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Abstract

Recognizing the benefits of data and the information it provides to travel demand is
pertinent to network planning and design. Technological advances have led the ability to
produce large quantities and types of data and as a result, many origin-destination (O-D)
estimation techniques have been developed to accommodate this data. In contrast to the
abundant choices on data types, data quantity and estimation procedures, there lacks a
common framework to assess these methods. Without consistency in a baseline founda-
tion, the performances of the methodologies can vary greatly based on each individual
assumption.

This research addresses the need for techniques to be tested on a common framework
by establishing a baseline condition for static O-D estimation through a synthetic Vissim
model of the Sioux Falls network as a case study area. The model is used to generate a
master dataset, representing the ground-truth, and a subset of the master dataset, emu-
lating the data collected from real world technologies. The subset of data is used as the
input for the O-D estimation techniques where the input is varied to evaluate the effects
of different levels of coverage/penetration of each data type on estimation results. A to-
tal of five estimation techniques developed by Cascetta and Postorino (2001), Castillo et
al. (2008b), Parry and Hazelton (2012), Feng et al. (2015) and X. Yang et al. (2017) are
tested with three data types (link counts, partial traces, and full traces) and two traffic
assignment conditions (all-or-nothing and user equilibrium).

The result of this research highlights the uniqueness of each network situation and
highlights the outcomes of each approach. The wealth of data does not directly equal
better information for every methodology. The insights that each data type provides each
estimation technique reveals different results. The findings of this research demonstrate
and supports that an established testbed framework supports and enhances future O-D
estimation scenarios as it pertains to general O-D estimation and extensions of existing
techniques.
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Chapter 1

Introduction

1.1 Background

Well-conceived and well-executed transportation management systems are the basis for
livable and sustainable cities. The densification of cities facilitates economic prosperity,
cultural diversity, and vibrant activities, but is also the basis of problems such as traffic
congestion, crime, and pollution. As urbanization intensifies in many places around the
world, moving people and goods in an efficient and rapid manner becomes a challenging
fundamental task. Poor planning and infrastructure investments can result in travelers
spending significant amounts of time in congested road networks. The resulting delays and
poor levels of service due to congestion not only negatively impacts the individual traveler
but also damages public health, the environment, general mobility, and the economy. In
Canada and the United States, the cost of congestion in the largest metropolitan cities cost
each country billions of dollars per year (Pishue, 2021; Transport Canada, 2006). It is crit-
ical that the correct tools are available for governing bodies such as Infrastructure Canada
to make better informed decisions pertaining to the $28.7 billion invested in public transit
infrastructure, and the $10.1 billion invested in trade and transportation infrastructure
over the next decade (Infrastructure Canada, 2018).

Understanding transportation systems requires reliable and quality input data for model
formulation, calibration, and validation. Despite the useful improvements and advances
in transportation modelling since the 1950s from one of the first comprehensive trans-
port study released in Chicago (Weiner, 1997), progress has been limited by the quality
of traditional data inputs. Due to the evolution of technology, the ubiquitous boom of
computing devices has created a wealth of data of traffic measurements for transportation
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applications. As Smart Cities initiatives are being implemented worldwide, the promise of
emerging data require the right tools and approaches for solving the myriad of challenges
in urban systems.

1.1.1 Travel Demand Models

Travel demand models (TDM) are widely used to manage existing transportation systems
and plan for future infrastructure investments. The models generally fall into two cate-
gories: (1) traditional four-step model which originated in the 1950s (Weiner, 1997), and
(2) activity-based model which emerged in the late 1970s/early 1980s (McNally & Rindt,
2007).These models rely on quality detailed data as input and commonly include trans-
portation network information, socioeconomic data, and travel activity details. The travel
activity information is typically collected by conducting household travel surveys revealing
the trip diaries of individuals within a regional level, for one day of travel.

Household travel surveys have highly detailed data useful for transportation modelling,
but unfortunately, practitioners have always been confronted with issues such as expensive
administering costs, declining response rates, unreported trips, low sampling rates, and
rigorous manual data processing (Stopher & Greaves, 2007) The resulting challenges are
reflected in the restriction of survey frequency (typically one or two times per decade), and
thus only providing a cross-sectional sampling frame of the region, unable to capture the
dynamics of continuous human mobility.

1.1.2 Origin-Destination Matrices

TDM results in origin-destination (O-D) matrices, which provide crucial information for
traffic management and transportation planning. These matrices estimate flows from ev-
ery Origin to every Destination, commonly represented by geographic zones, in a specific
time-period for a transportation network. As part of the TDM process, O-D matrices are
traditionally determined based on survey data, thus having the same limitations previously
described. Unfortunately, this can often lead to O-D matrices with empty cells. Alterna-
tively, O-D estimates can be derived directly from traffic observations (e.g., link counts)
rather than through a travel demand model relying on survey data.

These O-D matrices are typically separated into two types: static O-D matrices and
dynamic O-D matrices. Static O-D matrices are aggregated travel demands over a time
interval whereas dynamic O-D matrices include a temporal variation of travel demands
within the analysis period.
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The scale and application of O-D matrices have evolved overtime due to emerging
technologies and the availability of data. Early O-D estimation research emerged through
updating sampled matrices from household travel surveys with a set of recent traffic counts.
Typically, static methods are considered for longer-term transportation planning and pur-
pose design whereas dynamic methods are considered for short-term strategies such as
traffic control.

1.1.3 Emerging Data Sources

Opportunely, emerging and modern data sources have been developed with the establish-
ment of intelligent transportation systems (ITS) for monitoring, understanding, and im-
proving transportation infrastructure. The pervasive computing equipment has advanced
electronic sensor technologies, data transmission technologies, and intelligent control tech-
nologies into transportation systems (Tsai et al., 2015). Consequently, larger volumes of
data can be obtained from diverse sources such as GPS devices, mobile phones, video
cameras, active sensors (e.g. license plate recognition), road side sensors (e.g. Bluetooth
identification), and smart cards, which can be used to observe point measurements (e.g.
link flows, vehicle speed, and occupancy), and point-to-point measurements (e.g. travel
time, and trajectories).

The amount of data generated in ITS can reach the Petabyte level (Stopher & Greaves,
2007) and thus provides researchers an opportunity to develop methodologies to further
the understanding of travel demand estimation and resolve existing challenges.

1.2 Problem Statement

The O-D estimation process is generally conducted from observed traffic data since the
direct observation of an O-D matrix is rare. While demand models can also provide esti-
mates of O-D matrices, the details of daily fluctuations present are not captured in these
results. The process of O-D estimation consists of data inputs (e.g., link flows, traces,
prior O-D matrix, etc.), an estimation model, and outputs (e.g., O-D matrix estimate,
route assignment, etc.). Some of the main challenges of the estimation models consist of
the following:

• an underdetermined problem where the number of O-D pairs is generally much larger
than the variables that can be directly observed with traffic data, thus leading to non-
unique solutions, and
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• the reliance on prior data with inconsistent quality.

Many approaches have been proposed in literature with emerging data sources to ad-
dress the main challenges. Before recognizing the benefits of the data sources, proper
methodology and evaluated limitations must be supported with scientific rigor. Practical
applications of recent datasets have been widely explored throughout literature, resulting
in sophisticated developments in the domain of transportation modelling. Unfortunately,
in contrast to the depth of O-D estimation methods, few of these methods are assessed
with the criterion of both data variety and amount in application. Therefore, there are
substantial opportunities in exploring the data collection process to improve the accuracy
of the estimation of O-D matrices.

Selecting relevant and comprehensive indicators for transportation systems is not a
trivial task. While the existing body of literature may propose great solutions when given
opportunistic datasets, an alternative targeted question should be posed: if the means to
collect vast amounts of data exists, what is the best practice to collect said data for each
application? The trivial answer to that question would be to replace the data collected
through traditional practices with new data collected through ITS, but this does not lever-
age new technologies nor solve existing shortcomings. It would be particularly helpful to
understand the value of different varieties and amounts of data as they emerge, thus giving
the proper tools to select correct data collection technologies, and methodologies for model
application.

The data fusion technique is often posed as a solution to decrease the uncertainty re-
lated to a single data source. Although multi-sourced data is complementary in nature,
development in statistical methods to estimate the trade-offs for having less data or im-
provements for the addition of data is required for specific applications.

With the emerging areas of technology, the focus should be directed towards the pro-
cedures on how we obtain data to build accurate models rather than accepting whatever
data exists or blindly collecting data. By investigating this area, there are opportunities
to answer the following questions:

1. How much data should be collected for a given level of accuracy in O-D estimation?
(dataset size)

2. What kind of data best suits this experiment/model? (data source)

3. Should multiple types of data be used? (data fusion)
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In addition to the data collection problem itself, there exists a challenge when comparing
the vast amounts of algorithms and formulations. Many of these applications conclude
to good results with their own data, some of which may have baseline comparison, but
overall, there is no consistency between the experimental design from one methodology
to the next. Therefore, the best practice to model the different sources of data does not
exist. While many approaches use accuracy as the performance evaluation indicator, the
baseline reference point is rarely consistent. Without consistent baseline comparisons, the
concluding performance can range due to methodological assumptions, data input, network
topology, and traffic conditions.

1.3 Research Objective

With the previously identified problems in the research area, the objectives of this work
are separated into primary and secondary objectives. This research focuses on static O-
D estimation within the context of a medium-sized network with various data collection
sources.

The primary objective of this research is to addresses the lack of consistency when com-
paring static O-D estimation algorithms. To accomplish this objective, an evidenced-based
benchmarking framework is developed for evaluating static O-D estimation techniques of
various data inputs. This strategy provides a common testbed network where a ground-
truth scenario can be established with simulated data. The results provided by this frame-
work gives a common denominator when comparing the results of different algorithms,
therefore giving an impartial evaluation.

To develop a framework to test static O-D estimation techniques, a review is conducted
to cover the most recent methodologies and understand the general approaches with their
respective limitations. Furthermore, the review considers the data collection technologies
used to produce the input dataset along with their representation of information and
technical capabilities.

The secondary objective of this research is to quantify the value of information with the
experimentation of different scenarios and evaluating the impact on performance indicators.
To accomplish this objective, sensitivity scenarios are conducted to evaluate the impacts of
different types (single source or multi-source) of datasets and database size to the measure
of performance.

With the objectives in mind, this research provides a guidance tool for choice and
performance of static O-D estimation techniques.
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1.4 Research Scope

The application of this research focuses on aggregate O-D demand estimation where each
trip between O-D pairs is viewed as the unit to be estimated through observed data in the
road network. This thesis concerns the estimation of O-D estimates for operational type
(e.g., microsimulation) models, although the estimation techniques tested in this research
are flexible with respect to network size and temporal resolution.

This research provides a common framework where static O-D estimation techniques
can be evaluated with an established baseline condition. This is accomplished through the
implementation of a synthetic model testbed tasked to compare various algorithms and
evaluate performance metrics to assess of the value of the input data. It should be noted
that this research focuses on O-D estimation techniques which differs from O-D prediction
techniques. O-D prediction typically requires the support of real-time control and utilizes
data that reflect temporal variations within a network.

The testbed uses the Sioux Falls network as the case study area. However, the aim is
not to represent to the actual City of Sioux Falls, South Dakota and remains a fictitious
case. The scope of this research is limited to the estimation of unimodal demand of mo-
torized traffic. Methodological developments of newer techniques of static O-D estimation
techniques are not within the scope of this thesis.

1.5 Structure of Thesis

The structure of the thesis is organized in chapters and is structured in the following order:
This chapter (Chapter 1) introduces the research area and sets the context of the research
problem.

Chapter 2 provides an extensive coverage of the existing literature related to this re-
search area. It reviews recent work that investigates methodological approaches to O-D
synthesis and defines a list of data sources as input for modelling. First, a brief overview
of O-D estimation is provided with a sequential progression from traditional to modern
estimation techniques of O-D flows. Subsequently, a comprehensive review of the adapta-
tion of methods from emerging data sources and passively collected datasets is provided.
The literature also covers O-D estimation techniques as part of an overall travel demand
estimation model. The chapter concludes with the current research gaps and foundation
for the remainder of this thesis.
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Chapter 3 presents the proposed framework of this thesis. First, the procedure for
algorithm selection is covered. A generic formulation of the static O-D estimation problem
is then presented as a basis of all proposed methods. The design of the framework allows a
common test-ground of all scenarios and approaches. The following sections of this chapter
covers the model building and data extraction, O-D estimation approaches, and generation
of scenarios.

The last two chapters cover the outputs of this research. Chapter 4 summarizes the
results of the chosen algorithms and testing scenarios. Finally, Chapter 5 concludes the
thesis with a summary of key findings of this work and provides recommendation for future
research.
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Chapter 2

Literature Review

The topics reviewed in this literature review focus on the techniques of O-D estimation.
As a foundation for TDM, some methodologies are presented as stand-alone procedures
while others are presented as part of TDM and specialty cases. Some other foundational
considerations differentiate O-D estimation to O-D prediction. O-D estimation often is
referred to as the estimation of the demand matrix for a certain network for an existing time
period whereas O-D predictions are demand matrices predicted for future time periods.
While O-D estimation can occur both in an online and offline application, O-D predictions
are only typically conducted in online applications. This literature review focuses on
estimation techniques. The definitions and differentiation of O-D estimation and O-D
prediction are illustrated in Figure 2.1.

Figure 2.1: O-D Estimation vs O-D Prediction
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The focus of this chapter is directed towards the stand-alone procedures, but some
special recognition is provided for other cases. To finish, a summary of key findings is
presented at the end of this chapter, focusing on the research gap that this work aims to
address.

2.1 Origin-Destination Flow Estimation

The O-D flow estimation problem is a long established and well-known area of scientific
investigation with a vast body of research covering half-a-century. The classical and widely
adopted procedure of O-D estimation relies on updating prior O-D matrices by using traffic
counts and survey data (Cascetta et al., 2013; Simonelli et al., 2012). The foundation of
these estimation techniques relies on computing link and path travel times from the network
model while link flows are not available. Thus, the underdetermined problem results in
estimates that are affected by notable errors which requires mitigation by using prior
O-D flow estimates created from traffic counts. This classical problem of estimating and
updating O-D flows has been studied extensively for static (steady-state) networks through
four main solution methodologies: entropy maximization (Van Zuylen & Willumsen, 1980),
maximum likelihood (Bell, 1983; Cascetta & Nguyen, 1988; Spiess, 1987), generalized least-
squares (GLS) (Cascetta, 1984), and Bayesian inference (Maher, 1983).

Further development led to the extension of O-D estimation for dynamic (time depen-
dent) models, and thus new estimation algorithms have been proposed for within-day and
day-to-day dynamics. This problem is commonly represented as a state-space model (Ni-
han & Davis, 1987), which originated with the contributions by Okutani and Stephanedes
(1984) and Cremer and Keller (1987). Subsequently, the dynamic estimation problem is
then extended to the within-day framework (Cascetta et al., 1993) and and day-to-day
dynamic framework (Zhou & Mahmassani, 2007; Zhou et al., 2003).

The rest of this chapter reviews the development O-D estimation techniques classified
by methodological procedure. The literature is then reviewed in a loosely chronological
manner as new data collection technologies are introduced with advancements in ITS.

2.1.1 Entropy Maximization

Entropy maximization (EM) or information minimization (IM) was a foundational method
developed by Van Zuylen and Willumsen (1980) for O-D estimation. Their paper offers
two models based on two theories. The first model starts with calculating the information
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contained in a trip matrix Tij and aims to minimize information added onto the observed
flows. This model is formulated in the following equation:

min
Tij

∑
a

∑
ij

T̂ijp
a
ij ln

T̂ij

∑
ij T̂ijp

a
ij

VaTij

(2.1)

where:

T̂ij = estimated trip with origin i and destination j
Tij = prior trip with origin i and destination j
Va = set of traffic counts on link a
paij = fraction of trips travelling on link a with origin i and destination j

The second model tackles the same problem following an entropy maximizing approach.
The basis of these models assume routes are known while estimating an O-D matrix best
consistent with observed data and prior matrix information. This model is formulated with
the following equation:

max
Tij

ln
∑
ij

(Tij)!−
∑
ij

(Tij lnTij − Tij) (2.2)

The EM principle has been employed on the multiclass O-D estimation problem by
(Wong et al., 2005) which can addresses vehicular traffic flow amongst different vehicle
types. The model is based on multiclass traffic counts with the estimated matrix output
being highly dependent on the reliability of the counts. Furthermore, the EM method-
ologies have been extended to subnetworks analysis, which addresses the variable nature
of travel demand by using subnetwork link flows as constraints (Xie et al., 2011). The
approach uses elastic travel demand to consider traffic diversion effects under network
changes (e.g. traffic incidents, traffic congestion) and O-D flows are distributed by maxi-
mum entropy in the subnetwork while demand function parameters, for the given elastic
demand function of each O-D pair, are estimated using least-squares estimation error.

Efforts of the EM approach have also contributed to the estimation of dynamic O-D ma-
trices. Xie and Duthie (2015) have formulated the problem as an excess demand dynamic
traffic assignment (DTA) which can be solved using DTA methods and software tools. The
basis of this problem employs the synthetic result of individual route cost minimization,
traffic count matching error minimization, and O-D demand entropy maximization. It
should be noted that the authors suggest a series of experiments to implement and com-
pare solution algorithms for traffic count matching error minimization and O-D demand
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entropy maximization for a best-fit procedure. Bauer et al. (2018) utilized the principle
of EM for quasi-dynamic O-D estimation which is where O-D flows are assumed to be
constant across a period and total flows at each origin are assumed to be varying for each
sub-period within the reference period. The presented technique is based on continuous
count data from detectors and floating car data (FCD) through taxi trajectories without
the need of prior O-D matrices. It addresses the non-observability issue with EM and
combines a least-squares principle to reproduce link flows. Thus, their research gives the
flexibility to produce matrices with or without historical knowledge.

With the increasing ability to collect rich datasets, Ge and Fukuda (2016) leverage
passively collected mobile phone traces based on the EM principle to estimate trip flows.
The findings of this research are consistent to travel demands in the study area but is
constrained to only predicting work-related trips with the dataset. Additionally, Vogt et
al. (2019) also leverages passively collected data from FCD, comprised of mobile phone
and navigation device traces, in addition to detector counts for O-D matrix estimation
through a IM based data fusion technique. This model was evaluated on a simulated
testbed network with an established ground truth scenario and shows high goodness of fit
(Pearson correlation coefficients of 0.9 or better, root mean square errors of 14.55 or lower,
and GEH statistic 1.41 or lower) between the estimated and ground truth matrices with
low FCD penetration rates (less than 7%).

EMmethodologies are of interest due to its ability to integrate equilibrium-based assign-
ment into O-D estimation. Despite the abilities of this methodology, it has unfortunately
shown to be incapable when handling uncertainties in the input data (e.g. traffic counts,
prior matrices), thus challenging the confidence of outputs.

2.1.2 Maximum Likelihood

The premise of maximum likelihood estimation (MLE) works by maximizing the probability
of model parameters given the observation of the target O-D matrix from survey data
and observed link counts. Following the primary works of Bell (1983), Spiess (1987), and
Cascetta and Nguyen (1988), the total (joint) likelihood of observing two sets of statistically
independent data is given by:

L(T̂ , V̂ |T ) = L(T̂ |T )L(V̂ |T ) (2.3)

where:
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V̂ = set of traffic count vectors

T̂ = prior O-D matrix
T = estimated O-D matrix

Typically, the traffic counts are hypothesized to follow Poisson distribution or multi-
variate normal (MVN) distribution. The sample O-D might also be assumed to follow
the same distribution (Bera & Rao, 2011) but the statistical distribution would ultimately
depend on the sampling strategy (Toledo et al., 2014).

The stochastic nature of flows was considered by Lo et al. (1996) by the introduction
of population parameters for the O-D matrix and link choice proportions. Previously, the
link choice proportions were assumed to be constant and estimated using traffic assignment
techniques. The result of poorly estimated link choice proportions was shown to produce
significant errors in O-D estimation. Therefore, this method proposes survey data to be
treated as random variables while using the MLE and Bayesian (discussed further in 2.1.4)
approach for the O-D matrix estimation of a small network. Hazelton (2000) furthers
the comprehension of demand stochasticity by undertaking the parameter identifiability
issue and derives the full likelihood function. While the model can consistently estimate
O-D matrices based on link data alone, the full likelihood poses an issue of computational
burden, thus being too complicated for practical use. Instead of exact likelihood, inference
is possible with the MVN approximation or generalized least-squares technique (discussed
further in 2.1.3). Taken to a further step, Lo and Chan (2003) incorporated a procedure
with a stochastic user equilibrium (UE) principle, to simultaneously estimate the O-D
matrix and route choice dispersion parameter for congested networks. The statistical model
is separated into two connected steps comprised of the likelihood maximization and the
stochastic UE assignment until convergence is obtained for best estimates. With further
consideration of stochastic travel demand in O-D estimation, Parry and Hazelton (2012)
combines vehicle tracking data with link counts to approximate path choice proportion
through likelihood-based techniques. The combination of data results in a statistical model
for the portion of vehicles in the network with routing information.

More recent studies explore the advantages of emerging technologies to estimate O-D
matrices that are more resilient to data input errors (H. Kim et al., 2018). While the
quality of a single data source input can severely affect model accuracy, the combination
multiple fields of data result in a more robust model. H. Kim et al. (2018) combined
GPS systems, toll collection, and traffic counts for O-D estimation with three objective
functions minimizing the gap for the three data types. The combined effort consists of an
MLE approach for the navigation system, and two generalized least-squares approaches
(discussed further in 2.1.3) for the toll collection and traffic counts.
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The spatiotemporal correlations of certain O-D pairs can improve prediction accuracy
due to enhanced traffic network knowledge (Xian et al., 2021). A multivariate Poisson
log-normal model was formulated by Xian et al. (2021) for the real-time prediction of
O-D demand. The problem is formulated with a parameterized covariance matrix that
can automatically account for traffic domain knowledge. The parameter estimation is
conducted through an expectation maximization algorithm to iteratively obtain the MLE.

2.1.3 Least-Squares

The least-squares approach can produce an estimate of the O-D matrix by solving a system
of linear stochastic equations which represent demand modelling errors, flow measurement
errors, and traffic assignment errors that are reformulated as an optimization problem.
This methodology has the advantage of not requiring a distributional assumption on the
dataset, thus producing an unbiased estimation.

The generalized least square (GLS) approach is widely adopted for O-D estimation
due to its effectiveness with empirically established variance matrices. This approach first
appeared in Cascetta (1984) with the following formulation:

T̂ = T + η (2.4)

V̂ = V (T ) + ε (2.5)

where:

V̂ = set of traffic count vectors

T̂ = prior O-D matrix
V (T ) = flow on a link from the assignment of T
T = estimated O-D matrix

η = sampling error of T̂

ε = sampling error of V̂

Then the GLS estimator based on the formulation above is shown as:

min(T̂ − T )TZ−1(T̂ − T ) + (V̂ − V (T ))TW−1(V̂ − V (T )) (2.6)

where:

Z = the variance-covariance matrix of η
W = the variance-covariance matrix of ε
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Cascetta et al. (1993) then extended the static problem to offline dynamic O-D esti-
mation. The authors combined traffic count data with other available information (e.g.,
outdated matrices and surveys). Two estimators are proposed through a GLS frame-
work: a simultaneous estimator to produce joint estimates for a whole set of O-D matrices
(one per time slice), and a sequential estimator to produce a sequence of estimates for
successive time slices. While the simultaneous estimator is more efficient, the sequential
estimator can be adapted for online dynamic estimation. This work was developed further
by Ashok and Ben-Akiva (2002) with a state-space model, which is discussed further in
2.1.5. Sherali and Park (2001) proposed a parametric optimization approach using link
volumes. The model is formulated as a least-squares problem that seek path flows that
compromise between the least path cost and link flow matching. A column generation
approach is used to solve a sequence of dynamic shortest path subproblems to provide
the O-D estimate. Representative assignment matrices are critical to the O-D estimation
process, which seem to cause computational limitations, thus having a model difficult to
solve. Zhou and Mahmassani (2006) established an offline dynamic O-D estimation frame-
work from automatic vehicle identification (AVI) data, link counts, and historical demand
information using a nonlinear ordinary least-squares (OLS) approach. Point-to-point split-
fraction information is obtained from the AVI counts without estimating penetration rates
and identification rates. The research is conducted through experimental control using
synthetic data. Extending to the real-time O-D estimation, Bierlaire and Crittin (2004)
proposed a least-square formulation for large-scale networks and solves the formulation as
an iterative algorithm showing to be more efficient than the commonly used Kalman filter
(discussed further in 2.1.5).

Path flow estimation (PFE) based techniques estimate O-D flows using path flows as
the primary variable. This approach reflects the interdependency between route choice
and a final O-D table based on a logit-based path choice model. Sherali et al. (1994). first
introduced a UE based linear programming model to reproduce observed link flows using a
column generation technique which uses a shortest path sub-problem to generate the paths
needed for an optimal solution. Successive to the previous work (Sherali et al., 1994),
Sherali et al. (2003) adapts to a sequential linear programming model where complete
link volume observation is no longer required and O-D flows can by synthesized based on
partial link volume observation. Further adaptation led to Cascetta and Postorino (2001)
to assume a stochastic UE based fixed point problem. The problem is then solved using an
iterative structure based on the method of successive averages which a GLS based estimator
is used to update each iteration. H. Yang et al. (2001) propose an O-D estimation solution
for congested networks by presenting a non-linear optimization model to simultaneously
estimate the O-D matrix and travel cost coefficient from a logit-based stochastic UE model.
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To solve the simultaneous estimation model, a successive quadratic programming method
was employed with GLS (or optionally EM) principles to reach a solution. Another attempt
was made by A. Chen et al. (2005) to address the O-D estimation problem assuming
stochastic UE with the PFE technique. In contrast to previous techniques, this process
enforces constraints to link flows and the O-D matrix to exist within a certain range.

Nie and Zhang (2008) proposed a relaxation strategy by formulating dynamic O-D es-
timation as a single-level problem using a weighted sum of the upper-level (least-square
estimator) and lower level (UE) objectives from a bilevel formulation as the new problem
objective. A column generation algorithm is used to solve the proposed variational in-
equality formulation which is used to determine the DTA endogenously. The framework
avoids the bilevel structure while considering congestion effects, but the results are highly
dependent on initial traffic data and inconsistent with equilibrium conditions. Alterna-
tively, Lundgren and Peterson (2008) extends the bilevel programming approach to larger
scale networks by solving the formulation with a descent gradient method. The proposed
approach is a heuristic approach; thus, convergence is highly dependent and not guaran-
teed. Abdelghany et al. (2015) furthered the research in congested networks by proposing
a comparison of two estimation methods with time-dependent link flow observations and
time-dependent link density observations. The method adopts a bilevel framework where
the upper-level forms a least-squares error minimization between estimated and observed
values while the lower-level solves the time-dependent link proportions using a simulation
based DTA. The results from this study shows that the density-based estimation method
is better suited for congested networks since it captures associated flow breakdown and
spillback phenomena. Furthermore, Fujita et al. (2017) have also adopted the bi-level
framework to obtain time coefficients for hourly O-D estimation with a goal to reduce the
number of parameter estimates and computational costs. While the upper level objective
stays the same, the lower level adopts a semi-DTA from static UE with elastic demand,
thus accounting for residual demand (i.e. adding residual demand onto the next time pe-
riod). X. Yang et al. (2017) has proposed an O-D estimation model based on GPS probe
vehicles and link flows. From the probe vehicle ratios, a scaled O-D matrix is built as a
priori which is then corrected by a GLS framework using link counts. The results from this
is then extended with a probe-ratio assignment model to relate links and O-D pairs. The
outcome of this model shows a reduction of bias towards observed scenarios in direct scale
models and ultimately fill the research gap concluding that permanent heterogeneous data
sources such as probe vehicles can be practically used in O-D estimation.

Menon et al. (2015) introduces a methodology for sparse O-D estimation using a least-
squares methodology while addressing an automated zoning problem. The traffic zoning
problem is based on O-D pairs that best explain observed link flows under a UE assignment,
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and the O-D estimation problem is then encouraged using a ℓ1 regularization. Hu et al.
(2017) formulates a two-stage sequential model to calibrate dynamic O-D matrices under
congested conditions. The commonly seen least-squares type two-norm formulation is more
computationally intensive than the proposed one-norm formulation approach due to the
linear structure. The first stage of this model estimates an O-D matrix by minimizing the
link demand deviation with one-norm formulation and the second stage formulates a time
dependent UE traffic assignment model to iteratively adjust the time profile.

Caggiani et al. (2013) formulated the congested O-D estimation problem through a
fuzzy-GLS method with fuzzy constraints using a triangular membership function. It is
formulated as a fixed-point problem and improves the classic GLS solution by including
uncertain available data. Ultimately, by including additional sources of available data,
an optimal O-D estimate can be produced in a more cost-effective manner. Talebian
and Shafahi (2015) then extends the fuzzy-GLS method to the dynamic O-D estimation
problem while considering the uncertainty issue in the input information and dynamic
network. Uncertainty is addressed by using fuzzy rules and fuzzy C-Mean clustering within
the model and results show robust performance even with low quality historical matrices.

More recently, W. Ma and Qian (2018c) have proposed a dynamic O-D estimation
framework for a sequence of multiple consecutive days over several years based on a sta-
tistical equilibrium assumption. The problem is solved using a non-negative least-squares
model with a clustering technique for dimension reduction based on high-granular multi-
sourced data consisting of historical traffic counts and speeds. Furthermore, W. Ma and
Qian (2018b) also developed a theoretical framework to estimate the mean and vari-
ance/covariance matrix of O-D demands to reduce errors in estimation results. Historical
traffic data is treated as one data point, and the data points collected over time are used to
estimate the probability distribution of O-D demand. An iterative GLS approach is used
to estimate the O-D mean vector and variance/covariance matrix with multi-sourced data
and without aggregation. Additionally, Mo et al. (2020) developed a hybrid framework
leveraging the use of license plate recognition (LPR) data for dynamic O-D estimation.
Using a Bayesian path reconstruction model, the framework does not require other infor-
mation sources to produce an estimate, therefore eliminating artificial assumptions about
traveller preferences. The outputs of the path reconstruction model are incorporated into
an OLS technique to estimate the final O-D matrix. The methodology is shown to be
most successful when the LPR coverage rate is above 50%. Additionally, when compared
to a bilevel framework, this model shows practicality for cities where road networks are
particularly difficult to calibrate (e.g., link-impedance functions) since calibration of road
networks are not needed for this model.

From the wide array of research into the least-squares approach for O-D estimation, it
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is shown to be a preferable approach due to absence of needing to derive the likelihood
function as well as the its ability to reflect route choice behaviours.

2.1.4 Bayesian Inference

Bayesian inference combines traffic counts with prior subjective information from O-D
demand through maximization of logged posterior probability. The posterior probability
can be obtained by:

p(T |V̂ , T̂ ) =
p(V̂ |T, T̂ )p(T |T̂ )

p(V̂ |T̂ )
∝ p(V̂ |T, T̂ )p(T |T̂ ) (2.7)

where:

V̂ = set of traffic count vectors

T̂ = prior O-D matrix
T = estimated O-D matrix

Bayesian inference for O-D estimation was introduced by Maher (1983) using traffic
counts and flexibility on the degree of beliefs placed on prior estimates. The prior esti-
mates are modified by more recent observations to produce posterior beliefs where relative
weights are applied to both the priori and observation to estimate a final O-D. An MVN
distribution is assumed with known covariance for the priori matrix and traffic counts.
Hazelton (2001) then defines another O-D estimation procedure through Bayesian infer-
ence as three subproblems: a reconstruction problem which estimates the O-D matrix
in the observation period, a estimation problem which estimates an expected number of
O-D trips, and a prediction problem which estimates future O-D trips. Perrakis et al.
(2012) utilized information derived from census studies to predict O-D matrices by ap-
plying Bayesian statistics. The framework assumes both a Poisson and negative binomial
distribution but found the negative binomial distribution to be more suitable than Poisson
due to the overdispersion issue.

Feng et al. (2015) proposes a vehicle trajectory reconstruction for large-scale networks
using AVI and loop detector data with a particle theory framework. The framework ac-
counts for five trajectory correction factors: path consistency, travel time consistency, mea-
surability criterion, gravity flow model, and path-link flow matching model. A Bayesian
methodology is adopted to approximate the ground truth trajectory, updated by the prob-
abilities of most likely trajectories. This framework is tested under the condition where
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all links are equipped with loop detectors and does not consider inconsistencies from AVI
data, thus limiting the practical application of using AVI data for path reconstruction.
Additionally, many artificial behavioral assumptions (e.g., people will prefer the shortest
path) are made which may make practical sense but should not be applied universally.

Castillo et al. (2008b) formulated a problem covering both optimal counting locations
and O-D matrix updating as a Bayesian model. The O-D estimation problem uses a
Wardrop-minimum variance model to estimate O-D pairs and unobserved link flows based
on observations. Further discussion of the optimal counting locations and network sensor
location problem is summarized in 2.3.1. Furthermore, Castillo et al. (2013) proposed
a special conjugate Bayesian method for reconstructing traffic flows from plate scanning
based on a shifted-Gamma distribution. Sample flows are reconstructed with a GLS tech-
nique with flow definition laws and a Bayesian approach is used to estimate different route
O-D pairs, scanned links, or counted link flows.

Lately, this research area has explored the use of mobile phone data, specifically in the
format of call detail record (CDR), for O-D estimation purposes. Bachir et al. (2019) pro-
posed an end-to-end framework for the estimation of dynamic O-D matrices by transport
mode. In combination with CDRs, other sources of data such as geospatial information,
travel surveys, census surveys, and travel card information are used to construct O-D ma-
trices. Transport mode from CDRs are obtained by a two-step semi-supervised learning
algorithm involving clustering of areas and Bayesian inference to generate trajectory prob-
abilities. Extending to the day-to-day dynamic problem, Pitombeira-Neto et al. (2020)
presents a Bayesian model to estimate day-to-day O-D flows for congested and uncon-
gested networks with traffic link counts. The hierarchical framework is specified into three
levels: the first level specifies a dynamic Gaussian model describing the evolution of O-D
flows, the second level models the assignment of route flows using route choice probabili-
ties that depend on past user-experience cost and a learning parameter, and the third level
models the observed link volumes given route flows.

2.1.5 State-Space Models

The dynamic O-D estimation problem has received much attention since the development
of ITS due to the consideration of time-variant demand between each O-D pair which
also poses as an essential input for DTA models. Dynamic O-D estimation can also be
characterized as non-DTA based models where statistical approaches are used to update
the O-D matrix over time. A non-DTA based dynamic model was pioneered by Cremer and
Keller (1987) where traffic flows within a network were considered to be a dynamic process.
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The stochastic nature of travel demand is considered, and four estimators were proposed
including an OLS method involving cross-correlation matrices, constrained optimization,
simple recursive formula, and Kalman filtering. Furthermore, both Cremer and Keller
(1987) and Nihan and Davis (1987) formulated a recursive algorithm and determined split
parameters for input-output relationship of traffic flow.

These previous studies did not consider an assignment model for the DTA framework;
thus, it only employ techniques to update O-D matrices overtime without account for
the dynamic estimation of link usage. The research area is then furthered by Ashok and
Ben-Akiva (2000) where the state variables are redefined as deviations of departure rates
from O-D shares instead of destination flows. Ashok and Ben-Akiva (2002) then intro-
duces randomness into the dynamic O-D estimation framework by explicitly estimating a
stochastic assignment matrix within the state-space formulation based on travel times and
route choice in the road network.

Leveraging the ubiquitous usage of mobile phones, Sohn and Kim (2008) used mobile
phone data as traffic probes for dynamic O-D estimation. A GLS and Kalman filter (KF)
approach were used for estimation while a simulated environment was used for validation.
The effects of market penetration and cell coverage presented as contributing factors in
accurate O-D predictions. Previous algorithms were typically tested on a freeway network
where alternative paths between O-D pairs are not abundant. Advancing the research
area, Barceló et al. (2013) extended the KF approach using Bluetooth data for a small
urban network where multiple paths between O-D pairs exist. The formulation accounts
for multiple paths according to a dynamic UE model.

The quasi-dynamic framework makes inferences about the evolution of demand between
time periods in order to reduce the number of unknowns in the network. Cascetta et al.
(2013) proposed a O-D estimation technique for the quasi-dynamic framework based on
traffic counts with the assumption that O-D shares remain constant within a time period
while demand varies within the same period. In comparison to simultaneous estimates,
historical O-D flows show improvement in the performance of KF. Z. Lu et al. (2015) pro-
poses a KF approach using multi-sensor data to better capture the complex characteristics
of a dynamic network. The estimation is represented as a dynamic relationship between
the O-D structural deviation, random error and historical traffic data. This framework
offers an effective way to utilize multi-sensor data with better performance than tradi-
tional link-volume based or turning-movement based methods. Furthermore, Carrese et
al. (2017) adopts FCD for online and offline dynamic demand estimation within an urban
network. The offline problem is formulated as a bilevel optimization problem while the
upper level adopts a non-linear state space model that experiments with an extension of
the KF approach called Local Ensemble Transformed Kalman Filter (LETKF), eliminat-
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ing the need for an explicit assignment matrix. The results of the LETKF outperformed
common non-linear KF implementations. More recently, J. Liu et al. (2020) leveraged LPR
data to estimate dynamic O-D matrices in a three-step approach which shows high pre-
diction accuracy. First a principal component analysis (PCA) algorithm is used to reduce
the dimension of the historical O-D and separate the main structure patterns from noisier
components. Second, a state-space model is established for significant structure patterns,
deviations, and to make a prediction using a Kalman filter. Lastly, a k -Nearest Neighbour
(k -NN) based pattern recognition method is used to identify and predict structure patterns
and deviations.

2.1.6 Emerging Methodologies

Due to the emerging area of ITS, other modelling techniques have also been used to solve
the O-D estimation to better address existing problems or incorporating emerging data
sources.

In contrast to the actively collected data used in transportation analysis, the ubiquitous
usage of mobile phones, and social media has produced massive amounts of passively
collected data. There have been considerable attempts to reconstruct O-D matrices from
the passively collected data produced by the traces of mobile devices (Alexander et al., 2015;
Bonnel et al., 2018; Caceres et al., 2020; Fekih et al., 2020; Gundleg̊ard et al., 2016; Toole et
al., 2015; Wu et al., 2018). An example of this type of data is referred to as call detail records
(CDRs), which document the information for a telecommunications transaction (e.g. phone
call, text message). Alexander et al. (2015) has inferred individual O-D matrices based on
activity inference from triangulated CDRs which were then expanded to the population of
the user’s home Census Tract. Toole et al. (2015) combined the CDRs with crowdsourced
geospatial data, census records, and travel surveys to obtain attributes such as trip purpose
and travel mode. Inferred O-D demand are again expanded to the population and compared
to O-D estimates from travel survey. In similar methods, the work in O-D estimation from
CDRs continued in Rhone-Alpes, France Bonnel et al. (2018) and Lyon, France Fekih et
al. (2020) both providing a validation step using household survey data. Gundleg̊ard et al.
(2016) addresses the methodology of entering CDRs into traditional travel demand models
which include O-D matrix estimation and mobility metrics development. Portable mobile
devices equipped with GPS antennas are also a source of continuous information for O-D
estimation research (Ge & Fukuda, 2016; Moreira-Matias et al., 2016). An incremental
framework to maintin statistics on urban mobility dynamics over a time-evolving O-D
matrix was proposed by Moreira-Matias et al. (2016) using highstreams of GPS traces
from heterogeneous sources. The framework is able to maintain flexible O-D matrices and
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discover dense regions of interest for real-time analysis on human mobility. Additionally,
social media data has also gained attention for providing additional information in travel
demand models. Z. Cheng et al. (2020) explored the utility of social media in combination
with household travel surveys to improve O-D matrix quality based on a random forest
technique. A comparison is conducted between O-D generated by travel survey and O-
D generated with the addition of social media in eight US cities/regions consisting of
metropolitan areas, rural areas and tourist areas. The results show that the social media
data generally improves travel demand estimates in all areas, with metropolitan areas being
most notable.

The bilevel framework is typically used to address the interdependency between the
O-D matrix and traffic assignment, mentioned in previous chapters. The upper-level uses
a statistical technique (e.g. GLS, MLE) to solve the O-D matrix while the lower level
solves the assignment with UE. Frederix et al. (2013) addresses the effects of congestion
in dynamic O-D estimation and the limitations of the commonly used bilevel formulation.
These models may have biased results by assuming a linear relationship between link
flow and O-D flow in a congested network. Additionally, the objective to locate local
minima is an incorrect interpretation of information, revealing another source of error.
To address the bias, a response function, represented as a first order Taylor expansion, is
used to approximate the relationship between O-D flows and link flows and an O-D matrix
representing similar congestion patterns to be used as the initial matrix. Furthermore,
Gómez et al. (2015) evaluates the tradeoffs between loop detector coverage and penetration
of FCD with respect to the accuracies O-D estimates. The methodology is based on a bilevel
optimization employing fuzzy logic theory showing promising results that could applied to
real-time traffic management.

Genetic algorithms have also been introduced for solving the bilevel programming mod-
els. Baek et al. (2004) proposed a multi-vehicle O-D estimation technique using a genetic
algorithm from traffic counts. This approach is especially promising for urban networks
where a true O-D matrix is not known, however at the expense of longer computational
times. Furthermore, Lee et al. (2011) addresses the limitations of inherent non-convexity
in a bilevel models by estimating dynamic O-D flows based on Kerner’s three phase traffic
theory. Using real-time traffic flow, speed, and occupancy, a genetic algorithm is employed
to estimate the dynamic O-D flows.

Simultaneous perturbation stochastic approximation (SPSA) is typically used as a so-
lution for the dynamic O-D problem due to its easy implementation and ability to solve
general formulations from a wide range of data source. The algorithm, however, has lim-
itations due to noise generated by uncorrelated measurements that grows rapidly as the
problem scale increases and as a result, the accuracy and convergence rate suffers (L. Lu et

21



al., 2015). Tympakianaki et al. (2015) proposed a modified SPSA algorithm to overcome
some of the aforementioned limitations, improve the stability , and reduce the noise of
uncorrelated measurements. The goal of the modified algorithm is to cluster components
of the O-D matrix into a small number of “homogeneous” clusters via k-means clustering.
The SPSA algorithm then approximates the gradient separately for O-D pairs belonging
to a specific cluster which shows to outperform traditional SPSA algorithms in terms of
stability, quality, and computation efficiency. Nigro et al. (2018) uses a SPSA coupled
with asymmetric design (AD) for gradient computation and polynomial interpolation (PI)
of the objective function for linear optimization. The research evaluates the improvement
of dynamic O-D estimation problem from using FCD. Ros-Roca et al. (2021) proposes an
SPSA technique to extend the conventional bilevel static estimation to dynamic estima-
tion while providing an analysis of the solutions obtained in both convergences to observed
traffic data and structural similarity to an a priori O-D matrix.

A seminal contribution by Antoniou et al. (2016) draws the necessity to provide a
benchmarking platform for comparing dynamic O-D estimation techniques with a common
evaluation setup under standardized conditions. It is built on synthetic testbeds, utilizing
a simulated ground truth to test five methodologies consisting of LSQR, SPSA AP-PI,
enhanced SPSA AD-PI, SPSA conjugate gradient (CG)-trust region (TR).

To support the dynamic and complex nature of transportation systems, neural networks
have been regarded as an opportunistic tool for O-D estimation. Lorenzo and Matteo
(2013) proposed a multilayer feedforward neural network (NN) for O-D estimation using
link flows. To reduce the dimensionality of the input data and improve significance for NN
learning, a PCA is proposed. The trained model shows capability of generating estimation
in almost real-time and better performance than commercial O-D estimation programs
regarding error and computing time. Sana et al. (2018) used information from Google
Aggregated and Anonymized Trips (AAT) and household travel surveys to predict O-D
person trips. The relationship between anonymized weights and actual trips is modelled
using machine learning techniques consisting of OLS, k -NN, support vector regression, ran-
dom forest regression, and NN. Ou et al. (2019) proposed an estimator for dynamic O-D
flows using machine learning algorithms in a learn-assign-search framework. A convolu-
tional neural network (CNN) is designed as a learner to capture patterns to characterize
dynamic mappings between estimated O-D flows and assigned link flows. The trained
CNN is then used as the assigner to estimate a regular and real-time O-D sequentially
and finally, two genetic algorithms are developed as the searcher. Similarly, Tang et al.
(2021) utilizes a three-dimensional CNN to learn dimensional correlation between traffic
patterns from AVI observations and O-D flows. Furthermore, Krishnakumari et al. (2020)
developed a data-driven method to construct a system of equations utilizing all given data
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without making more assumptions than needed. The framework requires three ingredients
consisting of: a method to predict production and attraction time series, a method to
compute N-shortest paths in each O-D pair, and two assumptions on the magnitude of N
and on proportions of path flows between O-D pairs. A PCA is introduced for large net-
works where ingredients may be insufficient to solve the resulting system of equations and
an artificial NN employed to model the relationship between supply patterns and produc-
tions/attractions. Multi-task deep NNs are presented by Katranji et al. (2020) to estimate
individual O-D matrices based on static censuses. The model learns the temporal distri-
bution of displacement from census data and applied on mobility sources. The resulting
model yields higher accuracy than single task learning and is portable to other locations
which can be especially helpful for cities without household surveys.

Newer research methods have proposed hybrid algorithms (X. Li et al., 2017), other
machine learning techniques (W. Ma et al., 2020; Woo et al., 2016; Wu et al., 2018), and
primal-dual algorithms (Michau et al., 2017) to address the O-D estimation problem. X. Li
et al. (2017) has combined the nonnegative matrix factorization (NMF) algorithm and the
Autoregressive (AR) model to estimate matrices in different temporal and spatial scales.
The NMF algorithm reveals the characteristics of travel flow and constructs the basis
matrix. The AR model then estimates the nonlinear time series coefficient matrix, which
was extracted from the NMF algorithm. Finally, the O-D is then predicted based on the
estimated coefficient matrix and basis matrix. Woo et al. (2016) developed a framework to
predict future O-D demand for real-time series. The methodology searches a large historical
data reserve for k -number of dates with similar traffic pattern to the current state. Three
strategies are used to implement different feature vectors for k -NN of a single-level O-
D demand, multilevel O-D demand, and single-level point demand. Wu et al. (2018)
presented a layered computation graph to estimate hierarchical travel demand using multi-
source data to better address travel behavior and system observability. The model utilizes
data from travel surveys, CDRs, FCD, and traffic sensors to calculate travel demand, path
flows, and link flows with a multi-layered hierarchical flow network. This work provides a
solution for a single-class static O-D estimation problem which is then extended by W. Ma
et al. (2020) to addresses the multi-class dynamic O-D estimation problem. Michau et
al. (2017) extends O-D estimation to link-dependent O-D estimation as a optimization
problem with traffic counts and probe trajectories. The objective function, consisting of
five convex functions each representing a model constraint or property, is minimized and
estimated with a proximal primal-dual algorithm.
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2.2 O-D Estimation Model Evaluation

In the existing research, statistical measures have been used to quantify the quality of
O-D estimates in comparison to a ground truth. Some of the commonly used and notable
measures of goodness-of-fit are summarized in Table 2.1.

Table 2.1: O-D Model Evaluation Measures

Measure Equation1 Used by

Percent error (PE)
xi − yi

yi
(Bierlaire & Crittin, 2004), (A. Chen
et al., 2005)

Root mean square
error (RMSE)

√√√√ 1

N

N∑
i=1

(xi − yi)2 (Cascetta, 1984), (Nihan & Davis,
1987), (Sherali et al., 1994), (Ashok
& Ben-Akiva, 2000), (Hazelton, 2000),
(Hazelton, 2001), (Ashok & Ben-
Akiva, 2002), (Sherali et al., 2003),
(Lo & Chan, 2003), (A. Chen et al.,
2005), (Zhou & Mahmassani, 2006),
(Nie & Zhang, 2008), (Mı́nguez et al.,
2010), (Xie et al., 2011), (Castillo et
al., 2013), (Talebian & Shafahi, 2015),
(Tympakianaki et al., 2015), (Z. Lu
et al., 2015), (Xie & Duthie, 2015),
(Menon et al., 2015), (Ge & Fukuda,
2016), (Moreira-Matias et al., 2016),
(Antoniou et al., 2016), (X. Li et al.,
2017), (Michau et al., 2017), (Fujita et
al., 2017), (X. Yang et al., 2017), (Tes-
selkin & Khabarov, 2017), (Sana et al.,
2018), (Vogt et al., 2019), (Z. Cheng
et al., 2020), (Pitombeira-Neto et al.,
2020), (Mo et al., 2020), (J. Liu et al.,
2020)
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Root mean square
normalized error
(RMSNE) or
Root mean square
percentage error
(RMSPE)

√√√√ 1

N

N∑
i=1

(
xi − yi

yi

)2

(Cascetta et al., 1993), (Ashok & Ben-
Akiva, 2000), (Cascetta & Postorino,
2001), (Ashok & Ben-Akiva, 2002),
(Wong et al., 2005), (Barceló et al.,
2013), (Talebian & Shafahi, 2015),
(Menon et al., 2015), (Antoniou et al.,
2016), (X. Yang et al., 2017), (W. Ma
& Qian, 2018b), (Bachir et al., 2019)

Mean square error
(MSE)

1

N

N∑
i=1

(xi − yi)
2 (Cremer & Keller, 1987), (Bierlaire,

2002), (Cascetta et al., 1993), (Lo
et al., 1996), (Cascetta & Pos-
torino, 2001), (Cascetta et al., 2013),
(Caggiani et al., 2013), (X. Yang et al.,
2017), (Wu et al., 2018)

Mean absolute er-
ror (MAE)

1

N

N∑
i=1

|xi − yi| (Cascetta, 1984), (Sherali et al., 1994),
(Wong & Tong, 1998), (Sherali & Park,
2001), (Sherali et al., 2003), (Menon et
al., 2015), (Tympakianaki et al., 2015),
(Z. Lu et al., 2015), (Feng et al., 2015),
(Moreira-Matias et al., 2016), (Anto-
niou et al., 2016), (Hu et al., 2017),
(Carrese et al., 2017), (Tesselkin &
Khabarov, 2017), (X. Li et al., 2017),
(Bauer et al., 2018), (Katranji et al.,
2020), (J. Liu et al., 2020)
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Relative Mean
Error (RME) or
Mean absolute
normalized er-
ror (MANE) or
Mean absolute
percentage error
(MAPE)

1

N

N∑
i=1

|xi − yi|
yi

(Cascetta et al., 1993), (Baek et al.,
2004), (Sohn & Kim, 2008), (Lee et al.,
2011), (Feng et al., 2015), (Menon et
al., 2015), (Gómez et al., 2015), (Z. Lu
et al., 2015), (Antoniou et al., 2016),
(Ge & Fukuda, 2016), (Woo et al.,
2016), (X. Li et al., 2017), (Ye & Wen,
2017), (X. Yang et al., 2017), (Car-
rese et al., 2017), (Krishnakumari et
al., 2020), (Mo et al., 2020), (J. Liu et
al., 2020)

Mean normalized
error (MNE)

1

N

N∑
i=1

xi − yi
yi

(Talebian & Shafahi, 2015), (Antoniou
et al., 2016)

GEH Statistic

√
2(xi − yi)2

xi + yi
(Z. Lu et al., 2015), (Antoniou et al.,
2016), (Nigro et al., 2018), (Ou et al.,
2019), (Vogt et al., 2019)

Total demand
scale (TDS)

Procedure detailed by
(Bierlaire, 2002)

(Bierlaire, 2002), (A. Chen et al., 2005)

Theil’s inequality
coefficient (U)

√
1
N

∑N
i=1(yi − xi)2√

1
N

∑N
i=1 y

2
i +

√
1
N

∑N
i=1 x

2
i

(Antoniou et al., 2016), (Tympa-
kianaki et al., 2015), (Barceló et al.,
2013)

1 xi = predicted measure; yi = observed measure; N = number of measures

Some other additional but less common statistical measures used for O-D estimation
include: average percentage error (Lorenzo & Matteo, 2013), weighted absolute percentage
error (Sana et al., 2018), scaled RMSE (Parry & Hazelton, 2012), weighted MAPE (Woo et
al., 2016), maximum error (X. Li et al., 2017), maximum possible relative error (Ehlert et
al., 2006), weighted maximum possible error (Fu et al., 2019), and total demand captured
(Nie & Zhang, 2008).

Additionally, correlation coefficients are also of interest to determine the correlation
between the estimated results and external data. For example, the Pearson coefficient is
used to calculate correlation between mobile phone data input and the estimation results
(Bachir et al., 2019; Vogt et al., 2019). Spearman’s rho measurement (Menon et al., 2015)
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and phi coefficient (Sherali et al., 2003) are also used to determine the strength of associ-
ation between predicted link flow and true link flow. More recently, structural similarity
measures evaluation has been of interest in the emerging O-D estimation methodologies
(Behara et al., 2020; Caceres et al., 2020; Mungthanya et al., 2019). It can be used as
an measure of effectiveness when comparing matrices of different dimensions since the
statistical measures cannot be applied (Mungthanya et al., 2019).

2.3 Specialty Cases

To date, much of the research related to O-D estimation has focused on understanding
the demand of underlying vehicles, however, the research area has extended to include
specialty cases and subproblems such as network sensor location and demand estimation
for transit.

2.3.1 Network Sensor Location

The network sensor location problem (NSLP) in research has mostly been regarded as a
subproblem of the O-D estimation. An originating study by Lam and Lo (1990) examines
how traffic count information affects the model performance of a EM based O-D estimation
model. The principle of traffic flow coverage for priority links was proposed in this study.
H. Yang and Zhou (1998) addresses the traffic count location problem with determining
the optimal number and locations of traffic count points for a given prior O-D distribution
pattern with fixed link choice properties. Bianco et al. (2001) proposed an iterative two-
stage procedure based on greedy heuristics to determine optimal sensor location for the
best mean O-D demand. Ehlert et al. (2006) expands the research area by adjusting the
objective to find a second-best location procedure for the scenario where the maximum
number of sensors cannot cover all O-D pairs. This problem is then extended by Hadavi
and Shafahi (2016) where the trade-off between sensor budget and percentage of covered
paths is studied with consideration of two target flows: O-D flows, and path flows. A series
four models are considered with respect to the following: minimum number of sensors to
ensure uniqueness of path flows, maximum number of observable path flows within budget
constraint, minimum number of sensors to ensure uniqueness of O-D flows, and maximum
number of observable O-D flows within budget constraint. Additionally, Fei et al. (2013)
addresses maximizing the reliability of estimations when solving the NSLP and accounts
for uncertain events in a transportation network (e.g. traffic incidents).
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Further research led the to the combination of both the traffic count location and the
O-D estimation problems. Zhou and List (2010) proposed a methodology for locating a
limited set of traffic count location and AVI readers within a given network. The method-
ology aims to maximize expected information for the subsequent O-D estimation problem.
Additionally, Mı́nguez et al. (2010) extends the NSLP to plate scanning devices given a
prior O-D distribution pattern and budget constraints.

More recently, the NSLP has been extended to compressed sensing framework by Ye
and Wen (2017) The basis of compressed sensing can recover signal vector directly from
under sampled measurements and slightly promotes reconstruction accuracy. Additionally,
Fu et al. (2019) optimizes traffic count locations and combines the O-D estimation problem
with stochastic link proportions. The study optimize considers the covariance effects which
is important in O-D estimation.

2.3.2 Public Transit

The O-D estimation problem has also been extended to estimate and update passenger
trip matrices within transit networks using a EM framework (Nguyen et al., 1988; Wong &
Tong, 1998) With the implementation of automatic fare collection (AFC) systems in transit
agencies worldwide, smart card data has become a large-scale source for investigating
passenger pattern movement.

Substantial work has been done to estimate station-to-station O-D matrices from smart
card data for metropolitan cities across the world and has shown promising results for the
replacement of passenger O-D surveys which are costly and time consuming (Barry et
al., 2002; Munizaga & Palma, 2012; Zhao et al., 2007). Due to the high comprehensive
spatiotemporal coverage of smartcard data, it has become an important element of transit
management and planning.

2.4 Summary

Contrasting to the richness of methodologies in the literature, only select authors have
evaluated their estimation methods in a structured framework to evaluate performances in
an array of scenarios. Of the reviewed literature from the past two decades, select authors
have tested their methodologies against different estimator/predictor, data type and/or
data amount. A summary of these methodologies is provided in Table 2.2.
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Although Table 2.2 has shown how some researchers conducted sensitivity analyses
on different properties to evaluate select impacts of their methodology, very few have
established a benchmarking procedure. The framework of benchmarking dynamic O-D es-
timation was first introduced by Djukic et al. (2011). This research was furthered explored
by Antoniou et al. (2016) where a comparison of five estimators and four data inputs is
conducted on a single testbed. With the implementation of a benchmarking framework,
only then can the true strengths and limitations of the estimation methods be shown with
quantitative results. Furthermore, of the summarized research in Table 2.2, there has
yet to be an investigation of varying all properties (i.e., estimator, data type, and data
amount) under a benchmarking framework. Additionally, many authors also indicate that
comparisons of their proposed methodology is required in future research (Abdelghany et
al., 2015; Mamei et al., 2019; Mitra et al., 2020; Xie & Duthie, 2015; X. Yang et al., 2017)
This work bridges the gap in research to cover the effects of testing the performance when
adjusting all three properties.

Table 2.2: Properties of O-D Estimation/Prediction

Research Estimator Data Type Data Amount

(Tang et al., 2021) +
(Ros-Roca et al., 2021) +
(Rostami Nasab & Shafahi, 2020) + +
(W. Ma et al., 2020) + +
(Mo et al., 2020) +
(Sana et al., 2018) +
(W. Ma & Qian, 2018b) +
(Wu et al., 2018) +
(Rao et al., 2018) +
(Nigro et al., 2018) + +
(X. Li et al., 2017) + +
(Carrese et al., 2017) + +
(Fujita et al., 2017) +
(X. Yang et al., 2017) +
(Antoniou et al., 2016) + +
(Moreira-Matias et al., 2016) +
(Gómez et al., 2015) + +
(Tympakianaki et al., 2015) +
(Feng et al., 2015) +
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(Barceló et al., 2013) +
(Cascetta et al., 2013) +
(Caggiani et al., 2013) + +
(Sun & Feng, 2011) +
(Djukic et al., 2011) +
(Lou & Yin, 2010) +
(Mussone et al., 2010) +
(Sohn & Kim, 2008) + +
(Zhang et al., 2008) + +
(Tsekeris & Stathopoulos, 2008) +
(Park et al., 2008) +
(Gan et al., 2005) +
(Chootinan et al., 2005) +
(Baek et al., 2004) +
(Bierlaire & Crittin, 2004) +
(Sherali et al., 2003) +
(Nie & Lee, 2002) +
(H. Kim et al., 2001) + +
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Chapter 3

Methodology

As shown in the literature review, existing research covers a wide range of methodologies
and data types to solve the O-D estimation problem. However, these models cannot be
fairly compared to one another for the evaluation of effectiveness, nor the value of informa-
tion added with additional data quantities or sources. The methodology in this research,
which is categorized into three overarching procedures and illustrated in Figure 3.1, ad-
dresses this challenge by utilizing a simulation-based approach to establish a ground-truth
scenario.

The first procedure covers the model building portion and data extraction (3.1), which
documents the setup of the testbed environment with a Vissim network to replicate a
consistent experimental design. For every scenario selected, a ground-truth benchmark is
established with true O-D demand. Simultaneously, a master dataset is generated with a
selected subset of data that emulate the types of data extracted from real world technolo-
gies. Additionally, by using a simulation approach, this research allows room for experi-
mentation by varying the levels of coverage/penetration of each data type to be input into
the O-D estimation algorithm.

The second procedure reviews the scenario selection criteria (3.3). To start this section,
the selection procedure of the existing O-D estimation algorithms covered in Chapter 2 are
filtered. Then, the detailed methodology of each estimation algorithm is provided in this
section.

Lastly, the third procedure outlines the comparison of scenarios (3.4).To start this sec-
tion, a list of evaluated scenarios is provided. Finally, the selected measures of effectiveness
are provided for evaluation.
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3.1 Simulation Model

The simulation model for this research was created in PTV Vissim 2020. A traffic mi-
crosimulation method is chosen due to its ability to emulate the dynamics of a network
with a given demand. The details of the data input for this model as well as the data
extraction are described in this section.

The Sioux Falls network was illustrated in Figure 3.2. The network consists of 24 nodes,
552 O-D pairs and 187 km of road. All nodes act both as origins and destinations in this
study. The Sioux Falls location is selected as the test network due to its notoriety within
the transport research community. However, it is noted that this research does not intend
to replicate the real City of Sioux Falls, SD and remains a fictitious case. The nodal and
link references are taken from Transportation Networks for Research Core Team (n.d.),
which is an adaptation from LeBlanc et al. (1975).

3.1.1 Data Input

Prior to using the Vissim model for data generation purposes, the Sioux Falls network was
first defined with a set of input model characteristics. This process aims to replicate the
real network with a reasonable accuracy to produce an accepted level of realism in the data
generation process. The subsequent subsections provide details of the data sources used
for the creation of this model.

3.1.1.1 Road Geometry

The road geometry of the Sioux Falls network is constructed based off two map sources:
OpenStreetMap (OSM) for link location placement and Google Maps for lane configuration.
Vissim has built-in map providers, such as OSM, which was used for the link placements
on to the Sioux Falls road network. The high visual resolution of Google satellite maps
was used to determine the lane configurations of each link. Additionally, using the lane
configurations provided by Google satellite maps provide real-world physical characteris-
tics of the Sioux Falls network, thus covering many road function classifications such as
freeways, arterials, and collectors.

Corresponding with the nodes and links from LeBlanc et al. (1975), a selected num-
ber of intersections from the real-world network are used for this model. These selected
intersections are illustrated in Figure 3.3.
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Figure 3.2: Sioux Falls Vissim Network

3.1.1.2 Traffic Volume and Demand

The traffic volumes and demand set for this model are adapted from the full-day demand set
by Transportation Networks for Research Core Team (n.d.). The simulation period of this
research is conducted for a 1-hour interval after a warm-up period of 15-minutes. Therefore,
the demand is adapted as a proportion of the reference demand for all-or-nothing (AON)
and user equilibrium (UE) condition. The proportion utilized for this research divides the
full-day demand by 24-hours, then multiplying by 2 to create a congested network (i.e.,
demand exceeding the simulation hour).

Due to the stochastic nature of the Vissim model, each simulation slightly varies the
input demand thus, creating a different ground-truth O-D demand for each condition. The
procedure to extract the true O-D demand is discussed in Section 3.2.2.
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Figure 3.3: Sioux Falls Network – Selected Nodes (H. Liu et al., 2015)

3.1.1.3 Signal Plans

The signal placements of the road network also follow the real-world scenario that is shown
in both OSM and Google Maps. The creation of signal timing plans is conducted in PTV
Vistro through the built-in signal optimization options. With the established demands
from the previous section, the O-D demands are inputted into Vistro. The built network
from Vissim is exported into Vistro for the creation of signal timing plans. The final signal
plans of the network consist of actuated and semi-actuated signals that are exported from
Vistro as ring barrier controllers and directly inputted into Vissim.
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3.1.1.4 Paths

A procedure is required to filter the enumerated paths into a set of efficient (or reasonable)
paths. Following the procedure outlined by Dial (1971), and to avoid biases of some O-D
estimation algorithms with a path enumeration procedure (e.g., logit), a path is assumed
to be efficient if it does not backtrack. A visualization of the efficient paths considered is
illustrated in Figure 3.4. The resulting network considers a total of 2069 paths.

Figure 3.4: Path Consideration Example

3.1.1.5 Conditions

Two assignment conditions related to the path selection are considered in this research:
AON assignment and UE assignment, conducted by an incremental assignment algorithm.
The AON assignment loads trips between O-D pairs onto the path with shortest travel
time. The detailed procedure of incremental assignment is provided in Appendix A.

The two selected conditions are chosen as a basis to evaluate the performance of the
O-D estimation techniques where the assignment methodologies are as different as possible.
AON concentrates all demand onto the single shortest path, whereas UE diffuses demand
to the extent that all used paths have equal travel times. By testing these conditions,
the results could illustrate strengths or weaknesses of the estimation techniques in specific
scenarios. Since real-world traffic assignment may not reflect an AON or a UE approach
(maybe somewhere in between), a strong estimation performance of both conditions may
reflect its ability to estimate in all conditions. Lastly, since some estimation techniques
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rely on an underlying UE assumption as a part of its methodology, the test of an AON
assignment may reveal certain limitations of its assumptions.

3.2 Data Generation

The data generation process aims to collect data from the simulation model to emulate
real-world data collection technologies. With some of the built-in evaluation outputs of
Vissim, many real-world technologies can be reasonably reproduced. Table 3.1 lists the
real-world data sources that are grouped with each Vissim evaluation output and the
specific formatted data that is extracted as inputs for O-D estimation algorithms.

Table 3.1: Vissim Data Generation

Real World Source Vissim Output Extracted Data

Road Sensors (e.g. Bluetooth de-
tectors, toll plazas)

Data Collection
Points

Time Stamp, Speed

Traffic Counts (e.g. loop detectors,
cameras)

Data Collection
Points

Flow, Time Stamp

Partial Vehicle Traces (e.g. license
plate recognition, automatic vehi-
cle identification)

Vehicle Records Path reconstruction, travel
time

Full Vehicle Traces (e.g. probe ve-
hicles, GPS traces)

Vehicle Records O-D Flows, Path Recon-
struction, Travel Time

Given the microscopic nature of the Vissim modelling software, many parameters can
be adjusted to closely emulate the details of specific networks (e.g., driving behaviours).
However, some of these parameters are not critical to the scope of this research, thus these
parameters are set as default. The parameters that are adjusted for this research are listed
as follows:

1. Data collection interval: this parameter varies the frequency at which data is
collected (interval ranges from 1s to 3600s depending on the data required)

2. Simulation Period: Selected to be 4500s (allowing a 900s warm-up period)
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3.2.1 Vehicle Records

Vissim can extract full trajectories with the Vehicle Record evaluation output. For each
vehicle within the simulation period, a record is produced at a selected interval. The
resolution of the time interval is selected for every 1-time step (i.e., the resolution at
which the simulation is updated). The format of the Vehicle Record evaluation output is
illustrated in Table 3.2.

Table 3.2: Example of Vehicle Record Attributes

Simulation Second Vehicle ID Link ID

2450 3002 6

Therefore, for each simulated scenario, the ground-truth O-D matrix can be extracted
by matching all Link ID to origins and destinations for every unique Vehicle ID.

In addition to the ground truth O-D matrix, Vehicle Records are also used for partial
and full traces. The partial traces are representative of data collection methods that are
typically fixed in location and can identify unique vehicles. Thus, the raw vehicle records
are aggregated on the link level, and the levels of penetration with respect to data amount
ranges from 0 to 76 links (e.g., 50% of partial traces means 38 of 76 links collect the
Simulation Second and Vehicle ID of all vehicles).

In contrast to partial traces, full traces are representative of a full path reconstruction
for an individual Vehicle ID. Therefore, the raw vehicle records are aggregated on the
Vehicle ID level, and the level of penetration with respect to data amount occurs on
the total demand level (e.g., 5% of full traces means that 1,040 of 20,818 vehicles collect
Simulation Second and Link ID at every time step).

3.2.2 Data Collection Points

Data Collection Points can be defined on specific location(s) of a link within the Vissim
network that would collect similar measurements to road sensors and traffic count devices.
The record for Data Collection Points is produced at a selected 3600s interval (i.e., the
simulation hour) where data for a specific link is aggregated as an average for speed or
a sum for link counts. The format of the Data Collection Points evaluation output is
illustrated in Table 3.3.
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Table 3.3: Example of Data Collection Point Attributes

Time Interval [s] Link ID Vehicle Count Average Point Speed [km/hr]

900-4500 22 172 57.04

3.3 Scenario Selection

The scenario selection procedure covers the data selection, algorithm selection and condi-
tions selection of the framework. To start, the algorithm selection procedure is presented
in 3.3.1, where existing methodologies are filtered based on a set of scope requirements for
this research. Prior to the presentation of modelling steps of chosen algorithms, a generic
formulation of the O-D estimation problem is first in presented in Section 3.3.2 as a basis
for all methods. Subsequently, the procedures of the selected algorithms are presented in
Section 3.3.2.1 to 3.3.2.5.

3.3.1 Algorithm Selection

This section covers the selection procedure of the existing O-D estimation techniques cov-
ered in the literature review. The following list provides the exclusion procedure of the
algorithm selection:

• Focus is on static O-D estimation techniques, thus dynamic and quasi-dynamic esti-
mation algorithms are excluded.

• The algorithm is to be tested on a network with many O-D pairs. This eliminates
algorithms that have not yet been shown to estimate demands successfully on larger
and more representative networks.

– As a basis, the smallest acceptable network consists of 20 O-D pairs, 20 nodes
and 20 links.

• Network chosen cannot be single corridor network (i.e., no corridors/single major
freeway or arterial, and no toy networks).

• Method cannot require vastly large amounts of data, multi-day data or datasets that
cannot be reproduced (e.g., significant historical data).
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• Techniques established from 2000 or earlier are excluded. While many fundamental
procedures were established at or before this time, since then, other methodologies
have claimed to provide additional benefit to the fundamental formulations.

• Estimation is for general O-D matrix (i.e., estimates O-D from data points to matrix)
(non-specific types, e.g., sub systems, internal-internal , external-internal, etc.).

• Methodology provides a procedure for end-to-end estimation, thus eliminating pro-
cedures to improve a specific portion of the O-D estimation framework.

A detailed overview of the selection matrix is summarized in Appendix B for all static O-D
estimation techniques reviewed previously and considered in this research.

3.3.2 Generic Formulation of the O-D Estimation Problem

To start, a generic formulation of an example network, is represented by a directed graph
G(N,L) consisting of node set N and link set L. Let tij be the O-D demand between origin
i and destination j, and t be the vector with components tij. For every given link L, the
flow f is the sum of the path flows using that link:

f = AF (3.1)

where:

f = link-flow vector
F = path-flow vector

A = alk =

{
1, if l ∈ k

0, otherwise
= link-path incidence matrix

Furthermore, some algorithms require an average generalized cost associated with each
link on the network. For consistency’s sake, this research utilizes is the Bureau of Public
Roads (BPR) cost function as it is the most used and explicitly selected as the function of
choice in Castillo et al. (2008b). Thus, for every given link L, the cost c is

cl(fl) = Tl + αl

(
fl
kl

)βl

(3.2)

where:
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cl(fl) = cost of link l
Tl = free flow travel time on link l
kl = capacity on link l
αl, βl = link-specific constants

Consistent with typical values, β = 4 is held constant while other link properties (i.e., tl,
kl, and αl) are determined through the Vissim network. These properties are summarized
in Appendix C. The resulting cost of path K is equal to the sum of link costs forming said
path:

g = AT c (3.3)

where:

g = path-cost vector
c = link-cost vector

Finally, for the algorithms that require a target O-D demand as a source of information,
a consistent target matrix is created by extracting 5% of all vehicles (non-homogeneous)
and expanded to mimic an O-D matrix obtained from a household travel survey. The
initial matrices used for both the UE and AON networks are provided in Appendix D.

3.3.2.1 Algorithm 1 – Fixed Point Approach to Estimating O-D Matrices
Using Traffic Counts on Congested Networks

The first methodology by Cascetta and Postorino (2001) utilizes link counts as a data source
for O-D demand estimation. From the generalized formulation, this algorithm utilizes a
path enumeration approach for the estimation of the final demand vector. Thus, let pkij be
the fraction of demand of tij using path k. Thus, the actual path flow F can be expressed
as:

F = tP (3.4)

where:

P = pkij = path choice fraction matrix

By substituting Equation 3.4 into 3.1, the link flow can be expressed as the following:

f = tAP = H(c)t (3.5)
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where:

H = assignment matrix

The path-choice mode is obtained using a logit stochastic UE (SUE) model where first,
path performance is calculated based on Equation 3.3 and the path probability matrix is

P = pkij =
exp(−gkij/θ)∑
q∈k exp(−gqij/θ)

(3.6)

where:

θ = dispersion parameter

The value of θ affects diversion probabilities and as the value of θ increases, the level
of uncertainty increases, conversely as θ decreases, it corresponds to a more accurate view
of route costs and the probability of trip using the shortest path increases (Dial, 1971).
Consistent with the author (Cascetta & Postorino, 2001), a value of θ = 1.4 is utilized
where the parameter would be considered a middle value and does not to represent any
extremes.

With the path probability matrix, the estimated assignment matrix can be found by
the following:

H∗ = AP (3.7)

Furthermore, the flow f ∗ by assigning the actual demand t to the network can then be
written as

f ∗ = APt = H∗t (3.8)

The estimated assignment matrix H∗ is generally different from the actual assignment
matrix H due to approximations underlying the assignment model. Thus, the relationship
between H∗ and H is represented as

H = H∗(c) + ESIM (3.9)

where:

ESIM = matrix of unknown assignment errors
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By substituting Equation 3.9 into Equation 3.5, the link-flow vector can be represented
as

f = Ht = (H∗(c) + ESIM)t = H∗(c)t+ ESIM t = H∗(c)t+ εSIM t (3.10)

where:

εSIM = vector of assignment error related to each link-flow

The premise of equation 3.10 illustrates that even if the real demand vector t were
to be assigned to the network by the assignment model by the assignment matrix H∗(c),
the resulting flow vector would be different than the real one due to the error term εSIM .
Additionally, the counted flow vector (i.e., measured on the path), f̄ can also differ from the
actual flows due to several reasons (e.g., measurement errors). Therefore, the discrepancy
is represented as

f̄ = f + εMEAS (3.11)

where:

εMEAS = vector of measure error related to each link-flow

By combining Equations 3.10 and 3.11 to express counted link flow from unknown O-D
demand

f̄ = H∗(c)t+ ε (3.12)

where:

ε = εSIM + εMEAS = both assignment and measurement errors

Moving forward, a fixed-point formulation is utilized for the estimation problem along-
side information provided by link counts f̄ and a sample-based (5% in this research) es-
timate of O-D demand t̄. The sample-based O-D estimate is synthesized as a target and
can be expressed as

t̄ = t+ η (3.13)

where:

η = vector of errors of target demand t̄

In the situation of a congested network, the assignment map is nonlinear for demand t
and link costs depend on link counts that are not known and thus having to be estimated.
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The link flows are estimated as a result from the assignment of O-D demand t∗. The circular
problem can obtain an estimated link flow f(t∗) and its resulting costs c(f(t∗)). Thus, the
equilibrium assignment model can is expressed as the following fixed-point problem.

f ∗ = AP [c(f ∗)]t (3.14)

Finally, the estimation problem is solved by Cascetta and Postorino (2001) through the
following formulation

t = argmin
x≥0

(x− t̄)TV −1(x− t̄) + (H∗(c(f(t∗)))x− f)TW−1(H∗(c(f(t∗)))x− f) (3.15)

where:

V = variance-covariance matrix of error term η
W = variance-covariance matrix of error term ε

The final solution algorithm follows the procedure outlined by the author through
functional iteration, which is described in the following:

Functional Iteration Algorithm

Step 0: Initialization k = 0
Initial demand vector t0 = t̄ explicit evaluation of the assignment matrix H0 by using
SUE assignment model with c = c(t0)

Step 1: Update k = k + 1

Step 2: Solve the problem:
t = argminx≥0(x

k − t̄)TV −1(xk − t̄) + (Hk−1xk − f̄)TW−1(Hk−1xk − f̄)

Step 3: Solve the SUE assignment problem for demand vector tk, compute c(fk) and
evaluate Hk:

fk = f(tk) ck = c(fk) Hk = H(ck)

Step 4: Termination test on maximum percentage difference between the elements of t:

max
tkij−tk−1

ij

tkij
< ε

If the test is satisfied the algorithm ends, otherwise return to Step 1
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When the termination test is satisfied, the final estimated matrix is obtained from Step
2. Further details of this algorithm are provided by its authors, Cascetta and Postorino
(2001).

3.3.2.2 Algorithm 2 – Traffic Estimation and Optimal Counting Location
Without Path Enumeration Using Bayesian Networks

The second methodology by Castillo et al. (2008b) utilizes link counts as a data source for
O-D demand estimation. The approach of this methodology utilizes a Wardrop-minimum
variance (WMV) method for assignment alongside a Bayesian network approach for esti-
mation. For background, a brief summary of the Bayesian network proposed in (Castillo et
al., 2008a) is provided, without which the following summary of the algorithm is difficult
to understand.

To start, a Bayesian network model (Castillo et al., 2008b) is defined as a pair (G,P )
where G, is a directed acrylic graph defined on a set of nodes X (the random variables),
P = p(x1|π1), . . . , (xm|πm) is a set of m conditional probability densities (CPD) for each
variable and Πi is the set of parents of node xi in G. The set P defines associated joint
probability density of all nodes, which is provided in the following

p(x) =
n∏

m=1

p(xm|πm) (3.16)

The Gaussian Bayesian network is defined with the joint probability distribution (JPD)
associated with its variable X having a normal distribution N(µ,Σ). The author proposes
a Gaussian Bayesian network as a basis for O-D estimation based on the following assump-
tions:

1. Link flows satisfy following relations

f = βt+ ε (3.17)

where:

β = βlij = matrix of flow proportions with origin i and destination j using link l
ε = link measurement errors
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2. A correlation structure exists amongst the T random variables. The following as-
sumption is made to represent these correlations and find the associated variance-
covariance matrix

t = KU + η (3.18)

where:

U = random positive variable that measures the total level of flow
K = kij = column matrix for O-D pair ij with respect to the total traffic flow

It is noted that the initial K value is derived from the same prior matrix t̄, utilized in
Algorithm 1. The resulting t vector is a multivariate normal N(µt,Σt) random variable
with mean µt and variance-covariance matrix Σt. The author assumes that O-D and link
flows satisfy the following system of equations.

E[t] = E[U ]K (3.19)

E[f ] = E[U ]βK + E[ε] (3.20)

Dη = Diag(η1, η2, ..., ηr) (3.21)

Dε = Diag(ε1, ε2, ..., εr) (3.22)

∑
tt

= σ2
UKKT +Dη (3.23)

∑
tf

=
∑
tt

βT (3.24)

∑
ft

=
∑
tf

(3.25)

∑
ff

= β
∑
tt

βT +Dε (3.26)
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The following Equations (3.27 - 3.30) update the mean and covariance when some
variables are observed (further details can be seen in Castillo et al. (1997) As variables
become observed, the other variables are conditioned based on the observation, thus, the
expected values and covariances of remaining variables change.

µY |Z=z = µY +
∑
Y Z

∑
ZZ

−1
(z − µZ) (3.27)

∑
Y |Z=z

=
∑
Y Y

−
∑

Y Z
∑
ZZ

−1∑
ZY

(3.28)

∑
Z|Z=z

= 0 (3.29)

Y = set of unobserved variables
Z = set of observed variables

The following equation fixes the mean value of the observed variable to actual observed
value.

E[Z|Z] = z (3.30)

Finally, the following equation uses the mean as the prediction of O-D pair assigned to
different paths.

E[t] = E[Y |Z = z]t⊆Z (3.31)

Moving forward to the WMV equilibrium model and recall the traffic network G(N,L)
from the generic O-D formulation, which estimates link flows associated with each O-D
pair. The following is the WMV optimization problem, which is a mixture of Wardrop
equilibrium and minimum variance problem, and is defined as

min
v

Z =
∑
l∈A

∫ cl(
∑

ij fij)

0

cl(f)dv +
λ

m

∑
l∈A

∑
ij

(flij − µ)2 (3.32)

The values of cl are obtained from Equation 3.2 in the generic O-D formulation. Further
details of the WMV equilibrium model are provided by its authors Castillo et al. (2008b).
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Traffic Estimation Bi-Level Algorithm Without Path Enumeration

Input: Data required consists of the following E[U ], K, cl, αl, ql,γl, ∀ ∈ A, and the observed
link flows.

Step 0: Initialize the O-D flow to the initial guess for E[t] :
t0 = E[t] = E[U ]K

Step 1: Solve the master problem:

minv Z =
∑

l∈A
∫ cl(

∑
ij fij)

0 cl(f)dv +
λ
m

∑
l∈A

∑
ij(flij − µ)2

Step 2: Calculate the β matrix:
βlij =

vlij
tij

Step 3: Update the O-D and link flow predictions using the Bayesian network. The new
O-D pair and link flows are predicted with Equations 3.23 - 3.29.

Step 4: Convergence checking
error = (t0 − E[t])T (t0 − E[t])

If the error is less than the tolerance, stop and return the values of t and f . Otherwise,
let t0 = t and continue with Step 1

When the termination test is satisfied, the final estimated matrix is obtained from Step
3. Finally, additional details and assumptions are provided by its authors Castillo et al.
(2008b).

3.3.2.3 Algorithm 3 – Estimation of Origin-Destination Matrices from Link
Counts and Sporadic Routing Data

The third methodology by Parry and Hazelton (2012) estimates O-D matrices using a
formal likelihood based approach from link counts and sporadic routing data, otherwise
known as partial traces in this research. Furthering the general notation provided in Section
3.3.2, some additional variables and notations are defined.

Let K index the set of routes established in Section 3.1.1.4, with r denoting the total
number of routes and Kij representing the subset of routes with origin i and destination j.
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By definition, E[F ∗] = F , where the F ∗ denotes the random vector of realized route
flows during the observational window. The distribution of F ∗ employs the Poisson model
F ∗
k ∼ Pois(Fk) and is independent of F ∗

ij : i ̸= j for all k ∈ K. A Gaussian approximation
is employed if traffic flows are not too small.

F ∗ N(F,Λ) (3.33)

where:

Λ = diag(F)

The first data source, link counts are defined and related to route flows by Equation 3.1.
Based on a normal approximation, the distribution of link counts is given by the following.

f = N(AF,AΛAT ) (3.34)

It is assumed that the covariance matrix AΛAT is invertible.

The second data source, partial traces, provides routing information for a sample of
vehicles. It is assumed that each vehicle on path k has a probability of pk of being tracked,
and the corresponding vector of probabilities is defined as p = (p1, . . . , pr)

T .The observed
path flows F ∗

trk = (F ∗
trk,1, . . . , F

∗
trk,r)

T are based on tracked vehicles alone and applying
normal approximation, the unconditional distribution of observed route flows are as follows

F ∗
trk = N(PF, PΛ) (3.35)

where:

P = diag(p)

The link counts f and partial traces F ∗
trk are not statistically independent since they

are observed contemporaneously. However, the two data sources can be decomposed to
link counts as

f = ftrk + fnot (3.36)

where:

ftrk = AF ∗
trk = the contribution of tracked vehicles to link counts

fnot = the contribution of non-tracked vehicles to link counts
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Under standard assumptions F ∗
trk and fnot are not independent. The distribution of

F ∗
trk is given in Equation 3.38 and the distribution of fnot is given in the following

fnot = N(AQF,AQΛAT ) (3.37)

where:

Q = I − P with I being the identity matrix

The links between mean vectors and covariance matrices have been defined in Equations
3.35 and 3.37. This methodology assumes that the covariance matrix of F is fixed (i.e.,
V ar(F ∗) = Σ = diag(σ) and not dependent on F to simplify a complex log-likelihood
(Hazelton, 2003, 2010). Thus, the simplified model is as follows

F ∗
trk = N(PF, PΣ) (3.38)

fnot = N(AQF,AQΣAT ) (3.39)

Moving onto the likelihood theory of this method, the following likelihood functions are
all in the following form given the independence of F ∗

trk and fnot.

L(F, p) = g(fnot|F, p)g(F ∗
trk|F, p) (3.40)

where:

g = a probability mass/density function

The vector p in Equation 3.40 is a parameter that will be estimated in tandem with F .
In principle p can be estimated alongside F using likelihood methods, however, there would
be identifiability problems. The details of these issues are outlined in Parry and Hazelton
(2012). Thus, a structure is assumed on p resulting in a simpler estimation problem. The
assumption is that the penetration of technology is homogeneous, thus p = p01 for a scalar
p0. The details of derivation and justification of assumptions can be found in Parry and
Hazelton (2012) and the final estimator can be found by

p0 =
1TAF ∗

trk

1T (AF ∗
trk + fnot

(3.41)

Continuing with the likelihood theory, two models are presented. The chosen models tested
for this research are the simplified models due to similarities in the performance accuracies

50



and the computational advantages. The model utilizes link counts and partial traces, which
constructs the following log-likelihood.

l(F ) =− 1

2
log(|AQΣAT |)− 1

2
(fnot − AQF )T (AΣQAT )−1(fnot − AQF )

− 1

2
log(|PΣ|)− 1

2
(F ∗

trk − PF )T (PΣ)−1(F ∗
trk − PF )

(3.42)

Finally, further details and assumptions of the likelihood theory are outlined by its authors
Parry and Hazelton (2012).

3.3.2.4 Algorithm 4 – Vehicle Trajectory Reconstruction using Automatic Ve-
hicle Identification and Traffic Count Data

The fourth methodology by Feng et al. (2015) focuses on O-D estimation through full
trajectory reconstruction based on partial vehicle traces and spot speed data utilizing a
Kalman filter approach. This approach updates the state-space probability curve through
four correction factors that approximate the true state-space probability curve of vehicles.
It is noted that the original methodology consists of five correction factors, however, the
measurability criterion is not considered in the research since the basis of this correction
factor is to correct data collection errors. Since the data collection process is simulated, the
error detection would not be necessary. The particle set consists of all potential trajectories
between updates of the vehicle. To start, the vehicle trajectory reconstruction is presented
as

Vehicle Trajectory Reconstruction

Step 1: Initialize the particle set:
Set x1, x2, ..., xI to represent the initial particle set and P (x1), P (x2), . . . , P (xI) to rep-

resent the previous particle probability. I denotes the number of particles with an initial
probability set to 1/I. All possible paths are acquired from procedure outlined in Section
3.1.1.4.

Step 2: Importance sampling:
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The probability distribution of particles is assumed to obey the density function that is
derived from previous importance sampling based on four correction factors. Starting with
the path consistency sampling, the initial particle weight follows a uniform distribution.
The path consistency probability density function is derived from network topology and
assigned an AON distribution. Path consistency is expressed through a weight-update
equation presented in the following.

W i
1 = W i

0 ×
P (y|x̂i

1)P (x̂i
1|xi

0)

q(x̂i
1|xi

0, y)
(3.43)

where:

W i
1 =

non-normalized weight of possible trajectory i after path consistency up-
dating

W i
0 = initial prior weight of possible trajectory i

y = objective data collected
x̂i
1 = state space of possible trajectory i

xi
0 = particle for which the initial possible trajectory is i

P (y|x̂i
1) = probability of possible trajectory i based on path consistency

P (x̂i
1|xi

0) =
transformation probability from the previous data to path consistency (in
the static case, the state transition probability is regarded as a constant)

q(x̂i
1|xi

0, y) =
previous probability density function, in which the possible trajectory i
is the true trajectory under a path consistency addition

The particle gathering equation is expressed as

N i
1 =

W i
1∑N

i=1 W
i
1

×N (3.44)

where:

N i
1 =

particle gathering number of possible trajectories i after the path consistency
computations

Three correction factors remain: travel time consistency, gravity flow model and path-
link flow matching. The remaining four resampling processes are conducted prior to Step
3. The details of the resampling process are provided in detail further on in this Section.

Step 3: Output the ’true’ trajectory:
Based on particle filter theory, the posterior probability of all possible trajectories is

represented as
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P (X|y) ≈ P̂ (X|y) = 1

N

N∑
i=1

δ(X i)d(X) (3.45)

where:

P (X|y) = posterior probability density function after the updated probability

With the expectation function represented as

E(g(X)) =

∫
g(X)P (X|y)dX ≈ 1

N

N∑
i=1

N ig(X) (3.46)

where:

g(X) = integral form of P (X | y)

The final result of vehicle reconstruction is obtained from the largest weight of the
posterior state spatial curve.

The first correction factor is the path consistency analysis, which adopts the notion that
all traces from the data must belong to a path in the set of paths. The updating process
relies on an AON distribution where W i

0 ∼ 1
N

represents the path consistency probability
density function. All possible paths follow a uniform distribution. Thus, the probability
update formula is represented as{

P i
path = 1 if N ∈ Npath

P i
path = 0 if N /∈ Npath

(3.47)

where:

Npath = node set of a complete trajectory
P i
path = updated probability based on path consistency analysis

Moving on to the second correction factor, travel time consistency adopts the notion
that a vehicle will select a path in which the average travel time is similar to the collected
travel time between two data collection facilities. The methodology is adopted from R. Li
et al. (2006), modified by Feng et al. (2015) for this algorithm, and estimates travel time
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from spot speeds, as shown in the following equation.

t̃(n1, n2) =
2(xn1, xn2)

ṽ(xn1,∆t) + ṽ(xn2,∆t)
(3.48)

where:

t̃(n1, n2) = average travel time
n1 = beginning of the link
n2 = end of the link
(xn1, xn2) = length of the link
ṽ(xn1,∆t) = average spot speed at the beginning of the calculation period
ṽ(xn2,∆t) = average spot speed at the end of the calculation period

The following equation compares the true travel time between two data collection fa-
cilities and the average travel time.

P i
time =


0.01 if t̃i > 2t′

2− t̃i(DC1,DC2)
t′(DC1,DC2)

if t′ < t̃ < 2t′

t̃i(DC1,DC2)
t′(DC1,DC2)

if t′ > t̃

(3.49)

where:

t̃i(DC1, DC2) =
average travel time of possible path i between two data collection
facilities

t′(DC1, DC2) = true travel time between two data collection facilities
P i
time = updated probability based on travel time consistency

At this trajectory correction factor, the initial probability is W
(i)
1 , which was calculated

with the path consistency analysis correction factor, shown in Equation 3.43. Additionally,
P (y|x̂(i)

2 ) is calculated through Equation 3.49 and q(x̂
(i)
2 |x(i)

1 , y) is the probability density
function of travel time consistency (regarded as a cost density distribution function). Fi-
nally, the probability of possible trajectory is updated with Equation 3.46.

The next trajectory correction factor is the gravity flow model which is based on the
classic gravity model for trip distribution. The basis of this correction factor assumes that
a vehicle always arrives from an adjacent zone with a higher volume. At this trajectory
correction factor, the initial probability isW

(i)
2 , calculated at the previous trajectory correc-

tion factor, travel time consistency. Additionally, P (y|x̂(i)
3 ) is calculated through Equation
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3.50 and q(x̂
(i)
3 |x(i)

2 , yt+∆t) can be defined as a constant probability density in the following
equation due to the volume reflecting the assignment relationship of the O-D.

P i
flow = G̃ =

F × Fcar

(f(x))2
(3.50)

where:

G̃ = gravitational value
F = volume at the entrance/exit of the zone
Fcar = 1 = vehicle unit
f(x) = road impedance function and is replaced by detected travel time
P i
flow = updated probability based on gravity flow model

Finally, the last correction factor is the path-link flow matching model which is based off
the link capacity reliability in graph theory. At this trajectory correction factor, the initial
probability is W

(i)
3 , calculated at the previous trajectory correction factor, gravity flow

model. Additionally, P (y|x̂(i)
4 ) is calculated through Equation 3.51 and q(x̂

(i)
4 |x(i)

3 , yt+∆t)
can be defined as a constant probability density in the following equation due to an existing
assignment relationship in path and link flows.

P i
path−flow =

min(F i
N1−N2)∑N

i=1min(F i
N1−N2)

(3.51)

where:

F i
N1−N2 = observed volume between node N1 and N2

P i
path−flow = updated probability based on path-link flow matching model

Finally, additional details and assumptions are provided by its authors Feng et al.
(2015).

3.3.2.5 Algorithm 5 – Origin-Destination Estimation Using Probe Vehicle Tra-
jectory and Link Counts

The fifth and final methodology by X. Yang et al. (2017) estimates O-D matrices through
full vehicle trajectories and link counts with a GLS approach. Following the generic formu-
lation, some additional definitions and notations are required. It is noted that the original
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formulation of this procedure can accommodate data collected in S equal time intervals
within an analysis period. For consistency of testing, only one time interval is considered
(i.e., S = 1) in this research with the following formulation reflecting the single interval.

Let l denote the links installed with sensors where l is a subset of L. Thus, f̄l, represents
the observed link count of all vehicles at link location l. The formulation of this methodol-
ogy assumes two types of vehicles in the network: probe vehicles and regular vehicles. Let
z̄ij denote the probe vehicle O-D flow with origin i and destination j for each O-D pair.

The proportion of probe vehicles in the total vehicle population is the O-D probe vehicle
penetration ratio, represented as γij. The observed number of probe vehicles passing a
sensor location is represented as h̄l. Finally, the probe link flow to corresponding link
traffic flow is represented as θ̄l.

This methodology introduces two types of models for O-D estimation: scaled probe
O-D matrix as prior matrix (SPP) method, and probe ratios assignment (PRA) model.

Starting with the SPP method, it consists of two steps:

1. The prior matrix t̄ij is estimated by scaling up by the probe O-D flows z̄ij with
corresponding O-D probe penetration ratios γij estimated by averaging the link probe
ratios across the network

2. Solving for O-D flows xij with a GLS formulation

The direct scaling method utilized by the author was previously proposed by Van Aerde
et al. (1993). The estimated O-D probe ratios is computed with the following

γ =

∑
l∈L h̄l∑
l∈L f̄l

(3.52)

where:

h̄l = observed link probe flows
f̄l = observed link flows
γ = common value of γij

The average ratio of the total number of probe vehicles to the total number of vehicles
observed across the entire network is represented in Equation 3.53. The calculation implies
O-D probe ratios are homogeneous amongst all O-D pairs.

t̄ij =
z̄ij
γ

(3.53)
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where:

z̄ij = observed probe O-D flow

Furthermore, the SPP model utilizes the following formulation to adjust the prior O-D
matrix

min
xij

∑
ij

(xij − t̄ij)
2

ω2
ij

+
∑
l

(
fl − f̄l

)2
q2l

(3.54)

fl =
∑
ij

aij,lxij (3.55)

where:

xij = unknown O-D flow
fl = estimated link flow
ω2
ij = variance of xij

q2l = variance of fl
aij,l = flow assignment fraction

Equation 3.55 represents the assignment procedure which follows the author’s proce-
dure of computing flow assignment fractions directly from probe vehicle trajectories. The
computation of aij,l is first discussed by defining z̄ij,l, which is the observed number of
probe vehicles traveling between O-D pair with origin i and destination j passed through
sensor l. Subsequently, the flow assignment fraction of probe vehicles is expressed as

aij,l =
z̄ij,l
z̄ij

(3.56)

In Equation 3.56, the denominator represents the total number of probe vehicles be-
tween O-D pairs ij. Additional assumptions and details are provided by its authors X. Yang
et al. (2017).

The PRA model considers the correlation between the O-D probe ratio and the observed
link probe ratios, and is expressed in the following equation.

θl = P (γl) =
∑
t

∑
ij

ρij,lγij (3.57)

where:

57



P = assignment matrix of probe vehicle ratios
ρij,l = probe ratio assignment fraction

The value of ρij,l represents the assignment of probe vehicles ratio between origin i
and destination and j which passes through the probe ratio link l. Extending the SPP
formulation to include the observed link probe ratios θ̄l, the PRA model is represented as

min
xij

∑
ij

(xij − t̄ij)
2

ω2
ij

+
∑
l

(
fl − f̄l

)2
q2l

+
∑
l

(
θl − θ̄l

)2
v2l

(3.58)

fl =
∑
ij

aij,lxij (3.59)

θl =
∑
ij

ρij,l

(
z̄ij
xij

)
(3.60)

where:

v2l = variance of θl

The computation of aij,l follow Equation 3.57. The probe ratio assignment is approx-
imated using the observed number of probe vehicles passing through sensor l and the
fraction is computed with the following equation.

ρij,l ≈
z̄ij
fl

(3.61)

Finally, additional details and assumptions are provided by its authors X. Yang et al.
(2017).

3.4 Output Comparison

The final procedure of the framework compares the outcome of the estimated O-D matrix
to the ground truth O-D matrix with a MOE. The range of data coverage for partial and
full traces follows the same coverage shown in Algorithm 5 by X. Yang et al. (2017). This
coverage is a middle ground between the other algorithms which range from 18% to 100%.
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Table 3.4: Tested Scenarios

Algorithm
(Conditions)

Data Type Data Amount

1 (UE, AON) Link counts 10-100% link count coverage
2 (UE, AON) Link counts 10-100% link count coverage
3 (UE, AON) Link counts and partial

traces
10-100% link count coverage, 5-30%
partial trace coverage

4 (UE, AON) Partial traces 5-30% partial trace coverage
5 (UE, AON) Full traces 5-30% full trace coverage

Finally, the chosen MOE is RMSE (Equation 3.62) due to its popularity amongst the
authors considered in this research and in the literature review.

RMSE =

√√√√ 1

T

T∑
i=1

(tij − t̂ij) (3.62)

where:

tij = estimated value
t̂ij = ground truth value
T = number of estimates
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Chapter 4

Results

4.1 Algorithm Results

To evaluate the capabilities of each estimator in this research, they are applied, and results
are compared on the basis of RMSE. To start, the findings of each algorithm are presented
with an established set of scenarios for consideration. Each scenario consists of 100 runs
and the results are then illustrated in box charts where the first quartile, third quartile
and the mean RMSE values are shown.

4.1.1 Algorithm 1 Results

Algorithm 1 by Cascetta and Postorino (2001) utilizes link counts as a data source and
estimates O-D matrices through a fixed-point formulation. Two conditions, UE and AON,
are tested with 10% to 100% link count coverage, in increments of 10%. Thus, a total of
20 scenarios are conducted for this algorithm. The UE and AON results are illustrated in
Figure 4.1 and Figure 4.2, respectively.

In both scenarios, RMSE decreases as the percentage of links sampled increases. How-
ever, there are notable differences in the performance when comparing Figure 4.1 and
Figure 4.2 in terms of RMSE values and the spread of upper and lower extremes. While
the UE scenario shows a steady decrease in mean RMSE value as the percentage of link
sampled increases, the AON scenario shows stagnation of mean RMSE values from 50% to
90% link sample coverage. For link coverage at 10% and 20%, the upper extreme of the
whiskers on the plot are also significantly higher in the AON scenario. Additionally, all
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Figure 4.1: Algorithm 1 - UE Results

Figure 4.2: Algorithm 1 - AON Results
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mean RMSE values for all link coverage percentages are higher in the AON scenario when
compared to the UE scenario.

4.1.2 Algorithm 2 Results

Algorithm 2 by Castillo et al. (2008b) utilizes link counts as a data source and estimates
O-D matrices through WMV methodology alongside a Bayesian network approach. Two
conditions, UE and AON, are tested with 10% to 100% link count coverage (10% incre-
ments). Thus, a total of 20 scenarios are conducted for this algorithm. The UE and AON
results are illustrated in Figure 4.3 and Figure 4.4, respectively.

Figure 4.3: Algorithm 2 - UE Results

In both scenarios, RMSE decreases as the percentage of links sampled increases. Figure
4.3 and Figure 4.4 reveal similar results between the UE and AON scenarios. However, the
UE scenario for link coverage at 90% and 100% indicate a slightly better estimate. The
RMSE remains stagnant with link coverage below 60%. Improvement in estimation results
begin when the percentage of links sampled increases above 60%, which can indicate low
confidence in the estimator with link count coverage below 60%.
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Figure 4.4: Algorithm 2 - AON Results

4.1.3 Algorithm 3 Results

Algorithm 3 by Parry and Hazelton (2012) utilizes link counts and partial traces to estimate
O-D matrices using a formal likelihood approach. Two conditions, UE and AON are tested
with 10% to 100% link count coverage in 10% increments and 5% to 30% partial traces
coverage in 5% increments. Thus, a total of 120 scenarios (i.e., 10 link coverage scenarios x
6 partial trace scenarios × and 2 assignment conditions) are conducted for this algorithm.
The UE and AON results formulated with both link counts and partial traces are illustrated
in Figure 4.5 and Figure 4.6, respectively.

In the UE and AON scenarios with link count and partial traces data, RMSE generally
decreases as the percentage of links sampled increases. Figure 4.5 and Figure 4.6 reveal
nearly identical results when compared to each other. The RMSE mostly remains stagnant
when the percentage of links sampled is below 60%. Improvement in estimation results
begin when the coverage is above 60%, which can indicate low confidence in the estimator
with link count coverage below 60%. The most significant improvement in estimation
happens at 100% link sampled coverage for all partial trace coverage.
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Figure 4.5: Algorithm 3 - UE Results

64



Figure 4.6: Algorithm 3 - AON Results
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4.1.4 Algorithm 4 Results

Algorithm 4 by Feng et al. (2015) utilizes partial traces and spot speed data to estimate
O-D matrices through a particle filter approach. Two conditions, UE and AON are tested
with 10% to 30% partial traces coverage (5% increments). This results in a total of 12
tested scenarios. Unlike the other four algorithms, link count data is not utilized in this
method. The UE and AON results are illustrated in Figure 4.7 and Figure 4.8, respectively.

Figure 4.7: Algorithm 4 - UE Results

In both scenarios, RMSE decreases as the percentage of partial traces sampled increases.
Figure 4.7 and Figure 4.8 reveal similar results between the UE and AON scenarios with
the most drastic improvement occurring at 10% coverage. However, the UE scenarios
indicate a slight spread of the upper and lower quartile.

4.1.5 Algorithm 5 Results

Algorithm 5 by X. Yang et al. (2017) utilizes link counts and full traces to estimate O-D
matrices using a GLS formulation. There are two models, SPP and PRA, that are proposed
by the author of this methodology. Two conditions, UE and AON are tested with 10% to
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Figure 4.8: Algorithm 4 - AON Results

100% link count coverage and 5% to 30% full traces coverage. This results in a total of 240
tested scenarios, where 120 scenarios are tested with the SPP model and 120 are tested
with the PRA model.

First, the UE and AON results for the SPP model are illustrated in Figure 4.9 and
Figure 4.10, respectively. Furthermore, the UE and AON results for the PRA model are
illustrated in Figure 4.11 and Figure 4.12, respectively.

In the UE and AON scenarios for the SPP model, RMSE generally decreases as the
percentage of links sampled increases. Figure 4.9 and Figure 4.10 reveal nearly identical
results when compared to each other. The RMSE mostly remains stagnant when the
percentage of links sampled is above 60% when 5% of full traces are sampled, 70% when
100% of full traces are sampled and 80% when 15% to 30% of full traces are sampled.
The most significant improvement in estimation happens prior to the stagnation and is
most noticeable when link sampled from 10% to 50%. This indicates that increasing link
coverage prior to stagnation is valuable to improving estimation. Once stagnation occurs,
there are diminishing returns to the estimated O-D demand.

In the UE and AON scenarios for the PRA model, RMSE generally decreases as the
percentage of links sampled increases. Figure 4.11 and Figure 4.12 reveal nearly identical
results when compared to each other. The RMSE mostly remains stagnant when the
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percentage of links sampled is above 50% when 5% of full traces are sampled, 70% when
100% of full traces are sampled and 80% when 15% to 30% of full traces are sampled.
Similar to the SPP model, the most significant improvement in estimation happens prior
to the stagnation and is most noticeable when link sampled from 10% to 50%. Once again,
this indicates that increasing link coverage prior to stagnation is valuable to improving
estimation but there are diminishing returns to the estimated O-D demand once stagnation
occurs.

When comparing the results of the SPP model (i.e., Figure 4.9 and Figure 4.10) and
PRA model (i.e., Figure 4.11 and Figure 4.12), results are nearly identical. At high (25%
and 30%) full traces coverage and high (90% and 100%) link sample coverage, the PRA
model has a slightly better estimation.

4.2 Summary of Algorithms

To close, an illustration of the performance of all algorithms is summarized for the AON
and UE scenarios in Figure 4.12 and Figure 4.14, respectively. For brevity, the algorithms
that have partial or full traces as data source only illustrate the lowest trace coverage (5%)
and highest trace coverage (30%).

For both AON and UE scenarios, algorithms that utilize only link counts or link counts
and partial traces have a concave decreasing relationship with respect to increasing col-
lected sample data. In contrast, algorithms that utilize link counts and full traces have a
convex decreasing relationship with respect to increasing collected sample data. For link
counts and partial traces, this indicates that the percentage of collected data is pertinent to
the confidence of the estimator. Full traces, on the other hand, indicate that any amount
of sampled data improves estimator performance. However, at certain coverage of link
samples, there is diminishing value in increasing link data collection (e.g., generally after
50% for 5% full traces, and 80% for 30% traces).

For most cases, low percentages of sampled links reveal similar performance resulting
between a RMSE value of 37 and 45 in the tested network. The exception to this is
Algorithm 3 with 30% of partial traces with a RMSE value closer to 30. In addition, most
cases of 100% of sampled links revel performances resulting in a RMSE value between 24
and 34. Again, Algorithm 3 with 30% of partial traces is an exception to this with a RMSE
value closer to 10.

Usually, only link counts cannot obtain the same quality of O-D estimates when com-
pared to the ones obtained through full traces, even at low full trace percentages (i.e., 5%).
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Figure 4.9: Algorithm 5 (SPP) - UE Results
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Figure 4.10: Algorithm 5 (SPP) - AON Results
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Figure 4.11: Algorithm 5 (PRA) - AON Results
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Figure 4.12: Algorithm 5 (PRA) - AON Results
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The exception to this is at 100% links sampled where the UE scenario indicates similar
performances of Algorithm 1, 2 and 3 (with 5% of partial traces). In some cases, link
counts can compete with low percentages (5%) of full traces.

While 100% link coverage with 30% of partial traces reveal the best performance,
obtaining full trace data or high levels of link count data may not feasible. Thus, the
following data coverage are shown to be most valuable in these specific situations:

• when link coverage is below 30%, it is more valuable to collect 30% of partial traces
rather than increasing link coverage or full trace coverage

• when link coverage at 100% with 30% of partial traces reveal a similar performance
to link coverage at 100% of 30% of full traces.
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Figure 4.13: Performance Summary (AON)

Figure 4.14: Performance Summary (UE)
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Chapter 5

Discussion and Conclusions

This thesis presents a framework to prepare and test static O-D estimation algorithms on
a common testbed with an established baseline condition. The framework is implemented
in a simulation environment consisting of a Vissim model of the Sioux Falls network as
a case study area. The network characteristics of the model environment consists of 24
nodes, 552 O-D pairs and 2,069 paths. A total of five algorithms were tested with four
data types and two traffic assignment conditions. The performances of the methodologies
were repeated 100 times for each set of scenarios (412 total scenarios) for a total of 41,200
O-D matrices estimated amongst the five algorithms.

This research does not conclude to a “best” approach for O-D estimation; rather it
provides support in testing the effects of data type, data amount, and a variety of scenarios
and conditions. To close, limitations and future recommendations are provided at the end
of this chapter based on the findings of this research. Some future recommendations are
provided through the lens of the challenges met within this research.

5.1 Major Findings

A brief overview of some general findings of the algorithms are presented. Subsequently,
specific details of each algorithm are reviewed in the following subsections.
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5.1.1 Algorithm 1

While the results for this algorithm are promising within the testbed framework, there
are specific details utilized in the framework that are the basis for its success. External
knowledge is pertinent to the success of this methodology since the relationship between
link counts and O-D estimates hold an indeterminate relationship. Since paths are enu-
merated in the methodology, the link costs and spread parameters are key inputs for an
accurate assignment matrix and thus, also a reliable O-D estimate. This approach as-
sumes an equilibrium-based assignment. Although this assumption may be favourable to
reflect traveler route choice behaviour under congested conditions, equilibrium may not
be reached in some network cases. The results of this method reflect this limitation as a
better estimate is shown in the UE scenario in comparison to the AON scenario. It is noted
that the calibration of spread parameters can be adjusted on a case-by-case basis to better
reflect each network and scenario. However, the performance would still be dependent on
the accuracies of these parameters.

Since the framework utilized in this research is a synthetic testbed, the BPR cost
function is easily identified through Vissim, which then leads to an extremely accurate path
cost. Consistent with the findings by Cascetta and Postorino (2001), the utilization of a
fixed-point approach within this method shows to be capable of O-D estimation within a
congested scenario. Finally, with this external knowledge, the estimated assignment matrix
is especially close to the actual assignment matrix. In addition to path enumeration, the
prior O-D matrix also holds imperative information to a successful O-D estimate. Since
the extracted O-D matrix found is theoretically representing a prior O-D obtained by a
household travel survey, the prior O-D is represented as the same dataset as a 5% full
trace dataset in this research. Unsurprisingly, since the prior O-D is of high quality, a
lower RMSE result is already established even without any implementation of link count
data. Limitations of low-quality prior O-Ds are not reflected in this research.

5.1.2 Algorithm 2

The authors of Algorithm 2, Castillo et al. (2008b), have also tested their methodology on
the Sioux Falls network, although their results are not reported. Their findings are said
to show high precision in O-D estimates even at low link counts. Some of the findings
in this research are consistent with Castillo et al. (2008b), however, results only show
confidence in the methodology at higher link count coverage (60%+). It is noted that
Castillo et al. (2008b) provided a two-step framework in their paper: the first step covering
an optimal subset of links to be observed, followed by the second step where O-D estimates
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are conducted utilizing the optimal links identified in the first step. The first step utilizes a
prior O-D matrix as a basis for finding a set of optimal link counts to collect. This approach
also relies on a high-quality prior O-D for necessary knowledge in the O-D estimation step.
Since the scope of this research is limited to the O-D estimation procedure, the first step for
optimal link counts is excluded. The difference in results indicates that a specific optimal
link set is important to the success of estimating O-D flows with low link coverage.

Consistent with the results on a testbed network (4 O-D pairs, 13 nodes, and 19 links)
by Castillo et al. (2008b), the quality of results improve as the number of observed links
increases. Although this methodology only utilizes prior O-D flows and observed link
counts as input data, the Bayesian network contains two sources of information: the joint
normal distribution of links and O-D flows, and the observed link flows. Therefore, with a
prior O-D, an estimate can be provided without additional link count data.

5.1.3 Algorithm 3

Objective functions in this method are similar to the GLS estimation of O-D matrices
where the routing data acts like the target matrix. Unlike algorithms requiring a prior
O-D, this algorithm’s performance is not reliant on a high-quality target. It is important
to note that utilizing both the partial traces and link counts provide important information
in this estimation method and is crucial to its success. While one might think that the
information that partial traces hold has precedence when compared to link count data, the
model results reflect that even at high partial trace coverage (30%), the best performance
only exists with the presence of high link count coverage. In fact, at high partial trace
coverage and low link sampling rates, results indicate low confidence in the estimator’s
performance.

Since this algorithm assumes a restricted set of routes, potential biases of the route set
may exist. While Parry and Hazelton (2012) restricts O-D pairs to have no more than six
or seven routes, this research does not limit routes to six or seven O-D pairs. However,
establishing limited routes reveals similar limitations to restriction established by Parry
and Hazelton (2012). Establishing an unrestricted set of routes would not be plausible
for this estimation method as Parry and Hazelton (2012) state, networks with tens of
thousands of routes, or greater, would present significant computational burden.

Lastly, the penetration rates of the partial traces are critical factor to the success of this
estimator. The assumption of homogeneity of traces amongst routes, presented Equation
3.41, is a limiting factor since constant penetration rate cannot be guaranteed in data
collection. Similar to the results presented by Parry and Hazelton (2012), this research
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produced O-D estimates that are not greatly affected by the assumption of homogeneous
penetration rates. Although the variations of the probability of tracking vehicles exists in
our testbed, this methodology shows quality O-D estimates based on the results.

5.1.4 Algorithm 4

The methodology of Algorithm 4 only utilizes partial trace as a data source for O-D
estimation. Hence, the information that the partial traces provide is pertinent to the
success of this method.

The limitations of this procedure at low partial traces coverage are susceptible to er-
rors potentially due to a lack of scalability within the methodology. Extremely confident
results are reported by Feng et al. (2015) when the trace coverage is greater than 60%
since a 60% sample rate covers all vehicles within their network. The large amount of
information obtained at high partial trace coverage is directly related to the confidence in
performance of this algorithm. Since this research shows tests with coverage from 5% to
30%, a confident estimate has not been established. Additional effort in increasing infor-
mation through different avenues are required for estimating at lower partial trace coverage
for this estimator.

5.1.5 Algorithm 5

Unsurprisingly, the information of full traces proved to show the best O-D estimates.
The success of this algorithm shows full traces to have information for quality estimates
without external knowledge. Like Algorithm 3, link count data provide valuable important
information in this estimation method based on model results. The inclusion of link data
notably increases the quality of the estimates, especially since the best performances are
with a presence of high link count coverage. In fact, at high partial trace coverage and low
link sampling rates, results indicate low confidence in the estimator’s performance.

Within this testbed, the penetration of full traces is conducted heterogeneously. X. Yang
et al. (2017) reported findings show a better performance in the PRA model for heteroge-
neous penetration rates. Although not as significant as the results provided by X. Yang
et al. (2017), the findings of this research also support that the PRA model performs
slightly better with the heterogeneous penetration rates of this testbed. The slight im-
provement in performance could be explained by how the variation of the heterogeneity of
the penetration in this research testbed is not as significant as the ones by X. Yang et al.
(2017).
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The original network utilizes a range of full traces from 5% to 30% with a fixed constant
link count coverage of 51%. Their findings reveal unreliable estimates at the 5% trace
coverage. Further testing in this research reveals exceeding the 50% link count coverage
would not significantly improve the estimates at low full trace coverage (5%).

5.1.6 Prior Knowledge

Due to the observability issue in static O-D estimation based solely on link counts, some
algorithms in this study rely on a prior O-D matrix. While each algorithm depends on
prior knowledge differently, the quality of this external knowledge reveals differences in
performance amongst algorithms. Though it is rationale to think that more prior data
is better, it is not equivalent to better estimation quality since some priors create a less
accurate estimation due to variable reasons (e.g., outdated estimates).

Additionally, the algorithms that require a path-incidence matrix as part of their
methodology risk eliminating routes that carry flow. While this research does not con-
sider paths that backtrack, some specific networks could contain a reasonable amount of
backtracking as plausible routes. By utilizing a constrained set of routes, these algorithms
introduce some slight biases into their estimates. Furthermore, for larger and more complex
networks, establishing a restricted set of routes poses its own challenges. Alternatively, an
entire set of unrestricted routes can be established through search algorithms, but many
estimation methods may have capacity limitations to estimate O-D flows on an unrestricted
set of paths.

5.1.7 Data Type and Data Amount (Sample Size)

Results of this research provide insight into the value of information gained from each data
type. When utilizing only link count data, critical results occur at coverages of 80% or
higher. These algorithms (i.e., Algorithm 1 and Algorithm 2) reveal the most confidence
and substantial improvement at this coverage. At coverages below 80%, the results of all
algorithms utilizing only link counts do not show substantial additional value.

The addition of partial traces to link count data provides increasing value of information
when the coverage of partial traces is 15% or higher. At 15% or lower, the addition of more
partial traces shows no substantial value when compared to only having link counts.

When adding full traces to link count data, all full trace coverage rates provide addi-
tional value, especially when link count coverage is between 20% and 90%. At low full trace
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coverages (5% and 10%), the most impact from link counts is had by increasing coverage
up to 50%; additional link coverage beyond 50% does not show substantial value. However,
as full trace coverage increases above 10%, diminishing returns begin to occur when link
count coverage surpass 80%. Thus, there is added value of information when increasing
both full traces and link count coverage (up until 80% in these experiments).

At high sample sizes, the best performing algorithms in the tested conditions are as
follows:

• high link coverage and high partial trace coverage (Algorithm 3), and

• high link coverage and medium-to-high full trace coverage (Algorithm 5).

At these large sample sizes, the RMSE value decreases by more than 50% when compared
to other scenarios. While these high sample sizes show the best performances, the data
collection required by these scenarios may not be feasible in practice.

Therefore, for medium data coverage, the best performing options with similar results
are as follows:

• medium link coverage and medium partial trace coverage (Algorithm 3), and

• medium link coverage and low full trace coverage (Algorithm 5).

At lower data coverages, the implementation of a full trace (also in a low percentage)
appears to have the best value of information. Thus, Algorithm 5 would likely perform the
best with a low sample size. This is also apparent in the results of Algorithm 5, where the
plots (Figure 4.9 - Figure 4.12) illustrate a convex shape of the results of this algorithm,
demonstrating the steepest slopes of the function occur at the lower data sampled.

5.2 Limitations and Future Research

Based on the research framework, there are some limitations as it pertains to real world
applications. The findings of this research are confined to the scenarios that are tested.
Technological, measurement, and human errors are not uncommon in data collection and
would affect the overall performances of O-D estimation algorithms. This research repre-
sents a simplification of reality where modifications and simplifications make it possible to
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model in a simulated environment. Many additions and enhancements can be conducted
to better represent scenarios unique to specific models

The presented testbed framework and demonstrated results supports and enhances the
testing of future general O-D estimation methods and extensions of existing algorithms.
Additionally, with the common testbed, the value of data type and data amount can be
tested as new emerging technologies are being utilized. The ability to gain insight to
the value of data for suitable applications support allocating resources in evidence-based
decision making.
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Appendix A

Incremental Assignment

The incremental assignment procedure is a heuristic method for obtaining a UE solution
based on Sheffi (1984) and outlined below.

Step 0: Preliminaries

• Divide each O-D entry into N equal portion:

qnij =
qij
N

where:

qnij = incremental n of the total O-D demand between i and j
qij = total O-D demand between i and j
N = number of increments

• Set increment to n = 1

• Set all link flows to zero:

x0
a = 0, ∀ a

where:

x0
a = flow on link a for increment 0
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Step 1: Update

• Set

tna = ta(x
n−1
a ), ∀ a

where:

tna = travel time on link a for increment n

ta(x
n−1
a ) =

travel time on link a after n−1 increments of the O-D matrix
have been assigned

Step 2: Incremental loading

• Perform AON assignment based on tna , but using qnij trip rates for each O-D pair

• These yields flow pattern wn
a

Step 3: Flow summation

• Set

xn
a = xn−1

a + wn
a , ∀ a

Step 4: Stopping rule

• If n = N , stop (the current set of link flows is the solution)

• Otherwise, n = n+ 1 and go to Step 1
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Appendix B

Criteria Selection Matrix

Research Static/Dynamic Remove?/Reason

(Fekih et al., 2020) Static Yes/Data cannot be replicated
(Behara et al., 2021) Static Yes/Testbed network
(Tang et al., 2021) Dynamic Prediction
(Ros-Roca et al., 2021) Dynamic Yes/ Dynamic estimation
(Xian et al., 2021) Dynamic Prediction
(Mitra et al., 2020) Static new approach
(Rostami Nasab & Shafahi, 2020) Static new approach
(W. Ma et al., 2020) Dynamic Yes/ Dynamic estimation
(Mo et al., 2020) Dynamic Yes/ Dynamic estimation
(Z. Cheng et al., 2020) Static Yes/ Data cannot be replicated
(Pitombeira-Neto et al., 2020) Dynamic Yes/ Dynamic estimation
(Krishnakumari et al., 2020) Static new approach
(J. Liu et al., 2020) Dynamic Yes/ Dynamic estimation
(Mamei et al., 2019) Dynamic Yes/ Dynamic estimation
(Bachir et al., 2019) Dynamic Yes/ Dynamic estimation
(E. Kim et al., 2019) Dynamic Yes/ Dynamic estimation
(Ou et al., 2019) Dynamic Yes/ Dynamic estimation
(Vogt et al., 2019) Static Yes/ Testbed network
(Osorio, 2019) Dynamic Yes/ Dynamic estimation
(Sana et al., 2018) Static Yes/ Data cannot be replicated
(W. Ma & Qian, 2018b) Static new approach
(Wu et al., 2018) Dynamic Yes/ Dynamic estimation
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(W. Ma & Qian, 2018a) Dynamic Yes/ Dynamic estimation
(Ouyang & Huang, 2018) Static Yes/ Testbed network
(Bauer et al., 2018) Dynamic Yes/ Dynamic estimation
(H. Kim et al., 2018) Static Yes/ Testbed network
(Nigro et al., 2018) Dynamic Yes/ Dynamic estimation
(Bonnel et al., 2018) Static Yes/ Data cannot be replicated
(X. Li et al., 2017) Dynamic Prediction
(Hu et al., 2017) Dynamic Yes/ Dynamic estimation
(Carrese et al., 2017) Dynamic Yes/ Dynamic estimation
(Michau et al., 2017) Static new approach
(Shafei et al., 2017) Dynamic Yes/ Dynamic estimation
(Fujita et al., 2017) Dynamic Yes/ Dynamic estimation
(Tesselkin & Khabarov, 2017) Static Yes/ Weak performance in

strongly-connected networks
(X. Yang et al., 2017) Static No/Chosen
(Shafiei et al., 2016) Dynamic Yes/ Dynamic estimation
(Pitombeira-Neto & Loureiro,
2016)

Dynamic Yes/ Dynamic estimation

(Gundleg̊ard et al., 2016) Static Yes/ Data cannot be replicated
(Ge & Fukuda, 2016) Static Yes/ Data cannot be replicated
(Moreira-Matias et al., 2016) Dynamic Yes/ Dynamic estimation
(Woo et al., 2016) Dynamic Yes/ Dynamic estimation
(Y. Li et al., 2016) Dynamic Yes/ Dynamic estimation
(Xie & Duthie, 2015) Dynamic Yes/ Dynamic estimation
(Talebian & Shafahi, 2015) Dynamic Yes/ Dynamic estimation
(Gómez et al., 2015) Static Yes/ Dynamic estimation
(Alexander et al., 2015) Static Yes/ Data cannot be replicated
(Toole et al., 2015) Static Yes/ Data cannot be replicated
(Laharotte et al., 2015) Static Yes/ Data cannot be replicated
(Tympakianaki et al., 2015) Dynamic Yes/ Dynamic estimation
(Feng et al., 2015) Static No/ Chosen
(Z. Lu et al., 2015) Dynamic Yes/ Dynamic estimation
(Abdelghany et al., 2015) Dynamic Yes/ Dynamic estimation
(Carvalho, 2014) Static Yes/ Testbed network
(Zhou et al., 2014) Dynamic Yes/ Dynamic estimation
(Frederix et al., 2014) Dynamic Yes/ Dynamic estimation
(L. Cheng et al., 2014) Static Yes/ Testbed network
(Barceló et al., 2013) Dynamic Yes/ Dynamic estimation
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(Y. Ma et al., 2013) Dynamic Yes/ Dynamic estimation
(Lorenzo & Matteo, 2013) Static Yes/ Data cannot be replicated
(Cascetta et al., 2013) Dynamic Yes/ Dynamic estimation
(Caggiani et al., 2013) Static Yes/ Testbed network
(Kattan & Abdulhai, 2012) Dynamic Yes/ Dynamic estimation
(Tornero et al., 2012) Dynamic Yes/ Dynamic estimation
(Diao et al., 2012) Dynamic Yes/ Dynamic estimation
(Parry & Hazelton, 2012) Static No/ Chosen
(Perrakis et al., 2012) Static Yes/ Data cannot be replicated
(Sun & Feng, 2011) Static Yes/ Testbed network
(Lee et al., 2011) Dynamic Yes/ Dynamic estimation
(Wang & Zhang, 2011) Static Yes/ Testbed network
(Xie et al., 2011) Static Yes/ Not general O-D estima-

tion
(D. Chen et al., 2011) Dynamic Yes/ Dynamic estimation
(H. Kim & Jayakrishnan, 2010) Dynamic Yes/ Dynamic estimation
(Baek et al., 2010) Static Yes/ Non-testbed network did

not establish ground truth
(Lou & Yin, 2010) Dynamic Yes/ Dynamic estimation
(Mussone et al., 2010) Static Yes/ Not general O-D estima-

tion
(Etemadnia & Abdelghany, 2009) Dynamic Yes/ Dynamic estimation
(Choi et al., 2009) Dynamic Yes/ Dynamic estimation
(A. Chen et al., 2009) Static Yes/ Not end-to-end estima-

tion
(Cho et al., 2009) Dynamic Yes/ Dynamic estimation
(Sohn & Kim, 2008) Dynamic Yes/ Dynamic estimation
(Zhang et al., 2008) Dynamic Yes/ Dynamic estimation
(Tsekeris & Stathopoulos, 2008) Dynamic Yes/ Dynamic estimation
(Park et al., 2008) Static Yes/ Testbed network
(Castillo et al., 2008b) Static No/Chosen
(Nie & Zhang, 2008) Dynamic Yes/ Dynamic estimation
(Zhou & Mahmassani, 2006) Dynamic Yes/ Dynamic estimation
(Lin & Chang, 2006) Dynamic Yes/ Dynamic estimation
(Gan et al., 2005) Static Yes/ Testbed network
(Stathopoulos & Tsekeris, 2005) Dynamic Yes/ Dynamic estimation
(Wong et al., 2005) Static Yes/ Not general O-D estima-

tion
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(Dixon & Rilett, 2005) Static Yes/ Testbed network
(Chootinan et al., 2005) Static Yes/ Not end-to-end estima-

tion
(Kwon & Varaiya, 2005) Dynamic Yes/ Dynamic estimation
(Bierlaire & Crittin, 2004) Dynamic Yes/ Dynamic estimation
(Van Aerde et al., 2003) Static Yes/ Testbed network
(Zhou et al., 2003) Dynamic Yes/ Dynamic estimation
(Sherali et al., 2003) Static Yes/ Testbed network
(Nie & Lee, 2002) Static Yes/ Not end-to-end estima-

tion
(Ashok & Ben-Akiva, 2002) Dynamic Yes/ Dynamic estimation
(H. Kim et al., 2001) Static Yes/ Testbed network
(Hazelton, 2001) Static Yes/ Testbed network
(Cascetta & Postorino, 2001) Static No/ Chosen
(H. Yang et al., 2001) Static Yes/ Testbed network
(Sherali & Park, 2001) Dynamic Yes/ Dynamic estimation
(Hazelton, 2000) Static Yes/ Testbed network
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Appendix C

Link Properties
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Link t α K
1 6 0.9 25.9002
2 4 0.6 23.4035
3 6 0.9 25.9002
4 5 0.75 4.9582
5 4 0.6 23.4035
6 4 0.6 17.1105
7 4 0.6 23.4035
8 4 0.6 17.1105
9 2 0.3 17.7828
10 6 0.9 4.9088
11 2 0.3 17.7828
12 4 0.6 4.948
13 5 0.75 10
14 5 0.75 4.9582
15 4 0.6 4.948
16 2 0.3 4.8986
17 3 0.45 7.8418
18 2 0.3 23.4035
19 2 0.3 4.8986
20 3 0.45 7.8418
21 10 1.5 5.0502
22 5 0.75 5.0458
23 5 0.75 10
24 10 1.5 5.0502
25 3 0.45 13.9158
26 3 0.45 13.9158
27 5 0.75 10
28 6 0.9 13.512
29 5 0.75 5.1335
30 8 1.2 4.9935
31 6 0.9 4.9088
32 5 0.75 10
33 6 0.9 4.9088
34 4 0.6 4.8765
35 4 0.6 23.4035
36 6 0.9 4.9088
37 3 0.45 25.9002
38 3 0.45 25.9002

Link t α K
39 4 0.6 5.0913
40 4 0.6 4.8765
41 5 0.75 5.1275
42 4 0.6 4.9248
43 6 0.9 13.512
44 5 0.75 5.1275
45 4 0.6 15.6508
46 4 0.6 10.315
47 5 0.75 5.0458
48 5 0.75 5.1335
49 2 0.3 5.2299
50 3 0.45 19.6799
51 8 1.2 4.9935
52 2 0.3 5.2299
53 2 0.3 4.824
54 2 0.3 23.4035
55 3 0.45 19.6799
56 4 0.6 23.4035
57 4 0.6 15.6508
58 2 0.3 4.824
59 4 0.6 5.0026
60 4 0.6 23.4035
61 4 0.6 5.0026
62 6 0.9 5.0599
63 5 0.75 5.0757
64 6 0.9 5.0599
65 2 0.3 5.2299
66 3 0.45 4.8854
67 4 0.6 10.315
68 5 0.75 5.0757
69 2 0.3 5.2299
70 4 0.6 5
71 4 0.6 4.9248
72 4 0.6 5
73 2 0.3 5.0785
74 4 0.6 5.0913
75 3 0.45 4.8854
76 2 0.3 5.0785
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Appendix D

Initial Matrices

UE Matrix (Origin × Destination)

0 20 20 40 0 0 20 0 20 80 40 60 20 20 20 20 40 20 40 20 20 20 0 20

20 0 20 0 0 20 60 0 20 0 20 0 40 0 0 0 20 20 0 40 0 20 20 40

40 0 0 20 20 0 100 120 0 20 40 0 0 60 20 20 20 20 0 0 20 0 40 40

60 0 0 0 40 20 20 0 40 100 160 0 40 80 60 40 20 20 20 40 20 0 20 40

0 0 0 40 0 0 100 120 0 20 60 0 20 40 20 20 0 0 20 20 40 20 0 60

0 0 60 40 40 0 0 0 0 0 0 0 40 60 20 80 80 0 20 0 20 20 20 40

80 0 0 0 60 20 0 80 0 60 60 40 60 80 60 40 60 40 20 0 40 20 40 0

80 20 20 0 20 40 80 0 40 100 60 60 100 40 20 80 60 0 40 60 0 60 40 0

40 0 20 0 0 40 100 40 0 80 40 20 60 0 0 40 40 40 20 20 20 40 0 40

20 0 20 40 20 100 60 100 140 0 120 100 60 20 120 220 100 40 40 100 100 60 60 40

40 20 20 20 20 20 40 120 20 200 0 80 60 20 20 160 60 20 40 20 80 80 80 80

0 0 0 40 0 20 20 20 40 60 40 0 0 40 80 40 20 20 80 0 0 100 40 60

20 0 0 60 0 40 40 40 20 120 20 40 0 40 40 20 20 0 0 40 20 20 20 120

0 0 0 20 20 20 0 40 40 20 40 20 20 0 60 20 40 0 20 100 40 60 120 0

0 40 60 20 0 60 60 40 60 140 60 20 20 40 0 40 60 20 60 20 80 40 80 0

0 20 60 0 40 100 120 20 0 160 20 80 80 20 60 0 100 60 80 60 40 20 20 20

0 0 20 20 20 60 20 40 60 80 20 20 20 60 40 100 0 40 80 140 20 60 20 60

40 40 20 20 20 20 20 20 40 60 40 100 0 80 0 40 0 0 0 40 0 80 20 0

60 0 60 0 60 20 40 40 40 60 40 20 100 60 40 80 60 20 0 0 20 60 60 20

0 40 20 40 80 20 60 20 40 80 60 0 0 60 40 80 100 0 80 0 20 60 60 20

40 0 60 40 20 60 0 40 100 120 60 20 60 0 20 20 0 0 20 40 0 20 20 20

20 20 20 20 0 20 0 40 60 0 0 100 80 60 40 120 0 20 20 80 40 0 60 40

0 0 100 20 20 60 100 40 40 60 60 80 80 20 40 100 80 60 20 20 60 120 0 20

40 60 60 100 80 0 0 20 0 60 40 20 100 100 20 20 40 0 20 0 20 60 20 0


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AON Matrix (Origin × Destination)

0 0 0 60 0 20 40 40 80 40 0 0 20 40 0 0 40 0 20 20 0 80 20 0

20 0 40 0 0 0 0 0 40 20 20 0 0 0 20 40 20 20 0 40 20 20 0 20

20 0 0 0 0 0 60 0 20 0 60 40 0 0 20 20 0 20 40 20 20 40 20 0

40 0 0 0 0 0 0 100 20 20 100 20 20 20 60 20 60 20 0 100 0 20 20 60

0 20 0 0 0 80 100 20 40 80 0 20 20 40 20 0 40 0 60 20 40 0 20 20

0 20 0 60 0 0 20 40 0 20 0 0 40 0 0 40 60 40 0 40 20 20 20 20

80 0 20 20 20 0 0 20 120 60 20 20 20 0 40 20 40 60 20 60 20 40 20 0

20 20 0 40 20 40 40 0 60 120 60 20 20 20 80 120 100 0 20 40 100 0 20 0

40 0 0 20 120 0 80 60 0 140 40 40 80 40 20 0 20 40 0 20 40 40 20 40

40 80 20 60 20 20 60 80 100 0 120 40 120 100 80 140 100 40 40 140 40 60 40 40

40 20 20 80 20 0 80 80 180 140 0 40 20 100 40 100 60 60 40 80 40 20 40 120

0 0 0 40 20 20 20 100 60 100 40 0 60 40 80 100 20 120 80 0 0 20 40 40

0 0 0 0 0 0 60 60 0 60 80 80 0 40 40 0 20 20 0 20 40 80 60 60

40 0 0 60 0 20 20 20 60 240 80 60 60 0 40 60 0 60 0 120 60 40 80 80

80 20 40 40 40 60 0 20 40 40 80 20 20 100 0 0 40 40 20 100 0 20 20 0

20 40 80 40 20 20 40 80 80 60 140 60 40 20 60 0 100 0 60 80 20 100 20 40

20 0 40 60 20 0 20 20 40 100 0 60 0 40 80 140 0 20 40 40 60 40 20 60

20 60 40 0 40 0 40 20 40 40 60 60 0 40 20 20 40 0 0 0 0 0 40 0

20 20 80 40 40 0 0 60 20 60 0 100 0 20 80 60 80 0 0 80 40 180 60 20

40 60 0 40 40 0 20 20 40 140 40 20 0 60 60 60 20 0 80 0 40 80 80 0

40 20 0 60 100 20 0 20 20 60 40 40 100 0 40 0 0 0 40 20 0 40 60 20

60 40 0 20 20 80 40 60 80 60 20 40 60 60 120 40 20 0 20 80 40 0 60 80

0 40 100 60 60 40 80 40 60 60 40 80 100 40 40 60 40 60 20 40 40 80 0 20

20 40 0 20 0 40 0 40 40 20 40 60 60 20 20 20 60 0 0 0 40 100 20 0


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