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Summary

Family studies routinely employ biased sampling schemes in which individuals are ran-
domly chosen from a disease registry and genetic and phenotypic data are obtained from
their consenting relatives. We view this as a two-phase study and propose the use of an
efficient selection model for the recruitment of families to form a phase II sample sub-
ject to budgetary constraints. Simple randomsampling, balanced sampling and use of
an approximately optimal selection model are considered where the latter is chosen to
minimize the variance of parameters of interest. We consider the setting where family
members provide current status data with respect to the disease and use copula models to
address within-family dependence. The efficiency gains fromthe use of an optimal selec-
tion model over simple random sampling and balanced sampling schemes are investigated
as is the robustness of optimal sampling to model misspecification. An application to a
family study on psoriatic arthritis is given for illustration.
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1 Introduction

Family studies offer a powerful framework for investigating the genetic basis for disease. In
twin studies, it is possible to follow individuals from birth (Leslie et al., 1993), but in fam-
ily studies, families are typically identified through the selection of an affected individual,
called the proband, from a disease registry (Macklin, 1954). Consenting family members of
the proband are then contacted for recruitment whereupon they provide detailed information
on their medical history, undergo clinical or radiological examination, and provide samples for
genetic analysis. The strength of the family study design lies in the efficiency gained from the
high proportion of individuals with genetic risk factors due to the shared ancestry of family
members. The challenge in such designs, however, is to deal with the biased sampling scheme
employed. The construction of appropriate likelihoods has been considered for many years for
binary data (Whittemore and Halpern, 1997; Liang and Beaty, 1991) and most recently for fail-
ure time data (Li and Thompson, 1997). Zhong and Cook (2016) consider the use of composite
likelihood and Zhong and Cook (2018) develop a class of second-order estimating functions for
the study of the dependence structure within families. Lakhal-Chaieb et al. (2016) uses copula
functions for the development of score tests for the effects of rare variants in family studies; see
also Lakhal-Chaieb et al. (2020). In these latter papers, the dependence between onset times
within families was modeled using copula functions rather than the more common approach
based on frailty models (Li and Thompson, 1997).

We consider the setting in which there is a large registry of affected individuals from which
probands may be selected for further study. Individuals in the disease registry have provided
information on demographic features, the age of disease onset, and blood samples which we
assume have been assayed for genetic testing. They may also provide summary information on
their family history such as the number of diseased individuals in their family. We consider
the use of this information for the efficient recruitment of families for genetic testing and
confirmation of disease status. We cast this problem into the framework of a two-phase design
in which the individuals in the disease registry represent a phase I sample, and the recruited
probands and their respective families represent the phase II sample.

Two-phase designs have been widely used to improve statistical efficiency subject to budget
constraints (Reilly and Pepe, 1995; Chatterjee et al., 2003; Zhao et al., 2009) and specifically
with applications to genetic epidemiology (Whittemore and Halpern, 1997; Chen et al., 2012).
Lawless et al. (1999) provides a thorough review of issues involving incomplete covariate data
and two-phase designs with a focus on semiparametric methods and an emphasis on cross-
sectional and retrospective settings. For family data, the family-based case-control design
(Shih and Chatterjee, 2002) and kin-cohort design (Wacholder et al., 1998) are commonly used
approaches that employ biased sampling schemes. McIsaac and Cook (2014) proposed response-
dependent two-phase design to study the effect of biomarker on a binary response and McIsaac
and Cook (2013) deal with clustered data; see also Rivera-Rodriguez et al. (2019) who consider
inverse weighted marginal methods for two-phase designs with clustered data where the weights
are selected by calibration. When interest lies in optimizing the selection model a challenge
is that key parameters of interest are unknown; McIsaac and Cook (2015) develop adaptive
two-phase designs to alleviate the need to specify values for unknown parameters at the design
stage.

The remainder of the article is organized as follows. In Section 2.1, we define notation and
formulate the joint model for the onset times within families, and in Section 2.2, we give the
details of the two-phase design. The selection model and the optimality criteria we use are
introduced in Section 2.3; we aim to minimize the variance of the effect of a genetic marker on
the disease onset time distribution. Identifiability and estimability issues arise in such designs
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since the onset time for the proband is right-truncated and the disease incidence is often low
among family members. We discuss the incorporation of auxiliary data into the likelihood used
to derive the optimal selection model for the phase II sample in Section 2.4. The results of
empirical studies are given in Section 3.1 for a variety of settings where the optimal design is
compared to simple random sampling and a type of balanced sampling we define for family
studies. Choice of the selection model depends on many assumptions so we investigate the
consequences of misspecification of design parameters in Section 3.2. An illustrative application
is given in Section 4 and some extensions of the methods for general dependence structure, large
family size and non-response for selected family members are discussed in Section 5. Concluding
remarks and topics for further research are given in Section 6.

2 Model Formulation and Efficient Design

2.1 Notation and Formulation of the Response Model

We consider the setting in which individuals are screened for disease from cross-sectional sam-
pling of a population and those found to have the condition of interest are recruited to a registry.
This leads to a disease registry comprised of N individuals. The family study is carried out by
selecting members of the registry, called probands, along with their respective family members.
Let Ci0 denote the age of proband in family i at the time of sampling and screening, and Ti0
denote their age of disease onset; the probands need to satisfy the selection condition Ti0 ≤ Ci0

and we assume Ti0 is verifiable by a review of medical records for individuals recruited to the
registry, i = 1, . . . , N . We let Xi0 and Gi0 denote a p × 1 demographic covariate vector and
genotype variable, respectively, for the proband in family i; Zi0 = (X ′

i0, Gi0)
′.

We let Tij and Cij denote the ages at disease onset and assessment for the proband family
member (non-probands) j in family i which is comprised of mi individuals, j = 1, . . . ,mi. We
let Ti = (Ti1, . . . , Timi

)′ and Ci = (Ci1, . . . , Cimi
)′. Then Yij = I(Tij ≤ Cij) is the disease status

for individual j in family i; Yi = (Yi1, . . . , Yimi
)′ and Yi0 = 1. We let Xij and Gij denote

the covariate vector and genotype variable for individual j in family i, Xi = (X ′
i1, . . . , X

′
imi

)′,
Gi = (Gi1, . . . , Gimi

)′ and Zi = (X ′
i, G

′
i)
′. An overbar is used to denote data for all individuals

in a family so T̄i = (Ti0, T
′
i )

′, C̄i = (Ci0, C
′
i)

′, Ȳi = (Yi0, Y
′
i )

′, X̄i = (X ′
i0, X

′
i)

′, Ḡi = (Gi0, G
′
i)
′

and Z̄i = (Z ′
i0, Z

′
i)

′. We assume Tij ⊥ (Ḡ
(−j)
i , X̄

(−j)
i )|Gij, Xij, where Ḡ

(−j)
i = {Gik; 0 ≤ k ≤

mi , k ̸= j} and X̄
(−j)
i = {Xik; 0 ≤ k ≤ mi , k ̸= j}. The marginal cumulative distribution

function for the disease onset time for individual j in family i is F (tij|Zij ; θ), where θ indexes
the marginal distribution.

A joint model for the event times in family i can be constructed by specifying an mi +
1 dimensional copula function (Nelsen, 2006) that is a multivariate cumulative distribution
function with uniform [0, 1] margins. Specifically if Uij ∼ unif(0, 1), j = 0, 1, . . . ,mi, the
joint cumulative distribution function C(ui0, . . . , uimi

;ϕ) = P (Ui0 ≤ ui0, . . . , Uimi
≤ uimi

;ϕ)
defines a copula function that is indexed by a q× 1 parameter vector ϕ which characterizes the
dependence. The Archimedean family of copulas (Genest and MacKay, 1986) can be written
as

C(ui0, . . . , uimi
;ϕ) = J −1 (J (ui0;ϕ) + · · ·+ J (uimi

;ϕ);ϕ) ,

where J : [0, 1] → [0,∞) is a continuous, strictly decreasing and convex generator function
satisfying J (1;ϕ) = 0. Kendall’s τ , a widely used measure of association with event time data,
can be written as

τ = 1 + 4

∫ 1

0

J (u;ϕ)

J ′(u;ϕ)
du
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for Archimedean copulas (Nelsen, 2006). We construct the joint cumulative distribution func-
tion (j.c.d.f) for the disease onset times of family i by letting Uij = F (Tij|Zij ; θ) and linking
the marginal distribution functions through the copula function such that

P (Ti0 ≤ ti0, . . . , Timi
≤ timi

|Z̄i; ζ) = C(F (ti0|Zi0; θ), . . . , F (timi
|Zimi

; θ);ϕ) , (1)

where ζ = (θ′, ϕ′)′ is the vector of parameters indexing the joint distribution of T̄i|Z̄i.
The Clayton copula is widely used in survival analysis and has generator function J (u;ϕ) =

ϕ−1(u−ϕ − 1), and then gives the joint cumulative distribution function(Joe, 1997) for T̄i|Z̄i as

P (Ti0 ≤ ti0, . . . , Timi
≤ timi

|Z̄i; ζ) = (F−ϕ(ti0|Zi0; θ) + · · ·+ F−ϕ(timi
|Zimi

; θ)−mi)
−1/ϕ .

Under the Clayton copula, Kendall’s τ characterizing the association between Tij and Tik given
(Zij, Zik), is given(Nelsen, 2006) by τ = ϕ/(ϕ + 2) for 0 ≤ j < k ≤ mi, i = 1, . . . , N . Other
members of the Archimedean family include the Frank copula (Nelsen, 2006) with generator
J (u;ϕ) = − log((exp(−ϕu) − 1)/(exp(−ϕ) − 1)), and the Gumbel copula (Nelsen, 2006) with
generator J (u;ϕ) = (− log u)ϕ. We explore these in the application and in simulation studies
reported in Supplementary Material.

2.2 A Two-Phase Framework for Family Studies

We consider this problem in the framework of a two-phase study where at phase I there is
detailed information available on the individuals in the disease registry (i.e., Ti0, Ci0, Zi0) along
with summary information on the non-probands (i.e., Yi, Ci, Xi) obtained from the family his-
tory and interviews with members of the registry. Therefore, at phase I, the information we have
for family i is Hi1 = {Yi0 = 1, Ti0, Gi0, Yi, C̄i, X̄i}, i = 1, . . . , N . Then based on such informa-
tion, families would be selected at phase II for the family study, where detailed genotype infor-
mation for their family members would be collected. LetRi = I(family i selected for genetic testing)
and a phase II selection model could be written as

πi(α) = P (Ri = 1|Hi1;α) , (2)

which means that the selection probability for each family could depend on the available infor-
mation at phase I. We consider α, a vector of design parameters, that determine the selection
probabilities for the phase II sampling. Let S = {i : Ri = 1}, then n =

∑N
i=1Ri families provide

complete data while (N −n) families do not provide information on Gi. The information avail-
able at phase II ultimately consists of H2 = {(Ȳi, C̄i, Z̄i, Ti0 ; i ∈ S) , (Ȳi, C̄i, X̄i, Gi0, Ti0 ; i /∈
S)}.

Let ν index the marginal distribution of the genetic marker (e.g. the marker frequency) and
ψ = (ζ ′, ν)′. Under the assumption that T̄i ⊥ C̄i|Z̄i and C̄i is non-informative, the likelihood
contribution from family i based on this two-phase design can be written as

Li(ψ) ∝
[
P (Yi, Gi|C̄i, X̄i, Gi0, Yi0 = 1 ;ψ)

]Ri
[
P (Yi|C̄i, X̄i, Gi0, Yi0 = 1 ;ψ)

]1−Ri

=
[
P (Yi|Z̄i, C̄i, Yi0 = 1 ; ζ)P (Gi|Gi0, C̄i, X̄i, Yi0 = 1 ; ν)

]Ri

×
[
EGi|C̄i,X̄i,Gi0,Yi0=1(P (Yi|C̄i, Z̄i, Yi0 = 1 ;ψ))

]1−Ri , (3)

where P (Yi|Z̄i, C̄i, Yi0 = 1 ;ψ) can be expressed in terms of (1). Note that P (Gi|Gi0, X̄i, C̄i, Yi0 =
1) can be written as

P (Yi0 = 1|Gi, Gi0, X̄i, C̄i)P (Gi|Gi0, X̄i, C̄i)

P (Yi0 = 1|Gi0, X̄i, C̄i)
=
P (Yi0 = 1|Gi0, Xi0, Ci0)P (Gi|Gi0)

P (Yi0 = 1|Gi0, Ci0, Xi0)
= P (Gi|Gi0) , (4)
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which ensures that the ascertainment condition and genetic data for the non-probands are
independent conditional on the proband’s genetic data. The conditional expectation in (3) can
therefore be rewritten as

EGi|C̄i,X̄i,Gi0,Yi0=1

[
P (Yi|C̄i, Z̄i, Yi0 = 1 ;ψ)

]
=

∑
gi

P (Yi|Gi = gi, Gi0, X̄i, C̄i, Yi0 = 1)P (Gi = gi|Gi0) .

Thus the observed log-likelihood is

l(ψ) =
N∑
i=1

{
Ri

[
logP (Yi|Z̄i, C̄i, Yi0 = 1) + logP (Gi|Gi0)

]
+ (1−Ri)

[
log
∑
gi

P (Yi|Gi = gi, Gi0, X̄i, C̄i, Yi0 = 1)P (Gi = gi|Gi0)

]}
. (5)

Note that we can write the observed data score vector in terms of the complete data score
vector (Louis, 1982) as

S(ψ) =
N∑
i=1

Si(ψ) =
N∑
i=1

[Ri {Si1(ψ) + SiG(ψ)}+ (1−Ri)Si2(ψ)] ,

where Si1(ψ) = ∂ logP (Yi|Z̄i, C̄i, Yi0 = 1)/∂ψ, SiG(ψ) = ∂ logP (Gi|Gi0)/∂ψ are the corre-
sponding complete data score vectors, and

Si2(ψ) = EGi|Yi,Gi0,X̄i,C̄i,Yi0=1 [Si1(ψ) + SiG(ψ)] .

The maximum likelihood estimator ψ̂ solves S(ψ) = 0 and
√
N(ψ̂ − ψ) is asymptotically

normally distributed with mean zero and variance I−1(η) where

I(η) = E[Si(ψ)S
′
i(ψ)] = E[−∂Si(ψ)/∂ψ

′]

and η = (ψ′, α′)′, where α is the vector of parameters indexing the selection model used at
phase II. In Section 2.3, we consider how the selection model may be chosen to yield efficient
estimation.

2.3 Selection Models for Efficient Phase II Sampling of Families

The particular phase I data used in the selection model (2) and the explicit form can be chosen
based on the precise nature of the information available and the scientific context. For example,
when aiming to recruit families for the effect of the genetic marker, a selection model could be
specified of the form

log

(
πi

1− πi

)
= α0 + α1Gi0 + α2Ai + α3Gi0Ai , (6)

where Yi· =
∑mi

j=1 Yij and Ai = I(Yi· ≥ 1) indicates that there is at least one other affected
family member. With a selection model of this form, families having affected members and
families with members having a higher chance of the genetic marker may be selected with a
higher probability for the phase II sample if αk > 0, k = 1, 2, 3. This kind of enrichment
sampling is particularly appealing when the disease or the genetic marker is rare.

By specification of the form of the selection model (2), we know that the missing data
(i.e. the genetic information for the non-probands of unselected families) is missing at random
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(Little and Rubin, 2002) because P (Ri = 1|Hi1, Gi) = P (Ri = 1|Hi1). However the precise
selection probabilities are as yet undetermined as (6) simply specifies the functional form of
the selection model. The optimal two-phase design involves the phase II selection of families
in order to minimize the asymptotic variance of the estimator of interest. When calculating
the Fisher information matrix the expectation is taken with respect to (Ri, Yi, X̄i, Ḡi, C̄i) given
Yi0 = 1 so suppressing the argument ψ on the right-hand side we have

I(η) = E[RiSi1S
′
i1 +RiSiGS

′
iG +RiSi1S

′
iG +RiSiGS

′
i1 + (1−Ri)Si2S

′
i2]

= E[πiSi1S
′
i1 + πiSiGS

′
iG + πiSi1S

′
iG + πiSiGS

′
i1 + (1− πi)Si2S

′
i2] . (7)

Evaluation of the Fisher information matrix, and hence computation of the asymptotic variance,
is challenging since it involves several multi-dimensional integrals; the computational burden is
greater when the family size is large. In a trio family study, for example, where the proband
is the child and recruited family members are their parents, mi = 2 for all i = 1, . . . , N ; we let
j = 1 index father and j = 2 index mother. Under the Clayton copula and selection model (6)
we obtain

logP (Yi|C̄i, Z̄i, Yi0 = 1) = Yi1Yi2 logP (Ti1 ≤ Ci1, Ti2 ≤ Ci2|Ti0 ≤ Ci0, C̄i, Z̄i)

+ Yi1(1− Yi2) logP (Ti1 ≤ Ci1, Ti2 > Ci2|Ti0 ≤ Ci0, C̄i, Z̄i)

+ (1− Yi1)Yi2 logP (Ti1 > Ci1, Ti2 ≤ Ci2|Ti0 ≤ Ci0, C̄i, Z̄i)

+ (1− Yi1)(1− Yi2) logP (Ti1 > Ci1, Ti2 > Ci2|Ti0 ≤ Ci0, C̄i, Z̄i) .

If we define F12(Ci|Ti0 ≤ Ci0, C̄i, Z̄i) = P (Ti1 ≤ Ci1, Ti2 ≤ Ci2|Ti0 ≤ Ci0, C̄i, Z̄i), then the first
term in E[πiSi1S

′
i1] is

E

[
πiYi1Yi2 ·

∂ logF12(Ci|Ti0 ≤ Ci0, C̄i, Z̄i)

∂ψ
· ∂ logF12(Ci|Ti0 ≤ Ci0, C̄i, Z̄i)

∂ψ′

]
= E

[
F12(Ci|Ti0 ≤ Ci0, C̄i, Z̄i) ·

exp(α0 + α1Gi0 + α2 + α3Gi0)

1 + exp(α0 + α1Gi0 + α2 + α3Gi0)

× ∂ logF12(Ci|Ti0 ≤ Ci0, C̄i, Z̄i)

∂ψ
· ∂ logF12(Ci|Ti0 ≤ Ci0, C̄i, Z̄i)

∂ψ′

]
,

where the expectation is taken with respect to (C̄i, Ḡi, X̄i) given Yi0 = 1. This expectation
depends on the specification of the distribution for C̄i, X̄i and Ḡi, and is computationally
demanding. The calculation of the term E[(1 − πi)Si2S

′
i2] in (7) poses greater computational

challenges involving high dimensional integration. We therefore propose to approximate the
required expectations based on the empirical distributions estimated from the available phase
I data; see Appendix for details.

For illustration, we consider the selection model (6) in the context of a family study of trios
at phase II. In this case, the phase I data can be partitioned into four strata defined by the
values of (Gi0, Ai), and the stratum-specific selection probability is πjk for Gi0 = j and Ai = k,
where j, k = 0, 1. Then

πi = P (Ri = 1|Hi1, Yi0 = 1) =
1∑

j,k=0

πjkI(Gi0 = j)I(Ai = k) .

Budgetary constraints which limit the number of families that can be sampled at phase II
are reflected by specifying some 0 < PR ≤ 1 so that

P (Ri = 1|Yi0 = 1) =
1∑

j,k=0

πjk
Njk

N
= PR , (8)
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where Njk, the number of probands in stratum (G0 = j, A = k), is known at the design stage.
Here we adopt the similar budgetary constraint as in McIsaac and Cook (2014), which is based
on the observed phase II stratum sizes rather than on the expected stratum size (Reilly and
Pepe, 1995; Whittemore and Halpern, 1997).

Optimal designs under likelihood based inference can be obtained by choosing α in (6)
to minimize the asymptotic variance of the parameter of interest subject to the budgetary
constraints in (8). We assume that the marginal distribution of Tij satisfies the proportional
hazard assumption with h(tij ; θ) = h0(tij ;ω) exp(X

′
ijδ+ βGij), where h0(tij ;ω) is the baseline

hazard function indexing by a vector of parameters ω, δ is a vector of parameters associated
with the demographic covariates Xij, and β is the parameter of interest associated with the
genetic marker; we let θ = (ω′, δ′, β)′. We focus on finding the optimal sampling probabilities
(e.g. the optimal value of α) for phase II that minimizes asvar(

√
N(β̂ − β)) subject to P (Ri =

1|Yi0 = 1) = PR. This is done by finding the stationary point of

asvar(
√
N(β̂ − β))− γ

(
1∑

j,k=0

πjkNjk/N − PR

)
,

where γ is the Lagrange multiplier and asvar(
√
N(β̂ − β)) is the entry of I−1(η) of primary

interest. We denote the optimal stratum-specific sampling probabilities as π
opt
jk . To avoid

under-desirable degenerate designs with near-zero selection probabilities in some strata, we
constrain the stratum-specific selection probabilities to be 0.05 ≤ πjk ≤ 1 for j, k = 0, 1 (Reilly
and Pepe, 1995; Breslow and Cain, 1988). This sampling design can be found using numerical
minimization procedures and will be optimally efficient for maximum likelihood estimation
whenever the models and parameter values are correctly specified at the design stage.

2.4 Efficient Sampling Incorporating Augmentation with Auxiliary Samples

Zhong and Cook (2016) argue that it was most appealing to formulate models for genetic
effects in terms of the marginal onset time distribution. However, in general, the family data
we obtained at phase I provide limited information about the marginal onset time distribution
since the onset times of probands are right-truncated and the prevalence of disease among
nonprobands is typically low. If auxiliary data are available, it could be exploited to reduce
the bias and/or improve efficiency (Pitkäniemi et al., 2009). Auxiliary data in the present
setting involves current status data on the presence of disease from a national cross-sectional
survey (Gelfand et al., 2005). We explore the use of this data for efficient sampling under
the assumption that the auxiliary processes share parameters with the processes governing the
family data in this section.

Let A denote the set of indexes for individuals in an auxiliary sample of sizeM , and suppose
information available from auxiliary data consists of {Yj, Cj, Xj; j ∈ A}, where Cj and Yj are
current age and disease status, respectively. Demographic data are available, but data on the
genetic marker are missing for the individuals in the survey. We augment the log-likelihood (5)
to obtain

logLaug(ψ) =
N∑
i=1

logLi(ψ) +
∑
j∈A

logP (Yj|Cj, Xj ;ψ) , (9)

and the augmented score function is

Saug(ψ) =
N∑
i=1

[RiSi1 +RiSiG + (1−Ri)Si2] +
∑
j∈A

SjA ,
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where SjA = ∂ logP (Yj|Cj, Xj ;ψ)/∂ψ and are independent with Si1, SiG and Si2. It is easy to
show that asymptotically

1

M

∑
j∈A

SjA ∼ N(0, IA(ψ))

as M → ∞, where IA(ψ) = E[SjAS
′
jA]. Therefore, as both N and M go to infinity, if N/(N +

M) → ρ ̸= 0, the maximum likelihood estimator ψ̂aug based on the augmented likelihood has
the following asymptotic distribution:

√
N +M (ψ̂aug − ψ) ∼ N(0, (ρ I(η) + (1− ρ) IA(ψ))

−1) .

When there is no auxiliary data ρ = 1 and ψ̂aug = ψ̂, but when there is auxiliary data
0 < ρ < 1 and it is self-evident that the maximum augmented likelihood is more efficient.
The optimal sampling probabilities for the two-phase family study on genetic association when
utilizing the auxiliary data are denoted by π

aug
jk and can be obtained by finding the stationary

point of

asvar(
√
N +M (β̂aug − β))− γ

(
1∑

j,k=0

πjkNjk/N − PR

)
, (10)

where asvar(
√
N +M (β̂aug − β)) is the corresponding entry of (ρ I(η) + (1− ρ) IA(ψ))

−1.
In the next section, we investigate the finite sample performance of the estimators from the

two-stage design with a focus on the efficiency gains over simple random sampling of probands
from the registry and a balanced sampling scheme (Breslow and Cain, 1988), in which the
phase II sampling probabilities are inversely proportional to the size of the strata, that is,
πjk = (NPR/4) ·N−1

jk .

3 Empirical Studies

3.1 Efficient Phase II Selection Models for Assessing Genetic Effects

Here we report on simulation studies designed to assess the efficiency of the optimal two-phase
trio family study on the genetic association; then mi = 2. In this context, we consider a
phase I sample of N = 2000 probands is recruited in a disease registry whose onset time
are right-truncated by their clinic entry time. Detailed information on the proband’s age at
onset, age at screening, demographic variables and genetic markers are available. For their
parents, the disease status, age at contact and some demographic information are also recorded
through interviewing the probands. We assign proband, proband’s father and proband’s mother
label 0, 1, and 2, respectively, and assume that all family members have a common marginal
onset time distribution with F (tij|Gij; θ) = 1 − exp(−(λtij)

κeβGij), j = 0, 1, 2, i = 1, . . . , N ,
where Gij is the genetic marker of interest with marker frequency ν and consider ν = 0.25;
θ = (log λ, log κ, β)′. The parameters λ and κ are chosen so that the non-carrier penetrance at
age 45 and 70 are F (45|G = 0) = p1 and F (70|G = 0) = p2, respectively; let p1 = 0.15 and
p2 = 0.30. Assume β = log 2 to represent the scenario that having the mutation increases the
risk of developing the disease. The proband’s clinic entry time Ci0 is normally distributed with
mean µ = 45 and variance σ2 = 20, and conditional on this right-truncation time we generate
Ti0|Ti0 < Ci0. The latent onset times for the non-probands are then generated as Ti1, Ti2|Ti0
using a copula function, here we consider an exchangeable association structure based on the
Clayton copula with Kendall’s τ = 0.25. Then the observed family data are created following
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the generation of the assessment times. Specifically, for the non-probands (i.e., parents in the
trio family study), the age at contact follows N(µ = 70, σ2 = 20) and they are truncated at 90
years for all individuals. Therefore the phase I data consist of {Ti0, Gi0, Ȳi, C̄i ; i = 1, . . . , N}.
We consider the selection model (6) with budgetary constraint (8) at phase II, then the phase
I data could be stratified into 4 strata based on Gi0 and Ai = I(Yi· ≥ 1); each stratum has
its own sampling probability πjk, j, k = 0, 1 and let PR = 0.4. Simple random sampling,
balanced sampling and optimal sampling based on the likelihood method are applied to sample
families at phase II and the genetic information will be collected for the non-probands in the
selected families. Each of the 1000 simulated incomplete datasets were analysed using maximum
likelihood method. We know that the balanced sampling and optimal sampling are based on the
phase I data, so these designs depend on each simulated dataset. Therefore the stratum-specific
selection probabilities π = [π00, π10, π01, π11] employed by simple random sampling is πsrs =
[0.40, 0.40, 0.40, 0.40], but the average selection probabilities for the balanced sampling and

optimal design based on maximum likelihood are quite different at πbal = [1.00, 1.00, 0.36, 0.25]
and πopt = [0.88, 0.05, 0.05, 0.65], respectively. Table 1 summarizes the empirical bias, empirical
standard error (ESE), average robust standard error (ASE), ASE evaluated based on phase I
data only, and the empirical coverage probability of nominal 95% confidence intervals for the
different designs.

When there is auxiliary current status data (absent data on the genetic marker), the aug-
mented likelihood (9) can be used and we obtain different optimal sampling probabilities
via (10). Under the same parameter setting, we generate such current status data with the
underlying onset time distribution for individuals in the auxiliary sample the same as in the
family study; we set M = 2000. The assessment times of the current status auxiliary sample
are generated from the same distribution as that for the clinic entry time for the probands.
The auxiliary data then consist of {Cj, Yj; j = 1, . . . ,M}. One thousand replicates were gen-
erated with simple random sampling, balanced sampling, and optimal sampling based on the
augmented likelihood. Simple random sampling and balanced sampling designs do not depend
on the availability of auxiliary data so the average selection probabilities are the same as before.
For the optimal design the average selection probabilities become πaug = [0.76, 0.05, 0.05, 0.67]
which are slightly different from those without the augmentation data. The empirical proper-
ties of estimates based on the augmented likelihood while employing simple random sampling,
balanced sampling and optimal sampling are also summarised in Table 1. We find that all bi-
ases are negligible and that the ESEs are close to the ASEs. The ASEs evaluated based on the
phase I data only (ASE†) also agree well with the ASE, which supports the use of our proposed
approach to approximate the Fisher information based on the phase I data (see Appendix).
The empirical coverage probability of nominal 95% confidence intervals are all within an ac-
ceptable range. We also note that the ASEs are bigger for all parameters under the likelihood
analysis compared to those based on the augmented likelihood, in alignment with expectations
based on Section 2.4. Furthermore we find that the ASEs of the estimate of genetic effects are
smallest under the optimal sampling design illustrating the gain from attempts to select the
most informative phase II sample. When there is no auxiliary data, the asymptotic relative
efficiency of the estimates of genetic effect under the simple random sampling is 0.80 compared
to under optimal sampling, and this relative efficiency is 0.78 when there is auxiliary current
status data. These findings illustrate the improved efficiency in estimation of genetic effect
under optimal design, particularly when the auxiliary data are available. Note that there was
not much evidence of improved efficiency under the balanced sampling scheme compared to
simple random sampling.

We consider another scenario where penetrance and marker frequency are much smaller; so
we let p1 = 0.05, p2 = 0.10 and ν = 0.10. Other parameters are set to the same values as before.
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Table 1: Empirical properties of estimates from analysing 1000 simulated datasets consisting of
N = 2000 individuals without and with auxiliary current status data of sizeM = 2000 at phase
I while employing simple random sampling (srs), balanced sampling (bal) or optimal sampling
(opt) for phase II design with an expected phase II sample size of P (Ri = 1|Yi0 = 1) = 0.4;
Parameter Setting (i): p1 = 0.15 , p2 = 0.30 , ν = 0.25.

no augmentation augmentation

BIAS ESE ASE ASE† ECP BIAS ESE ASE ASE† ECP

β srs 0.007 0.098 0.098 0.097 0.950 0.000 0.088 0.092 0.092 0.964
bal 0.007 0.103 0.103 0.102 0.939 -0.003 0.097 0.098 0.098 0.947
opt 0.004 0.088 0.087 0.087 0.955 0.004 0.082 0.081 0.081 0.952

log λ srs -0.021 0.125 0.120 0.120 0.958 -0.010 0.111 0.106 0.105 0.949
bal -0.021 0.125 0.121 0.121 0.954 -0.009 0.114 0.107 0.107 0.944
opt -0.020 0.122 0.118 0.117 0.950 0.011 0.109 0.104 0.104 0.947

log κ srs -0.017 0.232 0.225 0.224 0.962 -0.007 0.104 0.102 0.102 0.950
bal -0.017 0.231 0.225 0.225 0.964 -0.007 0.105 0.102 0.102 0.942
opt -0.016 0.229 0.225 0.224 0.964 -0.007 0.104 0.102 0.102 0.946

log 1+τ
1−τ

srs -0.002 0.046 0.044 0.044 0.938 -0.000 0.043 0.042 0.042 0.940

bal -0.002 0.046 0.044 0.044 0.937 -0.001 0.044 0.042 0.042 0.937
opt -0.002 0.045 0.044 0.044 0.946 0.000 0.043 0.042 0.042 0.937

log ν
1−ν

srs -0.002 0.062 0.062 0.062 0.954 -0.002 0.061 0.062 0.062 0.954

bal -0.003 0.064 0.065 0.065 0.943 -0.007 0.062 0.065 0.065 0.972
opt -0.005 0.064 0.066 0.066 0.947 -0.005 0.066 0.065 0.065 0.949

† The average of the square root of the asymptotic variance evaluated based on phase I data only

We still consider the simple random sampling, balanced sampling and optimal sampling to sam-
ple families at phase II and likelihood or augmented likelihood methods are used for estimation.
Among the 1000 generated samples, analysis of 21, 21 and 20 samples featured convergence
issues for the respective sampling methods with the likelihood method, but no convergence
issues arose when auxiliary current status data (M = 2000) were incorporated. The summaries
for this parameter setting are based on the converged replicates only. The average selection
probabilities for the balanced sampling and optimal design are πbal = [0.61, 1.00, 0.20, 0.46]
and πopt = [0.77, 0.05, 0.05, 1.00] without augmentation, and the probabilities for optimal de-
sign using the auxiliary data become πaug = [0.74, 0.05, 0.09, 1.00]. The empirical properties of
estimates based on the likelihood and augmented likelihood under this parameter setting are
reported in Table 2. Here we obtain similar results in this scenario, with the relative efficiency
of the estimates of the genetic effect under the simple random sampling of 0.65 compared to
under the optimal sampling design when there is no augmentation; this becomes 0.62 when
auxiliary current status data are available. Therefore, when the disease is rare or the genetic
mutation rate is low, employing optimal sampling can be more beneficial, particularly in the
presence of auxiliary data.
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Table 2: Empirical properties of estimates from analysing 1000 simulated datasets consisting of
N = 2000 individuals without and with auxiliary current status data of sizeM = 2000 at phase
I while employing simple random sampling (srs), balanced sampling (bal) or optimal sampling
(opt) for phase II design with an expected phase II sample size of P (Ri = 1|Yi0 = 1) = 0.4;
Parameter Setting (ii): p1 = 0.05 , p2 = 0.10 , ν = 0.10.

no augmentation augmentation

BIAS ESE ASE ASE† ECP BIAS ESE ASE ASE† ECP

β srs 0.002 0.122 0.125 0.124 0.963 -0.001 0.119 0.123 0.122 0.959
bal -0.001 0.122 0.124 0.123 0.953 -0.001 0.113 0.121 0.121 0.964
opt 0.001 0.099 0.101 0.101 0.952 -0.002 0.094 0.096 0.096 0.956

log λ srs -0.137 0.454 0.493 0.492 0.939 -0.070 0.358 0.335 0.335 0.937
bal -0.137 0.451 0.504 0.502 0.941 -0.071 0.358 0.335 0.335 0.941
opt -0.133 0.450 0.497 0.496 0.934 -0.070 0.362 0.334 0.334 0.940

log κ srs -0.032 0.263 0.256 0.255 0.964 -0.021 0.184 0.175 0.175 0.953
bal -0.031 0.264 0.256 0.255 0.965 -0.022 0.183 0.175 0.175 0.957
opt -0.032 0.263 0.255 0.254 0.964 -0.021 0.184 0.175 0.175 0.949

log 1+τ
1−τ

srs -0.000 0.038 0.037 0.037 0.947 0.002 0.036 0.035 0.035 0.948

bal -0.000 0.038 0.037 0.037 0.951 0.002 0.036 0.035 0.035 0.945
opt -0.001 0.037 0.037 0.037 0.949 0.002 0.036 0.035 0.035 0.946

log ν
1−ν

srs -0.007 0.084 0.087 0.087 0.962 -0.008 0.089 0.087 0.087 0.942

bal -0.007 0.094 0.094 0.093 0.949 -0.005 0.098 0.093 0.093 0.946
opt -0.006 0.092 0.093 0.093 0.949 -0.006 0.093 0.093 0.093 0.957

† The average of the square root of the asymptotic variance evaluated based on phase I data only

3.2 Empirical Studies on the Effect of Parameter Misspecification

The optimal selection model was derived in Section 3.1 based on the true parameter values,
which are unknown in practice. Here we explore the sensitivity of optimal design to misspecifi-
cation of the parameter values at the design stage. We consider the following eight scenarios: (a)
we overestimate the non-carrier penetrance, (b) we underestimate the non-carrier penetrance,
(c) we overestimate the genetic effect, (d) we underestimate the genetic effect, (e) we overesti-
mate the within-family association, (f) we underestimate the within-family association, (g) we
overestimate the marker frequency, and (h) we underestimate the marker frequency. The pa-
rameter values for each misspecified scenario under the two parameter settings are summarized
in Table 3. The other parameter settings are the same as in Section 3.1.

A total of 2000 potential families are generated based on the true parameter values, simple
random sampling, balanced sampling and optimal sampling where the sampling probabilities
are based on the misspecified parameter values are applied. Then each of the 1000 simulated
incomplete datasets are analysed using maximum likelihood method. Since simple random sam-
pling and balanced sampling do not depend on the specified parameter values at design stage,
the sampling probabilities are the same in both scenarios. However, since the optimal sampling
probabilities depend on the specified parameter values, the average selection probabilities for
these eight misspecified scenarios are summarized in Table 3 where there is apparent variation
in the approximate optimal selection models. There are estimability problems in the second
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parameter setting when auxiliary data are not available and so we do not report on results for
the two-phase design for this setting.

Table 3: Parameter values and the corresponding average stratum-specific optimal selection
probabilities under maximum likelihood method for the eight misspecification scenarios under
two parameter settings without and with auxiliary current status data of size M = 2000.

Parameter value† No Augmentation Augmentation

Scenarios p1 p2 eβ τ ν π00 π10 π01 π11 π00 π10 π01 π11

Parameter Setting (i): p1 = 0.15, p2 = 0.30 and ν = 0.25

True 0.15 0.30 2.0 0.25 0.25 0.88 0.05 0.05 0.65 0.76 0.05 0.05 0.67

(a) 0.30 0.50 × × × 0.45 0.06 0.05 0.70 0.26 0.07 0.05 0.72

(b) 0.05 0.10 × × × 0.95 0.05 0.05 0.64 0.91 0.05 0.05 0.65

(c) × × 3.0 × × 0.79 0.05 0.05 0.66 0.37 0.06 0.05 0.71

(d) × × 1.2 × × 0.88 0.05 0.05 0.65 0.89 0.05 0.05 0.65

(e) × × × 0.40 × 0.95 0.05 0.05 0.64 0.91 0.05 0.05 0.65

(f) × × × 0.10 × 0.67 0.05 0.05 0.68 0.63 0.05 0.05 0.68

(g) × × × × 0.40 1.00 0.05 0.07 0.62 1.00 0.05 0.07 0.63

(h) × × × × 0.10 0.05 0.07 0.05 0.74 0.05 0.06 0.05 0.75

Parameter Setting (ii): p1 = 0.05, p2 = 0.10 and ν = 0.10

True 0.05 0.10 2.0 0.25 0.10 0.77 0.05 0.05 1.00 0.74 0.05 0.09 1.00

(a) 0.02 0.08 × × × - - - - 0.69 0.05 0.11 1.00

(b) 0.02 0.08 × × × - - - - 0.76 0.05 0.08 1.00

(c) × × 3.0 × × - - - - 0.84 0.05 0.06 1.00

(d) × × 1.2 × × - - - - 0.50 0.05 0.17 1.00

(e) × × × 0.4 × - - - - 0.83 0.05 0.06 1.00

(f) × × × 0.1 × - - - - 0.60 0.05 0.13 1.00

(g) × × × × 0.25 - - - - 0.68 0.05 0.11 1.00

(h) × × × × 0.05 - - - - 0.75 0.05 0.09 1.00

† × means the value of this parameter is correctly specified

Table 4 displays the finite sample properties of estimators from likelihood and augmented
likelihood analyses under quasi-optimal selection at phase II based on misspecified parameter
values; here we report only the results for estimation of β, the parameter of primary interest.
As expected we find negligible empirical bias since estimates should remain consistent in this
setting. Moreover, there appears to be a good degree of robustness to the types of misspec-
ification we considered since the ESEs of the regression coefficient appears remarkably stable
across all scenarios.
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Table 4: The empirical properties of estimates of β from analysing 1000 simulated datasets
consisting of N = 2000 individuals without and with auxiliary current status data of size
M = 2000 at phase I while employing optimal sampling using misspecified parameter values
for phase II design with an expected phase II sample size of P (Ri = 1|Yi0 = 1) = 0.4.

no augmentation augmentation

Scenarios BIAS ESE ASE ASE† ECP BIAS ESE ASE ASE† ECP

Parameter Setting (i): p1 = 0.15, p2 = 0.30 and ν = 0.25

True 0.004 0.088 0.087 0.087 0.955 0.004 0.082 0.081 0.081 0.952

(a) 0.005 0.088 0.088 0.087 0.947 0.004 0.082 0.082 0.082 0.945

(b) 0.004 0.088 0.087 0.087 0.953 0.004 0.082 0.081 0.081 0.950

(c) 0.004 0.088 0.087 0.087 0.953 0.003 0.081 0.082 0.082 0.945

(d) 0.004 0.088 0.087 0.087 0.953 0.004 0.082 0.081 0.081 0.946

(e) 0.005 0.088 0.087 0.087 0.951 0.003 0.082 0.081 0.081 0.948

(f) 0.004 0.087 0.087 0.087 0.954 0.003 0.081 0.081 0.081 0.948

(g) 0.005 0.088 0.088 0.088 0.948 0.003 0.082 0.082 0.082 0.949

(h) 0.004 0.089 0.088 0.088 0.946 0.004 0.082 0.082 0.082 0.945

Parameter Setting (ii): p1 = 0.05, p2 = 0.10 and ν = 0.10

True - - - - - -0.002 0.094 0.096 0.096 0.956

(a) - - - - - -0.002 0.094 0.096 0.096 0.958

(b) - - - - - -0.002 0.094 0.096 0.096 0.955

(c) - - - - - -0.003 0.095 0.096 0.096 0.955

(d) - - - - - -0.003 0.093 0.097 0.097 0.953

(e) - - - - - -0.003 0.095 0.096 0.096 0.957

(f) - - - - - -0.002 0.094 0.096 0.096 0.956

(g) - - - - - -0.003 0.094 0.096 0.096 0.953

(h) - - - - - -0.002 0.094 0.096 0.096 0.957

† The average of the square root of the asymptotic variance evaluated based on phase I data only

4 An Illustrative Family Study Involving Psoriatic Arthritis

There is known to be a genetic basis for the development of psoriatic arthritis and interest lies in
characterizing the effect of a human leukocyte antigen marker HLA-B27 on the risk of developing
psoriatic arthritis while addressing the within-family association in disease process. Here we
consider the implications of different selection models applied to a phase I sample comprising
members of the University of Toronto Psoriatic Arthritis Registry (UTPSA) (Gladman and
Chandran, 2011). Specifically we consider the use of an optimal sampling approach with a focus
on testing the effect of HLA-B27 on the risk of developing psoriatic arthritis. To illustrate the
design however, we need to create complete data for all families with a member in the UTPSA.
We do this using data from the family study of Pollock et al. (2015) as described in Section 4.1.
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4.1 Exploiting Available Family Data for Creation of a Complete Data Set

To complete the family data for all members of the UTPSA, we use data from the selected
families of Pollock et al. (2015). The size and composition of families for individuals not
selected in Pollock et al. (2015) is determined by resampling the family composition of those
in Pollock et al. (2015). To do this we stratify the families from Pollock et al. (2015) into five
groups based on the age of onset of the proband: [0, 20), [20, 30), [30, 40), [40, 50), and [50,∞)
years of age. We then match an unselected potential proband from the registry with a selected
proband from the same stratum and assign the unselected potential probands family members
to be the same age at examination as those of their selected matched pair. The remaining data
are generated by simulation using models and estimates from earlier analyses as follows.

We set the marginal marker frequency to ν = 0.06 and use the kinship of family members to
complete the genetic data based on (4). Given the underlying HLA-B27 indicator, we generate
the age at onset for all non-probands based on the conditional j.c.d.f P (T1 ≤ t1, T2 ≤ t2|T0)
where we assume that the marginal distribution is Weibull with one covariate (HLA-B27);
the parameter values are set to be the same as those obtained in Zhong and Cook (2018). We
assume the within-family structure is characterized by a Clayton copula with Kendall’s τ = 0.2;
this value of τ is obtained by pooling the estimates of Kendall’s τ for a father-child pair and a
mother-child pair reported in Zhong and Cook (2018). We next consider the available phase I
data and the implementation of the three two-phase designs.

4.2 Implementation of the Phase II Sampling Schemes

For illustration, we focus on families with at least two non-probands and target the two oldest
family members for recruitment so that they will have been at risk the longest time for the
development of psoriatic arthritis. Based on these phase I data created in Section 4.1 we
apply the simple random sampling, balanced sampling and the proposed optimal sampling with
selection model (6) under the constraint PR = 0.15 to reflect the fact that about 15% families
could be selected. The total number of probands in each stratum are [341, 73, 348, 81] and the
corresponding sampling probabilities are [0.09, 0.43, 0.09, 0.39] under balanced sampling, and
[0.06, 0.05, 0.06, 1.00] under the optimal sampling scheme. When we incorporate the auxiliary
survey data providing current status data with sample size of 15,307 (Gelfand et al., 2005), the
optimal selection probabilities become [0.07, 0.05, 0.05, 1.00]. The numbers of selected probands
in each stratum using these different sampling approaches are summarized in Table 5.

Table 5: The total number of individuals and the selected number of probands in each stratum
(G0 = j, Ai = k), j, k = 0, 1 under simple random sampling, balanced sampling and optimal
sampling, for the psoriatic arthritis study.

(0, 0) (1, 0) (0, 1) (1, 1) Total

N 341 73 348 81 843

nsrs 49 11 56 12 128

nbal 29 27 34 27 117

nopt 22 3 22 81 128

naug 22 5 11 81 119

We next compute the likelihood (5) and the augmented likelihood (9) for the resulting data.
The resulting estimates of the effect of HLA-B27 on the age of onset for PsA are given in Table 6.
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Note that the point estimates vary somewhat across the different selection models but these are
within a reasonable range given the standard errors. We find that without auxiliary data, the
standard error is the largest under simple random sampling, followed by that from balanced
sampling. The optimal sampling method provides the estimate of the genetic effect with the
smallest standard error. When incorporating the auxiliary data, the efficiency improves for all
analyses but the optimal sampling scheme still leads to the estimate with the smallest standard
error.

Table 6: Log hazard ratio estimates, standard errors and its 95% CI of the effect of HLA-B27
on the onset time distribution for PsA based on the selected families using different sampling
schemes without (no augmentation) and with (augmentation) auxiliary current status survey
data.

No Augmentation Augmentation

srs bal opt srs bal opt

EST 0.859 0.815 1.054 0.824 0.744 0.945

SE 0.531 0.419 0.306 0.499 0.396 0.287

95% CI(-0.182, 1.900) (-0.006, 1.636) (0.454, 1.654) (-0.154, 1.802) (-0.032, 1.520) (0.382, 1.508)

5 Some Extensions

5.1 Dependence Misspecification and More General Dependence Modeling

In the current formulation, the dependence structure is modeled via a copula function; see
equation (1). With response-dependent sampling schemes of the sort we discuss, consistent
estimation requires correct specification of the joint model and hence the copula function must
be correct at the analysis stage. To explore the sensitivity of the parameter estimates to
misspecification of the copula function, we conducted additional simulation studies. We first
consider the same family study setting as described in Section 3.1 where we use the Clayton
copula to model the within-family association at the analysis stage, but consider the setting
where the correct joint model involves the Frank copula; see Section 1.1 of the Supplementary
Material.

The simulation results show that when the copula function is misspecified, all estimators
have non-negligible empirical bias; Table S.2 of the Supplementary Material reveals that the
empirical bias is larger with stronger within-family association. If auxiliary data are available
for synthesis with the family study data the biases can be larger under misspecification of the
copula as shown in Table S.3 of the Supplementary Material. When the penetrance among
individuals free of the genetic marker is lower and the frequency of the marker is smaller
the biases can be appreciable as shown in Table S.4 of the Supplementary Material. We note,
however, that the estimator of the effect of the genetic marker tends to have a smaller empirical
bias; this bias is particularly small when the strength of the dependence is mild, but it can be
appreciable when the dependence is strong.

When the within-family association is driven primarily by genetic factors, a more general
dependence structure may be appealing in which separate dependence parameters accommodate
an association that depends on the kinship of pairs of family members. Zhong and Cook (2016)
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used a three-parameter Gaussian copula to accommodates this kind of association, while Lakhal-
Chaieb et al. (2020) used a Gaussian copula with a single dependence parameter which was
scaled according to the kinship of different pairs of family members. The Gaussian copula with
a general correlation matrix can be written as

C(ui0, ui1, . . . , uimi
, ϕ) = Φmi+1

(
Φ−1 (ui0) ,Φ

−1 (ui1) , . . . ,Φ
−1 (uimi

) ;ϕ
)
,

where Φ−1(·) is the inverse cumulative distribution function of a standard normal random
variable (r.v.), and Φmi+1(· ;ϕ) is the cumulative distribution function of an (mi + 1) × 1
multivariate normal r.v. with mean zero and (mi +1)× (mi +1) covariance matrix Σi(ϕ) = Σi

with off-diagonal entries σijk. From (1), this gives

P (Ti0 ≤ ti0, Ti1 ≤ ti1, . . . , Timi
≤ timi

|Z̄i , ζ)

=

∫ ri0

−∞
· · ·
∫ rimi

−∞

exp
(
−s′iΣ−1

i si/2
)√

(2π)mi+1|Σi|
dsi0 . . . dsimi

, (11)

where if Si ∼ MVNmi+1(0,Σi), si is a realization, and rij = Φ−1(F (tij|Zij ; θ)), j = 0, 1, . . . ,mi.
Results from simulation studies examining the finite sample bias of estimators obtained when
the true copula is Gaussian but the Clayton copula is used at the design and analysis stages are
reported in Section 1.2 of the Supplementary Material. Again we see that when the strength
of the within-family association is mild the biases for the regression coefficient can be mild but
it can become appreciable when there is stronger within-family dependence; see Tables S.6 and
S.7 of the Supplementary Material.

5.2 Pairwise Composite Likelihood with Large Varying Family Size

The likelihood and efficient sampling approach are both developed allowing different family size
mi in Section 2, while the empirical studies and the illustrative family study we considered are
for trio-family study, i.e. mi = 2. When family size mi varies and especially when it is large it
can be challenging to compute and maximize the full likelihood. However, composite likelihood
(Lindsay, 1988; Cox and Reid, 2004) comprised of contributions based on lower dimensional
subsets of individuals in each family can be considered. Zhong and Cook (2016) proposed two
conditional composite likelihoods based on all pairs or all triplets of family members including
the proband for the family study under biased sampling. They showed that composite likelihood
can simplify the analytical expression and computation when the family size is large and varying,
and the efficiency loss incurred can be modest when either family sizes are small or the within-
family associations are modest and the loss can be offset by exploitation of auxiliary data when
it is available. Our approach can be extended to deal with this case, following which one would
derive the optimal sampling scheme based on composite likelihood for two-phase family studies.
The contribution from family i of the phase I sample following phase II selection can be written
as

CLi(ψ) ∝

[ ∏
1≤j<k≤mi

P (Y
(j,k)
i , G

(j,k)
i |C(j,k)

i , X
(j,k)
i , Gi0, Yi0 = 1 ;ψ)

]Ri

×

[ ∏
1≤j<k≤mi

P (Y
(j,k)
i |C(j,k)

i , X
(j,k)
i , Gi0, Yi0 = 1 ;ψ)

]1−Ri

;

which is the conditional pairwise composite likelihood contribution where Y
(j,k)
i = (Yij, Yik),

G
(j,k)
i = (Gij, Gik), X

(j,k)
i = (X ′

ij, X
′
ik) and C

(j,k)
i = (Cij, Cik) are the disease status, ge-

netic marker, demographic covariates, and ages at assessment for pair (j, k) in family i, i =
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1, 2, . . . , N , respectively. The estimates ψ̃ can be obtained by maximizing the composite likeli-
hood for all families CL(ψ) =

∏N
i=1CLi(ψ). Zhong and Cook (2016) give the limiting distri-

bution of estimators based on composite likelihood, which are consistent and asymptotically
normally distributed with a covariance matrix based on the robust sandwich variance formula.
The optimal phase II sampling probabilities can be found in a similar way to the approach
used for (2) based on the full likelihood; that is the selection probabilities can be obtained by
minimizing the asymptotic robust variance of the parameter of interest based on the composite
likelihood subject to the budgetary constraints.

5.3 Non-response for Some Members of Families Selected in Phase II

In some settings it may arise that not all members of selected families provide samples for
genetic testing. To accommodate this we let ∆ij = I(Gij is observed), j = 1, . . . ,mi,
∆i = (∆i1, . . . ,∆imi

)′, and we informally let Gi = (G◦
i , G

m
i ) denote Gi partitioned accord-

ing to individuals with observed and missing data, respectively, i = 1, . . . , N . Since ∆i is
random the likelihood analogous to (3), but accommodating incomplete observation of Gi, can
be written as

Li ∝
[
P (Yi, G

◦
i ,∆i|C̄i, X̄i, Gi0, Yi0 = 1)

]Ri
[
P (Yi|C̄i, X̄i, Gi0, Yi0 = 1)

]1−Ri (12)

=
[∑

Gm
i
P (Yi, Gi|∆i, C̄i, X̄i, Gi0, Yi0 = 1)P (∆i|C̄i, X̄i, Gi0, Yi0 = 1)

]Ri

×
[
EGi|C̄i,X̄i,Gi0,Yi0=1(P (Yi|C̄i, Z̄i, Yi0 = 1 ;ψ))

]1−Ri

If, missingness is clustered within-families and joint modeling of ∆i is required in (12), then
models for multivariate binary data (Prentice, 1988) may be useful for the evaluation of (12).
If however, ∆i ⊥ Gi|Yi, C̄i, X̄i, Gi0, Yi0 = 1 and incomplete participation of family members is
non-informative for families with Ri = 1, then we may ignore the term P (∆i|C̄i, X̄i, Gi0, Yi0 = 1)
and focus on the partial likelihood contribution for family i that can be written as∏

δi

[
EGm

i |∆i=δi,G◦
i ,C̄i,X̄i,Gi0,Yi0=1{P (Yi|C̄i, Z̄i, Yi0 = 1 ;ψ)}

]RiI(∆i=δi)

×
[
EGi|C̄i,X̄i,Gi0,Yi0=1{P (Yi|C̄i, Z̄i, Yi0 = 1 ;ψ)}

]1−Ri (13)

where
∏

δi
represents a product taken over all 2mi possible realizations of ∆i. The independence

assumption ∆i ⊥ Gi|Yi, C̄i, X̄i, Gi0, Yi0 = 1 will often be reasonable since individuals will not
typically be aware of their status with respect to the marker of interest. Of course while this
approach can lead to consistent estimation, some loss of efficiency will result from incomplete
collection of specimens for genetic testing. If refusal rates of families as a whole, or individuals
within selected families, are high, then adaptive two-phase design may be needed to mitigate
loss of power from incomplete data.

6 Discussion

We consider the setting where the goal is to estimate the effect of genetic markers on disease
onset time. Casting this problem into a failure time model is necessary since family members
can vary a great deal in their age and therefore will have been at risk for varying amounts of
time. In many settings, such as in metabolic diseases or other complex disorders, the disease
onset time may be difficult to ascertain precisely and it may be preferable simply to use current
status data on the onset time for family members; the onset time is typically available for the
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proband as they often have been referred to the tertiary care clinic maintaining the registry
by a family physician. Use of retrospectively reported onset times is possible but given these
are right-truncated by the age at examination in the family study, they will typically convey
relatively little additional information. It would be interesting, however, to investigate how use
of such data might alter the optimal selection model for the phase II sample.

The empirical studies conducted here have shown that the properties of estimators are
sensitive to misspecification of the copula function. The use of more highly parameterized
copula functions enlarges the range of within-family dependence structures but these are still
typically going to be specified within a parametric family. In some settings, inverse probability
of selection weights can be used to deal with truncated samples but in this clustered data setting
such weights may still need to be based on a model for the within-family dependence and so it
is unclear whether this approach could lead to greater robustness. Fortunately within-family
dependencies are often smaller than the larger values we explored in the empirical studies, so if
interest lies in the effects of the genetic markers then biases are typically modest. Nevertheless,
the development of more robust approaches for dealing with response-biased samples in family
studies is a challenging area worthy of research.

Patient records will provide some information on family history but we have assumed here
that it is detailed enough that the disease status is reported on each member. Often it will only
be reported in aggregated form in that it will only be known how many family members are
affected, or even if at least one family member is affected. The fact that the family members’
disease status will change over time is what motivates the use of a failure time model as
the basis for the study of genetic effects. In the family studies conducted at the Centre for
Prognosis Studies in Rheumatic Disease, the report on the family members disease status by
the members of the registries can be incorrect, so an interesting extension would be to model
the misclassification probability of the proband’s report on the disease status of their family
members. Given auxiliary data on this misclassification process alternative optimal selection
probabilities may be obtained.

Lee and Cook (2019) recently considered the use of illness-death models (Fix and Neyman,
1951) for the analysis of family studies. The rationale is that the onset time distribution is in
fact improper since not all individuals, even with a high risk configuration of genetic markers,
will develop the disease in their lifetime. Moreover, when diseases alter risk of death and
attention is restricted to non-probands who are alive to attend a clinic for examination, there
is a more subtle aspect to the biased sampling scheme based on right-truncation of the survival
distribution which characterizes the absorption time to the death state in the illness-death
process. Generalization of the proposed design framework for these more complex processes is
of interest and the topic of ongoing work. An alternative would be to adopt a mixture model
in which individuals have a latent susceptibility indicator and these, along with the relevant
onset times, are correlated within families in the spirit of Chatterjee and Shih (2001).

The general framework we have outlined here has been used primarily for the estimation of
the effect of particular genetic markers of interest, but interest could lie in recruiting families
with a view to better understanding parent of origin effects (Burden et al., 1998; Pollock et al.,
2015). To do this, the design would be best recast using a Gaussian copula that admits a more
general dependence structure within families (Zhong and Cook, 2016; Lakhal-Chaieb et al.,
2016). In this case, interest may lie in estimating a function of the father-child and mother-
child association parameters; see Zhong and Cook (2016).
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APPENDIX

A Approximation of Asymptotic Variance Using Phase I Data

As discussed in Section 2.3, evaluating the Fisher information matrix requires to take expecta-
tion of Si(ψ)S

′
i(ψ) with respect to (Ri, Yi, X̄i, Ḡi, C̄i) given the ascertainment condition Yi0 = 1,

where Si(ψ) = Ri{Si1(ψ) + SiG(ψ)} + (1 − Ri)Si2(ψ), Si1(ψ) = ∂ logP (Yi|Z̄i, C̄i, Yi0 = 1)/∂ψ,
SiG(ψ) = ∂ logP (Gi|Gi0)/∂ψ, and Si2(ψ) = EGi|Yi,Gi0,X̄i,C̄i,Yi0=1[Si1(ψ) + SiG(ψ)]. This is
challenging since it involves several multi-dimensional integrals, particularly when the fam-
ily size is large. Therefore we propose to approximate the required expectations based on
the empirical distributions estimated from the available phase I data. Note that the infor-
mation available at phase I consists of H1 = {(C̄i, X̄i, Gi0, Yi, Yi0 = 1) ; i = 1, 2 . . . , N}. Gi

is the possible missing information at phase II if ith family is not selected for family study,
i = 1, . . . , N . Note that Si1(ψ) is a function of (Yi, Ḡi, X̄i, C̄i) so we let Q(Yi, Ḡi, X̄i, C̄i ;ψ) =
Si1(Yi, Ḡi, X̄i, C̄i ;ψ)S

′
i1(Yi, Ḡi, X̄i, C̄i ;ψ). Therefore under the selection model (6), the first

term of I(η) in (7) can be rewritten as

E[RiSi1(Yi, Ḡi, X̄i, C̄i ;ψ)S
′
i1(Yi, Ḡi, X̄i, C̄i ;ψ)] (A1)

= E{πi(Yi, Gi0 ;α)Q(Yi, Ḡi, X̄i, C̄i ;ψ)}

= EC̄i,X̄i,Yi,Gi0|Yi0=1

{
πi(Yi, Gi0 ;α)EGi|Gi0,C̄i,X̄i,Yi,Yi0=1

[
Q(Yi, Ḡi, X̄i, C̄i ;ψ)

]}
.

Since the ascertainment condition and genetic mutation for the non-probands are indepen-
dent conditional on the proband’s genetic mutation (see equation (3) of the main body of the
manuscript) the inner conditional expectation in (A1) can be calculated as

EGi|Gi0,C̄i,X̄i,Yi,Yi0=1

[
Q(Yi, Ḡi, X̄i, C̄i ;ψ)

]
=

∑
gi

P (Gi = gi|Gi0, C̄i, X̄i, Yi, Yi0 = 1)Qi(Yi, gi, Gi0, X̄i, C̄i ;ψ)

=
∑
gi

[
P (Yi|Yi0 = 1, Gi = gi, Gi0, X̄i, C̄i)P (Gi = gi|Gi0)∑
li
P (Yi|Yi0 = 1, Gi = li, Gi0, X̄i, C̄i)P (Gi = li|Gi0)

Qi(Yi, gi, Gi0, X̄i, C̄i ;ψ)

]
def
= M(Yi, Gi0, C̄i, X̄i ;ψ) , (A2)

where gi is one of the possible realizations of Gi. Phase I data is collected through the as-
certained probands (i.e. Yi0 = 1), therefore we could use such data to approximate the outer
conditional expectation in (A1), that is,

E[RiSi1(Yi, Ḡi, X̄i, C̄i ;ψ)S
′
i1(Yi, Ḡi, X̄i, C̄i ;ψ)]

= EC̄i,X̄i,Yi,Gi0|Yi0=1

{
πi(Yi, Gi0 ;α)M(Yi, Gi0, C̄i, X̄i ;ψ)

}
.

We approximate this by

1

N

N∑
i=1

πi(yi, gi0 ;α)Mi(yi, gi0, c̄i, x̄i ;ψ) , (A3)
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which is equivalent to

E[RiSi1(Yi, Ḡi, X̄i, C̄i ;ψ)S
′
i1(Yi, Ḡi, X̄i, C̄i ;ψ)] (A4)

≈ 1

N

N∑
i=1

πi(yi, gi0)

∑
gi
P (Yi = yi|Yi0 = 1, gi, gi0, c̄i, x̄i)P (Gi = gi|Gi0 = gi0)Qi(yi, gi, gi0, c̄i, x̄i)∑

li
P (Yi = yi|Yi0 = 1, li, gi0, c̄i, x̄i)P (Gi = li|Gi0 = gi0)

=
1

N

N∑
i=1

[∑
li

P (Yi = yi|Yi0 = 1, li, gi0, c̄i, x̄i)P (Gi = li|Gi0 = gi0)

]−1

×

[∑
gi

πi(yi, gi0)

×P (Yi = yi|Yi0 = 1, gi, gi0, c̄i, x̄i)P (Gi = gi|Gi0 = gi0)Si1(yi, gi, gi0, c̄i, x̄i)S
′
i1(yi, gi, gi0, c̄i, x̄i)

]
.

Using (A4) to approximate E[RiSi1(Yi, Ḡi, X̄i, C̄i ;ψ)S
′
i1(Yi, Ḡi, X̄i, C̄i ;ψ)] can save the effort

to calculate several integrals, also eliminate the effects of misspecification of the distribution
for age at assessment (C̄i) and the distribution for other covariates (X̄i). Similarly, we could
use the same strategy to approximate other expectation terms in I(η) based on phase I data.
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Summary

In this supplementary material, we report additional simulation results for the effect of
misspecification of copula function discussed in the paper “Selection models for efficient
two-phase design of family studies”.

1 Simulation to investigate the effect of copula misspecifica-

tion

Consider a family study of trios, and assume that all family members have a common marginal

onset time distribution with survivor function F(tij|Gij) = exp(−(λtij)
κeβGij), where Gij is the

genetic marker with frequency ν, and j = 0, 1, 2 index proband (child), father and mother in

the ith family; i = 1, . . . , N . The parameters λ and κ are chosen to satisfy F (45|G = 0) = p1

and F (70|G = 0) = p2 and we let β = log 2 to represent the scenario that being positive for

the genetic marker increases the risk of developing the disease. The clinic entry time for the

proband Ci0 is taken to be normally distributed with mean 45 and variance 20, and the age

of contact for parents follows normal distribution with mean 70 and variance 20; the age at

contact for all individuals are truncated at 90 years. As in the main body of the manuscript

we consider two parameter settings, (i) p1 = 0.15, p2 = 0.3, q = 0.25; (ii) the penetrances for

the non-carrier and marker frequency are smaller and set at p1 = 0.05, p2 = 0.1, and q = 0.1.

We consider the cases that Clayton copula is used to introduce the residual within-family

association between disease onset times at the design and analyses stage, whereas the true

within-family association is induced by Frank copula (Section 1.1) or Gaussian copula (Section

1.2).
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The potential families are being recruited to the phase I sample only if their probands satisfy

Ti0 < Ci0. At phase II, the potential recruited families are stratified into 4 strata based on Gi0

and I(Yi· ≥ 1); each stratum has its own sampling probability πkl, k, l = 0, 1. We impose the

constraint that P (Ri = 1|Yi0 = 1) = PR = 0.4. Simple random sampling, balanced sampling

and optimal sampling proposed based on maximum likelihood method are applied to sample

the families at phase II for 1000 simulated data sets with N = 2000.

1.1 Within-Family Association Induced by the Frank Copula

First, we assume the true within-family dependence structure is induced by Frank copula but

Clayton copula is used for design and analyses. Among 1000 replicates, the average number of

individuals for the four strata at phase I, [N00, N10, N01, N11] are [263, 275, 558, 904] for Kendall’s

τ = 0.1 under parameter setting (i). The average stratum-specific selection probability and av-

erage number of selected families in each stratum based on simple random sampling, balanced

sampling and optimal sampling are shown in Table S.1. The empirical properties of estimates

from analysing 1000 simulated data sets while employing these sampling schemes at the second

phase with an expected phase II sample size of P (Ri = 1|Yi0 = 1) = 0.4 are reported in Table

S.2. When the dependence structure is misspecified, all estimates based on likelihood method

are biased, but the bias for the estimate of genetic effect is quite small. The empirical stan-

dard errors of β under optimal sampling is 8% lower compared to simple random sampling for

Kendall’s τ = 0.1. When within-family association becomes stronger, for example, Kendall’s

τ = 0.4, the average number of individuals for the four strata at phase I, [N00, N10, N01, N11]

are [82, 92, 738, 1088]. The average stratum-specific sampling probability and average number

of selected families in each stratum are reported in Table S.1 and the empirical properties of

resulting estimates are summarized in Table S.2 as well. Similarly, the estimates for all param-

eters are biased and the biases become larger when the dependence increase. The empirical

standard errors of β under optimal sampling is 6% lower compared to simple random sampling

for Kendall’s τ = 0.4.

When there are auxiliary current status data with sample size M = 2000, the sampling

probabilities did not change too much. The average stratum-specific selection probability and

average number of selected families in each stratum based on these sampling schemes are shown

in Table S.1 and the empirical properties of resulting estimates are summarized in Table S.3.

Similar patterns could be observed when there are auxiliary data. Interestingly the biases

become larger for all estimators when an auxiliary sample is available. The empirical standard

errors of β under optimal sampling is 13% and 11% lower compared to simple random sampling

for Kendall’s τ = 0.1 and 0.4, respectively.

We also consider all these scenarios with auxiliary current status data, but for parameter

setting (ii), where the penetrance for non-carrier and marker frequency are smaller. When

Kendall’s τ = 0.1, among 1000 replicates, 9, 4, and 8 replicates do not converge under the

simple random sampling, balanced sampling and optimal sampling, respectively. Based on the
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converged replicates (in total 979 replicates), the average number of individuals for the four

strata at phase I, [N00, N10, N01, N11] are [982, 393, 390, 235]. When within-family association

becomes stronger, for example, Kendall’s τ = 0.4, among 1000 replicates, 8, 15 and 10 replicates

do not converge under the simple random sampling, balanced sampling and optimal sampling,

respectively. Based on the converged replicates (in total 968 replicates), the average number

of individuals for the four strata at phase I, [N00, N10, N01, N11] are [599, 215, 773, 413]. The

average stratum-specific selection probability and average number of selected families in each

stratum based on these sampling schemes are shown in Table S.1 for those scenarios. The

empirical properties of corresponding estimates are summarized in Table S.4. The bias for

all parameters increases when the within-family association become stronger. The empirical

standard errors of β under optimal sampling is 20% and 19% lower compared to simple random

sampling for Kendall’s τ = 0.1 and 0.4, respectively.



Selection models for efficient two-phase design of family studies: Supplementary material 4

Table S.1: Average stratum-specific sampling probabilities and the average number of selected
families in each stratum at phase II under simple random sampling, balanced sampling, and
optimal designs under maximum likelihood when the true within-family association is induced
by Frank copula; P (Ri = 1|Yi0 = 1) = 0.4.

Parameter Setting I Parameter Setting II

No Augmentation With Augmentation With Augmentation

srs bal optML srs bal optML srs bal optML

Kendall’s τ = 0.1

π00 0.40 0.76 0.05 0.4 0.76 0.05 0.40 0.20 0.16
π10 0.40 0.73 0.05 0.4 0.73 0.05 0.40 0.51 0.05
π01 0.40 0.36 0.05 0.4 0.36 0.05 0.40 0.51 1.00
π11 0.40 0.22 0.82 0.4 0.22 0.82 0.40 0.85 1.00

n00 105 200 13 105 200 13 393 199 154
n10 110 200 15 110 200 15 157 200 21
n01 224 200 28 224 200 28 156 200 390
n11 362 200 743 362 200 743 94 200 235

Kendall’s τ = 0.4

π00 0.40 1.00 1.00 0.40 1.00 1.00 0.40 0.33 0.30
π10 0.40 1.00 0.05 0.40 1.00 0.05 0.40 0.93 0.05
π01 0.40 0.42 0.05 0.40 0.42 0.05 0.40 0.26 0.26
π11 0.40 0.29 0.62 0.40 0.29 0.62 0.40 0.49 1.00

n00 33 82 81 33 81 81 239 200 177
n10 37 92 5 37 92 5 86 199 11
n01 296 313 42 296 314 42 309 200 199
n11 435 313 672 436 314 673 165 200 413
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Table S.2: Empirical properties of estimates from analysing data sets consisting of N = 2000
individuals when true within-family association is induced by Frank copula while employing
simple random sampling, balanced sampling or optimal sampling for phase II design using
Clayton copula with an expected phase II sample size of P (Ri = 1|Yi0 = 1) = 0.4; Parameter
Setting (i).

Simple Random Sampling Balanced Sampling Optimal Sampling

BIAS ESE ASE ASE† ECP BIAS ESE ASE ASE† ECP BIAS ESE ASE ASE† ECP

Kendall’s τ = 0.1

log λ 0.064 0.142 0.133 0.134 0.780 0.064 0.145 0.134 0.136 0.784 0.064 0.140 0.132 0.133 0.789
log κ -0.046 0.246 0.239 0.241 0.969 -0.047 0.247 0.239 0.241 0.968 -0.045 0.249 0.239 0.241 0.965
β -0.006 0.090 0.089 0.088 0.938 -0.006 0.103 0.098 0.097 0.931 -0.006 0.083 0.080 0.079 0.940

log ν
1−ν

0.000 0.061 0.062 0.062 0.961 -0.004 0.062 0.064 0.064 0.957 -0.003 0.067 0.065 0.065 0.941

τ -0.073 0.020 0.020 0.020 0.024 -0.074 0.021 0.021 0.021 0.041 -0.073 0.020 0.020 0.020 0.029

Kendall’s τ = 0.4

log λ 0.394 0.054 0.054 0.053 0.000 0.396 0.057 0.055 0.054 0.000 0.392 0.053 0.052 0.051 0.000
log κ 0.076 0.195 0.206 0.205 0.912 0.075 0.197 0.206 0.205 0.916 0.078 0.194 0.205 0.205 0.911
β 0.036 0.088 0.090 0.089 0.946 0.032 0.093 0.092 0.091 0.928 0.040 0.083 0.082 0.081 0.925

log ν
1−ν

0.001 0.063 0.062 0.062 0.949 -0.000 0.062 0.063 0.063 0.947 -0.003 0.066 0.066 0.066 0.955

τ -0.236 0.027 0.026 0.026 0.000 -0.237 0.028 0.026 0.026 0.000 -0.236 0.027 0.026 0.026 0.000

Table S.3: Empirical properties of estimates from analysing data sets consisting of N = 2000
individuals with auxiliary current status data of size M = 2000 at phase I when true within-
family association is induced by Frank copula while employing simple random sampling, bal-
anced sampling or optimal sampling for phase II design using Clayton copula with an expected
phase II sample size of P (Ri = 1|Yi0 = 1) = 0.4; Parameter Setting (i).

Simple Random Sampling Balanced Sampling Optimal Sampling

BIAS ESE ASE ASE† ECP BIAS ESE ASE ASE† ECP BIAS ESE ASE ASE† ECP

Kendall’s τ = 0.1

log λ 0.127 0.077 0.074 0.075 0.542 0.125 0.081 0.078 0.078 0.568 0.130 0.073 0.071 0.071 0.511
log κ 0.136 0.077 0.078 0.078 0.558 0.136 0.077 0.078 0.079 0.569 0.137 0.076 0.077 0.078 0.549
β 0.026 0.090 0.087 0.087 0.930 0.028 0.100 0.096 0.096 0.944 0.019 0.079 0.078 0.078 0.948

log ν
1−ν

-0.007 0.063 0.062 0.062 0.945 -0.002 0.066 0.064 0.064 0.952 -0.005 0.063 0.065 0.065 0.956

τ -0.063 0.017 0.017 0.017 0.037 -0.063 0.018 0.017 0.017 0.049 -0.064 0.017 0.017 0.017 0.035

Kendall’s τ = 0.4

log λ 0.352 0.042 0.042 0.043 0.000 0.350 0.041 0.043 0.044 0.000 0.353 0.041 0.041 0.042 0.000
log κ 0.456 0.059 0.058 0.058 0.000 0.455 0.059 0.058 0.058 0.000 0.455 0.059 0.059 0.058 0.000
β 0.142 0.088 0.090 0.092 0.662 0.145 0.087 0.092 0.095 0.659 0.137 0.078 0.081 0.083 0.621

log ν
1−ν

-0.009 0.061 0.062 0.062 0.950 -0.005 0.062 0.063 0.063 0.951 -0.017 0.065 0.066 0.066 0.950

τ -0.215 0.020 0.019 0.019 0.000 -0.215 0.019 0.020 0.020 0.000 -0.215 0.020 0.019 0.019 0.000
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Table S.4: Empirical properties of estimates from analysing data sets consisting of N = 2000
individuals with auxiliary current status data of size M = 2000 at phase I when true within-
family association is induced by Frank copula while employing simple random sampling, bal-
anced sampling or optimal sampling for phase II design using Clayton copula with an expected
phase II sample size of P (Ri = 1|Yi0 = 1) = 0.4; based on converged replicates, Parameter
Setting (ii).

Simple Random Sampling Balanced Sampling Optimal Sampling

BIAS ESE ASE ASE† ECP BIAS ESE ASE ASE† ECP BIAS ESE ASE ASE† ECP

Kendall’s τ = 0.1

log λ 0.329 0.262 0.247 0.254 0.570 0.334 0.258 0.238 0.246 0.568 0.341 0.254 0.234 0.241 0.544
log κ 0.212 0.164 0.161 0.166 0.642 0.215 0.164 0.159 0.163 0.636 0.218 0.163 0.157 0.162 0.627
β 0.054 0.133 0.134 0.135 0.946 0.047 0.117 0.114 0.115 0.937 0.042 0.106 0.105 0.106 0.939

log ν
1−ν

-0.005 0.083 0.087 0.087 0.952 -0.008 0.089 0.087 0.087 0.949 -0.008 0.085 0.085 0.085 0.949

τ -0.086 0.012 0.012 0.012 0.000 -0.086 0.012 0.012 0.012 0.000 -0.086 0.012 0.012 0.012 0.000

Kendall’s τ = 0.4

log λ 0.863 0.074 0.077 0.079 0.000 0.865 0.074 0.076 0.079 0.000 0.874 0.070 0.072 0.075 0.000
log κ 0.644 0.080 0.082 0.085 0.000 0.645 0.080 0.082 0.084 0.000 0.650 0.079 0.081 0.083 0.000
β 0.200 0.120 0.121 0.122 0.640 0.190 0.117 0.120 0.121 0.670 0.163 0.097 0.097 0.098 0.630

log ν
1−ν

-0.012 0.084 0.087 0.087 0.947 -0.016 0.090 0.091 0.091 0.955 -0.022 0.087 0.088 0.088 0.951

τ -0.332 0.011 0.012 0.012 0.000 -0.332 0.011 0.012 0.012 0.000 -0.333 0.011 0.012 0.012 0.000

1.2 Within-Family Association is Induced by the Gaussian Copula

Furthermore, we consider a more complicated scenario where the true within-family association

is induced by Gaussian copula, where τfm, τfc and τmc are the Kendall’s τ for parents, father-

child, mother-child pairs, respectively. With auxiliary current status data of size M = 2000, for

parameter setting (i), when the pairwise associations are the same and Kendall’s τfm = τfc =

τmc = 0.1, the average number of individuals for the four strata at phase-I, [N00, N10, N01, N11]

are [271, 297, 548, 884] among 1000 replicates. When the dependence strength increases, for

example, τfm = τfc = τmc = 0.4, among the 1000 replicates, the average number of individuals

for the four strata at phase I, [N00, N10, N01, N11] are [102, 133, 718, 1047]. When τfm = 0.2, τfc =

0.6, τmc = 0.4, among the 1000 replicates, 12, 8 and 7 replicates under simple random sampling,

balanced sampling and optimal sampling do not converge, respectively. Based on the converged

replicates (in total 974 replicates), the average number of individuals for the four strata at

phase I, [N00, N10, N01, N11] are [17, 27, 804, 1152]. The corresponding average stratum-specific

selection probabilities and average number of selected families in each stratum based on those

three sampling schemes are reported in Table S.5, and the empirical properties of estimates are

summarized in Table S.6.

When Kendall’s τfm = τfc = τmc = 0.1, the empirical standard error of estimate for

genetic effect under optimal sampling is just 12% lower compared to that under simple random

sampling. The average of estimated Kendall’s τ under those three sampling schemes are all

0.072 with empirical standard errors 0.0165, 0.0170 and 0.0164 respectively.

When Kendall’s τfm = τfc = τmc = 0.4, the empirical standard error of estimate for genetic
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effect under optimal sampling is 12% lower compared to that under simple random sampling.

The average of estimated Kendall’s τ under those three sampling schemes are all 0.29 with

empirical standard errors 0.026.

When τfm = 0.2, τfc = 0.6, τmc = 0.4, based on the converged replicates, the empirical

standard error of estimate for genetic effect under optimal sampling is 17% lower compared

to that under simple random sampling. The average of estimated Kendall’s τ are all 0.21,

with standard errors 0.0218, 0.0214, and 0.0215 under the simple random sampling, balanced

sampling and optimal sampling schemes respectively.

For parameter setting (ii) with auxiliary current status data, when τfm = τfc = τmc = 0.1,

among the 1000 replicates, 5, 6 and 8 replicates under simple random sampling, balanced

sampling and optimal sampling do not converge, respectively. Based on the converged replicates

(in total 981 replicates), the average number of individuals for the four strata at phase I,

[N00, N10, N01, N11] are [939, 386, 433, 242]. When the dependence strength increase, i.e., τfm =

τfc = τmc = 0.4, among the 1000 replicates, 3, 4 and 3 replicates under simple random sampling,

balanced sampling and optimal sampling do not converge, respectively. Based on the converged

replicates (in total 993 replicates), the average number of individuals for the four strata at phase

I, [N00, N10, N01, N11] are [457, 197, 918, 428]. When τfm = 0.2, τfc = 0.6, τmc = 0.4, among the

1000 replicates, 12, 20 and 6 replicates under simple random sampling, balanced sampling and

optimal sampling do not converge, respectively. Based on the converged replicates (in total 962

replicates), the average number of individuals for the four strata at phase I, [N00, N10, N01, N11]

are [150, 76, 1222, 552]. We see that the number of individuals for the four strata at phase I are

quite different when the within-family dependence strength changes. The corresponding average

stratum-specific selection probabilities and average number of selected families in each stratum

based on those three sampling schemes are reported in Table S.5 and the empirical properties of

estimates are summarized in Table S.7. When the copula function is misspecified, the estimates

of all parameters are biased and biases increase when the within-family dependence becomes

stronger.

When τfm = τfc = τmc = 0.1, based on the converged replicates, the average of estimated

Kendall’s τ are all 0.046, with standard errors 0.013, 0.013, and 0.012 under the simple random

sampling, balanced sampling and optimal sampling, respectively. The average of estimated

Kendall’s τ are all 0.226 with standard errors 0.018 under three different sampling schemes

when τfm = τfc = τmc = 0.4. The average of estimated Kendall’s τ are 0.121, 0.121, and 0.118,

with standard errors 0.016, 0.015, and 0.014 under the simple random sampling, balanced

sampling and optimal sampling, respectively, when τfm = 0.2, τfc = 0.6, τmc = 0.4.

The empirical standard errors of estimate for genetic effect under optimal sampling are 25%,

23% and 37% lower compared to those under simple random sampling for Kendall’s τ = 0.1,

0.4, and different pairwise Kendall’s τ , respectively.

Here the ESEs and ASEs for β̂ are quite different in the setting when τfm = 0.2, τfc = 0.6,

and τmc = 0.4.
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Table S.5: Average stratum-specific sampling probabilities and the average number of selected
families in each stratum at phase II under simple random sampling, balanced sampling, and
optimal designs under maximum likelihood when within-family dependent structure is induced
by Gaussian copula with auxiliary current status data of size M = 2000; P (Ri = 1|Yi0 = 1) =
0.4.

Parameter Setting I Parameter Setting II

srs bal optML srs bal optML

Kendall’s τfm = τfc = τmc = 0.1

π00 0.40 0.74 0.05 0.40 0.21 0.11
π10 0.40 0.68 0.05 0.40 0.52 0.05
π01 0.40 0.36 0.05 0.40 0.46 1.00
π11 0.40 0.23 0.84 0.40 0.83 1.00

n00 108 200 14 376 200 106
n10 118 200 15 154 200 19
n01 219 200 28 173 201 433
n11 354 200 743 97 200 242

Kendall’s τfm = τfc = τmc = 0.4

π00 0.40 1.00 1.00 0.40 0.44 0.63
π10 0.40 1.00 0.05 0.40 1.00 0.05
π01 0.40 0.39 0.05 0.40 0.22 0.09
π11 0.40 0.27 0.62 0.40 0.47 1.00

n00 41 103 102 182 202 286
n10 53 133 7 79 193 10
n01 287 282 41 367 202 76
n11 419 282 651 171 202 428

Kendall’s τfm = 0.2, τfc = 0.6, τmc = 0.4

π00 0.40 1.00 1.00 0.40 1.00 1.00
π10 0.40 1.00 0.05 0.40 1.00 0.05
π01 0.40 0.47 0.05 0.40 0.24 0.08
π11 0.40 0.32 0.64 0.40 0.52 1.00

n00 7 17 17 60 150 150
n10 11 28 1 30 76 5
n01 322 378 43 488 287 93
n11 461 376 736 221 287 552
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Table S.6: Empirical properties of estimates from analysing data sets consisting of N = 2000
individuals with auxiliary current status data of size M = 2000 at phase I when true within-
family association is induced by Gaussian copula while employing simple random sampling, bal-
anced sampling or optimal sampling for phase II design using Clayton copula with an expected
phase II sample size of P (Ri = 1|Yi0 = 1) = 0.4; based on converged replicates, Parameter
Setting (i).

Simple Random Sampling Balanced Sampling Optimal Sampling

BIAS ESE ASE ASE† ECP BIAS ESE ASE ASE† ECP BIAS ESE ASE ASE† ECP

Kendall’s τfm = τfc = τmc = 0.1

log λ -0.022 0.098 0.101 0.103 0.966 -0.021 0.105 0.104 0.107 0.960 -0.020 0.096 0.097 0.098 0.959
log κ 0.004 0.089 0.092 0.092 0.951 0.006 0.090 0.093 0.093 0.952 0.003 0.089 0.092 0.092 0.954
β 0.066 0.091 0.092 0.095 0.909 0.064 0.103 0.102 0.106 0.912 0.065 0.080 0.081 0.083 0.877

log ν
1−ν

-0.000 0.062 0.062 0.062 0.951 0.006 0.066 0.064 0.064 0.940 -0.012 0.064 0.065 0.065 0.951

Kendall’s τfm = τfc = τmc = 0.4

log λ 0.070 0.115 0.098 0.090 0.751 0.073 0.115 0.099 0.093 0.757 0.070 0.114 0.097 0.089 0.753
log κ 0.090 0.127 0.108 0.095 0.746 0.084 0.128 0.109 0.097 0.759 0.091 0.124 0.107 0.095 0.762
β 0.070 0.092 0.090 0.091 0.871 0.042 0.092 0.092 0.093 0.926 0.079 0.081 0.081 0.081 0.816

log ν
1−ν

-0.008 0.062 0.062 0.062 0.953 -0.004 0.063 0.064 0.064 0.953 -0.022 0.063 0.066 0.066 0.948

Kendall’s τfm = 0.2, τfc = 0.6, τmc = 0.4

log λ 0.437 0.039 0.035 0.034 0.000 0.427 0.040 0.036 0.034 0.000 0.447 0.036 0.033 0.033 0.000
log κ 0.614 0.046 0.049 0.053 0.000 0.613 0.046 0.048 0.053 0.000 0.615 0.046 0.049 0.054 0.000
β 0.193 0.124 0.103 0.089 0.523 0.242 0.129 0.106 0.092 0.380 0.134 0.103 0.089 0.078 0.666

log ν
1−ν

-0.015 0.064 0.062 0.062 0.945 -0.023 0.062 0.062 0.062 0.937 -0.001 0.064 0.066 0.066 0.958

Table S.7: Empirical properties of estimates from analysing data sets consisting of N = 2000
individuals with auxiliary current status data of size M = 2000 at phase I when true within-
family association is induced by Gaussian copula while employing simple random sampling, bal-
anced sampling or optimal sampling for phase II design using Clayton copula with an expected
phase II sample size of P (Ri = 1|Yi0 = 1) = 0.4; based on converged replicates, Parameter
Setting (ii).

Simple Random Sampling Balanced Sampling Optimal Sampling

BIAS ESE ASE ASE† ECP BIAS ESE ASE ASE† ECP BIAS ESE ASE ASE† ECP

Kendall’s τfm = τfc = τmc = 0.1

log λ -0.098 0.476 0.435 0.439 0.922 -0.087 0.469 0.421 0.424 0.914 -0.083 0.455 0.415 0.418 0.922
log κ -0.016 0.225 0.215 0.216 0.939 -0.013 0.223 0.211 0.212 0.936 -0.012 0.219 0.210 0.211 0.938
β 0.084 0.150 0.151 0.153 0.929 0.076 0.124 0.127 0.129 0.930 0.076 0.112 0.115 0.116 0.920

log ν
1−ν

-0.002 0.092 0.087 0.087 0.931 -0.005 0.084 0.087 0.087 0.967 -0.013 0.087 0.086 0.086 0.949

Kendall’s τfm = τfc = τmc = 0.4

log λ -0.401 0.581 0.515 0.467 0.976 -0.399 0.577 0.514 0.467 0.979 -0.383 0.572 0.504 0.454 0.982
log κ -0.171 0.245 0.224 0.202 0.942 -0.172 0.243 0.224 0.202 0.944 -0.160 0.241 0.221 0.199 0.948
β 0.022 0.141 0.134 0.129 0.930 0.014 0.138 0.132 0.127 0.943 0.069 0.108 0.105 0.102 0.893

log ν
1−ν

-0.010 0.083 0.087 0.087 0.956 -0.023 0.091 0.092 0.093 0.952 -0.028 0.092 0.092 0.093 0.939

Kendall’s τfm = 0.2, τfc = 0.6, τmc = 0.4

log λ 1.150 0.045 0.037 0.036 0.000 1.151 0.042 0.036 0.035 0.000 1.162 0.035 0.033 0.034 0.000
log κ 0.977 0.051 0.051 0.056 0.000 0.976 0.050 0.051 0.056 0.000 0.984 0.047 0.050 0.055 0.000
β 0.054 0.184 0.135 0.108 0.845 0.049 0.157 0.123 0.101 0.868 -0.024 0.115 0.094 0.083 0.876

log ν
1−ν

-0.007 0.085 0.087 0.087 0.954 -0.032 0.090 0.094 0.094 0.955 -0.014 0.094 0.096 0.095 0.955


