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Abstract

Let G be a Berge graph such that no induced subgraph is a 4-cycle or a line-graph of a bipartite
subdivision of K4. We show that every such graph G either is a complete graph or has an even pair.

1 Introduction

All graphs in this paper are finite and simple. For a graph G and X ⊆ V (G), G|X denotes the induced
subgraph of G with vertex set X. Two disjoint sets X,Y of vertices in a graph are complete to each
other if every vertex in X is adjacent to every vertex in Y , and anticomplete to each other if no vertex
in X is adjacent to a vertex in Y . We say that v is complete to X ⊆ V (G) if {v} is complete to X, and
v is anticomplete to X ⊆ V (G) if {v} is anticomplete to X. For X,Y ⊆ V (G), we say that X touches
Y if either X ∩ Y 6= ∅ or there exists x ∈ X, y ∈ Y so that xy ∈ E(G). Let v ∈ V (G); we say that v
touches X ⊆ V (G) if {v} touches X; and we say that v is a neighbor of X if v 6∈ X, but v touches X.

For a vertex v ∈ V (G), we let NG(v) = N(v) denote the set of neighbors of v in G. A clique in
a graph is a set of pairwise adjacent vertices, and for a graph G, ω(G) denotes the size of the largest
clique in G. By a path in a graph we mean an induced path, and the length of a path is the number
of edges in it. A path is odd if its length is odd, and even otherwise.

Let k ≥ 4 be an integer. A hole of length k in a graph is an induced subgraph isomorphic to
the k-vertex cycle Ck, and an antihole of length k is an induced subgraph isomorphic to Cc

k (here Gc

denotes the complement of G). A hole (or antihole) is odd if its length is odd. A graph is called Berge
if it has no holes of odd length, and no antiholes of odd length. A hole of length four is called a square,
and a graph is square-free if it does not contain a square.

An even pair in a graph is a pair of vertices {u, v} such that every path from u to v is even, and
in particular, u and v are non-adjacent. (We remind the reader that by a path we always mean an
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induced path.) The contraction operation for even pairs is defined as follows. The graph G′ is obtained
from G by contracting {u, v} if

• V (G′) = (V (G) \ {u, v}) ∪ {w};

• G′ \ {w} = G \ {u, v}; and

• NG′(w) = NG(u) ∪NG(v).

It is not difficult to see that if G is Berge and G′ is obtained from G by contracting an even pair {u, v},
then G′ is Berge, and that ω(G′) = ω(G) [3]. Moreover, given a coloring of G′ with ω(G) colors, one can
obtain a coloring of G with ω(G) colors by assigning u and v the color of w, and keeping the colors of
the remaining vertices unchanged. A graph G is called even contractile if there is a sequence of graphs
G1, . . . , Gt where G1 = G, Gt is the complete graph with ω(G) vertices, and for i ∈ {1, . . . , t−1}, Gi+1
is obtained from Gi by contracting an even pair of Gi. If the even pair to be contracted at every stage
can be found algorithmically, as for instance in Theorem 1.3, this leads to a polynomial time coloring
algorithm. For this reason, and because of their role in the understanding of the structure of Berge
graphs, much attention has been devoted to determining which Berge graphs are even contractile, or
have even pairs.

A prism K in a graph G is an induced subgraph consisting of two disjoint triangles {a1, a2, a3} and
{b1, b2, b3} and three disjoint paths P1, P2, P3, where Pi has ends ai and bi, and for 1 ≤ i < j ≤ 3 the
only edges between V (Pi) and V (Pj) are aiaj and bibj . The vertices in {a1, a2, a3, b1, b2, b3} are called
corners of the prism. A vertex v ∈ V (G) \ V (K) is major for K if v has at least two neighbors in each
of the triangles of K. A vertex v ∈ V (G) is rough for the prism K if there exist {i, j, k} = {1, 2, 3}
such that either v is an end of the path Pk, or v has a neighbor in {ai, bi} and in {aj , bj} and either

• there is a path Q, called the normal path, from v to an interior vertex of Pk such that the set of
interior vertices of Q is anticomplete to {ai, aj , bi, bj}; or

• Pk has length one and v is adjacent to both ak and bk;

Pk is called a base path for v in K.
We say that a vertex v is a corner (major, rough) in G if there is a prism K in G such that v is a

corner (major, rough) for K. A vertex is smooth if it is not rough.
A prism is odd if P1, P2, P3 are all odd, and even if they are all even. It is easy to see that if G is

Berge, then every prism is either even or odd. Everett and Reed made the following conjecture:
It is not true that every major vertex is a rough vertex, because major vertices need not have

neighbors in the interior of paths, but in the case of odd prisms, the following holds:

Lemma 1.1. If K is an odd prism in a Berge graph G, and v is major for K, then v is rough for K.

Proof. If there is an i, say i = 1, so that v does not have a neighbor in Pi, then v is adjacent to
a2, a3, b2, b3 because v is major, and thus v-a2-a1-P1-b1-b3-v is an odd hole in G, a contradiction. Thus,
v has a neighbor in every path Pi of K.

Because v is major, if there is some k such that v is adjacent to neither ak nor bk, then v is adjacent
to some vertex in the interior of Pk, and to ai, aj , bi, bj ; hence it is a rough vertex with base path Pk.

Otherwise, v is adjacent to at least one of {ai, bi} for each i. There is at least one path Pk of K
such that v is adjacent to both its ends. But Pk is odd, and so v-ak-Pk-bk-v is an odd hole unless v has
a neighbor in the interior of Pk or Pk has length one. Thus, v is rough for K with base path Pk.

For a prism K, a subset of its vertex set is local if it is contained in one path or one triangle of K.
A vertex v ∈ V (G) \ V (K) is a local neighbor of K if v has a neighbor in K and the set of neighbors
of v in V (K) is local.
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Conjecture 1.2 ([3]). If a Berge graph has no odd prism and no antihole of length at least six, then
it is even contractile.

Conjecture 1.2 is still open, but the following weaker statements have been proved:

Theorem 1.3 ([7]). If a Berge graph has no prism and no antihole of length at least six, then it is
even contractile.

Theorem 1.4 ([5]). If a square-free Berge graph has no odd prism, then either it is a complete graph
or it has an even pair.

A graph H is a subdivision of a graph G if H is obtained from G by repeatedly subdividing edges.
H is a bipartite subdivision of G if H is a subdivision of G, and H is bipartite. The line-graph L(G)
of G is the graph with vertex set E(G), and such that e, f ∈ E(G) are adjacent in L(G) if and only if
e and f share an end in G. A graph G is called flat if it is Berge and it contains no induced subgraph
isomorphic to the line-graph of a bipartite subdivision of K4.

Hougardy [4] made the following related conjecture:

Conjecture 1.5 ([4]). If G is a minimal Berge graph with no even pair, then G is either an even
antihole of length at least six, or the line-graph of a bipartite graph.

Here we prove the following result, in the spirit of Theorem 1.4:

Theorem 1.6. If G is a square-free flat graph, then either G is a complete graph or G has an even
pair.

In view of Conjecture 1.2 and Theorem 1.6 one might hope that the common generalization holds,
i.e. that every flat graph with no antihole of length at least six is either a complete graph or has an
even pair. This is not the case, as the graph on the left in Figure 1 shows. It is the line-graph of the
bipartite series-parallel graph on the right; thus it is flat, and it contains no antihole of length at least
six, but it does not have an even pair.

Figure 1: G and a bipartite series-parallel graph H with G = L(H)

To prove Theorem 1.6 we use an idea first suggested by the second author [6] to approach Conjec-
ture 1.2. A vertex is simplicial if its neighbor set is a clique. Note that a graph that is the disjoint
union of cliques has no non-simplicial vertices. The second author conjectured that

Conjecture 1.7 ([6]). Every Berge graph with no odd prism and no antihole of length at least six
either is a disjoint union of cliques or has a vertex that is not a corner and not simplicial.
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He further suggested that

Conjecture 1.8 ([6]). If G is a Berge graph with no antihole of length at least six, and v ∈ V (G) is
not a corner and not simplicial, then the neighbor set of v includes an even pair of G.

Our first result is a variant of Conjecture 1.7:

Theorem 1.9. Let G be a square-free flat graph. Then either G is a disjoint union of cliques, or some
v ∈ V (G) is smooth and not simplicial.

We then closely follow the outline of the proof of Theorem 1.3 and show the following variant of
Conjecture 1.8.

Theorem 1.10. Let G be a Berge graph with no antihole of length at least six, such that every proper
induced subgraph of G either is a complete graph or has an even pair. Let v be a vertex of G that is
smooth and not simplicial. Then the neighborhood of v includes an even pair of G.

Proof of Theorem 1.6, assuming Theorems 1.9 and 1.10. We prove this by induction on |V (G)|. We
may assume that G is not complete. If G is the union of at least two disjoint cliques, then two vertices
in different connected components form an even pair; thus we may assume that G is not a disjoint
union of cliques. By Theorem 1.9, there is a smooth, non-simplicial vertex. Since G is square-free, it
contains no antihole of length at least six, so by Theorem 1.10 there is an even pair in G. This proves
Theorem 1.6.

The proof of Theorem 1.9 appears in Sections 2 and 3, and Section 4 is devoted to the proof of
Theorem 1.10.

2 Prism Corners

Let G be a non-null square-free flat graph with no clique cutset. We want to show that there is a
vertex in G that is smooth.

A megaprism in G is an induced subgraph P such that V (P ) admits a partition into twelve sets
A1, A2, A3, A4, B1, B2, B3, B4, C1, C2, C3, C4 with the following properties:

• A1, A2, A3, B1, B2, B3 6= ∅;

• Ai is complete to Aj , and Bi is complete to Bj for all distinct i, j ∈ {1, 2, 3}; the sets A =
A1 ∪A2 ∪A3 and B = B1 ∪B2 ∪B3 are called potatoes of P ;

• for i = 1, 2, 3, the vertex set of every component of G|Ci touches Ai and Bi, every vertex in Ai

has a neighbor in Bi ∪ Ci, and every vertex in Bi has a neighbor in Ai ∪ Ci;

• the vertex set of every component of G|A4 touches A, and the vertex set of every component of
G|B4 touches B;

• for every edge uv of P , {u, v} is a subset of one of the sets A∪A4, B ∪B4, C4, S1, S2, S3, where
Si = Ai ∪Bi ∪ Ci for i = 1, 2, 3; and

• every vertex in M = V (G) \V (P ) is major for P , that is, it is complete to two of A1, A2, A3 and
to two of B1, B2, B3.
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Thus, every component of G|C4 is a component of P , and we shall soon show that C4 = ∅.
Components of G|A4 and G|B4 are called side components. For i = 1, 2, 3, the set Si = Ai ∪Ci ∪Bi is
called a strip of P with interior Ci. A path from Ai to Bi with interior in Ci is called a rung of the
strip Si. We call the sets Ai, Bi(i = 1, 2, 3) P -ends.

The following is proved (with different terminology) in the first paragraph of the proofs of Theorems
4.2 and 5.2 of [1].

Theorem 2.1. Let G be a square-free flat graph that contains a prism with triangles {a1, a2, a3}
and {b1, b2, b3}. Then there is a megaprism P such that the sets A,B as defined above satisfy that
{a1, a2, a3} ⊆ A and {b1, b2, b3} ⊆ B.

In Lemmas 2.2-2.6, we always assume that G is a non-null square-free flat graph with no clique
cutset, and that P is a megaprism in G with notation as above.

The following was proved in [1], Theorem 5.2 (4). We include a short proof for completeness.

Lemma 2.2. M is a clique and for each potato of P , at most one of the P -ends included in this potato
is not complete to M . Also, C4 = ∅.

Proof. Suppose that M is not a clique. Then, M contains two non-adjacent vertices x, y, each complete
to two P -ends in each potato. Hence, they have common neighbors a ∈ A and b ∈ B, and if a and
b can be chosen to be not adjacent, this forms a square, a contradiction. Therefore, a and b are
adjacent; thus both are in the same strip, say S1, and x, y have no common neighbors in A2 ∪A3. Up
to symmetry, this implies that since x, y are major, x is complete to A2 and has no neighbors in A3
and y is complete to A3 and has no neighbors in A2. Let v ∈ A2, u ∈ A3; then x-b-y-u-v-x is a hole of
length five, which cannot happen in a Berge graph. This proves that M is a clique.

Next, we suppose that two P -ends in the same potato contain vertices x, y that are not complete
to M . Then there are major vertices u, v such that x is adjacent to u but not v, and y is adjacent to
v but not u. Since x is adjacent to y and u is adjacent to v, they form a square.

Finally, since M is a clique and not a clique cutset, it follows that C4 = ∅.

We say that a P -end is good if it is a clique and all its vertices are complete to M . Otherwise, it
is called a bad P -end.

Lemma 2.3. For each potato, at most one of the P -ends it includes is a bad P -end.

Proof. By Lemma 2.2, at most one P -end is not complete to M . If there are two P -ends that are not
cliques, there is a square formed by two pairs of non-adjacent vertices that are complete to each other.
If u, v are in the same P -end in a potato p and non-adjacent, and x is in a different P -end in p and
non-adjacent to some y ∈M , then x-u-y-v-x is a square.

Let Si be strip of P . We define S̃i as follows.

• if both Ai and Bi are good P -ends, then S̃i = Ci;

• if Ai is a good P -end and Bi is a bad P -end, then S̃i = Ci ∪Bi ∪B4;

• if Bi is a good P -end and Ai is a bad P -end, then S̃i = Ci ∪Ai ∪A4; and

• if both Ai and Bi are bad P -ends, then S̃i = Ci ∪Ai ∪A4 ∪Bi ∪B4.

In Lemma 2.7, we will show that if there is a prism, then some strip of some megaprism has no
prism corners in its interior. Our strategy to prove this is, we can assume there is a prism and hence
a megaprism; choose a megaprism with a strip “minimal” in some sense, and prove that no vertex in
the interior of the strip is a corner. The intuition behind this is, if a vertex v in the interior of this
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minimal strip (S say) is a corner, then grow the corresponding prism to a megaprism; it is difficult for
the strips of the new megaprism to “escape” from S – more or less, only one can escape through each
end of S – so one will be trapped inside of S, and this will contradict the minimality of S. But there
are difficulties. First, we need to make sure that there are vertices in the interior of S; so let us choose
S to be a strip with no rung of length one, and subject to that with something minimal. Second,
too many strips of the new megaprism can sometimes “escape” from S into side components, when
the corresponding end of S is not a clique, so we would like to consider this as not really escaping,
which means we sometimes need to include the side components as part of the strip. This led us to try
choosing a megaprism and a strip S with no rungs of length one and then with S̃ minimal, and this is
an approach that works. It may not be the simplest method, but the example of Figure 2 shows that
several simpler methods do not work.

In the graph of Figure 2, the sets A1 = {v1} , A2 = {v2} , A3 = {v3} , C1 = {v15, v16, v17} , C2 =
{v4} , C3 = {v5} , B1 = {v8, v9, v18} , B2 = {v6} , B3 = {v7} , B4 = {v10, v11, v12, v13, v14} define a
megaprism, and there is another from the left-right symmetry. Those are the only two; and an internal
vertex of S1 is a corner vertex, so whatever we minimize must not be minimized by this strip. The
advantage of minimizing S̃ is that S̃1 includes the corresponding set of a strip of the other megaprism,
and so is not minimal. (A more obvious fix for this example is, choose S with as few vertices as
possible. That works for this example, but we could subdivide the edge v2v4 a large even number of
times, and the same for v3v5, v10v12, v11v13, and then simply counting vertices no longer works.)

v1 v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15 v16 v17 v18

Figure 2: A hard example

Lemma 2.4. Let Si be a strip with a bad P -end Ai; then every component of A4 has a neighbor in
Ai. The same holds for Bi and B4.
Proof. This follows because the union of M and good P -ends in A is not a clique cutset.

Lemma 2.5. For i ∈ {1, 2, 3}, every vertex with distance one from S̃i is either in M or in a good
P -end, and therefore complete to M . Consequently, every path from a vertex in S̃i to a vertex not in
S̃i contains a vertex that is either in M or in a good P -end. Moreover, if X ⊆ V (P ) is connected, X
touches S̃i, and no vertex v ∈ X is complete to M \ {v}, then X ⊆ S̃i.
Proof. Let i = 1, say. First, note that vertices with distance one from S̃1 are either in M or A or B.
Moreover, if A1 is a good P -end, then vertices in A with distance one from S̃1 are in A1. If A1 is a
bad P -end, then vertices in A with distance one from S̃1 are in A2 ∪A3, and since A1 is a bad P -end
by Lemmma 2.3, both A2 and A3 are good P -ends. The last statement of the lemma follows since
every vertex v in a good P -end is complete to M by definition, and every vertex v in M is complete
to M \ {v} by Lemma 2.2.
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Lemma 2.6. For all distinct i, j ∈ {1, 2, 3}, S̃i and S̃j do not touch. Let R be a path with one end in
S̃i and the other end in S̃j for some i 6= j. Then the interior of R contains either a vertex in M , or a
vertex in a good P -end. Moreover, S̃i and S̃j are anticomplete to each other for all i 6= j.

Proof. Since by Lemma 2.3 at most one P -end in each potato is bad, it follows that S̃i and S̃j do not
touch, and in particular they are anticomplete to each other. But V (R) 6⊆ S̃i, and R is connected, so
it contains a vertex with distance one from S̃i, and the result follows from Lemma 2.5.

Since G is square-free, for every megaprism, at most one of its strips has a rung of length one.

Lemma 2.7. Let G be a non-null square-free flat graph with no clique cutset, and P, S1 be chosen such
that P is a megaprism in G with partition A1, A2, A3, A4, B1, B2, B3, B4, C1, C2, C3, C4 (where C4 = ∅),
and S1 is a strip of P with no rung of length one, and among all such choices of P, S1, the set S̃1 is
minimal with respect to inclusion.

Let P ′ be another megaprism in G, and let A′1, A′2, A′3, A′4, B′1, B′2, B′3, B′4, C ′1, C ′2, C ′3, C ′4 (where
C ′4 = ∅) be the sets of the partition of P ′, and let A′ = A′1 ∪ A′2 ∪ A′3 and B′ = B′1 ∪ B′2 ∪ B′3 be
the potatoes of P ′. Then (A′ ∪B′) ∩ C1 = ∅. In particular, no vertex in C1 is a corner.

Proof. Assume for a contradiction that (A′ ∪B′)∩C1 6= ∅. For i = 1, 2, 3, let S′i = A′i ∪C ′i ∪B′i denote
the strips of P ′, and let M ′ = V (G) \ V (P ′) denote the major vertices for P ′. By Lemma 2.2, both M
and M ′ are cliques. We distinguish several cases depending on which vertices in V (P ′) are also in M .

(1) M ∩ C ′i = ∅ for i = 1, 2, 3. Moreover, for i = 1, 2, 3, either M ∩A′i = ∅ or M ∩B′i = ∅.

Let {i, j, k} = {1, 2, 3}, and suppose that either M ∩ C ′i 6= ∅ or M ∩ A′i,M ∩ B′i 6= ∅. Define
X = S′j ∪ S′k ∪ S̃′j ∪ S̃′k; then G|X is connected by Lemma 2.4 and C1 touches X, but X contains no
vertex complete to M ∩ S′i. Thus, by Lemma 2.5, S̃′j , S̃′k ⊆ S̃1. Since one of S′j , S′k has no rung of
length one, this contradicts the minimality of S̃1. This proves (1).

(2) For some i ∈ {1, 2, 3}, either M ∩ V (P ′) ⊆ A′i or M ∩ V (P ′) ⊆ B′i.

Suppose not; then by (1), we may assume that either M ∩ A′4 6= ∅ or M contains vertices from
at least two different strips of P ′. In the latter case, since M is a clique, we may assume that M
contains vertices in two P ′-ends in A′. Let X = V (P ′) \ (A′ ∪A′4); then no vertex in X is complete to
M ∩ (A′ ∪A′4), but G|X is connected and C1 touches X. By Lemma 2.5, X ⊆ S̃1. Let S′i be a strip of
P ′ with a good P ′-end in A′ and no rung of length one; then S̃′i ⊂ S̃1, a contradiction. This proves (2).

(3) Let X = C ′2 ∪ C ′3 ∪ B′2 ∪ B′3 together with the components of G|B′4 that have neighbors
in B′2 ∪B′3. If M ∩A′1 6= ∅, then X ⊆ S̃1.

Suppose not. Then we may assume that M ∩ V (P ′) ⊆ A′1 by (2). Let w ∈ M ∩ A′1. Since X is
connected and does not touch {w} ⊆M , it suffices to show that S̃1 touches X by Lemma 2.5.

Since C1 ⊆ S̃1, we may assume that C1 does not touch X. By our assumption, C1 ∩ (A′ ∪B′) 6= ∅.
Since every vertex in B′ ∪ A′2 ∪ A′3 touches X, it follows that S̃1 ∩ (B′ ∪ A′2 ∪ A′3) = ∅. Consequently,
C1 ∩ A′1 6= ∅. Since C1 ∩ A′1 is complete to A′2 ∪ A′3, and since (A′2 ∪ A′3) ∩M = ∅, it follows that
A′2 ∪A′3 ⊆ (A1 ∪B1) \ S̃1.

By symmetry, we may assume that (A′2 ∪ A′3) ∩ A1 6= ∅. It follows that A1 6⊆ S̃1, and so A1 is a
good P -end, and in particular, A1 is a clique and every vertex in A1 touches A′2 ∪A′3. Let R be a rung
of S′1 from a vertex in C1 ∩ A′1 to a vertex b ∈ B′1. If b ∈ S̃1, then X touches S̃1. Therefore, we may
assume that b 6∈ S̃1, and consequently, some vertex z in C ′1 ∪B′1 has distance one from S̃1. But z does
not touch A′2∪A′3, so z is not in A1. Since M ∩ (C ′1∪B′1) = ∅, it follows that z 6∈M . Therefore, z is in
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B. Since z has distance one from S̃1, z is in a good P -end. It follows that z is touches every vertex of
B, and since no vertex in A′2∪A′3 touches z, it follows that (A′2∪A′3)∩B = ∅. Since A′2∪A′3 ⊆ A1∪B1,
it follows that A′2 ∪A′3 ⊆ A1.

Let Y = V (R) ∪ X. Since neither X nor V (R) \ A′1 contains a vertex complete to A′2 ∪ A′3, and
since V (R) ∩ A′1 ⊆ C1, it follows that Y ∩ A = ∅. Since A is a cutset separating A′1 ∩ C1 ⊆ Y from
A4, it follows that Y ∩A4 = ∅, and consequently, X ∩ (A ∪A4) = ∅. But the set X has a neighbor in
A′2 ∪A′3 ⊆ A1, and since X ∩M = ∅, it follows that X contains a vertex in S̃1. Hence X ⊆ S̃1, which
proves (3).

(4) M ∩ V (P ′) = ∅.

Suppose not, and by (1), let w ∈ M ∩ A′1, say, and let Z = A′2 ∪ A′3. Let X be as in (3); and so
X ⊆ S̃1. Let us pick a strip S′i of P ′ such that its P ′-end A′i is good, and it has no rung of length
one. Consequently S̃′i ⊆ C ′i ∪ B′i ∪ B′4. By the minimality of S̃1, it follows that S̃′i 6⊂ S̃1. Therefore,
i = 1 by (3), since S̃′2, S̃′3 ⊂ X by Lemma 2.4 if their P ′-end in A′ is good. Consequently, A′1 is a
good P ′-end of S′1 and S′1 has no rung of length one. Moreover, since at most one of S′2, S′3 has a rung
of length one, it follows that one of A′2, A′3 is a bad P ′-end, and so Z is either not a clique or not
complete to M ′. Also, vertices in B′1 ∪B′4 are not adjacent to w, and B′1 ∪B′4 ∪X is connected, so by
Lemma 2.5, B′1 ∪B′4 ⊆ S̃1. Since S̃′1 6⊂ S̃1, it follows that C ′1 \ S̃1 6= ∅. Since C ′1 ∪B′1 ∪X is connected
and B′1 ∪X ⊆ S̃1, Lemma 2.5 implies that there is a vertex a ∈ C ′1 that is in a good P -end. Without
loss of generality, we assume that a ∈ A; then a is complete to A \ {a}.

Since at most one strip has a rung of length one, there exists j ∈ {2, 3} such that S′j has no rung
of length one. Then S̃′j 6⊂ S̃1; and since B′1 ⊆ S̃1 \ S̃′j , it follows that ∅ 6= S̃′j \ S̃1 ⊆ S̃′j \X. The set
X ∪ S̃′j is connected, so S̃′j \ S̃1 contains a vertex b in a good P -end by Lemma 2.5. It follows that
b ∈ A′2 ∪ A′3 ∪ A′4, because b 6∈ X. Since b is not adjacent to a, it follows that b 6∈ A and thus, b ∈ B
and b is complete to B \ {b}.

We claim that Z∩(A4∪A) = ∅, and that M ′∩(A2∪A3∪A4) = ∅. Let Y = S′2∪S′3∪ S̃′2∪ S̃′3; then Y
contains no neighbor of a and hence Y is disjoint from A. The set Y is connected and contains b, which
implies that Y ∩A4 = ∅. Since Z ⊂ Y , it follows that Z ∩ (A4 ∪A) = ∅. Moreover, B′2 ∪B′3 ⊆ X ∩ Y ,
and so B′2 ∪ B′3 ⊆ C1 ∪ B1 ∪ B4. Since every vertex in M ′ has a neighbor in B′2 ∪ B′3, it follows that
M ′ ∩ (A2 ∪A3 ∪A4) = ∅.

We choose a path R as follows. Let R1 be a one- or two-vertex path from b to a vertex in B2 ∪B3,
depending whether b ∈ B2 ∪B3 or b ∈ B1. Let R2 be a rung of P starting at the end of R1 in B2 ∪B3
and ending at some vertex r ∈ A2 ∪A3. Finally, let R = R1 ∪R2.

By construction, since b 6∈ S̃1, every interior vertex of R has distance at least two from S̃1. There-
fore, no interior vertex of R is in X or M ′. Moreover, r 6∈ X because r 6∈ S̃1; and r 6∈ M ′, because
r ∈ A2 ∪A3, and we proved that (A2 ∪A3) ∩M ′ = ∅.

Let R∗ = R if r = a, and R∗ = a-r-R-b otherwise. Then R∗ has ends a ∈ C ′1 and b ∈ A′2 ∪A′3 ∪A′4.
Since A′1 ∪M ′ ∪X is a cutset separating C ′1 from A′2 ∪A′3 ∪A′4, and ({a}∪V (R))∩ (X ∪M ′) = ∅, and
a, b /∈ A′1, it follows that (V (R) \ {b}) ∩A′1 6= ∅. Let y ∈ V (R) ∩A′1.

Since N(r) ∩ S̃1 ⊆ A ∪ A4, and no internal vertex of R has a neighbor in S̃1, it follows that
N(y) ∩ S̃1 ⊆ A ∪ A4. But y is complete to Z, and Z ∩ (A4 ∪ A) = ∅, so Z ∩ S̃1 = ∅. Every vertex in
Z touches X ⊆ S̃1, and since Z ∩ (A4 ∪ A ∪ S̃1) = ∅, it follows that Z ⊆ B ∪ B4. All vertices in Z
have distance one from S̃1, and Z ∩M = ∅, so all vertices of Z are in good P -ends; it follows that Z
is included in the union of all good P -ends in B. Thus, Z is a clique and complete to M .

We showed earlier that Z is either not a clique or not complete to M ′, and so there is a vertex
m ∈ M ′ \M such that m is not complete to Z. It follows that m 6∈ B, and we already proved that
M ′∩ (A2∪A3∪A4) = ∅, so m /∈ A2∪A3∪A4. Since m has a neighbor in Z ⊆ B, and S1 has no rung of
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length one, m /∈ A1. Since m has a neighbor in B′2 ∪B′3 ⊆ X ⊆ S̃1, m 6∈ C2 ∪C3. Since y ∈ A′1 and A′1
is a good P ′-end, m is adjacent to y and so m 6∈ C1. It follows that m ∈ B4, and so B1 is a bad P -end,
since m touches S̃1. But then V (R) ∩ B = {b}, and so m is not adjacent to y, a contradiction; (4)
follows.

By (4) we have M ⊆M ′, and so V (P ′) ⊆ V (P ).

(5)
If A1 is a good P -end, and there exist distinct i, j ∈ {1, 2, 3} such that A1 ∩ (A′i ∪
A′4), A1 ∩ (A′j ∪A′4) 6= ∅, then V (P ′) \ (A′ ∪A′4) ⊆ V (P ) \ (A ∪A4).

Let ai ∈ A1 ∩ (A′i ∪A′4), aj ∈ A1 ∩ (A′j ∪A′4), and let X be as in (3). Then no vertex in X touches
both ai and aj . Since A1 is a good P -end, every vertex in A touches ai and aj , and therefore, X∩A = ∅.
Moreover, X ⊂ V (P ′), so X ∩M = ∅. Since A ∪M is a cutset separating A4 from V (P ) \ (A ∪ A4)
and by (3), X touches C1, it follows that X ∩A4 = ∅. This proves (5).

A potato p of P ′ is sweet if p ⊆ S1 ∪ S̃1, and the good P ′-ends in p are included in S1.

(6) There is a sweet potato of P ′.

There exists i such that (A′i ∪B′i)∩C1 6= ∅; choose a value of i with this property such that S′i has
a rung of length one if possible. We may assume from the symmetry that i = 1 and A′1 ∩C1 6= ∅; and,
since at most one strip of P ′ has a rung of length one, it follows that for j = 2, 3, if S′j has a rung of
length one then (A′j ∪B′j) ∩ C1 = ∅. Let v ∈ A′1 ∩ C1.

Every vertex in A′2∪A′3 has a neighbor in C1, and it follows that A′2∪A′3 ⊆ S1. Suppose that (6) is
false. In particular there exists w ∈ A′1 \ S1, for otherwise both statements of (6) are true. Then w is
non-adjacent to v. Consequently, A′1 is not a clique, and so A′2 and A′3 are good P ′-ends by Lemma 2.3.
It follows that A′1 6⊆ S1 ∪ S̃1, since (6) is false, and therefore we may assume that w 6∈ S̃1. Since v, w
have a common neighbor in V (P ′) ⊆ V (P ), it follows that w 6∈ C2 ∪ C3, and we may assume without
loss of generality that w ∈ A2 ∪A3 ∪A4, and thus A′2 ∪A′3 ⊆ A1.

We claim that if A1 is a good P -end, then A4 ⊆ A′4 and A ∪ A4 ⊆ A′ ∪ A′4 ∪ M ′. For let
X = V (P ′) \ (A′ ∪A′4). Since A1 is a good P -end and A′2, A′3 ⊆ A1, (5) implies that X ∩ (A∪A4) = ∅.
Thus A ∪ A4 ⊆ A′ ∪ A′4 ∪M ′. If u ∈ A4, then u has no neighbor in V (P ) \ (A ∪ A4), and so u has no
neighbor in X, and hence u /∈ A′ ∪M ′; and therefore u ∈ A′4. The claim follows.

Suppose that w ∈ A4. Since w /∈ S̃1, it follows that A1 is a good P -end, and yet w ∈ A4 \ A′4, a
contradiction. This proves that w ∈ A2 ∪A3.

LetX = S̃′2∪S̃′3∪B′2∪B′3. Note that since A′2 and A′3 are good P ′-ends, it follows thatX∩(A′2∪A′3) =
∅. Since no vertex in X is complete to A′2 ∪A′3 or adjacent to w, it follows that X ∩A = ∅.

We claim that S′2, S′3 have no rungs of length one. For suppose that a ∈ A′2 is adjacent to b ∈ B′2
say; so a ∈ S1. From the initial choice of S′1, it follows that (A′2 ∪ B′2) ∩ C1 = ∅, and in particular
b /∈ C1. Since S1 has no rung of length one, b /∈ B1; and since b ∈ X, it follows that b /∈ A, and so
b ∈ A4. Since X is connected and A ∩ X = ∅, we deduce that X ⊆ A4. Since X 6⊆ A′4, A1 is a bad
P -end, and so

S̃′3 ⊆ X ⊆ A4 ⊆ S̃1 \ {v},

contrary to the minimality of S̃1, since S′3 has no rung of length one. This proves that S′2, S′3 have no
rungs of length one.

For i = 2, 3, S̃′i is not a subset of S̃1 from the minimality of S̃1, since v ∈ S̃1 \ S̃′i; and so there is
a path Ri of G|(A′i ∪ S̃′i) from A′i to some vertex in S̃′i \ S̃1, such that all its vertices except the first
belong to S̃′i. Choose such a path Ri, of minimum length, and let its ends be yi ∈ A′i and zi ∈ S̃′i.
Certainly Ri has length at least one, since A′i ∩ S̃′i = ∅. Let the neighbor of zi in Ri be z′i.
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Now z2, z3 are non-adjacent, since S̃′2 is anticomplete to S̃′3 by Lemma 2.6. Consequently they do
not both belong to good P -ends in B; and neither of them is in a good P -end in A, since neither z2
nor z3 is complete to A′2 ∪A′3. Thus one of z2, z3 is not in a good P -end, say z2, and so by Lemma 2.5,
z′2 /∈ S̃1. From the minimality of R2, z′2 /∈ S̃′2, and so z′2 = y2 and y2 /∈ S̃1. Since y2 ∈ A1 it follows that
A1 is a good P -end, and hence A ∪A4 ⊆ A′ ∪A′4 ∪M ′; and so z2 /∈ A ∪A4. Since z2, y2 are adjacent,
and S1 has no rung of length one, it follows that z2 ∈ C1, contradicting that z2 /∈ S̃1. This proves (6).

For the remainder of the proof, we will always assume that A′ is a sweet potato of P ′.

(7)
For i = 1, 2, 3, if S̃′i 6⊆ S̃1, then there exists zi ∈ S̃′i ∪ A′i touching S̃′i \ S̃1 with distance
one from S̃1. Consequently, zi is in a good P -end, and either zi ∈ S̃′i or zi is in a good
P -end of S1.

Let xi ∈ S̃′i \ S̃1, and let Ri be a path from xi to a vertex yi ∈ A′i such that V (Ri) \ {yi} ⊆ S̃′i.
By Lemma 2.4, such a path exists. Since yi ∈ A′ and A′ is sweet, so yi touches S̃1; let zi be the first
vertex of Ri (starting at xi) that touches S̃1. It follows that zi /∈ S̃1, and either zi ∈ S̃′i, or zi = yi

and Ri has at least two vertices and a neighbor of zi in V (Ri) is in S̃′i \ S̃1. Consequently, zi touches
S̃′i \ S̃1. Since xi 6∈ S̃1, we know that zi has distance one from S̃1. Moreover, V (P ′) ∩M = ∅, so by
Lemma 2.5, zi is in a good P -end. We may therefore assume that zi 6∈ S̃′i; consequently, A′i is a good
P ′-end, and zi ∈ A′i. Since A′ is sweet, it follows that A′i ⊆ S1, and so zi ∈ S1. Thus, zi ∈ A1 ∪ B1,
and the P -end of S1 containing zi is good. This proves (7).

(8) If zi, zj as in (7) exist for i 6= j with i, j ∈ {1, 2, 3}, then zi and zj are in different
potatoes of P . Consequently, one of z1, z2, z3 does not exist.

Suppose that z1 and z2 exist and belong to the same potato A, say. Since z1, z2 are in good P -ends
in A, it follows that z1 is adjacent to z2, which means that either z1 6∈ S̃′1 or z2 6∈ S̃′2; and without loss
of generality, let z1 6∈ S̃′1. Therefore, z1 ∈ A′1 and A′1 is a good P ′-end; and so z1 is in a good P -end
of S1 by (7). Hence A1 is a good P -end, and since z1, z2 ∈ A have distance one from S̃1, it follows
that z1, z2 ∈ A1. Also, z2 ∈ N(z1) ∩ (S̃′2 ∪ A′2), so z2 ∈ A′2 ∪ A′4. Let X = V (P ′) \ (A′ ∪ A′4); then
X ∩ (A ∪ A4) = ∅ by (5), since z1 ∈ A1 ∩ A′1 and z2 ∈ A1 ∩ (A′2 ∪ A′4). Since z1 touches S̃′1 \ S̃1 and
z1 6∈ S̃′1, there is a neighbor x of z1 with x ∈ S̃′1 \ S̃1. Since A′1 is a good P ′-end, it follows that x ∈ X,
so x 6∈ A ∪ A4. But x is adjacent to z1 ∈ A1, and consequently, x ∈ C1 ⊆ S̃1, since S1 has no rung of
length one. This is a contradiction, because x 6∈ S̃1; (8) follows.

(9) For i = 1, 2, 3, if S̃′i ⊆ S̃1, then S̃′i ⊂ S̃1, and so S′i has a rung of length one.

Let Y be the union of all good P ′-ends in A′; because A′ is sweet, we know that Y ⊆ S1. Since Y
only includes good P ′-ends, it follows that Y ∩ S̃′i = ∅ for i = 1, 2, 3. We may assume that Y ∩ S̃1 = ∅,
for otherwise (9) holds. Therefore, Y ⊆ S1 \ S̃1. Since Y is a clique and S1 has no rung of length
one, we may assume that Y ⊆ A1, and A1 is a good P -end of S1. Let X = V (P ′) \ (A′ ∪ A′4); then
X ∩ (A ∪ A4 ∪M) = ∅ by (5), since Y ⊆ A1. Let j 6= i such that A′j ⊂ Y , and let vj ∈ C ′j ∪ B′j with
a neighbor in A′j . Then vj ∈ X, so vj 6∈ A ∪ A4 ∪M , but vj has a neighbor in Y ⊆ A1, and hence
vj ∈ C1. Therefore, vj ∈ S̃1 \ S̃′i. This proves (9).

By (7) and (8), we may assume that S̃′1 ⊆ S̃1. By (9), we know S′1 has a rung ab of length one with
a ∈ A′1 and b ∈ B′1. Since G is square-free, and so S′2, S′3 have no rungs of length one, we deduce that
S̃′2 6⊆ S̃1 and S̃′3 6⊆ S̃1. So there exist z2 and z3 as in (7), and by (8), z2 and z3 are in different potatoes
of P , so without loss of generality, let z2 ∈ A, z3 ∈ B. We know that a ∈ A′ ⊆ S1 ∪ S̃1, so both a
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and b touch S1 ∪ S̃1. Also, z2 and z3 are each adjacent to at most one of a, b. Since z2 is complete to
A \ {z2}, it follows that {a, b} 6⊆ A, and similarly, {a, b} 6⊆ B. Since a ∈ S̃1 ∪ S1 and S1 has no rung of
length one, it follows that {a, b} 6⊆ A ∪B. For the remainder of the proof, we fix a, b, z2 and z3.

(10) Every vertex in M ′ is adjacent to either a or b.

Suppose that m ∈ M ′ is non-adjacent to both a and b. Then by Lemma 2.3 m is complete to A′2
and B′3. Let a′ ∈ A′2 and b′ ∈ B′3; then m-a′-a-b-b′-m is a hole of length five. This is a contradiction,
because G is Berge. This proves (10).

(11) The vertices z2 and z3 are not adjacent.

Since S̃′2 and S̃′3 do not touch by Lemma 2.6, we may assume that one of z2, z3 is in a good P ′-end
in A′; without loss of generality, say z2 ∈ A′2, and A′2 is a good P ′-end. By (7), z2 ∈ A1. Since S1 has
no rung of length one, z2 is non-adjacent to every vertex in B, and in particular, z2 is not adjacent to
z3, which proves (11).

(12) (A4 ∪B4) ∩ {a, b} = ∅.

Assume for a contradiction that a ∈ A4. Since a ∈ A′ ⊆ S1 ∪ S̃1, A1 is a bad P -end of S1. Since
z2 is in a good P -end in A, it follows that z2 ∈ A2 ∪ A3, and since A1 is bad, it follows from (7) that
z2 ∈ S̃′2. Also, A′1 is a bad P ′-end, because A′ is sweet, and therefore, since a is complete to A′2 ∪ A′3,
again because A′ is sweet, A′2 ∪A′3 ⊆ A1. Since z2 ∈ A2 ∪A3, this implies that z2 6∈ A′2 ∪A′3, but z2 is
complete to A′2 ∪ A′3, and thus z2 ∈ A′4. But A′2 is a good P ′-end of S′2, since A′1 is a bad P ′-end, so
A′4 ∩ S̃′2 ∪ A′2 = ∅, a contradiction to the fact that z ∈ S̃′2 ∪ A′2. Therefore, a 6∈ A4, and by symmetry,
a 6∈ B4, and similarly, b 6∈ A4 ∪B4. This proves (12).

(13) If {a, b} ∩A1 6= ∅, then z2 ∈ S̃′2. If {a, b} ∩B1 6= ∅, then z3 ∈ S̃′3.

Suppose not. By symmetry, we may assume that {a, b} ∩ A1 6= ∅, and that z2 is in A′2 and A′2 is
a good P ′-end. In particular, z2 does not touch b. Since z2 touches every vertex of A, it follows that
b 6∈ A, and since {a, b} ∩A1 6= ∅, it follows that {a, b} ∩A1 = {a}. We let X = S̃′2 ∪B′1 ∪B′2.

Since z2 is in a good P ′-end A′2, by (7), it follows that z2 ∈ A1 and A1 is a good P -end. Hence (5)
implies that X ⊆ V (P ) \ (A ∪ A4), because a, z2 ∈ A1. Thus S̃′2 ⊂ X is disjoint from A ∪ A4. Since
A′2 ⊆ S1 (as A′ is sweet) and a is complete to A′2, we know that A′2 ⊆ A1 ∪C1. Let Z be a component
of S̃′2. Then Z has a neighbor in A′2, and so Z touches C1. By (11), z3 6∈ A′3, and so z3 ∈ S̃′3. Since
z3 touches every vertex in B, but z3 touches no vertex in S̃′2, it follows that Z ∩B = ∅. Finally, since
Z ∩ (A ∪ B ∪M) = ∅, and Z touches C1, it follows that Z ⊆ C1. Consequently, S̃′2 ⊆ C1 ⊆ S̃1, a
contradiction. This proves (13).

(14) If a ∈ A1 ∪B1, then b ∈ C1.

By symmetry, we may assume that a ∈ A1. By (13), we know that z2 ∈ S̃′2, and since z2 is adjacent
to a (since z2 is in a good P -end of A), it follows that z2 ∈ A′2∪A′4. Hence A′2 is a bad P ′-end, so A′3 is
a good P ′-end. Let Y = S̃′3 ∪B′. Then Y ∩ (A ∪M) = ∅, since Y does not touch z2 ∈ (A′2 ∪A′4) ∩ S̃′2,
but z2 touches every vertex in A, since z2 is in a good P -end in A. Since Y is connected and touches
z3 ∈ B, it follows that Y ∩ A4 = ∅. But b ∈ Y ∩N(a), and consequently, b 6∈ A ∪ A4 ∪M , and hence
b ∈ C1. This proves (14).

(15) If a ∈ C1, then b ∈ A1 ∪B1.
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Suppose not. Since a ∈ C1, it follows that b ∈ S1, and so b ∈ C1. Let Z = S2 ∪ S3. Every vertex
in Z is non-adjacent to both a and b. By (10), it follows that M ′ ∩Z = ∅. Also, no vertex in Z is in a
good P ′-end, because no vertex in Z is adjacent to a or b.

Let R be a path from z2 to z3 containing a rung of S2 as a subpath (exists by (11)). Since
z2, z3 ∈ V (P ′) and every internal vertex of R is in Z, it follows that V (R) ∩M ′ = ∅. We claim that
some vertex of R belongs to a good P ′-end; for if z2 or z3 is in a good P ′-end then this is true, and
otherwise R is a path from S̃′2 to S̃′3, and the claim follows from Lemma 2.6. Let r ∈ V (R) be in a
good P ′-end. From what we proved above it follows that r /∈ Z, and so r is one of z2, z3, and we may
assume from the symmetry that r = z2. Since z2 ∈ A′2 ∪ S̃′2, it is not the case that B′2 is a good P ′-end
and z2 ∈ B′2; so A′2 is a good P ′-end and z2 ∈ A′2.

It follows that z2 ∈ A1, and thus N(z2)∩Z = A2∪A3. Since z2, z3 are not adjacent by (11), it follows
that z3 /∈ A′3, and so z3 ∈ S̃′3. Thus, Z touches z3 ∈ S̃′3 (because z3 ∈ B), Z is connected, and Z contains
no vertex in M ′ or in a good P ′-end, so by Lemma 2.5, Z ⊆ S̃′3. Hence A2∪A3 ⊆ N(z2)∩Z ⊆ A′3∪A′4.
Since a is complete to A′3 and anticomplete to A2∪A3, it follows that A2∪A3 ⊆ A′4, and so Z∩A′4 6= ∅.
Since z2 ∈ A′2, it follows that Z ∩ A′3 ⊆ N(z2) ∩ Z ⊆ A2 ∪ A3 ⊆ A′4. Since A′3 ∩ A′4 = ∅, this implies
that Z ∩ A′3 = ∅. Since Z is connected, Z is included in S̃′3 \ A′3, and Z includes the non-empty set
A2 ∪ A3 ⊆ A′4, it follows that Z ⊆ A′4. Consequently, every vertex in A ∪ B ∪M touches A′4. Let
X = V (P ′) \ (A′ ∪ A′4); then X is disjoint from A ∪ B ∪M , because X does not touch A′4. But X
touches C1, and so X ⊆ C1. Since A′2 is a good P ′-end, it follows that S̃′2 ⊂ X ⊆ C1 ⊆ S̃1. This is a
contradiction, and (15) follows.

Together, (4), (12), (14), and (15) imply that either a ∈ A1 ∪ B1 and b ∈ C1, or a ∈ C1 and
b ∈ A1 ∪B1. By symmetry, we assume from now on that {a, b} ∩A1 6= ∅ and {a, b} ∩C1 6= ∅. By (13),
it follows that z2 ∈ S̃′2.

(16) M ′ ∩ (S2 ∪ S3) = ∅.

Every vertex in B2 ∪ B3 ∪ C2 ∪ C3 is non-adjacent to both a and b. Thus, (10) implies that
M ′∩ (S2∪S3) ⊆ A2∪A3. Therefore, we may assume that some vertex m in A2∪A3 is in M ′. Then m
is not adjacent to the vertex in c ∈ {a, b}∩C1, and hence c is in a bad P ′-end of S′1 in a potato p of P ′.
Since every vertex in S′3 ∩ p is adjacent to both m and c, it follows that S′3 ∩ p ⊆ A1. Consequently, z2
has a neighbor in S′3∩p. But S′1 has a bad P ′-end in p, and so S̃′2 does not touch S′3∩p, a contradiction.
Thus, M ′ ∩ (S2 ∪ S3) = ∅, and we have proved (16).

(17) If z2 ∈ A1, then no vertex in A2 ∪A3 is in a good P ′-end in B′.

Suppose that some vertex r is in A2 ∪ A3 and in a good P ′-end in B′, and that z2 ∈ A1. Then r
and b are adjacent, and so b ∈ A1. Since z2 is in a good P -end by (7), it follows that z2 is adjacent
to b and r. Thus z2 ∈ B′2 ∪ B′4, so B′2 is a bad P ′-end, and r ∈ B′1 ∪ B′3. Moreover, A′ ⊆ S1 ∪ S̃1
since A′ is a sweet potato; and B′ ⊆ A ∪ A4, because every vertex in B′ \ {r, b} is adjacent to both r
and b. Therefore, and by (16), Z = B2 ∪ B3 ∪ C2 ∪ C3 is a connected set disjoint from A′ ∪ B′ ∪M ′.
Furthermore, z3 ∈ S̃′3 ∪A′3 ⊆ A′4 ∪A′3 ∪ C ′3 touches Z, so Z ⊆ A′4 or Z ⊆ C ′3. But r has a neighbor in
Z, so Z 6⊆ A′4, and thus Z ⊆ C ′3. Every vertex in A2 ∪A3 is adjacent to b ∈ B′1 and has a neighbor in
Z ⊆ C ′3, so A2 ∪ A3 ⊆ B′3. Since B′ ⊆ A ∪ A4 and A2 ∪ A3 ⊆ B′3, it follows that B′2 ∩ (A2 ∪ A3) = ∅,
and thus B′2 ⊆ A1 ∪A4.

Since z2 ∈ A1 and z2 is in a good P -end it follows that A1 is a good P -end, and so every vertex in
A touches b. Let Y = A′2 ∪ C ′2 ∪ {a}; then Y contains no neighbor of b except a, so Y ∩ A = ∅. Since
a ∈ Y and Y is connected, it follows that Y ⊆ V (P ) \ (A∪A4), and in particular Y is anticomplete to
A4. Since every vertex in B′2 touches Y , we deduce that A4 ∩B′2 = ∅, and so B′2 ⊆ A1.
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Since B′2 ⊆ A1, it follows that B′2 is a clique and M is complete to B′2. Since B′2 is a bad P ′-end,
there exists a vertex m ∈ M ′ \M such that m is not complete to B′2; and therefore m 6∈ A. Since m
is complete to B′3 ⊇ A2 ∪A3, it follows that m ∈ A4. Then the good P ′-ends in A′ are complete to m
and contained in S1, and thus the good P ′-ends in A′ are contained in A1, and hence complete to z2.
This is a contradiction, because z2 ∈ B′2 ∪B′4. This proves (17).

(18) Neither z2 nor z3 is in a good P ′-end in A′.

We already proved that z2 is not in a good P ′-end in A′ by (13). Therefore, we suppose that z3 is
in a good P ′-end A′3, and since z3 ∈ B is adjacent to a and S1 has no rung of length one, it follows
that a ∈ C1, b ∈ A1, and z3 ∈ B1. Since z2 is adjacent to b (since z2 is in a good P -end), it follows that
z2 ∈ B′2 ∪B′4, and B′2 is a bad P ′-end. Let Y = S2 ∪ S3; then Y contains no vertex in M ′ ∪A′ by (16)
and because Y ∩ (S1 ∪ S̃1) = ∅, but A′ is sweet and so A′ ⊆ S1 ∪ S̃1. Let Z = C2 ∪C3 ∪B2 ∪B3; then
Z ⊂ Y . Since B′2 is a bad P ′-end, every vertex in B′ touches b ∈ B′1. No vertex in Z touches b ∈ A1,
so Z ∩B′ = ∅.

We claim that Y ⊆ S̃′2 ∪B′. Suppose that z2 ∈ A1; then by (17), no vertex in A2 ∪A3 is in a good
P ′-end in B′. Thus, Y does not contain a vertex in a good P ′-end of B′, and since Y is disjoint from
A′ ∪M ′ and Y touches z2 ∈ S̃′2, it follows that Y ⊆ S̃′2. Therefore, we may assume that z2 6∈ A1; and
so z2 ∈ A2 ∪ A3, and therefore z2 touches Z, so we have Z ⊆ S̃′2. Every vertex in A2 ∪ A3 is adjacent
to b ∈ B′1, and touches z2 ∈ (B′2 ∪B′4) ∩ S̃′2; so A2 ∪A3 ⊆ B′ ∪ (B′4 ∩ S̃′2), and thus Y ⊆ S̃′2 ∪B′. This
proves our claim.

But Y touches z3 ∈ A′3. Since S′3 has no rung of length one, Y contains a vertex in A′2 ∪ A′4.
Since Y ∩ (A′ ∪M ′) = ∅, it follows that Y ⊆ A′4. But z2 ∈ B′2 ∪ B′4 touches Y , a contradiction. This
proves (18).

Let R be a path from z2 to z3 containing a rung of either S2 or S3 as a subpath; we choose R so
that if z2 ∈ A2 ∪ A3, then the rung starts at z2. By (18), R is a path from S̃′2 to S̃′3. By Lemma 2.6,
V (R) \ {z2, z3} contains a vertex in M ′ or in a good P ′-end. By (16), V (R) ∩M ′ = ∅. No vertex
of V (R) \ {z2, z3} is in a good P ′-end in A′, because all good P ′-ends in A′ are included in S1 as A′
is a sweet potato of P ′. So there exists r ∈ V (R) \ {z2, z3} such that r is in a good P ′-end in B′.
Since r is adjacent to b, it follows that r ∈ A2 ∪ A3, and since r 6= z2, it follows that z2 ∈ A1, which
contradicts (17). Thus, our initial assumption that (A′ ∪B′) ∩ C1 6= ∅ is false. Now, by Theorem 2.1,
it follows that no vertex in C1 is a corner. This concludes the proof.

3 Rough vertices

To prove that there is a vertex in C1 that is not rough, we first recall some results and definitions from
[2].

A pyramid with triangle {x1, x2, x3} and apex x (where x, x1, x2, x3 are four distinct vertices) is a
graph containing three paths P1, P2, P3 such that for each i = 1, 2, 3, Pi is an (xi, x)-path, {x1, x2, x3}
is a clique, at least two of the paths have length at least two, and there are no other vertices or edges.
A pyramid in a graph G is an induced subgraph of G that is a pyramid.

Lemma 3.1 (2.4 in [2]). If a graph G contains no odd hole, then G contains no pyramid.

Theorem 3.2 (10.1 in [2]). In a Berge graph G let R1, R2, R3 be three paths that form a prism K,
with triangles {a1, a2, a3} and {b1, b2, b3}, where each Ri has ends ai and bi. Let F ⊂ V (G) \ V (K)
be connected, such that its set of neighbors in K is not local, but some vertex in F has a neighbor in
K. Assume that no vertex in F is major with respect to K. Then there is a path f1-· · · -fn in F with
n ≥ 1, such that (up to symmetry) either:
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1. f1 has two adjacent neighbors in R1, and fn has two adjacent neighbors in R2, and there are no
other edges between {f1, . . . , fn} and V (K), or

2. n ≥ 2, f1 is adjacent to a1, a2, a3, and fn is adjacent to b1, b2, b3, and there are no other edges
between {f1, . . . , fn} and V (K), or

3. n ≥ 2, f1 is adjacent to a1, a2, and fn is adjacent to b1, b2, and there are no other edges between
{f1, . . . , fn} and V (K), or

4. f1 is adjacent to a1, a2, and there is at least one edge between fn and V (R3) \ {a3}, and there
are no other edges between {f1, . . . , fn} and V (K) \ {a3}.

Note that in item 1 the set V (K) ∪ {f1, . . . , fn} induces the line-graph of a bipartite subdivision
of K4, and a subset of that set induces a prism of which f1 and fn are corners. In items 2 and 3, G
has a prism with corners a1, a2, f1, b1, b2, fn. In item 4, G has a prism with corners a1, a2, f1, b1, b2, b3.
Hence in all items f1 is the corner of a prism. In particular, when F consists of only one vertex we
obtain the following using Lemma 1.1.

Theorem 3.3. In a Berge graph G, let K be an odd prism and x ∈ V (G) \ V (K) be a smooth vertex.
If x has a neighbor in K, then x is a local neighbor of K.

Lemma 3.4. Let G be a flat graph. Let K be a prism with paths P1, P2, P3, and let v be rough for K
such that v has a normal path Q from v to a base path P1. Then no vertex in the interior of Q has a
neighbor in P2 or P3.

Proof. Let F be the set of interior vertices of Q. We may assume that F is non-empty, and therefore,
some vertex in F has a neighbor in the interior of P1; we may assume that some vertex in F has a
neighbor in V (P2) ∪ V (P3), and thus F does not attach locally to K. Then, by Theorem 3.2, since G
is flat, F contains a vertex f1 with two neighbors in either {a1, a2, a3} or {b1, b2, b3}; but every vertex
in F is non-adjacent to every vertex in {a2, a3, b2, b3}, a contradiction.

Theorem 3.2 implies that in a flat graph, every vertex which is rough for a prism K is either a
corner or major for K. Here we use a related statement:

Lemma 3.5. Let K be a prism in a flat graph G and let v be a vertex that is rough for K; then either
v is a corner in G, possibly for another prism, or there exist {i, j, k} = {1, 2, 3} such that v is adjacent
to ai and bj, and Pk is the base path for v in K. In particular, if v is not a corner, then v is major
for K.

Proof. Let the prism consist of triangles {ai, aj , ak} and {bi, bj , bk} as well as paths Pi, Pj , Pk, where
Pk is the base path for v in K. If v is complete to {ai, bj} or {aj , bi}, then the result follows from
Theorem 3.2 with F = {v}; thus we may assume that this is not the case. We may assume that v is not
an end of Pk, for otherwise v is a corner. By definition of a rough vertex, v has a neighbor in {ai, bi}
and in {aj , bj}. Thus, we may assume that v is adjacent to ai and aj , and anticomplete to {bi, bj}. Let
P ′k denote the path from v to bk obtained as vbk, or as the path from v to bk in G|(V (Q)∪V (Pk)), where
Q is a normal path. By Lemma 3.4, no vertex in the interior of Q has a neighbor in V (Pi)∪ V (Pj). If
v has no neighbors in the interior of Pi, Pj , then {ai, aj , v}, {bi, bj , bk}, Pi, Pj , P

′
k forms a prism and v

is a corner, and the statement of the lemma follows.
Thus, we may assume that v has a neighbor in (V (Pi)∪V (Pj))\{ai, aj}. Let ul be the neighbor of

v closest to bl on Pl for l = i, j. It follows that ul 6= bl for l = 1, 2. Let P ′l denote the path in G|({v} ∪
V (Pl)) from v to bl. Then both P ′i and P ′j have an interior vertex, and thus v, P ′i , P ′j , P ′k, {bi, bj , bk}
form a pyramid, contrary to Lemma 3.1. This concludes the proof.
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Lemma 3.6. Let G be a non-null square-free flat graph with no clique cutset, and P, S1 be chosen
such that P is a megaprism in G with with partition A1, A2, A3, A4, B1, B2, B3, B4, C1, C2, C3, C4 (where
C4 = ∅), and S1 is a strip of P with no rung of length one, and among all such choices of P, S1, the
set S̃1 is minimal with respect to inclusion. There is a smooth vertex v in the interior of the strip S1.

Proof. Let v be a vertex in C1 such that N(v) ∩ (A1 ∪B1) is minimal with respect to inclusion.

(1) N(v) ∩ (M ∪ A1) and N(v) ∩ (M ∪ B1) are cliques, and N(v) ∩ A1 is anticomplete to
N(v)∩B1. In particular, G|(N(v)∩(A1∪M ∪B1)) is the union of two complete graphs.

Suppose that v has two non-adjacent neighbors x, y ∈M ∪A1. Since M is a clique by Lemma 2.2,
we may assume that x ∈ A1. Let a ∈ A2; then y is adjacent to a, because either y ∈ A1 or y ∈ M ,
and y is not complete to A1, so y is complete to A2. Therefore, v-x-a-y-v is a square, a contradiction.
Since S1 has no rung of length one, this implies (1).

We may assume that v is rough for some prism K; v is not a corner by Lemma 2.7 and Theorem 2.1.
By Lemma 3.5, there exist {i, j, k} = {1, 2, 3} such that v is adjacent to ai and bj and Pk is the base
path for v in K.

Suppose that v has a normal path Q from v to the interior of a base path Pk in K; let w be the
neighbor of v in V (Q). We know that v is adjacent to bj and ai by Lemma 3.5. The set {w, ai, bj}
is a stable set, and ai, bj 6∈ C1 by Lemma 2.7, so ai, bj ∈ A1 ∪M ∪ B1. By (1), we may assume that
ai ∈ A1, bj ∈ B1, and consequently, w ∈ C1. Now w is not adjacent to either of ai, bj , and by the
choice of v with N(v) ∩ (A1 ∪ B1) minimal, w has a neighbor x in A1 or B1, say A1, such that x is
not a neighbor of v. We know that x is not adjacent to bj , because S1 has no rung of length one. But
then x-w-v-bj and ai-v-bj are two rungs in S1 of different parity, so adding a rung from A2 to B2 will
complete one of them to an odd hole, a contradiction.

Therefore, we may assume by the definition of a rough vertex that v is adjacent to ai, bj , ak, bk and
Pk = ak-bk. Then {ai, bj , ak, bk} ⊆ N(v) ∩ (A1 ∪M ∪B1). But G| {ai, bj , ak, bk} is a four-vertex path,
and thus not the union of two complete graphs; this contradicts (1).

Lemma 3.7. Let G be a graph, and let C be a clique cutset in G such that there exist A,B 6= ∅ with
A∪B ∪C = V (G), A∩B = ∅, and such that there are no edges between A and B in G. Let v ∈ A∪C
be a smooth vertex in G|(A∪C), and either G|(B ∪C) contains no prism or v ∈ A. Then v is smooth
in G.

Proof. We may assume that v is rough in G. By Lemma 3.5, v is either a corner of a prism, or there is
a prism K so that v is adjacent to two corners ai and bj for some i 6= j, i, j ∈ {1, 2, 3}. Consequently,
there is a prism K in G so that v has two non-adjacent neighbors in V (K), and v is rough for K in G.
Let Q be a normal path for v and K if it exists, and Q = ∅ otherwise. Let H = G|(V (Q)∪V (K)∪{v});
it follows that v is rough for K in H. Consequently, V (H)∩B 6= ∅, because v is smooth in G|(A∪C).
Since H has no clique cutset, this implies that V (H) ⊆ B ∪ C, and therefore G|(B ∪ C) contains a
prism, and hence v ∈ A. This is a contradiction, since V (H) ⊆ B ∪ C.

We are now ready to prove Theorem 1.9, which we restate.

Theorem 3.8. Let G be a square-free flat graph. Then either G is a disjoint union of cliques or some
v ∈ V (G) is smooth and not simplicial.

Proof. We may assume that G is not a disjoint union of cliques. If G does not contain a prism, then
every vertex of G is smooth, and since G is not a disjoint union of cliques, G has a non-simplicial
vertex.

From now on, we may assume that G contains a prism. We prove by induction on |V (G)| that if
G contains a prism, G contains two distinct non-adjacent smooth and non-simplicial vertices.
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Suppose that G has no clique cutset. Then, no vertex of G is simplicial, because otherwise N(v)
is a clique cutset in G. Since G contains a prism, we can find a megaprism P by Theorem 2.1. Let
S1, S2 be strips of P with no rung of length one. For i = 1, 2, let P ′i be a megaprism with a strip S′i1
with no rung of length one and such that S̃′i1 ⊆ S̃i, and subject to that S̃′i1 is minimal with respect to
inclusion. P ′i exists, since P ′i = P (after possibly relabelling strips) is such a megaprism. By Lemma
3.6, it follows that for i = 1, 2, there is a smooth vertex vi ∈ S̃′i1 ⊆ S̃i. It follows that v1 and v2 are
distinct and non-adjacent, since S̃1 and S̃2 do not touch by Lemma 2.6, and hence v1 and v2 are the
desired vertices.

Therefore, we may assume that G has a clique cutset C ⊆ V (G) such that there exist A,B 6= ∅ with
A∪B ∪C = V (G), A∩B = ∅, and such that there are no edges between A and B in G. Since prisms
do not have a clique cutset, and since G contains a prism, at least one of G|(A ∪ C) and G|(B ∪ C)
contains a prism as well. Suppose that both G|(A∪C) and G|(B ∪C) contain a prism. By induction,
G|(A ∪ C) contains two distinct non-adjacent smooth non-simplicial vertices uA, vA, and G|(B ∪ C)
contains two distinct non-adjacent smooth non-simplicial vertices uB, vB. Since C is a clique, at most
one of uA, vA is contained in C; the same holds for uB, vB. Thus, we may assume that uA, uB 6∈ C.
Then, uA, uB are distinct, non-adjacent, not simplicial, and smooth by Lemma 3.7. Therefore, we may
assume that G|(A ∪ C) contains a prism, but G|(B ∪ C) does not. Then, by induction, G|(A ∪ C)
contains two distinct non-adjacent smooth non-simplicial vertices u, v. By Lemma 3.7, u, v are smooth
in G as well, which concludes the proof.

4 Even pairs

In this section we give the proof of Theorem 1.10. This proof closely follows the proof of the main
results in [5] and [7].

Let P = x-x′-· · · -y′-y be a path of length at least three in G. Following [2], we say that a pair {u, v}
of non-adjacent vertices of V (G) \P is a leap for P if N(u)∩P = {x, x′, y} and N(v)∩P = {x, y′, y}.
Note that in that case P ∪ {u, v} induces a prism, whose corners are u, v, x, x′, y, y′.

Let T ⊆ V (G). The set T is called anticonnected if Gc|T is connected, where Gc denotes the
complement of G. A vertex is called T -complete if it is complete to T , and C(T ) denotes the set of all
T -complete vertices. An edge is a T -edge if both its ends are T -complete. An induced subgraph Q of
G is an antipath in G if Gc|V (Q) is a path in Gc.

Lemma 4.1 ([2, 8]). In a Berge graph G, let P be a path and T ⊂ V (G) be an anticonnected set such
that V (P ) ∩ T = ∅ and the ends of P are T -complete. Then either:

1. P has even length and has an even number of T -edges;

2. P has odd length and has an odd number of T -edges;

3. P has odd length at least three and there is a leap for P in T ;

4. P has length three and its two interior vertices are the ends of an odd antipath Q whose interior
is in T (and consequently V (P ) ∪ V (Q) induces an antihole in G).

Lemma 4.2 (2.3 in [2]). In a Berge graph G, let H be a hole and T ⊂ V (G) be an anticonnected
set such that V (H) ∩ T = ∅. Then either the number of T -edges in H is even, or H has exactly two
T -complete vertices and they are adjacent.

Lemma 4.3. Let G be a Berge graph that contains no antihole of length at least six. Let P be a path
in G and T ⊂ V (G) be an anticonnected set such that V (P ) ∩ T = ∅, the ends of P are T -complete,
and some vertex in T is smooth. Then the number of T -edges in P has the same parity as the length
of P . In particular if P has odd length at least three, then some interior vertex of P is T -complete.
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Proof. If P has length one or two the lemma holds trivially, so assume that P has length at least three.
Let P = u-u′-· · · -v′-v. We apply Lemma 4.1 to P and T . If we have outcome 1 or 2 of Lemma 4.1,
then the lemma holds. We know that outcome 4 does not hold since G contains no antihole of length
at least six. Hence suppose that outcome 3 of Lemma 4.1 holds, so T contains a leap {a, b} for P .
Then P ∪ {a, b} induces a prism K, whose triangles are {a, u, u′} and {b, v, v′}, and a-v, b-u are two
paths of K, so K is an odd prism. Let x be a smooth vertex in T ; so x /∈ {a, b}. Since x is adjacent to
u and v, it follows that it is not a local neighbor of K, but x has neighbors in K; but this contradicts
Theorem 3.3.

Lemma 4.4. Let G be a Berge graph that contains no antihole of length at least six. Let H be a hole
in G, let P = x-· · · -y be a path in G, and let T ⊂ V (G) be an anticonnected set that contains a smooth
vertex σ, such that V (H), V (P ) and T are pairwise disjoint. Assume that there are disjoint edges
ab, cd of H such that the edges between H and P are ax and bx, and c, d, y are T -complete. Then one
of a, b is T -complete.

Proof. We may assume that a, c, d, b lie in this order along H. We call P1 the (a, c)-path contained in
H \ {b, d} and P2 the (b, d)-path contained in H \ {a, c}. Let t ∈ T . Since t has a neighbor in V (P ),
there is a path from t to x with interior in V (P ); denote this path by S(t). We may assume that
neither a nor b is complete to T .

(1) There exists q ∈ T with q non-adjacent to both a and b.

Since T is anticonnected, there is an antipath Q from a to b with interior in T . We claim that Q has
length two. Suppose not. Since a-Q-b-z-a is not an antihole (of length at least five) for any z ∈ {c, d, y},
it follows that ac, bd ∈ E(G) and x = y. But now a-Q-b-c-y-d-a is an antihole of length at least five, a
contradiction. This proves that Q has length two, and the interior vertex q of Q satisfies (1).

(2) Let t ∈ T be anticomplete to {a, b}. Then t is anticomplete to V (H) \ {c, d}, and
K(t) = G|(V (H) ∪ V (S(t))) is a prism with triangles {a, b, x} and {c, d, t}.

Suppose that t has a neighbor in V (H)\{c, d}. We may assume that t has a neighbor in V (P1)\{c}.
Now there is a path R1 from t to a with interior in V (P1) \ {c}, a path R2 from t to b with interior in
V (P2), and G|(V (R1) ∪ V (R2) ∪ V (S(t))) is a pyramid with triangle {a, b, x} and apex t, contrary to
Lemma 3.1. This proves that t is anticomplete to V (H) \ {c, d}. But now K(t) = G|(V (H)∪ V (S(t)))
is a prism with triangles {a, b, x} and {c, d, t}. This proves (2).

Let q be as in (1). It follows from (2) that σ is adjacent to at least one of a, b (for σ is not a corner
vertex), and in particular σ 6= q. Since σ is complete to {c, d}, it follows that σ is not a local neighbor
of K(q), but σ has a neighbor in K(q), and so, since σ is smooth, Theorem 3.3 implies that K(q) is an
even prism. In particular, q is non-adjacent to x, and x 6= y. Let x′ be the neighbor of x in P . Since
σ has a neighbor in V (P ) \ {x}, namely y, there is a path from σ to x′ with interior in V (P ) \ {x}; let
R(σ) be this path. Now R(σ) contains a path from σ to the interior of S(q), and every vertex in the
interior of R(σ) is non-adjacent to a, b, c and d. Since σ is adjacent to both c and d, it follows that σ
is rough for K(q) with base path S(q), a contradiction.

Lemma 4.5. Let G be a Berge graph that contains no antihole of length at least six. Let H be a hole
in G, let P = x-· · · -y be a path in G, and let T ⊂ V (G) be an anticonnected set that contains a smooth
vertex, such that V (H), V (P ) and T are pairwise disjoint. Assume that V (H) ∪ V (P ) is connected,
and that there are adjacent vertices u, v ∈ H such that u, v and x are T -complete. Then either some
vertex of P is adjacent to one of u, v, or some vertex of H \ {u, v} is T -complete.
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Proof. Suppose that the lemma does not hold and choose a counterexample such that |V (H) ∪ V (P )|
is minimal. Hence y is the only vertex of P that has a neighbor in H, and no vertex of V (P ) \ {x}
is complete to T . Let u′ (resp. v′) be the neighbor of y closest to u along H \ {v} (resp. to v along
H \ {u}). By the assumption, u′ 6= u and v′ 6= v. Call Hu the path from u to u′ in H \ {v}, and call
Hv the path from v to v′ in H \ {u}.

Suppose that u′ = v′. Then one of the paths P ∪Hu and P ∪Hv is odd (note that this odd path is
of length at least 3), and has no T -complete vertex in its interior, contrary to Lemma 4.3. Therefore
u′ 6= v′.

Suppose that u′v′ ∈ E. Then we can apply Lemma 4.4 to the hole H, the path P , and the set T ,
and we obtain that one of u′, v′ is T -complete, a contradiction. Therefore u′v′ /∈ E. Consider the hole
H ′ induced by V (Hu)∪ V (Hv)∪ {y}. If x 6= y, then H ′, P \ {y}, and T form a counterexample to the
lemma with |V (H ′) ∪ V (P \ {y})| < |V (H) ∪ V (P )|, a contradiction. Therefore, x = y, but then H ′

has exactly one T -edge, but also contains the T -complete vertex x. This contradicts Lemma 4.2.

Now we can give the proof of Theorem 1.10, which we restate here for clarity.

Theorem 4.6. Let G be a Berge graph with no antihole of length at least six. Assume that every
proper induced subgraph of G either is a complete graph or has an even pair. Let σ be a vertex of G
that is smooth and not simplicial. Then the neighborhood of σ includes an even pair of G.

Proof. For X ⊆ V (G), we let C(X) denote the set of all common neighbors of X in G. For a path R
and x, y ∈ V (R), R[x, y] denotes the subpath of R with ends x and y.

There is a set T ⊂ V (G) such that T is anticonnected, σ ∈ T , and C(T ) is not a clique (because {σ}
itself has these properties), and we choose T maximal with these properties. Let Z = V (G)\(T∪C(T )).
An outer path is a path of length at least two whose ends are T -complete and whose interior vertices
are in Z.

(1) Every outer path has length ≥ 4 and even.

Indeed, Lemma 4.3 implies that there is no outer path of odd length. Moreover, suppose that P is
an outer path of length two. Let z be the interior vertex of P . The set of T ∪ {z}-complete vertices is
equal to C(T ) ∩N(z), which is not a clique because it contains the ends of P , and is anti-connected
because z 6∈ C(T ), so T ∪ {z} contradicts the maximality of T . Thus (1) holds.

(2) We may assume that there is an outer path.

Suppose that there is no outer path. By the hypothesis, the subgraph G|C(T ) has an even pair
{a, b}. Consider an (a, b)-path P in G. If P has a vertex t ∈ T then P = a-t-b, so P has length two.
Now suppose that V (P ) ∩ T = ∅. Then P lies entirely in C(T ), for otherwise P would contain an
outer path. Hence P has even length. This means that {a, b} is an even pair of G and the theorem is
proved. Thus (2) holds.

By (2), we can choose an outer path α-z1-· · · -zn-β, with α, β ∈ C(T ) and z1, . . . , zn ∈ Z, such that
n is minimal. By (1), n is odd and n ≥ 3. Let R = z1-· · · -zn. Define:

A = {v ∈ C(T ) | v is adjacent to z1 and has no neighbor in {z2, . . . , zn}},
B = {v ∈ C(T ) | v is adjacent to zn and has no neighbor in {z1, . . . , zn−1}}.

Note that A is not empty, because α ∈ A, and that A is a clique, for otherwise there is an outer
path a-z1-a′ for every two non-adjacent vertices a, a′ ∈ A, contradicting (1). Likewise B is a non-
empty clique. Clearly, A ∩B = ∅. Moreover, there is no edge ab with a ∈ A and b ∈ B, for otherwise
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{a, z1, . . . , zn, b} induces an odd hole. We will show that some well-chosen vertices a ∈ A and b ∈ B
form an even pair of G.

(3) Every T -complete vertex that has a neighbor in R is either in A ∪ B or complete to
A ∪B.

Pick a T -complete vertex w that has a neighbor zi ∈ R (1 ≤ i ≤ n). Suppose that w is not complete
to A ∪B; so, up to symmetry, w is not adjacent to a vertex u ∈ A. Let i be the smallest integer such
that w is adjacent to zi. Then u-z1-· · · -zi-w is an outer path. The minimality of n implies i = n, and
so w ∈ B. Thus (3) holds.

We say an R-segment is a path in G of length at least one whose ends have a neighbor in R and
whose interior vertices have no neighbor in R.

(4)

Let Q be an R-segment that contains an odd number of T -edges. Assume that V (Q) ∩
(B ∪C(A∪B)) = ∅ and V (Q) 6⊆ A. Then Q has length at least two, V (Q)∩V (R) = ∅,
there are exactly two T -complete vertices in Q and they are adjacent, and there are
vertices zi, zj ∈ V (R) such that V (Q) ∪ V (R[zi, zj ]) induces a hole HQ.

Note that since Q is a path and contains a T -edge, it follows that V (Q) ∩ T = ∅, for otherwise
G|V (Q) would contain a triangle.

Let x, y be the ends of Q, and let x′ (resp. y′) be the T -complete vertex in Q closest to x (resp. closest
to y). So x′ 6= y′. Suppose that Q has length one. Then x, y are T -complete, so x, y /∈ V (R).
Moreover each of x, y has a neighbor in R, by the definition of an R-segment. By (3) and since
V (Q) ∩ (B ∩C(A ∩B)) = ∅, we have that x, y ∈ A, a contradiction since V (Q) 6⊂ A. So Q has length
at least two. It follows, by the definition of an R-segment, that V (Q) ∩ V (R) = ∅. Moreover, x has a
neighbor zi ∈ V (R) and y has a neighbor zj ∈ V (R). We choose zi and zj such that the path R[zi, zj ] is
minimal; so every interior vertex of that path has no neighbor in Q. Hence V (Q)∪V (R[zi, zj ]) induces
a hole HQ. The hole HQ has an odd number of T -edges (the same as Q), so Lemma 4.2 implies that
x′ and y′ are the only T -complete vertices in HQ and they are adjacent. Thus (4) holds.

Let P = u-u′-· · · -v′-v an odd path with u ∈ A and v ∈ B. Then P has length at least three, since
there is no edge between A and B; also P contains no vertex of T and no (A ∪B)-complete vertex.

(5) Let P = u-u′-· · · -v′-v be an odd path with u ∈ A and v ∈ B, and with u′, v′ 6∈ A ∪ B.
The only edges between R and V (P ) ∩ C(T ) are z1u and znv.

Suppose that zw is an edge with z ∈ R and w ∈ V (P )∩C(T ). As observed above w is not complete
to A ∪ B, so, by (3), we have w ∈ A ∪ B. If w ∈ A, then, since A is a clique, it follows that w = u,
because u′ 6∈ A. The case w ∈ B is similar. Thus (5) holds.

(6) If P = u-u′-· · · -v′-v is an odd path with u ∈ A and v ∈ B, then exactly one of u′ ∈ A
or v′ ∈ B holds.

We prove (6) by induction on the length of P . First, suppose that both u′ ∈ A and v′ ∈ B hold.
The path P ′ = P [u′, v′] has odd length and, since there is no edge between A and B, this length is
at least three. Put P ′ = u′-u′′-· · · -v′′-v′. By the induction hypothesis applied to P ′, one of u′′ ∈ A or
v′′ ∈ B holds; but this contradicts the fact that A and B are cliques. So at most one of u′ ∈ A and
v′ ∈ B holds.

We may assume that u′ /∈ A and v′ /∈ B. We will show that this leads to a contradiction. Some
interior vertex of P has a neighbor in R, for otherwise V (R)∩ V (P ) = ∅ and V (R)∪ V (P ) induces an
odd hole. Since u and v also have a neighbor in R, we deduce that P has at least two R-segments. On
the other hand, Lemma 4.3 implies that P has an odd number of T -edges. It follows that there is an
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R-segment Q of P that contains an odd number of T -edges, and that Q does not contain both u and
v, say Q does not contain v. Clearly, V (Q) ∩ (B ∪ C(A ∪B)) = ∅ and V (Q) 6⊆ A. By (4), Q contains
exactly two T -complete vertices x′, y′ and they are adjacent, and we use the notation HQ, zi, zj as in
(4). Call x and y the ends of Q, and assume that u, x, x′, y′, y, v lie in that order along P . By (5) we
have y′ 6= y since v 6∈ Q.

Let k = max{i, j}. Define a path S by setting S = zk+1-R-zn-v if k < n and S = v if k = n.
Note that G|(V (HQ) ∪ V (S)) is connected since zk is a vertex of HQ adjacent to S. We can apply
Lemma 4.5 to the triple (HQ, S, T ); so some vertex z ∈ S has a neighbor in {x′, y′}. However, v itself
has no neighbor in {x′, y′} because x′, y′, y, v are four distinct vertices in that order along P . So
z ∈ {zk+1, . . . , zn}. But z is not adjacent to y′ because y′ has no neighbor in R since y′ is in the
interior of Q; so z is adjacent to x′. Then x′ has a neighbor in R, so x′ = x = u by (5), so x′ ∈ A,
but then the edge zx′ contradicts (5) because z 6= z1. This completes the proof that either u′ ∈ A or
v′ ∈ B holds, and (6) follows.

For each vertex b ∈ B we define a binary relation <b on A by setting a <b a
′ if there exists an odd

path a-a′-· · · -b. For each vertex a ∈ A we define a binary relation <a on B similarly.

(7) For each b ∈ B the relation <b is antisymmetric.

Suppose not; then there exist b ∈ B and odd paths Pu = u0-u1-· · · -up with p ≥ 3, p odd, Pv = v0-
v1-· · · -vq with q ≥ 3, q odd such that u0 = v1 and v0 = u1, u0, v0 ∈ A and up = vq = b. By (6) we
know that Pu \ {u0, u1, b} and Pv \ {v0, v1, b} contain no vertex from A ∪B.

Let r be the smallest integer such that a vertex ur ∈ Pu \ {u0, u1} has a neighbor in Pv \ {v0, v1},
and let s be the smallest integer such that urvs is an edge, with 2 ≤ s ≤ q. Such integers exist since
up−1 is adjacent to vq. Now {u1, . . . , ur, v1, . . . , vs} induces a hole H, so r and s have the same parity,
and ur and vs are different and adjacent. Hence 2 ≤ r < p and 2 ≤ s < q.

We claim that urvs+1 is an edge, and it is the only edge between Pu[u1, ur] and Pv[vs+1, vq]. By
the choice of r, {u1, . . . , ur−1} is anticomplete to {vs+1, . . . , vq}. Let t be the largest integer such that
there is an edge urvt with 2 ≤ s ≤ t ≤ q. Suppose that t− s is even. Then V (Pu[u1, ur])∪V (Pv[vt, vq])
induces an odd path from A to B. Its second vertex is u2, and its penultimate vertex w is either vq−1
(if t < q) or ur (if t = q). By (6) applied to that path, we should have either u2 ∈ A or w ∈ B, but
by (6), neither Pu nor Pv contains a vertex (A∪B)\{u1, v1, b}; this is a contradiction. Therefore, t−s
is odd. Suppose that t ≥ s + 3. Then V (Pv[v1, vs]) ∪ {ur} ∪ V (Pv[vt, vq]) induces an odd path from
A to B. Its second vertex is v2, and its penultimate vertex y is either vq−1 (if t < q) or ur (if t = q).
By (6) applied to that path, we should have either v2 ∈ A or y ∈ B, but by (6), neither Pu nor Pv

contains a vertex (A∪B) \ {u1, v1, b}; this is a contradiction. Hence t = s+ 1, which proves our claim.
We continue with the proof of (7). Consider the T -complete vertices in H \ {u1, v1}. We can apply

Lemma 4.4 to the hole H, the path Pv[vs+1, vq] and the set T , with respect to the edges u1v1 and urvs,
and we obtain that one of ur, vs is T -complete, so H contains at least three T -complete vertices. By
Lemma 4.2, H has an even number of T -edges.

We claim that some vertex of H \{u1, v1} has a neighbor in R. Suppose the contrary. In particular
V (H) ∩ V (R) = ∅. There is a path S from z1 to vs+1 in V (R) ∪ {vs+1, . . . , vq}, with vertex set
{z1, . . . , zk, vs+1, . . . , vl}, say; in particular zk is adjacent to vl.

Then, by our previous claim, the three paths Pu[u1, ur], Pv[v1, vs] and S form a prism K, whose
corners are u1, v1, z1, ur, vs, vs+1, and T is complete to u1, v1 and one of ur, vs. If K is an odd prism,
then this contradicts Theorem 3.3 because σ is a smooth vertex in T , so K is even, and in particular
either k 6= 1 or l 6= s + 1. Also, since K is even, q 6= s + 1. Since σ is adjacent to b = vq, there is a
path Q1 from σ to zk with interior in {zk+1, . . . , zn, b}, and a path Q2 from σ to vl with interior in
{vl+1, . . . , vq}. Since either k 6= 1 or l 6= s + 1, at least one of Q1, Q2 is a path from σ to the interior
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of S. Moreover, {u1, v1, ur, vs} is anticomplete to (V (Q1) ∪ V (Q2)) \ {σ, zk, vl}, and so σ is rough for
K, a contradiction. This proves our claim that some vertex of H \ {u1, v1} has a neighbor in R.

It follows that H has at least three R-segments. Observe that u1-v1 is an R-segment that contains
one T -edge. Since H has an even number of T -edges, there exists an R-segment Q of H, different
from u1-v1, that contains an odd number of T -edges. Call x and y the ends of Q, and call x′ and y′

respectively the first and last T -complete vertices of Q, so that u1, x, x
′, y′, y, v1 lie in this order along

H. Clearly, V (Q) ∩ (B ∪ C(A ∪ B)) = ∅ and V (Q) 6⊆ A. By (4) x′ and y′ are the only T -complete
vertices in Q and they are adjacent. We use the same notation HQ, zi, zj as in (4). Since H has at
least three R-segments, we have either x 6= u1 or y 6= v1, so let us assume up to symmetry that y 6= v1.

Suppose that x 6= u1. So x′, y′ /∈ A. By (3), we have x 6= x′. Let h = min{i, j}. Define a path
P1 = u1-z1-R-zh−1 if h ≥ 2 and P1 = u1 if h = 1. We can apply Lemma 4.5 to the triple (HQ, P1, T ),
which implies that a vertex of P1 is adjacent to one of x′, y′. However, x′ and y′ have no neighbor in
R, by (3); and so, one of x′, y′ is adjacent to u1. Since x 6= x′, and x 6= u1, it follows that neither x′
nor y′ are adjacent to u1, a contradiction. Hence x = u1, which implies x′ = u1, so i = 1, and y′ = u2,
so y 6= y′ since Q has length at least two. If y is adjacent to v1, then V (HQ)∪ {v1} induces a pyramid
(with triangle {u1, v1, z1} and apex y), a contradiction to Lemma 3.1. So y is not adjacent to v1. It
follows that {v1} ∪ V (R[z1, zj ]) ∪ V (Q[y, y′]) induces a path. This path is odd (because HQ \ {u1} is
even, and y′ is adjacent to u1), of length at least three, and its ends are T -complete and its interior
vertices are not T -complete, which contradicts Lemma 4.3. Thus (7) holds.

(8) For each b ∈ B, the relation <b is transitive.

Let u, v, w be three vertices of A such that u <b v <b w. Since v <b w, there exists an odd path
P = v0-v1-· · · -vq with v0 = v, v1 = w, vq = b, q odd, q ≥ 3. By (6) we have vq−1 /∈ B. If u has no
neighbor in P [v2, vq] then {u} ∪ V (P [v1, vq]) induces an odd path to b, implying u <b w as desired.
Hence we may assume that u has a neighbor vi in P [v2, vq], and let i be the largest such integer. We
have i < q as there is no edge between A and B. If i is odd (so 3 ≤ i ≤ q − 2), then {u} ∪ V (P [vi, vq])
induces an odd path with u ∈ A and vq ∈ B; applying (6) to this path, we have either vi ∈ A or
vq−1 ∈ B. The former is impossible because A is a clique, and we saw above that vq−1 /∈ B. Hence i is
even (with 2 ≤ i ≤ q − 1). Then {v0, u} ∪ V (P [vi, vq]) induces an odd path to b, implying v <b u and
contradicting (7). Thus (8) holds.

Facts (7) and (8) mean that <b is a strict order relation for each b ∈ B. Let Max(b) denote the set
of vertices of A that are maximal for <b. Similarly, for each vertex a ∈ A the relation <a is a strict
order. Let Max(a) denote the set of vertices of B that are maximal for <a.

(9) There exist a ∈ A and b ∈ B such that a ∈ Max(b) and b ∈ Max(a).

For two vertices a ∈ A and b ∈ B, let Db(a) = {a′ ∈ A | a′ <b a}, and let Da(b) be defined similarly.
Choose a and b such that Db(a) is maximized and, subject to this first criterion, such that Da(b) is
maximized. The first criterion implies that a ∈ Max(b). Hence let us assume that b /∈ Max(a). So
there exists v ∈ Max(a) such that b <a v. We claim that Db(a) ⊆ Dv(a). To prove this, let a′ ∈ Db(a).
So there is an odd path P = a′-u1-· · · -uk with u1 = a and uk = b. Let j be the smallest integer such
that v is adjacent to uj . If j = k, then a-P -b-v is an odd path, implying v <a b, a contradiction. So
j < k. Hence a-P -uj-v is a path, and (6) implies that it is even, so a′-a-P -uj-v is an odd path, and
so a′ <v a. This proves that Dv(a) ⊇ Db(a). On the other hand we have Da(v) ⊇ Da(b) ∪ {b} since
b <a v. So the pair {a, v} contradicts the choice of {a, b}. Thus (9) holds.

Finally, we observe that the pair {a, b} given by (9) is an even pair of G. Indeed, if there is an
odd path a-a′-· · · -b′-b, then (6) implies either a′ ∈ A and a <b a

′, or b′ ∈ B and b <a b
′, so either

a /∈ Max(b) or b /∈ Max(a), a contradiction. This completes the proof of Theorem 4.6.
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