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Abstract

In this paper, we give an algorithmic solution to a dynamical analog of the problem of
certifying combinatorial identities by Wilf-Zeilberger pairs. Given two sequences generated
in a dynamical setting, we calculate an upper bound N ≥ 1 such that whenever the first N
terms of the two sequences agree pairwise, the two sequences agree term-by-term. Then, we
give an algorithm that can be used to check whether two such sequences agree term-by-term.
Our methods are mainly based on the theory of Chow rings of algebraic varieties.
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Section 1

Introduction

In the early 1990s, Herbert S. Wilf and Doron Zeilberger introduced a method of proving
certain combinatorial identities by automata [WZ90a, WZ90b, Ze06, Ze90, Ze91]. Specifically,
they considered identities of the form

n∑
k=0

F (n, k) = f(n),

where F (n, k) is a function in n, k such that F (n,k+1)
F (n,k) is a rational function in k for each

k ≥ 0, and f(n) is a function in n. Such functions F (n, k) are known as hypergeometric
functions, so identities of the above form are called hypergeometric identities.

Definition 1.0.1. Let F (n, k) be a function defined on n ∈ Z≥0, k ∈ Z. We say that F (n, k)
is a hypergeometric function if

F (n, k + 1)

F (n, k)

is a rational function in k for each k ∈ Z and for each n ∈ Z≥0.

Many interesting identities from combinatorial enumeration are hypergeometric identi-
ties. For example, summation identities involving binomial coefficients are hypergeometric
identities. Specific examples include Vandermonde’s identity

r∑
k=0

(
m

k

)(
n

r − k

)
=

(
m+ n

r

)
,

which is true for each m,n, r ≥ 0, and Dixon’s identity∑
k∈Z

(−1)k
(
n+ b

n+ k

)(
n+ c

c+ k

)(
b+ c

b+ k

)
=

(n+ b+ c)!

n!b!c!
,

which is true for each n ≥ 0 [Wi94].
In general, hypergeometric identities of the above form from combinatorics terminate in

the variable k at or before k = n, i.e., F (n, k) = 0 for all k > n. Under this assumption, we
may write ∑

k

F (n, k) :=

n∑
k=0

F (n, k).
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Section 1

Wilf and Zeilberger were primarily interested in hypergeometric identities of the above
form whose summands terminate. In particular, they were interested in summands F (n, k)
of the form

F (n, k) =

∏A
i=1(ain+ a′ik + a′′i )!∏B
i=1(bin+ b′ik + b′′i )!

zk

where the coefficients of n and k are constant coefficients (say rational numbers), and A,B, z
are also constants [WZ90b, Ze06, Ze90, Ze91]. By using the theory of holonomic functions,
they were able to show that summands of the above form always satisfy some recurrence
relations of the form

s0(n)F (n, k) + s1(n)F (n+ 1, k) + · · ·+ sL(n)F (n+ L, k) = G(n, k + 1)−G(n, k)

where L is a positive integer, s0(n), . . . , sL(n) are polynomials in n and G(n, k) is a function
that terminates in the variable k, i.e.,

lim
k→±∞

G(n, k) = 0

for each n ∈ Z≥0 [WZ90b, Ze90]. Hence, the sum

S(n) :=
∑
k

F (n, k)

satisfies the recurrence relation

s0(n)S(n) + · · ·+ sL(n)S(n+ L) =
∑
k

(G(n, k + 1)−G(n, k)) = 0.

Thus, to prove the identity

S(n) =
∑
k

F (n, k) = f(n),

it is enough to check that the function f(n) is a solution to the above recurrence relation, and
that S(n+ i) = f(n) for i = 0, . . . , L. This can be done on any computer algebra software in
finitely many number of steps. Further, by using the algorithm of Gosper [Go78], Wilf and
Zeilberger were able to compute the polynomials s0(n), . . . , sL(n) and the function G(n, k)
for each F (n, k) of the above form [WZ90a, Ze06, Ze90, Ze91]. Therefore, the method of
Wilf and Zeilberger gives an algorithmic proof for every hypergeometric identity of the above
form.

In this paper, we will consider the following dynamical analog of Wilf and Zeilberger:

Problem 1.0.2. Let (X,ϕ, x, f), (Y, ψ, y, g) be quadruples where

1. X, Y are quasi-projective varieties over a field k of characteristic zero;

2. ϕ : X → X and ψ : Y → Y are dominant rational maps;

3. x, y are points on X and Y respectively;

2



Section 1

4. f, g are rational functions from X and Y to P1
k respectively such that the images of f

and g are both dense in P1
k.

Does there exist an integer N ≥ 1 such that f(ϕi(x)) = g(ψi(y)) for all i = 1, . . . , N implies
that f(ϕi(x)) = g(ψi(y)) for all i ≥ 1?

We shall see that the answer to this question is yes – there exists such a positive integer
N ≥ 1. This will be proved by Noetherian induction in Section 3. Thus, the problem
becomes computing this positive integer N ≥ 1 given the data (X,ϕ, x, f), (Y, ψ, y, g), and
this will constitute the main problem to be addressed in this paper. In particular, assuming
that the varieties X and Y are defined over an algebraically closed field k of characteristic
zero, we shall compute an upper bound on the positive integer N ≥ 1 that is dependent only
on:

• The dimensions of X and Y ;

• The degree of X and the degree of Y , where X and Y are considered as subvarieties
of some Pm and Pn with the embeddings being fixed;

• The dimensions of the projective spaces Pm and Pn;

• The degrees of the maps ϕ, ψ, f and g.

Specifically, we shall prove the following theorem giving a general upper bound on the
positive integer N ≥ 1.

Theorem 1.0.3. Let (X,ϕ, x, f), (Y, ψ, y, g) be data given in Problem 1.0.2, and suppose
that X and Y are defined over an algebraically closed field of characteristic zero. Fix the
following:

• r := dimX, s := dimY ;

• ιX : X ↪→ Pm, ιY : Y ↪→ Pn embeddings for some m ≥ r, n ≥ s;

• degX = d1, deg Y = d2 under the above embeddings;

• deg f ◦ ϕ = e1, deg g ◦ ψ = e2 under the embeddings ιX and ιY respectively;

• e := max{e1, e2}.

Also, denote

γ̃r,s,1 :=

(
r + s

r

)(
m+ n

n

)2

d1d2e
2.

and define, inductively, for each j = 2, . . . , r + s that

γ̃r,s,j :=

˜λr,s,j−1∏
i=1

(
r + s

r

)(
m+ n

n

)2

d1d2e
2i

where
λ̃r,s,j := γ̃r,s,j + γ̃r,s,j−1 + · · ·+ γ̃r,s,1 + j.
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Section 1

If
f(ϕi(x)) = g(ψi(y))

for each i = 1, . . . , λ̃r,s,r+s, then

f(ϕi(x)) = g(ψi(y))

for every i ≥ 1.

In Section 2, we will first give some background information on the method of Wilf
and Zeilberger for proving hypergeometric identities by automata. Then, we will give an
overview of intersection theory via the theory of Chow rings, and this will form the basis for
finding an upper bound on the positive integer N ≥ 1 in Problem 1.0.2.

Next, in Section 3, we will prove some general results concerning the intersection of
algebraic varieties, using the theory of Chow rings as stated in Section 2. These results will
be the main tool for solving Problem 1.0.2.

Then, in Section 4, we will present the solution of Problem 1.0.2. Before presenting the
solution of the general case, we will give an upper bound on the positive integer N ≥ 1
in the case where X = Y and the maps ϕ, ψ, f and g are all regular and surjective. This
simplification is relevant, as we would like to consider orbits of points given on a fixed
algebraic variety. We then present the solution of the general case, by noticing that the proof
technique of the general case is the same as that of the special case. Based on our results,
we will present an algorithm that can be carried out by any computer algebra software to
solve Problem 1.0.2 given the data (X,ϕ, x, f), (Y, ψ, y, g). The algorithm will attempt to
find an upper bound on the positive integer N ≥ 1 that is less than the general upper bound
given in Theorem 1.0.3, so as to reduce the computational complexity for checking the N
initial conditions for solving Problem 1.0.2.

Finally, in Section 5, we will present an application of our method for elliptic divisibility
sequences.

4



Section 2

Background

2.1 Algorithms for proving combinatorial identities

Recall that Wilf and Zeilberger were interested in finding algorithms for proving identities
of the form

n∑
k=0

L(n, k) = f(n),

where L(n, k) is a hypergeometric function in k and f(n) is a function. Equivalently, the
above may be written as

n∑
k=0

F (n, k) :=
n∑

k=0

L(n, k)

f(n)
= const,

assuming that f(n) ̸= 0 for each n.
Most combinatorial identities of the above form are such that the summand F (n, k)

terminate in the variable k at k ≤ n, i.e.,

F (n, k) = 0 for all k > n.

Thus, we will assume that hypergeometric functions F (n, k) terminate in the variable k
at k ≤ n throughout this section, and denote

∑
k

F (n, k) :=
n∑

k=0

F (n, k)

for convenience.
In particular, summands of the form

F (n, k) =

∏A
i=1(ain+ a′ik + a′′i )!∏B
i=1(bin+ b′ik + b′′i )!

zk (2.1)

are of primary interest to Wilf and Zeilberger [PWZ96, WZ90a, WZ90b, WZ92a, WZ92b,
Ze90, Ze91]. Here, the coefficients of n and k are constants for each i and for each j, and z

5



Section 2 2.1. Algorithms for proving combinatorial identities

is also a constant. It is easily seen that F (n, k) is a hypergeometric function in k. Moreover,
summands of this form include most functions involving binomial coefficients, so most
combinatorial identities of interest are covered under this form.

Notice that the summand F (n, k) in the above form is doubly hypergeometric, i.e.,
hypergeometric in both n and k. Under this assumption, Sister Mary Celine Fasenmyer
discovered an algorithm that can check the identity [Fa47, Fa49]∑

k

F (n, k) = const.

Her method is based on finding a linear recurrence on the function F (n, k) in the variable k,
and a summary of her method may be found in [PWZ96]. In [WZ92a], Wilf and Zeilberger
were able to verify that the method of Fasenmyer always succeeds for summands of the form
2.1. However, her method is often computationally unfeasible, given that the process of
finding the required linear recurrence requires a large number of trials and errors.

To come up with a computationally feasible algorithm, Wilf and Zeilberger employed
the theory of holonomic functions [WZ90b, Ze90]. Heuristically, holonomic functions are
solutions to homogeneous partial differential equations with polynomial coefficients, and
one may show that summands of the form 2.1 are holonomic [Ze90]. In the following, we
will give the definition of holonomic functions and holonomic sequences by building up the
definition step by step, starting with the definition of C-finite functions.

Definition 2.1.1 ([Ze90]). 1. Let D := d
dx be the differential operator defined on the

space of k-valued functions in the variable x. Then, a k-valued function f is C-finite if
there exists a non-zero polynomial P with coefficients in k such that

P (D)f = 0

identically, where it is assumed that the derivatives of f exist for each x.

2. Let E be the shift operator defined on the space of k-valued sequences, i.e., for a
sequence {an}∞n=0 ⊂ k, Ean = an+1. Then, a k-valued sequence a := {an}∞n=0 is
C-finite if there exists a non-zero polynomial P with coefficients in k such that

P (E)a = 0.

Now, let C[D] ∼= k[D] be the ring of polynomials in D with coefficients in k, so that
C[D] is a principle ideal domain. It follows that for a k-valued function f , the ideal

If := {P ∈ C[D] | P (D)f = 0}

is a principle ideal generated by P0(D) of the minimal order annihilating f . Thus, f is
C-finite if and only if the vector space

C[D]f := span{Dif | i ≥ 0}

is finite dimensional over k. Equivalently, f is C-finite if and only if

dimk C[D]/If <∞.

6



Section 2 2.1. Algorithms for proving combinatorial identities

We may also obtain an equivalent definition of C-finite sequences by replacing the
differential operator D in the above with the difference operator E. Let C[E] ∼= k[E]
be the ring of polynomials in E with coefficients in k. Then, for a k-valued sequence a,
Ia := {P ∈ C[E] | P (E)a = 0} ⊆ C[E] is also a principal ideal. It follows that a is C-finite
if and only if

dimk C[E]/Ia <∞.

Notice that C-finite functions are solutions to linear ordinary differential equations with
constant coefficients in k, so it would be natural to generalize the above to solutions to linear
ODEs with polynomial coefficients in k[x]. This leads to the so-called P -finite functions
[Ze90], which is the next step towards the definition of holonomic functions.

Definition 2.1.2 ([Ze90]). Let D and E be the differential and difference operators as
defined in Definition 2.1.1.

1. A k-valued function f is P -finite if there exists a non-zero polynomial P with coefficients
in k[x] such that

P (D)f = 0

identically.

2. A k-valued sequence a := {an}∞n=0 is P -finite if there exists a non-zero polynomial P
with coefficients in k[n] such that

P (E)a = 0.

Moreover, we may extend C-finiteness and P -finiteness to functions of several variables, or
sequences with multi-indices. LetD1 = ∂

∂x1
, D2 = ∂

∂x2
, . . . , Dn = ∂

∂xn
be differential operators

defined on the space of k-valued functions in x1, . . . , xn. As before, let C[D1, . . . , Dn] ∼=
k[D1, . . . , Dn] be the polynomial ring in D1, . . . , Dn with coefficients in k. Although this is
no longer a principle ideal domain, we may still define the ideal

If = {P ∈ C[D1, . . . , Dn] | P (D1, . . . , Dn)f = 0}

where f is a k-valued function in x1, . . . , xn whose partial derivatives exist in each variable
x1, . . . , xn. We then have the following definition.

Definition 2.1.3 ([Ze90]). Let f be a k-valued function in variables x1, . . . , xn. Then, f is
multi-C-finite if

dimk C[D1, . . . , Dn]/If <∞,

where the C[D1, . . . , Dn]-module C[D1, . . . , Dn]/If is seen as a k-vector space.

Again, we may define multi-C-finiteness for sequences analogously. Let a be a k-valued
sequence with multi-indices, i.e.,

a = {am1,m2,...,mn}m1,...,mn≥0 := a(m1,m2, . . . ,mn)

as a discrete-valued function mapping Nn to k. As before, let E1, . . . , En be shift operators
in variables m1,m2, . . . ,mn respectively, i.e.,

Eia(m1,m2, . . . ,mn) = a(m1, . . . ,mi−1,mi + 1,mi+1, . . . ,mn).

7



Section 2 2.1. Algorithms for proving combinatorial identities

Then, let C[E1, . . . , En] ∼= k[E1, . . . , En] be the polynomial ring in E1, . . . , En with coeffi-
cients in k, and define the ideal

Ia = {P ∈ C[E1, . . . , En] | P (E1, . . . , En)a = 0} ⊆ C[E1, . . . , En].

We say that a is multi-C-finite if dimk C[E1, . . . , En]/Ia <∞.
The next step is to define multi-P -finite functions, which will become the correct notion

for holonomic functions. As in the single variable case, we would like to replace linear PDEs
with constant coefficients in k by linear PDEs with polynomial coefficients in k[x1, . . . , xn].
To this end, define the Weyl-algebra in variables x1, . . . , xn [Ze90]:

An(C) := C⟨D1, . . . , Dn, x1, . . . , xn⟩ := C[D1, . . . , Dn, x1, . . . , xn]/S

where xi is interpreted as the multiplication operator f 7→ xif for each i, and S is the set of
commutation relations given by

• xixj = xjxi for every i, j;

• DiDj = DjDi for every i, j;

• [Di, xj ] := Dixj − xjDi = δi,j for every i, j, where δi,j is the Kronecker delta function.

As before, for a k-valued function f that is differentiable in each variable, we may define

If := {P ∈ An(C) | Pf = 0},

which is a left ideal of An(C). The ring An(C) is left- and right-Noetherian, and we may
define the dimension of An(C)/If as an An(C)-module as follows [Ze90]. Let F := {Fν} be
a filtration on An(C), so that {Fν/(Fν ∩ If )} is an induced filtration on An(C)/If . Denote
the dimension of each Fν/(Fν ∩ If ) by H(ν). One may show that H(ν) is a polynomial
function in ν with rational coefficients when ν ≫ 0 [Ze90]. We then define the F -dimension
of An(C)/If as a An(C)-module to be

dF (An(C)/If ) := degH(ν).

Under certain assumptions on the filtration F , dF (An(C)/If ) is an invariant for every F
[Ze90]. Then, we may define the dimension of An(C)/If as a An(C)-module to be

d(An(C)/If ) = dF (An(C)/If ).

When a is not identically zero, Bernstein’s inequality implies that [Ze90]:

d(An(C)/If ) ≥ n.

Definition 2.1.4 ([Ze90]). Let f be a k-valued function in variables x1, . . . , xn, and suppose
f is not identically zero. Then, f is holonomic if

d(An(C)/If ) = n

as an An(C)-module.

8



Section 2 2.1. Algorithms for proving combinatorial identities

Thus, holonomic sequences f are such that An(C)/If has the smallest possible dimension
as an An(C)-module. For non-zero multi-C-finite functions f , the left ideal If ⊂ An(C) is the
extension of the ideal I ′f ⊂ C[D1, . . . , Dn] under the inclusion map C[D1, . . . , Dn] ↪→ An(C),
since we are simply adding the variables x1, . . . , xn into the ideal I ′f . Then, it can be
shown that d(An(C)/If ) = n [Ze90], so the above definition is indeed a natural extension of
multi-C-finiteness.

It is possible to define an action of the Weyl algebra An(C) on the space of k-valued
discrete functions in n variables, i.e., sequences with multi-indices in n variables. Let
a : Nn → k be a discrete function, and write

a = {am1,m2,...,mn}m1,...,mn≥0 := a(m1,m2, . . . ,mn),

where m1, . . . ,mn ≥ 0 are the n mutually independent variables (indices) of a. Then, we let
the action of An(C) on a be the following ([Ze90]):

xi · a = Eia = a(m1, . . . ,mi−1,mi + 1,mi+1, . . . ,mn), i = 1, . . . , n,

Di · a = miE
−1
i a = mia(m1, . . . ,mi−1,mi − 1,mi+1, . . . ,mn), i = 1, . . . , n.

In particular, notice that the above action preserves the commutation relations of the
generators of An(C), so the action is well-defined. Thus, analogously as above, we may
define a left-ideal

Ia := {P ∈ An(C) | Pa = 0},

and we say that the sequence a is holonomic if

d(An(C)/Ia) = n

as an An(C)-module. Similarly as above, one can show that P -finite sequences are holonomic.
The class of all holonomic k-valued functions in n variables forms an algebra, and

this class is closed under integration in the continuous case or summation in the discrete
case [Ze90]. In this way, this is a very large class, and it already contains the class of all
multi-C-finite functions and the class of all P -finite functions.

Many examples of holonomic functions and operations that preserve holonomicity may be
found in [Ze90]. Now, using the theory of holonomic functions discovered by I. N. Bernstein
as described in [Ze90], Wilf and Zeilberger were able to generate linear recurrences for
holonomic functions F (n, k). This will become a key step in Wilf and Zeilberger’s method
for proving identities of the above form automatically.

Theorem 2.1.5 ([WZ90b, Ze90]). Let F (n, k) be a holonomic function in n and k. Then,
there exists polynomials s0(n), . . . , sL(n) with L a positive integer and a holonomic function
G(n, k) such that

s0(n)F (n, k) + s1(n)F (n+ 1, k) + · · ·+ sL(n)F (n+ L, k) = G(n, k + 1)−G(n, k)

with the LHS being indefinitely summable with respect to k.

9



Section 2 2.1. Algorithms for proving combinatorial identities

Hence, once we find the polynomials s0(n), . . . , sL(n) and the holonomic function G(n, k)
for the function F (n, k) as in the above theorem, we may sum both sides of the equation in
k to obtain

s0(n)S(n) + s1(n)S(n+ 1) + · · ·+ sL(n)S(n+ L) = G(n,+∞)−G(n,−∞)

where S(n) =
∑

k F (n, k).
Now, suppose that we would like to check the identity

S(n) =
∑
k

F (n, k) = C

corresponding to some holonomic functions F (n, k), where C is a constant. The above
theorem guarantees that S(n) satisfies a recurrence relation of the form

s0(n)S(n) + s1(n)S(n+ 1) + · · ·+ sL(n)S(n+ L) = G(n,+∞)−G(n,−∞),

where si(n) is a polynomial in n for each i and G(n, k) is holonomic as above. Thus, it
suffices to check that S(n) = C for each n = 0, 1, . . . , L− 1, and that C is a solution to the
above recurrence, i.e.,

Cs0(n) + Cs1(n) + · · ·+ CsL(n) = G(n,+∞)−G(n,−∞).

Further, it is shown in [Ze90] that whenever F (n, k) is of the form 2.1 and that the
holonomic function F (n, k) terminates in the variable k, the function G(n, k) is always of
the form R(n, k)F (n, k) for some rational function R(n, k). Since R(n, k)F (n, k) would also
have to terminate in the variable k, i.e., R(n, k)F (n, k) = 0 for each n whenever k is large
enough, we have that

lim
k→±∞

G(n, k) = 0.

Thus, the above linear recurrence becomes

s0(n)S(n) + s1(n)S(n+ 1) + · · ·+ sL(n)S(n+ L) = 0.

The last step of Wilf and Zeilberger’s method is an algorithm for computing the poly-
nomials s0(n), . . . , sL(n) and the holonomic function G(n, k). By using elimination theory
on the Weyl algebra An(C) to find operators P ∈ An(C) that annihilate the function
F (n, k), Zeilberger came up with a ten-step algorithm that allows one to compute the
functions s0(n), . . . , sL(n) and G(n, k) [Ze90]. However, this algorithm is very time con-
suming [WZ90b, Ze90, Ze91]. A better algorithm known as creative telescoping is given in
[WZ90b, Ze90, Ze91, Ze06], and the theory of holonomic functions from [Ze90] guarantees
that this algorithm works for verifying identities involving summands of the form 2.1.

The method of creative telescoping may be summarized as follows. Let N,K be the
difference operators of the variables n and k respectively, i.e., Nn = n + 1,Kk = k + 1.
Notice that Theorem 2.1.5 guarantees a linear difference operator s(N,K) such that

s(N,K)F (n, k) = G(n+ 1, k)−G(n, k).

10



Section 2 2.1. Algorithms for proving combinatorial identities

Although finding s(N,K) explicitly via the slow algorithm in [Ze90] is time consuming,
one can make some guesses for what s(N,K) might be. In the simplest case, s(N,K)
would be a first-order difference operator, as the linear recurrence relation which the sum
S(n) =

∑
k F (n, k) satisfies is non-trivial. Using the fact that limk→±∞G(n, k) = 0 from

[Ze90] and assuming s(N,K) is of first-order, we would get

s0(n)S(n) + s1(n)S(n+ 1) = 0.

For the identity
S(n) = C

to hold, we would necessarily have s0(n) + s1(n) = 0 assuming that S(n) ̸= 0 for each n.
Thus, normalizing the operator s(N,K) by letting s1(n) = 1, we would obtain s0(n) = −1
and that

F (n+ 1, k)− F (n, k) = G(n, k + 1)−G(n, k).

In [Go78], Gosper found an algorithm for determining whether there exists a solution
g(k) to the difference equation g(k + 1)− g(k) = a(k) for any hypergeometric function a(k),
and the output of the algorithm would be the solution g(k) whenever it exists. Thus, by
setting a(k) = F (n+ 1, k)− F (n, k) as the input of Gosper’s algorithm, we may find the
required function G(n, k) whenever G(n, k+1)−G(n, k) = a(k) has a solution. If a solution
does not exist, the next simplest case for s(N,K) would be that it is of second-order, so that

(s0(n) + s1(n)N + s2(n)N
2)F (n, k) = G(n, k + 1)−G(n, k).

Gosper’s algorithm allows for additional unknowns in the input hypergeometric function
a(k), so we may set a(k) = s0(n) + s1(n)F (n + 1, k) + s2(n)F (n + 2, k) as the input and
look for the solution G(n, k). Since Theorem 2.1.5 guarantees the existence of the holonomic
function G(n, k), we will be able to find the appropriate G(n, k) once we have tried each
input a(k) = s(N,K)F (n, k) with the order of s(N,K) large enough.

This method of trial and error is fast, since s(N,K) turns out to be of first order for
the vast majority of interesting examples from combinatorics [WZ90b, Ze91, Ze06]. In this
case, the proof of the original identity

∑
k F (n, k) = C is immediate via the below theorem,

which is based on the above discussion.

Theorem 2.1.6 ([WZ90a]). Suppose that G(n, k) is a function in n, k defined for each
n ∈ Z≥0 and each k ∈ Z such that

F (n+ 1, k)− F (n, k) = G(n, k + 1)−G(n, k)

for each n and each k. If
lim

k→±∞
G(n, k) = 0

for every integer n ≥ 0, then∑
k

F (n, k) =
∑
k

F (n = 0, k) = const.

11
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Definition 2.1.7 ([Wi94]). Given a hypergeometric identity∑
k

F (n, k) = f(n),

if there exists a function G(n, k) satisfying the conditions as outlined in Theorem 2.1.6, then
the pair (F (n, k), G(n, k)) is called a Wilf-Zeilberger (WZ) pair. We also say that the pair
(F (n, k), G(n, k)) certify the original hypergeometric identity.

In the case of F (n, k) being holonomic, the WZ complement G(n, k) of F (n, k) is also
guaranteed to be of the form R(n, k)F (n, k), where R(n, k) is some rational function in
n and k [Ze90]. In this way, the method of creative telescoping for identities given by
holonomic summands is also called the method of rational function certification, and the
rational function R(n, k) is called the proof certificate of the identity [WZ90a].

Finally, we remark that the method of rational function certification extends to multi-sum
identities in the discrete variable case, and to integral identities in the continuous variable
case [WZ92a, WZ92b]. The method also applies to the “q”-analog of every integral or
summation identity to which it applies [WZ92a, WZ92b].

2.2 Intersection theory

In this section, we will give an overview of intersection theory for schemes via the theory of
Chow rings. The results presented in this section are mainly based on the ones found in
[Fu84] and [EH16]. Although the main focus of this paper is on quasi-projective algebraic
varieties, we will establish the formalism of Chow rings for separated schemes of finite type.
This will be relevant should we need to consider an analog of Problem 1.0.2 for schemes
in general. Also, as we shall see, computing rational equivalence classes in Chow rings of
projective spaces will be a main tool for solving Problem 1.0.2.

For the following, we will assume that all schemes are separated and of finite type over
an algebraically closed field k of characteristic 0. This includes all algebraic varieties when
considered as schemes over the field k.

Definition 2.2.1. Let X be a separated scheme of finite type over an algebraically closed
field k of characteristic 0.

1. The group of k-cycles on X, Zk(X), is the free abelian group generated by all reduced
irreducible k-dimensional subschemes of X.

2. The group of cycles on X, Z(X), is the free abelian group generated by all reduced
irreducible subschemes of X, i.e.,

Z(X) =
⊕
k≥0

Zk(X).

3. A cycle Z =
∑

i niYi ∈ Z(X) is effective if ni ≥ 0 for all i.

Remark 2.2.2. 1. For all k > dimX, Zk(X) = 0 since subschemes of X must be of
dimension less than or equal to dimX.

12
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2. Let Xred be the reduced scheme of X. Then Z(X) = Z(Xred) by definition.

Definition 2.2.3. Let X be a scheme, and let Y be a closed subscheme of X. Suppose that
the reduced scheme of Y , Yred, has irreducible components Y1, Y2, . . . , Ys. Then the effective
cycle associated to Y is the cycle

⟨Y ⟩ :=
s∑

i=1

liYi ∈ Z(X)

where li := len(OY,Yi) is the length of the local ring OY,Yi for each i = 1, . . . , s.

Thus, we may view the effective cycle associated to a closed subscheme as a coarse
approximation to that subscheme. Our next goal is to define the notion of degree of
subschemes of projective spaces. To this end, we will form equivalence classes in the group
of cycles.

Definition 2.2.4. LetX be a scheme, and let V ⊆ X be a reduced and irreducible subscheme
of codimension one. Denote the local ring of X at V by A := OX,V . Let r ∈ k(X)∗ be a
non-zero rational function over X, and write r = a

b for a, b ∈ A regular functions on V . The
order of vanishing of r along V is given by

ordV (r) := ordV (a)− ordV (b) := lenA(A/(a))− lenA(A/(b))

where lenA(A/(a)), lenA(A/(b)) are the lengths of the A-modules A/(a), A/(b) over A
respectively.

Fulton [Fu84] showed that when viewed as a homomorphism from k(X)∗ to Z, ordV (−)
is a well-defined group homomorphism. Moreover, for any non-zero rational function r over
X, there are only finitely many codimension one reduced and irreducible subschemes V such
that ordV (r) ̸= 0. This allows us to associate cycles to every non-zero rational functions.

Definition 2.2.5. Let X be a scheme, and let r be a non-zero rational function over a
(k + 1)-dimensional subscheme W that is reduced and irreducible. The divisor of r is the
k-cycle given by

[div(r)] :=
∑
V

ordV (r)[V ]

where the sum is taken over all reduced and irreducible k-dimensional subschemes V ⊂W ,
and ordV (r) is defined over the local ring OW,V .

In particular, notice that [div(r)] is well-defined since it is always a finite linear combina-
tion of subschemes of W of codimension one. Then, equivalence classes in Z(X) are formed
by cycles modulo divisors of rational functions. This gives rise to the Chow group of X.

Definition 2.2.6. Let Z(X) be the group of cycles of a scheme X. The subgroup of rational
equivalence on k-cycles, Ratk(X), is the free abelian group generated by all [div(r)] where r
is a non-zero rational function over a (k+1)-dimensional reduced and irreducible subscheme
of X.
The Chow group of k-cycles of X is the quotient group

Ak(X) := Zk(X)/Ratk(X).

13
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The Chow group of X is given by the direct sum of the Chow groups of k-cycles:

A(X) :=
⊕
k≥0

Ak(X).

Notice that Ratk(X) ⊆ Zk(X), and it is indeed a subgroup since the sum of divisors of
rational functions is still a divisor of a rational function: if [div(r)], [div(s)] ∈ Ratk(X), then
we can write

[div(r)] =
∑

ordV (r)[V ], [div(s)] =
∑

ordV (s)[V ]

where the sums run over k-dimensional reduced and irreducible subschemes of X. Then, we
have that

[div(r)] + [div(s)] =
∑

(ordV (r) + ordV (s))[V ] =
∑

ordV (r + s)[V ] = [div(r + s)]

since ordV (−) is a group homomorphism by [Fu84].
Next, we will introduce a product structure on the Chow group, so that it becomes a

ring. This product structure will allow us to interpret multiplicities of points of intersection.

Definition 2.2.7. Let X be a reduced and irreducible scheme, and let A,B ⊆ X be reduced
and irreducible subschemes. A and B intersect transversely at a point p ∈ A ∩B if A,B,X
are all smooth at p and

TpA+ TpB = TpX,

where TpA, TpB, TpX are the tangent spaces of A,B and X at p respectively. Equivalently:

codim(TpA ∩ TpB) = codimTpA+ codimTpB.

We say that A and B are generically transverse if they meet transversely at a general point
of each irreducible component C ⊆ A ∩B.

Then, the product structure on A(X) is given by intersections of generically transverse
subschemes of X.

Theorem 2.2.8 ([EH16, Fu84]). Let X be a smooth, reduced and irreducible scheme. Then,
there exists a unique product structure on A(X) such that for any two generically transverse
subschemes A,B ⊆ X, we have [A][B] := [A ∩B].

We would also like to extend this result to subschemes that do not intersect generically
transversely, given that the conditions imposed in Definition 2.2.7 are very strict. When two
reduced and irreducible subschemes A,B ⊆ X are dimensionally transverse, i.e., codim(A ∩
B) = codimA+ codimB, we may relate the classes [A] and [B] with [A ∩B] by taking into
account of intersection multiplicities of A and B along components of A ∩B.

Theorem 2.2.9 ([EH16]). Let X be a smooth, reduced and irreducible scheme, and let
A,B ⊆ X be reduced and irreducible subschemes. Suppose that every irreducible component
C ⊆ A∩B is such that codimC = codimA+codimB. Then, for each component C ⊆ A∩B,
there exists a positive integer mC(A,B) such that:

1. [A][B] =
∑

C⊆A∩BmC(A,B)[C], where the sum is taken over all irreducible components
of A ∩B.

14
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2. mC(A,B) = 1 if and only if A and B intersect generically transversely on C.

3. If A and B are Cohen-Macaulay at a general point of C, then mC(A,B) is the
multiplicity of the component of the scheme A ∩B supported on C. In particular, if A
and B are everywhere Cohen-Macaulay, then

[A][B] = [A ∩B].

4. mC(A,B) depends only on the local structure of A and B at a general point of C.

The following criterion allows us to check generic transverseness when two subvarieties
intersect dimensionally transversely.

Proposition 2.2.10 ([EH16]). Let X be a smooth, reduced and irreducible scheme. Two
reduced and irreducible subschemes A,B ⊆ X are generically transverse if and only if they
are dimensionally transverse, and each irreducible component of A ∩ B contains a point
where X is smooth and A ∩B is reduced.

Finally, we may define the notion of degree of subschemes of projective spaces, and show
that this is a generalization of the notion for algebraic varieties. To this end, we need the fact
that the pushforward of a rational equivalence class under a proper morphism of schemes is
well-defined. This is demonstrated in [EH16].

Definition 2.2.11 ([EH16]). Let f : Y → X be a proper map of schemes, and let A ⊆ Y be
a subvariety, i.e., a reduced and irreducible subscheme of Y . Notice that f(A) is a subvariety
of X since f is proper. Denote the effective cycle associated with A by ⟨A⟩, and the one
associated with f(A) by ⟨f(A)⟩.

1. If dim f(A) < dimA, then we set f∗⟨A⟩ = 0, where f∗ denotes the pushforward of f
on Z(Y ).

2. If dim f(A) = dimA and f |A has degree n, i.e., [k(A) : k(f(A))] = n where k(A) and
k(f(A)) are the respective function fields of A and f(A), then we set f∗⟨A⟩ = n⟨f(A)⟩.

3. We extend f∗ to all of Z(Y ) by linearity, i.e., for any collection of subvarieties Ai ⊆ Y ,

f∗

(∑
i

mi⟨Ai⟩

)
:=
∑
i

mif∗⟨Ai⟩.

Rational equivalence is preserved under pushforward of cycles by proper morphisms:

Theorem 2.2.12 ([EH16]). Suppose that f : Y → X is a proper morphism of schemes.
Then, the map f∗ : Z(Y ) → Z(X) as defined above induces a group homomorphism f∗ :
Ak(Y ) → Ak(X) for each k.

A proof of this theorem can be found in [Fu84]. In fact, this theorem also gives rise to a
degree map on A(X) whenever X is proper over Spec(k).

15
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Proposition 2.2.13 ([EH16]). Let k be an algebraically closed field of characteristic zero,
and let X be separated scheme of finite type over k. Suppose that X is proper over Spec(k).
Then, there exists a unique map δ : A(X) → Z sending the class of a closed point p ∈ X to
1, and vanishing on the class of any cycle of positive pure dimension.

In particular, the above proposition applies when X = Pn for any n, since projective
spaces are proper over Spec(k) when viewed as schemes over k.

Definition 2.2.14 ([EH16]). Let A ⊆ Pn be a subvariety of dimension k, and let L ⊆ Pn be
an intersection of k hyperplanes of Pn such that A and L intersect generically transversely.
(Notice that one can always find such an L.) Then, we define the degree of A ⊆ Pn to be

degA := δ([A][L]),

where δ : Pn → Z is the unique map given by Proposition 2.2.13.

Thus, the above definition is an extension of the definition of degree of algebraic varieties,
since

δ([A][L]) = δ([A ∩ L]) = #|A ∩ L|

by the definition of δ from Proposition 2.2.13. This allows us to treat the two different
definitions of degrees of subvarieties of Pn as equivalent notions.

For the rest of this paper, Bézout’s theorem for subvarieties of Pn will be a main tool for
solving Problem 1.0.2. The theorem follows from the formula of the Chow ring of Pn.

Theorem 2.2.15 ([EH16]). The Chow ring of Pn is given by

A(Pn) ∼= Z[ζ]/(ζn+1)

where ζ ∈ An−1(Pn) is the rational equivalence class of a hyperplane. In general, the class
of a k-dimensional irreducible subvariety of degree d is dζn−k.

Corollary 2.2.16 (Bézout, [EH16]). Let X1, . . . , Xk ⊆ Pn be irreducible subvarieties of
codimensions c1, . . . , ck respectively. Suppose that the Xi’s intersect generically transversely.
Then,

deg(X1 ∩X2 ∩ · · · ∩Xk) =
k∏

i=1

deg(Xi).

Proof. By Theorem 2.2.8,

[X1 ∩X2 ∩ · · · ∩Xk] =

k∏
i=1

[Xi]

in A(Pn) since the Xi’s intersect generically transversely. The degree of X1 ∩X2 ∩ · · · ∩Xk

is computed by intersecting the set with
∑
ci general hyperplanes. Since [Xi] = deg(Xi)ζ

ci

16
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for all i’s, we have that

deg(X1 ∩X2 ∩ · · · ∩Xk) = deg([X1 ∩X2 ∩ · · · ∩Xk]ζ
n−

∑
ci)

= deg

(
k∏

i=1

[Xi]ζ
n−

∑
ci

)

= deg

(
k∏

i=1

deg(Xi)ζ
n

)

=

k∏
i=1

deg(Xi).

The case where irreducible varieties do not intersect generically transversely may be
handled as follows.

Corollary 2.2.17 (Bézout, [EH16]). Let X1, . . . , Xk ⊆ Pn be irreducible subvarieties of
codimensions c1, . . . , ck respectively. Suppose that the Xi’s intersect dimensionally trans-
versely, i.e., each irreducible component Z1, Z2, . . . , Zs ⊆ X1 ∩X2 ∩ · · · ∩Xk is such that
codimZj =

∑k
i=1 ci for j = 1, . . . , s. If the Xi’s are Cohen-Macaulay at a general point of

Zj for each j = 1, . . . , s, then

k∏
i=1

[Xi] =
s∑

j=1

mZj (X1, . . . , Xk)[Zj ],

where mZj (X1, . . . , Xk) is equal to the multiplicity of X1 ∩X2 ∩ · · · ∩Xk at a general point
of Zj. It follows that

k∏
i=1

degXi =
s∑

j=1

mZj (X1, . . . , Xk) degZj .

Proof. Denote Z = X1 ∩X2 ∩ · · · ∩Xk. By Theorem 2.2.9, we have that

k∏
i=1

[Xi] =

s∑
j=1

mZj (X1, . . . , Xk)[Zj ]

wheremZj (X1, . . . , Xk) is equal to the multiplicity of Z at a general point of Zj byX1, . . . , Xk

being Cohen-Macaulay at a general point of Zj . The equality of degrees follows similarly as

in Theorem 2.2.16: we may intersect each subvariety with
∑k

i=1 ci general hyperplanes in
Pn and take degrees of the intersections, which are all equal.

We remark that when X1, . . . , Xk are all hypersurfaces, the assumption that X1, . . . , Xk

are Cohen-Macaulay at a general point of each component of the intersection is automatically
satisfied [EH16].
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To conclude this subsection, we present a version of the generalized Bézout’s theorem,
which gives a bound on the degree of the intersection X1 ∩ · · · ∩ Xk ⊆ Pn whenever the
intersection is not dimensionally transverse. This will be very useful for steps involved in
solving Problem 1.0.2, as we shall see in the next section. The below theorem is due to
Example 8.4.6 found in Chapter 8 of [Fu84].

Theorem 2.2.18 (Bézout, [Fu84]). Let X1, . . . , Xk ⊆ Pn be irreducible subvarieties of Pn,
and let Z1, . . . , Zs be the irreducible components of X1 ∩X2 ∩ · · · ∩Xk. Then,

degX1 ∩X2 ∩ · · · ∩Xk ≤
s∑

i=1

degZi ≤
k∏

i=1

degXi.
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Preliminary results

For this section, we will assume that all algebraic varieties are defined over some field k of
characteristic zero.

Let (X,ϕ, x, f), (Y, ψ, y, g) be as given in Problem 1.0.2. Firstly, notice that without the
loss of generality, we may assume that X and Y are both irreducible. This is because if X
and Y are reducible, we may restrict ϕ and ψ to some irreducible components of X and Y
respectively and consider Problem 1.0.2 on those components. By solving Problem 1.0.2 for
each pair of irreducible components of X and Y , we will have solved the problem for X and
Y themselves.

Now, the answer to Problem 1.0.2 is yes – there exists a positive integer N ≥ 1 such
that for any pair of points x, y ∈ X, f(ϕi(x)) = g(ψi(y)) for all i = 1, . . . , N implies that
f(ϕi(x)) = g(ψi(y)) for all i ∈ N. This may be shown via Noetherian induction. Denote
Fi := (f, g) ◦ (ϕi, ψi), and let

Yi := F−1
i (∆)

be the pre-image of the diagonal subvariety ∆ in P1 × P1 under Fi. By definition, Yi does
not intersect the locus of indeterminacy of Fi for each i, and

Yi = {(x, y) ∈ X × Y | f(ϕi(x)) = g(ψi(y))}.

Thus, the condition that f(ϕi(x)) = g(ψi(y)) for each i = 1, . . . , N translates to

(x, y) ∈ Y1 ∩ Y2 ∩ · · · ∩ YN .

Since we have a descending chain of algebraic sets in X × Y given by

Y1 ⊇ Y1 ∩ Y2 ⊇ · · · ⊇ Y1 ∩ Y2 ∩ · · · ∩ Yn ⊇ . . .

it follows that this descending chain must eventually stabilise by X × Y being a Noetherian
topological space.

Moreover, we have the following lemma giving a characterization of when the above
chain stabilises.

Lemma 3.0.1. Let (X,ϕ, x, f), (Y, ψ, y, g) be quadruples satisfying the conditions as outlined
in Problem 1.0.2, and set Fi := (f, g) ◦ (ϕi, ψi). For each i ≥ 1, let Yi := F−1

i (∆) ⊆ X × Y
be the closed subset as defined above. If

Y1 ∩ Y2 ∩ · · · ∩ YN = Y1 ∩ Y2 ∩ · · · ∩ YN+1
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for some positive integer N , then

Y1 ∩ Y2 ∩ · · · ∩ YN = Y1 ∩ Y2 ∩ · · · ∩ Yj

for all j > N .

Proof. We will prove this by induction on j. Set l = j −N with j > N , and suppose that

Y1 ∩ Y2 ∩ · · · ∩ YN = Y1 ∩ Y2 ∩ · · · ∩ YN+1

for some positive integer N . Then, the base case l = 1 is true by assumption. Now, suppose
that

Y1 ∩ Y2 ∩ · · · ∩ YN = Y1 ∩ Y2 ∩ · · · ∩ YN+1 = · · · = Y1 ∩ Y2 ∩ · · · ∩ YN+l

for some l ≥ 1. Since

Y1 ∩ Y2 ∩ · · · ∩ YN+l ⊇ Y1 ∩ Y2 ∩ · · · ∩ YN+l+1,

it suffices to prove the inclusion of the LHS to the RHS, i.e.,

Y1 ∩ Y2 ∩ · · · ∩ YN+l ⊆ YN+l+1.

Notice that for each l ≥ 0,

YN+l+1 := F−1
N+l+1(∆) = (ϕN+l+1, ψN+l+1)−1 ◦ (f−1, g−1)(∆) = (ϕ, ψ)−1(YN+l)

as subsets of X × Y . By assumption, YN ⊆ YN+1 = (ϕ, ψ)−1(YN ), so we have that

YN+l = (ϕ, ψ)−l(YN ) ⊆ (ϕ, ψ)−l−1(YN ) = YN+l+1.

By the inductive hypothesis:

Y1 ∩ Y2 ∩ · · · ∩ YN+l−1 ⊆ YN+l

for each l ≥ 1. Therefore,

Y1 ∩ Y2 ∩ · · · ∩ YN+l ⊆ YN+l ⊆ YN+l+1,

as required.

Thus, finding the positive integer N ≥ 1 in Problem 1.0.2 is equivalent to finding the
smallest number N ≥ 1 such that

Y1 ∩ Y2 ∩ · · · ∩ YN = Y1 ∩ Y2 ∩ · · · ∩ YN ∩ YN+1.

Remark 3.0.2. Problem 1.0.2 may be reduced to the case where X and Y are projective
varieties. Notice that for X and Y quasi-projective and irreducible, the closures X, Y are
irreducible projective varieties. We may extend ϕ and ψ to dominant rational self-maps ϕ̃,
ψ̃ on X and Y respectively. Similarly, f and g may be extended to rational functions f̃ , g̃
on X and Y with dense images on P1. Denote F̃i = (f̃ , g̃) ◦ (ϕ̃i, ψ̃i). Thus,

F̃i
−1

(∆) = F−1
i (∆) ⊆ X × Y
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by ϕ, f and ψ, g being continuous on a dense subset of X and Y respectively.
Hence, the descending chain

Y1 ⊇ Y1 ∩ Y2 ⊇ Y1 ∩ Y2 ∩ Y3 ⊇ . . .

stabilises at N ≥ 1 if and only if the descending chain

Y1 ⊇ Y1 ∩ Y2 ⊇ Y1 ∩ Y2 ∩ Y3 ⊇ . . .

stabilises at N ≥ 1, where Yi = F̃i
−1

(∆) = F−1
i (∆) for each i. Indeed, we have that

Y1 ∩ Y2 ∩ · · · ∩ YN = Y1 ∩ Y2 ∩ · · · ∩ YN+1

implies that

Y1 ∩ Y2 ∩ · · · ∩ YN = Y1 ∩ Y2 ∩ · · · ∩ YN = Y1 ∩ Y2 ∩ · · · ∩ YN+1 = Y1 ∩ Y2 ∩ · · · ∩ YN+1,

so the latter chain stabilises whenever the former does. For the other direction, suppose that

Y1 ∩ Y2 ∩ · · · ∩ YN = Y1 ∩ Y2 ∩ · · · ∩ YN+1,

and let (x, y) ∈ Y1 ∩ Y2 ∩ · · · ∩ YN . Thus,

F̃N+1(x, y) = (f̃ , g̃) ◦ (ϕ̃N+1, ψ̃N+1)(x, y) ∈ ∆.

By definition, we have that F̃i|X×Y = Fi, so

FN+1(x, y) = F̃N+1(x, y) ∈ ∆,

implying that (x, y) ∈ YN+1. This completes the proof of our claim.

To give the positive integer N ≥ 1 as described in Problem 1.0.2, we will fix embeddings
ιX : X ↪→ Pm and ιY : Y ↪→ Pn. By Lemma 3.0.1, finding N ≥ 1 is equivalent to finding the
smallest number N ≥ 1 such that

Y1 ∩ Y2 ∩ · · · ∩ YN = Y1 ∩ Y2 ∩ · · · ∩ YN+1,

where
Yi = F−1

i (∆) = (f ◦ ϕi, g ◦ ψi)−1(∆)

for each i, with ∆ being the diagonal subvariety of P1 × P1.
Notice that if Y1 ∩ Y2 ∩ · · · ∩ Yj is a zero-dimensional set for some j ≥ 1, then we may

embed Y1 ∩ Y2 ∩ · · · ∩ Yj into some projective space and use Theorem 2.2.18 to bound its
size from the above, assuming that the field k is algebraically closed:

|Y1 ∩ Y2 ∩ · · · ∩ Yj | ≤
j∏

i=1

deg Yi.

This suggests the following approach for giving an upper bound on the positive integer
N .
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Idea 3.0.3. 1. Find a positive integer N1 ≥ 1 such that for every positive dimensional
component

C ⊆ Y1 ∩ Y2 ∩ · · · ∩ YN1 ,

C ⊆ Yi for each i ≥ 1.

2. By Theorem 2.2.18, the size of the zero-dimensional components of Y1 ∩ Y2 ∩ · · · ∩ YN1

is bounded above by

|(Y1 ∩ Y2 ∩ · · · ∩ YN1)
0| ≤

N1∏
i=1

deg Yi := N2

whenever the field k is algebraically closed. Using the characterization given in Lemma
3.0.1, we have that

N ≤ N1 +N2.

Hence, we would need to bound the degree of each Yi from the above. Embedding each
Yi into Pm × Pn under (ιX , ιY ), we may write

(ιX , ιY )(Yi) = (ιX , ιY )(F
−1
i (∆X)) = (ιX , ιY )(X × Y ) ∩ (ιX , ιY )(F

−1
i (∆X)).

When composed with ιX , f ◦ ϕi can be written locally as homogeneous polynomials in the
coordinate ring of Pm:

f ◦ ϕi(x) = (f0 ◦ ϕi(x) : f1 ◦ ϕi(x)) ∈ P1, x ∈ U for some U ⊆ X open.

Similarly, g ◦ ψi can be written as homogeneous polynomials in the coordinate ring of Pn on
an open subset of Y . Thus, considering Yi and X × Y as subsets of Pm × Pn under (ιX , ιY ),
we have the following lemma.

Lemma 3.0.4. Let k be a field of characteristic zero, but not necessarily algebraically closed.
Let (X,ϕ, x, f), (Y, ψ, y, g) be as in Problem 1.0.2, where X and Y are varieties defined over
k. Also, let Yi be defined over k as above for each i ≥ 1. Then,

Yi = (X × Y ) ∩ V (f0 ◦ ϕi(x) = g0 ◦ ψi(y), f1 ◦ ϕi(x) = g1 ◦ ψi(y)) ⊆ Pm × Pn.

Proof. Notice that the inclusion of the RHS to Yi follows from the definition of Yi. For
the other inclusion, suppose that (x, y) = ((x0 : · · · : xn), (y0 : · · · : yn)) ∈ Yi. Then,
(f ◦ ϕi, g ◦ ψi)(x, y) ∈ ∆ ⊂ P1 × P1, so

(f0 ◦ ϕi(x) : f1 ◦ ϕi(x)) = λ(g0 ◦ ψi(y) : g1 ◦ ψi(y))

for some λ ∈ k× and for each i = 0, 1, . . . , n. Thus, by taking (x, y) = (x, λy) ∈ Pm × Pn,
we recover the equations f0 ◦ ϕi(x) = g0 ◦ ψi(y) and f1 ◦ ϕi(x) = g1 ◦ ψi(y), so each Yi can
be written as the above expression as claimed.

Remark 3.0.5. Notice that in the above expression of Yi, the polynomials

f0 ◦ ϕi(x) = g0 ◦ ψi(y), f1 ◦ ϕi(x) = g1 ◦ ψi(y)
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are not bihomogeneous in the coordinates of Pm × Pn in general. This is problematic
in practical computations, since we would like subvarieties of Pm × Pn to be defined by
bihomogeneous polynomials in general. However, in practical applications, we often know
that one of the above polynomials is never zero by assumption. For example, if we suppose
that f0 ◦ ϕi(x), g0 ◦ ψi(y) are never zero for any x ∈ X, y ∈ Y , then

(f0 ◦ ϕi(x) : f1 ◦ ϕi(x)) =
(
1 :

f1 ◦ ϕi(x)
f0 ◦ ϕi(x)

)
, (g0 ◦ ψi(y) : g1 ◦ ψi(y)) =

(
1 :

g1 ◦ ψi(y)

g0 ◦ ψi(y)

)
.

Thus, using the argument of Lemma 3.0.4, we also have that

Yi = (X × Y ) ∩ V
(
f1 ◦ ϕi(x)
f0 ◦ ϕi(x)

=
g1 ◦ ψi(y)

g0 ◦ ψi(y)

)
= (X × Y ) ∩ V

(
f1(ϕ

i(x))g0(ψ
i(y)) = g1(ψ

i(y))f0(ϕ
i(x))

)
⊆ Pm × Pn

provided that f0 ◦ ϕi(x), g0 ◦ ψi(y) are never zero. This gives a bihomogeneous generator for
the ideal of Yi.

The above suggests that we need to bound the degrees of the closed subsets X × Y and
V (f0 ◦ ϕi(x) = g0 ◦ ψi(y), f1 ◦ ϕi(x) = g1 ◦ ψi(y)) of Pm × Pn. More precisely, we will need
to bound the degrees of the images of the above under the Segre embedding

σm,n : Pm × Pn → P(m+1)(n+1)−1, ((x0 : · · · : xm), (y0 : · · · : yn)) 7→ (x0y0 : x0y1 : · · · : xmyn).

The Segre embedding is necessary, because we will need to apply Theorem 2.2.18 in some
projective space to get

deg Yi ≤ deg(X × Y ) deg V (f0 ◦ ϕi(x) = g0 ◦ ψi(y), f1 ◦ ϕi(x) = g1 ◦ ψi(y))

for each i, where each of the above varieties are considered as subvarieties of the projective
space.

We shall see that the degree of X × Y can be calculated by finding the class [X × Y ] in
the Chow ring of Pm × Pn, while the degree of the latter closed algebraic set is related to
the degrees of the maps ϕ, ψ, f and g.

Notation 3.0.6. Let X, Y be quasi-projective varieties, and let ιX : X ↪→ Pm, ιY : Y ↪→ Pn

be closed embeddings. Let ϕ : X → Y be a rational map, and suppose that ϕ|U : U → Y
is a morphism defined on an open subset U ⊆ X. Identify each x ∈ X with its image
ιX(x) ∈ Pm, so that x may be written in coordinates of Pm. Then, ϕ may be written in
terms of homogeneous polynomials of the same degree on U ⊆ X:

ιY ◦ ϕ(x) = (ϕ0(x) : ϕ1(x) : · · · : ϕn(x)) ∈ Pn,

where each ϕi is an element of the homogeneous coordinate ring of Pm. We denote

deg ϕ := deg ϕi,

and we call this the degree of ϕ under the embedding ιY .
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Remark 3.0.7. In the above, deg ϕ under the embedding ιY is not the same as the
usual definition of the degree of ϕ. In Chapter 1, Section 3 of [EH16], the degree of a
surjective morphism f : W → Z is given as follows. For a subvariety A ⊆ W such that
dimA = dim f(A), the field of rational functions k(A) is a finite extension of the field
k(f(A)). Then, the degree of the extension [k(A) : k(f(A))] is said to be the degree of the
covering of f(A) by A.

3.1 Degree of X × Y ⊆ Pm × Pn

For this subsection, we assume that all varieties are defined over an algebraically closed field
k of characteristic zero.

The method for calculating the class of X × Y in the Chow ring of Pm × Pn can be
summarized as follows. Given the product of projective spaces Pm × Pn, let π1, π2 be the
projections onto the first and second factors of the product space. We would like to find
the pullback of the classes [X] ∈ A(Pm) and [Y ] ∈ A(Pn) via the maps π1, π2 respectively.
Then, we will show that the intersection of the two pullback classes in A(Pm × Pn) agrees
with the class [X × Y ] ∈ A(Pm × Pn).

Hence, we will need to define the pullback of cycles via morphisms of algebraic varieties,
and show that pullbacks preserve rational equivalence classes.

Definition 3.1.1. Let f : Y → X be a morphism of smooth, reduced and irreducible
schemes. A subvariety A ⊆ X is generically transverse to f if:

1. The pre-image f−1(A) ⊂ Y is a generically reduced scheme, and

2. codimY (f
−1(A)) = codimX(A).

In particular, notice that the projections π1, π2 of Pm×Pn onto its first and second factors
are morphisms of a smooth variety. For any subvariety X ⊆ Pm, π−1

1 (X) ⊆ Pm × Pn is an
irreducible subvariety, so it is reduced and irreducible by X being reduced and irreducible.
Also, the codimension of X ⊆ Pm is preserved under pullback by π1. Thus, any subvariety
of Pm is generically transverse to π1, and similarly for any subvariety of Pn to π2.

The following fundamental theorem from [EH16] guarantees that pullbacks preserve
rational equivalence classes of subvarieties generically transverse to the corresponding
morphism.

Theorem 3.1.2 ([EH16]). Let f : Y → X be a map of smooth quasi-projective varieties.
Denote Ac(X) := Ar−c(X), where r = dimX. Then, for each c = 0, 1, . . . , r, there exists
a unique group homomorphism f∗ : Ac(X) → Ac(Y ) such that for each subvariety A ⊆ X
generically transverse to f ,

f∗([A]) = [f−1(A)].

The map f∗ extends to a ring homomorphism on A(X), and makes the operation A(−) a
contravariant functor from the category of smooth projective varieties to the category of
graded rings.
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Thus, for each subvariety X ⊆ Pm, we have that

π∗1([X]) = [π−1
1 (X)]

Similarly, π∗2([Y ]) = [π−1
2 (Y )] for each subvariety Y ⊆ Pn.

Next, we will need to compute the Chow ring of Pm × Pn. This is due to the following
theorem from [EH16].

Theorem 3.1.3 ([EH16]). Fix m,n ≥ 1. Let α, β ∈ A1(Pm × Pn) denote the pullbacks, via
the projection maps, of the hyperplane classes in A(Pm), A(Pn) respectively. Then, the Chow
ring of Pm × Pn is given by

A(Pm × Pn) ∼= Z[α, β]/(αm+1, βn+1).

Moreover, if V (f) ⊂ Pm × Pn is a hypersurface with f being a bi-homogeneous polynomial
of bi-degree (d, e), then [V (f)] = dα+ eβ ∈ A(Pm × Pn).

As an immediate application, we will calculate the class [X × Y ] ∈ A(Pm × Pn) where
X ⊆ Pm, Y ⊆ Pn are subvarieties of dimensions r and s respectively.

Lemma 3.1.4. Let X ⊆ Pm, Y ⊆ Pn be irreducible subvarieties of dimensions r and s
respectively, and suppose that their degrees are d and e under the respective embeddings.
Then the class [X × Y ] in the Chow ring of Pm × Pn is given by

[X × Y ] = deαm−rβn−s,

where α, β ∈ Pm × Pn are the pullbacks, via projection maps, of the hyperplane classes of
Pm,Pn respectively.

Proof. Let π1 : Pm × Pn → Pm, π2 : Pm × Pn → Pn be the projection maps onto the first
and second factors of Pm × Pn. By Theorem 2.2.15, [X] = dζm−r where ζ ∈ A(Pm) is the
hyperplane class. Thus, by Theorem 3.1.2,

[π−1
1 (X)] = π∗1([X]) = π∗1(dζ

m−r) = dαm−r.

Similarly,
[π−1

2 (Y )] = π∗2([Y ]) = π∗2(eξ
n−s) = eβn−s,

where ξ ∈ A(Pn) is the hyperplane class.
Now, X × Y = (X × Pn) ∩ (Pm × Y ) = π−1

1 (X) ∩ π−1
2 (Y ) with π−1

1 (X) and π−1
2 (Y )

intersecting dimensionally transversely. Since Pm × Pn is smooth, and the intersection
X × Y is reduced, we have that π−1

1 (X) and π−1
2 (Y ) intersect generically transversely by

Proposition 2.2.10. Therefore, by Theorem 2.2.8:

[X × Y ] = [π−1
1 (X)][π−1

2 (Y )] = deαm−rβn−s.

As a Corollary, we obtain the degree of σm,n(X × Y ) ⊂ P(m+1)(n+1)−1, where σm,n is the
Segre embedding of Pm × Pn into P(m+1)(n+1)−1.
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Corollary 3.1.5. Let X ⊆ Pm, Y ⊆ Pn be irreducible subvarieties of dimensions r and
s respectively, and suppose that their degrees are d and e under the respective embeddings.
Then

deg σm,n(X × Y ) = de

(
r + s

r

)
where σm,n(X × Y ) is considered as a subvariety of P(m+1)(n+1)−1.

Proof. Let ζ be the hyperplane class in the Chow ring of P(m+1)(n+1)−1. Since dimσm,n(X×
Y ) = dimX × Y = r + s, the degree of σm,n(X × Y ) ⊂ P(m+1)(n+1)−1 can be computed by
intersecting σm,n(X × Y ) with r + s general hyperplanes. Let L be the intersection of r + s
general hyperplanes of P(m+1)(n+1)−1, so that [L] = ζr+s. Since σm,n is injective, we have
that

|L ∩ σm,n(X × Y )| = |σ−1
m,n(L) ∩ (X × Y )|.

The pullback of a general hyperplane under σm,n is a general hypersurface of bidegree (1, 1),
so [σ−1

m,n(L)] = (α+β)r+s by Theorem 3.1.3. Since σ−1
m,n(L) intersects with X×Y generically

transversely,

[σ−1
m,n(L) ∩ (X × Y )] = [σ−1

m,n(L)][X × Y ]

= de(α+ β)r+sαm−rβn−s

= deαm−rβn−s
r+s∑
i=0

(
r + s

i

)
αiβr+s−i

= de

(
r + s

r

)
αmβn

by Theorem 2.2.8 and Lemma 3.1.4. Hence,

deg σm,n(X × Y ) := deg(L ∩ σm,n(X × Y )) = de

(
r + s

r

)
.

3.2 Bounding the degree of intersections of hypersurfaces in
Pm × Pn

For this subsection, we will assume that all varieties are defined over an algebraically closed
field k of characteristic zero.

Lemma 3.2.1 (cf. IV.§2, [Sh74]). Let F1, F2, . . . , Fs be bihomogeneous polynomials in the
coordinate ring of Pm × Pn, and suppose that Fi is of bidegree (di, ei) for each i = 1, . . . , s.
Then,

deg σm,n(V (F1, F2, . . . , Fs)) ≤
(
m+ n

n

)s s∏
i=1

Di

where σm,n : Pm × Pn → P(m+1)(n+1)−1 is the Segre embedding.
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Proof. Firstly, we will calculate deg σm,n(V (Fi)) for each i = 1, . . . , s. Write the Chow ring
of Pm × Pn as

A(Pm × Pn) ∼= Z[α, β]/(αm+1, βn+1)

as in Theorem 3.1.3. We have that

[V (Fi)] = diα+ eiβ

for each i. Since dimV (Fi) = m+n−1, the degree of σm,n(V (Fi)) is found by intersecting it
with m+ n− 1 general hyperplanes in P(m+1)(n+1)−1. Let L be the intersection of m+ n− 1
general hyperplanes of P(m+1)(n+1)−1. Then,

#|L ∩ σm,n(V (Fi))| = #|σ−1
m,n(L) ∩ V (Fi)|

since σm,n is injective. Because the intersection is generically transverse, we have that

[σ−1
m,n(L) ∩ V (Fi)] = [σ−1

m,n(L)][V (Fi)] = (α+ β)m+n−1(diα+ eiβ)

by Theorem 2.2.8. Thus,

deg σm,n(V (Fi)) = deg(α+ β)m+n−1(diα+ eiβ)

= deg

((
m+ n− 1

m− 1

)
diα

mβn +

(
m+ n− 1

m

)
eiα

mβn
)

=

(
m+ n− 1

m− 1

)
di +

(
m+ n− 1

m

)
ei.

If we let Di = max{di, ei}, then

deg σm,n(V (Fi)) ≤
(
m+ n

n

)
Di.

Hence, by the generalized Bézout’s theorem:

deg σm,n(V (F1, F2, . . . , Fs)) ≤
s∏

i=1

deg σm,n(V (Fi)) ≤
(
m+ n

n

)s s∏
i=1

Di.

3.3 The degree of the diagonal subvariety of Pn × Pn

For this subsection, we will again assume that all varieties are defined over an algebraically
closed field k of characteristic zero.

Finally, we will calculate the degree of the image of the diagonal ∆ ⊂ Pn × Pn under the
Segre embedding σn,n. This will be helpful in later proofs. The following expression for the
class of [∆] ∈ A(Pn × Pn) is due to [EH16].
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Lemma 3.3.1 ([EH16]). Let ∆ ⊂ Pn × Pn be the diagonal subvariety. Then

[∆] =
n∑

i=0

αiβn−i ∈ A(Pn × Pn),

where α, β are the pullbacks, via the projection maps, of the hyperplane classes on the first
and second factors of Pn × Pn respectively.

Corollary 3.3.2. Let ∆ ⊂ Pn × Pn be the diagonal subvariety, and let σn,n : Pn × Pn →
P(n+1)2−1 be the Segre embedding. Then,

deg σn,n(∆) = 2n.

Proof. Since dimσn,n(∆) = dim∆ = n, the degree of σn,n(∆) can be computed by intersect-

ing it with n general hyperplanes in P(n+1)2−1. Let L ⊆ P(n+1)2−1 be the intersection of n
general hyperplanes. As in previous proofs,

|L ∩ σn,n(∆)| = |σ−1
n,n(L) ∩∆|

since the Segre embedding is injective. This also means that the pre-image of L intersects
generically transversely with ∆, so

[σ−1
n,n(L) ∩∆] = [σ−1

n,n(L)][∆] = (α+ β)n
n∑

i=0

αiβn−i

by Lemma 3.3.1. Thus, taking degrees of both sides:

deg σn,n(∆) = deg(α+ β)n
n∑

i=0

αiβn−i

= deg

n∑
j=0

(
n

j

)
αn−jβj

n∑
i=0

αiβn−i

= deg
n∑

j=0

(
n

j

)
αnβn

=
n∑

j=0

(
n

j

)
= 2n,

as required.
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Results

Throughout this section, we will assume that all varieties are defined over an algebraically
closed field k of characteristic zero unless otherwise stated.

Recall from Idea 3.0.3 that for the descending chain of closed algebraic sets

Y1 ⊇ Y1 ∩ Y2 ⊇ Y1 ∩ Y2 ∩ Y3 ⊇ . . . , where Yi := F−1
i (∆) := (f ◦ ϕi, g ◦ ψi)−1(∆)

in Problem 1.0.2, our first goal is to find an N1 ≥ 1 such that

Y1 ∩ Y2 ∩ · · · ∩ YN1 = (Y1 ∩ Y2 ∩ · · · ∩ YN1)
0 ∪ C1 ∪ C2 ∪ · · · ∪ Cs,

where (Y1 ∩ Y2 ∩ · · · ∩ YN1)
0 are the zero-dimensional components and C1, . . . , Cs are the

positive dimensional components such that Cj ⊆ Yi for each i ≥ 1, j = 1, . . . , s.
Our approach will be based on the following. For each irreducible component C ⊆ Y1,

notice that dimC ≤ dimY1. Suppose that dimC = dimY1, and denote r = dimY1. Also,
denote

Ci := F i(C)

for each i ≥ 1.
We will show that for some positive integer γ1 ≥ 1, if

C ⊆ Y1 ∩ Y2 ∩ · · · ∩ Yγ1 ,

then either C ⊆ Yi for all i ≥ 1, or

dimCγ1+1 ∩ Y1 < dimC = r.

Hence, we may write

Y1 ∩ Y2 ∩ · · · ∩ Yγ1 = C1,1 ∪ C1,2 ∪ · · · ∪ C1,s1 ∪ Y ′
γ1 ,

where C1,j , j = 1, . . . , s1, are the irreducible components of dimension r such that C1,j ⊆ Yi
for all i ≥ 1, and Y ′

γ1 is the union of all the other components.
Then, we may take further intersections of Y1 ∩ Y2 ∩ · · · ∩ Yγ1 with Yi’s, i > γ1, and

repeat the above process for the irreducible components of Y1 ∩ Y2 ∩ · · · ∩ Yγ1 of dimension
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≥ r−1. Proceeding inductively, we will show that there exists a sequence of positive integers
1 ≤ γ1 ≤ γ2 ≤ · · · ≤ γr, where γj is such that for each irreducible component

C ⊆ Y1 ∩ Y2 ∩ · · · ∩ Yγj

with dimC ≥ r − j, either C ⊆ Yi for each i ≥ 1 or

dimCγj+1 ∩ Y1 < r − j.

Thus, the required N ≥ 1 for Problem 1.0.2 is bounded above by

N ≤ γ1 + γ2 + · · ·+ γr.

Hence, we will first calculate dimY1.

Lemma 4.0.1. Let X and Y be irreducible quasi-projective varieties of positive dimensions,
and let ϕ : X → P1, ψ : Y → P1 be dominant rational maps. Set f := (ϕ, ψ) : X × Y →
P1 × P1, and denote the diagonal subvariety of P1 × P1 by ∆. Then,

dim f−1(∆) ≤ dim(X × Y )− 1.

Proof. Suppose, for contradiction, that dim f−1(∆) = dimX × Y . Since both X and Y are
irreducible varieties, X × Y is also irreducible, so f−1(∆) must be a dense subset of X × Y .
However, f(f−1(∆)) ⊆ ∆ with dim∆ < dim(P1 × P1), contradicting the fact that f is a
dominant map. Thus, we must have that

dim f−1(∆) ≤ dim(X × Y )− 1.

If the dominant rational maps ϕ, ψ, f and g in Problem 1.0.2 are morphisms, then we
may calculate the dimension of each irreducible component of Y1.

Lemma 4.0.2. Let X, Y and Z be irreducible quasi-projective varieties, and let ϕ : X → Z,
ψ : Y → Z be surjective morphisms. Set f := (ϕ, ψ) : X × Y → Z × Z, and denote the
diagonal subvariety of Z × Z by ∆Z . Then, each component of f−1(∆Z) ⊆ X × Y has
codimension equaling dimZ.

Proof. By writing X, Y and Z as finite unions of open affine subsets, we may reduce this
problem to the case where X, Y and Z are all affine. Let φ : k[Z × Z] → k[X × Y ] be the
map of coordinate rings induced by f , so that φ(s) = s ◦ f for each s ∈ k[Z × Z]. Since f is
surjective, φ must be an injective ring homomorphism. Now, ∆Z ⊂ Z × Z is an irreducible
subvariety, so ∆Z = V (p) for some prime ideal p ⊂ k[Z × Z].

Notice that
f−1(∆Z) = V (φ(p)) = V (pe).

where pe is the extension of p under φ. Write pe as the intersection of its minimal prime
ideals:

pe =

s⋂
i=1

qi.
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Thus, each irreducible component of f−1(∆Z) is the vanishing locus of qi for some i = 1, . . . , s.
Denote Zi = V (qi). We claim that the contraction of each qi via φ is p, so that f(Zi) is
dense in ∆Z for each i = 1, . . . , s.

To prove this claim, first notice that V (p) = V (pec), where pec is the contraction of pe

under φ. The inclusion p ⊆ pec follows from the definition of extension and contraction
of ideals, so V (p) ⊇ V (pec). For the other inclusion, let (x, x) ∈ V (p) = ∆Z , and let
r ∈ pec. Then, φ(r) := r ◦ f ∈ pe and f−1(x, x) ⊆ V (pe). Hence, 0 = φ(r)(f−1(x, x)) =
r ◦ f(f−1(x, x)) = r(x, x), implying that (x, x) ∈ V (pec).

Hence, p = rad(p) = rad(pec) ⊇ pec, so p = pec. By Proposition 3.16 of [AM69], p is the
contraction of a prime ideal. Since

p =
s⋂

i=1

qi
c,

we must have that p = qi
c for each qi, i = 1, . . . , s. Hence, f(Zi) = f(V (qi)) is dense in

∆Z = V (p) for each i = 1, . . . , s.
Finally, by Theorem 3 of [Mu99, I.§8], there exists a non-empty open subset U ⊆ Z × Z

such that for each irreducible closed subsetW ⊆ Z×Z withW ∩U ̸= ∅ and for all irreducible
components C ⊆ f−1(W ) such that C ∩ f−1(U) ̸= ∅, codimX×Y C = codimZ×Z W . Now,
∆Z ∩ U ̸= ∅, since U = U1 × U2 for U1, U2 ⊂ X open subsets and U1 ∩ U2 ̸= ∅. Also, each
irreducible component Zi ⊆ f−1(∆Z) has non-empty intersection with f−1(U), since f(Zi)
is dense in ∆X . Therefore,

codimX×Y Zi = codimZ×Z∆Z = dimZ,

as required.

4.1 Problem 1.0.2 with X = Y and ϕ, ψ, f, g surjective mor-
phisms

When X = Y in Problem 1.0.2, we may further simplify the problem of stabilising the
descending chain of closed subsets as described at the start of this section. In this case, we
will omit the maps f and g from our consideration, since we may determine if the points
ϕi(x), ψi(y) ∈ X are the same given x, y ∈ X. For the following, we will denote

Xi := {(x, y) ∈ X ×X | ϕi(x) = ψi(y)}.

As before, solving Problem 1.0.2 in this case is equivalent to finding the smallest integer
N ≥ 1 such that

X1 ∩X2 ∩ · · · ∩XN = X1 ∩X2 ∩ · · · ∩XN+1 (4.1)

given that Lemma 3.0.1 also applies to this case.
To simplify the problem further, we will assume that both ϕ and ψ are morphisms, so

that ϕ and ψ become surjective morphisms given that they are dominant maps. Then, we
may follow the general approach as in Idea 3.0.3 to give an upper bound on N . In fact, we
will apply the general approach to the chain of descending subsets

∆X ⊇ ∆X ∩X1 ⊇ ∆X ∩X1 ∩X2 ⊇ . . . (4.2)
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where ∆X ⊂ X×X is the diagonal subvariety. Given that ϕ and ψ are surjective morphisms,
(ϕ, ψ)(X1) = ∆X and (ϕ, ψ)(Xi) = Xi−1 for each i > 1. Thus, equality 4.1 is true if and
only if the chain 4.2 is such that

∆X ∩X1 ∩X2 ∩ · · · ∩XN−1 = ∆X ∩X1 ∩X2 ∩ · · · ∩XN .

When X is a curve, the upper bound on N has a particularly simple expression. This is
because there are no positive dimensional components of ∆X ∩X1 unless ∆X ⊆ X1.

Lemma 4.1.1. Let X be a one-dimensional projective variety, and let ϕ : X → X,ψ : X →
X be surjective morphisms. Let ∆X ⊂ X ×X be the diagonal subvariety, and set

Xi := (ϕ−i, ψ−i)(∆X) := {(x, y) ∈ X ×X | ϕi(x) = ψi(y)} ⊆ X ×X.

If there exists a component C ⊆ ∆X ∩X1 of positive dimension, then ∆X ⊆ X1.

Proof. Denote F := (ϕ, ψ). Suppose that C ⊆ ∆X ∩X1 is a positive dimensional irreducible
component. Then, dimC = 1 = dim∆X . Since ∆X ⊂ X × X is irreducible and C ⊆
∆X ∩X1 ⊆ ∆X , we must have that C = ∆X . Hence, ∆X ⊆ X1.

Proposition 4.1.2. Let X, ϕ, ψ and Xi be as in Lemma 4.1.1. Fix an embedding X ⊆ Pn

for some n ≥ 1, and suppose that degX = d, deg ϕ = e1 and degψ = e2 under this
embedding. Denote e = max{e1, e2}. Then,

∆X ∩X1 ∩X2 ∩ · · · ∩Xγ1,1 = ∆X ∩X1 ∩X2 ∩ · · · ∩Xγ1,1+1

where

γ1,1 = 2n+1

(
2n

n

)n+1

d2en+1.

Proof. Denote F := (ϕ, ψ). Firstly, if ∆X ∩X1 contains a positive dimensional component,
then F−1(∆X) = X1 = ∆X by Lemma 4.1.1. By simple induction, Xi = F−i(∆X) = ∆X

for all i ≥ 1, so
∆X = ∆X ∩X1 = ∆X ∩X1 ∩X2 = . . .

Since γ1,1 > 1 for any n ≥ 1, WLOG we may assume that ∆X ≠ X1. Thus, dim(∆X ∩
X1) = 0. By Bézout’s theorem,

|∆X ∩X1| ≤ deg∆X degX1.

By Corollary 3.3.2, deg σn,n(∆) = 2n, where ∆ is the diagonal subvariety of Pn × Pn.
Also, using the same argument as in Lemma 3.0.4,

X1 = (X ×X) ∩ V (ϕi(x) = ψi(y) | i = 0, 1, . . . , n)

as a subset of Pn × Pn, where ϕi, ψi are coordinate expressions of ϕ and ψ respectively as
homogeneous polynomials in the coordinate ring of Pn. Thus, by Corollary 3.1.5,

deg σn,n(X ×X) =

(
2

1

)
d2 = 2d2.
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Also,

deg σn,n(V (ϕi(x) = ψi(y) | i = 0, 1, . . . , n)) ≤
(
2n

n

)n+1

en+1,

where the bound is calculated by applying Lemma 3.2.1 to homogenizations of the polynomials
ϕi(x) = ψi(y) for each i (notice that the bidegree of the homogenization would still be
(e1, e2), so the bound from Lemma 3.2.1 still applies).

Hence, using Theorem 2.2.18 and the fact that σn,n is injective:

deg σn,n(X1) ≤ 2

(
2n

n

)n+1

d2en+1.

Since σn,n(∆X ∩X1) = σn,n(∆) ∩ σn,n(X1), we have that

|∆X ∩X1| = |σn,n(∆X ∩X1)|
≤ deg σn,n(∆) deg σn,n(X1)

≤ 2n+1

(
2n

n

)n+1

d2en+1

= γ1,1.

Therefore, the result follows from Lemma 3.0.1.

When X is of arbitrary dimension, we will characterize when irreducible components
C ⊆ ∆X ∩X1 stabilise in the chain 4.2 by considering the dimension of (ϕ, ψ)i(C).

Lemma 4.1.3. Let X be an r-dimensional irreducible projective variety, and let ϕ, ψ :
X → X be surjective morphisms. Fix an embedding ιX : X ↪→ Pn under which degX = d,
deg ϕ = e1 and degψ = e2, and denote e = max{e1, e2} ≥ 1. Let ∆X ⊂ X × X be the
diagonal subvariety, and set Xi := (ϕ−i, ψ−i)(∆X) ⊆ X ×X. If there exists an irreducible
subvariety C ⊆ ∆X of dimension ≥ r − 1 such that C ⊆ ∆X ∩X1 ∩X2 ∩ · · · ∩Xγr,1 where

γr,1 = 2n
(
2r

r

)(
2n

n

)n+1

d2en+1,

then either

1. C ⊆ Xi for all i ≥ 1, or

2. dim (ϕ, ψ)γr,1+1(C) ∩∆X < r − 1.

Proof. Firstly, if dimC = r = dim∆X , then X1 ⊇ C = ∆X since both C and ∆X are
irreducible. In this case, X1 = X1 ∩X2 ∩ · · · ∩Xi for all i’s.

Thus, WLOG we may assume that X1 ⊉ ∆X . Suppose that C ⊆ ∆X is an irreducible
subvariety of dimension ≥ r−1 such that C ⊆ ∆X ∩X1∩X2∩ · · ·∩Xγr,1 . By C ⊆ ∆X ∩X1,
dimC ≤ dim∆X ∩X1 ≤ r − 1, so dimC = r − 1.

Denote F := (ϕ, ψ), Ci = F i(C) and X0 := ∆X . Since F is surjective, F (Xi) = Xi−1 for
each i ≥ 1. Then,

F i(C) ⊆ Ci ⊆ X0 ∩X1 ∩X2 · · · ∩Xγr,1−i.
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By Theorem 2 of [Mu99, I.§8],

dimF i(C) ≤ dimC = r − 1

since the image of C under F i is dense in F i(C) for each i. Thus, if dimCi < dimC for any
i = 1, . . . , γr,1, then dimCγr,1+1 ∩X0 < dimC = r − 1.

Now, suppose that dimCi = dimC = r − 1 for each i = 0, 1, . . . , γr,1, so each Ci is an
irreducible (r − 1)-dimensional component of X0 ∩X1 given that dimX0 ∩X1 ≤ r − 1. We
may calculate the maximum number of unique irreducible (r− 1)-dimensional components of
X0 ∩X1 as follows. By Corollary 3.3.2, deg σn,n(∆) = 2n. Also, by Corollary 3.1.5, Lemma
3.2.1 and Theorem 2.2.18:

deg σn,n(X1) ≤
(
2r

r

)(
2n

n

)n+1

d2en+1.

Thus, by applying Theorem 2.2.18 on σn,n(X0 ∩X1) = σn,n(∆ ∩X1) in P(n+1)2−1:

deg σn,n(∆ ∩X1) ≤ deg σn,n(∆) deg σn,n(X1) ≤ 2n
(
2r

r

)(
2n

n

)n+1

d2en+1 = γr,1.

Hence, X0∩X1 can contain at most γr,1 unique irreducible (r−1)-dimensional components.
In this way, we have the following cases:

1. If Ci = Cj for some i ̸= j, i, j = 0, 1, . . . , γr,1, then Ci ⊆ X0 for all i ≥ 1.

2. Otherwise, Ci ̸= Cj for any i ≠ j, i, j = 0, 1, . . . , γr,1. By assumption, Ci ⊆ X0 ∩X1

for each i = 0, 1, . . . , γr,1 − 1. We know that X0 ∩X1 contains γr,1 unique irreducible
(r − 1)-dimensional components, so Cγr,1 ⊈ X0 ∩X1. Since Cγr,1 ⊆ X0 by assumption,
we must have Cγr,1 ⊈ X1. Thus, Cγr,1+1 ⊈ X0 as X1 = F−1(X0) and F is surjective
on X ×X. This implies that

dimCγr,1+1 ∩X0 < dimC = r − 1,

as required.

Notation 4.1.4. Denote

γr,1 := 2n
(
2r

r

)(
2n

n

)n+1

d2en+1,

as in Lemma 4.1.3. For each j = 2, . . . , r, define γr,j inductively as follows:

γr,j := 2n
λr,j−1∏
i=1

(
2r

r

)(
2n

n

)n+1

d2ei(n+1).

where
λr,j := γr,j + γr,j−1 + · · ·+ γr,1 + 1.

Further, we will adopt the following conventions:

γr,0 := 0, λr,0 := γr,0 + 1 = 1.
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Proposition 4.1.5. Let X, ϕ, ψ and Xi be as defined in Lemma 4.1.3. Suppose that
degX = d, deg ϕ = e1 and degψ = e2 under a fixed embedding ιX : X ↪→ Pn, and set
e = max{e1, e2}. Let C ⊆ ∆X be an irreducible subvariety of dimension ≥ r − k with
k = 0, 1, . . . , r. Suppose that

C ⊆ ∆X ∩X1 ∩X2 ∩ · · · ∩Xλr,k−1.

Denote F := (ϕ, ψ), Ci := F i(C) for each i ≥ 0, and X0 := ∆X . Then, either

1. C ⊆ Xi for each i ≥ 0, or

2. dimCλr,k
∩X0 < r − k.

Proof. The proof follows by induction on k. Denote F := (ϕ, ψ). The case k = 1 is covered by
Lemma 4.1.3. For the inductive case, suppose that the statement is true for any irreducible
subvariety of X0 := ∆X of dimension ≥ r − (k − 1) for k > 1. Let C ⊆ X0 be an irreducible
subvariety of dimension ≥ r − k, and suppose that

C ⊆ X0 ∩X1 ∩ · · · ∩Xλr,k−1.

Claim: Either C ⊆ Xi for each i ≥ 0 or

dimCλr,k−1+i ≤ r − k

for each i ≥ 0.

This claim follows from the inductive hypothesis. When dimC ≥ r− (k− 1), we know
by the inductive hypothesis that either C ⊆ Xi for each i ≥ 0 or

dimCλr,k−1
∩X0 ≤ r − k,

Since Cλr,k−1
⊆ X0 by assumption, this implies that

dimCλr,k−1+i ≤ dimCλr,k−1
≤ r − k

for each i ≥ 0.

When dimC = r − k, dimCi ≤ r − k for every i ≥ 0. Thus, in this case,

dimCλr,k−1+i ≤ r − k

for each i ≥ 0 as well.

For the rest of the proof, we will suppose that dimCλr,k−1+i ≤ r − k for each i ≥ 0, since
C ⊆ Xi for each i ≥ 0 otherwise. Let S ⊆ X0 ∩ X1 ∩ · · · ∩ Xλr,k−1

be the union of all
irreducible components Z ⊆ X0 ∩X1 ∩ · · · ∩Xλr,k−1

of dimension ≥ (r − k) + 1 such that

dimZλr,k−1
∩X0 ≥ (r − k) + 1.

By the inductive hypothesis, Z ⊆ Xi for each i ≥ 0, implying that S ⊆ Xi for each i ≥ 0.
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Let E be the union of components of X0 ∩X1 ∩ · · · ∩Xλr,k−1
of dimension ≥ (r − k) + 1

which are not in S, and let L be the union of the lower dimensional components, i.e.,
dimL ≤ r − k. Hence, we may write

X0 ∩X1 ∩X2 ∩ · · · ∩Xλr,k−1
= S

⊔
E
⊔
L

as a disjoint union. Thus, whenever an irreducible subvariety Z of the above set is such that
Z ⊈ S, we must have that Z ∩ S = ∅ and similarly for Z ∩ E as well as Z ∩ L.

Notice that
Ci ⊆ X0 ∩X1 ∩X2 ∩ · · · ∩Xλr,k−1

for every i = 0, 1, . . . , γr,k − 1. In the following, we will divide the cases according to Ci ⊆ S,
E or L for i = 0, 1, . . . , γr,k − 1.

1. If Ci0 ⊆ S for any i0 = 0, 1, . . . , λr,k, then Ci ⊆ X0 = ∆X for every i ≥ i0 since

Ci = F i−i0(Ci0) ⊆ F i−i0(S) ⊆ ∆X .

2. Thus, suppose that Ci ⊈ S for any i = 0, 1, . . . , λr,k, so that Ci ∩ S = ∅ for i =
0, 1, . . . , λr,k. Then, we can divide up the cases as follows.

(a) Suppose that there does not exist any irreducible component El ⊆ E such that
Cj , Cj′ ⊆ El for j ≠ j′ and j, j′ = 0, 1, . . . , γr,k. WLOG, suppose that Cj ̸= Cj′

for any j ̸= j′, j, j′ = 0, 1, . . . , γr,k, as we would have Ci ⊆ X0 = ∆X for each
i ≥ 1 otherwise.

Since Ci ∩ S = ∅ for any i ≤ γr,k − 1 < λr,k, Ci ⊆ E ⊔ L for any i ≤ γr,k − 1.
The number of irreducible components of E ⊔ L is bounded by its degree, which
is turn bounded by the degree of X0 ∩X1 ∩ · · · ∩Xλr,k−1

:

degX0 ∩X1 ∩ · · · ∩Xλr,k−1
≤ deg∆

λr,k−1∏
i=1

degXi

≤ 2n
λr,k−1∏
i=1

(
2r

r

)(
2n

n

)n+1

d2ei(n+1),

= γr,k.

where deg∆ = 2n by Corollary 3.3.2, and the upper bound on the product of
the degrees of the Xi’s follows from Corollary 3.1.5, Lemma 3.2.1 and Theorem
2.2.18.

Now, recall that
dimCλr,k−1+i ≤ r − k

for each i ≥ 0 and that dimL ≤ r − k. We have the following two sub-cases.

• dimCi ≥ r − k for each i = 0, 1, . . . , γr,k. By assumption, no irreducible
component of E can contain more than one of such Ci. It follows that each
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Ci, i = 0, 1, . . . , γr,k − 1, must be on a unique component of E ⊔ L, so Cγr,k

cannot be contained in any component of E or L. Thus,

Cγr,k ⊈ S ⊔ E ⊔ L = X0 ∩X1 ∩X2 ∩ · · · ∩Xλr,k−1
.

By assumption,

Cγr,k ⊆ X0 ∩X1 ∩X2 ∩ · · · ∩Xλr,k−1−1,

so we must have that Cγr,k ⊈ Xλr,k−1
. Hence, Cλr,k

= Cγr,k+λr,k−1
⊈ X0, so

dimCλr,k
∩X0 < dimCλr,k

≤ r − k

as required.

• dimCi0 < r − k for some i0 = 0, 1, . . . , γr,k. Then,

dimCλr,k
∩X0 ≤ dimCλr,k

≤ dimCi0 < r − k,

as required.

(b) Otherwise, there exists an irreducible component El ⊆ E such that Cj , Cj′ ⊆ El

for j ̸= j′ and j, j′ = 0, 1, . . . , γr,k. WLOG, let j < j′. Then,

Cλr,k−1+j = F λr,k−1(Cj), Cλr,k−1+j′ = F λr,k−1(C ′
j) ⊆ F λr,k−1(El).

By the definition of E, El ∩ S = ∅, so

dimF λr,k−1(El) ∩X0 < r − (k − 1).

Since F λr,k−1(El) ⊆ X0 by

El ⊆ E ⊆ X0 ∩X1 ∩ · · · ∩Xλr,k−1

it follows that dimF λr,k−1(El) < r − (k − 1) by the inductive hypothesis. Hence,
we have the following two sub-cases:

• dimCλr,k−1+j = dimCλr,k−1+j′ = dimF λr,k−1(El), implying

Cλr,k−1+j = Cλr,k−1+j′ = F λr,k−1(El)

because all these sets are irreducible.
Since F λr,k−1(El) ⊆ X0, we must have that

Cλr,k−1+j = Cλr,k−1+j′ ⊆ X0 = ∆X .

Thus, Ci ⊆ ∆X for each i ≥ 1. It follows that C ⊆ Xi for each i ≥ 1 in this
case.
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• dimCλr,k−1+j′ < dimF λr,k−1(El) < r − (k − 1). (Notice that the case

dimCλr,k−1+j < dimF λr,k−1(El) implies the above case as j′ > j, so it
suffices to consider the above case.) Hence,

dimCi ≤ dimCλr,k−1+j′ < r − k

for all i ≥ λr,k−1 + j′, which implies that

dimCλr,k+i ∩X0 < r − k

for all i ≥ 0 given that λr,k−1 + j′ ≤ λr,k.

If a subvariety C ⊆ X0 = ∆X is such that C ⊆ Xi for all i ≥ 0, then clearly

dim (ϕi, ψi)(C) ∩X0 ≥ 0

for each i ≥ 0. Hence, Proposition 4.1.5 leads us to the following solution to the case X = Y
of arbitrary dimensions.

Theorem 4.1.6. Let X, ϕ, ψ and Xi be as defined in Lemma 4.1.3. Suppose that degX = d,
deg ϕ = e1 and degψ = e2 under a fixed embedding ιX : X ↪→ Pn, and set e = max{e1, e2}.
Let C ⊆ ∆X be an irreducible subvariety, and suppose that

C ⊆ ∆X ∩X1 ∩X2 ∩ · · · ∩Xλr,r−1.

Denote F := (ϕ, ψ), Ci := F i(C) for each i ≥ 0, and X0 := ∆X . Then, either

1. C ⊆ Xi for each i ≥ 0, or

2. Cλr,r ∩X0 = ∅.

Proof. The theorem follows from applying Proposition 4.1.5 with k = r. Since dimC ≥ 0, it
follows that either C ⊆ Xi for each i ≥ 0 or

dimCλr,r ∩X0 < 0,

i.e., Cλr,r ∩X0 = ∅.

Therefore, the descending chain of closed subsets

∆X ⊇ ∆X ∩X1 ⊇ ∆X ∩X1 ∩X2 ⊇ . . .

stabilises at some
N ≤ λr,r.

It follows that the descending chain of closed subsets

X1 ⊇ X1 ∩X2 ⊇ · · · ⊇ X1 ∩X2 ∩ · · · ∩XN ⊇ . . .
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is such that
X1 ∩X2 ∩ · · · ∩XN = X1 ∩X2 ∩ · · · ∩XN+1

for each m ≥ λr,r + 1. By Lemma 3.0.1, this gives a solution to Problem 1.0.2 where X = Y
and all dominant rational maps are surjective morphisms.

In practice, we would expect the above descending chain of closed subsets to stabilize at
some N ≥ 1 much less than λr,r, given that the upper bound of the number of components
of the intersection

X1 ∩X2 ∩ · · · ∩Xλr,k

is very pessimistic.
In fact, if we view X1 ∩X2 as a subset of X ×X, we would expect the codimension of

X1 ∩X2 in X ×X to be
dimX + dimX = 2dimX,

given that X1, X2 are of pure dimension dimX by Lemma 4.0.2. This implies that X1∩X2 is
a zero-dimensional algebraic set in the generic case. Even in the non-generic case, we would
expect the intersection X1 ∩X2 ∩ · · · ∩Xi to have all but its zero-dimensional components
stabilise for some small i. Hence, we reformulate Theorem 4.1.6 below, which will be helpful
for practical computations.

Theorem 4.1.7. Let X, ϕ, ψ and Xi be as defined in Lemma 4.1.3, with dimX = r.
Suppose that degX = d, deg ϕ = e1 and degψ = e2 under a fixed embedding ιX : X ↪→ Pn,
and set e = max{e1, e2}. Denote X0 := ∆X , and write

X0 ∩X1 ∩ · · · ∩Xi = (X0 ∩X1 ∩ · · · ∩Xi)
+ ⊔ (X0 ∩X1 ∩ · · · ∩Xi)

0

as a disjoint union where (X0 ∩X1 ∩ · · · ∩Xi)
+ is the union of the positive-dimensional

components and (X0 ∩X1 ∩ · · · ∩Xi)
0 is the union of the zero-dimensional ones. If

(X0 ∩X1 ∩ · · · ∩XN1)
+ = ∅

for some N1 ≥ 1, then

X0 ∩X1 ∩ · · · ∩XN = X0 ∩X1 ∩ · · · ∩XN+1

for some

N ≤ 2n
N1∏
i=1

(
2r

r

)(
2n

n

)n+1

d2ei(n+1) +N1.

Proof. Denote ZN1 := (X0 ∩X1 ∩ · · · ∩XN1)
+. If ZN1 = ∅ for some N1 ≥ 1, then the set

X0 ∩X1 ∩ · · · ∩XN1 is zero-dimensional, and its size can be bounded using Theorem 2.2.18:

#|X0 ∩X1 ∩ · · · ∩XN1 | ≤ deg∆

N1∏
i=1

degXi

≤ 2n
N1∏
i=1

(
2r

r

)(
2n

n

)n+1

d2ei(n+1),

where deg∆ = 2n by Corollary 3.3.2, and the bounds on the degrees of the Xi’s follow from
Corollary 3.1.5, Lemma 3.2.1 and Theorem 2.2.18. The result follows from Lemma 3.0.1.
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Remark 4.1.8. We would like to point out that, while the bounds given by Theorem 4.1.6
and Theorem 4.1.7 are calculated with the assumption that the base field k is algebraically
closed, those bounds also apply for the case where k is of characteristic zero but not
algebraically closed. Indeed, suppose that k is of characteristic zero but not necessarily
algebraically closed, and denote the algebraic closure of k by k. Then, for each i ≥ 1:

Xi(k) ⊆ Xi

(
k
)

where Xi(k) denotes Xi as an algebraic variety defined over k. Thus, if

X1

(
k
)
∩X2

(
k
)
∩ · · · ∩XN

(
k
)
= X1

(
k
)
∩X2

(
k
)
∩ · · · ∩XN+1

(
k
)

for some N ≥ 1, and (x, y) ∈ X(k)×X(k) is such that

f ◦ ϕi(x) = g ◦ ψi(y)

for each i = 1, . . . , N + 1, then

f ◦ ϕi(x) = g ◦ ψi(y)

for each i ≥ 1 given that (x, y) ∈ X
(
k
)
×X

(
k
)
.

4.2 Solving Problem 1.0.2

In this subsection, we will give a complete proof of Theorem 1.0.3 and give a solution to
Problem 1.0.2. The steps taken in the solution will be very similar to the simplified case
where X = Y and ϕ, ψ, f, g are morphisms. Here, we would only need to account for the
fact that the dominant rational maps may have non-empty locus of indeterminacy. Recall
that we would like to consider the descending chain

Y1 ⊇ Y1 ∩ Y2 ⊇ · · · ⊇ Y1 ∩ Y2 ∩ · · · ∩ Yn ⊇ . . .

where
Yi := {(x, y) ∈ X × Y | f(ϕi(x)) = g(ψi(y)) ∈ P1} ⊆ X × Y

for each i ≥ 0. By fixing embeddings ιX : X ↪→ Pm, ιY : X ↪→ Pn, we may express Yi as an
intersection of two hypersurfaces in Pm × Pn using Lemma 3.0.4:

Yi = (X × Y ) ∩ V (f0 ◦ ϕi(x) = g0 ◦ ψi(y), f1 ◦ ϕi(x) = g1 ◦ ψi(y)) ⊆ Pm × Pn,

where fj , gj , j = 0, 1 are the coordinate expressions of f and g under the embeddings ιX , ιY
respectively. In particular, each Yi is still a closed algebraic set in Pm × Pn. Hence, we may
apply the exact same procedure as in the previous subsection to the descending chain of
intersection of Yi’s.

The following lemma will allow us to generalize the proof technique from the last
subsection.

Lemma 4.2.1. Let (X,ϕ, x, f), (Y, ψ, y, g) be as in Problem 1.0.2, and let Yi be as defined
above. Denote F := (ϕ, ψ) and Fi := (f ◦ ϕi, g ◦ ψi) for each i ≥ 0. Then, for each i ≥ 1,

F (Yi) = Yi−1.
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Proof. Let ∆ ⊂ P1 × P1 be the diagonal subvariety. Firstly, notice that Yi = F−1(Yi−1)
for each i ≥ 1. This is because if (x, y) ∈ Yi, then Fi(x, y) = Fi−1 ◦ F (x, y) ∈ ∆, so
(x, y) ∈ F−1(Yi−1). For the other inclusion, if (x, y) ∈ F−1(Yi−1), then F (x, y) ∈ Yi−1

implies that Fi−1 ◦ F (x, y) = Fi(x, y) ∈ ∆, so (x, y) ∈ Yi.
Hence,

F (Yi) = F (F−1(Yi−1)) = Yi−1

since F is a dominant rational map on X ×X.

The proof technique for solving Problem 1.0.2 in general is very similar to the one given
in the last section: we will still apply a proof by induction on the dimension of subvarieties
of Y1. In the following, we will only give a proof sketch of the solution, and we will refer to
Lemma 4.1.3 and Proposition 4.1.5 where the same proof technique is applied.

Proposition 4.2.2. Let (X,ϕ, x, f), (Y, ψ, y, g) be as in Problem 1.0.2, and let Yi be as
defined above. Denote dimX = r, dimY = s, and fix embeddings X ⊆ Pm, Y ⊆ Pn for some
m ≥ r, n ≥ s. Suppose that degX = d1,deg Y = d2, deg f ◦ ϕ = e1 and deg g ◦ ψ = e2
under these embeddings, and set e = max{e1, e2}. If C ⊆ Y1 is an irreducible subvariety of
dimension ≥ r + s− 1 such that

C ⊆ Y1 ∩ Y2 ∩ · · · ∩ Yγ̃r,s,1−1

where

γ̃r,s,1 :=

(
r + s

r

)(
m+ n

n

)2

d1d2e
2,

then either

1. C ⊆ Yi for each i ≥ 1, or

2. dimCγ̃r,s,1
∩ Y1 < dimC, where Cγ̃r,s,1

= (ϕγ̃r,s,1 , ψγ̃r,s,1)(C).

Proof. Denote F := (ϕ, ψ) and Ci = F i(C) for each i ≥ 0. Firstly, dimY1 ≤ dimX×Y −1 =
r + s− 1 by Lemma 4.0.1, so dimC = r + s− 1. Thus, dimCi ≤ r + s− 1 for each i ≥ 0
since F i is dominant for each i ≥ 1.

Also, notice that for each i ≥ 1,

Ci+1 := F i+1(C) = F (F i(C)) = F (Ci)

since F is dominant. Thus, if dimCi < r + s− 1 for any i = 1, . . . , γ̃r,s,1, we have

dimCγ̃r,s,1
∩ Y1 ≤ dimCγ̃r,s,1

≤ dimCi < r + s− 1

as required.
Now, suppose that dimCi = dimC = r + s − 1 for each i = 0, 1, . . . , γ̃r,s,1. Since

Ci = F i(C) ⊆ F i−1(Yi) = Y1 for every i ≤ γ̃r,s,1 − 1, each Ci is an irreducible (r + s − 1)-
dimensional component of Y1. Thus, the maximum number of unique irreducible (r+ s− 1)-
dimensional components of Y1 is given by Lemma 3.2.1:

deg σn,n(Y1) ≤
(
r + s

r

)(
m+ n

n

)2

d1d2e
2 = γ̃r,s,1.
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Hence, Y1 can contain at most γ̃r,s,1 unique irreducible (r+s−1)-dimensional components.
In this way, we have the following cases:

1. If Ci = Cj for some i ̸= j, i, j = 0, 1, . . . , γ̃r,s,1, then Ci ⊆ Y1 for all i ≥ 1.

2. Otherwise, Ci ̸= Cj for any i ̸= j, i, j = 0, 1, . . . , γ̃r,s,1. By assumption, Ci ⊆ Y1 for
each i = 0, 1, . . . , γ̃r,s,1 − 1. We know that Y1 contains at most γ̃r,s,1 unique irreducible
(r + s− 1)-dimensional components, so Cγ̃r,s,1

⊈ Y1. Thus,

dimCγ̃r,s,1
∩ Y1 < dimC = r + s− 1,

as required.

Notation 4.2.3. Denote

γ̃r,s,1 :=

(
r + s

r

)(
m+ n

n

)2

d1d2e
2,

as in Lemma 4.2.2. For each j = 2, . . . , r + s, define γ̃r,s,j inductively as follows:

γ̃r,s,j :=

˜λr,s,j−1∏
i=1

(
r + s

r

)(
m+ n

n

)2

d1d2e
2i.

where
λ̃r,s,j := γ̃r,s,j + γ̃r,s,j−1 + · · ·+ γ̃r,s,1 + j.

Further, we will adopt the following conventions:

γ̃r,s,0 = 0, λ̃r,s,0 = γ̃r,s,0 + 1 = 1.

Proposition 4.2.4. Let (X,ϕ, x, f), (Y, ψ, y, g) be as in Problem 1.0.2, and let Yi be as
defined above. Denote dimX = r, dimY = s, and fix embeddings X ⊆ Pm, Y ⊆ Pn for some
m ≥ r, n ≥ s. Suppose that degX = d1, deg Y = d2, deg f ◦ϕ = e1 and deg g ◦ψ = e2 under
these embeddings, and set e = max{e1, e2}. Also, suppose that C ⊆ Y1 is an irreducible
subvariety of dimension ≥ r + s− k such that

C ⊆ Y1 ∩ Y2 ∩ · · · ∩ Y
λ̃r,s,k−2

.

Denote F := (ϕ, ψ) and Ci := F i(C) for each i ≥ 0. Then, either

1. C ⊆ Yi for each i ≥ 1, or

2. dimC
λ̃r,s,k−1

∩ Y1 < r + s− k.
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Proof. The proof follows by induction on k. The case k = 1 is covered by Lemma 4.2.2. For
the inductive case, suppose that the statement is true for any irreducible subvariety of Y1 of
dimension ≥ r+ s− (k− 1) for k > 1. Let C ⊆ Y1 be an irreducible subvariety of dimension
≥ r + s− k, and suppose that

C ⊆ Y1 ∩ Y2 ∩ · · · ∩ Y
λ̃r,s,k−2

.

Then, using the inductive hypothesis and the fact that

Ci = F i(C) ⊆ F i(Yi+1) ⊆ Y1

for each i = 0, 1, . . . , λ̃r,s,k − 2, we have the following claim.
Claim: Either C ⊆ Yi for each i ≥ 0 or

dimC ˜λr,s,k−1−1+i
≤ r + s− k

for each i ≥ 0.
The proof of this claim can be carried out in exactly the same way as in Proposition

4.1.5. For the rest of the proof, we will suppose that dimC ˜λr,s,k−1−1+i
≤ r + s− k for each

i ≥ 0, since C ⊆ Yi for each i ≥ 1 otherwise. Let

S ⊆ Y1 ∩ Y2 ∩ · · · ∩ Y ˜λr,s,k−1

be the union of all irreducible components Z of the RHS of dimension ≥ (r+ s− k) + 1 such
that

dimZ ˜λr,s,k−1
∩ Y1 ≥ (r + s− k) + 1.

By the inductive hypothesis, Z ⊆ Yi for each i ≥ 1, implying that S ⊆ Yi for each i ≥ 1.
Let E be the union of components of Y1∩Y2∩· · ·∩Y ˜λr,s,k−1

of dimension ≥ (r+s−k)+1

which are not in S, and let L be the union of the lower dimensional components, i.e.,
dimL ≤ r + s− k. Hence, similarly as in Proposition 4.1.5, we may write

Y1 ∩ Y2 ∩ · · · ∩ Y ˜λr,s,k−1
= S

⊔
E
⊔
L

as a disjoint union. Thus, whenever an irreducible subvariety Z of the above set is such that
Z ⊈ S, we must have that Z ∩ S = ∅ and similarly for Z ∩ E as well as Z ∩ L.

Notice that
Ci ⊆ Y1 ∩ Y2 ∩ · · · ∩ Y ˜λr,s,k−1

for every i = 0, 1, . . . , γ̃r,s,k−1. In the following, we will divide the cases according to Ci ⊆ S,
E or L for i = 0, 1, . . . , γ̃r,s,k − 1, as in Proposition 4.1.5.

1. If Ci0 ⊆ S for any i0 = 0, 1, . . . , λ̃r,s,k − 1, then Ci ⊆ Y1 for every i ≥ i0 since

Ci = F i−i0(Ci0) ⊆ F i−i0(S) ⊆ Y1.

Hence, C ⊆ Yi for each i ≥ 1 in this case.
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2. Thus, suppose that Ci ⊈ S for any i = 0, 1, . . . , λ̃r,s,k − 1, so that Ci ∩ S = ∅ for

i = 0, 1, . . . , λ̃r,s,k − 1. Then, we can divide up the cases as follows.

(a) Suppose that there does not exist any irreducible component El ⊆ E such that
Cj , Cj′ ⊆ El for j ≠ j′ and j, j′ = 0, 1, . . . , γ̃r,s,k. WLOG, suppose that Cj ̸= Cj′

for any j ≠ j′, j, j′ = 0, 1, . . . , γ̃r,s,k, as we would have Ci ⊆ Y1 for each i ≥ 1
otherwise.

Since Ci∩S = ∅ for any i ≤ γ̃r,s,k−1 < λ̃r,s,k−1, Ci ⊆ E⊔L for any i ≤ γ̃r,s,k−1.
Then, calculating the number of irreducible components of E ⊔ L, we find that it
is bounded above by:

deg Y1 ∩ Y2 ∩ · · · ∩ Y ˜λr,s,k−1
≤ γ̃r,s,k.

Now, recall that
dimC ˜λr,s,k−1−1+i

≤ r + s− k

for each i ≥ 0 and that dimL ≤ r + s− k. We have the following two sub-cases.

• dimCi ≥ r+ s− k for each i = 0, 1, . . . , γ̃r,s,k. By assumption, no irreducible
component of E can contain more than one of such Ci. It follows that each
Ci, i = 0, 1, . . . , γ̃r,s,k − 1, must be on a unique component of E ⊔L, so Cγ̃r,s,k

cannot be contained in any component of E or L. Moreover, Cγ̃r,s,k
⊈ S by

assumption. Thus, using the same argument as in Proposition 4.1.5:

C
λ̃r,s,k−1

= C
γ̃r,s,k+ ˜λr,s,k−1

⊈ Y1,

so
dimC

λ̃r,s,k−1
∩ Y1 < dimC

λ̃r,s,k−1
≤ r + s− k,

as required.

• dimCi0 < r + s− k for some i0 = 0, 1, . . . , γ̃r,s,k. Then,

dimC
λ̃r,s,k−1

∩ Y1 ≤ dimC
λ̃r,s,k−1

≤ dimCi0 < r + s− k,

as required.

(b) Otherwise, there exists an irreducible component El ⊆ E such that Cj , Cj′ ⊆ El

for j ̸= j′ and j, j′ = 0, 1, . . . , γ̃r,s,k. WLOG, let j < j′. Then,

C ˜λr,s,k−1−1+j
, C ˜λr,s,k−1−1+j′

⊆ F
˜λr,s,k−1−1(El).

By the definition of E, El ∩ S = ∅, so

dimF
˜λr,s,k−1−1(El) ∩ Y1 < r + s− (k − 1)

using the inductive hypothesis.

Since
El ⊆ E ⊆ Y1 ∩ Y2 ∩ · · · ∩ Y

λ̃r,k−1
,

we know that F
˜λr,s,k−1−1(El) ⊆ Y1. It follows that dimF

˜λr,s,k−1−1(El) < r + s−
(k − 1). Hence, either
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• dimC ˜λr,s,k−1−1+j
= dimC ˜λr,s,k−1−1+j′

= dimF
˜λr,s,k−1−1(El), implying that

these sets are the same set as they are all irreducible. Thus,

C ˜λr,s,k−1−1+j
= C ˜λr,s,k−1−1+j′

⊆ Y1,

which implies that Ci ⊆ Y1 for each i ≥ 1. Thus, C ⊆ Yi for each i ≥ 1 in
this case. Or,

• dimC ˜λr,s,k−1−1+j′
< dimF

˜λr,s,k−1−1(El) < r + s− (k − 1). Hence, using the

same argument as in Proposition 4.1.5,

dimC
λ̃r,s,k−1

∩ Y1 < r + s− k.

Then, Theorem 1.0.3 follows from the below corollary.

Corollary 4.2.5. Let (X,ϕ, x, f), (Y, ψ, y, g) be as in Problem 1.0.2, and let Yi be defined
as previously. Denote dimX = r, dimY = s, and fix embeddings X ⊆ Pm, Y ⊆ Pn for some
m ≥ r, n ≥ s. Suppose that degX = d1, deg Y = d2, deg f ◦ϕ = e1 and deg g ◦ψ = e2 under
these embeddings, and set e = max{e1, e2}. Also, suppose that C ⊆ Y1 is an irreducible
subvariety such that

C ⊆ Y1 ∩ Y2 ∩ · · · ∩ Y ˜λr,s,r+s−2
.

Denote F := (ϕ, ψ) and Ci := F i(C) for each i ≥ 0. Then, either

1. C ⊆ Yi for each i ≥ 1, or

2. C ˜λr,s,r+s−1
∩ Y1 = ∅, implying that C ∩ Y ˜λr,s,r+s−1

= ∅.

Proof. Apply Proposition 4.2.4 to C with dimC ≥ 0 = (r + s)− (r + s).

Therefore, the descending chain of closed subsets

Y1 ⊇ Y1 ∩ Y2 ⊇ · · · ⊇ Y1 ∩ Y2 ∩ · · · ∩ YN ⊇ . . .

from Problem 1.0.2 stabilises at some

N ≤ λ̃r,s,r+s − 1

whenever dimX = r, dimY = s. This completes the proof of Theorem 1.0.3.
Finally, as in the last subsection, we have the following reformulation of Corollary 4.2.5

for practical computations.

Theorem 4.2.6. Let (X,ϕ, x, f), (Y, ψ, y, g) be as in Problem 1.0.2, and let Yi be defined
as previously. Denote dimX = r, dimY = s, and fix embeddings X ⊆ Pm, Y ⊆ Pn for some
m ≥ r, n ≥ s. Suppose that degX = d1, deg Y = d2, deg f ◦ϕ = e1 and deg g ◦ψ = e2 under
these embeddings, and set e = max{e1, e2}. Write

Y1 ∩ Y2 ∩ · · · ∩ Yi = (Y1 ∩ Y2 ∩ · · · ∩ Yi)+ ⊔ (Y1 ∩ Y2 ∩ · · · ∩ Yi)0
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as a disjoint union where (Y1 ∩ Y2 ∩ · · · ∩ Yi)
+ is the union of the positive-dimensional

components and (Y1 ∩ Y2 ∩ · · · ∩ Yi)0 is the union of the zero-dimensional ones. If

(Y1 ∩ Y2 ∩ · · · ∩ YN1)
+ = ∅

for some N1 ≥ 1, then

Y1 ∩ Y2 ∩ · · · ∩ YN = Y1 ∩ Y2 ∩ · · · ∩ YN+1

for some

N ≤
N1∏
i=1

(
r + s

r

)(
m+ n

n

)2

d1d2e
2i +N1.

Proof. Denote ZN1 = (Y1∩Y2∩ · · · ∩YN1)
+. Notice that if ZN1 = ∅, then Y1∩Y2∩ · · · ∩YN1

is zero-dimensional, and its size is bounded above by its degree. The degrees of each Yi may
be bounded from the above via Corollary 3.1.5, Lemma 3.2.1 and Theorem 2.2.18. The
theorem then follows from Lemma 3.0.1.

Remark 4.2.7. As in the last subsection, we remark that the bounds obtained in Corollary
4.2.5 and Theorem 4.2.6 also apply for the case where the base field k is of chracteristic zero
but not algebraically closed. In other words, Theorem 1.0.3 applies for the case where k is
not algebraically closed as well.

4.3 An Algorithm for Solving Problem 1.0.2 in Practice

Let (X,ϕ, x, f) and (Y, ψ, y, g) be data given in Problem 1.0.2. As in Theorem 1.0.3, we will
fix the following:

• r := dimX, s := dimY ;

• ιX : X ↪→ Pm, ιY : Y ↪→ Pn embeddings for some m ≥ r, n ≥ s;

• degX = d1, deg Y = d2 under the above embeddings;

• deg f ◦ ϕ = e1, deg g ◦ ψ = e2 under the embeddings ιX and ιY respectively;

• e := max{e1, e2}.

To solve Problem 1.0.2 with the above given data, we need to check

f(ϕi(x)) = g(ψi(y))

for each i = 1, . . . , N , where

N = λ̃r,s,r+s − 1

using the upper bound given by Theorem 1.0.3. Notice that λ̃r,s,r+s is a very large number
in general. This is because

γ̃r,s,1 :=

(
r + s

r

)(
m+ n

n

)2

d1d2e
2
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and

λ̃r,s,2 :=

λ̃r,s,1∏
i=1

(
r + s

r

)(
m+ n

n

)2

d1d2e
2i

≫

((
r + s

r

)(
m+ n

n

)2

d1d2e
2

)λ̃r,s,1

>

((
r + s

r

)(
m+ n

n

)2

d1d2e
2

)d1d2e2

>

((
r + s

r

)(
m+ n

n

)2

d1d2e
2

)D

,

where D = max{d1, d2, e2}.
Thus, even in the case where both X and Y are one-dimensional, the upper bound on the

number N ≥ 1 given by Theorem 1.0.3 grows much faster than an exponential function in the
variable D. This means that the upper bound given by Theorem 1.0.3 is not computationally
useful in general.

In the spirit of Theorem 4.1.7 and Theorem 4.2.6, we propose the following algorithm for
solving Problem 1.0.2. The general idea is that, given the data (X,ϕ, x, f) and (Y, ψ, y, g),
it is easy to compute the ideal generating Yi for each i ≥ 1 using any computer algebra
software: indeed, Lemma 3.0.4 allows one to compute generators of the ideal of Yi given the
maps ϕ, ψ, f and g. Then, one may compute Yi by computing the vanishing locus of the
ideal of each Yi, which is also not difficult when the ideals are generated by polynomials of
low orders. Thus, as soon as one finds

Y1 ∩ Y2 ∩ · · · ∩ YN = Y1 ∩ Y2 ∩ · · · ∩ YN+1

for some N ≥ 1, Problem 1.0.2 may be solved by checking

f(ϕi(x)) = g(ψi(y))

for each i = 1, . . . , N + 1.

Algorithm 4.3.1. Let (X,ϕ, x, f), (Y, ψ, y, g) be data as given in Problem 1.0.2.

1. If the pairs of maps (ϕ, f) and (ψ, g) are not given explicitly, write them down on
some affine covers of X and Y respectively.

2. Choose embeddings ιX : X ↪→ Pm and ιY : Y ↪→ Pn, so that X and Y may be viewed
as subvarieties of Pm and Pn respectively. Homogenize the pairs of maps (ϕ, f) and
(ψ, g) and write down their coordinate expressions on Pm and Pn respectively. Thus,
for each i ≥ 1, the coordinate expressions of ϕi and ψi may be computed iteratively
with those of ϕ and ψ.

3. Check that both ϕ and ψ are dominant rational maps when considered as self-maps
on Pm and Pn respectively. If applicable, check that they are regular and surjective on
the respective projective spaces. In addition, check that f and g are both dominant
rational maps.
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4. Compute the ideal generating Y1 via Lemma 3.0.4.

5. Compute the ideal generating Yi+1, i = 1, via Lemma 3.0.4.

6. Check if
Y1 ∩ Y2 ∩ · · · ∩ Yi = Y1 ∩ Y2 ∩ · · · ∩ Yi+1,

i = 1, by computing Y1, . . . , Yi+1 based on their ideals. Since inclusion of the RHS to
the LHS is trivial, it suffices to check the inclusion of the LHS to the RHS in practice.
If the above equality is true, then proceed to step 7(a). If the above equality is not
true, then check if

dimY1 ∩ Y2 ∩ · · · ∩ Yi+1 = 0.

If this is true, then proceed to step 7(b). If this is not true either, then update i with
i+ 1 and repeat steps 5 and 6.

7. (a) Check if
f(ϕj(x)) = g(ψj(y))

for each j = 1, . . . , i+ 1. By Lemma 3.0.1, if this is true, then

f(ϕj(x)) = g(ψj(y))

for every j ≥ 1. If this is false, then there exists some positive integer j such that

f(ϕj(x)) ̸= g(ψj(y)).

(b) Compute d1 := degX, d2 := deg Y , e1 := deg f ◦ ϕ and e2 := deg g ◦ ψ under the
embeddings ιX and ιY as defined in step 2. Denote r := dimX, s := dimY and
e := max{e1, e2}. Check if

f(ϕj(x)) = g(ψj(y))

for each j = 1, . . . , N + 1, where

N =

i∏
k=1

(
r + s

r

)(
m+ n

n

)2

d1d2e
2k + i.

By Theorem 4.2.6, if the above is true, then

f(ϕj(x)) = g(ψj(y))

for every j ≥ 1. If the above is false, then there exists some positive integer j
such that

f(ϕj(x)) ̸= g(ψj(y)).

In particular, the above algorithm is guaranteed to terminate by Theorem 1.0.3.
We remark that the bounds given by Theorem 4.2.6 may be replaced by those given by

Theorem 4.1.7 in the case of X = Y and ϕ, ψ are both regular and surjective. The algorithm
may also be re-written accordingly to adapt to this case, as in general, Theorem 4.1.7 gives
a better bound when X = Y .

Moreover, by Remark 4.1.8 and Remark 4.2.7, the above algorithm may also be applied
to solve Problem 1.0.2 when the base field is of characteristic zero but not algebraically
closed.
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Applications

5.1 Elliptic Divisibility Sequences

In this section, we will apply Algorithm 4.3.1 to show that an elliptic divisibility sequence,
as defined below, is equal term-by-term to the even terms of the Fibonacci sequence.

An elliptic divisibility sequence (EDS) is a sequence {wn}n≥1 satisfying the recurrence
relation

wn+mwn−m = wn+1wn−1w
2
m − wm+1wm−1w

2
n

for every n > m, with w1 = 1 (cf. [Wa48]). Such sequences were first defined by Morgan
Ward in the late 1940s, and their basic arithmetic properties are studied by Ward in [Wa48].

In particular, an EDS {wn} is uniquely determined by its first four terms, w1 = 1, w2, w3

and w4 [Wa48]. Ward also proved that an EDS may be associated with an elliptic curve,
provided that the first four terms of the EDS satisfy some arithmetic relations. More
precisely, one may define the discriminant of an EDS based on its first four terms, and the
EDS may be associated with an elliptic curve as long as its discriminant is non-zero [Wa48].

Some applications of EDS include the work of Katherine E. Stange [St07], in which
higher rank generalizations of EDS are used to compute the Tate pairing of an elliptic curve
over a finite field. This is significant since such pairings have applications in pairing-based
cryptography. For this paper, EDS are interesting since they are defined by nonlinear
recurrrence relations. Thus, EDS are not holonomic sequences in general, so one cannot
apply the method of Wilf and Zeilberger [WZ90a, WZ90b, Ze06, Ze90, Ze91] directly to
show that an EDS is the same as another sequence. As we shall see in the following example,
Algorithm 4.3.1 can be applied directly to show that an EDS is equal to another sequence.
In this way, our technique is indeed an analog of the method of Wilf and Zeilberger in the
dynamical setting.

For our specific example, we will set the initial values of the EDS {wn} to be w1 =
1, w2 = 3, w3 = 8 and w4 = 21. These are the first four even terms of the Fibonacci sequence,
and we will indeed prove that {wn} consists of the even terms of the Fibonacci sequence.

Proposition 5.1.1. Let {wn}n≥1 be the EDS given by the initial values w1 = 1, w2 =
3, w3 = 8 and w4 = 21. Denote the Fibonacci sequence by {Fn}n≥1, i.e., F1 = F2 = 1 and
Fn+2 = Fn+1 + Fn. Then, wn = F2n for each n ≥ 1.
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To prove this proposition, we apply Algorithm 4.3.1 as follows.

Step 1: Write down maps associated with the recurrences.

By definition, the Fibonacci numbers Fn satisfy the recurrence Fn+2 = Fn+1 +Fn. We
may generate {Fn} as a sequence on the affine plane A2 as follows. Let ϕ : A2 → A2

be the map given by ϕ(y1, y2) = (y2, y1 + y2). Then, it is straightforward to show that

ϕn(0, 1) = (Fn, Fn+1)

for each n ≥ 1. Thus, (ϕ2)n(0, 1) = (F2n, F2n+1).

As for the defining recurrence relation for the EDS {wn}, notice that for m = 2,

wn+2wn−2 = wn+1wn−1w
2
2 − w3w1w

2
n

for each n > 2. Using the initial values w1 = 1, w2 = 3, w3 = 8, we may write

wn+2 =
9wn+1wn−1 − 8w2

n

wn−2

for each n > 2. This gives us a means of computing wn recursively for each n > 4.
Thus, similarly as above, let ψ : A4 → A4 be the map given by

ψ(x1, x2, x3, x4) =

(
x2, x3, x4,

9x4x2 − 8x23
x1

)
.

Then, ψ(w1, w2, w3, w4) = (w2, w3, w4, w5), and it is straightforward to show that

ψn(w1, w2, w3, w4) = (wn+1, wn+2, wn+3, wn+4)

for each n ≥ 1.

Step 2: Write down homogenizations of ϕ2 and ψ on projective spaces.

We will homogenize ϕ2 and ψ by embedding the affine spaces A2 and A4 into P2 and
P4 respectively. Let A2 ↪→ P2 be the embedding given by (y1, y2) 7→ (1 : y1 : y2), so
that

ϕ2(y1, y2) = (1 : y1 + y2 : y1 + 2y2)

under this embedding. Thus,

Φ : P2 → P2, (y0 : y1 : y2) 7→ (y0 : y1 + y2 : y1 + 2y2)

is the homogenization of ϕ2. Note that we will be working over the open subset
P2 \ V (y0 = 0) ⊂ P2 by assumption.

Similarly, let A4 ↪→ P4 be the embedding given by (x1, x2, x3, x4) 7→ (1 : x1 : x2 : x3 :
x4). Thus,

Ψ : P4 → P4, (x0 : x1 : x2 : x3 : x4) 7→
(
x0 : x2 : x3 : x4 :

9x4x2 − 8x23
x1

)
=
(
x0x1 : x1x2 : x1x3 : x1x4 : 9x4x2 − 8x23

)
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is the homogenization of ψ. Note that we will be working over the open subset
P4 \ V (x0x1 = 0) ⊂ P4 by assumption.

Now, let f : P2 → P1, g : P4 → P1 be the projections onto the first two homogeneous
coordinates of P2 and P4 respectively. Then,

f ◦ Φi(1 : 1 : 2) = (1 : F2(i+1)),

g ◦Ψi(1 : w1 : w2 : w3 : w4) = (1 : wi+1).

Step 3: Check that the maps Φ and Ψ are dominant rational maps on P2 and P4 respectively.

It is clear that Φ and Ψ are morphisms on P2\V (y0 = 0) ⊂ P2 and P4\V (x0x1 = 0) ⊂ P4

respectively. If we can show that they are surjective maps on P2 and P4 respectively, we
may conclude that they are surjective morphisms on the respective projective spaces.

We would like to use computer algebra softwares for computations. In order to ensure
the accuracy of computations, we will let Q be the base field over which all varieties
are defined for the following calculation. Using Macaulay2, we may check that Φ and
Ψ are indeed surjective on P2(Q) and P4(Q) respectively:

i1 : R = QQ[x_0..x_4];

i2 : S = QQ[y_0,y_1,y_2];

i3 : needsPackage "RationalMaps";

i4 : psi = rationalMapping(Proj(R),Proj(R),

{x_0*x_1,x_1*x_2,x_1*x_3,x_1*x_4,9*x_2*x_4-8*x_3^2});

o4 : RationalMapping

i5 : phi = rationalMapping(Proj(S),Proj(S),{y_0,y_1+y_2,y_1+2*y_2});

i6 : idealOfImageOfMap(psi)

o6 = ideal 0

o6 : Ideal of R

i7 : idealOfImageOfMap(phi)

o7 = ideal 0

o7 : Ideal of S

Thus, Φ and Ψ are surjective endomorphisms on P2(Q) and P4(Q) respectively, so
they are dominant rational self-maps on P2(Q) and P4(Q) respectively, where Q is the
algebraic closure of Q.
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Step 4: Compute the ideal of Y1.

For illustration purposes, we will compute the ideal of each Yi by hand instead of using
Macaulay2. We have that

f ◦ Φ(y0 : y1 : y2) = (y0 : y1 + y2) =

(
1 :

y1 + y2
y0

)
,

g ◦Ψ(x0 : x1 : x2 : x3 : x4) = (x0x1 : x1x2) =

(
1 :

x2
x0

)
,

since y0, x0, x1 ̸= 0 by assumption. Thus,

Y1 = V

(
y1 + y2
y0

=
x2
x0

)
= V (y0x2 − x0(y1 + y2)),

which is a hypersurface of bidegree (1, 1) in variables xi, yj .

Step 5: Compute the ideal of Yi+1, i = 1.

Similarly, by computing f ◦ Φ2(y0 : y1 : y2) and g ◦Ψ2(x0 : x1 : x2 : x3 : x4), we may
find:

Y2 = V (y0x3 − x0(2y1 + 3y2)).

In particular, by Lemma 3.0.4 and Remark 3.0.5, note that the above expressions are
the ideals generating Yn over both the field Q and the field Q.

Step 6: Check if Y1 = Y1 ∩ Y2, and then if dimY1 ∩ Y2 = 0.

Firstly, we check if Y1 = Y1 ∩ Y2 using Macaulay2. Again, this is done over the field Q
for accuracy of the computations:

i1 : R = QQ[x_0..x_4,y_0..y_2,Degrees=>{5:{1,0},3:{0,1}}];

i2 : needsPackage "MultiprojectiveVarieties";

i3 : I1 = ideal(x_2*y_0-x_0*(y_1+y_2));

o3 : Ideal of R

i4 : I2 = ideal(y_0*x_3-x_0*(2*y_1+3*y_2));

o4 : Ideal of R

i5 : Z1 = projectiveVariety I1;

i6 : Z2 = projectiveVariety (I1 + I2);

i7 : isSubset(Z1, Z2)

o7 = false
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Since this is false, we proceed to check if dimY1 ∩ Y2 = 0:

i8 : dim Z2

o8 = 4

It turns out that dimY1 ∩ Y2 > 0, so we must repeat steps 5 and 6 with i = 2.

Repeats of Steps 5 and 6: Similarly as above,

Y3 = V (y0x4 − x0(5y1 + 8y2)).

In fact, it is straightforward to show that

Yn = V
(
y0Ψ

n−3
4 (x0 : x1 : x2 : x3 : x4)− x0x

2n−4

1 x
⌊2n−5⌋
2 x

⌊2n−6⌋
3 x

⌊2n−7⌋
4 Φn

1 (y0 : y1 : y2)
)

for each n ≥ 4, where we have denoted

Φ(y) := Φ(y0 : y1 : y2) = (Φ0(y) : Φ1(y) : Φ2(y)),

Ψ(x) := Ψ(x0 : x1 : x2 : x3 : x4) = (Ψ0(x) : Ψ1(x) : · · · : Ψ4(x)).

This may also be checked using computer algebra softwares.

Then, using Macaulay2, we proceed to check if Y1 ∩ Y2 = Y1 ∩ Y2 ∩ Y3 and if dimY1 ∩
Y2 ∩ Y3 = 0, then update i with i+ 1 and repeat these steps until one of these two
statements is true. In the following, we continue to compute over the field Q:

i9 : I3 = ideal(y_0*x_4-x_0*(5*y_1+8*y_2));

o9 : Ideal of R

i10 : Z3 = projectiveVariety (I1 + I2 + I3);

i11 : isSubset(Z2, Z3)

o11 = false

i12 : dim Z3

o12 = 4

i13 : I4 = ideal(y_0*(9*x_2*x_4-8*x_3^2)-x_0*x_1*(13*y_1+21*y_2));

o13 : Ideal of R

i14 : Z4 = projectiveVariety (I1 + I2 + I3 + I4);
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i15 : isSubset(Z3, Z4)

o15 = false

i16 : dim Z4

o16 = 4

i17 : I5 = ideal(y_0*(9*9*x_1*x_3*x_4*x_2-9*8*x_1*x_3^3-8*(x_1^2)*(x_4^2))

-x_0*(x_1^2)*x_2*(34*y_1+55*y_2));

o17 : Ideal of R

i18 : Z5 = projectiveVariety (I1 + I2 + I3 + I4 + I5);

i19 : isSubset(Z4, Z5)

o19 = true

Thus, the iterations terminate at i = 4, since Y1(Q)∩· · ·∩Y4(Q) = Y1(Q)∩· · ·∩Y5(Q).
Denote N = 4.

Step 7: Check that the first N +1 = 5 terms of {F2(n+1)}n≥1 and {wn+1}n≥1 are the same.

Notice that both the EDS {wn} and the even Fibonacci sequence {F2n} are in Q by
their defining recurrence relations. Thus, having worked over the field Q in the above
steps, we find that the iterative steps in Algorithm 4.3.1 terminate at N = 4. Also,
recall that

f ◦ Φn(1 : 1 : 2) = (1 : F2(n+1)),

g ◦Ψn(1 : w1 : w2 : w3 : w4) = (1 : wn+1).

Thus, F2(n+1) = wn+1 for each n ≥ 1 if f ◦ Φn(1 : 1 : 2) = g ◦Ψn(1 : w1 : w2 : w3 : w4)
for n = 1, 2, 3, 4, 5. Computing the first five terms of {F2(n+1)}n≥1 and {wn+1}n≥1

respectively, we see that this is indeed true!
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