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Summary

Family studies involve the selection of affected individuals from a disease registry who pro-
vide right-truncated ages of disease onset. Coarsened disease histories are then obtained
from consenting family members, either through examining medical records, retrospec-
tive reporting, or clinical examination. Methods for dealing with such biased sampling
schemes are available for continuous, binary, and failure time responses, but methods for
more complex life history processes are less developed. We consider a simple joint model
for clustered illness-death processes which we formulate to study covariate effects on the
marginal intensity for disease onset and to study the within-family dependence in disease
onset times. We construct likelihoods and composite likelihoods for family data obtained
from biased sampling schemes. In settings where the disease is rare and data are insuffi-
cient to fit the model of interest, we show how auxiliary data can augment the composite
likelihood to facilitate estimation. We apply the proposed methods to analyze data from
a family study of psoriatic arthritis carried out at the University of Toronto Psoriatic
Arthritis Registry.
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1 Introduction

Studies are often conducted to assess the nature and extent of familial aggregation of disease and
to study the effect of genetic risk factors for disease onset. When present, familial aggregation
suggests a shared genetic or environmental basis of disease (Li et al., 1998; Liang and Beaty,
2000). For valid inference in such settings, however, it is important to address the sampling
scheme by which families are recruited. This is typically done by identifying an individual
with the disease, called the proband, from a disease registry, recruiting them to the study
and recording a detailed disease history including the age of onset. The age of disease onset
for the proband is right-truncated since they were selected from a disease registry, and their
survival time is left-truncated. Family members of the proband, called non-probands, are then
contacted and upon granting consent are selected for the family study and their disease histories
are recorded. In some settings, the proband may report the disease histories of their family
members, but it may alternatively be acquired through clinical examination conducted by a
physician; the latter is preferable when diseases are difficult to diagnose and was done in the
motivating study.

A variety of frameworks for the analysis of multivariate failure time data have been developed
(Hougaard, 2012). The marginal approach for the analysis of clustered failure time data has
been developed in general by Lee et al. (1992) and by Liang et al. (1993) which can be used for
family studies if biased sampling schemes are not employed. Clayton (1978) suggested use of the
cross-ratio as a dependence measure, and Oakes (1989) showed the connection between frailty
models and the cross-ratio hazard function. Frailty models have been widely used in the analysis
of case-control family studies (Hsu et al., 2004; Hsu and Gorfine, 2005) where a frailty variance
is interpreted as a measure of dependence in the age of onset within family members. Copula
models can alternatively be used, in which case the multivariate joint distribution is formulated
in terms of the marginal distributions and a copula function (Joe, 1997; Shih and Louis, 1995).
Li et al. (1998), Shih and Chatterjee (2002), and Chatterjee et al. (2006) developed the copula
models for case-control family studies considering the ascertainment of case-control probands.
Zhong and Cook (2016) used copula functions and composite likelihood for the analysis of a
combination of right-censored and current status family data while addressing complex sampling
schemes; Zhong and Cook (2017) developed related methods based on estimating functions.

The aforementioned methods focus on modeling familial aggregation in disease onset times
in the simple framework of failure time models. More recent work has dealt with clustered
failure time data in the semi-competing risks setting, where disease onset and disease-free death
are considered as competing events. Bandeen-Roche and Liang (2002) suggested a modified
conditional hazard ratio to account for the cause of failure based on a frailty model and applied
it to a population cohort study of dementia. Shih and Albert (2010) extended the work of
Bandeen-Roche and Liang (2002) and considered two types of dependence measures with one
to model the dependence in terms of the failure time of paired members and a second to
model the association between the failure types given the time; they suggested use of a time-
varying piecewise constant dependence measure. To examine sibship association in disease
onset, Cheng et al. (2009) developed nonparametric association analysis using the bivariate
cumulative incidence function defined by the cause-specific hazard function to account for
the exchangeable clustered competing risks setting. Zhou et al. (2012) proposed a marginal
proportional subdistribution hazard model in the clustered competing risks setting. Scheike
et al. (2010) and Scheike and Sun (2012) studied a semiparametric additive model and explored
a cross-odds ratio-type measure on the probability scale as the association parameters for the
Danish twin data; Scheike et al. (2014) extended the model to accommodate delayed entry and
to model genetic and environmental effects.
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Multistate models offer another framework for dependence modeling. Aalen et al. (1980)
applied the Schweder (1970) concept of local dependence to understand the interaction between
two life-history events by comparing the transition intensities. Hougaard et al. (1992) and
Hougaard (1999) considered dependence modeling in the lifetimes of twins via multistate models
under the Markov or semi-Markov assumption.

There has been little work on the use of illness-death models in the setting of family or twin
studies. The illness-death model offers a useful framework for the joint study of disease onset
and mortality to better understand the nature of the disease process over an individual lifetime
(Andersen, 1988). Dependence modeling for correlated illness-death processes is necessary when
processes are clustered as they are in family studies. Jiang and Haneuse (2017) proposed an
illness-death model with the non-parametric frailty distribution where the non-terminal event
times and terminal event times are correlated. Cederkvist et al. (2018) considered the cause-
specific cumulative incidence function as a basis for dependence modeling in the multivariate
competing risks settings; these authors used random effects to accommodate within-cluster
dependence in both risk and timing.

In this article, we develop an illness-death model using the latent variable formulation of
the competing risk model for the first event (disease onset or disease-free death). A copula
model is used to accommodate clustering within families in the (possibly latent) ages of disease
onset. Methods are described which account for incomplete data under two types of biased
sampling schemes. The use of auxiliary data is highlighted to address identifiability problems
and to increase efficiency. Finally, we show how to account for incomplete genetic data when
auxiliary data do not contain the desired genotype information.

The remainder of this article is organized as follows. In Section 2, we define notation and
present the joint model. Two biased sampling schemes are then described and the associated
likelihood is presented; composite likelihood is proposed for settings where some family sizes are
large. The use of auxiliary data is discussed in Section 3 to facilitate estimation of transition
intensities to the death state, and simulation studies are reported in Section 4. In Section 5, we
extend the proposed methods to incorporate genotype information and present the results of
further simulation studies. An application to a family study on the onset of psoriatic arthritis
(PsA) from the University of Toronto is given in Section 6, and concluding remarks are given
in Section 7.

2 Model Formulation

2.1 Notation and Model Formulation

We consider a four-state representation of the illness-death model to describe the joint distri-
bution of disease onset and death (Datta et al., 2000; Xu et al., 2010). We let state 0 represent
a healthy state, state 1 represent a diseased state, state 2 represent death post-disease, and
state 3 represent disease-free death; see Figure 1.

Our initial interest lies in modeling the association in the age of disease onset between
family members. To simplify the presentation of the joint model, we first consider dependence
modeling for two individuals labeled j and k in family i, and define variables for individual j
without loss of generality. We let Xij1 denote the age of disease onset, Xij2 the age at death
following disease, Xij3 the age at disease-free death. This is a latent variable formulation of
the competing risks problem for transition out of state 0 in that Xij1 may not be observed (or
realized) if Xij3 < Xij1. While unconventional and not without limitations vis-à-vis observable
features, we adopt this formulation since the association in the age of disease onset is most
naturally modeled in terms of 0 → 1 transition times. Finally, we let Bij be the calendar time



The illness-death model for family studies 4

Figure 1: A four-state representation of an illness-death model.

of birth for individual j in family i, j = 1, 2, and let Bi = (Bij, Bik)
′ be the vector of calendar

times of births for individuals j and k in family i.
It will be convenient to use multistate models notation and to this end let Zij(a) denote the

state occupied for individual j in family i at age a and calendar time Bij +a. We let Vij denote
covariates for individual j in family i and Vi = (Vij, Vik)

′ be the covariate information for the
(j, k) pair. Let Hij(a) = {Zij(s), 0 ≤ s < a,Bij, Vij} denote the history for individual j in
family i over age [0, a) whose calendar time of birth is Bij. The age- and calendar time-specific
marginal intensity function for a transition from state h into l is

lim
∆a↓0

P (Zij(a+∆a−) = l|Zij(a
−) = h,Hij(a))

∆a
= λijl(t, a|Hij(a))

with t = Bij + a, where (h, l) ∈ {(0, 1), (0, 3), (1, 2)}. If, given the date of birth and the
covariates, the disease process for each family member is Markov, we can write

λij(t, a|Hij(a)) = λl(t, a|bij, vij), l = 1, 2, 3.

If we assume that λ3(t, a|bij, vij) = λ2(t, a|bij, vij), the disease is incidental as it does not
change the risk of death, but if λ3(t, a|bij, vij) ̸= λ2(t, a|bij, vij) then survival is locally dependent
of the disease process (Aalen, 2012); in this case, typically, λ2(t, a|bij, vij) > λ3(t, a|bij, vij).
Andersen et al. (1985) use a Cox model to accommodate proportional mortality among diseased
and disease-free individuals. In the present context, this has the form

λ2(t, a|bij, vij) = λ3(t, a|bij)ν0(a) exp(v′ijβ2), (1)

where λ3(t, a|bij) is the age- and calendar-time specific baseline population mortality rate. The
term ν0(a) reflects a proportional change in mortality in terms of age. We adopt the model (1)
and let λ3(t, a|bij, vij) = λ3(t, a|bij) so that the subject-specific disease-free mortality rate does
not depend on the covariates and can be therefore easily estimated based on the population
rates. If the disease does not alter the mortality trend in age in the population, we may further
assume ν0(a) = ν.

We assume that the transition times Xij1 and Xij3 are independent, which is an unverifi-
able assumption as we only observe min(Xij1, Xij3) (Kalbfleisch and Prentice, 2002). Moreover
we assume that the intensity for transitions from the healthy to disease state does not de-
pend on calendar time, in which case we may write λ1(t, a|bij, vij) = λ1(a) exp(v

′
ijβ1). We

denote the survival functions for the possibly latent disease onset time as F(a|Vij;ϕ1) =
1 − exp(−

∫ a

0
λ1(s|Vij)ds), and let f(a|Vij;ϕ1) = −∂F(a|Vij;ϕ1)/∂a, where ϕ1 indexes the
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marginal intensity for disease onset. To model within family association in the age of dis-
ease onset, we use a copula function to construct a joint model for Xij1 and Xik1 (Joe, 1997)
in which

P (Xij1 > aj, Xik1 > ak;Vi, φ) = C(F(aj|Vij;ϕ1),F(ak|Vik;ϕ1); ρ), (2)

with ρ indexing the copula function and φ = (ϕ′
1, ρ)

′. We define ϕ = (ϕ′
1, ϕ

′
2)

′ where ϕ2 indexes
the transition intensity from the diseased to death state and ψ = (ϕ′, ρ). The joint density
function can be written as

P (Xij1 = aj, Xik1 = ak;Vi, φ) =c(F(aj|Vij;ϕ1),F(ak|Vik;ϕ1); ρ)f(aj|Vij;ϕ1)f(ak|Vik;ϕ1),

where c(·, ·; ρ) is the density of the copula. We use the Clayton copula which has the form

C(u1, u2; ρ) = (u−ρ
1 + u−ρ

2 − 1)−1/ρ , 0 ≤ uj ≤ 1 , j = 1, 2 ,

with Kendall’s τ = ρ/(ρ+ 2). As a measure of dependence of the age of disease onset between
two individuals, we consider the cross-ratio for (Xij1, Xik1) (Oakes, 1989) which takes the form

θ(aj, ak) =
λ1(ak|Xij1 = aj;Vi, φ)

λ1(ak|Xij1 > aj;Vi, φ)
(3)

=
P (Xij1 = aj, Xik1 = ak;Vi, φ)P (Xij1 > aj, Xik1 > ak;Vi, φ)

P (Xij1 = aj, Xik1 > ak;Vi, φ)P (Xij1 > aj, Xik1 = ak;Vi, φ)
,

under the Clayton copula θ(aj, ak) = 1 + ρ. We assume that the (possibly latent) age at
disease-free death for an individual is independent from the life history of other family mem-
bers. This assumption may not be valid in settings where the occurrence of death might
be affected by shared environmental factors in a family. While we adopt this assumption
we note that a within-family dependence in the marginal time of death (min(Xij2, Xij3)) ac-
commodated in this joint model through the dependence in the disease onset time. Under
the assumption of (i) conditionally independent competing risks, Xij1 ⊥ Xij3|Vij, and (ii)
Xij3 ⊥ {Zik(s), 0 < s}|Bi,Vi for j ̸= k, the cause-specific cross-ratio θ11(aj, ak) = λ11(ak|Xij1 =
aj, Xij3 > aj;Bi,Vi, φ)/λ11(ak|Xij1 > aj, Xij3 > aj;Bi,Vi, φ) for the age of disease onset be-
tween two individuals is the same as the cross-odds ratio θ(aj, ak) in (3). For the Clayton
copula θ(aj, ak) = θ11(aj, ak) = θ = 1 + ρ.

Scheike et al. (2010) introduced a cross-odds ratio as a measure of dependence in the com-
peting risks setting given here by

π(a) =
ODDS(Xik1 ≤ a,Xik1 < Xik3|Xij1 ≤ a,Xij1 < Xij3;Bi,Vi)

ODDS(Xik1 ≤ a,Xik1 < Xik3, Bik, Vik)
, (4)

where
P (Xik1 ≤ a,Xik1 < Xik3, Bik, Vik) (5)

is the marginal cumulative incidence function for disease onset. Note that π(a) is not a simple
expression in terms of our model formulation even with θ(a, a) = 1 + ρ under the Clayton
copula since the cumulative incidence functions are complex functions of the cause-specific
hazards λ1(·), λ2(·), and λ3(·).

2.2 Likelihood Construction for Family Studies

Here, we extend the model to deal with all members of family i, i = 1, . . . , nF , where nF is
the number of families recruited. We let mi + 1 denote the number of individuals in family
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i with the subscript 0 used to identify the proband and selected family members by j =
1, . . . ,mi, i = 1, . . . , nF . Let Xi1 = (Xi01, Xi11, . . . , Ximi1)

′ denote the vector of possibly latent
onset times within family i, Xi3 = (Xi03, Xi13, . . . , Ximi3)

′,Xi2 = (Xi02, Xi12, . . . , Ximi2)
′, Bi =

(Bi0, . . . , Bimi
)′, and Vi = (Vi0, . . . , Vimi

)′. Then (2) extends to an mi + 1 dimensional survival
function as

P (Xi01 > a0, . . . , Ximi1 > ami
|Vi;φ) = C(F(a0|Vi0;ϕ1), . . . ,F(ami

|Vimi
;ϕ1); ρ).

We consider studies in which families are sampled by first selection of the proband from
a disease registry. We let Ri0 denote the calendar time of screening and recruitment of the
proband to the registry and Ci0 the age of the proband at calendar time Ri0. To enter the
registry at Ri0, the proband must be alive with disease at age Ci0. Let Ri be the calendar
time that the proband is sampled from the registry for inclusion in the family study, and Ai0,
and Ai = (Ai0, Ai1, . . . , Aimi

)′ denote the age at calendar time Ri for the proband (Ai0) and
all family members (Aij, j = 1, . . . ,mi), respectively; let A−

i = (Ai1, . . . , Aimi
)′ denote the

elements of Ai excluding the proband. More generally a superscript “-” denotes a vector with
the entry for the proband excluded.

For each recruited proband we obtain data from their consenting family members (non-
probands). If a non-proband died before Ri it is often possible to obtain disease history data
retrospectively from medical records or via the proband. Anderson (1961) compared the accu-
racy of reports about disease histories of family members with physician diagnosis and found
that physician assessments were necessary to ensure accurate reporting of disease related infor-
mation for non-probands. We therefore also consider designs in which physicians must interview
non-probands at calendar time Ri to carry out medical examinations. In this second design,
non-probands must alive at calendar time Ri if they are in family i, i = 1, . . . , nF .

The Lexis diagram plays a central role in describing the incidence, path, and sampling of
disease processes in a population using a calendar time × age co-ordinate system (Keiding,
1990, 2006). Figure 2 shows possible scenarios for family data on illness-death processes under
the biased sampling scheme described here. In this figure, the dashed lines represent periods
of calendar time and ages at which the healthy state is occupied, and the solid lines represent
periods in which the diseased state is occupied. The proband, depicted in red, provides their
retrospectively recorded age of disease onset, and like other individuals in the registry may be
followed until death or censoring. Non-probands may give a variety of types of data: some
may report retrospectively their age of disease onset, some may be disease-free at the time of
examination, and for some we may simply know their date of death if they did not live long
enough to be recruited and examined at the calendar time of the family study.

Here, we construct the likelihood function for two particular study designs under the biased
sampling schemes, depending on whether we collect the complete history of non-probands
at Ri (design I) or only examine non-probands who are alive at Ri (design II). If ai =
(ai0, ai1, . . . , aimi

)′ denotes a vector of ages of individuals in family i, we let Zi(ai) = (Zi0(ai0),
Zi1(ai1), . . . , Zimi

(aimi
))′. In both designs, the likelihood contribution of the proband is

Li0(ϕ) = P (Z̄i0(Ai0)|Zi0(Ci0) = 1, Ci0, Bi0, Vi0;ϕ), (6)

where Z̄i0(Ai0) = {Zi0(u), 0 < u ≤ Ai0}. In the first design, we suppose the disease history and
covariates for all non-probands are available at calendar time Ri at which the family study is
conducted. The likelihood is then given as

LI
i (ψ) ∝ Li0(ϕ)P (Z̄

−
i (A

−
i )|Z̄i0(Ai0), Zi0(Ai0) = 1,Ai,Bi,Vi;ψ) , (7)
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Figure 2: A Lexis diagram for family data obtained under a biased sample scheme; Ri0 denotes
the calendar time of recruitment of a proband to a registry, and Ri is the date of the family
study.

where Z̄i(ai) = {Zij(u), 0 < u ≤ aij, j = 0, . . . ,mi}. In design II, we require non-probands to
be alive at calendar time Ri in order that they be examined by a physician. This gives

LII
i (ψ) ∝ Li0(ϕ)P (Z̄

−
i (A

−
i )|Z̄i0(Ai0), Zi0(Ai0) = 1,Z−

i (A
−
i ) ∈ {0, 1}mi ,Ai,Bi,Vi;ψ). (8)

In what follows we omit the superscript I and II indicating the design and take it as under-
stood that Li represents either LI

i or LII
i in a particular setting. The score vector is S(ψ) =∑nF

i=1 Si(ψ) where Si(ψ) = ∂ logLi/∂ψ, and the information matrix is I(ψ) =
∑nF

i=1 Ii(ψ)
where Ii(ψ) = −∂2 logLi(ψ)/∂ψ∂ψ

′, respectively. We obtain the maximum likelihood estima-
tor ψ̂ by solving S(ψ) = 0 and note that asymptotically

√
nF (ψ̂ − ψ) ∼ N(0, I−1(ψ)) where

I(ψ) = E[Ii(ψ)].
When mi is large the computational burden of evaluating the joint probability of the life

histories of family members may be considerable, so we consider use of “pairwise” conditional
composite likelihood (Varin et al., 2011) in which pairs are comprised of two non-probands and
the contribution to the pairwise likelihood condition on the proband data for the respective
family. In particular, for design II where non-probands are only selected if they are alive
at Ri, the contribution from a pair to (8) is much simpler than what would be required to
compute P (Z̄i0(Ai0), Zi0(Ai0) = 1,Z−

i (A
−
i ) ∈ {0, 1}mi ,Ai,Bi,Vi) under a full likelihood. The

contribution to the conditional composite likelihood of family i for design k is then

CLk
i (ψ) ∝ Li0(ϕ)

∏
1≤j<l≤mi

{
Lk
ijl(ψ)

} 1
mi−1

,
k = I, II, (9)

where Li0 is given by (6); the weight 1/(mi − 1) ensures the net contribution to the composite
likelihood for the marginal function for non-probands is appropriate. Specifically in design I,

LI
ijl(ψ) = P (Z̄−

ijl(A
−
ijl)|Z̄i0(Ai0), Zi0(Ai0) = 1,Aijl,Bijl,Vijl;ψ)
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and in design II,

LII
ijl(ψ) = P (Z̄−

ijl(A
−
ijl)|Z̄i0(Ai0), Zi0(Ai0) = 1,Z−

ijl(A
−
ijl) ∈ {0, 1}2,Aijl,Bijl,Vijl;ψ)

=
P (Z̄−

ijl(A
−
ijl)|Z̄i0(Ai0), Zi0(Ai0) = 1,Aijl,Bijl,Vijl;ψ)

P (Z−
ijl(A

−
ijl) ∈ {0, 1}2|Z̄i0(Ai0), Zi0(Ai0) = 1,Aijl,Bijl,Vijl;ψ)

with Aijl = (Ai0, Aij, Ail)
′,Bijl = (Bi0, Bij, Bil)

′,Vijl = (V ′
i0, V

′
ij, V

′
il)

′, Z̄ijl(sijl) = {Zih(u), 0 <
u ≤ sih, h = 0, j, l;Bijl}.

Mesfioui and Quessy (2008) showed that the conditional Clayton copula has a useful invari-
ance property which we exploit here. In the present context, if Xi1 = (Xij1, Xik1, Xil1) follows a
joint distribution governed by the Clayton copula, then the distribution forXij1, Xik1|Xil1 = xil1
also follows a Clayton copula with parameter ρ/(1 + ρ), so,

P (Xij1 > aj, Xik1 > ak|Xil1 = al, Vij, Vik, Vil) (10)

= C(F(aj|Xil1 = al, Vij, Vil;ϕ1, ρ),F(ak|Xil1 = al, Vik, Vil;ϕ1, ρ); ρ
∗),

where ρ∗ = ρ/(1 + ρ) and

F(aj|Xil1 = al, Vij, Vil;ϕ1, ρ) =
∂C(F(aj|Vij;ϕ1), u; ρ)

∂u

∣∣∣∣
u=F(al|Vil;ϕ1)

.

We therefore calculate Lk
ijl(ψ) using the conditional Clayton copula function based on (10).

Again we suppress the superscript I or II when discussing a generic setting and we write CLi(ψ)
to represent (9) in either case. The score vector for the composite likelihood is then U(ψ) =∑nF

i=1 Ui(ψ) where Ui(ψ) = ∂ logCLi(ψ)/∂ψ and the maximum composite likelihood estimator ψ̃

is obtained by solving U(ψ) = 0. The estimated variance of ψ̃ is given as n−1
F A−1(ψ̃)B(ψ̃)A−1(ψ̃)

where A(ψ) = −n−1
F [∂U(ψ)/∂ψ′] and B(ψ) = n−1

F

∑nF

i=1 Ui(ψ)U
′
i(ψ).

More details on how to construct the composite likelihood are given in Appendix A of
Supplementary Material available at Biostatistics online using the motivating example.

3 Augmented Composite likelihood

For the motivating family study, the low incidence of disease among non-probands and bias
sampling scheme employed result in limited information about the disease process. To overcome
this difficulty, we exploit auxiliary data to ensure all components of the model identifiable and
strengthen the analysis. The combination of data from different sources in family studies has
been suggested (Pfeiffer et al., 2008; Zheng et al., 2010; Balliu et al., 2012) in which data from
case-control studies or the twin-based studies are integrated with data from family studies.
In the current study, the University of Toronto Psoriatic Arthritis Registry (UTPAR) provides
data with right-truncated disease onset times and the left-truncated and right-censored times to
death (Wong et al., 1997). The research team running the UTPAR also conducts tracing studies,
which aim to yield further data on survival times for PsA patients. Another source of auxiliary
data is a national cross-sectional survey conducted by the National Psoriasis Foundation in the
United States; it yields current status data on the disease state of individuals (Gelfand et al.,
2005b). Although this national survey only provides marginal information, efficiency of our
analysis can in principle be enhanced through augmenting the composite likelihood. Since we
have no data available on the time to disease-free death, we use national mortality statistics
to estimate the disease-free mortality rate; the data are population-level data, and so we treat
λ3(·, ·) as known and define them to be the population mortality rates. We thus consider (i)
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registry data with follow-up (ii) a cross-sectional survey yielding current status data on disease
state, and (iii) national statistics for specification of the mortality rate.

Let A1 be the set of n1 individuals in the registry but not selected as probands and A2

the set of n2 individuals from the cross-sectional survey. We multiply CLk(ψ) in (9) by the
corresponding marginal likelihoods which are augmentation terms and so denoted AL1 and
AL2 based on the auxiliary data from sources (i) and (ii), respectively. For individuals from
the registry in A1, we let Xi1 denote the age at onset, Ci the age at recruitment, Xi2 the
age at death following disease (if available), A∗

i = min(C∗
i , Xi2) with C∗

i the last assessment
time, Bi the calendar time of birth, and Vi a vector of covariates for an individual i. Then,
AL1 =

∏
i∈A1

AL1i where

AL1i ∝ P (Z̄i(A
∗
i )|Zi(Ci) = 1, Ci, Bi, Vi;ϕ) .

For individuals from the national survey in A2, we let Ci denote the age at contact. Then,
AL2 =

∏
i∈A2

AL2i where

AL2i ∝
∏

h∈{0,1}

P (Zi(Ci) = h|Zi(Ci) ∈ {0, 1}, Bi, Vi;ϕ)
I(Zi(Ci)=h) .

For the disease-free death intensity, we obtain λ3(t, a) based on published population mor-
tality data which are given by calendar times and age-specific intervals (Robert, 2017). Figure 3
shows the age-specific population mortality rates across calendar periods between 1921 to 2011.
A decreasing trend in the age-specific mortality rates over the last 90 years is apparent, so it is
important to accommodate this if the registry includes individuals born over a wide range of
calendar time and vary in age a great deal.

Figure 3: Age-specific population mortality rates by calendar period in Canada from 1921 to
2011.

To examine the asymptotic distribution of the estimator ψ̃, we construct the augmented



The illness-death model for family studies 10

composite likelihood

ACL(ψ) ∝
∏
i∈SF

CLi(ψ)
∏
i∈A1

AL1i

∏
i∈A2

AL2i , (11)

where SF is the set of indices for probands (and hence their families) selected for the family
study. We may then write

Ui(ψ) =
∂ logCLi(ψ)

∂ψ
,

U1i(ϕ) =
∂ logAL1i(ϕ)

∂ψ
,

and

U2i(ϕ) =
∂ logAL2i(ϕ)

∂ψ
.

The score vector for the augmented composite likelihood is

Ū(ψ) =
∑
i∈SF

Ui(ψ) +
∑
i∈A1

U1i(ϕ) +
∑
i∈A2

U2i(ϕ)

and the maximum augmented pairwise likelihood estimator ψ̃ is obtained by solving Ū(ψ) = 0.
The estimated variance of ψ̃ is given as n−1A−1(ψ̃)B(ψ̃)A−1(ψ̃)′ where

A(ψ) = − 1

n

(∑
i∈SF

∂2 logCLi(ψ)

∂ψ∂ψ′ +
∑
i∈A1

∂2 logAL1i(ϕ)

∂ψ∂ψ′ +
∑
i∈A2

∂2 logAL2i(ϕ)

∂ψ∂ψ′

)
,

and

B(ψ) =
1

n

(∑
i∈SF

Ui(ψ)U
′
i(ψ) +

∑
i∈A1

U1i(ϕ)U
′
1i(ϕ) +

∑
i∈A2

U2i(ϕ)U
′
2i(ϕ)

)
with n = nF + n1 + n2.

4 Simulation Studies

Here, we assess the performance of the methods introduced in Sections 2 and 3 through
simulation studies. To mimic more closely the PsA study, we consider the age- and calen-
dar time-specific mortality rates based on the population mortality rates λ3(t, a) and assume
λ2(t, a) = νλ3(t, a). We set the rate of occurrence of disease λ1 = 0.01 as a constant value. We
consider the Clayton copula with Kendall’s τ = 0.2 and 0.4. We generate the time to disease-
free death from the age and time-specific population mortality rates with ν = 1.1. We generate
the family size with 4 or 6 members having two parents and 2 or 4 children in family where
P (mi + 1 = 4) = 2/3 and P (mi + 1 = 6) = 1/3. Then, we randomly choose an individual from
the family members and generate the date of birth from the uniform distribution (1920, 1950)
if the individual is a parent or (1950, 1980) otherwise. Then, we generate an individual path
from the marginal distribution. We generate the individual sampling date from the uniform
distribution (1980, 2010) and select those who are alive and diseased at the sampling date. We
set the family sample size nF = 1000, the size of registry n1 = 2000. Among n1+nF individuals
who are alive at the family sampling date on July 1, 2010, we randomly select probands and
generate the data for non-probands given the proband data with the family size nF . If the
proband is a parent, the birth dates of a spouse or child are obtained by adding the uniform
distribution (0, 10) or (20, 30) to the birth date of proband, respectively, and conduct similarly
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when the proband is a child. In design I, we include all non-probands data in analysis, whereas
we only include alive non-probands data in design II. In this simulation, we consider both
types of auxiliary data: the registry data with follow-up and the current status survey data.
The registry follow-up data including probands are assumed to be collected until July 1, 2010
with the record of death post disease. For the current status survey data with the survey size
n2 = 1000, we generate the date of birth from the uniform distribution (1930, 1980) and set the
sampling date as July 1, 2000. Here, the augmented pairwise estimations are carried out and
the results are reported in Table 1. We also compare the performance of the estimators from
the proposed model to those based on a clustered failure time model using a Clayton copula in
which the risk of death is not considered.

For the proposed methods in two designs, the biases are negligible, the empirical standard
errors (ESE) are in a good agreement with the average standard errors (ASE), and the empirical
coverage probability (ECP) of nominal 95% confidence intervals are all within an acceptable
range. The estimators under the full likelihood have smaller ASE compared to the pairwise
likelihood with the registry data; however, the current status auxiliary data improve efficiency
so that the estimators obtained by the pairwise likelihood are as efficient as those by the full
likelihood. Since the current status auxiliary data have no time to death data, the efficiency
of ν is not improved. Comparing design I and II, the estimators have better efficiency under
design I. Also, the estimators λ1 and τ under design II are as nearly as efficient as those under
design I with current status data. We find that the bias of λ1 is present if we do not adjust
the condition of being alive in biased sampling. Since we assume the independent competing
risks, the dependence parameter τ shows small bias compared to λ1 which may be induced by
the biased estimates of λ1. The standard errors of all estimators are very close between two
models. The relative mean square error (RMSE) is defined as the ratio of the MSE for the
estimator from the clustered failure time model to that of the proposed model. This RMSE
is greater than 1 for all estimators under all parameter settings indicating that when the true
disease process is actually a clustered illness-death process there is a price to pay in terms of
bias and MSE when a clustered failure time model is used which does not account for the risk
of death.

5 Assessment of Genetic Risk Factors

If familial aggregation is identified by the proposed model in Sections 2 and 3, interest may lie
in the effect of genetic factors on disease onset to explain familial aggregation. However, if some
individuals in the study are not genotyped, incomplete genetic data must be dealt with. For
example, in design I, we may obtain the disease history for non-probands who died but cannot
sample their DNA. Also, the national current status survey data do not provide the genetic
information. Chatterjee et al. (2006) proposed an analysis for a kin-cohort case-control and
case-only family data with genotype and phenotype. Gong et al. (2010) categorized two family
designs: the population and the clinic designs and present the simulation studies to examine the
performance of phenotype-/genotype-based methods. Zhang et al. (2010) suggested statistical
methods in estimating age-dependent penetrance under a case-family design.

In this section, we accommodate genetic data in our model but deal with missing genetic
information. We let Gij denote the genotype (gene carrier indicator), which is tentatively
related to disease with P (Gij = 0) = q2, P (Gij = 1) = p2 + 2pq with the allele frequency p and
q = 1 − p for individual j in family i and Gi = (Gi0, . . . , Gimi

)′. We denote Wij = (V ′
ij, Gij)

′

a vector of covariates and genotypes and Wi = (V ′
i ,G

′
i)
′. The transition intensities, then, are

written as λl(t, a|bij, wij) for l = 1, 2, 3 where vij is replaced with wij. The joint probability
of disease onset also needs to replace Vi with Wi but the cross-ratio or cause-specific hazard
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ratio under the Clayton copula remains the same as θ. We make the following additional
assumptions: (i) The process is in Hardy-Weinberg equilibrium and the Mendelian law holds,
(ii) Gij ⊥ Vij, (iii) Z̄ij(s)|Gij ⊥ Gik ∀s for j ̸= k, (iv) λ1(t, a|bij, wij) = λ1(a) exp(gijα + v′ijβ1),
and (v) λ2(t, a|bij, wij) = λ2(t, a|bij, vij) and λ3(t, a|bij, wij) = λ3(t, a|bij).

5.1 Composite Likelihood with Incomplete Genetic Data

Here, we focus on the augmented pairwise conditional likelihood in Section 3. First, we consider
design II with two sources of auxiliary data: (i) the family study data and the registry data
and (ii) the family study data, the registry data, and current status data from the survey. In
the former case, all individuals are genotyped in the family study and the registry since they
are all examined, so we can assume that the genotypes are given and the pairwise composite
likelihood does not change the form of likelihood which has the genotype variable as a covariate.
However, the genotype data are not available in the survey, so in the latter setting, we need to
model Gij. The contribution of the proband to the likelihood is then

Li0(ϕ) = P (Z̄i0(Ai0), Gi0|Zi0(Ci0) = 1, Ci0, Bi0, Vi0;ϕ)

=
P (Z̄i0(Ai0)|Gi0, Ci0, Bi0, Vi0;ϕ)P (Gi0)∑

g∈(0,1)
P (Zi0(Ci0) = 1|Ci0, Bi0, Gi0 = g, Vi0;ϕ)P (Gi0 = g)

, (12)

where we select the proband based only on phenotype (disease status) at Ri0. Then the con-
tribution from the non-probands LII

i (ψ) is

LII
ijl(ψ) = P (Z̄−

ijl(A
−
ijl),G

−
ijl|Z̄i0(Ai0), Zi0(Ai0) = 1, Gi0,Z

−
ijl(A

−
ijl) ∈ {0, 1}2,Aijl,Bijl,Vijl;ψ)

=
P (Z̄−

ijl(A
−
ijl)|Z̄i0(Ai0), Zi0(Ai0) = 1,Gijl,Aijl,Bijl,Vijl;ψ)P (G

−
ijl|Gi0)∑

g∈{0,1}2
P (Z−

ijl(A
−
ijl) ∈ {0, 1}2|Z̄i0(Ai0), Zi0(Ai0) = 1, Gi0,G

−
ijl = g,Aijl,Bijl,Vijl;ψ)P (G

−
ijl = g|Gi0)

,

where Gijl = (Gi0, Gij, Gil)
′ and P (G−

ijl|Gi0) can be calculated using the allele frequency f and
family structure; see Appendix B of Supplementary Material available at Biostatistics online.
For the auxiliary data, we let Gi denote the genotype of individual i in A1 or A2 in Section 3.
The likelihood terms based on the auxiliary data AL1 and AL2 are then given as

AL1 ∝
∏
i∈A1

P (Z̄i(A
∗
i ), Gi|Zi(Ci) = 1, Ci, Bi, Vi),

and

AL2 ∝
∏
i∈A2

∏
h∈{0,1}

{∑
g

P (Zi(Ci) = h|Zi(Ci) ∈ {0, 1}, Bi, Gi = g, Vi)

× P (Gi = g|Zi(Ci) ∈ {0, 1}, Bi, Vi)

}I(Zi(Ci)=h)

where

P (Gi = g|Zi(Ci), Bi, Vi) =
P (Zi(Ci)|Gi = g,Bi, Vi)P (Gi = g)∑

g∈{0,1}
P (Zi(Ci)|Gi = g,Bi, Vi)P (Gi = g)

.

Secondly, we only observe the genotype of non-probands who are alive in design I, and
non-probands who did not survive to Ri are not genotyped. In this case

LI
ijl(ψ) = P (Z̄−

ijl(A
−
ijl),G

−
ijl,o|Z̄i0(Ai0), Zi0(Ai0) = 1, Gi0,Aijl,Bijl,Vijl;ψ)

=
∑

Gijl,m

P (Z̄−
ijl(A

−
ijl)|Z̄i0(Ai0), Zi0(Ai0) = 1,Gijl,Aijl,Bijl,Vijl;ψ)P (G

−
ijl|Gi0)
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where Gijl,o is a vector of observed genotype in family i for the pair of family member j and l
with the proband genotype on the first component, Gijl,m is a vector of missing genotypes for
the family member j and l in family i, and Gijl = (G′

ijl,o,G
′
ijl,m)

′.

5.2 Simulation Studies with Genetic Data are Incomplete

We conducted further simulation studies to assess performance of the proposed model with
genetic risk factors. We considered a binary indicator Gij with the allele frequency p = 0.06
with a hazard ratio of exp(α) = 1.5; we do not consider additional covariates for simplicity and
otherwise adopt the same simulation settings as in Section 4.

We first generate the genotype for family members based on the family structure under the
Mendelian law and given the genotype we generate family members’ lifetime paths based on
the proposed model. The selection criteria remains the same as in Section 4. The empirical
properties of the estimators for the parameters based on design I and II are reported in Table
2 and 3, respectively.

Table 2: Frequency properties of estimators based on the augmented pairwise likelihood for
family data with genotype information given λ3(·, ·) under biased sampling scheme for the
proband and disease history of non-probands available (design I) with two auxiliary data: the
registry follow-up data and the current status survey data; Clayton copula with Kendall’s
τ=0.2, 0.4; nF = 1000, n1 = 2000, n2 = 1000, and nsim = 1000

Registry Data Registry + Current Status Data

τ PARAMETER EBIAS ESE ASE ECP EBIAS ESE ASE ECP

0.2 log λ1 0.002 0.057 0.059 0.952 -0.000 0.041 0.040 0.954
α -0.003 0.064 0.064 0.948 -0.002 0.064 0.064 0.947

log ν -0.001 0.037 0.037 0.956 -0.001 0.037 0.037 0.957
log p 0.002 0.055 0.056 0.947 0.002 0.055 0.055 0.947
τ -0.000 0.028 0.029 0.963 0.001 0.023 0.023 0.953

0.4 log λ1 0.002 0.076 0.078 0.950 0.000 0.045 0.044 0.952
α -0.002 0.057 0.058 0.948 -0.002 0.058 0.058 0.945

log ν -0.001 0.035 0.036 0.952 -0.001 0.035 0.036 0.946
log p 0.002 0.053 0.054 0.946 -0.003 0.053 0.053 0.947
τ -0.001 0.032 0.033 0.953 -0.000 0.022 0.022 0.949

Here we can observe the same findings pointed out in Section 5. The current status survey
data do not affect the efficiency α and p because the genetic marker is not available in the
survey, however, they increase the efficiency of λ1 and Kendall’s τ in design I. This highlights
the value of the current status data when disease onset times are right-truncated even for the
dependence parameter. In design II, the current status data improve efficiency of each estimator
except the one for ν. It is therefore advantageous for score tests, in particular, when interest
lies in testing genetic effects on disease onset as it may increase the power of such tests.

6 Application to the Psoriatic Arthritis Family Study

Psoriasis is an inflammatory skin disease occurring about 2-3% of the general population and
PsA(Psoriatic Arthrists) is an inflammatory arthritis disease affecting about 30% of patients
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Table 3: Frequency properties of estimators based on the augmented pairwise likelihood for
family data with genotype information given λ3(·, ·) under biased sampling scheme for the
proband and alive non-probands data available (design II) with two auxiliary data: the registry
follow-up data and the current status survey data; Clayton copula with Kendall’s τ=0.2, 0.4;
nF = 1000, n1 = 2000, n2 = 1000, and nsim = 1000

Registry Data Registry + Current Status Data

τ PARAMETER EBIAS ESE ASE ECP EBIAS ESE ASE ECP

0.2 log λ1 0.001 0.061 0.064 0.951 -0.000 0.042 0.042 0.941
α -0.003 0.070 0.071 0.953 -0.003 0.065 0.065 0.949

log ν -0.001 0.047 0.046 0.951 -0.001 0.046 0.046 0.949
log p - - - - 0.002 0.055 0.055 0.949
τ 0.000 0.030 0.032 0.956 0.001 0.024 0.024 0.952

0.4 log λ1 0.004 0.081 0.082 0.955 0.001 0.046 0.045 0.951
α -0.001 0.063 0.062 0.949 -0.002 0.059 0.058 0.948

log ν -0.002 0.047 0.046 0.948 -0.002 0.046 0.046 0.950
log p - - - - 0.002 0.053 0.053 0.942
τ -0.001 0.035 0.035 0.949 0.001 0.023 0.023 0.941

with psoriasis (Gladman, 1991; Langley et al., 2005; Eder et al., 2012). Patients with PsA are
at higher risk for death compared to the general population of Ontario with a standardized
mortality ratio of 1.36 (Gladman, 2008). Many studies showed that psoriasis is a heritable dis-
ease; Pedersen et al. (2008) reported an increased concordance measure in monozygotic relative
to dizygotic twins and Chandran et al. (2009) confirmed a high familial recurrence risk of PsA
based on family studies as shown in Moll and Wright (1973). To obtain a better sense of hered-
ity, Gladman and Farewell (1995); Pedersen et al. (2008); Chandran and Raychaudhuri (2010);
Eder et al. (2012) identified genes related to psoriasis and PsA and explored environmental
factors which increase the risk of PsA. We consider the Human Leucocyte Antigens (HLA)-
B27, and HLA-C06 by the findings of the genetic etiology of psoriasis and psoriatic arthritis in
the literature.

We consider data from the Centre for Prognosis Studies in Rheumatic Disease at the Uni-
versity of Toronto which recruited University of Toronto Psoriatic Arthritis Registry and among
1436 individuals from the registry, 150 were selected for family studies as probands. In this
family studies, family members were recruited to conduct a thorough examination including
genotype information, therefore, this study design belongs to the biased sampling scheme de-
sign II. To simplify the analysis, we generate a number of 167 pseudo-families from the original
150 families where two-generation families are considered with the non-missing date of birth
and genotype information and we use this pseudo-family data. In the pseudo-family data, the
family sizes range from 2 to 7 individuals; 55 families have 2 family members (1 proband and
1 non-proband), and 112 families have at least three members. One hundred and ninety-two
individuals were diagnosed with PsA among a total of 530 individuals. One hundred and forty-
four families have one member with PsA (i.e. proband), 21 families having two members with
PsA, and 2 families with three PsA patients in their family.

As a source of auxiliary data, we use the survey of US population in which Gelfand et al.
(2005a) reported the prevalence of psoriatic arthritis in 2001. In this survey, subjects 18 years of
age or older were randomly selected and provided the status of psoriasis and psoriatic arthritis;
328 have psoriatic arthritis among 15,307 respondents.
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We begin with the model not using the genotype information. We fit a marginal model
for the age at PsA onset with piecewise constant hazards with cut-points 28, 38 and 48 cor-
responding to 25%, 50% and 75% quantiles of the onset age of PsA in the registry data and
assume λ2(t, a) = λ3(t, a)ν. In the registry data, individuals with missing genotype are dealt
with similarly in the survey data. Table 4 summarizes the estimates of fitted model without
genetic variable in the first column followed by two univariate models with genotype HLA-B27,
and HLA-C06 variables including the allele frequency p for each genetic markers.

Table 4: Estimates of parameters based on the augmented pairwise likelihood; auxiliary data
include the UTPAR and the survey from Gelfand et al. (2005a) without/with genotype variable
under the piecewise constant marginal model for age at PsA onset with cut-points 28, 38 and
48

MARKER αmarker ν τ pmarker

- - 1.201 (0.081) 0.329 (0.094) -
B27 0.336 (0.054) 1.199 (0.081) 0.326 (0.095) 0.065 (0.013)
C06 -0.214 (0.033) 1.199 (0.081) 0.321 (0.094) 0.169 (0.023)

First, based on the model without genetic markers, we find that ν̂ = 1.201 indicating that
the ratio of the hazard of death post PsA to PsA-free death is 1.201, which is lower than
the reported value in Gladman (2008). As expected, PsA is not lethal while it increases the
risk of death. The estimate of dependence parameter is τ̂ = 0.329 (95% CI: 0.145, 0.513;
p< 0.001) which indicates significant association between family members. We find that HLA-
B27 positive and HLA-C06 positive have insignificant effect on the risk of PsA. The allele
frequency of HLA-B27 is 0.065, which is compatible with the value of 0.061 from the national
USA prevalence of HLA-B27 (Reveille et al., 2012). HLA-C06 has the allele frequency 0.169
which is more prevalent that HLA-B27. After adjusted significant genetic marker HLA-B27,
and HLA-C06, Kendall’s τ̂ decreases to 0.326 (95% CI: 0.140, 0.512; p=0.001), 0.321 (95% CI:
0.137, 0.505; p=0.001), respectively since HLA-B27 and HLA-C06 partially explain the residual
familial aggregation.

Figure 4 shows the cross-odds ratio defined in (4) for a sibling given other sibling born in
the same year 1930, 1940, 1950, 1960 (the left panel) and a child born in 1930, 1940, 1950,
1960 given a parent born in 1905, 1915, 1925, 1935 (the right panel), respectively. For the
sibling pairs, two siblings are governed by the same mortality rates belonging the same birth
cohort. The cross-odds ratio before 30 almost plateaus but showed a decreasing trend as they
age because the mortality rate increases. There is a drastic decrease in the cross-odds ratio as
age increases for the child-parent pairs compared to the sibling pairs. This difference arises due
to the higher mortality rates for parents; see Figure 3. Similar patterns of the cross-odds ratio
for different birth cohorts are observed, but the variation exists.

Figure 5 shows the marginal probability of death (states 2 and 3) and the cumulative
incidence function for the age of PsA defined in (5) for different birth cohorts at 1930, 1940,
1950, and 1960. We find that PsA itself is a rare disease with the low cumulative incidence
function.

7 Discussion

In this article, we have proposed an illness-death model for family studies which incorporates
within-family dependence in the age of disease onset via a copula model. The illness-death
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Figure 4: The cross-odds ratio for two siblings born in the same year 1930, 1940, 1950, 1960
(left panel) and a child born in 1930, 1940, 1950, or 1960 with a parent born in 1905, 1915,
1925, or 1935 (right panel) based on the fitted model with no effect of a genetic marker.

model offers a natural framework to consider survival bias and the Clayton copula models re-
tain simple interpretations of cross ratio/cause-specific cross ratio and marginal interpretations
of estimates of covariance. We explore two study designs for family studies with biased sam-
pling schemes and developed statistical methods for analysis. Pairwise composite likelihood is
utilized to ease the computational burden. We exploit auxiliary data to address identifiability
and estimability issues. Age- and calendar time-specific population mortality rates adequately
address the trend of mortality rates in family studies where more than two generations are
considered. We extend our model to study the effect of genetic markers on risk of disease in
which the availability of genotype data depends on the study design.

We restrict our attention to the case-only probands family studies. If case-control probands
are available, it would be useful to compare the robustness to misspecification of model as-
sumption (Chatterjee et al., 2006) and compare the efficiency with the case-only probands
family studies. It is natural to extend our model to allow for different dependence structures
in families using a more flexible Gaussian copula (Zhong and Cook, 2016; Lakhal-Chaieb et al.,
2018). As we have shown in the simulation studies in Sections 4 and 5.2, the use of auxiliary
data improves efficiency in estimating the marginal parameters related to disease onset and the
dependence parameter, so further exploration of the relative value of different types of auxiliary
data would be of interest as this would have bearing on the power of the design.

The assumption of independent competing failure times (i.e. Xij1 ⊥ Xij3) is not checkable
directly and is a limitation in any competing risks analysis based on models for cause-specific
hazards. A correlation between these potentially latent times may arise from omitted shared co-
variates, for example, so enriching the covariate vector to include factors that might, if omitted,
induce such a dependence may be advisable. Note, however, that this will lead to a marker ef-
fect with a different interpretation and will change the meaning of the measure of within-family
association in disease onset time. We examine sensitivity of parameter estimates to violations
of the independent competing risks assumption in a brief simulation study in Appendix C.1 of
Supplementary Material available at Biostatistics online. Here, we introduce a shared multi-
plicative gamma-distributed random effect which acts on the 0 → 1 and 0 → 3 intensities; we
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Figure 5: The marginal probability of death and the cumulative incidence of PsA by the year of
birth of 1930, 1940, 1950, or 1960 based on the fitted model with no effect of a genetic marker.

took this to have mean 1 and variance 0.2. The bias of estimator for τ is appreciable in all
settings considered, which is not unexpected since since omission of this random effect induces
dependence between Xij1 and Xij3, introduces an extra source of between-individual variation
in the intensities, and leads to model violations of the proportional mortality assumption for
1 → 2 and 0 → 3 transitions. We expect to report on a more thorough study of the impact of
dependent competing risks in this setting using a more flexible copula model in which separate
dependence parameters can be specified and sensitivity analyses may be carried out.We note
however, that there is an identifiability problem which prohibits modeling this dependence in
such a way that model assumptions can be checked. Finally in Appendix C.2 Supplementary
Material available at Biostatistics online, we also examined the sensitivity of our conclusions
in the psoriatic arthritis family study to the specification of the copula function and to the
proportional mortality assumption among diseased vs. disease-free individuals. There we show
results based on the Frank copula function as well as the Clayton copula function, and note
that apart from the estimate of Kendall’s τ the parameters appeared similar for the two copula
models. To be more flexible, we also allow ν(a) to be piecewise functions in our application and
found that the effects of the HLA markers were again quite comparable in the fitted models.

We assume that the subject-specific disease-free mortality rate does not depend on covari-
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ates, which is the same as age-, time-specific population mortality. This is our limitation since
we do not have available data at hand to explore the effect of any covariates on the disease-free
mortality from the University of Toronto Arthritis Registry due to the sampling scheme for this
cohort. It may be useful to adopt age-, time-, and gender-specific population mortality rates.

In our motivating example, we formed the pseudo-families comprised of at most two gen-
erations since calculation of the joint distribution of alleles for multi-generational families is
computationally complex. More formal treatment of multi-generational family studies may help
to disentangle genetic effects from the effect of shared family environment in family studies;
extensions of this sort warrant development.

PsA occurs in 10-20% of patients with psoriasis and the genetic marker HLA-C06 mostly
contributes to develop psoriasis (Queiro et al., 2015). As an extension of our application, to
distinguish the genetic risk factors for psoriasis with those for PsA, we may introduce the state
of psoriasis in our analysis. Another extension would be to use multiple allele in our analysis.
This leads to computational burden due to the summation of all possible combination of genetic
markers for missing genotypes.We may use other sources of population studies to calculate the
allele frequency, and we may exploit this value to assume that the allele frequency p is known
in our proposed model. This will reduce the number of parameters to be estimated.

Code used for the data generation and analysis is available for download at https://github.
com/joolee0918/clusteridm.

Supplementary Material

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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APPENDIX

A An illustrative Construction of the Composite Likelihood

Here we illustrate how to construct the composite conditional likelihood given in Section 3. We

consider a particular family consisting of two parents and one proband from the family study

of the Centre for Prognosis Studies in Rheumatic Disease at the University of Toronto. In what

follows we omit the subscript i labeling the family and suppress the dependence on covariates

for simplicity. The details of this family are as follows:

� the family was recruited in 2007;

� the father was born on May 30, 1929 and was alive, aged 77.59 years, and PsA-free at the

point the family was recruited;

� the mother was born on July 21, 1934 and was alive and aged 72.45 years at the point the

family was recruited, and she developed PsA at age 65;

� the proband was born on June 7, 1955 and developed PsA at age 37; the date of their

first clinic visit was July 30, 2001 when they were 46.08 years of age; they were 51.57 years

of age when the family was recruited to the family study.

The likelihood contribution (8) of the proband can written as

P (Z̄0(A0)|Z0(C0) = 1, C0, B0;ϕ) =
P (Z̄0(A0), B0;ϕ)

P (Z0(C0) = 1, C0, B0;ϕ)
, (A.1)



The illness-death model for family studies: Supplementary material 2

with A0 = 51.57, C0 = 46.08, and B0 = 1955.43. Then, numerator of (A.1) is

P (Z̄0(A0), B0;ϕ) = P (X01 = 37, X03 > 37, X02 > 51.57, B0 = 1955.43;ϕ)

= λ1(37) exp

(
−
∫ 37

0

λ1(s)ds

)
exp

(
−
∫ 37

0

λ3(1955.43 + s, s)ds

)
× exp

(
−
∫ 51.57

37

λ2(1955.43 + s, s)ds

)
,

and the denominator of (A.1) is given as

P (Z0(C0) = 1, C0, B0;ϕ) = P (X01 < 46.08, X03 > X01, X02 > 46.08, B0 = 1955.43;ϕ)

=

∫ 46.08

0

λ1(s) exp(−
∫ s

0

λ1(u)du) exp(−
∫ s

0

λ3(1955.43 + u, u)du)

× exp(−
∫ 46.08

s

λ2(1955.43 + u, u)du)ds. (A.2)

Note that the data in the motivating example were obtained by design II. We denote the father

with subscript j = 1 and the mother with subscript j = 2. The contribution to the augmented

composite likelihood can then be written as

LII
23(ψ) =

P (Z̄−
12(A

−
12))|Z̄0(A0), Z0(A0) = 1,A12,B12;ψ)

P (Z−
12(A

−
12) ∈ {0, 1}2|Z̄0(A0), Z0(A0) = 1,A12,B12;ψ)

,

where A12 = (51.57, 77.59, 72.45)′,B12 = (1955.43, 1929.41, 1934.55)′, the numerator is given

as

P (X21 > 77.59, X23 > 77.59, X31 = 65, X32 > 72.45, X33 > 65|X01 = 37, X02 > 51.57, X03 > 37;ψ),

and the denominator is given as

P (Z−
12(A

−
12) ∈ {0, 0}|Z̄0(A0), Z0(A0) = 1,A12,B12;ψ) + P (Z−

12(A
−
12) ∈ {0, 1}|Z̄0(A0), Z0(A0) = 1,

A12,B12;ψ) + P (Z−
12(A

−
12) ∈ {1, 0}|Z̄0(A0), Z0(A0) = 1,A12,B12;ψ) + P (Z−

12(A
−
12) ∈ {1, 1}|

Z̄0(A0), Z0(A0) = 1,A12,B12;ψ). (A.3)

The first term in (A.3) is

P (X21 > 77.59, X23 > 77.59, X31 > 72.45, X33 > 72.45|X01 = 37, X02 > 51.57, X03 > 37;ψ)

= C(F(77.59|X01 = 37;ϕ1, ρ),F(72.45|X01 = 37;ϕ1, ρ); ρ
∗) exp

(
−
∫ 77.59

0

λ3(1929.41 + v, v)dv

)
× exp

(
−
∫ 72.45

0

λ3(1934.55 + v, v)dv

)
,
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the second term in (A.3) is

P (X21 < 77.59, X23 > X21, X22 > 77.59, X31 > 72.45, X33 > 72.45|X01 = 37, X02 > 51.57, X03 > 37;ψ)

=

∫ 77.59

0

∂C(F(u|X01 = 37;ϕ1, ρ),F(72.45|X01 = 37;ϕ1, ρ); ρ
∗)

∂u

∣∣∣∣
u=s

exp

(
−
∫ s

0

λ3(1929.41 + v, v)dv

)
× exp

(
−
∫ 77.59

s

λ2(1929.41 + v, v)dv

)
ds exp

(
−
∫ 72.45

0

λ3(1934.55 + v, v)dv

)
,

and the third term in (A.3) is P (X21 > 77.59, X23 > 77.59, X31 < 72.45, X33 > X31, X32 >

72.45|X01 = 37, X02 > 51.57, X03 > 37;ψ) which is obtained in a fashion similar to the second

term. The last term in (A.3), P (X21 < 77.59, X23 > X21, X22 > 77.59, X31 < 72.45, X33 >

X31, X32 > 72.45|X01 = 37, X02 > 51.57, X03 > 37;ψ), is calculated as∫ 72.45

0

∫ 77.59

0

∂2C(F(u|X01 = 37;ϕ1, ρ),F(w|X01 = 37;ϕ1, ρ); ρ
∗)

∂u∂w

∣∣∣∣
u=s,w=y

× exp

(
−
∫ s

0

λ3(1929.41 + v, v)dv

)
exp

(
−
∫ 77.59

s

λ2(1929.41 + v, v)dv

)
× exp

(
−
∫ y

0

λ3(1934.55 + v, v)dv

)
exp

(
−
∫ 72.45

y

λ2(1934.55 + v, v)dv

)
dsdy.

The follow-up date is available for the proband as they are in the registry. In the above example,

the likelihood contribution is therefore

P (Z̄0(A
∗
0)|Z0(C0) = 1, C0, B0;ϕ) =

P (Z̄0(A
∗
0), B0;ϕ)

P (Z0(C0) = 1, C0, B0;ϕ)
, (A.4)

with A∗
0 = 61.74. The numerator of (A.4) is then given as

P (Z̄0(A
∗
0), B0;ϕ) = P (X01 = 37, X03 > X01, X02 > 61.74, B0 = 1955.43;ϕ)

= λ1(37) exp

(
−
∫ 37

0

λ1(s)ds

)
exp

(
−
∫ 37

0

λ3(1955.43 + s, s)ds

)
exp

(
−
∫ 61.74

37

λ2(1955.43 + s, s)ds

)
,

and the denominator of (A.4) has the same form as (A.2). From the cross-sectional survey, we

consider an individual who developed the disease by the age at contact for survey, denoted Ci.

The likelihood contribution is

P (Zi(Ci) = 1|Zi(Ci) ∈ {0, 1}, Bi) =
P (Zi(Ci) = 1, Bi;ϕ)

P (Zi(Ci) = 0;ϕ) + P (Zi(Ci) = 1;ϕ)

where

P (Zi(Ci) = 0, Bi;ϕ) = exp

(
−
∫ Ci

0

λ1(u)du

)
exp

(
−
∫ Ci

0

λ3(Bi + u, u)du

)
,
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and

P (Zi(Ci) = 1, Bi;ϕ) =

∫ Ci

0

λ1(s) exp

(
−
∫ s

0

λ1(u)du

)
exp

(
−
∫ s

0

λ3(Bi + u, u)du

)
× exp

(
−
∫ Ci

s

λ2(Bi + u, u)du

)
ds.

We use numerical integration based on Gaussian-Quadrature with 20 nodes to evaluate the

integrals.

B Calculation of P (Gijl)

Recall Gijl = (Gi0, Gij, Gil)
′ is a vector of genetic markers for the proband and members j and

l of family i; for families with two members we let Gij = (Gi0, Gij)
′. We can calculate P (Gijl)

based on the assumption that the process is in Hardy-Weinberg equilibrium and following

Mendel’s law, with a risk allele frequency p (Elandt-Johnson, 1971). In Table B.1 we consider

the possible relationships between two or three members of a family and use Gp and Gc to

denote the genotype of a parent or child respectively. If there are two parents we use Gp1 and

Gp2 to distinguish them and if there are two children we use Gc1 and Gc2 respectively. The

combination of binary markers within a pair (top half of Table B.1) or triple (bottom half of

Table B.1) are given in the left column while the probabilities for a given set of relationships

are given in the different columns.

C Sensitivity Analyses for the PsA Family Study

C.1 Sensitivity to the Assumption of Independent Competing Risks

In Section 2, we adopted the conventional assumption of independent competing risks when

modeling cause-specific hazards for the disease onset time and disease-free mortality at the in-

dividual level. Here we report on a small simulation study conducted to examine the sensitivity

of the finding regarding the within-family association in disease onset times to violations of the

independent competing risks assumption (i.e. to violations of the assumption thatXij1 andXij3

are independent). We adopt the same setting as in Section 4 of the manuscript but introduce

a random effect uij, j = 0, . . . ,mi which acts multiplicatively on the conditional cause-specific

hazards for individual j in family i via

λ1(t, a|bij, uij) = uijλ1(a) and λ3(t, a|bij, uij) = uijλ3(t, a|bij) .

When generating the data we take Uij to be gamma distributed with mean 1 and variance 0.2,

but we omit it from the analysis which was conducted as described in Section 4. Omission of

this random effect will mimic the effect of omitting a shared covariate acting on the respective

cause-specific hazards, which induces a dependence between Xij1 and Xij3. This random effect
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Table B.1: The joint model for the genetic markers for two (top) or three (bottom) family
members according to their relationships

Joint distribution of alleles for different types of pairs of family members

G P (Gp, Gp) P (Gp, Gc) P (Gc, Gc)

1 1 (1− q2)2 p2q + p 1
4
p2(1 + p)2 + pq(2p+ 1)

1 0 (1− q2)q2 pq2 1
4
p2q2 + 1

2
pq2(1 + q)

0 1 (1− q2)q2 pq2 1
4
p2q2 + 1

2
pq2(1 + q)

0 0 q4 q3 1
4
q2(1 + q)2

Joint distribution of alleles for different types of triples of family members

G P (Gp1 , Gp2 , Gc) P (Gp, Gc1 , Gc2) P (Gc1 , Gc2 , Gc3)

1 1 1 p2(1 + 2q) 1
4
p2(1 + p)(5− 3p) + 1

2
pq(p+ pq + 1) 1

16
p2(1 + 3p)(7− 3p) + 1

4
pq(6p+ 3pq + 2)

1 1 0 p2q2 1
4
p2q2 + 1

2
pq2 5

16
p2q2 + 1

4
pq2(1 + q)

1 0 1 pq2 1
4
p2q2 + 1

2
pq2 5

16
p2q2 + 1

4
pq2(1 + q)

1 0 0 pq3 1
4
pq2(1 + q) 1

16
p2q2 + 1

8
pq2(1 + 3q)

0 1 1 pq2 1
2
pq2(1 + p) 5

16
p2q2 + 1

4
pq2(1 + q)

0 1 0 pq3 1
2
pq3 1

16
p2q2 + 1

8
pq2(1 + 3q)

0 0 1 0 1
2
pq3 1

16
p2q2 + 1

8
pq2(1 + 3q)

0 0 0 q4 1
2
q3(1 + q) 1

16
q2(1 + 3q)2

also introduces another component of variation which we anticipate will create problems when

estimating the within-family dependence parameter indexing the copula (i.e. τ). Finally this

will lead to a violation of the assumption of proportional mortality rates (i.e. the disease-free

and post-disease mortality rates). While we change the nature of the data generation, we

adopt the same model as before and report the empirical properties of the resultant estimates

in Table C.1.

We find that bias in the estimates of τ can be substantial and in particular that this mis-

specification leads to an underestimation of the dependence among the disease onset within

families; this bias becomes larger with larger values of τ . Bias in estimation of λ01 is also

apparent. Inclusion of current status data through the use of the augmented composite likeli-

hood accentuates the bias of λ01 when τ = 0.2. The bias in ν is likewise greater for design II

compared to design I.

In summary, as is the case with any models based on cause-specific hazard functions, the

findings from the proposed analyses are sensitive to this type of violation of the independent

competing risks assumption. In the current setting, we focus on estimation of the dependence

parameter of the copula function which is conservatively biased in the settings considered,
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implying that one could under-estimate the extent of familial aggregation. We expect to report

on further research exploring the use of different dependence models for Xij1 and Xij3 in a

future manuscript; these may involve use of a more highly parameterized and higher dimensional

copula function accommodating different types of dependence.

Table C.1: Results of a simulation study exploring the sensitivity of the proposed model
to violations of the independent competing risks assumption arising from a shared gamma
distributed random effect with mean one and variance 0.20; design I and II are considered with
auxiliary registry data alone and in combination with current status survey data; a Clayton
copula is used with Kendall’s τ=0.2, 0.4; nF = 1000, n1 = 2000, n2 = 1000, and nsim = 1000

Registry Data Registry + Current Status Data

Design τ PARAMETER EBIAS ESE ASE ECP EBIAS ESE ASE ECP

I 0.2 log λ1 -0.003 0.057 0.054 0.934 -0.038 0.041 0.041 0.841
log ν -0.004 0.038 0.039 0.945 -0.003 0.038 0.039 0.945
τ -0.050 0.027 0.028 0.517 -0.033 0.023 0.023 0.716

0.4 log λ1 0.059 0.070 0.068 0.826 -0.023 0.045 0.045 0.933
log ν -0.001 0.038 0.037 0.943 -0.001 0.038 0.037 0.942
τ -0.098 0.031 0.031 0.132 -0.062 0.023 0.023 0.243

II 0.2 log λ1 -0.005 0.063 0.058 0.932 -0.039 0.042 0.042 0.862
log ν 0.016 0.047 0.047 0.944 0.014 0.046 0.047 0.947
τ -0.054 0.029 0.029 0.525 -0.038 0.024 0.023 0.627

0.4 log λ1 0.056 0.072 0.071 0.852 -0.022 0.047 0.046 0.928
log ν 0.021 0.047 0.048 0.933 0.016 0.046 0.047 0.942
τ -0.105 0.033 0.033 0.135 -0.070 0.024 0.024 0.174

C.2 The proportional mortality assumption among those diseased vs. disease-

free

To address the assumptions of proportional mortality and the choice of copula functions, we now

perform additional sensitivity analyses in the psoriatic arthritis family study. Specifically we

use a Clayton copula function and a Frank copula function and specify a piecewise proportional

hazards model relating the post-disease vs. disease-free. The cut points are set at 60 and 70

years of age to ensure roughly one third of the post-disease deaths occurred in each interval.

Thus in (1), we let ν(a) = νj for aj=1 ≤ νj < aj, j = 1, 2, 3, where a0 = 0, a1 = 60, a2 = 70,

and a3 = ∞. The results are reported in Table C.2

We find a substantial increase in the mortality among younger individuals with disease

compared to those disease-free, but the relative mortality decreases as individuals enter the

older age intervals. The estimate of Kendall’s τ appears relatively insensitive to the proportional

mortality assumption since the estimate is quite close to the estimate reported in Section 6 for

the Clayton copula.

When the Frank copula function is used, a smaller value of Kendall’s tau is obtained com-

pared to the Clayton copula function. This may be due to the fact that unlike the Frank
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copula, the Clayton copula is asymmetric in that there is a greater dependence in the negative

tail than in the positive tail. However, all parameter estimates apart from Kendall’s τ are quite

similar for the fitted model with the Clayton copula function. Importantly, the estimates of the

effect of the HLA markers B27 and C06 appear relatively robust to the proportional mortality

assumption and the copula function.

Table C.2: Sensitivity analysis of the proposed model to violations of proportional mortality
assumption for post-disease death and a Clayton copula function. Parameter estimates are
based on the augmented pairwise likelihood; auxiliary data include the University of Toronto
Psoriatic Arthritis Registry and data from the national survey by Gelfand et al. (2005) with-
out/with genotype data under the piecewise constant marginal model for the age at PsA onset
with cut points 28, 38 and 48 years of age; a piecewise proportional hazards model was adopted
for post- disease death (compared to disease-free death) with cut-points at 60 and 70 years of
age; models based on Clayton and Frank copula functions fitted.

MARKER αmarker ν1 ν2 ν3 τ pmarker

Clayton copula

- - 1.542 (0.215) 1.374 (0.176) 1.053 (0.094) 0.331 (0.094) -
B27 0.336 (0.233) 1.537 (0.215) 1.368 (0.175) 1.054 (0.094) 0.328 (0.095) 0.065 (0.013)
C06 -0.214 (0.181) 1.537 (0.215) 1.368 (0.175) 1.054 (0.094) 0.323 (0.094) 0.169 (0.023)

Frank copula

- - 1.542 (0.216) 1.374 (0.176) 1.053 (0.094) 0.178 (0.060) -
B27 0.343 (0.236) 1.537 (0.215) 1.368 (0.175) 1.054 (0.094) 0.177 (0.061) 0.065 (0.013)
C06 -0.215 (0.181) 1.537 (0.215) 1.368 (0.175) 1.054 (0.094) 0.173 (0.060) 0.169 (0.023)
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