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Summary

Multistate models provide a powerful framework for the analysis of life history processes when
the goal is to characterize transition intensities, transition probabilities, state occupancy probabil-
ities, and covariate effects thereon. Data on such processes are often only available at random
visit times occurring over a finite period. We formulate a joint multistate model for the life history
process, the recurrent visit process, and a random loss to follow-up time at which the visit process
terminates. This joint model is helpful when discussing the independence conditions necessary
to justify the use of standard likelihoods involving the life history model alone and provides a
basis for analyses that accommodate dependence. We consider settings with disease-driven visits
and routinely scheduled visits and develop likelihoods that accommodate partial information on
the types of visits. Simulation studies suggest that suitably constructed joint models can yield
consistent estimates of parameters of interest even under dependent visit processes, providing the
models are correctly specified; identifiability and estimability issues are also discussed. An ap-
plication is given to a cohort of individuals attending a rheumatology clinic where interest lies in
progression of joint damage.
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1 INTRODUCTION

Life history processes in which individuals experience certain events or pass through different stages
are central to chronic disease, health services research, economics, the social sciences and other areas.
Information needed to model, understand and manage such processes is typically obtained through a
variety of sources including longitudinal surveys and cohort studies, observational data from registries
or clinics, and administrative records. Such sources often provide data collected at specific times over
some period, and give an incomplete picture of individuals’ life histories. Moreover, to make valid
inferences from such data it is important to consider whether there is a relationship between the life
history process of interest and the observation process. Two crucial aspects of observation are (i) cen-
soring or termination of the observation period for an individual due to, for example, loss to follow-up,
and (ii) the repeated assessment times at which data are collected on individuals. Standard methods of
life history analysis depend on independence and ignorability assumptions of the observation process
(e.g. Farewell et al., 2017; Kalbfleisch and Prentice, 2002, Section 6.2; Aalen et al., 2008, Section
2.2.8; Cook and Lawless, 2014; Cook and Lawless, 2018). These assumptions are necessary for the
analysis of event history processes (Andersen et al., 1993; Aalen et al., 2008), which we focus on
here, as well as the analysis of discrete or continuous outcomes in longitudinal studies (Molenberghs
and Fitzmaurice, 2009; Farewell et al., 2017).

Much work has been carried out on dropout in longitudinal studies in which responses are mea-
sured at scheduled assessment times (Robins and Rotnitzky, 1995; Little and Rubin, 2002). Censoring
or loss to follow-up in studies of failure time processes has also received considerable attention with
numerous authors proposing joint models in which failure and censoring times are dependent (e.g.
Fisher and Kanarek, 1974; Slud and Rubinstein, 1983; Scharfstein and Robins, 2002; Siannis, 2011).
Independence assumptions cannot be checked using only the observed (incomplete) data, and the pri-
mary use of these joint models has been to assess the sensitivity of inferences based on independence
assumptions to violations of such assumptions. A few authors (e.g. Baker et al., 1993; Frangakis
and Rubin, 2001; Farewell et al., 2003) have discussed how data obtained by tracing persons after
they become lost to follow-up (LTF) can be used to check independent censoring assumptions or to
estimate a failure time distribution in the presence of dependent censoring. Cook and Lawless (2018)
review this area and propose some new approaches.

This article has been partially motivated by our experiences with cohort studies involving persons
at the Centre for Prognosis Studies in Rheumatic Disease at the University of Toronto. In these
studies, individuals registered in disease clinics have periodic scheduled visits. However, patients
often miss scheduled visits, and the actual times they visit a clinic are often unequally spaced in time
and differ across individuals. A key concern is that the timing of visits may be related to a person’s
disease history. They may also become LTF and be declared so, when they have not visited the clinic
for some long period. In the absence of a precise definition of a LTF time, the LTF “event” may be
viewed, in some sense, as a conceptual phenomenon. However, we view it as real event by virtue of
the fact that the individual is truly no longer under study; the fact that the corresponding LTF time is
not observed for many (or all) individuals is a complication that can be dealt with. Later in the article,
we consider an illustration involving the University of Toronto Psoriatic Arthritis Cohort (Gladman
and Chandran, 2011), a registry of patients that was started in 1977 and which now has over 1,800
members; in this setting patients do not typically report a withdrawal time and the study investigators
cannot likewise specify a particular time of LTF other than through specification of a post hoc rule.

Our aim in this article is to study independence assumptions related to intermittent observation
times for life history processes, which has received much less attention than loss to follow-up (Kei-
ding, 2014, Section 7.2). Grüger et al. (1991), Cook and Lawless (2007, Section 7.1) and Cook and
Lawless (2018, Section 5.4) presented independence conditions for intermittent observation and dis-
cussed likelihood-based inferences for event history analysis. More recently, several authors have
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discussed processes governing intermittent observation times and conditional independence condi-
tions, so as to facilitate the use of inverse-intensity-of-visit (IIV) weighted estimating functions (e.g.
see Lin et al., 2004; Buzkova and Lumley, 2007, 2009; Buzkova, 2010; Pullenayegum and Feldman,
2013; Pullenayegum and Lim, 2016). Farewell et al. (2017) considered related ignorability condi-
tions for the analysis of general longitudinal data. Neuhaus et al. (2018) and McCulloch and Neuhaus
(2018) consider mixed generalized linear models and intermittent observation times for discrete or
continuous longitudinal responses through shared random effects models. There has, however, been
limited discussion of dependence and of ways to assess and handle it in life history analysis aside from
the case of survival analysis (e.g. Betensky and Finkelstein, 2002; Lawless and Babineau, 2006).

This article has two main objectives: the first is to consider joint models for life history processes
and processes governing intermittent observation to accommodate specific types of dependence and
examination of independence assumptions. The modelling framework we employ was introduced by
Lange et al. (2015); we extend their treatment by specifying independence conditions, by considering
estimability of dependence models, and by examining the effects of dependence in some important
practical settings. The second objective is to consider types of supplementary information that allow
independence assumptions to be assessed. We carry out this work in the context of multistate life
history processes, which include as special cases failure time, competing risks, and recurrent event
models (e.g. Andersen et al., 1993; Beyersmann et al., 2012; Willekens, 2014; Cook and Lawless,
2018). The joint modelling framework is based on extending the corresponding multistate models to
include states depicting the cumulative number of observation times.

Section 2 discusses independence conditions, introduces joint multistate models for life history
and intermittent observational processes, and describes estimation based on them. Section 3 discusses
estimation for Markov processes, examines estimability issues, and presents numerical studies on the
effects of dependent visit times on standard estimators as well as estimators from the joint model.
Section 4 gives an application involving data from a psoriatic arthritis clinic. Section 5 considers types
of supplementary data that can be used to assess independence and Section 6 contains concluding
remarks.

2 MULTISTATE MODELS AND INTERMITTENT OBSERVATION SCHEMES

2.1 CONDITIONALLY INDEPENDENT OBSERVATION SCHEMES

We consider life history processes in which individuals occupy and move among a set ofK states over
time. We let S = {1, . . . , K} denote the state space and let Z(t) represent the state occupied by a
generic individual at time t ≥ 0 since the origin of the process. We focus on continuous-time models
for the process {Z(t), t ≥ 0} which may also involve fixed or external (Kalbfleisch and Prentice,
2002) time-varying covariates {X(t), t ≥ 0} and we let H(t−) = {Z(s), X(s), 0 ≤ s < t} denote
the history of the states occupied, and covariates, up to time t−. The multistate model can be specified
in terms of the transition intensity functions

λkl(t | H(t)) = lim
∆t↓0

P (Z(t+ ∆t−) = l | Z(t−) = k,H(t−))
,∆t (1)

for k 6= l ∈ S (Andersen et al., 1993). Figure 1 shows state space diagrams for four processes that
we will refer to later: (a) is a failure time model, (b) is an illness-death model, (c) is an alternating
(reversible) two-state model, and (d) is a simple progressive model.

In some studies individuals may be effectively followed continuously, so that the times of all
transitions from one state to another are recorded. This is the case when the transitions correspond
to times of events that are readily apparent, such as a myocardial infarction, serious stroke, or death.
The more common situation is that data on individuals are collected at intermittent observation times.
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Figure 1: State space diagrams for some multistate processes.

This is the case in disease cohort studies, and so we refer to these occasions as visits and refer to the
observation times as visit times. We focus here on this situation.

We now consider data from a single individual and let A0 denote the time of the first observation.
If A0 > 0, then the life history process has been active for some time prior to observation and in these
cases baseline information on covariates and prior life history data are often available. We condition
on A0 = a0 and the observed life history information at a0 including Z(a0) and proceed under the
assumption that this is an independent delayed entry time (Keiding and Moeschberger, 1992). We let
E denote a defined (fixed) administrative end-of-follow-up time which may differ across individuals.
In many settings an individual may be randomly LTF before E, and we let C < E represent a
potential premature LTF time; in some settings C may be reported exactly and in other scenarios it
may be unobserved, but the distinction between these two scenarios is not necessary provided the
LTF time is conditionally independent given the observed process history. Data on an individual are
collected at random visit times after the baseline assessment; we let m denote the realized number
and let a1 < a2 < · · · < am denote the realized visit times after the baseline assessment at a0. Data
Dj on Z(t) and X(t) are collected for the time interval (aj−1, aj] at time aj , j ≥ 1. In some contexts,
it may be possible to ascertain retrospectively the times of transitions or changes in covariate values
over (aj−1, aj]. Typically, however, all that can be obtained are current values Z(aj), X(aj), or some
other coarsened information for the time interval (aj−1, aj], and it is on this case that we focus.

To consider a random visit process, we let A(t) represent the number of follow-up visits over
(a0, t] and let {A(t), t ≥ a0} denote the visits process; Y (t) = I(min(C,E) ≥ t) indicates that the
individual is at risk for a new visit at time t. That is, the observable visit process has increments
Y (t)dA(t) for t > 0. A complicating factor in some cohort studies with intermittent observation is
that an individual may become LTF but the precise time C at which this occurs, and perhaps even the
fact that LTF has occurred, is unknown. In this case, we will treat E as the end of follow-up time as
far as the visits process is concerned.

When state transition times in the life history process over inter-visit intervals (aj−1, aj) are miss-
ing, issues we discuss are sometimes considered in the context of missing data. Conditionally inde-
pendent observation schemes, described below, correspond to missing life history information being
missing at random (Little and Rubin, 2002) or sequentially missing at random (Hogan et al., 2004).
Gill et al. (1997) and Commenges and Gégout-Petit (2007) discuss general “coarsening at random”
conditions. However, this sheds little light on mechanisms that would produce independent or de-
pendent observation times and does not provide models that could be used in specific settings. The
approach below does this by considering the life history and visit processes jointly. This is particu-
larly useful in observational cohorts such as those based on chronic disease registries or clinics, where
the visits process may involve both scheduled visits and visits related to life history events or related
symptoms.

We first give a general definition of a (conditionally) independent visit process, and then consider
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joint models that accommodate a dependent process in the next section. Unless stated otherwise, we
assume that premature LTF times are observable. To formulate the concept of independence for a
visits process, we consider the joint evolution of Z(t), X(t), A(t), and Y (t). Here, we introduce
the use of overbars to denote histories for individual processes, such as Ā(t−) = {A(s), a0 ≤ s <
t, A0 = a0}. Recall H(t−) = {Z(s), X(s), 0 ≤ s < t} denotes the joint multistate and external
covariate process history, and let H̄(t−) = {H(t−), Ā(t−), Ȳ (t−)} denote the enlarged history that
also contains past visit times and LTF information. At this point, we need to distinguish between
the complete histories H(t−) and H̄(t−) and the observed process histories H◦(t−) and H̄◦(t−) =
(H◦(t−), Ā(t−), Ȳ (t−)). In general H◦(t−) is a coarsened (e.g. Gill et al., 1997) or partial record of
what has transpired over (0, t) that is determined by the initial baseline assessments, the visit times
and the information collected at them. For example, when all that is observed is states and covariate
values at visit times, then H̄◦(t−) = {Z(aj), X(aj), aj, j = 0, 1, . . . , A(t−)}.

Cook and Lawless (2018, p. 153) give the following definition of a conditionally independent
visits process (CIVP). A more formal definition is provided in Section 2.2.

DEFINITION 2.1 The visits process {A(t), t > 0} is conditionally independent of {Z(t), X(t), t >
0} if for j = 1, 2, . . ., we have

Aj ⊥⊥ {Z(t), X(t), t > aj−1} | H̄◦(aj−1) . (2)

Premature LTF at time t is assumed conditionally independent of {Z(t), X(t), A(t), t > 0}, given
H̄◦(t−). Specifically, using counting process notation (Aalen et al., 2008, Section 2.2), if C(t) =
I(C ≤ t), the intensity for the LTF process {C(t), t > 0} satisfies P (dC(t) = 1|C ≥ t, H̄(t−)) =
P (dC(t) = 1|C ≥ t, H̄◦(t−)). Under such an assumption for the LTF process and given the observed
history, condition (2) precludes settings whereby an individual’s life history or covariate processes
since the most recent visit at aj−1 influence the propensity for the next visit to be made.

To allow for a variety of situations, we let DZ(t) and DX(t) denote information on the Z(t) and
X(t) processes that would be collected for the time interval (aA(t−), t] if a visit were to occur at time
t, and let D(t) = {DZ(t), DX(t)}. In some cases DZ(t) might include exact times of all transitions
in (aA(t−), t], or just the types of transitions, but frequently, it only includes the state Z(t) occupied at
time t. We further assume

P (D(t) | C ≥ t, dA(t) = 1, H̄◦(t−)) = P (D(t) | H◦(t−), Ā(t−) = Ā0(t−)) , (3)

where in the right hand side of (3), Ā0(t−) denotes a set of visit times that is prespecified and thus
independent of the life history process. This is similar to the “stability” condition recently given
by Farewell et al. (2017) for longitudinal data settings, who introduce it as an ignorability condition
concerning the visits process. It states that under the assumption of a conditionally independent visit
process, the right side of (3) is obtained from the model for the multistate process, with previous
visit times treated as fixed. This condition is essential to justify writing the likelihood contributions
in terms of the joint model for the underlying multistate and covariate processes defined without
reference to any observation process. This condition would not be satisfied if the mere fact of being
under this intermittent observation scheme alters the processes of interest; in this case the information
from the study sample is not representative of the target process of interest and biases arise. This
would be the case if data were obtained in a specialty clinic where aspects of care, some of which
may be unmeasured, alter the course of the disease. The condition therefore relates to some extent to
generalizability (or lack of generalizability) of findings to a target context.

When H̄◦(t−) includes only the information from the baseline visit at a0 and the fact that there
have been no subsequent visits up to t−, (3) is equivalent to a condition of independent delayed
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entry. For simplicity and because it is the most common scenario, we assume henceforth that the data
collected at time aj consists of Z(aj), X(aj), unless otherwise specified. The terms in (3) can then
be factored as

P (Z(aj) | H̄◦(aj−1), Ā0(aj) = (a0, . . . , aj))P (X(aj) | z(aj), H̄
◦(aj−1), Ā0(aj) = (a0, . . . , aj)) .

Ignoring contributions from observed covariate values we obtain a partial likelihood for parameters θ
specifying the Z(t) process as

L(θ) =
m∏
j=1

P (Z(aj) | H◦(a−j ), Ā0(aj) = (a0, . . . , aj)) . (4)

where m = A(min(C,E)). In addition to the visit time process being ignorable according to (3),
it is also assumed that the distribution of Aj given H̄◦(aj−1) is uninformative about θ. The ex-
ternal covariate X(t) is assumed to evolve independently of {Z(t), t > 0} and normally does not
contain information about θ. There are situations though, where a joint continuous-time model for
{X(t), Z(t), t > 0} could provide additional information; this would require specifying a model for
{X(t), t > 0} and we do not pursue this here. The contributions in (4) condition on the observed
covariate values at the preceding visit times. Covariates are often assumed to be constant between
visits but the plausibility of this assumption depends on the temporal variation in the covariates in
relation to the times between visits. When times between visits vary considerably, this can produce
a biased view of covariate effects (e.g. Andersen and Liestol, 2003). An option in this case is to
model the covariate process (Tsiatis and Davidian, 2004). Another approach is to allow the effect
of observed covariate values to depend on the time since the last visit (de Bruijne et al., 2001). We
discuss time-varying covariates further in Section 2.2 below, and Section 5.

The following examples illustrate the likelihood (4) and an expanded version of it.

Example 1: Suppose covariate values X are fixed and that only the states occupied at visit times are
observed so DZ(aj) = Z(aj). Then, (4) becomes

L(θ) =
m∏
j=1

P (Z(aj) | Z(a0), . . . , Z(aj−1), X, Ā0(aj) = (a0, . . . , aj)) . (5)

We can write this in a slightly different and more conventional notation as

L(θ) =
m∏
j=1

PZ(Z(aj) | Z(a0), . . . , Z(aj−1), X) , (6)

where PZ denotes probabilities for the Z(t) process in a setting where the observation times are
pre-specified. If the process is Markov, terms in (6) simplify to PZ(Z(aj) | Z(aj−1), X).

Example 2: Suppose in a failure time setting that individuals are seen only at visit times aj , j =
0, 1, . . ., but that if failure occurs in the interval (aj−1, aj], its exact time T = t can be ascertained.
In this case DZ(aj) = T if aj−1 < T ≤ aj , DZ(aj) = I(T > aj) if T > aj , and DZ(aj) is null if
T ≤ aj−1. Then with Z(aj) replaced by DZ(aj) as in (3), (4) gives

L(θ) = f(t)δ [F(am)]1−δ , (7)

where F(t) = P (T > t), f(t) = −dF(t)/dt and δ = I(T = t) with t ≤ am.
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When a visit process is not a CIVP relative to a specific life history model, so-called inverse-
intensity-of-visit (IIV) weighted estimating function methods (Lin et al., 2004; Buzkova and Lumley,
2007) have been proposed. These have been used for estimation of marginal or partially conditional
process features such as P (Z(t) = k|X) at a specific time t or a set of times (Nazeri Rad and
Lawless, 2017). These methods are analogous to inverse-probability-of-censoring (IPC) weighted
methods used for loss to follow-up and it is important to recognize that their validity depends on the
assumption of a CIVP with respect to the full life history process and related covariates, as formalized
in (2).

We now turn to joint models for life histories and intermittent visit times; they include situations
where the visits process is not a CIVP.
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Figure 2: A state-space diagram for a joint model for a 3-state progressive life history process and a
visit process.

2.2 JOINT MODELS FOR LIFE HISTORIES AND VISITS

When visits may occur at random times, a framework for considering independence is through joint
models for the life history process and visits process (e.g. Lange et al., 2015). Most of the work
in this area has used random effects models for which the visit and life history processes are con-
ditionally independent given the unobserved and typically constant random effects (e.g. Sun et al.,
2007; Liang et al., 2009; Cai et al., 2012). This approach has two serious limitations. First, random
effects that are constant in time are very likely inadequate for explaining dependencies between dy-
namic inter-related processes. When individuals are followed over a substantial period of the disease
course, it is often evident that individuals in earlier stages of the disease are seen less frequently than
individuals in more advanced stages of the disease, where symptoms and impairment may be more
appreciable. Visit intensities with this type of state-dependence do not arise naturally from random
effect models. Second, in shared or correlated random effect models, the visit process intensities
are not independent of the future of the life history process conditional on H̄(t−); this violates the
natural temporal ordering that is desirable when modeling life history processes. Lange et al. (2015)
introduced a more appealing joint multistate model for Z(t) and A(t), which we employ here. In
particular, we consider the process of interest {Z(t), t > 0} with state space {1, . . . , K}, the visit
process {A(t), t > 0} with state space {0, 1, 2, . . .}, and the joint process for W (t) = (Z(t), A(t))
with state space {(k, a); k = 1, . . . , K; a = 0, 1, 2, . . .}. A state-space diagram for such a joint
model is portrayed in Figure 2 for the progressive three-state life history process in Figure 1(d).
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Consider the joint process W (t) = (Z(t), A(t)) with states (k, a) described above. We do not
discuss covariates explicitly unless it is necessary but they are included in the process histories. We
assume they are either defined functions of time or if random and time-varying, constant between
visit times. This reflects the fact that time-varying covariates are typically observed just at visit times;
we discuss this further below and in Section 5. To specify the joint process we require intensities

P (dNkl(t) = 1 | Z(t−) = k, C ≥ t, H̄(t−)) = λNkl(t | H̄(t−)) dt

P (dA(t) = 1 | C ≥ t, H̄(t−)) = λA(t | H̄(t−)) dt ,

where Nkl(t), t > 0 counts the number of k to l transitions (k 6= l) in the life history process and as
in the preceding sections, H̄(t−) = {Z̄(t−), Ā(t−), Ȳ (t−), X}. For a conditionally independent visit
process (CIVP) as defined in (2) the restriction on λA(t | H̄(t−)) is

P (dA(t) | C ≥ t, H̄(t−)) = P (dA(t) | C ≥ t, H̄◦(t−)) . (8)

In addition, we require that (3) hold, or that

P (dN(t)|H̄(t−)) = PZ(dN(t)|H(t−), Ā0(t−)) ,

where {N(t), t > 0} denotes the multivariate counting process comprising counting processes for all
types of life history transitions. A sufficient condition for this is that

λNkl(t | H̄(t−)) = λNkl(t|H(t−)) , (9)

where we recall that H(t−) = {Z(s), X(s), 0 ≤ s < t}. We reiterate that the time-varying covariates
we consider are defined functions of time, or covariates that only change value and are measured at
visit times. Defined time-dependent covariates could be month, or season, for example. Covariates
that represent interventions at visit times often change value only at these times. For more general
covariates that change in continuous time, a common approach is to assume that the most recently
recorded values are adequate to model the multistate process of interest, and this is equivalent to as-
suming the covariates are constant between visits. As noted above, this can be problematic, especially
when there are long gaps between visits.

Assumptions about the forms of intensities are needed to proceed with either the general model or
CIVP cases. Lange et al. (2015) considered a joint model for the life history process of interest and
the visit process, with visit intensities that depends on the current life history state; they refer to these
as disease-driven visits. They considered a time-homogeneous Markov model with intensities

λNkl(t | H̄(t−)) = qkl , λA(t | H̄(t−)) = αZ(t−) , (10)

as well as an extension where the life history intensities have a specific semi-Markov form. Since the
visit intensity at t depends on the Z-state occupied at that time, the CIVP assumption in (8) is not
satisfied so this is a non-CIVP (or conditionally dependent visit process) model. The model makes
strong assumptions and is too simplistic for many settings, but it provides a convenient basis for
discussion of the issues involved in joint modeling; more flexible non-homogeneous Markov models
can also be considered. Transition and state entry time probabilities are easily calculated for the time-
homogeneous model (10). In particular, if we order the states as {(1, 0), (2, 0), . . ., (K, 0); (1, 1),
(2, 1), . . ., (K, 1); (1, 2), (2, 2), . . ., (K, 2); . . .} the transition intensity matrix for the joint process
has block form

R =


Q− Λ Λ 0 0 0 · · ·

0 Q− Λ Λ 0 0 · · ·
0 0 Q− Λ Λ 0 · · ·

· · · · · ·

 , (11)



Cook RJ and Lawless JF 9

where Q is a K × K matrix with qkl in entry (k, l) and −
∑

l 6=k qkl in the (k, k) diagonal entry,
k, l = 1, . . . , K, and Λ = diag(α1, . . . αK). Transition probabilities can be calculated using the
matrix exponential relationship P (t) = exp(Rt), where P (t) is the transition probability matrix
(e.g. Kalbfleisch and Lawless, 1985; Jackson, 2011). Lange et al. (2015) also considered a semi-
Markov model for the life history process with phase-type state sojourn distributions by using a latent
underlying Markov process (Titman and Sharples, 2010). In settings where inter-visit times can be
fairly long, however, such models often involve estimability problems unless strong restrictions are
made on the latent process. Alternative semi-Markov visit intensities, which may depend on the
time since the last visit or the time since entry to the current disease state, are also problematic
since the entry times to life history states are typically unobserved. We focus on (10) and non-
homogeneous Markov models which are more plausible than semi-Markov models in many settings.
However in later sections we consider semi-Markov models and in Section 4 and the Supplementary
Material available at Biostatistics online we show how they may be fitted. We now turn to likelihood
construction with models that incorporate both disease-driven and conditionally independent visits.

2.3 LIKELIHOOD CONSTRUCTION ACCOMMODATING DIFFERENT VISIT TYPES

For a typical individual, some visits may arise in a manner that is dependent on the current state of
the life history process (i.e. be disease-driven) while others may occur at conditionally independent
times. Lange et al. (2015) categorize visits as disease-driven or scheduled, and assume that each
separate visit can be classified as such; we adopt a similar framework to start. In modeling the disease-
driven visit process Lange et al. (2015) conditioned on the observed scheduled visit times and treated
them as censoring times for disease-driven visits. In practice, however, conditionally independent
visit times are often random, and their intensity function may depend on information observed at the
preceding visit as is permitted under (8). In this case, it is often of interest to examine the dependency
of visit times on this information. Moreover, inverse intensity of visit weighting (IIVW) and other
weighting methods used for estimation of marginal or partially conditional models (e.g. Lin et al.,
2004) require that visit intensities for a CIVP be modelled and estimated. We therefore consider
explicitly the intensity for scheduled visits jointly with that for disease-driven visits. Visit processes
may also be terminated by loss to follow-up. Thus we extend the joint model of Lange et al. and
take a competing risks approach to deal with these issues. Following visit j − 1 at time aj−1, three
outcomes are possible concerning the next visit: (i) the next visit may occur and be a scheduled visit;
(ii) the next visit may occur and be a disease-driven visit; and (iii) the next visit may be censored by
LTF. To formulate this, we define the three intensities λS(t|H̄◦(t−)) for scheduled visits, λD(t|H̄(t−))
for disease-driven visits, and λC(t|H̄◦(t−)) for premature loss to follow-up (censoring). Follow-up
may also terminate due to administrative censoring at time E; we treat E as a fixed (pre-specified)
time. Note that scheduled visits and LTF are assumed to be conditionally independent by definition,
with intensities that depend only on the observed process history H̄◦(t−) and that disease-driven
visits are non-independent in general. We let ASj , A

D
j and C denote potential scheduled visit, disease-

driven visit and censoring times, respectively, and define Aj = min(ASj , A
D
j ,min(C,E)); we also let

∆j = I(Aj 6= min(C,E)) and ∆D
j = I(Aj = ADj ). We could at this point expand the state diagram

for the joint model in Figure 2 to recognize these competing outcomes for the observation process but
for simplicity we do not do this; instead, we will continue to use Figure 2 to portray potential states
and possible transitions, but recognize that there are two types of visits (disease-driven and scheduled)
and include the type of each visit in the process histories. That is, a downward transition in Figure
2, resulting from an event in the observation process, can be one of three types: a scheduled visit, a
disease-driven visit, or observed LTF at time Aj . We note that when Aj is a LTF time (i.e. ∆j = 0),
the state of the life history process at that time is unknown.

We can now give the form of the likelihood function based on observed data. Let Aj or aj denote
the time of the jth visit or the LTF time and Zj denote the state observed at that time, provided
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a visit occurs. Suppose for discussion that the information observed at a visit time aj is just the
state Z(aj) = zj . We consider the sequence (A1, Z1), (A2, Z2), . . ., (Am, Zm) given A0 = 0 and
z0, where Am is the time of the last observation or loss to follow-up time over (0, E]; if Am is a
LTF time then Zm is unobserved. The likelihood contribution for an individual is then of the form
L = L1 · L2 · · ·Lm · Lm+1 where each contribution is based on the event intensities for the life
history, visit and loss to follow-up processes as is conventional in event history analysis (Cook and
Lawless, 2007; Aalen et al., 2008); the contribution Lm+1 corresponds to the event that there are
no further visits between am and min(C,E), along with the possible occurrence of random loss
to follow-up over (am, E). In the following, we focus on terms relevant for estimation of the life
history and disease-driven process intensities; the intensities for independent (scheduled) visits and
for LTF are for now treated as nuisance parameters unless specified otherwise. There are three types
of likelihood contributions that provide information on the disease-driven visit process and life history
process intensities; they depend on whether a visit at time aj is type DD (disease-driven) or type S
(scheduled), or whether aj = min(C,E). We note that given C > aj−1 is part of H̄◦(aj−1), then
ASj , A

D
j and C are conditionally independent given H̄◦(aj−1).

If a disease-driven visit occurs at Aj , the likelihood contribution Lj takes the form

LDj = P (ADj = aj, A
S
j > aj, C > aj, Zj = zj | H̄◦(aj−1)) (12)

where for convenience we use “P” to represent either a probability density or mass function. Two
transitions at the same time in the joint model are assumed impossible, and so this equals

LDj = λD(aj|Aj ≥ aj, Z(a−j ), H̄◦(aj−1))·P (A(a−j ) = j−1, Z(a−j ) = zj | H̄◦(aj−1))·πSj ·πCj , (13)

where

πSj = P (ASj ≥ aj|H̄◦(aj−1)) = exp

(
−
∫ aj

aj−1

λS(t|H̄◦(t−)) dt

)
and

πCj = P (C ≥ aj|H̄◦(aj−1)) = exp

(
−
∫ aj

aj−1

λC(t|H̄◦(t−)) dt

)
.

Note that since we consider Markov models, λD(aj|Aj ≥ aj, Z(aj), H̄
◦(aj−1)) does not involve any

transition times over (aj−1, aj). The likelihood contribution for a scheduled visit is similarly

LSj = λS(aj|Aj ≥ aj, H̄
◦(aj−1))P (A(a−j ) = j − 1, Z(a−j ) = zj | H̄◦(aj−1)) · πSj · πCj . (14)

Finally, the likelihood contribution from LTF at time aj = min(C,E) is

LCj = [λC(aj|Aj ≥ aj, H̄
◦(aj−1))]I(C=aj)P (A(a−j ) = j − 1 | H̄◦(aj−1)) · πSj · πCj (15)

since the state occupied at the LTF time is unknown.
Models can be fitted via maximum likelihood. The conditional independence of ADj , ASj and

C given H̄◦(aj−1) allows each type of contribution to be evaluated as a product of separate terms
involving (i) the joint model for the process of interest and the disease-driven visit process, (ii) the
scheduled visit process intensity, and (iii) the censoring intensity. We typically ignore terms involving
the censoring intensity, assuming they do not include any parameters in the disease-driven or life
history process intensities (i.e. that censoring is non-informative). We may similarly ignore terms
involving the scheduled visit intensity if our main objective is to estimate the disease-driven visit
intensity and to address the effect of the outcome-dependent observation process. We would need to
estimate the scheduled-visit intensity if IIVW estimation were of interest, but IIVW estimation is used
under an assumption of a CIVP. In that case contributions for disease-driven visits are not present; the
disease-driven intensities λA(t|H̄(t−)) in (10) equal zero.
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Example 3: Consider for illustration the model in Figure 2 where the life history process is progres-
sive. Assume in addition that a visit at Aj = aj may be scheduled or disease-driven and that we
know which type each visit is. As noted above, we could expand the state space in Figure 2 to reflect
this, but we will use the figure as shown, recognizing that with the notation introduced the different
realizations after aj−1 can be distinguished. Suppose that the time-homogeneous Markov intensities
in (10) are adopted for the joint disease-driven visit and life history process, so the parameters are α1,
α2, α3 and q12, q23. Since the process is Markov, we need include only aj−1 and Zj−1 in H̄◦(aj−1).
Setting wj = aj − aj−1, we then have for example that

P (Aj = aj,∆j = 1,∆D
j = 1, Zj = 1, | aj−1, Zj−1 = 1) = α1e

−(q12+α1)wjπSj π
C
j

P (Aj = aj,∆j = 1,∆D
j = 1, Zj = 2 | aj−1, Zj−1 = 1) =

q12α2(e−α2wj − e−(q12+α1)wj)

q12 + α1 − α2

πSj π
C
j

P (Aj = aj,∆j = 1,∆D
j = 0, Zj = 1, | aj−1, Zj−1 = 1) = λS(aj | H̄◦(aj−1))e−(q12+α1)wjπSj π

C
j .

We ignore the terms πSj and πCj involving the scheduled visit and censoring intensities, and focus on
the joint life history – disease-driven visits process. Note that the total visit intensity is the sum of
the disease-driven and scheduled intensities (i.e. λA(t|H̄(t−)) = λD(t|H̄(t−)) + λS(t|H̄◦(t−)), so
the visits process is a CIVP either if the disease-driven visit intensities are zero, or if they do not
depend on H̄(t−) given H̄◦(t−). If every visit can be classified as disease-driven or scheduled, then
the former condition is trivially determined by whether or not disease-driven visits occur. The latter
case can be examined when a specific disease-driven model is adopted. In the present example, this
corresponds to the condition α1 = α2 = α3. Finally, we note that likelihood contributions from a LTF
time aj , given by (15), are a little more complicated. We discuss this calculation in Section 3.

Although certain disease-driven visit models, such as the one in the preceding example, can be
fitted to observed data, they cannot necessarily be easily checked. As we discuss in Section 3, we can
check the CIVP condition α1 = α2 = α3 within the time-homogeneous Markov model for disease-
driven visits in Figure 2 and we can also fit nonhomogeneous Markov models, but we cannot as readily
assess the Markov assumption. Non-CIVP models require rather strong parametric assumptions to be
tractable and estimable, and so their use needs to be considered cautiously. We also note that in
many settings visits may not all be clearly classifiable as disease-driven or scheduled; we discuss
this in Section 3. To further assess possible non-CIVP behaviour, supplementary data is desirable.
Classification of visits as scheduled or disease-driven is one type, and we discuss in Section 5 some
other types that can facilitate assessment of the CIVP conditions. For example, this might take the
form of more rigorous data collection so that visits can be more accurately classified as scheduled or
disease-driven, or supplementary data on covariates that might be related to both visits and the life
history process. In the next section, we consider estimation in Markov life history models in more
detail, and conduct numerical studies on the effect of assuming a CIVP when this is not true.

3 ESTIMATION UNDER MARKOV ASSUMPTIONS

3.1 MAXIMUM LIKELIHOOD ESTIMATION

Consider a time-homogeneous Markov model as in (10) and suppose interest lies in estimation of the
parameters θ that specify these intensities for life history transitions and disease-driven visits. We
assume that the scheduled-visit and censoring intensities do not involve θ and for convenience drop
terms in the expressions (13) – (15) that involve them. From these expressions, the partial likelihood
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contribution for a scheduled or disease-driven visit at time Aj = aj is proportional to

Lj(θ) = P (Aj = aj, Zj = zj,∆
D
j | H̄◦(aj−1)) (16)

= α
∆D

j
zj P (Z(a−j ) = zj, A(a−j ) = j − 1 | zj−1, aj−1, A(aj−1) = j − 1) .

If Aj = aj is a LTF time, the partial likelihood contribution is proportional to

Lj(θ) = P (A(aj) = j − 1 | zj−1, aj−1, A(aj−1) = j − 1) . (17)

For simplicity we ignore covariates but when they are present we include values X̄(aj−1) in
H̄◦(aj−1) and allow the visit and LTF times to depend on observed covariates. Transition proba-
bilities needed in (16) and (17) are easily computed using matrix exponential functions. We observe
first that, with states for (Z(t), A(t)) in the joint model written in the order used in (11), we need only
consider the reduced model with 2K × 2K transition intensity matrix R0 and transition probability
matrix P (t), given by

R0 =

(
Q− Λ Λ

0 0

)
P (t) =

(
P1(t) P2(t)

0 0

)
, (18)

where P (t) = exp(R0t), which applies to calculations needed for every two successive visit times.
The matrix P1(t) required for (16) can be obtained by computing exp(R0t) with t = aj − aj−1. The
function expm in R or the function MatrixExp in the R msm package (Jackson, 2011) can be used
to compute this matrix exponential. The calculation can be simplified since for a square matrix B,
exp(B) =

∑∞
r=0 B

r/r!, so P1(t) = exp((Q−Λ) · t), which only involves exponentiation of a K×K
matrix, rather than a 2K × 2K matrix.

The likelihood function from n independent joint life history and visit processes with visit times
aij , j = 0, 1, . . . ,mi, for process i and with aimi

assumed to be a random or administrative censoring
time, is proportional to

L(θ) =
n∏
i=1

{mi−1∏
j=1

α
∆D

ij
zij P (Zi(a

−
ij) = zij, Ai(a

−
ij) = j − 1 | zi,j−1, ai,j−1, A(ai,j−1) = j − 1)

× P (Ai(a
−
imi

) = mi − 1 | zi,mi−1, ai,mi−1, Ai(ai,mi−1) = mi − 1)

}
(19)

where subscript i has been added to earlier expressions to denote individuals. This can be maximized
using a general purpose optimizer such as the R optim or nlm functions on logL(θ).

We have assumed that each visit can be correctly classified as a scheduled or disease-driven visit.
This is feasible in clinical studies where, following a visit, the next scheduled-visit time may be
assigned based on the status of the individual at the current visit. If this time is later adjusted for
reasons unrelated to the disease process, the visit remains a scheduled visit. It is, however, good
practice that during visits, information is obtained to allow accurate classification of the visit type;
we discuss this further in Section 5. If ∆D

ij is sometimes unknown, we can maximize the resulting
likelihood function directly or using an expectation-maximization algorithm (Dempster et al., 1977).
This requires that the scheduled-visit intensity λS(t|H̄◦(t−)) be modelled and estimated. In particular
if we let Rij = I(∆D

j is known) for j = 1, . . . ,mi − 1, the observed data likelihood can be given as
follows for the time-homogeneous framework we have considered. For convenience, we write terms
in (19) involving transition probabilities as

Pij = P (Zi(a
−
ij) = zij, Ai(a

−
ij) = j − 1 | zi,j−1, ai,j−1, Ai(ai,j−1) = j − 1)
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for j = 1, . . . ,mi − 1 and

P †imi
=
∑
z

P (Zi(aimi
) = z, Ai(aimi

) = mi − 1 | zi,mi−1, ai,mi−1, Ai(ai,mi−1) = mi − 1) .

We assume that scheduled visits have intensities αSk that depend on the last observed state. Then,
accommodating the possibility of an unknown visit type, the observed data likelihood is

L(θ, αS) ∝
n∏
i=1

[mi−1∏
j=1

{
α

∆D
ij

zij

(
αSzi,j−1

)1−∆D
ij
}Rij

{
αzij + αSzi,j−1

}1−Rij

exp(−(aij − ai,j−1)α
S
zi,j−1

)Pij

]
× exp(−(ai,mi − ai,mi−1)α

S
zi,mi−1

)P †imi
(20)

where θ consists of the parameters λrs, αr and αS consists of the αSr . We note that if all Rij = 0 then
all parameters cannot be estimated from (20); we discuss this further in the Supplementary Material
available at Biostatistics online.

The time-homogeneous Markov model does not allow time trends in the intensity functions and
is too simplistic for many situations. The development here can readily be extended to deal with
nonhomogeneous processes where the intensities in (10) are replaced with qkl(t) and αZ(t−)(t). In this
case the calculation of transition probabilities needed for (16) and (17) is slightly more complicated.
Instead of matrices R0 and P (t) in (18), we consider

R0(t) =

(
Q(t)− Λ(t) Λ(t)

0 0

)
P (s, t) =

(
P1(s, t) P2(s, t)

0 0

)
. (21)

The transition probability matrix P (s, t) is given by the matrix product integral formula (Cook and
Lawless, 2018, p. 36)

P (s, t) =
∏
(s,t]

{I +R0(u) du} = lim
M→∞

M∏
`=1

{I +R0(u`) ∆u`} , (22)

where s = u0 < u1 < · · · < uM = t is a partition of (s, t], ∆u` = u` − u`−1 and all ∆u` → 0
as M → ∞. The right-most product in (22) with M as small as 10 or 20 usually provides fast and
sufficiently accurate computation of transition probabilities. As in the time-homogeneous case, it can
be seen that in order to obtain P1(s, t), we can in fact use only the K × K matrix Q(u) − Λ(u) in
place of R0(u) in (22).

It is recommended that some type of nonhomogeneous model be fitted as a check on homogeneous
models. Joint Markov models with piecewise-constant intensities are particularly useful (e.g. Cook
and Lawless, 2014, 2018), and the msm function can be used for fitting such models. Sometimes
Markov intensities are implausible as, for example, when the intensities for a certain state depend
strongly on the time since entry to that state. Such models are difficult to fit when state entry times
are unobserved, and so except for the case of progressive processes, which we consider in Section C
of the Supplementary Material available at Biostatistics online, most analyses use parametric Markov
models.

We next report on numerical studies of estimation under both CIVP and joint modelling assump-
tions.

3.2 NUMERICAL STUDIES

Here we consider some scenarios for two life history models: Model 1 is a 2-state alternating (re-
versible) model shown in Figure 1(c) and Model 2 is a 3-state progressive model as in Figure 1(d).
The first scenarios considered involve time-homogeneous transition intensities, as follows:
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Model 1: A 2-state alternating process with λ12 = 1, λ21 = 5, α1 = 0.5, α2 = 5

Model 2: A 3-state progressive process with λ12 = 1, λ23 = 5, α1 = 0.5, α2 = α3 = 5

Model 1 represents a setting with recurrent sojourns to state 2 of a fairly short duration relative to
those of state 1 while Model 2 represents a progressive condition with the 2→ 3 transition occurring
at a much higher rate than the 1 → 2 transition. For each model, the visit process intensities reflect
the setting where we assume that if the (j − 1)th visit occurs at time aj−1 and the state occupied then
is zj−1, then a potential scheduled visit is scheduled at a fixed time aj−1 + dzj−1

. The visit occurs
at this time only if no disease-driven visit occurs first; otherwise Aj is the time of the disease-driven
visit. For both models, a disease-driven visit is much more likely if an individual is not in state 1. For
simplicity, we used d1 = d2 = 0.5 for Model 1 and d1 = d2 = d3 = 0.5 for Model 2. Cases with
different schedules for each state gave similar results and are discussed below. We do not consider
early loss to follow-up for simplicity but assume an administrative censoring time E = 5. In all
cases we assume a0 = 0. With the transition intensities given above, for Model 1 about 36% and
66% of the visits are disease-driven when the state at the preceding visit is 1 and 2, respectively. For
Model 2 about 41% and 92% of the visits are disease-driven when the individual is in states 1 and
2 at the previous visit. Note that for Model 2, an individual’s follow-up continues after they enter
state 3. We examine the performance of estimators of transition intensities under a CIVP assumption
and under the joint model represented in (10) and (11). We also ran simulations for life history
processes involving a covariate. We let λkl(x) = λkl exp(βklx) with kl ∈ {12, 21} for Model 1 and
kl ∈ {12, 23} for Model 2. Wet set P (X = 1) = P (X = 0) = 0.5 and β12 = 1.2 for both models and
β21 = 0 and β23 = 0 for Model 1 and 2, respectively. Values of all other parameters are the same as
in the case without covariates and the values of dk were also the same. The likelihoods (23) and (19)
were maximized using the nlm function in R and the standard errors were computed based on the
observed information matrix; confidence intervals (CIs) were based on the normal approximations for
log λ̂rs and log α̂r. In Table 1 we show results for each setting from 500 simulations involving samples
of n = 1000 individuals which is typical of many observational disease cohorts. We report for each
estimator the empirical bias (EBIAS), the empirical standard error (ESE), the average standard error
based on the observed information matrix (ASE) and the empirical coverage probability (ECP%) for
nominal 95% confidence intervals.

The left column of Table 1 shows the results of fitting models under the CIVP likelihood function
(6), which, for a random sample of n individuals, becomes

Lc(λ) =
n∏
i=1

mi−1∏
j=1

PZ(Zi(aij) = zij | Zi(ai,j−1) = zi,j−1, ai,j−1) , (23)

where λ denotes the set of transition intensities λrs; the form is the same with the introduction of
a covariate with the addition of conditioning on X . We assume, as in (19), that ai,mi−1 is the last
observed visit time for individual i, and that ai,mi

is the censoring time, here equal to E = 5. The
right column of Table 1 contains the results for the likelihood function (19), which accounts for
disease-driven visits. The 2-state results are in the top half of the table and the 3-state results are in
the bottom half.

The results under the CIVP assumption show that with disease-driven visits whose intensity varies
across disease states, estimation of the disease process intensities and associated covariate effects is
severely biased. Estimation using the joint disease process – disease-driven visits model, however
produces valid estimates with minimal bias, and the empirical coverage for nominal 95% confidence
intervals is generally within the expected range.

We also ran simulations for other scenarios. When scheduled visit times depended on the last
known state (with state 2 in Model 1 and states 2, 3 in Model 2 having shorter times to the next sched-
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Table 1: Results of fitting models under the CIVP assumption using likelihood (23) and under a joint
life history - disease-driven visits process model using likelihood (19) with and without a covariate;
E = 5, n = 1000, nsim = 500.

Likelihood (23) - CIVP Likelihood (19) - JOINT MODEL

Value EBIAS ESE ASE ECP% EBIAS ESE ASE ECP%

2-State Model

log λ12 0.0000 0.2839 0.0322 0.0345 0.0 0.0013 0.0279 0.0290 96.2
log λ21 1.6094 -0.3039 0.0292 0.0317 0.0 0.0001 0.0363 0.0365 95.6

logα1 -0.6931 - - - - -0.0006 0.0218 0.0220 95.2
logα2 1.6094 - - - - -0.0002 0.0224 0.0219 94.0

2-State Model with Covariates

log λ12 0.0000 0.2823 0.0481 0.0489 0.0 0.0005 0.0408 0.0411 95.2
log λ21 1.6094 -0.3025 0.0432 0.0448 0.0 0.0025 0.0489 0.0489 94.2
β12 1.2000 0.0205 0.0699 0.0718 94.0 0.0014 0.0545 0.0557 95.6
β21 0.0000 -0.1912 0.0614 0.0648 14.0 -0.0034 0.0635 0.0664 95.4

logα1 -0.6931 - - - - -0.0012 0.0235 0.0240 96.2
logα2 1.6094 - - - - -0.0009 0.0168 0.0174 95.2

3-State Model

log λ12 0.0000 0.0506 0.0356 0.0319 66.6 0.0022 0.0340 0.0319 92.2
log λ23 1.6094 -0.1687 0.0331 0.0361 0.2 -0.0016 0.0384 0.0383 95.6

logα1 -0.6931 - - - - -0.0033 0.0476 0.0451 94.4
logα2 1.6094 - - - - -0.0014 0.0392 0.0383 93.6
logα3 1.6094 - - - - -0.0006 0.0074 0.0073 95.2

3-State Model with Covariates

log λ12 0.0000 0.0517 0.0467 0.0452 80.4 0.0031 0.0446 0.0451 95.2
log λ23 1.6094 -0.1704 0.0478 0.0511 8.2 -0.0031 0.0549 0.0529 93.6
β12 1.2000 0.1175 0.0722 0.0661 55.2 -0.0037 0.0643 0.0653 95.4
β23 0.0000 -0.0010 0.0676 0.0720 96.8 0.0018 0.0753 0.0728 93.8

logα1 -0.6931 - - - - -0.0034 0.0576 0.0560 93.0
logα2 1.6094 - - - - -0.0008 0.0391 0.0384 95.4
logα3 1.6094 - - - - -0.0006 0.0069 0.0070 95.6
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uled visit), results were similar to those in Table 1. We also investigated estimation using nonhomo-
geneous piecewise-constant transition intensities λrs(t) for the 3-state Model 2; these are reported in
Table 2 and show features similar to those of Table 1. Simulations with intensities of “Weibull” form
λrs0t

λrs1 also gave similar results.

Table 2: Results of fitting piecewise-constant models under the CIVP assumption using likelihood
(23) and under a joint life history - disease-driven visits process model using likelihood (19) with and
without a covariate; E = 5, n = 1000, nsim = 500.

Likelihood (23) - CIVP Likelihood (19) - JOINT MODEL

Interval Value EBIAS ESE ASE ECP% EBIAS ESE ASE ECP%

log λ12 [0, 2.5] 0.0000 0.0525 0.0362 0.0332 67.8 0.0017 0.0347 0.0332 93.4
(2.5, 5] 0.0000 0.0288 0.1301 0.1218 92.6 0.0103 0.1265 0.1192 93.4

log λ23 [0, 2.5] 1.6094 -0.1728 0.0363 0.0381 0.4 -0.0024 0.0423 0.0405 93.4
(2.5, 5] 1.6094 -0.1231 0.1124 0.1197 83.2 0.0165 0.1289 0.1251 95.0

logα1 [0, 2.5] -0.6931 - - - - -0.0031 0.0494 0.0469 94.6
(2.5, 5] -0.6931 - - - - -0.0199 0.1814 0.1677 94.0

logα2 [0, 2.5] 1.6094 - - - - -0.0016 0.0409 0.0404 94.4
(2.5, 5] 1.6094 - - - - -0.0016 0.1289 0.1243 95.2

logα3 [0, 2.5] 1.6094 - - - - -0.0010 0.0120 0.0121 96.2
(2.5, 5] 1.6094 - - - - -0.0004 0.0092 0.0091 95.0

Finally, we consider the case where scheduled visits also arise according to a intensity determined
by the state occupied at the preceding visit; we denote these by αSk where k denotes the state at the
preceding visit. We considered Models 1 and 2 described above, with time-homogeneous scheduled
visit intensities αS1 , αS2 for Model 1 and αS1 , αS2 , αS3 for Model 2. We investigate the situation in
which some of the values ∆D

ij that indicate whether a visit is disease-driven (DD) or scheduled (S)
are missing. We note that if all ∆D

ij are missing, model parameters can be non-identifiable, and such
cases are excluded in the scenarios we consider. Specifically, we randomly assigned individuals to a
sub-cohort in which they provide the reason for the visits when they occur so in this case Rij = Ri,
j = 1, . . .. Those not in the sub-cohort did not provide this information. We considered the situation
where P (Ri = 1) = 1.0, in which case data are complete on the cause for all visits, and where
P (Ri = 1) = 0.25 so that 75% of individuals do not furnish this data. Estimates were obtained by
maximizing the likelihood (20) accommodating incomplete data on the nature of the visit.

In Table 3 we see that when only 25% of individuals had known visit type indicators, standard
errors were, as expected, larger than when the types of all visits are known. Interestingly there is a
very modest impact on the precision of the estimators of the transition intensities λrs for the disease
process when only partial information is available on the nature of the visits. The parameters most
affected by the incomplete information are the parameters of the visit processes. A caution concerning
these results is that they depend on the assumed parametric models. When the visit type indicators are
missing, our ability to check assumptions by generalizing the specification of the intensity functions
is more limited. In Section 4 we consider a real setting involving a chronic disease cohort, and discuss
some of the limitations imposed by the available data.

There are several factors that influence the magnitude of the biases of estimators from analyses
based on a CIVP assumption. First, in the context of the models of this section, the relative size of
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Table 3: Estimates for the two- and three-state models obtained from likelihood (20) with complete
and incomplete information on the nature of visit; E = 1, n = 1000, nsim = 500.

P (Ri = 1) = 1.0 P (Ri = 1) = 0.25

Value EBIAS ESE ASE EBIAS ESE ASE

2-State Model

log λ12 0.0000 -0.0008 0.0261 0.0269 -0.0007 0.0263 0.0271
log λ21 1.6094 0.0018 0.0311 0.0299 0.0014 0.0323 0.0308

logα1 -0.6931 -0.0009 0.0220 0.0220 0.0039 0.0399 0.0402
logα2 1.6094 -0.0003 0.0212 0.0208 -0.0008 0.0287 0.0283

logαS1 0.6931 0.0000 0.0112 0.0115 -0.0013 0.0133 0.0144
logαS2 0.6931 -0.0005 0.0199 0.0203 -0.0010 0.0255 0.0267

3-State Model

log λ12 0.0000 -0.0003 0.0314 0.0320 -0.0002 0.0315 0.0320
log λ23 1.6094 0.0030 0.0377 0.0380 0.0024 0.0379 0.0392

logα1 -0.6931 -0.0021 0.0430 0.0451 -0.0006 0.0777 0.0828
logα2 1.6094 0.0000 0.0379 0.0380 -0.0023 0.0486 0.0505
logα3 1.6094 -0.0004 0.0073 0.0073 -0.0007 0.0099 0.0099

logαS1 0.6931 -0.0007 0.0212 0.0210 -0.0015 0.0289 0.0272
logαS2 0.6931 -0.0027 0.0518 0.0504 -0.0015 0.0820 0.0818
logαS3 0.6931 -0.0009 0.0122 0.0117 -0.0004 0.0215 0.0206

the state-dependent disease-driven visit intensities is a key aspect. However the net risk of a disease-
driven visit being realized (in light of the competing risk for scheduled visits) also matters; a strongly
dependent disease-driven visit process in settings where conditionally independent scheduled visits
occur more frequently will not result in much bias. In the simulations of Tables 1 to 3 the state-
dependent visit intensities were ten-fold higher for some states compared to others and biases were
large. Second, some parameters are affected by conditionally dependent visit processes more than
others. Intensities and some functions of the intensities such as transition probabilities or state occu-
pancy probabilities seem more sensitive than covariate effects. The weaker sensitivity of regression
coefficients to dependently incomplete data has been observed in longitudinal settings with drop-out
and survival analysis with dependent right censoring. Third, the nature of the underlying process
(e.g. reversible as in Model 1 versus progressive as in Model 2) plays an important role; reversible
processes are more susceptible to bias from state-dependent visits than progressive processes. Fourth,
the number of covariates considered in the life history model is also a factor - the more covariates are
controlled for the weaker the conditional independence assumption of a CIVP analysis. A fifth factor
could be the percentage of visits of a known type (disease-driven or scheduled). Each of these points
are useful to bear in mind when examining the results in the application in Section 4.

We report in Section B of the Supplementary Material available at Biostatistics online on the
results of further numerical studies of the impact of misspecification of the disease-driven visit in-
tensity. In particular we consider semi-Markov disease-driven visit intensities when the time-scale
is the time since entry to the current disease state (Section B.1) and when it is the time since the
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most recent visit (Section B.B); in both settings the Markov assumption is invalid. We report on the
empirical properties of estimators obtained from assuming a CIVP process and from joint modeling
under the Markov disease-driven visit process. We find that estimators of the life history intensities
and covariate effects are biased when the visit process is misspecified. Estimators of covariate effects
are less affected than those of baseline intensities, and when the degree of misspecification is mild,
biases may not be too large. This raises the issue of how models can be assessed for adequacy. We
show in Section C of the Supplementary Materialavailable at Biostatistics online how a joint model
with semi-Markov disease-driven visits can be fitted for the case of a progressive life history process.
Fitting more complex models is difficult, however, and in these cases more frequent scheduled visits
are recommended.

4 MODELING OF SEVERE JOINT DAMAGE IN PSORIATIC ARTHRITIS

Here we report on the analysis of data from the University of Toronto Psoriatic Arthritis cohort, a reg-
istry of patients which was launched in 1977 and is now comprised of over 1,800 individuals. Patients
are examined according to a formal protocol with clinic visits scheduled annually and radiographic
examinations scheduled to take place every two years. At clinic visits, 64 joints of the hands, feet and
elsewhere are assessed and classified as severely damaged or not. The present goal is to predict the
onset of a severe form of arthritis defined here as the presence of 3 or more severely damaged joints;
this outcome is similar to an outcome termed arthritis mutilans based on radiological assessment of
damage. To do this, we consider a four-state progressive model with states 1 − 4 representing zero
damaged joints, and 1, 2, or 3 or more damaged joints, respectively. We take the time of diagnosis
with PsA as the time origin since this represents the onset of disease activity, and assume Z(0) = 1.
We restrict attention in this analysis to patients who were diagnosed with PsA in 1990 or later in order
to confine attention to a period of time when the care of patients was relatively consistent, and select
those recruited to the clinic within five years of diagnosis. Finally, we condition on A0 = a0, the time
of the first clinic visit, and Z(a0).

In this clinic registry visits are not classified as scheduled or disease-driven, so for illustration we
adopt the following procedure to label them retrospectively. Since clinic visits are scheduled annually,
if a visit occurs within 18 months of the previous visit (allowing for a 6-month appointment delay)
it may be a scheduled visit, while visits after 18 months are designated disease-driven visits. At
clinic visits blood tests are carried out to assess the level of inflammation based on the erythrocyte
sedimentation rate (ESR). So if the ESR is measured and found to be above the normal value, we
classify the visit as a disease-driven visit even if it is within 18 months of the prior visit. This post
hoc approach to labeling visits is carried out as part of an illustrative analysis; while it is known that
some visits are precipitated by a flare or other change in the disease condition, this information is not
available. More satisfactory analyses would be possible if the clinic recorded the reason for the visit
as we remark in Section 6.

Out of 4,267 visits following a visit in which an individual was found to be in state 1, 1573 (36.9%)
are designated as disease-driven according to this algorithm. Of the 310, 322 and 629 visits following
a visit when the individual was in state 2, 3 or 4, 109 (35.2%), 101 (31.4%) and 232 (36.9%) were
labeled as disease-driven, respectively. We consider analyses based on the four-state model fitted
under the CIVP assumption, and analyses based on a joint model with state-specific disease-driven-
visit intensities. We do not model the scheduled visit process because it is not of interest; this is
justified under the assumption that LTF is conditionally independent of the life history, covariate, and
visit processes.

We use piecewise-constant transition intensities for the four-state progressive response model with
cut-points at 2.5, 5.0, 7.5 and 10 years; tests for the need for more cut-points to accommodate residual
trend did not yield significant results. The results of fitting the four-state model under a CIVP assump-
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tion and a joint model with state-dependent disease-driven visit intensities are given in Table 4 for the
case of no covariates. The disease-driven-visit intensities are assumed to be time-homogeneous, but
time-dependent intensities can be accommodated. The null hypothesis of a CIVP can be assessed
in the context of the joint model by testing the null hypothesis H0: α1 = α2 = α3 = α4 which
would correspond to a state-independent “disease-driven” visit intensity. A likelihood ratio test of
H0 gives p < 0.0001 so there is very strong evidence against a CIVP; this is not surprising since the
disease-driven visit intensities are estimated quite precisely and are increasing with the number of
damaged joints. Interestingly, despite the fact that the CIVP process assumption is rejected there is
only a small difference in the transition intensities for the response process estimated from fitting the
four-state model under the CIVP assumption and the joint model; see the last paragraph in Section
3.2 for explanatory comments. We note that the hypothesis H0 corresponds to a CIVP sub-model
within a specific joint model accommodating disease-driven visits; in general, CIVPs are not special
cases of the disease-driven-visit model here. The small differences in CIVP estimates and joint model
estimates may reflect the fact that the disease-driven-visit intensities, while different, do not vary as
dramatically as in the simulation studies. In addition, only about one third of the visits are designated
as disease-driven.
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Figure 3: Estimates of the state 2, 3 and 4 entry time distributions from fitted four-state progressive
Markov models in Table 4 with piecewise-constant transition intensities along with nonparametric
estimates; also displayed are the cumulative transition intensity estimates from the joint model.

In the first three panels of Figure 3, we display the estimates of the cumulative state entry time
distributions based on the fitted four-state model and the joint model. Also displayed are nonpara-
metric estimates of the marginal state entry time distributions obtained based on the interval-censored
state entry times (Sun, 2006, Chapter 3). There is good agreement between the model-based and
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nonparametric estimates but we note that the nonparametric estimates are based on a stronger CIVP
assumption that requires visit times to be completely independent of the damage process. The last
panel of Figure 3 displays the estimates of the cumulative transition intensities from the joint model
where it can be seen that the risk of damage for a first joint is considerably lower than the risk of pro-
gressive damage for a second and third joint; this is consistent with what is seen in the clinic where
once a patient has developed damage in a joint the risk of future damage appears higher.

We next fit multiplicative intensity-based regression models for the transitions in the four-state
model with intensities of the form

λNk,k+1(t | H̄(t−)) = λNk,k+1(t) exp(X ′βk)

where X is a fixed p× 1 covariate vector, βk is a p× 1 vector of regression coefficients, and exp(βkj)
is a relative risk for k → k + 1 transitions associated with a one unit increase in Xj when all other
elements of X are held fixed. The covariates include an indicator of early disease onset (diagnosis by
40 years of age), status of the human leukocyte antigen HLA B27, an interaction between the early
onset indicator and HLA B27 status, and sex. The model is fitted under the CIVP assumption and
under the joint model and the estimated regression coefficients are reported in Table 5. There are
very small differences in the estimated baseline intensities (not shown) and covariate effects under
the four-state model fitted based on the CIVP assumption and the joint model; we note that in this
setting the CIVP assumption for the four-state analysis is weaker than it is in the previous analysis
due to conditioning on covariates. The likelihood ratio test of the CIVP assumption is again highly
significant however.

The interaction between early onset and HLA B27 is significant for the 3→ 4 transition intensity
so we report on the effects of HLA B27 separately for those with early and late onset based on the joint
model. The relative risks for a 1→ 2 transition (first damaged joint) among HLA B27 positive versus
negative individuals are RR = 1.164 (95% CI: 0.518, 2.618; p = 0.713) and RR = 1.350 (95% CI:
0.693, 2.631; p = 0.378) for those with early and late onset, respectively. The corresponding effects
of early (versus late) onset are RR = 0.454 (95% CI: 0.171, 1.204; p = 0.113) and RR = 0.526
(95% CI: 0.356, 0.779; p = 0.001) for HLA B27 positive and negative individuals respectively.
Among individuals with two damaged joints, the effect of HLA B27 on the intensity for developing
a third damaged joint is stronger for those with early onset (RR = 3.521; 95% CI: 1.059, 11.710;
p = 0.040) compared to those with late onset (RR = 0.537; 95% CI: 0.198, 1.457; p = 0.222).
The effect of early onset is likewise significantly different for those who are HLA B27 positive and
negative with relative risks RR = 11.368 (95% CI: 2.806, 46.056; p < 0.001) and RR = 1.735 (95%
CI: 0.881, 3.415; p = 0.111) respectively. Females have a significantly elevated rate of developing
a second damaged joint compared to males (RR = 1.730; 95% CI: 1.064, 2.812; p = 0.027) but
there is little evidence of an effect for the other transitions. There is also little evidence of an effect of
biologic therapy but we note that this will often be prescribed in individuals with a greater number of
damaged joints than we consider here. Thus, positive HLA B27 status is associated with progression
of damage. Interestingly, for those who are HLA B27 negative, early onset is associated with a lower
risk for the first damaged joint.

In Section D of the Supplementary Material available at Biostatistics online, we fit joint models
with semi-Markov disease-driven visit intensities based on the likelihood constructed as described
in Section C of the Supplementary Material available at Biostatistics online; we use the time since
the most recent visit as the time-scale for these intensities. While there is mild evidence of small
time-trend the parameter estimates for the disease process are very similar to those reported in Table
5.
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Table 5: Estimates obtained from fitting a four-state multiplicative intensity-based regression model
reflecting the development of damage in psoriatic arthritis patients under the assumption of a condi-
tionally independent visit process (CIVP) and via a joint model with state-dependent intensities for
disease-driven visits

CIVP MODEL JOINT MODEL

Covariate Comparison EST. S.E. p−value EST. S.E. p−value

Intensity for 1→ 2 Transitions

Early Onset ≤ 40 vs. > 40 years -0.644 0.199 0.0012 -0.642 0.200 0.0013
HLA B27 Yes vs. No 0.377 0.338 0.2645 0.300 0.340 0.3779
Early Onset × HLA B27 -0.194 0.534 0.7169 -0.148 0.536 0.7826
Sex Female vs. Male 0.097 0.177 0.5836 0.076 0.178 0.6696

Intensity for 2→ 3 Transitions

Early Onset ≤ 40 vs. > 40 years -0.416 0.282 0.1402 -0.453 0.286 0.1136
HLA B27 Yes vs. No 2.742 0.854 0.0013 2.902 0.916 0.0015
Early Onset × HLA B27 -1.837 1.021 0.0721 -2.093 1.088 0.0544
Sex Female vs. Male 0.559 0.244 0.0220 0.548 0.248 0.0273

Intensity for 3→ 4 Transitions

Early Onset ≤ 40 vs. > 40 years 0.572 0.341 0.0937 0.551 0.346 0.1109
HLA B27 Yes vs. No -0.577 0.505 0.2533 -0.621 0.509 0.2222
Early Onset × HLA B27 1.775 0.782 0.0233 1.880 0.787 0.0170
Sex Female vs. Male 0.422 0.285 0.1385 0.423 0.288 0.1428

5 SUPPLEMENTARY DATA AND OTHER CONSIDERATIONS

It is good practice to compare inferences under CIVP assumptions with ones based on joint models
allowing disease-driven visits. Although we can fit parametric joint models as shown in the pre-
ceding section, there is however no fully adequate way to check them, given the difficulty of fitting
non-Markov models based on intermittent observation. Also, as the gaps between visits lengthen,
information about parameters is reduced, even when each visit can be classified as a scheduled or
disease-driven visit. In this section we discuss some types of supplementary data that allow other
checks on CIVP assumptions, and more detailed models to be fitted.

A. Supplementary data at visits. We have emphasized the common situation where states and co-
variates at the visit times are all that is known. However, with sufficient care, additional data may
often be obtained, for example:

(i) individual-supplied reasons for the visit at aj;

(ii) covariate information X(aj) or in some cases, X̄(aj−1, aj) that may be related to visits and
to the life history process;

(iii) information on the life history process Z(t) over (aj−1, aj).

Accurate information on life history or covariates between visit times may be hard to obtain and
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subject to measurement error. However, with the increased availability of monitoring technology,
more information of this type is becoming available. We say more about this next.

B. Data collection between visits. If covariates X(t) that may be related to the life history and visit
processes can be measured between visits, this information can be used to support more detailed
modeling. In particular, we can include such information in the observed histories H̄◦(t−) and
thus in the transition intensities λkl(t|H̄◦(t−)). It could also be used in models for the scheduled-
visit intensity, as a basis for IIV weighted estimation (Cook and Lawless, 2018, Section 5.4), or
for modeling the covariate process {X(t), t ≥ 0}; see for example Cook and Lawless (2018, Sec-
tions 5.2.1, 8.3). We remark that attempts to fit disease-driven-visit intensity models that involve
covariates using only the data from observed visit times have been problematic, with likelihood
maximization algorithms failing to converge. Additional information would be valuable for char-
acterizing disease-driven-visit intensities.

C. Designated sub-cohorts. Sometimes a randomly selected sub-cohort of individuals can be chosen
for more detailed data collection, including scheduled visits with rigorous adherence and accurate
information about the reasons for any disease-driven visits. In this case, models fitted on this sub-
cohort can be compared with models fitted on the remainder of the cohort, either with or without
CIVP assumptions. The sub-cohort providing more detailed information can also be useful when
assessing violations of the CIVP assumption for the full sample.

D. Tracing of individuals lost to follow-up. It often occurs that some individuals in a study cohort
have not had a visit for a long time. In this case, we may decide to contact some or all of such
individuals and with their agreement, schedule a visit. If information on the state then occupied
and on certain covariates can be obtained, this can be compared with predictions based on models
fitted under CIVP or non-CIVP assumptions. For the latter we could also include in the last term
in the likelihood (19) the information concerning Z(aj). In some cases, useful information may
be obtainable without an actual visit.

Supplementary data and background knowledge about the life history process can help to identify
and adjust for process-dependent visit times but as noted previously, models that incorporate disease-
driven visits are difficult to check thoroughly even when visit types are accurately identified, because
life history transition times are unknown. Nevertheless, the joint models provide additional insight
and it is recommended that information on the reasons for visits be routinely collected.

6 DISCUSSION

Much of the literature dealing with the relation between a disease process and a visit process has been
based on shared or correlated random effect models (e.g. Liu et al., 2008); the same framework has
been used extensively for modeling dependent censoring (e.g. Huang and Wolfe, 2002). When life
history processes are under potential observation for a long period of time the simple dependence
structure implied by such models is usually not realistic. The model proposed by Lange et al. (2015)
and studied here is designed to address this limitation and provide a more complete and powerful
representation of the possible dependence structure. A particular advantage is the ability to accom-
modate state-dependence in the visit intensity which reflects the fact that changes in the disease state
often precipitate clinic visits in chronic disease processes. When visits may arise for different rea-
sons, some disease related reasons may violate the independence assumptions implicit in standard
analyses, but others may not; better analyses are possible if the reasons are recorded for at least some
visits to ensure identifiability. As we discuss in Section A of the Supplementary Material available
at Biostatistics online, identifiability issues arise when there is no information about the reasons for
visits.
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Since the visit times are known, semi-Markov disease-driven visit intensities could be considered
but fitting models and assessing intensities is challenging since they depend on the incompletely
observed life history process. This leads to complex expressions for likelihood contributions as we
demonstrate in Section C of the Supplementary Material available at Biostatistics online. It helps a
good deal if scheduled visits are not too far apart and we stress the desirability of this.

The joint models for the life history and visit processes we consider are discussed in the setting
where LTF is conditionally independent of the life history, covariate and visit processes given the
observed history; moreover, we assume that the LTF time is non-informative. This simplifying as-
sumption enabled us to focus attention on conditions of the visit process and relatively simple joint
models. If the LTF time is not conditionally independent joint models of the life history and observa-
tion process will need to accommodate LTF and therefore become more complex. In ongoing work,
we are studying such models but this is beyond the scope of the current paper.

We have also focused on the case in which all transitions of the life history process are unob-
served due to intermittent examination of individuals. In many settings entry times to some (often
absorbing) states are observable, subject only to right censoring. In chronic disease processes, entry
to the absorbing state death can be observed and will terminate both the disease and visit processes.
Adaptations of the models we consider to deal with this are relatively straightforward.

In some cohort studies different types of information may be collected at different kinds of vis-
its. Some visits may involve more intensive data collection and accurate examination of the disease
status, while others may involve less expensive and less accurate classification of individuals. The
University of Toronto Psoriatic Arthritis Clinic has a formal protocol in which patients are to undergo
detailed annual clinical examination by a physician but are to be examined radiologically for joint
damage only every second year. When the clinical examination yields a less accurate assessment of
the disease state, some visits may provide misclassified designations. Hidden Markov models (Tit-
man and Sharples, 2010) are useful when imperfect state classifications arise, but little work has been
carried out on the setting where some visits may yield accurate designations and some inaccurate
designations. Models accommodating disease-dependent visit processes could enhance information
about the latent states in this case.

Delayed entry to a study, with an initial visit at time a0 > 0, is readily accommodated provided
sufficient information is available on the history H(a0) to render the subsequent process independent
of the delayed entry time. Such information will, for example, be crucial when using data from tertiary
care centers since referral to such centers will typically occur when there has been either a prolonged
period of uncontrolled disease activity or a sudden increase in it. In the absence of auxiliary data
on unselected individuals, it is difficult to check the validity of any assumptions about conditionally
independent delayed entry.

We have restricted attention to the case of fixed covariates, defined time-varying covariates, or
time-varying covariates which change only at visit times; covariates which vary randomly in contin-
uous time are more difficult to handle. Much of the work on joint modeling of longitudinal markers
and failure times has been carried out to deal with this challenge using hierarchical linear models
with shared or correlated random effects acting on the hazard function (Rizopoulos, 2012). Exten-
sions accommodating more general life history processes are possible, but these models are primarily
descriptive and do not provide a realistic representation of local dependence (Aalen et al., 2008), nor
the effect of terminal events such as death (Cook and Lawless, 2018, Section 8.3). The conventional
approach of “carrying forward” the most recently measured value of a marker to avoid a model for
X(t), can yield attenuated estimates of effects. Approaches geared towards addressing this attenua-
tion include the aforementioned joint modeling approaches, smoothing covariate values (e.g. Raboud
et al., 1993; Tsiatis et al., 1995), regression on the time since the most recent covariate measurement
(e.g. de Bruijne et al., 2001), and regression calibration (Andersen and Liestol, 2003). There is much
scope for further work on methods for handling time-varying covariates measured at conditionally
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independent or dependent visit times for general life history processes.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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APPENDIX

A Non-identifiability in the failure time-visit process model when

visit-type information is missing

In some settings, all visits might be of unknown type, so that all indicators ∆D
ij are missing. In

this case, numerical studies show that not all of the parameters αSk and αDDk (k = 1, . . . , K) in

the models discussed in Sections 3.1 and 3.2 are estimable. A proof of strict non-identifiability

for general multistate models seems difficult, but we give here a proof in the case of a failure

time model.

Consider successive visits, say at times a0 and a1, where Z(a0) = 1; here, state 1 represents

“unfailed” and state 2 “failed”. We assume the 1→ 2 transition intensity, or failure intensity,

is a constant λ12 and that DD-visit intensities from states 1 and 2 are α1 and α2, respectively.

In addition, we assume an S-visit can occur at a1; its intensity is αS1 . There are two possible

observable outcomes at time a1: either (i) Z(a1) = 1 or (ii) Z(a1) = 2. The respective likelihood

contributions are, from (20),

L1 = (α1 + αS1 ) exp(−αS1 (a1 − a0))P10,10(a0, a1)

L2 = (α2 + αS1 ) exp(−αS1 (a1 − a0))P10,20(a0, a1)

where P10,r0(a0, a1) = P (Z(a−1 ) = r, A(a−1 ) = A(a0) | a0, A(a0), Z(a0) = 1), for r = 1, 2.
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Straightforward calculations show that

P10,10(a0, a1) = exp(−(λ12 + α1) (a1 − a0))

P10,20(a0, a1) = λ12 e
−α2a1 e(λ12+α1)a0

[
e−(λ12+α1−α2)a0 − e−(λ12+α1−α2)a1

λ12 + α1 − α2

]
.

There are four parameters λ12, α1, α2, αS1 in the joint model, but if we let θ1 = α1 + αS1 ,

θ2 = α2 + αS1 we can see that

L1 = θ1 exp(−(θ1 + λ12) (a1 − a0))

L2 = λ12 θ2 e
−θ2(a1−a0)

[
1− exp(−(λ12 + θ1 − θ2) (a1 − a0))

λ12 + θ1 − θ2

]
.

Thus, L1 and L2 depend on only three functions λ12, θ1 and θ2 of λ12, α1, α2, αS1 and so (λ12,

α1, α2, αS1 ) is non-identifiable.

B Impact of Misspecifying the Disease-Driven Visit Intensity

In this section we report on empirical studies about the consequences of assuming a Markov

disease-driven visit process when the true intensity is semi-Markov. In Section B.1 the time-

scale used for the true disease-driven visit intensity is taken to be the time of entry to the

current disease state, while in Section B.2 the time origin is the time of the last visit. The

former is appropriate when a change in the disease state alters the instantaneous propensity

for a clinic visit while the latter could arise when the visit process is of a renewal type but the

governing intensity depends on the disease state (i.e. individuals with more advanced or active

forms of the disease have different processes governing their disease-driven visits). We consider

both alternating two-state and progressive three-state disease processes.

B.1 Semi-Markov Model 1 for Disease-Driven Intensities

The two-state disease process is as described in Section 3.2 with a Bernoulli covariate X having

P (X = 1) = P (X = 0) = 0.5, W12|X ∼ exponential(rate =λ12 exp(β12X)), and W21|X ∼
exponential(rate =λ21 exp(β21X)). We set λ12 = 1 and λ21 = 5 as the baseline hazards and set

β12 = 1.2 and β21 = 0. We let N·(t) count the total number of 1 → 2 and 2 → 1 transitions

over (0, t] and if we do not distinguish the transition types we can label the transition (state

entry) times over (0, t] simply as t1 < t2 < · · · < tN(t). We consider the visit intensities of the

form

λA(t|H̄(t)) =
2∑

k=1

I(Z(t−) = k)αk Bk(t)
κ−1 (B.1)

where B1(t) = 1, B2(t) = t− tN(t−) is the time since entry to the most recent state Z(t−) = 2,

and α2 = α1e
γ. We set α1 = 0.5 and γ = log 10 and to accommodate trend we consider

κ = 0.8, 1 and 1.2. Thus for κ = 1 we retrieve the setting of Section 3.2 but otherwise we
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have a state-dependent semi-Markov intensity for the visit process and the likelihoods used in

Section 3.2 are misspecified; the correct likelihood is described in Section C.

For the 3-state setting we proceed in a similar fashion but here we can simply let t2 and

t3 denote the entry times to states 2 and 3, respectively. We let λ12 = 1 and λ23 = 5 be the

baseline intensities for transitions between the disease states and let β12 = 1.2 and β23 = 0 be

the covariate effects. For the visit process we set

λA(t|H̄(t)) =
3∑

k=1

I(Z(t−) = k)αk Bk(t)
κ−1 (B.2)

where again B1(t) = 1, B2(t) = t − tN(t−) is the time since entry to the current state, and

α2 = α3 = α1e
γ with α1 = 0.5; we again let γ = log 10 and consider κ = 0.8, 1.0 and 1.2

Table B.1: Empirical results from fitting 2-state models for the disease process and disease-
driven visit process under the CIVP assumption using likelihood (23) and under a working joint
model with Markov disease-driven visit intensities when the true disease-driven visit intensity
is given by (B.1) using likelihood (19); a single binary covariate is considered for this disease
process, E = 5, n = 1000, nsim = 500.

Likelihood (23) - CIVP Likelihood (19) - JOINT MODEL

κ Value EBIAS ESE ASE ECP% EBIAS ESE ASE ECP%

0.8 log λ12 0.0000 0.3580 0.0475 0.0494 0.0 0.0593 0.0410 0.0407 69.6
log λ21 1.6094 -0.2575 0.0410 0.0448 0.0 0.0530 0.0455 0.0482 82.6

β12 1.2000 0.0390 0.0723 0.0744 92.6 0.0336 0.0585 0.0564 91.2
β21 0.0000 -0.1213 0.0633 0.0667 55.6 0.1230 0.0678 0.0669 53.2

1.0 log λ12 0.0000 0.2833 0.0470 0.0489 0.0 0.0020 0.0396 0.0411 95.4
log λ21 1.6094 -0.3030 0.0449 0.0448 0.0 0.0031 0.0503 0.0489 93.4

β12 1.2000 0.0177 0.0695 0.0718 95.2 -0.0017 0.0542 0.0557 96.2
β21 0.0000 -0.1898 0.0631 0.0648 16.4 -0.0025 0.0670 0.0664 94.4

1.2 log λ12 0.0000 0.2294 0.0443 0.0477 0.0 -0.0493 0.0388 0.0402 77.2
log λ21 1.6094 -0.3536 0.0400 0.0440 0.0 -0.0187 0.0463 0.0482 93.8

β12 1.2000 -0.0221 0.0687 0.0682 94.4 -0.0350 0.0533 0.0532 92.2
β21 0.0000 -0.2704 0.0606 0.0621 0.6 -0.0975 0.0643 0.0640 66.4

Simulation results based on fitting a joint model assuming a Markov visit process are sum-

marized in Tables B.1 and B.2 for the 2-state reversible model and the 3-state progressive model,

respectively. For the 2-state process, the empirical biases in the estimators under the invalid

CIVP assumption can be appreciable for the log transition intensities with smaller biases seen
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Table B.2: Empirical results from fitting 3-state models for the disease process and disease-
driven visit process under the CIVP assumption using likelihood (23) and under a working joint
model with Markov disease-driven visit intensities when the true disease-driven visit intensity
is given by (B.2) using likelihood (19); a single binary covariate is considered for this disease
process, E = 5, n = 1000, nsim = 500.

Likelihood (23) - CIVP Likelihood (19) - JOINT MODEL

κ Value EBIAS ESE ASE ECP% EBIAS ESE ASE ECP%

0.8 log λ12 0.0000 0.0742 0.0472 0.0451 62.0 0.0173 0.0447 0.0450 93.2
log λ23 1.6094 -0.2005 0.0417 0.0494 0.2 0.0926 0.0519 0.0498 54.4

β12 1.2000 0.1699 0.0754 0.0657 29.0 0.0253 0.0649 0.0645 93.0
β23 0.0000 0.0025 0.0569 0.0695 98.8 0.0033 0.0669 0.0692 95.8

1.0 log λ12 0.0000 0.0507 0.0476 0.0452 78.0 0.0023 0.0455 0.0451 95.2
log λ23 1.6094 -0.1659 0.0452 0.0511 9.2 0.0011 0.0519 0.0529 95.4

β12 1.2000 0.1205 0.0733 0.0661 54.6 -0.0010 0.0648 0.0653 96.6
β23 0.0000 -0.0028 0.0682 0.0720 97.0 -0.0000 0.0762 0.0729 94.6

1.2 log λ12 0.0000 0.0337 0.0456 0.0452 90.4 -0.0062 0.0440 0.0452 94.4
log λ23 1.6094 -0.1354 0.0495 0.0527 26.2 -0.1314 0.0500 0.0537 30.4

β12 1.2000 0.0827 0.0696 0.0664 76.0 -0.0174 0.0626 0.0659 95.4
β23 0.0000 -0.0073 0.0702 0.0743 96.4 -0.0061 0.0708 0.0743 96.2

for the covariate effects. The empirical biases are generally smaller in the joint analysis even

when the disease-driven visit intensity is misspecified, but this is not always the case, and the

signs of the biases can be different in the two analyses. For the 3-state process the findings are

broadly similar.

B.2 Semi-Markov Model 2 for Disease-Driven Visit Intensities

Here we consider an alternative semi-Markov disease-driven visit intensity for the same two-state

and three-state disease processes and respective parameter values of Section B.1. Specifically

we consider the disease-driven visit intensities having the same form as (B.1) but with Bk(t)

replaced by Ba
1(t) = 1 and Ba

2(t) = t − aA(t−), the time since the last clinic visit. Here we

let α1 = 0.5 and α2 = α1e
γ with γ = log 10 as before. Again when κ = 1 we retrieve the

setting of Section 3.2 but for κ 6= 1 we have another kind of state-dependent semi-Markov

disease-driven visit intensity so the likelihoods of Section 3.2 are misspecified. For the 3-state

process we use the same setting as in Section B.1 but replace Bk(t) in (B.2) with Ba
1(t) = 1 and

Ba
k(t) = t− aA(t−) for k = 2, 3. Again we let α1 = 0.5 and α2 = α3 = α1e

γ with γ = log 10 and
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consider κ = 0.8, 1.0 and 1.2. Simulation results based on fitting a joint model again under

the Markov visit process are summarized in Tables B.3 and B.4 for the 2-state reversible model

and 3-state progressive model, respectively. Again we typically find a reduction in the bias of

the estimators from attempts at joint modeling, although this is not always the case.

Table B.3: Empirical results from fitting 2-state models for the disease process and disease-
driven visit process under the CIVP assumption using likelihood (23) and under a working joint
model with Markov disease-driven visit intensities when the true disease-driven visit intensity
is given in Section B.2 using likelihood (19); a single binary covariate is considered for this
disease process, E = 5, n = 1000, nsim = 500.

Likelihood (23) - CIVP Likelihood (19) - JOINT MODEL

κ Value EBIAS ESE ASE ECP% EBIAS ESE ASE ECP%

0.8 log λ12 0.0000 0.2944 0.0414 0.0438 0.0 -0.0268 0.0344 0.0336 86.8
log λ21 1.6094 -0.4271 0.0363 0.0399 0.0 0.2531 0.0408 0.0399 0.0

β12 1.2000 -0.0061 0.0597 0.0632 96.2 0.0170 0.0421 0.0429 93.2
β21 0.0000 -0.2875 0.0531 0.0562 0.2 0.1301 0.0489 0.0501 24.8

1.0 log λ12 0.0000 0.2853 0.0476 0.0489 0.0 0.0022 0.0414 0.0410 94.6
log λ21 1.6094 -0.3041 0.0428 0.0448 0.0 -0.0003 0.0493 0.0488 94.0

β12 1.2000 0.0169 0.0722 0.0718 93.6 -0.0011 0.0574 0.0556 95.2
β21 0.0000 -0.1872 0.0633 0.0648 16.8 0.0016 0.0685 0.0663 94.4

1.2 log λ12 0.0000 0.2568 0.0503 0.0544 0.0 0.0200 0.0453 0.0478 94.0
log λ21 1.6094 -0.2087 0.0483 0.0505 2.0 -0.0381 0.0541 0.0548 89.4

β12 1.2000 0.0308 0.0778 0.0812 94.6 0.0060 0.0663 0.0679 95.8
β21 0.0000 -0.1195 0.0737 0.0749 65.8 -0.0122 0.0795 0.0789 95.2

C Fitting a Joint Model with a Semi-Markov Visit Process

Here we consider the likelihood construction for a special joint model with a progressive 4-state

disease process and semi-Markov visit process intensities. We consider disease state-dependence

for the semi-Markov visit intensities with the time-scale defined as the time since entry to the

current disease state. Specifically we let αk(Bk(t)) = αk[Bk(t)]
κ−1, k = 2, 3, 4 where the κ

parameter is the same for transitions out of states 2 to 4, B1(t) = 1 and Bk(t) = t − tk is the

time since entry to state k, k = 2, 3, 4. There are only a small number of possible types of

paths that we can distinguish in part by the final state. In what follows we use the convention

that the dashes between the subscripts signify that the separated states have been observed so
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Table B.4: Empirical results from fitting 3-state models for the disease process and disease-
driven visit process under the CIVP assumption using likelihood (23) and under a working joint
model with Markov disease-driven visit intensities when the true disease-driven visit intensity
is given in Section B.2 using likelihood (19); a single binary covariate is considered for this
disease process, E = 5, n = 1000, nsim = 500.

Likelihood (23) - CIVP Likelihood (19) - JOINT MODEL

κ Value EBIAS ESE ASE ECP% EBIAS ESE ASE ECP%

0.8 log λ12 0.0000 0.0613 0.0484 0.0451 70.2 -0.0127 0.0451 0.0450 94.8
log λ23 1.6094 -0.1975 0.0461 0.0498 2.2 0.0664 0.0562 0.0507 72.2

β12 1.2000 0.1523 0.0763 0.0659 39.0 -0.0326 0.0638 0.0645 92.2
β23 0.0000 -0.0035 0.0623 0.0701 97.2 0.0010 0.0734 0.0699 94.4

1.0 log λ12 0.0000 0.0500 0.0481 0.0452 78.8 0.0014 0.0461 0.0451 94.6
log λ23 1.6094 -0.1630 0.0442 0.0512 8.6 0.0045 0.0507 0.0529 96.0

β12 1.2000 0.1227 0.0749 0.0661 53.6 0.0010 0.0666 0.0653 94.8
β23 0.0000 -0.0080 0.0657 0.0720 96.8 -0.0057 0.0728 0.0729 95.0

1.2 log λ12 0.0000 0.0396 0.0474 0.0452 87.4 0.0052 0.0460 0.0452 93.8
log λ23 1.6094 -0.1371 0.0494 0.0524 22.2 -0.0196 0.0540 0.0544 94.0

β12 1.2000 0.0921 0.0763 0.0662 69.8 0.0061 0.0699 0.0658 93.2
β23 0.0000 -0.0019 0.0693 0.0739 97.6 0.0013 0.0756 0.0751 95.4

that P4.2−34 means, for example, that occupancy of state 2 has been recorded but the state 3

and 4 entry times occurred in the same interval; state 2 was seen first at visit j2 and state 4

was seen first at visit j34 so the 2→ 3 and 3→ 4 transitions occurred over [aj34−1, aj34).

j−1

j 1 2 3 4

1 2 3 4

λ12(t) λ23(t) λ34(t)

λ
A
 (t | H(t−))

= α1

λ
A
 (t | H(t−))

= α2(B2(t))

λ
A
 (t | H(t−))

= α3(B3(t))

λ
A
 (t | H(t−))

= α4(B4(t))

Figure C.1: A multistate diagram illustrating the states and possible transitions for the joint
disease and disease-driven visit process of the application in Section 4.
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Let P1 denote path 1 where Z(am) = 1. Let P2 denote path 2 where Z(am) = 2, and we

let j2 denote the label of the visit where it was known to be in state 2 for the first time. Let

P3 denote path 3 where Z(am) = 3. This path may be sub-classified as paths of type P3.2−3

for which individuals have been recorded to be in state 2 for the first time at some visit, that

we label as visit j2 occurring at time aj2 , and we let A2 = (aj2−1, aj2) denote the interval over

which the 1 → 2 transition occurred. In P3.2−3 we also have a j3 > j2 visit at which they are

seen to be in state 3 for the first time. The other sub-classification of paths in P3 is P3.23, which

are paths for which individuals are never recorded to be in state 2 because both the state 2 and

state 3 entry times are in the same interval; the process is then in state 1 at aj23−1 and state 3

at aj23 .

Then P4 is the set of paths where an individual was seen to be in state 4 at am. We subdivide

this into paths with distinct patterns including path P4.2−3−4 where j2, j3 and j4 are the visits

where states 2, 3 and 4 were first seen to be occupied. For path P4.2−34 we let j2 denote the

visit that state 2 was first seen to be occupied and j34 the visit state 4 was occupied for the

first time; the 2→ 3 and 3→ 4 transitions then occurred over (aj34−1, aj34). We likewise have

P4.23−4 where states 2 and 3 were entered over [aj23−1, aj23) and state 4 was first known to be

entered at the j4 visit at aj4 . Lastly if they were never recorded to be in states 2 or 3 then the

path is represented by P4.234 and j234 is when they are seen in state 4 for the first time; that is

they were in state 1 at aj234−1 and state 4 at aj234 so the 1 → 2, 2 → 3 and 3 → 4 transitions

occurred over (aj234−1, aj234).

C.1 Likelihood Contributions for P1

L1 =

{ m∏
j=1

L
(1,1)
j

}
L

(1)
m+1 (C.1)

where

L
(1,1)
j = P (A(a−j ) = j − 1, Z(a−j ) = 1 | H̄◦(aj−1))α

∆D
j

1 (C.2)

with

P (A(a−j ) = j − 1, Z(a−j ) = 1|H̄◦(aj−1)) = exp

(
−
∫ aj

aj−1

[λ12(s) + α1] ds

)
and

L
(1)
m+1 = P (Z(am+1) = m | Z(am) = 1, H̄◦(am)) . (C.3)

Note that (C.3) is a bit involved to compute since the state at am+1 is unknown and since
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Z(am) = 1, all 4 possibilities must be considered. We obtain

P (Z(am+1) = m | Z(am) = 1, H̄◦(am)) (C.4)

= exp

(
−
∫ am+1

am

[λ12(s) + α1] ds

)
+

∫ am+1

am

exp

(
−
∫ t2

am

[λ12(s) + α1] ds

)
λ12(t2) exp

(
−
∫ am+1

t2

[λ23(s) + α2(B2(s))] ds

)
dt2

+

∫ am+1

am

∫ t3

am

{
exp

(
−
∫ t2

am

[λ12(s) + α1] ds

)
λ12(t2) exp

(
−
∫ t3

t2

[λ23(s) + α2(B2(s))] ds

)
λ23(t3)

× exp

(
−
∫ am+1

t3

[λ34(s) + α3(B3(s))] ds

)}
dt2 dt3

+

∫ am+1

am

∫ t4

am

∫ t3

am

{
exp

(
−
∫ t2

am

[λ12(s) + α1] ds

)
λ12(t2) exp

(
−
∫ t3

t2

[λ23(s) + α2(B2(s))] ds

)
λ23(t3)

× exp

(
−
∫ t4

t3

[λ34(s) + α3(B3(s))] ds

)
λ34(t4) exp

(
−
∫ am+1

t4

α4(B4(s))

)}
dt2 dt3 dt4

where B2(t) = t− t2, B3(t) = t− t3 and B4(t) = t− t4.

C.2 Likelihood Contributions for P2

Here we consider likelihood contributions given transition times and then integrate over the

possible times as they are unobserved.

L2 =

j2−1∏
j=1

L
(1,1)
j

∫
A2

{
L

(1,2)
j2

(t2)
m∏

j=j2+1

L
(2,2)
j (t2)L

(2)
m+1(t2)

}
dt2 (C.5)

where L
(1,1)
j is given by (C.2),

L
(1,2)
j2

(t2) = exp

(
−
∫ t2

aj2−1

[λ12(s) + α1] ds

)
λ12(t2) (C.6)

× exp

(
−
∫ aj2

t2

[λ23(s) + α2(B2(s))] ds

)
α2(B2(aj2))

∆D
j ,

L
(2,2)
j (t2) = exp

(
−
∫ aj

aj−1

[λ23(s) + α2(B2(s))] ds

)
α2(B2(aj))

∆D
j (C.7)

and

L
(2)
m+1(t2) = exp

(
−
∫ am+1

am

[λ23(s) + α2(B2(s))] ds

)
(C.8)

+

∫ am+1

am

{
exp

(
−
∫ t3

am

[λ23(s) + α2(B2(s))] ds

)
λ23(t3) exp

(
−
∫ am+1

t3

[λ34(s) + α3(B3(s))] ds

)}
dt3

+

∫ am+1

am

∫ t4

am

{
exp

(
−
∫ t3

am

[λ23(s) + α2(B2(s))] ds

)
λ23(t3) exp

(
−
∫ t4

t3

[λ34(s) + α3(B3(s))] ds

)
λ34(t4)

× exp

(
−
∫ am+1

t4

α4(B4(s)) ds

)}
dt3 dt4 .
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C.3 Likelihood Contributions for P3.2−3

L3.2−3 ∝

j2−1∏
j=1

L
(1,1)
j

 ∫ aj3

aj3−1

∫ aj2

aj2−1

{
L
(1,2)
j2

(t2)

 j3−1∏
j=j2+1

L
(2,2)
j (t2)

 (C.9)

× L(2,3)
j3

(t2, t3)

 m∏
j=j3+1

L
(3,3)
j (t2, t3)

 L(3)
m+1(t2, t3)

}
dt2 dt3

where L
(1,1)
j is given by (C.2), and L

(1,2)
j2

(t2) and L
(2,2)
j (t2) are given by (C.6) and (C.7),

respectively. Also,

L
(2,3)
j3

(t2, t3) = exp

(
−
∫ t3

aj3−1

[λ23(s) + α2(B2(s))] ds

)
λ23(t3) (C.10)

× exp

(
−
∫ aj3

t3

[λ34(s) + α3(B3(s))] ds

)
α3(B3(aj3))

∆D
j

and

L
(3,3)
j (t2, t3) = exp

(
−
∫ aj

aj−1

[λ34(s) + α3(B3(s))] ds

)
α3(B3(aj))

∆D
j (C.11)

and

L
(3)
m+1(t2, t3) = exp

(
−
∫ am+1

am

[λ34(s) + α3(B3(s))] ds

)
(C.12)

+

∫ am+1

am

{
exp

(
−
∫ t4

am

[λ34(s) + α3(B3(s))] ds

)
λ34(t4) exp

(
−
∫ am+1

t4

α4(B4(s)) ds

)}
dt4 .

C.4 Likelihood Contributions for P3.23

Here we consider the case where the path involves both transition times in the same interval.

Let j23 be the label for the interval containing both t2 and t3 transition times.

L3.23 =

j23−1∏
j=1

L
(1,1)
j

 ∫ aj23

aj23−1

∫ t3

aj23−1

{
L

(1,23)
j23

(t2, t3)

 m∏
j=j23+1

L
(3,3)
j (t2, t3)

 L(3)
m+1(t2, t3)

}
dt2 dt3

(C.13)

where

L
(1,23)
j23

(t2, t3) = exp

(
−
∫ t2

aj23−1

[λ12(s) + α1] ds

)
λ12(t2) exp

(
−
∫ t3

t2

[λ23(s) + α2(B2(s))] ds

)
λ23(t3)

× exp

(
−
∫ aj23

t3

[λ34(s) + α3(B3(s))] ds

)
α3(B3(aj23))

∆D
j (C.14)

and L
(3,3)
r (t2, t3) and L

(3)
m+1(t2, t3) are given by (C.11) and (C.12), respectively.
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C.5 Likelihood Contributions for P4.2−3−4

L4.2−3−4 =

j2−1∏
j=1

L
(1,1)
j

 ∫ aj4

aj4−1

∫ aj3

aj3−1

∫ aj2

aj2−1

{
L

(1,2)
j2

(t2)

 j3−1∏
j=j2+1

L
(2,2)
j (t2)

 (C.15)

× L(2,3)
j3

(t2, t3)

 j4−1∏
j=j3+1

L
(3,3)
j (t2, t3)


× L(3,4)

j4
(t2, t3, t4)

 m∏
j=j4+1

L
(4,4)
j (t2, t3, t4)

 L(4)
m+1(t2, t3, t4)

}
dt2 dt3 dt4

where L
(1,1)
j , L

(1,2)
j2

(t2), L
(2,2)
j (t2), L

(2,3)
j3

(t2, t3) and L
(3,3)
j (t2, t3) are given by (C.2), (C.6), (C.7),

(C.10) and (C.11), respectively. Also

L
(3,4)
j4

(t2, t3, t4) = exp

(
−
∫ t4

aj4−1

[λ34(s) + α3(B3(s))] ds

)
λ34(t4) (C.16)

× exp

(
−
∫ aj4

t4

α4(B4(s)) ds

)
α4(B4(aj4))

∆D
j ,

L
(4,4)
j (t2, t3, t4) = exp

(
−
∫ aj

aj−1

α4(B4(s)) ds

)
α4(B4(aj))

∆D
j (C.17)

and

L
(4)
m+1(t2, t3, t4) = exp

(
−
∫ am+1

am

α4(B4(s)) ds

)
. (C.18)

Note that L
(4,4)
j (t2, t3, t4) does not, for example, depend on t2 or t3 but we retain the arguments

for generality.

C.6 Likelihood Contributions for P4.2−34

L4.2−34 =

[
j2−1∏
j=1

L
(1,1)
j

] ∫
A34

∫
A2

{
L

(1,2)
j2

(t2)

[
j34−1∏
j=j2+1

L
(2,2)
j (t2)

]
L

(2,34)
j34

(t2, t3, t4) (C.19)

×

[
m∏

j=j34+1

L
(4,4)
j (t2, t3, t4)

]
L

(4)
m+1(t2, t3, t4)

}
dt2 dt3 dt4

where

L
(2,34)
j34

(t2, t3, t4) = exp

(
−
∫ t3

aj34−1
[λ23(s) + α2(B2(s))] ds

)
λ23(t3) (C.20)

× exp

(
−
∫ t4

t3

[λ34(s) + α3(B3(s))] ds

)
λ34(t4) exp

(
−
∫ aj34

t4

α4(B4(s)) ds

)
α4(B4(aj34))∆D

j

and the other terms L
(1,1)
j , L

(1,2)
j2

(t2), L
(2,2)
j (t2), L

(4,4)
j (t2, t3, t4) and L

(4)
m+1(t2, t3, t4) are given by
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(C.2), (C.6), (C.7), (C.17) and (C.18), respectively.

C.7 Likelihood Contributions for P4.23−4

L4.23−4 =

[
j23−1∏
j=1

L
(1,1)
j

] ∫
A4

∫
A23

{
L

(1,23)
j23

(t2, t3)

[
j4−1∏

j=j23+1

L
(3,3)
j (t2, t3)

]
(C.21)

× L(3,4)
j4

(t2, t3, t4)

[
m∏

j=j4+1

L
(4,4)
j (t2, t3, t4)

]
L

(4)
m+1

}
dt2 dt3 dt4

where

L
(1,23)
j23

(t2, t3) = exp

(
−
∫ t2

aj23−1

[λ12(s) + α1] ds

)
λ12(t2) exp

(
−
∫ t3

t2

[λ23(s) + α2(B2(s))] ds

)
λ23(t3)

× exp

(
−
∫ aj23

t3

[λ34(s) + α3(B3(s))] ds

)
α3(B3(aj23))

∆D
j . (C.22)

In addition, the other terms L
(1,1)
j , L

(3,3)
j (t2, t3), L

(3,4)
j4

(t2, t3, t4), L
(4,4)
j (t2, t3, t4) and L

(4)
m+1(t2, t3, t4)

are given by (C.2), (C.11), (C.16), (C.17) and (C.18), respectively.

C.8 Likelihood Contributions for P4.234

Let aj234 be the visit such that the 1 → 2, 2 → 3 and 3 → 4 transitions occurred over

A234 = (aj234−1, aj234).

L4.234 =

j234−1∏
j=1

L
(1,1)
j

 ∫
A234

{
L

(1,234)
j234

(t2, t3, t4)

 m∏
j=j234+1

L
(4,4)
j (t2, t3, t4)

 L(4)
m+1(t2, t3, t4)

}
dt2 dt3 dt4

(C.23)

where L
(1,1)
j , L

(4,4)
j (t2, t3, t4) and L

(4)
m+1(t2, t3, t4) are given by (C.2), (C.17) and (C.18), respec-

tively. Also,

L
(1,234)
j234

(t2, t3, t4) = exp

(
−
∫ t2

aj234−1

[λ12(s) + α1] ds

)
λ12(t2) exp

(
−
∫ t3

t2

[λ23(s) + α2(B2(s))] ds

)
λ23(t3)

× exp

(
−
∫ t4

t3

[λ34(s) + α3(B3(s))] ds

)
λ34(t4)

× exp

(
−
∫ aj234

t4

α4(B4(s)) ds

)
α4(B4(aj234))∆D

j . (C.24)
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D Fitting a Joint model with a semi-Markov disease driven visit

intensity

Here we fit joint models to the data from the University of Toronto Psoriatic Arthritis Cohort

but under the assumption of a semi-Markov disease-driven visit intensity with the time-scale

defined by the function Ba(t) in Section B.2; the visits are classified as disease-driven or sched-

uled according to the algorithm adopted in Section 4. We consider time-homogeneous and

piecewise constant disease intensities for the disease process. The partial likelihood used under

the assumption of a non-informative and conditionally independent loss to followup process is

constructed as described in Section C and the results are reported in Table D.1. The results

from the fit of the corresponding Markov disease-driven intensities are provided for comparison.

The point estimates and standard errors of all parameters are generally quite similar across

the two visit process models, as are the findings regarding statistical significance of covariate

effects. For the time-homogeneous setting a likelihood ratio test of H0 : κ = 1 versus H0 : κ 6= 1

yields a p−value of 0.039 despite the fact that κ is close to one; the standard error for κ̂ is

quite small since its precision is influenced by both the number of individuals and the number

of assessments per individual. The conclusions are likewise quite similar for the joint models

with piecewise constant disease intensities under Markov and semi-Markov disease driven visit

intensities.
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