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Abstract

In 1994, Thomassen famously proved that every planar graph is 5-choosable, resolving
a conjecture initially posed by Vizing and, independently, Erdős, Rubin, and Taylor in
the 1970s. Later, Thomassen proved that every planar graph of girth at least five is 3-
choosable. In this thesis, we introduce the concept of a local girth list assignment : a list
assignment wherein the list size of a vertex depends not on the girth of the graph, but
rather on the length of the shortest cycle in which the vertex is contained. We state and
prove a local list colouring theorem unifying the two theorems of Thomassen mentioned
above. In particular, we show that if G is a planar graph and L is a list assignment for G
such that |L(v)| ≥ 3 for all v ∈ V (G); |L(v)| ≥ 4 for every vertex v contained in a 4-cycle;
and |L(v)| ≥ 5 for every vertex v contained in a triangle, then G admits an L-colouring.

Next, we generalize a framework of list colouring results to correspondence colouring.
Correspondence colouring is a generalization of list colouring wherein we localize the mean-
ing of the colours available to each vertex. As pointed out by Dvořák and Postle, both of
Thomassen’s theorems on the 5-choosability of planar graphs and 3-choosability of planar
graphs of girth at least five carry over to the correspondence colouring setting. In this
thesis, we show that the family of graphs that are critical for 5-correspondence colouring
as well as the family of graphs of girth at least five that are critical for 3-correspondence
colouring form hyperbolic families. Analogous results for list colouring were shown by Pos-
tle and Thomas. Using results on hyperbolic families proved by Postle and Thomas, we
show further that this implies that locally planar graphs are 5-correspondence colourable;
and, using results of Dvořák and Kawarabayashi, that there exist linear-time algorithms for
the decidability of 5-correspondence colouring for embedded graphs. We show analogous
results for 3-correspondence colouring graphs of girth at least five.

Finally we show that, in general, slightly stronger hyperbolicity theorems imply that
the associated family of planar graphs have exponentially many colourings. The existence
of exponentially many colourings has been studied before for list-colouring: for instance,
Thomassen showed (without using hyperbolicity) that planar graphs have exponentially
many 5-list colourings, and that planar graphs of girth at least five have exponentially many
3-list colourings. Using our stronger hyperbolicity theorems, we prove that planar graphs of
girth at least five have exponentially many 3-correspondence colourings, and that planar
graphs have exponentially many 5-correspondence colourings. This latter result proves
a conjecture of Langhede and Thomassen. As correspondence colouring generalizes list
colouring, our theorems also provide new, independent proofs that there are exponentially
many 5-list colourings of planar graphs, and 3-list colourings of planar graphs of girth at
least five.

iv



Acknowledgements

Thank you first and foremost to my supervisor, Luke Postle, for all of the guidance
given during my time as a graduate student. I’ve learned a tremendous amount from you.
I’m especially grateful for all of your patience, your explanations, and all of the travel
opportunities you afforded me; I never dreamt I would get to travel so much as a grad
student.

Thank you also to Sophie Spirkl for the weekly check-ins and research meetings in my
last semester as a graduate student, and to Marthe Bonamy for hosting me on a delightful
research visit. Thank you to NSERC for helping fund my graduate studies. In addition,
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Chapter 1

Introduction

Section 1.1 introduces the basic terminology and notation that will be used throughout the
thesis. Readers familiar with graph theory basics may wish to skip Section 1.1, and refer
to it only when necessary. Section 1.2 introduces the main topics and results in the thesis,
and provides an overview of the history of the subjects and related results. Sections 1.3,
1.4, and 1.5 explore the ideas and challenges surrounding the proofs of the most important
results in Chapters 2, 3, and 4, respectively. Section 1.6 provides an outline of the rest of
the thesis.

1.1 Notation and Nomenclature

We begin by introducing basic terminology and notation used throughout the thesis. For
further information, the reader may wish to consult the standard textbook of Diestel [9];
the PhD thesis of Postle [32] for additional history and background on embedded graphs
not provided in this thesis; and the textbook of Thomassen and Mohar [30] for more
information on embedded graphs and surfaces.

A graph G is a set V (G) of objects called vertices together with a set E(G) of objects
called edges. An edge e ∈ E(G) is a subset of V (G) of size exactly two. We typically
represent vertices as points, and each edge as a line joining the two points it contains. For
simplicity, we use the notation uv (equivalently, vu) to denote the edge {u, v}. If there
exists an edge uv in a graph G, we say the vertices u and v are adjacent, and that they are
each incident to uv (and similarly that uv is incident to each of u and v). If two vertices
are adjacent, we say also that they are neighbours. The neighbourhood of a vertex is the
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set of vertices adjacent to that vertex. The degree of a vertex v is the number of edges
incident to v, and is denoted deg(v). We say two graphs G and H are isomorphic if there
exists a bijection f : V (G) → V (H) such that for every pair of vertices u, v ∈ V (G), we
have that f(u)f(v) ∈ E(H) if and only if uv ∈ E(G).

Given a non-negative integer k, a path of length k is a graph isomorphic to the graph
with vertex-set {v0, v1, · · · , vk} and edge-set {vivi+1 : i ∈ {0, · · · , k − 1}}. We denote the
path with vertex-set {v0, v1, · · · , vk} and edge-set {vivi+1 : i ∈ {0, · · · , k−1}} by v0v1 · · · vk,
and generalize this notation to other paths in the natural way: for instance, a path with
vertex-set {v, u, w} and edge-set {vu, vw} is denoted vuw. Given an integer k ≥ 3, a
cycle of length k is a graph isomorphic to the graph with vertex set {v0, v1, · · · , vk−1} and
edge-set {vivi+1 : i ∈ {0, · · · k− 1}} where the indices are taken modulo k. We denote this
cycle as v0v1 · · · vkv0, and generalize this notation to other cycles in the natural way: for
instance, the cycle with vertex-set {u, v, w} and edge-set {uv, vw,wu} is denoted uvwu.
A walk in a graph G is a sequence of alternating edges and vertices v0e1v1e2v3 · · · vk where
{v0, · · · , vk} ⊆ V (G); where {e1, . . . , ek} ⊆ E(G); and where for each i ∈ {1, 2, . . . , k}, we
have that ei = vi−1vi. A walk is closed if v0 = vk. The length of the walk is the number of
edges (not necessarily distinct) that appear in the walk.

We say a graph is connected if there exists a path between every pair of vertices.
Otherwise, it is disconnected. Given a graph G, a subgraph of G is a graph H with
V (H) ⊆ V (G), and with E(H) ⊆ E(G). A maximal connected subgraph is a component.
Given a graph G, a cutvertex of G is a vertex v in G whose removal increases the number
of components in the graph. We denote graph obtained by the removal of v as G − v or
G \ {v}. A graph is 2-connected if it is connected, contains at least three vertices, and
contains no cutvertices.

A surface is a connected, compact, 2-dimensional manifold. By the Classification The-
orem for surfaces, every surface can be obtained from the sphere by adding a handles and
b crosscaps for non-negative integers a and b. The precise definition of handle and crosscap
will not be required for this thesis; again, we encourage the reader to consult [32] and [30]
for further information. If a surface Σ is obtained from the sphere by adding a handles
and b crosscaps, the (Euler) genus of Σ is defined as 2a+ b. Given a surface Σ, an arc in
Σ is the image of a continuous injective function f : [0, 1] → Σ. A graph G is embedded
in Σ if the vertices in V (G) are distinct elements in Σ, the edges in E(G) are arcs in Σ,
and for each arc in E(G), its interior is disjoint from the other arcs in E(G) as well as
the vertices in V (G). An embedded graph is a pair (G,Σ), where Σ is a surface and G
is a graph embedded in Σ. A topological space X is arcwise connected if there exists an
arc between every two elements in S. An arcwise connected component of X is a maximal
arcwise connected subspace of X. Given an embedded graph (G,Σ), a face of G is an
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arcwise connected component of Σ−G. The boundary walk of a face is the shortest closed
walk (or, if the boundary of the face contains more than one component, the smallest set
of shortest closed walks) containing every vertex and edge in the boundary of the face.

1.2 Context and Main Results

All graphs considered in this thesis are simple and finite. A colouring of a graph G is a
function ϕ : V (G) → C that assigns to each vertex v of G a colour ϕ(v) ∈ C such that
for every edge uv ∈ E(G), ϕ(u) ̸= ϕ(v). If |C| ≤ k, ϕ is called a k-colouring ; and if G
has a k-colouring, we say it is k-colourable. The chromatic number of G is the minimum
number k such that G is k-colourable. We say a graph is planar if it can be embedded in
the plane such that no vertices overlap, and edges meet only at their endpoints. A plane
graph is a planar graph together with a fixed embedding in the plane. We refer the reader
to [30] and [32] for definitions not covered here.

In 1976, Appel and Haken [2, 3] proved the following result, settling a conjecture over
a century old. It is arguably the most famous theorem in the field of graph colouring.

Theorem 1.2.1 (Four Colour Theorem [2, 3]). Every planar graph is 4-colourable.

The Four Colour Theorem is of course tight: there exist planar graphs that are not
3-colourable (for instance K4, the complete graph on four vertices). However, in 1959
Grötzsch [21] showed that a stronger bound on the chromatic number of planar graphs is
obtained by forbidding the triangle as a subgraph.

Theorem 1.2.2 (Grötzsch’s Theorem [21]). Every triangle-free planar graph is 3-colourable.

This thesis further investigates the problem of colouring planar graphs: in particular,
of list colouring and correspondence colouring planar graphs.

List colouring is a generalization of colouring introduced in the late 1970s by Vizing
[46] and, independently, by Erdős, Rubin, and Taylor [17].

Definition 1.2.3. Given a graph G, a list assignment L for G is a function that assigns
to each v ∈ V (G) a list L(v) of colours. L is a k-list assignment if |L(v)| ≥ k for every
v ∈ V (G). An L-colouring of G is a colouring ϕ such that ϕ(v) ∈ L(v) for each vertex
v ∈ V (G). We say G is L-colourable if there exists an L-colouring of G, and that G is
k-choosable (or k-list-colourable) if G is L-colourable for every k-list assignment L for G.
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As compared to ordinary colouring, we think of a list assignment as localizing the pos-
sible images of the colouring function to each vertex: i.e., of localizing the available colours
for the vertices in the graph. This notion arises quite naturally in many graph colouring
proofs wherein we colour part of the graph, delete it, and later colour the remainder of the
graph without creating colour conflicts between the remaining and deleted vertices.

Correspondence colouring is a natural generalization of list colouring introduced by
Dvořák and Postle in 2018 [15]. It is defined as follows.

Definition 1.2.4. Let G be a graph. A k-correspondence assignment for G is a k-list
assignment L together with a function M that assigns to every edge e = uv ∈ E(G) a
partial matching Me between {u} × L(u) and {v} × L(v). An (L,M)-colouring of G is a
function φ that assigns to each vertex v ∈ V (G) a colour φ(v) ∈ L(v) such that for every
e = uv ∈ E(G), the vertices (u, φ(u)) and (v, φ(v)) are non-adjacent inMe. We say that G
is (L,M)-colourable if such a colouring exists, and that G is k-correspondence-colourable
if G is (L,M)-colourable for every k-correspondence assignment (L,M) for G.

A correspondence assignment can be thought of as a further localization of colour-
ing: just as list colouring localizes the notion of what colours are available at a vertex, a
correspondence assignment localizes the meaning of these colours.

The following notation will be useful in proving results about correspondence assign-
ments.

Definition 1.2.5. Given a graph G with correspondence assignment (L,M), if uv ∈ E(G)
and (u, d)(v, c) ∈ Muv we write d = u[v, c] and c = v[u, d]. We say d ∈ L(u) corresponds
to c ∈ L(v) and symmetrically c ∈ L(v) corresponds to d ∈ L(u). Given c ∈ L(v), if there
does not exist a colour d ∈ L(u) with (u, d)(v, c) ∈Muv, we write u[v, c] = ∅.

As correspondence colouring generalizes list colouring generalizes ordinary vertex colour-
ing, it is perhaps unsurprising that many theorems that hold for ordinary colouring do not
hold for list colouring; and similarly that many list colouring results do not hold for cor-
respondence colouring. We note a few important instances in which they differ: though
even cycles have list chromatic (and ordinary chromatic) number two, their correspondence
chromatic number is three. (In Figure 1.1, we demonstrate a 2-correspondence assignment
(L,M) for a 4-cycle G such that G does not admit an (L,M)-colouring.) In [4], Bernshteyn
and Kostochka give an example of a planar bipartite graph with correspondence chromatic
number four; and by a result of Alon and Tarsi [1], every planar bipartite graph has list
chromatic number at most three. Perhaps most relevant to this thesis: in 1993, Voigt [47]
showed that the Four Colour Theorem does not carry over directly to list colouring by
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constructing a planar graph that is not 4-choosable. However, Thomassen [40] showed in
1994 that lists of size five suffice, thus answering a conjecture posed by Vizing [46] and
Erdős, Rubin, and Taylor [17] in the 1970s.

Theorem 1.2.6 (Thomassen, [40]). Every planar graph is 5-choosable.

v4

v3

v2

v1

Mv1v4

Mv2v3

Mv1v2

Mv3v4

Figure 1.1: An illustration of a 4-cycle v1v2v3v4v1 together with a 2-correspondence (L,M)
for which the 4-cycle does not admit an (L,M)-colouring. Each oval represents a vertex
in the 4-cycle. The dots within these vertices represent the colours in vertices’ lists. The
edges between vertices correspond to the matchings in M .

In the paper in which they introduce correspondence colouring, Dvořák and Postle [15]
point out that Thomassen’s proof of the choosability result above also holds for correspon-
dence colouring.

Theorem 1.2.7 (Dvořák and Postle, [15]). Every planar graph is 5-correspondence-colourable.

A natural question to ask is the following: by ruling out certain substructures in planar
graphs, can we further restrict vertices’ list sizes and still obtain list or correspondence
colourings of the resulting class of graphs? For instance: what if we rule out certain short
cycles? As noted prior, this paradigm works for ordinary colouring: triangle-free planar
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graphs can be 3-coloured (Theorem 1.2.2). As we will explain below, something similar
holds for list and correspondence colouring. Recall that the girth of a graph G is the
minimum number k such that G contains a cycle of length k. Since planar graphs of girth
at least four (i.e. triangle-free planar graphs) are 3-degenerate1, a simple greedy argument
shows that they are 4-choosable (and indeed 4-correspondence-colourable). Voigt [48]
showed in 1995 that there are triangle-free planar graphs that are not 3-choosable: thus
Grötzsch’s Theorem does not carry over directly to list colouring. However, Thomassen
[41] showed in 1995 that if we also exclude 4-cycles, lists of size three suffice as follows.

Theorem 1.2.8 (Thomassen, [41]). Every planar graph of girth at least five is 3-choosable.

Theorem 1.2.8 carries over to correspondence colouring, as pointed out by Dvořák and
Postle in [15]. Thomassen later gave a shorter proof of Theorem 1.2.8 in 2003 [43].

Though these bounds on the choosability number are tight, there is hope of strength-
ening Thomassen’s theorems by allowing larger list sizes only where they are required in
the graph. In Chapter 2 we explore this idea. We introduce the concept of local girth
choosability, wherein the list size of a vertex depends not on the girth of the graph, but
rather on the length of the shortest cycle in which that vertex is contained. We provide a
formal definition below, following a few other necessary definitions.

Definition 1.2.9. Let G be a graph. The girth of a vertex v ∈ V (G) is denoted gG(v) and
is defined as the minimum number k such that v is contained in a k-cycle. If the graph G
is clear from context, we will often omit the subscript and write g(v) instead of gG(v). If
v is not contained in a cycle in G, we set gG(v) = ∞.

Note that if G′ ⊆ G and v ∈ V (G′), then gG′(v) ≥ gG(v). We define a local girth list
assignment as follows.

Definition 1.2.10. Let G be a planar graph. A local girth list assignment for G is a list
assignment L such that:

• |L(v)| ≥ 3 for all v ∈ V (G) with g(v) ≥ 5,

• |L(v)| ≥ 4 for all v ∈ V (G) with g(v) = 4, and

• |L(v)| ≥ 5 for all v ∈ V (G) with g(v) = 3.

1A graph is d-degenerate if every subgraph contains a vertex of degree at most d.

6



We say a planar graph G is local girth choosable if G admits an L-colouring for every
local girth list assignment L.

Our first main result (and the topic of Chapter 2) is the following theorem.

Theorem 1.2.11. Every planar graph is local girth choosable.

We note that Theorem 1.2.11 is a joint strengthening of Theorems 1.2.6 and 1.2.8.

The idea of restricting the list size of vertices based on the structure that surrounds
them is not a new one. Indeed, many list-colouring theorems admit a local version: that
is, a version where list sizes depend on the local structure rather than a global property
of the graph. For instance, Borodin, Kostochka and Woodall [6] proved a local version
of Galvin’s Theorem [20] that the List Colouring Conjecture holds for bipartite graphs,
where the size of an edge’s list depends on the maximum degree of its endpoints. In a
similar vein, Bonamy, Delcourt, Lang, and Postle [5] proved a local asymptotic version of
Kahn’s Theorem [24] on list-edge colouring. In [26], Kelly and Postle proved a local epsilon
version of Reed’s Conjecture [38], where list sizes are lower-bounded by a linear combination
of vertices’ degrees and the size of the largest clique in which they are contained. In
[7], Davies, de Joannis de Verclos, Kang, and Pirot gave an asymptotic theorem for list-
colouring triangle-free graphs, where again vertices’ list sizes are bounded by a function of
their degree.

In Section 1.3, we will discuss the main ideas and innovations behind the proof of
Theorem 1.2.11.

Our next main result concerns correspondence colouring embedded graphs, which is
the main topic of Chapter 3. The precise avenue of research is inspired by the theory of
hyperbolic families developed by Postle and Thomas [37].

As a graph is planar if and only if it embeds in the sphere, Theorem 1.2.7 can be
rephrased as follows.

Theorem 1.2.12 (Theorem 1.2.7, rephrased). There does not exist a graph that embeds
in the sphere and is not 5-correspondence-colourable.

Phrased this way, Theorem 1.2.7 suggests a fresh avenue of study. Namely: given a
surface Σ other than the sphere, what are the colouring properties of the set of graphs that
embed in Σ and are not 5-correspondence-colourable? To partially answer this question,
we required the following definitions.
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Definition 1.2.13. A non-contractible cycle in a surface is a cycle that cannot be contin-
uously deformed to a single point. An embedded graph is ρ-locally planar if every cycle
(in the graph) that is non-contractible (in the surface) has length at least ρ.

This is closely related to the concept of edge-width. Recall that the edge-width of an
embedded graph is the length of the shortest non-contractible cycle; thus if a graph is
ρ-locally planar, it has edge-width at least ρ.

Since the study of locally planar graphs is a straightforward generalization of the study
of planar graphs to graphs that embed in other surfaces, it is therefore natural to wonder
whether results that hold for planar graphs similarly hold for locally planar graphs. In
2006, DeVos, Kawarabayashi, and Mohar [8] showed that for every surface Σ, there exists
a constant ρ = 2O(g), where g is the Euler genus of Σ, such that every ρ-locally planar
graph that embeds in Σ is 5-list-colourable. A similar result for 5-colourability (rather
than choosability) was proved by Thomassen in 1993 [39]. Per the work of Postle and
Thomas [37], analogous results for 5-choosability, 4-choosability of graphs of girth at least
four, and 3-choosability of graphs of girth at least five with ρ = Ω(log(g)) for are implied
by the hyperbolicity of certain associated families of graphs. Hyperbolicity is defined below.

Definition 1.2.14. Let F be a family of embedded graphs. We say that F is hyperbolic
if there exists a constant c > 0 such that if (G,Σ) ∈ F is an embedded graph, then for
every closed curve η : S1 → Σ that bounds an open disk ∆ and intersects G only in
vertices, if ∆ includes a vertex of G, then the number of vertices of G in ∆ is at most
c(|{x ∈ S1 : η(x) ∈ V (G)}| − 1). We say that c is a Cheeger constant for F .

In [37], Postle and Thomas give a theorem known as the hyperbolic structure theorem,
which characterises the structure of graphs in hyperbolic families. We state the theorem
below informally to help give the reader intuition regarding hyperbolicity, and to better
explain the implications of hyperbolicity for locally planar graphs. For more information
(and a more formal description of what is meant below), we encourage the reader to consult
[37].

Theorem 1.2.15 (Theorem 6.29, [37] (informally stated)). Let F be a hyperbolic family
of embedded graphs, and let (G,Σ) ∈ F . Let g be the Euler genus of Σ. The graph G
decomposes into a graph with O(g) vertices together with a set of O(g) cylinders of edge-
width O(1).

This theorem together with the hyperbolicity of certain families of graphs is enough to
prove that, given a surface Σ with genus g, there exists an integer ρ with ρ = O(g) such
that ρ-locally planar graphs embeddable in Σ are list-colourable. To explain this further,
we again require a few definitions.
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Definition 1.2.16. Let G be a graph, and k a positive integer. We say G is critical for
k-colouring if every proper subgraph of G is k-colourable, but G itself is not.

The study of critical graphs was instigated by Dirac in 1951 [10], and since then, critical
graphs have attracted much attention [18, 19, 23, 28, 27, 31]. As every graph that is not
k-colourable contains a subgraph that is critical for k-colouring, the study of critical graphs
is a very natural way to approach the study of non-k-colourable graphs. Indeed, to decide
whether or not a graph G is k-colourable, it thus suffices to show that G contains no
k-critical subgraph.

For list and correspondence colouring, one could also define critical graphs as being
minimal graphs for which there exists a list (or correspondence) assignment such that the
graphs are not colourable. However, since when proving list colouring results we typically
work with fixed list assignments, it is more natural and useful to define critical graphs as
follows.

Definition 1.2.17. Let G be a graph, k a positive integer, and L a k-list assignment for
G. We say G is L-critical if every proper subgraph of G admits an L-colouring, but G
itself does not. If there exists a k-list assignment L′ such that G is L′-critical, we say G is
critical for k-list colouring.

Definition 1.2.18. Let G be a graph, k a positive integer, and (L,M) a k-correspondence
assignment for G. We say G is (L,M)-critical if every proper subgraph of G admits
an (L,M)-colouring, but G itself does not. If there exists a k-correspondence assignment
(L′,M ′) such thatG is (L′,M ′)-critical, we sayG is critical for k-correspondence colouring.2

In 2013, Dvořák and Kawarabayashi [12] showed the family of embedded graphs of
girth at least five that are critical for 3-choosability is hyperbolic. Postle and Thomas
showed the same for the family of embedded graphs of girth at least four that are critical
for 4-choosability [37]; and in 2016 [35], for the family of embedded graphs that are critical
for 5-choosability.

We now demonstrate how Theorem 1.2.15 can be used to show that, given a surface
Σ with Euler genus g, there exists an integer ρ with ρ = O(g) such that ρ-locally planar

2Note that a graph that is critical for k-list colouring may contain a proper subgraph that is also critical
for k-list colouring. Similarly, a graph that is critical for k-correspondence colouring may contain a proper
subgraph that is also critical for k-correspondence colouring. This is not the case for graphs that are
critical for k-colouring. To decide whether G is k-list-colourable (or k-correspondence-colourable), it is
enough to show G contains no minimal subgraph that is critical for k-list colouring (or k-correspondence
colouring). To decide if G is colourable for a fixed list or correspondence assignment, it suffices to show G
contains no subgraph that is critical with respect to this specific assignment.
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graphs embeddable in Σ are 5-choosable. To see this, let (G,Σ) be an embedded graph
that is not 5-choosable. Then G contains a subgraph H that is critical for 5-choosability.
By the work of Postle and Thomas [35], the family F of embedded graphs that are critical
for 5-choosability is hyperbolic, and so by the Hyperbolic Structure Theorem (Theorem
1.2.15), H can be decomposed into a graph with O(g) vertices together with a set of O(g)
cylinders of edge-width O(1). If this set is nonempty, then H has edge-width O(1) and
hence so does G; otherwise, H has at most O(g) vertices and since F contains no plane
graphs by the definition of hyperbolic, it follows that H has edge-width O(g) and hence so
does G. In either case, G has edge-width O(g).

Thus locally planar embedded graphs are 5-choosable. Since the associated families of
critical graphs are hyperbolic, it follows similarly that locally planar embedded graphs of
girth at least four are 4-choosable, and locally planar embedded graphs of girth at least five
are 3-choosable [37]. In [37], Postle and Thomas showed that with more work, hyperbolicity
in fact implies analogous results with ρ = Ω(log(g)) instead of O(g). As discussed in [37],
this bound is best possible.

We are interested in generalizing these results to the framework of correspondence
colouring. The main result of Chapter 3 is a technical theorem (Theorem 3.4.7) that
implies the following.

Theorem 1.2.19. The family of embedded graphs that are critical for 5-correspondence
colouring is hyperbolic.

Theorem 3.4.7—which implies Theorem 1.2.19—uses similar ideas to that of the anal-
ogous theorem for list colouring of Postle and Thomas (Theorem 4.6, [35]); however, a
number of new ideas and reductions are needed in order to make the proof go through in
the correspondence colouring framework.

Per the work of Postle and Thomas [37], Theorem 1.2.19 implies the following.

Theorem 1.2.20. For every surface Σ, there exists a constant ρ > 0 such that every
ρ-locally planar graph that embeds in Σ is 5-correspondence-colourable.

We note that this result is new, and without hyperbolicity, it is unclear how one would
prove it. For the theorem above, ρ = Ω(log(g)) where g is the Euler genus of Σ. See
Chapter 3 for further details. We note this bound for ρ is best possible: since (as noted
above) this bound is best possible for list colouring, it immediately follows that it is best
possible for correspondence colouring.

We draw a connection between this and our previously discussed work: recall that our
local girth choosability theorem (Theorem 1.2.11) implies that in the case of planar graphs,

10



the structures that influence how many colour choices are needed to ensure colourability
are local structures. In the same vein, Theorem 1.2.20 further suggests that for graphs
that appear at least locally to be planar, it is again only the local structures that dictate
the colouring properties of the graphs.

Before discussing other implications of hyperbolicity, we pause briefly to discuss k-list
colouring (and k-correspondence colouring) embedded graphs when k ≥ 6. Recall that
Postle and Thomas showed that the family of embedded graphs that are critical for 5-
choosability is hyperbolic [35]. It follows from the definition of critical for k-choosability
and k-list assignment that every graph that is critical for k-choosability is also critical for
ℓ-choosability for each positive integer ℓ < k, since a k-list assignment is also an ℓ-list
assignment: thus it follows from the work of Postle and Thomas that, for each k ≥ 6, the
family of embedded graphs that are critical for k-choosability is also a hyperbolic family.
In the same vein, Theorem 1.2.19 also implies that for each k ≥ 6 the family of embedded
graphs that are critical for k-correspondence colouring is a hyperbolic family.

The theory of hyperbolic families developed by Postle and Thomas [37] has many
interesting implications aside from those for locally planar graphs. We highlight two more
of these below.

In [35], Postle and Thomas show that the list-colouring analogue to Theorem 3.4.7 has
implications for the precolouring extension problem for planar graphs. The problem can
be stated as follows: given a planar graph G with a list assignment L, a subgraph C ⊆ G
and an L-colouring ϕ of C, when does ϕ extend to G? (Similarly: given a planar graph G
with a correspondence assignment (L,M), a subgraph C ⊆ G and an (L,M)-colouring ϕ
of C, when does ϕ extend to G?)

Alternatively, we might phrase this without ϕ as part of the input: given a planar graph
G with list (or correspondence) assignment L (or (L,M)) and subgraph C of G, when does
an arbitrary L (or (L,M)) colouring of C extend to G?

One way to approach this problem is to describe the structure of C that ensures an
arbitrary colouring of C will to extend to a colouring of the whole graph. For instance,
Thomassen showed (see Theorem 2.1.9) that if G is a plane graph of girth at least five with
3-list assignment L and C is a path of length at most three in the outer cycle of G, then
every L-colouring of C extends to an L-colouring of G.

A different, natural way to approach the problem is to try to quantify the amount of
computation required to determine whether or not the colouring will extend. In particular:
can we bound the size of a subgraph H with H ⊆ G such that every colouring of C that
extends to H also extends to G? Note that a subgraph H with this property always
exists: G is such a subgraph. To limit the computation required to answer the decidability
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question presented above, it is useful to study the minimal subgraphs H with this property.
These subgraphs serve as small certificates for the decidability problem.

Postle and Thomas show the following, settling a conjecture of Dvořák et al. [14].

Theorem 1.2.21 (Postle and Thomas, [35]). Let G be a plane graph with outer cycle C,
let L be a 5-list assignment for G, and let H be a minimal subgraph of G such that every
L-colouring of C that extends to an L-colouring of H also extends to an L-colouring of G.
Then H has at most 19|V (C)| vertices.

In 1997, Thomassen [42] proved a similar theorem for ordinary colouring, showing
|V (H)| ≤ 5|V (C)|3 . In 2010, Yerger [49] improved Thomassen’s bound to O(|V (C)|3). We
note that a linear bound in terms of the number of vertices in the precoloured subgraph is
asymptotically best possible.

In 2011, Dvořák and Kawarabayashi gave an analogous theorem to Theorem 1.2.21 for
3-choosability below.

Theorem 1.2.22 (Dvořák and Kawarabayashi, [11]). Let G be a plane graph of girth at
least five and with outer cycle C, let L be a 3-list assignment for G, and let H be a minimal
subgraph of G such that every L-colouring of C that extends to an L-colouring of H also
extends to an L-colouring of G. Then H has at most 37

3
|V (C)| vertices.

These theorems suggest that, given these graphs and list assignments, there is a small
subgraph H that encodes the answer to the precolouring extension problem for cycles:
that is, if a cycle C in a plane graph G is precoloured and we wish to determine whether
this colouring extends to G, there exists a small subgraph H such that it suffices to check
whether the colouring extends to H. Like Theorem 1.2.11, this too suggests that in the case
of planar graphs, local structure alone is enough to glean valuable colouring information.

We show in Chapter 3 that Theorem 3.4.7 implies the following result.

Theorem 1.2.23. Let G be a plane graph with outer cycle C, let (L,M) be a 5-correspon-
dence assignment for G, and let H be a minimal subgraph of G such that every (L,M)-
colouring of C that extends to an (L,M)-colouring of H also extends to an (L,M)-colouring
of G. Then H has at most 51|V (C)| vertices.

The final implications of hyperbolicity that will be discussed in Chatper 3 involve
algorithms for the decidability of the colouring problem for embedded graphs: Dvořák and
Kawarabayashi [12] also gave linear-time3 algorithms for the decidability of 3-choosability

3The algorithms’ running times are linear with respect to the number of vertices in the graph.
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of embedded graphs of girth at least five. Their algorithms can be modified to allow
the precolouring of a subgraph H, at the cost of increasing the time complexity of the
algorithm to O(|V (G)|k(g+s)+1) where k is some absolute constant, g is the genus of the
surface in which the graph is embedded, and s is the number of components in H. This
modification ensures the algorithms find a colouring, should it exist. Theorem 1.2.15
helps guide the structure of the algorithms: the algorithms roughly attempt to decompose
embedded graphs into subgraphs as described in Theorem 1.2.15, and find colourings that
extend to these subgraphs via dynamic programming. For details, see [12]. The algorithms
rely on Theorem 1.2.22; and per [12], these algorithms can be adapted to other settings
where a linear bound analogous to that in Theorem 1.2.22 holds.4

In particular, Theorem 1.2.21 thus implies the existence of linear algorithms for deciding
the 5-choosability of embedded graphs, and Theorem 1.2.23 implies the following.

Theorem 1.2.24. Let Σ be a fixed surface. There exists a linear-time algorithm that takes
as input an embedded graph (G,Σ) and 5-correspondence assignment (L,M) for G with
lists of bounded size and determines whether or not G is (L,M)-colourable.

Theorem 1.2.25. Let Σ be a fixed surface. There exists a linear-time algorithm that takes
as input an embedded graph (G,Σ) and determines whether or not G is 5-correspondence-
colourable.

Note that in Theorem 1.2.24 the correspondence assignment (L,M) is fixed, whereas
in Theorem 1.2.25 it is not. We note that these algorithmic results are new; and in fact,
prior to this thesis, it was not known whether there existed poly-time algorithms (let alone
linear algorithms) for the decidability of 5-correspondence colouring embedded graphs.

As mentioned prior, we obtain Theorem 1.2.23 as a consequence of a more technical
theorem (Theorem 3.4.7), the proof of which constitutes the bulk of Chapter 3. We delay
the statement of Theorem 3.4.7 until Section 3.4, when we will have built up the necessary
background and terminology.

We further observe in Chapter 3 that the embedded graphs G of girth at least five that
are critical for 3-correspondence colouring form a hyperbolic family. This follows from
observing that the proof for list colouring in [34] also holds for correspondence colouring
with only minor modifications. This is discussed further in Chapter 3.

As discussed above, the hyperbolicity of such a family of graphs (as well as related
theorems) has many interesting implications. As in the case for 5-correspondence colouring,
we highlight the following three.

4This is explained further in Chapter 3 (in particular, in Section 3.6), which contains a brief description
of the algorithms.
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Theorem 1.2.26. Let Σ be a fixed surface. There exists a linear-time algorithm that
takes as input an embedded graph of girth at least five (G,Σ) and a 3-correspondence
assignment (L,M) for G with lists of bounded size and determines whether or not G is
(L,M)-colourable.

Theorem 1.2.27. Let Σ be a fixed surface. There exists a linear-time algorithm that takes
as input an embedded graph of girth at least five (G,Σ) and determines whether or not G
is 3-correspondence-colourable.

Theorem 1.2.28. For every surface Σ, there exists a constant ρ > 0 such that every
ρ-locally planar graph of girth at least five that embeds in Σ is 3-correspondence-colourable.

In Section 1.4, we discuss the main ideas behind the proof of Theorem 1.2.23.

As demonstrated above, many questions in the field of graph colouring involve deter-
mining whether or not a graph with specific structure is colourable (for some notion of
colouring). Changing track, we might ask the following: given that a graph is colourable,
how easy is it to find a colouring?

One way to answer this question is to investigate how many distinct colourings of
the graph there are, which brings us to the topic of Chapter 4: counting correspondence
colourings of planar graphs. This sort of question has already been studied extensively
for list and ordinary colourings. For instance, Thomassen [44] proved in 2007 the theorem
below. The proof is approximately ten pages, and required new ideas and insights to those
used for the proof of Theorem 1.2.6 (which says that planar graphs are 5-choosable).

Theorem 1.2.29 (Thomassen, [44]). If G is a planar graph with 5-list assignment L, then

G has at least 2
|V (G)|

9 distinct L-colourings.

In a later paper, Thomassen proved the following. The proof is roughly eight pages,
and required substantially new ideas to those present in [44] and those used for the proof
of Theorem 1.2.8 (which says that planar graphs of girth at least five are 3-choosable).

Theorem 1.2.30 (Theorem 4.3, [45]). If G is a planar graph of girth at least five and L

is a 3-list assignment for G, then G has at least 2
|V (G)|
10000 distinct L-colourings.

In [34] and [37], Postle and Thomas generalized these results to other surfaces as follows.
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Theorem 1.2.31 ([34], [37]). There exist constants ε, α > 0 such that the following holds.
Let G be a graph embedded in a surface Σ of genus g, and let H be a proper subgraph of
G. If either

• L is a 5-list-assignment for G, or

• G has girth at least 5 and L is a 3-list assignment for G,

then if ϕ is an L-colouring of H that extends to an L-colouring of G, then ϕ extends to at
least 2ε(|V (G)|−α(g+|V (H)|)) distinct L-colourings of G.

In 2018, Kelly and Postle later proved an analogous theorem for embedded triangle-free
graphs with 4-list assignments.

Theorem 1.2.32 (Theorem 7, [25]). There exist constants ε, α > 0 such that the following
holds. Let G be a triangle-free graph embedded in a surface Σ of genus g, and let L be a
4-list-assignment for G. If H is a proper subgraph of G and ϕ is an L-colouring of H that
extends to an L-colouring of G, then ϕ extends to 2ε(|V (G)|−α(g+|V (H)|)) distinct L-colourings
of G.

Finally, in 2021, Langhede and Thomassen [29] prove a result analogous to Theorem
1.2.29 for Z5-colouring, defined below. Recall that an orientation of an edge uv is a mapping
f of uv to an element of {(u, v), (v, u)}. If f(uv) = (u, v), we say u is directed towards v.

Definition 1.2.33. Let G be a graph together with an orientation of its edges. Let ϕ :
E(G) → {0, 1, 2, 3, 4} be a labelling of the edges of G. Let (L,Mϕ) be a 5-correspondence
assignment for G, where L(v) = {0, 1, 2, 3, 4} for each v ∈ V (G) and whereMϕ is defined as
follows: for each edge uv where u is directed towards v, we let Muv = {(u, a)(v, b) : a− b ≡
ϕ(uv)}, where the equivalence is taken modulo 5. We call (L,Mϕ) a Z5-assignment. We
say G is Z5-colourable if G admits an (L,Mϕ)-colouring for every labelling ϕ.

Theorem 1.2.34 (Langhede and Thomassen, [29]). If G is a planar graph with Z5-

assignment (L,Mϕ), then G has at least 2
|V (G)|

9 distinct (L,Mϕ)-colourings.

It follows from their definitions that 5-correspondence colouring generalizes Z5-colouring;
thus if one could show that planar graphs have exponentially many5 5-correspondence
colourings, this would imply the same for Z5-colourings. Indeed, Langhede and Thomassen
conjectured the following.

5Unless otherwise specified, we mean by this that the number of colourings is exponential in the number
of vertices in the graph.
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Conjecture 1.2.35 (Langhede and Thomassen, [29]). Planar graphs have exponentially
many 5-correspondence colourings.

In Chapter 4, we prove Conjecture 1.2.35. In fact, another contribution of this thesis is
to show that Theorems 3.4.7 and 3.7.2—our technical theorems that imply our results on
hyperbolicity—are themselves enough to prove that there are exponentially many corre-
spondence colourings of planar graphs. That these results follow from Theorems 3.4.7 and
3.7.2 suggests an overall technique for tackling these sorts of colouring-counting problems,
rather than the more ad hoc approaches used by Thomassen in [44] and [45].

In particular, we prove in Chapter 4 that Theorem 3.4.7 implies the theorem below.

Theorem 1.2.36. If G is a planar graph with at least three vertices and (L,M) is a 5-

correspondence assignment for G, then G has at least 2
|V (G)|+306

67 distinct (L,M)-colourings.

For planar graphs of girth at least five, we show the following as a consequence of
Theorem 3.7.2.

Theorem 1.2.37. If G is a planar graph with at least two vertices and girth at least five

and (L,M) is a 3-correspondence assignment for G, then G has at least 2
|V (G)|+890

292 distinct
(L,M)-colourings.

As correspondence colouring generalizes list colouring, this improves upon the bound
given for list colouring by Thomassen in 2007 (Theorem 1.2.30). In Section 1.5, we discuss
the main ideas behind the proofs in Chapter 4.

Postle and Thomas show in [37] that, given a graph G with outer cycle C and 5-list
assignment L, if ϕ is an L-colouring of C that extends to an L-colouring of G, then there
are in fact exponentially many extensions of ϕ to G. Their proof relies as a base case on
a technical theorem of Thomassen (Theorem 4, [44]) which implies Theorem 1.2.29. One
of our main theorems of Chapter 4 —Theorem 4.2.6, which implies Theorem 1.2.36 —also
implies that there are exponentially many extensions of ϕ to C, but completely sidesteps
the use of this theorem of Thomassen. In fact, we show that it is enough that Theorem 3.4.7
(which implies that the family of graphs that are critical for 5-correspondence colouring is
hyperbolic) holds. Indeed, our theorem gives an independent proof of Thomassen’s result
that there are exponentially many 5-list colourings of planar graphs.

Analogously for 3-list colouring, Postle shows in [34] that given a graph G of girth at
least five with outer cycle C and 3-list assignment L, if ϕ is an L-colouring of C that
extends to an L-colouring of G, then there are in fact exponentially many extensions of ϕ
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to G. Again, this proof relies on a technical theorem of Thomassen which implies Theorem
1.2.30. Our other main theorem of Chapter 4 —Theorem 4.3.5, which implies Theorem
1.2.37 —also implies that there are exponentially many extensions of ϕ to C, but sidesteps
the use of this theorem of Thomassen. We show that it is enough that Theorem 3.7.2 (which
implies that the family of graphs of girth at least five that are critical for 3-correspondence
colouring is hyperbolic) holds.

As mentioned above, Theorems 1.2.36 and 1.2.37—along with being the first results
showing there are exponentially many correspondence colourings of planar graphs —also
provide independent proofs that there are exponentially many 5-list colourings of planar
graphs, and 3-list colourings of planar graphs of girth at least five, respectively. More-
over, that our results follow from Theorems 3.4.7 and 3.7.2 further motivates the study of
hyperbolic families.

Finally, we note that an easy consequence of the definition of hyperbolicity is that
hyperbolic families do not contain planar graphs: for instance, the family of graphs that
are critical for 5-correspondence choosability does not contain a planar graph. As every
graph that is not 5-correspondence-colourable contains a subgraph that is critical for 5-
correspondence colouring, it follows that every planar graph is 5-correspondence-colourable.
This motivates the following question.

Question 1.2.38. Is the family of embedded graphs that are critical for local girth choos-
ability (or local girth correspondence colouring) hyperbolic?

In particular, we ask the following.

Question 1.2.39. Does there exist an analogous theorem to Theorem 3.4.7 for local girth
correspondence colouring?

A positive answer to Question 1.2.39 would simultaneously imply all the results in this
thesis (though perhaps with worse constants in the case of the theorems on hyperbolicity
and counting colourings in Chapters 3 and 4), as well as all implications of the hyperbolicity
of the family of 5-correspondence critical graphs; of 4-correspondence critical graphs of girth
at least four; and of 3-correspondence critical graphs of girth at least 5. Moreover, it would
of course imply results analogous to these for local girth correspondence colouring, and local
girth choosability. This problem, however, seems difficult: as evidence, we highlight the
intricacies involved in the proof of Theorem 3.4.7 for 5-correspondence colouring as well
as the fact that even the proof of Theorem 1.2.11 for local girth choosability does not
seem to admit any obvious modification to allow an analogous theorem for correspondence
colouring. However —though no doubt difficult —given the results proved in this thesis,
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proving a theorem like that described in Question 1.2.39 now seems possible. For more
open questions inspired by the work in this thesis, we encourage the reader to consult
Chapter 5.

Sections 1.3, 1.4, and 1.5 elaborate on some of the challenges faced in the hardest proofs
of Chapters 2, 3, and 4, respectively. Section 1.6 gives an outline of the rest of the thesis.

1.3 Local Girth Colouring

The proof of Theorem 1.2.11 is inspired by those of Theorems 1.2.6 (that planar graphs
are 5-choosable) and 1.2.8 (that planar graphs of girth at least five are 3-choosable). To
prove those theorems, Thomassen instead proved more technical theorems (Theorems 2.1.7
and 2.1.9, given in Chapter 2) involving precolouring paths on the outer face boundary of
plane graphs, and extending these to colourings to the whole graph. In Theorems 2.1.7 and
2.1.9, list sizes are restricted still further than in Theorems 1.2.6 and 1.2.8: in particular,
vertices on the outer face boundary of the graphs have smaller lists than the others. It is
precisely these stronger restrictions that allow the theorems to be proven inductively: a
subset of the vertices of a vertex-minimum counterexample to each theorem are coloured,
their colours removed from the lists of neighbouring vertices, and the coloured vertices
deleted. If this is done carefully, the resulting graph will still satisfy the premises of the
technical theorem, allowing the proof to be completed by induction. Like Thomassen, we
also prove our main colouring result (Theorem 1.2.11) via a more technical theorem. Our
main technical theorem is Theorem 2.1.6, which implies both of Thomassen’s technical
theorems, Theorems 2.1.7 and 2.1.9, and hence implies both of Theorems 1.2.6 and 1.2.8.

Unfortunately, the proofs of Theorems 1.2.6 and 1.2.8 cannot be readily combined to
prove Theorem 1.2.11. The proof of Theorem 2.1.7 (which implies Theorem 1.2.6) relies
on the fact that we may delete up to two colours in the lists of vertices not on the outer
face boundary of the graph without making their lists too small. The same is not true
for a graph with a local girth list assignment. The proof of Theorem 2.1.9 (which implies
Theorem 1.2.8) of course relies on the fact that every vertex in the graph has girth at
least five: this ensures that in colouring and deleting a path of length at most one on the
outer face boundary of the graph, the vertices that were adjacent to these deleted vertices
form an independent set (a condition required for the technical inductive statement to go
through).

Though many of our lemmas are similar in spirit to those used by Thomassen, the main
colouring argument is quite different: in our proof, we colour and delete an arbitrarily long
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path on the outer face boundary of the graph. The path in question is determined by the
lists of the vertices on the outer face boundary. Since the structure of the graph under
study is more complex than that of a simple near-triangulation or a graph of girth at least
five, a stronger inductive statement and more structural lemmas are needed than for either
of the proofs of Theorems 1.2.6 or 1.2.8. Indeed for our proof, we even have to generalize
Thomassen’s characterization of when a precoloured path of length two does not extend to
a colouring (Theorem 2.1.8) to the local setting. Unfortunately then, the stronger inductive
statement given in Theorem 2.1.6 gives rise to a number of exceptional graphs which render
the analysis more difficult: when working through inductive arguments, we will have to
argue why these exceptional cases do not arise.

It is perhaps surprising that there is a single theorem that unifies both Theorems 1.2.6
and 1.2.8. After all, the proofs of the Four Colour Theorem and Grötzsch’s Theorem (Theo-
rem 1.2.2)—which are in a sense the analogous theorems for ordinary vertex colouring—are
very different. That Theorem 1.2.11 (a local, unified version for list colouring) holds hints
perhaps at something fundamental about planar graphs and the relation between colouring
and short cycles.

1.4 Hyperbolicity

One of the main results of Chapter 3 is Theorem 1.2.23, which implies that the family
of graphs that are critical for 5-correspondence colouring is hyperbolic. Our proof of
Theorem 1.2.23 follows the basic framework laid out by Postle and Thomas in [35] to prove
the analogous theorem for list colouring: we focus on a stronger, more technical theorem
—Theorem 3.4.7—which bounds the number of vertices in terms of the sum of the sizes
of large faces (a notion Postle and Thomas call “deficiency”). The proof of Theorem 3.4.7
also involves counting the number of vertices that share an edge or a face with vertices in
the outer cycle of the graph. In keeping track of these quantities, we are able to perform
various reductions, showing a minimum counterexample to Theorem 3.4.7 must have a
very specific structure and ultimately that a minimum counterexample cannot exist.

The bulk of the arguments present in the proof of Postle and Thomas’ list colouring
version of Theorem 3.4.7 carry over to correspondence colouring with only minor modifi-
cations. This is largely due to the fact that many of the arguments are structural, and
do not rely on the specific list assignment. However, there are a few key points at which
the arguments fail for correspondence colouring. In particular, Claims 5.23 and 5.24 in
[35] argue that the lists of specific vertices in a minimum counterexample are subsets of
one another. For a triangle ux2z2u in a minimum counterexample with list assignment
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S, Claim 5.23 shows that S(u) ⊆ S(x2). Claims 5.27 and 5.28 then use the fact that
S(z2)\ (S(x2)∪S(u)) = S(z2)\S(x2). This (along with an argument showing S(z2)\S(x2)
is non-empty) implies that it is possible to colour z2 from S(z2) while avoiding the lists of
both x2 and u. This argument crucially does not hold for correspondence colouring: an
analogous argument to that in Claim 5.23 shows merely that for a correspondence assign-
ment (S,M), we have |Mx2u| = |S(u)|, which of course implies nothing about Mz2u. As a
consequence of this, we are unable to use the reductions found in [35], and must instead
develop an entirely new set of reductions that can be performed in the correspondence
colouring framework. This adds considerable length and intricacy to the proof.

A more detailed overview of the proof will be given in Chapter 3.

1.5 Counting Colourings

The main results in Chapter 4 are Theorems 4.2.6 and 4.3.5, both of which count the
number of extensions of a precoloured subgraph S of a planar graph G to a colouring of G
itself. Theorem 4.2.6 concerns extending a 5-correspondence colouring of S to G; Theorem
4.3.5 concerns extending a 3-correspondence colouring of S to a graph G of girth at least
five. The proofs of both theorems use several key results from a recent paper of Postle
[33], in which the theory of hyperbolicity is extended by the introduction of the notion
of deletable subgraphs. This concept will be defined in Chapter 4. We note the results
from [33] used were originally written for list colouring and adapted in this thesis to the
correspondence colouring framework.

Both proofs proceed by induction on |V (G)| − |V (S)|, and use the key observation
(Claims 39 and 40, respectively) that there does not exist a subgraph H with S ⊊ H ⊊ G
and |V (S)| < |V (H)| < |V (G)| such that every colouring of H extends to a colouring of
G. Otherwise —the proof goes —by our choice of G, since |V (S)| < |V (H)| < |V (G)|
and S ⊊ H ⊊ G, we have that both that |V (H)| − |V (S)| < |V (G)| − |V (S)| and that
|V (G)| − |V (H)| < |V (G)| − |V (S)|. We then prove the main counting theorem by first
counting the extensions of the colouring of S to H, and then of each colouring of H to G.

Both proofs require separate, careful analysis of the cases where |V (G)| − |V (S)| is
at most two. As will become apparent to the reader, for both theorems the case where
|V (G)| − |V (S)| = 1 is what determines the denominator in the exponent of the theorem
statements.
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1.6 Thesis Outline

In each chapter of this thesis, we will study a particular type of object called a canvas. A
canvas is a tuple consisting of a graph G, a list (or correspondence) assignment for G, and
a selection subgraphs of G that we wish to keep track for various reasons (e.g. a subgraph
we think of as being precoloured, a subgraph whose vertices have otherwise restricted lists,
etc.). The precise definition of canvas varies depending on the chapter. The working
definition will be given explicitly in the chapter introduction.

In Chapter 2, we introduce the notion of local girth colouring and give a proof of The-
orem 1.2.11. We prove Theorem 1.2.11 via a more technical theorem —Theorem 2.1.6
—which involves extending a precolouring of a short path or cycle in the outer face bound-
ary walk of a planar graph. The majority of the chapter is dedicated to the proof of
Theorem 2.1.6.

In Chapter 3, we pivot our attention to correspondence colouring. The main result is
Theorem 3.4.7, a technical theorem which in turn implies Theorem 1.2.23, Theorem 3.6.4,
and —perhaps most importantly —Theorem 3.6.5, that the family of graphs that are crit-
ical for 5-correspondence colouring is hyperbolic. Using the theory of hyperbolic families
developed by Postle and Thomas [37], we then show that for every surface Σ, there exists a
constant ρ > 0 such that locally planar graphs are 5-correspondence-colourable (Theorem
1.2.20). Using the ideas of Dvořák and Kawarabayashi in [12], we further observe that
there exist linear-time algorithms for the decidability of the 5-correspondence colouring for
embedded graphs. In addition, in Chapter 3 we state Observation 3.7.3, which implies that
the family of graphs of girth at least five that are critical for 3-correspondence colouring
is hyperbolic (Corollary 3.7.4). This implies that locally planar graphs of girth at least
five are 3-correspondence-colourable (Corollary 1.2.28). Observation 3.7.3 also implies the
existence of linear-time algorithms for the decidability of the 3-correspondence colouring
problem for embedded graphs of girth at least five (again using the ideas in [12]). Obser-
vation 3.7.3 follows from Observation 3.7.2, the proof of which is nearly identical to that
of an analogous theorem of Postle (Theorem 3.9, [34]) for list colouring. We include a
short discussion of why precisely this theorem of Postle goes through for correspondence
colouring, when the analogous theorem of Postle and Thomas for 5-choosability (Theorem
4.6, [35]), which uses very similar tools and ideas, does not.

In Chapter 4, we show that Theorem 3.4.7 has another interesting implication beyond
those discussed in Chapter 3: namely, that if G is a planar graph with 5-correspondence

assignment (L,M), then G has at least 2
|V (G)|+306

67 distinct (L,M)-colourings (Theorem
1.2.36). Similarly, we show that Observation 3.7.2 can be used to show that if G is a
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planar graph of girth at least five and (L,M) is a 3-correspondence assignment for G, then

G has at least 2
|V (G)|+890

292 distinct (L,M)-colourings (Theorem 1.2.37).

The introduction of Chapter 2, Chapter 3, and Chapter 4 each contain a more detailed
overview of the contents of the chapter, including overviews of each chapter section.

In Chapter 5, we give a brief summary of our main results and leave the reader with
some open problems suggested by the work in this thesis.
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Chapter 2

Local Girth Colouring Planar Graphs

2.1 Introduction

Subsection 2.1.1 contains an overview of the main results of this chapter, along with nec-
essary definitions. Subsection 2.1.2 provides an outline of the remainder of the chapter.

2.1.1 Results

The main result of this chapter is Theorem 1.2.11, restated below for convenience.

Theorem 1.2.11. Every planar graph is local girth choosable.

As described in Sectioin 1.3, we prove Theorem 1.2.11 via a more technical theo-
rem —Theorem 2.1.6 —involving precolouring paths on the outer face boundary of plane
graphs, and extending these to colourings to the whole graph. In Theorem 2.1.6, vertices’
lists are restricted further still than a local girth list assignment. In particular, vertices on
the outer face boundary of the graphs have smaller lists than the others. Before we present
Theorem 2.1.6, we give a few required definitions.

The outer face of a plane graph is its infinite face. Let G be a plane graph, and let
E and V be the set of edges and vertices, respectively, in the boundary walk of the outer
face of G. Let H be the subgraph of G with V (H) = V and E(H) = E. We say a path
(or cycle) S is on the outer face boundary of G if S ⊆ H.

Definition 2.1.1. Let G be a plane graph, and let S = v1v2 . . . vk be a path in G. We say
S is an acceptable path if one of the following holds.
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• k ≤ 3, or

• k = 4, g(v2) ≥ 4, and g(v3) ≥ 4, or

• k = 4, and either g(v2) ≥ 5 or g(v3) ≥ 5.

An acceptable cycle is a cycle S in G where S contains an edge e such that S − e is an
acceptable path in G.

Note that in the above definition, we allow S to be the empty path. Moreover, note
that if S is an acceptable path in a graph G, S1 is a subpath of S, and G1 is a subgraph
of G that contains S1, then S1 is an acceptable path of G1.

Theorem 2.1.6 below —the proof of which constitutes the bulk of this chapter —charac-
terizes precisely when a colouring of an acceptable path or cycle extends to a list colouring
of the whole graph. The list assignment described in the theorem is a restriction of a local
girth list assignment. Under this list assignment, the list sizes depend in part on whether
or not the vertices are on the outer face boundary of the graph. For this reason (among
others), the following definition is useful.

Definition 2.1.2. Let G be a plane graph, and let C ⊆ G be a cycle. We define Int(C) as
the subgraph of G induced by the vertices of G in the interior of C. Similarly, we define
Int[C] to be the subgraph of G containing precisely the vertices and edges inside and on
C.

If the graph under study contains one of a specific set of subgraphs, a colouring of
an acceptable path is only guaranteed to extend to a colouring of the whole graph if
the acceptable path is short. Among these problematic subgraphs are the broken and
generalized wheels, defined below. We take the definitions and associated terminology from
Thomassen in [44].

Definition 2.1.3. A broken wheel is either a cycle v1v2v3v1 or the graph formed by a
single cycle v1v2 . . . vqv1 together with edges v2v4, v2v5, . . . , v2vq. The path v1v2v3 is called
the principal path of the broken wheel. A wheel is a cycle v1v2 . . . vqv1 together with a
single vertex v and edges vv1, vv2, . . . , vvq. Again, we say v1v2v3 is the principal path of
the wheel. If v1v2v3 is the principal path of a wheel or broken wheel, we call v1v2 and v2v3
the principal edges.

Definition 2.1.4. A generalized wheel is defined recursively as follows. Every wheel and
broken wheel is a generalized wheel. If W is a generalized wheel with principal path v1v2v3
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and W ′ is a generalized wheel with principal path u1u2u3, then the graph obtained from
W and W ′ by identifying a principal edge of W with a principal edge in W ′ in such a way
that v2 and u2 are identified is also a generalized wheel. Its principal path is the path
formed by the principal edges in W and W ′ that were not identified.

Note that if W is a generalized wheel and C is the outer cycle of W , then either C has
a chord, W is a wheel, or W is a 3-cycle. Moreover, note that as there may be multiple
ways to construct a generalized wheel W , there maybe several possible principal paths for
W . Unless W is a triangle or a wheel, these paths are edge-disjoint. Finally, note that
every vertex in a generalized wheel has girth 3.

As mentioned earlier, Theorem 2.1.6 describes when a list colouring of an acceptable
path S in a graph G extends to a list colouring of the entire graph. Below, we define a
canvas, which will allow us to concisely keep track of the graph, acceptable path, and list
assignment.

Definition 2.1.5. Let G be a plane graph, and let C be the subgraph whose vertex- and
edge-set are precisely those of the outer face boundary of G. We say (G,L, S,A) is a canvas
if S is a subgraph of C, A \ V (S) is an independent set of vertices with A ⊆ V (C) \ V (S)
such that g(v) ≥ 5 for each v ∈ A, and L is a list assignment whose domain contains V (G)
such that:

• |L(v)| ≥ 1 for all v ∈ V (S),

• |L(v)| = 2 for all v ∈ A \ V (S),

• |L(v)| ≥ 3 for all v ∈ V (G) \ (A ∪ V (S)),

• |L(v)| ≥ 4 for all v ∈ V (G) \ V (C) such that g(v) = 4, and

• |L(v)| ≥ 5 for all v ∈ V (G) \ V (C) such that g(v) = 3.

We say (H,L, S ∩H,A∩ V (H)) is a subcanvas of a canvas K = (G,L, S,A) if H ⊆ G and
S ∩H is connected. In this case, we denote (H,L, S ∩H,A ∩ V (H)) by K[H]. Note that
K[H] is a canvas.

We think of the vertices of S as being precoloured, and we say a canvas K = (G,L, S,A)
admits an L-colouring if G admits an L-colouring. It might seem more natural to require
that A (and not A\V (S)) is an independent set of vertices with lists of size two; this defini-
tion is more convenient, since when working through inductive arguments the precoloured
vertices are sometimes elements of A. Having established the required definitions, we give
our technical theorem below.
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Theorem 2.1.6. Let G be a plane graph, and let S be either an acceptable path v1v2 · · · vk
or acceptable cycle v1v2 · · · vkv1. If (G,L, S,A) is a canvas, then every L-colouring ϕ of
G[V (S)] extends to an L-colouring of G unless one of the following occurs:

(i) k = 4; there exists a vertex u ∈ A \ V (S) that is adjacent to both v1 and v4; and
L(u) = L(v1) ∪ L(v4), or

(ii) k = 4; there exists a vertex u ∈ A \ V (S) such that, up to reversing the names of
the vertices of S, u is adjacent to v4; there exists a vertex w ̸∈ V (S) on the outer
face boundary of G such that uw ∈ E(G); v1v2w is the principal path of a generalized
wheel W where the vertices on the outer cycle of W are on the outer face boundary
of G; every vertex v in the outer cycle of W except v1 and v2 has |L(v)| = 3, or

(iii) k = 3; S is the principal path of a generalized wheel W where the vertices on the
outer cycle of W are on the outer face boundary of G; every vertex v in the outer
cycle of W except v1, v2, and v3 has |L(v)| = 3.

We say (G,L, S,A) is an exceptional canvas of type (i), type (ii), or type (iii), if it is
described by (i), (ii), or (iii), respectively, above. If a canvas is not an exceptional canvas
of any type, we say it is unexceptional. Note that an exceptional canvas of type (ii) or (iii)
might still admit a colouring, depending on L. Examples of exceptional canvases that do
not admit an L-colouring are given in Figure 2.1, below. We note that there is precisely
one case where (G,L, S,A) is unexceptional and there exists an L-colouring of S but not
necessarily of G[V (S)]: this is the case where S is a path of length three and V (S) induces
a 4-cycle.

While Theorem 2.1.6 is not an if and only if statement, it is rather straightforward to
characterize the list assignments of exceptional canvases that do not admit a colouring (see
[44] and [36] for such details).

As a corollary to Theorem 2.1.6, we immediately obtain Theorem 1.2.11: to see this,
note that if (G,L, S,A) is a canvas, then by definition L is a restriction of a local girth
list assignment. Moreover, if |V (S)| ≤ 2 (that is, if at most two vertices on the outer face
boundary of G are precoloured), then (G,L, S,A) is unexceptional and so G admits an
L-colouring.

We highlight the similarity between our technical theorem and the technical theorems
used by Thomassen in proving Theorems 1.2.6 and 1.2.8: these technical theorems are
rephrased below using our terminology.
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Figure 2.1: Exceptional canvases of type (i), (ii), and (iii), together with potential partial
list assignments. Vertices in S are black; vertices in A are drawn as four-pointed stars. W
indicates the presence of a generalized wheel subgraph.

Theorem 2.1.7 (Thomassen [40]). If (G,L, S,A) is a canvas where G is a near-triangulation1

and S is a path of length at most one in the outer face boundary of G, then G admits an
L-colouring.

This theorem implies Theorem 1.2.6, that every planar graph is 5-choosable, and is
implied by Theorem 2.1.6. We note that in a near-triangulation, every vertex has girth
three. Consequently, in the above theorem A = ∅ by definition of A.

Thomassen also characterized the set of canvases (G,L, S,A) whereG is a near-triangula-
tion and S a path of length two that do not necessarily admit an L-colouring. Thomassen’s
original theorem is Theorem 3 in [44]. We state it below in the language of canvases.

Theorem 2.1.8 (Thomassen [44]). If K = (G,L, S,A) is a canvas where G is a near-
triangulation and S is a path of length two in the outer face boundary of G, then G admits
an L-colouring unless K is an exceptional canvas of type (iii).

We note that Theorem 2.1.8 is also a special case of Theorem 2.1.6 where G is a near-
triangulation (and so A = ∅).

One technical theorem that may be used to establish Theorem 1.2.8 is as follows.

1That is, a plane graph where each face with the possible exception of the outer face has a boundary
walk of length three.
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Theorem 2.1.9. If K = (G,L, S,A) is a canvas where S is an acceptable path and every
vertex in G has girth at least 5, then every L-colouring of S extends to an L-colouring of
G unless K is an exceptional canvas of type (i).

Thomassen’s true technical theorem forbids edges between S and A, but allows S to
have up to six vertices. However, as mentioned in the conclusion of [43], this is essentially
equivalent to Theorem 2.1.9. Note that Theorem 2.1.9 is a special case of Theorem 2.1.6,
and it implies Theorem 1.2.8 (and moreover Grötzsch’s Theorem, as is shown in [43]).

A specific type of exceptional canvases of type (iii) appears frequently in the induction
arguments in this chapter. The following lemma will allow us to deal with them painlessly.
It is Lemma 1 by Thomassen in [44].

Lemma 2.1.10 (Thomassen [44]). Let W be a generalized wheel but not a broken wheel
with outer cycle C = v1v2v2 . . . vq. If L is a list assignment for W such that every vertex
v ∈ Int(C) has |L(v)| ≥ 5 and every very vertex v ∈ V (C) \ {v1, v2, v3} has |L(v)| ≥ 3,
then there is at most one colouring of v1, v2, v3 that does not extend to an L-colouring of
G.

Note that Lemma 2.1.10 and Theorem 2.1.6 together give us the following lemma. It
is an analogous lemma to Lemma 2.1.10 for local girth list assignments.

Lemma 2.1.11. Let G be a plane graph, and let S = v1v2v3 be a path on the outer
face boundary of G. Suppose G contains a subgraph W that is a generalized wheel whose
principal path is v1v2v3 such that the vertices on the outer cycle of W are on the outer face
boundary of G. Let (G,L, S,A) be a canvas. If W is not a broken wheel, then there is at
most one L-colouring of G[V (S)] that does not extend to an L-colouring of G.

We will not use Theorem 2.1.11 in this thesis: our inductive arguments will allow us to
use Theorem 2.1.10 directly.

We require one more definition.

Definition 2.1.12. Let G be a connected plane graph with outer face boundary walk C.
Let P be a path with endpoints u, v, where {u, v} ⊆ V (C). We say P separates G into
two plane graphs G1 and G2 if the following hold.

• G1 and G2 inherit the embedding of G,

• G1 ∩G2 = P ,
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• G1 ∪G2 = G,

• for each i ∈ {1, 2}, we have that V (G) \ V (Gi) ̸= ∅,

• both G1 and G2 are connected, and

• P is in the outer face boundary walk of both G1 and G2.

2.1.2 Outline of Chapter

Theorem 2.1.6 is proved in Section 2.3, by supposing the existence of a minimum coun-
terexample. To that end, for the remainder of the chapter we let K = (G,L, S,A) be
a counterexample to Theorem 2.1.6, chosen such that |V (G)| is minimized over all coun-
terexamples of Theorem 2.1.6; and subject to that, such that

∑
v∈V (G) |L(v)| is minimized.

In Section 2, we establish necessary structural properties of K. Note that by our choice of
K, it follows that S contains at least one vertex. We may assume that there exists at least
one colouring of G[V (S)] that does not extend to a colouring of G, as otherwise there is
nothing to prove. Since K is chosen to minimize

∑
v∈V (G) |L(v)|, it follows that |L(v)| = 1

for each vertex v ∈ V (S). To derive a contradiction (and hence prove Theorem 2.1.6), it
thus suffices to show that G admits an L-colouring.

2.2 Describing Our Minimum Counterexample

Recall that K = (G,L, S,A) is a counterexample to Theorem 2.1.6. We may assume
without loss of generality that V (S)∩A = ∅. Let C be the subgraph of G whose vertex set
and edge set is precisely that of the outer face boundary walk of G. It is straightforward
to verify the theorem holds if |V (G)| = |V (S)|, so we assume |V (G)| > |V (S)|. We note
the following.

Observation 2.2.1. If K is an unexceptional canvas and K ′ is a subcanvas of K, then
K ′ is also unexceptional.

This follows from the fact that whether or not a canvas is exceptional depends in part
on L, and that every vertex in a generalized wheel has girth three: thus if the outer face
boundary of K ′ contains a vertex v not in the outer face boundary of K with g(v) = 3,
then |L(v)| ≥ 5. We will use this observation repeatedly throughout this chapter.
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2.2.1 Section Overview

We now give an overview of the results of this section. As this subsection is purely a
summary of this section’s results compiled for the reader’s convenience, the reader should
feel free to skip ahead to Subsection 2.2.2 if desired.

In Subsection 2.2.2, we give a few lemmas establishing basic properties of K: namely,
Lemma 2.2.2 shows that G is 2-connected (and thus, that C is a cycle); and Lemma
2.2.3, that its outer cycle C is chordless. These first two lemmas allow us to make useful
assumptions about the structure of G later on.

The majority of Subsection 2.2.3 describes the interiors of certain cycles in G of length
up to six. In particular, Lemma 2.2.4 shows that G does not contain cycles of length three
with vertices in their interior. Observation 2.2.5 argues that we may assume no vertex
in C has more than three colours in its list. This allows us to argue explicitly about the
lists themselves in Subsection 2.2.6 and in our final colouring argument in Section 2.3.
Lemma 2.2.6 shows that G does not contain cycles of length four with vertices in their
interior. Observation 2.2.7 shows that |V (S)| ≥ 3. Lemma 2.2.8 shows that if H ⊆ G is a
5-cycle with at least one vertex in its interior, then all vertices in V (H) have girth three;
and finally, Lemma 2.2.9 shows that if H ⊆ G is a 6-cycle with at least one vertex in its
interior, then no vertex in V (H) has girth at least five. These lemmas are used to establish
more complicated structural properties of G (in particular, to rule out the existence of
certain generalized wheel subgraphs in Subsection 2.2.5).

In Subsection 2.2.4, we characterize the set of short paths in G whose endpoints lie in
C and whose interior vertices do not. We think of these paths as separating paths: such
a path neatly divides G into two subgraphs whose intersection is the path (see Definition
2.1.12). In particular, we show in Lemma 2.2.10 that G does not contain a separating path
of length two that has at least one vertex of girth at least four, and in Lemma 2.2.11 we
describe exactly the structure surrounding separating paths u1u2u3u4 where both u2 and
u3 have girth at least five.

Subsection 2.2.5 uses the structure established in previous subsections to rule out the
existence of certain generalized wheel subgraphs in G, and to bound the size of others.
We note that whether or not a generalized wheel subgraph can be ruled out depends not
only on its structure, but also its list assignment. Lemma 2.2.12 shows that if Q is a
separating path of length two whose vertices all have girth three, then Q is the principal
path of a broken wheel in G. Lemma 2.2.13 shows that upon identifying certain vertices
in a generalized wheel, the girth of the remaining vertices in the graph does not change
too much: every vertex with girth at least five in G still has girth at least five after the
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identification, and every vertex with girth four in G still has girth at least four after the
identification. This allows us in Lemma 2.2.14 to rule out some large broken wheels in G.
Lemma 2.2.15 rules out yet another type of broken wheel in G, and will be used in Section
3 to show that, after performing our main reductions, what remains is not an exceptional
canvas of type (iii).

Finally, Subsection 2.2.6 establishes the remainder of the structure required for the
proof of Theorem 2.1.6 in the next section. In particular, Lemma 2.2.16 shows that C
contains at least three vertices other than those in S, and Lemma 2.2.17 shows that if
there is a vertex in A adjacent to a vertex in S, then this lower bound can be raised to
four. Lemma 2.2.20 describes the lists of these non S-vertices. Lastly, we give the definition
of a particular type of path contained in C called a deletable path: this path comprises the
main reducible configuration for the proof of Theorem 2.1.6 in Section 2.1.6. We end the
section by showing that K contains a deletable path.

2.2.2 Groundwork Lemmas

We begin by showing that G is 2-connected. Note that G is connected: otherwise, since
K is a minimum counterexample to Theorem 2.1.6 we obtain an L-colouring of G by
applying Theorem 2.1.6 to each component ofG. Moreover, sinceK was chosen to minimize∑

v∈V (G) |L(v)|, we may assume without loss of generality that |V (S)| ≥ 2. Since G[V (S)]

has an L-colouring by assumption, we may further assume that |V (G)| ≥ 3.

Lemma 2.2.2. G is 2-connected.

Proof. Suppose not. Since |V (G)| ≥ 3, there exists a cut vertex u ∈ V (G) such that the
path u separates G into two graphs G1 and G2 (as in Definition 2.1.12). For i ∈ {1, 2},
let Si be the subgraph of S contained in Gi. Suppose without loss of generality that
|V (S1)| ≥ |V (S2)|. Since S is a path or cycle in the outer face boundary of G, it follows
that either S1 ∩ S2 = ∅, or S1 ∩ S2 = u. By Observation 2.2.1, K[G1] is an unexceptional
canvas. By the minimality of K, G1 thus admits an L-colouring ϕ1. Let L′ be a list
assignment for G2 obtained by setting L′(v) = L(v) for all v ∈ V (G2) \ {u} and setting
L′(u) = {ϕ(u)}. Note that since S2 ⊂ S and S is an acceptable path or cycle, S2 ∪ u
is an acceptable path. Since |V (S1)| ≥ |V (S2)|, it follows that |V (S2)| ≤ 2 and so that
(G2, L

′, S2 ∪ u,A ∩ V (G2)) is an unexceptional canvas. Thus G2 admits an L′-colouring
ϕ2. By construction, ϕ1 and ϕ2 agree on u, and so ϕ1 ∪ ϕ2 is an L-colouring of G, a
contradiction.
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Since G is 2-connected by Lemma 2.2.2, it follows that C is a cycle. We now show this
cycle is chordless.

Lemma 2.2.3. C is chordless.

Proof. Suppose not, and let uw be a chord of C. Thus the path uw separates G into two
graphs G1 and G2. Suppose S is a cycle. Since C has a chord, |V (C)| ≥ 4. Thus S is
a 4-cycle. But then at least one vertex in S has girth at least four by the definition of
acceptable cycle. Thus C is chordless—a contradiction. It follows that S is a path.

Suppose now that S ⊆ G1. Note that since K is unexceptional, it follows from Obser-
vation 2.2.1 that K[G1] is also unexceptional. Since K is a minimum counterexample to
Theorem 2.1.6 and |V (G1)| < |V (G)|, it follows further that K[G1] admits an L-colouring
ϕ. Let L′ be a list assignment for G2 obtained from L by setting L′(v) = L(v) for all
v ∈ V (G2)\{u,w}, and L′(v) = {ϕ(v)} for v ∈ {u,w}. Note that S∩V (G2) ⊆ {u,w}, and
so that K2 = (G2, L

′, uw,A ∩ V (G2)) is a canvas. Moreover, uw is an acceptable path for
G2 since it contains only two vertices. This also implies that K2 is unexceptional. Since
|V (G2)| < |V (G)|, we have by the minimality of K that G2 admits an L′-colouring ϕ′. This
is a contradiction since ϕ ∪ ϕ′ is an L-colouring of G.

Thus S ̸⊆ G1, and symmetrically S ̸⊆ G2. Suppose there is no vertex of S contained in
V (G2)\V (G1). Then since S ̸⊆ G1, it follows that there is an edge e of S in E(G2)\E(G1)
but that both endpoints of S are in G1. Since G1 ∩ G2 = uv, it follows that e = uv, a
contradiction since uv ∈ E(G1). Thus there exists a vertex of S contained in V (G1)\V (G2),
and symmetrically, a vertex of S contained in V (G2) \ V (G1). It follows that |V (S)| ≥ 3,
and one of u and w is an internal vertex of the path S. We may assume without loss of
generality that w is an internal vertex of S. Note that u is not contained in V (S) since
otherwise |V (S)| = 4 and S contains a subpath of length 2 containing only vertices of girth
3, contradicting the definition of acceptable path. Let S1 and S2 be subpaths of S such
that |V (S1)| ≤ |V (S2)|; S1 ∪ S2 = S; and S1 ∩ S2 = w. Note that both S1 and S2 are
acceptable paths in G, since a subpath of an acceptable path is itself acceptable. We may
assume without loss of generality that S1 ⊆ G1 and S2 ⊆ G2.

First suppose that |L(u)| ≥ 4. Since K[G1] is a subcanvas of K and K is unexceptional,
it follows from Observation 2.2.1 that K[G1] is also unexceptional. By the minimality of
K, K[G1] admits an L-colouring ϕ1. Let L

′ be a list assignment for G1 obtained by setting
L′(v) = L(v) for all v ∈ V (G1)\{u}, and setting L′(u) = L(u) \{ϕ1(u)}. Since |L(u)| ≥ 4,
it follows that |L′(u)| ≥ 3 and so that (G1, L

′, S1, A ∩ V (G1)) is a canvas. Note that since
|V (S1)| ≤ |V (S2)| and |V (S)| ≤ 4, we have that |V (S1)| ≤ 2. Thus (G1, L

′, S1, A∩V (G1)) is
unexceptional. By the minimality of K, there exists an L′-colouring ϕ2 of (G1, L

′, S1, A ∩
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V (G1)). Let L′′ be a list assignment for G2 obtained by setting L′′(v) = L(v) for all
v ∈ V (G2) \ {u}, and L′′(u) = {ϕ1(u), ϕ2(u), ϕ1(w)}. Note that since S is an acceptable
path and w is an interior vertex of S, either |V (S2)| = 2, or |V (S2)| = 3 and S2 contains
a vertex of girth at least four. In either case, (G2, L

′′, S2, A ∩ V (G2)) is an unexceptional
canvas and, by the minimality of K, admits an L′′-colouring ϕ. Note that ϕ(u) ̸= ϕ1(w),
since ϕ is an L′′-colouring. If ϕ(u) = ϕ1(u), then ϕ ∪ ϕ1 forms an L-colouring of G.
Otherwise, ϕ(u) = ϕ2(u) and so ϕ ∪ ϕ2 forms an L-colouring of G. In either case, this is a
contradiction.

We may therefore assume that |L(u)| ≤ 3. For each i ∈ {1, 2}, since K[Gi] is a
subcanvas of an unexceptional canvas, by Observation 2.2.1 K[Gi] admits an L-colouring
φi. Let Li be the list assignment for Gi obtained by setting Li(v) = L(v) for all v ∈
V (Gi) \ {u}, and Li(u) = {φ3−i(u)}. For each i ∈ {1, 2}, let S ′

i be the path obtained
from Si by adding the edge uw, and let Ki = (Gi, Li, S

′
i, A ∩ V (Gi)). Note that both K1

and K2 are canvases. Suppose there exists some i ∈ {1, 2} such that Ki is unexceptional.
Then Gi admits an Li-colouring ψi, and ψi ∪ φ3−i together form an L-colouring of G —a
contradiction. Note that since |V (S1)| ≤ |V (S2)|, it follows that |V (S ′

1)| ≤ 3 and so that
K1 is not an exceptional canvas of type (i) or (ii).

We may therefore assume that K1 is an exceptional canvas of type (iii). If K2 is also
an exceptional canvas of type (iii), then since |L(u)| ≤ 3, we have that K is an exceptional
canvas of type (iii) —a contradiction. If K2 is an exceptional canvas of type (i), then since
K1 is an exceptional canvas of type (iii) we have that K is an exceptional canvas of type
(ii) —a contradiction. Thus we may assume that K2 is an exceptional canvas of type (ii)
and thus contains a generalized wheel subgraph W with principal path u1u2u3, where u2
and one vertex in {u1, u3} are contained in S ′

2, and the remaining vertex in {u1, u3} forms
a chord with u2 in the outer cycle of G2. Note that since K2 is an exceptional canvas of
type (ii), we have that |V (S2)| = 3. Recall that every vertex in a generalized wheel has
girth three. Suppose uw is not a subpath of u1u2u3. Then every vertex in V (S2) \ {w} has
girth three. Since K1 is an exceptional canvas of type (iii), every vertex in V (S1) has girth
three. But then S is not an acceptable path, as it contains four vertices of girth three.
Thus we may assume that uw is a subpath of u1u2u3. But then K is an exceptional canvas
of type (ii), a contradiction.

2.2.3 Separating Cycle Lemmas

In Lemmas 2.2.4-2.2.9, we describe a set of reducible configurations for K: together, Lem-
mas 2.2.4 and 2.2.6 show that G does not contain a cycle of length at most four with
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vertices in its interior. Lemmas 2.2.8 and 2.2.9 show that every cycle of length at most six
with vertices in its interior is composed of vertices of relatively low girth.

Lemma 2.2.4. If T is a triangle in G, then Int(T ) = ∅.

Proof. Suppose not, and let T = u1u2u3u1 be a counterexample. By the minimality of K,
we have that G−Int(T ) admits an L-colouring ϕ. Let G′ be the graph obtained from Int[T ]
by deleting u3. Let C

′ be the outer cycle of G′. Let L′ be the list assignment obtained from
L by removing the colour ϕ(u3) from the lists of all neighbours of u3 in Int(C). Finally,
let L′(ui) = {ϕ(ui)} for i ∈ {1, 2}. Note that every vertex v ∈ V (C ′) \ {u1, u2} with
g(v) ∈ {3, 4} has |L′(v)| ≥ 3, since |L(v)| ≥ 4. Let A′ be the set of vertices v ∈ V (C ′)
with |L′(v)| = 2. By the above, every vertex in A′ has girth at least five. Moreover, A′

is an independent set, since every vertex in A′ is adjacent to u3 in G. Thus since u1u2 is
an acceptable path for G′ and contains only two vertices, it follows that (G′, L′, u1u2, A

′)
is an unexceptional canvas. Since |V (G′)| < |V (G)|, by the minimality of K we have that
G′ has an L′-colouring ϕ′. But ϕ ∪ ϕ′ is an L-colouring of G, a contradiction.

Our colouring arguments will be more straightforward if we assume that for every vertex
v ∈ V (C) \ (A ∪ V (S)), we have |L(v)| = 3. Unfortunately, deleting extra colours from
lists in V (C) \ (A∪V (S)) might result in the creation of an exceptional canvas of type (ii)
or (iii). We show below that this does not occur.

Observation 2.2.5. Every vertex in S has a list of size one. Every vertex in A has a list
of size two. Every vertex in V (C) \ (V (S) ∪ A) has a list of size three.

Proof. Suppose not, and let v ∈ V (G) be a counterexample. Since K was chosen to
minimize

∑
u∈V (G) |L(u)|, it follows that |L(u)| = 1 for every u ∈ V (S). Since A∩V (S) = ∅,

by the definition of canvas every vertex in A has a list of size two. Thus v ∈ V (G)\(V (S)∪
A), and so |L(v)| ≥ 4. Since K was chosen to minimize

∑
v∈V (G) |L(v)|, it follows that the

canvas K ′ obtained from K by deleting a colour from the list of v is an exceptional canvas.
Since C is chordless, K ′ is not an exceptional canvas of type (ii). Since |L(v)| ≥ 4, we have
further that K ′ is not an exceptional canvas of type (i). Thus K ′ is an exceptional canvas of
type (iii), and so contains a subgraph W that is a generalized wheel with principal path S
such that the vertices in the outer cycle of W are in the outer face boundary of G and have
lists of size at most 3. Since C is chordless by Lemma 2.2.3, W is a wheel and moreover
the outer cycle of W is the outer cycle of G. Since every triangle in G has no vertices in
its interior by Lemma 2.2.4, it follows that W = G. Since v ∈ V (C) and W is a wheel,
we have further that deg(v) = 3. By the minimality of K, G− v admits an L-colouring ϕ.
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But then since |L(v)| ≥ 4 and deg(v) = 3, it follows that ϕ extends to an L-colouring of G
by choosing ϕ(v) ∈ L(v) \ {ϕ(u) : u ∈ N(v)}, a contradiction.

This observation allows us more easily to argue explicitly about the list assignment L
in Subsection 2.2.6 and Section 3.

In a similar vein as Lemma 2.2.4, we have the following.

Lemma 2.2.6. If T is a 4-cycle in G, then Int(T ) = ∅.

Proof. Suppose not, and let T = u1u2u3u4u1 be a counterexample. By the minimality of
K, we have that G− Int(T ) admits an L-colouring ϕ. Let G′ be the graph obtained from
Int[T ] by deleting u3 and u4, and let C ′ be the boundary walk of the outer face of G′. Let
L′ be the list assignment obtained from L by removing the colour ϕ(ui) from the lists of
all neighbours of ui in Int(T ), for i ∈ {3, 4}. Finally, let L′(uj) = {ϕ(uj)} for j ∈ {1, 2}.
Note that every vertex v ∈ V (C ′)\{u1, u2} with g(v) = 3 has |L′(v)| ≥ 3, since |L(v)| ≥ 5.
Moreover, every vertex v in V (C ′)\{u1, u2} with g(v) = 4 has |L′(v)| ≥ 3, since |L(v)| ≥ 4
and every such vertex v is adjacent to at most one of u3 and u4 in G. Finally, let A

′ be the
set of vertices v ∈ V (C ′) \ {u1, u2} with lists of size at most two. By the above, g(v) ≥ 5
for every v ∈ A′. It follows that very vertex in A′ is adjacent to exactly one of u3 and u4 in
G, and moreover that A′ forms an independent set. Thus |L′(v)| = 2 for all v ∈ A′, since
|L(v)| ≥ 3 for all v ∈ A′. It follows that K ′ = (G′, L′, u1u2, A

′) is a canvas. Since u1u2
contains only two vertices, u1u2 is an acceptable path and moreover K ′ is unexceptional.
By the minimality of K we have that G′ has an L′-colouring ϕ′. By construction, ϕ∪ ϕ′ is
an L-colouring of G, a contradiction.

Note that by Theorems 2.2.4 and 2.2.6, we have immediately that S is not a cycle,
and that V (C) \ V (S) ̸= ∅. Thus S is a path; for the remainder of the chapter, let
S = v1v2 . . . vk, and let C = v1 . . . vkvk+1 . . . vqv1. As noted in Subsection 2.2, we may
assume without loss of generality that k ≥ 2. Below, we show that in fact k ≥ 3.

Observation 2.2.7. We may assume that S contains at least three vertices.

Proof. Suppose not. Thus |V (S)| = 2. First suppose |V (C)| ≤ 4. Then every vertex in
V (C) has girth at most four, and so A = ∅. By definition of canvas, we have that |L(v)| ≥ 3
for all v ∈ V (C)\V (S). Since C is chordless by Lemma 2.2.3, it then follows that G[V (C)]
has an L-colouring φ. Since V (Int(C)) = ∅ by Lemmas 2.2.4 and 2.2.6 with T = C, it
follows further that G = C and so that φ is an L-colouring of G, a contradiction.
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Thus we may assume that |V (C)| ≥ 5. Let c be a colour in L(v3) \ L(v2). Let L′ be
a list assignment for G defined by L(v3) = {c} and L′(v) = L(v) for all v ∈ V (G) \ {v3}.
Since S has only two vertices by assumption, S + v2v3 is an acceptable path. Moreover,
K ′ = (G,L′, S + v2v3, A) is a canvas. Since K was chosen to minimize

∑
v∈V (G) |L(v)|, it

follows that K ′ is an exceptional canvas; and since |V (S + v2v3)| = 3, K ′ is an exceptional
canvas of type (iii), and thus contains a subgraph W that is a generalized wheel with
principal path S + v2v3 such that the vertices on the outer cycle of W are on the outer
cycle of G and have lists of size at most three under L′. Since C is chordless by Lemma
2.2.3 and |V (C)| ≥ 5, it follows that W is a wheel and moreover that the outer cycle of W
is the outer cycle of G. Since every triangle in G has no vertices in its interior by Lemma
2.2.4, we have that W = G. Let w be the unique vertex not on the outer face boundary of
G. Note that N(v3) = {v2, v4, w}.

Since v3 is in a wheel, g(v3) = 3 and so |L(v3)| = 3. Let X ⊆ L(v3) \ L(v2) be a set
of size two, and let L′ be a list assignment for G − v3 obtained by setting L′(v) = L(v)
for all v ∈ V (G − v3) \ {w} and L′(w) = L(w) \ X. Note that since w ∈ V (Int(C)) and
g(w) = 3, it follows that |L(w)| ≥ 5 and so that |L′(w)| ≥ 3. Thus K ′′ = (G− v3, L

′, S, A)
is a canvas. Since |V (S)| = 2, it is moreover unexceptional. By the minimality of K, we
have that K ′′ admits an L′-colouring ϕ. But ϕ extends to an L-colouring of G by setting
ϕ(v3) ∈ X \ {ϕ(v4)}, a contradiction.

The following two lemmas show that only certain types of 5- and 6-cycles with vertices
in their interior exist in G.

Lemma 2.2.8. If P is a 5-cycle in G and Int(P ) contains a vertex, then every vertex in
V (P ) has girth three.

Proof. Suppose not, and let P ⊆ G be a counterexample with P = u1u2u3u4u5u1. Suppose
without loss of generality that g(u3) ≥ 4. By the minimality of K, we have that G−Int(P )
admits an L-colouring ϕ. Let G′ be the graph obtained from Int[P ] by deleting the vertices
u4 and u5, and let C ′ be the outer face boundary of G′. Let L′ be the list assignment
obtained from L by removing the colour ϕ(ui) from the lists of all neighbours of ui in
Int(P ) for i ∈ {4, 5}, and setting L′(uj) = {ϕ(uj)} for j ∈ {1, 2, 3}. Note that every vertex
v ∈ V (C ′) \ {u1, u2, u3} with g(v) ≤ 4 has |L′(v)| ≥ 3, since vertices in Int(C) of girth
three have |L(v)| ≥ 5, and vertices in Int(C) of girth four have |L(v)| ≥ 4 and are adjacent
to at most one of u4 and u5. Finally, let A′ be the set of vertices v ∈ V (C ′) \ {u1, u2, u3}
with lists of size at most two under L′. By the above, g(v) ≥ 5 for every v ∈ A′. It follows
that that A′ forms an independent set, and moreover that each vertex in A′ is adjacent
to at most one of u4 and u5. Thus |L′(v)| = 2 for each v ∈ A′. Note that u1u2u3 is an
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acceptable path for G′, as it has only three vertices. By the minimality of K, we have that
(G′, L′, u1u2u3, A

′) is a canvas. Since g(u3) ≥ 4, it is unexceptional and thus G′ has an
L′-colouring ϕ′. By construction, ϕ ∪ ϕ′ is an L-colouring of G, a contradiction.

We end this subsection with the following lemma, characterizing the separating cycles
of length six.

Lemma 2.2.9. If H is a 6-cycle in G and Int(H) contains a vertex, then V (H) does not
contain a vertex of girth at least five.

Proof. Suppose not, and let H ⊆ G be a counterexample with H = u1u2 · · ·u6u1. Suppose
without loss of generality that g(u3) ≥ 5. By the minimality of K, we have that G−Int(H)
admits an L-colouring ϕ. The argument proceeds in a way similar to that of Lemmas 2.2.4-
2.2.8: we aim to delete a path of vertices in H and argue about the resulting graph. Which
vertices we delete from H will depend on the structure of Int(H).

First, suppose that there is no vertex in V (Int(H)) adjacent to u4, u5, and u6; that
there is no vertex w in V (Int(H)) with g(w) = 4 such that w is adjacent to both u4 and
u6; and that there do not exist vertices w1, w2 in V (Int(H)) such that g(w1) ≥ 5 and
g(w2) ≥ 5 and {w1u4, w2u6, w1w2} ⊆ E(G). In this case, let G′ be the graph obtained
from Int[H] by deleting vertices u4, u5 and u6, and let C ′ be the outer cycle of G′. Let L′

be the list assignment obtained from L by removing the colour ϕ(ui) from the lists of all
neighbours of ui in Int(H) for i ∈ {4, 5, 6}. Let L′(ui) = {ϕ(ui)} for i ∈ {1, 2, 3}. Note
that every vertex v ∈ V (C ′) \ {u1, u2, u3} with g(v) = 3 has |L′(v)| ≥ 3, since vertices in
Int(C) of girth three have |L(v)| ≥ 5 and are adjacent to at most two of u4, u5, and u6 by
assumption. Moreover, every vertex v ∈ V (C ′) \ {u1, u2, u3} with g(v) = 4 has |L′(v)| ≥ 3
since vertices in Int(C) of girth four have |L(v)| ≥ 4 and are adjacent to at most one of
u4, u5, and u6 by assumption. Finally, let A′ be the set of vertices v ∈ V (C ′) \ {u1, u2, u3}
with lists of size at most two under L′. By the above, g(v) ≥ 5 for every v ∈ A′. It follows
that every vertex in A′ is adjacent to exactly one of u4, u5, and u6, and so that |L′(v)| = 2
for each v ∈ A′ (since |L(v)| ≥ 3). Finally, we note that A′ forms an independent set
by assumption. Thus (G′, L′, u1u2u3, A

′) is a canvas. Since u1u2u3 contains only three
vertices, it is an acceptable path; and since g(u3) ≥ 5, we have that (G′, L′, u1u2u3, A

′) is
unexceptional. By the minimality of K, we have further that G′admits an L′-colouring ϕ′.
By construction, ϕ ∪ ϕ′ is an L-colouring of G, a contradiction.

Thus we may assume that there is a vertex in V (Int(H)) adjacent to u4, u5, and u6;
or that there is a vertex w in V (Int(H)) with g(w) = 4 such that w is adjacent to both
u4 and u6; or finally that there exist vertices w1, w2 in V (Int(H)) such that g(w1) ≥ 5 and
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g(w2) ≥ 5 and {w1u4, w2u6, w1w2} ⊆ E(G). We break into cases depending on which of
these occur.

Case 1: Either there is a vertex w in V (Int(H)) with g(v) = 4 such that w is
adjacent to both u4 and u6, or there exist vertices w1, w2 in V (Int(H)) such that
g(w1) ≥ 5 and g(w2) ≥ 5 and {w1u4, w2u6, w1w2} ⊆ E(G). Note that by the planarity
of G and by Lemmas 2.2.6-2.2.8, it follows that there does not exist a vertex in V (Int(H))
adjacent to u5. In this case, let G′ be the graph obtained from Int[H] by deleting u1, u5,
and u6, and let C ′ be the outer cycle of G′. Let L′ be the list assignment obtained from L
by removing the colour ϕ(ui) from the lists of all neighbours of ui in Int(H) for i ∈ {1, 5, 6}.
Let L′(ui) = {ϕ(ui)} for i ∈ {2, 3, 4}. Note that since no vertex in Int(H) is adjacent to
u5, there does not exist a vertex w in Int(H) adjacent to u1, u5, and u6. Similarly, there
does not exist a vertex w in Int(H) with g(w) = 4 such that w is adjacent to u1 and u5.
Finally, there do not exist vertices w1, w2 in Int(H) such that g(w1) ≥ 5 and g(w2) ≥ 5
and {w1u1, w2u5, w1w2} ⊆ E(G). Let A′ be the set of vertices v ∈ V (C ′) with g(v) ≥ 5
and |L′(v)| = 2. It follows as in the previous cases that A′ is an independent set, and
moreover that (G′, L′, u2u3u4, A

′) is a canvas. Since g(u3) ≥ 5, it is unexceptional. By the
minimality of K, we have that G′ admits an L′-colouring ϕ. By construction, ϕ ∪ ϕ′ is an
L-colouring of G, a contradiction.

Case 2: there is a vertex w in Int(H) adjacent to u4, u5, and u6. First suppose w
is not adjacent to u1. In this case, as in Case 1 we delete u1, u5, and u6. The argument
is nearly identical as that for Case 1, with one caveat: w is adjacent to u5. However, by
Lemma 2.2.4, it is the only vertex in Int(H) adjacent to u5, and since g(w) = 3, we have
that |L(w)| ≥ 5. This ensures |L′(w)| ≥ 3 in the argument for Case 1. We may thus
assume w is adjacent to u1. In this case, by Lemmas 2.2.4 and 2.2.8 (noting g(u3) ≥ 5),
it follows that w is the only vertex in the interior of H. By the minimality of K, we have
that G− w admits an L-colouring ϕ. Since g(u3) ≥ 5, we have that w is adjacent to only
u1, u6, u5, and u4 on H. As |L(w)| ≥ 5, it follows that ϕ extends to an L-colouring of G, a
contradiction.

2.2.4 Separating Path Lemmas

The proofs of many of our lemmas take the following basic shape: we colour and delete
vertices in V (C) \ V (S), modifying lists where appropriate, and argue about the structure
of the resulting canvas (G′, L′, S ′, A′). The following lemma shows that in doing this, as
long as the set of precoloured vertices does not change (i.e. as long as S ′ = S), we do

38



not create an exceptional canvas of type (i). Moreover, it shows that there are no edges
between vertices in A′ and vertices in A. We will use this lemma extensively throughout
the remainder of the chapter.

Lemma 2.2.10. If v is a vertex in V (Int(C)) that is adjacent to two vertices u,w in
(V (C) \ V (S)) ∪ {v1, vk}, then g(x) = 3 for every x ∈ {u, v, w}.

Proof. Suppose not. The path uvw separates G into two graphs G1 and G2 (note that
since g(x) ≥ 4 for at least one x ∈ {u, v, w}, it follows that for each i ∈ {1, 2}, we have
that V (Gi) \ V (G3−i) ̸= ∅). Since neither u nor w is an internal vertex of the path S, we
may assume without loss of generality that S ⊆ G1.

Note that since K is unexceptional, it follows from Observation 2.2.1 that K[G1] is an
unexceptional canvas. By the minimality of K, we have that G1 admits an L-colouring
ϕ. Let L′ be a list assignment for G2 defined by L′(x) = ϕ(x) for x ∈ {u, v, w}, and
L′(v) = L(v) for x ∈ V (G2) \ {u, v, w}. Since uvw has only three vertices, it is an
acceptable path for G2. Note that (G2, L

′, uvw,A∩V (G2)) is a canvas, and since g(x) ≥ 4
for at least one vertex x ∈ {u, v, w}, it is moreover unexceptional. Since |V (G2)| < |V (G)|
and K is a minimum counterexample to Theorem 2.1.6, G2 admits an L′-colouring ϕ′. But
then ϕ ∪ ϕ′ is an L-colouring of G, a contradiction.

In a similar spirit, we have the following lemma which partially describes the structure
of G surrounding separating paths of length three whose inner vertices have girth at least
five.

Lemma 2.2.11. If v and w are vertices in V (Int(C)) such that:

• g(v) ≥ 5 and g(w) ≥ 5,

• vw ∈ E(G),

• v is adjacent to a vertex v′ ∈ (V (C) \ V (S)) ∪ {v1, vk}, and

• w is adjacent to a vertex w′ ∈ (V (C) \ V (S)) ∪ {v1, vk},

then there exists a vertex u ∈ A that is adjacent to both v′ and w′.

Proof. The proof is nearly identical to that of Lemma 2.2.10: suppose not. Note that
w′ ̸= v′ and w′v′ ̸∈ E(G) since g(v) ≥ 5. Thus the path w′wvv′ separates G into two
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graphs G1 and G2. Since neither w′ nor v′ is an internal vertex of the path S, we may
assume without loss of generality that S ⊆ G1.

Since K is unexceptional, by Observation 2.2.1 so too is K[G1]. By the minimality of
K, we have that G1 admits an L-colouring ϕ. Let L′ be a list assignment for G2 defined by
L′(x) = ϕ(x) for x ∈ {w′, w, v, v′}, and L′(x) = L(x) for x ∈ V (G2) \ {w′, w, v, v′}. Note
that since g(x) ≥ 5 for both x ∈ {v, w}, it follows that w′wvv′ is an acceptable path for G2.
Note that K2 = (G2, L

′, w′wvv′, A ∩ V (G2)) is a canvas. If K2 is an exceptional canvas of
type (i), then there is a vertex u ∈ A adjacent to both v′ and w′, a contradiction. Moreover,
K2 is not an exceptional canvas of type (ii) since both w and v have girth at least five
and every vertex in a generalized wheel has girth three. Finally, K2 is not an exceptional
canvas of type (iii) since its precoloured path has four vertices. Since |V (G2)| < |V (G)|
and K is a minimum counterexample to Theorem 2.1.6, G2 admits an L′-colouring ϕ′. But
then ϕ ∪ ϕ′ is an L-colouring of G, a contradiction.

2.2.5 Broken Wheel Lemmas

The next lemma restricts the set of possible generalized wheels contained in G.

Lemma 2.2.12. Suppose u is a vertex in Int(C) that is adjacent to two distinct vertices
vi and vj on C, where {i, j} ∩ {2, . . . , k − 1} = ∅ (so that neither vi nor vj is an internal
vertex of the path S). Let Q be the path in C with endpoints vi and vj containing no edges
of S. Then G contains a subgraph W which is a broken wheel with principal path viuvj
such that Q is in the outer face boundary of W .

Proof. Suppose not. Note that by Lemma 2.2.10, vi, u, and vj all have girth three. The
path viuvj separates G into two subgraphs G1 and G2. (By Observation 2.2.7, S contains
at least three vertices and so it follows that V (Gi) \ V (G3−i) ̸= ∅ for each i ∈ {1, 2}.)
Since neither vi nor vj is an internal vertex of the path S, we may assume without loss
of generality that S ⊆ G1. By Observation 2.2.1, K[G1] is an unexceptional canvas. By
the minimality of K, it follows that G1 admits an L-colouring ϕ. By assumption, G2 does
not contain a subgraph W that is a broken wheel with principal path viuvj such that
the vertices on the outer cycle of W are on the outer cycle of G2. Suppose G2 does not
contain a generalized wheel W with principal path viuvj such that the vertices on the
outer cycle of W are in the outer cycle of G2. Let L

′ be a list assignment for G2 obtained
from L by setting L′(v) = {ϕ(v)} for v ∈ {vi, u, vj}, and L′(v) = L(v) otherwise. Then
K2 = (G2, L

′, viuvj, A ∩ V (G2)) is a canvas. Note that since viuvj has only three vertices,
it is an acceptable path. If K2 is unexceptional, then G2 admits an L′-colouring ϕ′; but
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then ϕ ∪ ϕ′ forms an L-colouring of G, a contradiction. Thus K2 is exceptional, and since
viuvj has only three vertices, K2 is an exceptional canvas of type (iii).

It follows that G2 contains a subgraph W that is a generalized wheel but not a broken
wheel such that the vertices on the outer cycle of W are on the outer cycle of G2. By
Lemma 2.2.3, every chord of the outer cycle of G2 has u as an endpoint. Thus all edges on
the outer cycle ofW are on the outer cycle of G2. By Lemma 2.2.4, every triangle in G2 has
no vertices in its interior. It follows that W = G2, and so that G2 is a near-triangulation.
By Theorem 2.1.10, there is at most one colouring of viuvj, say φ, that does not extend
to a colouring of G2. Let L⋆(u) = L(u) \ φ(u), and L⋆(v) = L(v) for all v ∈ V (G) \ {u}.
Note that since g(u) = 3 and u ∈ V (Int(C)), we have that |L(u)| ≥ 5. It follows that
|L⋆(u)| ≥ 4.

Since K[G1] is unexceptional and |L⋆(u)| ≥ 4, it follows that (G1, L
⋆, S, A ∩ V (G1))

is an unexceptional canvas. By the minimality of K, we have that G1 admits an L⋆-
colouring φ⋆. Let L⋆⋆ be the list assignment for G2 obtained by setting L⋆⋆(v) = {φ⋆(v)}
for all v ∈ {vi, u, vj} and L⋆⋆(v) = L(v) otherwise. By Theorem 2.1.10 and the fact that
φ⋆(u) ̸= φ(u), we have that (G2, L

⋆⋆, viuvj, A ∩ V (G2)) admits an L⋆⋆-colouring φ⋆⋆. As
φ⋆ ∪ φ⋆⋆ is an L-colouring of G, this is a contradiction.

The following lemma provides some insight into the structure surrounding the broken
wheels described by Lemma 2.2.12. It will be useful in bounding the size of certain broken
wheels in G.

Lemma 2.2.13. Suppose W ⊆ G is a broken wheel with outer cycle ww1w2 . . . wtw and
principal path w1wwt such that w ∈ V (Int(C)); V (W ) \ {w} ⊆ (V (C) \ V (S)) ∪ {v1, vk};
and t ≥ 3. Let 1 ≤ j ≤ t − 2, and let G′ be the graph obtained from G by identifying wj

and wj+2 to a new vertex z and deleting wj+1. Let x ∈ V (G′) \ {z}. The following both
hold.

1. If gG(x) ≥ 5, then gG′(x) ≥ 5.

2. If gG(x) = 4, then gG′(x) ≥ 4.

Proof. Suppose not. Then gG(x) ≥ 4, and gG′(x) < gG(x). Moreover, x ̸∈ V (W ), since
every vertex in a broken wheel has girth three. By Lemma 2.2.3, every chord of the outer
cycle of W has w as an endpoint. Thus all edges on the outer cycle of W other than ww1

and wwt are in E(C). Moreover, every triangle in G —and so in particular, every triangle
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in W —has no vertex in its interior by Lemma 2.2.4. Let H ′ be a smallest cycle in G′

containing x. Note that H ′ is induced. Since gG′(x) < gG(x), it follows that z ∈ V (H ′).
First suppose that w ∈ V (H ′). Then since z ∈ V (H ′) and H ′ is an induced cycle it follows
that zw ∈ E(H ′). Let w′ ̸= w be a neighbour of z in H ′. Since z is the identification of wj

and wj+2, it follows that G contains a cycle P obtained from H ′ by replacing the path wzw′

with one of wwjw
′ and wwj+2w

′. This is a contradiction, since then |V (P )| = |V (H ′)|, but
by assumption |V (H ′)| < gG(x).

Thus we may assume that w ̸∈ V (H ′). It follows that {w1, . . . , wt} \ {wj, wj+1wj+2} ⊆
V (H ′). Let H be the cycle in G obtained from H ′ by replacing z by the path wjwj+1wj+2.
Since every triangle in W has no vertices in its interior and w ̸∈ V (H), it follows that
w ∈ V (Int(H)). Note that |V (H ′)| ≥ 3, and so |V (H)| ≥ 5. If |V (H)| = 5, this contradicts
Lemma 2.2.8 since gG(x) ≥ 4 by assumption and x ∈ V (H). Thus |V (H)| ≥ 6, and so that
that |V (H ′)| ≥ 4. If |V (H)| ≥ 7, then |V (H ′)| ≥ 5 and so gG′(x) ≥ 5, a contradiction.
Thus we may assume that |V (H)| = 6, and so that |V (H ′)| = 4. It follows that gG(x) ≥ 5.
But then this contradicts Lemma 2.2.9, since x ∈ V (H).

We are now equipped to bound the size of certain broken wheels in G.

Lemma 2.2.14. Suppose that W ⊆ G is a broken wheel with outer cycle ww1w2 · · ·wtw
and principal path w1wwt such that w ∈ V (Int(C)); V (W ) \ {w} ⊆ V (C) \ V (S); and
t ≥ 3. There does not exist an index 1 ≤ j ≤ t− 2 such that L(wj) = L(wj+2).

Proof. Suppose not. Let j be an index with 1 ≤ j ≤ t − 2 and L(wj) = L(wj+2). By
Lemma 2.2.3, every chord of the outer cycle of W has w as an endpoint. Thus every
edge on the outer cyce of W other than ww1 and wwt is in E(C). Moreover, note that
every triangle in W has no vertices in its interior by Lemma 2.2.4. Let G′ be the graph
obtained from G by identifying wj and wj+2 to a new vertex z and deleting wj+1. Note
that G′ is planar, and inherits the embedding of G. Set L(z) = L(wj). Since wj is in a
broken wheel in G, gG(wj) = 3. Since wj ̸∈ V (S), it follows from Observation 2.2.5 that
|L(wj)| = |L(z)| = 3. (Similarly, |L(wj+1)| = |L(wj+2)| = 3.) By Lemma 2.2.13, we have
that for all x ∈ V (G′) \ {z}, if gG(x) ≥ 5, then gG′(x) ≥ 5; and that if gG(x) = 4, then
gG′(x) = 4.

It follows from this that K ′ = (G′, L, S, A) is a canvas. Moreover, it follows from
Lemma 2.2.13 that S is an acceptable path in G′. If K ′ is unexceptional, then since
K is a minimum counterexample it follows that G′ admits an L-colouring ϕ. This is a
contradiction, since ϕ extends to an L-colouring of G by setting ϕ(wj) = ϕ(wj+2) = ϕ(z),
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and choosing ϕ(wj+1) ∈ L(wj+1) \ {ϕ(wj), ϕ(w)}. (Since g(wj+1) = 3, it follows that
|L(wj+1)| = 3 and so that wj+1 receives a colour.)

Thus K ′ is an exceptional canvas. Since C is chordless by Lemma 2.2.3, it follows
that K ′ is not an exceptional canvas of type (i) or (ii). Thus we may assume that K ′ is
an exceptional canvas of type (iii), and so that G′ contains a generalized wheel W ′ with
principal path S such that the vertices on the outer cycle ofW ′ are on the outer cycle of G′.
Again because C is chordless it follows that the outer cycle of W ′ is the outer cycle of G′,
and that the outer cycle of G′ is also chordless. Since the outer cycle of every generalized
wheel that is not a wheel or a triangle has a chord, we have that W ′ is a wheel. It follows
that every triangle in G′ corresponds to a triangle in G (replacing z by wj or wj+2 where
appropriate). By Lemma 2.2.4, we have that W ′ = G′; and since w ∈ V (Int(C)), it follows
further that w is the only vertex in W ′ not in the outer cycle of G′. But then G too is a
wheel with principal path S, and since |L(wj+1)| = 3 by Observation 2.2.5, it follows that
K is an exceptional canvas of type (iii) —a contradiction.

To close this subsection, we give one last lemma: it restricts still further the set of broken
wheel subgraphs in G. It is used in Section 3 to argue concisely that upon performing our
main reductions (colouring and deleting a subset of the vertices of G, and adjusting lists
where appropriate), what remains is not an exceptional canvas of type (iii).

Lemma 2.2.15. If S has length two and contains only vertices of girth three and |V (C)| ≥
5, then V (Int(C)) does not contain a vertex w adjacent to v3, v4, and v5.

Proof. Suppose not. By Lemma 2.2.4, triangles in G have no vertices in their interior, and
so Int(wv3v4w) = ∅ and Int(wv4v5w) = ∅. Thus N(v4) = {v3, v5, w}. Since v4 has girth
three, it is not contained in A. Thus by Observation 2.2.5, we have that |L(v3)| = 1 and
|L(v4)| = 3. We claim L(v3) ⊂ L(v4). To see this, suppose not. Let G∗ be the graph
obtained from G by deleting v3, and let L∗ be a list assignment for G∗ obtained by setting
L∗(v) = L(v) for all v ∈ V (G) \ NG(v3), and L∗(v) = L(v) \ L(v3) for all v ∈ NG(v3).
Let C∗ be the graph whose vertex- and edge-set are precisely those of the outer face
boundary of G∗. Let A∗ be the set of vertices with lists of size two under L∗. We now show
that K∗ = (G∗, L∗, S − v3, A

∗) is a canvas. To see this, note that |L∗(v4)| = |L(v4)| by
assumption, and that every vertex v ∈ V (C∗) \ V (C) satisfies |L∗(v)| ≥ |L(v)| − 1. Thus
every vertex v in A∗ \ A has |L(v)| = 3 and hence has girth at least 5 in G. Since every
vertex in A∗ \ A is adjacent to v3, follows from Lemma 2.2.10 that A∗ is an independent
set. Finally, S− v3 has only two vertices; hence S− v3 is an acceptable path in G∗ and K∗

is unexceptional. By the minimality of K there is an L-colouring φ of K∗ which extends
to an L-colouring of K by setting φ(v3) ∈ L(v3), a contradiction. This proves the claim.
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Thus L(v3) ⊂ L(v4). By assumption, g(v4) = 3 and so |L(v4)| = 3. Without loss of
generality we may assume that L(v3) = {1} and that L(v4) = {1, 2, 3}. Let L′ be the list
assignment obtained from L by setting L′(w) = L(w) \ {2, 3}, and L′(v) = L(v) for all
v ∈ V (G)\{w}. Let C ′ be the graph with vertex- and edge-set precisely those of the outer
face boundary walk of G−v4. (Thus C ′ is the cycle obtained from C by replacing the path
v3v4v5 by the path v3wv5.) Note that since w ∈ V (Int(C)) and g(w) = 3, it follows that
|L(w)| ≥ 5 and so that |L′(w)| ≥ 3. Thus K ′ = (G− v4, L

′, S, A) is a canvas.

If K ′ is unexceptional, then by the minimality of K we have that G− v4 admits an L′-
colouring ϕ which extends to an L-colouring of G by choosing ϕ(v4) ∈ L(v4)\{ϕ(v3), ϕ(v5)},
a contradiction.

Thus we may assume that K ′ is an exceptional canvas. Since S is a path of length
two, we have further that K ′ is an exceptional canvas of type (iii). Thus G − v4 contains
a subgraph W that is a generalized wheel with principal path S such that the vertices
on the outer cycle of W are on C ′. Since V (C ′) \ {w} ⊂ V (C) and K is unexceptional,
we have that w ∈ V (W ) and moreover that w is in the outer cycle of W . Let u be the
neighbour of w in the outer cycle W with u ̸= v3. Note that u ∈ V (C). Thus the path
v3wu separates G into two graphs G1 and G2 where without loss of generality S ⊆ G1,
and since C is chordless by Lemma 2.2.3, the outer cycle of G1 is the outer cycle of W .
By Lemma 2.2.4, every triangle in W (and thus in G1) has no vertex in its interior and so
G1 is a near-triangulation. By Lemma 2.2.12, w is adjacent to every vertex in the subpath
of C with endpoints v3 and u containing no edges of S and hence by Lemma 2.2.4, G2 is
a near-triangulation. Thus G is a near-triangulation. Since K is not exceptional, we have
by Theorem 2.1.8 that G admits an L-colouring, a contradiction.

2.2.6 Towards a Deletable Path

In this subsection, we give several lemmas necessary for establishing the existence of our
main reducible configuration, called a deletable path. We end this subsection with the
precise definition of the path. Recall that S = v1v2 . . . vk, and that C = v1v2 · · · vk · · · vqv1.
Moreover, we have assumed that G[V (S)] has an L-colouring. By Lemmas 2.2.4 and 2.2.6
and the fact that k ≤ 4 by definition, it follows that S is not a cycle: that is, q ̸= k.
Lemma 2.2.16 shows that in fact C contains several non-S vertices: in particular, that
q ≥ k + 3. In Lemma 2.2.17, we show that if vk+1 ∈ A, then in fact q ≥ k + 4. Lemma
2.2.20 partially describes the list assignment of vk+1, vk+2, and vk+3. Corollary 2.2.21

44



restricts A ∩ {vk+1, vk+2, vk+3, vk+4} and is used in showing that G contains a deletable
path, formally defined in Definition 2.2.22.

Lemma 2.2.16. q ≥ k + 3.

Proof. Suppose not. As noted above, k ̸= q. We claim thatG[V (C)] admits an L-colouring.
To see this, suppose that V (C) \ V (S) contains only vertices with lists of size two. Then
by definition V (C) \ V (S) ⊆ A —and since A is an independent set in G, it follows that
|V (S)| = 4, and A contains only a single vertex that is adjacent to both v1 and v4. This is a
contradiction, since K is not an exceptional canvas of type (i). It follows that V (C)\V (S)
contains a vertex with a list of size three. Since C is chordless by Lemma 2.2.3, we have
then that G[V (C)] is L-colourable. Therefore since G does not admit an L-colouring,
V (Int(C)) ̸= ∅.

First assume q = k + 1. Note that k = 4 since otherwise one of Lemmas 2.2.4 and
2.2.6 gives a contradiction. By Lemma 2.2.8, every vertex in C (and so in particular, every
vertex in V (S)) has girth three. But then S is not an acceptable path, a contradiction.

Next, assume q = k + 2. Similar to the previous case, if k = 1 then C contradicts
Lemma 2.2.4. If k = 2, then C is a 4-cycle with a vertex in its interior, contradicting
Lemma 2.2.6. If k = 3, then since C is a 5-cycle with a vertex in its interior, by Lemma
2.2.8 every vertex in S has girth three. Note that since C is chordless by Lemma 2.2.3, C
admits an L-colouring. Let ϕ be an L-colouring of C, and let G′ be the graph obtained from
G by deleting v4 and v5. Let C

′ be the graph whose vertex- and edge-set are precisely those
of the outer face boundary of G′. Let L′ be the list assignment for G′ obtained from L by
setting L′(v) = {ϕ(v)} for every v ∈ V (S) and L′(v) = L(v)\{ϕ(x) : x ∈ NG(v)∩{v4, v5}}
for all v ∈ V (G′) \ V (S).

Let A′ be the set of vertices in V (C ′)\V (S) with lists of size at most two under L′. Note
that every vertex v ∈ V (C ′) \ V (S) of girth at most four has |L′(v)| ≥ 3, since vertices
in Int(C) of girth three had lists of size at least five and lost at most two colours, and
vertices in Int(C) of girth four had lists of size at least four and lost at most one colour.
Thus the vertices in A′ all have girth at least five, and so A′ is an independent set. Note
no vertex in A′ is adjacent to both v4 and v5 in G for this reason: thus |L′(v)| = 2 for all
v ∈ A′. Furthermore, (G′, L′, S, A′) is a canvas and does not admit an L′-colouring ϕ′, as
otherwise ϕ ∪ ϕ′ forms an L-colouring of G, a contradiction. By the minimality of K, it
follows that (G′, L′, S, A′) is an exceptional canvas of type (iii): in other words, G′ contains
a generalized wheel W with principal path S such that the vertices on the outer cycle of
W are on the outer face boundary of G′, and no vertex in the outer cycle of W has a list of
size more than three. By the definition of generalized wheel, all vertices in the outer face
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boundary of W have girth three. It follows that all vertices in the outer cycle of W that
are not in V (C) are in Int(C), have girth three, and (as they have lists of size at most three
under L′) are adjacent to both v4 and v5. Since triangles in G have no vertices in their
interiors by Lemma 2.2.4, it follows that there exists exactly one vertex u ∈ V (Int(C))
that is adjacent to both u4 and u5, and therefore only u is in the outer cycle of W and not
in V (C). Thus u is adjacent v1, v3, v4 and v5 in G. Since 4-cycles in G have no vertices
in their interiors by Lemma 2.2.6 and g(v2) = 3 since v2 is in a generalized wheel W , it
follows that u is also adjacent to v2. But then G is a wheel, and K is an exceptional canvas
of type (iii) —a contradiction.

Thus we may assume k = 4, and so that q = 6. In this case, let ϕ be an L-colouring of
C. Let G′ be the graph obtained from G by deleting v6 and v5, and let C ′ be the outer cycle
of G′. Let L′ be the list assignment for G′ obtained from L by setting L′(v) = {ϕ(v)} for
every v ∈ V (S) and L′(v) = L(v) \ {ϕ(x) : x ∈ NG(v) ∩ {v5, v6}} for all v ∈ V (G′) \ V (S).

Note that every vertex v ∈ V (C ′) \ V (S) of girth at most four has |L′(v)| ≥ 3: to see
this, note that if v has girth three in G, then |L(v)| ≥ 5; similarly, if v has girth four in G,
then |L(v)| ≥ 4 and v is adjacent to at most one of v5 and v6 in G.

Let A′ ⊆ V (C ′) \ V (S) be the set of vertices v with |L′(v)| ≤ 2. Note that A′ contains
only vertices of girth at least five by the foregoing paragraph. It follows that A′ is an
independent set, since every vertex in A′ is adjacent to one of v5 and v6 in G. Furthermore,
since every vertex in A′ has girth at least five, |L′(v)| = 2 for all v ∈ A′. Thus (G′, L′, S, A′)
is a canvas. Finally, no vertex in A′ is adjacent to either of v1 or v4, again because every
vertex in A′ has girth at least five and is adjacent to one of v5 and v6. Thus (G

′, L′, S, A′)
is not exceptional of type (i) or (ii), and since |V (S)| = 4, (G′, L′, S, A′) is not exceptional
of type (iii). By the minimality of K, it follows that G′ admits an L′-colouring ϕ′. By
construction, ϕ′ ∪ ϕ is an L-colouring of G, a contradiction.

If vk+1 ∈ A, then Lemma 2.2.16 can be strengthened. This is shown below.

Lemma 2.2.17. If vk+1 ∈ A, then q ̸= k + 3.

Proof. Suppose not. Note that we may assume |V (S)| = 4, as otherwise since g(vk+1) ≥ 5,
we obtain a contradiction to one of Lemmas 2.2.6-2.2.9. We break into cases, depending
on whether or not vk+3 is in A.

Case 1: vk+3 is in A. In this case, let ϕ be a colouring of C. Note that ϕ exists, since
C is chordless by Lemma 2.2.3 and vk+2 ̸∈ A. Thus V (Int(C)) ̸= ∅. Let G′ be the graph
obtained from G by deleting vk+1, vk+2, and vk+3. Let L′ be the list assignment for G′
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obtained from L by setting L′(v) = {ϕ(v)} for every v ∈ V (S) and L′(v) = L(v) \ {ϕ(x) :
x ∈ NG(v) ∩ {vk+1, vk+2, vk+3}} for every v ∈ V (G′) \ V (S). Let C ′ be the graph whose
vertex- and edge-set are precisely those of the outer face boundary of G′, and let A′ be the
set of vertices in V (C ′) \ V (S) with lists of size at most two under L′. We now show that
K ′ = (G′, L′, S, A′) is a canvas. Note that every vertex x ∈ V (Int(C)) is adjacent to at
most one of vk+1, vk+2, and vk+3: this follows immediately from the fact that both vk+1 and
vk+3 are in A, and so by definition have girth at least five. Thus |L′(x)| ≥ 4 for every vertex
x of girth three in V (C ′) \ V (S). Similarly, |L′(x)| ≥ 3 for every vertex x of girth four in
V (C ′) \ V (S). Thus A′ contains only vertices of girth at least five, and moreover every
vertex v in A′ satisfies |L′(v)| = 2. It remains only to show that A′ is an independent set.
Suppose not: then there exist vertices a1, a2 in A

′ such that {a1a2, a1vk+3, a2vk+1} ⊂ E(G).
But by Lemma 2.2.8, V (Int(a1a2vk+1vk+2vk+3a1)) = ∅ since g(a1) ≥ 5. This implies that
deg(vk+2) = 2, which is of course a contradiction since |L(vk+2)| = 3 and K is a vertex-
minimum counterexample. Thus K ′ is a canvas. We now show it is unexceptional. It is
not exceptional of type (iii) since |V (S)| = 4. Moreover, it is not exceptional of type (i)
since every vertex in A′ has girth at least five and is adjacent to one of vk+1, vk+2, and vk+3

in G. Finally, as noted above each vertex x ∈ V (C ′) \ V (S) with g(x) = 3 has |L′(x)| ≥ 4.
Since K is unexceptional, it thus follows that K ′ is not an exceptional canvas of type (ii).

Case 2: vk+3 is not in A. Since A is an independent set and vk+1 ∈ A, it follows that
vk+2 ̸∈ A and so that |L(vk+2)| = 3. Thus vk+2 contains a colour c not in the list of vk+1. Let
ϕ be a colouring of vk+2 and vk+3, where ϕ(vk+2) = c and ϕ(vk+3) ∈ L(vk+3)\ ({c}∪L(v1)).
Let G′ be obtained from G by deleting vk+2 and vk+3. Let L

′ be the list assignment for G′

obtained from L by setting L′(v) = {ϕ(v)} for every v ∈ V (S) and L′(v) = L(v) \ {ϕ(x) :
x ∈ NG(v) ∩ {vk+2, vk+3}} for every v ∈ V (G′) \ V (S). Note that by our choice of ϕ,
we have that L(vk+1) = L′(vk+1). Let A′ be the set of vertices v ∈ V (G′) \ V (S) with
|L′(v)| ≤ 2, and let C ′ be the graph whose vertex- and edge-set are precisely those of the
outer face boundary of G′. As in the previous case, we will argue that (G′, L′, S, A′) is
an unexceptional canvas. First, note that since every vertex v ∈ V (C ′) \ V (S) of girth
three has |L(v)| ≥ 5, it follows that for each such vertex |L′(v)| ≥ 3. Similarly, since every
vertex v ∈ V (C ′) \ V (S) with g(v) = 4 is adjacent to at most one of vk+2 and vk+3 in G,
it follows that each such vertex has |L′(v)| ≥ 4. Thus every vertex in A′ has girth at least
five. Note furthermore that every vertex in A′ has at least two colours in its list under L′,
since c ̸∈ L(vk+1) and every vertex in A′ is adjacent to at most one of vk+2 and vk+3. We
claim moreover that A′ is an independent set: again, this follows easily from the fact that
every vertex in A′ has girth five and is adjacent to one of vk+2 and vk+3.

Thus (G′, L′, S, A′) is a canvas; it remains only to show it is unexceptional. That it is
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not exceptional of type (i) follow from the facts that vk+1 ∈ A′ and C is chordless (thus
v1vk+1 ̸∈ E(G)), and that no vertex in A′ \ A is adjacent to both v1 and v4 since every
vertex in A′ \ A is adjacent to one of vk+2 and vk+3. Suppose now that (G′, L′, S, A′) is
exceptional of type (ii). In this case, there exists a vertex v ∈ V (Int(C)) of girth three
that is adjacent to a vertex u in A′ and |L′(v)| = 3. Since |L(v)| ≥ 5, it follows that v is
adjacent to both vk+3 and vk+2. Since every vertex in A′ is adjacent to one of vk+3 and
vk+2 in G and has girth at least five, this is a contradiction. Finally, (G′, L′, S, A′) is not
an exceptional canvas of type (iii) since S contains four vertices. By the minimality of K
and the fact that |V (G′)| < |V (G)|, we have that G′ admits an L′-colouring ϕ′. This again
is a contradiction, since ϕ ∪ ϕ′ is an L-colouring of G.

We make the following definitions for convenience.

Definition 2.2.18. Let k′ be an index defined as follows: if vk+1 ∈ A, then k′ = k + 1.
Otherwise, k′ = k.

Definition 2.2.19. The available colour c at vk′ is defined as follows: if k = k′, then
c ∈ L(vk′), and if k′ = k + 1, then c ∈ L(vk′) \ L(vk).

By Observation 2.2.5, |L(vk)| = 1 and if vk+1 ∈ A, then |L(vk′)| = 2. We will show
below in Lemma 2.2.20 (1) that the available colour at vk′ is uniquely determined.

By Lemmas 2.2.16 and 2.2.17, there exist vertices vk′+1, vk′+2, vk′+3 ∈ V (C)\V (S). The
following lemma partially describes their list assignments.

Lemma 2.2.20. The following hold.

(1) L(vk) ⊂ L(vk+1),

(2) L(vk′+1) \ {c} ⊆ L(vk′+2), where c is the available colour at vk′, and

(3) L(vk′+2) ⊆ L(vk′+3).

Proof of (1). Suppose not. That is, suppose L(vk) ̸⊂ L(vk+1). Recall that by Observation
2.2.5, |L(vk)| = 1. Let G′ = G − vk, and let L′ be a list assignment for G′ defined by
L′(v) = L(v) \L(vk) for all v ∈ NG(vk), and L

′(v) = L(v) for all v ∈ V (G′) \NG(vk). Note
that L(vk+1) = L′(vk+1) since L(vk) ̸⊂ L(vk+1). Let A

′ be the set of vertices in V (G′)\V (S)
that have lists of size at most two under L′. Since L(vk+1) = L′(vk+1), it follows that
vk+1 ̸∈ A′ \ A. Since C is chordless by Lemma 2.2.3, it follows that A′ \ A ⊆ V (Int(C)).
Thus every vertex v ∈ A′ \ A is a neighbour of vk in G and has |L(v)| = 3, and so every
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vertex v ∈ A′ \ A satisfies both |L′(v)| = 2 and g(v) ≥ 5. Since every vertex in A has
girth at least five by definition, it follows that every vertex in A′ has girth at least five.
Since every vertex in A′ \ A is adjacent to vk in G and is in V (Int(C)), it follows from
Lemma 2.2.10 that A′ is an independent set. Thus (G′, L′, S − vk, A

′) is a canvas. Note
that S − vk is an acceptable path in G′, since a subpath of an acceptable path is itself
acceptable. Furthermore, note that |V (S − vk)| ≤ 3; and if |V (S − vk)| = 3, then by the
definition of acceptable path S − vk contains a vertex of girth at least four. It follows
that (G′, L′, S − vk, A

′) is unexceptional. By the minimality of K, we have that G′ admits
an L′-colouring ϕ. But ϕ extends to an L-colouring of G by setting ϕ(vk) ∈ L(vk), a
contradiction.

Proof of (2). Suppose not. That is, suppose there exists a colour c′ ∈ L(vk′+1) \ ({c} ∪
L(vk′+2)). Let G

′ = G − vk′+1, and let L′ be a list assignment for G′ defined by L′(v) =
L(v) \ {c′} for all v ∈ NG(vk′+1) \ {vk′}, and L′(v) = L(v) for all other v ∈ V (G′). Let A′

be the set of vertices in V (G′) \ V (S) that have lists of size at most two under L′. Since
c′ ̸∈ L(vk′+2), it follows that L′(vk′+2) = L(vk′+2). Since C is chordless by Lemma 2.2.3,
we have further that A′ \ A ⊆ V (Int(C)). We claim K ′ = (G′, L′, S, A′) is a canvas; the
argument is identical to that in the proof of (1).

First suppose K ′ is unexceptional. Then by the minimality of G we have that G′ admits
an L′-colouring ϕ. By the definition of available colour at vk′ , it follows that ϕ(vk′) = c.
Since c ̸= c′, we have that ϕ extends to an L-colouring of G by setting ϕ(vk′+1) = c′, a
contradiction. Thus we may assume that K ′ is exceptional.

Suppose next that K ′ is an exceptional canvas of type (i). Then there exists a vertex
u ∈ A′ adjacent to v1 and v4. Since K is unexceptional, we have that u ̸∈ A. Thus
u ∈ A′ \ A; but v1uv4 contradicts Lemma 2.2.10, since u ∈ V (Int(C)) and g(u) ≥ 5.

Next, suppose (G′, L′, S, A′) is an exceptional of type (ii). Then there exists a vertex
v ∈ V (G′) \ V (S) with g(v) = 3 and |L′(v)| = 3 such that v is adjacent to one of v2
and v3. Since C is chordless, v ∈ V (Int(C)), and so |L(v)| ≥ 5. But then |L′(v)| ≥ 4, a
contradiction.

Thus we may assume that K ′ is an exceptional canvas of type (iii), and therefore that
G′ contains a generalized wheelW such that the vertices on the outer cycle ofW are on the
outer cycle of G′ and have lists of size at most three under L′. Since K is unexceptional, it
follows that there exists a vertex w on the outer cycle of W that is not on the outer cycle
of G. Since w ∈ V (W ), we have that g(w) = 3 and so |L(w)| ≥ 5. But then |L′(w)| ≥ 4,
a contradiction.
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Proof of (3). Suppose not. That is, suppose there exists a colour c′ ∈ L(vk′+2) \ L(vk′+3).
Let ϕ be an L-colouring of vk′+2 and vk′+1 where ϕ(vk′+2) = c′ and where ϕ(vk′+1) ∈
L(vk′+1)\{c, c′}, where c is the available colour at vk′ . Note that since A is an independent
set, |L(vk′+1)| = 3 and so ϕ exists as described.

Let G′ be the graph obtained from G by deleting vk′+1 and vk′+2, and let C ′ be the
subgraph of G′ with vertex-set and edge-set equal to that of the outer face boundary
walk of G′. Let L′ be a list assignment obtained from L by setting L′(vk′) = L(vk′), and
L′(v) = L(v) \ {ϕ(vi) : i ∈ {k′ + 1, k′ + 2} and vi ∈ N(v)} for all v ∈ V (G′) \ {vk′}. Let
A′ be the set of vertices in V (G′) \ V (S) with lists of size at most two under L′. Note
that by assumption, L′(vk′+3) = L(vk′+3) and so since C is chordless by Lemma 2.2.3 it
follows that every vertex v ∈ V (C) \ {vk′+1, vk′+2} satisfies L(v) = L′(v). We claim that
K ′ = (G′, L′, S, A′) is a canvas. To see this, note that every vertex v ∈ V (Int(C)) with
g(v) = 3 satisfies |L(v)| ≥ 5 and thus |L′(v)| ≥ 3. Similarly, every vertex v ∈ V (Int(C))
of girth four is adjacent to at most one of vk′+1 and vk′+2 in G and so satisfies |L′(v)| ≥ 3.
It follows that every vertex v ∈ A′ has girth at least five and so has exactly two colours
in its list under L′. Finally, we note that A′ is an independent set. To see this, observe
that every vertex in A′ \ A has girth at least five and is adjacent to one of vk′+1 and vk′+2

in G. Thus A′ \A is an independent set, and it follows from Lemma 2.2.10 that there are
no edges between vertices in A′ \ A and vertices in A. This proves the claim that K ′ is a
canvas.

First suppose thatK ′ is unexceptional. By the minimality ofK, we have that G′ admits
an L′-colouring ϕ′. But then ϕ ∪ ϕ′ is an L-colouring of G, a contradiction. Thus we may
assume K ′ is exceptional.

Suppose next that K ′ is an exceptional canvas of type (i). Then there exists a vertex
u ∈ A′ adjacent to v1 and v4. Since K is unexceptional, we have that u ̸∈ A. Thus
u ∈ A′ \ A; but v1uv4 contradicts Lemma 2.2.10 since u ∈ V (Int(C)) and g(u) ≥ 5.

Next, suppose that K ′ is an exceptional canvas of type (ii). Then there exists a vertex
w ∈ V (G′) \ V (S) with g(w) = 3 and |L′(w)| = 3 such that w is adjacent to one of v2 and
v3 and to a vertex u ∈ A′. Since C is chordless, w ∈ V (Int(C)). Since |L′(w)| = 3 and
w ∈ V (Int(C)), it follows that w is a neighbour of both vk′+1 and vk′+2 in G. If u ∈ A,
then uwvk′+1 contradicts Lemma 2.2.10 since g(u) ≥ 5. Thus u ∈ A′ \A, and so it follows
that u is adjacent to a vertex v in {vk′+1, vk′+2}. This is a contradiction, since g(u) ≥ 5
and uvwu is a cycle of length 3.

Thus we may assume K ′ is an exceptional canvas of type (iii). Then k = 3, and S
contains only vertices of girth three. Moreover, G′ contains a generalized wheel W such
that the vertices on the outer cycle of W are on the outer cycle of G′ and have lists of
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size at most three under L′. Let v1v2v3w1 . . . wtv1 be the outer face boundary walk of W .
Since |L′(w1)| = 3, it follows that |L(w1)| ≥ 3. Thus w1 ̸∈ A. Moreover, w1 ̸= vk′+1 since
vk′+1 ̸∈ V (G′). It follows that w1 ̸= v4, and so that w1 ∈ V (Int(C)). Thus |L(w1)| ≥ 5;
and since |L′(w1)| = 3, we have that w1 is adjacent to both vk′+1 and vk′+2 in G. Since
5 ∈ {k′ + 1, k′ + 2}, we have that w1v5 ∈ E(G). Since w1 is adjacent to v3, it follows from
Lemma 2.2.12 that w1 is also adjacent to v4 in G. This contradicts Lemma 2.2.15.

We require one final corollary, which will be used to show that G contains our main re-
ducible configuration. The corollary shows that A∩{vk+1, vk+2, vk+3, vk+4} ̸∈ {{vk+1, vk+4},
{vk+3}}.
Corollary 2.2.21. vk′+3 ̸∈ A.

Proof. Suppose not. Since vk′+3 ∈ A, it follows that |L(vk′+3)| = 2. Since A is an inde-
pendent set, vk′+2 ̸∈ A and so by Observation 2.2.5 we have that |L(vk′+2)| = 3. But this
contradicts Lemma 2.2.20 (3).

SinceA is an independent set, we thus have that if vk+1 ∈ A, thenA∩{vk+2, vk+3, vk+4} ∈
{∅, {vk+3}}. Similarly, if vk+1 ̸∈ A, then A ∩ {vk+1, vk+2, vk+3} ∈ {∅, {vk+2}}. To summa-
rize: A ∩ {vk′+1, vk′+2, vk′+3} ∈ {∅, {vk′+2}}.

We now define our main reducible configuration. It follows from Lemmas 2.2.16 and
2.2.17 that q ≥ k′+3. Recall that by Observation 2.2.5, every vertex in V (C)\ (V (S)∪A)
has a list of size three.

Definition 2.2.22. Let P = vk′+1vk′+2 . . . vj be a subpath of C satisfying the following set
of conditions:

1. j ∈ {k′ + 3, . . . , q},

2. either V (P ) ∩ A = {vk′+2} or V (P ) ∩ A = ∅,

3. L(vi−1) ⊆ L(vi) for all k
′ + 3 ≤ i ≤ j, and

4. L(vj) ̸⊆ L(v(j mod q)+1).

We call P a deletable path.

By Corollary 2.2.21, we have that A ∩ {vk′+1, vk′+2, vk′+3} ∈ {∅, {vk′+2}}. Thus we
immediately have the following.

Corollary 2.2.23. G contains a deletable path.
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2.3 Proving Theorem 2.1.6

Before proceeding, we give a brief overview of this section. This section contains a proof
of our main technical theorem, Theorem 2.1.6. Recall that K = (G,L, S,A) is a coun-
terexample to Theorem 2.1.6, where |V (G)| is minimized over all counterexamples to the
theorem, and subject to that, where

∑
v∈V (G) |L(v)| is minimized. By Corollary 2.2.23, G

contains a deletable path P = vk′+1vk′+2 . . . vj.

Most of the lemmas in this section take the following basic shape: we colour and
delete P , and argue about the structure of what remains. In Lemma 2.3.1, we show that
V (P ) ∩A = {vk′+2} and argue that there exists a separating path as described in Lemma
2.2.11, where the endpoints of the path are vk′+1 and vk′+3.

From there, Lemma 2.3.2 establishes that no vertex in Int(C) is adjacent to two vertices
on P at distance at least two in P . This will be useful in arguing that upon deleting P
and modifying lists where appropriate, what remains is a canvas: that is, no list loses too
many colours. Finally, in Lemma 2.3.3, we colour and delete P as well as the separating
path described in Lemma 2.3.1 and argue via a series of claims that what remains is an
unexceptional canvas. By induction, this canvas admits an L-colouring —and so G admits
an L-colouring. This shows that K is not a counterexample to Theorem 2.1.6, completing
the proof.

We begin with the following lemma.

Lemma 2.3.1. V (P ) ∩ A = {vk′+2}, and there exist distinct vertices u1, u2 ∈ V (Int(C))
with g(u1) ≥ 5 and g(u2) ≥ 5 such that u1 is adjacent to vk′+1, u2 is adjacent to vk′+3, and
u1 is adjacent to u2.

Proof. Suppose not. Let ϕ be an L-colouring of P such that: ϕ(vj) ̸∈ L(v(j mod q)+1);
ϕ(vk′+1) ∈ L(vk′+1) \ {c}, where c is the available colour at vk′ ; if vk′+2 ̸∈ A, then ϕ is a
2-colouring of P − vk′+1; and if vk′+2 ∈ A, then ϕ is a 2-colouring of P − vk′+1 − vk′+2.
Note that ϕ exists: by Observation 2.2.5 and the definition of deletable path we have that
L(vk′+3) = L(vi) for all i ∈ {k′ + 4, . . . , j}, and if vk′+2 ̸∈ A, then L(vk′+2) = L(vk′+3) as
well. By Observation 2.2.5 and Lemma 2.2.20 (1), the available colour at vk′ is unique.

Let G′ be the graph obtained from G by deleting V (P ), and let L′ be the list assignment
for G′ obtained from L by setting L′(vk′) = L(vk′) and L

′(v) = L(v) \ {ϕ(x) : x ∈ V (P ) ∩
NG(v)} for all v ∈ V (G′) \ {vk′}. Let C ′ be the subgraph of G′ whose vertex- and edge-set
are precisely those of the outer face boundary walk of G′, and let A′ be the set of vertices
in V (G′) \ V (S) with lists of size at most two under L′.

We now show the following.
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Claim 1. (G′, L′, S, A′) is a canvas.

Proof. Suppose not. Note that by our choice of L′, every vertex v ∈ V (S) satisfies |L′(v)| =
1. First suppose there exists a vertex v ∈ V (C ′) \ V (S) with g(v) = 3 and |L′(v)| < 3.
Note that if v ∈ V (C) \ V (S), then since C is chordless by Lemma 2.2.3 and ϕ(vj) ̸∈
L(v(j mod q)+1) by our choice of ϕ, it follows that |L′(v)| ≥ 3, a contradiction. Thus we
may assume v ∈ V (C ′) \V (C), and so that v ∈ V (Int(C)). Since g(v) = 3, we have by the
definition of canvas that |L(v)| ≥ 5. Since |L′(v)| < 3, it follows that v is adjacent to at least
three vertices in V (P ); and in particular, since ϕ is a 2-colouring of P − vk′+2 − vk′+1, that
either vvk′+1 ∈ E(G) or vvk′+2 ∈ E(G). Let ℓ be the smallest index such that vvℓ ∈ E(G)
and ℓ ∈ {k′ +1, k′ +2}. Let m be the largest index such that vm ∈ NG(v)∩ V (P ). Since v
neighbours at least three vertices in P , it follows thatm ≥ ℓ+2. By Lemma 2.2.12, since v is
adjacent to vℓ and vm, we have that v is also adjacent to vℓ+1, vℓ+2, . . . , vm−1. Thus for each
i ∈ {ℓ, . . . ,m}, we have that g(vi) = 3. Since i ≤ k′ + 2 < m, it follows that g(vk′+2) = 3
and so that vk′+2 ̸∈ A. Thus by the definition of deletable path, L(vk′+2) = L(vk′+3). It
then follows from Lemma 2.2.14 that ℓ = k′ + 1 and m = k′ + 3.

Hence v is adjacent to vk′+1, vk′+2, and vk′+3. Note that by Lemma 2.2.4,
V (Int(vvk′+1vk′+2v)) = V (Int(vvk′+2vk′+3v)) = ∅. Let G′′ be the graph obtained from G by
identifying vk′+1 and vk′+3 to a new vertex z and deleting vk′+2. Let L(z) = L(vk′+1). Note
that by Lemma 2.2.20 (2) and (3), we have that L(vk′+1) \ {c} ⊆ L(vk′+3), where c is the
available colour at vk′ . By Lemma 2.2.13, for every vertex x ∈ V (G′′), if gG(x) ≥ 5, then
gG′′(x) ≥ 5, and similarly if gG(x) = 4, then gG′′(x) ≥ 4. It follows that S is an acceptable
path in G′′. Note that K ′′ = (G′′, L, S, A) is a canvas; in particular, |L(z)| = 3.

First suppose K ′′ is unexceptional. By the minimality of K, we have that K ′′ admits an
L-colouring φ. Note that by definition of available colour, φ(z) ̸= c, where c is the available
colour at vk′ . But then φ(z) ∈ L(vk′+3), and so φ extends to an L-colouring of G by setting
φ(vk′+1) = φ(vk′+3) = φ(z) and φ(vk′+2) ∈ L(vk′+2) \ {φ(z), φ(v)}, a contradiction.

Thus we may assume that K ′′ is an exceptional canvas. Since C is chordless by Lemma
2.2.3, z ̸∈ A, and K is unexceptional, we have that K ′′ is not an exceptional canvas of type
(i) or (ii). We may therefore assume that K ′′ is an exceptional canvas of type (iii), and thus
that G′′ contains a subgraphW that is a generalized wheel with principal path S such that
the vertices on the outer cycle of W are on the outer face boundary of G′′ and all have lists
of size at most three under L. Again because C is chordless it follows that the outer cycle
of W is the outer cycle of G′′, and that the outer cycle of G′′ is also chordless. Since every
generalized wheel that is neither a triangle nor a wheel has a chord in its outer cycle, it
follows that W is either a triangle or a wheel. Note that since K is unexceptional, we have
that z ∈ V (W ). Since |V (W )| ≥ |V (S)|+ |{z}| = 4, we have that W is a wheel. It follows
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that every triangle in G′′ corresponds to a triangle in G (replacing z by vk′+1 or vk′+3 where
appropriate). By Lemma 2.2.4, we have that W = G′′; and since v ∈ V (Int(C)), it follows
further that v is the only vertex in W not in the outer cycle of G′′. But then G too is a
wheel with principal path S, and since |L(vk′+2)| = 3 by Observation 2.2.5, it follows that
K is an exceptional canvas of type (iii), a contradiction. Thus we may assume that every
vertex in V (C ′) \ V (S) of girth three has a list of size at least three under L′.

Next suppose that there exists a vertex v ∈ V (C ′)\V (S) with |L′(v)| ≤ 2 and g(v) = 4.
Note that by our choice of ϕ and the fact that C is chordless by Lemma 2.2.3, we have
that L′(v) = L(v) for all v ∈ V (C). Thus we may assume that v ∈ V (C ′) \ V (C), and
so that v ∈ V (Int(C)). Thus |L(v)| ≥ 4. By Lemma 2.2.10, since g(v) = 4 we have that
v is adjacent to at most one vertex in V (P ) and thus since |L(v)| ≥ 4, it follows that
|L′(v)| ≥ 3, a contradiction. Thus we may assume that every vertex in V (C ′) \ V (S) of
girth four has a list of size at least three under L′.

It follows from the above that every vertex in A′ has girth at least five. Suppose now
that there exits a vertex v ∈ A′ with |L′(v)| ≤ 1. Note that if v ∈ V (C), then by our choice
of ϕ and the fact that C is chordless by Lemma 2.2.3 it follows that L(v) = L′(v). Thus we
may assume that v ∈ V (C ′) \ V (C), and so that v ∈ V (Int(C)). By Lemma 2.2.10, since
g(v) ≥ 5 we have that v is adjacent to only one vertex in V (P ) and so that |L′(v)| ≥ 2,
a contradiction. Thus we may assume that every vertex in V (C ′) \ V (S) of girth at least
five has a list of size at least two under L′.

Since we assumed K ′ is not a canvas, it follows that A′ is not an independent set. Thus
there exist distinct vertices u1, u2 ∈ A′ such that u1u2 ∈ E(G). (Note that A′ ∩ V (P ) = ∅,
and so that in particular vk′+2 ̸∈ {u1, u2}.) Since C is chordless, {u1, u2} ̸⊆ A. Suppose
that exactly one of u1 and u2 is in A. This contradicts Lemma 2.2.10, since g(ui) ≥ 5
for each i ∈ {1, 2} and every vertex in A′ \ A is adjacent to a vertex in V (P ). Thus we
may assume that {u1, u2} ⊆ A′ \ A, and so that {u1, u2} ⊆ V (Int(C)). Recall that by the
definition of deletable path, either V (P ) ∩ A = ∅ or V (P ) ∩ A = {vk′+2}. Since g(u1) ≥ 5
and g(u2) ≥ 5 and each of u1 and u2 is adjacent to a vertex in V (P ), it follows from Lemma
2.2.11 that V (P )∩A = {vk′+2}, and that, up to relabelling u1 and u2, both u1vk′+1 ∈ E(G)
and u2vk′+3 ∈ E(G). Thus the hypotheses of Lemma 2.3.1 hold, a contradiction.

Thus K ′ = (G′, L′, S, A′) is a canvas by Claim 1. First suppose K ′ is unexceptional.
Then by the minimality of K we have that K ′ admits an L′-colouring ϕ′. But then ϕ∪ϕ′ is
an L-colouring of G, a contradiction. We may therefore assume that K ′ is an exceptional
canvas.

Suppose next that K ′ is an exceptional canvas of type (i). Then there exists a vertex
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u ∈ A′ adjacent to v1 and v4. Since K is unexceptional, u ̸∈ A. Thus u ∈ A′ \ A, and so
u ∈ V (Int(C)). But then v1uv4 contradicts Lemma 2.2.10, since g(u) ≥ 5.

Next suppose that K ′ is exceptional of type (ii). Then |V (S)| = 4, and moreover G′

contains a vertex w ∈ V (G′) \ V (S) of girth three with |L′(w)| = 3 adjacent to one of v2
and v3, and a vertex u ∈ A′ adjacent to w and one of v4 and v1. Since |L′(w)| = 3 and C
is chordless by Lemma 2.2.3, it follows that w ∈ V (C ′) \ V (C), and so that w is adjacent
in G to at least two vertices on P . If u ∈ A, then w contradicts Lemma 2.2.10 since w is
adjacent to u and a vertex on P and g(u) ≥ 5. Thus we may assume u ∈ A′ \A. But then
since u is adjacent to one of v1 and v4, again this contradicts Lemma 2.2.10, since every
vertex in A′ \ A is adjacent to a vertex on P and g(u) ≥ 5.

Thus we may assume K ′ is an exceptional canvas of type (iii). Then k = 3, and S
contains only vertices of girth three. Moreover, G′ contains a generalized wheel W such
that the vertices on the outer cycle of W are on the outer cycle of G′ and have lists
of size at most three under L′. Let v1v2v3w1 . . . wtv1 be the outer cycle of W . Since
|L′(w1)| = 3, it follows that |L(w1)| ≥ 3. Thus w1 ̸∈ A. Moreover, w1 ̸= vk′+1 since
vk′+1 ̸∈ V (G′). It follows that w1 ̸= v4, and so since C is chordless by Lemma 2.2.3 we
have that w1 ∈ V (Int(C)). Since g(w1) = 3, we have further that |L(w1)| ≥ 5; and since
|L′(w1)| = 3, we have that w1 is adjacent to at least two vertices in V (P ). Since w1 is also
adjacent to v3, it follows from Lemma 2.2.12 that w is adjacent to v4 and v5 in G. This
contradicts Lemma 2.2.15.

Following Lemma 2.3.2, our final lemma—Lemma 2.3.3—will also involve colouring
and deleting P , restricting lists where appropriate, and arguing that what remains is an
unexceptional canvas. Lemma 2.3.2 shows that in doing so, the vertices in Int(C) lose at
most one colour from their list.

Lemma 2.3.2. There does not exist a vertex v ∈ V (Int(C)) such that v is adjacent to two
vertices in V (P ) at distance at least two in P .

Proof. Suppose not, and let v be a vertex adjacent to two vertices of P at distance at least
two. Let i be the smallest index with k′+1 ≤ i ≤ j−2 such that vi ∈ NG(v)∩V (P ). Let m
be the largest index with k′+3 ≤ m ≤ j such that vm ∈ NG(v)∩V (P ). By Lemma 2.2.12,
v is adjacent to every vertex in {vi, vi+1, . . . , vm}: that is, vvivi+1 . . . vmv is the outer cycle
of a broken wheel with principal path vmvvi. By Lemma 2.3.1, V (P )∩A = {vk′+2}. Since
g(vk′+2) ≥ 5, it follows that i ≥ k′+3. By the definition of P , we have that L(vm) = L(vi).
Since m ≥ i+ 2, this contradicts Lemma 2.2.14.
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vk′+3

vk′+1

vk′

vk′+2

u2

u1

vk′+3

vk′+1

vk′+2

vk′vk

u2

u1

Figure 2.2: The final cases considered in Lemma 2.3.3. Vertices in S are black; vertices
in A are drawn as four-pointed stars. On the left, vk+1 ̸∈ A and so k = k′. On the right,
since vk+1 ∈ A, it follows that k′ = k + 1. Recall that by definition, the deletable path P
begins at vk′+1; recall moreover that by Lemma 2.2.8, since g(u1) = 5 it follows that the
5-cycles in the figure have no vertices in their interior.

The following lemma concludes the proof of Theorem 2.1.6 (and moreover this chapter
of the thesis). See Figure 2.2 (below) for an illustration of the cases considered in Lemma
2.3.3.

Lemma 2.3.3. K is not a counterexample to Theorem 2.1.6.

Proof. Suppose not. By Corollary 2.2.21, G contains a deletable path P , and by Lemma
2.3.1, V (P ) ∩ A = {vk′+2} and there exists an edge u1u2 in E(Int(C)) such that both u1
and u2 have girth at least five, and {u1vk′+1, u2vk′+3} ⊂ E(G). By Lemma 2.2.8, we have
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that Int(u1u2vk′+3vk′+2vk′+1u1) = ∅, and so that NG(vk′+2) = {vk′+1, vk′+3}. We first show
the following.

Claim 2. There exists an L-colouring ϕ of G[{u1, u2} ∪ V (P ) ∪ V (S)] such that:

• ϕ(vj) ̸∈ L(v(j mod q)+1), and

• ϕ(vk′+1) is not the available colour at vk′.

Proof. Note that by Lemma 2.2.10, since g(u1) ≥ 5 it follows that vk′+1 is the unique
neighbour of u1 in V (P ) ∪ {v1, vk}. Similarly, since g(u2) ≥ 5, we have that vk′+3 is the
unique neighbour of u2 in V (P )∪{v1, vk}. Since each of u1 and u2 have girth at least five,
it follows that at most one of u1 and u2 has a neighbour in V (S).

Since |L(vk′+1)| = 3 and C is chordless by Lemma 2.2.3, we have that G[V (P )∪ V (S)]
admits an L-colouring ϕ as described in the statement of the claim (by first colouring S
and then the vertices of P in decreasing order of index). Moreover, as argued above there
exists i ∈ {1, 2} such that ui has degree at most two in H = G[{u1, u2} ∪ V (P ) ∪ V (S)].
After colouring G[V (P ) ∪ V (S)], we then colour u3−i with a colour ϕ(u3−i) ∈ L(u3−i) \
{ϕ(x) : x ∈ NH(u3−i)}. Note that u3−i has at most two neighbours in H − ui, and so
since |L(u3−i)| ≥ 3, we have that ϕ(u3−i) exists. Finally, we colour ui with a colour in
L(ui) \ {ϕ(x) : x ∈ NH(ui)}. Since ui has at most two neighbours in H and |L(ui)| ≥ 3,
this is possible.

Let ϕ be as in the statement of Claim 2, and let G′ be the graph obtained from G by
deleting V (P ) ∪ {u1, u2}. Note that by Lemma 2.2.8 and the fact that g(u1) ≥ 5, we have
that Int(vk′+1vk′+2vk′+3u2u1vk′+1) = ∅. Let C ′ be the graph whose vertex- and edge-set are
precisely those of the outer face boundary of G′. Let L′ be the list assignment obtained
from L by setting L′(vk′) = L(vk′) and L

′(v) = L(v)\{ϕ(x) : x ∈ (V (P )∪{u1, u2})∩N(v)}
for all v ∈ V (G′) \ {vk′}. Let A′ be the set of vertices in V (G′) \ V (S) with lists of size at
most two under L′.

Claims 3 and 4 will be used repeatedly to argue that (G′, L′, S, A′) is a canvas.

Claim 3. Every vertex v ∈ V (C ′) satisfies L(v) = L′(v).

Proof. Let v ∈ V (C ′). Note that that since u1vk′+1 ∈ E(G) and g(u1) ≥ 5, it follows from
Lemma 2.2.10 that u1 is not adjacent to v. Similarly, u2 is not adjacent to v. By Lemma
2.2.3, C is chordless and so no internal vertex of P is adjacent to v. Moreover, note that
L′(vk′) = L(vk′) by definition of L′. Thus we may assume that v = v(j mod q)+1, as otherwise
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L(v) = L′(v). By Claim 2, ϕ(vj) ̸∈ ϕ(v(j mod q)+1), and so L(v(j mod q)+1) = L′(v(j mod q)+1),
as desired.

(1)

vk′+1

vk′+2

vk′+3

. . .

vi

u2

u1

v

(2)

vk′+1

vk′+2

vk′+3

. . .

vi

u2

u1

v

Figure 2.3: Cases considered in Claim 4. Vertices in A are drawn as four-pointed stars.
Both u1 and u2 have girth five. Recall that by Lemma 2.2.8, since g(u1) = 5 it follows that
the 5-cycles in all figures have no vertices in their interior.

Claim 4. There does not exist a vertex in V (Int(C)) \ {u1, u2} adjacent to a vertex in
V (P ) and a vertex in {u1, u2}.

Proof. Suppose not, and let v ∈ V (Int(C)) \ {u1, u2} be a counterexample. Let i be an
index such that k′ + 1 ≤ i ≤ j and v is adjacent to vi. Since g(u2) ≥ 5 and v is adjacent
to one of u1 and u2, it follows that i ≥ k′ + 4. See Figure 2.3 (below) for an illustration of
the cases considered in this claim.

First suppose v is adjacent to u1. In this case, the path vk′+1u1vvi separates G into
two graphs G1 and G2 where without loss of generality S ⊆ G1. By Observation 2.2.1,
K[G1] is an unexceptional canvas. By the minimality of K, it follows that G1 admits an
L-colouring ψ. Let L′′ be a list assignment for G2 obtained from L by setting L′′(x) =
{ψ(x)} for x ∈ {vk′+1, u1, v, vi}, and L′′(x) = L(x) for x ∈ V (G2) \ {vk′+1, u1, v, vi}. Since
g(u1) ≥ 5, it follows that vk′+1u1vvi is an acceptable path for G2. Note that K2 =
(G2, L

′′, vk′+1u1vvi, A ∩ V (G2)) is a canvas. If K2 is unexceptional, it follows from the
minimality of K that G2 admits an L′′-colouring ψ′. But then ψ∪ψ′ forms an L-colouring
of G, a contradiction. Thus we may assume K2 is an exceptional canvas.
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First suppose K2 is an exceptional canvas of type (i). Since A ∩ V (G2) = {vk′+2}, it
follows that vk′+2 is adjacent to vi. This is a contradiction, since i ≥ k′ + 4 and C is
chordless by Lemma 2.2.3.

Next, suppose K2 is an exceptional canvas of type (ii). Note that g(u1) ≥ 5, and every
vertex in a generalized wheel has girth three. Thus there exists a vertex w ̸∈ {u1, vk′+1}
such that G2 contains a subgraph W that is a generalized wheel with principal path wvvi
such that the vertices on the outer cycle of W are on the outer face boundary of G2 and
have lists of size at most three under L′′. Moreover, there exists a vertex in A ∩ V (G2)
adjacent to w and vk′+1. Recall that A∩ V (G2) = {vk′+2}, and NG(vk′+2) = {vk′+1, vk′+3}.
It follows that w = vk′+3. But vvk′+3u2u1v is a cycle of length four and g(u2) = 5, a
contradiction.

Thus we may assume that K2 is an exceptional canvas of type (iii). But this too is a
contradiction, since vk′+1u1vvi is a path of length three.

Thus we may assume instead that v is adjacent to u2. In this case, the path vk′+3u2vvi
separates G into two graphs G1 and G2 as above. Note here that i ≥ k′+5 since g(u2) ≥ 5.
The argument is the same as in the previous case, except that here V (G2)∩A = ∅, and so
we have immediately that the canvas (G2, L

′′, vk′+3u2vvi, A ∩ V (G2)) is unexceptional and
thus that G2 admits an L′′-colouring, a contradiction.

We now prove (G′, L′, S, A′) is an unexceptional canvas via the following claims.

Claim 5. Every vertex v ∈ V (C ′) \ V (S) with g(v) = 3 satisfies |L′(v)| ≥ 3.

Proof. Suppose not, and let v ∈ V (C ′) \ V (S) be a counterexample. By Claim 3, we have
that v ∈ V (Int(C)) and so that |L(v)| ≥ 5. Since |L′(v)| ≤ 2, it follows that v is adjacent
to at least three vertices in V (P )∪{u1, u2}. It follows from Lemma 2.3.2 that v is adjacent
to at least one of u1 and u2. But this contradicts Claim 4.

Claim 6. Every vertex v ∈ V (C ′) \ V (S) with g(v) = 4 satisfies |L′(v)| ≥ 3.

Proof. Suppose not, and let v ∈ V (C ′) \ V (S) be a counterexample. It follows from Claim
3 that v ∈ V (Int(C)) and so that |L(v)| ≥ 4. Since |L′(v)| ≤ 2, it follows further that v is
adjacent to at least two vertices in V (P ) ∪ {u1, u2}. By Lemma 2.3.2, since g(v) > 3 we
have that v is not adjacent to two vertices in V (P ). Since g(v) = 4, it follows that v is
adjacent to exactly one of u1 and u2 and a vertex in V (P ). This contradicts Claim 4.
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From Claims 5 and 6, it follows that every vertex in A′ has girth at least five. The
following lemma completes the proof that (G′, L′, S, A′) is a canvas. After this, it will
remain only to show that it is unexceptional.

Claim 7. A′ is an independent set, and if v ∈ A′, then |L′(v)| = 2.

Proof. First, we show that every vertex in A′ has two colours in its list under L′. Suppose
not; let v ∈ A′ have a list of size at most one. It follows from Claim 3 that v ∈ A′ \A, and
so that v ∈ V (Int(C)) and |L(v)| ≥ 3. Since |L′(v)| ≤ 1, we have that v is adjacent in G
to at least two vertices in V (P ) ∪ {u1, u2}. Since g(v) ≥ 5, we have that v is adjacent to
at most one of u1 and u2. By Claim 2.2.10, we have furthermore that v is adjacent to at
most one vertex in V (P ). Thus v is adjacent to exactly one of u1 and u2, and exactly one
vertex in V (P ). This contradicts Claim 4.

It remains to show that A′ is independent. Suppose not: let v, w be two vertices in A′

with vw ∈ E(G). Since A is an independent set, it follows that at least one of v and w is
in A′ \ A. Without loss of generality, let v ∈ A′ \ A.

First suppose w ∈ A. Note that v is not adjacent to a vertex in V (P ), as otherwise v
contradicts Lemma 2.2.10. Since every vertex in A′ \ A is adjacent to a vertex in V (P ) ∪
{u1, u2}, it follows that v is adjacent to a vertex u ∈ {u1, u2}. If u = u1, define Q =
wvu1vk′+1. If u = u2, define Q = wvu2vk′+3. In either case, since g(u1) ≥ 5 and g(u2) ≥ 5,
by Lemma 2.2.11 there exists a vertex x ∈ A adjacent to both endpoints of Q. This is a
contradiction, since A is an independent set and w ∈ A is an endpoint of Q.

Thus we may assume that both v and w are in the set A′\A. Note that if each of v and w
is adjacent to a vertex in V (P ), then by Lemma 2.2.11 we have that without loss of general-
ity v is adjacent to vk′+1 and w is adjacent to vk′+3. Since g(vk′+2) ≥ 5, we have by Lemma
2.2.8 that Int(u1vk′+1vk′+2vk′+3u2u1) = ∅. Thus {u1, u2} ⊆ V (Int(uvk′+1vk′+2vk′+3w)). This
is a contradiction, since g(vk′+2) ≥ 5 and so by Lemma 2.2.8 we have that
Int(wuvk′+1vk′+2vk′+3w) = ∅.

Thus at least one of v and w is adjacent to a vertex in {u1, u2}; moreover, since
g(v) ≥ 5 and g(w) ≥ 5, exactly one of v, w is adjacent to a vertex in {u1, u2}. Without loss
of generality, we may assume v is adjacent to one of u1 and u2, and so that there exists an
index i such that w is adjacent to a vertex vi ∈ V (P ).

Case 1. i ≤ k′ + 4. Note that in this case, we may assume i = k′ + 4. To see this,
suppose not. First assume v is adjacent to u2. If i = k′ + 1, then since g(u1) ≥ 5 we
have by Lemma 2.2.8 that Int(vwvk′+1u1u2v) = ∅. Since Int(u2u1vk′+1vk′+2vk′+3u2) = ∅ by
the same lemma, it follows that deg(u1) = 2. This is a contradiction, since |L(u1)| ≥
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3 and K is a vertex-minimum counterexample. It further follows from the fact that
Int(u2u1vk′+1vk′+2vk′+3u2) = ∅ that i ̸= k′ + 2. Thus we may assume i = k′ + 3. But
this is a contradiction, since vwvk′+3u2v is a 4-cycle and g(v) ≥ 5. Symmetrical arguments
show that if v is adjacent to u1, then i ̸∈ {k′ + 3, k′ + 2, k′ + 1}.

We may therefore assume that i = k′ + 4. If v is adjacent to u1, then by Lemma
2.2.9 we have that Int(u1vwvk′+4vk′+3u2u1) = ∅ since g(u1) ≥ 5. By Lemma 2.2.8,
Int(u2u1vk′+1vk′+2vk′+3u2) = ∅, and so u2 has degree two. Since |L(u2)| ≥ 3 and K is
a vertex-minimal counterexample, this is a contradiction since every L-colouring of G−u2
extends to an L-colouring of G. Thus we may assume that v is adjacent to u2. See Figure
2.4 (1), below, for an illustration of this case.

Let φ be an L-colouring of vk′+1 and vk′+2, where φ(vk′+1) is not the available colour at
vk′ . Let G

′′ = G− vk′+1 − vk′+2, and let L′′ be a list assignment for G′′ obtained from L by
setting L′′(vk′) = L(vk′), and L

′′(v) = L(v) \ {φ(vi) : i ∈ {k′ + 1, k′ + 2} and vi ∈ NG(v)}
for all v ∈ V (G′′) \ {vk′}. Let A′′ be the set of vertices in V (G′′) \ V (S) with lists of size
at most two under L′′. Note that A′′ \A ⊆ NG(vk′+1) ∪ {vk′+3} and by definition of P , we
have that vk′+3 ∈ A′′.

By definition of P , since i = k′ + 4 we have that vk′+4 ̸∈ A. Moreover, since C is
chordless by Lemma 2.2.3 there are no edges between vk′+3 and vertices in A ∪ {v1, v4}.
Since g(vk′+3) ≥ 5 and vk′+4 ̸∈ A, it follows from Lemma 2.2.10 that A′′ is an independent
set, and so that K ′′ = (G′′, L′′, S, A′′) is a canvas. It further follows from Lemma 2.2.10
that there are no edges between A′′ \ A and {v1, v4}.

First suppose that K ′′ is unexceptional. Since |V (G′′)| < |V (G)|, we have by the
minimality of K that G′′ admits an L′′-colouring φ′′. But then φ∪ φ′′ is an L-colouring of
G, a contradiction. Thus we may assume K ′′ is exceptional.

Suppose that K ′′ is an exceptional canvas of type (i), and so that there exists a vertex
u ∈ A′′ adjacent to both v1 and v4. Since K is unexceptional it follows that u ∈ A′′ \ A.
This is a contradiction, since as noted above there are no edges between A′′\A and {v1, v4}.

Suppose now that K ′′ is an exceptional canvas of type (ii). Then there exists a vertex
u ∈ A′′ adjacent to one of v1 and v4 and to a vertex y such that either v4v3y or v1v2y is
the principal path of a generalized wheel W1 where the vertices on the outer cycle of W1

are on the outer face boundary of G′′ and have lists of size at most three under L′′. Note
that every vertex in a generalized wheel has girth three, and for every vertex x ∈ V (G′′)
with gG(x) = 3, if |L(x)| > 3 then |L(x)| ≥ 5 and so |L′′(x)| ≥ 4. It follows that every
vertex in the outer cycle of W1 is in the outer cycle of G. Since K is unexceptional, we
thus have that u ∈ A′′ \A. This is a contradiction, since there are no edges between A′′ \A
and {v1, v4}.
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Figure 2.4: Cases considered in Claim 7 of Lemma 2.3.3. Vertices in A are drawn as four-
pointed stars. The vertices v, w, u1, and u2 all have girth at least five. Recall that by
Lemma 2.2.8, since g(u1) = 5 it follows that the 5-cycles in all figures have no vertices in
their interior.

Thus we may assume that K ′′ is an exceptional canvas of type (iii) and thus that there
exists a subgraph W2 that is a generalized wheel with principal path S such that the
vertices on the outer cycle of W2 are on the outer cycle of G′′ and have lists of size at most
three under L′′. As noted above, for every vertex x ∈ V (G′′) with gG(x) = 3, if |L(x)| > 3
then |L(x)| ≥ 5 and so |L′′(x)| ≥ 4. It follows that every vertex x in the outer cycle of
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W2 is in the outer cycle of G and has |L(x)| = |L′′(x)|. Since K is unexceptional, this is a
contradiction.

Case 2. i ≥ k′ +5. See Figure 2.4 (2) and (3), above, for an illustration of these cases. If
v is adjacent to u1, define Q = vk′+1u1vwvi. If v is adjacent to u2, define Q = vk′+3u2vwvi.
In either case, the path Q separates G into two graphs H1 and H2 where without loss
of generality S ⊆ H1. By Observation 2.2.1, K[H1] is an unexceptional canvas. By the
minimality of K, we therefore have that H1 admits an L-colouring φ.

Let L′′ be a list assignment defined by L′′(x) = L(x) for all x ∈ V (H2) \ V (Q), and
L′′(x) = {φ(x)} for all x ∈ V (Q). Note that H2 is 2-connected. Let C2 be the outer cycle
of H2. By Claim 2.3.2 and the fact that g(w) ≥ 5, we have that NG(w) ∩ V (P ) = {vi}.
Similarly, NG(u1) ∩ V (P ) = {vk′+1} and NG(u2) ∩ V (P ) = {vk′+3}. Since v is adjacent to
one of u1 and u2, it follows from Lemma 4 that that NG(v) ∩ V (P ) = ∅. Finally, since
g(x) ≥ 5 for all x ∈ {u1, u2, v, w}, it follows that C2 is chordless. Since i ≥ k′ + 5 and
V (P ) ∩ A = {k′ + 2}, it follows from Observation 2.2.5 that |L(vi−1)| = 3.

Thus H2[V (C2)] admits an L′′-colouring φ′ obtained by extending φ to C2 by colouring
the vertices of V (C) ∩ V (C2) in increasing order of index. Let H ′

2 be obtained from H2

by deleting the vertices in V (C2)∩ V (C). Let C ′
2 be the graph whose vertex- and edge-set

are precisely those of the outer face boundary of H ′
2, and let S ′ = Q − C. Let L′′′ be the

list assignment obtained from L by setting L′′′(v) = L(v) \ {φ(x) : x ∈ NH2(v)} for all
v ∈ V (H ′

2) \ V (S ′), and L′′′(u) = {φ′(u)} for all u ∈ V (S ′). Let A2 ⊆ V (C ′
2) \ V (S ′) be

the set of vertices with lists of size at most two under L′′′. Note that S ′ is an acceptable
path, since it has exactly three vertices. We claim (H ′

2, L
′′′, S ′, A2) is a canvas. To see this,

note that since every vertex x ∈ V (C ′
2) \ V (S ′) of girth three has |L(x)| ≥ 5 and every

vertex y ∈ V (C ′
2) \ V (S ′) has |L(y)| ≥ 4, it follows from Lemma 2.3.2 that every vertex

u ∈ V (C ′
2) \ V (S ′) with gG(u) ∈ {3, 4} has |L′′′(u)| ≥ 3. Thus A2 contains only vertices of

girth at least five in G. Note that A2 ∩ A = ∅, and hence |L(u)| ≥ 3 for every u ∈ A2. It
therefore follows from Lemma 2.3.2 that every vertex in A2 has a list of size exactly two
under L′′′. It remains to show that A2 is an independent set. To see this, suppose not.
Then there exists an edge y1y2 ∈ E(G2) with {y1, y2} ⊆ A2. Note that every vertex in A2

is adjacent in G to a vertex in V (P ). Since gG(y1) ≥ 5 and gG(y2) ≥ 5, it follows from
Lemma 2.2.11 and the fact that V (P ) ∩ A = {vk′+2} that one of y1 and y2 is adjacent to
vk′+1. But since gG(u1) ≥ 5, by Lemma 2.2.8 we have that V (Int(u1u2vk′+3vk′+2vk′+1)) = ∅.
Thus no vertex in A2 is adjacent to vk′+1 in G, a contradiction.

Thus K2 is a canvas. Recall that w ∈ V (S ′) has girth at least five. Since V (S ′) = 3,
it follows that K2 is unexceptional. By the minimality of K, we have that H ′

2 admits an
L′′′-colouring φ′′. But then φ′′ ∪ φ′ ∪ φ is an L-colouring of G, a contradiction.
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By the previous claims, we have that K ′ = (G′, L′, S, A′) is a canvas. We now show it
is unexceptional.

Claim 8. K ′ is unexceptional.

Proof. Suppose not. First suppose K ′ is an exceptional canvas of type (iii). Then G′

contains a generalized wheel W such that the vertices on the outer cycle of W are on the
outer cycle of G′ and have lists of size at most three under L′. Let v1v2v3w1 . . . wtv1 be the
outer cycle of W . Since |L′(w1)| = 3, it follows that |L(w1)| ≥ 3. Thus w1 ̸∈ A. Moreover,
w1 ̸= vk′+1 since vk′+1 ̸∈ V (G′). It follows that w1 ̸= v4, and so that w1 ∈ V (Int(C)). Thus
|L(w1)| ≥ 5, and so we have that w1 is adjacent to at least two vertices in V (P )∪{u1, u2}.
Since both u1 and u2 have girth at least five, it follows that w1 is adjacent to a vertex vℓ
in V (P ), with ℓ ≥ k′ + 3. Since w1 is adjacent to v3, by Lemma 2.2.12 we have that w1 is
also adjacent to vk′+1, vk′+2, . . . , vℓ−1. This contradicts the fact that vk′+2 ∈ A by Lemma
2.3.1, and thus g(vk′+2) ≥ 5.

Next, suppose that K ′ is an exceptional canvas of type (i). Then there exists a vertex
u ∈ A′ adjacent to v1 and v4. Since K is unexceptional, u ̸∈ A. Thus u ∈ A′ \A. By Claim
3, every vertex x ∈ V (C) \ V (S) has L(x) = L′(x), and hence u ̸∈ V (C). It follows that
u ∈ V (Int(C)). But then v1uv4 contradicts Lemma 2.2.10.

We may thus assume that K ′ is exceptional of type (ii): and in particular, that there
exists a vertex u ∈ A′ such that u is adjacent to either v1 or v4; and such that u is adjacent
to a vertex w ∈ V (C ′) \ V (S) where v4v3w or v1v2w is the principal path of a generalized
wheel W where the vertices on the outer cycle of W are on the outer cycle of G′ and all
have lists of size at most three under L′. Note that since C is chordless by Lemma 2.2.3,
it follows that w ̸∈ V (C) and so that w ∈ V (Int(C)).

First suppose that u ∈ A. Since g(w) = 3 and w ∈ V (Int(C)), it follows that |L(w)| ≥ 5:
thus in G, w is adjacent to two vertices in V (P )∪{u1, u2}. Note that since each of u1 and
u2 have girth at least five, it follows that w is adjacent to at most one of u1 and u2, and
thus that w is adjacent to a vertex vi in P . But since u ∈ A and w is adjacent to both vi
and u, this contradicts Lemma 2.2.10.

Thus we may assume that u ∈ A′ \ A, and so that u is adjacent to a vertex x ∈
V (P ) ∪ {u1, u2}. If x ∈ V (P ), this contradicts Lemma 2.2.10 since u is also adjacent to
one of v1 and v4. Thus u is adjacent to one of u1 and u2.

First suppose u is adjacent to u1. If u is adjacent to v1, then by Lemma 2.2.11 applied
to u and u1 we have that v1 is adjacent to vk′+2. Thus q = k′ +2, a contradiction to either
Lemma 2.2.16 or Lemma 2.2.17. Thus we may assume that u is adjacent to v4, and by
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Figure 2.5: A case considered in Claim 8. Vertices in A are drawn as four-pointed stars.
Both u1 and u2 have girth five. Recall that by Lemma 2.2.8, since g(u1) = 5 it follows that
the 5-cycles in all figures have no vertices in their interior.

Lemma 2.2.11 applied to u and u1, we have that v5 ∈ A. Thus in this case k′ = k+ 1 = 5.
See Figure 2.5, below. Note that since |L′(w)| = 3, we have that in G, w is adjacent to
two vertices in V (P ) ∪ {u1, u2}. Since u1 has girth five and u is adjacent to u1, it follows
that w is adjacent to a vertex vi ∈ V (P ). We claim i ≥ 8: this follows from the fact that
u2 has girth five. The path v4uwvi separates G into two graphs G1 and G2, where without
loss of generality S ⊂ G1. By Observation 2.2.1, K[G1] is an unexceptional canvas. By the
minimality of K, it follows that G1 admits an L-colouring φ. Let L′′ be the list assignment
for G2 obtained from L by setting L′′(v) = L(v) for all v ∈ V (G2)\{v4, u, w, vi} and setting
L′′(v) = {φ(v)} for all v ∈ {v4, u, w, vi}. Note that since g(u) ≥ 5, we have that v4uwvi
is an acceptable path for G2. Moreover, K2 = (G2, L

′′, v4uwvi, A ∩ V (G2)) is a canvas.
Since A∩ V (G2) = {v5, v7} and i ≥ 8, it follows from the fact that C is chordless (Lemma
2.2.3) that K2 is not an exceptional canvas of type (i). Since G is planar, we have that
w is not adjacent to v6. Since g(u1) ≥ 5, we have furthermore that u is not adjacent to
v6. It follows that K2 is not an exceptional canvas of type (ii). Finally, K2 is trivially not
an exceptional canvas of type (iii) since v4uwvi has four vertices. Since |V (G2)| < |V (G)|,
it follows from the minimality of K that K2 admits an L′′-colouring φ′′. As φ′′ ∪ φ is an
L-colouring of G, this is a contradiction.

We may thus assume u is adjacent to u2. Recall that w is adjacent to one of v2 and
v3, and so since G is planar u is not adjacent to v1. Thus u is adjacent to v4. By Lemma
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2.2.11 applied to u2 and u, there exists a vertex in A adjacent to v4 and vk′+3. Since C is
chordless by Lemma 2.2.3, this is a contradiction.

Since K is a minimum counterexample to Theorem 2.1.6 and |V (G′)| < |V (G)|, it
follows that G′ admits an L′-colouring ϕ′. Recall that by the properties of ϕ described in
Claim 2, we have that ϕ(vk′+1) is not the available colour at vk′ , and so ϕ′(vk′) ̸= ϕ(vk′+1).
But then ϕ∪ϕ′ is an L-colouring ofG, contradicting thatK is a counterexample to Theorem
2.1.6.
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Chapter 3

Hyperbolicity Theorems for
Correspondence Colouring

Subsection 3.1.1 lists the main results of this chapter. In Subsection 3.1.2, we outline the
content of the chapter. Finally, in Subsection 3.1.3 we give a brief overview of the main
proof of Chapter 3: the proof of Theorem 3.4.7.

3.1 Introduction

3.1.1 Results

The main result of this chapter is Theorem 3.4.7. We will delay the statement of Theorem
3.4.7 until later on in the chapter, when we will have defined the necessary terminology.
As covered in Chapter 1, Theorem 3.4.7 implies several other results; for instance, the
theorem below (which will be proved in Section 3.6).

Theorem 1.2.23. Let G be a plane graph with outer cycle C, let (L,M) be a 5-correspon-
dence assignment for G, and let H be a minimal subgraph of G such that every (L,M)-
colouring of C that extends to an (L,M)-colouring of H also extends to an (L,M)-colouring
of G. Then H has at most 51|V (C)| vertices.

Theorem 1.2.23 is the correspondence colouring analogue to the following theorem of
Postle and Thomas [35], which settled a conjecture of Dvořák et al. [14]
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Theorem 1.2.21 (Postle and Thomas, [35]). Let G be a plane graph with outer cycle C,
let L be a 5-list assignment for G, and let H be a minimal subgraph of G such that every
L-colouring of C that extends to an L-colouring of H also extends to an L-colouring of G.
Then H has at most 19|V (C)| vertices.

Theorem 3.4.7 also implies that the family of embedded graphsG that are 5-correspondence
critical is hyperbolic (see Definition 1.2.14). We will delay the proof of this fact until Section
3.6, where we will also discuss the implications of the hyperbolicity of this family of graphs.
In particular, we will show that locally planar graphs are 5-correspondence-colourable
(Theorem 1.2.20), and observe that there exist linear-time algorithms for the decidability
of 5-correspondence colouring of embedded graphs (Theorems 1.2.24 and 1.2.25).

Finally, in Section 3.7 we also observe that the family of embedded graphs G of girth
at least five that are critical for 3-correspondence colouring is hyperbolic (Theorem 3.7.4).
This follows from observing that the analogous proof for list colouring in [34] also holds
for correspondence colouring with very minor modifications. This in turn has several
interesting implications: we observe as in the girth three case that locally planar graphs
of girth at least five are 3-correspondence-colourable (Theorem 1.2.28), and that there
exist linear-time algorithms for the decidability of 3-correspondence colouring of embedded
graphs of girth at least five (Theorems 1.2.26 and 1.2.27).

Chapters 3 and 4 make use of the following theorem, due to Thomassen.

Theorem 3.1.1 (Thomassen [40]). Let G be a planar graph with outer face boundary walk
C. Let S be a path of length at most one contained in C. Let (L,M) be a correspondence
assignment for G where |L(v)| ≥ 5 for all v ∈ V (G) \ V (C), and where |L(v)| ≥ 3 for all
v ∈ V (C) \ V (S). Every (L,M)-colouring of S extends to an (L,M)-colouring of G.

Thomassen originally stated this for list colouring (see Theorem 2.1.7). However, as
pointed out by Dvořák and Postle in [15], the proof carries over to correspondence colouring.

3.1.2 Chapter Outline

Subsection 3.1.3 gives a brief overview of the proof of the main theorem of this chapter
(Theorem 3.4.7). In Section 3.2, we establish a few basic results and definitions used in
the proof of Theorem 3.4.7. Section 3.3 introduces the notion of deficiency, a critical
measurement that will be used throughout the rest of the thesis. Section 3.4 establishes
yet more useful definitions and results, and concludes with the statement of Theorem 3.4.7.
Many proofs in these sections are taken from [35], where they were originally written for
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list colouring. We include them for completeness, adapting them to the correspondence
colouring framework when required. Section 3.5 contains the proof of Theorem 3.4.7. We
note that Section 3.5 itself contains several subsections; Section 3.5 will begin with an
overview of the contents of each subsection.

3.1.3 Main Proof Overview

The proof of Theorem 3.4.7 constitutes the bulk of this chapter. The proof 3.4.7 has two
main parts: the first involves purely the structure of a minimum counterexample G to
Theorem 3.4.7, and the second involves arguing about the specific matchings {Me : e ∈
E(G)} of the correspondence assignment (L,M) of G. Several of our structural results
are taken directly from the analogous theorems for list colouring in [35]. Some of these
arguments involve the set of vertices X1 that have at least three neighbours in the outer
cycle C of G, as well as the set of vertices X2 with at least three neighbours in V (C)∪X1

and at least one neighbour in X1. Informally, we think of the sets X1 and X2 as “layers”
near the outer cycle C. These two layers alone do not provide us with enough freedom to
force a contradiction in the second part of the proof, unlike in the proof of the analogous
theorem for list colouring given in [35]. Our analysis thus involves moving one layer further
into the graph, and considering the structure surrounding vertices in the set X3 of vertices
with at least three neighbours in V (C) ∪X1 ∪X2 and at least one neighbour in X2. The
proof before this point is very similar to that of Postle and Thomas in [35]. It is from this
point on —the introduction of this third “layer”, X3 —that the proof diverges substantially.

In the second part of the proof, we argue about the matchings in the correspondence
assignment. In particular, Claim 37 establishes very precisely the matchings between
vertices x1 ∈ X1, x2 ∈ X2, and x3 ∈ X3 as well as their other neighbours in the graph. We
use this claim to finish the proof, showing that for one edge e ∈ E(G), we have that Me

is not a matching. This contradicts the definition of correspondence assignment, and thus
dispels the existence of a minimum counterexample to Theorem 3.4.7.

3.2 Critical Subgraphs

In this section, we establish a few basic definitions and results that will be used throughout
the rest of the chapter. As mentioned above, several results in this section are already
proved in [35] for list colouring instead of correspondence colouring. In all cases, the
results are easily adapted for correspondence colouring. For cohesion, we have included
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the proofs here as well, along with a few proofs that were omitted from [35]. Whenever a
proof is taken directly from [35], we will say so explicitly.

We will need the following definitions.

Definition 3.2.1. Let G be a graph. For a set X ⊆ V (G), we denote by N(X) the set(⋃
v∈X N(v)

)
\X.

Definition 3.2.2 (S-critical). Let G be a graph, S ⊆ G a subgraph of G, and (L,M) a
correspondence assignment for G. For an (L,M)-colouring ϕ of S, we say that ϕ extends to
an (L,M)-colouring of G if there exists an (L,M)-colouring ψ of G such that ϕ(v) = ψ(v)
for all v ∈ V (S). The graph G is S-critical with respect to (L,M) if G ̸= S and for every
proper subgraph G′ ⊂ G such that S ⊆ G′, there exists an (L,M)-colouring of S that
extends to an (L,M)-colouring of G′, but does not extend to an (L,M)-colouring of G. If
the list assignment is clear from the context, we shorten this and say that G is S-critical.

Note that the following definition of canvas differs from that used in Chapter 2. We
will use the definition given below until Section 3.7.

Definition 3.2.3. We say the triple (G,C, (L,M)) is a canvas if G is a 2-connected plane
graph, C is its outer cycle, and (L,M) is a correspondence assignment for the vertices of G
such that |L(v)| ≥ 5 for all v ∈ V (G)\V (C) and there exists an (L,M)-colouring of C. We
say a canvas (G,C, (L,M)) is critical if G is C-critical with respect to the correspondence
assignment (L,M).

These definitions match those given for list colouring in [35], with the appropriate
adjustments for correspondence colouring instead of list colouring.

In addition to being used below to establish helpful corollaries regarding subgraphs of
critical canvases, the following lemma will be used in Section 3.6 to show that the family of
embedded graphs that are critical for 5-correspondence colouring form a hyperbolic family.

Lemma 3.2.4 (Proof taken from Lemma 2.3, [35]). Let T be a subgraph of a graph G that
is T -critical with respect to the correspondence assignment (L,M). Let G = (A,B) be a
separation of G such that T ⊆ A and B ̸= ∅. Then G[V (B)] is A[V (A) ∩ V (B)]-critical.

Proof. Let G′ = G[V (B)] and S = A[V (A) ∩ V (B)]. Since G is T -critical, every isolated
vertex of G belongs to T , and thus every isolated vertex of G′ belongs to S. Suppose for
a contradiction that G′ is not S-critical. Then, there exists an edge e ∈ E(G′) \ E(S)
such that every (L,M)-colouring of S that extends to G′ \ e also extends to G′. Note
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that e ̸∈ E(T ). Since G is T -critical, there exists a colouring Φ of T that extends to an
(L,M)-colouring ϕ of G \ e, but does not extend to an (L,M)-colouring of G. However,
by the choice of e, the restriction of ϕ to S extends to an (L,M)-colouring ϕ′ of G′. Let
ϕ′′ be the colouring that matches ϕ′ on V (G′) and ϕ on V (G) \ V (G′). Observe that ϕ′′ is
an (L,M)-colouring of G extending Φ, which is a contradiction.

Our main theorem characterises planar graphs that are outer cycle-critical (and so pla-
nar graphs whose outer face boundary walk is bounded by a cycle). Note that though
canvases are 2-connected by definition, the same is not true for critical graphs. The obser-
vation below motivates restricting our attentions to 2-connected graphs.

Observation 3.2.5 (Proof taken from Lemma 2.5, [35]). Let G be a plane graph with outer
cycle C, and let (L,M) be a correspondence assignment for G such that G is C-critical
with respect to (L,M). Then (G,C, (L,M)) is a canvas.

Proof. By the definition of canvas, it suffices to show that G is 2-connected. Suppose not.
Then G contains two subgraphs A and B such that A ∪ B = G, C ⊆ A, |V (A ∩ B)| ≤ 1,
and V (B) \V (A) ̸= ∅. By Lemma 3.2.4, we have that G[V (B)] is A[V (A)∩V (B)]-critical.
This contradicts Theorem 3.1.1.

Before stating the implications of Lemma 3.2.4, we give the following definition.

Definition 3.2.6. Let T = (G,C, (L,M)) be a canvas, and let G′ be a plane graph
obtained from G by adding a (possibly empty) set of edges. If C ′ is a cycle in G′, we let
G⟨C ′⟩ denote the subgraph of G ∪ C ′ contained in the closed disk bounded by C ′. We let
T ⟨C ′⟩ denote the canvas (G⟨C ′⟩, C ′, (L,M)). Similarly, if G′ is a subgraph of G and f is
a face of G′, we denote by G⟨f⟩ the subgraph of G contained in the closed disk given by
the boundary walk of f , and let T ⟨f⟩ = (G⟨f⟩, Cf , (L,M)), where Cf is the cycle given by
the boundary walk of f .

Note that the boundary walk of f is indeed a cycle since T is a canvas (and is thus
2-connected). The following useful corollary follows from Lemma 3.2.4.

Corollary 3.2.7 (Proof taken from Corollary 2.7, [35]). Let T = (G,C, (L,M)) be a
critical canvas. If C ′ is a cycle in G such that G⟨C ′⟩ ≠ C ′, then T ⟨C ′⟩ is a critical canvas.

Proof. Let B = G⟨C ′⟩ and A = G \ (B \ C ′). By applying Lemma 3.2.4, it follows that
G⟨C ′⟩ is C ′-critical.
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We will require the following definition.

Definition 3.2.8. Let T = (G,C, (L,M)) be a canvas and G′ ⊆ G such that C ⊆ G′ and
G′ is 2-connected. We define the subcanvas of T induced by G′ to be (G′, C, (L,M)) and
we denote it by T [G′].

Note that in the above definition, the outer cycle of G′ is the outer cycle of G.

The proof of the following helpful fact is omitted from [35]; we have included it here
for completeness.

Proposition 3.2.9 (Proposition 2.9, [35]). Let T = (G,C, (L,M)) be a canvas such that
there exists a proper (L,M)-colouring of C that does not extend to G. Then T contains a
critical subcanvas.

Proof. Let ϕ be an (L,M)-colouring of C that does not extend to G. Let X be the set
of subgraphs H of G containing C such that ϕ does not extend to H. Note that X is
non-empty, since G ∈ X. Let G′ ∈ X be chosen to minimize |V (G′)| and subject to that,
to minimize |E(G′)|. By our choice of G′, we have that ϕ extends to every proper subgraph
of G′ but not to G′ itself, and so that G′ is C-critical. Thus (G′, C, (L,M)) is a critical
subcanvas of T .

Below, we establish some of the structure of critical canvases.

Theorem 3.2.10 (Proof taken from Theorem 2.10, [35]). (Chord or Tripod Theorem) If
T = (G,C, (L,M)) is a critical canvas, then either

1. C has a chord in G, or

2. there exists a vertex of G with at least three neighbours on C, and at most one of the
internal faces of G[{v} ∪ V (C)] includes a vertex or edge of G.

Proof. Suppose C does not have a chord. Let X be the set of vertices with at least
three neighbours in V (C). Let G′ be the subgraph of G defined by V (G′) := C ∪ X
and E(G′) := E(G[C ∪ X]) \ E(G[X]). We claim that if f is a face of G′ such that f
is incident with at most one vertex of X, then f does not include a vertex or edge of
G. To see this, suppose not. Let C ′ be the boundary of f . Since C has no chords and
every edge with one end in X and the other in C is in E(G′), it follows that C ′ has no
chords. Since T is critical, there exists an (L,M)-colouring ϕ of G \ (V (G⟨C ′⟩) \ V (C ′))
which does not extend to G. Hence the restriction of ϕ to C ′ does not extend to V (G⟨C ′⟩).
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Let G′′ := G⟨C ′⟩ \ V (C), let S = V (C ′) \ V (C), let L′(v) = {ϕ(v)} for v ∈ S and
L′(v) = L(v) \ {v[x, ϕ(x)] : x ∈ V (C)∩N(v)} for v ∈ V (G′′) \ S. Note that |L′(v)| ≥ 3 for
all v ̸∈ S by definition of X. By Theorem 3.1.1, there exists an (L′,M)-colouring ϕ′ of G′′.
But then ϕ′ ∪ ϕ is an (L,M)-colouring of G, a contradiction. This proves the claim.

Since T is critical, G ̸= C. Since C has no chords, it follows from the claim above that
X ̸= ∅. Let F be the set of internal faces of G′ incident with at least two elements of
X. Consider the graph H whose vertices are X ∪ F , where a vertex x ∈ X is adjacent to
f ∈ F if x is incident with f . By planarity, H is a tree. Let v be a leaf of H. By the
definition of H, we have that v ∈ X. Hence at most one of the faces of G[{v} ∪ V (C)] is
incident with another vertex of X. Yet all other faces of G[{v} ∪ V (C)] are incident with
only one element of X, namely v, and so by the claim above these faces do not include a
vertex or edge of C, as desired.

The following easy facts are very useful and will be used throughout the proof of
Theorem 3.4.7. The proofs are omitted from [35], but we have included them here for
completeness.

Proposition 3.2.11 (Proposition 2.11, [35]). If T = (G,C, (L,M)) is a critical canvas,
then

1. for every cycle C ′ of G of length at most four, V (G⟨C ′⟩) = V (C ′), and

2. every vertex in V (G) \ V (C) has degree at least five.

Proof. We begin with the first statement. Suppose not, and let C ′ be a cycle in G of
length at most four such that V (G⟨C ′⟩) ̸= V (C). Let C ′ = v1v2v3v1 if C ′ is a triangle,
and C ′ = v1v2v3v4v1 if C ′ is a 4-cycle. Since G is C-critical, there exists an (L,M)-
colouring ϕ of C that extends to every proper subgraph of G but not to G itself. Then
ϕ extends to an (L,M)-colouring ϕ′ of G \ V (Int(C ′)). Let (L′,M ′) be a list assignment
for G′ = G[V (Int[C ′]) \ {v3, v4}] where L′(vi) = ϕ(vi) for i ∈ {1, 2}, where L′(v) = L(v) \
{v[u, ϕ(u)] : u ∈ {v3, v4} ∩ N(v)} for all v ∈ V (G′) \ V (C ′). Then by Theorem 3.1.1, G′

admits an (L′,M)-colouring ϕ′′. But ϕ′′ ∪ ϕ′ is an extension of ϕ to G, a contradiction.

We now prove that every vertex in V (G) \ V (C) has degree at least 5. To see this,
suppose not: let v ∈ V (G)\V (C) have degree at most 4. Since G is C-critical, there exists
an (L,M)-colouring ϕ of C extends to every proper subgraph of G but not to G itself.
Thus ϕ extends to an (L,M)-colouring ϕ′ of G − v. Since |L(v)| ≥ 5 and deg(v) ≤ 4, it
follows that ϕ′ extends to v, a contradiction.
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3.3 Deficiency

This section introduces deficiency, a measure defined by Postle and Thomas in [35]. Our
main theorem —Theorem 3.4.7 —concerns the deficiency of critical canvases.

Definition 3.3.1. Let G be a plane graph, and let C be the subgraph of G whose edge-
and vertex-set are precisely those of the outer face boundary walk of G. We call a vertex
v ∈ V (G) internal if v ∈ V (G) \V (C). We denote by v(G) the number of internal vertices
of G. If T = (G,C, (L,M)) is a canvas, we define v(T ) = v(G). We denote by F(G) the
set of finite faces of G; given a face f of G, we denote by |f | the length of the boundary
walk of f .

Definition 3.3.2. Let G be a plane graph, and H ⊆ G. The deficiency of G with respect
to H is defined as def(G|H) := |E(G) \ E(H)| − 3|V (G) \ V (H)|. When H is clear from
context, we sometimes omit it and speak only of the deficiency of G, denoted def(G). Given
a canvas T = (G,C, (L,M)), we define def(T ) := def(G|C) = |E(G) \ E(C)| − 3v(G).

Lemma 3.3.3 (Proof taken from Lemma 3.4, [35]). Let G be a 2-connected plane graph
with outer cycle C, and let G′ be a 2-connected subgraph of G containing C. Then

def(G) = def(G′) +
∑

f∈F(G′)

def(G⟨f⟩).

Proof. The lemma follows from the fact that every internal vertex of G is an internal vertex
of exactly one of G′ and G⟨f⟩ for each f ∈ F(G′), and the same holds for edges not incident
with the outer face.

Theorem 3.3.4 (Proof taken from Theorem 3.5, [35]). If T = (G,C, (L,M)) is a critical
canvas, then def(T ) ≥ 1.

Proof. We proceed by induction on the number of vertices of G. We consider each outcome
of Theorem 3.2.10 applied to T : first suppose that C has a chord, e. Let C1 and C2 be
the cycles of C + e other than C. Hence |V (C1)| + |V (C2)| = |V (C)| + 2. For i ∈ {1, 2},
let Ti = T ⟨Ci⟩ = (Gi, Ci, (L,M)). By Lemma 3.3.3 applied to G′ = C + e, we have that
def(T ) = def(T1) + def(T2) + 1. By Corollary 3.2.7, for i ∈ {1, 2} either Ti is critical or
Gi = Ci. If Gi ̸= Ci, then def(Ti) ≥ 1 by induction. If Gi = Ci, then def(Ti) = 0 by
definition. In either case, def(T ) ≥ 0 + 0 + 1 ≥ 1, as desired.

We may therefore assume that C is chordless, and so by Theorem 3.2.10 there exists
an internal vertex of G with at least three neighbours in V (C) such that at most one of

74



the faces of G[V (C) ∪ {v}] contains an edge or vertex of G. Let G′ = G[V (C) ∪ {v}].
First suppose that none of the faces of G′ contains an edge or vertex of G, and hence that
V (G) = V (C)∪{v}. Since G is C-critical, it follows from Proposition 3.2.11 (2) that v has
degree at least 5. Thus def(T ) ≥ 5−3 ·1 = 2, as desired. Thus we may assume that exactly
one of the faces of G′ contains a vertex or edge of G. Let C ′ be the cycle of G′ bounding
that face. Note that by Corollary 3.2.7, T ⟨C ′⟩ is a critical canvas, and so by induction
def(T ⟨C ′⟩) ≥ 1. Moreover, we claim def(T ) ≥ def(T ⟨C ′⟩). To see this, note that by
definition def(T ⟨C ′⟩) = |E(G′)\E(C ′)|−3v(G′) ≤ |E(G)\E(C)|−3−(deg(v)−3(v(G)+1)
since v has at least three neighbours in V (C). Again using the definition of deficiency, we
have that def(T ⟨C ′⟩) ≥ def(T ), and so combining these results def(T ) ≥ def(T ⟨C ′⟩) ≥ 1,
as desired.

The following inequality will be helpful in dealing with critical canvases with at most
seven internal vertices.

Lemma 3.3.5 (Proof taken from Lemma 3.6, [35]). Let T = (G,C, (L,M)), where G is
a 2-connected plane graph with outer cycle C and every internal vertex of G has degree at
least five. Then

def(T ) ≥ 2v(G)− |E(G \ V (C))|,

with equality if and only if every vertex of G has degree exactly five.

Proof. Note that

def(T ) = |E(G) \ E(C)| − 3v(G)

≥ 5v(G)− |E(G \ V (C))| − 3v(G) as internal vertices have degree ≥ 5 by assumption

= 2v(G)− |E(G \ V (C))|,

with equality if and only if every vertex of G has degree exactly five.

3.4 Linear Bound for Cycles

In this section, we build towards stating Theorem 3.4.7, the proof of which constitutes the
bulk of this chapter. We begin with a few necessary definitions.

Definition 3.4.1. Let G be a plane graph. We say vertices u and v in V (G) are cofacial
if there exists a face f of G that is incident to both u and v.
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Definition 3.4.2. Let G be a 2-connected plane graph with outer cycle C. We define the
boundary of G, denoted B(G), as N(V (C)). We define the quasi-boundary of T , denoted
by Q(T ), as the set of vertices not in C that are cofacial with at least one vertex of C (and
so B(T ) ⊆ Q(T )). We let b(t) := |B(T )| and q(T ) := |Q(T )|. If T = (G,C, (L,M)) is a
canvas, then we extend the above notions to T in the obvious way, defining B(T ) := B(G)
and Q(T ) := Q(G).

For the remainder of the chapter, let ε and α be fixed positive real numbers. Theorem
3.4.7 depends on ε and α and holds as long as these two numbers satisfy three inequalities
listed in the theorem statement. In Section 3.6, we will make a specific choice of ε and α
in order to optimize the constant in Theorem 1.2.23. Before proceeding, we need one final
definition.

Definition 3.4.3. Let G be a 2-connected plane graph with outer cycle C. We define
s(G) := ε · v(G) + α(b(G) + q(G)) and d(G) := def(G|C) − s(G). If T = (G,C, (L,M))
is a canvas, we extend these notions to T in the obvious way, defining s(T ) := s(G) and
d(T ) := d(G).

Below, we establish useful properties of the quantities introduced in the above defini-
tions.

Proposition 3.4.4 (Proof taken from Proposition 4.3, [35]). Let G be a 2-connected plane
graph with outer cycle C, and let G′ be a 2-connected subgraph of G containing C as a
subgraph.

• v(G) = v(G′) +
∑

f∈F (G′) v(G⟨f⟩),

• b(G) ≤ b(G′) +
∑

f∈F (G′) b(G⟨f⟩),

• q(G) ≤ q(G′) +
∑

f∈F (G′) q(G⟨f⟩),

• s(G) ≤ s(G′) +
∑

f∈F (G′) s(G⟨f⟩),

• d(G) ≥ d(G′) +
∑

f∈F (G′) d(G⟨f⟩).

Proof. For f ∈ F(G′), let Cf denote the cycle bounding f . The first assertion follows from
the fact that every vertex of V (G)\V (C) is in exactly one of G′\V (C) and G⟨f⟩\V (Cf ) for
f ∈ F(G′), and every vertex in one of those sets is in V (G) \ V (C). The second assertion
follows from the claim that B(G) ⊆ B(G′)∪

⋃
f∈F(G′)B(G⟨f⟩). To see this claim, suppose
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that v ∈ B(G). Now v ∈ B(G) if and only if v has a neighbour u in V (C). If v ∈ V (G′),
then v ∈ B(G′). So we may assume that v is a vertex of G⟨f⟩ \V (Cf ) for some f ∈ F(G′).
Then u ∈ V (Cf ) and hence v ∈ B(G⟨f⟩). The third assumption follows from the claim
that Q(T ) ⊆ Q(G′) ∪

⋃
f∈F(G′)Q(G⟨f⟩). That claim follows from the same argument as

above, except that u ∈ V (C) is cofacial with v instead of a neighbour of v. The fourth
statement follows from the first three. The fifth statement follows from the fourth and
Lemma 3.3.3.

As a corollary to this, we obtain the following.

Corollary 3.4.5 (Proof taken from Corollary 4.4, [35]). Let G be a 2-connected plane
graph with outer cycle C. If e is a chord of C and C1, C2 are the cycles of C + e other
than C, then

d(G) ≥ d(G⟨C1⟩) + d(G⟨C2⟩) + 1.

If v is a vertex with two neighbours u1, u2 ∈ V (C) and C1, C2 are cycles such that
C1 ∩ C2 = u1vu2 and C1 ∪ C2 = C + u1vu2, then

d(G) ≥ d(G⟨C1⟩) + d(G⟨C2⟩)− 1− (2α + ε).

Proof. Both formulas follows from Proposition 3.4.4 applied to G′ := C1 ∪ C2.

It will be convenient to be able to refer to the facts below, which follow directly from
the definition of d(·).
Proposition 3.4.6 (Proposition 4.5, [35]). Let T = (G,C, (L,M)) be a canvas.

(i) If v(G) = 0, then d(T ) = |E(G) \ E(C)|.

(ii) If v(G) = 1, then d(T ) = |E(G) \ E(C)| − 3− (2α + ε).

Having defined all necessary quantities, we are now equipped to state the main theorem
of this chapter. We remind the reader that the definition of canvas used in Chapter 3 differs
from that in Chapter 2: see Definition 3.2.3.

Theorem 3.4.7. Let ε, α, γ > 0 satisfy the following:

(I1) 2ε ≤ α

(I2) 14α + 7ε ≤ γ, and

(I3) γ + 6α + 3ε ≤ 1

If T = (G,C, (L,M)) is a critical canvas and v(G) ≥ 2, then d(T ) ≥ 3− γ.
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3.5 Proof of Theorem 3.4.7

This section contains a proof of Theorem 3.4.7. Throughout this section, let T = (G,C,
(L,M)) be a counterexample to Theorem 3.4.7 such that |E(G)| is minimum; subject to
that, such that

∑
v∈V (G) |L(v)| is minimum; and subject to that, such that

∑
e∈E(G) |Me| is

maximum. Recall that by Lemma 3.2.11, there is no cycle C ′ in G of length at most four
with G⟨C ′⟩ ≠ C ′; and moreover that deg(v) ≥ 5 for all internal vertices v of G.

The following claim establishes that G contains at least eight internal vertices. A similar
claim (showing v(G) ≥ 5 instead of v(G) ≥ 8) can be found in [35] as Claim 5.1.

Claim 9. v(T ) ≥ 8.

Proof. Suppose not. Note that s(G) ≤ v(G)(ε+2α), and hence d(G) ≥ def(G)−7(2α+ε).
Since 14α + 7ε ≤ γ by (I2) and T is a counterexample to Theorem 3.4.7, it follows that
def(G) < 3. Since deficiency is integral, def(G) ≤ 2.

Let m = |E(G \ V (C))|. By Lemma 3.3.5, def(G) ≥ 2v(G) −m, and if equality holds
every vertex of G has degree exactly 5. With this in mind, we consider the inequality
2 ≥ def(G) ≥ 2v(G)−m for each value of v(G) ∈ {2, 3, . . . , 7}.

Since 2 ≥ def(G) ≥ 2v(G)−m, if v(G) = 2 this implies m ≥ 2. This is a contradiction,
since G is a simple graph. Similarly, since 2 ≥ def(G) ≥ 2v(G) − m, if v(T ) = 3 this
implies m ≥ 4. This too is a contradiction.

Thus we may assume that v(G) ≥ 4. If v(G) = 4, then 2 ≥ 2 · 4 −m and so m ≥ 6.
This implies G \V (C) is a complete graph; and singe G is planar, the outer face boundary
walk of G \ V (C) is a triangle. This contradicts Proposition 3.2.11 (1).

If v(T ) = 5, then 2 ≥ 2 ·5−m and so m ≥ 8. If m ≥ 9, then G\V (C) is a triangulation,
contradicting Proposition 3.2.11 (1). Thus we may assume that m = 8. It follows that the
outer face boundary walk of G \ V (C) is not a 5-cycle, as otherwise m ≤ 7. If it is a cycle
of length at most 4, this contradicts Proposition 3.2.11 (1). Thus the outer face boundary
walk of G \ V (C) is not a cycle; but then m ≤ 6, a contradiction.

Thus we may assume that v(G) ∈ {6, 7}. If v(T ) = 6, then 2 ≥ 2 ·6−m and so m ≥ 10.
If m ≥ 11, the outer face boundary walk of G\V (C) is a 4-cycle, contradicting Proposition
3.2.11 (1). Thus we may assume m = 10, and moreover that the outer face boundary walk
of G \ V (C) is not a cycle of length at most 4. If it is a cycle of length 6, then m ≤ 9, a
contradiction. If the outer face boundary walk of G\V (C) is not a cycle, thenm ≤ 7, again
a contradiction. Thus we may assume the outer face boundary walk of G\V (C) is a 5-cycle;
and by Lemma 3.3.5, every vertex ofG has degree exactly 5. ThusG\V (C) is a 5-wheel. We
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claim that every (L,M)-colouring of C extends to G. To see this, fix an (L,M)-colouring
ϕ of C. By adding a (possibly empty) set of edges to matchings inM , we may assume that
|Muv| = min{|L(u)|, L(v)|} as this only makes the task of extending a colouring harder.
Let the outer cycle of the 5-wheel G \ V (C) be v1v2v3v4v5v1, and the central vertex v6.
Let S(v1) := L(v1) \ {d : (v1, d)(u, ϕ(u)) ∈Muv1 and u ∈ N(v1) ∩ V (C)}. By our choice of
counterexample T and since v1 has degree 5 in G, it follows that |S(v1)| = 3. Thus there
exists a choice of colour c ∈ L(v6) such that (c, v6)(d, v1) ̸∈ Mv1v6 for all d ∈ S(v1). But
then ϕ extends to G by first colouring v6 with c, and then colouring v2, v3, v4, v5, and v1 in
that order. This contradicts the fact that T is critical.

We may therefore assume that v(T ) = 7. Then 2 ≥ 2 · 7 − m, and so m ≥ 12. By
Proposition 3.2.11 (1), the outer face boundary walk of of G\V (C) is not a cycle of length
at most 4. Suppose first that it is a 5-cycle. Then m ≤ 13. But since m ≥ 12 and G
is planar, at least one internal vertex of G \ V (C) does not have degree 5, contradicting
Proposition 3.2.11 (2). Next, suppose the outer face boundary walk of G \ V (C) is a 6-
cycle. Them m ≤ 12, and so m = 12. By Lemma 3.3.5, every vertex in G \ C has degree
exactly 5. But then m ≤ 11, a contradiction. Suppose now the outer face boundary walk
of G \ V (C) is a 7-cycle. Then m ≤ 11, a contradiction. Finally, suppose the outer face
boundary walk of G \ V (C) is not a cycle. Then m ≤ 10, again a contradiction.

3.5.1 Proper Critical Subgraphs

Many of our proofs will involve passing to a smaller canvas whose underlying graph and
outer cycle are strictly contained within G. It is useful for inductive purposes to be able to
bound the deficiency and d(·) of one such canvas in terms of another; the following lemma
allows us to do this.

Claim 10 (Proof taken from Claim 5.2, [35]). Suppose T0 = (G0, C0, (L0,M0)) is a critical
canvas with |E(G0)| ≤ |E(G)| and v(G0) ≥ 2, and let G′ be a proper subgraph of G0 such
that for some correspondence assignment (L′,M ′), the tuple (G′, C0, (L

′,M ′)) is a critical
canvas. Then

(1) d(T0) ≥ 4− γ, and

(2) d(T0) ≥ 4− 2(2α + ε) if |E(G0 \ E(G′)| ≥ 2 and |E(G′) \ E(C0)| ≥ 2, and

(3) d(T0) ≥ 5−2α−ε−γ if |E(G0)\E(G′)| ≥ 2 and |E(G′)\E(C0)| ≥ 2 and v(G0) ≥ 3.
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Proof. Note that the inequality in (3) implies the inequality in (2) implies the inequality in
(1) by inequalities (I2) and (I3). Given Proposition 3.4.6 and the fact that T is a minimum
counterexample, it follows that for each f ∈ F(G′), we have d(T0⟨f⟩) ≥ 0 and moreover
that if f includes a vertex or edge of G0 then d(T0⟨f⟩) ≥ 1. In addition, since G′ is a
proper subgraph of G0 there exists at least one f ∈ F(G′) such that f includes a vertex
or edge of G0. Furthermore, if |E(G0) \E(G′)| ≥ 2, then either there exist two such fs or
d(T0⟨f⟩) ≥ 2− (2α + ε) for some f ∈ F(G′) by Proposition 3.4.6.

Now d(T0) ≥ d(G′) +
∑

f∈F(G′) d(T0⟨f⟩) by Proposition 3.4.4. But as noted above,∑
f∈F(G′) d(T0⟨f⟩) is at least 1 and is at least 2− (2α+ ε) if |E(G0) \E(G′)| ≥ 2. Further-

more, if v(T0⟨f⟩) ≥ 2 then d(T0⟨f⟩) ≥ 3− γ by the minimality of T .

Assume first that v(G′) ≥ 2. Then d(G′) ≥ 3 − γ as T is a minimum counterexample
and |E(G′)| < |E(G0)| ≤ |E(G)|. Hence d(T0) ≥ 4−γ if |E(G0)\E(G′)| = 1 and (1) holds
as desired. Otherwise d(T0) ≥ 5− (2α + ε)− γ and (2) and (3) hold as desired.

So we may assume that v(G′) ≤ 1. Suppose v(G′) = 1. Then d(G′) ≥ 2− (2α + ε) by
Proposition 3.4.6 and criticality. Moreover, there exists f ∈ F(G′) such that v(T0⟨f⟩) ≥ 1.
If v(T0⟨f⟩) ≥ 2, then d(T0⟨f⟩) ≥ 3 − γ as T is a minimum counterexample. As above,
d(T0) ≥ d(G′) + d(T0⟨f⟩) ≥ 5 − (2α + ε) and (3) holds, as desired. If v(T0⟨f⟩) ≥ 1,
then d(T0⟨f⟩) ≥ 2 − (2α + ε) by Proposition 3.4.6. As above, d(T0) ≥ d(G′) + d(T ⟨f⟩ ≥
2(2 − (2α − ε)) = 4 − 2(2α + ε) and (1) and (2) hold, as desired. Yet if v(T0) ≥ 3, there
must be two such faces if no face has at least two internal vertices. In that case then,
d(T0) ≥ 3(2− (2α+ ε)) = 6− (3(2α+ ε) which is at least 5− (2α+ ε)− γ by (I2) and so
(3) holds, as desired.

So suppose v(G′) = 0. As G′ ̸= C0, we have that d(T0[G
′]) ≥ |E(G′) \ E(C0)| by

Proposition 3.4.6. As v(T0) ≥ 2, either there exists f ∈ F(G′) such that v(T0⟨f⟩) ≥ 2,
or there exist faces f1, f2 ∈ F(G′) such that v(T0⟨fi⟩) ≥ 1 for i ∈ {1, 2}. Suppose the
first case holds. Then d(T0⟨f⟩) ≥ 3 − γ as T is a minimum counterexample. Hence
d(T0) ≥ |E(G′)\E(C0)|+3−γ. Since |E(G′)\E(C0)| ≥ 1, we have that d(T0) ≥ 4−γ and
so (1) holds, as desired. If |E(G′) \ E(C0)| ≥ 2, then d(T0) ≥ 5− γ and (2) and (3) hold,
as desired. So suppose the latter case holds. Then d(T0⟨fi⟩) ≥ 2− (2α + ε) for i ∈ {1, 2},
and d(T0) ≥ 1 + 2(2− (2α+ ε)) = 5− 2(2α+ ε) and all three statements hold as desired,
since 2α + ε ≤ γ by (I2).

Claim 11 (Proof taken from Claim 5.3, [35]). There does not exist a proper C-critical
subgraph G′ of G.

Proof. This follows from Claim 10 applied to T0 = T .
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In addition, we have the following claim which will simplify the colouring arguments in
Section 3.5.3.

Claim 12. If uv ∈ E(G) \ E(C), then |Muv| = min{|L(v)|, |L(u)|}.

Proof. Suppose not. Then there exist colours c1 ∈ L(u) and c2 ∈ L(v) such that both c1
and c2 are unmatched in Muv. Let M ′ be obtained from M by setting M ′

e = Me for all
e ̸= uv, and setting M ′

uv = Muv ∪ {(u, c1)(v, c2)}. Let T ′ = (G,C, (L,M ′)). Note that
|V (T )| = |V (T ′)|, and that the sum of the list sizes of the vertices in T ′ is the same as
that in T . Since (G,C, (L,M)) was chosen to maximize

∑
e∈E(G) |Me|, it follows that T ′

is not a counterexample to Theorem 3.4.7. Otherwise, since def(T ′) = def(T ), we have
that T ′ contradicts our choice of T . Thus T ′ is not a critical canvas. Since T is C-critical,
there exists an (L,M ′)-colouring of C that does not extend to G. By Proposition 3.2.9,
T ′ contains a critical subcanvas (G′, C, (L,M ′)); and since T ′ is not critical, G′ is a proper
subgraph of G. But this contradicts Claim 11.

Claim 13 (Proof taken from Claim 5.4, [35]). There does not exist a chord of C.

Proof. Suppose there exists a chord e of C. Let G′ = C ∪ e. As v(T ) ̸= 0, it follows that
G′ is a proper subgraph of G. Yet G′ is C-critical, contradicting Claim 11.

3.5.2 Dividing Vertices

In this subsection, we prove a few claims regarding dividing vertices, defined below. Namely,
we show that ifG is a critical canvas with at most |E(G)| edges, ifG contains a true dividing
vertex (Claim 14) or a strong dividing vertex (Claim 15) then d(G) is relatively high. These
claims will be useful in the following section in showing that certain canvases obtained from
T (called relaxations) do not contain true or strong dividing vertices. This in turn is useful
in arguments showing that when passing to these relaxations, the size of the boundaries
and quasiboundaries of the resulting canvases are at least b(G) and q(G).

Definition 3.5.1. Let G0 be a 2-connected plane graph with outer cycle C0. Let v be a
vertex in V (G) \V (C), and suppose there exist two distinct faces f1, f2 ∈ F (G0) such that
for i ∈ {1, 2} the boundary of fi includes v and a vertex of C0, say ui. Let us assume that
u1 ̸= u2, and let G′ be the plane graph obtained from G0 by adding the edges u1v, u2v if
they are not present in G0. Consider the cycles C1, C2 of G′, where C1 ∩ C2 = u1vu2 and
C1 ∪ C2 = C0 ∪ u1vu2. If for both i ∈ {1, 2}, |E(T ⟨Ci⟩) \ E(Ci)| ≥ 2, then we say that
v is a dividing vertex. If for both i ∈ {1, 2} |V (T ⟨Ci⟩) \ V (Ci)| ≥ 1, we say v is a strong
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dividing vertex. If v is a dividing vertex and the edges u1v, u2v are in G, then we say that
v is a true dividing vertex. If T0 = (G0, C0, (L0,M0)) is a canvas, then by a dividing vertex
of T0 we mean a dividing vertex of G0, and similarly for strong and true dividing vertices.

Claim 14 (Proof taken from Claim 5.6, [35]). Suppose T0 = (G0, C0, (L0,M0)) is a critical
canvas with e(G0) ≤ e(G) and v(G0) ≥ 2. If G0 contains a true dividing vertex, then

1. d(T0) ≥ 3− 2(2α + ε), and

2. d(T0) ≥ 4− 2α− ε− γ if v(G0) ≥ 3.

Proof. Note the inequality in (2) implies the inequality in (1) by (I3). Let u1, u2, C1, C2,
and v be as in the definition of true dividing vertex. Since v is a true dividing vertex, u1v
and u2v belong to G0. Let G

′ = C1 ∪C2. Hence G
′, C1, and C2 are subgraphs of G0. Thus

d(T0[G
′]) = −2− (2α + ε) by Proposition 3.4.6 (ii).

Note that by Corollary 3.2.7, both T0⟨C1⟩ and T0⟨C2⟩ are critical canvases. If v(T0⟨C1⟩) =
0, then d(T0⟨C1⟩) ≥ 2 by Proposition 3.4.6 (i), because |E(T0⟨C1⟩)\E(C1))| ≥ 2 by Propo-
sition 3.4.6 (ii). If v(T0⟨C1⟩) ≥ 2, then d(T0⟨C1⟩) ≥ 3 − γ as T is a minimum counterex-
ample. In any case, d(T0⟨C1⟩) ≥ 2 − (2α + ε) as γ ≤ 1 + (2α + ε) by (I3). Similarly,
d(T0⟨C⟩) ≥ 2− (2α + ε).

By Proposition 3.4.4, d(T0) ≥ d(T0[G
′]) + d(T0⟨C1⟩) + d(T0⟨C2⟩). Now let us choose v

such that a = min{v(T ⟨C1⟩), v(T0⟨C2⟩)} is minimized. Note then that a ̸= 1, as otherwise
there exists another true dividing vertex, contradicting the minimality of a. First suppose
that a ≥ 2 and hence

d(T0) ≥ (−1− (2α + ε)) + 2(3− γ) = 5− 2γ − (2α + ε).

Then (1) and (2) hold by inequality (I3), as desired. So we may assume that a = 0. Hence

d(T0) ≥ (−1− (2α + ε)) + 2 + 2− (2α + ε) = 3− 2(2α + ε),

and so (1) holds, as desired. Yet if v(T0) ≥ 3, then

d(T0) ≥ (−1− (2α + ε)) + 2 + 3− γ = 4− γ − (2α + ε),

and (2) holds, as desired.

The following proof is nearly identical to the analogous result in [35], with a few minor
changes to the colouring arguments to ensure they hold for correspondence colouring.
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Claim 15 (Proof adapted from Claim 5.7, [35]). Suppose T0 = (G0, C0, (L0,M0)) is a
critical canvas with |E(G0)| ≤ |E(G)|. If G0 contains a strong dividing vertex, then d(T0) ≥
4− 2γ.

Proof. Let u1, u2, C1, C2, and v be as in the definition of strong dividing vertex. As v is a
strong dividing vertex, it follows that v(T0) ≥ 3 and v(T0⟨C1⟩) ≥ 1. If v(T0⟨C1⟩) = 1, then
the unique vertex in V (T0⟨C1⟩) \ V (C1) is a true dividing vertex and hence

d(T0) ≥ 4− 2α− ε− γ ≥ 4− 2γ

by Claim 14 and (I2), as desired. So we may assume that v(T0⟨C1⟩) ≥ 2 and similarly that
v(T0⟨C2⟩) ≥ 2.

Let G′
0 be the graph obtained from G0 by adding vertices z1, z2 not in V (G) and edges

u1z1, z1v, vz2, z2u2. Similarly let G′ be the graph obtained from C0 by adding vertices
v, z1,, and z2 and edges u1z2, z1v, vz2, and z2v2. Let L′

0(x) = L0(x) for all x ∈ V (G0),
and let L′

0(z1) = L′
0(z2) = R, where R is a set of five new colours. Let M ′

0 be defined as
(M ′

0)uv = (M0)xy for all xy ∈ E(G′
0) with {z1, z2} ∩ {x, y} = ∅, and (M ′

0)xy = ∅ for all
xy ∈ E(G′

0) with {z1, z2} ∩ {x, y} ≠ ∅. Let T ′
0 = (G′

0, C0, (L
′
0,M

′
0)). Now

def(G′) = |E(G′)| − |E(C0)| − 3v(G′) = 4− 3 · 3 = −5.

Since G0 is C0-critical, there exists an (L0,M0)-colouring ϕ0 of C0 that does not extend
to G0. By Claim 10 the graph G0 does not have a proper C0 critical subgraph, and hence
ϕ0 extends to every proper subgraph of G0 by Proposition 3.2.9. For every c ∈ L0(v), let
ϕc(v) = c, ϕc(z1) = ϕc(z2) ∈ R, and ϕc(x) = ϕ0(x) for all x ∈ C0. Let C ′

1 and C ′
2 be the

two facial cycles of G′ other than C0. Since ϕ0 does not extend to an (L0,M0)-colouring of
G0, for every c ∈ L0(v) the colouring ϕc does not extend to an (L′

0,M
′
0)-colouring of either

G′
0⟨C ′

1⟩ or G′
0⟨C ′

2⟩. Since |L0(v)| ≥ 5, there exists i ∈ {1, 2} such that there exist at least
three colours c ∈ L0(v) such that ϕc does not extend to an (L′

0,M
′
0)-colouring of G′

0. We
may assume without loss of generality that i = 1. Let C be the set of all colours c ∈ L(v)
such that ϕc does not extend to an (L0,M0)-colouring of G′

0⟨C ′
1⟩. Thus |C| ≥ 3.

Let G′
1 be the graph obtained from G′

0⟨C ′
1⟩ by adding the edge z1z2 inside the outer face

of G′
0⟨C ′

1⟩. Let C ′′
1 = (C ′

1 \ v) + z1z2. Let L
′(z1) = {c1}, L′(z2) = {c2}, and L′(x) = L0(x)

for every x ∈ V (G0) \ {v}. Let L′(v) = C ∪ {c1, c2}. Let M ′ be defined as follows: we set
(M ′

xy =M0) for all xy ∈ E(G0) with {x, y}∩{z1, z2} = ∅; we setM ′
xy = ∅ for all xy ∈ E(G0)

with v ̸∈ {x, y} and {x, y} ∩ {z1, z2} ≠ ∅; and finally we set M ′
vzi

= {(v, ci)(zi, ci)} for
i ∈ {1, 2}.
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We claim that the canvas T1 = (G′
1, C

′′
1 , (L

′,M ′)) is a critical canvas. To see this, let H
be a proper subgraph of G′

1 that includes C ′′
1 as a subgraph. Let us extend ϕ0 by defining

ϕ0(z1) := c1 and ϕ0(z2) := c2. We will show that (the restriction to C ′′
1 of) ϕ0 extends to H

but not to G′
1. If ϕ0 extended to G′

1, then ϕ0(v) ̸∈ C by definition of C and ϕ0(v) ̸∈ {c1, c2}
because v is adjacent to both z1 and z2, a contradiction. Thus ϕ0 does not extend to
G′

1. To show that ϕ0 extends to H assume first that H \ {z1, z2} is a proper subgraph of
G0⟨C ′

1⟩. Then (H \ {z1, z2}) ∪ G0⟨C ′
2⟩ is a proper subgraph of G0, and hence ϕ0 extends

to it, as desired. So we may assume that H \ {z1, z2} = G0⟨C ′
1⟩. Since H is a proper

subgraph of G′
1 we may assume from the symmetry that vz1 ∈ E(H). Now ϕ0 extends

to an (L′,M ′)-colouring of G0 \ {v}. Letting ϕ0(v) = c1 shows that ϕ0 extends to H, as
desired. This proves the claim that T1 is critical. As v(T1) ≥ 2, we find that d(T1) ≥ 3− γ
by the minimality of T . Similarly, since v(T ′

0⟨C ′
2⟩) ≥ 2, we find that d(T ′

0⟨C ′
2⟩) ≥ 3 − γ.

Let us now count deficiencies. By Lemma 3.3.4,

def(T ′
0) = def(T ′

0[G
′
0]) + def(T ′

0⟨C ′
1⟩) + def(T ′

0⟨C ′
2⟩) = −5 + def(T ′

0⟨C ′
1⟩) + def(T ′

0⟨C ′
2⟩).

Yet def(T0) = def(T ′
0) + 2. Furthermore, def(T ′

0⟨C ′
1⟩) = def(T1) + 1. Hence,

def(T0) = def(T ′
0⟨C ′

1⟩) + def(T ′
0⟨C ′

2⟩)− 3 = def(T1) + def(T ′
0⟨C ′

2⟩)− 2.

Next we count the function s. We claim that s(T0) ≤ s(T1)+s(T
′
0⟨C ′

2⟩). This follows as
every vertex of V (G0) \V (C0) is either in V (G′

1) \V (C ′′
1 ) or V (G′

0⟨C ′
2⟩) \V (C ′

2). Moreover
every vertex of B(T0) is either in B(T1) or B(T ′

0⟨C ′
2⟩) and similarly every vertex of Q(T0)

is either in Q(T1) or Q(T
′
0⟨C ′

2⟩).
Finally putting it all together, we find that

d(T0) ≥ d(T1) + d(T ′
0⟨C ′

2⟩)− 2 ≥ 2(3− γ)− 2 = 4− 2γ,

as desired.

3.5.3 Tripods

An easy consequence of Theorem 3.1.1 is that if (G,C, (L,M)) is a C-critical canvas with
v(G) ≥ 2, then there exists a vertex in V (G)\V (C) with at least three neighbours in V (C).
Otherwise, every (L,M)-colouring of C extends to an (L,M)-colouring of G, contradicting
the fact that G is C-critical. Much of our analysis will involve performing certain reductions
around specific vertices in G that have precisely three neighbours in C, arguing about the
deficiency and d(·) of the resulting canvas, and extrapolating from that about def(T ) and
d(T ). To that end, it is convenient to define the following.
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Definition 3.5.2. Let G0 be a plane graph with outer cycle C0, and let v ∈ V (G0)\V (C0)
have at least three neighbours in C0. Let u1, u2, · · · , uk be all the neighbours of v in C0

listed in a counterclockwise order of appearance on C0. Assume that at most one face of
G0[V (C0) ∪ {v}] includes an edge or vertex of G0, and that if such a face exists, then it is
incident with u1 and uk. If k = 3, then we say that v is a tripod of G0, and if k ≥ 4, then
we say that v is a quadpod of G0. The tripod or quadpod v is regular if there exists a face
of G0[V (C0)∪{v}] that includes an edge or vertex of G0. If such a face exists, then we say
that u1, u2, · · · , uk are listed in standard (counterclockwise) order. Note that every tripod
of degree at least four is regular.

If v is a regular tripod or quadpod, we let C0 ⊕ v denote the boundary of the face of
G0[V (C0)∪{v}] that includes an edge or vertex of G0, and we define G0⊕v := G0⟨C0⊕v⟩.
If X is a set of tripods or quadpods of G0 and there exists a face of G0[V (C0) ∪ X] that
includes an edge or vertex of G0, then we let C0 ⊕X denote the boundary of such a face
and define G0 ⊕X := G0⟨C0 ⊕X⟩.

If T0 = (G0, C0, (L0,M0)) is a canvas, then we extend all the above terminology to T0
in the natural way: thus we can speak of tripods or quadpods of T0, we define T0 ⊕X =
T0[G0 ⊕X], etc.

Claim 16 (Proof taken from Claim 5.9, [35].). Let T0 = (G0, C0, (L0,M0)) be a canvas
with v(G0) ≥ 2, and let v ∈ V (G0) \ V (C0) have at least three neighbours in C0. Then v is
either a regular tripod of T0, or a true dividing vertex of T0.

Proof. Let u1, u2, . . . , uk be all the neighbours of v in C0 listed in their order of appearance
on C0 and numbered such that the face f of G0[V (C0) ∪ {v}] incident with u1 and uk
includes a vertex of G0. If another face of G0[V (C0) ∪ {v}] includes an edge or vertex of
G0 or if k ≥ 4, then by considering the vertices u1 and uk we find that v0 is a true dividing
vertex of T0. Thus we may assume that k = 0 and that f is the only face of G0[V (C0)∪{v}]
that contains a vertex or edge of G0. It follows that v is a tripod, as desired.

Definition 3.5.3. Let T0 = (G0, C0, (L0,M0)) be a canvas. We say that T0 is a 0-relaxation
of T0. Let k > 0 be an integer, T ′

0 be a (k − 1)-relaxation of T0, and v be a regular tripod
for T ′

0. Then we say that T ′
0 ⊕ v is a k-relaxation of T0.

By Proposition 3.2.11 (2), every tripod of a critical canvas is regular. As a consequence,
if v is a tripod of a critical canvas T0, then T0 ⊕ v is well-defined. Moreover, T0 ⊕ v is itself
a critical canvas by Corollary 3.2.7, and v(T0 ⊕ v) ≥ 2 by Proposition 3.2.11 (2). Thus for
all k ≥ 1, a k-relaxation T ′

0 of a critical canvas is well-defined; T ′
0 is critical; and v(T

′
0) ≥ 2.

Claims 17 and 18, below, establish useful results about canvas relaxations.
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Claim 17 (Proof taken from Claim 5.11, [35]). If T ′
0 is a k-relaxation of a canvas T0, then

d(T0) ≥ d(T ′
0)− k(2α + ε).

Proof. We proceed by induction on k. We may assume that k ≥ 1 (as otherwise the claim
trivially holds) and that the claim holds for all integers strictly smaller than k. Let Tk−1

be a (k − 1)-relaxation of T0 and v a regular tripod of Tk−1 such that T ′
0 is a 1-relaxation

of Tk−1. By induction, d(T0) ≥ d(Tk−1) − (k − 1)(2α + ε). Yet def(Tk−1) = def(T ′
0) while

v(Tk−1) = v(T ′
0) + 1, b(Tk−1) ≤ b(T ′

0) + 1, and q(Tk−1) ≤ q(T ′
0) + 1. Thus d(Tk−1) ≥

d(T ′
0)− (2α + ε) and the claim follows.

The following claim is analogous to Claim 5.12 in [35]. However, Claim 5.12 in [35]
makes no mention of the case when k ≥ 3, or of k ≥ 2 for strong dividing vertices, as these
cases were not necessary for the resulting analysis for list colouring.

Claim 18. Let k ∈ {0, 1, 2, 3, 4} and let T ′ be a k-relaxation of T . Then T ′ does not have
a true dividing vertex, and if k ≤ 3, it does not have a strong dividing vertex.

Proof. Suppose not. By Corollary 3.2.7, T ′ is critical, and v(T ′) ≥ 3 by Claim 9. If T ′ is a
true dividing vertex, then by Claim 17 we have that d(T ) ≥ d(T ′)− 4(2α + ε). By Claim
14 (2), we have moreover that d(T ′) ≥ 4− 2α− ε− γ. Thus

d(T ) ≥ d(T )− 4(2α + ε)

≥ 4− 2α− ε− γ − 8α− 4ε

= 3− γ + (1− 10α− 7ε)

> 3− γ

where the last line follows because 10α+7ε < 1 by inequalities (I2) and (I3) (which imply
together that 20α+10ϵ ≤ 1). Thus we may assume that k ≤ 3 and T ′ has a strong dividing
vertex. By Claim 17 we have that d(T ) ≥ d(T ′) − 3(2α + ε). By Claim 15, we have that
d(T ′) ≥ 4− 2γ. Thus

d(T ) ≥ d(T ′)− 3(2α + ε)

≥ 4− 2γ − 6α− 3ε

= 3− γ + (1− γ − 6α− 3ε).

But by (I3), γ + 6α + 3ε ≤ 1. Thus d(T ) ≥ 3− γ, a contradiction.

Claim 19 (Proof taken from Claim 5.13, [35]). If x1 is a tripod of T , then letting T ′ =
T ⊕ x1, either
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1. deg(x1) = 5, or,

2. deg(x1) = 6, the neighbours of x1 not in C form a path of length two and the ends
of that path are in B(T ), b(T ) = b(T ′), q(T ) = q(T ′) and d(T ) ≥ d(T ′)− ε.

Proof. Note that as v(T ) ≥ 8 by Claim 9, then v(T ′) ≥ 7. By Proposition 3.2.11 (2),
deg(x1) ≥ 5. If deg(x1) = 5, then (1) holds as desired, so we may assume that deg(x1) ≥ 6.
By Claim 3.2.7, T ′ is a critical canvas, and so by the minimality of T , we have that
d(T ′) ≥ 3− γ. Moreover, v(T ) = v(T ′) + 1 and since x1 is a tripod of T , def(T ′) = def(T ).
Thus d(T ) = d(T ′)− ε+α(b(T ′)− b(T )+ q(T ′)− q(T ). Let c1, c2, and c3 be the neighbours
of x1 in V (C) listed in standard order, and let c1, c2, c3, q1, . . . , q2 be all the neighbours of
x1 listed in their cyclic order around x1.

Let R = N(x1) \ {c1, c2, c3, q1, q2}. We claim that R ∩Q(T ) = ∅. Suppose not, and let
q ∈ R ∩ Q(T ). Then q is a dividing vertex of T ′. Given the presence of q1 and q2, q is a
strong dividing vertex of T ′, contrary to Claim 18. This proves that R ∩ Q(T ) = ∅, and
implies that R ∩B(T ) = ∅ as well since B(T ) ⊆ Q(T ).

Note that R ⊆ B(T ′) ⊆ Q(T ′). Thus q(T ′) ≥ q(T )+ |R|−1, and b(T ′) ≥ b(T )+ |R|−1.
Hence if |R| ≥ 2, then d(T ) ≥ d(T ′) − ε + 2α ≥ d(T ′) ≥ 3 − γ since 2α ≥ ε by (I1), a
contradiction. So |R| = 1 and so deg(x1) = 6. Thus q(T ′) ≥ q(T ) and b(T ′) ≥ b(T ). Now
it follows that q(T ) = q(T ′) and b(T ) = b(T ′) as otherwise d(T ) ≥ d(T ′) − ε + α ≥ 3 − γ
since α ≥ ε by (I1), a contradiction. Hence d(T ) ≥ d(T ′)− ε.

Let q ∈ R. The conclusions above imply that Q(T ′) \ {q} = Q(T ) \ {x1} and B(T ′) \
{q} = B(T )\{x1}. The latter implies that {q1, q2} ⊆ B(T ). The former implies that q1qq2
for a path, for otherwise there would exist a vertex other than q, q1, and q2 that is cofacial
with x1 and therefore belongs to Q(T ′); yet that vertex also then belongs to Q(T ) and so
is a strong dividing vertex of T ′, a contradiction as above. Thus (2) holds as desired.

The following claim is analogous to Claim 5.14 in [35]; however, the result in [35] is
weaker in that k ≤ 3. The proof is nearly identical.

Claim 20. For k ∈ {0, 1, 2, 3, 4, 5, 6}, if T ′ is a k-relaxation of T , then there does not exist
a proper critical subcanvas of T ′.

Proof. Suppose not. By Claim 9, v(T ′) ≥ 1. Then by Claim 10, we have that d(T ′) ≥ 4−γ.
By Claim 17, d(T ) ≥ 4− γ− 6(2α+ ε). By (I2), this is at least 3− γ, a contradiction.
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For the remainder of this chapter, let X1 be the set of internal vertices of G with at
least three neighbours in C. The following claim combines Claims 5.15, 5.16, and 5.17 in
[35], and establishes several some of the structure surrounding vertices in X1.

Claim 21 (Proofs taken from Claims 5.15-5.17, [35]). The following all hold.

1. X1 ̸= ∅ and every member of X1 is a tripod of T .

2. T ⊕X1 is well-defined and is a critical canvas.

3. The graph G⊕X1 does not have a chord of C ⊕X1.

Proof. We begin by proving (1). By Claim 13, there does not exist a chord of C, and hence
X1 ̸= ∅ by Theorem 3.2.10. By Claims 16 and 18 every member of X1 is a tripod of T .

Next, we prove (2). By Proposition 3.2.11 (2) every tripod of G is regular, and hence
T ⊕X1 is well-defined. It is critical by Corollary 3.2.7.

Finally, we prove (3). Suppose not. Let v1v2 be a chord of C ⊕ X1. As C has no
chord by Claim 13, we may assume without loss of generality that v1 ̸∈ V (C). Thus v1 is
a tripod of C. Hence v2 is also a tripod, as otherwise v1 is not a tripod. But then v2 is a
true dividing vertex of T ⊕ v1 because v(T ) ≥ 4 by Claim 9, contradicting Claim 18.

For the remainder of this chapter, let X2 be the set of vertices v ∈ V (G) \ (V (C)∪X1)
with at least three neighbours in C⊕X1. The first part of the following claim corresponds
to Claim 5.19 in [35]; the following two parts are analogous to parts (2) and (3) of Claim
21, above.

Claim 22. The following all hold.

1. (Claim 5.19, [35].) We have X2 ̸= ∅. Furthermore, let x2 ∈ X2, and let u1, u2, · · · , uk
be the neighbours of x2 in C ⊕ X1 listed in standard order. Then k = 3, and u2 ∈
V (C). In particular, every member of X2 is a tripod of C ⊕X1.

2. (T ⊕X1)⊕X2 is well-defined and is a critical canvas.

3. The graph (G⊕X1)⊕X2 does not have a chord of (C ⊕X1)⊕X2.

Proof. We begin by proving (1). By Claim 21 (3), there does not exist a chord of C ⊕X1

and hence from Claim 21 (2) and Theorem 3.2.10 it follows that X2 ̸= ∅. Let x2 ∈ X2,
and u1, u2, . . . , uk be as stated. Let i ∈ {2, 3, · · · , k − 1}. If ui ∈ X1, then since ui has no

88



neighbours inX1 by Claim 21 (3), we have that ui has three neighbours in C and is adjacent
to x2 but has no other neighbours, contrary to Proposition 3.2.11 (2). Thus ui ∈ V (C).
We may assume that k ≥ 4, as otherwise (1) holds. Since x2 ̸∈ X1, we may assume from
the symmetry that u1 ∈ X1. By considering the vertices u1 and u4 we find that x2 is a
true dividing vertex of either T ⊕ u1 (if u4 ∈ V (C)) or T ⊕ {u1, u4} (if u4 ̸∈ V (C)), either
case contradicting Claim 18.

We now prove (2). By Claim 21 (2), we have that T ⊕X1 is well-defined. By Claim 22
(1), every member of X2 is a tripod of C ⊕X1, and so by Proposition 3.2.11 we have that
(T ⊕X1)⊕X2 is well-defined. It is a critical canvas by Claim 3.2.7.

Finally, we prove (3). Suppose not. Let v1v2 be a chord of (C⊕X1)⊕X2. By Claims 13
and 21 (2), we may assume without loss of generality that v1 ∈ X2. Since every member of
X2 is a tripod of C⊕X1 by (2), it follows that v2 ∈ X2. Let u1, u2, u3 be the neighbours of
v1 in C ⊕X1 listed in standard order, and let w1, w2, w3 be the neighbours of v2 in C ⊕X1

listed in standard order. Since v1 and v2 are not in X1, at least one of u1 and u3 (say u1)
is in X1; and similarly, at least one of w1 and w3 is in X1. Let Y = {w1, w3} ∩X1. First
suppose that {w1, w3}∩{u1, u3} = ∅. Recall that by (1), u2 and w2 are in V (C).Then since
deg(v1) ≥ 5 and deg(v2) ≥ 5 by Proposition 3.2.11 (2), it follows that v1 is a true dividing
vertex of T ⊕ u1 ⊕ Y ⊕ v2, contradicting Claim 18.

Thus we may assume that {w1, w3} ∩ {u1, u3} ≠ ∅. Without loss of generality, suppose
that u3 = w3. Then again since deg(v1) ≥ 5 and deg(v2) ≥ 5 by Proposition 3.2.11 (2), it
follows that v1 is a true dividing vertex of T ⊕ Y ⊕ v2 (if u1 ̸∈ X1) or T ⊕ Y ⊕ u1 ⊕ v2 (if
u1 ∈ X1), again contradicting Claim 18.

It follows from the definition of critical canvas that there exists an (L,M)-colouring of
C that does not extend to an (L,M)-colouring of G. For the remainder of the proof, let ϕ
be one such fixed (L,M)-colouring of C.

Claim 23 (Claim 5.20, [35]). The colouring ϕ extends to every proper subgraph of G that
contains C as a subgraph.

Proof. This follows from Proposition 3.2.9 and Claim 11.

For v ∈ V (G) \ V (C), we let S(v) := L(v) \ {v[u, ϕ(u)] | u ∈ N(v) ∩ V (C)}. The
following claim is analogous to Claim 5.21 in [35], with the appropriate changes for corre-
spondence colouring.

Claim 24 (Claim 5.21, [35]). For all v ∈ V (G)\V (C), |L(v)| = 5 and |S(v)| = 5−|N(v)∩
V (C)|.
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Proof. Suppose for a contradiction that |L(v)| ≥ 6 for some v ∈ V (G)\V (C). Let c ∈ L(v),
and let L′ be defined by L′(v) : L(v) \ {c} and L′(x) := L(x) for all x ∈ V (C) \ {v}. Then
(G,C, (L′,M)) is a canvas, and ϕ clearly does not extend to an (L′,M)-colouring of G.
By Proposition 3.2.9 the canvas (G,C, (L′,M))) has a critical subcanvas (G′, C, (L′,M)).
Since T was chosen to minimize

∑
v∈V (G) |L(v)| subject to |E(G)| being as small as possible,

it follows that G′ is a proper subgraph of G. That contradicts Claim 10 applied to T0 = T
and G′.

To prove the second statement, suppose for a contradiction that |S(v)| ≥ 5− |N(v) ∩
V (C)| for some v ∈ V (G) \ V (C). Thus by our choice of minimum counterexample, it
follows that either v has a neighbour w1 such that v[w1, ϕ(w1)] = ∅, or that v has two
distinct neighbours w1 and w2 in V (C) such that v[w1, ϕ(w1)] = v[w2, ϕ(w2)]. But then ϕ
does not extend to G \ vw1, contradicting Claim 23.

u2 u3

z1
u1

x2

z2

u2

u3z1
u1

x2

z2

Figure 3.1: Vertices z1, z2 as described in Claim 34.
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The following claim is nearly identical to Claim 5.22 in [35], and establishes some of
the structure surrounding X1 vertices that neighbour X2 vertices. See Figure 3.1 for an
illustration of the vertices described in the claim.

Claim 25 (Claim 5.22, [35]). Let x ∈ X2, and let U = N(x) ∩ X1. If u ∈ U , then
deg(u) = 6 and there exist adjacent vertices z1, z2 ̸∈ V (C) such that z1 is adjacent to u
and is in B(T ), and z2 is adjacent to u and x.

Proof. By Claim 19 applied to T and u, we find that deg(u) ≤ 6 and the claim follows
unless deg(u) = 5. So suppose for a contradiction that deg(u) = 5.

Let C ′ = (C ⊕ U) ⊕ x, and T ⟨C ′⟩ = (G′, C ′, (L,M)). Let z ∈ V (G′) \ V (C ′) be a
neighbour of u. We claim that G′ \uz has a C ′-critical subgraph. To see this, we extend ϕ
to an (L,M)-colouring ϕ′ of G\uz as follows. For v ∈ V (C), let ϕ′(v) = ϕ(v). Since x ̸∈ X1,
we have that |S(x)| ≥ 3, and |S(u)| = 2 by Claim 24 since u ∈ X1 and every vertex in X1

is a tripod of T by Claim 21 (1). We may therefore choose ϕ′(x) with u[x, ϕ′(x)] ̸∈ S(u).
Now if ϕ′ extends to an (L,M)-colouring ϕ′′ of G′ \ uz, then by re-defining ϕ′′(u) to be a
colour in S(u)\u[z, ϕ′′(z)], we obtain an extension of ϕ to G, a contradiction. Thus ϕ′ does
not extend to an (L,M)-colouring of G \ uz, and so by Proposition 3.2.9 this proves our
claim that G′ \ uz contains a C ′-critical subgraph, say G′′. But G′′ is a proper C ′-critical
subgraph of G′, contradicting Claim 20.

For the remainder of this chapter, let X3 be the set of vertices v ∈ V (G) \ (V (C) ∪
X1 ∪X2) with at least three neighbours in (C ⊕X1)⊕X2. Having established that every
vertex u ∈ N(X2) ∩ X1 has degree 6, we are now equipped to prove the following claim.
The claim is analogous to Claim 5.19 in [35] (or equivalently Claim 22 (1), above), with
X3 playing the role of X2. Note that none of the proofs in [35] require the introduction of
this third layer of tri- and quadpods X3.

Claim 26. We have X3 ̸= ∅. Furthermore, let x3 ∈ X3, and let u1, u2, . . . , uk be all the
neighbours of x3 ∈ (C ⊕X1)⊕X2 listed in standard order. Then k = 3, and u2 ̸∈ X2.

Proof. By Claim 22 (3), there does not exist a chord of (C ⊕X1)⊕X2, and by Claim 22
(2), (T ⊕X1)⊕X2 is a critical canvas. Thus by Theorem 3.2.10 it follows that X3 ̸= ∅. Let
x3 ∈ X3 and u1, . . . , uk be as stated. Let i ∈ {2, . . . , k− 1}. Suppose that ui ∈ X2. If both
ui−1 and ui+1 are in X2, then since there are no edges in E(G) with both endpoints in X2

by Claim 22, it follows that deg(ui) ≤ 4 as ui is adjacent to x3 and ui has exactly three
neighbours in C ⊕X1 by Claim 22 (1). Thus at least one of ui−1 and ui+1 is not in X2. If
neither ui−1 nor ui+1 is inX2, then given the existence of ui and the fact that deg(x3) ≥ 5 by
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Proposition 3.2.11 (2) it follows that x3 is a true dividing vertex of T ⊕ ({ui−1, ui+1}∩X1),
contradicting Claim 18. Thus exactly one of ui−1 and ui+1 is in X2. By symmetry, we may
assume ui−1 ∈ X2. Let W = N(ui+1) ∩ X1. Note that |W | ≤ 2 by Claim 22 (1). Then
again we find that x3 is a true dividing vertex: either of T ⊕W ⊕ui−1⊕ui+1 (if ui+1 ∈ X1)
or of T ⊕W ⊕ ui−1 (if ui+1 ∈ V (C)), either way contradicting Claim 18.

We may assume that k ≥ 4, as otherwise the claim holds. Since x3 ̸∈ X2, we may
assume by symmetry that u1 ∈ X2. By above, u2, . . . , uk−1 ∈ V (C) ∩X1. Recall that by
Claim 21 (3) and (1), there are no edges with both endpoints in X1 and every member
of X1 has exactly three neighbours in V (C). In addition, by Proposition 3.2.11 (2) every
vertex in X1 has degree at least 5. By Claim 25, if a vertex u ∈ X1 is adjacent to a vertex
in X2, then it follows that deg(u) = 6. Thus {u2, u3, . . . , uk−1} ⊆ V (C), and moreover,
|N(u1) ∩ X1| = 1. Similarly, if uk ∈ X2 then |N(uk)| = 1. Then since deg(u1) ≥ 5 and
deg(uk) ≥ 5 by Proposition 3.2.11 (2) and every vertex of X2 is a tripod of C ⊕ X1, it
follows that x3 is a true dividing vertex of either (T ⊕ (N(u1) ∩X1))⊕ u1 (if uk ∈ V (C));
or of ((T ⊕ (N(u1)∩X1))⊕u1)⊕uk (if uk ∈ X1); or finally of (((T ⊕ (N(u1)∩X1))⊕u1)⊕
(N(uk) ∩X1))⊕ uk (if uk ∈ X2). Since as argued above |N(u1) ∩X1| = 1 and if uk ∈ X2

then |N(uk) ∩ X1| = 1, it follows that x3 is a true dividing vertex of a k-relaxation with
k ≤ 4, contradicting Claim 18.

Let X0 := V (C). It will be convenient to be able to succinctly describe the structure
surrounding vertices in X2 and X3. To that end, we make the following definition.

Definition 3.5.4. Let i ∈ {2, 3}, and let xi ∈ Xi. Let u1, u2, u3, . . . be the neighbours of xi
listed in standard counterclockwise order. We say xi is of type (j, k, ℓ) with j, k, ℓ ∈ {0, 1, 2}
if u1 ∈ Xj, u2 ∈ Xk, and u3 ∈ Xℓ.

By Claim 26, there exists a vertex x3 ∈ X3. For the remainder of the proof, we will fix
such an x3. Since x3 ̸∈ X2, it follows that x3 has at least one neighbour in X2. By Claim
26, if x3 is of type (j, k, ℓ), then k ̸= 2. Up to reflection of the graph, we may assume that
x3 is of one of the following types: (2,0,0), (2,0,1), (2,1,0), (2,1,1), (2,0,2), (2,1,2). The
following claims allow us to rule out several of these types.

Claim 27. The vertex x3 is not of type (2, 0, 1).

Proof. Suppose not. Let x2, x0, x1, . . . be the neighbours of x3 in standard counterclockwise
order. Note that by Claim 21 (1), x1 is a tripod of T , and since x2 ̸∈ X1, it follows that
x2 has at most two neighbours in V (C). Thus by Claim 24, |S(x2)| ≥ 3 and |S(x1)| = 2.
Moreover, since x3 is adjacent to a vertex in V (C), we have that |S(x3)| = 4. Thus there
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exists a colour c1 ∈ S(x1) and a colour c2 ∈ S(x2) such that x3[x1, c1] = x3[x1, c2]. Set
ϕ(xi) = ci for i ∈ {1, 2}. Let U = N(x2) ∩ X1, and let T ′ = T ⟨((C ⊕ U) ⊕ x2) ⊕ x1⟩ =
(G′, C ′, (L,M)). We claim that G′ − x3x2 has a C ′-critical subgraph. To see this, note
that if ϕ extends to an (L,M)-colouring of G, then by our choice of ϕ(x1) and ϕ(x2) this
extension is also an (L,M)-colouring of G. Thus ϕ does not extend to an (L,M)-colouring
of G′ − x3x2, and so by Proposition 3.2.9 we have that G′ − x3x2 contains a C ′-critical
subgraph. But this subgraph is a proper subgraph of G′; and by Claim 22 (2), |U | ≤ 2 and
so T ′ is a k-relaxation of T with k ≤ 4, contradicting Claim 20.

Claim 28. The vertex x3 is not of type (2, 1, 0).

Proof. Suppose not. Let x2, x1, x0, . . . be the neighbours of x3, listed in standard counter-
clockwise order. Note that x1 has exactly three neighbours in V (C) since x1 is a tripod
of T by Claim 21 (1). If x2 is adjacent to x1, then since G is planar and x1 is adjacent to
x3, it follows that deg(x1) = 5. But this contradicts Claim 25 since x1x2 ∈ E(G). Thus
we may assume that x2 is not adjacent to x1, and so since x1 has degree at least five by
Proposition 3.2.11 (2), there exists a vertex x′1 ∈ X1 with x′1x2 ∈ E(G) and x′1x1 ∈ E(G).
But this contradicts Claim 21 (3), since G does not contain an edge with both endpoints
in X1.

Claim 29. The vertex x3 is not of type (2, 1, 1).

Proof. Suppose not. Let x2, x1, x
′
1, . . . be the neighbours of x3 listed in standard counter-

clockwise order. Note that x1 has exactly three neighbours in V (C) by Claim 22 (1), and
that x1 is not adjacent to x′1 by Claim 21 (3). If x1 is not adjacent to x2, then since x1 is
adjacent to x3 it follows that deg(x1) ≤ 4, contradicting Proposition 3.2.11 (2). Thus we
may assume that x1 is adjacent to x2. But then deg(x2) ≤ 5, contradicting Claim 25.

Claim 30. The vertex x3 is not of type (2, 0, 2).

Proof. Suppose not. Let x2, x0, x
′
2, . . . be the neighbours of x3 listed in standard coun-

terclockwise order. Note that x2 is of type (1,0,0) and x′2 is of type (0,0,1), as otherwise
a vertex in X1 adjacent to either x2 or x′2 has degree at most 4, contradicting Claim
25. Let x1 and x′1 be the unique neighbours of x2 and x′2, respectively, in X1. By
Claim 24, |S(x2)| = |S(x′2)| ≥ 3. Moreover, since x3 is adjacent to a vertex in V (C),
we have that |S(x3)| = 4. Thus there exists an extension ϕ′ of ϕ to C ∪ {x2, x′2} where
x3[x2, ϕ

′(x2)] = x3[x
′
2, ϕ

′(x′2)]. Let T ′ = (G′, C ′, (L,M)) = T ⟨((C ⊕ {x1, x′1}) ⊕ {x2, x′2})⟩.
We claim G′ − x3x2 has a C ′-critical subgraph. To see this, note that if ϕ′ extends to
an (L,M)-colouring of G, then by our choice of ϕ(x2) and ϕ(x

′
2) this extension is also an
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(L,M)-colouring of G that extends ϕ. Thus ϕ′ does not extend to an (L,M)-colouring of
G′ − x3x2, and so by Proposition 2.9 G′ − x3x2 contains a C ′-critical subgraph. But this
subgraph is a proper subgraph of G′, and G′ is a 4-relaxation of G, contradicting Claim
20.

Claim 31. The vertex x3 is not of type (2, 1, 2).

Proof. Suppose not. Let x2, x1, x
′
2, . . . be the neighbours of x3 listed in standard counter-

clockwise order. By Claim 21 (1), x1 has exactly three neighbours in V (C). By Proposition
3.2.11 (2), x1 is adjacent to at least one of x2 and x

′
2. But then by Claim 25, it follows that

x1 is adjacent to both x2 and x′2. By Claim 24, |S(x2)| ≥ 3, |S(x′2)| ≥ 3, and |S(x1)| = 2.
Thus there exists an extension ϕ′ of ϕ to C∪{x2, x′2} where x1[x2, ϕ

′(x2)] ̸∈ S(x1) and simi-
larly x1[x

′
2, ϕ

′(x′2)] ̸∈ S(x1). Let U = (N(x2)∪N(x′2))∩X1, and let T ′ = (G′, C ′, (L,M)) =
T ⟨C ⊕ U ⊕ {x2, x′2}⟩. We claim G′ − x3x1 has a C ′-critical subgraph. To see this, note
that if ϕ′ extends to an (L,M)-colouring of G, then redefining ϕ′(x1) ∈ S(x1) \ ϕ′(x3) we
obtain an (L,M)-colouring of G that extends ϕ. By Proposition 3.2.9 G′−x3x1 contains a
C ′-critical subgraph. But this subgraph is a proper subgraph of G′, and G′ is a k-relaxation
of G with k ≤ 5 (since x1 ∈ N(x2) ∩N(x′2)), contradicting Claim 20.

It follows from Claims 27-31 that x3 is a vertex of type (2, 0, 0). For the remainder of
the proof, let x2 be the neighbour of x3 in X2.

Claim 32. The vertex x2 is of type (1, 0, 0).

Proof. Suppose not. Note that since x2 ̸∈ X1, we have that x2 is adjacent to at least one
vertex in X1. By Claim 22 (2), since x2 is not of type (1, 0, 0), it follows that x2 is of type
(1, 0, 1). Let x1 and x′1 be the neighbours of x2 in X1. Since G is planar, one of x1 and x′1
has degree at most 5, since it is adjacent to three vertices in V (C) by Claim 21 (1); to x2;
and possibly to x3. This contradicts Claim 25.

For the remainder of the proof, let x1 be the neighbour of x2 in X1, let T1 = T ⊕ x1,
and let T2 = T1 ⊕ x2. The following claim is similar to Claim 19, and establishes some of
the structure of T2.

Claim 33. Either:

• deg(x2) = 5, or
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• deg(x2) = 6, the neighbours of x2 not in X1 or C form a path of length two with the
ends in B(T ⊕ x1), b(T2) = b(T ), q(T2) = q(T ), and d(T ) ≥ d(T2)− 2ε.

Proof. Suppose not. Note that we may assume deg(x2) ≥ 6, since every vertex in V (G) \
V (C) has degree at least five by Proposition 3.2.11 (2) and deg(x2) ̸= 5 by assumption.
Moreover, by Claim 9 we have that v(T ) ≥ 8 and so v(T2) ≥ 6. By Claim 3.2.7, T2 is a
critical canvas, and so by the minimality of T it follows that d(T2) ≥ 3 − γ. In addition,
since x1 is a tripod of T and x2 is a tripod of T ⊕ x1, we have that def(T ) = def(T2), and
v(T ) = v(T2) + 2. It follows that

d(T ) = d(T2)− 2ε+ α(b(T2)− b(T ) + q(T2)− q(T )).

By Claim 25, deg(x1) = 6 and there exist adjacent vertices z1, z2 ̸∈ V (C) such that z1 is ad-
jacent to x1 and is in B(T ), and z2 is adjacent to x1 and x2. Let x1, u2, u3, q1, · · · , z2 be the
neighbours of x2 listed in their cyclic order around x2. Let R = N(x2) \ {x1, u2, u3, q1, z2}.
We claim that R ∩ Q(T1) = ∅. To see this, suppose not: let q be a vertex in R ∩ Q(T1).
Then given the presence of the path z1z2x2 and the fact that z1 ∈ B(T ), it follows that q
is cofacial with a vertex in V (C). Given the existence of q1, this implies that q is a strong
dividing vertex of T2. Since T2 is a 2-relaxation of T , this contradicts Claim 18. Thus
R∩Q(T1) = ∅; and since B(T2) ⊆ Q(T2), it follows that R∩B(T1) = ∅. Since deg(x1) = 6
by Claim 25, Claim 19 implies that b(T ) = b(T1), q(T ) = q(T1), and d(T ) ≥ d(T1) − ε.
Since R ∩Q(T2) = ∅, it follows that q(T2) ≥ q(T1) + |R| − 1, and b(T2) ≥ b(T1) + |R| − 1.
Moreover, def(T2) = def(T1), and v(T1) = v(T2) + 1. Thus

d(T1) = d(T2)− ε+ α(b(T2)− b(T1) + q(T2)− q(T1)), (3.5.1)

and so

d(T1) ≥ d(T2)− ε+ α(b(T1) + |R| − 1− b(T1) + q(T1) + |R| − 1− q(T1))

≥ d(T2)− ε+ α(2|R| − 2).

Since d(T ) ≥ d(T1)− ε by Claim 19, it follows that

d(T ) ≥ d(T2)− 2ε+ α(2|R| − 2)

If |R| ≥ 2, then d(T ) ≥ d(T2)− 2ε + 2α. This is a contradiction, since by the minimality
of T we have that d(T2) ≥ 3 − γ, and ε < α by (I1), implying that d(T ) ≥ 3 − γ. Thus
|R| = 1, and so deg(x2) = 6, q(T2) ≥ q(T1), and b(T2) ≥ b(T1). If equality does not hold in
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both of these expressions, then in Equation (3.5.1) we have

d(T1) > d(T2)− ε+ α

d(T ) ≥ d(T1)− ε > d(T2)− 2ε+ α since d(T ) ≥ d(T1)− ε by Claim 19

> 3− γ − 2ε+ α,

where the last line follows from the fact that by the minimality of T , we have d(T2) ≥ 3−γ.
This is a contradiction, since α ≥ 2ε by (I1). Hence q(T1) = q(T2), and b(T1) = b(T2).
Note this implies b(T ) = b(T2) and q(T ) = q(T2) by Claims 25 and 19. Moreover, d(T2) ≥
d(T1)− ε; and since d(T ) ≥ d(T1)− ε by Claim 19, it follows that d(T ) ≥ d(T2)− 2ε.

Now, let q ∈ R. From the above, Q(T2) \ {q} = Q(T1) \ {x2}, which implies that q1qq2
forms a path as otherwise there would exist a vertex x ̸∈ {q, q1, q2} with x ∈ Q(T2)∩Q(T1).
But then x is a strong dividing vertex of T1, contradicting Claim 18. Similarly, B(T2)\{q} =
B(T1) \ {x2}, implying that {q1, q2} ⊆ B(T1).

z1
x1 x2 x3

z2 z3

Figure 3.2: Vertices z1, z2, and z3 as described in Claims 34 and 36. For each i ∈ {1, 2, 3},
the vertex xi is in Xi. Moreover, x2 is of type (1,0,0), and x3 is of type (2,0,0).

The following claim establishes that deg(x2) = 6. See Figure 3.2 for an illustration of
the vertices described in the claim. For the remainder of the proof, let T3 = T2 ⊕ x3, with
T3 = (G3, C3, (L,M)).

Claim 34. The following both hold.

• deg(x2) = 6, and
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• there exist adjacent vertices z2, z3 ̸∈ V (C) such that z2 is adjacent to x2 and x1, and
z3 is adjacent to x2 and x3.

Proof. By Claim 33, this holds unless deg(x2) = 5. Let z ∈ V (G3)\V (C3) be a neighbour of
x2. We claim G\{x2z} has a C3-critical subgraph. To see this, we start by extending ϕ to a
partial (L,M)-colouring of C ∪C3 as follows: first, note that since x1 ∈ X1 is a tripod of T
by Claim 21 (1), Claim 24 implies that |S(x1)| = 2. Similarly, since x2 is of type (1,0,0) by
Claim 32, we have that Claim 24 implies that |S(x2)| = 3. Since x3 is of type (2,0,0), again
Claim 24 implies that |S(x3)| = 3. By Claim 12, |Mx1x2| = |Mx2x3| = 5. Thus there exists
a colour c1 ∈ S(x1) and a colour c3 ∈ S(x3) such that x2[x1, c1] = x2[x3, c3]. Set ϕ(xi) = ci
for i ∈ {1, 3}. If ϕ extends to an (L,M)-colouring ϕ′ of G3 \ x2z, then ϕ′ extends to an
(L,M)-colouring of G by redefining ϕ′(x2) to be a colour in S(x2)\{x2[x1, c1], x2[z, ϕ′(z)]}.
Since |S(x2)| = 3, such a choice exists —a contradiction, since ϕ does not extend to G.
Thus ϕ does not extend to an (L,M)-colouring of G3 \ x2z, and thus by Proposition 3.2.9,
we have that G3 \ x2z has a C3-critical subgraph, G

′
3. But then G

′
3 is a proper C3-critical

subgraph of G3 (since x2z ̸∈ E(G′
3)). Since T3 is a 3-relaxation of T , this contradicts Claim

20.

For the remainder of the proof, let z1, z2, and z3 be as in Claims 25 and 34.

Claim 35. Neither z2 nor z3 have a neighbour in V (C).

Proof. Note that N(z2) ∩ V (C) = ∅, as otherwise given the existence of z1 and z3, we
have that z2 is a strong dividing vertex of T1, contradicting Claim 18. Moreover, note that
deg(x3) ≥ 5 by Proposition 3.2.11 (2); and so, given that x3 is a tripod of T2 by Claim
26, there exists a vertex q1 ∈ N(x3) such that q1, z3, x2 is part of the cyclic ordering of the
neighbours of x3 and q1 ̸∈ V (C). Thus N(z3) ∩ V (C) = ∅ by Claim 35, as otherwise given
the existence of z2 and q1, we have that z3 is a strong dividing vertex of T3, contradicting
Claim 18.

The following claim bounds d(T ) in terms of d(T3) and establishes that deg(x3) = 6.

Claim 36. deg(x3) = 6 and d(T ) ≥ d(T3)− 3ε.

Proof. Suppose not. First suppose that deg(x3) ≥ 6. Note that since x1 is a tripod of T ;
since x2 is a tripod of T1; and since x3 is a tripod of T2, it follows that def(T ) = def(T1) =
def(T2) = def(T3). Moreover, by Claim 9, v(T3) ≥ 5. Thus by the minimality of T , we
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have that d(T3) ≥ 3− γ. In addition, note that v(T3) = v(T2)− 1, that v(T2) = v(T1)− 1,
and that v(T1) = v(T )− 1. Thus, letting T0 := T , we have that

d(Ti−1) = d(Ti)− ε+ α (b(Ti)− b(Ti−1) + q(Ti)− q(Ti−1)) (3.5.2)

for each i ∈ {1, 2, 3}.

Let z3, x2, u1, u2, q1, q2, . . . be the neighbours of z3 listed in their cyclic order around z3,
where {u1, u2} ⊆ V (C). Let R = N(x3) \ {z3, x2, u1, u2, q1}. We claim no vertex r ∈ R is
in the quasiboundary of T2; otherwise, given the existence of z3 and q1, we have that r is
a strong dividing vertex of T3, contradicting Claim 18.

Note that R ⊆ B(T3) ⊆ Q(T3). Thus since x3 ∈ Q(T2) \Q(T3) and R ⊆ Q(T3) \Q(T2),
it follows from Equation 3.5.2 that

d(T2) ≥ d(T3)− ε+ 2α(|R| − 1).

By Claims 33 and 34, d(T ) ≥ d(T2)− 2ε.

Combining these results, we have that

d(T ) ≥ d(T2)− 2ε

≥ (d(T3)− ε+ 2α(|R| − 1))− 2ε.

Suppose that deg(x3) ≥ 7, and so that |R| ≥ 2. Then d(T ) ≥ d(T3) − 3ε + 2α. Since
d(T3) ≥ 3− γ, this implies d(T ) ≥ 3− γ − 3ε+ 2α. This is a contradiction, since 3ε ≤ 2α
by (I1). Thus |R| = 1, and so deg(x3) = 6 and d(T ) ≥ d(T3)− 3ε, as desired.

Suppose now that deg(x3) < 6, and so that deg(x3) = 5 by Proposition 3.2.11 (2).
Recall that by Claim 22 (1), x1 is a tripod of T . It follows from Claim 24 that |S(x1)| = 2;
and moreover since x2 is a tripod of T1 by Claim 22 (1), we have further that |S(x2)| = 3.
Thus there exists a colour c2 ∈ S(x2) such that x1[x2, c2] ̸∈ S(x1). Let ϕ(x2) = c2. Note
that N(z2) ∩ V (C) = ∅ by Claim 35. Thus by Claim 24, |S(x2)| = 5, and so there exists
two distinct colours d1 and d2 in S(z2) such that x1[z2, di] ̸∈ S(x1) and x2[z2, di] ̸= c2 for
i ∈ {1, 2}.

Furthermore, N(z3)∩V (C) = ∅ by Claim 35. Thus by Claim 24, |S(z3)| = 5. It follows
that there exists an i ∈ {1, 2} such that S(z3)\({z3[z2, di], z3[x2, c2]}∪{z3[x3, c] : c ∈ S(x3)})
is non-empty, since |S(z3)| = 5 and z3[z2, d1] ̸= z3[z2, d2]. Without loss of generality,
suppose that i = 1. Let d3 ∈ S(z3) \ ({z3[z2, di], z3[x2, c2]} ∪ {z3(x3, c) : c ∈ S(x3)}).
Finally, let ϕ(z2) = d1 and ϕ(z3) = d3.
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Let C ′ be obtained from C3 by deleting x2 and adding the vertices z2, z3 as well as edges
x1z2, z2z3, and z3x3. Let T

′ = T ⟨C ′⟩ = (G′, C ′, (L,M)). We claim that G′−{x3q1, x1z1} has
a C ′-critical subgraph. To see this, note that if ϕ extends toG′−{x3q1, x1z1}, then ϕ extends
to an (L,M)-colouring of G by redefining ϕ(x1) as a colour in S(x1) \ x1[z1, ϕ(z1)] and
ϕ(x3) as a colour in S(x3) \ {x3[q1, ϕ(q1)], x3[x2, c2]}. Such choices exist, since |S(x1)| = 2
and |S(x3)| = 3 by Claim 24 since x3 has exactly two neighbours in V (C) by Claims
27-31. This contradicts the fact that ϕ does not extend to G. Thus ϕ does not extend
to an (L,M)-colouring of G′ − {x3q1, x1z1}, and so by Proposition 3.2.9 we have that
G′ − {x3q1, x1z1} has a C ′-critical subgraph G′′. Note that v(T ′) ≥ 2 by Claim 9, and
|E(G′) \E(G′′)| ≥ 2. Moreover, we claim that C ′ is chordless: this follows easily from the
facts that C is chordless by Claim 13; that neither z2 nor z3 have a neighbour in V (C) by
Claim 35; that x1z3 ̸∈ E(G) since G is planar; and that z2x3 ̸∈ E(G) since z3 has degree
at least five by Proposition 3.2.11 (2). Thus |E(G′′) \ E(C ′)| ≥ 2.

By Claim 10 (3) applied to T ′ and G′′, we find that d(T ′) ≥ 5− (2α+ε)−γ. Moreover,
v(T ′) = v(T2) + 3, b(T ′) ≥ b(T2) − 3, and similarly q(T ′) ≥ q(T2) − 3. Thus s(T ′) ≥
s(T2)− (3ε+ 6α). Furthermore, def(T ′) = def(T2) + 1. Putting all of this together,

5− (2α + ε)− γ ≤ d(T ′)

≤ def(T ′)− s(T ′)

≤ (def(T2) + 1)− (s(T2)− (3ε+ 6α))

≤ d(T2) + 1 + (3ε+ 6α),

which implies that d(T2) ≥ 4 − γ − (8α + 4ε). By Claim 33, d(T ) ≥ d(T2) − 2ε, and so
d(T ) ≥ 4− γ − (8α+ 6ε). This is a contradiction, since 8α+ 6ε ≤ 1 by (I2) and (I3).

We will complete the proof of Theorem 3.4.7 by showing that x3 is not of type (2,0,0),
thereby arriving at a contradiction. Before we do this, we need the following key claim
which establishes some of the correspondence assignment in the graph near x3.

Claim 37. The following both hold.

(i) The vertex z1 has exactly one neighbour in V (C), and there do not exist colours
d1 ∈ S(x1) and d2 ∈ S(x2) such that z2[x1, d1] = z2[x2, d2].

(ii) Let T1 = (G1, C1, (L,M)). Let ϕ(x1) ∈ S(x1), let S
′(v) = S(v) for all v ∈ V (G′) \

N(x1), let S
′(v) = S(v) \ v[x1, ϕ(x1)] for each v ∈ N(x1). The vertex z2 has exactly

one neighbour in V (C ′). Moreover, there do not exist colours d2 ∈ S ′(x2) and d3 ∈
S ′(x3) such that z3[x2, d2] = z3[x3, d3].
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Proof. We begin by proving (i). First we will show that z1 has exactly one neighbour in
V (C). To see this, suppose not. Since z1 is in the boundary of T by Claim 25, it follows
that z1 has at least one neighbour in V (C). Thus z1 has at least two neighbours in V (C).
Since x1 is adjacent to z1 and there are no edges in E(G) with both endpoints in X1 by
Claim 21 (3), it follows that that z1 ̸∈ X1 and so that z1 has exactly two neighbours in
V (C). Thus by Claim 24 we have that |S(z1)| = 3. Similarly, since x2 is a tripod of T1 by
Claim 22 (1), by Claim 24, |S(x2)| = 3. Since x1 is a tripod of T by Claim 21 (1), we have
further from Claim 24 that |S(x1)| = 2. Thus there exists a colour c1 ∈ S(z1) and a colour
c2 ∈ S(x2) such that x1[z1, c1] ̸∈ S(x1) and x1[x2, c2] ̸∈ S(x1). Let C

′ = C⊕x1⊕z1⊕x2, and
let ϕ(z1) = c1 and ϕ(x2) = c2. Let T

′ = (G′, C ′, (L,M)) = T ⟨C ′⟩. We claim G′−x1z2 has a
C ′-critical subgraph. To see this, note that if ϕ extends to an (L,M)-colouring of G′−x1z2,
then by redefining ϕ(x1) to be a colour in S(x1) \ x1[z2, ϕ(z2)] we obtain an extension of ϕ
to an (L,M)-colouring of G, a contradiction. Thus ϕ does not extend to G′ − x1z2, and so
by Proposition 3.2.9, we have that G′ − x1z2 contains a C ′-critical subgraph G′′. But G′′

is a proper subgraph of G′, and T ′ is a 3-relaxation of T . This contradicts Claim 20.

Thus z1 has exactly one neighbour in V (C), and so by Claim 24 we have that |S(z1)| = 4.
Since |S(x1)| = 2, there exist two distinct colours c1 and c2 in S(z1) with x1[z1, c1] ̸∈ S(x1)
and x1[z1, c2] ̸∈ S(x1).

We now proceed with the rest of the claim. Suppose for a contradiction that there exist
d1 ∈ S(x1) and d2 ∈ S(x2) such that z2[x1, d1] = z2[x2, d2]. Since z2 has no neighbours
in V (C) by Claim 35, by Claim 24 we have that |S(z2)| = 5, and so there exists a colour
c3 ∈ S(z2) and an i ∈ {1, 2} such that c3 ̸= z2[z1, ci], such that x1[z2, c3] ̸∈ S(x1), and such
that x2[z2, c3] ̸∈ S(x2): that is, there is a colour choice ci for z1 that avoids S(x1), and a
colour choice c3 ∈ S(z2) that avoids ci ∈ S(z1) as well as S(x1) and S(x2). See Figure 3.3
for an illustration of the matchings described. Let C ′′ be obtained from (C⊕x1⊕x2)\{x1}
by adding the vertices z1 and z2 as well as edges yz1, z1z2, z2x2, where y ∈ N(z1) ∩ V (C).
Let T ′′ = (G′′, C ′′, (L,M)) = T ⟨C ′′⟩. Recall that deg(x2) = 6 by Claim 22 (2); and
N(x2) \ (V (C ′′) ∪ {x1}) = {z3, x3}.

We claim that G′′ \{x2z3, x2x3} has a C ′′-critical subgraph. To see this, choose ϕ(z1) =
ci, and ϕ(z2) = c3. If ϕ extends to an (L,M)-colouring of G′′ \ {x1, x2}, then ϕ extends to
an (L,M)-colouring of G by first choosing ϕ(x2) ∈ S(x2)\{x2[z3, ϕ(z3)], x2[x3, ϕ(x3)]}, and
then choosing ϕ(x1) ∈ S(x1) \ {x1[x2, ϕ(x2)]}. Note this is possible, since |S(x1)| = 2 and
|S(x2)| = 3. This is a contradiction, since ϕ does not extend to G by assumption. Thus
ϕ does not extend to an (L,M)-colouring of G′′ − {x1, x2}, and so by Proposition 3.2.9
we have that G′′ \ {x2z3, x2x3} has a C ′′-critical subgraph. But then G′′ contains a proper
C ′′-critical subgraph G∗. Note that |E(G′′) \ E(G∗)| ≥ 2, and by Claim 9, v(T ′′) ≥ 3.
Finally, we claim |E(G∗)\E(C ′′)| ≥ 2. To see this, note that since C is chordless by Claim
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S(z1)

S(x1)

S(x2)

S(z2)

Mx1z2

Mz1z2 Mz2x2

Mz1x1

ci

c3

Figure 3.3: The matchings between S(x1), S(x2), S(z1), and S(z2), as described in Claim
37. The matching Mx2x1 is omitted for clarity. We assume there exists a colour d1 ∈ S(x1)
and d2 ∈ S(x2) such that z2[x1, d1] = z2[x2, d2]. Without loss of generality, we may assume
that the solid edges in the matchings are as shown. No matter the remainder of the edges
inMz1z2 andMx1z2 , there exist colours ci ∈ S(z1) and c3 ∈ S(z2) such that ci is unmatched
in Mx1z1 , such that c3 is unmatched in Mx1z2 and Mx2z2 , and such that c3 ̸= z2[z1, ci].

13; since z1 has exactly one neighbour y in V (C) as shown above; since neither z2 nor
z3 have a neighbour in V (C) by Claim 35; and since z1x2 ̸∈ E(G) since G is planar, it
follows that C ′′ is chordless. Thus |E(G∗) \ E(C ′′)| ≥ 2. By Claim 10 (3) applied to T ′′

and G∗, we find that d(T ′′) ≥ 5 − (2α + ε) − γ. In addition, s(T2) ≤ s(T ′′) + 2(2α + ε),
def(T2) ≥ def(T ′′)−1, and so d(T2) ≥ d(T ′′)−1−2(2α+ε). Thus d(T2) ≥ 4−γ−3(2α+ε).
By Claim 33, d(T ) ≥ d(T2)− 2ε and so d(T ) ≥ d(T2)− 2ε ≥ 4− γ − (6α + 5ε). But then
d(T ) ≥ 3 − γ since by (I2) and (I3) we have that 6α + 5ε ≤ 1. This contradicts the fact
that T is a counterexample.

The proof of (ii) is nearly identical. For each uv ∈ E(G′), let M ′
uv be the restriction of

Muv to S
′(u) and S ′(v). Recall that by Claim 12, we have that |Mz2x1| = 5. Note that z2 is

not adjacent to a vertex in V (C) by Claim 35. Thus as z2 is adjacent to x1, we have that
z2 has exactly one neighbour in V (C)⊕ x1, and so by Claim 12, we have that |S ′(z2)| = 4.
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Similarly, |S ′(x2) = 2|. Thus there exist two colours c1, c2 ∈ S ′(z2) such that for i ∈ {1, 2},
we have that x2[x2, ci] ̸∈ S ′(x2). Moreover, since |S ′(x2)| = 2 and |S ′(z3)| = 5, by Claim 12
we have that that |M ′

x2z3
| = 2. Recall that |S(x3)| = 2 by Claim 24 and that |S(z3)| = 5 by

Claims 35 and 24. Since G is planar, neither x3 nor z3 is adjacent to x1. Thus |M ′
x3z2

| = 3.
Suppose for a contradiction that there exist colours d2 ∈ S ′(x2) and d3 ∈ S ′(x3) such that
z3[x2, d2] = z3[x3, d3]. Then there exists a colour c3 ∈ S ′(z3) and an i ∈ {1, 2} such that
c3 ̸= z3[z2, ci], such that x2[z3, c3] ̸∈ S ′(x2), and such that x3[z3, c3] ̸∈ S ′(x3): that is, there
is a colour choice ci for z2 that avoids S ′(x2), and a colour choice c3 ∈ S ′(z3) that avoids
ci ∈ S ′(z2) as well as S

′(x2) and S
′(x3). See Figure 3.4 for an illustration of the matchings

involved. Let C ′ be obtained from (C1⊕x2⊕x3)\{x2} by adding the vertices z2 and z3 as
well as edges x1z2, z2z3, z3x3. Let T ′ = T ⟨C ′′⟩ = (G′, C ′, (L,M)). Recall that deg(x3) = 6
by Claim 36. Let N(x3) \ (V (C) ∪ {x2, z3}) = {z4, z5}.

S ′(x2)

S ′(z2) S ′(z3)

S ′(x3)

c1 c2 c3

d3

d2

ϕ(x1)

z2[x1, ϕ(x1)]

x2[x1, ϕ(x1)]

M ′
x2z2

M ′
x2z3

M ′
x3z3

M ′
z3z3

Figure 3.4: The matchings between S ′(x2), S
′(x3), S

′(z2), and S
′(z3), as described in the

proof of the second statement in Claim 37. The matching M ′
x2x3

is omitted for clarity. We
assume there exists a colour d2 ∈ S ′(x2) and d3 ∈ S ′(x3) such that z2[x2, d2] = z2[x3, d3].
Without loss of generality, we may assume that the solid edges in the matchings are as
shown. No matter the matching M ′

z2z3
, there exist colours ci ∈ S ′(z2) and c3 ∈ S ′(z2) such

that ci is unmatched in M ′
x2z2

, such that c3 is unmatched in M ′
x2z3

and M ′
x3z3

, and such
that c3 ̸= z3[z2, ci].
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We claim that G′\{x3z4, x3z5} has a C ′-critical subgraph. To see this, choose ϕ(z2) = ci,
and ϕ(z3) = c3. If ϕ extends to an (L,M)-colouring of G′ \ {x2, x3}, then ϕ extends to an
(L,M)-colouring of G by first choosing ϕ(x3) ∈ S ′(x3) \ {x3[z4, ϕ(z4)], x3[z5, ϕ(z5)]}, and
then choosing ϕ(x2) ∈ S ′(x2) \ {x2[x3, ϕ(x3)]}. Note this is possible, since |S ′(x2)| = 2 and
|S ′(x3)| = 3. This is a contradiction, since ϕ does not extend to G by assumption. Thus
ϕ does not extend to an (L,M)-colouring of G′ − {x2, x3}, and so by Proposition 3.2.9 we
have that G′ \ {x3z4, x3z5} has a C ′-critical subgraph. But then G′ contains a proper C ′-
critical subgraph G∗. Note that |E(G′) \ E(G∗)| ≥ 2, and by Claim 9, v(T ′) ≥ 3. Finally,
we claim that C ′ is chordless: this follows from the facts that C is chordless by Claim 13;
that neither z2 nor z3 have neighbours in V (C) by Claim 35; and that z3z1 ̸∈ V (C) since
G is planar. Thus |E(G∗) \ E(C ′)| ≥ 2. By Claim 10 (3) applied to T ′ and G∗, we find
that d(T ′) ≥ 5− (2α + ε)− γ.

In addition, s(T3) ≤ s(T ′)+2(2α+ε), and def(T3) ≥ def(T ′)−1. Thus d(T3) ≥ d(T ′)−
1−2(2α+ε), and so since d(T ′) ≥ 5− (2α+ε)−γ, we have that d(T3) ≥ 4−γ−3(2α+ε).
By Claim 36, d(T ) ≥ d(T3)− 3ε. Thus d(T ) ≥ 4−γ− 6α− 6ε. But this is a contradiction,
since by (I2) and (I3) we have that 6α + 6ε ≤ 1.

We now show x3 is not of type (2,0,0), thus completing the proof of Theorem 3.4.7.

Claim 38. x3 is not of type (2,0,0).

Proof. Suppose not. By Claim 21 (1), we have that x1 is a tripod of T . By Claim 24,
it follows that |S(x1)| = 2. Let |S(x1)| = {c1, c2}, and for each i ∈ {1, 2}, let ϕi be
an extension of ϕ to x1 with ϕi(x1) = ci; let Si(x2) = S(x2) \ x2[x1, ci]; and similarly
let Si(x3) = S(x3) \ x3[x1, ci]. Note that S1(x2) ̸= S2(x2) since c1 and c2 are distinct.
Furthermore, note that x3 is not adjacent to x1 since x3 is a tripod of T2 of type (2,0,0):
thus Si(x3) = S(x3) is a fixed set that does not depend on i. Let M i

z3x2
be the restriction

of Mz3x2 to Si(z3) and Si(x2). Finally, let S = S(z3) \ {z3[x3, d] : d ∈ Si(x3)}. Since Si(x3)
is fixed, so too is S.

Note that by Claim 12, we have that |M i
z3x2

| = 2 for each i ∈ {1, 2}, and moreover by
Claim 37 (2) there does not exist a colour d3 ∈ Si(x3) and a colour d2 ∈ Si(x2) such that
z3[x2, d2] = z3[x3, d3]. Since S is fixed, this implies that M1(z3x2) = M2(z3x2). This is a
contradiction, since S1(x2) and S2(x2) are distinct sets of size two.
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3.6 Hyperbolicity and Implications

In this section, we prove Theorem 1.2.23, and discuss the implications of this result. We
will need the following equivalent definition for the deficiency of a graph.

Lemma 3.6.1 (Proof taken from Lemma 3.3, [35]). If G is a 2-connected plane graph with
outer cycle C, then

def(G) = |V (C)| − 3−
∑

f∈F(G)

(|f | − 3).

Proof. Using Euler’s formula for planar graphs, we have that |V (G)| − |E(G)|+(|F(G)|+
1) = 2; equivalently, |V (C)|+ v(G) + |F(G)|+ 1 = |E(G)|+ 2. Hence

|V (C)| − 3−
∑

f∈F(G)

(|f | − 3) = |V (C)| − 3− (2|E(G)| − |E(C)|) + 3|F(G)|)

= 2|V (C)| − 2|E(G)| − 3 + 3|E(G)| − 3|V (C)| − 3v(G) + 3

= |E(G) \ E(C)| − 3v(G) since |E(C)| = |V (C)|
= def(G), by definition.

Theorem 3.4.7 implies the following.

Theorem 3.6.2. If T = (G,C, (L,M)) is a critical canvas, then

ε|V (G) \ V (C)|+
∑

f∈F(G)

(|f | − 3) ≤ |V (C)| − 4.

Proof. If T = (G,C, (L,M)) is a critical canvas, then it follows from Lemma 3.6.1 that
d(T ) = |V (C)|−3−

∑
f∈F(G)(|f |−3)−εv(G)−α(b(T )+q(T )). Thus d(T ) ≤ |V (C)|−3−∑

f∈F(G)(|f | − 3)− εv(G). By Theorem 3.4.7, if v(T ) ≥ 2 then 3− γ ≤ d(T ). If v(T ) ≤ 1,

then by Proposition 3.4.6 d(T ) ≥ 1. Thus 1 ≤ |V (C)| − 3−
∑

f∈F(G)(|f | − 3)− εv(G), and
so

ε|V (G) \ V (C)|+
∑

f∈F(G)

(|f | − 3) ≤ |V (C)| − 4,

as desired.

Omitting the ε|V (G) \ V (C)| term, we obtain the following.

104



Corollary 3.6.3. If (G,C, (L,M)) is a critical canvas, then every internal face f of G
satisfies |f | < |C| − 1.

Omitting instead the face sizes from Theorem 3.6.2 gives the theorem below.

Theorem 3.6.4. If (G,C, (L,M)) is a critical canvas and ε is as in Theorem 3.4.7, then
|V (G)| ≤ 1+ε

ε
|V (C)|.

Proof. By Theorem 3.6.2, we have that |V (G) \ V (C)| ≤ 1
ε
|V (C)|. Thus |V (G)| ≤

1
ε
|V (C)|+ |V (C)|, and so the result follows.

To obtain the best possible bound in Theorem 3.6.4, we wish to maximize ε subject
to inequalities (I1-I3). To that end, we choose gives α = 1

25
, ε = 1

50
, and γ = 7

10
, giving

V (G) ≤ 51|V (C)| in Theorem 3.6.4.

Theorem 1.2.23 follows from Theorem 3.6.4 as shown below.

Proof of Theorem 1.2.23. Let G,C, (L,M), and H be as in Theorem 1.2.23. We claim
that H is C-critical. Suppose not. Then there exists a proper subgraph H ′ of H such
that every (L,M)-colouring of C that extends to H ′ also extends to H. But since every
(L,M)-colouring C that extends to H also extends to G, we have that H ′ contradicts
the minimality of H. Thus H is C-critical, and so by Theorem 3.6.4 we have |V (H)| ≤
51|V (C)|, as desired.

We now discuss the implications of Theorem 3.6.4. To begin, we show how Theorem
3.4.7 implies that the family of graphs which are critical for 5-correspondence colouring
forms a hyperbolic family. Note the theorem below is merely a more explicit version of
Theorem 1.2.19. Following this, we discuss the implications of the hyperbolicity of a family
of graphs as described by Postle and Thomas in [37].

Theorem 3.6.5. The family F of embedded graphs that are critical for 5-correspondence
colouring is hyperbolic with Cheeger constant 50.

Proof. Let G be a graph that is (L,M)-critical, where (L,M) is a 5-correspondence colour-
ing. Note that G is connected, as otherwise since every subgraph of G admits an (L,M)-
colouring, it follows that each component of G admits an (L,M)-colouring and thus so
does G itself, contradicting the definition of (L,M)-critical. Suppose that G is embedded
in a surface Σ, and let λ : S1 → Σ be a closed curve intersecting G in only its vertices
and bounding an open disk ∆. Let Y be the set of vertices of G that are intersected by

105



λ, and let X be the set of vertices in ∆. The theorem follows from showing that if X is
non-empty, then |X| ≤ 50(|Y | − 1). Let G1 := G[X ∪ Y ], and let G2 := G \ G1. Since
G is critical for 5-correspondence colouring, there exists a colouring of G2 that extends
every proper subgraph of G containing G2 but not to G itself. Since X ̸= ∅, it follows
that G1 is G[Y ]-critical. By Theorem 1.2.7, it follows that |Y | ≥ 3. Let v0, v1, v2, · · · , vk
be the vertices of Y appearing in a cyclic order along λ. Let C be the cycle v0v1 · · · vkv0.
Since G1 is G[Y ]-critical, it follows that G1 ∪ C is C-critical. By Lemma 3.2.5, G1 ∪ C
is 2-connected, and hence (G1, C, (L,M)) is a canvas. By Theorem 3.6.2 with ε = 1

50
, we

have that |V (G1) \ V (C)| ≤ 50(|V (S)| − 4). The result follows.

Showing that such a family of critical graphs is hyperbolic has many interesting impli-
cations, as described in [37]. We highlight a few in particular below, following a definition.

Definition 3.6.6. A non-contractible cycle in a surface is a cycle that cannot be continu-
ously deformed to a single point. An embedded graph is ρ-locally planar if every cycle (in
the graph) that is non-contractible (in the surface) has length at least ρ.

In [37], Postle and Thomas show the following.

Theorem 3.6.7 (Postle & Thomas, [37]). For every hyperbolic family F of embedded
graphs that is closed under curve cutting there exists a constant k > 0 such that every
graph G ∈ F embedded in a surface of Euler genus g has a non-contractible cycle of length
at most k log(g + 1).

Using this, we obtain the following theorem as a corollary to Theorem 3.6.5.

Theorem 1.2.20. For every surface Σ, there exists a constant ρ > 0 such that every
ρ-locally planar graph that embeds in Σ is 5-correspondence-colourable.

Proof. Let Σ be a fixed surface, and let g be the Euler genus of Σ. Let F be the family
of embedded graphs that are critical for 5-correspondence colouring. By Theorem 1.2.19,
F is a hyperbolic family. By Theorem 3.6.7, there exists a constant k > 0 such that every
graph G ∈ F embedded in Σ has a non-contractible cycle of length at most k log(g + 1).

Let ρ > k log(g + 1), and let G be a ρ-locally planar graph that embeds in Σ. Suppose
for a contradiction that G is not 5-correspondence-colourable. Then G contains a subgraph
H in F . But then H contains a non-contractible cycle of length at most k log(g+1). This
is a contradiction, since H ⊆ G and G is ρ-locally planar.
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In addition, following the work of Dvořák and Kawarabayashi in [12], Theorem 1.2.23
implies the following. Note that by linear-time algorithms, we mean algorithms whose
run-time is linear in the number of vertices in the graph.

Theorem 1.2.24. Let Σ be a fixed surface. There exists a linear-time algorithm that takes
as input an embedded graph (G,Σ) and 5-correspondence assignment (L,M) for G with
lists of bounded size and determines whether or not G is (L,M)-colourable.

Theorem 1.2.25. Let Σ be a fixed surface. There exists a linear-time algorithm that takes
as input an embedded graph (G,Σ) and determines whether or not G is 5-correspondence-
colourable.

We note that the correspondence assignment in Theorem 1.2.24 is fixed, whereas in
Theorem 1.2.25 it is not.

The algorithms in the theorems above are the same as those given by Dvořák and
Kawarabayashi in [12]. We refer to [12] for a complete description of the algorithms and
the proof of correctness. Following a necessary definition, a brief overview is given below
to give the reader an overall sense of the algorithms.

Definition 3.6.8. Given a graph G, a tree decomposition is a tree T where V (T ) is a set
of subsets of V (G) and T satisfies the following properties:

• ∪U∈V (T )U = V (G),

• for each uv ∈ E(G), there exists some W ∈ V (T ) such that {u, v} ⊆ W , and

• for each V, U ∈ V (T ), if there exists a vertex w ∈ V (G) with w ∈ V ∩U , then w ∈ Y
for each vertex Y ∈ V (T ) in the unique path from V to U in T .

The width of T is defined as minV ∈V (T ) |V | − 1. The tree-width of G is the minimum width
across all tree decompositions of G.

The idea behind the algorithm in Theorem 1.2.24 is the following: given an embedded
graph (G,Σ), we first find a subgraph H of G of tree-width linear in the genus of Σ
such that each component of G − H is connected to H via a cut of bounded size. This
subgraph H has specific structure in G: namely, H has a bounded number of components,
each component of G −H is locally planar, and H is formed by the union of short, non-
contractible cycles connected by paths of bounded distance. The graph H can be found via
a linear-time algorithm of Dvořák, Král’, and Thomas [13]. Using Theorem 1.2.23, one can
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show that H-critical graphs in the components of G−H have logarithmic distance to H.
If a component of G−H contains an H-critical subgraph G′, we claim G′ has tree-width
logarithmic in |V (G)|. To see this, it suffices to add a new vertex v adjacent to all vertices
in H ∩ G′. Note this increases the genus of (H ∩ G′) ∪ {v} by at most 2k, where k is the
number of components of H ∩G′. We then use the following result of Eppstein.

Theorem 3.6.9 (Eppstein, [16]). There exists a constant c such that every graph G of Euler
genus g and radius r has tree-width at most c(g + 1)r. Furthermore, a tree decomposition
of this width can be found in time O((g + 1)r|V (G)|).

Thus G′ has tree-width O(r), and since r is logarithmic in |V (H)| and |V (H)| ≤ |V (G)|,
it follows that G′ has tree-width logarithmic in |V (G)|. We find a tree decomposition of
this width, and use a standard dynamic programming algorithm (see for instance [22]) to
colour H, and extend this colouring to the components of G′ − H. As G′ has bounded
tree-width, the algorithm runs in O(|V (G′)|) time.

The algorithm in Theorem 1.2.25 is similar in spirit, but requires checking not only
whether an (L,M)-colouring extends, but whether (L,M ′)-colourings extend for all pos-
sible sets of matchings M ′. Note that a graph G is 5-correspondence colourable if and
only if it is 5-correspondence colourable for every 5-correspondence assignment (L,M)
with |L(v)| = 5 for all v ∈ V (G) and |Muv| = 5 for all uv ∈ E(G). It thus suffices to
check matchings M ′ satisfying these requirements. Since the lists are of bounded size, the
dynamic programming algorithm mentioned above runs in O(|V (G)|) time. Note further
that in correspondence colouring (as opposed to list colouring) we may assume that the list
assignment is the same set of five colours for each vertex: the matchings between adjacent
lists determine the meaning of these colours.

3.7 The girth at least five case

For this final section of Chapter 3 (and indeed for the remainder of the thesis), we expand
the notion of canvas as follows.

Definition 3.7.1. We say the triple (G,S, (L,M)) is a canvas if G plane graph, S is any
connected subgraph of G, and (L,M) is a correspondence assignment for the vertices of G
such that there exists an (L,M)-colouring of S and

• either |L(v)| ≥ 5 for all v ∈ V (G) \ V (S), or
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• G has girth at least five and |L(v)| ≥ 3 for all v ∈ V (G) \ V (S).

To close this chapter, we observe the following.

Observation 3.7.2. Let ε, α > 0 satisfy the following:

(I1) 9ε ≤ α

(I2) 2.5α + 5.5ε ≤ 1

(I3) 11ε+ 1 ≤ 3α.

If T = (G,S, L) is a critical canvas where:

• G has girth at least five,

• G is not composed of exactly S and one edge not in S,

• G is not composed of exactly S together with one vertex of degree 3, then

then 3e(T )− (5 + ε)v(T )− αq(T ) ≥ 3.

This is the correspondence colouring analogue of a nearly identical theorem for list
colouring of Postle: Theorem 3.9, [34]. Beyond the change from list colouring to cor-
respondence colouring, the key difference between the statements of Theorem 3.7.2 and
Theorem 3.9 in [34] is that S is connected (as opposed to having at most two compo-
nents). This change allows us to use Theorem 2.11 in [34] (which describes structures
arising from critical canvases (G,S, (L,M)) where S is connected, and which holds for cor-
respondence colouring) in lieu of Theorem 2.12 (which allows S to have two components,
and which is not currently known to hold for correspondence colouring). Otherwise, the
proof of Theorem 3.9 in [34] carries over to the correspondence colouring framework with
only standard, minor changes: namely, when we perform reductions (colouring a strict
subgraph of a minimum counterexample, deleting this subgraph, and removing vertices’
colours from neighbours’ lists), we delete corresponding colours from neighbouring lists,
rather than identical colours.

The proof is similar in spirit to that of Theorem 3.4.7. However, as noted in Section 1.4,
Postle and Thomas’ list colouring theorem in the 5-choosability case does not carry over
to correspondence colouring. The colouring arguments in Postle and Thomas’ theorem for
5-choosability rely on the fact that for a triangle ux2z2u in a minimum counterexample
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with list assignment S, if S(u) ⊆ S(x2), then S(z2) \ (S(x2) ∪ S(u)) = S(z2) \ S(x2).
This implies that it is possible to colour z2 from S(z2) while avoiding the lists of both x2
and u. This argument crucially does not hold for correspondence colouring: an analogous
argument to that in shows merely that for a correspondence assignment (S,M), we have
|Mx2u| = |S(u)|, which of course implies nothing about Mz2u. Crucially, the proof in
the 5-choosability case involves keeping track of lists along a cycle. This is not the case in
Postle’s proof for 3-choosability: the colouring arguments involve only deleting vertices and
removing their colours (or in the correspondence framework, their corresponding colours)
from the lists of neighbours, and do not keep track of what these colours correspond to.
Moreover, no arguments rely on keeping track of what colours are or are not available in
a cycle: the colouring arguments involve only trees branching from vertices in S in the
minimum counterexample.

Theorem 3.7.2 implies the following, which is the correspondence colouring analogue of
Theorem 1.8 in [34].

Observation 3.7.3. Let G be a plane graph of girth at least five, let (L,M) be a 3-
correspondence assignment for G, and let C be a facial cycle of G. If G is C-critical with
respect to (L,M), then |V (G)| ≤ 89|V (C)|.

Observation 3.7.3 in turn implies the corollary below.

Corollary 3.7.4. The graphs of girth at least five that are critical for 3-correspondence
colouring form a hyperbolic family.

Proof. Let (G,Σ) be an embedded graph of girth at least five that is (L,M)-critical, where
(L,M) is a 3-correspondence colouring. Note that G is connected, and by Theorem 4.3.4,
Σ is not the plane. Let λ : S1 → Σ be a closed curve intersecting G in only its vertices
and bounding an open disk ∆. Let Y be the set of vertices of G that are intersected by
λ, and let X be the set of vertices in ∆. The theorem follows by showing that if X is
non-empty, then |X| ≤ 395(̇|Y |−1). Let G1 := G[X ∪Y ], and let G2 := G\G1. Since G is
critical for 3-correspondence colouring, there exists a colouring of G2 that extends to every
proper subgraph of G containing G2 but not to G itself. Since G1 \ Y ̸= ∅, it follows that
G1 is G[Y ]-critical; and by Theorem 4.3.4, |Y | ≥ 3. Let v0, v1, . . . , vk be the vertices in Y
appearing in a cyclic order along λ. Working modulo k+1, for each i ∈ {0, . . . , k} and each
non-adjacent pair vi, vi+1, let Pi be the path viuiui+1vi+1. For each adjacent pair vi, vi+1, let
Pi = vivi+1. Let C = ∪k

i=0Pi. Since G1 is G[Y ]-critical, it follows that G1 ∪C is C-critical.
By Observation 3.7.3, |V (G1 ∪ C)| ≤ 89|V (C)|; or equivalently, that |V (G1)| ≤ 88|V (C)|.
Since |V (C)| ≤ 3|Y |, it follows that |V (G1)| ≤ 264|V (Y )|; and since G1 = G[X ∪ Y ], we
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have further that |X| ≤ 263|Y |. Since |Y | ≥ 3, we have that 263 ≤ 132(|Y | − 1), and so
|X| ≤ 263(|Y | − 1) + 132(|Y | − 1). Thus |X| ≤ 395(|Y | − 1), as desired.

Corollary 3.7.4 gives the theorem below. The proof is identical to that of Theorem
1.2.20.

Theorem 1.2.28. For every surface Σ, there exists a constant ρ > 0 such that every
ρ-locally planar graph of girth at least five that embeds in Σ is 3-correspondence-colourable.

Per the work of Dvořák and Kawarabayashi in [12], Observation 3.7.3 implies the fol-
lowing. Note that by linear-time algorithms, we mean algorithms whose run-time is linear
in the number of vertices in the graph.

Theorem 1.2.26. Let Σ be a fixed surface. There exists a linear-time algorithm that
takes as input an embedded graph of girth at least five (G,Σ) and a 3-correspondence
assignment (L,M) for G with lists of bounded size and determines whether or not G is
(L,M)-colourable.

Theorem 1.2.27. Let Σ be a fixed surface. There exists a linear-time algorithm that takes
as input an embedded graph of girth at least five (G,Σ) and determines whether or not G
is 3-correspondence-colourable.

We note that the correspondence assignment in Theorem 1.2.26 is fixed, whereas in
Theorem 1.2.27 it is not.
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Chapter 4

Counting Correspondence Colourings

4.1 Introduction

4.1.1 Results

Using the results of the previous section as well as several key lemmas from [33], we will
show that if G is a planar graph and (L,M) is a 5-correspondence assignment for G, then
G has exponentially many (L,M)-colourings. This proves a conjecture of Langhede and
Thomassen [29].

In particular, we will show the following.

Theorem 1.2.36. If G is a planar graph with at least three vertices and (L,M) is a 5-

correspondence assignment for G, then G has at least 2
|V (G)|+306

67 distinct (L,M)-colourings.

An analogous result (with better exponent) for list colouring was proved by Thomassen
[44].

Theorem 4.1.1 (Thomassen, [44]). If G is a planar graph and L is a 5-list-assignment

for G, then G has at least 2
|V (G)|

9 distinct L-colourings.

As correspondence colouring generalizes list colouring, our theorem also implies that
every planar graph with 5-list assignment L has exponentially many L-colourings. Though
the bound in Theorem 1.2.36 is worse than that given by Thomassen in Theorem 4.1.1,
our proof has the advantage of being shorter and less technical than that of Thomassen’s.
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Our proof uses Theorem 3.6.4; by using a theorem of Postle and Thomas [35] instead of
Theorem 3.6.4, we obtain a better constant than that in Theorem 1.2.36 for list colouring
—though still not matching the constant in Theorem 4.1.1.

Theorem 4.1.2. If G is a planar graph with at least three vertices and L is a 5-list

assignment for G, then G has at least 2
|V (G)|+114

25 distinct L-colourings.

In Section 4.3, we prove the following theorem for planar graphs of girth at least five.

Theorem 1.2.37. If G is a planar graph with at least two vertices and girth at least five

and (L,M) is a 3-correspondence assignment for G, then G has at least 2
|V (G)|+890

292 distinct
(L,M)-colourings.

Theorem 1.2.37 strengthens the following list colouring result of Thomassen in both that
it holds for correspondence colouring, and in that the exponent in the theorem statement
is better.

Theorem 4.1.3 (Thomassen, [45]). If G is a planar graph of girth at least five, L is a

3-list assignment for G, and |V (G)| ≥ 2, then G has at least 2
|V (G)|
10000 distinct L-colourings.

(The above is directly implied by Theorem 4.3 in [45].)

4.1.2 Outline of Chapter

Subsection 4.1.3 contains useful definitions and key results from [33] which will be used in
proving the main results of this chapter.

Theorems 1.2.36 and 4.1.2 are corollaries to a more technical theorem (Theorem 4.2.6)
involving counting the number of extensions of a precoloured subgraph. The bulk of Section
4.2 is dedicated to the proof of Theorem 4.2.6. We will delay the proof of Theorems 1.2.36
and 4.1.2 until the end of Section 4.2, following the proof of Theorem 4.2.6.

Similarly, Theorem 1.2.37 is a corollary of a more technical theorem (Theorem 4.3.5),
the proof of which constitutes the bulk of Section 4.3. Consequently, the proof of Theorem
1.2.37 is found at the end of Section 4.3.
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4.1.3 Tools and Nomenclature

We begin with a few necessary definitions. In this chapter, we will extend the notion of
canvas to include triples (G,S, (L,M)) as described below.

Definition 4.1.4. We say the triple (G,S, (L,M)) is a canvas if G is a plane graph, S is
any connected subgraph of G, and (L,M) is a correspondence assignment for the vertices
of G such that there exists an (L,M)-colouring of S and

• either |L(v)| ≥ 5 for all v ∈ V (G) \ V (S), or

• G has girth at least five and |L(v)| ≥ 3 for all v ∈ V (G) \ V (S).

Definition 4.1.5. Let G be a graph, and let H ⊆ G. We define v(G|H) := |V (G)\V (H)|,
and e(G|H) := |E(G) \ E(H)|.

Definition 4.1.6. Let G be a graph of girth at least g ∈ {3, 5}, and let H ⊆ G. We define
defg(G|H) := (g − 2)e(G|H)− g · v(G|H).

Note that when g = 3, this matches the definition of deficiency given in Chapter 3. In
addition to deficiency, we will need the following quantity.

Definition 4.1.7. Let G be a graph, and H a subgraph of G. For g ∈ {3, 5} and ε > 0, we
define dg,ε(G|H) := (g−2)e(G|H)−(g+ε)v(G|H). Equivalently, dg,ε(G|H) := defg(G|H)−
εv(G|H).

When g = 3, this nearly matches the definition of d(·) given in the previous chapter,
ignoring the boundary and quasiboundary terms. We will also need the following notion,
defined for list colouring in [33].

Definition 4.1.8. Let G be a graph, and let H be an induced subgraph of G. We say
H is r-deletable if for every correspondence assignment (L,M) of H such that |L(v)| ≥
r−(degG(v)−degH(v)) for each v ∈ V (G), the graph H has an (L,M)-colouring no matter
the correspondence assignment (L,M).

If H is an r-deletable subgraph of G, then every (L,M)-colouring of G \ V (H) extends
to an (L,M)-colouring of H. In fact, the definition above captures an even stronger
notion: for an r-deletable subgraph H ⊆ G, an (L,M)-colouring of G \ V (H) extends to
an (L,M)-colouring of H no matter the correspondence assignment (L,M) and no matter
the structure of G \ V (H).
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4.2 The girth three case

In this section, we prove Theorem 4.2.6 which we will show afterwards implies Theorems
1.2.36 and 4.1.2.

We will need the following three results, which are the correspondence colouring ana-
logues of Theorem 5.20, Proposition 5.21, and Lemma 5.22 in [33].

Lemma 4.2.1. There exists ε > 0 such that following holds: If G is a plane graph and H
is a connected subgraph of G such that G is H-critical with respect to a 5-correspondence
colouring, then d3,ε(G|H) ≥ 0.

This is implied by Theorem 3.4.6 in the case where v(G|H) ≤ 1. For list colouring,
the v(G|H) ≥ 2 case is implied by Theorem 4.6 in [35] with ε = 1

18
. For correspondence

colouring, the v(G|H) ≥ 2 case is implied by Theorem 3.4.7, by ignoring the boundary and
quasiboundary terms in the expression for d(G). For correspondence colouring, ε = 1

50
.

The proof of the following proposition is nearly identical to that of Proposition 5.21 in
[33]; we include the proof for the purposes of cohesion.

Proposition 4.2.2. Let G be a graph and H a proper subgraph of G such that V (H) ̸=
V (G). If G−V (H) is not r-deletable in G, then there exists a subgraph G0 of G containing
H such that G0 is H-critical for r-correspondence colouring.

Proof (Adapted from Proposition 5.21, [33]). Since G−V (H) is not r-deletable in G, there
exists a correspondence assignment (L0,M0) such that |L0(v)| ≥ r − degH(v) for each
v ∈ V (G) \ V (H) and G− V (H) is not (L0,M0)-colourable. Define a new correspondence
assignment (L,M) of G as follows. For each v ∈ V (H), define cv to be a new colour
not appearing in any other list. Define R to be a set of r − 1 new colours distinct not
appearing in any other list or in ∪v∈V (H){cv}. Set L(v) = {cv} ∪ R for each v ∈ V (H).
For each u ∈ V (G) \ V (H), let L(u) = L0(u) ∪ {cv : v ∈ N(u) ∩ V (H)}. For each
uv ̸∈ E(H), set Muv = (M0)uv. For each uv ∈ E(H), set Muv = ∅. Finally, for each uv
with u ∈ V (G) \ V (H) and v ∈ V (H), set Muv = {(u, cv)(v, cv)}. Now (L,M) is an r-
correspondence assignment of G. Let ϕ be the colouring of H given by ϕ(v) = cv for every
v ∈ V (H). Since G−V (H) is not (L0,M0)-colourable, it follows that ϕ does not extend to
an (L,M)-colouring of G. Let G′ be an inclusion-wise minimal subgraph of G containing
H such that ϕ does not extend to an (L,M)-colouring of G′. By the minimality of G′,
we have that ϕ extends to an (L,M)-colouring of every proper subgraph of G′ containing
H. Thus G′ is H-critical with respect to (L,M). Hence by definition, G′is H-critical for
r-correspondence colouring, as desired.
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The lemma below is nearly identical to that of Proposition 5.22 in [33], where it was
originally written for list colouring rather than correspondence colouring. We include the
proof for the purposes of cohesion.

Lemma 4.2.3 (Lemma 5.22, [33]). Let ε be as in Lemma 4.2.1. If G is a plane graph with
girth at least g ∈ {3, 5} and H is a connected subgraph of G such that there does not exist
X ⊆ V (G) \ V (H) such that G[X] is (8− g)-deletable in G, then dg,ε(G|H) ≥ 0.

Proof. We proceed by induction on v(G|H)+e(G|H). If V (H) = V (G), then dg,ε(G|H) ≥ 0
as desired. So we may assume that V (H) ̸= V (G). By assumption, G − V (H) is not
(8 − g)-deletable in G. By Proposition 4.2.2, it follows that there exists a subgraph G0

of G containing H such that G0 is H-critical for (8 − g)-correspondence colouring. Note
that H is a proper subgraph of G0 by definition of H-critical. By Theorem 4.2.1, we have
that dg,ε(G0|H) ≥ 0. By definition of critical, since H is connected it follows that G0

is connected. Note that v(G|G0) + e(G|G0) < v(G|H) + e(G|H). Hence by induction,
dg,ε(G|G0) ≥ 0. By definition of dg,ε, we have that dg,ε(G|H) = dg,ε(G|G0) + dg,ε(G0|H) ≥
0 + 0 = 0, as desired.

We make the following easy observation which follows directly from the definitions of
def3 and dg,ε.

Observation 4.2.4. Let G be a graph, and H a subgraph of G. If d3,ε(G|H) ≥ 0, then
v(G|H) ≤ ε−1 · def3(G|H).

Proof. By definition, d3,ε(G|H) = def3(G|H) − εv(G|H). Since d3,ε(G|H) ≥ 0, it follows
that 0 ≤ def3(G|H) − εv(G|H). Note that ε > 0; by isolating v(G|H), we obtain the
desired result.

Finally, we will need the following theorem, due to Thomassen. This theorem was
originally written in the language of list colouring; however, as pointed out by Dvořák and
Postle in [15], the proof also carries over to the realm of correspondence colouring.

Theorem 4.2.5 (Thomassen, [40]). Let G be a plane graph. Let C be the subgraph of G
whose edge- and vertex-set are precisely those of the outer face boundary walk of G. Let
(L,M) be a correspondence assignment for G where |L(v)| ≥ 1 for a path S ⊆ C with
|V (S)| ≤ 2; where |L(v)| ≥ 3 for all v ∈ V (C) \ V (S); and where |L(v)| ≥ 5 for all
v ∈ V (G) \ V (C). Then every (L,M)-colouring of S extends to an (L,M)-colouring of G.

The proof of Theorem 4.2.6 follows. The reader may find it helpful to consult Figure
4.1 while reading for a depiction of the cases considered in the proof.
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G

H = S + v

S

Figure 4.1: The cases to consider for Theorem 4.2.6. First, the case where V (G) =
V (S) ∪ {v}; here, we consider each possible value of deg(v). For the case where |V (G)| ≥
|V (S)| + 2, we let H = S + v. Note then that |V (G)| − |V (S)| > |V (G)| − |V (H)| and
|V (G)| − |V (S)| > |V (H)| − |V (S)|.

Theorem 4.2.6. Let ε be as in Lemma 4.2.3. Let G be a plane graph, let S be a connected
subgraph of G, and let (L,M) be a 5-correspondence assignment for G. If ϕ is an (L,M)-
colouring of S that extends to an (L,M)-colouring of G, then

log2E(ϕ) ≥
v(G|S)− (ε−1 + 1)def3(G|S)

67
,

where E(ϕ) is the number of extensions of ϕ to G.

Proof. We proceed by induction on v(G|S). We may assume that v(G|S) ̸= 0, as otherwise
there is nothing to prove. First suppose that v(G|S) = 1, and let v ∈ V (G) \ V (S). Then

v(G|S)− (ε−1 + 1)def3(G|S)
67

=
1− (ε−1 + 1)(deg(v)− 3)

67
.

Note that when deg(v) ≥ 4, the right hand side is negative since ε−1 > 0. Since
ϕ extends to an (L,M) colouring of G by assumption, it follows that log2E(ϕ) ≥ 0,

and so log2E(ϕ) ≥
v(G|S)−(ε−1+1)def3(G|S)

67
holds as desired. We may therefore assume that

deg(v) ≤ 3. Since |L(v)| ≥ 5 it follows that E(ϕ) ≥ 5 − deg(v). Therefore it suffices to
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show that log2(5−deg(v)) ≥ 1−(ε−1+1)(deg(v)−3)
67

, or equivalently, that 67 ≥ 1−(ε−1+1)(deg(v)−3)
log2(5−deg(v))

.

The right hand side is maximized when deg(v) = 0, in which case it is easy to verify that
67 > 154

log2(5)
.

We may therefore assume that v(G|S) ≥ 2.

Before proceeding with the remainder of the case analysis, we will need the following
claim.

Claim 39. There does not exist a graph H ⊊ G with S ⊊ H and |V (S)| < |V (H)| < |V (G)|
such that G− V (H) is a 5-deletable subgraph of G.

Proof. Suppose not. Let G′ = G−V (H). Note that G′ is an induced subgraph of G. Since
|V (S)| < |V (H)| < |V (G), we have that v(H|S) < v(G|S), and so it follows by induction

that there are at least 2
v(H|S)−(ε−1+1)def3(H|S)

67 extensions of ϕ toH. By definition of 5-deletable
subgraph, since G′ is 5-deletable each of these extensions of ϕ to an (L,M)-colouring of
H extends further to an (L,M) colouring of G′, and thus to G. Since |V (S)| < |V (H)| <
|V (G), it follows that v(G|H) < v(G|S), and so by induction for each extension of ϕ to

an (L,M) colouring ϕ′ of H there are at least 2
v(G|H)−(ε−1+1)def3(G|H)

67 extensions of ϕ′ to G.
Therefore

log2E(ϕ) ≥
v(H|S)− (ε−1 + 1)def3(H|S)

67
+
v(G|H)− (ε−1 + 1)def3(G|H)

67

=
v(H|S) + v(G|H)− (ε−1 + 1)(def3(H|S) + def3(G|H))

67

=
v(G|S)− (ε−1 + 1)def3(G|S)

67
,

as desired.

Among all vertices in V (G) \ V (S) that have a neighbour in S, choose a vertex v that
maximizes |N(v) ∩ V (S)|. Let H = S + v. Since ϕ extends to an (L,M)-colouring of G,
there is at least 1 = 20 extension ϕ′ of ϕ to H where ϕ′ extends further to an (L,M)-
colouring of G. Since ϕ′ extends to G and v(G|H) < v(G|S), by induction there are at

least 2
v(G|H)−(ε−1+1)def3(G|H)

67 extensions of ϕ′ to G. Therefore

log2E(ϕ) ≥ 0 +
v(G|H)− (ε−1 + 1)def3(G|H)

67
.

118



Moreover, since v(G|H) = v(G|S) − 1 and def3(G|H) = def3(G|S) − degH(v) + 3, it
follows that

log2E(ϕ) ≥
v(G|S)− 1− (ε−1 + 1)(def3(G|S)− degH(v) + 3)

67
.

If degH(v) ≥ 4, the desired result immediately holds since ε > 0. Thus we may assume
degH(v) ≤ 3. First suppose degH(v) ≤ 2. Since |L(v)| ≥ 5, there are at least 5 −
degH(v) extensions of ϕ to an (L,M) colouring of H. We claim each of these extensions
extends further to an (L,M)-colouring of G. To see this, let ϕ′ be an extension of ϕ to
an (L,M)-colouring of H. Let G′ = G − V (H). Note that G′ is induced. Let (L′,M)
be a correspondence assignment for G′ + v where for each u ∈ V (G′), we set L′(u) =
L(u) \ {u[w, ϕ′(w)] : w ∈ V (S) ∩ N(u)}. Let C be the graph whose vertex- and edge-set
are precisely those of the outer face boundary walk of G′ + v. Note that since we chose v
to maximize |N(v) ∩ V (S)| and degH(v) ≤ 2 by assumption, every vertex u in V (C) has
|L(u)| ≥ 3. Moreover, every vertex u in V (G′) \ V (C) has |L′(u)| ≥ 5 since L is a 5-list
assignment for G and no vertex in V (G′) \ V (C) is adjacent to a vertex in S since G is
planar. By Theorem 4.2.5, it follows that ϕ′ extends to G′+v, and thus to G. Since ϕ′ was
an arbitrary extension of ϕ to H, it follows that G′ = G− V (H) is a 5-deletable subgraph
of G; and since |V (S)| < |V (H)| < |V (G)|, this contradicts Claim 39.

We may therefore assume that degH(v) = 3.

By Claim 39, there does not exist X ⊆ V (G) \ V (H) such that G[X] is 5-deletable in
G. Thus by Lemma 4.2.3, we have that

d3,ε(G|H) ≥ 0. (4.2.1)

It follows from Observation 4.2.4 that

v(G|H) ≤ ε−1def3(G|H). (4.2.2)

Moreover, since v(G|S) = 1 + v(G|H) and def3(G|S) = def3(G|H) + def3(H|S), it
follows that

v(G|S)− (ε−1 + 1)def3(G|S)
67

=
1 + v(G|H)− (ε−1 + 1)(def3(G|H) + def3(H|S))

67
.
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By definition of def3(G|S), we have that def3(H|S) = degH(v)− 3, and so

v(G|S)− (ε−1 + 1)def3(G|S)
67

=
1 + v(G|H)− (ε−1 + 1)(def3(G|H) + degH(v)− 3)

67
1 + v(G|H)− (ε−1 + 1)def3(G|H)

67
since degH(v) = 3

≤ 1 + ε−1def3(G|H)− (ε−1 + 1)def3(G|H)

67
by Obs. 4.2.4

≤ 1− def3(G|H)

67
.

By Lemma 4.2.3, we have that def3(G|H) ≥ v(G|H)ε, and since v(G|S) ≥ 2, it follows
that v(G|H) ≥ 1 and so def3(G|H) ≥ ε. Since def3(G|H) is integral, def3(G|H) ≥ 1, and
thus the right hand side above is at most 0. It follows that

v(G|S)− (ε−1 + 1)def3(G|S)
67

≤ 0.

But since ϕ extends to an (L,M)-colouring of G, log2(E(ϕ)) ≥ 0. Thus

log2E(ϕ) ≥
v(G|S)− (ε−1 + 1)def3(G|S)

67
,

as desired.

Using essentially the same proof technique as Theorem 4.2.6 (but with ε = 1
18
) we

obtain the following result.

Theorem 4.2.7. Let G be a planar graph, S a connected subgraph of G, and L a 5-list
assignment for G. If ϕ is an L-colouring of S that extends to an (L,M)-colouring of G,
then

log2E(ϕ) ≥
v(G|S)− 19def3(G|S)

25
,

where E(ϕ) is the number of extensions of ϕ to G.

As a corollary to Theorem 4.2.6, we obtain Theorem 1.2.36, restated and proved below.
Theorem 1.2.36 proves a conjecture of Langhede and Thomassen [29].

Theorem 1.2.36. If G is a planar graph with at least three vertices and (L,M) is a 5-

correspondence assignment for G, then G has at least 2
|V (G)|+306

67 distinct (L,M)-colourings.
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Proof. Let S be the empty graph, and ϕ a trivial colouring of S. Let E(ϕ) be the number
of extensions of ϕ to G. Since G is planar, we have that |E(G)| ≤ 3|V (G)−6. By Theorem
4.2.6,

log2E(ϕ) ≥
|V (G)| − (50 + 1)(|E(G)| − 3|V (G)|)

67

≥ |V (G)| − 51(3|V (G)| − 6− 3|V (G)|
67

since e(G) ≤ 3v(G)− 6

=
|V (G)|+ 306

67
,

as desired.

Similarly, as a corollary to Theorem 4.2.7 we obtain Theorem 4.1.2, restated below.

Theorem 4.1.2. If G is a planar graph with at least three vertices and L is a 5-list

assignment for G, then G has at least 2
|V (G)|+114

25 distinct L-colourings.

(As mentioned in the introduction, Theorem 4.1.2 is not the strongest such result:

Thomassen proved a similar theorem with a bound of 2
|V (G)|

9 [44].)

4.3 The girth at least five case

We now prove an analogous result to Theorem 4.2.6 in the case of planar graphs of girth
at least five. The proof is similar in spirit to that of the girth three case, but requires a
stronger version of Lemma 4.2.1. In particular, we will need the following lemma.

Lemma 4.3.1. Let G be a plane graph with girth at least five and let H be a connected
subgraph of G such that G is H-critical for 3-correspondence colouring. Setting ε = 1

88
, we

have that d5,ε(G|H) ≥ 3.

Proof. For v(G|H) ≥ 2 or v(G|H) = 1 and e(G|H) ̸= 3, this is directly implied by
Observation 3.7.2, ignoring the quasiboundary term. Suppose now that v(G|H) = 0.
Since G is H-critical, it follows that H is a proper subgraph of G and so that e(G|H) ≥ 1.
Thus d3,ε ≥ 3−0 = 3. If v(G|H) = 1 and e(G|H) = 3, then d5,ε = 3 ·3−5 ·1−ε ·1 = 4−ε.
This is at least 3, since ε = 1

88
.
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Using this, we now establish a stronger version of Lemma 4.2.3. The proof is identical
to that of Lemma 4.2.3.

Lemma 4.3.2. Let ε be as in Lemma 4.3.1. If G is a plane graph with girth at least 5 and
H is a connected subgraph of G such that there does not exist X ⊆ V (G) \ V (H) such that
G[X] is 3-deletable in G, then d5,ε(G|H) ≥ 3.

Similar to the case of Observation 4.2.4, this trivially implies the following.

Observation 4.3.3. Let G be a graph of girth at least 5, and H a subgraph of G. If
d5,ε(G|H) ≥ 0, then v(G|H) ≤ ε−1 · (def5(G|H)− 3).

Finally, we will need the following theorem, due to Thomassen. As in the girth 3 case,
this theorem was originally written in the language of list colouring; however, as pointed
out by Dvořák and Postle in [15], the proof also carries over to the realm of correspondence
colouring.

Theorem 4.3.4 (Thomassen, [43]). Let G be a plane graph of girth at least five. Let
C be the subgraph of G whose edge- and vertex-set are precisely those of the outer face
boundary walk of G. Let (L,M) be a correspondence assignment for G where |L(v)| ≥ 1
for each vertex v in a path or cycle S ⊆ C with |V (S)| ≤ 6; where |L(v)| = 2 for each
vertex v in an independent set A of vertices in |V (C) \ V (S)|; where |L(v)| ≥ 3 for all
v ∈ V (G) \ (A ∪ V (S)); and where there is no edge between vertices in A and vertices in
S. Then every (L,M)-colouring of S extends to an (L,M)-colouring of G.

We now prove the following theorem, which is the girth at least five analogue to Theorem
4.2.6. The reader may find it helpful to consult Figure 4.2 while reading for a depiction of
the cases considered in the proof.

Theorem 4.3.5. Let G be a plane graph of girth at least five, let S be a connected subgraph
of G, and let (L,M) be a 3-correspondence assignment for G. If ϕ is an (L,M)-colouring
of S that extends to an (L,M)-colouring of G, then

log2E(ϕ) ≥
v(G|S)− 89def5(G|S)

282
.

Proof. We proceed by induction on v(G|S). We may assume that v(G|S) ̸= 0, as otherwise
there is nothing to prove. First suppose that v(G|S) = 1, and let v ∈ V (G) \ V (S). Then

v(G|S)− 89def5(G|S)
282

=
1− 89(3 deg(v)− 5)

282
.
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Note that when deg(v) ≥ 2, the right hand side is negative. Since ϕ extends to an
(L,M)-colouring of G by assumption, it follows that log2E(ϕ) ≥ 0, and so

log2E(ϕ) ≥
v(G|S)− 89def5(G|S)

282
,

as desired. Thus we may assume that deg(v) ≤ 1. Since |L(v)| ≥ 3, we have that

E(ϕ) ≥ 3− deg(v). Therefore it suffices to show that log2(3− deg(v)) ≥ 1−89(3 deg(v)−5)
282

; or,
equivalently, that

282 ≥ 1− 89(3 deg(v)− 5)

log2(3− deg(v))
.

When deg(v) = 0, the right hand side equals 451
log2(3)

< 282. When deg(v) = 1, the right

hand side equals 179, which again is less than 282. Thus the inequality above holds.

We may therefore assume that v(G|S) ≥ 2.

v

G

S

u

w

G

H = S + u+ w

S

Figure 4.2: Two of the cases to consider for Theorem 4.3.5. First, the case where V (G) =
V (S) ∪ {v}; here, we consider each possible value of deg(v). The case where |V (G)| =
|V (S)|+ 2 is easily dealt with, and is not pictured. For the case where |V (G)| ≥ |V (S)|+
3, we let H = S + u + w. Note then that |V (G)| − |V (S)| > |V (G)| − |V (H)| and
|V (G)| − |V (S)| > |V (H)| − |V (S)|.

Before proceeding with the remainder of the case analysis, we will need the following
claim.

Claim 40. There does not exist a graph H ⊊ G with S ⊊ H and |V (S)| < |V (H)| < |V (G)|
such that G− V (H) is a 3-deletable subgraph of G.
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Proof. Suppose not. Let G′ = G − V (H) be a 3-deletable subgraph. Note that G′ is
induced. Since S ⊊ H and H ⊊ G and |V (S)| < |V (H)| < |V (G)|, it follows that

v(H|S) < v(G|S). By induction, there are at least 2
v(H|S)−89def5(H|S)

282 extensions of ϕ to H.
Since G′ is a 3-deletable subgraph of G, by definition each of these extensions of ϕ to an
(L,M)-colouring of H extends further to an (L,M) colouring of G′, and therefore to G.

Since H ⊊ G and S ⊊ H and |V (S)| < |V (H)| < |V (G)|, we have that v(G|H) <
v(G|S), and so by induction for each extension of ϕ to an (L,M) colouring ϕ′ of H there

are at least 2
v(G|H)−89def5(G|H)

282 extensions of ϕ′ to G. Therefore

log2E(ϕ) ≥
v(H|S)− 89def5(H|S)

282
+
v(G|H)− 89def5(G|H)

282

=
v(H|S) + v(G|H)− 89(def5(H|S) + def5(G|H))

282

=
v(G|S)− 89def5(G|S)

282
,

as desired.

Among all vertices in V (G) \ V (S) that have a neighbour in S, choose a vertex v that
maximizes |N(v) ∩ V (S)|. Let H = S + v. Since ϕ extends to an (L,M)-colouring of G,
there is at least 1 = 20 extension ϕ′ of ϕ to H where ϕ′ extends further to an (L,M)-
colouring of G. Since ϕ′ extends to G and v(G|H) < v(G|S), by induction there are at

least 2
v(G|H)−89def5(G|H)

282 extensions of ϕ′ to G. Therefore

log2E(ϕ) ≥ 0 +
v(G|H)− 89def5(G|H)

282
.

Since def5(G|H) = def5(G|S)− 3 degH(v) + 5, it follows that

log2E(ϕ) ≥ =
v(G|S)− 1− 89(def5(G|S)− 3 degH(v) + 5)

282

=
v(G|S)− 1− 89def5(G|S)

282
− 89(5− 3 degH(v))

282
.

If degH(v) ≥ 2, then log2E(ϕ) ≥ v(G|S)−1−89def5(G|S)
282

, as desired. Thus we may assume
degH(v) ≤ 1. If degH(v) = 0, we claim G − V (H) is 3-deletable. To see this, let ϕ′ be
an extension of ϕ to an (L,M)-colouring of H. By Theorem 4.3.4, G′ admits an (L′,M)-
colouring ϕ′′. Note that since v was chosen to maximize N(v) ∩ V (S) and degH(v) = 0, it

124



follows that every vertex in V (G)\V (H) has no neighbours in V (S), and so that ϕ′′∪ϕ′ is
an extension of ϕ′ to G. Thus G− V (H) is 3-deletable, contradicting Claim 40. We may
therefore assume that degH(v) = 1.

Suppose now that v(G|S) = 2, and let {u} = V (G) \ V (H). Since v ∈ V (G) \ V (S)
was chosen to maximize |N(v) ∩ V (S)|, it follows that |N(u) ∩ V (S)| ≤ 1. But then
|N(u) ∩ V (H)| ≤ 2; and since |L(u)| ≥ 3, it follows that G \ V (H) = u is 3-deletable,
contradicting Claim 40.

Thus v(G|S) ≥ 3. Let X be the set of vertices in V (G) \ V (S) with at least one
neighbour in S. Note that v ∈ X. By our choice of v, since degH(v) = 1 it follows that
every vertex in U has exactly one neighbour in S. If X is an independent set, we claim
that G − V (H) is a 3-deletable subgraph of G. To see this, let ϕ′ be an extension of
ϕ to an (L,M)-colouring of H. Let (L′,M) be a list assignment for G − V (H), where
L′(u) = L(u) \ {u[w, ϕ′(w)] : w ∈ V (H)∩N(u)}. By Theorem 4.3.4, G− V (H) is (L′,M)-
colourable; and so G− V (H) is 3-deletable, contradicting Claim 40.

Thus X is not an independent set, and so there exist vertices u,w ∈ X such that
uw ∈ E(G). Let H ′ = S + u + w. Since every vertex in X has exactly one neighbour in
S, it follows that e(H ′|S) = 3. Thus def5(G|H ′) = def5(G|S) + 1; and by Claim 40, there
does not exist X ⊆ V (G) \ V (H ′) such that G[X] is 3-deletable in G. Thus by Lemma
4.3.2, d5,ε(G|H ′) ≥ 3, and so by Observation 4.3.3, def5(G|H ′) ≥ ε · v(G|H ′) + 3. Thus
def5(G|S) ≥ 2 + ε · v(G|H ′). It follows that

v(G|S)− 89def5(G|S) ≤ v(G|S)− 89(2 + εv(G|H))

= v(G|S)− 89(2 + ε(v(G|S)− 2))

= v(G|S)− 89ε · v(G|S)− 89(2− 2ε).

As ε = 1
88
, the above is negative. Thus

0 >
v(G|S)− 89def5(G|S)

282
.

Since ϕ extends to an (L,M)-colouring of G, it follows that log2E(ϕ) ≥ 0, and so

log2E(ϕ) >
v(G|S)−89def5(G|S)

282
, as desired.

As an easy corollary, we obtain Theorem 1.2.37.
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Proof of Theorem 1.2.37. Let S be the empty graph, and ϕ a trivial colouring of S. Let
E(ϕ) be the number of extensions of ϕ to G. If G has two vertices, then G has at least 5×4

colourings, and so E(ϕ) ≥ 20 > 2
892
292 , as desired. If G has three vertices, then since G has

girth at least five |E(G)| ≤ 2 and so E(ϕ) ≥ 5× 4× 4 > 2
893
292 . Thus we may assume G has

at least four vertices. Since G is planar and has girth at least five, 3|E(G)| ≤ 5|V (G)|−10.
By Theorem 4.3.5,

log2E(ϕ) ≥
|V (G)| − 89(3|E(G)| − 5|V (G))

282

≥ |V (G)| − 89(−10)

282
since 3|E(G)| − 5|V (G)| ≤ −10

=
|V (G)|+ 890

292
,

as desired.

126



Chapter 5

Conclusion and Open Problems

Many of the results in this thesis suggest that what determines the difficulty of colouring
problems in planar graphs is really only local structure, rather than the global structure of
the graph. For instance, our local choosability result (Theorem 1.2.11) shows that, given
a planar graph, if even a single vertex is not contained in a short cycle, then already the
colouring problem becomes easier. Indeed, it is not colouring planar graphs with short
cycles that is difficult (in the sense that it requires lists of larger size): rather it seems to
be colouring the short cycles themselves within the planar graphs. Theorem 3.6.4 suggests
that, in order to determine whether a (5-correspondence) colouring of a subgraph C extends
to a colouring of the whole graph, it is enough to check whether it extends to a relatively
small neighbourhood of C. In a similar vein, our results on locally planar graphs (Theorems
1.2.20 and 1.2.28) suggests that even in the case of certain classes of non-planar graphs,
if the graphs’ local structure is planar, then that is enough to ensure planar-like colouring
properties.

As we demonstrate in Chapter 3 (and as is shown by Postle and Thomas in [37]), show-
ing a family of graphs is hyperbolic is a clear avenue to pursue to obtain results on locally
planar graphs (among other things). Following the work of Dvořák and Kawarabayashi
[11], hyperbolicity theorems can also be used to prove algorithmic results: indeed, for the
decidability problem of colouring graphs embedded on fixed surfaces we obtain algorithms
that are not only poly-time, but linear-time. These questions —whether locally planar
graphs are colourable, as well as the existence of the algorithms described —are very nat-
ural and interesting in their own right, but barring hyperbolicity, there seems to be no
general method or obvious strategy for tackling them. This is in part the reason for prov-
ing hyperbolicity theorems like Theorems 3.4.7 and Observation 3.7.2: they provide a clear
path for studying these natural questions.
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In Chapter 4, we demonstrate that these stronger hyperbolicity theorems have yet
another fascinating implication: they can be used to show there exist exponentially many
colourings of planar graphs. This too is an interesting and natural question, and the fact
that it too falls under the umbrella of implications of hyperbolicity further motivates the
study of hyperbolicity theorems like Theorem 3.4.7.

This thesis answers many interesting questions, and raises many others. For instance,
we note the proof of Theorem 1.2.11 does not hold for correspondence colouring. In par-
ticular, Lemma 2.2.14 relies on a colouring argument that does not translate to the corre-
spondence framework, and it is not immediately obvious how to get around this.

Question 5.0.1. Let G be a planar graph, and let (L,M) be an arbitrary correspondence
assignment for G where L is a local girth list assignment. Is G (L,M)-colourable?

It would also be interesting to investigate whether Theorem 1.2.11 extends to graph
classes beyond planar graphs. In particular, we ask the following.

Question 5.0.2. For every surface Σ, does there exist a constant ρ > 0 such that every
ρ-locally planar graph that embeds in Σ is local girth choosable?

It would also be interesting to investigate whether the analogous correspondence colour-
ing result holds. As correspondence colouring generalizes list colouring, this would of course
imply a positive answer to Question 5.0.2.

We are also interested in algorithmic questions.

Question 5.0.3. For graphs embedded in a fixed surface, does there exist a poly-time
algorithm for the decidability problem of local girth choosability?

Again, it would be interesting to investigate the answer to the analogous question for
correspondence colouring.

In light of Theorem 1.2.11, we raise the question below.

Question 5.0.4. Given a planar graph G with at least three vertices and a local girth list
assignment L for G, do there exist exponentially many distinct L-colourings of G?

Though each of the questions above is interesting in its own right, perhaps most inter-
esting of all are the following two.

Question 5.0.5. Does there exist a theorem analogous to Theorem 3.4.7 for local girth
choosability?
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Question 5.0.6. Does there exist a theorem analogous to Theorem 3.4.7 for local girth
correspondence colouring?

As mentioned in the introduction, a positive answer to this last question would simulta-
neously imply all the results in this thesis. In addition, it would imply a positive answer to
all of the questions raised thus far (with the possible exception of Question 5.0.4; however,
it seems very likely that our method described in Chapter 4 could be used to to answer
Question 5.0.4 assuming a theorem like that alluded to in Question 5.0.6.

In addition to hyperbolicity, Postle and Thomas also introduce the notion of strong hy-
perbolicity. While hyperbolicity implies a bound on the number of vertices in an open disk,
strong hyperbolicity bounds the number of vertices in an open annulus. In addition to all
the implications of hyperbolicity, strong hyperbolicity has further interesting implications:
we refer the reader to [37] for details. We leave the reader with the following family of
problems: it would be interesting to investigate whether there exist strong hyperbolicity
theorems for the families of correspondence-critical graphs described in this thesis. Given
the intricacies involved in the proofs of our hyperbolicity results, these questions seem
especially daunting.
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[7] Ewan Davies, Rémi de Joannis de Verclos, Ross J Kang, and François Pirot. Coloring
triangle-free graphs with local list sizes. Random Structures & Algorithms, 57(3):730–
744, 2020.

[8] Matt DeVos, Ken-ichi Kawarabayashi, and Bojan Mohar. Locally planar graphs are
5-choosable. University of Ljubljana, Inst. of Mathematics, Physics and Mechanics,
2006.

[9] R. Diestel. Graph Theory: 5th edition. Springer Graduate Texts in Mathematics.
Springer-Verlag, © Reinhard Diestel, 2017.

130



[10] G.A. Dirac. Note on the colouring of graphs. Mathematische Zeitschrift, 54(4):347–
353, 1951.

[11] Zdenek Dvorák and Ken-ichi Kawarabayashi. Choosability of planar graphs of girth
5. arXiv preprint arXiv:1109.2976, 2011.
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[15] Zdeněk Dvořák and Luke Postle. Correspondence coloring and its application to list-
coloring planar graphs without cycles of lengths 4 to 8. Journal of Combinatorial
Theory, Series B, 129:38–54, 2018.

[16] David Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica,
27(3):275–291, 2000.
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