of TA mechanisms and shown that users are concerned
with interrupt-authenticates (i.e., immediate device lock with EA). According to our ex-
periment results, we can observe that MRAAC can significantly reduce the times of EA
compared to individual IA mechanisms. However, performing a user study to collect user
perceptions and feedback about MRAAC is future work.
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6.8 Conclusion

In this chapter, we proposed a multi-stage risk-aware adaptive authentication and access
control framework, MRAAC. The multi-stage model hierarchically organizes multiple adap-
tation flows driven by various contextual factors and authentication results. This design
reduces the conflicts between different adaptation policies and avoid potentially insecure
adaptations like using weak contextual factors to unlock a locked device. It supports pro-
gressive and complex adaptation workflows to handle different scenarios. The MRAAC
framework helps developers to rapidly build multi-stage adaptation models based on their
security and usability requirements. MRAAC provides two libraries to enable adaptive
authentication and make third-party apps implement in-app control with risk awareness,
respectively. We presented three use cases that adopt multi-stage adaptation models to
address the practical problems. Based on the use cases, we extended a gallery app and an
E-mail client app to show the extensibility of MRAAC. Extensive evaluation has shown
the effectiveness of MRAAC in balancing security and usability of authentication systems
with low performance overhead.
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Chapter 7

Conclusion

In this chapter, we conclude the thesis with summarizing the contributions and providing
possible future avenues.

7.1 Summary

Our main research objective was to investigate the adaptations of user authentication
systems on mobile devices to various context changes, involving why to adapt, what to
adapt, and how to adapt.

Chapter 3 investigated smartphone loss prevention solutions and addressed Objective
1, which can be classified as a why-to-adapt problem. A potential device loss is a reason
for locking the device and activating explicit authentication while a user’s absence from
the device is the context of a potential device loss. We proposed Chaperone, an active
acoustic sensing based context sensing technique to obtain the user’s proximity and activ-
ity. It exploited the acoustic signals reflected by a user’s body to measure the distance
between the user and the device and determine the user’s motion state. The design of
Chaperone considered the impact of various environmental factors, such as high frequency
noise, nearby people, and obstacles, on the detection accuracy. Our extensive real-world
experiments showed the effectiveness and robustness of Chaperone in detecting a user’s
departure and absence. In addition to automatic locking, we also investigated another
reaction to a potential device loss, which is alerting the user to prevent device loss. A
small-scale user study has shown that Chaperone was able to effectively alert a user before
leaving the premises.

161



Chapter 4 investigated temporary device sharing and addressed Objective 2, which
involves both why-to-adapt and what-to-adapt. Thus, the why-to-adapt problem is about
determining the contextual factors that imply device sharing, while the what-to-adapt
problem is about adjusting the authentication and access control strategies to allow a
sharee to access non-sensitive resources without being blocked. To address these problems,
we proposed device sharing awareness (DSA) that used handover gesture detection and
owner detection based on behavioral biometrics to automatically handle a device sharing
event. Considering the device owner’s forgetfulness or the trust implications of device
sharing, our DSA solution enabled an implicit sharing loop with little to no input from
the device owner. As for the outcome of a detected device sharing event, DSA enabled
app-level access control to grant a sharee access to non-sensitive resources while hiding
sensitive resources. In addition, the design of DSA enabled the processing of possible
failures of the sharing detection. The results of handover detection evaluation showed that
our handover detection solution could accurately capture device sharing across different
devices and users, and distinguish sharing gestures from other types of hand movements.
Our user study showed that DSA could automatically process the device sharing events, and
its exception procession mechanism could mitigate possible exposure of sensitive resources
caused by false handover detection or owner detection.

Chapter 5 investigated multi-user A for shared mobile devices and addressed Objective
3, which is mainly a what-to-adapt problem. The problem involves the changes in the
algorithmic level and the systematic level of an implicit authentication system. At the
algorithmic level, we addressed the following three problems: 1) extending single-user
IA to achieve real-time multi-user identification while rejecting attackers, 2) adopting the
Dempster-Shafer theory to fusing multiple modalities with different uncertainties for better
identification accuracy, 3) applying automatic data segmentation and labeling to update
IA models with new incoming data and users. At the systematic level, we proposed the
SHRIMPS framework to provide the architecture of a multi-user, multi-modal TA system
for facilitating the above solutions. SHRIMPS also provided an evaluation framework to
help TA researchers to rapidly design evaluation tasks and compare different multi-user
IA schemes. The results of the evaluation on four public datasets have shown that our
proposed multi-user TA solution with Dempster-Shafer theory based score fusion methods
effectively detected user switches in the middle of a session and reduced false detection
rate compared to single-modality methods and other score fusion methods.

Chapter 6 proposed a general adaptive authentication framework and address Objec-
tive 4, which is a how-to-adapt problem. We proposed the multi-stage adaptation model
to organize adaptations in a hierarchical structure to fulfill the security and usability re-
quirements of various scenarios. The multi-stage model helped 1) reduce conflicts between
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policies, 2) avoid insecure adaptations like using contextual factors for unlocking, 3) en-
able progressive adaptation workflows based on the feedback of the previous adaptation.
We designed MRAAC, a multi-stage risk-aware adaptive authentication and access con-
trol framework, to help developers automatically generate multi-stage models and develop
adaptive authentication systems. We presented three use cases to show the extensibility of
MRAAC, and demonstrated how to enable MRAAC on two open-source apps to address
the practical adaptation problems at low development and performance overheads.

7.2 Future Work

This section lists the future avenues for the work in each chapter.

Chapter 3 is mainly about context sensing techniques for detecting a user’s proximity
and movements. Chaperone is based on active acoustic sensing, which can provide accurate
distance estimation and reliable motion detection without the help of external hardware.
However, according to our user study, people still have concerns with additional power
consumption brought by acoustic sensing. The current solution adopted by Chaperone is
to use the trigger module to avoid sensing at specific locations or situations where the de-
vice is with the owner. Possible ways to improve power consumption include 1) designing
an adaptive sensing mechanism to balance the sensing frequency and detection accuracy
of Chaperone, and 2) introducing other contextual factors to the trigger module. Besides,
acoustic sensing can be restricted by some physical constraints that completely block the
signal transmission (e.g., the device in a bag). To address this problem, Chaperone should
work with other sensing techniques to cover more scenarios. For example, we can estimate

the coarse-grained user-device distance based on the strength (e.g., RSSI [193]) of the
signal received by an additional Bluetooth-enabled device (e.g., smartwatch) when Chap-
erone fails to work. Also, adopting continuous authentication techniques [122] enables

smartphones to block non-owner’s access to a lost device. However, a follow-up problem is
how to coordinate these techniques with Chaperone to balance power consumption, false
positives, and false negatives. In addition, we will perform user studies as future work to
evaluate the acceptability of Chaperone from the overhead perspective, including power
consumption in real-world device usage and users’ perception.

Chapter 4 involves the context sensing technique for handover gesture detection and
access control for device sharing. We acknowledge that there are other implicit sharing
gestures through which a device owner can pass the device to a sharee. Thus, extending
sharing detection with other gestures is a possible avenue. Nevertheless, the implicit sharing
loop proposed by DSA is designed to accommodate different gesture detection methods.
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For the evaluation of DSA, we conducted a user study to ask participants to perform a
series device sharing tasks, which may not cover the real-world device sharing practices.
In the future, we plan to conduct a field study to capture real-world device sharing events
and collect users’ feedback about DSA.

Chapter 5 proposed multi-user, multi-modal TA. Our SHRIMPS framework provides
a general architecture of a multi-user A system and an evaluation environment to test
different schemes. In the future, we can use SHRIMPS to extend more existing single-user
IA schemes for multi-user scenarios and test their performance. As for the fusion of different
modalities, we used the Dempster-Shafer theory based methods with AUC and EER for
uncertainty measurements. For future work, we can design more complicated uncertainty
functions with more possible factors that may affect the uncertainty of a modality (e.g.,
temporal factors, training data amount) Another promising avenue is implementing the
multi-user, multi-modal IA system on real mobile devices and incorporating it into existing
multi-user systems to handle automatic logout. Due to the COVID-19 pandemic, we chose
to use existing public datasets for evaluation rather than collecting new datasets. However,
only the HMOG dataset satisfied our requirements. For the others, we had to fuse multiple
datasets to provide sufficient multi-modal data. We plan to collect a multi-user, multi-
modal dataset that contains cross-session behavioral data for each user for future work.

Chapter 6 focused on the organization of authentication and access control adaptions.
We proposed the multi-stage adaptation model where each stage represents a certain risk
type, authentication level, and sensitivity level. Accordingly, we can regulate the high-
level adaptations (i.e., stage transitions) by comparing two connected stages such that a
higher-risk stage will require stricter authentication. Based on this idea, a potential avenue
is to automatically determine the adaptation policies within each stage, that is, which au-
thentication mechanism to activate and what parameters to adopt. It requires quantifying
the performance of authentication mechanisms to determine their strictness and usability
from the perspectives of accuracy, availability, power consumption, etc. Since we designed
MRAAC for various stakeholders to enable adaptive authentication on their apps and so-
lutions, another possible avenue is to collect their feedback about using MRAAC. Also, a
user study for testing MRAAC-enabled apps will be our future work since it can help us
understand how MRAAC improves the usability of adaptive authentication in practice.

7.3 Last Word

This thesis investigated adaptive authentication on mobile devices. Due to the COVID-19
pandemic, conducting user studies and human participant experiments has been signifi-
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cantly restricted. Thus, we had to adapt our research methodology and direction accord-
ingly. We focused on designing general adaptive authentication frameworks and exempli-
fying them with detailed use cases. For evaluation, we used existing public datasets and
performed trace-based experiments to evaluate our proposed frameworks in a reproducible
way.

After having addressed our research objectives, we can recommend a general workflow
for developing an adaptive authentication solution to a specific scenario: 1) characteriz-
ing the risk of the target scenario with contextual factors and developing context sensing
techniques to capture these factors, 2) analyzing the security and usability requirements
of the target scenario and deciding how to adapt the authentication system accordingly,
3) handling exceptions of possible false detection of context sensing techniques or im-
plicit authentication. This thesis also proposed several novel context sensing techniques
and adaptive authentication solutions and frameworks for various stakeholders, including
researchers, app developers, MDM/EMM developers, etc. We believe that our studies,
systems, and frameworks can benefit these stakeholders to develop their own adaptive
authentication solutions.
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Appendix A

Multi-user IA Complementary
Results

A.1 Q Selection for Kalman Filter

In the first use case in § 5.6, we adopt the Kalman Filter settings from CORMORANT [71].
The Kalman filter assumes there is Gaussian noise in the state transition, which is modeled
with a noise covariance matrix Q. CORMORANT highlighted the significant impact of
the value selection of ): A large () has a smaller confidence in the system model and
a larger confidence in the observations, which is desired by the score fusion purpose. To
ensure the Kalman filter based score fusion method is optimized, we tested several () values
and compared their accuracy values using the same settings of the first use case, where
n, = n, = 3. Fig. A.1 shows the decision-level metrics of different Q’s. In general, a large
Q@ results in a better FAR. An extremely small ) = 0.001 leads to high FAR and FIR.
However, FRR and FIR do not decrease with larger Q. To balance the three metrics, we
choose @ = 0.25 in our experiments, which has the lowest average FRR (0.05) plus FIR
(0.06) with a relatively low FAR (0.18).

A.2 Gini Coefficient for Use Case 1

The Gini Coefficient (GC) is calculated between the area between the Lorenz Curve and
the Line of Equality. For evaluating [A systems, Lorenz Curve plots percentiles of the users
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Figure A.1: Decision-level FAR, FRR, and FIR of Kalman filter based fusion methods at
different Q’s (n, = n, = 3)

on the x-axis according to error rate and plots cumulative error rate on the y-axis [11].
A point (z,y) on the curve indicates the normalized total error rate y contributed by the
bottom x users. The Line of Equality is a straight diagonal line with a slope of 1, which
represents that all users contribute to the same error rates. In Fig. A.2, we present the
Lorenz Curve and the GC of all eight methods in the first group of evaluation tasks for the
first use case. If we compare the D-S theory based fusion methods to other methods, we
can observe fewer users contribute to more errors from the figure. For FAR, it means that
the system may mis-classify a few “very successful” attackers as legitimate users. However,
it is also possible that the system rejects an attacker at a certain time during continuous
authentication. Thus, we also measure session-level metrics and detection latency to cap-
ture such situations. For FRR and FIR, the Lorenz Curve does not change as significantly
as FAR, which means the error distribution remain similar among different methods. We
can infer that score fusion strategies are effective in reducing random errors. To further
improve the accuracy and reduce systematic error, a possible avenue is to incorporate new
modalities.
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Figure A.2: Lorenz Curve and Gini Coefficient of use case 1, n, = n, = 3
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