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Abstract

In this thesis, we model the dynamics of the solar tachocline and the Earth’s molten
core using a shallow, rapidly rotating, and electrically conducting fluid on an f -plane.
We explore the effects of a strong uniform magnetic field with and without a weak free-
surface in three different physical problems. We start with large coherent vortices to
build an understanding of the local interactions between the field and vortical structures.
Magnetic field lines are expelled from the vortex cores for weaker fields and vortices are
disrupted for stronger ones, along with a generation of small scale features in the potential
vorticity. Including a weak free-surface makes the flow more compact and inhibits the
field-induced anisotropy. We then study freely-decaying turbulence using the shape of the
energy spectra and the spectral energy fluxes. Kinetic energy is sent to smaller length scales
while magnetic energy moves to larger scales for increasing field strength. In the mid to
large wavenumbers, the downscale transfer of energy is due to the Lorentz force. Including
a free-surface adds an additional downscale transfer at smaller wavenumbers, provided the
field is weak enough. Finally, we study the linear stability and nonlinear evolution of an
unstable Bickley jet. The field and free-surface are confirmed to be individually stabilizing
to the jet and the combined effects show increased stability.
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Chapter 1

Introduction

The sun provides the main source of energy to our planet [18] and it is therefore essential
to understand its dynamics to better forecast the Earth’s climate. The enclosed research
is first applicable to the study of the solar tachocline, a relatively thin region between the
sun’s radiative interior and outer convection zone [16]. This region contains very strong
shear and is of interest to many astrophysicists for having a significant role in the study
of the solar dynamo, where the dynamics of plasma acts to generate and maintain the
sun’s magnetic field [42]. The accurate modelling of the solar tachocline is thus essential
to provide the lower boundary condition for the turbulence in the sun’s outer shell, which
drives the radiative wind we receive everyday.

The second application of the following analysis concerns the Earth’s molten core. Our
planet’s magnetic field is owed to dynamo action in its (high-temperature) liquid-metal
center [27, 28, 70]. A model similar to that of the tachocline can be made for the molten core
to consist of deep heavy fluid beneath a shell of lighter fluid at the core–mantle boundary,
referred to as “the ocean of the core” [10, 11]. The Earth’s magnetic field is our only
line of defense against the incoming solar wind and understanding its dynamics is equally
important. Further, changes in the geomagnetic field can have significant repercussions
on the world’s economy and safety, for example to impede geophysical exploration and
navigation, to influence modern communication systems, and disrupt electric power [45].

Using common models from Fluid Mechanics (such as those used in oceanography) and
including a magnetic force in the equations, we can investigate and predict the motion
of electrically conducting fluids such as plasmas (ionized fluids) and liquid metals. We
call magnetohydrodynamics (MHD) the study of fluid motion interacting with a magnetic
field, such as the two fluid systems mentioned above. In addition to astrophysical plasmas
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[42] and geomagnetism [4], MHD applies to smaller length scales as well, such as confined
plasmas in the study of thermonuclear fusion [85]. Restricting ourselves to large-scale
nearly two-dimensional flows, the results of this thesis concern a planar geometry as a
local approximation to the surface of a spherical shell modelling the solar tachocline and
the ocean of the core.

In addition to an investigation of the two-dimensional magnetohydrodynamic equations
(2D-MHD), we further add the effects of a slightly moving free-surface in parallel with
magnetism. The Quasi-Geostrophic (QG) model, in which the effects of rotation and the
horizontal change in pressure dominate the momentum equation, has been very useful in
understanding large-scale oceanic and atmospheric flows [17, 78, 71, 95]. In particular,
we consider a barotropic QG model for which the physical quantities are independent of
depth. Its extension to include MHD, namely quasi-geostrophic magnetohydrodynamics
(QG-MHD), allows the study of linear waves, various types of instabilities, and nearly
two dimensional MHD turbulence with slight deviations in the free-surface. In practice, a
purely two-dimensional flow and one described by barotropic QG can be described by the
same evolution equation, provided we adjust the definition of the evolved quantity. The
potential vorticity (PV) in QG contains the sum of contributions from the ambient and
relative vorticity as well as the influence of a weak free-surface. Since our model considers
a constant value for the Coriolis frequency (an f -plane), the ambient contribution vanishes
and we are left with the relative vorticity along with the effects of small surface deformation.

In this thesis, we aim to answer two questions in the context of a QG-MHD model
on an f -plane. First, how does the evolution of a shallow conducting fluid differ, for
increasingly strong magnetic fields, with a free-surface compared to with a rigid lid? To
answer this, we revisit Weiss’ [99] classical vortex problems to build an understanding
on how vortices interact with magnetic fields and the free-surface. We then extend this
wisdom to a global picture of decaying MHD turbulence and study the distribution of
energy to provide a comprehensive comparison. Second, we wish to understand how the
stability of a Bickley jet [6] is affected by increasingly strong magnetic fields with and
without a free-surface. This discussion includes linear stability theory, as well as various
numerical simulations. These questions describe the transition from a hydrodynamic flow
to one dominated by magnetic effects with the absence and inclusion of a weak free-surface
under the QG approximation. In a simple model of electrically conducting flows, this
research therefore promises a novel perspective in the study of the solar tachocline and the
geomagnetic core and a consequent leap in our understanding of the resulting dynamics.
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1.1 Literature Review

The first theory of dynamo action was proposed by Larmor and later elaborated by Cowling
in the first third of the twentieth century [53, 19]. The combination of Maxwell’s equations
with the evolution of a fluid velocity and the consequent discovery of MHD waves (today
called Alfvén waves) came later in 1942 with the work of Hannes Alfvén [1]. A subsequent
paper suggested applications to solar physics in the study of sunspots in 1946 [2]. However,
the nonlinear and coupled evolution of the magnetic field and velocity appeared in 1950
with the works of Elsasser [28, 29]. Since then, multiple limits and configurations of these
equations have been considered, for example in the two-dimensional limit [48, 102], a
shallow-water model [35, 20, 21] and in a rotating frame [92, 103]. The QG version of these
equations [103] reduces the shallow system to two equations for the PV and the magnetic
potential, while encoding the effects of rotation and of the free-surface in the definition of
the PV. This is the version we consider in the following chapters. We now review relevant
works in the field of MHD turbulence and instabilities to prepare ourselves for the results
to come.

1.1.1 Vortices

Before diving in to the study of fully established turbulence, we shall begin by reviewing
the dynamics of coherent structures that lead to turbulent flows, such as vortices. In two-
dimensional hydrodynamics, the generation of larger scale flows is due to vortex merging, a
process that is impeded by rotation. Smaller vortices combine to generate larger ones and
the typical length scale of the flow, or the scale containing the most kinetic energy, increases
with time. In the presence of rotation (in a β-plane for example) these collections of vortices
can be described as nonlinear Rossby waves forming large scale zonal flows [77, 22].

The inclusion of magnetic effects can have drastic consequences on the dynamics. A
flow in a weak uniform field can essentially be hydrodynamic until the perturbation field
becomes significant. The resulting evolution displays dramatically different behaviours
compared to a hydrodynamic one. These include for example the suppression of the zonal
alignment in β-plane flows mentioned above [92], the suppression of large-scale eddy gen-
eration [39] and the inhibition of turbulent transport [14, 51, 38, 46, 47]. The interaction
of vortices with large scale fields is not a new topic in the literature and we will discuss
in this thesis two particular behaviours. The first is the expulsion of magnetic flux, where
vortices expel magnetic field lines from their core which reconnect and push the remaining
field lines from the core to the outside of the vortex [99]. The stretching of initially-uniform
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magnetic field lines amplifies the field until the generated small scale field has a significant
role in the evolution. The consequent dynamical regime is one where we can observe a
second phenomenon for MHD vortices, namely the disruption of vortex structures, either
in their strength or shape. [57].

1.1.2 Turbulence

While we can think of vortices as a local generation mechanism, a fully developed turbulent
flow is often characterized by an inertial range spectrum, being the shape of the spectral
energy as a function of the wavenumber in the range of scales over which dissipation is
negligible. The literature on isotropic 2D-MHD turbulence argues that it behaves more
closely to 3D hydrodynamic turbulence, where the energy is transferred from larger to
smaller length scales (a forward energy cascade) [33, 74, 68, 9]. The anticipated shape of
the total energy spectrum follows a power law, Ê(k) ∼ k−3/2 in the inertial range, following
a modification of Komolgorov’s argument by Iroshnikov (1963) [44] and Kraichnan (1965)
[48]. This behaviour differs quite strongly from that of 2D hydrodynamics which results in a
forward enstrophy (total squared vorticity) cascade, where the associated energy spectrum
has shape Ê(k) ∼ k−3 [5, 49]. However, 3D-MHD isotropic turbulence does not follow the
Iroshnikov-Kraichnan phenomenology and the energy spectrum follows a k−5/3 law, clearly
steeper than k−3/2 in 2D-MHD [7, 66].

The inclusion of a uniform background magnetic field in 2D-MHD (in the same plane
as the fluid) induces anisotropy in an initially isotropic spectrum [83]. The dynamics
transfer energy to the wavenumbers perpendicular to the field which results in a flow
tending to align with it. It was confirmed that the same anisotropy develops in 3D-MHD
[69, 60]. Matthaeus et al. (2008) [58] also found in the same regime that the magnetic
field and gradients of kinetic energy tend to align (reminiscent of a similar alignment in
hydrodynamic turbulence for velocity and vorticity).

Hydrodynamic turbulence on an f -plane with a free-surface has been discussed in detail
[72, 52, 98, 50, 75] along with a 2-layer extension [79, 80]. It was shown that the presence
of a free-surface inhibits energy from moving to scales larger than the Rossby deformation
radius, Rd. The interaction between vortices at large scales is inhibited, and the dynamics
become more compact in space. At scales smaller than Rd, the dynamics are those of
2D turbulence where vortices combine and grow to reach Rd in scale. The consequent
inclusion of magnetism has been applied to the study the ocean of the core on a β-plane
[4]. The energy was found to cascade to smaller length scales with significant anisotropy
in the energy spectrum. More intricate models, compared to the one we investigate in
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this thesis, have been used to model flow in the Earth’s core [13, 12, 100]. Recent results
however suggest that the core is dominated by QG motion, followed by a balance between
the ageostrophic Lorentz, buoyancy and Coriolis forces [3, 82].

1.1.3 Instabilities

Much can be said about turbulence and its respective limits, but it is often difficult to
analytically quantify the dynamics of such regimes. Hydrodynamic and MHD instabilities
allow us to study simple flows in detail without the chaos and randomness intrinsic to
turbulence. They present a different perspective to study physical mechanisms present
in turbulence, such as the anisotropy generated by a uniform magnetic field in Faraday
instabilities [89]. It is worth noting that magnetic fields are known to invalidate or change
many significant hydrodynamic results on the stability of shear flows. For example, the
Miles-Howard theorem [62, 40] does not apply in MHD, where stratified shear flows can
be unstable with a Richardson number larger than 1/4 [54]. Further, shear instabilities
can still exist in the absence of an inflection point in the background flow [88], as opposed
to the hydrodynamic case where it is necessary [76]. Squire’s Theorem [84] doesn’t always
hold in non-ideal MHD shear flows, where the 3D perturbation can be more unstable than
the 2D analogue [43, 41]. Finally, Howards’ semicircle theorem [40] is modified in the
presence of a magnetic field. The eigenvalues (and so the growth rates and phase speeds
of the modes) of the relevant linear stability problem are bounded in the complex plane
by a region dependent on the strength and profile of the flow and magnetic field [41].

The instabilities discussed in this thesis concern barotropic parallel shear flows and we
focus on a Bickley jet to better understand the influence of magnetism and weak free-
surface on its evolution. For a more complete reference on hydrodynamic stability, see
Drazin and Reid 2004 [24] and for hydromagnetic stability, see Chandrasekhar 1961 [15].
Barotropic jets have already been studied in the hydrodynamic regime extensively. For
example, Poulin & Flierl 2003 [73] studied a shallow-water Bickley jet in both QG and non-
QG parameter regimes and showed that the flow was stabilized by increasing a rotational
Froude number (what we call F in this thesis) and Rossby number. Jets are also well-known
structures in the magnetic context. Magnetic fields are found to have a stabilizing effect
on jets and shear flows [41, 56, 31]. Even non-uniform magnetic fields such as hyperbolic
tangent profiles have stabilising effects [8]. Stratification, as measured by the Froude
number (not equal to the rotational Froude number mentioned above), also stabilises the
flow in magnetic regimes but weak instabilities can be found at arbitrarily large Froude
number [56]. In a recent submission, Fraser et al. 2022 [31] investigated the linear stability
of a shear flow with a sinusoidal velocity profile in a parallel uniform magnetic field with
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finite kinetic and magnetic Reynolds numbers. While this flow is known to be unstable to
the Kelvin-Helmholtz instability in the hydrodynamic regime, it is also the case in ideal
MHD, where dissipation is neglected, provided that the magnetic field strength is small
enough. The authors found however that including viscosity and resistivity introduces two
new modes of instability, one of which is reminiscent of Alfvén waves and exists for any
magnetic regime provided the Prandtl number Pm < 1.

1.2 Overview

The following chapters are separated as follows. In Chapter 2, we present the physical
parameters and dimensional equations of QG-MHD [103] along with their nondimension-
alization. Conserved quantities for these equations are derived along with their respective
decay laws in the case of finite viscosity and magnetic diffusion. Then, we present a novel
contribution to the literature by deriving the spectral energy budgets of these equations
which are numerically investigated in later chapters. We then include the derivation of the
linear stability problem for a shear flow in a parallel magnetic field both only dependent on
the cross-stream variable. Finally, the second chapter is closed by an overview of the code.
The next three chapters concern the numerical study of three physical scenarios, namely
MHD vortices, decaying turbulence and unstable Bickley jets. We use three different con-
figurations of the code, one for each chapter, to focus on the relevant dynamics. Chapter 3
shows the evolution of various collections of MHD vortices in a rigid lid, and then with the
addition of the free-surface. Hydrodynamic limits are also discussed. The purpose of this
chapter lies in establishing a foundation for the physical mechanisms at play and expanding
on the work of Weiss on flux expulsion. Chapter 4 moves to a global description of freely
decaying MHD turbulence (in the sense that it is unforced in time at any scale and the
initial random fields are let to evolve on their own). The rigid lid and free-surface cases
are compared for various strengths of the magnetic field and the numerical investigation
of the spectral energy budget is presented. Chapter 5 marks the final chapter of results
by focusing on the instability of the Bickley jet. The linear stability problem is solved for
various sets of parameters and the nonlinear evolution of the jet is presented to confirm the
combined influence of magnetism and a free-surface on its stability. Finally, we conclude
in Chapter 6 with a summary of the results and future research directions.
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Chapter 2

Methods

In this chapter we include a discussion of the physical parameters, the nondimensional-
ization of the QG-MHD equations and the computation of the model invariants, namely
the energy, the cross-helicity and the mean-square magnetic potential. We also include the
derivation of the spectral energy budgets (hydrodynamic and magnetic) which we have not
found in the literature for these equations. This computation leads to a local form of the
the spectral energy fluxes which allows us to isolate and quantify the physical mechanisms
pushing energy to smaller or larger scales. Further, we include the linear stability analysis
of a shear flow aligned with a magnetic field. Finally, we outline the inner workings of the
code authored by Prof. Francis Poulin and myself.

2.1 Physical Parameters

Before diving into the model equations, we present a summary of the physical parame-
ters and their respective investigated regimes. Our model allows the variability of four
dimensionless parameters. They read,

M =
VA
U
, F =

L

Rd

=
Lf

Cg
, Re =

UL

ν
Rm =

UL

κ
(2.1)

and correspond to the ratio of the Alfvén wave speed to the typical system velocity (effective
magnetic field strength), a rotational Froude number (or an inverse Burger number) and the
kinetic and magnetic Reynolds numbers. See Table 2.1 for the definitions of all dimensional
parameters including the relevant velocities. There are two other nondimensional quantities
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that are relevant but do not appear in our equations. The aspect ratio H/L� 1 is assumed
to very small in our use of the barotropic approximation on the flow, where nothing depends
on depth. The QG approximation further requires a small Rossby number Ro = U/fL� 1
and small surface perturbations compared to the layer depth, H.

Parameter Definition

L Horizontal length scale of motion (m)
H Vertical length scale of motion (m)
U Horizontal system velocity scale (m s−1)
B Horizontal magnetic field scale (G = 10−4 kg A−1 s−2)
f Coriolis frequency (s−1)
g gravity (m s−2)
ρ density (kg m−3)
µ magnetic permeability (m kg s−2 A−2)
ν kinematic viscosity (m2 s−1)
κ magnetic diffusivity (m2 s−1)

VA = B/
√
µρ Alfvén wave speed (m s−1)

Cg =
√
gH gravity wave speed (m s−1)

Rd = Cg/f External Rossby radius of deformation (m)

Table 2.1: List of physical parameters and their definition

In the Earth’s liquid core, estimates of the relevant parameters are discussed for example
in Balk 2014 [4]. The approximate layer depth is taken as H ≈ 50 km, with a reduced
gravity of g ≈ 10−3 ms−2 providing a gravity wave speed of Cg ≈ 7 ms−1. At 30◦ latitude,
f ≈ 7 × 10−5 s−1 and the Alfvén wave speed is given by VA ≈ 0.3 ms−1. On horizontal
length scales of 400 km and flows of U = 1 ms−1 then, we find M ≈ 0.3, F ≈ 4, Ro ≈ 0.03.
Thus, small Rossby numbers are achievable and the dominance of geostrophic balance for
the liquid core is further discussed in Braginsky 1998 [10]. These scales also give a small
aspect ratio of H/L ≈ 0.125 justifying our use of the shallow approximation. A kinematic
viscosity of ν = 5×10−7 m2s−1 and a magnetic diffusivity of κ = 2 m2s−1 [11] both provide
large Reynolds numbers on the considered scales, Re ≈ 8× 1011, Rm ≈ 6× 104.

The dynamics of the tachocline are those of a stably-stratified shear flow where large
scale motions are nearly two-dimensional and slow enough that the Coriolis force has a
significant role in the evolution [42]. Tobias et al. [92] estimated a broad range of Rossby
numbers at the base of the tachocline to span between 0.1 and 1, though geostrophic
balance has been mentioned to be marginal on the sun [34]. Reynolds numbers are very
large in the tachocline, where Rm ≈ 105 − 106 while Re is even larger, providing a small
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Prandtl number Pr = Rm/Re < 1 [37, 92]. Mak et al. 2016 [56] estimated some relevant
parameters for the tachocline based on data from Gough 2007 [37]. They consider a likely
range for the Alfvén wave speed of 6 to 600 ms−1. They further take a typical global scale
velocity U of 200 ms−1 while mentioning a reasonable local scale velocity of 20 ms−1. This
range translates to M values between 0.03 and 3 for the global velocity scale and between
0.3 and 30 locally. The global and local scales of the velocity together confirm the range of
Rossby numbers mentioned above on horizontal length scales of 50,000 km (approximately
10% of the tachocline radius).

The tachocline is separated into two regions, including a lower radiative and upper
overshoot layer. Though the field strength is generally taken as being the same, the gravity
wave speed differs in each region. Following the estimates of [81] the radiative layer has
a depth of 5000 km and an associated gravity wave speed ranging from 7× 103 − 4× 104

ms−1, much larger than the Alfvén wave speed. The Coriolis frequency at 30◦ latitude
in the tachocline is f ≈ 3 × 10−6 s−1. At horizontal length scales of 50,000 km, the
corresponding value of F ranges from 3× 10−3 to 2 × 10−2. The overshoot layer however
is half as thick as the radiative layer, with gravity wave speed of 50 to 500 ms−1. There,
F ranges from about 0.3 to 3. In the lower tachocline, we have a small aspect ratio of
H/L ≈ 0.1 and an even smaller one in the overshoot layer with H/L ≈ 0.05, justifying the
shallow approximation again in either case.

Physical Region M F Ro H/L

Solar Tachocline (combined) 0.03 - 30 0.003 - 3 0.1 - 1 0.05 - 0.1
Earth’s Ocean of the Core 0.3 4 0.03 0.125

Table 2.2: Estimation of the nondimensional parameters for the Solar Tachocline (combin-
ing the ranges from both the upper and lower regions) and for the Earth’s ocean of the
core.

Table 2.2 summarizes the estimates of the nondimensional parameters mentioned above.
In our simulations, we keep a constant Prandtl number Pr = Rm/Re = 1, with Re =
Rm = 104, since considering Pr 6= 1 already introduces a large disparity between the
kinetic/magnetic dissipated scales [91, 26]. In our computation of the viscous and diffusive
energy fluxes, we want to compare the dissipated scales associated with the velocity and
magnetic field, purely differing in their intrinsic dynamics and not on the weight of their
respective Laplacians. We further consider slightly smaller Reynolds numbers in order to
keep a large enough amplitude of physical dissipation in the same analysis. We consider
four points in the relative strength of the magnetic field compared to the typical velocity
of the flow, M ∈ {0, 10−3, 10−2, 10−1}. These correspond to a hydrodynamic evolution,
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a very weak magnetic field displaying the onset of magnetic effects, a moderate magnetic
field where significant vortex disruption occurs and finally a strong field well within the
range applicable to the the tachocline and similar to the Earth’s core. These values are
chosen to explore the impact of the magnetic field with various strengths on the dynamics.
Along with above values of M , we consider the rotational Froude number F to be between
0 and 1, where F = 0 considers an infinite external Rossby radius of deformation Rd →∞
(equivalently, 2D-MHD applicable to the lower tachocline) and where F = 1 corresponds
to a flow with typical length scale equal to Rd (a free-surface with small deformations and
rotational influence) better applicable to the upper tachocline and the Earth’s ocean of the
core.

2.2 Governing Equations

The model equations in dimensional form, as derived in Zeitlin (2013) [103], are those
of barotropic QG-MHD. They describe the evolution of the PV, q and the evolution of
a magnetic streamfunction, A. To derive the model equations, one can start with the
Navier Stokes equations (with a Lorentz force and a Coriolis force) and the continuity
equation. For a dynamic magnetic field, there are two additional equations, one to evolve
the magnetic field (induction equation) and one to ensure that it is divergence-free (Gauss’
law for magnetism). To obtain the shallow version of the model, as seen in Gilman 2000
[35], assume a constant density, a small aspect ratio, and vertically integrate the equations
such that nothing depends on depth. From these to QG-MHD, assume that the Coriolis
force and the horizontal pressure gradient dominate the momentum equation (small Rossby
number) and that surface deformations are very small. The velocity and magnetic field are
both two-dimensional and divergence-free such that we can define a stream-function in each
case. The PV equation comes readily from the curl of the momentum equation and the
evolution of the field to be rewritten as an advection-diffusion problem for A. Neglecting
diffusion of the background quantities (similar to [31]), the equations in dimensional form
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read,

∂tq + u · ∇q =
1

µρ
b · ∇j + ν∇2(q − q̄)

∂tA+ u · ∇A = κ∇2(A− Ā),

q = ∇2ψ − 1

R2
d

ψ,

j = ∇2A,

u = ∇⊥ψ = ẑ ×∇ψ,
b = ∇⊥A = ẑ ×∇A.

(2.2)

Then, ψ,A, q, j,u, and b are the kinetic and magnetic streamfunctions, potential vorticty
(PV), current, 2D velocity and 2D magnetic field, respectively. Recall Table 2.1 for a
summary of the dimensional parameters. The geostrophic streamfunction ψ is proportional
to the (small amplitude) free-surface deformation η, where ψ = g

f
η [61]. In the limit of

infinite Rd, the system (2.2) reduces to standard 2D-MHD [103].

2.3 Nondimensionalizing the Equations

To reduce the number of variables we can change to alter the flow, we nondimensionalize
system (2.2) and pick the following scales to do so:

u∗ = U u,

x∗ = Lx,

t∗ =
L

U
t

ψ∗ = LU ψ

A∗ = LVAA

b∗ = VA b.

(2.3)

We absorb the factor of 1/
√
µρ into the magnetic field b, such that it has units of velocity

and the free-surface η is scaled by the mean depth H. We pick an advective time scale, as
is typically done in QG models. Then, U,L and VA are the scales of velocity, horizontal
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length scale and magnetic field. Applying the above to system (2.2), we get the following:

∂tq + u · ∇q = M2b · ∇j +
1

Re

∇2(q − q̄),

∂tA+ u · ∇A =
1

Rm

∇2(A− Ā),

u = ẑ ×∇ψ,
b = ẑ ×∇A,
q = ∇2ψ − F 2ψ,

j = ∇2A,

(2.4)

where we have the dimensionless parameters F (a rotational Froude number or an inverse
Burger number) and M (the ratio of the Alfvén wave speed to the typical system velocity),
and the kinetic and magnetic Reynolds numbers defined in (2.1). Flows with finite Rm are
also referred to as magnetically resistive flows (e.g. [31]). When the induction equation is
allowed to diffuse as it is in this thesis, the magnetic field is allowed to partially decouple
from the fluid particles compared to its frozen-in property in ideal MHD. The above system
(2.4) is the one we investigate in various limits such as the hydrodynamic case, where
M = 0, and the case of a rigid lid, when F = 0. Of course, exploration is done on non-
zero values for these system parameters. The nondimensional relationship between the
geostrophic streamfunction ψ and the free-surface deformation η now reads η = U

Cg
Fψ. It

clearly follows that when F = 0, the free-surface deformation is zero regardless of ψ.

2.4 Conserved quantities

After stating the model, we investigate its conserved quantities to better understand the
dynamics. In order to discuss and compute these quantities, the system (2.4) can be
written more conveniently as,

∂tq + J(ψ, q)−M2J(A, j) =
1

Re

∇2(q − q̄), (2.5)

∂tA+ J(ψ,A) =
1

Rm

∇2(A− Ā), (2.6)

where we denote the Jacobian J(A,B), for two quantities A and B, as

J(A,B) = ∂xA∂yB − ∂yA∂xB. (2.7)
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We will ignore diffusion of the background fields in the present analysis of conserved quan-
tities. For all cases considered in this thesis, the background magnetic streamfunction is
a linear function of the y-coordinate (for a constant uniform field) and so its Laplacian is
identically zero. The background PV is also zero, with the exception of our investigation
on the Bickley jet. In a β-plane geometry, the PV in the Jacobian term of (2.5) would
replaced by q + βy. In the conservative limit, (Re, Rm → ∞) the above system has three
conserved quantities,

E =
1

2

∫∫
D

(|u|2 + |Mb|2 + F 2ψ2) dxdy, (2.8)

H =

∫∫
D

M(u · b + F 2Aψ) dxdy, (2.9)

Φ =

∫∫
D

1

2
(MA)2 dxdy, (2.10)

namely the total energy, the cross-helicity (adjusted for non-zero F ) and the mean-square
magnetic potential for a domain, D. Conversely, in the presence of viscosity and magnetic
diffusion, we would like to know how these quantities decay in time. Theory predicts that
in the limit of F = 0 and M = 1 the energy and cross-helicity show a direct cascade, while
Φ̂(k) shows an inverse cascade [33, 74, 68]. Note that enstrophy is not conserved in the
magnetic regime M 6= 0.

2.4.1 Energy

To find an evolution equation for the energy of the system, multiply (2.5) by −ψ, add it to
(2.6) multiplied by −M2∇2A = −M2j and integrate over the entire domain. The result
reads∫∫

D

− ψ∂t(∇2ψ − F 2ψ)− ψJ(ψ, q) +M2ψJ(A,∇2A) dxdy

+

∫∫
D

−M2∇2A∂tA−M2∇2AJ(ψ,A) dxdy =

∫∫
D

− ψ

Re

∇2q − M2

Rm

j2 dxdy.

(2.11)
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We can integrate by parts1 on the first terms of each integral on the LHS of (2.11) and
commute the time derivatives with the Laplacians to find∫∫

D

(
ψ∇2∂tψ +∇ψ · ∂t∇ψ

)
dxdy =

∮
∂D

ψ (∂t∇ψ · n) dS, (2.12)∫∫
D

(
∂tA∇2A+∇A · ∂t∇A

)
dxdy =

∮
∂D

∂tA (∇A · n) dS. (2.13)

The boundary terms above read (in general, for ψ = ψ + ψ′, A = A + A′, where barred
quantities are stationary and primed quantities are perturbations)∮

∂D

ψ (∂t∇ψ · n) dS =

∮
∂D

ψ (∂t∇ψ′ · n) dS +

∮
∂D

ψ′ (∂t∇ψ′ · n) dS = 0, (2.14)∮
∂D

∂tA (∇A · n) dS =

∮
∂D

∂tA
′ (∇A · n) dS +

∮
∂D

∂tA
′ (∇A′ · n) dS = 0. (2.15)

The perturbations in the streamfunctions are assumed to be doubly periodic and so the
last contour integrals of (2.14) and (2.15) vanish. In our analysis, ψ = 0 and ∇A = (0,−1)
are constant such that the other two contour integrals vanish. Then, using (2.12) to (2.15),
and a the chain rule on the time-derivatives, we can rewrite (2.11) as∫∫

D

1

2
∂t(∇ψ · ∇ψ + F 2ψ2 +M2∇A · ∇A) dxdy − 1

2

∫∫
D

J(ψ2, q) dxdy

+

∫∫
D

M2ψJ(A, j)−M2jJ(ψ,A) dxdy = −
∫∫

D

ψ

Re

∇2q +
M2

Rm

j2 dxdy.

(2.16)

Given our considered periodicity, it can also be shown that (see Swaters 1999 [87])∫∫
D

J(ψ2, q) dxdy =

∫∫
D

∇ ·
(
qẑ ×∇(ψ2)

)
dxdy =

∮
∂D

qẑ ×∇(ψ2) · n̂ dS = 0. (2.17)

Further, the following holds for three quantities A,B,C (see Swaters 1999 [87]),∫∫
D

AJ(B,C)− CJ(A,B) dxdy = 0, (2.18)

and so the Jacobian terms in (2.16) involving the magnetic streamfunction vanish,∫∫
D

ψJ(A,∇2A)−∇2AJ(ψ,A) dxdy = 0. (2.19)

1Equivalently, use Green’s first identity.
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Physically, the cancellation of these terms shows that the change in the total energy from
the Lorentz force is compensated by the advection of the magnetic potential. Finally, to
find a positive definite form of the integrand in the viscous term of (2.16), notice that we
can integrate by parts to transfer the Laplacian from q onto the streamfunction, where q
and ψ are periodic in the x-direction and have zero Neumman boundary conditions at the
top and bottom,

− 1

Re

∫∫
D

ψ∇2qdxdy = − 1

Re

∫∫
D

q∇2ψ dxdy = − 1

Re

∫∫
D

(∇2ψ)2 − F 2ψ∇2ψ dxdy.

(2.20)

Similarly, integrate by parts on the last RHS term of (2.20) to make the integrand positive

− 1

Re

∫∫
D

ψ∇2qdxdy = − 1

Re

∫∫
D

(∇2ψ)2 + F 2(∇ψ)2 dxdy. (2.21)

Therefore, in the absence of magnetic diffusion and viscosity, energy is conserved

d

dt
E =

d

dt

1

2

∫∫
D

∇ψ · ∇ψ + F 2ψ2 +M2∇A · ∇Adxdy = 0, (2.22)

and its density is the integrand, consisting of a kinetic, a potential, and a magnetic part.
This density can be rewritten in a few ways,

dE =
1

2

(
∇ψ · ∇ψ + F 2ψ2 +M2∇A · ∇A

)
(2.23)

=
1

2

(
|u|2 + F 2ψ2 + |Mb|2

)
(2.24)

=
1

2

(
ψq +M2Aj

)
, (2.25)

consistent with the definition of the associated Hamiltonian from Zeitlin (1992) [102] or
Zeitlin and Kambe (1993) [104]. Conversely, for finite Reynolds numbers, we have found
the decay law

d

dt
E = −

∫∫
D

1

Re

(
(∇2ψ)2 + F 2(∇ψ)2

)
+
M2

Rm

j2dxdy, (2.26)

which is consistent with the energy decay noted in [9] when F = 0 and M = 1. This
statement concerns the total system energy with magnetism and a weak free-surface. In
the purely hydrodynamic case, M = 0 and so the last term in the integral of (2.26)
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vanishes. If F is also zero, the total energy is the kinetic energy which decays with
−
∫∫

D
1
Re

(∇2ψ)2 dxdy. Inspired by the work of Weiss, we discuss the case of pure in-
duction, where the velocity is fixed and where the induced changes in the magnetic field
have no effect back onto the motion. This amounts to only evolving the equation for the
magnetic streamfunction A (2.6), and setting the evolution of q (2.5) to zero. Much of
our previous computations hold, except for the inclusion of the Lorentz force term which
now has to vanish if the velocity is held fixed in time and the field is not. This prevents
us from using (2.19) and so we have an extra term on the RHS of the energy equation,
+M2

∫∫
D
jJ(ψ,A) dxdy. This term can add energy to the system when jJ(ψ,A) > 0 and

can be rewritten as +M2
∫∫

D
ju × b dxdy. Of course, there is still magnetic diffusion in

the induction case but the kinetic energy is held constant. Evolving A alone in an inviscid
advection equation clearly conserves A, but we are concerned with the total system energy.
The decay law of energy in the case of pure induction then reads

d

dt
E =

∫∫
D

M2jJ(ψ,A)− M2

Rm

j2 dxdy = M2

∫∫
D

ju× b− 1

Rm

j2 dxdy, (2.27)

where we have re-written the first term as a function of the velocity and magnetic field to
showcase that this term vanishes if u and b are parallel (or anti-parallel). Thus, energy
can be conserved in pure induction if the field and the velocity are aligned.

2.4.2 Cross-helicity

We now move on to the second conserved quantity, the cross-helicity, H. This quantity
measures the correlation or alignment between the velocity and the magnetic field. Cross-
helicity is also found to contribute to the Lorentz force, where the resulting field-generation
is referred to as the cross-helicity dynamo [101]. The characteristic features of this dynamo
include the alignment of the mean current density with the mean vorticity. Recall equations
(2.5) and (2.6). Multiply the first equation by −MA and the second by −Mq. Add and
integrate over the entire domain to find,∫∫

D

−MA∂tq −MAJ(ψ, q) +M3AJ(A,∇2A) dxdy

+

∫∫
D

−Mq∂tA−MqJ(ψ,A) dxdy =

∫∫
D

−MA

Re

∇2q − M

Rm

jq dxdy.

(2.28)

Using the same approach we used for the energy, it is straight-forward to notice that the
−MqJ(ψ,A) and −MAJ(ψ, q) terms cancel via (2.18). Similarly, the M3AJ(A,∇2A) term
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integrates to zero as did (2.17). Then, we are left with,

−
∫∫

D

MA∂tq + q∂tMAdxdy = −
∫∫

D

MA

Re

∇2q +
M

Rm

jq dxdy. (2.29)

Using q = ∇2ψ−F 2ψ, integrate by parts on the terms of (2.29) with time derivatives and
the viscous/diffusive terms2. This yields∫∫

D

∂t(M∇A · ∇ψ) + F 2M∂t(Aψ) dxdy = −(
1

Re

+
1

Rm

)

∫∫
D

Mjq dxdy. (2.30)

Re-writting for the velocity and magnetic field, and including our definition of cross-helicity,

d

dt
H =

d

dt

∫∫
D

M(u · b + F 2Aψ) dxdy = −(
1

Re

+
1

Rm

)

∫∫
D

Mjq dxdy. (2.31)

When F = 0, this is equivalent to what arises in the 2D-MHD model [9]. However, our more
general model includes an extra term due to the free-surface F 2 d

dt

∫∫
D
MAψ dxdy. This

suggests an adjusted definition of H in barotropic QG-MHD compared to 2D-MHD. This
form is rather unsurprising because the QG-MHD equations conserve integrated functions
of the magnetic potential (f(A)), and integrated functions of magnetic potential multiplied
by the QG PV (qf(A)) [103]. Returning to our equation (2.29), where the integrand in
the RHS is simply the time derivative of the product −MAq, we can show that 3

d

dt

∫∫
D

−MAq dxdy =
d

dt

∫∫
D

M(u · b + F 2Aψ) dxdy =
d

dt
H. (2.32)

2.4.3 Mean square magnetic potential

The last invariant is rather simple and concerns the integrated square of the magnetic
potential. This quantity in a sense replaces the conservation of PV from hydrodynamics
which is prevented in this context due to the Lorentz force. Multiply (2.6) by M2A and
integrate over the entire domain to find,∫∫

D

M2A∂tA+M2AJ(ψ,A) dxdy =

∫∫
D

1

Rm

M2Aj dxdy, (2.33)

2Again, equivalently use Green’s first and second identities
3Similarly, the form of cross-helicity in the shallow MHD equations [35] as investigated in [21], reads

HSMHD = −
∫∫
D
hqAdxdy =

∫∫
D
hu · b dxdy which is dependent on the layer depth, h.
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which we can rewrite as,∫∫
D

1

2
∂t(MA)2 +M2J(ψ,

1

2
A2) dxdy = − 1

Rm

∫∫
D

(M∇A)2 dxdy. (2.34)

Our velocity is divergence free to leading order and so (with the divergence theorem and
zero net flux)∫∫

D

J(ψ,
1

2
A2 dxdy =

∫∫
D

u · ∇(
1

2
A2) dxdy =

∫∫
D

∇ · 1

2
(uA2) dxdy = 0. (2.35)

Thus,

d

dt
Φ =

d

dt

∫∫
D

1

2
(MA)2 dxdy = − 1

Rm

∫∫
D

(M∇A)2 dxdy (2.36)

which is again consistent with 2D-MHD [9] and independent of the free-surface.

2.5 Spectral Energy Fluxes

From our review of the literature on 2D-MHD turbulence, we have not yet seen the compu-
tation of spectral energy fluxes in the global sense. Pouquet et al. 1978 [74] investigated this
topic restricted to triad interactions (how three particular waves interact) and Diamond
et al. 2007 [23] focused on the spectral transfers of the mean square magnetic potential
in β-plane turbulence. We include in this discussion the derivation of the spectral energy
budgets along with their respective fluxes in terms of bulk physical quantities. Our goal
with this computation is to better understand the physical mechanisms moving energy to
different length scales. We frame this discussion in the context of decaying turbulence
for a uniform background field (Chapter 4) and so the kinetic (KE), potential (PE) and
magnetic energy (ME) can be written as

EV =
1

2

∫∫
D

|u|2dxdy, (2.37)

EP =
1

2

∫∫
D

F 2ψ2dxdy, (2.38)

EM =
1

2

∫∫
D

M2|B̄ + b′|2dxdy, (2.39)

where the field has a background component, B̄ = (1, 0), and a perturbation b′ = (b′1, b
′
2).

For our study of turbulence, the analogous kinetic background quantities are zero, Ū =
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(0, 0) and Ψ̄ = 0. Thus, the total KE and PE are the same as the perturbation energies,
and the ME can be decomposed as the sum of the background ME (which is constant given
our uniform field), the perturbation energy and cross terms.

Since we numerically compute the spectral energy transfers using FFTs of the stream-
functions and their derivatives, general non-zero background Ψ̄, Ā, which are not periodic
across the boundaries, would cause computational issues. One could use cosine trans-
forms to deal with this numerically but that is beyond the scope of this thesis. Luckily,
the way in which Ā appears along with its chosen form (linear function of y), allows
us to bypass this problem for the ME. For the calculations that follow, we have that
B̄ = (1, 0) = (−∂yA, ∂xA) =⇒ Ā = −y. To derive the energy fluxes, first define the 2D
spectral energy densities in the usual fashion (where ∗ denotes complex-conjugation and
hatted quantities are in spectral or wavenumber space)

V̂ =
1

2
û · û∗

(
L

2π

)2

, P̂ =
F 2

2
ψ̂ · ψ̂∗

(
L

2π

)2

, M̂ =
M2

2
b̂ · b̂∗

(
L

2π

)2

, (2.40)

such that we can relate them to the physical energies via the discrete version of Parseval’s
Theorem,

EV (t) =
∑
kx

∑
ky

V̂ (kx, ky, t)∆kx∆ky,

EP (t) =
∑
kx

∑
ky

P̂ (kx, ky, t)∆kx∆ky,

EM(t) =
∑
kx

∑
ky

M̂(kx, ky, t)∆kx∆ky,

(2.41)

as the sum of the spectral energy density at every wavenumber k = (kx, ky) in the system,
and where ∆kx = ∆ky = 2π/L. Then, with L→∞, we get the integral forms4,

EV (t) =

∫
kx

∫
ky

V̂ (kx, ky, t)dkxdky,

EP (t) =

∫
kx

∫
ky

P̂ (kx, ky, t)dkxdky,

EM(t) =

∫
kx

∫
ky

M̂(kx, ky, t)dkxdky,

(2.42)

4The common statement of Parseval’s Theorem, where the pre-factors are already absorbed into the
spectral densities
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which are easier to deal with analytically. Now, let us make the typical assumption that
the flow is isotropic such that V̂ = V̂ (k, t), P̂ = P̂ (k, t) and M̂ = M̂(k, t), where k = |k|.
Of course, when the magnetic field is strong enough, anisotropy will occur and we expect
that the flow will tend to align in the direction of the field. In such a case, the isotropic
assumption is not appropriate and one should resort to looking at the two-dimensional
spectra. We leave this avenue of research as future work. Then, transform the integrals to
polar coordinates and find

EV (t) =

∫ 2π

0

dθ

∫ ∞
0

V̂ (k, t)kdk =

∫ ∞
0

ÊV (k, t)dk, (2.43)

EP (t) =

∫ 2π

0

dθ

∫ ∞
0

P̂ (k, t)kdk =

∫ ∞
0

ÊP (k, t)dk, (2.44)

EM(t) =

∫ 2π

0

dθ

∫ ∞
0

M̂(k, t)kdk =

∫ ∞
0

ÊM(k, t)dk, (2.45)

where the azimuthally integrated energy spectra are defined as

ÊV (k, t) = 2πkV̂ (k, t), ÊP (k, t) = 2πkP̂ (k, t), ÊM(k, t) = 2πkM̂(k, t). (2.46)

We now derive the evolution equations of ÊV (k, t) + ÊP (k, t) and ÊM(k, t). Recall the
model equations (2.4) and rewrite them decomposing A into a stationary (barred) and
perturbation (primed) part. The result reads

∂tq + u · ∇q = M2b · ∇j +
1

Re

∇2q, (2.47)

∂tA+ u · ∇(Ā+ A′) =
1

Rm

j. (2.48)

Since our considered background field is constant and uniform, Ā = −y is independent of
time and has a zero current (j̄ = ∇2Ā = 0). Then, the total current is just the perturbed
component j = j̄ + j′ = j′. The background Ā will however remain explicitly in the
advective term in the A equation above. If u = (u, v), then u · ∇Ā = −v, and we can
write5

∂tq + u · ∇q = M2b · ∇j +
1

Re

∇2q, (2.49)

∂tA+ u · ∇A′ = v +
1

Rm

j. (2.50)

5This effectively solves the issue of having to compute the FFT of Ā.

20



Take the Fourier Transform of the above equations to move from physical to spectral space6.
Then, multiply them by the complex conjugates of −ψ̂ and −ĵ respectively, to find

−ψ̂∗∂tq̂ = ψ̂∗û · ∇q −M2ψ̂∗b̂ · ∇j +
1

Re

k2ψ̂∗q̂, (2.51)

−ĵ∗∂tÂ = ĵ∗û · ∇A′ − ĵ∗v̂ +
1

Rm

ĵ∗ĵ. (2.52)

Analogously, find the conjugates of the above equations. Adding the original and conjugate
equations together make the resulting equations real and they can be written as (where <
denotes the real part)

∂t(k
2 + F 2)|ψ̂|2 = 2<

(
ψ̂û · ∇q

∗
−M2ψ̂b̂ · ∇j

∗)
− 2R−1e k2(k2 + F 2)|ψ̂|2 (2.53)

∂tM
2k2|Â|2 = 2M2<

(
ĵû · ∇A′

∗
− ĵv̂∗

)
− 2M2R−1m |ĵ|2, (2.54)

recalling that q, j are related to ψ,A in spectral space via

q̂ = −(k2 + F 2)ψ̂, ĵ = −k2Â. (2.55)

We multiplied (2.54) by M2 for the following calculations. In physical space, the veloc-
ity, vorticity and streamfunction are related by derivatives (analogously for the magnetic
quantities). However, in spectral space, these derivatives become factors of the appropriate
wavenumber. This allows us to algebraically relate the spectral fields and energies, where

2V̂

(
2π

L

)2

= |û|2 =
k2|q̂|2

(k2 + F 2)2
= k2|ψ̂|2 = 2

F 2

k2
P̂

(
2π

L

)2

,

2M̂

(
2π

L

)2

= M2|b̂|2 = M2k2|Â|2 = M2 |ĵ|2

k2
.

The left hand sides of (2.53) and (2.54) then become time-derivatives of the 2D spectral
energy densities, V̂ + P̂ , B̂ and so providing the 2D budgets7

∂t(V̂ + P̂ ) =

(
L

2π

)2

<
(
ψ̂û · ∇q

∗
−M2ψ̂b̂ · ∇j

∗)
− 2

Re

k2(V̂ + P̂ ),

∂tM̂ =

(
L

2π

)2

M2<
(
ĵû · ∇A′

∗
− ĵv̂∗

)
− 2

Rm

k2M̂.

6The remaining ˆ̄A in the time derivative will soon be replaced by the total ME, which is doubly periodic
since the background field is constant and uniform.

7In the case of forced turbulence, with say forcing f in the evolution equation for q, then the corre-

sponding spectral energy budget would have an additional term of the form −
(
L
2π

)2<(ψ̂f̂∗).
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The 1D spectral budgets for the azimuthally integrated spectra only differ from the above
by a factor of 2πk with the isotropic assumption8. Multiplying through, find the 1D fluxes
to read (where all quantities depend on k and t)

∂tÊH = Tq + TL +DH , (2.56)

∂tÊM = TA +DM , (2.57)

where we introduce the hydrodynamic energy (HE), containing both kinetic and potential
for convenience, ÊH = ÊV + ÊP , and further defining the nonlinear transfers between k
along with viscosity and diffusion as

Tq(k, t) = 2πk

(
L

2π

)2

<
(
ψ̂û · ∇q

∗)
, Advection of q, (2.58)

TL(k, t) = −2πkM2

(
L

2π

)2

<
(
ψ̂b̂ · ∇j

∗)
, Lorentz Force, (2.59)

TA(k, t) = 2πkM2

(
L

2π

)2

<
(
ĵû · ∇A′

∗
− ĵv̂∗

)
, Advection of A, (2.60)

DH(k, t) = − 2

Re

k2ÊH , Viscosity, (2.61)

DM(k, t) = − 2

Rm

k2ÊM , Magnetic Diffusion. (2.62)

We saw in deriving the evolution of the energy that the Lorentz force and the advection
of A effectively cancelled in (2.19). This suggests that both terms are describing the
same exchange of energy between ÊH and ÊM . To reinforce this idea, we will find in
computing the transfers (Chapter 4) that TL + TA conserves energy. One could show this
analytically but it is not included here. If we integrate the sum of (2.56) and (2.57) over
all wavenumbers, we get that the total energy E(t) =

∫∞
0
Ê(k, t)dk with Ê = ÊH + ÊM ,

evolves with

∂tE(t) =

∫ ∞
0

T (k, t)dk +

∫ ∞
0

D(k, t)dk, (2.63)

where T = Tq+TL+TA is the sum of all transfers due to the dynamics and D = DH+DM is
the sum of viscous and diffusive effects. In the absence of a uniform background magnetic
field, the −ĵv̂∗ term in TA vanishes. Energy must be conserved in the absence of dissipation

8Otherwise, we can simply replace 2πk by the azimuthal integral and multiplying by k.
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(when D = 0) and so
∫∞
0
T (k)dk must be zero. Since T (k) is therefore conservative, it is

customary to formulate it as a wavenumber divergence where

T (k, t) = −∂kΠ, Π(k, t) = −
∫ k

0

T (k′, t)dk′, (2.64)

and Π is referred to as the spectral energy flux [97]. The conservative property of T (k) in
terms of Π then reads Π(k →∞, t) = 0. We further define the components of the spectral
energy flux in the same way for later computations and plotting,

Πq,L,A(k, t) = −
∫ k

0

Tq,L,A(k′, t)dk′, (2.65)

corresponding to the respective transfers with the same subscript. In the simulations
considered in this thesis, the spectral transfers and associated fluxes are computed to
verify the direction of the energy cascade and quantify the contribution of each term and
its related physical process.

2.6 Linear Stability Analysis of QG-MHD

When exploring the dynamics of the QG-MHD equations (which contain 2D and QG
hydrodynamics along with 2D-MHD in their various limits), one would like to understand
how the flow evolves with time. However, the nonlinearity of the model often makes this
difficult to answer exactly. Nevertheless, using linear stability analysis (LSA), we can find
an underlying theory for particular flows, such as jets. Perturbing this state and linearizing
the resulting equations for the disturbances, we can determine what solutions grow in time,
and how quickly they do so. This allows for the prediction of the flow evolution for early
times, after which nonlinearity may dominate. We derive the linear stability problem for a
flow in the x-direction (only dependent on the cross-stream coordinate) under the influence
of a uniform parallel magnetic field.

2.6.1 Perturbation

Recall the evolution of the PV and the magnetic streamfunction from (2.5) and (2.6).
Assume that we have an exact steady solution to these equations that only depends on the
y-coordinate. We define the background fields as

ψ̄ = Ψ̄(y), Ā = Ā(y), ū = U(y) = −∂yΨ̄, b̄ = B(y) = −∂yĀ, (2.66)
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along with a background PV, q̄ = Q̄(y) = ∂yyΨ̄−F 2Ψ̄, where the flow is in the x-direction.
Next, assume that small amplitude perturbations can depend on either spatial coordinate
and time, q′(x, y, t), A′(x, y, t). If we substitute a perturbed basic state,

q = Q̄(y) + q′, A = Ā(y) + A′, (2.67)

into the governing nonlinear equations, the smallness of the perturbations allows us to
neglect the nonlinear terms. Physically, this means we neglect the advection of the per-
turbation by the pertubation but still maintain the advection of the pertrubation by the
mean state and the advection of the mean state by the perturbation.

2.6.2 Linearized Equations

Using the aforementioned decomposition, the linearized governing equation are then

∂tq
′ + J(Ψ̄, q′) + J(ψ′, Q̄)−M2J(Ā,∇2a′)−M2J(a′,∇2Ā)− 1

Re

∇2q′ = 0,

∂tA
′ + J(ψ′, Ā) + J(Ψ̄, A′)− 1

Rm

∇2A′ = 0,
(2.68)

which we can rewrite using the form of the basic state (which is independence of x),

∂tq
′ − (∂yΨ̄)(∂xq

′) + (∂xψ
′)(∂yQ̄) +M2

(
(∂yĀ)(∂x∇2A′)− (∂xA

′)(∂y∇2Ā)
)
− 1

Re

∇2q′ = 0,

∂tA
′ + ∂xψ

′∂yĀ− ∂yΨ̄∂xA′ −
1

Rm

∇2A′ = 0.

(2.69)
Using the definitions for the velocity and magnetic field such that U = −∂yΨ̄ and B =
−∂yĀ, our equations finally read

∂tq
′ + U∂x(∇2ψ′)− Uyy∂xψ′ −M2B∂x∇2A′ +M2Byy∂xA

′ − 1

Re

∇2q′ = 0,

∂tA
′ −B∂xψ′ + U∂xA

′ − 1

Rm

∇2A′ = 0,
(2.70)

where the terms proportional to F from the PV in the second and third terms cancel via:

−∂yΨ̄(∂x∇2ψ′ − F 2∂xψ
′) + ∂xψ

′(∂y∇2Ψ̄− F 2∂yΨ̄) = U∂x(∇2ψ′)− Uyy∂xψ′. (2.71)
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2.6.3 Fourier Decomposition

Since the domain is assumed to be periodic in the x-direction and we are looking for
wave-like solutions, we assume that the perturbation can be decomposed as,

ψ′ = ψ̂(y) exp[i(kx− ωt)], A′ = Â(y) exp[i(kx− ωt)], (2.72)

which in turn transforms the 2D Laplacian operator as ∇̂2 = ∂yy − k2. Substituting this
into our linear equation and dividing through by the exponential, we find (multiplying by
i/k and using q̂ = (∇̂2 − F 2)ψ̂)(

ω

k
(∇̂2 − F 2)− U∇̂2 + Uyy −

i

kRe

∇̂2(∇̂2 − F 2)

)
ψ̂ +M2

(
B∇̂2 −Byy

)
Â = 0,

ω

k
Â+Bψ̂ − (U +

i

kRm

∇̂2)Â = 0,

(2.73)

or in matrix form, (as a generalized eigenvalue problem: Av = cBv, with c = ω/k)[
(U + i

kRe
(∇̂2 − F 2))∇̂2 − Uyy −M2(B∇̂2 −Byy)

−B U + i
kRm
∇̂2

][
ψ̂

Â

]
= c

[
∇̂2 − F 2 0

0 1

] [
ψ̂

Â

]
. (2.74)

In the absence of viscosity and diffusion, the matrices are purely real and the system
reduces to9 [

U∇̂2 − Uyy −M2(B∇̂2 −Byy)
−B U

] [
ψ̂

Â

]
= c

[
∇̂2 − F 2 0

0 1

] [
ψ̂

Â

]
. (2.75)

The linear stability problem we concern ourselves with in this thesis is (2.74), restricted to
a Bickley jet in a constant magnetic field (Chapter 5). The system is solved numerically
in Python using the generalized eigenvalue problem solver in the SciPy library [96] along
with Chebyshev differentiation matrices for the derivatives [93]. For specified ranges of the
nondimensional parameters F,M , and looping in parallel over a range of wavenumbers,
the solver is asked to find the growth rate and spatial structure of any unstable mode.

2.7 Numerical Method for Nonlinear Simulations

The code used in this thesis [90] can solve three types of problems. First, we can evolve
purely hydrodynamic flows while using the A variable as an optional passive tracer by

9In a β-plane geometry, the first entry of the left matrix simply gains an additional term of +β.
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setting M = 0 (effectively turning off the Lorentz force). Next, the code can solve the A
equation with a constant prescribed velocity (what we refer to as pure induction, e.g. [99]).
Finally, the code can solve the coupled evolution of both the PV and A and this is the
main focus of the following chapters. The code is equipped to consider general non-uniform
background fields B(x, y) but this is not an avenue we explore.

The code for the nonlinear evolution is written in Python and makes use of a spectral
Galerkin method through the Shenfun library which runs efficiently in parallel [65, 64].
A spectral Galerkin method solves partial differential equations (PDEs) through a special
form of the method of weighted residuals (WRM) using global basis functions. We use
the Fourier basis which works most efficiently on a doubly periodic domain. To allow
the study of non-periodic solutions, we evolve the perturbation fields in the PV (q) and
magnetic streamfunction (A), while the optional background Q̄ and Ā remain stationary.
This becomes especially useful when studying a balanced state such as the Bickley jet
(Chapter 5).

The computational domain is a doubly periodic square of length L with N points along
each edge. The solution is evolved in time (with sufficiently small dt) using the third-order
Adams-Bashforth (AB3) scheme, where the first step is forward Euler and the second
step uses the second-order Adams-Bashforth method. The dissipative terms are solved for
explicitly. In all simulations we use an exponential filter proposed initially by Godon and
Shaviv (1993) [36] for numerical stability, given our Fourier basis10. Specifically, we take
the filter f(k), with form (where kmax = 2πN/L, km = 0.9kmax, ks = 0.8kmax)

f(k) = exp(−α|k|β), β = 1.88/ ln(km/ks), α = 0.69k−βs , (2.76)

which is further plotted in Figure 2.1 for convenience. For a computational domain of length
L and resolution N , the maximum wavenumber is kmax = Ndk with spacing dk = 2π/L.
We tested the use of a sharp, wavenumber-cutoff filter which set all spectral components
at wavenumber |k| ≥ 2

3
kmax equal to zero [67] and saw no noticeable differences in the

evolution for our considered resolution given smaller dt. The code saves snapshots of
the physical fields (in HDF5 format) at a user-determined frequency and automatically
computes a set of diagnostics using the output fields after the simulation is complete11. In
the following chapters, we use L = 8π, N = 1024, dt = 2.5× 10−4.

Having established how the code evolves the nonlinear equations, we now move on to
the methods used in post-processing and the most relevant computed diagnostics. First, we
will use the Taylor (and the analogous magnetic quantity) microscales to crudely estimate

10This filter was also investigated in Christopher Subich’s PhD thesis (2011) [86].
11If the code is ran in serial, this is done on-the-fly.
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Figure 2.1: Exponential type spectral filter (2.76) used in all simulations herein, with
L = 8π and N = 1024.

the typical length scales of the turbulent flow (as in [26]). An increase or decrease in
these scales tell us whether the KE and ME are moving to larger or smaller length scales,
allowing us to confirm the direction of the energy cascade. They read

Lu =
〈|u|2〉1/2

〈(∇2ψ)2〉1/2
, Lb =

〈|b|2〉1/2

〈(∇2A)2〉1/2
, (2.77)

where the angled-brackets indicate a domain average. We also consider some bulk measure
of the anisotropy of the KE and ME since the considered flows are not always isotropic
[83, 89]. Specifically, we shall compute the anisotropy of the velocity (u = (u1, u2)) and
magnetic field (b = (b1, b2)) via

Anisotropy(u) =
〈u21〉

〈u21〉+ 〈u22〉
, Anisotropy(b) =

〈b21〉
〈b21〉+ 〈b22〉

. (2.78)

These determine on a scale of 0 to 1 how much of the kinetic and magnetic energies
are concentrated along the x-direction. Apart from quantifying the anisotropy inflicted
by the uniform field, this also provides some insight as to how accurate our isotropic
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assumption is in the computation of the 1D spectral slopes and fluxes. The code is two-
dimensional (physical space has (x, y) and spectral space has (kx, ky)) but we wish to
analyze the energy spectra in a single dimension (as a function of k =

√
k2x + k2y) to

compare with the expected slopes from MHD turbulence theory. As we did in computing
the 1D spectral fluxes ((2.56) and (2.57)), we take the isotropic assumption on the two-
dimensional spectra and use azimuthal integration in wavenumber-space, on the annulus
of area π((k+ dk)2− k2) to convert a function f(kx, ky) to an azimuthally integrated f(k).
Whenever spatial derivatives are needed in post-processing, we use the Fastest Fourier
Transform in the West (FFTW) [32]. Note that the total energy spectrum has three
components in general,

Ê(k) = ÊV + ÊP + ÊM (2.79)

for the KE, PE, and ME, respectively. Spectral slopes (αV,P,M) for the azimuthally inte-

grated energies are computed such that ÊV,P,M(k) ∝ kαV,P,M by fitting a line to a temporally
averaged log plot of the spectrum in a finite range of wavenumbers. We pick this range
in a region where ln ÊV,P,M(k) is approximately linear and in the inertial range. The PE

spectrum is only relevant when F 6= 0 and is related to the KE via F 2ÊV = k2ÊP . The
energy transfers Tq, TL, TA defined in (2.62), in addition to the analogous viscous/diffusive
quantities, will also be temporally averaged to provide a clear picture of the dynamics.

Armed with some well-established and some new theory, a vast array of scalar out-
puts, and of course snapshots of the physical fields, we set off to study our numerical
experiments.
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Chapter 3

Dynamic Vortices in MHD

Studying vortices allow us to better understand the dynamics of turbulent flows. This
chapter aims to showcase the respective influences of magnetism (M) and a weak free-
surface (F ) in a simple local context where the initial conditions (ICs) consist of balanced
or nearly balanced vortices. The three cases described below are heavily inspired by those
considered by Weiss in [99]. Weiss assumed a fixed velocity, where the magnetic potential
A is a passive tracer. We relax this restriction and let the velocity freely evolve. Our
deviation from the profiles used in Weiss’ work (especially for the cases of multiple vortices)
is motivated by the fact that those velocities were not stationary solutions to the momentum
equation. Since our velocity evolves with time, the flow becomes complicated very quickly
even in the hydrodynamic limit (M = 0). Instead, we keep our formulation purely in
terms of trigonometric functions, defined piece-wise where appropriate. The hydrodynamic
evolution of these cases is much more stable/coherent, allowing us to focus on the influence
of the field and free-surface as opposed to complicated hydrodynamics. Where we have
doubly periodic boundary conditions across the results of this thesis, Weiss considered
perfectly conducting boundary conditions with fixed magnetic field lines at the relevant
boundaries, along with eighth order polynomials in the streamfunction for sufficient decay
at these boundaries.

We consider three cases: 1) a single vortex (SV), 2) a row of vortices (RV) aligned with
the field and with alternating polarity, and finally 3) a two by two arrangement of vortices,
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much like a chess board (TV). Our ICs are set in the kinetic streamfunction and read

ψSV (t = 0) =

{
L
4π

cos(4π x
L

) cos(4π y
L

), |x− L/2| < L/8, |y − L/2| < L/8

0, otherwise
(3.1)

ψRV (t = 0) =

{
− L

4π
sin(4π x

L
) cos(4π y

L
), |y − L/2| < L/8

0, otherwise
(3.2)

ψTV (t = 0) = − L

2π
cos(2π

x

L
) cos(2π

y

L
), (3.3)

where L = Lx = Ly = 8π. We initialize the perturbation streamfunction ψ = ψ′ in
the code to create the cases mentioned above. Of course, had one wanted to investigate
the linear stability of these vortices, one would initialize the background streamfunction
instead. It is straightforward to compute the associated initial velocity and vorticty fields
by u = (−∂yψ, ∂xψ) and q = ∇2ψ − F 2ψ. The velocity scale is U = 1 and since the
ICs are set in ψ, the initial KE is independent of F . The amplitude of the initial PV
however varies with F and we do not initialize any noise in the perturbation A. The
first two cases (SV, RV) are not exact stationary solutions to (2.4) in the hydrodynamic
limit. However, their respective evolutions are stable enough when M = 0 to warrant
a nice comparison with the presence of a magnetic field. In the third case, the TV is
a stationary solution to the inviscid hydrodynamic problem. Dissipation and numerical
noise could eventually allow this solution to become unstable, but this was not observed
on the considered time-scale (t < 300) for our chosen parameters. The negative signs
of the last two streamfunctions were picked to replicate the relative orientations (to the
magnetic field) of the corresponding ICs in Weiss’ work. However, since the domain is
doubly-periodic, this is purely a cosmetic choice as we can shift our plotting domain by
L/2 in any required direction to get the other sign. Clockwise motion is presented below
in blue (negative q) and counter-clockwise motion in red (positive q).

3.1 Rigid Lid

We shall begin by considering the three different configurations of vortices in a rapidly
rotating (f -plane) barotropic fluid with a rigid-lid. This is easily obtained by setting the
rotational Froude number, F = 0, and is a subset of QG-MHD equivalent to the typical
2D-MHD model. In this section, we present plots of the PV (equal to the relative vorticity
in this case) and A (magnetic potential) at different times and with different strengths
of magnetism. We will touch on two phenomena from the established literature on MHD

30



vortices. The first is magnetic flux expulsion and this happens when the velocity of the
vortex distorts the background magnetic field. The field lines are stretched on the periphery
of the vortex until they reconnect and expel the field lines remaining in the core to the
edges. Weiss was particularly interested in this behaviour and Moffatt and Kamkar 1983
[63] later found that flux expulsion has a time scale of τfe = R

1/3
m t0 where t0 is a time-scale

characterising the flow and Rm is the magnetic Reynolds number. Flux expulsion is a
kinematic behaviour as opposed to a dynamic one since Weiss observed it without evolving
the velocity field.

The stretching of the weak large-scale field generates a strong small-scale field, where
the amplification factor was found to scale with R

1/2
m [94]. Once the small scale field is

large enough to be dynamically important, magnetic tension (the restoring force which
straightens bent magnetic field lines) can influence the velocity field through the vorticity
equation. This phenomenon is inherently dynamic and appears when vortices stretch out
the uniform background field to form regions of concentrated current on their edges. The
magnetic stresses associated with these current sheets are released once magnetic field lines
reconnect. The process then leads to vortex disruption in shape and strength, and possibly
even destruction. The vortex disruption regime is one where the curl of the Lorentz force
competes with the advection of PV. Assuming that the length and velocity scales of the
vortex in question are comparable to that of the mean flow, the scaling result for this
regime is given by the criterion M2Rm = O(1), as derived by Mak et al. 2017 [57]. Armed
with this theory, we now turn our attention to the numerical experiments.

3.1.1 Single Vortex

Snapshots of the PV for the SV case are provided in Figure 3.1, for selected times and
strengths of the magnetic field. We see in the first row that without an active field (M = 0),
the vortex core largely remains untouched by the final depicted time. Including the slightest
influence of magnetism when M = 10−3 on the next row, we develop a diamond pattern
outside the periphery, where the vortex appears to interact with its mirror image across
the doubly-period boundary (as also seen in the case of a Gaussian vortex [25]). The
next step in magnetic strength (M = 10−2) is far more interesting where the vortex core
now generates filaments of PV in the periphery (t = 100) that become unstable and
generate turbulent flow (t = 200)1. This flow is then advected azimuthally by the core
and the resulting band grows radially to largely destroy the shape of the core by the final

1We have approximately 5 grid points across the width of these thin filaments with our considered
resolution.
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Figure 3.1: Snapshots of the PV for a single vortex (ψSV ) in a rigid lid, for increasing
M = 0, 10−3, 10−2, 10−1 and at times t = 20, 100, 200, 300.
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time (t = 300). The magnetic Reynolds number Rm = 104 and this relative strength in
magnetism M = 10−2 provide the relationship that RmM

2 = 1, in perfect agreement with
the vortex disruption criterion mentioned before.

Finally, when M = 10−1, the magnetic field is strong and the dynamics are drastically
different. First, the vortex core quickly separates into thick bands of PV intertwined with
thinner filaments of the opposite parity (t = 20). These are stopped abruptly before
t = 100 and are forced to uncoil in the opposite direction of the original vortex velocity.
The strong effects of magnetic tension opposing the deformation of the magnetic field
lines have made this flow somewhat elastic. At the next time, the uncoiled filaments of
PV generate a new vortical structure directly on the boundary of the domain and the
remaining dynamics present an oscillation about the two structures. Coiling motions are
forced to uncoil and the main behaviour of the flow features oscillations. In a case not
presented where M = 1, we find nonlinear Alfvén waves reminiscent of those seen in Magill
et al. 2019 [55]. QG-MHD does not filter out Alfvén waves the same way QG filters out
gravity waves. However, since we consider M < 0.1 in our simulations, the Alfvén wave
speed (VA) is smaller than the typical velocity by at least a factor of 10. The result is a
different regime in which Alfvén waves are not very obvious in the evolution. Thus for a
SV, we find that the dynamics shift with increasing magnetic field strength from a stable
coherent structure, to the generation of small scale filaments of PV along the periphery
which eventually disrupt the vortex core, and finally elastic and oscillatory behaviours.

For this case, we also include an analogous figure for the perturbation magnetic stream-
function, A in Figure 3.2. Notice in the first column that the early evolution of A is almost
identical for all values of M . In the last column however, we can see strong evidence of the
diamond pattern seen in the PV figure for the first two rows (M = 0, 10−3). Since A looks
the same in the hydrodynamic and weak field cases, but the diamond pattern only arises
in the PV for the weak field case, it is possible that the diamond behaviour is a magnetic
one. The magnetic streamfunction is passive in the hydrodynamic case and very weakly
active when M = 10−3 but the pattern reflected in the PV appears coupled to the shape
of the perturbation A. This warrants further investigation not included in this thesis.

A closer investigation of the A field reveals that expulsion of magnetic flux occurs and
is obvious for the hydrodynamic and weak field cases (M = 0, 10−3) within the consid-
ered temporal range. In the hydrodynamic regime, where the Lorentz force is zero, A is
passively advected by the flow, with no influence back onto the stable velocity. For the
weak field when M = 10−3, the velocity field is still largely stationary and also gives a
good approximation to the kinetic treatment of the equations presented by Weiss. The
fingerprint for flux expulsion can be seen in the absence of magnetic field lines or analo-
gously in little to no amplitude of A left in the core of the vortices. Since we are plotting
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Figure 3.2: Snapshots of the magnetic streamfunction A for a single vortex (ψSV ) in a rigid
lid, for increasing M = 0, 10−3, 10−2, 10−1 and at times t = 20, 100, 200, 300.
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the perturbation A, the weak gradients remaining in the core are but the negative of the
background magnetic streamfunction. For the intermediate strength of magnetism where
M = 10−2, we do see some evidence of flux expulsion in earlier times, but the behaviour is
more difficult to diagnose later where the vortices are disrupted and borderline into turbu-
lent flow. The strongest case of magnetism provides a flow with largely elastic properties
(where PV tends to uncoil) and so the behaviour is difficult to see even at early times.
These results are by no means inconsistent with the findings of Weiss. Since flux expulsion
is a kinetic behaviour, it follows that we should observe it when the field has little to no
effect onto the velocity. This is the case for both M = 0, 10−3 at all depicted times and the
early times of M = 10−2 where the perturbation field is still small enough. We however
see the clear transition from a kinetic to a dynamic regime where magnetic field strongly
influences the velocity for large enough M and t.

3.1.2 Single Row of Vortices

Having seen what happens to a SV with increasing magnetic field strength, we venture to
see what differs when we have multiple vortices next to each other in single-file. This is the
(RV) case depicted in Figure 3.3, showing again the PV field for selected times and values of
M . The hydrodynamic limit in the first row presents elliptical vortex cores surrounded by
thin filaments of PV with the same parity of the core they stretch out of. These filaments
originate from the initial transition of square to elliptical vortices and diffuse by the final
time. With the mere presence of active magnetism in the next row (M = 10−3), we see
that these filaments of PV give rise to smaller scale features, such as vortical filaments
with the opposite parity of the respective core (t = 100). The resulting evolution presents
the cores largely untouched surrounded by a rather geometrically pleasing arrangement of
PV filaments. This flow however is hardly a turbulent one and is still dominated by the
original coherent shape of the ICs.

The instability of PV filaments is much more pronounced in the next row (M = 10−2)
where smaller vortices are generated through secondary instabilities along the periphery
of the original vortices. These are ejected into plumes (or mushroom caps) above and
below the faint remainder of the original cores (t = 100). The plumes retract towards
the original cores presenting a saw-tooth shaped envelope, which encloses a turbulent and
small-scale flow (t = 200). At the final time, the field and diffusive processes have smoothed
out the flow, where the filaments of PV have slightly thickened in comparison to the two
previous times. These appear bounded by a wide band envelope in the horizontal direction,
replacing the saw-tooth pattern. Again, this value of M is the vortex disruption regime.
The final case with largest magnetic influence (M = 10−1) presents an evolution free of
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Figure 3.3: Snapshots of the PV for a row of vortices (ψRV ) in a rigid lid, for increasing
M = 0, 10−3, 10−2, 10−1 and at times t = 20, 100, 200, 300.
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coherent vortices, where the PV is very quickly concentrated along the initial filaments
which dominate the flow even at t = 20. Similar to the SV case, this flow is highly
oscillatory and rather square in shape, where PV filaments are often parallel with one of
the domain axes. This evolution shows a pulse travelling upwards and then downwards
through the PV filaments, while widening the effective domain of the flow in the y-direction.

Thus, for a row of square vortices aligned with the magnetic field, increasing M moves
the evolution from a regime of coherent elliptical vortices, to one with plumes of ejected
PV between the cores, to again an abrupt disruption of the coherent structures and a
resulting oscillatory behaviour. In terms of specific differences between this case and the
SV, the total initial KE more than doubled (not shown here) and we have lost the previous
symmetry in the x and y-directions. While the turbulence generated in the periphery of
the M = 10−2 SV case was still being advected azimuthally by the final time, the same
case of M for a row lost all traces of the initial vortices. The vortex disruption regime was
however consistent at this value of M in both sets of ICs. Finally for the strongest field,
instead of an oscillation about two vortical structures as seen in the SV case, the combined
effects of each vortex pair creates pulses across the collection of vortices in the positive and
negative y-directions.

3.1.3 Two by Two Vortices

Finally, having seen what happens to a SV and a row of them, we would like to investigate
a configuration with two by two vortices where the vortex cores are completely surrounded
by identical copies of each other (with the opposite polarity). This is the case we have
included in Figure 3.4. Compared to the RV, the case of M = 0 does not evolve, in
agreement with our computation that this state is stationary in the hydrodynamic and
inviscid limit. With the presence of weak active magnetism in the next row (M = 10−3),
we see that filaments of PV with the opposing parity form and surround the cores in a
symmetrical fashion (t = 100). These start to deform by the final time but the outline of
the ICs remains, though fainter since the filaments have a larger amplitude in comparison.
In the next row (M = 10−2), the filaments of PV have already become large in amplitude
in the region between the square cores by t = 20. These give rise to smaller vortices of
much higher strength than the ICs along the periphery (t = 100). The resulting turbulent
flow is advected toward the center of the domain through the left and right (in between
the respective cores) and the consequent convergence ejects the flow to the top and bottom
boundaries. Eventually (t > 200) the coherent cores vanish and the motion is dominated by
a turbulent flow. The case with largest magnetic influence (M = 10−1) presents again thick
bands of PV that wind and unwind in place of the ICs, generating smaller scale features
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Figure 3.4: Snapshots of the PV for the two by two case (ψTV ) in a rigid lid, for increasing
M = 0, 10−3, 10−2, 10−1 and at times t = 20, 100, 200, 300.
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thereafter (t = 100). After some time (t > 200) PV filaments dominate the flow and tend
to organise into horizontal bands, parallel with the field (reminiscent of the generation of
zonal jets in a β-plane, [92]). This is clear evidence of the expected anisotropy due to the
constant uniform field, where this rather turbulent flow was generated by a very coherent
arrangement of large-scale vortices.

In comparison to the SV and the RV, this case presents vortices of larger length scale
and a greater initial KE (approximately 3 times larger than the RV). The geometry of
these ICs is also domain-filling and symmetric in all directions whereas the RV only filled
the domain in the x-direction (with dead-space above and below) and the SV was rather
isolated. Where the row case showed some evidence of flow alignment with the field for
example when M = 10−2, this two by two case presents a much clearer picture for the
strongest M = 10−1. Increasing the magnetic field strength in all cases considered so
far have common features, including the generation of smaller scales PV filaments in the
periphery of large scale vortices, the eventual disruption of vortices from the Lorentz force,
the tendency of the flow to align with the field, and elastic-like properties in the fluid when
M is large enough. Some differences arose as well, where for example the SV and RV have
not reached a regime of near-total alignment in the x-direction compared to the TV.

3.2 Free-Surface

Now that we have seen what magnetism does to various arrangements of vortices, we
can add the additional complexity of a weak free-surface by setting our rotational Froude
number F = 1. This is QG-MHD and we leave the regime equivalent to 2D-MHD, where
now both the effects of rotation and the free-surface are present. This implies a flow which
has a tendency to generate a typical length scale equal to the external Rossby radius Rd

in the hydrodynamic dimensional equations. To our knowledge, the problem of a weak
free-surface has not yet been numerically investigated in the literature for QG-MHD and
we are thus on exploratory ground. In this section, nonzero F provides the additional
contributions from the surface in the definition of the PV, q = ∇2ψ − F 2ψ, compared to
the PV in the previous section which only considered the relative vorticity.

3.2.1 A Single Vortex

The SV case when F = 1 is shown in Figure 3.5 to compare with Figure 3.1 (rigid lid).
Even the weak magnetic field case of M = 10−3 now remains stationary up to t = 300 and
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Figure 3.5: Selected snapshots of the PV for a single vortex (ψSV ) with a weak free-surface
(F = 1) for increasing M = 0, 10−3, 10−2, 10−1 and at times t = 20, 100, 200, 300.
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the diamond pattern we had discussed before has vanished in all cases. The M = 10−2

case (third row) shows that filaments of PV are still generated on the vortex periphery, but
they are smaller in amplitude (relative to the ICs) compared to the rigid lid case and the
original core is still largely coherent. The weak free-surface (F non-zero) has slowed the
instability of the vortex periphery in the M = 10−2 case, suggesting that a new criterion
for vortex disruption may be needed to include the effects of a free-surface. Though the
regime of vortex disruption was described by the competition between the advection of the
PV and the Lorentz force, F now appears in the definition of the PV and can alter the
balance.

The strongest case of M = 10−1 is not so elastic anymore. Though the initial evolution
is similar, where wide arms of PV unwind, the evolution at later times show a collection
of smaller vortices being advected counterclockwise in the wake of the initial vortex. In a
rigid lid, we saw an oscillation about two vortical structures for this M , one in the center
of the domain and one directly on the boundary. We now see that the wide bands of PV
(which cross the periodic boundary to connect the system to itself) are relatively stationary
and feed the counter-clockwise motion inside the center. The rotational Froude number F
has already been found to be stabilizing to jets in hydrodynamics [73] and as we will see in
Chapter 5, it is still stabilizing to them in the presence of magnetic fields. The results of
this section suggest that it has a similar effect on the stability of MHD vortices. Though
a detailed study (through linear theory for example) of how F stabilizes these structures
is not provided, we see that it has the same qualitative compacting effects consistent with
the hydrodynamic theory [75].

To investigate further upon the loss of the diamond pattern, the perturbation A for
F = 1 is provided in Figure 3.6 to compare with Figure 3.2 (in a rigid lid). Notice that the
diamond pattern is absent and the bulk of A is compacted in the immediate periphery of
the vortex, with the exception of the largest strength of magnetism. However, the inclusion
of a weak free-surface does not seem to disrupt flux expulsion from the core in the first two
cases and even the third, as it is still present. Again, since the velocity is largely stationary
for weak magnetic fields, this is in good qualitative agreement with Weiss’ results.

3.2.2 A Single Row of Vortices

Moving on to the row case when F = 1, the PV is shown in Figure 3.7 to compare with
Figure 3.3 (rigid lid). Similar to the change we saw in the SV case, the weak field on
the second row is essentially identical to the hydrodynamic limit above it. Both present
slightly elliptical vortices which keep their shape and coherence by the final time. The
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Figure 3.6: Snapshots of the magnetic streamfunction A for a single vortex (ψSV ) with
a weak free-surface (F = 1) for increasing M = 0, 10−3, 10−2, 10−1 and at times t =
20, 100, 200, 300.
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next row (M = 10−2) is again much more interesting but dynamically tamed compared
to the rigid lid analogue. We can still see traces of the ICs whereas with a rigid lid this
flow became a thick band of turbulence. The evolution shows the generation of small scale
PV filaments through the instability of the vortex periphery but their effect on the larger
vortices appears suppressed once again, reinforcing the need for an adapted criterion of
vortex disruption in a free-surface. For the strong field case, the early evolution shows
the suppression of the elastic behaviour we saw with a rigid lid where the periphery of
the smaller scale vortices are now the dominating features of the flow (t = 100). This is
a similar behaviour as we saw for a SV with F = 1. The resulting organisation is not
so much aligned with the field but rather a thick band of vortex filaments for which the
envelope resembles a sine wave in x.

3.2.3 Two by Two Vortices

Finally, for the TV case when F = 1, the PV is shown in Figure 3.8 to compare with
Figure 3.4 with a rigid lid. Again, the weak field case is very similar to the hydrodynamic
case with the exception of very weak features being generated in the corners of the large
vortices. The intermediate regime of M = 10−2 still shows the generation of small scale
features, advected towards the centre through the sides and expelled through the top and
bottom, but their influence on the coherence of the ICs is again impeded. The strongest
case shows slightly stronger filaments being generated but the faint traces of the ICs remain
and the evolution at the final time is qualitatively similar to the row above it where we
have lost the complete alignment with the field that we saw in the rigid lid case.

Given what we have seen in the qualitative behaviour of the various ICs, we suspect
that the generation of small scale features in the flow and their consequent disruption of
coherent vortices is affected by F , where the inclusion of a weak free-surface has stabilizing
effects on the flow. This parameter has also prevented the TV case from reaching a flow
almost completely aligned with the field, as seen in the rigid lid case. Further for the
strongest field considered in the RV case, the sharp and square features of the flow in a
rigid lid were replaced by a stream of PV filaments enclosed by a smooth sine-wave in
the direction of the field. Thus, F does not only act on the generation of small scale
features in the early evolution for increasing M , but also in the long-term sense with more
tame and spatially compact evolutions. The interactions of M and F warrant a new formal
investigation of the vortex disruption criterion and possibly flux expulsion in a free-surface.
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Figure 3.7: Selected snapshots of the PV for a row of vortices (ψRV ) with a weak free-
surface (F = 1) for increasing M = 0, 10−3, 10−2, 10−1 and at times t = 20, 100, 200, 300.

44



Figure 3.8: Selected snapshots of the PV for the two by two case (ψTV ) with a weak free-
surface (F = 1) for increasing M = 0, 10−3, 10−2, 10−1 and at times t = 20, 100, 200, 300.
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3.3 Length Scales and Anisotropy

We will close this chapter by introducing our first computations of the diagnostics presented
in Chapter 2. This will provide a quantitative view of the results we have seen thus far
and support for our observations on the effects of increasing magnetic field strength and
a free-surface. Since including every quantity and related figure would be cumbersome in
this chapter, we will assess the differences in the flow of the TV case when changing M
and F . We focus on the TV case since the hydrodynamic evolution is stationary and the
consequent inclusion of magnetic effects will provide simple and clear differences in the
diagnostics.

Figure 3.9 shows the microscales of the TV case as defined in (2.77), which estimate the
typical length scales of the KE and ME (the gradients of the respective streamfunctions)
and not that of the streamfunctions themselves. Plotting the KE at t = 0 as a function
of (x, y) for example would show that square regions of KE have a length scale closer to
3 and not 4π which would approximate the length scale of the streamfunction for the TV
case (exactly half of the domain). The bottom boundary of all panels in this figure is
chosen as the grid scale, for reference. The results show that the length scale of the KE of
the hydrodynamic rigid lid case (top left panel, black curve) stays around Lu ≈ 3 for the
entire simulation which is consistent with the stationary evolution we observed in Figure
3.4. The very weak field case (dashed red) in the same panel shows little deviation form
this trend, again consistent with the dominance of the larger vortices in the evolution.

The next two cases of magnetism show an early drop of about a decade in Lu and
while the M = 10−2 (dot-dashed green) case shows a consistent decay from 0.3 to 0.2
afterwards, the M = 10−1 (dotted blue) case shows some oscillations near the same range.
Moving to the panel below (bottom left) for F = 1, we see that Lu changes very little
when M = 0, 10−3 (black, dashed red) from the rigid lid case. One might expect F to
alter the length scale of the KE in a turbulent flow and we will see that this is in fact the
case in Chapter 4. However, our TV case is stationary or nearly so for weak fields (see
Figure 3.8) which explains the lack in change. The more interesting behaviour occurs for
the next two values of M = 10−2, 10−1 (dot-dashed green, dotted blue) in which Lu has
levelled off (near 0.3 for M = 10−2 and 0.1 for M = 10−1) after the initial decrease (again
by a decade or more). Increasing F from 0 to 1, and the consequent inclusion of a weak
free-surface, has therefore suppressed the long-term temporal variation in the length scale
of the KE. Where the rigid lid evolution did not clearly show the relationship between Lu
and M , for the two strongest fields, the case of a free-surface has made made it clear that
Lu decreases with M in this regime and varies very little over longer times.

Moving on to the typical scale of the ME in the next column for the rigid lid case (top
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Figure 3.9: Kinetic (Lu, left) and magnetic (Lb, right) microscales (2.77) of the two by
two case (ψTV ) in a rigid lid (top row, F = 0) and with a weak free-surface (bottom row,
F = 1). The four different values of M are shown as: 0 (solid black), 10−3 (dashed red),
10−2 (dot-dashed green) and 10−1 (dotted blue).
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right, F = 0), we see a sharp decreasing initial adjustment at early times in Lb. This is
unsurprising since the quantity tries to measure the length scale of the total ME, and the
initial magnetic field was constant and uniform. We thus focus on the dynamics after this
adjustment, where field lines are deformed by the flow (t > 50). For the hydrodynamic
case, there is no physical ME and this curve is associated with A as a passive tracer. We
include this for reference as the asymptotic behaviour of the very weak field case towards
the absence of an active field. The definition of Lb is independent of M since it is a ratio of
the ME to the current. While the M = 0, 10−3 (black, dashed red) cases hover near (but
above) the grid scale, the M = 10−2, 10−1 (dot-dashed green, dotted blue) curves tend
to increase after the adjustment. Looking at the analogous snapshots of A (not included
here) would show that the structure becomes more smooth with time at these values of
M and so the associated gradients would be smoother, increasing the typical length scale
of the ME. In the panel below with F = 1, we see the same behaviour observed in Lu
where the M = 10−2, 10−1 (dot-dashed green, dotted blue) curves have flattened. Thus,
when magnetism is strong enough to disrupt a stable solution, the inclusion of a weak
free-surface suppresses the long-term temporal variation in the typical length scale of both
the KE and ME.

Next, the bulk anisotropy of the KE and ME (2.78) are plotted in Figure 3.10, following
the same legend for the values of M from the previous figure. The KE (top left) is exactly
isotropic when M = 0 and very nearly so when M = 10−3, consistent with the symmetry
of the TV case and its stationary (or nearly stable) evolution. While the M = 10−2 (dot-
dashed green) case shows weak oscillations about perfect isotropy, the 10−1 (dotted blue)
case leaves almost 70% of the KE in the x-direction, consistent with our observation of
the flow alignment in this direction for the bottom row of Figure 3.4. Moving to the lower
panel when F = 1, we see that the KE is more isotropic than before for the M = 10−2, 10−1

(dot-dashed green, dotted blue) cases while the other two remain virtually untouched. The
background magnetic field (aligned in the x-direction) introduces anisotropy by aligning
the flow parallel to it for large enough M and consequently for strong enough Lorentz force.
However, it appears the weak free-surface works against this alignment and leaves the flow
more isotropic in the same time scale.

For the anisotropy of the field itself in the rigid lid case (top right), we see that in all
cases of M , the ME starts completely in the x-direction as we would expect from the initial
uniform field. The resulting evolution of the ME shows many oscillations in all cases leaving
most of the energy either highly concentrated in x, when M = 0, 10−1 (black, dotted blue),
or nearly isotropic when M = 10−3, 10−2 (dashed red, dot-dashed green). Increasing F to
1 in the bottom right panel, we find that the hydrodynamic case is identical, but while
the M = 10−2 case is still rather isotropic, the other three leave 60-80% of the ME in the
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Figure 3.10: Anisotropy norms for the velocity (left) and magnetic field (right) (2.78) of
the two by two case (ψTV ) in a rigid lid (top row, F = 0) and with a weak free-surface
(bottom row, F = 1). The four different values of M are shown as: 0 (solid black), 10−3

(dashed red), 10−2 (dot-dashed green) and 10−1 (dotted blue).
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x-direction. It is not obvious from this plot that increasing F makes the magnetic field
more isotropic but the amplitude of the temporal variation is definitely reduced. The KE
is more clearly affected and the behaviours we describe quantitatively above for different
F were also present in the SV case. However, these were not clear in the diagnostics of the
RV case. We suspect that the anisotropy of those particular ICs are to blame.

Nevertheless, we have seen the effects of magnetism with and without a free-surface on
simple configurations of vortices. For small M , the way in which vortices affect the field
is clearly seen. Magnetic flux is expelled from the vortex cores and concentrated to the
periphery for both a rigid lid and free-surface configuration. In a rigid lid, the Lorentz
force induces the small scale filaments of PV along the periphery to amplify and become
unstable for large enough M . Their resulting evolution destroys the coherence of the cores
in strength and shape. The particular strength at which the field is strong enough to do so
is in agreement with the vortex disruption criterion from Mak et al. 2017 [57] dependent
on the product of M2Rm = O(1). The strongest magnetic field considered induces elastic
and oscillatory behaviour in the flow where magnetic tension opposes the deformation of
magnetic field lines. When including a weak free-surface with F = 1, we saw that the
flow generally becomes more isotropic compared to a rigid lid evolution and the disruption
of large vortices is delayed. The timeseries of the microscales also indicate that the free-
surface suppresses temporal oscillations in the bulk of the flow and inhibits the alignment
of the flow with the field. With this newfound wisdom, we venture into a more complicated
picture, turbulence.
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Chapter 4

Freely-Decaying MHD Turbulence

Having investigated the effects of a uniform field on the evolution of vortices and col-
lections of vortices, we now shift to a more global focus in the study of freely-decaying
2D turbulence. By freely-decaying, we mean that the model is initialized with a random
field in each streamfunction (ψ,A) and the solution is let to evolve without any forcing.
Though the code allows for the study of forced turbulence, we leave this avenue of research
as future work. The random fields in the kinetic and magnetic streamfunctions are gener-
ated using FFTs to transform a perturbed Gaussian function in wavenumber space into a
random physical field at a particular range of length scales. In spectral space, the initial
streamfunction is given by

ψ̂0(kx, ky) = exp

(
ifrand(kx, ky)−

(
|k| − kt

σ

)2
)

(4.1)

for wave vector k = (kx, ky), spectral width σ, and typical wavenumber kt. The defini-
tion contains a random phase coefficient eifrand where frand represents white uniform noise
bounded between [−1, 1]. We compute ψ0(x, y) by taking the real part of the inverse FFT
of ψ̂0 and then ensuring zero mean and normalizing to achieve a reasonable maximum
speed of O(1). We generate both ψ0 and A0 at the same scales, but with different random
seeds in frand so that ψ0 6= A0. The typical wavenumber and spectral widths are chosen
as kt = 0 and σ = 1 for this chapter which provides an initial typical length scale of
L ≈ 1 according to the bulk measurement (2.77). Had we wanted to focus on the inverse
energy cascade of hydrodynamic turbulence, we would initialize the following simulations
with vortices of much smaller length scales (kt > 0) to allow energy to move to larger
scales. We would also require a forcing at a particular scale for the inverse cascade to be
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applicable. In simulations not included in this thesis, we confirm that this is indeed the
behaviour we observe. However, since we are interested in the magnetic behaviour where
the energy is expected to cascade to smaller length scales, we pick initial vortices to be
sufficiently large. The random seeds also determine the isotropy of the initial velocity (and
magnetic field perturbation) and were picked to be isotropic within 1% using the bulk
measurements (2.78). The initial magnetic field is almost entirely in the x-direction apart
from the isotropic perturbation at 1% the amplitude of the background. Further, there is
always more initial KE than there is ME, where even the largest value of M = 10−1 still
provides an initial ME 4 times smaller than the initial KE. We will first study the spatial
structures for different M in a rigid lid and then with a free-surface. We will then compare
the diagnostics in the following sections for the various combinations of M and F .

4.1 Rigid Lid

First, we plot the PV for increasing M = 0, 10−3, 10−2, 10−1 and at selected times t =
20, 100, 200, 300 in Figure 4.1 in a rigid lid configuration with F = 0. While the previous
chapter focused on coherent structures, this is 2D-MHD turbulence. There are coherent
vortices in the flow but they are much more chaotic and arise from random initial condi-
tions. Many vortices of different shapes and sizes are now evolved together to combine and
interact. The initial vortices in the previous chapter had a single length scale associated
with the size of the vortices, which were arranged in some square grid. Now the initial flow
is random with a mean length scale of one in the KE. The first row (M = 0) of Figure 4.1
shows vortices that combine and move to larger scales. Given enough time, the merging
process will lead a single dipole (two vortices of opposite parity) at largest scales [59]. The
second row (M = 10−3) shows the onset of magnetic effects for a very weak field where
small scale filaments are starting to dominate the amplitude of the PV field. Increasing
the field again to M = 10−2 in the third row, PV filaments dominate the flow early on and
have yet to align with the background field. Finally, in the last case with M = 10−1, we see
a familiar picture (as we saw for the strong field case in the two by two vortex) where the
flow aligns significantly with the field. Further, investigating the plots of the other phys-
ical fields (not included here) has shown that the PV is increasingly slaved/correlated to
the magnetic current, j for larger M . This relates to the cross-helicity dynamo behaviour
mentioned by Yokoi (2013) [101] but a complete discussion on the matter is beyond the
scope of this thesis.

Though the initial conditions considered in this chapter are much more complicated
than the square vortices from before, much of the same dynamics still occur. This shows a
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Figure 4.1: Snapshots of the PV for freely decaying turbulence in a rigid lid, for increasing
M = 0, 10−3, 10−2, 10−1 and at times t = 20, 100, 200, 300.
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tendency in the evolution towards a similar regime regardless of the original configuration
of the flow. These similarities include the generation of small scale filaments in the PV
and their eventual alignment with the magnetic field for large enough M .

4.2 Free-Surface

Using the same initial streamfunctions, we now set F = 1 to move from a rigid lid regime
to that of a weak free-surface in QG-MHD. The PV is shown in Figure 4.2 to compare
with Figure 4.1 from the previous section. The same values of M and times are chosen.
Recall that the presence of a free-surface inhibits the interaction of vortices at large scales
and the dynamics become slower and more compact in space [72, 52, 98, 50, 75]. In our
nondimensional model, using F = L/Rd = 1 suggests that motions at scales larger than 1
are inhibited. The consequent spatial compactness is evident in the first row of Figure 4.2
for the hydrodynamic regime and the vortices do not interact nor advect very much in the
same time scale. Qualitatively, we see that increasing M from 0 to 10−3 provides similar
behaviours as seen in the rigid lid case where small scale features are generated on the
periphery of vortices. However, their relative amplitude is much smaller compared to the
larger vortices in the flow. Increasing again to M = 10−2 in the third row shows that PV
filaments begin to dominate over the magnitude of the coherent cores. When M = 10−1 in
the last row, these filaments are long and rather smooth. However, in the last two rows,
there is still evidence of rather large scale vortices left in the domain and we have yet to
reach a full alignment of the flow with the field. The addition of the free-surface compared
to the rigid lid has consequently inhibited the field-induced anisotropy, especially visible
for M = 10−1. For reference, these cases also have a large initial total PE of approximately
3 times its KE. This huge shift in the decomposition of the total energy makes it very easy
to believe how different the flow now looks in comparison to the rigid lid (Figure 4.1).

4.3 Length Scales and Anisotropy

We will now compare the various diagnostics for the two sets of simulations above for
different F . The microscales (2.77) of the flows considered above are shown in Figure
4.3. These try to approximate the length scales at which the bulk of the KE and ME are
located. The left column depicts the microscale of the velocity as a function of time and
the right column does the same for the ME. The top row corresponds to the case of a
rigid lid and the bottom considers the free-surface evolution. The four different considered
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Figure 4.2: Snapshots of the PV for freely decaying turbulence with a free-surface (F = 1)
for increasing M = 0, 10−3, 10−2, 10−1 and at times t = 20, 100, 200, 300.
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values of M are labelled as: 0 (solid black), 10−3 (dashed red), 10−2 (dot-dashed green)
and 10−1 (dotted blue). In the top left, the black curve with M = 0 increases with time
from Lu ≈ 1 to 2 and the flow moves to larger length scales. In the same panel with
M = 10−3 (red dashed curve), this transition is halted and Lu starts to decrease with
time after t = 200. A closer look at the top right panel shows that the microscales of the
velocity and magnetic field depend on M in significantly ways, as we saw was the case in
the last chapter. Lu moves to smaller scales for increasing M but the two strongest fields
considered almost overlap each-other for all time. On the other hand, Lb (top-right panel)
increases with M and time after the initial adjustment. Plotting Lu and Lb on the same
y-axis allows us to observe that increasing M further correlates to a convergence of both
Lu and Lb to very similar magnitudes near 0.3. Moving on to the next row when F = 1,
we see that in the hydrodynamic case (black curve), the kinetic microscale Lu (top left
panel) does increase but much less than in the rigid lid case. This is due to the influence
of the free-surface which inhibits energy from moving to larger scales. The weak field case
shows a decrease in the typical scale of the KE but the sharp transition seen in the rigid
lid case is replaced by a smooth decay in scale. The general trend that Lu decreases with
increasing M is retained. The analogous trend that Lb increases with M is also retained
for F = 1. As was the case for the two by two vortex, the oscillations of these quantities
over time are also suppressed.

A bulk measurement of the anisotropy is provided in Figure 4.4 for the norms described
in (2.78). While the microscales showed at what scales most of the energy was located,
these anisotropy norms show the direction in which these energies are most concentrated.
The panels are arranged in the same way as in Figure 4.3 and correspond to the same
simulations. With a rigid lid (top-right) we see that in the hydrodynamic case (black), the
bulk velocity oscillates and ends up being more concentrated in the y-direction by the final
time. The weak field case (dashed red) follows the same oscillation but ends up slightly
more isotropic and the M = 10−2 case (dot-dashed green) dampens the oscillation near
t = 150. There is no consistent trend until we move to the M = 10−1 curve (dotted blue)
in which the flow steadily becomes more concentrated along the x-direction. This agrees
with the alignment of the PV we saw in the bottom row of Figure 4.1. The alignment is
also reflected in the magnetic field (top right panel) for the strongest case, but the other
three curves of the magnetic field anisotropy overlap and decay to about 40% of the ME
left in the x-direction. For these cases of turbulent ICs, the M = 10−1 is an outlier in the
anisotropy diagnostic where the flow clearly aligns with the field and more so over time.
Possibly the most striking difference between the rigid lid (top) and free-surface (bottom)
evolution appears in these anisotropy norms. When F = 0, we find that these norms vary
significantly with different M and that for the strongest considered field, both the KE and
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Figure 4.3: Kinetic (Lu, left) and magnetic (Lb, right) microscales (2.77) for decaying
turbulence as a function of time, for four different values of M : 0 (solid black), 10−3

(dashed red), 10−2 (dot-dashed green) and 10−1 (dotted blue). The top row shows the
rigid lid evolution with F = 0 while the bottom row shows the influence of a weak free-
surface F = 1.
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Figure 4.4: Anisotropy norms for the velocity (left) and magnetic field (right) (2.78) for
decaying turbulence as a function of time, for four different values of M : 0 (solid black),
10−3 (dashed red), 10−2 (dot-dashed green) and 10−1 (dotted blue). The top row shows
the rigid lid evolution with F = 0 while the bottom row shows the influence of a weak
free-surface F = 1.
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ME were more concentrated along the direction of the background field. Now, with the
influence of a free-surface, both the magnetic field and the velocity are very isotropic in
the mean (within approximately 5%) apart from the strong field cases where the kinetic
and magnetic energies are 60% in the x-direction.

4.4 Energy Spectra

In the study of turbulence, the literature often relies on the shape of the energy spectrum to
quantify its dynamics. Thus, the azimuthally integrated kinetic (left) and magnetic (right)
spectral energy densities are provided in Figure 4.5 as a function of the wavenumber in
the same panel configuration and labelling as before. These are temporally averaged in
120 < t < 150, corresponding to a time range between the center two columns of Figure
4.1. Our 2D turbulent simulations are decaying and no statistical equilibrium can be
found without forcing at a particular scale. We thus chose a temporal range beyond the
adjustment of the initial conditions and before the hydrodynamic spectrum became too
steep. The associated spectral slopes are computed in the range of 6 < k < 10. In the
rigid lid configuration, the kinetic spectral energy density of the hydrodynamic case (black
curve, top left) shows a slope of -3.5 slightly steeper than the -3 expected from the forward
enstrophy cascade (the slightly steeper slope is unsurprising for numerical models). For
increasing M , and even just with M = 10−3, we see that the spectrum shallows indicating
that more energy is contained at smaller length scales. This is very apparent form the
rise of the tail in the spectrum near high wavenumbers for increasing M . The M = 10−2

curve appears somewhat as an outlier though, where the computed slope is more shallow
than the strongest case. We suspect this is due to the resulting evolution of the flow when
M = 10−1 which is hardly turbulent and dominated by bands of vorticity advected parallel
to the field. The magnetic spectral energy density in the hydrodynamic case (black curve,
top-right) is again associated with A being a passive scalar and really shows the spectrum
scaled using a value of M = 10−3 to compare with the weak field case1. It is clear that the
ME spectrum changes very little from the hydrodynamic equivalent to the weak field case
over all k and is mostly flat in the low to mid-wavenumbers. The stronger cases (green,
blue) of M = 10−2, 10−1 for the magnetic spectral energy density show steeper and very
similar spectra to each other with steeper slopes around -2. However, these curves are
rather convex. They also differ in the small wavenumbers where the stronger field shows
more magnetic spectral energy density at larger length scales.

1This spectrum is then that of the gradient of the passive scalar.
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Figure 4.5: KE (ÊV , right) and ME (ÊM , left) spectra for decaying turbulence as a function
of the wavenumber, for 4 different values of M : 0 (solid black), 10−3 (dashed red), 10−2

(dot-dashed green) and 10−1 (dotted blue). The top row shows the rigid lid evolution with
F = 0 while the bottom row shows the influence of a weak free-surface F = 1. Spectral
slopes α (for EV,M ∼ kα) are computed in the range 6 < k < 10 and the spectra are
temporally averaged in 120 < t < 150.
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The imposition of a free-surface in the bottom row of the same figure (F = 1) shows
a mix of common features and differences with the top row. First, the kinetic spectral
energy density of the hydrodynamic case (black curve, bottom left) shows a steeper range
in the mid-wavenumbers where the slope is now closer to -4, but there is an additional
accumulation of KE near 0.5 < k < 0.8, in a rounded peak. The weak field case in the
same panel retains this peak but otherwise looks similar in shape and slope to the rigid lid
case. The two larger cases of M have smoother spectra and slightly shallower slopes still
indicating more KE at smaller scales compared to the hydrodynamic evolution. Then, for
the ME spectra (bottom right) the hydrodynamic and weak field cases are again virtually
identical but now more convex, while the stronger cases show shallower slopes compared
to a rigid lid. Again, the stronger field shows more ME in general and at larger length
scales.

The Iroshnikov-Kraichnan phenomenology of MHD turbulence expects a -3/2 slope in
the total energy spectrum. The argument for this slope is as follows: In the presence of large
scale magnetic structures with field scale B (units of velocity), small scale fluctuations in
the field behave like Alfvén waves. The interaction time between two counter-propagating
waves (of mean wavenumber k) is then τB ∼ (Bk)−1. The rate at which energy is trans-
ferred in the inertial range (equal to the energy dissipation rate ε in stationary turbulence)
is proportional to τ and the proportionality factor is assumed to be only dependent on
Ê = ÊK + ÊM and k (assuming a local cascade). Through dimensional analysis, we obtain
[9]

ε ∝ τBÊ
2k4 =⇒ Ê ∝ (εB)1/2k−3/2. (4.2)

However, this theory assumes equipartition of KE and ME in stationary and isotropic
MHD turbulence (also with M = 1). Instead, we study the transition from a hydrodynamic
regime (a slope in the KE close to -3) into a magnetic one, where the field has a background
uniform component in one direction and the initial ME is always inferior to the initial KE.
The slopes computed and discussed above are thus not a contradiction to the theory, but
rather a depiction of how 2D hydrodynamics transition to a magnetic regime described by
the Iroshnikov-Kraichnan phenomenology. We have considered an initial configuration of
a random and isotropic magnetic field with this code in decaying MHD turbulence. We
there readily confirmed the -3/2 law of the total energy but we do not include these results
in this thesis.
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4.5 Spectral Transfers

We now introduce the computation of the spectral energy transfers (2.62) and their re-
spective fluxes. We opt to show the fluxes Πq,L,A instead of the transfers because Tq,L,A are
highly oscillatory and their integrals provide a clearer picture. We attempted the compu-
tation of the spectral energy transfers and fluxes in the same way that we did the energy
spectra (in azimuthally integrating on the annulus of area π(k2 − (k + dk)2) using the
mean of the field on that annulus times the area). We found that doing so invalidated the
conservative property of T (k), where the total energy flux Π(k) did not vanish at large k.
To correct this, we resulted to summing the individual components on this annulus in lieu
of our integration method2. In the absence of dissipation, energy conservation in spectral
space requires that the double sum

∑
kx

∑
ky
T (kx, ky) vanishes, or equivalently that T is

conservative. What we opted for here, is to simply sum the components of T (kx, ky) which
appear on the annulus of area π(k2 − (k + dk)2) as the value of T (k) to preserve energy
conservation3. We confirmed that computing the energy spectra using either method gives
the same answer and energy dissipation also does not change very much. These quantities
however are of one sign (the spectra are positive and energy dissipation is purely negative).
The main difference between the two methods occurs in T (k), where its combination of
sharp changes in sign at small k combined with very large amplitudes must be to blame.

Regardless, while the energy spectra (Figure 4.5) show the distribution of energy over
a range of length scales, the spectral energy fluxes show how energy moves between length
scales. We plot in Figure 4.6 the total spectral flux Π(k) in the left column and the
component due to the advection of the PV Πq(k) in the right column for the rigid lid case
in the top row and for a free-surface in the bottom row. A negative value for a spectral
flux corresponds to an upscale transfer of energy (to larger length scales) and a positive
value shows a downscale transfer (to smaller length scales). In a rigid lid, the total flux Π
(top-left panel) for the hydrodynamic case (black curve) shows a transfer of energy towards
larger length scales (for k < 1). When M = 0, Π = Πq and so black curves on a same row
are identical. When we increase M = 10−3 (red-curve) however, we generate a downscale
transfer in the mid-scales while also retaining the upscale transfer from the hydrodynamic
case. The two larger values of M = 10−2, 10−1 show that the effects of magnetism dominate
over the upscale transfer and Π becomes essentially positive, where the net energy transfer

2We confirmed that summing gave consistent results with the theory using a hydrodynamic turbulence
case in which Tq, DH are the only relevant quantities.

3The number of points on the annuli, N◦(k) increases with k, and is computationally confirmed to
be approximately N◦(k) = Lk, where L is the domain scale. This effective extra factor of k takes the
placeholder of the polar Jabocian if we integrated azimuthally.
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Figure 4.6: Total Spectral Energy Flux (Π, left) and only the PV advection component (Πq,
right) for decaying turbulence as a function of the wavenumber, for 4 different values of M :
0 (solid black), 10−3 (dashed red), 10−2 (dot-dashed green) and 10−1 (dotted blue). The
top row shows the rigid lid evolution with F = 0 while the bottom row shows the influence
of a weak free-surface F = 1. All quantities are temporally averaged in 120 < t < 150.
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is to smaller scales. The top-right panel shows that for increasing M , the contribution
from the advection of the PV on the energy flux is decreasing in magnitude. For the two
larger values of M = 10−2, 10−1, Πq shows a region of weak upscale transfer in the low
to mid-scales not previously seen in the hydrodynamic case (black curve). Since Πq also
vanishes at large k for all M , Tq appears to be individually conservative as well.

In the next row, we include the influence of a free-surface (F = 1). In the hydrodynamic
case, we see the same upscale transfer from the row above in the larger scales (0.3 < k < 1)
but now accompanied by a new region of downscale energy transfer at even smaller k
towards k ≈ 0.3 consistent with the idea that the free-surface inhibit vortex-interaction at
larger scales. Such a zero in the plot of Π displays a convergence of energy flux towards
this particular value of k from larger and smaller scales. The inclusion of a weak field
(M = 10−3) in the same panel displays again a downscale transfer in the mid-scales, but
the larger values of M have amplified Π(k) by a factor of about 4 (compared to the rigid
lid) and has flattened it over a larger range in the mid-scales (especially when M = 10−2,
green curve). For Πq in the bottom right panel with a free-surface, we see clear evidence
of the downscale transfer at largest scales from the free-surface when M = 0, 10−3. The
upscale transfer in the mid-scales when M = 10−2, 10−1 is larger in amplitude compared
to the rigid lid case and we developed a weak downscale transfer at very small scales for
the same two values of M .

Figure 4.7 shows the components of the spectral flux due to the Lorentz force (left)
and the advection of A (right) in a similar way. The black curves are associated with A
being a passive tracer and do not contribute to Π in the previous plot since there is no
ME when M = 0. These are included to compare with the weak field case (dashed red).
In a rigid lid (top), ΠL shows that the Lorentz force induces a net downscale transfer of
energy on the flow apart from the largest value of M = 10−1 where a region of upscale
transfer pushes energy towards k ≈ 20 from either end. This suggests that magnetism
has a preferred scale, dependent on M , reminiscient of the effects of a free-surface in a
hydrodynamic evolution. We saw further evidence of this in the plotting of the microscales
in the previous section. The contribution to the energy flux from the advection of the
magnetic potential A generally compensates for that of the Lorentz force to provide an
energy transfer in the opposite direction both in a rigid lid and in a free-surface. Since Π
and Πq in the previous figure vanish at large k for all considered M and F , it follows that
the sum ΠL + ΠA = Π−Πq do as well. This effective cancellation is consistent with (2.19),
where the Lorentz force and the advection of A cancelled exactly in the evolution of the
total energy.

Finally, energy dissipation from viscosity DH , and diffusion DH (which are more co-
herent and less oscillatory than Tq,L,A) are shown in Figure 4.8. To be clear, these are
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Figure 4.7: Spectral Energy Flux due to the Lorentz force (ΠL, left) and only due to the
advection of A (ΠA, right) for decaying turbulence as a function of the wavenumber and
for 4 different values of M : 0 (solid black), 10−3 (dashed red), 10−2 (dot-dashed green)
and 10−1 (dotted blue). The top row shows the rigid lid evolution with F = 0 while the
bottom row shows the influence of a weak free-surface F = 1. All quantities are temporally
averaged in 120 < t < 150.
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not the viscous/diffusive equivalent of Π but rather those of T , which appear directly in
(2.56) and (2.57). A positive transfer displays energy injection while a negative transfer
corresponds to energy loss. Unsurprisingly, all curves in this figure are purely negative and
take energy away from the system, as they should. They show an interesting transition
between regimes, one of which we will refer to as hydrodynamic and the other a magnetic
regime, for our four cases of M . The black and red curves (hydrodynamic and weak field
cases) show that viscosity (top-right) dissipates energy the most near 0.5 < k < 0.8 and
diffusion (top-left) acts near 20 < k < 30. This gap, slightly larger than a decade, is con-
sistent with the same behaviour observed in the typical scales of the KE and ME in Figure
4.3. When M reaches 10−2 however in the green curves, the wavenumber where viscosity is
most active jumps to near 10 (to smaller length scales) and the corresponding wavenumber
for diffusion decreases towards the same value (to larger length scales). This convergence
was also observed in Lu and Lb. This jump in scales is accompanied by a decrease in the
amplitude of viscous dissipation and an increase in the amplitude of diffusion, consistent
with the idea that we have more ME to deal with for larger M . We mentioned above a
transition between a hydrodynamic and a magnetic regime since intermediate values of M
for the rigid lid evolution (in particular M = 3 × 10−3, not depicted here) show that the
way in which the red curve moves to the green curve (M = 10−3 to 10−2) in the plot of vis-
cosity, is not by smoothly travelling to larger k (as diffusion seems to be doing) but rather
a competition between two discrete ranges of k. We will see this competition explicitly
with a weak free-surface. Again, the black curves in the DM plots are associated with A a
passive tracer.

Moving to the flow with F = 1 in the bottom row of Figure 4.8, the hydrodynamic and
weak field cases of energy dissipation due to viscosity (black and red curves, bottom-right),
have a slightly sharper peak still in the same range covering 0.5 < k < 0.8. The next step
in magnetism shows a slightly smaller peak in the same range but also the beginning of the
transition from a hydrodynamic regime to a magnetic one, which had already complete in
the rigid lid case for this value of M . In this case (green curve, bottom-left), the magnetic
regime (the range of larger k and so smaller scales where energy is dissipated from the
effects of magnetism) has approximately 15% the amplitude of the analogous peak in the
hydrodynamic regime (at smaller k), in the same curve. This delay in transition shows that
increasing F slows the dominance of the magnetic regime (where energy is dissipated at
smaller length scales) over the hydrodynamic one. The strongest case (blue) shows a very
wide tail in the small wavenumbers where there is significant loss of energy at all length
scales smaller than 2π/10 (for the peak at k = 10). In comparison, diffusion (right panel)
is more similar to its rigid lid counterpart but the two stronger field cases have more than
doubled in amplitude and the strongest case was a wider tail at small k.
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Figure 4.8: Energy dissipation from viscosity (DH , left), and diffusion (DM , right) for
decaying turbulence as a function of the wavenumber for 4 different values of M : 0 (solid
black), 10−3 (dashed red), 10−2 (dot-dashed green) and 10−1 (dotted blue). The top row
shows the rigid lid evolution with F = 0 while the bottom row shows the influence of a
weak free-surface F = 1. All quantities are temporally averaged in 120 < t < 150.
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Finally, let us summarize the main findings in the study of decaying 2D-MHD turbu-
lence. As was expected from the theory of 2D-MHD, we found that increasing the magnetic
field strength through M pushed more energy (and in particular more KE) at smaller length
scales. This manifested in a consistent way throughout Lu, the energy spectrum, the spec-
tral fluxes and energy dissipation. Our inclusion of the uniform background magnetic field
pointing in the x-direction also introduced an anisotropy in the flow that was most visible
in the strongest case of M considered. Including the effects of a weak free-surface, we
confirmed that in the hydrodynamic case, the interaction between large scale vortices is
inhibited when choosing F non-zero and the typical scale of the KE remained near one. We
also found that the free-surface made the flow more isotropic in the mean, as it did with
the vortex cases in the previous chapter. Increasing F further flattened the microscales
in terms of suppressing the long-time oscillations in Lu, Lb and this was also apparent in
the snapshots of the evolution, where vortices were more stationary and compact. For the
energy fluxes, the weak field case showed that magnetic effects manifest by introducing a
clear downscale transfer over a wide range in the mid-scales, which amplifies and domi-
nates for the two largest values of M considered. Including a free-surface with magnetism
showed the same behaviour but over a wider range of scales. For the two strongest cases
of magnetism, the downscale transfer of energy from magnetic effects dominated over that
of the free-surface. While the advection of the PV has very little downscale effects, the
Lorentz force and the advection of A push energy to smaller scales while their combined
effects TL + TA remain conservative on the total energy, reminiscent of the cancellation of
their respective terms in the derivation of the total energy evolution (2.26). For viscosity
and diffusion, nonzero F delayed the switch from a hydrodynamic regime to a magnetic
one, where the length scale at which energy is most dissipated due to viscosity moves to
smaller scales, by a decade.
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Chapter 5

The Stability of a MHD Bickley Jet

After having investigated MHD turbulence and in particular how energy is transferred
between scales, we turn our attention to the study of shear instabilities. Specifically, we
investigate the linear stability and nonlinear evolution of an unstable Bickley jet in the
context of QG-MHD and compare the effects of a free-surface with that of a rigid lid for
the same four values of the effective magnetic field strength, M . In this chapter, we restrict
ourselves to F = 1/2 instead of the larger F = 1 (discussed in the previous chapters) when
considering the effects of a weak free-surface in the nonlinear evolution. The parameter
is found to be stabilizing enough that F = 1 decreases the growth rate approximately
five-fold compared to the F = 0 case in the hydrodynamic limit. Our choice of F = 1/2
in this chapter is sufficiently large to demonstrate the nonlinear effects of a free-surface
without sacrificing computing time. The MHD jet we focus on is a stationary solution to
the system (2.4) and is defined as (in the formalism of 2.66)

U(y) = sech2(y − Ly/2), Ψ(y) = −tanh(y − Ly/2), B(y) = 1, Ā = −y (5.1)

The associated PV field is computed via: Q̄(y) = ∂yyΨ − FΨ. We shall first present the
results of the LSA and then study the nonlinear evolution in a similar fashion to what was
done for freely-decaying turbulence.

5.1 Linear Stability Analysis

We solve system (2.74) for the unstable MHD Bickley jet in a parallel background magnetic
field (5.1). We show in Figure 5.1 the individual contributions of the nondimensional
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Figure 5.1: Contour plots of the growth rate of the largest growing mode for the unstable
Bickley jet as a function of the wavenumber k and of F , with M fixed at 0 (top-left) and 0.1
(bottom-left), and as a function of the wavenumber k and M with F fixed at 0 (top-right)
and 1/2 (bottom-right) respectively. Both parameters are stabilizing.
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quantities, F and M , on the stability of the jet by depicting the maximum growth rate
over a range of wavenumbers. Recall these parameters respectively control the influence
of the free-surface and the relative strength of the background magnetic field. The growth
rates determine how fast the perturbation grows exponentially in time. The system (2.74)
is solved for a fixed vector of wavenumbers k ∈ [0, 2] and for F ∈ [0, 1], with M fixed
at (top-left) 0 and (bottom-left) 0.1, and again as a function of the wavenumber k and
now M ∈ [0, 0.4] with F fixed at (top-right) 0 and (bottom-right) 1/2 respectively. Recall
that the effective magnetic field strength M and the rotational Froude number F are
individually (with the other parameter held at zero) stabilizing to jets [73, 56]. Figure 5.1
confirms this to be the case where the growth rate of the most unstable mode decreases
with both M and F in the first row. The same plots also show that both parameters are
stabilizing in different ways as the most unstable mode transitions to different length scales.
For the case of no magnetism and increasing influence from the free-surface (top-left), the
largest growing mode is moving to larger k (or smaller length scales in the x-direction). In
contrast, for the case of a rigid lid and increasing influence from the background magnetic
field (top-right), the largest growing mode moves to larger length scales in the x-direction.
The bottom row shows that with non-zero values of the other parameter, the behaviour
is the same and the nondimensional parameters are still stabilizing in the presence of
the other. The maximum growth rate in the bottom row (non-zero value of the other
parameter) is smaller than in the top row, indicating that the effective stabilization of
both M and F compound on the evolution of the jet. We suspect the sharper features in
the bottom-right corners of the right column panels are due to numerical error.

We chose to keep the same domain size Ly = Lx = 8π as the previous chapters for all
considered values of F and M in the nonlinear simulations. Of course, this means that
the largest growing mode from the theory may not fit an integer number times in the
domain length (the x-direction). To provide a fair comparison between the theory and
the nonlinear simulations, we used the predicted growth rate of the mode fitting exactly
three periods in the domain. This is the mode that was shown to grow the fastest in the
nonlinear simulations (a posteriori). This mode corresponds to wavenumber k = 3/4 in
system (2.74), close to the most unstable wavenumber at or just below k = 1 from Figure
5.1. A modal wavenumber of 1/4 would fit one period, wavenumber 1/2 would fit two and
so on, given our domain length. We further include a depiction of the spatial structure of
the most unstable modes for selected F = 0, 0.5, 1, and M = 0, 0.1, 0.2 at k = 3/4 in Figure
5.2. The PV is plotted on the same domain as the nonlinear simulations for comparison and
the growth rates ωI and phase speeds ωR are also included in each panel for reference. In
the first row for the hydrodynamic limit, the inclusion of the free-surface and the increase
in F has a subtle effect on the PV where it tends to sharpen the features on the flanks of
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Figure 5.2: Spatial structure of the PV for the largest growing mode of the unstable Bickley
jet when F = 0, 0.5, 1, and M = 0, 0.1, 0.2. The growth rate is given by ωI and ωR is the
phase speed.
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the jet, while having little effect along its axis. Given the spatial structure and what we
know from the established literature, we can refer to this mode as a sinuous one where the
streamfunction is even about the jet axis. Unstable modes with odd streamfunctions on
the other hand are called varicose modes [61]. With M = 0.1 in the next row, the PV for
the rigid lid case (F = 0) has changed slightly from the case above it, where the features
on the flanks are subtly compressed and elongated in the x-direction. With this M = 0.1,
the next column when F = 0.5 (center panel) shows a more pronounced sharpening, but
finally when F = 1 the flanks are very long and thin. In the next row, for a higher value
of M = 0.2, we still see a pronounced stretching of PV on either flank and increasing F
up to one now actually created features further away from the flanks while leaving strong
and thin PV filaments close to the axis. The bottom row and right column showcase some
extreme cases of high F and M and their effect on the jet. However, since sufficiently
different dynamics occur for F = 0, 0.5 and M < 0.1 in the nonlinear evolution, we omit
these extreme cases there.

The growth rates from the nonlinear simulations were computed using the 2-norm of the
perturbation streamfunction, ||ψ′|| = ||ψ−Ψ||, which appears directly in the linear stability
problem (2.74). Recall the modal decomposition (2.72) where ψ′ = ψ̂ exp(ikx) exp(−iωt)).
The growth rate is the imaginary part of ω, ωI and determines how fast the solution grows
exponentially in time, ||ψ′|| ∝ exp(=(ω)t). Regions of exponential growth (and therefore
temporal ranges in which the linear stability theory applies) are easily picked out as linear
segments on a log-scaled graph of ||q′||. For the considered parameters, this temporal range
typically included 20 < t < 40. In such a plot, the line of best fit can be computed over a
small range of times (4 time units in our case) where its slope corresponds to the growth
rate of the instability, since ln(||q′||) ∝ ωIt. Individual data points were considered to
compare linear theory with nonlinear evolution. We used 4 cases shown in the top-left of
Figure 5.2, namely the combinations of M = 0, 0.1 with F = 0, 1/2 and found that the
computed growth rates differ from those predicted by linear theory (at k = 3/4) at most
by approximately 7 % (relative error). The associated spatial structures of the modes also
agreed very well. We have good agreement between theory and numerical simulation where
we expect the remaining discrepancy to be due to numerical error. We now move to the
nonlinear regime in studying the effects of magnetism and non-zero F .

5.2 Rigid Lid Simulations

We begin our nonlinear study of MHD Bickley jets by isolating the effects of magnetism
in a rigid lid framework (F = 0) and we again plot the PV field, q. We use the same
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random field generator from our study of turbulence to create the perturbation velocity
and magnetic fields at 1% of the amplitude of the background quantities. The spectral
width and typical wavenumber for the perturbation are σ = 2, and kt = 0. Snapshots of
the perturbation PV field are provided in Figure 5.3 for M = 0, 10−3, 10−2, 10−1 and at
times t = 20, 50, 100, 150. In the first column at t = 20, we observe the structure of the
unstable mode, well in agreement with what is predicted by linear theory in Figure 5.2.
The first three cases of M = 0, 10−3, 10−2 show very little change and approximately three
periods of the mode in the x-domain. For the largest M however (bottom left), we see that
the structure has changed. The bulk of the mode is similar (near the axis) but the vortical
features on either flank of the jet have been stretched out and thinned in the x-direction.

In the next column (t = 50), we have left the linear regime and again the first three
rows are rather similar, where the unstable mode has given rise to vortices. Since we
plotted the perturbation PV, we see the negative imprint of the background q where the
jet used to be. In these cases, the amplitude of q′ and Q̄ are similar given the color-scale,
and q′ ∼ Q̄ ∼ O(1). The strongest case in the second column (bottom row) shows that
a stronger magnetic field generates large amplitude filaments of PV (with q′ ∼ O(10)),
that dominate the field in comparison to the vortices seen in the three cases above it.
This behaviour reminds us of the early-time evolution for a row of vortices from Chapter
3 in Figure 3.3. At the next time (t = 100), only the first two rows are similar and the
presence of magnetism has been felt in the third row for M = 10−2. Recall that this is
the case of magnetism satisfying the vortex disruption criterion and so this behaviour is
expected. Secondary instabilities of smaller length scales are generated on the periphery of
the vortices. The resulting filaments have started to dominate the evolution and to destroy
the coherence of the remaining cores. For M = 10−1, this time shows very little evidence
that coherent vortices remain and the bulk of the PV amplitude is concentrated along thin
filaments located near the jet axis. A brief outline of vortical features protruding away
from the jet axis (above and below) however show the remainder of the vortices generated
by the instability. Finally at the last time t = 150, we start seeing the difference between
the hydrodynamic and very weak field (M = 10−3) evolution in the first two rows, where
filaments of PV surrounding coherent cores begin to amplify. The M = 10−2 case now
shows an aesthetically pleasing array of rather turbulent (small scale) features and the
amplitude of q′ has decreased from the previous time. The M = 10−1 case on the other
hand has organized the filaments of PV in the x-direction due to the strong effects of
magnetism.

Mak et al. 2017 [57] considered a 2D-MHD Bickley jet in their investigation of the vortex
disruption criterion. They however considered a smaller Re = 500 and Rm ∈ [50, 1000]
along with a range of M ∈ [0.005, 0.05]. In comparison, recall we have Re = Rm = 104
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Figure 5.3: Snapshots of the perturbation PV for the (rigid lid) unstable Bickley jet for
increasing M = 0, 10−3, 10−2, 10−1 and at times t = 20, 50, 100, 200.
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and M ∈ [0, 0.1]. Our higher choice of Reynolds numbers generates smaller scale features
in comparison and our wider range of M also includes a stronger field regime and new
resulting dynamics. Given our four points in M and the selected times, Figure 5.3 can
be summarized by the following observations: i) The structure of the most unstable mode
is similar for M = 0 − 10−2 but small scale filaments of PV arise on the jet flanks when
M = 10−1. ii) Immediately beyond the temporal range where linear theory still applies, the
filaments of PV when M = 10−1 dominate the evolution whereas the other cases are similar
to a hydrodynamic evolution. iii) Far into the nonlinear regime, vortex disruption occurs
when M = 10−2, well in agreement with the vortex disruption criterion RmM

2 ∼ O(1) [57].
iv) Magnetic effects start to manifest only after very long time for a weak field of M = 10−3.
v) The strong field case displays organisation of vortical filaments in the same direction
as the field. Thus, we see many parallels in the evolution of the jet when compared to
the evolution of vortices considered in Chapter 3 and the turbulence in Chapter 4. These
include the consistent vortex disruption regime, small scale filaments of the PV, and the
eventual alignment of the flow with the field.

5.3 Free-Surface Simulations

After seeing the qualitative behaviours of the rigid lid case for increasing magnetism, we
now move on to non-zero contributions from the rotational Froude number in a QG-MHD
regime. Recall we pick F = 1/2 in this section and consider then same values of M
considered above. Poulin & Flierl 2003 [73] found that F is stabilizing on shallow jets with
compacting effects on the instability. Flierl et al. 1987 [30] found that a barotropic beta
plane is also stabilizing, with similar compacting of the jet towards its axis. This behaviour
is quite clearly shown in the PV plotted in Figure 5.4. The first row is hydrodynamic and
the instability gives rise to vortices that remain in close proximity to the jet flanks even
after long time, in agreement with the expected compacting effects of F . The inclusion
of the weak magnetic field (M = 10−3) in the next row shows very little change for the
entire simulation. For M = 10−2 in the third row, the early evolution is similar to the
hydrodynamic and weak field cases. However when t = 100, the periphery of the generated
vortices yield thin and large amplitude filaments of PV. These become unstable and give
rise to secondary instabilities which begin to dominate the field by the final time. Notice
that even with the small scale features generated from magnetism, the extend of the motion
in the y-direction is more localized near the jet axis compared to the rigid lid evolution.
Finally, for the largest case of magnetism (M = 10−1) in the last row, the early evolution
shows the same thin filaments around the most unstable mode. However, this evolution is
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Figure 5.4: Snapshots of the perturbation PV for the unstable Bickley jet in a weak free-
surface (F = 1/2) for increasing M = 0, 10−3, 10−2, 10−1 and at times t = 20, 50, 100, 200.
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more similar to the M = 10−2 rigid lid case (third row), providing PV filaments which are
not aligning with the field as quickly as before. These figures provide further evidence that
the effects of a free-surface and those of magnetism qualitatively combine, where the surface
has a spatially compacting effect on the flow (as seen in hydrodynamics) and magnetism
generates small scale features with a tendency to align the flow with a strong field. The
aforementioned figures give us a nice depiction of the evolution and we now move on to
the relevant diagnostics to provide quantitative support in our observations.

5.4 Length Scales and Anisotropy

In this section we present the typical length scales (2.77), and anisotropy norms (2.78) for
the velocity and magnetic field. The scales are included in Figure 5.5 and are computed
using the full field (including both the background and perturbation components). Keeping
the same theme from the previous chapters, the different values of M are shown as 0 (solid
black), 10−3 (dashed red), 10−2 (dot-dashed green) and 10−1 (dotted blue). The plots have
been cropped to the same vertical bounds allowing for a better comparison between the
kinetic and magnetic counterparts. The top bound is still picked to contain the largest
value of Lu while the bottom bound is the grid-scale.

Starting in the top left with Lu in a rigid lid, the initial value is approximately 1
and displays the length scale of the jet. The black (hydrodynamic) and red (M = 10−3)
curves are essentially superimposed for the displayed temporal range and show an increase
(though slight) in the typical length scale of the velocity. This is consistent with our results
of hydrodynamic turbulence, where the vortices generated by the instability interact and
combine. The weakest strength of M = 10−3 has yet to disrupt this increase but the
length scale is slightly smaller than the hydrodynamic case. For the other two curves,
we see significant drops in Lu (by almost an order of magnitude). The highest strength of
magnetism (M = 10−1, dotted blue) shows this dip first near t = 30 and theM = 10−2 (dot-
dashed green) case shows this to start happening near t = 60. After t = 100 however, these
two stronger cases show very similar length scales and the green curve is more consistently
increasing while the blue shows some oscillatory behaviour thereafter. An increase in M
therefore correlates with a decrease in Lu and the strongest field shows this sharp transition
to occur at earlier times. While both the stronger cases of magnetism (M = 10−2, 10−1)
leave the linear regime of evolution at similar t, the time needed for the Lorentz force to
act on the generated vortices is shortened for the stronger field and smaller scale features
are more quickly created.

Now for the magnetic analogue in the top right corner of the same Figure 5.5, of course
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Figure 5.5: Kinetic (Lu, left) and magnetic (Lb, right) microscales (2.77) for the rigid lid
(top) and free-surface (bottom) Bickley jet as a function of time for four different values
of M : 0 (solid black), 10−3 (dashed red), 10−2 (dot-dashed green) and 10−1 (dotted blue).
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the initial scale Lb is large in all cases given that the field is initially uniform. It is evident
however that Lu and Lb are still affected in different ways in varying M given that Lb tends
to increase with increasing M . After the initial adjustment near t = 50, the hydrodynamic
and weak field cases lead Lb closer to the grid scale while the M = 10−2 (dot-dashed green)
case rises to larger length scales. The strong field case is isolated further away at larger
scales still and displays some oscillations rather than a consistent rise. These oscillations
roughly match up with the respective ones seen in Lu. Having plotted Lu and Lb on the
same vertical scale is useful for comparing their respective amplitudes. While Lu typically
decreases and Lb increases for increasing M , our largest M = 10−1 field case seems to have
let both converge to the similar value, where Lu Lb. This shows that for strong enough
magnetic field, the length scales of u and b can become similar.

For the bottom row of the same figure with a free-surface, the hydrodynamic increase in
the typical length scale of the velocity (black curve, bottom left) is very slightly dampened
compared to the rigid lid analogue. The other two values of M show a consistent decrease
of Lu and there is greater separation between the green and blue curves. The plots of Lb in
the bottom right panel show similar qualitative features to the rigid lid case where there is
an initial drop in the length scale, but this adjustment now take 20− 25 time units longer
to settle down. The resulting evolution is relatively free of oscillations, especially in the
strong field case. In comparison to the turbulent length scales from the previous chapter,
most of the variation we see in Lu happens after the jet has become unstable and has left
its stationary evolution. The general behaviour however is the same, where Lu decreases
with M , Lb increases with M (after the initial adjustment) and F dampens energy transfer
to large scales and long time oscillations in the microscales.

The norm of the anisotropy in the velocity and the magnetic field are shown in Figure
5.6, for the case of a rigid lid on top and the case of a free-surface on the bottom. Since both
the initial u and b are in the x-direction given (5.1), both norms display values of 1 at t = 0,
reflecting that the KE and the ME are aligned with the x-axis. The qualitative behaviour
in both top panels is similar, where the hydrodynamic and weak field cases reach a regime
of bulk isotropy by the final time (a value close to 1/2) after some oscillations. For the other
two stronger cases of magnetism, the velocity and field become more concentrated in x, in
agreement with the established literature that a horizontal magnetic field introduces such
anisotropy. Including a free-surface in the bottom row, the qualitative behaviour from the
analogous snapshots of the PV is confirmed where the flow remains much more concentrated
along the x-direction and closer to the jet axis. The oscillations in the anisotropy norms
are slower and the KE appears better aligned with the x-axis than the ME for all values of
M . Unsurprisingly, these anisotropy norms look different than the turbulent analogues in
terms of where they start. In turbulence, we picked the initial KE to be isotropic and here
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Figure 5.6: Anisotropy norms for the velocity (left) and magnetic field (right) (2.78) for the
rigid lid (top) and free-surface (bottom) Bickley jet as a function of time for four different
values of M : 0 (solid black), 10−3 (dashed red), 10−2 (dot-dashed green) and 10−1 (dotted
blue).
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it clearly is not. However, the general alignment of the flow with the magnetic field for
increasing M remains, especially in a rigid lid configuration. While the turbulence cases
showed largely isotropic flows in the presence of a free-surface, we certainly cannot expect
that to be the case for the jet, where the flow was initialized in the x-direction.

5.5 Energy Spectra and Spectral Transfers

We consider the energy spectra and energy dissipation from (2.56) and (2.57). We however
omit the dynamic components of the spectral fluxes that we saw in the turbulence chap-
ter. The reason is that in the case of a Bickley jet, the background streamfunction Ψ̄ is
a hyperbolic tangent, which is not periodic across the boundary and does not allow us to
cleverly transform the equations for the perturbation KE into the total KE in our calcula-
tions of the budgets. The computational consequences of plotting the same fluxes for the
perturbation KE shows a Π(k) that does not vanish at large k. Since KE is taken from the
background jet to feed the perturbations, there is no reason T (k) should be conservative
in this regime1. However, the dissipative effects of viscosity and diffusion indicate at what
length scales energy is lost. This is a decent comparison to make with the turbulence
results, which only had a random component to the KE.

First, the spectral slopes are included in Figure 5.7, in the same arrangement considered
in our study of turbulence (Figure 4.5). We take the same temporal averaging in 120 <
t < 150 and the slopes are computed again in 6 < k < 10. We find that the slopes of
the perturbation KE are very similar to the turbulence cases in the top-left panel, again
where increasing M pushes more KE to smaller scales and generally shallows the spectral
slope. This suggest that the perturbations on the jet are turbulent-like. The M = 10−2

curve appears as an outlier once again, where the slope is shallower than the strongest
case. This is believable since the evolution of the jet in M = 10−1 is hardly turbulent and
rather displays the advection of vorticity filaments, aligning with the field. For the weak
values of M , the ME spectrum (top-right) is still very flat until M = 10−2, where the two
stronger fields show a peak of ME in the mid-scales.

For the case of a free-surface in the next row, the hydrodynamic case is still somewhat
steeper and the qualitative behaviour is similar to the above where more KE is contained at
smaller scales for increasing M . For the ME, the free-surface provides spectra that are more
convex (as opposed to flat) in the mid-wavenumbers and there is greater scale separation
in the very small k for the two strongest values of the field. The various similarities

1A cosine transform would avoid the computational constraints of general background streamfunctions.
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Figure 5.7: KE (ÊV , right) and ME (ÊM , left) spectra for the rigid lid (top) and free-
surface (bottom) Bickley jet as a function of the wavenumber for four different values of
M : 0 (solid black), 10−3 (dashed red), 10−2 (dot-dashed green) and 10−1 (dotted blue).
Spectral slopes α (for EV,M ∼ kα) are computed in the range 6 < k < 10 and all quantities
are temporally averaged in 120 < t < 150.
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between these slopes and those of the turbulent cases indicate that the long-term evolution
of the unstable Bickley jet does give rise to a turbulent-like flow in the perturbations. Of
course, the same exception from Chapter 4 occurs, where the strongest case of magnetism
induces dynamics that are highly anisotropic, and so the 1D spectra are not the best tool
of diagnosis for this particular case.

The viscous and diffusive components DH , DM of energy dissipation are plotted in
Figure 5.8, temporally averaged in 120 < t < 150 and shown as a function of k. Recall in
Chapter 4 we discussed two particular regimes for these quantities, a hydrodynamic one,
where energy was most dissipated at large scales due to viscosity, and then a magnetic
regime where energy was mostly lost at smaller length scales. In rigid lid turbulence, the
transition between both regimes was made sharply from M = 10−3 to M = 10−2. Instead,
our rigid lid jet evolution (top-left) shows a similar story to that of free-surface turbulence,
where the competition of both regimes is seen for M = 10−2. The amplitudes of viscous
dissipation in either regime for this strength of M differ by about a factor of 3. For the
largest case of magnetism however, see still see the hydrodynamic regime peaking near
k = 2 and it appears to remain dominant over the magnetic one. The dissipation of energy
due to diffusion is very similar to the turbulence cases where the wavenumber at which
energy is most dissipated moves to larger scales for increasing M . Now, the M = 10−2

case shows a larger magnitude of diffusion near k = 10 compared to the strongest field but
the latter is more uniformly active over the mid-wavenumbers.

For the free-surface evolution in the next row, viscosity in the hydrodynamic case is
reduced in amplitude and show two local minima near k = 0.5− 0.8 and k = 2. The weak
field case is essentially the same supported by the virtually identical evolution shown in
the snapshots of the PV. For M = 10−2 and M = 10−1, we see similar viscous dissipation
as in the rigid lid case, where the two regimes in DH compete and are still dominated by
the hydrodynamic regime (in amplitude). The increase of M for diffusion still increases
the scale at which energy is dissipated, in agreement with the plots of Lb which indicated
that the typical scale of the ME also increased with M .
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Figure 5.8: Energy dissipation from viscosity (DH , left), and diffusion (DM , right) for
the rigid lid (top) and free-surface (bottom) unstable Bickley jet as a function of the
wavenumber for 4 different values of M : 0 (solid black), 10−3 (dashed red), 10−2 (dot-
dashed green) and 10−1 (dotted blue). All quantities are temporally averaged in 120 < t <
150.
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Chapter 6

Conclusion

In this thesis, we covered in detail the nonlinear evolution of jets, vortices and turbulence
for finite and discrete ranges of the nondimensional parameters. We derived evolution
equations for the conserved quantities of the system, including an adjusted definition for
the cross-helicity which accounts for the influence of the free-surface in QG-MHD. Inspired
by Weiss’ classical vortex problems, we considered various arrangements of vortices in
an attempt to better understand their core dynamics with a magnetic field beyond a
kinetic context. We saw clear evidence of magnetic flux expulsion for the weaker values of
M = 0, 10−3 (weaker Lorentz force) and vortex disruption for a sufficiently strong magnetic
field, with M = 10−2 (stronger Lorentz force). For large enough M , thin filaments of PV
were found to amplify on the periphery of the vortices until they dominated the flow. The
strongest considered field introduced different dynamics, inducing elastic properties in the
fluid and a resulting oscillatory behaviour. The presence of a magnetic field encourages KE
to be moved to smaller length scales, and more so with increasing M . After vortices have
distorted magnetic field lines, the ME does the opposite and increases in length scale for
increasing M . The free-surface in the context of rotating hydrodynamics has a compacting
effect on the flow where the interaction between large scale vortices is inhibited. For
MHD vortices, the free-surface has the same consequence with a stabilizing effect on their
evolution. The surface tended to inhibit the alignment of the flow with the field compared
to the rigid lid cases and of course, the magnetic field prevented a flow from remaining at
larger length scales. The consequent combination and interaction between the free-surface
and the field is complicated and warrants further investigation.

Using our newfound wisdom on vortex-field interactions, we moved to a more global
description of freely-decaying turbulence. Various features remained from the study of
vortices, where the field introduced anisotropy and generated smaller scale features in
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the PV. The typical length scale of the KE decreased for increasing M whereas we saw an
increase in that of the ME. The presence of the free-surface with F = 1 has again suppressed
temporal oscillations in the relevant quantities and inhibited the eventual alignment of the
flow with the field. We found in studying the kinetic (ÊK) and magnetic (ÊM) energy
spectra that the shape of ÊK tended to shallow with increasing M , while ÊM tended to
steepen and accumulate energy at larger length scales. These behaviours were still present
and obvious with a weak free-surface. In our study of decaying turbulence, we developed
tools to understand the direction of the energy cascade. The derivation and computation
of the spectral energy transfers Tq,L,A(k) and respective fluxes Πq,L,A(k) provided formalism
to understand to what extent the particular terms in the equations were moving energy to
smaller or larger length scales. The numerical tools to compute them can be upgraded to do
so for any flow, regardless of the shape of both the kinetic and magnetic streamfunctions,
using more sophisticated transforms.

In our computation of Tq,L,A(k) and Πq,L,A(k), we confirmed that the total energy is
indeed conserved in the absence of viscosity and diffusion, where T = Tq + TL + TA is
conservative. We further found numerical evidence to suggest that Tq (PV advection)
alone is conservative since Πq vanishes at large wavenumbers for all considered values of
M . While the Lorentz force showed a net downscale transfer of energy on the system, the
advection of the magnetic potential compensated to make TL + TA appear conservative as
well. The inclusion of a free-surface amplified the magnitude of Π = Πq+ΠL+ΠA for larger
M and introduced a region of downscale transfer near larger scales. This hydrodynamic
downscale transfer was manifested in the flux component due to the advection of the PV,
Πq for the hydrodynamic and weak field (M = 10−3) cases. Energy dissipation due to
viscosity DH showed a competition of two regimes in the spectral budget. Energy is found
to be lost to viscous effects in two distinct ranges of k, at large (hydrodynamic, k < 1)
and small (magnetic, k ≈ 10) length scales, separated by approximately a decade. The
diffusion of ME is localized at small scales (k ≈ 30) for small M , and moves to larger
length scales for increasing M , converging on the same range with k ≈ 10. This same
convergence was observed in the typical scales of the motion, Lu, Lb.

For the unstable MHD Bickley jet, we computed the linear stability of the system
to confirm that F and M were both individually stabilizing to the jet, providing smaller
growth rates. We further found that their combined effects are also stabilizing on the jet in
the linear regime. Increasing F tended to push the largest growing mode to smaller length
scales in the x-direction, while increasing M did exactly the opposite. In the nonlinear
simulations, we showed how the system evolves past the linear regime, where the most
unstable mode grows exponentially in time. The instability generated vortices that are
disrupted for large enough M , creating small scale features and a resulting turbulent-
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like flow. The expected spatial compactness introduced by the weak free-surface was still
present and the created vortices remained closer to the jet axis compared to the rigid-lid
evolution. The typical scales of motion showed a similar behaviour to the turbulence cases,
with a decrease in Lu and increase in Lb for increasing M . The inclusion of the free-surface
again suppressed temporal variations in the diagnostics. The spectral slopes are similar to
the turbulence cases considered and still display the consistent behaviour of KE moving to
smaller scales and ME moving to larger scales. The viscous DH and diffusive DM terms of
the spectral budget also display a similar competition of the hydrodynamic and magnetic
regimes, though both regimes are significant for M = 10−2, 10−1 in the jet, whereas the
turbulence cases for the same M shifted entirely to a magnetic regime.

In this endeavour, we thus answered how the evolution of a shallow conducting fluid
differs, for increasingly strong magnetic fields, in the cases of a rigid lid and a free-surface
configuration. Then, we found how the stability of a MHD Bickley jet is affected by
an increasingly strong field with and without a free-surface. In doing so, we described
the transition from a hydrodynamic flow to one dominated by magnetic effects in a simple
model of the solar tachocline and the Earth’s molten core. We found that the magnetic field
generates smaller scale features in the PV. Flux expulsion was observed for weaker fields
and vortex disruption was evident for stronger ones. The weak free-surface makes the flow
more compact and inhibits the anisotropy induced by the field. KE is sent to smaller length
scales while ME moves to larger scales for increasing field strength. In the mid to small
scales, the downscale transfer of energy is due to the Lorentz force, and the free-surface
adds an additional downscale transfer at larger scales. Finally, the field and free-surface
are confirmed to be individually stabilizing to the MHD Bickley jet and the combined
effects are also stabilizing. Using the tools that we developed, one can readily extend this
research to forced QG-MHD turbulence, other parallel shear flows, and extended ranges
of the effective magnetic field strength M and the rotational Froude number F . Further,
one could investigate the effects of a not so small free-surface in shallow MHD without
invoking the QG approximation.
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