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Abstract

To combat the increasing data dimensionality, parsimonious modelling for finite mixture

models has risen to be an active research area. These modelling frameworks offer various

constraints that can reduce the number of free parameters in a finite mixture model.

However, the constraint selection process is not always clear to the user. Moreover, the

relationship between the chosen constraint and the data set is often left unexplained. Such

issues affect adversely the interpretability of the fitted model. That is, one may end up

with a model with reduced number of free parameters, but how it was selected, and what

the parameter-reducing constraints mean, remain mysterious.

Over-estimation of the mixture component count is another way in which the model

interpretability may suffer. When the individual components of a mixture model fail to

capture adequately the underlying clusters of a data set, the model may compensate by

introducing extra components, thereby representing a single cluster with multiple compo-

nents. This reality challenges the common assumption that a single component represents

a cluster.

Addressing the interpretability-related issues can improve the informativeness of model-

based clustering, thereby better assisting the user during the exploratory analysis and/or

data segmentation step.
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Chapter 1

Introduction

Clustering frameworks attempt to construct heterogeneous groups in a sample without

prior knowledge on the group membership status of observations within. One such exam-

ple is model-based clustering, based on finite mixture models, which aims to represent the

data set using a convex combination of probability mass (or density) functions (Wolfe,

1963). Thanks to its ubiquity, model-based clustering has advanced in numerous fronts.

McLachlan and Peel (2004); McNicholas (2016) provide an overview on some modern de-

velopments in the field.

The nature of clustering is often exploratory, where the investigator may be conducting

a more ‘hands-on’ type of analysis. This means that the method’s capability in informing

the user, in addition to the quality of its fit on the sample, is important. Mixture model

interpretability concerns the above notion at large. One may draw a parellel between inter-

pretability and happiness; because of their nebulous definitions, we are unable to measure

them directly. Instead, we study their proxy measures. For example, happiness could be

measured approximately via one’s wealth, work-life balance, number of friends, and so on.

Similarly, model interpretability can be approached from various angles.

This collection of work contributes to interpretability of model-based clustering meth-

ods through penalization, dimensionality reduction, and merging/combining of mixture

components. Penalization aims to suppress signals from less important variables while
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emphasizing that from more important ones. Such favouring is often manifested through

sparser parameter estimates, which reduces the number of variables (and associations be-

tween them) warranting the user’s attention. Dimensionality reduction combines original

set of variables into a smaller set, so that the sample may exhibit better-separated groups.

Mixture component merging and combining aim to collect sufficiently similar (based on

a carefully chosen measure) components into a single group, so that a simpler grouping

structure may be discovered from the sample.

The remainder of this thesis is organized as follows. Chapter 2 outlines some founda-

tional concepts that appear throughout the thesis. Chapters 3 and 4 introduce a penaliza-

tion framework for matrix-variate parameters and its applications. Chapter 5 introduces a

hypothesis test-based method of estimating an adequate number of dimensions for projec-

tion. Chapter 6 introduces a novel mixture regression model with a component combining

procedure for identifying simpler response-covariate relationships. Chapters 7 and 8 focus

on mode-based component merging for various families of non-Gaussian finite mixtures.

We then conclude with a brief summary in chapter 9.
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Chapter 2

Background

2.1 Finite Mixture Models

A finite mixture model is a probabilistic model defined by a convex combination of finitely

many probability mass or density functions, abbreviated by pmf and pdf respectively. Each

pmf or pdf is referred to as a component, and the components are usually of the same family

of distributions. Denote by f the pmf or pdf of a p-dimensional G-component finite mixture

model. Then, we can write f as

f(x;Θ) =
G∑

g=1

πgfg(x;Θg) subject to
G∑

g=1

πg = 1, (2.1)

where, for each component g, fg, πg (where πg > 0) and Θg denote the pmf or pdf,

mixing proportion parameter and the set of distribution parameters, respectively. Θ =

{π1, . . . , πG,Θ1, . . . ,ΘG} denotes the set of all parameters of f . A finite mixture distribu-

tion is often used to model the heterogeneous sub-populations within a larger population

(McLachlan and Peel, 2004). Moreover, it is a highly flexible tool for density estimation, as

a finite mixture model with a sufficient number of components can estimate an arbitrary

pdf with an arbitrary level of accuracy (Titterington et al., 1985). A classic example is the
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Gaussian finite mixture (GMM), where every component pdf follows a p-dimensional Gaus-

sian distribution parametrized by a mean vector µg and a covariance matrix Σg. There is

a plethora of literature on model-based clustering. Starting from the early works by Day

(1969); Wolfe (1967, 1970), numerous finite mixture models with non-Gaussian component

distributions have been developed so far. Examples include the parsimonious Gaussian

Fraley and Raftery (2002), t (Peel and McLachlan, 2000), skew-normal (Lin et al., 2007b),

skew-t (Lin et al., 2007a), shifted asymmetric Laplace (Franczak et al., 2013) and gener-

alized hyperbolic (Browne and McNicholas, 2015) distributions. The development of these

non-Gaussian finite mixtures was motivated by the increasing complexity of the available

data sets and the group structure within. Of course, as noted earlier, a GMM with a large

enough number of components could be fitted instead. However, such strategy would re-

sult in a verbose model; where one flexible-enough distribution could be sufficient, multiple

Gaussian distributions may be needed.

The Expectation-Maximization (EM) algorithm by Dempster et al. (1977) is commonly

used to fit a finite mixture model for many reasons, two of which are the relative ease of es-

timation and the monotonicity in terms of likelihood function. Several variations of the EM

algorithm exist, such as the Expectation-Conditional Maximization (ECM) algorithm by

Meng and Rubin (1993) and Alternating Expectation-Conditional Maximization (AECM)

algorithm by Meng and Van Dyk (1997). The Stochastic EM (SEM) algorithm by Celeux

and Diebolt (1985) is another noteworthy variant, where random sampling is incorporated

to allow the convergence path to ‘escape’ from poor initial values.

Under the EM algorithm framework (and its variants) for finite mixture models, the

observed data {x1, . . . ,xn} is deemed incomplete, because we do not know the component

to which each xi belongs to. Thus a latent (unobserved) component membership indicator

vector Zi = (Zi1, . . . , ZiG)
′ is introduced, where Zig = 1 (with probability πg) if xi belongs

to component g and 0 otherwise. We denote by zi = (zi1, . . . , ziG)
′ a realization of Zi.

If we suppose that we observe zi as well, then the (xi, zi) pair is considered complete.

Depending on the component-wise distributions, more latent variables may be introduced.

As an illustration of the EM algorithm, consider a G-component GMM. The observed-data
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likelihood function is

L(Θ) =
n∏

i=1

(
G∑

g=1

πgϕ(xi;µg,Σg)

)
,

where µg and Σg denote component-wise mean vector and covariance matrix respec-

tively. Manipulating the sum inside the product is often very challenging. In contrast,

the complete-data likelihood with (xi, zi)s is

Lc(Θ) =
n∏

i=1

{
G∏

g=1

(πgϕ(xi;µg,Σg))
zig

}
,

and the corresponding log-likelihood lc(Θ) is

lc(Θ) =
n∑

i=1

G∑
g=1

zig log(πgϕ(xi;µg,Σg)).

In reality, however, the latent variables (zig in this case) are not observed. Therefore, at

every iteration, the EM algorithm obtains the conditional expectation of lc(Θ) with respect

to the latent variables given xis. Letting Θ(t) be the estimate of Θ at iteration t. Then,

the conditional expectation is given by

Q(Θ|Θ(t)) = E[lc(Θ)|xi,Θ
(t)] =

n∑
i=1

G∑
g=1

z
(t)
ig log(πgϕ(xi;µg,Σg)),

where z
(t)
ig = E[Zig|xi,Θ

(t)] is the posterior component membership probability estimate

at iteration t, and it is equal to

z
(t)
ig =

π
(t)
g ϕ(xi;µ

(t)
g ,Σ

(t)
g )∑G

k=1 π
(t)
k ϕ(xi;µ

(t)
k ,Σ

(t)
k )

. (2.2)

The new model parameter estimates π
(t+1)
g ,µ

(t+1)
g ,Σ

(t+1)
g are obtained by maximizing Q
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with respect to the corresponding parameters. Their update formulae are given by

π(t+1)
g =

∑n
i=1 z

(t)
ig

n
, µ(t+1)

g =

∑n
i=1 z

(t)
ig xi∑n

i=1 z
(t)
ig

, Σ(t+1)
g =

∑n
i=1 z

(t)
ig (xi − µ

(t+1)
g )(xi − µ

(t+1)
g )′∑n

i=1 z
(t)
ig

.

Upon convergence, the final model parameter estimates are reported, and the component

membership of each observation xi is computed as the Maximum A Posteriori (MAP)

estimate of ẑi1, . . . , ẑiG (the z
(t)
ig s at the time of convergence) where

MAP(ẑig) =


1 if argmax

k=1,...,G
{ẑi1, . . . , ẑiG} = g,

0 otherwise.

(2.3)

The convergence of the EM algorithm in model-based clustering can be determined by the

consecutive difference in log-likelihood. For instance, let Θ(t) and Θ(t−1) denote the set

of parameter estimates at iterations t and t − 1. Then, given a pre-determined positive

threshold ϵ, if the the difference in log-likelihood at the aforementioned two sets is less

than ϵ, then the algorithm can be terminated. This condition is algebraically translated as

l(Θ(t))− l(Θ(t−1)) < ϵ.

However, per Lindstrom and Bates (1988), such a criterion represents a lack of progress,

not the actual convergence of the algorithm. Aitken’s acceleration by Aitken (1926) is a

tool for accelerated convergence of a linearly convergent sequence, which the EM algorithm

produces. Let {l(Θ(t))} denote the sequence of log-likelihood values generated by the EM

algorithm, and suppose that its limit is l̂. Then, the linear convergence rate of the EM

algorithm dictates that, for some a ∈ (0, 1),

l(Θ(t+1))− l̂
l(Θ(t))− l̂

≈ a.

The Aitken acceleration coefficient at iteration t is used to approximate a, and it is defined
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as

a(t) =
l(Θ(t+1))− l(Θ(t))

l(Θ(t))− l(Θ(t−1))
.

The limit l̂ can then be approximated by

l̂(t+1) = l(Θ(t)) +
l(Θ(t+1))− l(Θ(t))

1− a(t)
,

and Böhning et al. (1994) suggests the termination of algorithm when

0 < l̂(t+1) − l̂(t) < ϵ. (2.4)

A finite mixture model may be accompanied by several hyperparameters, most common

of which is the component count G. In practice, the model parameters are estimated over

a range of G values, and the one producing the best model selection criterion value is

chosen. Several selection criteria exist, such as the log-likelihood value, Akaike Information

Criterion (AIC) (Akaike, 1974), Bayesian Information Criterion (BIC) (Schwarz, 1978)

and Integrated Completed Likelihood (ICL) (Biernacki et al., 2000), with the BIC being a

common choice. Let Θ̂ and |Θ̂| denote a realization of model parameter set and the number

of free parameters within, respectively. Then, assuming a sample size of n, the formula for

the AIC and the BIC are

AIC(Θ̂) = 2l(Θ̂)− 2|Θ̂|,

BIC(Θ̂) = 2l(Θ̂)− log(n)|Θ̂|, (2.5)

where both are to be maximized. While the log-likelihood itself is the simplest, it is also

most susceptible to verbose models, as it ignores the number of parameters. The AIC

and BIC penalize on the parameter count, but the BIC exacerbates the penalty as the

sample size increases. The ICL favours component counts producing well-defined clusters

per Baudry et al. (2010), as opposed to the BIC (and similarly the AIC), which prioritizes

on density estimation, favouring larger G values than the ICL. Given a set of complete-data

7



{(xi, zi)}i=1,...,n, the ICL is computed as

ICL(Θ̂) = log

(
n∏

i=1

G∏
g=1

{
π̂gfg(xi; Θ̂g)

}MAP(ẑig)
)
− |Θ̂|

2
log(n).

The key point here is that the model selection criterion may have a non-trivial impact on

the final model.

In addition to selection criteria, the model’s performance can be measured using the

components produced. If the data set is accompanied by a ground truth (a known set of

labels), then the Adjusted Rand Index (ARI) by Hubert and Arabie (1985) is commonly

used. The ARI is an extension of the Rand Index by Rand (1971), which measures the

extent of agreement between two sets of partition. Let S = {x1, . . . ,xn} be a set of objects,
and let A = {A1, . . . , AG} and B = {B1, . . . , BK} be two partitions of S. Furthermore, let

a = number of pairs in S that are in the same subset of A, as well as B,

b = number of pairs in S that are in different subsets of A, as well as B.

Intuitively, a and b can be interpreted as the number of object pairs where A and B agree

on in terms of grouping. Then, the Rand Index (RI) is defined as

RI =
a+ b(

n
2

) .
The RI ranges between 0 and 1, and higher values indicate better agreement between A and

B. If A is the ground truth and B is the estimated grouping from a clustering method, then

the RI measures the agreement between the two. The ARI adjusts for chance by subtract-

ing from the agreement between the ground truth and the model-generated grouping the

expected agreement between the ground truth and a randomly-assigned grouping. There-

fore, while the maximum value is still 1, the ARI can be negative if the model-generated

grouping agrees less with the ground truth than a random assignment. More details can

be found in Steinley (2004).
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When a ground truth is unavailable, then the degree of separation between clusters

can be measured. Two such measures are the Between-cluster Sum of Squares (BSS) (and

its Within-cluster counterpart WSS), and the Additive Margin (AM) by Ben-David and

Ackerman (2009). Let {x1, . . . ,xn} be a data set and let C = {P1, . . . , PG} be a clustering

or a partition of the data. For example, the MAP estimates (2.3) can form C. Suppose each
partition has an associated centre point µg. Then, the BSS and WSS are defined as

BSS =
G∑

g=1

(
µg −

G∑
k=1

µk/G

)2

,

WSS =
G∑

g=1

∑
i:xi∈Pg

(xi − µg)
2,

and the degree of separation between clusters can be measured via the ratio between BSS

and WSS. The AM is based on the comparison of the distance between an observation x

and its two closest centres µk and µl. The Additive Point Margin (APM) of an observation

x is defined as

APM(x) = d(x,µl)− d(x,µk),

where d(·, ·) denotes an appropriate distance function, µk is the centre closest to x and µl

is the second closest centre to x. In this thesis, d(·, ·) is assumed to be Euclidean. The AM

of a clustering or partition is defined as

AM(C) =
∑n

i=1APM(xi)/n∑G
g=1

∑
{x,y}∈Pg

d(x,y)/
∑G

g=1

(|Pg |
2

) ,
where | · | denotes the cardinality of a set. The AM is non-negative, and higher values

indicate better-defined clustering.
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2.2 Parsimonious Model-based Clustering

Along with the complexity in structure, the dimension of available data sets have increased

in the recent past. As suggested by the Curse of Dimensionality (Bellman, 2010), high-

dimensional data sets pose additional modelling challenges compared to lower-dimensional

data sets in terms of the required number of observations and model performance. In partic-

ular, the growing number of model parameters can lead to poorly-fitted models. Consider a

p-dimensional G-component GMM. It has (G−1)+Gp+Gp(p+1)/2 free parameters, where

each summand comes from the mixing proportions, mean vectors and covariance matrices

respectively. Holding G constant, the number of free parameters is a quadratic function of p,

implying that the number of required observations for model-fitting increases very quickly

as the dimension increases. Several parsimonious finite mixture modelling frameworks have

been developed to mitigate this problem, where the number of free parameters is reduced

by constraining the parameter structures. The trade-off is that not every method is inter-

pretable. That is, the user may need to select model constraints without understanding

their meanings with respect to the problem-at-hand. Alternatively, the fitted constrained

model may not reveal the aspects of the data that resulted in that set of constraints being

chosen. Here, we present some commonly-deployed frameworks and discuss briefly their

interpretability concerns.

• Banfield-type Eigen-decomposition (Banfield and Raftery, 1993). The component-

wise scale matrices Σg are decomposed into

Σg = λgPgDgP
′
g,

where λg is the first eigenvalue of Σg, Dg is the diagonal matrix of scaled eigen-

values of Σg with the first entry equal to 1, and Pg is the matrix of eigenvectors.

Here, λg represents the volume of the space occupied by a component, and Dg and

Pg represent the shape and the orientation of the component respectively. By con-

straining any subset of {λg,Dg,Pg} to be equal across components, we can choose

the aspects of the component distributions to be held equal. Moreover, such equality
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restrictions reduce the number of free parameters to be estimated. This framework

was applied on the finite mixture of Gaussian (Fraley and Raftery, 2002), t (Andrews

and Mcnicholas, 2012), shifted asymmetric Laplace (Franczak et al., 2013), general-

ized hyperbolic (Browne and McNicholas, 2015) and power exponential (Dang et al.,

2019) distributions. While this framework can reduce the number of free parameters

in component-wise scale matrices, the user cannot find out why certain constraints

are favoured over others by the data set under consideration, other than relying on

the scores from some model selection criteria. For example, suppose λg = λ and

Pg = P . Then, although this model tells us that the volume of space occupied by

each component and their orientations are equal, we cannot tell why the data set

chose that set of constraints.

• Subspace Clustering (Bouveyron et al., 2007). The subspace clustering framework for

the Gaussian finite mixture (abbreviated as SC-GMM henceforth) is another parsi-

monious GMM framework based on linear projections and component-wise intrinsic

dimensions. The intrinsic dimensions dg (g = 1, . . . , G) of the p-dimensional data

set are estimated as the number of distinguishable directions in the component-wise

orthogonal bases, and the remaining p − dg directions are deemed indistinguish-

able. The directions are partitioned by the magnitude of the corresponding eigen-

values. Consider the eigen-decomposition of gth component’s covariance matrix Σg,

Σg = PgDgP
′
g, where Pg is the orientation matrix and Dg = diag(λ1, . . . , λp) is the

diagonal matrix of eigenvalues (arranged in decreasing order). If its intrinsic dimen-

sion is dg, Dg would assume the form diag(ag1, . . . , agdg , bg, . . . , bg︸ ︷︷ ︸
p−dg copies

), where the first

dg eigenvalues correspond to distinguishable directions and the remaining ones ren-

der their associated directions indistinguishable. Then, the dg intrinsic-dimensional

covariance Σg admits the following eigen-decomposition

Σg = [ΓgΞg]Dg [ΓgΞg]
′ ,

where Γg and Ξg are the matrices consisting of dg distinguishable and p − dg in-

11



distinguishable directions respectively. This structure bypasses the estimation of Ξg,

because the quadratic form is simplified as follows.

(x− µg)
′Σ−1

g (x− µg) = (x− µg)
′ [ΓgΞg]D

−1
g [ΓgΞg]

′ (x− µg)

=

dg∑
j=1

1

agj

(
[Γg]

′
·j(x− µg)

)2
+

1

bg

p∑
j=dg+1

(
[Ξg]

′
·j(x− µg)

)2
,

where the second sum is simplified to

1

bg

p∑
j=dg+1

(
[Ξg]

′
·j(x− µg)

)2
=

1

bg

p∑
j=1

{
(x− µg)

2
j −

(
[Γg]

′
·j(x− µg)

)2}
,

where the ·j notation means the jth column of the corresponding matrix.

This implies that only Γg and {ag1, . . . , agdg , bg} need to be estimated instead of the

full Σg. Thus, the number of free parameters in Σg decreases from p(p + 1)/2 to

dgp− dg(dg +1)/2. Moreover, further reduction in free parameters can be achieved if

the orientation and/or the shape of the component-wise subspace are constrained to

be equal, such as

– Equality of agj within a component: agj = ag, j = 1, . . . , dg,

– Equality of agj across components: agj = aj, g = 1, . . . , G,

– Equality of bg across components: bg = b, g = 1, . . . , G,

– Equality of Γg across components: Γg = Γ, g = 1, . . . , G,

– Equal intrinsic dimension across components: dg = d, g = 1, . . . , G.

The resulting submodels are denoted in the form of [agjbgΓgdg], [agbgΓgdg], etc., and

the full list is available in Bouveyron et al. (2007). The software for the SC-GMM is

available as a R package HDclassif (Bergé et al., 2012).

The SC-GMM framework has been extended to functional data analysis (Bouveyron

et al., 2015), noisy images (Houdard et al., 2018) and a finite mixture of generalized
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hyperbolic distributions (Kim and Browne, 2019). This framework is useful in reveal-

ing the number of dimensions needed to capture cluster structures of the data set.

This means that estimating the component-wise intrinsic dimensions dg and the se-

lection of cross-component constraints are crucial. The scree test by Cattell (1966) is

commonly used to determine the intrinsic dimension dg. The scree test examines the

plot of eigenvalues ofΣg in decreasing order, and seeks for an “elbow” where the slope

of the eigenvalue plot flattens out. The issue here is the indeterminacy of the elbow,

because the eigenvalue plot rarely exhibits a clear start point of flattening. Moreover,

the meaning of original variables may be lost after projection. Therefore, the way dg

and the rotation matrices Γg are estimated affects heavily the interpretability of the

resultant model. Chapter 5 provides a more detailed discussion on intrinsic dimension

selection.

• Factor analyzer (Rubin and Thayer, 1982; Ghahramani and Hinton, 1996). In the

Gaussian factor analyzer model, a p-dimensional random vector Y is modelled as

an affine function of a q-dimensional latent vector X (such that q < p) with a p-

dimensional additive random error ϵ. This relationship is mathematically represented

as

Y = µ+ΛX + ϵ,

where Λ is called the loading matrix, which is of p× q dimensions. It is assumed that

the entries of the latent X are independent to each other, and likewise for the ran-

dom error ϵ. Mathematically speaking, firstly let Np(µ,Σ) denote the p-dimensional

Gaussian distribution with mean µ and covariance Σ. Then, X ∼ Nq(0, Iq), and

ϵ ∼ Np(0,Ψ), where Ψ is diagonal and X and ϵ are independent. An attrac-

tive feature of this model is the parsimonious modelling of the covariance matrix

of the observed vector Y . Namely, the covariance of Y under factor analyzer is

Σp×p = Λp×qΛ
′
p×q +Ψp×p, which reduces the number of free parameters of Σ from

p(p + 1)/2 to pq − q(q − 1)/2 + p, assuming that p > q. Hence, under the factor

analyzer, the number of free parameters in Σ is a linear function of p instead of
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quadratic. Thus, factor analyzer can reduce the number of free parameters signifi-

cantly, given that the response variable can be explained by a relatively small number

of latent factors (q << p). (Ghahramani and Hinton, 1996) introduced a finite mix-

ture of Gaussian factor analyzers, and it has been extended to various non-Gaussian

distributions (Tortora et al., 2016; McNicholas et al., 2017; McLachlan et al., 2007;

Lin et al., 2016). When modelling with a factor analyzer, the number of factors q

must be determined a priori, and it is commonly estimated via BIC like the other

frameworks. Moreover, like how the intrinsic dimension dg changes the number of

free parameters in the chosen submodel in subspace clustering, the factor count q

changes the dimension of the factor loading Λ. If q is too high, then interpreting

the entries of Λ is more challenging. In addition, the resultant covariance matrix

estimate Σ̂ = Λ̂Λ̂′+ Ψ̂ is more likely to be dense as well. For simplicity, consider the

q = 1 case. The factor loading is a p × 1 vector, and the sparser this vector is, the

sparser the estimate Σ̂ will be. Another point of interest in the factor analyzer is the

rotation invariance of factor loadings. Given a q × q dimensional orthogonal matrix

Q, a factor loading Λ and its rotated version ΛQ yield the same covariance, since

ΛΛ′ = ΛQQ′Λ.

The rotational non-identifiability of the factor loading with regard to covariance

estimation has led to the research in factor rotations for various ‘simple’ structures for

interpretation. Notable criteria include the Varimax by Kaiser (1958), the Quartimax

by Ferguson (1954) and the Oblimin by Clarkson and Jennrich (1988).

2.3 Mixture Model Component Merging

Individual components in a finite mixture model are often treated as clusters. While the

definition of a cluster is context-dependent, if the component-wise distributions do not

accommodate adequately the peculiarities of the data set, the number of components may

exceed the number of underlying clusters. Unfortunately, such disparity is difficult to de-
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tect a priori. Component merging refers to families of techniques that identify sufficiently

similar mixture components and unify their labels without necessarily refitting the whole

model. Two such families are modal clustering and component membership probability-

based merging.

Modal clustering seeks regions of single dominant mode, where each of such regions

may consist of several mixture components. Chacón (2019) introduced mode-merging al-

gorithms for the GMM, and Kim and Browne (2021a) extended the algorithm to the finite

mixture of t-distributions. An overview of modal clustering is provided by Chacón (2020).

Modal clustering is closely related to the concept of unimodality. Ray and Lindsay (2005)

introduced the ridgeline function for the GMM and outlined some conditions under which

a pair of Gaussian densities is unimodal.

Merging methods based on component membership probabilities seek groups of com-

ponents where observations are similarly likely to belong in any one of said components,

or the observations are most likely to belong to the said group than others. Hennig (2010)

introduced the Directly Estimated Misclassification Probabilities (DEMP) for the GMM,

which measures the degree of overlap between components using misclassification probabil-

ities. A robust variant of the DEMP was introduced by Melnykov (2016), called DEMP+.

Baudry et al. (2010) introduced an algorithm where components are merged based on

an entropy-based criterion. Scrucca (2016) used the log-odds on component membership

probabilities and density level sets to merge components. We describe the DEMP+ and

the entropy-based criterion below.

• Directly Estimated Misclassification Probabilities Plus (DEMP+) is a mixture component-

merging procedure based on the degree of overlap between pairs of components (or

component groups). A misclassification probability between two sets of components

G1 and G2 is defined as

qG1|G2 = P

(∑
g∈G2

πgfg(X) <
∑
k∈G1

πkfk(X)

∣∣∣∣∣X from G2

)
,
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and a measure of overlap between G1 and G2 is defined as

qG1,G2 = qG1|G2 + qG2|G1 . (2.6)

If qG1,G2 > c for some pre-determined threshold c (authors suggest c = 0.1), then G1
and G2 are deemed be sufficiently overlapped, and their labels are merged. The au-

thors compute a sample estimate of qG1|G2 by sampling x1, . . . ,xN (N pre-determined)

from a mixture distribution consisting of components from G2 first, then computing

q̂G1|G2 =
1

N

N∑
i=1

I

(∑
g∈G2

π̂gfg(xi) <
∑
k∈G1

π̂kfk(xi)

)
. (2.7)

Finally, we compute q̂G1,G2 = q̂G1|G2 + q̂G2|G1 .

• The entropy-based criterion (abbreviated as EntropyMerge hereafter) is motivated

as an alternative to both the BIC and the ICL, each of which can over- and under-

estimate the number of clusters respectively, per the authors. The procedure begins

with a model chosen by the BIC, with G components. Once a mixture model is fit-

ted, the MAP estimates of membership probabilities are used as an initialization:

{ẑ(1)i1 , . . . , ẑ
(1)
iG }i=1,...,n. In the first iteration, the pair of components (j, k) that maxi-

mizes the following criterion

−
n∑

i=1

[
ẑ
(1)
ij log(ẑ

(1)
ij ) + ẑ

(1)
ik log(ẑ

(1)
ik )
]
+

n∑
i=1

(ẑ
(1)
ij + ẑ

(1)
ik ) log(ẑ

(1)
ij + ẑ

(1)
ik ) (2.8)

is merged. Let (j⋆, k⋆) denote the merged pair. Once merged, the posterior probabil-

ities get updated to (for g = 1, . . . , G− 1)

ẑ
(2)
ig =

ẑ
(1)
ig if g /∈ {j⋆, k⋆},

ẑ
(1)
ij⋆ + ẑ

(1)
ik⋆ otherwise.

Then the criterion in (2.8) is applied again to select a pair from 1, . . . , G − 1 to be
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merged. Merging is terminated when

Entropy at iteration i− Entropy at iteration i+1

Entropy at iteration 1
< c, (2.9)

where the threshold c is set at 0.05 in this thesis, and the entropy at iteration i is

computed as

−
∑
g

n∑
i=1

ẑ
(i)
ig log(ẑ

(i)
ig ).
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Chapter 3

Stiefel Elastic Net: A Novel

Penalization for Matrix-variate

Parameters

3.1 Introduction

Estimating interpretable model parameters has been a key interest in the recent past,

where the parameter estimates are forced to be of smaller magnitude (shrinkage), or to

be zero (sparsity). Such regularization allows the user to identify important variables in

the model, hence improves model interpretability. There are ample literature on parameter

regularization via penalized optimization, including the famed Ridge, LASSO and Elastic

Net (Hoerl and Kennard, 1970; Tibshirani, 1996; Zou and Hastie, 2005). While limited,

there exists some existing work on regularization of factor loadings as well, where the focus

is on sparsity. An early method is the Quartimax rotation by Neuhaus and Wrigley (1954),

which rotates the factor loading to find a simpler structure. Adachi and Trendafilov (2018,

2014); Trendafilov and Adachi (2015); Trendafilov et al. (2017) use projection approaches

that are not model-based, and Hirose and Yamamoto (2014, 2015) considers some sparsity-

inducing penalty functions where a finite mixture of Gaussian factor analyzers is assumed.
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However, many sparse estimation techniques on model-based factor analyzers risk de-

generate solutions at the cost of sparsity due to rank-deficient factor loading estimates.

This can lead to poor model fit and interpretability. To address this issue, we develop a

novel method for sparse, yet rank-preserving estimation of component-wise factor loadings

in a finite mixture of Gaussian factor analyzers, and explore their theoretical properties. In

addition, we extend the existing work on sparse factor analyzer by Hirose and Yamamoto

(2015) to a finite mixture of Gaussian factor analyzers for completeness of the literature.

We will demonstrate both contributions’ performance in real and simulated data settings.

3.2 Methodology

In this section, we present two methods for estimating a sparse factor loading in a finite

mixture of Gaussian factor analyzers. The first method is a direct penalization on the

component-wise factor loadings Λg, which is an extension of the work on a single com-

ponent Gaussian factor analyzer by Hirose and Yamamoto (2015). The second and novel

method is based on an alternative parametrization of the factor loadings via singular value

decomposition.

The model of interest is a G-component finite mixture of Gaussian factor analyzers.

Extending the single-component Gaussian factor analyzer outlined section 2.2, let Yi, Xig

and ϵig denote the ith observed variable, the ith latent variable from component g and the

ith random error variable from component g, respectively. Then, with the latent component

membership indicator variable Zi as defined in section 2.1, the conditional distribution of

Yi given Zig = 1 and that of Yi given Zig = 1 and xig (a realization of Xig) are given by

Yi|Zig = 1 ∼ Np(µg,ΛgΛ
′
g +Ψg),

Yi|Zig = 1,xig ∼ Np(µg +Λgxig,Ψg),

where Λg is the factor loading parameter of component g. The marginal pdf of Yi at yi is
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given by

f(yi;Θ) =
G∑

g=1

πgϕ(yi;µg,ΛgΛ
′
g +Ψg),

where Θ denotes the set of model parameters. Under this model, a complete-data set

consists of (y′
i, z

′
i,x

′
i1, . . . ,x

′
iG)

′ tuples, and the corresponding complete-data log-likelihood

based on n independent observations is

lc(Θ) =
n∑

i=1

G∑
g=1

Zig[log πg + log ϕ(yi;µg +Λgxig,Ψg) + log ϕ(xig;0, Iq)],

where Θ denotes the set of model parameters. The methods to be presented in this work

can be represented in a penalized complete-data log-likelihood framework given by

lpen(Θ) = lc(Θ)−
G∑

g=1

ρgh(·), (3.1)

where h(·) denotes the penalty function with appropriate argument, and ρg > 0 are the

component-wise penalty multiplier, which are treated as hyper-parameters.

3.2.1 Alternative Parametrization of Factor Loading

In the following discussion, we drop the component subscript g for notational brevity. An

unconstrained direct penalization on the factor loading can lead it to a zero matrix as

the penalty multiplier increases. This behaviour can be problematic in both parameter

estimation and interpretation. A zero factor loading implies that ΛΛ′ +Ψ = Ψ, which is

overly restrictive and likely uninformative. Assuming that the number of factors is correctly

specified, one would expect some amount of explanatory power from each factor manifesting

as non-zero entries. However, even in such cases, unconstrained direct penalization has

no built-in mechanism to prevent a degenerate loading estimate. Hence, we develop a

penalization method for the factor loading that can estimate a sparse and full-rank factor

loading. In addition to the increased interpretability from sparseness, the full-rankness of
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the estimate ensures that all q factors contribute to the model.

We begin by observing that the covariance matrix arising from the factor analyzer is

identifiable up to orthogonal rotation on the factor loading; see McLachlan and Peel (2004).

Now consider the thin singular value decomposition of a p-by-q dimensional factor loading

Λ

Λp×q = Γp×qΞq×qΩ
′
q×q,

where Γ and Ω are p and q-dimensional orthonormal q-frames respectively, and Ξ is a

q-dimensional diagonal matrix. Under the factor analyzer model, the covariance matrix of

the observed variable is given as

Σ = ΛΛ′ +Ψ = ΓΞ2Γ′ +Ψ,

as Ω is a orthogonal matrix. It is clear that Ω vanishes in the formula for Σ under

this decomposition. Thus, we constrain Ω to be the identity matrix and obtain a (Γ,Ξ)

parametrization of Λ while preserving the identifiability of Σ. Under this parametrization,

we have Λ = ΓΞ. With respect to the identifiability of Λ, there are two types of equivalent

constraints as explained in Fokoué and Titterington (2003). One of them constrains Λ such

that Λ′Λ is a diagonal matrix. The (Γ,Ξ) parametrization satisfies this constraint:

Λ′Λ = ΞΓ′ΓΞ = ΞIΞ = Ξ2,

where Γ′Γ = I by construction and Ξ2 is diagonal by definition. Therefore, under our

alternative parametrization, Λ is identifiable.

3.2.2 Direct Penalization on Factor Loading

The entry-wise penalization on the factor loading is an intuitive way to estimate sparse

factor loadings. Hirose and Yamamoto (2015) have contributed to solving this problem by

introducing a single-component LASSO-based sparse factor analyzer. We will refer to this

direct entry-wise penalization on the factor loading as the PL penalty. The function hPL
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for the PL penalty is

hPL(Λ) =

p∑
i=1

q∑
j=1

|Λij|. (3.2)

Extending this penalty to a finite mixture model is straightforward. The penalized complete-

data log-likelihood in (3.1) under the PL penalty is

lPL(Θ) = lc(Θ)−
G∑

g=1

ρghPL(Λg).

Optimization of lPL with respect to each Λg can be formulated as an iterative least-square-

type problem, as will be shown in section 3.2.4.

3.2.3 Stiefel Elastic Net (SEN)

Consider the Stiefel manifold of q vectors over p-dimensional real vector space Vp.q. The

penalty function of interest in this chapter is the row-wise Ls,1 norm for s = 1, 2, which is

defined as

||Γ||s,1 =
p∑

i=1

(
q∑

j=1

|Γij|s
)1/s

, (3.3)

where Γij is the ijth element of the matrix Γ. The Ls,t norm is usually defined on the

columns of a matrix, and is used frequently in matrix regularization for structured sparsity;

see Yuan and Lin (2006). The Ls,1 penalty over the Stiefel manifold has several desirable

properties for our purpose. We will discuss the theoretical results on L2,1 first, followed by

that on L1,1.

L2,1 case

The L2,1 norm penalty has an intuitive lower bound over the Stiefel manifold, and that is

the column rank of its argument. To show this, we begin with the following lemma.
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Lemma 1. Let Vp,q = {Γ ∈ Rp×q : Γ′Γ = Iq} where p ≥ q. Denote the ith row of a matrix

Γ as Γi·. For any Γ ∈ Vp,q, ||Γi·||22 ≤ 1 for all i = 1, . . . , p.

Proof. Suppose, on the contrary, that there exists a row k ∈ {1, . . . , p} such that ||Γk·||22 >
1. Since Γ is an orthonormal q-frame, it is always possible to construct a p-by-p orthogonal

matrix by attaching p − q linearly independent unit column vectors, denoted by U , that

are pairwise-orthogonal to every column vector in Γ. Then, this new orthogonal matrix

W = [Γ,U ] is such that W ′W = I, which implies

||Γk·||22 + ||Uk·||22 = 1,

However, this implies ||Γk·||22 ≤ 1, which is a contradiction.

Proposition 1. The minimum value of the L2,1 norm over Vp,q is q.

Proof. The column-wise orthogonality constraint implies tr(Γ′Γ) = q. Moreover, by the

cyclic property of trace, we have

q = tr(Γ′Γ) = tr(ΓΓ′) =

p∑
i=1

||Γi·||22.

If p = q, then Γ is orthogonal in Rq×q, so tr(ΓΓ′) = q. Thus, assume p > q without loss

of generality. Lemma 1 tells us that ||Γi·||22 ≤ 1 for every i. Hence, ||Γi·||22 ≤ ||Γi·||2. This
implies

||Γ||2,1 =
p∑

i=1

||Γi·||2 ≥
p∑

i=1

||Γi·||22 = q. (3.4)

The following corollary characterizes a minimizer of the L2,1 norm penalty.

Corollary 1. Any minimizer of the L2,1 norm penalty over Vp,q has exactly q rows that

form a q-by-q orthogonal matrix, and the remaining p− q rows are zero vectors.
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Proof. Suppose that Γ ∈ Vp,q minimizes the L2,1 penalty over Vp,q. Inequality (3.4) implies

that
p∑

i=1

(
||Γi·||2 − ||Γi·||22

)
= 0.

Since we have ||Γi·||2 ≥ ||Γi·||22 and equality is achieved if and only if ||Γi·||2 = 1 or Γi· = 0,

there must be exactly q rows with unit vectors and the remaining p− q rows must be zero

vectors.

Remark: A q-frame of signed standard basis vectors in Rp minimizes the L2,1 norm penalty

over Vp,q for p ≥ q.

L1,1 case

The L1,1 penalty enjoys the same lower bound as that of L2,1, as shown below.

Proposition 2. Consider the space Vp,q where p ≥ q. The minimum value of the L1,1 norm

over Vp,q is q.

Proof. From proposition 1 and by vector norm property, we have

q ≤
p∑

i=1

||Γi·||2 ≤
p∑

i=1

||Γi·||1 =
q∑

j=1

||Γ·j||1 = ||Γ||1,1. (3.5)

Clearly, the matrix A = [Iq,0q×(p−q)]
′ achieves equality for the lower bound given in (3.5),

so the bound of q is attainable.

However, the L1,1 penalizes the matrix more aggressively, which results in a finite number

of feasible minimizers. The following proposition shows that a minimizer takes the form of

extreme points on the manifold.

Proposition 3. Let Vp,q be defined as earlier and assume p ≥ q. The only minimizer of

L1,1 norm penalty over Vp,q is a q-frame of signed standard basis vectors in Rp.

24



Proof. Let Γ be a q-frame of signed standard basis vectors in Rp. Then clearly ||Γ||1,1 = q.

For the converse, suppose that there exists Γ ∈ Vp,q such that ||Γ||1,1 = q. Then it follows

that

p∑
i=1

||Γi·||1 =
q∑

j=1

||Γ·j||1 ≥
q∑

j=1

||Γ·j||2 ≥
q∑

j=1

||Γ·||22 = tr(Γ′Γ) = q,

where the first equality occurs because

p∑
i=1

||Γi·||1 =
p∑

i=1

q∑
j=1

|Γij| =
q∑

j=1

p∑
i=1

|Γij| =
q∑

j=1

||Γ·j||1.

The leftmost inequality between 1-norm and 2-norm follows from the property of vector

norms, and the middle inequality between 2-norm and squared 2-norm follows from (3.4).

Hence, we have ||Γ·j||1 = ||Γ·j||2 for every column in Γ, which occurs if and only if Γ·j is a

zero vector or is a signed elementary basis vector for every j.

Proposition 3 implies that the L1,1 allocates exactly one latent factor to each of q dimen-

sions, and it estimates remaining dimensions as noise. This is a more aggressive penalization

than the L2,1 norm.

Defining the Stiefel Elastic Net

Finally, we introduce the convex combination of the L2,1 and L1.1 penalties, which contains

each of the two as special cases. We name this penalty as Stiefel Elastic Net, abbreviated

as the SEN:

hSEN(Γ) = α||Γ||1,1 + (1− α)||Γ||2,1, (3.6)

where α ∈ [0, 1] is the hyper-parameter for mixing portion between the two penalties,

and Γ ∈ Vp,q. The SEN inherits the same lower bound as that of L1,1 and L2,1 norms.

Moreover, it has a finite set of minimizers if α > 0 due to the inclusion of L1,1 component.
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The following proposition characterizes a minimizer of the SEN.

Proposition 4. Let Vp,q be defined as earlier and assume p ≥ q. The only minimizers of

the SEN with α > 0 over Vp,q are q-frames of signed standard basis vectors in Rp.

Proof. Proposition 1 tells us that a minimizer of the L2,1 penalty takes the form of a row-

wise permutation of a q-by-q orthogonal matrix and (p− q)-by-q zero matrix. Proposition

3 tells us that a minimizer of L1,1 penalty is a q-frame of signed standard basis vectors in

Rp. Since the SEN is minimized if and only if each of L1,1 and L2,1 is minimized, the set

of minimizers of SEN is the intersection between that of L1,1 and L2,1. Finally, we observe

that the set of minimizers for L1,1 penalty is a strict subset of that for L2,1.

The SEN shares similarity with the Elastic Net by Zou and Hastie (2005) due to its formula,

but SEN generalizes the Elastic Net to a constrained space of matrices. In the remainder of

this proposal, for ease of reference, SEN with α fixed at 0 and 1 will be denoted as Stiefel

penalty 1 and 2 respectively. Their function notation will be hSP1 and hSP2 respectively.

3.2.4 Parameter Estimation

Parameter updates are based on the Alternating Expectation-Conditional Maximization

(AECM) algorithm by Meng and Van Dyk (1997), in conjunction with a suitable penalty-

based update for the factor loading Λg, or the orthonormal q-frame Γg, depending on the

parametrization. The AECM algorithm is used as it enjoys a faster convergence than the

original EM algorithm. This is to compensate for the more complicated update for Λg.

Recall that the penalized complete-data log-likelihood function under a G-component

mixture model is given by

lpen(Θ) = lc(Θ)−
G∑

g=1

ρghpen(·),

where pen ∈ {PL, SP1, SP2, SEN} with an appropriate argument in place of (·).
ρg > 0 are the component-wise penalty multiplier hyper-parameters. The SEN contains an
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additional mixing coefficient αg, which is also a hyper-parameter. In the AECM algorithm,

we will update (πg,µg) first, then Λg, and finally Ψg. At each iteration of the algorithm,

the existing and updated parameter estimates will be superscripted with (t) and (t + 1)

respectively.

In the first stage of the AECM algorithm, we update the component-wise location and

mixing proportion parameters, µg and πg. At this stage, the complete-data set is made of

(yi, zi) pairs the lc function is equal to

lc(µ1, . . . ,µG, π1, . . . , πG)

=
n∑

i=1

G∑
g=1

zig

{
log πg −

1

2
tr
[(
ΛgΛ

′
g +Ψg

)−1
(yi − µg)(yi − µg)

′
]}

+ const,

where ‘const’ represents all additive constants. Treating zigs as missing, the conditional

expectation of lc at iteration t given yis is equal to

Q(µ1, . . . ,µG, π1, . . . , πG|µ(t)
1 , . . . ,µ

(t)
G , π

(t)
1 , . . . , π

(t)
G )

=
G∑

g=1

{
n(t)
g log πg −

1

2
tr

[(
ΛgΛ

′
g +Ψ

)−1
n∑

i=1

z
(t)
ig (yi − µg)(yi − µg)

′

]}
+ const,

where z
(t)
ig =

π
(t)
g ϕ

(
yi;µ

(t)
g ,Λ

(t)
g ,Ψ

(t)
g

)
∑G

h=1 π
(t)
h ϕ

(
yi;µ

(t)
h ,Λ

(t)
h ,Ψ

(t)
h

) and n
(t)
g =

∑n
i=1 z

(t)
ig . Upon differentiation

with respect to each of µg and πg, we obtain the updates

µ(t+1)
g =

∑n
i=1 ẑigyi∑n
i=1 ẑig

, and π(t+1)
g =

n̂g

n
.

In the next stage of the AECM algorithm, we update the component-wise factor loading

and noise covariance Λg and Ψg, while incorporating the updates from the previous stage.

Here, the complete-data set is made of (y′
i, z

′
i,x

′
i1, . . . ,x

′
iG)

′ tuples, as Λg and Ψg need to
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be separated. The complete-data log-likelihood is equal to

lc (Λ1, . . . ,ΛG,Ψ1, . . . ,ΨG)

n∑
i=1

G∑
g=1

zig

{
− 1

2
log |Ψg| −

1

2
tr
[
Ψ−1

g (yi − µ(t+1)
g −Λgxig)(yi − µ(t+1)

g −Λgxig)
′]}+ const,

and its conditional expectation given yis is equal to

Q(Λ1, . . . ,ΛG,Ψ1, . . . ,ΨG|Λ(t)
1 , . . . ,Λ

(t)
G ,Ψ

(t)
1 , . . . ,Ψ

(t)
G )

=
G∑

g=1

{
n
(t)
g

2
log |Ψg| −

1

2
tr
(
Ψ−1

g Sg

)
+ tr

(
Ψ−1

g Λgβ
(t)
g Sg

)
− 1

2
tr
(
Λ′

gΨ
−1
g ΛgΦg

)}
+ const,

(3.7)

where z
(t)
ig and n

(t)
g are now computed using µ

(t+1)
g and π

(t+1)
g , and

Sg = n̂−1
g

n∑
i=1

ẑig(yi − µ(t+1)
g )(yi − µ(t+1)

g )′,

β(t)
g = Λ(t)′

g

(
Λ(t)

g Λ(t)′

g +Ψ(t)
g

)−1

,

Φg = Iq − β(t)
g Λ(t)

g + β(t)
g Sgβ

(t)′

g .

The specific update formulae for Λg and Φg differ based on the penalty function. We

present the update for the PL first, then the SEN.

Update for PL

When applying the PL, We follow the procedure given in Hirose and Yamamoto (2015)

and use the co-ordinate descent. The expected complete-data log-likelihood is written as a

quadratic function of Λg, and the entry-wise update for Λg is the solution to the following
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objective function

argmin
Λij

1

2
(Λij − cij)2 +

ρg

[
Ψ

(t)
g

]
ii

[Φg]jj
|Λij|,

where cij =

[
β

(t)
g

]′
j·
[Sg]·i −

∑
k ̸=j [Φg]kj

[
Λ

(t)
g

]
ik

[Φg]jj
, [A]ij denotes the ij

th element of a matrix

A, [A]i· denotes the i
th row of A and [A]·j denotes the jth column of A. The solution is

given by

[
Λ(t+1)

g

]
ij
= sgn(cij) · κ

|cij| − ρg

[
Ψ

(t)
g

]
ii

[Φg]jj

 ,

where the function κ(z) is defined as

κ(z) =

z if z > 0,

0 otherwise.

The updated estimate replaces
[
Λ

(t)
g

]
ij
in Λ

(t)
g , and the descent on the next entry begins.

In this work, the entries are searched in row-major order.

3.2.5 Update for SEN

With the SEN, we update Γg and Ξg separately, then estimate Λg = ΓgΞg. The diagonal

matrix Ξg is updated first, followed by Γg with a Minorize-Maximization update based on

Browne and McNicholas (2014). The expected complete-data log-likelihood with respect
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to Γgs and Ξgs can be written as

Q(Γ1, . . . ,ΓG,Ξ1, . . . ,ΞG|Γ(t)
1 , . . . ,Γ

(t)
G ,Ξ

(t)
1 , . . . ,Ξ

(t)
G )

=
G∑

g=1

{
tr
(
Ξgβ

(t)
g Sg

(
Ψ(t)

g

)−1
Γg

)
− 1

2
tr
((

Ψ(t)
g

)−1
ΓgΞgΦgΞgΓ

′
g

)}
+ const.

(3.8)

The following matrix identity from Horn and Johnson (2012) can be applied to the second

trace term:

tr (ΞgΦgΞgMg) = diag (Ξg)
′ (Φg ⊙Mg) diag (Ξg) ,

where Mg = Γ
(t)′

g

(
Ψ

(t)
g

)−1

Γ
(t)
g , which lets us re-write the summands in equation (3.8) as

vecdiag (Ng)
′ diag (Ξg)−

1

2
diag (Ξg)

′ (Φg ⊙Mg) diag (Ξg) ,

where Ng = β
(t)
g Sg

(
Ψ

(t)
g

)−1

Γ
(t)
g , and ‘vecdiag’ denotes a vector consisting of the diagonal

entries of the matrix argument within. This is a quadratic form in terms of diag(Ξg), and

upon differentiation, we obtain

diag
(
Ξ(t+1)

g

)
= (Φg ⊙Mg)

−1 vecdiag (Ng) .

For Γg, we compute the updates for SP1 and SP2 each, then assemble them to obtain the

SEN update. While outlining the component-wise updates via SP1 and SP2, the component

subscript g will be dropped for notational brevity.

The MM Algorithm

The MM (Majorize-Minimization or Minorize-Maximization) algorithm, popularized by

Hunter and Lange (2000), is an indirect optimization approach to an otherwise-challenging

functions through so-called majorizer or minorizer, depending on the objective. A majorizer
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g of a function f is a surrogate function with the two properties: g
(
x(t)|x(t)

)
= f

(
x(t)
)

and g(x|x(t)) ≥ f(x) for all x, where x(t) denotes the current position of the algorithm.

For example, a quadratic majorizer of absolute value |x| is given by de Leeuw and Lange

(2009).

g(x|x(t)) = x2

2
√
x(t)2 + ϵ

+
|x(t)|
2

,

where ϵ is a small positive constant added as a computational provision to avoid division

by zero, and x(t) is the t-th iterative estimate of the argument x.

Figure 3.1: An illustration of MM algorithm. Black curve is the objective f(x), and the
red, blue, and magenta curves are the majorizers at iterations t, t + 1 and t + 2. We see
that the the majorizer’s minimum approaches that of f(x).

MM Optimization on Stiefel Manifold

Matrix optimization problems in statistics frequently involve the minimization of a function

of the form

min
Γ

f(Γ) = min
Γ

tr (AΓ) +
R∑

r=1

tr(BrΓCrΓ
′), (3.9)

for arbitrary matrices of matching dimensions A, Br and Cr, for r = 1, . . . , R, and the

argument Γ confined to the Stiefel manifold of q vectors over p-dimensional real vector
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space, denoted as

Vp,q =
{
Γ ∈ Rp×q : Γ′Γ = Iq

}
. (3.10)

This manifold is the space of p-by-q matrices consisting of q orthonormal columns, known

as orthonormal q-frames. Optimization on Stiefel manifold is difficult in general, and the

general-purpose algorithms are complicated. Fortunately, for the above-mentioned trace-

based objective function, works from Browne and McNicholas (2014); Kiers (2002) allow

an iterative update based on the MM algorithm. If we assume that Br are positive definite

and Cr are diagonal with positive diagonal entries for all r = 1, . . . , R, then the trace

minimization problem in (3.9), admits a majorizer over the Stiefel manifold from Kiers

(2002):

f(Γ) ≤ tr(F(t)Γ) + a, (3.11)

where F(t) = A +
∑R

r=1

(
BrΓ

′
(t)Cr − c∗rBrΓ

′
(t)

)
with Γ(t) being the current position of Γ,

c∗r is the largest eigenvalue of Cr, and a is a constant independent of Γ. Then, the solution

to (3.11) is

Γ(t+1) = Q(t)P
′
(t), (3.12)

where F(t) = P(t)D(t)Q
′
(t) is the singular value decomposition of F(t).

MM Update for SP1

For the SP1, we obtain the following majorizer by applying the approximation formula for

the absolute value and its sharp quadratic majorization from de Leeuw and Lange (2009);

Ramirez et al. (2014).

p∑
i=1

q∑
j=1

|Γij| ≤
p∑

i=1

q∑
j=1

 Γ2
ij

2
√
|Γ(t)

ij |2 + ϵ
+

√
|Γ(t)

ij |2 + ϵ

2

 ,
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and similar to Hunter and Lange (2000), a small perturbation constant ϵ > 0 for compu-

tational accommodation of absolute value around zero. In Hunter and Lange (2000), ϵ is

set at 1/5, and in this work, ϵ is set at 10−6 for an increased accuracy of approximation.

The majorizer from equation (3.13) admits the following trace form

p∑
i=1

q∑
j=1

 Γ2
ij

2
√
|Γ(t)

ij |2 + ϵ
+

√
|Γ(t)

ij |2 + ϵ

2


=

q∑
j=1

tr
(
AjΓeje

′
jΓ

′)+ c

≤ tr (KΓ) + const, (3.13)

where ej is the j
th elementary basis vector, Aj = diag

(
2
√
|Γ(t)

1j |2 + ϵ, . . . , 2
√
|Γ(t)

pj |2 + ϵ

)−1

and K =
∑q

j=1

[
eje

′
j

(
Γ(t)′

)
Aj −max (Aj) eje

′
j

(
Γ(t)′

)]
.

MM Update for SP2

For the SP2, we begin with the following row-wise majorizer similar to Nie et al. (2010),

where

||Γi·||2 ≤
||Γi·||22

2

√
||Γ(t)

i· ||22 + ϵ

+

√
||Γ(t)

i· ||22 + ϵ

2
.

With the above, hSP2 obtains the following majorizer per Browne and McNicholas (2014)

||Γ||2,1 ≤ tr (WΓΓ′) + const ≤ tr (GΓ) + const, (3.14)

where

W = diag

(
2

√
||Γ(t)

1· ||22 + ϵ, . . . , 2

√
||Γ(t)

p· ||22 + ϵ

)−1

and G = Γ(t)′W −max(W )Γ(t)′ .
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MM update for SEN

Majorization of hSEN is straightforward, as we already have majorizers for hSP1 and hSP2:

SEN(Γg) ≤ tr [(αgKg + (1− αg)Gg)Γg] + c. (3.15)

The final step in updating Λg is the double minorization of the expectation in (3.8), minus

the penalty function. The change from majorization to minorization is a direct consequence

of multiplying the penalty function by −1. The conditional expectation in equation (3.8)

is minorized by tr (FgΓg) + c, where

Ag = Ξ(t+1)
g β(t)

g Sg

(
Ψ(t)

g

)−1
,

Bg = Ξ(t+1)
g ΦgΞ

(t+1)
g

Fg = Ag −
1

2

[
BgΓ

(t)′

g

(
Ψ(t)

g

)−1 −max
{(

Ψ(t)
g

)−1
}
BgΓ

(t)′

g

]
.

Hence, the double-minorized penalized expectation is given by

tr [(Fg − ρgHg)Γg] + const,

where

Hg =


Kg if SP1,

Gg if SP2,

αgKg + (1− αg)Gg if SEN.

The updated estimate is Γ
(t+1)
g = RgP

′
g, where PgDgR

′
g is the singular value decomposition

of Fg − ρgHg.

After computing Λ
(t+1)
g , Ψ

(t+1)
g can be obtained by differentiating with respect to itself

and applying the diagonal matrix constraint:

Ψ(t+1
g = diag

(
Sg − 2Sgβ

(t)′

g Λ(t+1)′

g +Λ(t+1)
g ΦgΛ

(t+1)′

g

)
.
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3.2.6 Computational Aspects

Care must be taken when counting the number of free parameters. It is known that the

factor loading Λp×q contains pq−q(q−1)/2 free parameters, as in McNicholas and Murphy

(2008). However, in PL, SP1, SP2, and SEN models, there may be fewer free parameters as

sparsity penalty coerces some entries to be zero. To account for this, we adopt the strategy

proposed in Pan and Shen (2007); Städler et al. (2010); Xie et al. (2008), where we discount

the zero entries in the factor loadings, up to pq − q(q − 1)/2 many zeros. The penalty

coefficients ρg and the mixing coefficient for SEN αg are treated as hyperparameters, and

they are selected in via BIC during model selection process. The component-wise range

of coefficient values need to be pre-determined. During the penalty coefficient selection

process, the minimum is set at 0, and the maximum is set using the method presented

in Hirose and Yamamoto (2015) for consistency, where the maximum is estimated as the

largest ρ such that the factor loading is still a non-zero matrix.

The sparsity of factor loading estimate are measured using two metrics. One is the

proportion of zero entries (rounded to 2 decimal places) in the loading, and the mean and

standard deviation of the loading entries on absolute value scale.

3.3 Numerical Experiments

In this section, we discuss various computational aspects of PL and SEN along with some

other mixture models in literature in both simulated and real data settings. Various sub-

sets of the models listed below are fitted in each experiment and illustration. The italicized

abbreviations will be used henceforth when a model is referred. For each model, its de-

scription, hyperparameter and model selection process are outlined below.

• GMM from the R package mclust (Scrucca et al., 2016): This is a parsimonious

Gaussian mixture model with constraints on the modified eigen-decomposition of

component-wise covariance matrices Σg = λgPgDgP
′
g. Each element of the decom-

position (λg, Pg, Dg) can be constrained for equality across mixture components.
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The Bayesian Information Criterion (BIC) is used to select the best-fitting compo-

nent count and covariance constraint.

• HDDC from R package HDclassif (Bergé et al., 2012): This another parsimonious

Gaussian mixture model with projection-based constraints that seeks the intrinsic

dimension dg of each component in the mixture. Each dg is assumed to be less than

the observed dimension p, and the observations in each component is projected onto

a dg-dimensional subspace during model-fitting process. Additional parsimony can

be achieved by constraining the eigen-decomposition of component-wise covariance

matrices. The scree test by Cattell (1966) is used to approximate dg for each compo-

nent. Then, the BIC is used to select the best-fitting component count and covariance

constraint.

• tMM from the R package teigen (Andrews et al., 2018): This is a parsimonious

mixture of t-distributions with the same type of covariance constraints as that in

GMM from mclust package. The BIC is used to select the best-fitting component

count and covariance constraint.

• PGMM from the R package pgmm (McNicholas et al., 2018): This is a parsimonious

mixture of Gaussian factor analyzers, where the factor loadings Λg and random error

covariance Ψg are constrained to reduce the number of free parameters. The BIC is

used to select the best component count, factor count and the model constraint.

• PL, SP1, SP2, SEN : They are the four finite mixtures of penalized factor an-

alyzers employing the penalty corresponding to the abbreviations. Hyperparam-

eter selection is done in two stages: factor analyzer-related quantities first, then

penalty-related quantities. An un-penalized finite mixture of factor analyzers are

fitted to select the best component and factor counts. Then, if SEN is used, for each

α ∈ {0, 0.1, 0.2, . . . , 1}, the penalty coefficients ρg are selected, then the penalized

model is fitted. Selection of ρg is done over a grid its range is set according to section

3.2.6. For PL, SP1 and SP2, the α selection process is skipped.
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To avoid premature stopping of the parameter estimation, Aitken’s acceleration with

threshold ϵ = 0.01 is used as the model convergence criterion whenever the software pack-

age accommodates it. Otherwise, the packages’ default convergence criteria were used. The

clustering performance is measured by the Adjusted Rand Index (ARI). We consider two

simulations and two real data analyses. For simulations, we conduct the following.

i) Change in factor loading sparsity and rank as penalty increases. We study

the change in sparsity and the rank of the factor loading estimate as the penalty

coefficient ρ increases. This experiment is intended to show that direct penalization

on the loading can result in rank-deficient estimates, and that the SP1, SP2 and SEN

are robust to rank-deficiency.

ii) The effect of mixing coefficient αg. We study the effect of varying αg value on

the resulting mixture model.

For real data illustration, we discuss the following data sets.

i) Wine data. We perform clustering on the Wine data set, as a benchmarking test

against other model-based clustering methods in a high-dimensional setting.

ii) Movehub data. We perform clustering on the Movehub quality-of-life data set. We

pay particular attention to the interpretability of the resulting model.

3.3.1 Change in Factor Loading Sparsity and Rank

We study the effect of increasing penalty coefficient ρ on the sparsity and the rank of

the factor loading estimate. The four penalized methods - PL, SP1, SP2 and SEN - are

tested. Since the factor loading estimate is of primary concern, we simulated 1-component

Gaussian data set with zero mean for this experiment. The considered sample sizes (n) and

data dimensions (p) are n = 100, 500 and p = 5, 50 respectively. For p = 5, the true number
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of factors is q = 2. For p = 50, the true number of factors is q = 5. The factor loading and

the covariance for the random noise used to simulate the data set are as follows.

Λ5×2 =


0.1 1.4

−0.5 2

1 −2
0 0

0 0

 , Λ50×5 =



0.1 1.4 −0.5 2 1

−2 1 1.5 −3 0

3.1 2.5 0 1 −1
0 0.1 −4 2 0

0.5 0 2 0 −1
045×5



Ψ5×5 = 2I5, Ψ50×50 = 2I50

With regards to the hyper-parameter setup, to avoid confounding effect between parame-

ters, the true number of components and factors are used when fitting the model. The g

subscript is dropped for notational brevity. For each combination of (n, p), the experiment

was replicated 500 times, each with a newly-generated data set.
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Figure 3.2: Plots of median rank and sparsity against penalty coefficient ρ ∈ [0, 1]. The top plot is for
(p, q) = (5, 2) dimensional case, and the bottom plot is for (p, q) = (50, 5) dimensional case. In each panel,
the top row is for sample size n = 100, and the bottom row is for sample size n = 500. The left column
contains the plots of estimated factor loading’s column rank, and the right column contains the plots of
the proportion of zero entries in the estimated factor loading. The solid line is for PL, the dashed line is
for SP1, the dotted line is for SP2, and the dot-dash line is for SEN.
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p = 5 PL SP1 SP2 SEN
n = 100 0.40 0.64 2.69 4.11
n = 500 1.48 2.95 4.05 5.04

p = 50 PL SP1 SP2 SEN
n = 100 16.49 6.27 15.03 14.72
n = 500 30.36 21.34 30.14 29.95

Table 3.1: Table of median elapsed time (in seconds) all (n, p) pairs tested. The top table
is for the p = 5 case, and the bottom table is for the p = 50 case. In each table, the top
and bottom rows are for n = 100 and n = 500 cases respectively. The columns correspond
to each model tested, marked by their abbreviations.

Figure 3.2 is the set of plots generated from experiments with (p, q) = (5, 2) dimensional

data. The left column contains the plots of estimated factor loading’s column rank, and

the right column contains the plots of the proportion of zero entries in the estimated factor

loading. The top row is for sample size n = 100, and the bottom row is for sample size

n = 500. Consider the left column of this figure. The PL shows a rapid reduction in factor

loading column rank as ρ increases. Contrarily, all of SP1, SP2 and SEN maintain the full

column rank, as expected. On the right column, we see a rapid increase in the proportion of

zero entries in the factor loading estimates generated by PL model. A trade-off for the SP1,

SP2 and SEN is the reduced sparsity proportion. In practice, one may use the upper bound-

setting method for ρ outlined in Hirose and Yamamoto (2015) to avoid over-penalization

of factor loading. However, in all simulated cases in this experiment, the estimated upper

bound on ρ was 0 for every replication despite the true factor loading being quite sparse.

Because an upper bound of 0 forbids any penalization, the merit of a penalized model is

lost. The SP1, SP2 and SEN are robust against this issue, as they are a lot less sensitive

to the increasing ρ value. Thus, they can alleviate the burden of penalty coefficient tuning.

Another trade-off is the increased computation time in a low-dimensional setting. Table

3.1 shows the median elapsed time for the tested models under each of (n, p) case. Here,

we see that the PL is the most computationally efficient with the median elapsed time of

0.40 seconds and 1.48 seconds for (n = 100, p = 5) and (n = 500, p = 5) cases respectively.

However, the rank-preserving penalties gain an edge in a high-dimensional setting. The
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bottom table in table 3.1 shows similar levels of median elapsed time for both n = 100 and

n = 500 cases. Indeed, this is promising for the SEN since sparse parameter estimates are

more desirable in higher dimensions. The SP1 was consistently cheaper computationally

than the SP2 in all scenarios.

3.3.2 The Effect of Mixing Coefficient αg

As SEN allows a flexible mixture of sparsity from SP1 and shrinkage from SP2, one might

be inquisitive of the effect of mixing coefficients αg on the resultant model. To emulate a

realistic use case, we simulate a 2-component mixture of 2-dimensional Shifted Asymmetric

Laplace (SAL) distributions from the R package MixSAL by Franczak et al. (2018). SAL

distribution is a skewed distribution parametrized by location vector µ, skewness direction

vector δ, and a positive definite scale matrix Σ. An example of a 2-component mixture of

SAL distributions is given below.

Figure 3.3: An example of 2-component mixture of 2-dimensional SAL distributions.
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The considered sample sizes are n = 100, 200, 300, 400, and the parameter set for data

generation is given below.

π1 = π2 = 0.5

µ1 = (0, 0)′, µ2 = (−2, 5)′

δ1 = (2, 2)′, δ2 = (1, 2)′

Σ1 =

[
1 0

0 1

]
, Σ2 =

[
1 0.5

0.5 1

]

In the experiment, we fit a GMM with SEN on the simulated data, where the number of

components and factors are fixed at G = 2 and q = 1 to isolate the effect of the mixing

coefficient on the model, and we set α1 = α2. At each sample size, the experiment was

replicated 500 times, each with a newly-generated data set.
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Figure 3.4: A set of median BIC vs αg plots at n = 100, 200, 300, 400. In each plot, we see
that pure shrinkage (αg = 0) results in a higher BIC than pure sparsity (αg = 1), and a
local peak is observed at some point within αg ∈ (0, 1).

Figure 3.4 shows that pure shrinkage results in a better-fitted model than pure spar-

sity, and at each sample size, a local peak in median BIC is observed at an in-between

value within αg ∈ (0, 1). We reported the median instead of mean, as EM-type algorithms

are sensitive to initialization. As the occasional poor initialization can result in abnor-

mally ill-fitted models, the median would be a more befitting summary of performance

than the mean. The varying αg did not change the ARI values, however. This indicates

that the mixing coefficient primarily influences the model fit, hence it is related to model

interpretability.
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3.3.3 Real Data Illustration 1: Wine

Regularized estimation is emphasized in high-dimensional settings, as the number of free

parameters in a finite mixture model grows rapidly with dimension. A large number of free

parameters leads to an overly verbose model, reducing model interpretability. The Wine

data from the R package pgmm (McNicholas et al., 2018) is one such data set. It consists of

27 chemical and physical properties recorded from 178 wines from the Piedmont region of

Italy. Each observation belongs to one of the three types - Barolo, Grignolino, and Barbera.

In this illustration, we use a subset of this data, Grignolino and Barbera, which reduces

the sample size to 119. This puts us closer to the “high dimension relative to sample

size” scenario, where regularized estimation may be needed. We cluster this data set using

all 8 models in the list of models considered. The models were initialized with k-means

clustering, except for GMM, which were initialized with the default method of hierarchical

clustering as k-means was not an option. With k-means, the groups were initialized by

running the algorithm a fixed number of iterations (10 in this case), instead of running until

convergence. By starting the algorithm with a different seed for each replication, different

initializations were obtained. With hierarchical initialization, the mclust package allows a

subset of the data to be used in initialization stage, and the grouping to be extended to the

remaining portion of the data. The hyperparameter and model selection processes follow

that outlined in section 3.3. The models’ performance was measured by BIC and ARI.

Below is the table of median BIC and ARI values from 500 replications. Similar to earlier

experiments, we report the median instead of mean, as EM-type algorithms are sensitive

to initialization.
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GMM HDDC tMM PGMM
BIC -8327 -7948 -8204 -8046
ARI 0.97 0.49 0.93 0.64
Time 3.58 1.33 7.99 26.56

PL SP1 SP2 SEN
BIC -8058 -8146 -8126 -8134
ARI 0.97 0.97 0.93 0.97
Time 30.88 39.42 45.61 49.89

Table 3.2: Table of median BIC, ARI and elapsed time (in seconds) for each model.

The factor analyzer-based models (PGMM, PL, SP1, SP2, SEN) obtained higher BIC

values than the rest, except for HDDC. This is expected, as the factor analyzer is a sub-

model of HDDC (Bouveyron et al., 2007). However, it favoured BIC over clustering perfor-

mance, as shown by the lowest ARI among all tested models. Additionally, the penalized

models (PL, SP1, SP2, SEN) exhibited high ARI, whereas PGMM did not despite having

the highest median BIC value among the aforementioned five models. Both GMM and

tMM identified clusters quite well, but they trailed behind the other models in term of

BIC. Overall, the penalized factor analyzers present themselves as an attractive tool for

model-based clustering. However, their drawback is the extended elapsed time. That is due

to the computationally intensive penalty coefficient tuning, and in case of SEN, the added

step of mixing coefficient tuning process. This drawback could be mitigated by a more

efficient software implementation, which is definitely an avenue for future work.

Among the Stiefel-based trio (SP1, SP2, SEN), the 2-norm-based SP2 achieved the

highest median BIC of -8126, whereas the 1-norm-based SP1 took the last place. It in-

dicates that shrinkage produces better-fitting models than sparsity, which is reasonable,

as shrinkage still allows all parameters to vary, instead of coercing complete vanishment.

Consequently, SEN’s goodness of fit is in between that of SP1 and SP2. A point of interest

is that the mean value of mixing coefficient α is 0.25. This phenomenon suggests that,

given the freedom of choice, shrinkage is favoured over sparsity for model selection.
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PL SP1 SP2 SEN
q 2.85 2.61 2.58 2.55

Table 3.3: Table of mean factor counts for PL, SP1, SP2, SEN. The Stiefel-based trio show
more parsimony than PL

As shown in table 3.3, the Stiefel-based trio are more parsimonious than PL in terms

of factor counts. This is expected, as the full rank constraint on Γ does not allow linearly

dependent columns. Hence, the resulting factor loadings would possess only the “necessary”

number of columns. In particular, SEN achieve additional savings via variable mixing

coefficients αg.

3.3.4 Real Data Illustration 2: Movehub

This section focuses on how the proposed methods may be used in practice to generate

insights from the data set. We analyze the Movehub City Rankings data from Movehub

(2019) that measures the quality of life in 216 cities around the world. This version of the

data set is available on Kaggle (2017). The data consists of 216 rows (each row represents

a city) and 6 features excluding the city name. The description of the 6 features are as

follows:

• Movehub Rating: A combination of all scores for an overall rating for a city (the

higher the better).

• Purchase Power: Comparison of the average cost of living with the average local wage

(the higher the better).

• Health Care: Compiled from how citizens feel about their access to healthcare and

its quality (the higher the better).

• Pollution: A score of how polluted people find a city, including air, water and noise

pollution (the lower the better).
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• Crime Rating: The extent of crimes in a city (the lower the better).

• Quality of Life: A balance of healthcare, pollution, purchase power, crime rate to give

an overall quality of life score (the higher the better).

For a fair comparison, only the three parsimonious factor analyzer-based models are de-

ployed: PL, SEN and PGMM. SP1 and SP2 are excluded, since a data-driven tuning of

mixing coefficients will result in a superior fit of the model. Model selection is done via BIC

over component and factor ranges G = 1, 2, . . . , 6 and q = 1, 2, 3 respectively. We begin

by presenting the resulting clusters from the three models. SEN obtained the BIC value of

-3176, PL obtained -3035 and PGMM obtained -2971. This observation is consistent with

that in section 3.3.3.

PL PGMM
1 2 3 1 2

SEN
1 88 0 0 82 6
2 0 48 0 42 6
3 0 0 80 1 79

q
1 2 3

SEN 2 1 2
PL 1 1 2

PGMM 2 2 NA

Table 3.4: Left: Cross-tabulation of component labels generated by SEN against that of
PL and PGMM, respectively. Right: Table of estimated factor counts per component. The
SEN and PL models generated 3 clusters, but the PGMM model generated 2 clusters.

Table 3.4 shows that the SEN and PL models show perfect cluster agreement with 3

components. On the contrary, the PGMM model generated 2 clusters, where the largest

disagreement occurs in its component 1. All models produced a relatively low number

of factors, ranging between 1 and 2. This is expected, given that the data set has only

6 features. Next is the study of covariance structures. We examine the component-wise

correlation network graphs for each model.
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Figure 3.5: Top to bottom: Component-wise correlation network graphs for the SEN, PL
and PGMM models. Green colour indicates positive correlation, and red colour indicates
negative correlation. The stronger the correlation, the thicker the line. The plots are gen-
erated by the R package qgraph (Epskamp et al., 2012).
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The two clusters generated by PGMM have a similarity that both of them have a

strong negative correlation between crime rate (CR) and quality of life (QL). However,

the left-side cluster has a strong positive correlation between crime rate and pollution

(PL), whereas such correlation is absent in the right-side cluster. The right-side cluster is

characterized by a web of positive correlations between QL, HC, PP and MR, with the

QL-HC correlation being the strongest. Most of these correlations make sense, except for

the mutual exclusion between the CR-PL correlation on the left and QL-HC correlation on

the right. Examples of cities in the left cluster are Johannesburg, Rotterdam, Los Angeles

and Dallas. Examples of cities in the right cluster are Caracas, Nairobi, Sao Paulo and

Rome. In comparison, all three clusters in SEN have strong positive correlation between

purchasing power and quality of life. This result is en lieu with the existing understanding

on human welfare, which enhances the credibility the models generated by PL and SEN.

Examples of cities in each cluster from the SEN model are as follows.

• Left: Miami, Brussels, Melbourne

• Middle: Johannesburg, Philadelphia, Dallas

• Right: Moscow, Cordoba, Colombo

Despite the complete agreement of cluster membership between SEN and PL, the visi-

ble difference in component-wise correlation networks is indeed fascinating. However, the

noticeable PP-HC negative correlation and the weakened PP-QL positive correlation gen-

erated from PL could indicate that the model fitted by SEN may have captured the reality

better. Depending on the user, the SEN and PL models could be over-estimating the

number of components, or the PGMM model could be under-estimating the said number.

However, all three methods provide ample amount of insightful leads, which is a hallmark

of interpretable model-based clustering. Therefore, the methods presented in this work can

be promising addition to the literature on finite mixture models.
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3.3.5 Discussion

In this chapter, we extended a sparse Gaussian factor analyzer based on direct penaliza-

tion of factor loading to a finite mixture model variant. More importantly, we developed a

new method that can estimate sparse, yet full-rank, factor loadings in a finite mixture of

Gaussian factor analyzers. We have shown its significance through its desirable theoretical

bounds and promising empirical results in both simulated and real data settings. Future di-

rections include dynamic estimation of factor counts instead of a computationally-expensive

brute force search, and extension of the SEN to non-Gaussian factor analyzers.
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Chapter 4

Stiefel Elastic Net Discriminant

Variables: A Regularized

Cluster-preserving Dimension

Reduction

4.1 Introduction

In the recent past, dimension reduction for model-based clustering has received much at-

tention. Indeed, the Curse of Dimensionality (Bellman, 2010) suggests that one should

be mindful of the dimensionality of the data. Several families of approaches have been

proposed that combine model-based clustering and dimension reduction. They include the

eigen-decomposition of component-wise scale matrices (Bouveyron et al., 2007; Fraley and

Raftery, 2002; McNicholas and Murphy, 2008), and projection-based methods such as the

Invariant Coordinate Selection (ICS) (Tyler et al., 2009; Peña et al., 2010) and the Sliced

Inverse Regression (SIR) (Li, 1991; Cook and Yin, 2001; Scrucca, 2010, 2014). The eigen-

decomposition approach reduces the number of free parameters present in component-wise

scale matrices by imposing various equality restrictions on their eigen-decomposition. De-
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note the scale matrix of component g by Σg. Then, we can write its eigen-decomposition

as Σg = PgDgP
′. For instance, imposing Pg = P for all g, decreases the number of free

parameters required to estimate all Σg. The ICS aims to find interesting structures in the

data by finding a common set of coordinates present in more than one scatter matrix.

Tyler et al. (2009) proposes the projection of the data set onto the eigenvectors of

S−1
1 S2, where S1 and S2 are two affine equivalent scatter matrices. Peña et al. (2010)

investigated the adoption of multivariate kurtosis in ICS and explored its application to a

2-component Gaussian mixture model under certain forms of component-wise covariance

matrices. The SIR by Li (1991) was applied in works by Cook and Yin (2001); Scrucca

(2010, 2014) as a tool for dimensionality reduction and visualization for the GMM. The

SIR family is the method of interest in this work, because aims to explain the fitted mixture

model instead of imposing restrictions during the fitting process, and it is mathematically

tractable in an arbitrary number of components. The SIR estimates the subspace that

captures the clustering structure and projects the data onto it, and it could be useful when

the investigator wants to identify the variables that influence the cluster structure the most.

However, the combined variables generated by a projection may not always be interpretable,

as they may be represented as the linear combination of a large number of original variables.

In the absence of relevant domain knowledge, understanding a linear combination of many

variables can be challenging. Since clustering is an exploratory task, there is a need for

finding a projection of simpler structure involving fewer original variables. While several

regularization techniques exist for vector-valued parameters (Hoerl and Kennard, 1970;

Tibshirani, 1996; Zou and Hastie, 2005; Zou, 2006; Wang et al., 2006; Candes et al., 2007),

such works for matrix-valued parameters are relatively scarce (Zhou and Li, 2014; Zhang

et al., 2017; Cai et al., 2007). Moreover, because constraints are imposed usually on the

matrix-valued parameters, finding a simple estimation scheme appears to be tricky.

In light of this problem, the Stiefel Elastic Net (SEN) was introduced by Kim and

Browne (2021b), which enabled the constrained regularized estimation of factor loadings

in the finite mixture of Gaussian factor analyzers. The two-fold benefits of the SEN are

the constrained optimization of a matrix-valued parameter (factor loading) while reaping

the flexibility in penalization similar to the Elastic Net by Zou and Hastie (2005), and

52



the straightforward iterative updates via the MM (Minorize-Maximization or Majorize-

Minimization) algorithm (Hunter and Lange, 2004; Browne and McNicholas, 2014; Kiers,

2002).

In this chapter, two versions of the Stiefel Elastic Net Discriminant Variable (SENDV)

for the GMM are introduced, where we estimate a regularized discriminant matrix that

projects the clustered data onto a common subspace for all components using a variant of

the SEN. Our version of the SEN allows a fine-tuned regularization via row-wise or column-

wise penalties on the discriminant matrix, while preserving the simplicity of a MM-style

update and the desirable theoretical properties.

4.2 Methodology

In this section, we present a row-wise and a column-wise version of the regularized esti-

mation of the discriminant matrix based on the SEN. To do so, we first describe its foun-

dational framework, the Sliced Inverse Regression, and introduce a variant of the SEN.

Then, we construct our algorithms for regularized estimation and explore their theoretical

properties. To simplify the estimation process in the subsequent sections, we will assume

that the data set has been whitened so that the sample covariance matrix is the identity

matrix, Σ = I. One such method is the Cholesky decomposition, where Σ = U ′U such

that U is upper triangular. The original variables X are then transformed to U ′−1X so

that Var(U ′−1X) = Ip.

4.2.1 Dimension Reduction with Sliced Inverse Regression

Sliced Inverse Regression (SIR) by Li (1991) is a dimension reduction technique that aims

to approximate the functional relationship between the response Z and p-dimensional co-

variate x using its q-dimensional linear combination (q < p). Formally speaking, suppose

the functional relationship between Z and x is represented as

Z = fp+1(x, ϵ),
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where ϵ denotes a 1-dimensional noise that is independent from x. SIR estimates a (p× q)-
dimensional discriminant matrix β = [β·1 · · ·β·q] such that

Z = fq+1(β
′x, ϵ). (4.1)

An attractive property of the SIR is the conditional independence of Z and x given β′x,

meaning that the projected variables contain as much information on Y as the original

variables. The “sliced” part refers to the partitioning of Y into G pieces, which is equiv-

alent to assuming a piecewise constant distribution on Y . The estimation process uses

the generalized eigenvalue problem. Scrucca (2010, 2014) applied the SIR to the GMM

to project the data onto a subspace that captures the estimated clustering structure. We

denote this technique hereafter as the GMM Dimension Reduction, or GMMDR. Under

a G-component GMM, since an observation x is assigned to a component via the MAP

estimate of the membership indicator Z = (Z1, . . . , ZG) (as illustrated in section 2.1), the

conditional independence of Z and x given β′x implies P (Zg = 1|x) = P (Zg = 1|β′x).

Therefore, the GMMDR-projected variables preserve the component membership informa-

tion of the original data. In practice, a G-component GMM is fitted, and its parameter

estimates are used in solving the GMMDR problem. The discriminant matrix β arising

from the GMMDR problem is the solution of

max
β

tr (β′Mβ) subject to β′Σβ = I,
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where Σ is the sample covariance matrix, and

π̂g(x) =
πgϕg(x)∑G
h=1 πhϕh(x)

, µ =
G∑

g=1

πgµg

Σg =
∑
i∈Ig

π̂g(xi)(xi − µg)(xi − µg)
′, Σ =

G∑
g=1

πgΣg

MI =
G∑

g=1

πg(µg − µ)(µg − µ)′

MII =
G∑

g=1

πg
(
Σg −Σ

)
Σ−1

(
Σg −Σ

)′
M = λMIΣ

−1MI + (1− λ)MII (λ ∈ [0, 1]).

The MI and MII matrices contain the information on the variation between component-

wise means and covariances, respectively. The M matrix combines the two using a pre-

determined mixing coefficient λ. Higher λ value means more emphasis on the variation

among mean vectors. Under the assumption of Σ = Ip, the formulation of the GMMDR

simplifies accordingly, In particular, the discriminant matrix β now exists in the Stiefel

manifold Vp,q = {β ∈ Rp×q : β′β = Iq} with p ≥ q.

max
β

tr (β′Mβ) subject to β′β = Iq.

4.2.2 Stiefel Elastic Net

The Stiefel Elastic Net introduced by Kim and Browne (2021b) is a penalty function for

regularizing matrix-valued parameters over the Stiefel manifold Vp,q. For β ∈ Vp,q, the

Stiefel Elastic Net is defined as

SEN(β;α, ρ) = ρ

(
α

p∑
i=1

||βi·||1 + (1− α)
p∑

i=1

||βi·||2

)
,
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where βi· denotes the ith row of β, α ∈ [0, 1] is the weight hyperparameter and ρ ≥ 0 is

the penalty multiplier. The SEN is an attractive penalty function for applicable matrix

parameters due to desirable theoretical bounds and the straightforward optimization. For

instance, for α ∈ (0, 1) and ρ > 0, a minimizer of SEN(·;α, ρ) is a matrix of q many signed

standard basis vectors, with the corresponding minimum being ρq. As for its minimization,

the MM (Majorize-Minimization or Minorize-Maximization) algorithms by Hunter and

Lange (2004); Kiers (2002) lead to a convenient iterative procedure. A succinct description

of the MM algorithm is provided in chapter 3.2.5.

Kiers (2002) introduced a MM algorithm for the following form of trace minimization.

min
β

K∑
k=1

tr(BkβCkβ
′) subject to β′β = Iq, (4.2)

where Bk are square and Ck are positive semidefinite. Its majorizer at iteration t is

tr(F(t)β) + constant where

F (t) =
K∑
k=1

Ckβ
(t)′Bk +C ′

kβ
(t)′B′

k − 2λkβ
(t)′ ,

and λk = the product of the highest or of the lowest eigenvalues of Bk and Ck, whichever

is the highest. For indices k where one of the Bk or Ck is positive semidefinite and the

other is negative semidefinite, λk = 0. Let PDQ′ denote the singular value decomposition

(SVD) of −F (t). Then, the new estimate is given by β(t+1) = QP ′. Also, de Leeuw and

Lange (2009) developed a quadratic majorizer for |βij|

|βij| ≤
β2
ij

2|β(t)
ij |+ ϵ

+
|β(t)

ij |
2

, (4.3)

where ϵ > 0 is a small constant added to avoid singularity at 0. In this work, we set

ϵ = 10−5. This process is iterated until the distance between the current and the previous

estimates of β is smaller than a pre-determined threshold c > 0. The Frobenius norm || · ||F
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is used to compute the distance, where

||β(t) − β(t−1)||F =

√√√√ p∑
i=1

q∑
j=1

(
β

(t)
ij − β

(t−1)
ij

)2
.

For β ∈ Vp,q with p ≥ q, the row-wise and column-wise variants of the SEN will be

denoted by SENr and SENc respectively, where

SENr(β;α, ρ1, . . . , ρp)

= α

p∑
i=1

ρi||βi·||1 + (1− α)
p∑

i=1

ρi||βi·||22, and (4.4)

SENc(β;α, ρ1, . . . , ρq)

= α

q∑
j=1

ρj||β·j||1 + (1− α)
q∑

j=1

ρj||β·j||22

= α

q∑
j=1

ρj||β·j||1 + (1− α)
q∑

j=1

ρj. (4.5)

The three key differences between the original SEN and the above variants are

• The ||βi·||2 is replaced by its square ||βi·||22. In Kim and Browne (2021b), both the

1-norm and 2-norm components of the SEN were majorized. However, the squared 2-

norm need not be majorized. Since majorization is a form of approximation, squaring

allows a more direct estimation of β.

• The original SEN penalizes row-wise. However, a column-wise penalization is also an

option. The row-wise penalty can be seen as minimizing the the number of discrim-

inant variables wherein a data set’s variable appears. Contrarily, the column-wise

penalty aims to minimize the total number of data set’s variables appearing in each

discriminant variable. Both approaches are valid, and the preference will depend on
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the application. Therefore, we consider both row-wise and column-wise penalties.

• Instead of a single penalty multiplier ρ, we assign each row (or column) its own

multiplier. This allows a more fine-tuned penalization on the discriminant matrix β.

In the remainder of this section, we present the algorithm for estimating the regularized

β based on the row-wise and column-wise penalties, and they will be named hereafter

as rSENDV (row-wise SEN Discriminant Variables) and cSENDV (column-wise SEN Dis-

criminant Variables) respectively. The two algorithms will be collectively referred to as the

SENDV.

4.2.3 Row-wise Penalization

The row-wise penalized objective for the rSENDV is

max
β

tr (β′Mβ)− SENr(β;α, ρ1, . . . , ρp)

subject to β′β = Iq. (4.6)

The original objective tr (β′Mβ) =
∑q

j=1 β
′
·jMβ·j is column-oriented but the penalty is

row-oriented. Thus, we need an approach that estimates β as a whole. Since the objective

in (4.6) becomes a minimization problem with multiplication by -1, we will utilize the

above two majorizers to develop a MM algorithm for the rSENDV.

Parameter Estimation

The estimation of rSENDV is based on the majorization of the 1-norm component of

SENr, followed by the majorization of the penalized objective function and the MM-based
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iterative update of β. The 1-norm component of SENr is majorized using (4.3).

α

p∑
i=1

ρi||βi·||1 ≤ α

p∑
i=1

q∑
j=1

β2
ij

2|β(t)
ij |+ ϵ

+ constant

= α

p∑
i=1

tr (eie
′
iβAiβ

′) + constant,

where Ai = (ρi/2)diag
(
1/(|β(t)

i1 |+ ϵ), · · · , 1/(|β(t)
iq |+ ϵ)

)
is a positive diagonal matrix and

ei is the standard ith basis vector. The 2-norm component can also be written in trace

form as

(1− α)
p∑

i=1

ρi||βi·||22 = (1− α)tr (diag(ρ)ββ′) ,

where diag(ρ) = diag(ρ1, · · · , ρp) is the diagonal matrix of penalty multipliers. Combining

the above trace forms, the majorizer of (4.6) (multiplied by -1) is given by tr(F (t)β) + c

where

F (t) = −2β(t)′M + 2α

p∑
i=1

(
Aiβ

(t)′eie
′
i −max(Ai)β

(t)′
)

+ 2(1− α)
(
β(t)′diag(ρ)−max(ρ)β(t)′

)
.

where max(Ai) is the maximum diagonal entry of Ai. We then compute the new β via

the MM algorithm from section 4.2.3 and update Ai. The rSENDV algorithm is provided

below.
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Algorithm 1 rSENDV

1: initialize:
t = 0 and β(0)

M = λMIMI + (1− λ)MII and α ∈ [0, 1]
ρ1, . . . , ρp > 0
c > 0, ϵ > 0, diff =∞

2: while diff ≥ c do

3: Ai ← (ρi/2)diag(1/(|β(t)
i1 |+ ϵ), · · · , 1/(|β(t)

iq |+ ϵ))

4: F
(t)
1 ← 2α

∑p
i=1

(
Aiβ

(t)′eie
′
i −max(Ai)β

(t)′
)

5: F
(t)
2 ← 2(1− α)

(
β(t)′diag(ρ)−max(ρ)β(t)′

)
6: F (t) ← −2β(t)′M + F

(t)
1 + F

(t)
2

7: SVD of −F (t): PDQ′

8: β(t+1) ← QP ′

9: diff ← ||β(t+1) − β(t)||F
10: t← t+ 1
11: end while
12: return β(t)

Theoretical Property

The SENr enjoys desirable theoretical properties similar to that of the original SEN.

Namely, its bounded below by the sum of q smallest penalty multipliers, and a matrix of

q many signed standard basis vectors achieve that lower bound. Since such a matrix is the

sparsest on Vp,q, SENr is a natural choice for regularized estimation. Proposition 5 states

this property formally.

Proposition 5. For β ∈ Vp,q (p ≥ q) with ρ1, . . . , ρp > 0 such that ρ(1) ≤ · · · ≤ ρ(p),

SENr(β;α, ρ1, . . . , ρp) ≥
q∑

j=1

ρ(j).

In particular, equality is achieved if β is a matrix of q many signed standard basis column

vectors where each column is associated with exactly one of ρ(1), . . . , ρ(q). In the case of
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equal multipliers, they are ordered by their row indices from low to high.

Proof. Without loss of generality, suppose that ρ(i) = ρi for i = 1, . . . , p. Firstly, some facts

are listed for the rest of the proof.

a. By norm properties, ||βi·||1 ≥ ||βi·||2.

b. For β ∈ Vp,q, ββ
′ = β(β′β)−1β′ is a hat matrix with diagonals equal to β′

i·βi· =

||βi·||22. From Seber (2008), we know that ||βi·||22 ≤ 1, thus ||βi·||22 ≤ ||βi·||2.

p∑
i=1

ρi||βi·||1
(a)

≥
p∑

i=1

ρi||βi·||2

(b)

≥
p∑

i=1

ρi||βi·||22 =
p∑

j=1

β′
·jdiag(ρ)β·j, (4.7)

where diag(ρ) = diag(ρ1, . . . , ρp) is the diagonal matrix with diagonals ρ1, . . . , ρp. Thus,

we can find the lower bound for (4.7) by solving

min
β

p∑
i=1

β′
i·diag(ρ)βi· = tr (β′diag(ρ)β)

subject to β′β = Iq

As in Horn and Johnson (2012), we can solve via differentiating the Lagrangian

tr (β′diag(ρ)β)− tr (Λ(β′β − Iq)) ,

where Λ = diag(λ1, . . . , λq) is a diagonal matrix of Lagrange multipliers. Upon differentiat-

ing with respect to β, we end up solving diag(ρ)β = βΛ, which is equivalent with finding

q many eigenvalues and corresponding eigenvectors of diag(ρ). Suppose ρ1, . . . , ρp > 0.

Then, the q smallest eigenvalues ρ(1), . . . , ρ(q) are chosen. Because diag(ρ) is diagonal, the

only non-zero vector in the eigenspace corresponding to each ρ(j) is the signed standard
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basis column vector associated with ρ(j). In case of equality between multipliers, selection

is done lexicographically. For example, if p = 5 such that ρ1 = ρ3 = ρ5 > ρ2 > ρ4 and

q = 4, then ρ5 is omitted and the solution is β = [e4, e2, e1, e3]. Otherwise, some ρis

are 0. In this case, the signed standard basis vectors are no longer the unique solution,

since any non-zero orthonormal vectors in the null space of [ρ] would qualify. In all cases, a

matrix of appropriately chosen signed standard basis column vectors achieve the equality∑p
i=1 ρi||βi·||1 =

∑q
j=1 ρ(j).

4.2.4 Column-wise Penalization

The column-wise penalized objective is

max
β

tr (β′Mβ)− SENc(β;α, ρ1, . . . , ρq)

subject to β′β = Iq. (4.8)

The SENc is easier to combine with the original objective because both are column-

oriented. In particular, after minorizing the 1-norm component (multiplying the majorizer

by -1), (4.8) can be minorized by the following heterogeneous quadratic form

max
β

q∑
j=1

β′
·j (M − αAj)β·j subject to β′β = Iq, (4.9)

where Aj = (ρj/2)diag
(
1/|β(t)

1j |, · · · , 1/|β
(t)
pj |
)
. In this formulation, the definiteness of

M − αAj affects the solution. In particular, ρj can change the definiteness because it

is not bounded above initially. As an illustration, consider a single q-dimensional quadratic

maximization problem with a positive diagonal matrix D with decreasing diagonals and

ρ ≥ 0

max
x

x′(D − ρI)x =

q∑
j=1

(Djj − ρ)x2
j subject to x′x = 1.
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If ρ ≤ Dqq, then every x2
j can be non-zero. However, if ρ > Dkk for k ∈ {1, . . . , q}, then

any optimal x will have all x2
j≤k = 0, because the corresponding (Djj − ρ) are negative.

This means that excessive values of ρ confiscate the opportunity for some of x2
js to be

estimated. This phenomenon can be compared to a fair race. In every race, there is the

fastest, as well as the slowest. Even if we could identify the slowest runner a priori, they

should be allowed to compete until the finish line, otherwise the result becomes biased due

to the preemptive disqualification. This illustration suggests that ρj should be bounded so

that M − αAj remains positive semidefinite throughout the estimation procedure.

Iterative Penalty Multiplier Tuning

A key decision in a penalized estimation method is the penalty multiplier selection. In

rSENDV, the multipliers ρ1, . . . , ρp are pre-determined and held constant throughout.

Moreover, setting the multipliers can be challenging without a computationally expensive

strategy like cross-validation. However, with cSENDV, an upper bound for each ρj can

be obtained iteration-wise. Let λmin(·) denote the minimum eigenvalue of the argument

matrix. We present the following upper bound on ρ
(t)
j .

Proposition 6. Let A⋆
j = (1/2)diag(1/|β(t)

1j |, · · · , 1/|β
(t)
pj |). If ρ

(t)
j ≤ λmin(M)/max(αA⋆

j),

then M − αAj is positive semidefinite at iteration t. If any of β
(t)
1j , . . . ,β

(t)
pj is 0, then set

ρ
(t)
j = 0.

Proof. We first show that M and αA⋆ are positive semidefinite, and derive a condition on

which M − ρjαA⋆ is positive semidefinite. For x such that x′x = 1, we have

x′Mx = λx′M ′
IMIx

+ (1− λ)
G∑

g=1

πgx
′(Σg −Σ)(Σg −Σ)′x

= λ||MIx||22 + (1− λ)
G∑

g=1

πg||(Σg −Σ)′x||22

≥ 0.
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Moreover, since A⋆ is clearly positive semidefinite by definition. This implies that x′Mx ≥
λmin(M) and ρjαx

′A∗x ≤ ρjλmax(αA
∗), where λmin(·) and λmax(·) denote the minimum

and maximum eigenvalues of the argument matrix respectively. Hence, if

λmin(M)− ρjλmax(αA
⋆) ≥ 0,

then M − ρjαA∗ is positive semidefinite. This happens when

ρj ≤
λmin(M )

λmax(αA⋆)
.

Thus, at iteration t, as long as ρ
(t)
j is below the above bound, M − ρ

(t)
j αA

⋆ is positive

semidefinite as required.

Computationally, due to the presence of ϵ, max(αA⋆
j) will be finite, so ρ

(t)
j will not

be coerced into an exact zero. Using this bound, we can select the penalty multipliers

ρ1, . . . , ρq that do not over-penalize. Returning to the fair race analogy, this bound allows

the would-be-zero entries to vanish naturally without the multiplier overpowering them.

Parameter Estimation

We apply the optimization algorithm by Bolla et al. (1998) for a heterogeneous quadratic

form constrained on Vp,q. Given the objective

max
β

q∑
j=1

β′
·jGjβ·j

and the current estimate β(t), we compute

G(β(t)) :=
[
G1β

(t)
·1 , · · · ,Gqβ

(t)
·q

]
.
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Then, given the SVD of G(β(t)) = PDQ′, the next estimate is given by

β(t+1) = PQ′.

For cSENDV, we letGj = M−αAj (j = 1, . . . , q). We can now solve for β by updating β(t)

and Aj iteratively. We will consider the algorithm as converged if the distance between the

the current and previous estimates of β is smaller than a pre-determined threshold c > 0.

The full cSENDV algorithm is provided below.

Algorithm 2 cSENDV

1: initialize:
t = 0 and β(0)

M = λMIMI + (1− λ)MII and α ∈ [0, 1]
c > 0, ϵ > 0 and diff =∞

2: while diff ≥ c do

3: A⋆
j ← (1/2)diag(1/(|β(t)

1j |+ ϵ), · · · , 1/(|β(t)
pj |+ ϵ))

4: ρ
(t)
j ← λmin(M )/max(αA⋆

j)

5: G(β(t))←Mβ(t) − α

2
sgn(β(t))diag(ρ(t))

6: SVD of G(β(t)): PDQ′

7: β(t+1) ← PQ′

8: diff ← ||β(t+1) − β(t)||F
9: t← t+ 1
10: end while
11: return β(t)

Theoretical Property

The SENc enjoys desirable theoretical properties similar to SENr in the sense that it is

bounded below by the sum of penalty multipliers and a matrix of q many signed standard

basis vectors achieves this bound.
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Proposition 7. For β ∈ Vp,q (p ≥ q),

SENc(β;α, ρ1, . . . , ρq) ≥
q∑

j=1

ρj.

In particular, equality is achieved if β is a matrix of q many signed standard basis column

vectors, pairwise orthonormal.

Proposition 7 indicates SENc is also a desirable penalty function that can help with

estimating a maximally sparse projection β.

Proof. By norm properties,

q∑
j=1

ρj||β·j||1 ≥
q∑

j=1

ρj||β·j||2 =
q∑

j=1

ρj,

where the equality comes from the constraint β′β = Iq. If β consists of q many distinct

signed standard basis column vectors, then
∑q

j=1 ρj||β·j||1 =
∑q

j=1 ρj.

4.2.5 Computational Aspects

In this section, we discuss two computational aspects related to the rSENDV and cSENDV:

initialization and heuristic rule for variable selection.

Initialization

Initialization of the SENDV involves the selection of hyperparameters and the initial pa-

rameter β(0). The hyperparameters involved in the SENDV algorithms are the dimension of

projected space q, the weight parameter λ for M matrix, the penalty weight parameter α

and the convergence threshold c, where first two are inherited from GMMDR. While there

are no clear-cut methods for choosing q, α and c, we propose a condition number-based

approach for selecting λ. We begin by noting that the initial guess on β is likely sensitive
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to some degree to that guess. This raises the stake on the initialization of β, which could

be a concern in the absence of a guideline or prior knowledge. The condition number by

Trefethen and Bau III (1997) is a tool measures the sensitivity of the output against the

change in the input. As a function of λ, the condition number of our objective function is

cond(λ) =
λmax(M )

λmin(M )
. (4.10)

Thus, by minimizing cond(λ), we can select λ that makes rSENDV and cSENDV more

robust against initialization. The expression in 4.10 is derived as follows. The condition

number of a differentiable multivariate function f is given in Trefethen and Bau III (1997):

||J(x)|| × ||x||
||f(x)||

,

where ||J(x)|| denotes the induced norm of the Jacobian matrix of f at x. Since all finite-

dimensional norms are equivalent, we will use the induced 2-norm ||A||2 =
√
λmax(A′A). In

our case, the function f is the objective function for SENDV, parametrized by λ: f(β;λ) =

tr(β′Mβ). Due to the orthogonality constraint on β, its norm ||β|| will be constant, so

we can scale it to 1 without affecting the optima of the condition number. Finally, we

assume that β is a square matrix. This assumption is equivalent to β containing the

maximum number of variables for a given number of rows, which gives it the largest extent

of variability. Hence, optimizing for λ in this case gives us a conservative estimate.

Then, the scaled condition number for our problem, as a function of λ, can be written

as
||J(β;λ)||
tr(β′Mβ)

,

where its maximum is found by maximizing the numerator and minimizing the denomina-

tor.

The numerator simplifies to the largest eigenvalue of M , for any feasible β. Let PDP ′
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be the eigen-decomposition of M . Using the definition of the induced 2-norm, we have

||J(β;λ)||2 =
√
λmax(β′M 2β)

=
√
λmax(β′PD2P ′β)

=
√
λmax(D2)

= λmax(D)

= λmax(M ).

Hence, the maximum of ||J(β;λ)||2 is λmax(M ).

The minimum of the numerator is p×λmin(M ), where p can be scaled to 1 with respect

to λ. Using again the eigen-decomposition of M , we have

tr(β′Mβ) = tr(D) =

p∑
j=1

Djj ≥ p×Dpp = p× λmin(M ).

Therefore, the scaled maximum condition number for SENDV is given by

cond(λ) =
λmax(M )

λmin(M )
.

The dimension of projected space q is estimated via the scree test by Cattell (1966) on the

eigenvalues of M . Let λ1 ≥ · · · ≥ λp denote the eigenvalues of M . The scree test examines

the absolute difference between two consecutive eigenvalues |λi−λi+1| and sets q to be the

smallest index i ∈ {1, . . . , p− 1} such that |λi − λi+1| < r. If no such i exists, then q = p.

In this work, the scree test threshold r is set at 0.01. Also, the convergence threshold c

for rSENDV and cSENDV is set at 0.001. Selecting the penalty weight α is more nuanced

than the others, because it depends on the desired style of penalization. Thus, there is no

single rule on choosing the optimal α. Nevertheless, to demonstrate the effect of α on β,

we will deploy rSENDV and cSENDV with various α values in the numerical experiments.

In terms of selecting β(0), we set it equal to the solution obtained from the GMMDR.
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Heuristics for Variable Selection

One of the main goals of the SENDV algorithms is the identification of important vari-

ables in each projected dimension. For the purpose of preliminary assessment, we propose

the following heuristic procedure for the GMMDR and SENDV. For each column of the

estimated β, we identify the entry with the largest magnitude. That entry is set to ±1,
where the sign follows that of the original entry, and the remaining entries are set to 0.

After the modification, there may be identical columns. In that case, we simply remove

the duplicates. An even quicker, but more crude, method is to round off β to the nearest

digit. In this case, an all-zero column may appear, which we remove from the matrix. The

above methods are suggested because no single entry in β can be greater than 1 due to

the constraint β′β = Iq. If variable selection from the unscaled data set is desired, then β

is transformed first to U−1β . Then, each column of U−1β is scaled to be of unit length,

and the entry with the largest magnitude within is identified, similar to the procedure on

β.

4.3 Numerical Experiments

In this section, we present three data analyses to study the performance of the SENDV and

compare it against the GMMDR and some of existing projection methods. Specifically, we

present one simulated data analysis, and two real data illustrations using the Auto (James

et al., 2017) and Wine (Hurley, 2019) data sets.

4.3.1 Performance Assessment

Along with visualization, the following metrics are used to assess the performance of the

tested methods in all experiments.

• Ratios of the within-cluster (WSS) and between-cluster (BSS) sums of squares rel-

ative to the total sums of squares for the projected data set, denoted by rWSS and
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rBSS respectively. Given a (n× p)-dimensional data set X, the sums of squares are

computed on the projected data set Xβ̄, where β̄ is the discriminant matrix gener-

ated from a method scaled to have unit length columns. For the GMM, the sums of

squares are taken on the unprojected data, as there is no projection involved. The

higher rWSS is relative to rBSS, the tighter-knitted and better-separated the clus-

ters would be. Therefore, rWSS and rBSS could be viewed as a measure of cluster

separation in the projected space.

• The proportion of zeros in β̄, denoted by Prop. It is the number of entries with value

zero (after rounding to 3 decimal places) divided by the total number of entries in β̄.

This proportion serves as a measurement on the number of original variables involved

in the projected space. The higher this proportion, the fewer original variables are

used for projection, indicating a more efficient representation in the projected space.

• The Bayesian Information Criterion (BIC) by Schwarz (1978).

4.3.2 Simulated Data Analysis

In this section, we compare and contrast the performance of the GMMDR and SENDV

in the presence of informative and noise variables. The data set contains two informative

variables, and an increasing number of noise variables is attached. The goal is to examine

how much of the noise is filtered out by the GMMDR and SENDV. The informative

variables are generated by a 2-dimensional 2-component GMM with equal weights π1 = π2.

The component-wise mean vectors µg and covariance matrices Σg are given by

µ1 = (1, 1)′, µ2 = (0, 0)′, Σ1 =

[
4 0

0 0.1

]
, Σ2 =

[
0.1 0

0 4

]
.

A data set sampled from this distribution is plotted in figure 4.1. It is off-centre cross-

shaped. To this data set, we attach d many noise variables, where each noise variable is

independently Gaussian with mean 1 and variance 4. d = 0, 2, 4, 6, 8, 10 are considered.

The number of observations in the data set is n = 10× (d+2). The list of tested methods
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is given below. For all methods, the target dimension for projection is q = 2, and the true

labels are used for all observations to focus on the comparison of the projection only. The

BIC is computed from the GMM fitted to the projected data, based on the true label.

• GMMDR with λ = 0.5 as the baseline. This is the default setting from the function

MclustDR in the R package mclust (Scrucca et al., 2016).

• rSENDV with α = 0, 0.5, 1. λ is estimated using the objective function in (4.10). The

row-wise penalty multipliers are fixed at ρ = 0.01.

• cSENDV with α = 0.1, 0.5, 1, as α = 0 is equivalent to no penalization. λ is estimated

using the objective function in (4.10). The column-wise penalty multipliers are fixed

at ρ = 0.01.

Figure 4.1: A scatterplot of the data set generated from the informative 2-component
GMM.
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d = 0 rWSS rBSS BIC Prop
GMMDR 0.879 0.121 -196.721 0.002

(0.05) (0.05) (11.33) (0.02)

rSENDV [0] 0.874 0.126 -258.316 0.002
(0.06) (0.06) (13.89) (0.02)

rSENDV [0.5] 0.874 0.126 -258.328 0.132
(0.06) (0.06) (13.89) (0.13)

rSENDV [1] 0.875 0.125 -258.359 0.171
(0.06) (0.06) (13.84) (0.12)

cSENDV [0.1] 0.874 0.126 -258.321 0.001
(0.06) (0.06) (13.89) (0.01)

cSENDV [0.5] 0.874 0.126 -258.268 0.001
(0.06) (0.06) (13.92) (0.01)

cSENDV [1] 0.874 0.126 -258.161 0.001
(0.06) (0.06) (13.96) (0.01)

Table 4.1: Table of average rWSS, rBSS, BIC and Prop (and standard deviation in brackets)
over 500 replications of the simulated data with no noise variables. The numbers within
the square brackets are the α values used for the SENDV method.
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d = 2 rWSS rBSS BIC Prop
GMMDR 0.896 0.104 -371.599 0.007

(0.04) (0.04) (14.65) (0.03)

rSENDV [0] 0.889 0.111 -498.375 0.006
(0.04) (0.04) (19.60) (0.03)

rSENDV [0.5] 0.934 0.066 -593.072 0.049
(0.05) (0.05) (92.13) (0.07)

rSENDV [1] 0.920 0.080 -556.041 0.068
(0.05) (0.05) (85.17) (0.07)

cSENDV [0.1] 0.891 0.109 -497.924 0.015
(0.04) (0.04) (19.45) (0.05)

cSENDV [0.5] 0.893 0.107 -499.917 0.016
(0.04) (0.04) (24.48) (0.04)

cSENDV [1] 0.894 0.106 -505.242 0.014
(0.04) (0.04) (31.47) (0.04)

Table 4.2: Table of average rWSS, rBSS, BIC and Prop (and standard deviation in brackets)
over 500 replications of the simulated data analysis. The number of noise variables d is 2.
The numbers within the square brackets are the α values used for the SENDV method.
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d = 4 rWSS rBSS BIC Prop
GMMDR 0.901 0.099 -539.106 0.012

(0.03) (0.03) (18.58) (0.03)

rSENDV [0] 0.895 0.105 -733.164 0.010
(0.03) (0.03) (24.36) (0.03)

rSENDV [0.5] 0.927 0.073 -828.003 0.037
(0.05) (0.05) (135.36) (0.05)

rSENDV [1] 0.906 0.094 -764.762 0.047
(0.04) (0.04) (92.79) (0.05)

cSENDV [0.1] 0.896 0.104 -732.608 0.019
(0.03) (0.03) (24.39) (0.04)

cSENDV [0.5] 0.898 0.102 -734.027 0.017
(0.03) (0.03) (26.97) (0.04)

cSENDV [1] 0.899 0.101 -741.431 0.015
(0.03) (0.03) (35.33) (0.03)

Table 4.3: Table of average rWSS, rBSS, BIC and Prop (and standard deviation in brackets)
over 500 replications of the simulated data analysis. The number of noise variables d is 4.
The numbers within the square brackets are the α values used for the SENDV method.
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d = 6 rWSS rBSS BIC Prop
GMMDR 0.903 0.097 -709.326 0.018

(0.03) (0.03) (20.49) (0.03)

rSENDV [0] 0.897 0.103 -968.550 0.011
(0.03) (0.03) (28.81) (0.03)

rSENDV [0.5] 0.915 0.085 -1042.994 0.031
(0.04) (0.04) (151.89) (0.04)

rSENDV [1] 0.900 0.100 -981.349 0.034
(0.03) (0.03) (71.92) (0.04)

cSENDV [0.1] 0.898 0.102 -967.841 0.021
(0.03) (0.03) (28.73) (0.04)

cSENDV [0.5] 0.900 0.100 -969.331 0.018
(0.03) (0.03) (29.86) (0.03)

cSENDV [1] 0.901 0.099 -978.887 0.014
(0.03) (0.03) (39.34) (0.03)

Table 4.4: Table of average rWSS, rBSS, BIC and Prop (and standard deviation in brackets)
over 500 replications of the simulated data analysis. The number of noise variables d is 6.
The numbers within the square brackets are the α values used for the SENDV method.
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d = 8 rWSS rBSS BIC Prop
GMMDR 0.905 0.095 -877.662 0.019

(0.02) (0.02) (24.17) (0.03)

rSENDV (α = 0) 0.898 0.102 -1200.257 0.015
(0.03) (0.03) (31.79) (0.03)

rSENDV (α = 0.5) 0.908 0.092 -1246 0.026
(0.03) (0.03) (140.84) (0.03)

rSENDV (α = 1) 0.901 0.099 -1208.405 0.028
(0.03) (0.03) (66.96) (0.04)

cSENDV (α = 0.1) 0.900 0.100 -1199.225 0.025
(0.03) (0.03) (31.72) (0.04)

cSENDV (α = 0.5) 0.902 0.098 -1200.866 0.023
(0.02) (0.02) (32.54) (0.03)

cSENDV (α = 1) 0.903 0.097 -1212.343 0.017
(0.02) (0.02) (41.14) (0.03)

Table 4.5: Table of average rWSS, rBSS, BIC and Prop (and standard deviation in brackets)
over 500 replications of the simulated data analysis. The number of noise variables d is 8.
The numbers within the square brackets are the α values used for the SENDV method.
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d = 10 rWSS rBSS BIC Prop
GMMDR 0.906 0.094 -1046.040 0.022

(0.02) (0.02) (25.84) (0.03)

rSENDV [0] 0.900 0.100 -1433.164 0.016
(0.02) (0.02) (35.39) (0.03)

rSENDV [0.5] 0.906 0.094 -1472.024 0.030
(0.03) (0.03) (148.88) (0.03)

rSENDV [1] 0.901 0.099 -1435.138 0.029
(0.02) (0.02) (49.28) (0.03)

cSENDV [0.1] 0.902 0.098 -1431.836 0.027
(0.02) (0.02) (35.31) (0.03)

cSENDV [0.5] 0.903 0.097 -1433.437 0.027
(0.02) (0.02) (35.72) (0.03)

cSENDV [1] 0.904 0.096 -1446.505 0.017
(0.02) (0.02) (45.34) (0.03)

Table 4.6: Table of average rWSS, rBSS, BIC and Prop (and standard deviation in brackets)
over 500 replications of the simulated data with d = 10 noise variables. The numbers within
the square brackets are the α values used for the SENDV method.
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Figure 4.2: Logged average proportion of zeros in the discriminant matrices against the
number of noise variables. Black, blue and red lines correspond to GMMDR, rSENDV and
cSENDV respectively. For rSENDV, the solid, long dot, and short dot lines correspond to
α = 0, 0.5, 1 respectively. For cSENDV, the aforementioned three lines correspond to α =
0.1, 0.5, 1. The gap in the proportion of zeros between methods shows a decreasing trend
as the number of noise variables increases, while the rSENDV with α = 0.5, 1 maintain a
higher proportion than other methods.

Tables 4.1 to 4.6 show the average rWSS, rBSS, BIC and Prop for the tested methods

and their standard deviations in brackets. In both d = 0 and d = 10, the rWSS and rBSS

values are similar across the board. Moreover, for all d, the SENDV’s BIC was lower on

average than that of the GMMDR, but this is expected as a trade-off for penalization. When

d = 0, the rSENDV estimates sparser discriminant matrices than the GMMDR based on

Prop. As figure 4.2 shows, the rSENDV maintains in general higher Prop values than the

other methods, although the gap becomes narrower at higher d values. Interestingly, the

cSENDV discriminant matrix improves in sparsity as d increases, as the red lines show.
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This suggests that the cSENDV may be more effective in high-noise scenarios, whereas

the rSENDV may be better in low-noise cases. With respect to α, the rSENDV appears

to be more sensitive to it than the cSENDV. When α = 0, rSENDV behaves similarly to

the cSENDV in terms of sparsity. The black line representing the GMMDR is in between

that of the rSENDV and cSENDV in general. Overall, we see that the rSENDV is more

effective in estimating a sparse discriminant matrix than the GMMDR and cSENDV.

4.3.3 Real Data Illustration 1: Auto

In this section, we illustrate the rSENDV and cSENDV using the variables from the Auto

data set, available in the R package ISLR (James et al., 2017), and compare them to the

set of existing methods. The data set consists of 6 numerical variables on 392 vehicles: mpg

(miles per gallon), displacement (engine displacement), horsepower (engine horsepower),

weight (vehicle weight), acceleration (time to accelerate from 0 to 60 miles per hour), and

year (model year modulo 100). The ‘cylinders’ variable is used as the class label. It consists

of 3, 4, 5, 6 and 8 cylinders. We consider the following methods. For all methods, the GMM

is fitted using the R package mclust (Scrucca et al., 2016), with the range on the possible

number of components being G = 1, 2, . . . , 10

• GMM: The baseline clustering model.

• GMMDR: Fitted using mclust Scrucca et al. (2016).

• rSENDV: α = 0, 0.5, 1 are used, and all penalty multipliers are set at 0.01.

• cSENDV: α = 0.1, 0.5, 1 are used, as α = 0 is equivalent to no penalization. The

penalty multipliers are set as 0 initially, and are updated iteratively afterward.

• PCA-GMM: The dimension of the data set is reduced via Principal Component

Analysis (PCA), then GMM is fitted.
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• SPCA-GMM: The dimension of the data set is reduced via Sparse PCA (SPCA)

(Erichson et al., 2020), then a GMM is fitted. The SPCA is a penalized PCA algo-

rithm, with sparsity and shrinkage control parameters a and b respectively. In this

work, we set a = b = 0.01, and the remaining parameters are set as the default value.

The R package sparsepca (Erichson et al., 2018) is used for SPCA.

• LDA-GMM: The dimension of the data set is reduced via the Linear Discriminant

Analysis (LDA) (Rao, 1948), then GMM is fitted. The R package MASS (Venables

and Ripley, 2002) is used for LDA.

For the GMM, GMMDR, PCA-GMM, SPCA-GMM and LDA-GMM, the data set is cen-

tred and scaled to have column-wise standard deviation equal to 1. For the SENDV, the

above data is scaled via the R package whitening (Strimmer et al., 2020), with method set

to “PCA-cor”. The projected dimension is fixed at q = 2 for all applicable methods for

visualization.

rWSS rBSS BIC ARI G
GMM 0.297 0.703 -3484.983 0.542 5
GMMDR 0.366 0.634 -829.766 0.572 2

rSENDV [0] 0.201 0.799 -606.793 0.664 4
rSENDV [0.5] 0.203 0.797 -605.776 0.663 4
rSENDV [1] 0.202 0.798 -605.252 0.657 4

cSENDV [0.1] 0.205 0.795 -598.855 0.664 4
cSENDV [0.5] 0.237 0.763 -538.617 0.664 4
cSENDV [1] 0.589 0.411 -401.756 0.628 2

PCA-GMM 0.200 0.800 -2580.136 0.268 5
SPCA-GMM 0.199 0.801 -2574.227 0.271 5
LDA-GMM 0.448 0.552 -1585.474 0.437 5

Table 4.7: Table of rWSS, rBSS, BIC and ARI, and the estimated number of components
G for all tested methods, rounded to 3 decimal places. The numbers within the square
brackets are the α values used for the SENDV method. For the first 4 columns, the best
values are bolded.

80



Figure 4.3: Examples of projected Auto data using the projection methods, coloured by the
estimated cluster labels. From left to right, the top row corresponds to rSENDV (α = 1),
cSENDV (α = 1), GMMDR. The bottom row corresponds to PCA-GMM, SPCA-GMM
and LDA-GMM.

Table 4.7 shows favourable performances from the SENDV. Except for cSENDV (α =

1), the SENDV methods create tighter-knitted clusters than the baseline GMM and GM-

MDR, as the decreased rWSS shows. Simiarly, PCA and SPCA treatment also tightened

the clusters after projection. In terms of BIC, all SENDV methods outperformed other

projection methods significantly. An interesting observation is that the PCA and SPCA

did not improve the BIC as much as the other methods did. This is reasonable as they

project the data before fitting a GMM, implying that they do not incorporate any clustering

information. The ARI from the SENDV is also superior compared to its peers.

Which contributory variables for clustering did each method identify? Figure 4.3 shows

the scatterplots of the projected data corresponding to some of the methods tested, colour-
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coded by the estimated clusters. Figure 4.4 shows the back-to-back bar graphs plotting the

absolute value of the entries in the discriminant matrices, where the left-side plot is for the

x-axis, and the right-side plot is for the y-axis. For all plots, the blue bars correspond to the

rSENDV (α = 1). For instance, consider the top plot. The red bars represent the GMMDR.

The left-side graph plots the absolute value of the discriminant matrices’ first column for the

two methods. While both methods assigned the largest coefficient to the cars’ weight, the

difference between it and the runner-up coefficient is larger for the rSENDV. This feature

can be useful in variable selection, as the most contributory one would be highlighted.

Moreover, the projected clusters created by the rSENDV are better-separated than those

from the GMMDR. The ease of variable selection and the well-divided projected clusters

compliment each other, since a discriminant matrix would not be very informative, even if

it is easy to read, if the associated projection cannot separate the clusters. The cSENDV

produced two clusters with an arguably clearer separation than that from the rSENDV.

However, the borderline between the two clusters is oblique, meaning that both dimensions

need to be jointly interpreted. In that regard, the rSENDV may be more convenient,

as its row-wise penalization aims to avoid the prioritization of the same variable across

multiple projected dimensions. This feature of the rSENDV promotes the borderlines to

be orthogonal to each projected dimension. The PCA treatment heavily favoured the year

variable in one dimension, but created a linear combination of all remaining variables in the

other dimension, which is difficult to interpret. The structure of the SPCA’s discriminant

matrix is same as that of PCA, but just more sparse. In both cases, the vertical borderline

creates two lumps of observations, but there seem to be too many variables involved in the

x-axis, where each variable has similar magnitude of importance, as shown in figure 4.4.

The LDA’s separation also seems difficult to interpret, so it appears to be a suboptimal

projection method for this data set. Overall, this illustration shows that the SENDV can

yield a greater margin of improvement in clustering performance than the GMMDR and

some of existing methods, and we also see the different potential use cases for the rSENDV

and the cSENDV.
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4.3.4 Real Data Illustration 2: Indian Chronic Kidney Disease

In this section, we cluster the Indian chronic kidney disease data set available in the R

package teigen (Andrews et al., 2018). There are 203 observations with 2 classes: diseased

and not-diseased, and there are 12 variables consisting of various biomarker measurements.

The number of clusters considered are G = 1, 2, . . . , 10. The target dimension q is estimated

using the scree test with cutoff = 0.1. For the GMM, GMMDR, PCA-GMM, SPCA-GMM

and LDA-GMM, the data set is centred and scaled to have column-wise standard deviation

equal to 1. For the SENDV, the above data is scaled via the R package whitening (Strimmer

et al., 2020), with method set to “PCA-cor”. Below are the tested methods and their

hyperparameter setup. For the GMMDR and SENDV, λ = 1.

• GMM: The baseline clustering model.

• GMMDR: Fitted using the R package mclust (Scrucca et al., 2016).

• rSENDV: α = 0, 0.5, 1 are used, and the penalty multiplier for all rows is set at 0.1.

• cSENDV: α = 0.1, 0.5, 1 are used. The penalty multipliers are set as 0 initially, and

are updated iteratively afterward.

• PCA-GMM: The dimension of the data set is reduced via Principal Component

Analysis (PCA), then GMM is fitted.

• SPCA-GMM: The dimension of the data set is reduced via Sparse Principal Compo-

nent Analysis (SPCA) by Erichson et al. (2020), then a GMM is fitted. The SPCA

is a penalized PCA algorithm, with sparsity and shrinkage control parameters a and

b respectively. In this work, we set a = b = 0.01, and the remaining parameters are

set as the default value. The R package sparsepca (Erichson et al., 2018) is used for

SPCA.

• LDA-GMM: The dimension of the data set is reduced via the Linear Discriminant

Analysis (LDA) by Rao (1948), then GMM is fitted. The R package MASS (Venables

and Ripley, 2002) is used for LDA.
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rWSS rBSS BIC ARI G
GMM 0.586 0.414 -4138.466 0.782 3
GMMDR 0.243 0.757 -1038.918 0.809 3

rSENDV [0] 0.518 0.482 -867.263 0.941 2
rSENDV [0.5] 0.552 0.448 -850.751 0.941 2
rSENDV [1] 0.580 0.420 -836.994 0.941 2

cSENDV [0.1] 0.598 0.402 -823.806 0.961 2
cSENDV [0.5] 0.538 0.462 -857.835 0.941 2
cSENDV [1] 0.460 0.540 -891.881 0.980 2

PCA-GMM 0.589 0.411 -4038.303 0.510 4
SPCA-GMM 0.573 0.427 -4036.494 0.507 4
LDA-GMM 0.164 0.836 -1043.864 0.496 4

Table 4.8: Table of rWSS, rBSS, BIC, ARI, and the estimated number of components G for
all tested methods on the kidney disease data, rounded to 3 decimal places. The numbers
within the square brackets are the α values used for the SENDV method. For the first four
columns, the best results are bolded.
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Figure 4.5: Scatterplot of the first two dimensions of the projected data from rSENDV (α =
1), cSENDV (α = 1), GMMDR, PCA-GMM, SPCA-GMM and LCA-GMM. The plots
indicate that all six methods could separate the estimated clusters using two dimensions.
However the data set from PCA-GMM and SPCA-GMM show more overlaps between
clusters than the remaining methods.

Table 4.8 shows a marked improvement in model fit and clustering performance by

the SENDV, compared to the baseline GMM and the GMMDR. Moreover, the projection

methods that incorporated clustering information (GMMDR, SENDV and LDA-GMM)

reduced the dimension to q = 2, whereas the PCA and the SPCA, which are model-

agnostic. reduced the dimension to q = 9. This tells us that the initially-fitted mixture

model can help with improving the efficiency of the projection. Figure 4.5 indicates that

the estimated clusters are well-separated by the SENDV. The GMMDR also produced good

separation, though not as clear as the SENDV. The PCA-GMM and SPCA-GMM do not

appear to respect the clusters, as shown by the significant overlaps between the estimated
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clusters. Overall, this illustration demonstrates the importance of introducing the clustering

information to dimension reduction of the data set, and the benefit of regularization therein.

4.4 Discussion

In this chapter, the row-wise and column-wise Stiefel Elastic Net Discriminant Variable

are introduced (rSENDV and cSENDV respectively). Equipped with flexible penalization,

attractive theoretical bound and accessible estimation procedure, the SENDV algorithms

allow the user to identify a simpler explanation on the clustering structure generated

by the GMM in comparison to some of the existing methods. Indeed, cluster-preserving

projection is not a problem unique to the GMM, as there are many non-Gaussian finite

mixtures available in literature. Moreover, more advanced penalty functions have been

developed in the recent past such as the SCAD by Fan and Li (2001) and MC+ by Zhang

et al. (2010). Therefore, the potential for future work on the SENDV lies in its extension

to non-Gaussian finite mixtures, as well as the adaptation to other modern penalization

schemes. In addition, a further analysis into the SENDV’s convergence properties could

yield a tailored convergence criterion.
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Figure 4.4: Back-to-back bar graphs plotting the discriminant matrix entry magnitudes.
For instance, the top plot compares the rSENDV (α = 1) (in blue) against GMMDR
(in red). The left panel plots the absolute value of the entries in the first column of the
unscaled and unit-normed discriminant matrix from each method, and the right panel
plots that in the second column. From the top, each blue-red bar pair corresponds to
year, weight, mpg, horsepower, displacement, and acceleration. The two methods estimated
similar discriminant matrices, as shown by the closely-matching bars for each variable. The
remaining plots are interpreted in a similar manner. The second, third and bottom plots
compare rSENDV (α = 1) (in blue) against LDA, SPCA and PCA (in red) respectively.
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Chapter 5

Anderson Relaxation Test for

Intrinsic Dimension Selection in

Model-based Clustering

5.1 Introduction

Modern data analysis often demands the accommodation of high-dimensional observations,

and model-based clustering is no exception. Finite mixtures of multivariate parametric dis-

tributions usually involve a positive definite scale matrix, whose number of entry increases

in the quadratic order of the number of variables. This growth exposes the user to numeri-

cal instability in computation and possibly degenerate model parameter estimates, unless a

commensurate number of observations is supplied (which is often not the case). To combat

this reality, many parsimonious finite mixtures that curb the growth of the parameter count

have been developed (Ghahramani and Hinton, 1996; Bouveyron et al., 2007; McNicholas

and Murphy, 2008; Vrbik and McNicholas, 2014; Andrews and McNicholas, 2011; Murray

et al., 2014; Tortora et al., 2016; Murray et al., 2020; Sharp and Browne, 2021; Kim and

Browne, 2019, 2021b).
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The subspace clustering method for the GMM by Bouveyron et al. (2007) is one such

method, and it offers a great degree of flexibility by allowing a wide variety of assumptions

to be imposed on the subspace structure of the data. However, like other parsimonious finite

mixtures (Andrews and Mcnicholas, 2012; Kim and Browne, 2019; Ghahramani and Hinton,

1996; Tortora et al., 2016), the dimension of the subspace, also known as the intrinsic

dimension, must be pre-determined. Intrinsic dimension estimation problem is not unique

to the subspace clustering framework. It appears in numerous contexts (Takens et al., 1985;

Fukunaga and Olsen, 1971; Trunk, 1976; Pestov, 2008), but they all strive to represent the

data using a minimal number of dimensions. In subspace clustering, the intrinsic dimensions

are estimated via the scree test (Cattell, 1966) or the Bayesian Information Criterion (BIC)

(Schwarz, 1978). The former, while faster, needs a cutoff threshold to be pre-determined,

and its selection process can be ad-hoc. The latter, while free of hyper-parameters, could

be computationally prohibitive in high dimensions due to the large number of model log-

likelihood evaluations. Therefore, the current status of literature leaves a gap for a middle-

ground approach that is more principled yet computationally viable.

5.1.1 Intrinsic Dimension Estimation

Intrinsic dimension’s definitions are context-dependent, among which are Takens et al.

(1985); Fukunaga and Olsen (1971); Trunk (1976); Pestov (2008), but they describe com-

monly the smallest number of dimensions the data can be sufficiently compressed into.

Estimating the intrinsic dimension of the data has grown in popularity due to the afore-

mentioned dominance of high-dimensional data sets. Among others, contributions to this

topic include Cattell (1966); Fukunaga and Olsen (1971); Bruske and Sommer (1998);

Camastra (2003); Levina and Bickel (2005); Carter et al. (2009); Fan et al. (2010); Johns-

son et al. (2014). In model-based clustering, intrinsic dimensions can be defined via the

subspaces associated with the component-wise scale matrices Σg, like in Bouveyron et al.

(2007); Pesevski et al. (2018); Kim and Browne (2019), because numerous density functions

can be written as a function of the squared Mahalanobis distance (x−µg)
′Σ−1(x−µg) as-

sociated with Σg and a location parameter µg. As the Mahalanobis distance can be viewed
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as the projection of observations onto the orthonormal basis generated by Σg. The intrinsic

dimension (of component g) can then be estimated by counting the number of significant

directions, where the direction’s significance is quantified by the associated eigenvalue. Re-

ducing dimensionality via linear projection is well-understood (dating back to the Principal

Component Analysis (PCA) by Pearson (1901)), and it offers a tidy geometric interpre-

tation. However, to our best knowledge, selecting the dimension of the projection space

remains ad-hoc (such as the scree test by Cattell (1966)) or computationally intensive (such

as evaluating a model selection criterion at each possible dimension).

5.1.2 Intrinsic Dimension Selection in SC-GMM

The two existing methods for intrinsic dimension selection in the SC-GMM (outlined in

chapter 2.1) are the scree test (Cattell, 1966) or the Bayesian Information Criterion (BIC)

Schwarz (1978) (outlined in chapter 2.1). The scree test estimates the component-wise

intrinsic dimension dg by detecting where the consecutive difference between eigenvalues

falls below a pre-determined threshold αS > 0. Let λ1 ≥ · · · ≥ λp denote the eigenvalues

of a covariance matrix Σ, and let δj = λi− λi+1 (i = 1, . . . , p− 1) denote their consecutive

differences. Then, The intrinsic dimension estimate d̂ according to the scree test is defined

as

d̂ = min
j=1,...,p−1

{j : δj < αS} . (5.1)

While the scree test is quick and intuitive, selecting αS is often an opaque process, unless

the user tests along a pre-set grid of candidate values, hoping that a suitable value will lie

within.

The BIC-based dimension selection would require the parameter estimates at every

(d1, . . . , dG) ∈ {1, . . . , p−1}G. This strategy is evidently computationally infeasible, so the

software implementation of SC-GMM approximates the model’s BIC by estimating dg sep-

arately for each component, instead of a joint evaluation at (d1, . . . , dG). Hence, the current

dichotomy leaves the user with an often-faster scree test with an ad-hoc threshold, or an

approximation of BIC, whose rigourous version would be computationally prohibitive in
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higher dimensions. This observation reiterates a gap to be mended with a more principled,

yet computationally feasible, strategy.

Thus, in this chapter, we address this unmet need with a novel, hypothesis test-based,

intrinsic dimension selection method. Section 5.2 will introduce the methodology, and sec-

tion 5.3 will demonstrate it using simulated and real-world data sets. Finally, we will

conclude with a brief discussion on our contribution and future directions.

5.2 Methodology

In this section we present the Anderson Relaxation Test (ART), which is a hypothesis test-

based intrinsic dimension estimation method for the submodels of SC-GMM. The ART is

parametrized by a single interpretable threshold, and it is tailored to each submodel offered

by the SC-GMM. The tailoring is done via a two-pronged approach based on the inter-

component dependence structure. We begin by introducing the single-component test, then

leverage it to build a test for different submodels.

5.2.1 Single-component Test

Let x1, . . . ,xn be an IID sample from a p-dimensional Gaussian distribution with mean

µ and covariance Σ. Anderson (2003) describes a likelihood ratio test for the hypothesis

that Σ is equal to a given matrix. In particular, Anderson (2003) notes the unbiased

version of it developed by Sugiura and Nagao (1968), which we will adopt in our work.

Because the intrinsic dimension of a component in SC-GMM is determined by the number

of distinguishable eigenvalues in its covariance matrix, we can test the adequacy of a given

intrinsic dimension value for the data set using the equality-of-covariance test mentioned

above. The null and alternative hypotheses can be stated as

H0: The intrinsic dimension is d.

H1: The intrinsic dimension is not d.
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To translate this into the SC-GMM language, for a fixed submodel, let PDP ′ and PDdP
′

denote the unrestricted eigen-decomposition of Σ and its submodel-based alternative with

intrinsic dimension equal to d, respectively. Then D = diag(λ1, λ2, . . . , λp) and Dd =

diag(a1, a2, . . . , ad, b, . . . , b︸ ︷︷ ︸
p−d copies

). The above hypotheses can be expressed algebraically as

H0 : Σ = PDdP
′ vs H1 : Σ ̸= PDdP

′, (5.2)

and the corresponding test statistic Td is written as

Td =

(
e

n− 1

)p(n−1)/2

det
(
nΣΣ−1

d

)(n−1)/2
exp

{
−1
2
tr
(
nΣΣ−1

d

)}
.

Properties of the determinant and the trace cancel out the orientation matrix P , so − log Td

can be written as

− 2 log Td = −p(n− 1) log

(
ne

n− 1

)
− (n− 1)

p∑
i=1

log

(
[∆]ii
[∆d]ii

)
+ n

p∑
i=1

[∆]ii
[∆d]ii

, (5.3)

where [A]ii denotes the ith diagonal entry of a matrix A. Anderson (2003) showed that

−2 log Td converges in distribution to χ2 distribution with the degrees of freedom (dfd)

equal to the difference in the number of free parameters between Σ and Σd. Then, the

intrinsic dimension selection strategy is to test the hypothesis at each d = 1, 2, . . . , p − 1

until the null hypothesis is not rejected, given a pre-determined critical level α ∈ (0, 1).

The estimated intrinsic dimension d̂ can be written mathematically as

d̂ = min
1,2,...,p−1

{
d : −2 log Td ≤ χ2

dfd,1−α

}
, (5.4)

where χ2
dfd,1−α denotes the (1− α)100th percentile of the χ2

dfd
distribution. From the single

component test, we will build the multi-component intrinsic dimension selection tests for

various SC-GMM submodels in sections 5.2.2 and 5.2.3.
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5.2.2 Submodels without Inter-component Sharing

The submodels in SC-GMM can be divided into two groups; one where the components

share estimates and one where they do not share. The non-sharing submodels are [agjbgΓgdg]

and [agbgΓgdg], and the rest share at least one aspects of the four (a, b, Γ, d) between the

components. This parameter sharing needs to be accounted for when building a multi-

component test, and we begin with the non-sharing submodels.

For the non-sharing submodels [agjbgΓgdg] and [agbgΓgdg], we propose a component-

wise test for the intrinsic dimensions (d1, d2, . . . , dG), because each component has its own

set of covariance parameters. Let −2 log Tgd denote the gth component analogue of the test

statistic 5.3, where n, D and Dd are replaced by ng, Dg = diag(λg1, . . . , λgp) and Dgd =

diag(ag1, . . . , agdg , b, . . . , b︸ ︷︷ ︸
p−dgcopies

) respectively. For the [agbgΓgdg] submodel, ag1 = · · · = agdg .

Then, for g = 1, 2, . . . , G, the intrinsic dimension is estimated by

d̂g = min
1,2,...,p−1

{
d : −2 log Tgd ≤ χ2

dfd,1−α

}
, (5.5)

where we use the same α across all components for ease of tuning and interpretation.

5.2.3 Submodels with Inter-component Sharing

The remaining submodels share some, or all, of the covariance parameters. This inter-

component dependence invalidates the component-wise approach given in section 5.2.2.

Furthermore, conventional multiple testing remedies like the Bonferroni correction may be

inappropriate since the tests are not independent. Hence, we adopt the harmonic mean

p-value (HMp) by Wilson (2019), which is a multiple comparison technique for dependent

tests. Given the p-values of G many individual tests p1, . . . , pG, the HMp is defined as

HMp =

∑G
g=1wg∑G

g=1(wg/pg)
, (5.6)
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where wg > 0 (g = 1, . . . , G) are the pre-determined test-wise weights that sum to 1. Higher

weight wg corresponds to heavier prior belief on the null hypothesis being false. Since no

such prior information is available to us, we let w1 = · · · = wG. The null and alternative

hypotheses under consideration are

H0: The intrinsic dimension of components 1, . . . , G are d1, . . . , dG respectively.

H1: The intrinsic dimension of components 1, . . . , G are not d1, . . . , dG respectively.

Using the HMp, an iterative intrinsic dimension selection procedure can be constructed.

The high-level idea is as follows. For a given vector of intrinsic dimensions (d1, . . . , dG), the

component-wise p-values p1, . . . , pG are computed using −2 log T1d1 , . . . ,−2 log TGdG . If the

resultant HMp is above the critical level α, then the current dimension vector (d1, . . . , dG)

is returned. Otherwise, the intrinsic dimension of the component with the lowest p-value

is raised by 1. This process is iterated until either HMp exceeds α or dg = p − 1 for all

g = 1, . . . , G. The full algorithm is provided below.

1. Initialize α ∈ (0, 1) and set (d1, . . . , dG) = (1, . . . , 1︸ ︷︷ ︸
G copies

).

2. For g = 1, . . . , G:

(a) Compute the component-wise test statistic −2 log Tgdg .

(b) Compute the component-wise p-value, pg = P
(
−2 log Tgdg > χ2

dfdg ,1−α

)
, where

dfdg denotes the component-wise degrees of freedom evaluated at the intrinsic

dimension dg.

3. Compute HMp = G/
∑G

g=1(1/pg).

4. If HMp ≥ α: return current (d1, . . . , dG).

5. Else if all dg = p− 1: return current (d1, . . . , dG).

6. Else if the submodel holds component-wise intrinsic dimensions to be equal (d1 =

· · · = dG):
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(a) dg ← dg + 1 for all g = 1, . . . , G.

(b) Return to step 2.

7. Else:

(a) Let g⋆ be the lowest index such that pg⋆ = min{p1, . . . , pG}.

(b) dg⋆ ← dg⋆ + 1.

(c) Return to step 2.

5.2.4 Note on the Degrees of Freedom

Because the degrees of freedom in the ART depends on the intrinsic dimension, it is also

submodel-dependent. In particular, integer-valued degrees of freedom may be inappropri-

ate for the sharing submodels in section 5.2.3, since a single free parameter estimated

collectively by multiple components. Non-integer degrees of freedom appears in numerous

modern techniques such as the locally weighted regression (Cleveland, 1981) and smoothing

methods (Friedman et al., 2001). Thus, in this section, we describe our degrees of freedom

calculation approach and tabulate the values for each submodel.

It is most straightforward to begin with the most flexible submodel, [agjbgΓgdg]. A

(p × p)-dimensional covariance matrix has p(p + 1)/2 free parameters, and in a single

component of the said submodel, there are dg and 1 distinguishable and indistinguishable

eigenvalues, and pdg − dg(dg − 1)/2 free parameters from the truncated orientation matrix

Γg. Therefore, the component-wise degrees of freedom at intrinsic dimension dg is p(p +

1)/2− (dg+1)− (pdg−dg(dg+1)/2). Similarly, for the [agbgΓgdg] submodel, dg+1 changes

to 1 + 1.

For the sharing submodels, weighted fractional degrees of freedom are adopted to

account for the shared parameters. In the SC-GMM framework, the aggregated eigen-

values a, b are represented weighted averages of unrestricted component-wise eigenvalues

{λg1, . . . , λgp} (g = 1, . . . , G). For example, the pooled eigenvalues ag, a, aj and b are
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written below.

aj =
1

d

d∑
j=1

λ̄j, a =
1∑G

g=1 πgdg

G∑
g=1

πg

dg∑
j=1

λgj, b =
1∑G

g=1 πgdg

G∑
g=1

πg

p∑
j=dg+1

λgj,

where d denotes the common intrinsic dimension across the components, and λ̄1, . . . , λ̄p

denote the eigenvalues of the weighted sum of component-wise covariance matrices π1Σ1+

· · ·+πGΣG, as the [aj · · · ] submodels require a common d. The above formulae reveals that

higher dg implies more involvement from component g in computing a, and lower dg and

b hold a similar relationship. Therefore, the components with more involvement are given

higher weights. The component-wise fractional degrees of freedom for a and b are given

respectively by

df (a)
g =

(
πgdg∑G
g=1 πgdg

)
︸ ︷︷ ︸

weight

× 1︸︷︷︸
df for a

, df (b)
g =

(
πg(p− dg)∑G
g=1 πg(p− dg)

)
︸ ︷︷ ︸

weight

× 1︸︷︷︸
df for b

. (5.7)

For aj and Γ, the component-wise fractional degrees of freedom are given in equation 5.8

below. For df
(Γ)
g , dg is understood as d for [· · · d] submodels.

df (aj)
g =

(
πgd∑G
g=1 πgd

)
× d = πgd, df (Γ)

g =

(
πgdg∑G
g=1 πgdg

)
×
(
dgp−

dg(dg + 1)

2

)
. (5.8)

The discussion in the section is summarized in table 5.1, which contains the component-

wise degrees of freedom for each submodel in the SC-GMM.
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Submodel a b Fractional dfg(a, b,Γ)

[agjbgΓgdg]
∑

g dg G − df (Γ) + dg + 1

[agjbΓgdg]
∑

g dg 1 b df (Γ) + dg + df
(b)
g

[agbgΓgdg] G G − df (Γ) + 2

[abgΓgdg] 1 G a df (Γ) + df
(a)
g + 1

[agbΓgdg] G 1 b df (Γ) + 1 + df
(b)
g

[abΓgdg] 1 1 a, b df (Γ) + df
(a)
g + df

(b)
g

[agjbgΓgd] Gd G − df (Γ) + d+ 1

[agjbΓgd] Gd 1 b df (Γ) + d+ df
(b)
g

[agbgΓgd] G G − df (Γ) + 2

[abgΓgd] 1 G a df (Γ) + df
(a)
g + 1

[agbΓgd] G 1 b df (Γ) + 1 + df
(b)
g

[abΓgd] 1 1 a, b df (Γ) + df
(a)
g + df

(b)
g

[ajbgΓgd] d G a df (Γ) + df
(aj)
g + 1

[ajbΓgd] d 1 a df (Γ) + df
(aj)
g + df

(b)
g

Table 5.1: Table of SC-GMM submodels and their degrees of freedom for the eigenvalues
and orientation matrices. The a and b columns record the number of free parameters for
the distinguishable and indistinguishable eigenvalues respectively. The ’Fractional’ column
records which eigenvalues are given fractional degrees of freedom. The dfg(a, b,Γ) column
records the component-wise number of free parameters from the eigenvalues and the ori-
entation matrix. df (Γ) = dgp− dg(dg +1)/2 and dg is understood as d for [· · · d] submodels.

For the common-orientation (Γg = Γ) submodels, df (Γ) is replaced with df
(Γ)
g from equation

5.8.

5.3 Numerical Experiments

In this section, we study the performance of the ART, and compare it to some of the

existing intrinsic dimension estimation methods, using simulated and real data sets. The

following estimation methods are considered.

• ART: Anderson Relaxation Test parametrized by αA.

• Scree: Scree test parametrized by αS.
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• BIC: Bayesian Information Criterion-based estimation as described in chapter 2.1.

• LPCA: Intrinsic dimension estimation via Local Principal Component Analysis by

Fan et al. (2010). The data set is partitioned into K subsets via a nearest neighbour

algorithm. Then, for each k = 1, . . . , K, the eigenvalues λk1, . . . , λkp from the sample

covariance of the kth subset are computed. Let λj =
∑K

k=1 λkj. For pre-determined

threshold values s > 1 and t ∈ (0, 1), two intrinsic dimension estimates d̂s, d̂t are

obtained as below. The final estimate d̂ is equal to min{d̂s, d̂t}.

d̂s = argmin
d=1,...,p


min

i=1,...,d
λi

max
j=d+1,...,p

λj
> s

︸ ︷︷ ︸
Comparing the first d against the rest

, d̂t = argmin
d=1,...,p


min

i=1,...,d
λi

max
j=1,...,p

λj
> t

︸ ︷︷ ︸
Comparing the first d against all

.

• ESS: Intrinsic dimension estimation from the Expected Simplex Skewness by Johns-

son et al. (2014). Given a pre-determined parameter t ∈ {1, . . . , n}, the set of all

simplices with t + 2 vertices (1 vertex at the centroid of the data, and the other

t+ 1 observations as remaining vertices) are obtained, and a weighted average m of

their volumes is computed. The d-dimensional Expected Simplex Skewness (ESS(d))

a theoretical value of m under the uniform distribution assumption of the observa-

tions over a d-dimensional unit ball. The simplex skewness measure is then defined

as m/ESS(d). The intrinsic dimension estimate d̂ is d such that m/ESS(d) is approx-

imately 1.

• OTPM: Optimally Topology-preserving Maps by Bruske and Sommer (1998). Voronoi

cells on the observations are used to construct a graph on the the data set. Then,

Local PCA is applied on the graph to obtain the intrinsic dimension estimate at

each observation. In this paper, the intrinsic dimension estimate d̂ for the data set is

defined as the (rounded) median of the point-wise dimension estimates.

• kNN: Weighted Average k-Nearest Neighbour Distances by Carter et al. (2009).

Several bootstrap samples are obtained from the data set, and for each sample,

the total edge length of its kNN graph is computed. Denote the resultant vector
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of total kNN edge lengths as L = (L1, . . . , LB). The objective is the least-square

minimisation between L and its asymptotic form L(d), parametrized by an integer

d. d̂ is the minimizer of the said least-square objective with respect to d.

The list of experiments and their study objectives are given below.

• Simulated data from 1-component GMM: The ART and the scree test are

compared at various levels of αA and αS. The change in estimation behaviour based

on the threshold is studied.

• Simulated data from 2-component GMM: Selected submodels of various flexi-

bility from the ART are compared. The relationship between the submodel and the

intrinsic dimension estimates is studied.

• Simulated data from 3-component GMM: Intrinsic dimension recovery and

computational speed from all methods are compared at increasing sample sizes.

• Real data illustration: Bankruptcy: A real-data illustration of the SC-GMM

paired with (ART, Scree, BIC) is presented using the Company Bankruptcy data

from Kaggle (Liang and Tsai, 2016).

The LPCA, ESS, OTPM and kNN estimation methods are implemented in the R

package intrinsicDimension (Johnsson and University, 2019). For the four methods, the

default parameter values were used whenever they exist. Exceptions are: OTPM (number

of graph nodes N = 100; no default), and kNN (number of bootstrap samples for each

sample size M = 5; default value is too slow). The computational speed of each method

was measured on an Intel Xeon Gold 6150 processor, clocked at 2.70GHz.

5.3.1 Simulation: 1-component GMM

In this experiment, the ART and the scree test are compared, as one of ART’s aims

is to improve upon the scree test, and they are relatively easy for a direct compari-

son due to their parametrization. Samples of size n = 100, 200, · · · , 1000 are generated
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from a 50-dimensional Gaussian distribution with zero mean and a diagonal covariance

matrix whose diagonal entries are designed to have the true intrinsic dimension of 10:

(seq(5, 4, 10), 0.5, · · · , 0.5︸ ︷︷ ︸
40 copies

), where seq(a, b, c) denotes an equi-distant sequence of length c,

from a to b. For each generated sample, the intrinsic dimension is estimated using the ART

and the scree test. The considered submodels for the ART are [agjbgΓgdg] and [agbgΓgdg].

The ordered threshold values αA and αS are given below, where the method’s affinity

toward higher dimensions increases from left to right.

αA = 0.001, 0.01, 0.01, 0.05, 0.1, αS = 0.2, 0.1, 0.05, 0.01, 0.001.

Overall, for each simulated sample, 15 intrinsic dimension estimates are computed. Finally,

for each n, the above process is replicated 500 times, with a newly-generated sample for

each replication.
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n = 100 200 300 400 500 600 700 800 900 1000
ART[agjbgΓgdg]

αA = 0.0001 20 9 8 8 8 8 8 8 8 8
(10) (1) (1)

αA = 0.001 24 9 8 8 8 8 8 8 8 8
(11)

αA = 0.01 30 9 8 8 8 8 8 8 8 8
(11)

αA = 0.05 35 9 8 8 8 8 8 8 8 8
(11) (1)

αA = 0.1 37 9 9 8 8 8 8 8 8 8
(10) (1)

ART[agbgΓgdg]
αA = 0.0001 49 9 8 8 8 8 8 8 8 8

(1) (1) (1) (1)
αA = 0.001 49 9 8 8 8 8 8 8 8 8
αA = 0.01 49 9 8 8 8 8 8 8 8 8
αA = 0.05 49 9 8 8 8 8 8 8 8 8

(1)
αA = 0.1 49 9 9 8 8 8 8 8 8 8

(1)

Scree
αS =0.2 10 10 10 10 10 10 10 10 10 10
αS =0.1 10 10 10 10 10 10 10 10 10 10

(1)
αS =0.05 14 10 10 10 10 10 10 10 10 10

(5) (1) (1) (1)
αS =0.01 48 48 46 35 22 15 12 11 11 10

(2) (3) (12) (26) (32) (10) (5) (3) (2) (1)
αS =0.001 49 49 49 49 49 49 49 49 49 49

Table 5.2: Table of median (and inter-quartile range (IQR)) intrinsic dimension estimates
for the ART[agjbgΓgdg], ART[agbgΓgdg] and scree test. If the IQR for a given setting is
non-zero, then it is written underneath the median, within brackets. The column names
denote the sample size at which the data was generated, and the row names within each
sub-table denote the threshold level used. For example, the first row of the first sub-table
records the results obtained from ART[agjbgΓgdg] with threshold αA = 0.0001.
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Table 5.2 presents the median and the inter-quartile range (IQR) of the intrinsic di-

mension estimates under each method, across all considered sample sizes. There are three

sub-tables separated by horizontal blank spaces: the top is for the ART[agjbgΓgdg], the mid-

dle is for the ART[agbgΓgdg] and the bottom is for the scree test. In each sub-table, the row

labels (leftmost column) denotes the threshold value used for the estimates. The threshold

values are arranged (from top to bottom) in the order of increasing affinity toward higher

dimensions.

Both ART submodels’ estimates converged downward to d̂ = 8, which is lower than

the true value of 10, where as that of the scree test converged downward to d̂ = 10 for

all threshold values except αS = 0.001. The direction of convergence suggests that both

the ART and the scree test tend to over-estimate the dimensions in small sample sizes,

but gradually decrease as more information is obtained. Finally, the IQR values indicate

that the ART’s estimates are more consistent than that of the scree test. Thus, in this

experiment, the ART offers an increased robustness in threshold selection at the cost of

a mild under-estimation of intrinsic dimension. This implies a practical advantage, since

the risk associated with sub-optimal threshold selection is virtually one-sided for the ART

(under-estimation), in contrast to that of the scree test, which is two-sided (over or under-

estimation). For instance, as long as the threshold value is sufficiently small (≈ 0.001),

the chance of over-estimation would diminish. Moreover, if model parsimony is prioritized,

under-estimation may be preferred to over-estimation. Overall, this experiment indicates

that the ART could be a convenient alternative to the scree test.

5.3.2 Simulation: 2-component GMM

In this experiment, four submodels of the ART ([agjbgΓgdg], [agbgΓgdg], [abgΓgdg] and

[abΓgdg]) are studied to examine the intrinsic dimension recovery under model mismatch.

The data set is generated by a 50-dimensional 2-component GMM with zero mean for both

components, under which there are two scenarios. The list below describes each scenario.

1. Covariance parameters follow [agjbgΓgdg] submodel (d1 = 5, d2 = 15). The data-
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generating covariance eigenvalues are given below.

(a1,1, · · · , a1,5) = seq(5, 4, 5), (b1,6, · · · , b1,50) = (0.5, · · · , 0.5),

(a1,1, · · · , a1,15) = seq(10, 8, 15), (b1,16, · · · , b1,50) = (1, · · · , 1).

2. Covariance parameters follow [agjbgΓgd] submodel (d = 10). The data-generating

covariance eigenvalues are given below.

(a1,1, · · · , a1,10) = seq(5, 4, 10), (b1,11, · · · , b1,50) = (0.5, · · · , 0.5),

(a1,1, · · · , a1,10) = seq(10, 8, 10), (b1,11, · · · , b1,50) = (1, · · · , 1).

The un-truncated component-wise orientation matrices P1,P2 are generated using the R

package pracma (Borchers, 2021). The diagonal matrix with component-wise eigenvalues

Dg is combined with Pg to create the data-generating component-wise covariance matrices

Σ = PgDgP
′
g for this experiment. For each generated data set under a fixed scenario,

the component-wise intrinsic dimensions are estimated via the four ART submodels. This

process is replicated 500 times for each scenario, and the two sets of 500 replications (for

both scenarios) are obtained twice; once with component-wise sample size n1 = n2 = 100

(hence the sample size is 200), and once more with n1 = n2 = 500 (hence the sample size

is 1000). Since the goal is intrinsic dimension estimation, not clustering, the true labels are

used for parameter estimation.

Overall, there are 4 combinations of data-generating scenarios: (covariance, ng) ∈
{(1, 100), (1, 500), (2, 100), (2, 500)}. For each (covariance, ng) pair, 500 samples are gener-

ated, and four ART submodels are applied to each sample to estimate (d1, d2). αA is set

at 0.0001 for all submodels, based on the evidence presented in section 5.3.1.
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[agjbgΓgdg] [agjbgΓgdg] [agbgΓgdg] [abgΓgdg] [abΓgdg]
ng = 100 (21, 26) (49, 49) (49, 49) (49, 49)
ng = 500 (5, 15) (5, 49) (49, 49) (49, 49)

[agjbgΓgd]
ng = 100 (23, 23) (49, 49) (49, 49) (49, 49)
ng = 500 (10, 10) (10, 10) (49, 49) (49, 49)

Table 5.3: Table of median (d̂1, d̂2) estimates. It consists of two sub-tables separated by a
blank horizontal line. The top sub-table records results for covariance scenario 1 [agjbgΓgdg],
and the bottom sub-table records those for covariance scenarios 2 [agjbgΓgd]. The row
labels denote the the component-wise sample size used for the results in the same row.
The median values corresponding to the true intrinsic dimension are bolded. The IQR is
omitted because it was zero for all submodels except for [agjbgΓgdg].

Table 5.3 shows that the intrinsic dimension estimates increase along with the rigidity

of the considered submodel. At ng = 500, the [agjbgΓgdg] submodel succeeded in correctly

identifying the component-wise intrinsic dimensions. The [agbgΓgdg] submodel estimated

partially correctly the intrinsic dimensions. That is likely because the true distinguishable

eigenvalues decrease slowly. Contrarily, the remaining two submodels produced maximal

intrinsic dimensions. This indicates that excess rigidity in submodel can lead to over-

estimation. This could be interpreted as a compensating behaviour for the restrictive

parameter structure. Overall, this experiment suggests that, in the absence of relevant

information, the [agjbgΓgdg] submodel would be the best choice for the intrinsic dimension

estimation.

5.3.3 Simulation: 3-component GMM

In this experiment, we compare the intrinsic dimension estimates and the computational

costs of all seven methods. The samples are generated from a 100-dimensional 3-component
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GMM with zero mean and the following covariance parameters {Pg,Dg}g=1,2,3:

D1 = diag(seq(10, 9, 5), 1, . . . , 1),

D2 = diag(seq(5, 3, 15), 0.5, . . . , 0.5),

D2 = diag(seq(15, 13, 10), 5, . . . , 5),

P1,P2,P3 : randomly generated from R package pracma.

The considered component-wise sample sizes are ng = 200, 300, . . . , 1000 (equal sample

size across components), and for each ng, 500 samples are generated. To remove the poten-

tial confounding from incorrect labels, a 3-component GMM with true labels is fitted to

each sample. Then, ART[agjbgΓgdg](αA = 0.0001), Scree(αS = 0.2), BIC, LPCA, OTPM,

ESS and kNN are applied on the covariance estimates to obtain the intrinsic dimensions

(d̂1, d̂2, d̂3). The elapsed time excludes the time taken to fit the GMM.
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Figure 5.1: Line graph of logged median elapsed time against component-wise sample size
for each method tested. The logging was necessary to examine all methods on a similar
scale. The lines are letter-coded by the first letter of the methods’ name.
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ng ÷ 100 2 3 4 5 6 7 8 9 10
ART 0.07 0.06 0.07 0.09 0.10 0.11 0.12 0.15 0.19

(0.02) (0.01) (0.02) (0.02) (0.01) (0.01) (0.01) (0.02) (0.03)

Scree 0.04 0.05 0.06 0.08 0.09 0.11 0.11 0.14 0.20
(0.02) (0.01) (0.01) (0.02) (0.01) (0.01) (0.03)

BIC 0.03 0.05 0.06 0.08 0.09 0.11 0.11 0.14 0.16
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.03)

LPCA 0.03 0.05 0.05 0.06 0.08 0.09 0.09 0.11 0.12
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)

OTPM 0.44 0.65 0.86 1.08 1.34 1.55 1.80 2.00 2.21
(0.03) (0.03) (0.05) (0.05) (0.08) (0.07) (0.08) (0.08) (0.09)

ESS 0.75 0.76 0.78 0.78 0.80 0.85 0.89 0.94 1.05
(0.05) (0.05) (0.06) (0.06) (0.06) (0.07) (0.06) (0.05) (0.06)

kNN 4.47 10.64 20.95 36.89 57.61 86.72 122.22 166.62 219.92
(0.14) (0.24) (0.44) (0.60) (0.80) (1.09) (1.05) (1.48) (1.80)

Table 5.4: Table of median (and IQR in brackets underneath) elapsed time for each intrinsic
dimension estimation method, rounded to two decimal places. If the rounded IQR is zero,
then it is left as blank. The column labels denote ng ÷ 100, and the row labels denote the
estimation method.

Figure 5.1 visualizes the logged median elapsed time for estimation in each of seven

methods against ng. Three tiers of computational cost can be identified: low (ART, Scree,

BIC, LPCA), medium (ESS, OTPM) and high (kNN). In particular, the LPCA appears to

cost the least in most cases. In terms of growth against sample size, the medium group is

the slowest, following narrowly by the low group and then by the high group, though the

growth gap between the high group and the rest is the largest. This gap is expected because

the kNN needs bootstrapping, though its IQR-to-median ratio is smaller compared to that

of the other methods. More importantly, this figure shows that the ART is similarly fast as
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the scree test and the BIC, implying its viability speed-wise as an alternative estimation

method.
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Figure 5.2: Grouped boxplot of median d̂1, d̂2, d̂3 values for the ART (top), scree test
(middle) and BIC (bottom). In each plot, the horizontal axis denotes ng ÷ 100, and the

vertical axis denotes median(d̂). The dotted horizontal red lines mark the true component-
wise intrinsic dimensions (5, 15, 10). The boxes are colour-coded by component.
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Figure 5.3: Grouped boxplot of median d̂1, d̂2, d̂3 values for the ART (αA = 0.1) (top) and
scree test (αS = 0.001) (bottom). In each plot, the horizontal axis denotes ng÷100, and the

vertical axis denotes median(d̂). The dotted horizontal red lines mark the true component-
wise intrinsic dimensions (5, 15, 10). The boxes are colour-coded by component.
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Figure 5.4: Grouped boxplot of median d̂1, d̂2, d̂3 values for the LPCA, OTPM, ESS and
kNN (from top to bottom). In each plot, the horizontal axis denotes ng ÷ 100, and the

vertical axis denotes median(d̂). The dotted horizontal red lines mark the true component-
wise intrinsic dimensions (5, 15, 10). The boxes are colour-coded by component.
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Figures 5.2, 5.3 and 5.4 plot the boxplots of component-wise intrinsic dimension es-

timates against ng for each tested method. The ART demonstrates a similar converging

behaviour to section 5.3.1, where the estimates of all components arrive eventually at the

true values marked by red dotted lines. The scree test and the BIC behave similarly, where

the 5 and 15 intrinsic-dimensional components are estimated quite precisely, and a con-

verging trend toward the true value is observed for the remaining component. However,

the BIC seems to approach the true values slower than the ART, and section 5.3.1 tells us

that the scree test’s asymptotic behaviour is quite sensitive to the threshold αS. Indeed,

figure 5.3 shows that, when the threshold swings to a more conservative value (αS = 0.001),

the scree test misses the marks completely. In contrast, the ART converges to the correct

intrinsic dimension values even after a drastic change in threshold (αA = 0.1) similar to

that of the scree test, reiterating its robustness in threshold selection. Out of the remaining

methods, the ESS appears the most stable, though the estimates are quite far from the

true values. This could be a parameter selection issue or the ESS could be chasing after a

different form of intrinsic dimension. The OTPM and the kNN exhibit increasing trends

in dimension estimates, though the OTPM hovers closer to the true intrinsic dimension

values set in this experiment. the LPCA’s estimates are fanning out as ng increases, and

their intended destinations are not clear even at ng = 1000, which is a considerably large

value. Overall, the ART is competitive speed-wise, and demonstrates asymptotic trends

that are robust to changes in the threshold parameter.

5.3.4 Real Data Illustration: Bankruptcy

Here, we deploy the SC-GMM with the ART, scree test and BIC in a real-data setting.

The Bankruptcy data set (Liang and Tsai, 2016) consists of 95 numeric-valued markers

of financial health of a company, and there are 6819 companies present within. There

are two classes present: bankrupt or not. Four intrinsic dimension selection methods are

used: ART(αA = 0.0001), Scree(αS = 0.2), Scree(αS = 0.001) and BIC. The number

of components considered are G = 1, 2, . . . , 6, and for each selection method, the SC-

GMM is fitted based on 100 different k-means initialisations. The considered submodels
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are [agjbgΓgdg], [agbgΓgdg], [abgΓgdg], [agjbΓgdg], [agbΓgdg] and [abΓgdg], as they are the

most flexible among the submodels. The selected submodel, component count, component-

wise intrinsic dimensions, BIC of the fitted model, and the ARI are compared.

Method Submodel G dg BIC ARI
ART(αA = 0.0001) [agjbgΓgdg] 4 (50, 75, 69, 81) 1883301 0.061

Scree(αS = 0.2) [abgΓgdg] 6 (1, 3, 3, 1, 2, 1) -942868 0.006
Scree(αS = 0.001) [agjbΓgdg] 5 (73, 1, 45, 1, 49) 583444 0.044

BIC [agjbgΓgdg] 5 (5, 56, 57, 30, 47) 1215835 0.036

Table 5.5: Table of model summaries for ART(αA = 0.0001), Scree(αS = 0.2), Scree(αS =
0.001) and BIC (arranged by row). From the second column on the left, the selected
submodel, estimated component count, component-wise intrinsic dimensions, BIC of the
fitted model (rounded to the nearest unit) and the Adjusted Rand Index (ARI) (rounded
to 3 decimal places) are presented. For the BIC and the ARI, the best values are bolded.

Table 5.5 shows that the ART produced a better fit than the rest in terms of the

model BIC and ARI. The rounded average dg for the four methods are 65, 2, 34 and

39 (in the same order as in table 5.5), indicating an approximately inverse relationship

between G and dg. This is a reasonable behaviour, since fewer components mean each

component needs to capture more features of the data set, leading to a higher intrinsic

dimension. Submodel-wise, the Scree(αS = 0.2) selected the most restrictive one. This is

consistent with the relatively large G and low dg, indicating that each component contains

less information about the data set compared to other methods. Thus, a smaller, more

restrictive model would suffice. Indeed, a balance between parsimony and expressiveness

of the model is desirable, and in some cases, parsimony at the cost of a worse fit may be

preferred, wherein Scree(αS = 0.2) could be appropriate. However, in general, a better-

fitting model is more likely to be preferred over an excessively restrictive one (based on a

given model selection criterion). In that sense, the ART appears to strike the best balance

among the methods tested, based on the moderate amount of dimension reduction and a

superior fit.
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5.4 Discussion

In this chapter, we introduced a novel method of intrinsic dimension estimation for the

subspace clustering framework on the Gaussian finite mixture model. Our contribution is

intended to be a middle ground between the soundness in principle and computational

viability. The numerical experiments showed that the ART is a competent (performance

and computational cost-wise) alternative to the existing methods. The principle behind

the ART could potentially be extended to non-Gaussian finite mixtures or other linear

projection-based dimensionality reduction methods. Other directions could include the

development of an efficient resampling-based approximation of the asymptotic distribution

of the test statistic, in cases where the assumptions for the χ2 convergence may not hold.
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Chapter 6

Flexible Mixture Regression with the

Generalized Hyperbolic Distribution

6.1 Introduction

In a regression problem, one may find heterogeneous response-covariate relationships based

on latent groups. Several approaches have been proposed to model the cluster-dependent

regression, among which are the mixture regression, mixture of experts (MoE) and cluster-

weighted model (CWM).

The mixture regression, initially introduced by De Veaux (1989) using a Gaussian finite

mixture, modelled the conditional distribution of the response Y given a p-dimensional

covariate x (including the intercept term) as a GMM. The mixture regression is perhaps

one of the more straightforward ways of introducing clustering to the regression setting, as

the component-wise equation is identical to that of the ordinary least squares equation, and

the mixing proportion is treated as a model parameter. With the rise in need to look beyond

Gaussianity, the mixture regression model has been extended to several non-Gaussian finite

mixtures such as the t Yao et al. (2014), skew-normal Liu and Lin (2014), Laplace Song

et al. (2014) and the mean-shift normal Yu et al. (2017). In the semi and non-parametric
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realm, recent contributions include Hunter and Young (2012); Hu et al. (2017); Ma et al.

(2021). For an overview of robust mixture regression models, refer to Yu et al. (2020).

The MoE model, initially introduced by Jacobs et al. (1991), extends the mixture

regression by allowing the mixing proportion to be modelled as a function of another

covariate r (known as the gating function) in addition to modelling the response Y as a

function of x (known as the expert). This approach grants a greater degree of flexibility in

cluster-dependent response-covariate modelling by incorporating covariate into the mixing

proportion, instead of letting it be estimated as a byproduct of component densities. Yet,

it is worth noting that the MoE might need more care from the user, as the covariates need

to be partitioned into the r and the x portion. Like the mixture regression model, robust

variants of the MoE have been proposed recently, including t (Chamroukhi, 2016), skew-t

(Chamroukhi, 2017) and annealing-based MoE (Rao et al., 1997).

The CWM, initially introduced by Gershenfeld (1997), generalizes the mixture regres-

sion model in a different way, where distributional assumptions were placed on the covari-

ate x. This enables joint modelling of (Y,X) by considering the conditional distribution

of Y given X and the marginal distribution of X. This setup allows various combina-

tions for response and covariate distributions, leading to a quite general model, though

the model selection process may be more time-consuming. Recent advances in the CWM

include Ingrassia et al. (2012, 2014); Subedi et al. (2013); Punzo and McNicholas (2017);

Garćıa-Escudero et al. (2017).

The model of interest in this paper is the mixture regression model, due to the relatively

straightforward formulation and the widespread use of the fixed-covariate paradigm. The

finite mixture of generalized hyperbolic distribution (GHMM) introduced by Browne and

McNicholas (2015) is a highly flexible mixture model that includes several robust distribu-

tions such as the hyperbolic, normal-inverse Gaussian, variance-gamma and t distributions.

It has found its way into numerous modelling frameworks including Tortora et al. (2016);

Kim and Browne (2019); Sharp and Browne (2021) thanks to its robustness, and it can

improve the performance of a mixture regression model in the presence of a skewed er-

ror distribution. Therefore, we introduce a mixture regression model with the GHMM,
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and develop a procedure for simplifying the fitted mixture regression by combining sim-

ilar components into a single component. This procedure is intended for scenarios where

a more macroscopic view on the data is desired. Hence, our contribution in this paper is

two-fold: a novel mixture regression model and a procedure to aid its interpretability. In

the rest of this chapter, we outline the key concepts in the remainder of the introduction.

Then, we present the methodology in section 6.2, and simulated experiments and real data

illustrations in section 6.3. We conclude with a brief discussion in section 6.4.

6.1.1 Gaussian Mixture Regression

De Veaux (1989) introduced the Gaussian mixture regression model to accommodate het-

erogeneous response-covariate relationships. Consider a G-component GMM and a set of

response-covariate pairs (yi,xi). Given the component membership indicators zi per chap-

ter 2.1, the distribution of yi is modelled by

(Yi|Zig = 1) = x′
iγg + ϵig,

where γg are the p-dimensional component-wise regression coefficient vectors, ϵig ∼ N(0, σ2
g)

represents the component-wise random error following Gaussian distribution with mean 0

and variance σ2
g , and each ϵig is independent of each other Then, the marginal density of

Yi at yi can be written as that of a GMM

f(yi;Θ) =
G∑

g=1

πgϕ(yi;x
′
iγg, σ

2
g).

A drawback of the Gaussian component distribution is that it cannot accommodate for

heavy tails, skewness and potential outliers. To that end, several robust mixture regression

models have been developed, including the mixture regression using the Student-t (Yao

et al., 2014), skew-normal (Liu and Lin, 2014) and Laplace (Song et al., 2014) distributions.

Other alternatives include penalized mixture regression (Yu et al., 2017), mixture of experts

(Rao et al., 1997; Chamroukhi, 2016) and cluster-weighted models (Punzo and McNicholas,
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2017; Ingrassia et al., 2014). As the aforementioned works have shown, incorporating highly

flexible distributions can further strengthen the robustness of the mixture regression model.

To that end, we contribute to the literature by introducing a regression model using the

finite mixture of generalized hyperbolic distributions (abbreviated by GHMM in this paper)

by Browne and McNicholas (2015).

6.1.2 Generalized Hyperbolic Distribution

An identifiable finite mixture of generalized hyperbolic distributions was introduced by

Browne and McNicholas (2015), thus in this paper, we follow their parametrization. We first

need to define a generalized inverse Gaussian (GIG) random variable. A random variable

W > 0 following the GIG distribution with a scale parameter η > 0, a concentration

parameter ω > 0 and an index parameter λ ∈ R has the density function

h(w;ω, η, λ) =
(w/η)λ−1

2ηKλ(ω)
exp

{
−ω
2

(
w

η
+
η

w

)}
,

where Kλ(ω) is the modified Bessel function of second kind with index λ evaluated at

ω > 0. We denote this relationship by W ∼ GIG(ω, η, λ). A random variable Y ∈ R
following the generalized hyperbolic distribution is defined as a Gaussian variance-mean

mixture

Y = µ+Wβ +
√
WU,

where µ, β ∈ R are location and skewness parameters, W ∼ GIG(ω, η, λ) with η = 1

and U ∼ N(0, σ2) such that W and U are independent. This relationship is denoted as

Y ∼ GH(µ, β, σ2, ω, λ). The density function for this distribution is

fGH(y;µ, β, σ
2, ω, λ) =

(
A

B

)λ−1/2
2 Kλ−1/2(

√
AB)

(2π)
1
2σKλ(ω) exp ((y − µ)β/σ2)

, (6.1)

where A = ω + (y − µ)2/σ2 and B = ω + β2/σ2. The GH distribution contains a wide

range of distributions as special cases such as the hyperbolic, normal-inverse Gaussian,
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variance-gamma distribution, Student-t, and Gaussian distributions; see McNeil et al.

(2015); Barndorff-Nielsen (1978); Kotz et al. (2012) for details.

6.1.3 Simplifying the Model for Interpretability

As Hennig (2010) explained, not every component in a finite mixture may correspond to

a cluster (whose definition is context-dependent), and the number of components may be

over-estimated. Too many components could mean that the partitioning of observations

may be too granular, thus interpreting the model can be complicated. When seeking a

simpler explanation from a model, two potential remedies are component merging and

combining. Given a finite mixture model, component merging unifies the label of selected

components without refitting the model. Besides avoiding a refit, depending on the method,

component merging can help with detecting multi-modal clusters that no single component

can produce. Thus, component merging also helps finite mixtures with rigid component

distributions bootstrap their way to more flexible shapes. For an overview and recent de-

velopments in this area, refer to Hennig (2010); Baudry et al. (2010); Melnykov (2016);

Chacón (2019); Menardi (2016); Kim and Browne (2021a). Combining components is an-

other flavour of the remedy, and it is the method of interest in this paper. Scott and

Szewczyk (2001) introduced the Iterative Pairwise Replacement Algorithm (IPRA) that

combines iteratively pairs of similar mixture components in a finite Gaussian mixture. The

IPRA combined into a single component only the pair of interest through local refitting,

thereby avoiding the computation on all components. This approach is useful when the

one-to-one correspondence between a component and a cluster is reasonable, or when the

user seeks a simpler interpretation of model parameters. For example, figure 6.1 plots two

instances of clustering with GMM on the Old Faithful data (R Core Team, 2020), where

the left-side fits three components and the right-side fits two components. An argument

could be made for combining the black and green-coloured components in the left-side

plot, given their proximity and the small difference in BIC (-822.693 versus -828.569 for

three and two components respectively), as well as the mild change in density contours

before and after combining. After combining, we arrive at the two-component mixture on
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the right side.

Figure 6.1: Scatterplot, with density contours, of two instances of GMM fitted to the scaled
Old Faithful data. Left and right-side plots fit three and two components each.

In the mixture regression context, combining components can adjust the granularity of

the response-covariate relationship. As an illustration, consider figure 6.2, which shows two

instances of Gaussian linear regression fitted to the Cars data (R Core Team, 2020). The

left-side partitions the data into two components via GMM first, and a regression line is

fitted onto each component. On the right side, a single regression line is fitted to the whole

data. If one is interested only in the general trend in the data, an argument can be made for

a single-component regression. Moreover, merging components without refitting, instead

of combining, can lead to ambiguity in interpretation. If the two Gaussian components
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in the Cars data were merged without refitting, there would be two response-covariate

relationships representing a single cluster. Combining them into a single component, thus

regression line, can remove this ambiguity.

Figure 6.2: Scatterplot, with component-wise regression lines, of two instances of GMM
fitted to the scaled Cars data. Left and right-side plots fit two and one components each.

6.2 Methodology

In this section, we introduce the generalized hyperbolic mixture regression (GHMR) model.

We then present the parameter estimates, including the component-wise regression coeffi-

cients. Further, we present a component-combining procedure.
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6.2.1 Generalized Hyperbolic Mixture Regression Model

Consider firstly the single component case. Given a set of n many response-covariate

pairs (including the intercept) (Yi,xi) where Yi is random and xi is deterministic and

p-dimensional, we assume the following relationship. We capitalize Yi to contrast it with

its observed value analog yi.

Yi = x′
iγ + ϵi, (6.2)

where γ is the regression coefficient vector and ϵi =∼ GH(0, β, σ2, ω, λ) for i = 1, 2, . . . n

are the mutually independent generalized hyperbolic noise random variables. This means

that we can rewrite Yi as Yi = x′
iγ +Wiβ +

√
WiUi where Wi ∼ GIG(ω, 1, λ) and Ui ∼

N(0, σ2) such that they form a GH random variable. This means that Ui|wi follows Gaussian

distribution with mean x′
iγ+wiβ and variance wiσ

2. Furthermore, Browne and McNicholas

(2015) showed that the conditional distribution of Wi|yi is GIG(ω + β2/σ2, ω + (yi −
x′
iγ)

2/σ2, λ−1/2). We can extend this model to a G-component finite mixture. Conditional

on Zig = 1, the functional form of Yi is

(Yi|Zig = 1) = x′
iγg + ϵig,

where γg is the regression coefficient vector for component g and ϵig ∼ GH(0, βg, σ
2
g , ωg, λg)

where the subscript g is understood as the component label. Then, the marginal density of

yi can be written as that of the univariate generalized hyperbolic mixture model (GHMM)

f(yi;Θ) =
G∑

g=1

πgfGH(yi;x
′
iγg, βg, σ

2
g , ωg, λg),

where Θ = {{γg, βg, σ
2
g , ωg, λg, πg}}g=1,...,G denotes the set of all model parameters. There

are Gp+4G+(G−1) free parameters in total. By treating Zig and Wig as latent variables,
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we can obtain the complete-data log-likelihood function lc(Θ)

lc(Θ) =
n∑

i=1

G∑
g=1

Zig

[
log πg + log ϕ(yi;x

′
iγg +Wigβg,Wigσ

2
g) + log h(Wig;ωg, 1, λg)

]
=

n∑
i=1

G∑
g=1

Zig

{
log πg −

1

2

[
logWig + log σ2

g +
1

Wigσ2
g

(yi − x′
iγg −Wigβg)

2

]
+
[
(λg − 1) logWig − 2 logKλg(ωg)−

ωg

2
(Wig + 1/Wig)

]}
+ const, (6.3)

where ‘const’ is a collection of constants with respect to the parameters.

6.2.2 Parameter Estimation

We follow the EM algorithm-based parameter estimation by Browne and McNicholas

(2015). The following expected values are needed for the E-step. Here, the parameter

estimates at iteration t are denoted by a super-script (t). For example, Θ(t), Θ
(t)
g and

γ
(t)
g denote the set of estimates for all parameters, the set of estimates for parameters in

component g and the estimate for γg, at iteration t.

z
(t)
ig := E

[
Zig|yi,xi,Θ

(t)
]
= π(t)

g fGH

(
yi;Θ

(t)
g

)
/

G∑
j=1

π
(t)
j fGH

(
yi;Θ

(t)
j

)

a
(t)
ig := E

[
Wig|Zig = 1, yi,xi,Θ

(t)
]
=

√√√√A
(t)
ig

B
(t)
g

×R
v
(t)
g

(√
A

(t)
ig B

(t)
g

)

b
(t)
ig := E

[
1/Wig|Zig = 1, yi,xi,Θ

(t)
]
=
−2v(t)g

A
(t)
ig

+

√√√√B
(t)
g

A
(t)
ig

×R
v
(t)
g

(√
A

(t)
ig B

(t)
g

)

c
(t)
ig := E

[
logWig|Zig = 1, yi,xi,Θ

(t)
]
= log

√√√√A
(t)
ig

B
(t)
g

+
∂

∂s
log

{
Ks

(√
A

(t)
ig B

(t)
g

)}∣∣∣
s=v

(t)
g

,
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where Rs(·) = Ks+1(·)/Ks(·), A(t)
ig = ω

(t)
g +

(
yi − x′

iγ
(t)
g

)2
/σ

(t)2

g , B
(t)
g = ω

(t)
g + β

(t)2

g /σ
(t)2

g ,

v
(t)
g = λ

(t)
g − 1

2
and

ng :=
n∑

i=1

z
(t)
ig , āg :=

1

ng

n∑
i=1

z
(t)
ig a

(t)
ig , b̄g :=

1

ng

n∑
i=1

z
(t)
ig b

(t)
ig , c̄g :=

1

ng

n∑
i=1

z
(t)
ig c

(t)
ig .

For the M-step, we maximize the expected complete-data log-likelihood functionQ(Θ|Θ(t)) =

E[lc(Θ)|Θ(t)] with respect to Θ. The following parameter estimates are obtained.

π(t+1)
g =

ng

n
, β(t+1)

g =
b̄g
∑n

i=1 z
(t)
ig (yi − x′

iγ
(t)
g )∑n

i=1 z
(t)
ig a

(t)
ig

σ(t+1)2

g =
1

ng

n∑
i=1

z
(t)
ig

(
b
(t)
ig (yi − x′

iγ
(t)
g )2 − 2β(t)

g (yi − x′
iγ

(t)
g )
)
+ āgβ

(t)2

g .

Now let qg(ωg, λg) := − logKλg(ωg) + (λg − 1)c̄g − ωg

2
(āg + b̄g).

λ(t+1)
g = c̄gλ

(t)
g

{
∂

∂s
logKs(ω

(t)
g )

∣∣∣
s=λ

(t)
g

}−1

,

ω(t+1)
g = ω(t)

g −
{
∂

∂s
qg(s, λ

(t+1)
g )

∣∣∣
s=ω

(t)
g

}{
∂2

∂s2
qg(s, λ

(t+1)
g )

∣∣∣
s=ω

(t)
g

}−1

.

In addition to the updates given by Browne and McNicholas (2015), we derive newly the

update for γg. Notice that Q(Θ|Θ(t)) is a quadratic function of γg. Thus, after differenti-

ating with respect to γg, we solve the following equation,

n∑
i=1

z
(t)
ig (b

(t)
ig yi + β(t)

g )xi =
n∑

i=1

z
(t)
ig b

(t)
ig x

′
iγgxi.

By denoting X = [x1 . . .xn]
′, M

(t)
g = diag(z

(t)
ig b

(t)
ig )i=1,...,n, y = (y1, . . . , yn)

′ and z
(t)
g =

(z
(t)
1g , . . . , z

(t)
ng )′, the above equation can be simplified to

(X ′M (t)
g X)γg = X ′(M (t)

g y + β(t)
g z(t)

g ).

124



Then the solution below follows immediately,

γ(t+1)
g = (X ′M (t)

g X)−1X ′(M (t)
g y + β(t)

g z(t)
g ). (6.4)

The matrix X ′M
(t)
g X is invertible as long as X is full rank and the number of non-zero

entries in M
(t)
g is at least the rank of X. Otherwise, a pseudo-inverse (X ′M

(t)
g X)+ could

be used instead.

Finally, once the estimated model parameter set Θ̂ is obtained, the observations are

assigned to components via Maximum A Posteriori (MAP) approximation of Zig, denoted

by ẑig.

Identifiability

The identifiability of model parameters is essential for their consistent estimation. Hennig

(2000) showed that the identifiability of a finite mixture does not guarantee that of its

regression variant, and derived a sufficient condition for identifiability of the Gaussian

finite mixture regression model with fixed p-dimensional covariates. Let H be the minimum

number of (p − 1)-dimensional hyperplanes needed to cover all covariates (excluding the

value 1 reserved for the intercept) in the data set. For example, we need at least one line to

cover two points in R2, so H = 1 in this case. To cover four vertices of a rectangle, we need

at least two lines, soH would be 2. The proposed sufficient condition isG < H. That means,

as long as the number of components is suitably bounded, the Gaussian mixture regression

model with fixed covariates would be identifiable. Furthermore, its proof shows that the

mixture regression model is identifiable if the underlying mixture model is identifiable.

Therefore, since Browne and McNicholas (2015) showed the identifiability of the GHMM,

the GHMR is also identifiable.

Proposition 1. If G < H, then the GHMR is identifiable.

Although the theoretical identifiability is established, its application can be challenging,

because two covariates in a data set are unlikely to be an exact linear combination of
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each other. This implies that a näıve application of the identifiability condition would

often yield H = p in practice. Moreover, Hennig (2000) noted the steep computational

complexity of NP-complete in computing H exactly. Hence, we propose instead to count

the number of important principal axes of X⋆, which denotes X without the column of

1s reserved for the intercept. Each principal axis represents a 1-dimensional subspace in

Rp, thus for each axis, there exist at least one (p−1)-dimensional hyperplane that contain

the subspace represented by that axis. Therefore, though crude, counting the number of

important principal axes can serve as a computationally feasible approximation of H. This
procedure can guide the investigator in determining the maximum number of components

for consideration during model-fitting. The important principal axes are counted via the

eigenvalues of the sample covariance matrix of X⋆, similar to the scree test by Cattell

(1966). Let λ1 ≥ λ2 ≥ · · · ≥ λp be the said eigenvalues. We compute the first-order

sequential differences di = λi − λi+1 for i = 1, 2, . . . , p − 1. Then, given a pre-determined

threshold c > 0, the smallest i such that di < c is chosen as an estimate of H. In this

paper, we set c = 0.01.

Combining GHMR components

Given a model with G components, suppose one wishes to simplify some components. As

discussed in section 6.1.3, combining selected components into a single component is the

method of interest. We propose a two-step procedure, where the first step identifies pairs

with potential to merge, and the second step selects a single pair among those from first

step based on the Integrated Completed Likelihood (ICL) by Biernacki et al. (2000), which

is outlined in chapter 2.1. We describe the combining procedure below.

1. Measuring the difference between two regression coefficient vectors γ and γ⋆: Let

d(γ,γ⋆) be defined as

d(γ,γ⋆) = a
|γ ′γ⋆|

||γ||2||γ⋆||2
+ (1− a)||γ − γ⋆||2.

d(γ,γ⋆) is a non-negative measure of the difference between two vectors as a weighted
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sum of their absolute cosine and the 2-norm distance, where we set a = 1/3 to

prioritize the distance between the coefficient vectors. We compute the d value for

every pair of coefficient vectors in the mixture model, resulting in
(
G
2

)
values. Let

dmin denote the smallest value among the
(
G
2

)
. In case of a tie, we prioritize the pair

whose sum of component indices is lower. If there is still a tie, we choose the pair

whose minimum of the component indices is lower. For example, if the d value of

pairs (2, 3) and (1, 4) are equally minimal, then dmin equals to that of pair (1, 4) since

it has a lower minimum of component index. If there are only two components in

the mixture, the BIC value of the two-component and one-component models are

compared, and the component count with higher BIC is chosen.

2. Refit the pair of components corresponding to dmin as a single component. If the

merged model improves in BIC, then the merged model is kept, and the process is

repeated from step 1 using the merged model. Otherwise, the merging process is

halted, and the model before the most recent merging is kept as the final one.

While the above procedure determines automatically the number of components post-

merging (denoted by K), K could be pre-determined as well. In that case, the procedure

would be repeated until K components remain, irrespective of the change in the BIC

value. The refitting of the selected components is done via the EM algorithm shown in

section 6.2.2, where the observations from selected components are grouped into a single

component. Without loss of generality, let components 1 and 2 be merged. For notational

brevity, component index will be omitted for the parameters and conditional expectations

belonging to the merged component, but the symbols themselves will not change. For

example, the scale and index parameters of the merged components will be denoted by σ2

and λ respectively. Moreover, the conditional expectations a
(t)
ig , b

(t)
ig and c

(t)
ig computed with

merged parameters will be written as a
(t)
i , b

(t)
i and c

(t)
i respectively.

First, the membership probabilities at the time of convergence are combined: zi =

z
(t)
i1 + z

(t)
i2 . Then we can compute n̄ =

∑n
i=1 zi and π = n̄/n. With the scaled weight

of component 1, u =
∑n

i=1 z
(t)
i1 /n̄, the model parameters are initialized as the weighted
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average of parameters from each component

γ(t) = uγ
(t)
1 + (1− u)γ(t)

2 , β(t) = uβ
(t)
1 + (1− u)β(t)

2 ,

σ(t)2 = uσ
(t)2

1 + (1− u)σ(t)2

2 , ω(t) = uω
(t)
1 + (1− u)ω(t)

2 ,

λ(t) = uλ
(t)
1 + (1− u)λ(t)2 .

Thereafter, the conditional expectations a
(t)
i , b

(t)
i and c

(t)
i , and the updated model parame-

ters γ(t+1), β(t+1), σ(t+1)2 , ω(t+1) and λ(t+1) are computed using the formulae analogous to

those in section 6.2.2. The update is iterated thereafter until convergence; the convergence

criterion is outlined in section 6.3.1.

6.3 Numerical Experiments

In this section, we illustrate the GHMR using simulated and real data sets. Below is the

brief description of each setting.

• Simulated data 1: A p-dimensional (p = 10, 20), 2-component mixture regression

data with generalized hyperbolic error is considered with component-wise sample

size ng = 100, 200 for p = 10 and ng = 200, 400 for p = 20. The goal is to compare

the performance of various mixture regression models.

• Simulated data 2: A 2-dimensional, 1-component mixture regression data with gen-

eralized hyperbolic error is considered with sample size n = 100, 200, 300, 400. We

illustrate the gain in performance from combining GHMR components.

• Real data 1: The Fish Market data from Pyae (2019) is used. We focus on the

relationship between the Height and Width variables of Bream and Roach species.

• Real data 2: The Italian Tourism data from ISTAT is used. We focus on the infor-

mativeness of components estimated by the GHMR.
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The list of compared models are given below. For a pre-determined range of component

count G, each model is fitted until convergence, and the one yielding the best model

selection criterion value is chosen. In this manuscript, the BIC is used as the model selection

criterion. For example, if the range ofG is 1, 2, . . . , 6, then for eachG = 1, 2, . . . , 6, a GHMR

model is fitted until convergence, and the one with the best BIC value is chosen (likewise

for the other models). All other model-specific hyperparameters from GMR, RGMR and

TLE are chosen as the default values set in their respective software packages.

• Generalized Hyperbolic Mixture Regression (GHMR).

• Gaussian Mixture Regression (GMR) implemented in the R package flexmix (Grün

and Leisch, 2008). It is a mixture regression model where the error follows a finite

mixture of Gaussian distributions.

• Robust Gaussian Mixture Regression (RGMR) from the R packagemixtools (Benaglia

et al., 2009). It is based on the GMR model but allocates an extra component to

collect the observations classified as noise.

• Trimmed Likelihood Estimation for GMR (TLE) from R package RobMixReg (Cao

et al., 2020). It deploys a trimmed likelihood estimation method from Neykov et al.

(2007).

6.3.1 Computational Aspects

The mixture model parameters were initialized via a preliminary component assignment

of each observation, followed by the calculation of component-wise model parameters. For

the GMR, RGMR and TLE, the corresponding R packages’ default component assign-

ment method was used. Specifically, GMR (from flexmix ) and RGMR (from mixtools)

and TLE (from RobMixReg) used uniform random assignment, and the GHMR used k-

means assignment. With regards to algorithm convergence, Aitken’s Acceleration was used

on the GHMR to determine the convergence of the EM algorithm (outlined in chapter
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2.1). In this work, the stopping threshold is set to 0.01. For the other methods, the de-

fault convergence rule for the corresponding packages were used. Specifically, the GMR

checks whether l(Θ(t+1)) − (Θ(t)) < c for c = 10−8. The RGMR and TLE check whether

|l(Θ(t+1)) − (Θ(t))|/|l(Θ(t+1))| < c, where c = 0.01 for RGMR and c = 10−8 for TLE.

Model performance was measured by the BIC, ARI and the distance between the true and

estimated component-wise regression coefficient vectors. To circumvent the issue of un-

bounded likelihood arising from a degenerate model, the scale parameter σ2
g is constrained

to be larger than a pre-set threshold so that the variance does not vanish. The threshold

is set as 10−8 in this paper. If a fitted model violates this constraint, it is discarded and

the model is re-fitted with a new initialization.

To assess the closeness between the estimated and true regression coefficient vectors,

the 2-norm between each (estimated coefficient, true coefficient) pair is computed. For

example, suppose the estimated model has 3 components but the true model has 2. Then

there are 6 (estimated, true) vector pairs: {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)}. The 2-

norm between the coefficient vectors for each pair is computed, and the pairwise norms are

summed. To formalize, given a model with G-components and another with Ĝ components,

we define the discrepancy measure ‘Dist’ between the coefficient vector sets from the two

models as

Dist({γ1, . . . ,γG}, {γ̂1, . . . , γ̂Ĝ}) =
∑

unique (i,j) pairs

||γi − γ̂j||2.

Given a true model and a set of candidate models, Dist chooses the candidate that min-

imizes its value when compared against the true model. In general, if G0 = min{G, Ĝ}
and G1 = max{G, Ĝ}, the number of summands in our discrepancy measure is G0G1 −
G0(G0 − 1)/2. We can expect Dist to favour parsimony over verbosity, per the following

illustration. Suppose that the true model has 4 components, and that two estimated models

are available: candidate 1 has 2 components, and candidate 2 has 6 components. Further

suppose that the 2-norm between every (true, estimated) coefficient vector pair is 1, and

that each pairwise 2-norm within the true model is also 1. In other words, let {γ1, . . . ,γ4},
{γ̂1, γ̂2} and {γ̃1, . . . , γ̃6} denote the coefficient vector set of the true model, candidate 1
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and candidate 2 respectively. Then, we assume that

||γi − γj||2 = 1 for i ̸= j,

||γi − γ̂j||2 = 1 for i = 1, . . . , 4, j = 1, 2, and

||γi − γ̃j||2 = 1 for i = 1, . . . , 4, j = 1, . . . , 6.

Then, based on the summand count formula, we have

Dist({γ1, . . . ,γ4}, {γ1, . . . ,γ4}) = 4× 4− 4(4− 1)/2 = 10,

Dist({γ1, . . . ,γ4}, {γ̂1, γ̂2}) = 2× 4− 2(2− 1)/2 = 7, and

Dist({γ1, . . . ,γ4}, {γ̃1, . . . , γ̃6}) = 4× 6− 4(4− 1)/2 = 18.

Hence, in terms of Dist, model candidate 1 would be preferred, if both candidates produce

coefficient vectors that are equally distant from that of the true model.

6.3.2 Simulated Data 1

A p-dimensional, 2-component, mixture regression data with generalized hyperbolic er-

rors is generated. The data-generating model is specified as follows. Let xi1,xi2 follow

independently the p-dimensional Gaussian distribution with mean equal to (1, 1, . . . , 1)′

and covariance equal to the identity matrix, and denote the component-wise regression

coefficients by

γ1 = (−3 · · · ,−3︸ ︷︷ ︸
p copies

)′, γ2 = (3, · · · , 3︸ ︷︷ ︸
p copies

)′.

The responses Yi are generated from

Yi =

−2 + γ ′
1xi1 +GH((µ1, σ

2
1, β1, ω1, λ1) = (0, 1.5, 3, 0.5, 0.7)) π1 = 0.5,

2 + γ ′
2xi2 +GH((µ2, σ

2
2, β2, ω2, λ2) = (0, 1,−1, 2, 1)) π2 = 0.5,

(6.5)

and the generated response variable was scaled by its sample standard deviation. The
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(dimension, component-wise sample size) = (p, ng) pairs are selected so that the ratio

ng/p is 10 or 20. Specifically, the following values are considered: (p, ng) ∈ {(10, 100),
(10, 200), (20, 200), (20, 400)}. The GHMR, GMR, RGMR and TLE models are fitted to

the generated data set for performance comparison, and this is replicated 500 times, with a

newly-generated data set each time. For GHMR, RGMR and TLE models, the considered

component counts are G = 1, 2, 3, 4, 5, 6, and that for GMR are G = 2, 3, 4, 5, 6, since the

GMR software does not support G = 1.

Figure 6.3: A pair plot of a 5-dimensional instance of data set simulated from 6.5, where
the observations are coloured by component.
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(10, 100) BIC G ARI Dist

GHMR
-67

(1630)
2
(1)

0.781
(0.500)

38
(19)

GMR
-92
(72)

5
(2)

0.542
(0.164)

95
(38)

RGMR
-148
(54)

3
(1)

0.810
(0.146)

57
19

TLE
-244
(86)

2
(2)

0.835
(0.215)

38
(38)

(10, 200) BIC G ARI Dist

GHMR
3585
(4601)

3
(2)

0.815
(0.224)

57
(38)

GMR
-180
(78)

5
(2)

0.652
(0.134)

95
(38)

RGMR
-212
(62)

3
(0)

0.831
(0.098)

57
(0)

TLE
-430
(116)

2
(0)

0.876
(0.039)

38
(0)

(20, 200)

GHMR
-293
(1375)

2
(2)

0.680
(0.963)

54
(54)

GMR
334
(138)

5
(1)

0.587
(0.173)

134
(54)

RGMR
193
(81)

3
(1)

0.865
(0.169)

81
(27)

TLE
10

(163)
2
(1)

0.903
(0.110)

54
(27)

(20, 400)

GHMR
32

(7164)
2
(3)

0.669
(0.856)

54
(80)

GMR
708
(134)

5
(2)

0.666
(0.130)

134
(54)

RGMR
585
(103)

3
(0)

0.810
(0.079)

80
(0)

TLE
139
(194)

2
(0)

0.905
(0.004)

54
(0)

Table 6.1: Table of median BIC, component count G, Dist (rounded to nearest digit) and
ARI (rounded to three decimal places) over 500 replications of model-fitting on the data
sets generated from (6.5). The (p, ng) pair for each table is specified in the top-left corner.
Inter-quartile ranges (IQR) are written in brackets underneath each median value, and the
best median BIC, ARI and Dist are bolded.

Table 6.1 indicates that the GHMR achieved the highest median BIC when (p, ng) =

(10, 100), (10, 200). In contrast, the TLE obtained the highest median ARI in all settings.

In addition, the TLE obtained the median G of 2 (the true number of components) in all

settings, followed by GHMR (3 out of 4 settings). Both GMR and RGMR tended to over-

estimate the component count, but RGMR was closer to 2, which is likely attributed to its
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BIC (10, 100) (10, 200) (20, 200) (20, 400)
GHMR 252 408 74 193
GMR 222 71 406 303
RGMR 24 21 15 4
TLE 2 0 5 0

Table 6.2: Table recording the number of replications where each model achieved the highest
performance measurement based on 500 replications. The in-class best values are bolded.

robust formulation in comparison to the GMR. Interestingly, when compared replication-

wise, the GHMR obtained the highest BIC most often when (p, ng) = (10, 100), (10, 200),

whereas the GMR performed well when (p, ng) = (20, 200), (20, 400), as shown in table

6.2. The tabulated results suggest that the GHMR is capable of producing a significantly

better fit compared to the other models.

6.3.3 Simulated Data 2

A 2-dimensional, 1-component mixture regression data with generalized hyperbolic errors

is generated. The covariates xi (i = 1, . . . , n) are generated independently from a univariate

Gaussian distribution with mean and variance equal to 1, and the slope parameter is γ = 1.

The error distribution and response equation are

ϵi ∼ GH((µ, σ2, β, ω, λ) = (0, 2, 0, 2, 0.05)),

Yi = 0 + γxi + ϵi.

This experiment is intended to showcase the performance improvement achieved from

GHMR component combining under over-estimated component counts. For each gener-

ated data set, a G-component GHMR model is fitted over G = 2, 3, 4, 5, 6. Then, the fitted

model’s components are combined via the procedure outlined in section 6.2.2. The consid-

ered sample sizes are n = 100, 200, 300, 400. For n value, the experiment is replicated 500

times. The results are summarized in table 6.3.

Table 6.3 shows that combining components resulted in a significant improvement in
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Figure 6.4: An instance of the experiment before and after component combining. On the
left, a scatterplot of observations coloured by components and overlaid with regression lines
is shown. On the right, a combined GHMR model with overlaid regression line is shown.

median ICL values across all considered sample sizes. In addition, component-combining

resulted in 1 component (true component count) in at least 50% of replications, except

for n = 400 whence near 50% rate is observed. Furthermore, the scatterplots in figure

6.5 show that component-combining resulted in reduced component counts across all n

values. In particular, the combining procedure was most effective when the initial com-

ponent count is 2, as shown by dot sizes. Even at higher initial component counts, the

combining procedure managed to reduce G to various degrees. This study demonstrates

that component-combining, coupled with a model selection criterion that promotes cluster

detection, can compliment the GHMR model.

6.3.4 Real Data Illustration 1: Fish Market

Seafood consumption is a major source of expenditure globally, with the 2018 aquaculture

production value reaching USD 263.6 billion, according to the UN Food and Agriculture
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Organization (FAO) (UN). In such a large industry, correctly classifying the seafood for

sale is important for both consumers and sellers. Unfortunately, fish fraud also appears to

be a large industry. Askew (2020) reported that ‘the overall economic impact related to

the diversion of fish from the legitimate trade system is costing us $26 billion to $50 billion

globally’. An example of fish fraud is intentional mis-labelling. For instance, Warner et al.

(2013) revealed that less than 1% of the seafood consumed in the United States is checked

for fraud, and that 59% of tested fish types were mis-labelled. In particular, 44% of tested

grocery stores, restaurants and sushi venues mis-labelled seafood. Thus, the detection of

mis-labelled fish could leverage advanced statistical tools like the mixture regression model.

To that end, we consider a subset of the Fish Market data from Pyae (2019), which consists

of the Height (response variable) and the Width (covariate) of 55 fish. Two types of fish

are present: Bream and Roach, representing 64% and 36% of the data set respectively.

Figure 6.6: Images of the common Bream (left) and the common Roach (right) fish.
Sources: https://en.wikipedia.org/wiki/Common_bream and https://en.wikipedia.

org/wiki/Common_roach.
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Figure 6.7: Scatterplot, with marginal histograms, of the Fish data. Breams are marked
with blue dots and Roaches are marked with red dots.

From figure 6.6, Breams appear to be longer and more slender than Roaches. Figure 6.7

shows a clear bimodality in Height variable, with Breams scattered in a steeper slope than

Roaches. The two species show a clear separation in their joint distribution. The GHMR,

GMR, RGMR and TLE models are fitted over G = 1, 2, . . . , 6 (except for GMR which

starts with G = 2 since G = 1 is not supported software-wise), and we report on the best

fits BIC-wise, based on 100 different initializations.
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Figure 6.8: Colour-coded scatterplots of the Fish data with component-wise regression
lines estimated by the mixture regression models. Each plot’s heading indicates the line-
generating model.

Table 6.4 and figure 6.8 summarize the the fit of the four models. Although the GMR

achieved the highest BIC, its component count is the highest (G = 6) and its clustering

result is the worst (ARI = 0.43). This suggests an overfit from the GMR, since the robust

variants (RGMR and TLE) estimated reduced component counts with superior ARI. In

contrast, the GHMR identified the fish groups perfectly. The trade-off is a lower BIC value,

but this is likely due to a larger parameter set arising from the generalized hyperbolic

distribution. Figure 6.7 shows a further evidence of overfitting, to varying degrees, by the

GMR, RGMR and TLE. In particular, the GMR fitted three lines to the Breams (blue

cluster in the GHMR plot), where one was sufficient for the GHMR. This is a case where

a flexible distribution like the generalized hyperbolic distribution can help avoid spurious

response-covariate relationships.

138



The non-negligible values βg, λg, ωg shown in table 6.5 suggest the non-normality of

the cluster-wise distribution of Height variable. When the non-normality is not accounted

for, the mixture regression model may overfit, as was the case here. The regression coef-

ficients imply numerically that Breams are indeed longer and more slender than Roaches,

though we may also observe more deviation in the estimated Height-Width relationship

from Breams, as suggested by its larger σ2
g estimate. Overall, the Fish data shows that the

GHMR model can be effective in identifying heterogeneous response-covariate relationships

while accounting for a departure from normality.

6.3.5 Real Data Illustration 2: Italian Tourism

Tourism contributes significantly to the Italian economy. According to OECD, in 2017,

tourism accounted for approximately 13% of Italy’s Gross Domestic Product (GDP) and

14.7% of its workforce. As such, a deep understanding of tourists’ behaviour would be of

interest to Italy. The Italian tourism data (ISTAT) contains the national monthly visitor

figures in Italy from January 1996 to December 2007. It is of 180 rows and 2 variables

- overnight tourist count (Overn) and the visitor count to state museums, monuments

and museum networks (MonMus). Beside the timestamp, the data set contains no ground

truth labels. We want to study the type of heterogeneity in the association between Overn

(covariate) and MonMus (response). Figure 6.9 suggests roughly three clusters - the right-

side one consisting of July and August records, the middle one consisting of June and

September records, and the left-side one consisting of the remaining months. This month-

based separation is consistent with the known seasonality in Italian tourism. For instance,

according to Travel and Leisure, the Summer months (May to September) comprise the

peak tourist season. The data set visually suggests a steeper slope of MonMus against

Overn across records from January to May and October and December (left-side cluster).
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Figure 6.9: Scatterplot of the Tourism data where each point is numbered by month. For
example, 1s denote observations from January, 2s denote observations from February, etc..
The variables’ unit is ten million.

Similar to the Fish data analysis, the four models are fitted over G = 1, . . . , 6 (except

for GMR which starts with G = 2), and the BIC-wise best fit over 100 initializations is

reported. To account for the scale of values (in tens of millions), the observations were

divided by 10 million before model-fitting. However, as the TLE model diverged in all in-

stances, we used an alternative scaling (dividing the original data by variable-wise standard

deviation) before fitting a TLE model.
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Figure 6.10: Colour-coded scatterplots of the Tourism data with component-wise regression
lines estimated by the mixture regression models. Each plot’s heading indicates the line-
generating model. For TLE, the model did not estimate a regression vector for the black
dots as it deemed them as outliers.

Figure 6.10 shows that the GHMR obtained the cleanest separation by month among

the compared models. Its two main components, black and green, consist mostly of {March,

April, May, October} and {January, February, June, July, August, September, November,

December} respectively (shown in table 6.7). The RGMR identified similar, but more con-

solidated, association structures than the GMR. The TLE did not identify any meaningful

heterogeneity from the data set, though it did capture the positive association between

Overn and MonMus at a very high level. Thus, the GHMR seems to have captured the

middle ground between GMR/RGMR (granular) and TLE (coarse) in detecting heteroge-

neous association.

We now focus on the GHMR. Consider the numeber of visitors to state museums, mon-
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uments, archaeological site and museum complexes in Italy during 2019, obtained from

Statistica (2019 figures were the only public and readily-accessible ones, to our best knowl-

edge). The bottom plot in figure 6.11 shows that the GHMR produced an approximate

division of months by the number of visitors to monuments and museums. When the re-

gression slopes are incorporated, we can deduce that the peak monument and museum

months exhibit a stronger positive association between the visitor count and the number

of overnight tourists. Interestingly, the overall peak tourist months like July, August and

September are grouped into a different component, which could be explained by the hot

Summer weather that tends to favour outdoor activities. In terms of model parameter esti-

mates, table 6.8 of component-wise distribution parameters suggests a significant departure

from normality, which further substantiates the benefit of distributional flexibility in mix-

ture regression modelling. Overall, the GHMR has demonstrated its value in analyzing a

data set without an apparent ground truth label via a superior fit (as measured by BIC)

and an informative starting point for further investigation.
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Figure 6.11: Bar plots of monthly visitors (in ten millions) to state museums, monuments,
archaeological site and museum complexes in Italy during 2019. The top plot is ordered by
month, and the bottom plot is ordered by magnitude, and colour-coded by components to
which a majority of observations belong to. Data sourced from Statistica.

6.4 Discussion

In this chapter, a flexible mixture regression model with the generalized hyperbolic distri-

bution was introduced, as well as an iterative component combining procedure. Simulated

and real data sets have shown that the GHMR model can provide an edge against the ex-
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isting models, and that it can be deployed as a flexible tool for regression analysis. Avenues

for future work include the study of distributional properties of the regression coefficient

estimator, extensions to parsimonious variants and the investigation of the model under

the inclusion of categorical variables.
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ICL n = 100 n = 200 n = 300 n = 400
Before -451 -1047 -1472 75

(1344) (2946) (4239) (6059)

After -28 -32 -34 964
(986) (2357) (3344) (5151)

G n = 100 n = 200 n = 300 n = 400
Before 2 2 2 2

(1) (1) (1) (2)

After 2 1 1 2
(1) (1) (2) (2)

n = 100 n = 200 n = 300 n = 400
count(G = 1) 250 253 258 236

Table 6.3: Table of summary statistics obtained from the experiment conducted in section
6.3.2. The column labels denote the sample size under which the experiment was conducted.
The top table records the median (and IQR in brackets) ICL values of the fitted GHMR
model before and after combining. The middle table records the median (and IQR in
brackets) G values of the fitted GHMR model before and after combining. The bottom
table records the number of replications in which the component-combined GHMR model
estimated 1 component. The ICL and G values are rounded to zero decimal places, and
the best in-class values are bolded.

GHMR GMR RGMR TLE
BIC -217.66 -178.27 -195.65 -192.14
G 2 6 3 4

ARI 1 0.43 0.79 0.68

Table 6.4: Table of the BIC, estimated component count (G) and ARI obtained by the
GHMR, GMR, RGMR and TLE models based on 100 different initializations. The best
in-class value is bolded.
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Figure 6.5: Scatterplots of number of components estimated before and after component-
combining. Each plot’s heading indicated the sample size under which the plot was gen-
erated. The dots’ sizes are scaled by their frequency of occurrence. For instance, in the
top-left plot, when the GHMR model initially estimated 2 components (leftmost horizon-
tal axis value), the majority of replications resulted in 1 component after combining.

Intercept Width σ2
g βg λg ωg πg

Bream 13.56 2.56 0.61 -0.03 -0.80 2.02 0.64
Roach 8.63 1.71 0.14 -0.01 -0.69 2.09 0.36

Table 6.5: Component-wise parameter estimates from the GHMR.
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GHMR GMR RGMR TLE
BIC 1905.88 436.17 406.76 -523.81
G 3 4 3 1

Table 6.6: Table of the BIC and estimated component count (G) obtained by the GHMR,
GMR, RGMR and TLE models based on 100 different initializations. The best BIC value
is bolded.

Component Jan Feb Mar Apr May Jun
1 (black) 15 14 15
2 (red) 1 1
3 (green) 15 15 14

Jul Aug Sep Oct Nov Dec
1 (black) 14 5
2 (red)
3 (green) 15 15 15 1 10 15

Table 6.7: Table of component-wise month distribution generated by the GHMR. Empty
cell indicates zero observation.

Intercept MonMus σ2
g βg ωg λg πg

Comp 1 -0.04 0.18 12.31 -0.04 0.0003 -1.39 0.39
Comp 3 0.11 0.03 377.25 -0.08 1.00×10−5 -1.42 0.60

Table 6.8: Distribution parameter estimates for the major components from the GHMR,
rounded to two decimal places.
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Chapter 7

Mode Merging for a Finite Mixture

of t-distributions

7.1 Introduction

Finite mixture models can be interpreted as a model representing heterogeneous sub-

populations within the whole population. However, as discussed in Hennig (2010), more

care is needed when associating a mixture component with a cluster. Consider a finite mix-

ture where each component is unimodal (this includes the popular Gaussian finite mixture).

By interpreting each component as a cluster, an implicit assumption of unimodality on the

shape of each cluster is imposed, along with other features of the component distribution,

such as the spread, skewness and the heaviness of tails. Although this example does not

mean the component-cluster association is always incorrect, it opens up the possibility of

associating a cluster with a union of components.

7.1.1 The Ridgeline Function and the Mean-shift

A method for merging mixture components is modal clustering via the mean-shift algo-

rithm (Comaniciu and Meer, 2002). It is a fixed-point algorithm that seeks out the nearest

148



mode (local maximizer) of a density function. For a G-component Gaussian finite mixture

model (GMM) with component mixing, location and covariance parameters πg, µg and Σg

respectively, the mean shift formula is given by Chacón (2019):

m(t+1) =

[
G∑

g=1

z(t)g Σ−1
g

]−1 [ G∑
g=1

z(t)g Σ−1
g µg

]
, (7.1)

where m(t) is the solution of the tth iteration of the algorithm,

z(t)g = πgϕ(m
(t);µg,Σg)/

G∑
k=1

πgϕ(m
(t);µg,Σg),

and ϕ(·;µg,Σg) denotes the single-component Gaussian density. The algorithm is run until

convergence with initialization m(0) = µg for g = 1, 2, . . . , G. The resulting mode estimate

m̂ can be seen as a maximum likelihood estimate of the mode parameter m, as Carreira-

Perpinan (2007) showed that the mean-shift algorithm for GMM is an EM algorithm. In

fact, depending on the initialization m(0), it is possible to discover all modes of the finite

mixture density through mean shift. Ray and Lindsay (2005) defined the ridgeline function

for a finite Gaussian mixture as

m(α) = m(α1, . . . , αG) =

[
G∑

g=1

αgΣ
−1
g

]−1 [ G∑
g=1

αgΣ
−1
g µg

]
, (7.2)

where α = (α1, . . . , αG) is a point on a (G− 1)-dimensional unit simplex defined as

SG =

{
α ∈ [0, 1]G :

G∑
g=1

αg = 1

}
.

Then, Ray and Lindsay (2005) showed that the ridgeline function (7.2) defined on SG
contains all the critical values of the GMM density, including all modes. This property is

useful because the number of modes of finite Gaussian mixture model is not always obvious.

In fact, such a model can have more than G modes, as shown by Ray and Ren (2012).
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Since each z
(t)
g is non-negative and z

(t)
1 + · · ·+z(t)G = 1, it is clear that a mean-shift estimate

m(t) at any (t) corresponds to a point on the ridgeline function surface over SG. Therefore,
regardless of the number of variables p in the data set, the mean shift algorithm for GMM

can be interpreted a search for the density modes over a constrained (G− 1)-dimensional

space. If p > G− 1, then the mean shift can also be seen as a dimension reduction tool.

7.1.2 Finite Mixture of t-distributions

The model of interest in this paper is a finite mixture of t-distributions by Peel and McLach-

lan (2000). Let a random vector U follow a p-dimensional Gaussian distribution with

zero mean and covariance Σ, Np(0,Σ). Also, suppose Y ∼ Gamma(ν/2, ν/2) (shape-

rate parametrization) to be independent of U . Then, if a random vector X follows a

p-dimensional t-distribution with location vector µ, scale matrix Σ and degrees of freedom

parameter ν > 0, its stochastic relationship can be written as

X = µ+
U√
Y
.

Let ft(·;µ,Σ, ν) denote the density function of the above p-dimensional t-distribution,

tp(µ,Σ, ν). Then, the marginal density function of aG-component mixture of t-distributions,

abbreviated as tMM, is written as

f(x;Θ) =
G∑

g=1

πgft(x;µg,Σg, νg), (7.3)

where πg > 0, µg, Σg and νg denote the component-wise proportion, location, scale and

degrees of freedom parameters respectively. We will use Θ to denote the set of model pa-

rameters for the finite mixture. Now suppose we have n many independent observations

x1, . . . ,xn from the above tMM. With the incorporation of latent component member-

ship indicators Zi = (Zi1, . . . , ZiG)
′ (outlined in chapter 2.1), the conditional distributions
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pertaining to Xi and Yig are given as follows.

Xi|Zig = 1 ∼ tp(µg,Σg, νg),

Yig|Zig = 1 ∼ Gamma
(νg
2
,
νg
2

)
,

Xi|Zig = 1, yig ∼ Np

(
µg,

1

yig
Σg

)
,

Yig|Zig = 1,xi ∼ Gamma

(
νg + p

2
,
νg + δ(xi,µg;Σg)

2

)
,

where δ(xi,µg;Σg) = (xi−µg)
′Σ−1

g (xi−µg). Andrews and Mcnicholas (2012) introduced a

framework for fitting parsimonious variants of the tMM, implemented as a R package teigen

(Andrews et al., 2018). The number of free parameters in the model is reduced through the

following eigen-decomposition of component-wise scale matrices: Σg = λgPgDgP
′
g, where

Pg is the matrix of eigenvectors, Dg is the diagonal matrix whose diagonal entries are

proportional to the eigenvalues and λg is the proportionality constant for the eigenvalues.

Various levels of parameter reduction is obtained by combining some or all of the following

constraints: Pg = P , Pg = I, Dg = D, Dg = I and λg = λ. This strategy can be

beneficial when modelling high-dimensional data, because the number of free parameters

in a unconstrained scale matrix is p(p + 1)/2 (p is the data’s dimension), which increases

quadratically with respect to p.

Parameter estimation for tMM is done by the EM algorithm, as shown in Peel and

McLachlan (2000). Let x1, . . . ,xn denote the set of n independent observations from a G-

component tMM. Then, with the latent variables zi and (yi1, . . . , yiG)
′ from section 7.1.2,

we obtain the following complete-data log-likelihood lc.

lc(Θ) =
n∑

i=1

G∑
g=1

zig

[
log(πg) + log ϕ

(
xi;µg,

νg
yig

Σg

)
+ log h(yig; νg)

]
, (7.4)

whereΘ denotes the set of model parameters, and h(·; ν) denotes the pdf ofGamma(ν/2, ν/2).
At iteration t of the EM algorithm, we calculate the conditional expectation of lc(Θ) with

respect to the latent variables given x1, . . . ,xn and the current parameter estimates Θ(t),
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denoted by Q
(
Θ|Θ(t)

)
.

Q
(
Θ|Θ(t)

)
=

n∑
i=1

G∑
g=1

z
(t)
ig

[
log(πg)−

1

2
log(|2πΣg|)−

u
(t)
ig

2
δ(xi,µg;Σg)

− log Γ
(νg
2

)
+
νg
2
log
(νg
2

)
+
νg
2

(
w

(t)
ig − u

(t)
ig

)
− w(t)

ig

]
, (7.5)

where

z
(t)
ig = E[Zig|xi,Θ

(t)] =
π
(t)
g ft

(
x;µ

(t)
g ,Σ

(t)
g , ν

(t)
g

)
∑G

k=1 π
(t)
k ft

(
x;µ

(t)
k ,Σ

(t)
k , ν

(t)
k

) ,
u
(t)
ig = E[Yig|Zig = 1,xi,Θ

(t)] =
ν
(t)
g + p

ν
(t)
g + δ

(
xi,µ

(t)
g ;Σ

(t)
g

)
w

(t)
ig = E[log(Yig)|Zig = 1,xi,Θ

(t)] = log
(
u
(t)
ig

)
+ ψ

(
ν
(t)
g + p

2

)
− log

(
ν
(t)
g + p

2

)
,

and ψ(·) is the digamma function. Then, by differentiating with respect to each parameter,

the new component-wise estimates π
(t+1)
g , µ

(t+1)
g , Σ

(t+1)
g and ν

(t+1)
g are obtained.

7.2 Methodology

In this section, we present the main contribution of this paper. We derive the mean-shift

algorithm for tMM and its parsimonious variants. The goal of the algorithm is to estimate

the modes of the density function of the tMM.

t Mean-shift

Using the parameter estimates Θ̂ obtained by EM algorithm in section 7.1.2, we want to

find the modes of the tMM density f . The t-distribution’s density is not as well-behaved as

that of Gaussian distribution, so a direct differentiation is difficult. Instead, we construct
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an EM algorithm to find the modes. Similar to the complete-data log-likelihood in (7.4),

we introduce the latent variables Yg and Zg representing the Gamma distribution and

component membership associated with a mode vectorm. Given the current mode estimate

m(t), the expected complete-data log-likelihood with respect to the mode m depends only

on the conditional Gaussian densities.

K(m|Θ̂,m(t)) =
G∑

g=1

z(t)g

(
−u

(t)
g

2
(m− µ̂g)

′Σ̂−1
g (m− µ̂g)

)
+ const, (7.6)

where ‘const’ is a collection of additive constants,

z(t)g =
π̂gft

(
m(t); µ̂g, Σ̂g, ν̂g

)
∑G

k=1 π̂kft

(
m(t); µ̂k, Σ̂k, ν̂k

) , and u(t)g =
ν̂g + p

ν̂g + δ
(
m(t), µ̂g; Σ̂g

) .
The new mode estimate m(t+1) is obtained by differentiating K with respect to m:

m(t) =

[
G∑

g=1

z(t)g u(t)g Σ̂−1
g

]−1 [ G∑
g=1

z(t)g u(t)g Σ̂−1
g µ̂g

]
. (7.7)

The resultant merging rule is as follows. Firstly, run the t mean-shift until convergence G

times using each of the component mean vectors µ̂g as initial values. Then, the mixture

components whose mode estimates are equal are assigned to a single cluster. However,

exact equality between two modes would be computationally too strict. Thus, we can relax

this rule to merge two components if the corresponding modes m1 and m2 are such that

||m1 −m2||2 < c, for a pre-determined threshold c > 0. In this paper, c is set at 0.01.

Connection to the Ridgeline Function

The update equation in (7.7) shares similar properties the Gaussian ridgeline function in

(7.1). Recall that the Gaussian mean shift can be seen as a search algorithm for critical

points of the Gaussian ridgeline function. Similarly, the mean shift algorithm for tMM
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can be interpreted as a search algorithm for critical points of the conditional ridgeline

function of tMM, which is defined as the right-hand side expression in equation (7.7).

Indeed, because the complete-data expectation K(m|Θ̂,m(t)) is continuous with respect

to both m and m(t), Theorem 2 of Wu (1983) guarantees the convergence of the EM

estimate sequence {m(t)}∞t=1 to a critical point of the tMM density function. Note that, if

all u
(t)
g is set to be 1 and the densities involved in z

(t)
g are changed to those from GMM,

then the Gaussian mean shift is recovered.

Parsimonious Variants

The mean shift solution in equation (7.7) can be simplified depending on the parsimonious

model fitted from the tMM family. This is highly convenient, because all component-wise

scale matrices must be inverted otherwise. Among all models in this family, the most

significant simplifications come from those with constraints on the scale matrices Σg =

λgPgDgP
′
g. In this section, we present some of the most simplified variants, in a decreasing

order of parsimony.

• If (λg,Pg,Dg) = (λ,P ,D) for all g, then all components share a common scale

matrix. Hence, the component-wise scale matrices can be factored out, resulting in

the most simplified form below,

m(t+1) =

∑G
g=1 z

(t)
g u

(t)
g µ̂g∑G

g=1 z
(t)
g u

(t)
g

.

• If (λg,Pg,Dg) = (λg,P ,D) for all g, then each component is entitled to its own

scaling factor for the scale matrix. Let λ̂g denote the EM estimate of λg. Then, we

can still obtain a simple weighted sum,

m(t+1) =

∑G
g=1

(
z
(t)
g u

(t)
g /λ̂g

)
µ̂g∑G

g=1 z
(t)
g u

(t)
g /λ̂g

.
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• If (λg,Pg,Dg) = (λg,P ,Dg) for all g, then the update formula can be simplified still,

though not as much as the earlier cases. Let D̂g and P̂ denote the EM estimates of

Dg and P respectively. Because inversion is required only on the diagonal matrix,

we have

m(t+1) = P̂

[
G∑

g=1

z
(t)
g u

(t)
g

λ̂g
D̂−1

g

]−1 [ G∑
g=1

z
(t)
g u

(t)
g

λ̂g
D̂−1

g P̂ ′µ̂g

]
.

The other models in the teigen family can simplify the formula as well, but the extent

of reduction is less significant compared to the ones presented here. In general, we can

see that the t mean-shift algorithm can inherit the parsimony constraints imposed on the

mixture.

7.3 Numerical Experiments

In this section, we study the performance of tMMmode merging through simulated and real

data experiments. Specifically, three 2-dimensional and one 6-dimensional simulated data

sets at various sample sizes will be clustered, as well as the Old Faithful (Härdle et al.,

1991) and the Chronic Kidney Disease (Dua and Graff, 2017) data sets. The following

methods are deployed in all experiments herein. Each deployed method will be referred to

using their corresponding abbreviations hereafter.

• Parsimonious finite mixture of Gaussian distributions implemented in the R package

mclust (Scrucca et al., 2016) (GMM)

• Parsimonious finite mixture of t distributions implemented in the R package teigen

(Andrews et al., 2018) (tEIGEN)

• GMM with overlap-based component merging ‘DEMP+’ by Melnykov (2016) (G-

DEMP+): DEMP+ is a hierarchical component merging method that uses a measure

called DEMP+ that indicates the degree of overlap between a pair of components.
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At each stage of merging, a pair of clusters with the largest DEMP+ value is chosen

for merging. If no pairs of clusters yield DEMP+ values beyond the threshold, the

algorithm is terminated, and the resulting clusters are used. Note that a cluster may

contain multiple components. The heuristic overlap threshold suggested by Melnykov

(2016) is 0.1, which we use in this paper. The DEMP+ method is outlined in chapter

2.3.

• tEIGEN with DEMP+ (t-DEMP+)

• Mode merging for GMM by Chacón (2019) (G-Mode)

• t-Mean Shift (t-Mode)

Computational Aspects

All deployed methods are run until convergence. In addition, for all experiments, the set of

the number of mixture components considered is {1, 2, . . . , 8}. For a fair comparison with

GMM-based methods, the simplified formulae presented in section 7.2 are not considered

in the experiments. For G-Mode and t-Mode, the tolerance threshold for convergence is set

at ϵ = 10−6. This means that the mode merging was deemed converged when ||m(t+1) −
m(t)||2 < ϵ. The experiments are run on a 2-socket, 24-core cluster of Intel Xeon E5-2690

v3 CPUs, clocked at 2.60 GHz.

As pointed out by Hennig (2010), the mixture component merging problem is not

identifiable in terms of the model likelihood, because it does not re-fit the model based on

the merged components. Thus, model-free performance measurements are needed, so the

following metrics are used.

• The number of components estimated by each method (G).

• Adjusted Rand Index (ARI) as outlined in chapter 2.1.

• Additive Margin (AM) as outlined in chapter 2.1.

• Elapsed time measured in seconds (Time).
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Simulated Data

In this experiment, we simulate data sets from four different finite mixture distributions.

For each data-generating model, ng observations are generated for all components. Several

ng values are considered: ng = 50, 100, 150, 200. Below is the list of models and their

parameters. The contour plots of 2-dimensional models are shown in figure 7.1.

(D1) A 3-component mixture of 2-dimensional skew-normal distributions. Each component

is well-separated, resulting in three clusters. The parametrization of skew-normal

distribution follows Lin et al. (2016), where µg, Σg and λg denote the component-

wise location vector, scale matrix and skewness vector. The model parameters of the

mixture are as follows,

π1 = 0.2, µ1 = (2,−4)′, λ1 = (3, 3)′, Σ1 =

[
1 −0.1
−0.1 1

]
,

π2 = 0.3, µ2 = (3.5, 2.5)′, λ2 = (1, 5)′, Σ2 =

[
1 0

0 1

]
, and

π3 = 0.5, µ3 = (0, 0)′, λ3 = (−3, 1)′, Σ3 =

[
1 0

0 1

]
.

(D2) A 3-component mixture of 2-dimensional t distributions. Two of the components

overlap to form a X-shaped cluster, and the third one forms a circular stand-alone

cluster. Denote by µg, Σg and νg the location vector, scale matrix and the degrees of
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freedom respectively as before. The model parameters of this mixture is as follows.

π1 = 1/3, µ1 = (5,−1)′, ν1 = 2, Σ1 = 2×

[
1 0.7

0.7 0.6

]

π2 = 1/3, µ2 = (5,−1)′, ν2 = 2, Σ2 = 2×

[
0.6 −0.7
−0.7 1

]

π3 = 1/3, µ3 = (0, 0)′, ν3 = 2, Σ3 =

[
2 0

0 1

]

(D3) A 6-component mixture of 2-dimensional Gaussian distributions from Baudry et al.

(2010). This is a 6-component Gaussian mixture with 4 modes. There are two pairs of

components where each pair is overlapped into a cross-shaped cluster, resulting in four

clusters. Denote by µg and Σg the component-wise location vector and covariance

matrix. The model parameters are defined as follows,

P = 0.5×

[
1 −

√
3

√
3 1

]
, D1 =

[
1 0

0 0.1

]
, D2 =

[
0.1 0

0 1

]
,

π1 = π2 = π3 = π4 = 0.2, π5 = π6 = 0.1,

µ1 = (0, 0)′, µ2 = (8, 5)′, µ3 = µ4 = (1, 5)′, µ5 = µ6 = (8, 0)′, and

Σ1 = PD1P
′, Σ2 = P ′D1P , Σ3 = Σ5 = D1, Σ4 = Σ6 = D2.

(D4) A 3-component mixture of 6-dimensional skew-normal distributions. This is the 6-

dimensional analogue of model (D1). Using the same parametrization as (D1), the

model parameters are as follows,

π1 = π2 = π3 = 1/3, and

µ1 = µ3 = (−1, 1,−1, 1,−1, 1)′, µ2 = (5, 5, 5, 5, 5, 5)′.

The component scale matrices are tri-diagonal matrices. For Σ1 and Σ2, the diagonal
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entries are 2, 2, 1.6, 1.6, 1.6, 1.6, and the super and sub-diagonal entries are 0.9. For

Σ3, the diagonal entries are all 2, and the super and sub-diagonal entries are -1.

Figure 7.1: From left to right: Contour plots of the models (D1), (D2) and (D3). The
contour plot for (D4) is omitted as it is more than 2-dimensional.
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(D1), ng = 50 GMM tEIGEN G-Mode t-Mode G-DEMP+ t-DEMP+
Median(G) 3 3 3 3 1 1
Range(G) [3, 6] [3, 5] [3, 5] [3, 5] [1, 3] [1, 3]
Median(AM) 1.795 1.797 1.809 1.808 0 (1.775) 0 (0.4)
Median(ARI) 1 1 1 1 0 (1) 0 (0.535)
Median(Time) 0.407 27.185 0.002 0.002 0.434 0.441

(D1), ng = 100 GMM tEIGEN G-Mode t-Mode G-DEMP+ t-DEMP+
Median(G) 3 3 3 3 1 1
Range(G) [3, 5] [3, 5] [3, 4] [3, 5] [1, 4] [1, 4]
Median(AM) 1.770 1.767 1.797 1.790 0 (1.779) 0 (1.341)
Median(ARI) 1 1 1 1 0 (0.990) 0 (0.892)
Median(Time) 1.270 66.300 0.001 0.001 0.500 0.505

(D1), ng = 150 GMM tEIGEN G-Mode t-Mode G-DEMP+ t-DEMP+
Median(G) 3 3 3 3 1 1
Range(G) [3, 7] [3, 6] [3, 6] [3, 4] [1, 4] [1, 4]
Median(AM) 1.720 1.727 1.788 1.781 0 (1.780) 0 (1.779)
Median(ARI) 0.993 0.993 1 1 0 (0.993) 0 (0.993)
Median(Time) 1.479 83.299 0.002 0.002 0.433 0.441

(D1), ng = 200 GMM tEIGEN G-Mode t-Mode G-DEMP+ t-DEMP+
Median(G) 3 3 3 3 1 1
Range(G) [3, 7] [3, 7] [3, 5] [3, 5] [1, 4] [1, 4]
Median(AM) 1.689 1.639 1.782 1.782 0 (1.784) 0 (1.031)
Median(ARI) 0.989 0.984 0.995 0.995 0 (0.995) 0 (0.812)
Median(Time) 2.785 141.035 0.001 0.01 0.520 0.570

Table 7.1: Tables of summary statistics pertaining to the tested methods, where the data set
is generated by models (D1). For example, the top table is constructed from data sets with
ng = 50. For median(AM) and median(ARI), the bracketed numbers for DEMP+ methods
are the corresponding median values among replications that identified more than one
cluster. The highest ARI values in each table are bolded.
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(D2), ng = 50 GMM tEIGEN G-Mode t-Mode G-DEMP+ t-DEMP+
Median(G) 4 2 2 2 1 1
Range(G) [2, 8] [1, 4] [1, 7] [1, 3] [1, 3] [1, 3]
Median(AM) 0.375 0.299 0.395 0.430 0 (0.581) 0 (0.508)
Median(ARI) 0.344 0.410 0.559 0.653 0 (0.488) 0 (0.656)
Median(Time) 0.610 4.595 0.015 0.001 1.225 0.135

(D2), ng = 100 GMM tEIGEN G-Mode t-Mode G-DEMP+ t-DEMP+
Median(G) 5 3 2 2 1 1
Range(G) [3, 7] [1, 5] [2, 5] [1, 4] [1, 1] [1, 2]
Median(AM) 0.406 0.282 0.439 0.431 0 0 (0.497)
Median(ARI) 0.352 0.437 0.635 0.743 0 0 (0.717)
Median(Time) 1.330 24.635 0.020 0.020 2.255 0.475

(D2), ng = 150 GMM tEIGEN G-Mode t-Mode G-DEMP+ t-DEMP+
Median(G) 5 3 2 2 1 1
Range(G) [4, 7] [1, 5] [2, 4] [1, 3] [1, 1] [1, 3]
Median(AM) 0.369 0.267 0.417 0.411 0 0 (0.458)
Median(ARI) 0.332 0.428 0.638 0.725 0 0 (0.695)
Median(Time) 2.115 16.735 0.020 0.001 2.355 0.495

(D2), ng = 200 GMM tEIGEN G-Mode t-Mode G-DEMP+ t-DEMP+
Median(G) 5 3 2 2 1 1
Range(G) [4, 8] [1, 4] [2, 6] [1, 3] [1, 1] [1, 2]
Median(AM) 0.381 0.252 0.403 0.402 0 0 (0.495)
Median(ARI) 0.329 0.419 0.646 0.723 0 0 (0.674)
Median(Time) 2.755 17.805 0.020 0.001 2.410 0.490

Table 7.2: Tables of summary statistics pertaining to the tested methods, where the data set
is generated by models (D2). For example, the top table is constructed from data sets with
ng = 50. For median(AM) and median(ARI), the bracketed numbers for DEMP+ methods
are the corresponding median values among replications that identified more than one
cluster. The highest ARI values in each table are bolded.
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(D3), ng = 50 GMM tEIGEN G-Mode t-Mode G-DEMP+ t-DEMP+
Median(G) 5 5 4 4 1 1
Range(G) [4, 8] [4, 8] [4, 6] [4, 6] [1, 3] [1, 4]
Median(AM) 1.670 1.912 2.633 2.615 0 (1.318) 0 (2.356)
Median(ARI) 0.638 0.667 0.847 0.847 0 (0.669) 0 (0.824)
Median(Time) 0.840 69.275 0.010 0.010 2.420 2.080

(D3), ng = 100 GMM tEIGEN G-Mode t-Mode G-DEMP+ t-DEMP+
Median(G) 6 6 4 4 1 1
Range(G) [4, 8] [4, 8] [4, 5] [4, 6] [1, 5] [1, 4]
Median(AM) 1.388 1.346 2.669 2.669 0 (1.337) 0 (0.924)
Median(ARI) 0.636 0.627 0.849 0.849 0 (0.679) 0 (0.581)
Median(Time) 1.790 122.065 0.015 0.020 3.910 3.520

(D3), ng = 150 GMM tEIGEN G-Mode t-Mode G-DEMP+ t-DEMP+
Median(G) 6 6 4 4 1 1
Range(G) [5, 8] [4, 8] [4, 5] [4, 6] [1, 5] [1, 5]
Median(AM) 1.294 1.270 2.641 2.632 0 (0.564) 0 (0.674)
Median(ARI) 0.632 0.624 0.848 0.848 0 (0.497) 0 (0.458)
Median(Time) 2.72 171.31 0.020 0.020 3.980 3.590

(D3), ng = 200 GMM tEIGEN G-Mode t-Mode G-DEMP+ t-DEMP+
Median(G) 6 6 4 4 1 1
Range(G) [5, 8] [5, 8] [4, 5] [4, 7] [1, 6] [1, 5]
Median(AM) 1.338 1.236 2.656 2.645 0 (0.582) 0 (0.705)
Median(ARI) 0.634 0.627 0.849 0.849 0 (0.552) 0 (0.475)
Median(Time) 3.75 225.71 0.02 0.02 3.94 3.61

Table 7.3: Tables of summary statistics pertaining to the tested methods, where the data set
is generated by models (D3). For example, the top table is constructed from data sets with
ng = 50. For median(AM) and median(ARI), the bracketed numbers for DEMP+ methods
are the corresponding median values among replications that identified more than one
cluster. The highest ARI values in each table are bolded.
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(D4), ng = 50 GMM tEIGEN G-Mode t-Mode G-DEMP+ t-DEMP+
Median(G) 4 2 2 2 1 2
Range(G) [3, 7] [2, 4] [2, 4] [2, 3] [1, 4] [1, 3]
Median(AM) 0.369 0.830 0.787 0.930 0 (0.492) 0.818 (0.879)
Median(ARI) 0.484 0.894 0.920 0.973 0 (0.571) 0.894 (0.92)
Median(Time) 1.410 2.665 0.020 0.010 1.280 0.140

(D4), ng = 100 GMM tEIGEN G-Mode t-Mode G-DEMP+ t-DEMP+
Median(G) 4 2 2 2 1 2
Range(G) [4, 6] [2, 4] [2, 4] [2, 3] [1, 1] [1, 3]
Median(AM) 0.324 0.815 0.763 0.893 0 0.838
Median(ARI) 0.440 0.940 0.857 0.973 0 0.940
Median(Time) 2.400 6.000 0.010 0.001 1.330 0.140

(D4), ng = 150 GMM tEIGEN G-Mode t-Mode G-DEMP+ t-DEMP+
Median(G) 4 3 2 2 1 1.5
Range(G) [4, 7] [2, 4] [2, 4] [2, 2] [1, 4] [1, 3]
Median(AM) 0.313 0.383 0.663 0.887 0 0.121
Median(ARI) 0.433 0.571 0.832 0.991 0 0.254
Median(Time) 3.305 12.940 0.010 0.001 1.340 0.500

(D4), ng = 200 GMM tEIGEN G-Mode t-Mode G-DEMP+ t-DEMP+
Median(G) 4 3 2 2 1 2
Range(G) [4, 8] [2, 3] [2, 4] [2, 2] [1, 1] [1, 3]
Median(AM) 0.318 0.383 0.689 0.901 0 0.357 (0.871)
Median(ARI) 0.449 0.571 0.824 0.983 0 0.558 (0.96)
Median(Time) 4.070 25.830 0.020 0.001 1.335 0.300

Table 7.4: Tables of summary statistics pertaining to the tested methods, where the data set
is generated by models (D4). For example, the top table is constructed from data sets with
ng = 50. For median(AM) and median(ARI), the bracketed numbers for DEMP+ methods
are the corresponding median values among replications that identified more than one
cluster. The highest ARI values in each table are bolded.
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Tables 7.1 to 7.4 summarize the experiment for (D1), (D2), (D3) and (D4) respectively.

In general, all merging methods detected a decreased number of clusters as expected.

However, at the threshold of 0.1, DEMP+ methods reduced all components into one cluster

frequently, as indicated by the noticeable difference between the median values inside and

outside the parentheses. Nonetheless, when the instances that identified only one cluster

was excluded in median calculation, DEMP+ methods exhibited comparative levels of

additive margin and ARI. This suggests cutoff threshold selection for DEMP+ is critical

for its performance. To our knowledge, there is no specialized threshold tuning strategy

for DEMP+, so a grid-based search would be the best option. However, this process could

be slow, depending on the granularity of the search grid. Among all four, (D3) benefitted

the most from the merging methods. In particular, G-Mode and t-mode methods led to a

marked level of improvement in additive margin as well as ARI, where the median ARI

values were in mid-to-high 80%’s across all sample sizes. In (D4), the t-based methods

continued to produce better quality clusters, as indicated by AM and ARI. Overall, the

mode merging methods exhibited low computation time compared to other methods. This

experiment indicates that the mode merging method can be an effective tool for identifying

clusters from mixture components at a relatively cheap computational cost.

Real Data: Old Faithful

The Old Faithful data set (Härdle et al., 1991) is an excellent example where a finite

mixture model may identify more components than the number of perceived clusters. In

figure 7.2, one can identify two most notable clusters; one on the bottom-left corner and

the other on the top-right corner. The contour plots indicate that each cluster is unimodal,

which makes this data set bimodal. However, for example, when a GMM is fitted, the model

often identifies 3 components instead of 2. For this data set, the range of components fitted

is G = 1, 2, . . . , 8.

Table 7.5 shows the key summaries pertaining to the tested methods. The median num-

ber of fitted components is 3 for both GMM and tEIGEN, whereas median is 2 for the

merging methods. However, the mode merging methods (G-Mode and t-Mode) was more

164



Figure 7.2: Scatterplot of the Old Faithful data set with contour lines. Horizontal axis
measures the duration of eruptions and the vertical axis measures the waiting time between
eruptions. Two clusters are easily noted; one on the bottom left corner and the other on
the top right corner.

GMM tEIGEN G-Mode t-Mode G-DEMP+ t-DEMP+
Median(G) 3 3 2 2 2 2
Range(G) [2, 3] [2, 3] [2, 2] [2, 2] [1, 3] [1, 3]
Median(AM) 1.233 1.235 2.185 2.186 1.193 1.183
Median(Time) 1.75 69.69 0.01 0.01 0.47 0.46

Table 7.5: Table of summary statistics for all tested methods. Each column corresponds
to a tested method. Starting from the second row from the top, the rows contain median
and the range of number of fitted components, additive margins, and elapsed times (in
seconds).

consistent than the DEMP+ methods in terms of the range. In addition, the mode merging

methods showed a significant improvement in additive margin, whereas the DEMP+ meth-

ods showed a slight decrease from that of the initially-fitted mixture models. However, this

is due to the instances where the DEMP+ methods estimated 1 cluster, which corresponds

to the additive margin value of 0. Indeed, the median additive margin of G-DEMP+ and

t-DEMP+ after removing the instances that estimated 1 cluster are 2.084 and 2.106 re-

spectively. These adjusted median values are closer to that of mode merging methods. It’s

also interesting to see that tEIGEN’s median additive margin is slightly higher than that of

GMM, and t-Mode continues to have a slight advantage over G-Mode in terms of additive

margin. This is somewhat expected because the quality of merged components depends on

the initial set of fitted components. Another appeal of mode merging methods is the shorter
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GMM G-Mode G-DEMP+

tMM t-Mode t-DEMP+

Figure 7.3: Scatterplot examples of the Old Faithful, colour-coded by estimated clusters
from each tested method. The top and bottom rows correspond to GMM and tEIGEN-
based methods. Reading from left to right, the first column is (GMM, tEIGEN), the second
column is (G-Mode, t-Mode) and the third column is (G-DEMP+, t-DEMP+).

computation time. The equally low median elapsed time for G-Mode and t-Mode indicates

that mode merging can be executed at a negligible computational cost in comparison to

the initial model-fitting process. Figure 7.3 shows examples of the components identified

by each tested method. The top row shows the fitted components from GMM (left) and

tEIGEN (right), and both methods have fitted three. In particular, we see that the top

right cluster is estimated by two components. Mode merging methods have merged the

top two components in all replications, resulting in the two notable clusters as discussed

earlier. The DEMP+ methods have identified the two notable clusters as well, but their

results are more varied. Overall, this experiment shows that mode merging for tMM can be

a computationally cheap component merging technique that inherits the advantages that

tMM has over GMM.
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GMM tEIGEN G-Mode t-Mode G-DEMP+ t-DEMP+
Median(G) 3 3 3 3 1 1
Range(G) [2, 7] [2, 5] [2, 7] [2, 5] [1, 4] [1, 4]
Median(AM) 0.365 0.336 0.369 0.340 0 (0.376) 0 (0.348)
Median(ARI) 0.782 0.787 0.782 0.787 0 (0.803) 0 (0.801)
Median(Time) 2.42 16.35 0.001 0.001 0.58 0.52
Median(Dist) 4.082 3.732 4.082 3.732 0 (4.082) 0 (3.900)

Table 7.6: Table of summary statistics for all tested methods. Each column corresponds
to a tested method. Starting from the second row from the top, the rows contain median
and the range of number of fitted components, additive margins, and elapsed times (in
seconds) and the median value of average distance between each pair of mixture compo-
nent means denoted by Median(Dist). For Median(AM), Median(ARI) and Median(Dist),
the bracketed numbers for DEMP+ methods are the corresponding median values among
replications that identified more than one cluster.

Chronic Kidney Disease

In this section, we cluster the Chronic Kidney Disease data set from Dua and Graff (2017),

where a cleaned version is available in the R package teigen (Andrews et al., 2018). Clus-

tering various measurements taken from the patients and investigating the relationship

between the identified clusters and the patients’ disease status can help with the study of

the disease’s characteristics. When the disease status is binarily classified, fewer clusters

(ideally two, perhaps) could be favoured over more clusters. Therefore, if a finite mixture

model fits a large number of components, then component merging could be beneficial.

Table 7.6 shows that the merging method did not result in a significant change in AM

or ARI. This is likely because each cluster is too far away from each other, as shown in

the Medium(Dist) row. Indeed, if the component-wise modes are far apart (for GMM and

tMM, component-wise mean and mode are equal), then, they are unlikely to merge to one

mode. In addition, far-apart modes would result in corresponding densities having a low

degree of overlap. All of this would imply that the mode merging and DEMP+ methods

would not change the cluster assignments significantly. This is somewhat expected given

that Median(Dist) value for GMM and tEIGEN are both large; The performance of the
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tested merging methods dependent on the initially-fitted model.

7.4 Discussion

In this chapter, the t mean-shift, a novel mode merging method based on the EM algorithm

for the tMM and its parsimonious variants, is introduced. The update equation is closely

related to the Gaussian ridgeline function, which contains all critical points of the Gaus-

sian finite mixture density function, including all modes. The performance of the method

was demonstrated using both simulated and real data. In the numerical experiments, the

introduced method was shown to identify mixture components whose modes are near each

other and merge them into a single cluster, while maintaining a low computational cost.

Directions for future work include extensions to other non-Gaussian finite mixtures, and a

further analysis on the mean-shift and non-Gaussian ridgeline functions.
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Chapter 8

StableMerge: A Generalized Mode

Merging Framework

8.1 Introduction

Model-based clustering deploys a finite mixture model, whose probability mass or density

function is a convex combination of probability mass or density functions usually from the

same parametric family, to estimate clusters within a data set. Each observation is allocated

to a single summand density function (also known as a component density) via component-

wise membership probability, so the set of observations associated with each component is

commonly interpreted as a cluster (McLachlan and Peel, 2004). The consequent component-

cluster correspondence naturally demands a high degree of flexibility from component

distributions, as the shape of each cluster, whose definition itself is context-dependent, is

likely unbeknownst to the investigator a priori. To address this concern, numerous robust

finite mixtures have been developed, including Peel and McLachlan (2000); Franczak et al.

(2013); Lee and McLachlan (2013); Browne and McNicholas (2015); Dang et al. (2015);

Punzo and McNicholas (2016). Comprehensive overviews on robust model-based clustering

can be found in McLachlan and Peel (2004); McNicholas (2016).

Another flavour of cluster identification from finite mixtures is modal clustering. A suc-
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cinct description of the key issue is given in Hennig (2010). Modal clustering is appropriate

when the component-cluster correspondence assumption no longer holds. Such a relaxation

is particularly relevant when the mixture model comprises of rigid component densities. For

example, the Gaussian finite mixture is arguably the most popular one, but its component

distribution, the Gaussian distribution, is unable to capture non-standard tail behaviours

or any sort of skewness. A common consequence of this deficit in flexibility is the over-

estimation of the number of mixture components, whereby multiple components are fitted

to a single cluster. A bundle of such components can result in a collectively unimodal re-

gion, which modal clustering attempts to seek out. Another benefit of modal clustering is

that a single mode-based cluster may assume a shape beyond the limit of a single com-

ponent, thereby alleviating the burden of flexibility imposed on individual components.

Recent developments on modal clustering include Carreira-Perpinan (2000); Comaniciu

and Meer (2002); Yuan et al. (2010); Carreira-Perpinan (2007); Chacón (2019); Melnykov

(2016); Kim and Browne (2021a). For an overview on modal clustering, refer to Menardi

(2016); Chacón (2020). The mean-shift algorithm by Comaniciu and Meer (2002) is a

gradient-based method of mode detection, where an initial point is iteratively updated in

the direction of increasing density, until the nearest local mode is reached. It is intuitively

straight-forward, and is easy to apply in many situations. Moreover, Carreira-Perpinan

(2007) showed that the mean-shift algorithm for the Gaussian finite mixture model is an

Expectation-Maximization (EM) algorithm (EM algorithm credited to Dempster et al.

(1977)), which adds to the method’s appeal. Chacón (2019) applied the mean-shift algo-

rithm on a Gaussian finite mixture for modal clustering, and Kim and Browne (2021a)

introduced a mean-shift-based mode merging algorithm for a finite mixture of multivari-

ate t-distributions, and showed that the t-mean-shift is also an EM algorithm. However,

to our best knowledge, a mode-merging algorithm is yet to be developed for other non-

Gaussian finite mixtures besides t, and as listed earlier, there is a large body literature

on various non-Gaussian finite mixture models. As they are not immune to the violation

of component-cluster correspondence assumption, we develop a mean-shift-based mode

merging algorithm for three classes of highly flexible non-Gaussian components: power-

exponential, normal variance mixture, and normal variance-mean mixture. For each class,
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we begin by introducing its general representation, and develop the mean-shift algorithm

for its finite mixture. Then we present a unified merging rule for all three classes. There-

after, we demonstrate the algorithms in simulated and real-data settings. We will then

conclude with a brief discussion on our work and future directions.

8.2 Methodology

In this section, we generalize the mean-shift-based mode-merging algorithms to three broad

classes of component distributions: power exponential (Gómez et al., 1998), normal variance

mixture and normal variance-mean mixture (McNeil et al., 2015).

The power exponential (PE) distribution, also known as the generalized Gaussian dis-

tribution, extends the Gaussian distribution to allow leptokurtosis (heavier tails) and

platykurtosis (lighter tails). A p-dimensional PE distribution is parametrized by a loca-

tion vector µ ∈ Rp, a (p × p)-dimensional positive definite scale matrix Σ and a positive

shape parameter β > 0. Per Gómez et al. (1998), its density function is given by

fPE(x;µ,Σ, β) =
pΓ(p/2)

Γ
(
1 + p

2β

)
21+

p
2β

|πΣ|−1/2 exp

{
−1

2

[
(x− µ)′Σ−1(x− µ)

]β}
. (8.1)

Special cases of the PE distribution include symmetric Laplace at β = 1/2 and Gaussian

at β = 1, and its asymptotic distribution, as β →∞, is the uniform distribution between 0

and 1. Moreover, when β ≤ 1, then it is a normal variance mixture distribution (also known

as a scale mixture of normal distributions) (Gómez-Sánchez-Manzano et al., 2008). A finite

mixture of power exponential distributions was studied by Zhang and Liang (2010); Dang

et al. (2015).

Another class of generalization on tailedness is the normal variance mixture distribution.

LetW > 0 be a (absolutely) continuous random variable with parameter set denoted by Ω,

µ ∈ Rp a location vector, and U a p-dimensional Gaussian random vector with zero mean

and covariance Σ. Then, a p-dimensional random vector X following a normal variance
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mixture (NVM) distribution with admits the following stochastic representation

X = µ+
√
WU . (8.2)

In a G-component mixture setting, the NVM distribution yields the following hierarchy. Let

Z = (Z1, . . . , ZG)
′ denote indicator variables so that Zg = 1 if X belongs to component g,

and let Wg denote the latent NVM variable with distribution conditional on Zg = 1 being

Hg, parametrized by Ωg. Then,

X|Zg = 1 ∼ NVMp(µg,Σg,Ωg),

Wg|Zg = 1 ∼ Hg(Ωg),

X|Zg = 1, wg ∼ Np(µg, wgΣg). (8.3)

(8.4)

This latent variable hierarchy makes NVM distributions well-suited for EM algorithms.

The third, and perhaps the most flexible, generalization on the Gaussian distribution is the

normal variance-mean mixture (NVMM) distribution. A NVM distribution accommodates

non-Gaussian tail behaviours, but is still intolerant of skewness. The NVMM generalizes

the NVM further by incorporating locational asymmetry. Let U follow a p-dimensional

Gaussian distribution with zero mean and covariance Σ and W > 0 a positive random

variable, independent from U , following a distribution h with parameters denoted by Ω.

Then, a p-dimensional NVMM random vector X with location parameter µ and skewness

parameter α admits the following stochastic representation

X = µ+Wα+
√
WU . (8.5)

Similar to the NVM, in a G-component mixture setting, the NVMM distribution yields
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the following hierarchy. Using an analogous notation as that from the NVM, we have

X|Zg = 1 ∼ NVMMp(µg,αg,Σg,Ωg),

X|Zg = 1, wg ∼ Np(µg + wgαg, wgΣg),

Wg|Zg = 1 ∼ Hg(Ωg). (8.6)

In our work, we will assume that Hg has a density function denoted by hg. We develop

a mean-shift algorithm for the finite mixture of EP, NVM and NVMM distributions re-

spectively, thereby enabling mode identification on a truly broad range of distributions.

Given a G-component finite mixture density f , we want to estimate its local maximizer

x⋆ via an EM algorithm. That is, f(x) is subject to maximization with respect to x.

We assume that all parameters are known a priori. In practice, this means that their

estimates would be computed before mean-shift. The form of f(x) is often challeng-

ing to tackle directly, so we adopt the complete-data framework to apply the EM algo-

rithm. The resultant complete-data tuple is (x′, z′)′ = (x′, z1, . . . , zG)
′ for the PEMM, and

(x′,w′, z′)′ = (x′, w1, . . . , wG, z1, . . . , zG)
′ for the NVM-MM and NVMM-MM.

8.2.1 Power Exponential Mean-shift

In a G-component PE mixture model (PEMM), the gth component’s density function

follows a PE distribution with component-wise parameter sets Θg = {µg,Σg, βg} for g =

1, . . . , G. That is,

fPE(x;Θg) =
pΓ(p/2)

Γ
(
1 + p

2βg

)
2
1+ p

2βg

|πΣg|−1/2 exp

{
−1

2

[
(x− µg)

′Σ−1
g (x− µg)

]βg

}
. (8.7)

The PEMM’s complete-data log-density is

log f(x, z;Θ) =
G∑

g=1

zg

{
−1

2

[
(x− µg)Σ

−1
g (x− µg)

]βg

}
+ const,
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where Θ denotes the set of all model parameters, and ‘const’ is an additive constant

with respect to x. Consequently, the conditional expectation given the mode estimate at

iteration t is

Q(x|x(t),Θ) = E
[
log f(x,Z)|x(t)

]
=

G∑
g=1

−z
(t)
g

2

[
(x− µg)Σ

−1
g (x− µg)

]βg
+ const,

where z
(t)
g is the conditional expectation of zg at iteration t. Algebraically,

z(t)g =
πgfg(x

(t);Θg)∑G
k=1 πkfPE(x(t);Θk)

. (8.8)

Since x cannot be separated to form an explicit solution, an implicit optimization scheme

is used. Consider the gradient and Hessian of Q(x|x(t))

∇xQ(x|x(t)) =
G∑

g=1

(−z(t)g βg)
[
(x− µg)

′Σ−1
g (x− µg)

]βg−1
Σ−1

g (x− µg) (8.9)

∇2
xQ(x|x(t)) =

G∑
g=1

(−z(t)g βg)
{ [

(x− µg)
′Σ−1

g (x− µg)
]βg−1

Σ−1
g

+ 2(βg − 1)
[
(x− µg)

′Σ−1
g (x− µg)

]βg−2
Σ−1

g (x− µg)(x− µg)
′Σ−1

g

}
. (8.10)

Each βg must be at least 1 for its gradient to exist (and at least 2 for the Hessian), as that

ensures continuity over all x. Indeed, the component-wise log-likelihood is continuously

differentiable only ⌊βg⌋ times. Thus, Q(x|x(t)) has min{⌊β1⌋, . . . , ⌊βG⌋} continuous deriva-
tives with respect to x, implying that an optimization scheme requiring the dth derivative

is appropriate only when d ≥ min{⌊β1⌋, . . . , ⌊βG⌋}. In general, a derivative-free method

should be used. In this work, we use the Nelder-Mead method implemented R software’s

optim function (R Core Team, 2020).
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8.2.2 Normal Variance Mixture Mean-shift

In aG-component NVMmixture model (NVM-MM), the component-wise density functions

fNVM(x;Θg) follow a NVM distribution parametrized by Θg = {µg,Σg,Ωg}. Examples

include t (McNeil et al., 2015), symmetric Laplace (Kotz et al., 2012) and symmetric

generalized hyperbolic (McNeil et al., 2015) distributions. The general form of the NVM-

MM complete-data log-density is

log f(x,w, z;Θ) =
G∑

g=1

zg log fg(x, wg;Θg)

=
G∑

g=1

zg [log ϕ(x|wg;µg,Σg) + log h(wg;Ωg)] ,

where ϕg(x|wg) denotes the conditional Gaussian density of x given wg, and hg(wg) de-

notes the marginal density of wg, both under gth component membership. Its conditional

expectation is

Q(x|x(t)) =
G∑

g=1

−
z
(t)
g E[W−1

g |Zg = 1,x(t),Θg]

2
(x− µg)

′Σ−1
g (x− µg) + const,

where z
(t)
g takes a similar form to (8.8) but with fNVM instead of fPE. Since log f(x,w, z;Θ)

interacts with x only through the conditional Gaussian density ϕ, solving for x in the crit-

ical point equation ∇xQ(x|x(t)) = 0 yields

x(t+1) =

[
G∑

g=1

z(t)g E
[
W−1

g |Zg = 1,x(t),Θg

]
Σ−1

g

]−1 G∑
g=1

z(t)g E
[
W−1

g |Zg = 1,x(t),Θg

]
Σ−1

g µg.

(8.11)

The above iteration is repeated until a convergence criterion is met.

175



8.2.3 Normal Variance-mean Mixture Mean-shift

In a G-component NVMM mixture model (NVMM-MM), the component-wise density

functions fNVMM(x) follow a NVMM distribution parametrized by Θg = {µg,αg,Σg,Ωg}.
Examples include skew-t (Barndorff-Nielsen and Shephard, 2001), (shifted) asymmetric

Laplace (Kotz et al., 2012; Franczak et al., 2013) and generalized hyperbolic (Browne and

McNicholas, 2015) distributions. Like in the NVM case, the complete-data for a NVMM-

MM extends to (x,w, z). The complete-data log-density function is

log f(x,w, z;Θ) =
G∑

g=1

zg [log ϕg(x|wg;µg,αg,Σg) + log hg(wg;Ωg)] ,

where the gth component’s conditional Gaussian density of x is governed by the mean vec-

tor µg+wgαg and covariance matrix wgΣg. The conditional expectation of log f(x,w, z;Θ)

is

Q(x|x(t)) =
G∑

g=1

−z(t)g

{−E[W−1
g |Zg = 1,x(t),Θg]

2
(x− µg)

′Σ−1
g (x− µg)

+α′
gΣ

−1
g (x− µg)

}
+ const,

where z
(t)
g take a similar form as (8.8) but with fNVMM instead. Solving for x in the critical

point equation ∇xQ(x|x(t)) = 0 yields

x(t+1) =

[
G∑

g=1

z(t)g E
[
W−1

g |Zg = 1,x(t),Θg

]
Σ−1

g

]−1

×
G∑

g=1

z(t)g Σ−1
g

(
E
[
W−1

g |Zg = 1,x(t),Θg

]
µg +αg

)
. (8.12)

The above iteration is repeated until a convergence criterion is met.
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8.2.4 Monotonicity with Respect to Log-density

Carreira-Perpinan (2007) showed that the Gaussian mean-shift is an EM algorithm, thus

the sequence of observed-data log-density {log f(x(0);Θ), log f(x(1);Θ), . . .} evaluated over

the mean-shift solutions is monotonically increasing. We show that our non-Gaussian mean-

shift algorithms preserves the said monotonicity.

Proposition 8. Let {x(t)}t=1,... denote a sequence of solutions computed from the mean-

shift algorithm for PEMM, NVM-MM or NVMM-MM. Then, the corresponding observed-

data log-density sequence {log f(x(t);Θ)}t=1,... is monotonically increasing.

Proof. For notational brevity, let f(x), f(x, w) and h(w|x) denote the observed-data

marginal, complete-data joint and latent-data conditional densities under a fixed set of

parameters. Then, log f(x) can be decomposed as

log f(x) = log f(x, w)− log h(w|x).

Taking the expectation with respect to the latent data conditional on a different value x̂,

we have

log f(x) = Q(x|x̂)− E[log h(w|x)|x̂],

where Q(x|x̂) = E[log f(x, w)|x̂]. Hence, the difference between log f(x) and log f(x̂) is

log f(x)− log f(x̂) = Q(x|x̂)−Q(x̂|x̂)− E[log h(w|x)|x̂] + E[log h(w|x̂)|x̂].

By Jensen’s inequality (Jensen, 1906), we know that E[log h(w|x̂)|x̂] ≥ E[log h(w|x)|x̂], so
we conclude

log f(x)− log f(x̂) ≥ Q(x|x̂)−Q(x̂|x̂).

Hence, increasing Q(x|x̂) − Q(x̂|x̂) translates to increasing log f(x) − log f(x̂), which is

the objective of the mean-shift algorithm.
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8.2.5 Threshold-free Component Merging

Based on the proposed mean-shift algorithms, we develop a procedure for detecting uni-

modal clusters via merging of component-wise modes. A high-level description of an ex-

isting method is as follows. Given a G-component mixture model and the modes of each

component m1, . . . ,mG, the corresponding mean-shift algorithm is applied to each mg

(g = 1, . . . , G) to obtain G local estimates of the mixture modes m̂1, . . . , m̂G. Then, the

labels of components whose mode estimates are close enough are combined into a single

label. For instance, if ||m̂1 − m̂2||2 < c for a pre-determined threshold c > 0, then the

observations belonging to components 1 and 2 would be grouped into a single cluster than

their label would be unified to 1. This procedure was initially applied to the GMM by

Chacón (2019), and to the tMM by Kim and Browne (2021a).

The outcome of the aforementioned merging procedure is heavily dependent on the

closeness threshold c. Specifically, higher values of c yields fewer clusters. Yet, a selection

rule for this crucial constant is not apparent. Thus, we introduce a robust threshold-free

merging procedure. Let

dgl = ||m̂g − m̂l||2

denote the Euclidean distance between the estimated mixture modes generated from com-

ponents g and l, for g < l and g, l = 1, . . . , G. Then, there are G⋆ =
(
G
2

)
+ 1 distance

values if we include a zero. We build a tree for a bottom-up hierarchical clustering (we use

complete-linkage in this work), where two groups of observations Si and Sj are combined

into one if

dmax
ij = max{||x− y||2 : x ∈ Si,y ∈ Sj}

is the smallest among all pairs of observation groups S1, . . . ,SK . If groups i and j are

combined, the distance between them is thus dmax
ij . In our problem, the initial observation

sets are Sg = {m̂g} for g = 1, . . . , G. Now consider the ordered pairwise distances of the

mode estimates:

{0} ∪ {dgl}g<l=1,...,G −→ 0 = d(0) ≤ d(1) ≤ d(2) ≤ · · · ≤ d(G⋆).
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Then we can see that, under the complete-linkage procedure, the maximum possible dis-

tance between groups is d(G⋆). If the tree is ‘cut’ at some c ∈ [0, d(G⋆)], then group pairs

whose distance is greater than c are separated, forming different clusters. Consider the fol-

lowing example. Suppose there are four points in R2: x1 = (0, 0)′, x2 = (0, 0.1)′, x3 = (5, 0)′,

x4 = (4, 0.1)′. There are six Euclidean distances between the four points:

||x1 − x2|| = 0.1, ||x1 − x3|| = 5, ||x1 − x4|| =
√
16.01

||x2 − x3|| =
√
25.01, ||x2 − x4|| = 4, ||x3 − x4|| =

√
1.01

Figure 8.1: Coloured scatterplot of x1,x2,x3,x4.

Based on the complete-linkage hierarchical clustering, the points are iteratively merged
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in the following way

{x1}, {x2}, {x3}, {x4}

−→ {x1,x2}, {x3}, {x4} smallest max distance is 0.1, between x1 and x2.

−→ {x1,x2}, {x3,x4} smallest max distance is
√
1.01, between x3 and x4.

−→ {x1,x2,x3,x4} smallest max distance is 4, between x2 and x4.

Although the tree has 3 key values (0.1,
√
1.01 and 4), it could be cut at any value between

0 and
√
25.01, resulting in different cluster counts. For example, if the tree is cut at an

arbitrary value in the sub-interval [0, 0.1), then 4 clusters would be identified. If cut in

the sub-interval [0.1,
√
1.01), then 3 clusters would be identified. This observation suggests

that the cluster count corresponding to the widest sub-interval could be seen as the most

stable. We formalize this notion of cluster count stability as a definition.

Definition 1. The stability of a cluster count k under complete-linkage hierarchical clus-

tering is defined as

St(k) = max
a,b∈[0,dG⋆ ]

{b− a : cluster count if cut at b = cluster count if cut at a = K, b ≥ a}.

The most stable cluster count is then defined as k ∈ {1, . . . , G} that maximizes St(·).
In the case of a tie, the smallest cluster count is selected. However, in practical settings,

identifying the boundary between two cluster counts can be challenging. Therefore, we

approximate the boundaries by computing the cluster count at each d(i). For instance, in the

4-point example above, we have the following table of d(i) and corresponding cluster counts.

The stability at cluster count k is approximated by calculating the difference between the

smallest d(i) corresponding to k and the largest d(i) corresponding to k+1. In case of k = 1,

St(k) is approximated by computing the difference between the smallest and largest d(i)

corresponding to k = 1.
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d(i) 0 0.1
√
1.01 4 · · ·

√
25.01

Cluster count 4 3 2 1 · · · 1

Ŝt 0.1 0.905 2.995 1.001 - -

Table 8.1: Table of ordered pairwise distance between points and corresponding cluster
counts and approximated stability.

The above example indicates that the most stable cluster count is 2, and this is consis-

tent with the intuitive judgement, as the sets {x1,x2} and {x3,x4} are highly separated.

The main benefit is that our stability-maximization procedure is a threshold-free way of

estimating the number of clusters from a set of component-wise modes. The mean-shift

and mode-merging procedures are outlined in algorithms 3 and 4 respectively.
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Algorithm 3 PEMM/NVM-MM/NVMM-MM Mean-shift

1: initialize:
Set model parameters Θ.
Set convergence threshold c > 0.
Set convergence indicator: convergence(x, y, Θ, c).

2: for g = 1, . . . , G do
3: t = 0
4: x

(t)
g = µg

5: while converged = FALSE do

6: z
(t)
k ← πkfk(x

(t)
g ;Θk)/f(x

(t)
g ;Θ)

7: if model is PEMM then

8: x
(t+1)
g ← argmax

x

∑G
g=1−

z
(t)
g

2

[
(x− µg)Σ

−1
g (x− µg)

]βg

9: else if model is NVM-MM then

10: w
(t)
k ← E

[
W−1

k |Zk = 1,x
(t)
g ,Θk

]
11: x

(t+1)
g ←

[∑G
k=1 z

(t)
k w

(t)
k Σ−1

k

]−1∑G
k=1 z

(t)
k w

(t)
k Σ−1

k µk

12: else if model is NVMM-MM then

13: w
(t)
k ← E

[
W−1

k |Zk = 1,x
(t)
g ,Θk

]
14: x

(t+1)
g ←

[∑G
k=1 z

(t)
k w

(t)
k Σ−1

k

]−1∑G
k=1 z

(t)
k Σ−1

k

(
w

(t)
k µk +αk

)
15: end if
16: converged ← convergence(x

(t+1)
g , x

(t)
g , Θ, c)

17: t← t+ 1
18: end while
19: x̂g ← x

(t)
g

20: end for
21: return x̂1, . . . , x̂G
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Algorithm 4 Stability-based Mode Merging (StableMerge)

1: initialize:
Component-wise mode-label pairs {m̂1, 1}, . . . , {m̂G, G}.
ClustStability ← ().

2: Compute dgl = ||m̂g − m̂l||2 for g < l, g, l = 1, . . . , G.
3: Sort in ascending order the set {0} ∪ {dgl} to 0 = d(0) ≤ d(1) ≤ · · · ≤ d(G⋆) where

G⋆ =
(
G
2

)
.

4: Construct a complete-linkage hierarchical tree using {m̂1, . . . , m̂G}.
5: for i = 0, . . . , G⋆ do
6: Calculate the number of clusters produced when the tree is cut at d(i).
7: end for
8: return argmax

k=1,...,G
Ŝt(k)

8.3 Computational Aspects

In this section, we discuss three points of consideration regarding the implementation of

the mean-shift and StableMerge procedures: mixture model parameter estimation, parsi-

monious variants and mode initialization.

Mixture Model Parameter Estimation

In most scenarios, the true parameters of the deployed mixture model is unavailable, and

must be estimated instead. The parameter estimation process developed by Dang et al.

(2015) is implemented as a R software package mixSPE (Browne et al., 2021). As to

the NVM-MM and NVMM-MM, to our best knowledge, parameter estimation for their

general forms is not yet available. However, under the NVM-MM framework, the R software

package teigen (Andrews et al., 2018) fits the t mixture model, and under the NVMM-MM

framework, the MixGHD R package (Tortora et al., 2021) fits the generalized hyperbolic

mixture model.
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Parsimonious Variants

Many multivariate parametric distributions involve a matrix-variate positive definite scale

parameter Σ, whose dimension increases quadratically against the data’s dimension p.

Therefore, one may consider parameter count reduction via structural constraints on Σ.

The eigen-decomposition and its variants are a popular choice, and are implemented in

several finite mixture model packages in R, including mclust (Scrucca et al., 2016), teigen

(Andrews et al., 2018) andmixSPE (Browne et al., 2021). Consider the eigen-decomposition

ofΣ = PDP ′ where P is a (p×p)-dimensional orthogonal matrix andD = diag(d1, . . . , dp)

is a diagonal matrix of eigenvalues arranged in a descending order. Fraley and Raftery

(2002) introduced a scaled variant of the eigen-decomposition where the diagonal matrix

D is decomposed into a product of a proportionality constant λ > 0 and a normalized

diagonal matrix D⋆ so that D = λD⋆ such that det(D⋆) = 1. The resulting component-

wise decomposition is

Σg = λgPgD
⋆
gP

′
g, (8.13)

where λg represents the volume occupied by a mixture component, Pg its directional ori-

entation, and D⋆
g its shape. The total number of free parameters across Σ1, . . . ,ΣG can be

reduced by imposing cross-component equality constraints on λg, Pg or D⋆
g .

The cross-component equality constraint on the orientation matrices, Pg = P , achieves

the largest parameter count reduction and the most dramatic simplification of mean shift

iteration formulae. For example, consider the constraint Pg = P but with free λg and Dg.

The mean shift update x(t+1) for the general NVM-MM and NVMM-MM are reduced to

x
(t+1)
NVM = P

[
G∑

g=1

z
(t)
g w

(t)
g

λg
(D⋆

g)
−1

]−1 [ G∑
g=1

z
(t)
g w

(t)
g

λg
(D⋆

g)
−1P ′µg

]
,

x
(t+1)
NVMM = P

[
G∑

g=1

z
(t)
g w

(t)
g

λg
(D⋆

g)
−1

]−1 [ G∑
g=1

z
(t)
g

λg
(D⋆

g)
−1P ′(w(t)

g µg +αg)

]
,
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where one needs to invert diagonal matrices only, which is computationally lighter than a

general matrix inversion.

Mode Initialization in StableMerge

The StableMerge is initialized with component-wise modes, so one must obtain the mode

estimates first. With the PEMM and NVM-MM, the mode estimates m̂g are equal to

component-wise means µg, as they do not model for skewness. However, with the NVMM-

MM, the component-wise mean and mode are not equal unless the skewness vector αg is

zero. Thus, the component-wise modes must be obtained first. The component-wise modes

can be computed via mean-shift on individual components. For a single component k, the

update x
(t+1)
k function simplifies to

x
(t+1)
k = µk +

αk

E[W−1
k |Zk = 1,x(t),Θk]

, (8.14)

and the resulting mode estimates become the initialization for the StableMerge.

8.4 Numerical Experiments

In this section, we use simulated and real data sets to compare and contrast the performance

of the StableMerge against several existing component-merging methods. The experimental

scenarios and their objectives are described below.

• Simulation: Detecting clusters of various shapes. The cluster-detecting meth-

ods are compared on their cluster detection using a 2-dimensional, 6-components

data set divided into three well-separated clusters.

• Real data illustration: Olive. The cluster-detecting methods are applied to the

Olive data set, which records the eight fatty acid compositions of 572 Italian olive

oils.
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8.4.1 Considered Mixture Models

In all experimental scenarios, the following four finite mixture models are fitted using ap-

propriate R packages. The selection criterion used during the fitting process is the Bayesian

Information Criterion (BIC) by Schwarz (1978). Each model is fitted over a range of com-

ponent count values, and the one resulting in the highest BIC value is selected.

• Gaussian: A GMM is fitted using the R package mclust (Scrucca et al., 2016). The

component membership for the data set is initialized by the package’s default method,

which is agglomerative hierarchical clustering. In simulation, all observations in a

replication are used for initialization. In real data experiment, 80% of observations

are randomly chosen in each initialization.

• Student-t: A tMM is fitted using the R package teigen (Andrews et al., 2018). The

component membership for the data set is initialized by k-means clustering for the

simulation, and by random assignment for the real data experiment.

• Power exponential: A PEMM is fitted using the R package mixSPE (Browne

et al., 2021). The component membership for the data set is initialized by k-means

clustering for the simulation, and by random assignment for the real data experiment.

• Generalized hyperbolic: AGHMM is fitted using the R packageMixGHD (Tortora

et al., 2021). The component membership for the data set is initialized by k-means

clustering for the simulation, and by random assignment for the real data experiment.

8.4.2 Merging Methods

On each mixture model, the following cluster-detecting methods are applied.

• StableMerge. StableMerge is the proposed method in this work.

• ICL maximization. Integrated Complete-data Likelihood (ICL) by Biernacki et al.

(2000), as outlined in chapter 2.1.
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• DEMP+ as outlined in chapter 2.3. However, sampling from an arbitrary distribu-

tion can be technically complicated and computationally expensive. Therefore, in this

work, we approximate qG1|G2 using the posterior component membership probabilities

ẑig. Let

Ps =

{(∑
g∈Gs

ẑig,
∑
k∈Gt

ẑik

)}
i : ith observation from Gs

(8.15)

denote the set of observation-wise posterior membership probability tuple for cluster

s, and similarly Pt for cluster t. Then, for each p ∈ Ps, a number from {s, t} is

sampled with P (choose s) ∝ p[1] and P (choose t) ∝ p[2]. Finally, q̂Gt|Gs is computed

as the proportion of sampled numbers that are not s. The same process is applied to

Pt to approximate q̂Gs|Gt . This approximation is faster than the originally-proposed

estimation method, as it need not generate random samples from appropriate dis-

tributions, and the posterior membership probabilities are computed as part of the

parameter estimation process.

• EntropyMerge as outlined in chapter 2.3.

Each method’s performance is measured primarily by the Additive Margin (AM) by

Ben-David and Ackerman (2009), and also by the Adjusted Rand Index (ARI) by Hubert

and Arabie (1985), when the ground truth is available. Both measures are outline in chapter

2.1.

8.4.3 Simulated Data

In this experiment, the four cluster-detecting methods are compared using a 2-dimensional,

6-components data set divided into three clusters. The goal is to compare the efficacy

of cluster-detecting methods on mixture models with over-estimated G. Each cluster is

generated from the following distributions. The component-wise colours are shown in figure

8.2.

187



Figure 8.2: An instance of the simulated 2-dimensional, 6-component data set.

• Cross-shaped cluster (black, red):

black ∼ N

(
(3, 0)′,

[
1 0

0 0.05

])

red ∼ N

(
(3, 0)′,

[
0.05 0

0 1

])
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• Triangular cluster (green, blue, turquoise):

green ∼ N

(
(7, 0)′,

[
0.6 0

0 0.05

])

blue ∼ N

(
(8, 2)′,

[
0.7 −0.5
−0.5 0.7

])

turquoise ∼ N

(
(6, 2)′,

[
0.7 0.5

0.5 0.7

])

• Rectangular cluster (magenta):

magenta ∼ U [0, 6]× U [−6,−4]

The proportion of all components are equal at πg = 1/6 for all g. Also, three values of sam-

ple size are considered: n = 100, 200, 300, and for each n, the component-wise sample size

is ng = ⌊n/6⌋ for all g. Once a data set is generated, the four mixture models are fitted over

G = 4, . . . , 10 and selected by the BIC. On the BIC-selected model, each of StableMerge,

DEMP+ and EntropyMerge is applied to identify clusters. With ICL maximization, the

mixture models are directly fitted over G = 1, . . . , 10 instead, since the ICL seeks clusters

at the outset. For each n, this process is replicated 500 times, each with a newly-generated

data set.
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n = 100 Init StableMerge DEMP+ EntropyMerge ICL
GMM 7 3 4 2 4

(2) (1) (1) (2) (0)

tMM 8 3 4 2 4
(1) (1) (1) (0) (1)

PEMM 6 5 2 1 -
(1) (1) (2) (0) -

GHMM 5 3 4 4 4
(1) (1) (1) (2) (1)

n = 200 Init StableMerge DEMP+ EntropyMerge ICL
GMM 6 4 4 3 4

(2) (2) (1) (2) (1)

tMM 7 5 5 2 4
(4) (2) (2) (1) (1)

PEMM 6 4 4 6 -
(2.25) (1) (2) (0) -

GHMM 4 3 4 2 4
(1) (1) (1) (0) (0)

n = 300 Init StableMerge DEMP+ EntropyMerge ICL
GMM 7 4 5 2 5

(2) (1) (1) (1) (2)

tMM 8 5 5 3 4
(1) (1) (2) (1) (1)

PEMM 6 4 4 6 -
(1) (1) (1) (1) -

GHMM 5 3 3 2 4
(1) (1) (1) (0) (1)

Table 8.2: Tables of the median (and inter-quartile range in brackets) cluster count esti-
mated by StableMerge, DEMP+, EntropyMerge and ICL. Init denotes the initial model
selected by BIC before one of StableMerge or DEMP+ or EntropyMerge is applied. The
top-left label in each table indicates the sample size used in generating the results in the
corresponding table. The row labels indicate the mixture model upon which the cluster-
detecting methods were applied. The number 3 is bolded, as it is the true number of
clusters. ICL on PEMM is not reported as the mixSPE package did not support ICL max-
imization at the time of simulation.
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n = 100 StableMerge DEMP+ EntropyMerge ICL
GMM 287 20 24 45

tMM 302 14 32 39

PEMM 27 55 2 -

GHMM 197 28 1 196

n = 200 StableMerge DEMP+ EntropyMerge ICL
GMM 144 29 112 18

tMM 147 12 162 1

PEMM 166 78 2 -

GHMM 253 57 7 77

n = 300 StableMerge DEMP+ EntropyMerge ICL
GMM 89 13 126 0

tMM 68 13 192 0

PEMM 135 64 2 -

GHMM 253 108 12 9

Table 8.3: Tables recording the number of replications where each cluster-detecting method
identified 3 clusters over 500 replications. The row labels indicate the mixture model upon
which the cluster-detecting methods were applied. ICL on PEMM is not reported as the
mixSPE package did not support ICL maximization at the time of simulation. The highest
count in each row is bolded.

Table 8.2 shows that all cluster-detecting methods identified significantly fewer numbers

of clusters than the initial BIC-based model across all n. In particular, the StableMerge

was most successful in identifying three clusters from the data set (5 out of 12 rows have
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median G of 3), followed by EntropyMerge and DEMP+. Furthermore, the replication-wise

comparison shown in table 8.3 indicates that the StableMerge identified three components

most frequently in 8 out of 12 rows. EntropyMerge was more effective on more rigid mixture

models (GMM, tMM). This demonstrates the efficacy of StableMerge in both rigid and

flexible mixture distributions.
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n = 100 Init StableMerge DEMP+ EntropyMerge ICL
GMM 0.58 0.81 0.60 0.39 0.66

(0.18) (0.31) (0.18) (0.08) (0.15)

tMM 0.58 0.78 0.62 0.39 0.67
(0.18) (0.41) (0.21) (0) (0.16)

PEMM 0.38 0.58 0.29 0 -
0.09 (0.11) (0.67) (0) -

GHMM 0.66 0.73 0.67 0.43 0.72
0.15 (0.36) (0.22) (0.27) (0.32)

n = 200 Init StableMerge DEMP+ EntropyMerge ICL
GMM 0.46 0.69 0.64 0.39 0.65

(0.13) (0.25) (0.20) (0.04) (0.14)

tMM 0.41 0.66 0.57 0.39 0.67
(0.15) (0.20) (0.18) (0.03) (0.17)

PEMM 0.50 0.70 0.69 0.50 -
(0.15) (0.25) (0.22) (0.15) -

GHMM 0.60 0.69 0.61 0.39 0.66
(0.16) (0.35) (0.20) (0) (0.17)

n = 300 Init StableMerge DEMP+ EntropyMerge ICL
GMM 0.44 0.69 0.66 0.39 0.56

(0.07) (0.09) (0.15) (0.03) (0.19)

tMM 0.40 0.67 0.61 0.39 0.66
(0.06) (0.06) (0.14) (0.03) (0.18)

PEMM 0.48 0.70 0.70 0.48 -
(0.12) (0.16) (0.17) (0.12) -

GHMM 0.53 0.65 0.53 0.39 0.55
(0.16) (0.21) (0.16) (0) (0.14)

Table 8.4: Tables of the median (and inter-quartile range in brackets) ARI estimated by
StableMerge, DEMP+, EntropyMerge and ICL, rounded to 2 decimal places. Init denotes
the initial model selected by BIC before one of StableMerge or DEMP+ or EntropyMerge
is applied. The top-left label in each table indicates the sample size used in generating
the results in the corresponding table. The row labels indicate the mixture model upon
which the cluster-detecting methods were applied. The highest row-wise median values
are bolded. ICL on PEMM is not reported as the mixSPE package did not support ICL
maximization at the time of simulation.
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n = 100 Init StableMerge DEMP+ EntropyMerge ICL
GMM 0.89 0.94 0.94 0.84 1.00

(0.37) (0.51) (0.46) (0.30) (0.32)

tMM 0.93 0.98 0.91 0.82 0.97
(0.39) (0.48) (0.43) (0.28) (0.32)

PEMM 0.65 0.95 0.32 0 -
(0.17) (0.28) (0.76) (0) -

GHMM 0.96 0.94 0.97 0.91 1.03
(0.33) (0.47) (0.39) (0.29) (0.35)

n = 200 Init StableMerge DEMP+ EntropyMerge ICL
GMM 0.68 0.90 0.88 0.75 0.87

(0.18) (0.35) (0.34) (0.28) (0.26)

tMM 0.73 0.92 0.91 0.77 0.91
(0.23) (0.33) (0.31) (0.27) (0.28)

PEMM 0.67 0.86 0.89 0.66 -
(0.16) (0.34) (0.33) (0.15) -

GHMM 0.86 0.80 0.85 0.82 0.90
(0.28) (0.51) (0.37) (0.28) (0.29)

n = 300 Init StableMerge DEMP+ EntropyMerge ICL
GMM 0.67 0.93 0.89 0.75 0.75

(0.14) (0.25) (0.25) (0.26) (0.27)

tMM 0.66 0.93 0.90 0.77 0.87
(0.14) (0.26) (0.31) (0.25) (0.29)

PEMM 0.65 0.88 0.91 0.65 -
(0.15) (0.33) (0.27) (0.15) -

GHMM 0.72 0.66 0.70 0.84 0.75
(0.24) (0.41) (0.29) (0.25) (0.25)

Table 8.5: Tables of the median (and inter-quartile range in brackets) AM obtained from
StableMerge, DEMP+, EntropyMerge and ICL, rounded to 2 decimal places. Init denotes
the initial model selected by BIC before one of StableMerge or DEMP+ or EntropyMerge
is applied. The top-left label in each table indicates the sample size used in generating
the results in the corresponding table. The row labels indicate the mixture model upon
which the cluster-detecting methods were applied. The highest row-wise median values
are bolded. ICL on PEMM is not reported as the mixSPE package did not support ICL
maximization at the time of simulation.
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In terms of clustering quality, the StableMerge exhibited a marked improvement in both

ARI and AM, per tables 8.4 and 8.5. Interestingly, the ICL-based clusters were of similarly

high quality to that of the StableMerge, especially at n = 100, 200, whereas its ARI often

trailed behind that of the StableMerge. We could hypothesize from this pattern that the

ICL is producing well-separated clusters in its own way, but not necessarily focusing on

modality. Overall, this simulation demonstrates the benefit of using StableMerge on a

variety of mixture models in detecting clusters characterized by modality.

8.4.4 Real Data Illustration: Olive

In this section, the Olive data set from the R package pgmm (McNicholas et al., 2018) is

clustered via the four mixture models, using the four cluster-detecting methods. The data

set is 8-dimensional consisting of the percentage composition of eight fatty acids in 572

Italian olive oils. The primary and secondary ground truths are the region and the area.

The regions (and the areas within each region) are

• Southern Italy (North Apulia, Calabria, South Apulia, Sicily),

• Sardinia (Inland Sardinia, Coastal Sardinia),

• Northern Italy (East Liguria, West Liguria, Umbria).

N. Apulia Calabria S. Apulia Sicily
S. Italy 25 56 206 36

I. Sardinia C. Sardinia E. Liguria W. Liguria Umbria
Sardinia 65 33
N. Italy 50 50 51

Table 8.6: Table of observations per region (row) and area (column). Empty cells indicate
zero observations.
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Figure 8.3: Scatterplot of the Olive data, projected onto the first two principal components,
and coloured by region (left) and area (right).

Table 8.6 indicates a mild class imbalance, while figure 8.3 suggests deviations from

normality both at region- and area-levels. Thus, more restrictive mixture models might

over-estimate the number of regions and/or mis-identify the shape of area-wise clusters.

The range of components considered is G = 1, . . . , 10 for initial BIC-based model and

the ICL-based model. The models are fitted over 100 initializations, per the initialization

strategy outlined in section 8.4.1. In terms of ARI, the value against both region and area

are reported.
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Model Method AM(Init) AM G(Init) G ARI(region) ARI(area)
StableMerge 0.41 0.79 9 5 0.60 0.78

GMM DEMP+ 0.46 0.67 8 7 0.54 0.86
EntropyMerge 0.65 0.65 7 7 0.51 0.78

ICL - 0.70 - 7 0.52 0.84

StableMerge 0.64 0.78 6 5 0.53 0.72
tMM DEMP+ 0.80 0.80 5 5 0.55 0.74

EntropyMerge 0.39 0.60 8 3 0.56 0.27
ICL - 0.80 - 5 0.55 0.74

StableMerge 0.51 0.78 6 5 0.62 0.77
PEMM DEMP+ 0.66 0.66 4 4 0.48 0.64

EntropyMerge 0.64 0.64 6 6 0.58 0.76
ICL - - - - -

StableMerge 0.49 0.75 6 5 0.61 0.73
GHMM DEMP+ 0.74 0.74 5 5 0.53 0.69

EntropyMerge 0.57 0.57 6 6 0.61 0.76
ICL - 0.74 - 5 0.51 0.72

Table 8.7: Table of cluster quality measurements from the cluster-detecting methods for
GMM, tMM, PEMM and GHMM. For example, In the GMM subtable, the best (AM, G)
pair obtained from the StableMerge is (0.79, 5), which is based on a preliminary GMM
(chosen by the BIC) with (AM(Init), G(Init)) = (0.41, 9). The same StableMerge solution
produced ARI of 0.6 against regions (3 classes), and 0.78 against areas (9 classes). For
the ICL, no AM(Init) or G(Init) are reported since the mixture model is fitted directly
using the criterion. An analogous interpretation applies to the remaining subtables. For the
PEMM, the ICL row is not reported as the mixSPE package did not support ICL-based
model selection at the time of the experiment. The AM and ARI are rounded to 2 decimal
places, and within each subtable, the highest AM, ARI(region) and ARI(area) values are
bolded.

Table 8.7 reports the best instances of the cluster-detecting methods over the 100

initializations, for each mixture model. The StableMerge produced the best clustering, per

AM, for GMM, PEMM and GHMM. In particular, its extent of improvement in AM ranges

between ((0.78 − 0.64) ÷ 0.64)% ≈ 22% and ((0.79 − 0.41) ÷ 0.41)% ≈ 93%. This means
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Figure 8.4: Scatterplot examples of the Olive data set on its first two principal components,
coloured by the components generated by (GHMM, StableMerge), (GMM, DEMP+),
(tMM, EntropyMerge) and (GHMM, ICL).
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that the StableMerge was able to reduce the component count for all four mixture models,

whose flexibility varies considerably. Another point of interest is that the best instances

of DEMP+ and EntropyMerge were often identical to their preliminary models, as shown

from the unchanged AM and G. This means that the StableMerge was able to handle a poor

initial fit better than the aforementioned two methods. The ICL performed consistently

well, and it appears to have preferred the more granular area-wise grouping than the

region-wise one. Figure 8.4 shows illustrative instances of pre- and post-merging. The most

drastic changes are shown from the (GMM, StableMerge) and (tMM, EntropyMerge) pairs,

where the number of components was reduced from 9 to 5, and from 8 to 3, respectively, per

table 8.7. Overall, this analysis shows that the StableMerge is a viable option for improving

the clustering structure of a wide range of mixture models, even when the initial fit may

over-estimate the component count significantly.

8.5 Discussion

In this chapter, a mixture component merging framework by detecting component-wise

modes through novel mean-shift algorithms for the PEMM, NVM-MM and NVMM-MM,

and the StableMerge, a novel stability-based mode-merging procedure that is threshold-

free. We have demonstrated its effectiveness in both simulated and real data settings against

various existing methodologies. Directions for further research include the application of the

StableMerge to other clustering methods, and the development of mean-shift algorithms

for other finite mixture models.
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Chapter 9

Conclusion

This thesis introduced several novel methodologies for parsimonious finite mixture mod-

elling and mixture component merging, in order to enhance the presence of interpretable

methods in the model-based clustering literature. Chapters 3 and 4 showed the potential

of the novel Stiefel Elastic Net in estimating matrix parameters with simpler structures,

supported by desirable theoretical properties. Chapter 5 showcased a hypothesis test-based

alternative to the scree test where both the hypotheses and the hyper-parameter are read-

ily interpreted. Chapter 6 showed that a highly flexible mixture regression model could

still benefit from combining its components, where the aggregated components were bet-

ter distinguished than before. Chapters 7 and 8 enabled the detection of density modes

in several families of mixture models with varying flexibility, which would be particularly

useful in applications where modes signify clusters. The approaches taken in this collec-

tion are certainly not exhaustive. Model interpretability has many aspects, each of which

can be address differently. Furthermore, there are numerous directions for further work, as

mentioned in the discussion section of each chapter.
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