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Abstract

It is natural to model and represent interaction data as graphs in a broad range of
domains such as online social networks, protein interaction data, and e-commerce appli-
cations. A number of emerging applications require continuous processing and querying
of interaction data that evolves at a high rate, in near real-time, which can be modelled
as a streaming graph. Persistent queries, where queries are registered into the system and
new results are generated incrementally as the graph edges arrive, facilitate online analysis
and real-time monitoring over streaming data. Processing persistent queries over stream-
ing graphs combines two seemingly different but challenging problems: graph querying
and streaming processing. Existing systems fail to support these workloads due to (i) the
complexity of graph queries that feature recursive path navigations, subgraph patterns,
and path manipulations, and (ii) the unboundedness and growth rate of streaming graphs
that make it infeasible to employ batch algorithms. Consequently, a growing number of
applications rely on specialized solutions tailored to specific application needs. This the-
sis introduces foundational techniques for efficient processing of persistent queries over
streaming graphs to support this emerging class of applications in a principled manner.

The main contribution of this thesis is the design and development of a general-purpose
streaming graph query processing framework. The novel challenges of persistent queries
over streaming graphs dictate rethinking the components of the well-established query
processor architecture, and this thesis introduces the models and algorithms to address
these challenges uniformly. The central notion of Streaming Graph Query precisely char-
acterizes the semantics of persistent queries over streaming graphs, making it possible to
reason about the expressiveness and the complexity of queries targeted by the aforemen-
tioned applications. Streaming Graph Algebra, defined as a closure of a set of operators
over streaming graphs, provides the primitive building blocks for evaluating and optimizing
streaming graph queries. Efficient, incremental algorithms as the physical implementations
of streaming graph algebra operators are provided, enabling streaming graph queries to be
evaluated in a data-driven fashion. It is shown that the proposed algebra constitutes the
foundational tool for the cost-based optimization of streaming graph queries by providing
an algebraic basis for query evaluation. Overall, this thesis provides principled solutions to
fundamental challenges for efficient querying of streaming graphs and describes the design
and implementation of a general-purpose streaming graph query processing framework.
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Chapter 1

Introduction

1.1 Streaming Graph Processing

Graphs are used to model complex interactions in various domains ranging from social
network analysis to communication network monitoring, from retailer customer analysis to
bioinformatics. Graph processing systems empower such applications by enabling querying
and processing of both the data stored in the graph and its topology, and they have gained
significant attention both in the industry (e.g., JanusGraph1, Neo4j2, TigerGraph [49]) and
academia [30, 172, 144]. Many real-world applications generate graphs over time as new
edges are produced, resulting in streaming graphs. Consider an e-commerce application:
each entity (such as users, messages, and items) can be modeled as a vertex, and each
interaction (such as clicks, reviews, and purchases) can be modeled as an edge. The
application receives and processes a sequence of graph vertices (users, items, etc.) and/or
edges (as users purchase items, like content, etc.) – the model in this thesis is one of
streaming edges with new vertices added implicitly. The graphs induced by these edges
are unbounded, i.e., they continuously evolve over time, and their arrival rates can be very
high. For example, Twitter’s recommendation system ingests 12K events/sec on average
[75], Alibaba transaction graph processes 30K edges/sec at its peak [137]. A recent survey
[141] reports that these workloads are prevalent in real applications, and efficient querying
of these streaming graphs is a crucial task for applications that monitor complex patterns
and relationships.

1https://janusgraph.org
2https://neo4j.com/
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Figure 1.1: Complex graph pattern representing the query in Example 1

Persistent queries on streaming graphs enable users to continuously obtain new results
on rapidly changing data, and existing graph DBMSs are not designed to keep up with the
arrival rates of many real-world applications [134]. Existing graph DBMSs mostly follow
the traditional database paradigm where data is persistent, and queries are transient.
Consequently, they do not support persistent query semantics where queries are registered
into the system and results are generated incrementally as the graph edges arrive. As
demonstrated in the following examples, persistent queries on streaming graphs facilitate
online analysis and real-time query processing, the latter being an important functionality
of future graph processing engines [143].

Example 1. In many online social networking applications, users post original content,
sometimes link this to other users’ content, and react to each other’s posts – these inter-
actions are modeled as a complex graph pattern as the one shown in Figure 1.1. A user u2
is a recentLiker for another user u1 if u2 has recently liked posts that are created by u1 and
u2, and u1 are following each other. The goal of the recommendation service is to notify
users, in real-time, of new content that is posted by others that are connected by a path of
recentLiker relationship – these constraints are modeled as a complex graph pattern like the
one shown in Figure 1.1. The service might provide the context for its recommendations
by returning the full paths of people who are recent likers, such as the path between users
u1 and uk. This real-time notification task is an example of a persistent query over the
streaming graph of user interactions that returns the recommended content in real-time.

Example 2 (Physical Contact Tracking). A number of Covid-19 contact tracing applica-
tions model interactions as graphs3 where people are represented as vertices and an edge
represents contact between two people if they visit the same space in the last 14 days (this is
a simplification). The goal is to notify people of a potential chain of contact with someone

3https://www.datanami.com/2020/03/12/tracking-the-spread-of-coronavirus-with-graph-
databases/
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Figure 1.2: Complex graph pattern representing the query in Example 2

who tested positive. As shown in Figure 1.2 (bottom), the task of contact tracing is also
a persistent graph query that returns the chain of contacts on a time window over this
streaming graph of people’s contacts.

The primary objective of this thesis is to study models, algorithms, and system archi-
tectures for the efficient processing of persistent graph queries over large streaming graphs
with very high edge arrival rates. This thesis takes steps toward the development of a
Streaming Graph Management System (SGMS) architecture by (i) identifying the research
challenges for efficient querying of streaming graphs, and (ii) describing a principled design
for a general-purpose streaming graph query processor that supports efficient execution of
persistent queries over streaming graphs.

1.2 Research Challenges

Efficient querying of streaming graphs as in Examples 1 and 2 requires tackling together
two already challenging problems: graph querying and stream processing. In particular,
evaluating graph queries with complex patterns requires:

• (R1) subgraph queries that find matches of a given graph pattern (e.g. in Fig-
ure 1.1 the triangle pattern involving posts, likes and transitive closure of the follows
relationship);

• (R2) path navigation queries that traverse paths based on user specified constraints
(e.g. in Figure 1.1 arbitrary-length paths of the recentLiker relationship); and

• (R3) the ability to treat paths as first-class citizens of the data model, hence to
manipulate and return paths (e.g. in Figure 1.1 the query returns the full paths of
recentLiker).

3



Even in the context of one-time queries over static graphs, which has been the focus of
existing research on graph querying, these are poorly addressed by existing graph database
management systems (DBMS) and their query languages. Subgraph queries are akin to
conjunctive queries (CQ), where data graph is represented as a binary relation, and ex-
isting relational techniques – multiway join algorithms in particular – can be employed to
evaluate these queries. Navigational queries, on the other hand, cannot be easily expressed
in the relational model [18], and alternative models for path navigation queries have long
been studied in the context of semi-structured data and object DBMSs, and recently graph
DBMSs. Graph DBMSs adopt regular path queries (RPQ) as the de-facto standard for
navigational queries where path constraints are expressed as regular expressions over edge
labels. The first two requirements are commonly addressed by closing the class of RPQ un-
der conjunction and disjunction – this is known as unions of conjunctive RPQs (UCRPQ)
[171, 30]. Although widely used in practice, UCRPQ is not considered to be a natural lan-
guage to formulate many real-world graph queries due to its lack of algebraic closure and
inability to express relations among paths [166, 138]. No existing work uniformly addresses
all three requirements of graph querying.

Addressing the above requirements of graph querying become more complex in the con-
text of persistent queries over streaming graphs, which is the focus of this thesis. Querying
streaming data in real-time imposes additional and novel requirements:

• (R4) unbounded graph streams make it infeasible to employ batch algorithms on
the entire stream; and

• (R5) graph edges arrive at a very high rate, and real-time answers are required as
the graph emerges.

Unboundedness and high-velocity arrivals have been studied within the context of the
relational model but not within the context of streaming graphs. A common thread in
these relational streaming systems is to restrict the scope of queries by evaluating them
over a window of data from the stream using non-blocking implementations of existing
relational operators, i.e., physical operator implementations that do not need the entire in-
put to be available before producing the first result. The use of windowing constructs has
been adapted for persistent query evaluation over RDF streams. There exists streaming
RDF systems with various SPARQL extensions such as C-SPARQL [21], CQELS [100],
SPARQLstream [36] and W3C proposal RSP-QL [48]. These systems are designed for
SPARQLv1.0; consequently, they are limited to subgraph patterns in the form of basic
graph patterns (BGP), and they do not support path navigation queries. Furthermore,
query processing engines of these systems do not employ incremental operators. Most
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importantly, taken together, R1-R5 form the challenges that any streaming graph query
system should tackle, and there are no current systems that handle these requirements.

1.2.1 Limitations of Existing Systems

The proliferation of graph data has resulted in a number of graph processing systems
in the past decade. Distributed graph processing engines (Pregel [110], GraphX [70],
PowerGraph [69]) focus on running offline analytical workloads on static graphs, such as
PageRank, connected component analysis etc. Graph DBMSs such as Neo4j, JanusGraph,
and TigerGraph specialize in online querying and manipulation of graph-structured data.
Their UCRPQ-based query languages lack algebraic closure and do not provide full com-
posability, limiting reuse and decomposition of queries for query optimization, view-based
query evaluation etc. Furthermore, the output of a path navigation query is typically
a set of pairs of vertices that are connected by a path under the constraints of a given
regular expression. Hence, these languages limit path navigation queries to boolean reach-
ability without the ability to return and manipulate paths. G-CORE [11] addresses these
limitations at the language specification level and has influenced the standardization ef-
forts for a query language for graph DBMSs4. No existing work uniformly addresses all
three requirements of graph querying. Furthermore, these systems predominantly employ
the snapshot model, which assumes that graphs are static and fully available, and ad hoc
queries reflect the current state of the database. Consequently, they neglect the continuous
nature of streaming graph workloads described above.

Existing streaming systems, on the other hand, either (i) focus on one-dimensional
streams in the relational model, which lacks path navigation features or (ii) provide generic
computation models that are not optimized for the streaming graph workloads targeted
in this thesis. Some streaming graph workloads are handled by non-streaming and spe-
cialized systems by performing repeated batch computations over windows of edges (e.g.,
[141]), because proper streaming solutions do not exist, not because this is the appropriate
computation model. These specialized streaming solutions can provide satisfactory perfor-
mance for the task at hand; however, they are not flexible to process any other workloads
as underlying data structures and algorithms are designed for a particular task. A general
query framework that addresses the above discussed requirements in a uniform and prin-
cipled manner is currently missing, hindering the development of a general-purpose query
processor for streaming graphs.

4See https://www.gqlstandards.org/.
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1.2.2 Long-term Vision

To address the aforementioned challenges of streaming graph querying, this thesis argues
for a principled design of a general-purpose streaming graph query processing framework
that consists of: (i) a formal query model and general-purpose algebra with well-founded
semantics, and (ii) a data-driven query processor with efficient, non-blocking operator
implementations. In analogy to traditional DBMSs, a general-purpose streaming graph
query processing framework should provide the machinery to realize the well-known steps
of query processing for streaming graph queries as follows:

1. a streaming graph query expressed in a declarative, high-level user language is trans-
lated into a query plan that consists of logical operators with precise semantics;

2. algebraic transformation rules are used to generate a set of equivalent plans for the
given query and to explore the plan space through query rewrites;

3. a cost model that is based on the statistics of the underlying data and the system
conditions is used by the optimizer to find a “good” plan among the set of equivalent
plans for the given query;

4. the execution plan is built by selecting appropriate physical implementations of logical
operators that are incremental and non-blocking;

5. the execution engine continuously executes the persistent query upon arrival of new
edges to obtain new results.

The life cycle of a query in this reference query processor architecture is depicted in
Figure 1.3. This mimics the query processor architecture of relational DBMSs with all
its attendant advantages: a declarative query language lets users to specify what data to
retrieve and leaves the issue of how to retrieve it to the query processor itself. This has
profound impact on a query processor’s design and performance. First, queries can be for-
mulated using a high-level “declarative” interface in which the query processor can reason
about their semantics and correctness. This provides the query processor the necessary de-
grees of freedom to optimize the execution of the query. Once the user query is mapped to
an internal representation (e.g., an algebraic expression), the query optimization problem
can be translated into a search problem: the query optimizer searches the space of equiva-
lent plans guided by heuristics rules and cost estimations based on data statistics. Second,
the decoupling of semantics from the implementation makes it possible to develop sound
and efficient implementations for the query processing primitives and to compose query
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Figure 1.3: Reference architecture of a Streaming Graph Query Processor

processing pipelines using these primitives while ensuring correctness. The goal of this
thesis is to identify and to tackle the research challenges to realize such a general-purpose
query processing framework for streaming graph queries.

1.3 Contributions and Organization

This thesis presents the design and implementation of a general-purpose query processing
framework for streaming graphs that addresses all of the above-discussed requirements
(Section 1.2) in a uniform and principled manner. Models and algorithms introduced in
this thesis are implemented as a part of the S-Graffito Streaming Graph Management
System. 5 The remainder of this thesis is organized as follows:

• Chapter 2 presents background information and summarizes the related work on
graph query processing and stream management.

5https://dsg-uwaterloo.github.io/s-graffito/
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• Chapter 3 establishes formal foundations for representing the class of queries targeted
in this thesis. The streaming graph query (SGQ) model and its underlying streaming
graph data model provide precise semantics of persistent graph queries with complex
patterns. This chapter also provides concrete examples on how to formulate SGQ
using a slight extension of G-CORE, a high-level, declarative graph query language.

• The ability to query, manipulate and return paths (R2 & R3) is essential in graph
querying, and Chapter 4 takes a closer look at the evaluation of path navigation
queries over streaming graphs. The Regular Path Query (RPQ) model is used to
formulate path constraints, and the design space of persistent RPQ evaluation algo-
rithms is studied in two main dimensions: the path semantics they support and the
result semantics based on application requirements. This chapter introduces the first
streaming algorithms in the literature that cover the entire design space in a uniform
manner.

• Chapter 5 focuses on the design and implementation of a query processor for evaluat-
ing SGQ, and it contains two contributions. First, it introduces the Streaming Graph
Algebra (SGA), which consists of a set of primitive operators to formulate query eval-
uation plans for SGQ. An algorithm for translating SGQs into SGA expressions is also
provided. Second, this chapter describes a prototype implementation of a streaming
query processor based on SGA and provides a non-blocking, incremental algorithm
as a physical implementation of each SGA operator.

• Chapter 6 studies the optimization of streaming graph queries based on the algebraic
framework proposed in Chapter 5. This chapter begins with a set of transformation
rules held in SGA that enables the systematic exploration of the plan space through
query rewrites. It then introduces a cost model that quantifies the processing cost
of SGA operators and expressions per unit time, capturing the data-driven nature of
query evaluation over unbounded streaming graphs. Chapter 6 finally describes the
cost-based optimization of SGQs and presents an exemplar optimizer implementation
based on Apache Calcite.

The models and techniques presented in this thesis provide the foundational tools to
achieve the long-term vision laid out in Section 1.2.2. Nonetheless, some aspects of this
long-term vision are beyond the scope of this thesis.

First of all, the streaming graph query processing framework described in this thesis only
focuses on the topology of the underlying graph and does not yet include property values.
Incorporating attribute-based predicates to fully support to property graph model requires
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additional research. Second, the prototype streaming graph query processor described in
Chapter 5 presents a single physical implementation for each SGA operator. Additional
work that would enrich the implementation includes additional transformation rules for
plan space enumeration and the development of alternative physical operators (Appendix
A takes a step towards this direction and describes an alternative implementation for
algorithms presented in Chapter 4). Third, the query processing framework presented in
this thesis only deals with the optimization of SGQs under given system conditions. The
performance of a query evaluation plan might change in the lifespan of a persistent query
due to changes in the system conditions such as available memory and network bandwidth,
changes in the arrival rate, or characteristics of the input streaming graph. Adaptive query
processing techniques and their integration into the proposed framework are left as future
work. Finally, techniques presented in this thesis are for the execution of streaming graph
queries in centralized settings, and it is possible to develop techniques for scaling out for
distributed environments (a comprehensive experimental study on streaming algorithms
for graph partitioning and their impact on the performance of graph processing systems
are presented in [133]).
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Chapter 2

Background & Related Work

Querying streaming graphs combines two seemingly disparate but relevant problems. As
described in Section 1.2, both stream processing and graph processing pose unique chal-
lenges, and they have been the focus of extensive research in the past two decades. This
chapter first provides an overview of the relevant work on stream processing and graph
processing systems. Then, it surveys existing models and algorithms for query processing
over graph-structured data.

2.1 Stream Processing Systems

A data stream is defined as an ordered sequence of tuples where each tuple consists of a
timestamp and a payload. Data streams are used in applications such as sensor networks,
financial applications, and network monitoring, where the data arrivals are rapid, continu-
ous, and possibly unbounded. The increasing need for real-time monitoring and analytics
fostered the emergence of stream processing systems that are designed for rapid and con-
tinuous ingestion of data items. Unlike traditional DBMSs, these systems are generally
push-based (data-driven), where queries are continuously evaluated as new data arrive.
Stream processing systems are the focus of extensive research in the data management
community, and the relevant literature can be broadly categorized into (i) stream manage-
ment systems focusing on the relational model, and (ii) general-purpose stream processing
engines.

Early research on stream processing mainly focuses on relational streams where the
individual stream elements are in the form of relational tuples with a pre-defined schema.
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This model represents streams as time-varying relations, and query semantics are described
based on standard relational operators. STREAM [15] provides a SQL-like declarative
query language called CQL, and provides three types of operators to extend relational se-
mantics to the streaming model. Relation-to-relation operators correspond to operators of
the standard relational algebra, relation-to-stream and stream-to-relation operators trans-
form relation to streams and vice versa. Then, the semantics of CQL queries are described
by:

1. converting streams to relational using windowing operators;

2. evaluating the query over relations;

3. and, translating the resulting relation back to streams.

Aurora [2] and its distributed version Borealis [1] employ a procedural approach to
the formulation and execution of persistent queries over data streams. In Aurora, users
directly specify queries by forming query plans through a graphical user interface. Aurora
provides a set of operators that are streaming adaptations of their relational counterparts.
For instance, the join operator takes a windowing specification (i.e., window size w) and
produces a join result over two input tuples if the query predicate holds and tuples are at
most w time units apart.

A common thread across all these is their relational core and non-blocking implemen-
tations of standard relational operators. Consequently, they do not support graph queries
with recursive path navigations and patterns, which is the focus of this thesis. Nonetheless,
non-blocking implementations of standard relational operators such as filter and join can
be adapted for the continuous processing of graph queries (as will be described in Chapter
5).

Recent advances in cloud computing and the success of shared-nothing systems such
as MapReduce have resulted in many Data Stream Processing Engines (DSPEs). They
differ from their earlier counterparts as modern DSPEs are mostly scale-out solutions that
do not necessarily offer the full set of DBMS functionality. These engines provide low-
level system constructs such as data partitioning, scheduling, and operator queues upon
which application developers can implement the business logic. Applications are expressed
as dataflow graphs where the vertices represent computations and edges between them
represent the flow of data, i.e., streams, between vertices. The majority of DSPEs (Flink
[38], Storm [161], and its successor Heron [96]) do not support iterative (or recursive)
computations in the streaming settings; consequently, they require the dataflow graph to
be a directed acyclic graph (DAG). Naiad and its underlying Timely Dataflow computation
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model [125] relax this DAG assumption by allowing loops in the dataflow graph. As such,
the Timely Dataflow model is able to represent and execute arbitrary (possibly cyclic)
dataflow graphs. Chapter 5 shows that the class of queries targeted in this thesis can be
represented as cyclic dataflow graphs and can be processed by such a system.

There are some recent efforts to bridge the gap between these two classes of systems
by providing support for the relational model and declarative SQL-like queries (e.g., Spark
Structured Streaming, Flink SQL, and Materialized). Nonetheless, existing DSMSs and
DSPSs either (i) focus on the relational model, which lacks path navigation features, or
(ii) provide general-purpose computation models that are not optimized for the streaming
graph workloads targeted in this thesis.

2.2 Graph Processing Systems

A number of graph processing systems have been introduced in the last decade. These are
typically divided into graph analytics engines and graph DBMSs based on the workloads
they target. Systems in the former category focus on offline graph analytics, and the
systems in the latter category specialize in online graph queries, similar to the OLAP vs.
OLTP distinction in relational DBMSs. The rest of this section first provides an overview
of modern graph processing systems following this classification, then discusses existing
systems that are specifically designed for processing streaming graphs.

2.2.1 Graph Processing Engines

Many analytical graph workloads are iterative, where the entire graph is processed in each
iteration until a fixpoint is reached. Examples include graph algorithms like PageRank,
weakly connected components; analytical tasks such as triangle counting; and machine
learning and data mining algorithms such as belief propagation and collaborative filtering.
Existing OLAP systems based on the relational model are ill-suited for such computa-
tions due to the irregular, highly interconnected structure of real-world graphs that leads
to many-to-many joins and an explosion of intermediate results. Furthermore, iterative
algorithms cannot be easily represented in relational query languages. Graph processing
systems (e.g., Pregel [110], Giraph [14], PowerGraph [69] and PowerLyra [41]) specialize on
such workloads by providing (i) programming APIs that make is easy to express iterative
computations, and (ii) computational models that are optimized for these tasks.
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These systems are predominantly scale-out processing engines that do not necessarily
provide full database management functionality. They follow the Bulk Synchronous Paral-
lel (BSP) [164] model, where the computation is performed iteratively through user-defined
vertex functions. Two popular programming models are vertex-centric block synchronous
where vertices push their state along the edges of the graph at the end of each iteration,
and vertex-centric Gather, Apply, Scatter (GAS) where the state is pulled (rather than
pushed) by vertices at the beginning of each iteration. Due to their support for iterations,
graph queries with subgraph patterns and path navigation queries targeted in this the-
sis can be expressed as BSP computations [56, 169]. Nonetheless, these systems are not
suitable for continuously processing such queries over streaming graphs due to their offline
nature. A comprehensive analysis of graph processing systems can be found in surveys
[117] and performance studies [81, 10].

2.2.2 Graph Database Management Systems

The other important class of graph workloads is online queries that focuses on interactive
querying and manipulation of the underlying graph-structured data. Unlike analytic work-
loads, online graph queries are usually not iterative and require access to only a portion
of the graph (e.g., reachability queries, pattern matching, neighbourhood traversals). Al-
though the relational model can represent graph-structured data, traditional RDBMSs fail
to provide intuitive interfaces and efficient operations for queries that involve path navi-
gations. In addition, representing highly connected data in the relational model results in
a large amount of many-to-many relations, which can produce complex, join-heavy SQL
statements for graph queries. Graph DBMSs model and store the graph-structured data
by indexing the adjacency information for each entity in adjacency lists, allowing intuitive
expression and efficient processing of online graph workloads.

Two alternative data models are commonly used in graph DBMSs. With the rise
of semantic web, one line of work use the RDF model where the data is modeled as a
directed, edge-labeled multi-graph (e.g., Virtuoso [54], RDF-3X [127], gStore [153, 176]).
RDF DBMSs use a standardized query language, SPARQL, which provides capabilities for
expressing subgraph patterns (basic graph patterns – BGPs) and path reachability queries
(property paths in SPARQL v1.1). The second class of graph DBMSs such as Neo4j,
JanusGraph, and Oracle’s Graph Database employ the property graph model (PGM).
Property graphs are directed, edge-labeled multi-graphs where each edge and vertex might
be associated with an arbitrary number of key-value pairs, i.e., properties [30]. Unlike RDF
systems with a structured, standardized query language, these systems lack a standardized
interface. Most vendors have proprietary APIs and languages with variances in features
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and capabilities. JanusGraph uses the Gremlin query language from Apache Tinkerpop1,
which is a procedural query language that allows users to describe how a query is evaluated
by chaining operators. Neo4j’s Cypher is a declarative language that uses ASCII-art style
pattern matching as its building blocks. Similarly, Oracle’s PGQL is a declarative language
with SQL-like constructs. There exist open-source efforts to unify the graph query language
space: G-CORE [11] is a graph query language proposal that aims to capture and to extend
core functionalities found in existing languages, and GQL2 is a recent standardization effort
for a standalone query language for PGM, similar to SQL for the relational model.

Although most graph DBMSs support updates, these systems predominantly employ
the snapshot model, which assumes that the underlying graph is fully available, and ad
hoc queries reflect the current state of the database. Consequently, these systems and their
query languages neglect the continuous nature of streaming graph workloads targeted in
this thesis.

2.2.3 Streaming Graph Systems

Streaming graph systems have emerged to enable the processing of evolving graphs, ad-
dressing the limitations of graph processing engines and graph DBMSs. Existing work on
streaming graph systems, by and large, focuses on either (i) maintenance of graph snap-
shots under a stream of updates for iterative graph analytic workloads or (ii) specialized
systems for persistent query workloads that are tailored for the task in hand. One of the
earlier systems in the first category, STINGER [52], proposes an adjacency list-based data
structure optimized for fast ingestion of streaming graphs. GraphOne [97, 98] uses a novel
versioning scheme to support concurrent reads and writes on the most recent snapshot of
the graph. Analytic engines such as GraphIn [149] and GraphTau [86] extend the popular
vertex-centric model with incremental computation primitives to minimize redundant com-
putation across consecutive snapshots. More recently, systems such as GraPu [154] and
GraphBolt [113] introduce novel dependency tracking schemes to transparently maintain
results of graph analytic workloads by utilizing structural properties such as monotonic-
ity. This line of research primarily focuses on building and maintaining graph snapshots
from streaming graphs for iterative graph analytics workloads. The unbounded nature of
streaming graphs and the need for real-time answers on recent data make it infeasible to
employ snapshot-based techniques for the class of queries targeted in this thesis.

Driven by the performance requirements of real-world applications, existing work on
1https://tinkerpop.apache.org
2https://www.gqlstandards.org/
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persistent query processing over streaming graphs are highly specialized systems. Twitter’s
streaming graph systems, GraphJet [151] and RecService [75], focus on real-time pattern
detection for a fixed set of pre-defined graph patterns. Similarly, Alibaba’s fraud detection
system relies on detecting cycles over the streaming graph of user interactions on its e-
commerce platform [137]. Although these solutions provide satisfactory performance for
the task at hand, they lack the flexibility to support a wide range of real-world scenarios.

Finally, there has been a significant amount of work on various aspects of RDF stream
processing3. Calbimonte [35] designs a communication interface for streaming RDF systems
based on the Linked Data Notification protocol. TripleWave [116] focuses on the problem
of RDF stream deployment and introduces a framework for publishing RDF streams on the
web. EP-SPARQL [13] extends SPARQLv1.0 for reasoning and a complex event pattern
matching on RDF streams. Similarly, SparkWave [93] is designed for streaming reasoning
with schema-enhanced graph pattern matching and relies on the existence of RDF schemas
to compute entailments. None of these are processing engines, so they do not provide query
processing capabilities. Contributions of this research are orthogonal to existing work on
streaming RDF systems. However, techniques proposed in this thesis can be integrated
into these systems as they incorporate query processing capabilities.

2.3 Graph Querying

This section first surveys the landscape of graph query languages, then provides an overview
of the relevant work on algorithmic techniques for graph querying.

2.3.1 Graph Query Languages

Graph query workloads targeted by graph DBMSs feature subgraph patterns and naviga-
tions, commonly modelled using conjunctive queries (CQ) and regular path queries (RPQ),
respectively. The UCRPQ model – unions of conjunctive RPQs – provides the ability to
express path navigation and subgraph pattern queries uniformly by closing the class of
RPQ under disjunction and conjunction [18]. Conceptually, a UCRPQ query is defined
by replacing edge labels of a conjunctive query (subgraph pattern query) with regular ex-
pressions (path navigation query). Graph query languages employed by existing systems
(Section 2.2.2) are predominantly based on the UCRPQ model, with slight differences

3See https://www.w3.org/community/rsp/wiki/Main_Page
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in their implementation details. For instance, Neo4j’s Cypher is based on isomorphism-
based matching semantics and limits path navigations to reachability queries over single
edge labels. Oracle’s PGQL provides support for both homomorphism and isomorphism-
based matching semantics. The original SPARQL standard only features subgraph pattern
queries via homomorphism, and SPARQL v1.1 incorporates property paths consistent with
the RPQ model. Despite its widespread adoption, the UCRPQ model is not considered
to be a natural language to formulate many real-world graph queries due to its lack of
algebraic closure and inability to express relations among paths [166, 138]. G-CORE [11]
addresses these limitations at the language specification level and has influenced the stan-
dardization efforts for a graph query language.4 It is based on the subset of Datalog called
Regular Queries (RQ) – non-recursive Datalog extended with the transitive closure over
binary relations. It has been recently shown that RQ is computationally well-behaved,
i.e., its evaluation is tractable under data complexity, and the containment is decidable
[138]. As RQ properly generalizes UCRPQ and has the property of algebraic closure, it
is considered a natural candidate to formulate graph queries. Nonetheless, all these focus
on ad-hoc queries over static graphs and do not provide support for formulating persistent
queries over streaming graphs.

There exists streaming RDF systems with various SPARQL extensions for persistent
query evaluation over RDF streams such as SPARQLstream [36], C-SPARQL [21], CQELS
[100] and W3C proposal RSP-QL [48]. However, these systems are designed for SPAR-
QLv1.0, and they do not have the notion of property paths from SPARQLv1.1. Thus one
cannot formulate recursive path queries such as RPQs that cover more than 99% of all
recursive queries found in massive Wikidata query logs [32]. The lack of property path
support of these systems is previously reported by an independent RDF streaming bench-
mark, SR-Bench [175] (see Table 3 in [175]). Furthermore, query processing engines of
these systems do not employ incremental operators, except Sparkwave [93] that focuses on
stream reasoning.

Similar to the streaming graph query processing framework proposed in this thesis,
some systems employ an algebraic approach to graph query processing. TriAL [105] is
a triple-based query algebra designed for one-time navigational queries over static triple-
stores. Nevertheless, it only focuses on path navigation queries and cannot be used as a
standalone graph query language. Temporal Graph Algebra (TGA) [123] adapts temporal
relational operators in the context of PGM to support analytics over evolving graphs. Its
implementation on Spark introduces physical operators for graph analytics [6]. However, it
is designed for exploratory graph analytics over the entire history of changes. In contrast,
SGQ and the corresponding SGA proposed in this thesis focus on persistent graph queries

4see https://www.gqlstandards.org/
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over (potentially unbounded) streaming graphs, and they can express complex graph pat-
terns expressed in high-level user languages (Section 3.3.2).

2.3.2 Algorithms for Graph Querying

Graph queries in general feature subgraph pattern queries and path navigation queries.
Subgraph pattern queries are akin to conjunctive queries in the relational model. They
can be represented as multi-way join queries, which have been extensively studied in the
context of relational databases and graph querying. Traditionally, such multi-way joins are
evaluated by a series of binary joins, which is recently shown to be sub-optimal for cyclic
subgraph queries as the size of intermediate results can be asymptotically larger than the
final output [129]. Recent worst-case optimal (WCO) join algorithms attain worst-case
optimality by joining all relations at once for each join attribute instead of a series of
pairwise joins [128]. EmptyHeaded [4, 3] combines WCO joins with binary joins using the
generalized hyper-tree decomposition of query graphs. GraphFlowDB [88, 122] further
extends the space of such hybrid plans and introduces an adaptive, cost-based optimizer
for subgraph pattern queries that combines WCO and binary joins in a principled manner.

RPQ is the de-facto formalism for path navigation queries in practical graph query lan-
guages, striking a balance between expressiveness and computational complexity [12, 30,
156, 11]. The research on RPQs focuses on various problems such as containment [37], enu-
meration [114], learnability [28]. Most related to the query processing framework studied
in this thesis is the RPQ evaluation problem. The seminal work of Mendelzon and Wood
[121] shows that RPQ evaluation under simple path semantics is NP-hard for arbitrary
graphs and queries. They identify the conditions for graphs and regular languages where
the RPQ evaluation problem is computable in polynomial time. Bagan et al. [20] prove a
trichotomy, and establish a comprehensive classification of the complexity of RPQ evalu-
ation under simple path semantics. They introduce a maximal class of regular languages,
Ctract, for which the problem of RPQ evaluation under simple path semantics is tractable
and NP-complete for any language that does not belong to Ctract.

RPQ evaluation strategies follow two main approaches: automata-based and relational
algebra-based. G [44], one of the earliest graph query languages, builds a finite automaton
from a given RPQ to guide the traversal of the graph. Kochut et al. [92] study RPQ
evaluation in the context of SPARQL and propose an algorithm that uses two automatons,
one for the original expression and one for the reversed expression, to guide a bidirectional
BFS on the graph. Addressing the memory overhead of BFS traversals, Koschmieder et al.
[94] decompose a query into smaller fragments based on rare labels and perform a series
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of bidirectional searches to answer individual subqueries. A recent work by Wadhwa et
al. [168] uses random walk-based sampling for approximate RPQ evaluation. The other
alternative for RPQ evaluation is α-RA which extends the standard relational algebra
with the α operator for transitive closure computation [7]. α-RA-based RPQ evaluation
strategies are used in various SPARQL engines [54]. Histogram-based path indexes on top
of a relational engine can speed-up processing RPQs with bounded length [58]. α-RA-
based RPQ evaluation is not suitable for persistent RPQ evaluation on streaming graphs
as it relies on blocking join and α operators. Yakovets et al. [172] show that these two
approaches are incomparable, and they can be combined to explore a larger plan space for
SPARQL evaluation. Various formalisms such as pebble automata, register automata, and
monadic second-order logic with data comparisons extend RPQs with data values for the
property graph model [104, 106]. Although RPQs and corresponding evaluation methods
are widely used in graph querying [12, 11, 54], all of these works focus on static graphs.

2.3.3 Incremental View Maintenance

A persistent query over sliding windows can be formulated as an Incremental View Main-
tenance (IVM) problem. The view definition is the query itself, and window movements
correspond to updates to the underlying database. In the IVM approach, the goal is to
incrementally maintain the view – results of a persistent query – upon changes to the
underlying database – insertions (expirations) into (from) a sliding window. The clas-
sical Counting [78] algorithm maintains the number of alternative derivations for each
derived tuple in a Select-Project-Join view to determine when a tuple no longer belongs
to the view. DBToaster [91] introduces the concept of higher-order views for group-by
aggregates and represents each view definition using a hierarchy of views that reduces the
overall maintenance cost. F-IVM [130] further extends higher-order views with a factor-
ized representation of these views to reduce the amount of state and the computation cost.
ViewDF [173] extends existing IVM techniques with windowing constructs to speed up
query processing over sliding windows. Although conceptually similar, these techniques
are not suitable for recursive graph queries addressed in this thesis, primarily because of
the potentially infinite results for recursive graph queries.

The classical DRed algorithm [78] adapts the semi-naive strategy to support recursive
views: it first deletes all derived tuples that depend on the deleted tuple, then re-derives
the tuples that still have an alternative derivation after the deletion. DRed might over-
estimate the set of deleted tuples and might re-derive the entire view. Storing the how-
provenance – the set of all tuples that might be used to derive a tuple – might prevent
over-estimation; however, it significantly increases the amount of state that the algorithm
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needs to maintain. The provenance information can be encoded in the form of boolean
polynomials, and the boolean absorption law can be used to reduce the amount of additional
information that needs to be maintained [108]. Thus, it is possible to adapt recursive IVM
techniques to evaluate streaming graph queries, but these ignore the structure of graph
queries and inherent temporal patterns of streaming graphs. Techniques studied in the
thesis, in contrast, exploit the query structure to minimize the cost of persistent graph
query evaluation over streaming graphs.

2.3.4 Dynamic & Streaming Graph Algorithms

The theoretical research on streaming graphs primarily focuses on maintaining approxi-
mations of structural graph properties such as triangle count and spanners (see [118] for
an extensive survey). Earlier work on streaming algorithms for graphs is motivated by
the limitations of main memory, focusing on modelling graph algorithms in the stream-
ing settings. Many graph problems are hard in sublinear space, i.e., exact solutions of
these algorithms cannot be computed without storing all the vertices in the graph (which
might not be feasible for unbounded streams). Consequently, researchers have focused
on the semi-streaming model for the study of streaming graph algorithms where the set
of vertices can be stored in memory but not the set of edges [126]. There exist a large
body of work on approximating graph algorithms in the semi-streaming model including
PageRank estimation [145], graph matching [57], finding common neighbours [34], [23, 33]
(see [118] for a survey). This thesis adopts the windowed evaluation model to process
unbounded streams with bounded memory, a standard solution in streaming systems for
bounding the space requirement and restricting the scope of queries to recent data, a de-
sired feature in many applications[65, 17]. Compared to approximation-based methods,
window-based query evaluation enables exact query answers w.r.t. window specifications.
Nonetheless, these streaming approximation techniques are orthogonal to the query pro-
cessing algorithms studied in this thesis, and they can be incorporated to provide support
for approximate query processing.

Many graph problems are also studied in the dynamic graph model, where algorithms
may use enough memory to store the entire graph and compute how the output changes as
the graph is updated. Examples include connectivity [89], shortest paths [25], reachability
[139], transitive closure [99]. TurboFlux [90] is a specialized subgraph pattern matching
system that incrementally maintains matching results over a dynamic graph that is updated
with edge arrivals. GraphFlow [88] is an active graph database that employs the delta
decomposition technique [26] for incrementally maintaining subgraph pattern queries using
the worst-case-optimal Generic Join [129] algorithm. Ammar et al. [9] adapt worst-case
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optimal join and delta decomposition to the dataflow computation model for continuous
subgraph pattern matching in distributed settings.

Fan et al. [55] propose a characterization of various graph problems in the dynamic
model based on the complexity of incrementally maintaining query results over dynamic
graphs, including subgraph isomorphism that can be used for evaluating subgraph pat-
tern queries and RPQ that can be used for evaluated recursive path queries. They show
that most graph problems are unbounded under edge updates, i.e., the cost of computing
changes to query answers cannot be expressed as a polynomial of the size of the changes
in the input and output. They propose alternative characterizations for the effective-
ness of dynamic graph problems and show that efficient dynamic algorithms are possible.
Specifically, they prove that RPQ is bounded relative to its batch counterpart; the batch
algorithm can be efficiently incrementalized by minimizing unnecessary computation.
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Chapter 3

Streaming Graph Queries

3.1 Introduction

The unsuitability of existing graph DBMSs for querying streaming data has motivated the
design of specialized systems addressing singular features and application needs. For in-
stance, a number of specialized algorithms focus on evaluating subgraph queries on stream-
ing graphs [9, 103, 137, 90, 42]. However, a general-purpose model and framework that
unifies existing graph querying and streaming querying functionality in a principled man-
ner is missing. To develop a general-purpose query processing framework for streaming
graphs, it is crucial to describe the precise semantics of the target query class. This chap-
ter describes the Streaming Graph Query (SGQ) model that constitutes the formal basis
of the query processing framework introduced in this thesis. SGQ describes the precise
semantics of persistent query evaluation over streaming graphs, the class of queries tar-
geted in this thesis. Section 3.1.1 begins by analyzing the existing work on graph query
models w.r.t. the requirements for querying streaming graphs outlined in Section 1.2. Sec-
tion 3.2 presents the Streaming Graph data model and Section 3.3 introduces the formal
SGQ model. Section 3.4 concludes this chapter by summarizing its contributions and by
providing an overview of the role of SGQ model in the streaming graph query processing
framework introduced in this thesis.

3.1.1 Analysis of Existing Graph Query Languages

Querying graph structure requires combining path navigation and subgraph pattern match-
ing features (R1 & R2), as discussed in Section 1.2. Augmenting the class of RPQ with
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Operation SPARQL v1.1 Cypher G-CORE Static Streaming

Reachability ✓ ✓ ✓ ✓ ✓
Endpoints ✓ ✓ ✓ ✓ ✓

Named Paths × ✓ ✓ ✓ ✓
Returning Paths × ✓ ✓ ✓ ✓1

Storing Paths × × ✓ ✓ ✓

Table 3.1: Summary of path operations in practical graph query languages.

disjunction and conjunction results in UCRPQ – unions of conjunctions of RPQ [18]. Con-
ceptually, a UCRPQ query is defined by replacing edge labels of a conjunctive query with
regular expressions. It is easy to see that every subgraph pattern query is a UCRPQ query
where query edges are mapped to edges in the data graph. Although UCRPQ forms the
basis of earlier graph query languages such as Cypher and SPARQL v1.1 [12], it is not
considered to be a natural language to formulate many real-world graph queries due to its
lack of algebraic closure and inability to express relations among paths [166, 138]. Paths
provide higher-level abstractions to model complex real-world relationships, and returning
and manipulating paths is a fundamental operation in graph querying (R3). Consequently,
this section focuses on the semantics of path querying features in existing graph languages
SPARQL v1.1, Cypher and G-CORE and describes their implications on the complexity of
query evaluation in the static and the streaming contexts. Table 3.1 provides an overview
of path querying features in existing graph query languages.

Path navigation queries of SPARQL v1.1, i.e., property paths, originally adopted the
arbitrary path semantics with a counting based approach, where the duplicity of a result
pair is preserved. Subsequent intractability results prove that query evaluation under
such semantics is not feasible in practice [16]. In general, path query evaluation based
on counting semantics is intractable; therefore, W3C has adapted existential, set-based
semantics for SPARQL property paths [156]. Yet, path navigation queries in SPARQL v1.1
only feature reachability semantics, e.g., test if there exists a path between two vertices
satisfying user-specified conditions, and do not provide a mechanism to represent paths
(i.e., named path with variable assignments or returning paths).

Similarly, Cypher is based on UCRPQs [12], yet, it uses no-repeated-edge (simple trail)
semantics for path navigation queries [60]. RPQ evaluation under simple trail semantics is

1 As described in detail in Chapter 4, parent pointers in ∆ tree index can be utilized to construct the
resulting path with O(|p|) cost where |p| is the length of the corresponding path.
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an NP-complete problem, even in data complexity [115]. Cypher addresses the intractabil-
ity of RPQ evaluation problem by limiting the use of Kleene star over only a single edge
label [60]. Such simple path expressions are known to belong to the tractable class of
restricted regular expressions, whose evaluation under such semantics is tractable in data
complexity [121]. Like SPARQL, Cypher queries are not composable, i.e., the output of
a Cypher query over a graph is a table. This is due to the lack of algebraic closure of the
class of UCRPQs. Unlike SPARQL, Cypher queries might return and manipulate paths
through the use of named paths. Although this facilitates the support for a wider class of
path navigation features, it is a potential source of intractability. A path query in Cypher
returns all matches for the given variable-length path pattern, not just its existence [59].
This evaluation semantics corresponds to the exhaustive enumeration of all paths, which
might be infinitely many in the presence of cycles. Although Cypher’s simple trail seman-
tics combined with its restrictions on the use of Kleene star ensure finiteness, exhaustive
enumeration of all paths might take exponential time in the size of the graph.

Unlike the previous two, G-CORE extends the property graph model with objectified
paths [30], i.e., treating paths as first-class citizens. A G-CORE query can explicitly
materialize paths in the results, so-called stored paths. Stored paths are first-class citizens
of the data model, i.e., they have labels and properties similar to vertices and edges,
and subsequent queries can manipulate stored paths. G-CORE queries allow arbitrary
operations on stored paths as these are materialized in the graph, and they do not need to
be computed. Virtual paths, on the other hand, refer to paths that are computed during the
lifetime of a query and correspond to paths in other languages that do not support stored
paths, i.e., Cypher and SPARQL. G-CORE, by default, uses shortest-path based arbitrary
path semantics and therefore has tractable data complexity. Unlike Cypher, G-CORE
explicitly avoids exhaustive enumeration of all paths due to an infinite amount of results
[11]. Hence, it does not support path operations that require exhaustive enumeration. In
addition, G-CORE is based on the class of RQs and inherits its algebraic closure. Hence, G-
CORE is a composable query language, and it supports view definitions, and path queries
over derived edges. Addressing all three requirements on graph querying (R1 - R3) makes
G-CORE suitable to express the class of queries target in this thesis, as discussed later in
Section 3.3.2.

To date, there has been a little work on extending these languages to the stream-
ing model except SPARQL extensions for persistent query evaluation over RDF streams.
Streaming RDF query languages C-SPARQL [21], CQELS [100], SPARQLstream [36] and
RSP-QL [48] are the most similar to the class of queries targeted in this thesis, but they are
designed for SPARQLv1.0. Consequently, they cannot formulate path expressions such as
RPQs that cover a significant portion of all recursive queries found in Wikidata query logs
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Table 3.2: Notations used throughout the thesis.
Σ Set of labels
ψ Mapping from edges to pairs of vertices
ρ Mapping from paths to sequence of edges
ϕ Mapping from edges and paths to labels

[ts, exp) Half-open validity interval
u

p→ v Path p between vertices u and v
τt(S) Snapshot of a streaming graph s at time t
Q Streaming graph query (SGQ)
QO One-time graph query
ω Window size
β Optional window slide interval
Φ Boolean predicate
R Regular expression over Σ
Wω,β Windowing operator WSCAN
σΦ Selection operator FILTER

⋊⋉src,trg,d
Φ Subgraph pattern operator PATTERN
Pd

R Path navigation operator PATH

by a recent analysis [32]. Furthermore, query processing engines of these systems do not
employ incremental operators, except Sparkwave [93] that focuses on stream reasoning.

3.2 Data Model: Streaming Graphs

3.2.1 Preliminaries

Definition 1 (Graph). A directed labeled graph is a quintuple G = (V,E,Σ, ψ, ϕ) where V
is a set of vertices, E is a set of edges, Σ is a set of labels, ψ : E → V × V is an incidence
function and ϕ : E → Σ is an edge labelling function.

Definition 2 (Path and Path Label). Given u, v ∈ V , a path p from u to v in graph G is a
sequence of edges u p→ v : ⟨e1, · · · , en⟩ such that xi, yi ∈ V are endpoints of an edge ei ∈ E
and yi = xi+1 for i ∈ [1, n). The label sequence of a path p is defined as the concatenation
of edge labels, i.e., ϕp(p) = ϕ(e1) · · ·ϕ(en) ∈ Σ∗.
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T = (T ,≤) denotes a discrete, total ordered time domain and t ∈ T is a timestamp
that denotes a time instant. Without loss of generality, the remainder of the thesis uses
non-negative integers to represent timestamps.

Definition 3 (Streaming Graph Edge). A streaming graph edge (sge) is a quadruple
(src, trg, l, t) where src and trg are vertices, l represents the label of the sge, and t ∈ T is
the event (application) timestamp assigned by the external data source.2

Definition 4 (Input Graph Stream). An input graph stream is a continuously growing
sequence of streaming graph edges SI =

[
sge1, sge2, · · ·

]
where each sgei (srci, trgi, li, ti)

represents an edge e ∈ E labeled li ∈ Σ between vertices srci, trgi ∈ V and sges are non-
decreasingly ordered by their timestamps.3

Figure 3.1 depicts an excerpt of the input graph stream of the application in Example
1, where each tuple represent an interaction between two vertices and each timestamp
represent the time instant that the interaction occurs.

Input graph streams represent external data sources that generate and provide the
system with the graph-structured data. The proposed framework uses a different format
that generalizes Definition 4 to also represent intermediate results and outputs of persistent
queries (Definition 7).

Definition 5 (Validity Interval). A validity interval is a half-open time interval [ts, exp)
consisting of all distinct time instants t ∈ T for which ts ≤ t < exp.

Timestamps are commonly used to represent the time instant at which the interaction
represented by the sge occured [137, 131, 103]. Alternatively, intervals are used to represent
the period of validity of sges, because using validity intervals leads to a succinct representa-
tion and simplifies operator semantics by separating the specification of window constructs
from operator implementation. As an example, each sge with timestamp t can be assigned
a validity interval [t, t+1) that corresponds to a single time unit with smallest granularity
that cannot be decomposed into smaller time units.4 Similarly, an sge e = (u, v, l, [ts, exp))
with a validity interval is equivalent to a set of sges {(u, v, l, t1), · · · , (u, v, l, tn)} where
t1 = ts and tn = exp − 1. Time-based sliding windows (to be precisely defined mo-
mentarily in Section 3.3.1) are used to assign validity intervals based on the windowing
specifications of a given query.

2It is assumed that sges are generated by a single external data source and arrive in order; out-of-order
arrival is left as future work.

3
[]

denotes ordered streams throughout the thesis
4Commonly referred as NOW windows as described in Chapter 5.
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Figure 3.1: The input graph stream from an online social network of Ex. 1.
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Figure 3.2: The streaming graph obtained from the input graph stream in Figure 3.1 where
the validity interval of each element is set based on a 24h window.

3.2.2 Streaming Graphs

The discussion in this section focuses on the logical representation of streaming graphs
that is used throughout the thesis. Because the class of queries targeted in this the-
sis feature both subgraph patterns and path navigations, queries can return paths (R3).
Consequently, the directed labeled graph model is extended with materialized paths to rep-
resent paths as first-class citizens of the data model. As per Definition 2, a path between
vertices u and v is a sequence of edges u p→ v : ⟨e1, · · · , en⟩ that connects vertices u and
v, i.e., the path p defines a higher-order relationship between vertices u and v through a
sequence of edges. By treating paths as first-class citizens like vertices and edges, queries
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llo
ws

posts

followsposts
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Figure 3.3: The snapshot graph of the streaming graph in Figure 3.2 at t = 25
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that manipulate and return paths produce outputs over the same data model, enabling
composability. In addition, it enables queries with complex graph patterns that stitch
edges and paths as will be shown in Chapter 5.

Definition 6 (Materialized Path Graph). A materialized path graph is a 7-tuple G =
(V,E, P,Σ, ψ, ρ, ϕ) where V is a set of vertices, E is a set of edges, P is a set of paths,
Σ is a set of labels, ψ : E → V × V is an incidence function, ρ : P → E × · · · × E
is a total function that assigns each path to a finite, ordered sequence of edges in E, and
ϕ : (E ∪ P ) → Σ is a labeling function, where images of E and P under ϕ are disjoint,
i.e., ϕ(E) ∩ ϕ(P ) = ∅.

The function ρ assigns to each p : u
p→ v ∈ P an actual path ⟨e1, · · · , en⟩ in graph G

satisfying: for every i ∈ [1, n), ψ(ei) = (srci, trgi), trgi = srci+1, and src1 = u, trgn = v.
Materialized path graph is a strict generalization of the directed labeled graph model
(Definition 1), i.e., each directed labeled graph G is also a materialized path graph where
P = ∅. The notion of streaming graph edges (Definition 3) is generalized as follows:

Definition 7 (Streaming Graph Tuple). A streaming graph tuple (sgt) is a quintuple
sgt = (src, trg, l, [ts, exp),D) where src and trg are vertices, l is the label of the sgt,
and [ts, exp) ∈ T × T is a half-open time-interval representing t’s validity and D is the
payload associated with the sgt t.

Streaming graph tuples generalize sges (Definition 3) to represent, in addition to input
graph edges, derived edges (new edges as operator and query results that are not necessarily
part of the input graph) and paths (sequence of edges as operator and query results). The
notation EI ⊂ E is used to denote the set of input graph edges, and ϕ(EI) to denote the
fixed set of labels that are reserved for input graph edges. Additionally, the payload D of
an sgt t represents the path p, i.e., sequence of edges, in case the sgt t represents a path.
Otherwise, D is the edge e that the sgt t represents.

Definition 8 (Streaming Graph). A streaming graph S is a continuously growing sequence
of streaming graph tuples S =

[
t1, t2, · · ·

]
where each sgt ti represents an edge e ∈ E or a

path p ∈ P between vertices src, trg ∈ V with label l, D is a payload consists of edges in E
in e or p and each sgt ti arrives at a particular time tsi (tsi < tsj for i < j).

Figure 3.2 depicts an excerpt of the streaming graph derived from the input graph
streaming in Figure 3.1 by assigning a time interval to each tuple (validity intervals are
assigned by a time-based sliding window – see Definition 16). src, trg and the label l
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are called the distinguished attributes and represent the topology of a materialized path
graph.

Unless otherwise specified, streaming graphs considered in this thesis are append-only,
i.e., each sgt represents an insertion, and use the direct approach to process expirations
due to window movements. Explicit deletions of previously arrived sgts can be supported
by explicitly manipulating the validity interval of a previously arrived sgt [95]. This cor-
responds to the negative tuple approach [63, 67]. Processing of insertions, deletions and
expirations under alternative window semantics for physical operator implementations are
described in detail in Chapters 4 and 5.

Definition 9 (Logical Partitioning). A logical partitioning of a streaming graph S is a
label-based partitioning of its tuples and it produces a set of disjoint streaming graphs
{Sl1 , · · · , Sln} where each Sli consists of sgts of S with the label li, i.e., S =

⋃
l∈Σ(Sl)

The label-based partitioning of streaming graphs provides a coherent representation
for inputs and outputs of operators in logical operator algebra (Chapter 5). At the logical
level, it can be performed by the filter operator of the logical algebra (precisely defined in
Definition 31), and operators of the logical algebra process logically partitioned streaming
graphs as their inputs and outputs unless otherwise specified.

Definition 10 (Value-Equivalence). Sgts t1 = (u1, v1, l1, [ts1, exp1),D1) and t2 =
(u2, v2, l2, [ts2, exp2),D2) are value-equivalent iff their distinguished attributes are equal,
i.e., they both represent an edge or a path with the same label l between the same vertices
with possibly different validity intervals and payloads. Formally, t1 = t2 ⇔ u1 = u2, v1 =
v2, l1 = l2.

Value-equivalence is used for temporal coalescing of tuples with adjacent or overlapping
validity intervals [107]. 5 The coalesce primitive defined in temporal database literature [51]
is extended to sgts with an aggregation function over the non-distinguished payload at-
tribute, D, as shown below:

Definition 11 (Coalesce Primitive). The coalesce primitive that maps a set of value-
equivalent sgts {t1, · · · , tn} (ti = (src, trg, l, [tsi, expi),Di) for 1 ≤ i ≤ n) with overlapping
or adjacent validity intervals into a single value-equivalent sgt (i.e., with the same dis-
tinguished attributes src, trg and l) by merging their validity intervals and applying an

5This is in contrast to identity-equivalence in object databases, where two tuples are equal if and only
if they have the same identifier, regardless of the values of their attributes.
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operator-specific aggregation function fagg over the payload attribute D:

coalescefagg({t1 · · · , tn}) =
(src, trg, l, [ min

1≤i≤n
(tsi), max

1≤i≤n
(expi)), fagg(D1, · · · ,Dn))

Distinguished attributes src, trg and the label l of sgts in a streaming graph S can
be used to define the topology of a materialized path graph. Hence, a finite subset of
a streaming graph S corresponds to a materialized path graph over the set of edges and
paths that are in the streaming graph and the set of vertices that are adjacent to these.
This is used to define snapshot graphs and the property of snapshot reducibility.

Definition 12 (Snapshot Graph). A snapshot of a streaming graph S is defined by a
mapping τ from each time instant t ∈ T to a finite set of sgts in S that are valid at time
t. Applying the coalesce primitive (Definition 11) to all valid tuples at time t, a snapshot
τt(S) induces a materialized path graph Gt = (Vt, Et, Pt,Σt, ψ, ρ, ϕ) where Et = {ei | ei.ts ≤
t < ei.exp} is the set of all edges that are valid at time t, Pt = {pi | pi.ts ≤ t < pi.exp}
is the set of all paths that are valid at time t, and Vt is the set of all vertices that are
endpoints of edges and paths in Et and Pt, respectively.

Definition 12 implies that snapshot graphs have the set semantics, i.e., at any point in
time t, the snapshot graph Gt of a streaming graph S, a vertex, edge and path exists at
most once. In the presence of multiple value-equivalent sgts that are valid at time t, the
coalesce primitive produces a single sgt by merging their validity intervals.

Definition 13 (Streaming Graph Equivalence). Two streaming graphs S1 and S2 are said
to be equivalent if and only if their snapshot graphs are equal:

S1 ≡ S2 ⇐⇒ ∀t ∈ T , τt(S1) ≡ τt(S2) (3.1)

Remark 1 (Insert-delete streams). The use of validity intervals in the streaming graph
model is previously explored in the context of relational streams, referred as the time-interval
approach [63, 95]. A semantically equivalent alternative, the negative-tuple approach, is
used in several relational-stream systems such as STREAM [15] and Nile [80]. In the
negative-tuple approach, each stream elements is associated with either + or −, denoting
addition and deletions, respectively. Validity of each tuple is defined by a pair of elements
where the positive element signals the start timestamp and the negative element signals
the expiration. Consequently, the negative-tuple and the direct approach can be used inter-
changeably to model streaming graphs. Each streaming graph tuple (src, trg, l, [ts, exp),D)
is expressed by a pair of tuples < (src, trg, l, ts,D,+), (src, trg, l, exp,D,−) >. Albeit
semantically equivalent, the negative-tuple approach potentially duplicates the number of
tuples flowing through the system, impacting the overall system performance [95].
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3.3 Streaming Graph Queries

This section presents the proposed streaming graph query (SGQ) model. First, a formal
definition of SGQ using Datalog is provided, enabling the specification of precise SGQ
semantics and to reason about its expressiveness. This is followed by a discussion of how
SGQ captures a significant subset of existing graph query languages and provide concrete
examples on how to formulate SGQ using a slight extension of G-CORE.

3.3.1 Formal Query Model

SGQ is based on a streaming generalization of the Regular Query (RQ) model [138]. Infor-
mally, RQ corresponds to binary, non-recursive subset of Datalog with transitive closure
and provides a principled way to combine subgraph patterns and path navigations. RQ
provides a good basis for building a general-purpose framework for persistent query evalua-
tion over streaming graphs, because (i) unlike UCRPQ, it is closed under transitive closure
and therefore composable, (ii) it has more expressive power than the existing graph query
languages such as SPARQL v1.1, Cypher, PGQL – RQ strictly subsumes UCRPQ on which
these are based, and (iii) its query evaluation and containment complexity is reasonable
[138]. Due to its well-defined semantics and computational behaviour, RQ has been gaining
popularity as a logical foundation for graph queries, both in theory [30, 29] and in practice
[11]. Indeed, RQ captures the core of the contemporary graph query language G-CORE
that is used throughout this chapter.

Definition 14 (Regular Queries (RQ) – Following [138]). The class of Regular Queries is
the subset of non-recursive Datalog with a finite set of rules where each rule has the form
6:

head← body1, · · · , bodyn
Each bodyi is either (i) a binary predicate l(src, trg) where l ∈ Σ is a label, or (ii)
(l∗(src, trg) as d), which is a transitive closure over l(src, trg) for a label l ∈ Σ, d ∈
Σ \ ϕ(E), and each head predicate (head) is a binary predicate with d(src, trg) for a label
d ∈ Σ \ ϕ(E) except the reserved predicate Answer ̸∈ Σ. The result of a Regular Query is
a set of variable bindings for the predicate Answer.

6The dependency graph of a Datalog program is a directed graph whose vertices are its predicates and
edges represent dependencies between predicates, i.e., there is an edge from p to q if q appears in the body
of rule with head predicate p. A Datalog program is non-recursive iff its dependency graph is acyclic, i.e.,
no predicate depends recursively on itself.
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In other words, an RQ is a binary, non-recursive Datalog program extended with the
transitive closure of binary predicates where input graph edges with a label l ∈ ϕ(EI)
correspond to instances of the extensional schema (EDB) and derived edges and paths
with a label l ∈ Σ \ ϕ(EI) correspond to instances of the intensional schema (IDB). EDBs
are predicates that appear only on the right-hand-side of the rules, which correspond to
stored relations in Datalog [5]. Similarly, IDBs are defined as predicates that appear in
the rule heads, which correspond to output relations in Datalog.

Example 3 (Regular Query). Consider the real-time notification query in Example 1 and
its graph pattern in Figure 1.1. The one-time query7 based on the same graph pattern
corresponds to the following RQ:

RL(u1, u2)← l(u1,m1), f
+(u1, u2) as FP, p(u2,m1)

Notify(u,m)← RL+(u, v) as RLP, p(v,m)

Answer(u,m)← Notify(u,m)

where predicates l, f, FP, p,RL,RLP represent labels likes, follows, followsPath, post, recent-
Liker and recentLikerPath, respectively.

The notion of snapshot reducibility enables the precise definition of the semantics of
streaming queries and operators using their non-streaming counterparts. Snapshot re-
ducibility is used in temporal databases to generalize non-temporal queries and operators
to temporal ones [51].

Definition 15 (Snapshot-Reducibility). Let QS be streaming graph query over a streaming
graph SI , and QO its non-streaming, static (one-time) counterpart. Snapshot reducibility
states that at any given time t, the snapshot graph of the output streaming graph SO =
QS(SI) is equivalent to the result of applying the one-time query QO over the corresponding
snapshot of the input SI , i.e., ∀t ∈ ω, τt

(
QS(SI)

)
= QO

(
τt(SI)

)
.

Following existing research [65], the semantics of persistent evaluation of SGQ is de-
fined using the notion of snapshot reducibility (Definition 15). It is known that for many
operations such as joins and aggregation, exact results cannot be computed with a fi-
nite memory over unbounded streams [17]. In streaming systems, a common solution
for bounding the space requirement is to evaluate queries on a window of data from the

7One-time queries are evaluated over the current state of the database at the query time whereas
persistent (streaming) queries are evaluated continuously and produce results as new tuples arrive and old
tuples expire.
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Figure 3.4: Snapshot reducibility (adapted from [95]).

stream. The windowed evaluation model provides a tool to process unbounded streams
with bounded memory, and restricts the scope of queries to recent data, a desired fea-
ture in many applications[65, 17]. Additionally, as opposed to streaming approximation
techniques that trade off exact answers in favour of bounding the space requirements,
window-based query evaluation enables exact query answers w.r.t. window specifications.
Consequently, the time-based sliding window model is adopted where a fixed size (in terms
of time units) window is defined that slides at well-defined intervals [65]. In the context
of streaming graphs, new graph edges enter the window during the window interval, and
when the window slides, some of the “old” edges leave the window (i.e., expire).

Definition 16 (Time-Based Sliding Window). A time-based sliding window Wω over an
input streaming graph SI is defined by an interval length ω and an optional slide interval
β. The window contents Wω(S

I) at any given time t is a multiset of streaming graph edges
where the timestamp of tsi of each sge sgei is in the window interval, i.e., {sgei | t− ω ≤
tsi < t }.

Remark 2 (Algebraic operators and stream transformations). In Chapter 5 the WSCAN
operator is defined that transforms a given input graph stream SI into a streaming graph
S where the validity interval of each sgt on the output streaming graph is assigned in
conformance with Definition 16.

Remark 3 (Snapshot graphs over input graph streams). At any given time t, the graph
induced by the contents of a time-based sliding window over an input graph stream Wω(S

I)
is isomorphic to the snapshot graph Gt = τt

(
Wω(S

I)
)
, where the validity interval of every

element in the graph is equal to the window size ω. This equivalence directly follows from the
definitions of time-based sliding windows (Definition 16) and snapshots graphs (Definition
12), and it is used in the following to define semantics of SGQ evaluation.

Definition 17 (Streaming Graph Query – SGQ). An SGQ query QS is an RQ defined
over an input streaming graph SI and a time-based sliding window Wω whose semantics is
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defined using the corresponding, one-time RQ QO and the notion of snapshot reducibility
(Definition 15):

∀t ∈ ω, τt
(
QS(SI ,Wω)

)
= QO

(
τt
(
Wω(SI)

))
Figure 3.4 illustrates the correspondence between streaming and one-time graph queries:

at any given time, the set of valid tuples in the result of a streaming query induces a graph
that is equivalent to the result of applying the corresponding one-time query over the
snapshots of the input streaming graphs. A direct consequence of such a relationship
is that SGQ can be evaluated by repeatedly executing the corresponding one-time query,
known as query re-evaluation [63]. Specifically, the resulting streaming graph of an SGQ
can be obtained from the sequence of snapshots that is the result of repeated evaluation
of the corresponding one-time query at every time instant: an sgt (u, v, l, [ts, expiry), D)
is in the resulting streaming graph for an SGQ QS τt

(
QS(SI ,Wω)

)
if there is an edge

e = (u, v, l) or a path p : u
p→ v with l = ϕp(p) in the resulting snapshot graph of the

corresponding one-time query Gti = QO

(
τt
(
Wω(SI)

))
for ts ≤ t < exp. However, such

a strategy is wasteful as the input differences between two consecutive instants are likely
to be small.8 Alternatively, incremental evaluation computes the changes in the output as
new sgts arrive and old sgts expire due to window movements. The focus in this thesis is
on the incremental evaluation method and the concept of snapshot reducibility is used to
ensure correct evaluation semantics.

3.3.2 SGQ in Practice

The SGQ model formalizes the important class of streaming graph queries using a logic-
based formalism. It captures the core features of current graph query languages such as
subgraph pattern and reachability-based path queries. In this section, SGQ’s expressive
power is illustrated by mapping core G-CORE constructs to SGQ. G-CORE is chosen for
demonstration due to the following reasons. G-CORE fulfills all three requirements of
graph querying (R1, R2 & R3 in Section 1.2). Other existing languages (e.g., SPARQL
v1.1, Cypher, PGQL) can only partially satisfy these requirements due to (i) the lack
of algebraic closure and composability, and (ii) limited path navigation capability [30].
Moreover, G-CORE supports SGQ capabilities such as the treatment of paths as first-class
citizens and returning graphs. Finally, G-CORE is one of the more prominent language

8The performance overhead of query re-evaluation is empirically analyzed for path navigation query
fragment of SGQ in Section 4.5.6.
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PATH RL = (u1)-/ <:follows^*> /->(u2),
(u1)-[:likes]->(m1)<-[:posts]-(u2)

CONSTRUCT (u) -[:notify]-> (m)
MATCH (u)-/ p<~RL*> /->(v),

(v)-[:posts]->(m),
ON social_stream WINDOW (24h) SLIDE(1h)

Figure 3.5: G-CORE representation of the SGQ in Example 1.

specifications influencing the ongoing standardization process of a graph query language
GQL 9.

Since the graph data model that is used in this work does not yet include properties,
the focus is on a subset of G-CORE where queries do not contain predicates or aggregation
over property values. This particular subset already covers many important key features:

(a) returning graphs,

(b) ASCII-art syntax for pattern matching,

(c) joins over multiple graphs,

(d) views and optionals,

(e) RPQ-based reachability queries,

(f) and powerful path patterns as demonstrated in the two examples discussed below.

G-CORE is originally targeted for one-time queries over static property graphs and
it does not provide native windowing constructs. Examples used in this section slightly
extends the ON clause with a WINDOW clause to incorporate window specifications. In par-
ticular, a time-based sliding window is defined by the newly introduced WINDOW clause that
specifies the window length, and an optional SLIDE clause that specifies the slide interval,
following a streaming graph reference in the ON clause.

Example 4. The G-CORE query in Figure 3.5 represents the real-time notification ex-
ample in Example 1 (its corresponding RQ is already given in Example 3). Its PATH and
MATCH clauses use ASCII-art syntax (b) to define complex graph patterns (f) with RPQ-
based reachability (e), and its CONSTRUCT clause returns a streaming graph of notify edges
(a).

9https://www.gqlstandards.org
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GRAPH VIEW rec_stream AS (
CONSTRUCT (u1) -[: recommendation]-> (p)
MATCH (u1)

OPTIONAL (u1)-[: follows]->(u2)
OPTIONAL (u1)-[:likes]->(m)<-[:posts]-(u2)

ON social_stream WINDOW (24 hours)
MATCH (c) -[:purchase]->(p)
ON tx_stream WINDOW (30d) SLIDE(1d)
WHERE (u2) = (c) )

Figure 3.6: G-CORE representation of the query in Example 5

Example 5. Consider the G-CORE query in Figure 3.6 that combines streaming infor-
mation from a social network of user interactions and a transaction network of customer
purchases to drive product recommendations. Its defines a view over the resulting streaming
graph of recommendation edges (d) by joining patterns from two streaming graphs (c), and
its MATCH clause features optional predicates to incorporate two alternative social interac-
tions (d). Its graph pattern corresponds to the following RQ:

ACQ(u1, u2)← l(u1,m1), p(u2,m1)

ACQ(u1, u2)← f(u1, u2)

REC(u, p)← ACQ(u1, u2), pur(u2, p)

Answer(u, p)← REC(u, p)

where predicates l, f, p, pur, ACQ,REC represent labels likes, follows, post, purchase, acquain-
tance, and recommendation, respectively.

3.4 Discussion

This chapter introduces the Streaming Graph Queries and its underlying Streaming Graph
data model that constitutes the formal foundations of the streaming graph query processing
framework proposed in this thesis. SGQ, as a logic-based formalism, enables declarative
specification of queries that feature subgraph patterns and path navigations, independent
of particular algorithms and implementations. Its semantics is presented by providing a
mapping from SGQ to a subset of Datalog by using the notion of snapshot reducibility.
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This enables precise characterization of the expressive power and the complexity of the
query model – this is similar to showing the mapping from a subset of relational calculus
to first-order logic.

By augmenting unions of conjunctive queries with transitive closure, the RQ and the
SGQ models strictly subsume the class of conjunctive queries (CQ) and regular path queries
(RPQ), which are commonly used to model subgraph pattern and path navigation queries
in practice, respectively (R1 & R2). Furthermore, the SGQ model treats paths as first-
class citizens of the underlying data model, enabling users to formulate queries that return
and manipulate paths in a declarative manner (R3). Having streaming graphs as both
inputs and outputs of queries, SGQ is closed over the streaming graph data model and
provides full composability. Time-based sliding windows provide a deterministic solution
to evaluate streaming graph queries on unbounded streams by restricting the scope of
queries on recent data (R4). The precise semantics of SGQ evaluation is described using
the notion of snapshot-reducibility, allowing development of non-blocking physical operator
for incremental evaluation as will be shown in Chapter 5 (R5).

As described in Section 3.3, SGQ evaluation over streaming graphs can be reduced to
its static counterpart by repeatedly executing the corresponding one-time query over a
sequence of snapshot graphs. In particular, a given one-time RQ can be decomposed into
a dataflow graph using its dependency graph (see Definition 14). Conjunctive queries can
be evaluated using existing relational techniques – multiway join algorithms in particu-
lar. Similarly, regular path queries can be evaluated using automata- or relational-based
algorithms for recursive queries [12, 11, 54].

Albeit semantically correct, such query re-evaluation is inefficient. Incremental eval-
uation, on the other hand, avoids re-computation of the entire result by only computing
the changes to the output as new input arrives. It is desired that query evaluation al-
gorithms in a streaming system have non-blocking behaviour, i.e., they do not need the
entire input to be available before producing the first result. There is a plethora of tech-
niques for evaluating conjunctive queries in the streaming settings such as the specialized
algorithms for subgraph matching on streaming graphs [9, 103, 137, 90, 42]. Evaluation of
path navigation queries in the streaming settings, on the other hand, have received little
attention except dynamic reachability algorithms [99, 139]. To date, there has been no
work that considers the problem of RPQ evaluation over streaming graphs. Therefore, in
the next chapter, the focus is on this particular subset of streaming graph queries and their
incremental evaluation.
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Chapter 4

Regular Path Query Evaluation on
Streaming Graphs

4.1 Introduction

Incremental evaluation of SGQ requires non-blocking algorithm implementations that com-
pute the changes to the output as new inputs arrive. Path navigation queries are an
important feature of graph querying, yet, their incremental evaluation has received little
attention so far except dynamic reachability algorithms. In this chapter, non-blocking
algorithm implementations are described for this important subclass of the SGQ model,
focusing on the problem of continuously evaluating path navigation queries over stream-
ing graphs. The Regular Path Query (RPQ) model is adopted, because it is the de-facto
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Figure 4.1: (a) A streaming graph S of a social networking application, and (b) its snapshot
at t = 18.
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s0start s1 s2
follows mentions

follows

(a) Query Graph Q1

(x,0) (y,1)

(z,1) (u,2) (v,1)

(w,2) (y,2)

(u,0)

(b) Product Graph PG,A

Figure 4.2: (a) Automaton for the query Q1 : (follows ◦ mentions)+, and (b) the product
graph PG,A .

formalism for path navigation queries in practical graph query languages. RPQ specifies
path constraints that are expressed using a regular expression over the alphabet of edge
labels and checks whether a path exists with a label that satisfies the given regular ex-
pression [121, 18]. The RPQ model provides the basic navigational mechanism to encode
graph queries, striking a balance between expressiveness and computational complexity
[12, 30, 156, 11, 165]. Consider the streaming graph of a social network application pre-
sented in Figure 4.1(a). The query Q1 : (follows ◦ mentions)+ in Figure 4.2(a) represents
a pattern for a real-time notification query where user x is notified of other users who are
connected by a path whose edge labels are even lengths of alternating follows and mentions.
At time t = 18, the pair of users (x,y) is connected by such a path, shown by bold edges
in Figure 4.1(b).

It is known that for many streaming algorithms the space requirement is lower bounded
by the stream size [17]. Since the stream is unbounded, deterministic RPQ evaluation is
infeasible without storing all the edges of the graph (by reduction to the length-2 path
problem that is infeasible in sublinear space [57]). Following the SGQ model introduced
in Chapter 4, streaming RPQ evaluation uses the time-based sliding window model where
a fixed size (in terms of time units) window is defined that slides at well-defined intervals
[65]. Managing this window processing as part of RPQ evaluation is challenging and the
proposed solutions address the issue in a uniform manner.

The design space of persistent RPQ evaluation algorithms can be identified in two main
dimensions: the path semantics they support and the result semantics based on applica-
tion requirements. Along the first dimension, this thesis proposes efficient incremental
algorithms for both arbitrary and simple path semantics. The former allows a path to
traverse the same vertex multiple times, whereas under the latter semantics a path cannot
traverse the same vertex more than once [12]. Consider the example graph given in Figure
4.1(b); the sequence of vertices ⟨x, y, u, v, y⟩ is a valid path for query Q1 with arbitrary
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Table 4.1: Amortized time complexities of the proposed algorithms for a streaming graph
S with m edges and n vertices and RPQ QR whose automata has k states.

Path
Semantics

Result
Semantics Append-Only Explicit Deletions

Arbitrary (Section 4.3) O(n · k2) O(n2 · k)
Simple1 (Section 4.4) O(n · k2) O(n2 · k).

path semantics whereas the simple path semantics does not traverse this path as it visits
vertex y twice. Along the second dimension, the algorithms first consider append-only
streams where tuples in the window expire only due to window movements. They are then
extended to support explicit deletions to deal with cases where users/applications might
explicitly delete a previously arrived edge. The negative tuples approach [68] is used to
process explicit deletions. Table 4.1 presents the combined complexities of the proposed
algorithms in each quadrant in terms of their amortized cost over a sequence of operations.

These are the first streaming algorithms to address RPQ evaluation on sliding win-
dows over streaming graphs under both arbitrary (Section 4.3) and simple path semantics
(Section 4.4). The proposed algorithm for streaming RPQ evaluation under arbitrary path
semantics incrementally maintains results for a query QR on a sliding window W over a
streaming graph S as new edges enter and old edges expire due to window slide. The algo-
rithm follows the implicit window semantics, where newly arriving edges are processed as
they arrive (and new results appended to the output stream) while the removal of expired
edges occur at user-specified slide intervals. The algorithm utilizes the temporal pattern
of window movements to simplify the state maintenance and the removal of expired edges.
As shown in Table 4.1, the amortized cost of an edge insertion is O(n·k2), so the worst-case
complexity of the proposed algorithm over m edges matches the worst-case complexity of
the corresponding batch algorithm over a graph that consists of m edges (i.e., O(m ·n · k2)
as shown in Section 4.3). In other words, over a sequence of edges, the proposed algorithm
for streaming RPQ evaluation under arbitrary path semantics runs in time asymptotically
no worse than the corresponding batch algorithm over the graph induced by the same
edges.

The static version of the RPQ evaluation problem is NP-hard in its most general form
[121], which has caused existing work to focus only on arbitrary path semantics. Yet, it is

1These results hold in the absence of conflicts, a condition on cyclic structure of the query and graph
that is precisely defined in Section 4.4.1.
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proven to be tractable when restricted to certain classes of regular expressions or by im-
posing restrictions on the graph instances [121, 20]. A recent analysis [31, 32] of real-world
SPARQL logs shows that a large portion of RPQs posed by users does indeed fall into those
tractable classes, motivating the design of efficient algorithms for streaming RPQ evalua-
tion under simple path semantics. An algorithm is proposed that admits efficient solutions
for streaming RPQs under simple path semantics in the absence of conflicts, a condition
on the cyclic structure of graphs that enables efficient batch algorithms (precisely defined
in Section 4.4.1) [121]. Indeed, this algorithm has the same amortized time complexity as
the proposed algorithm for arbitrary path semantics under the same condition as shown
in Table 4.1. This has two implications: (i) the proposed algorithm for streaming RPQs
under simple path semantics carries over the existing tractability results to the streaming
settings, and (ii) its amortized complexity is equivalent to its arbitrary path semantics
counterpart under these conditions.

The proposed algorithms incrementally maintain query answers as the window slides
thus eliminating the computational overhead of the naive strategy of batch computation
after each window movement. These algorithms handle expirations by utilizing the tem-
poral pattern of window movements where edges expire in the same order they are inserted
into a window. Furthermore, they support negative tuples to accommodate applica-
tions where users might explicitly delete a previously inserted edge. Albeit relatively rare,
explicit deletions are a desired feature of real-world applications that process and query
streaming graphs, and it is known to require special attention [67]. Unlike expirations
due to sliding window movements that follow a temporal pattern, the arbitrary nature of
explicit deletions incurs additional complexity for the proposed algorithms, as shown in Ta-
ble 4.1. Section 4.3.2 describes how explicit deletions can be handled in a uniform manner
by utilizing the machinery developed for window management. The performance of the
proposed algorithms are empirically evaluated using a variety of real-world and synthetic
streaming graphs on real-world RPQs that cover more than 99% of all recursive queries
found in Wikidata query logs by a recent analysis [32] (Section 4.5).

4.2 Preliminaries

The streaming graph data model introduced in Section 3.2 is used to represent input and
output streaming graphs of RPQs. For ease of representation, the negative-tuple approach
is used throughout this chapter as the underlying stream representation. Each sgt is
associated with an operation type, i.e., insert (+) or delete (−), to denote the validity
of elements. This enables the uniform handling of the entire design space of streaming
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RPQ algorithms – both the alternative window semantics and handling of expirations and
explicit deletions. Recall that these two representations are semantically equivalent and
can be used interchangeably, as previously described in Remark 1.

Figure 4.1(a) shows an excerpt of a streaming graph S, and Figure 4.1(b) shows its
snapshot graph G18 = τ18

(
W15(S)

)
defined by window W with ω = 15.

A time-based sliding window W (Definition 16) might progress either at every time
unit, i.e. β = 1 (eager evaluation; resp. expiration) or at β > 1 intervals (lazy evaluation;
resp. expiration) [136]. Eager evaluation produces fresh results but windows can be expired
lazily if queries do not produce premature expirations [67]. The proposed algorithms use
eager evaluation (β = 1) but lazy expiration (β > 1) as it enables the separation of window
maintenance from processing of incoming sgts (Section 4.3.1).

Definition 18 (Regular Expression & Regular Language). A regular expression R over
an alphabet Σ is defined as R ::= ϵ | a | R ◦R | R +R | R∗ where (i) ϵ denotes the empty
string, (ii) a ∈ Σ denotes a character in the alphabet, (iii) ◦ denotes the concatenation
operator, (iv) + denotes the alternation operator, and (v) ∗ represents the Kleene star. ¬
is used to denote the negation of an expression, and R+ to denote 1 or more repetitions
of R.A regular language L(R) is the set of all strings that can be described by the regular
expression R.

Definition 19 (Regular Path Query – RPQ). A one-time Regular Path Query QR over a
static graph G asks for pairs of vertices (u, v) that are connected by a path p from u to v in
graph G, where the path label ϕp(p) is a word in the regular language defined by the regular
expression R over the graph’s edge labels Σ, i.e., ϕp(p) ∈ L(R). Answer to query QO

R over
G, QO

R(G), is the set of all pairs of vertices that are connected by such paths.

Sliding windows adhere to two alternative semantics: implicit and explicit [68]. Im-
plicit windows add new results to query output as new sgts arrive and do not invali-
date the previously reported results upon their expiry as the window moves. In the
absence of explicit edge deletions, the query results are monotonic. Under this model,
the result set of a streaming RPQ over a streaming graph S and a sliding window W
at time t contains all paths in all previous snapshot graphs Gπ where 0 < π ≤ t, i.e.,
τt
(
QR(S,W)

)
=

⋃
0<π≤tQ

O
R

(
τπ
(
W(S)

))
. Alternatively, explicit windows remove previ-

ously reported results involving tuples (i.e., sgts) that have expired from the window;
hence, persistent queries with explicit windows are akin to incremental view maintenance.
Under this model, the result set of a streaming RPQ over a streaming graph S and a
sliding window W at time t contains only the paths in the snapshot Gt of the streaming
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graph, i.e., τt
(
QR(S,W)

)
= QO

R

(
τt
(
W(S)

))
. Explicit windows, by definition, produce

non-monotonic results as previous results are negated when the window moves [68]. The
rest of this section assumes the implicit window model as it enables the preservation of the
monotonicity of query results and produces an append-only stream of query results (in the
absence of explicit deletions).

Definition 20 (Streaming RPQ). Following the SGQ model (Definition 17), a streaming
RPQ is defined over a streaming graph S and a sliding window Wω of size ω. A pair of
vertices (u, v) is an answer for a streaming RPQ, QR, at time t if there exists a path p
between u and v in Gt = τt

(
Wω

)
, i.e., timestamps of every edges in p are in the window

interval. The timestamp p.ts of a path p is the minimum timestamp among all edges of
p. Under the implicit window model, the resulting streaming graph of a streaming RPQ
QR over a streaming graph S and a sliding window W is an append-only stream of sgts
(u, v, lO, ts, p) where there exists a path p between u and v with label ϕp(p) ∈ L(R) and all
the edges in p are at most one window length, i.e., ω time units, apart. Formally:

∀t ∈ T , τt
(
QR(S,Wω)

)
= {(u, v, lO, ts, p) |∃p : u p→ v ∧ lO = ϕ(p) ∈ L(R)∧

max
e∈p

(e.ts) < p.ts+ ω ≤ t}

Definition 21 (Deterministic Finite Automaton). Given a regular expression R, A =
(S,Σ, δ, s0, F ) is a Deterministic Finite Automaton (DFA) for L(R) where S is the set of
states, Σ is the input alphabet, δ : S × Σ → S is the state transition function, s0 ∈ S is
the start state and F ⊆ S is the set of final states. δ∗ is the extended transition function
defined as:

δ∗(s, w ◦ a) = δ(δ∗(s, w), a)

where s ∈ S, a ∈ Σ, w ∈ Σ∗, and δ∗(s, ϵ) = s for the empty string ϵ. A word w is in the
language accepted by A if δ∗(w, s0) = sf for some sf ∈ F .

Definition 22 (Product Graph). Given a graph G = (V,E,Σ, ψ, ϕ) and a DFA A =
(S,Σ, δ, s0, F ), the product graph PG,A is defined as a quintiple (VP , EP ,Σ, ψP , ϕP ) where
VP = V × S, EP ⊆ VP × VP is a set of edges, ψP : EP → VP × VP is an incidence function
such that ((u, s), (v, t)) is in EP iff (u, v) ∈ E and δ(s, ϕ(u, v)) = t.

Figure 4.2(b) shows the product graph of G18 (Figure 4.1(b)) and the DFA A of the
query Q1 (Figure 4.2(a)).

For a given RPQ with a regular expression R, Thompson’s construction algorithm [160]
is first used to create a NDFA that recognizes the language L(R), then the equivalent
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minimal DFA, A, is created using Hopcroft’s algorithm [84]. In the remainder of this
chapter, A and the product graph PG,A are used to describe the proposed algorithms for
RPQ evaluation in the streaming graph model.

4.3 RPQ with Arbitrary Semantics

The focus of this section is the problem of RPQ evaluation over sliding windows of stream-
ing graphs under arbitrary path semantics, that is, finding pairs of vertices u, v ∈ V where
(i) there exists a (not necessarily simple) path p between u and v with a label ϕp(p) in
the language L(R), and (ii) timestamps of all edges in path p are in the range of window
W . Append-only streams are considered where the query results are monotonic (under
implicit window model) such that existing results do not expire from the result set when
input tuples expire from the window [68]. Then, the algorithms are extended to support
negative tuples to handle explicit edge deletions.

Batch Algorithm: RPQs can be evaluated in polynomial time under arbitrary path
semantics [121]. Given a product graph PG,A, there is a path p in G from x to y with
label w that is in L(R) if and only if there is a path in PG,A from (x, s0) to (y, sf ), where
sf ∈ F . The batch RPQ evaluation algorithm under arbitrary path semantics traverses
the product graph PG,A by simultaneously traversing graph G and the automaton A. The
time complexity of the batch algorithm is O(n ·m · k2) under the assumption that there
are more edges than isolated vertices in G.

4.3.1 RPQ over Append-Only Streams

First consider an incremental algorithm for Regular Arbitrary Path Query (RAPQ) evalu-
ation over append-only streams. As noted above, using implicit window semantics, RAPQs
are monotonic, i.e., τt

(
QR(S,W)

)
⊆ τt+ϵ

(
QR(S,W)

)
for all t, ϵ ≥ 0. Algorithm RAPQ

consumes a sequence of append-only tuples (i.e., op is +), and simultaneously traverses
the product graph of the snapshot graph Gt of the window W over a graph stream S and
the automaton A of QR for each sgt in the stream, and it produces an append-only stream
of results for QR(S,W). As in the case of the batch algorithm, such traversal of Gt guided
with the automaton A emulates a traversal of the product graph PG,A.

Definition 23 (∆ Tree Index). Given an automaton A for a query QR and a snapshot Gts

of a streaming graph S over a windowW at time ts, ∆ is a collection of spanning trees where
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Algorithm RAPQ:
input : Input streaming graph S,
Window size ω,
Regular expression R,
output label O
output: Output streaming graph SO

1 A(S,Σ, δ, s0, F )← ConstructDFA(R)
2 Initialize ∆
3 SO ← ∅
4 R← ∅
5 foreach sgt = (u, v, l, ts,D) ∈ S do
6 Gts ← Gts−1 (op) e(u, v) // update snapshot graph
7 ExpiryRAPQ(Gts, ω, Tx, ts ) ∀Tx ∈ ∆ // on user-defined slide intervals
8 foreach s, t ∈ S where t = δ(s, l) do
9 if s = s0 ∧ Tu ̸∈ ∆ then

10 add Tu with root node (u, s0)

11 end
12 foreach Tx ∈ ∆ do
13 if (u, s) ∈ Tx ∧ (u, s).ts > ts− ω then
14 if (v, t) ̸∈ Tx ∨ (v, t).ts < min((u, s).ts, ts) then
15 R← R+Insert(Gts, Tx, (u, s), (v, t), e(u, v))
16 end
17 end
18 end
19 end
20 end
21 foreach sgt t ∈ R do
22 push t to SO

23 end
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Algorithm Insert:
input : Snapshot graph Gts,
Spanning Tree Tx rooted at (x, s0),
parent node (u, s),
child node (v, t),
edge (u, v)
output: The set of results R

1 R← ∅
2 (v, t).pt = (u, s)
3 (v, t).ts = min(ts, (u, s).ts) if (v, t) ̸∈ Tx then
4 if t ∈ F then
5 p← PATH(Tx, (v, t))
6 R← R + (x, v, O, (v, t).ts, p)

7 end
8 foreach edge (v, w) ∈ Gts s.t. δ(t, ϕ(v, w)) = q do
9 if (w, q) ̸∈ Tx ∨ (w, q).ts < min((v, t).ts, (v, w).ts) then

10 R← R+Insert(Gts, Tx, (v, t), (w, q), e(v, w))
11 end
12 end
13 end
14 return R
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each tree Tx is rooted at a vertex x ∈ Gts for which there is a corresponding node in the
product graph of A and Gts with the start state s0, i.e., ∆ = {Tx | x ∈ Gts∧(x, s0) ∈ VPG,A

}.

In the remainder, the term “vertex” denotes endpoints of sgts, and the term “node”
denotes vertex-state pairs in spanning trees.

A node (u, s) ∈ Tx at time τ indicates that there is a path p in Gts from x to u with
label ϕp(p) and timestamp p.ts such that δ∗(s0, ϕp(p)) = s and (τ − ω) < p.ts ≤ τ , i.e.,
word ϕp(p) ∈ Σ∗ takes the automaton A from the initial state s0 to a state s and the
timestamp of the path is in the window range. Each node (u, s) in a tree Tx maintains a
pointer (u, s).pt to its parent in Tx. Additionally, the timestamp (u, s).ts is the minimum
timestamp among all edges in the path from (x, s0) to (u, s) in the spanning tree Tx,
following Definition 20.

Note that Algorithm RAPQ can directly use the window size ω to determine the
validity of streaming graph edges and spanning tree nodes as the snapshot graph Gts is
defined over an input graph stream through a time-based sliding windowW whose window
size is ω (Remark 3). Algorithm RAPQ continuously updates Gts upon arrival of new
edges and expiry of old edges (Line 6). In addition to Gts, it maintains a tree index (∆)
to support efficient incremental RPQ evaluation that enables efficient RPQ evaluation on
sliding windows over streaming graphs.

Example 6. Figure 4.3(a) illustrates a spanning tree Tx ∈ ∆ for the streaming graph
S and the RPQ Q1 given in Figure 4.2 at time t = 18. The tree in Figure 4.3(a) is
constructed through a traversal of the product graph starting from node (x, 0), visiting
nodes (y, 1), (u, 2), (v, 1) and (y, 2), forming the path from the root to the node (y, 2)
in Figure 4.3(a). Similar to the batch algorithm, this corresponds to the traversal of
the path ⟨x, y, u, v, y⟩ in the snapshot of the streaming graph (Figure 4.1(b)) with label
⟨follows, mentions,follows, mentions⟩ taking the automaton from state 0 to 2 through the
path ⟨0, 1, 2, 1, 2⟩ in the corresponding automaton (Figure 4.2(a)). The timestamp of the
node (y, 2) ∈ Tx at t = 18 is 4 as the edge with the minimum timestamp on the path from
the root is (y,mentions, u) with ts = 4.

Lemma 1. The proposed Algorithm RAPQ maintains the following two invariants of the
∆ tree index:

1. A node (u, s) with timestamp ts is in Tx if there exists a path p in Gts from x to u
with label ϕp(p) and timestamp (u, s).ts such that s = δ∗(s0, ϕ

p(p)) and (u, s).ts =
p.ts ∈ (ts− ω, ts], i.e., there exists a path p in Gts from x to u with label ϕp(p) such
that ϕp(p) is a prefix of a word in L(R) and all edges are in the window W.
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Figure 4.3: A spanning tree Tx ∈ ∆ for the example given in Figure 4.2 rooted at (x, 0)
(a) before and (b) after the edge e(w, u) with label follows at t = 19 is consumed. The
timestamp of each node given at the corner.
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2. At any given time ts, a node (u, s) appears in a spanning tree Tx at most once with
a timestamp in the range (ts− ω, ts].

Proof. First step is to show that Algorithm ExpiryRAPQ maintains the two invariants
of the ∆ tree index. The second invariant is preserved as Algorithm ExpiryRAPQ does
not add any node to a spanning tree Tx ∈ ∆. For each spanning tree Tx ∈ ∆, Line 2 of the
algorithm identifies the set of nodes that are potentially expired at time ts, P = {(v, t) ∈
Tx | (v, t).ts ≤ ts − ω}. Initially, all expired nodes are removed from the spanning tree
Tx (Line 3). Algorithm Insert is invoked for each expired node (v, t) ∈ P if there exists
a valid edge in the window Gts from another valid node in Tx (Line 7). Finally, nodes
that are reconnected to the spanning tree Tx by Algorithm Insert are removed from P
as there exists an alternative path from the root through (u, s). As a result, Algorithm
ExpiryRAPQ removes a node (v, t) from the spanning tree Tx if there does not exist any
path p in Gts from x to u with a label l such that s = δ∗(s0, l) and p.ts > ts−ω, preserving
the first invariant.

It is easy to see that the second invariant is preserved after each call to Algorithm
RAPQ given that Algorithm ExpiryRAPQ preserves both invariants. The second in-
variant is preserved as Line 3 of Algorithm Insert adds the node (v, t) to a spanning tree
Tx only if it has not been previously inserted.

It can be shown that Algorithm RAPQ preserves the first invariant by induction on
the length of the path. For the base case n = 1, consider that sgt = (u, v, l, ts,D) arrives
in the window S at time ts. Line 8 in Algorithm RAPQ identifies each state t where there
is a transition from the initial state s0 with label l, i.e., δ(s0, l) = t. The path from (u, s0)
to (v, t) is added to Tx with (v, t).ts = ts. For the non-base case, consider a node v ∈ Gts

where there exists a path p of length n from x where t = δ∗(s0, ϕ
p(p)) and p.ts > ts − ω.

Let (u, s) be the predecessor of (v, t) in the path, that is edge (u, v) is in Gts with label l
and δ(s, l) = t. By the inductive hypothesis, the node (u, s) is in Tx as there exists a path q
of length n−1 from x to u in Gts where s = δ∗(s0, ϕ(q)) and q.ts > ts−ω. If the timestamp
of the edge e(u, v) ∈ Gts is within the window interval (i.e., ts− ω < e.ts < ts) when the
node (u, s) is inserted into Tx , then the proposed algorithm invokes Algorithm Insert with
node (u, s) as parent and node (v, t) as child (Line 15) and its adds (v, t) into Tx with
timestamp (v, t).ts = min(e.ts, (u, s).ts) (Line 3). If the edge e(u, v) is processed by the
proposed algorithm after the node (u, s) is inserted in Tx (e.ts > (u, s).ts), then Line 10 in
Algorithm Insert guarantees that Algorithm Insert is invoked with the node (v, t). Lines
2 and 3 in Algorithm Insert adds the node (v, t) to Tx, and properly updates its parent
pointer to (u, s) and its timestamp (v, t).ts = min(e.ts, (u, s).ts). The first invariant is
preserved in either case as ts−ω < p.ts = (v, t).ts ≤ ts. Therefore Algorithm RAPQ also
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preserves the first invariant.

The first invariant allows tracing all reachable nodes from a root node (x, s0) whereas
the second invariant prevents Algorithm RAPQ from visiting the same vertex in the same
state more than once in the same tree. Consider the example in Figure 4.3(a): node (u, 2) is
not added as a child of the node (x, 1) after traversing edge (x, u) ∈ S with label mentions
since (u, 2) is already reachable from (x, 0).

Algorithm ExpiryRAPQ is invoked at pre-defined slide intervals to remove expired
nodes from ∆. For each Tx ∈ ∆, it identifies the set of candidate nodes whose timestamps
are not within the window interval (Line 2) and temporarily removes those from Tx (Line
3). For each candidate (v, t), Algorithm Insert finds an incoming edge from another valid
node in Tx (Line 7) and it reconnects the subtree rooted at (v, t) to Tx. Nodes with
no valid incoming edges are permanently removed from Tx. Algorithm ExpiryRAPQ
might traverse the entire snapshot graph Gts in the worst case. This can be used to undo
previously reported results if explicit window semantics is required (Line 14), yet, it is only
used to process explicit deletions as described in Section 4.3.2.

Example 7. Consider the example provided in Figure 4.3(b) and assume that window size
is ω = 15 time units. Upon arrival of edge (w, u) with label follows at t = 19, nodes
(u, 1) and (x, 2) are added to Tx as descendants of (w, 2). Also, paths leading to nodes
(u, 2), (v, 1) and (y, 2) are expired as their timestamp is 4 (due to the edge (y, u) with a
timestamp 4). Algorithm ExpiryRAPQ searches incoming edges of vertex u in Gts and
identifies that there exists a valid edge (z, u) with label mentions and timestamp 14. As a
result, node (u, 2) and its subtree is reconnected to node (z, 1).

Theorem 1. Algorithm RAPQ is correct and complete.

Proof. Algorithm RAPQ terminates as Line 3 ensures that no node is visited more than
once in any spanning tree in ∆.

If: If direction follows trivially from the first invariant of spanning trees. Lemma 1
guarantees that node (u, s) is inserted into the spanning tree Tx if there exists a path p in
the snapshot graph Gts of the window W at time ts from x to u satisfying R. Line 6 in
Algorithm Insert adds the pair (x, u,O, (u, s).ts, p) to the output streaming graph SO if
the target state is an accepting state, s ∈ F .

Only If: If the algorithm adds (x, u,O, (u, sf ).ts, p) to R, then it must traverse a path
p from x to u in Gts where sf = δ∗(s0, ϕ

p(p)), sf ∈ F and p.ts ∈ (ts − ω, ts]. Let n be
the length of such path p. For any (x, u,O, ts, p) that is added to R, Algorithm Insert

49



must have been invoked with the node (u, sf ) as the child node for some sf ∈ F (Line
15 in RAPQ or Line 10 in Insert). Therefore, the proof proceeds by showing that node
(u, sf ) with timestamp (u, sf ).ts ∈ (ts − ω, ts] for some sf ∈ F is added to the spanning
tree Tx only if there exists a path p of length n with the same timestamp in Gts from x to
u satisfying R. For the base case of n = 1, assume there exists a tuple (x, u, l, ts,D) where
δ(s0, l) = sf for some sf ∈ F . Algorithm RAPQ (Line 15) invokes Algorithm Insert
with parameters (x, s0) as the parent node and (u, sf ) as the child node, then streaming
graph tuple (x, u,O, (u, sf ).ts, p) is added to the result set (Line 6). Let’s assume that there
exists a path q of length n− 1 in Gts from x to v where t = δ∗(s0, ϕ

p(p)) and there exists
a node (v, t) in Tx where (v, t).ts = q.ts ∈ (ts − ω, ts]. For the node (u, s) to be added
to the spanning tree Tx with timestamp (u, s).ts ∈ (ts − ω, ts], Algorithm Insert must
have been invoked with (u, s) by Line 15 of Algorithm RAPQ or Line 10 of Algorithm
Insert. In either case, there must be an edge e(v, u) ∈ Gts where s = δ(t, ϕ(u, v)), and
e.ts ∈ (ts− ω, ts]. Therefore, this implies that there exists a path of length n in Gts from
x to u, thus concluding the proof.

Theorem 2. The amortized cost of Algorithm RAPQ is O(n · k2), where n is the number
of distinct vertices in the Gts defined by the window W over the streaming graph S and k
is the number of states in the corresponding automaton A of the the query QR.

Proof. Consider a streaming graph edge (u, v, l, ts,D) arriving for processing at time ts.
Updating window Gts with the incoming sge (Line 6) takes constant time. Thus, the time
complexity of Algorithm RAPQ is the total number of times Algorithm Insert is invoked.

First, it is shown that the amortized cost of updating a single spanning tree Tx rooted
at (x, s0) is constant in window size. For an edge (u, v) with label l, there could be k
many parent nodes (u, s) ∈ Tx for each state s and k many child nodes (v, t) for each
state t Consequently, there could be at most k2 invocations of Algorithm Insert for a
given spanning tree Tx. Upon arrival of the edge e(u, v), Algorithm Insert is invoked with
nodes (u, s) as parent and (v, t) as child either when (u, s) is already in Tx at time ts,
ts − ω < (u, s).ts ≤ ts (Line 15 in Algorithm RAPQ), or when (u, s) is added to Tx at
a later point in time (u, s).ts > ts (Line 10 in Algorithm Insert). Note that Algorithm
Insert is invoked with these parameters at most once as Line 3 of Algorithm Insert
extends a node (v, t) only if it is not in Tx. The second invariant (Lemma 1) guarantees
that (u, s) appears in a spanning tree Tx at most once. Therefore, Algorithm Insert is
invoked at most m · k2 over a sequence of m tuples. As there are at most n spanning trees
in ∆, one for each x ∈ Gts, the total amortized cost is O(n · k2).
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Algorithm ExpiryRAPQ:
input : Snapshot graph Gts,

Window size ω
timestamp ts,
Spanning tree Tx

output: The set of invalidated results RI

1 RI ← ∅
2 set P = {(v, t) ∈ Tx | (v, t).ts ≤ ts− ω} // potentially expired nodes
3 Tx ← Tx \ P // prune Tx
4 foreach (v, t) ∈ P do
5 foreach edge e(u, v) ∈ Gts do
6 if (u, s) ∈ Tx ∧ t = δ(s, ϕ(u, v)) then
7 P ← P\ Insert(Tx, (u, s), (v, t), e(u, v))
8 end
9 end

10 end
11 foreach (v, t) ∈ P do
12 if t ∈ F then
13 p← PATH(Tx, (v, t))
14 R← R + (x, v, O, (v, t).ts, p)

15 end
16 end
17 return RI
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Consequently, Algorithm Insert has O(n) amortized time complexity in terms of the
number of vertices in the snapshot graph Gts. As described previously, Algorithm Ex-
piryRAPQ might traverse the entire product graph and its worst case complexity is
O(m · k2). Therefore, the total cost of window maintenance over n spanning trees is
O(n ·m · k2). This cost is amortized over the window slide interval β.

4.3.2 Explicit Deletions

The majority of real-world applications process append-only streaming graphs where ex-
isting tuples in the window expire only due to window movements. However, there are
applications that require users to explicitly delete a previously inserted edge. Algorithm
ExpiryRAPQ proposed in Section 4.3.1 can be utilized to support such explicit edge
deletions. Remember that in the append-only case, a node (v, t) in a spanning tree Tx ∈ ∆
is only removed when its timestamp falls outside the window range. An explicit deletion
might require (v, t) ∈ Tx to be removed if the deleted edge is on the path from (x, s0) to
(v, t) in the spanning tree Tx. Algorithm ExpiryRAPQ is used to remove such nodes so
that explicit deletions and window management are handled in a uniform manner.

Definition 24 (Tree Edge). Given a spanning tree Tx at time ts, an edge e(u, v) with label
l is a tree-edge w.r.t Tx if (u, s) is the parent of (v, t) in Tx and there is a transition from
state s to t with label l, i.e., (u, s) ∈ Tx, (v, t) ∈ Tx, t = δ(s, l), and (v, t).pt = (u, s).

Algorithm Delete finds spanning trees where a deleted edge (u, v) is a tree-edge (Line
3) as per Definition 24. Deletion of the tree-edge from (u, s) to (v, t) in Tx disconnects
(v, t) and its descendants from Tx. Algorithm Delete traverses the subtree rooted at (v, t)
and sets the timestamp of each node to −∞, essentially marking them as expired (Line
5). Algorithm ExpiryRAPQ processes each expired node in ∆ and checks if there exists
an alternative path comprised of valid edges in the window. Algorithm Delete invokes
Algorithm ExpiryRAPQ (Line 9) to manage explicit deletions using the same machinery
of window management. Deletion of a non-tree edge, on the other hand, leaves spanning
trees unchanged so no modification is necessary other than updating the window content
Gts.

Theorem 3. The amortized cost of Algorithm Delete is O(n2 · k) over a sequence of
explicit edge deletions.

Proof. Consider the cost of an explicit deletion over a single spanning tree Tx ∈ ∆, rooted
at (x, s0). Given a negative tuple (u, v, l, ts,D), Line 3 identifies the corresponding set of
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Algorithm Delete:
input : Negative tuple sgt = (u, v, l, ts,D),

Snapshot graph Gts,
Window size ω

output: The set of invalidated results RI

1 RI ← ∅
2 foreach Tx ∈ ∆ do
3 foreach s, t ∈ S | t = δ(s, l) ∧ (v, t) ∈ Tx ∧ (v, t).pt = (u, s) do
4 T(x,v,t) ← the subtree of (v, t) in Tx

5 foreach (w, q) ∈ T(x,v,t) do
6 (w, q).ts = −∞
7 end
8 end
9 RI ← RI ∪ ExpiryRAPQ(Gts, ω, Tx, ts)

10 end
11 return RI

tree edges in Tx in O(n · k) time. For each such tree edge from (u, s) to (v, t) in Tx, Line
4 traverses the spanning tree Tx starting from (v, t) to identify the set of nodes that are
possibly affected by the deleted edge, thus its cost is O(n ·k). Once timestamps of nodes in
the subtree of (v, t) is set to −∞, Line 9 invokes Algorithm ExpiryRAPQ to process all
expired nodes in Tx, whose time complexity is O(m ·k2). There can be at most m ·k2 edges
in the product graph of snapshot Gts with m edges and automaton A with k edges. The
amortized time complexity of maintaining a single spanning tree Tx ∈ ∆ over a sequence of
m explicit deletion is O(n · k) since at most n · k of those edges are tree edges. Algorithm
Delete does not need to process non-tree edges as a removal of a non-tree edge only need
to update the window Gts, which is a constant time operation. Therefore, the amortized
cost of Algorithm Delete over a sequence of m explicit edge deletions is O(n2 · k).

4.4 RPQ with Simple Path Semantics

RPQ evaluation on streaming graphs under the simple path semantics involves finding pairs
of vertices u, v ∈ V where there exists a simple path (no repeating vertices) p between u
and v with a path label w in the language L(R).

The decision problem for the static version of Regular Simple Path Query (RSPQ),
i.e., deciding whether a pair of vertices u, v ∈ V is in the result set of a RSPQ QO

R, is
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NP-complete for certain fixed regular expressions, making the general problem NP-hard
[121]. Mendelzon and Wood [121] show that there exists a batch algorithm to evaluate
RSPQs on static graphs in the absence of conflicts, a condition on the cyclic structure of
the graph G and the regular language L(R) of the query QO

R.

Definition 25 (Suffix Language). Given an automaton A = (S,Σ, δ, s0, F ), the suffix
language of a state s is defined as [s] = {w ∈ Σ∗ | δ∗(s, w) ∈ F}; that is, the set of all
strings that take A from state s to a final state sf ∈ F .

Definition 26 (Containment Property). Automaton A = (S,Σ, δ, s0, F ) has the suffix
language containment property if for each pair (s, t) ∈ S × S such that s and t are on a
path from s0 to some final state and t is a successor of s, [s] ⊇ [t].

The suffix language containment relation ia computed and stored for all pairs of states
during query registration, i.e., the time when the query QR is first posed, and use these in
the proposed streaming algorithm to detect conflicts. The conflicts can now be precisely
defined.

Definition 27 (Conflict). There is a conflict at a vertex u if and only if a traversal of the
product graph PG,A starting from an initial node (x, s0) ∈ PG,A visits node u in states s
and t, and [s] ̸⊇ [t]. In other words, a tree TX is said to have a conflict between states s
and t at vertex u if (u, s) is an ancestor of (u, t) in the spanning tree Tx and [s] ̸⊇ [t].

Example 8. Consider the streaming graph and the query in Figures 4.1 and 4.2, respec-
tively, and the their spanning tree given in Figure 4.3(a). The node (y, 2) is added as a
child of the node (v, 1) when edge (v, y) arrives at t = 18. Based on Definition 27, there is
a conflict at vertex v as the path p from the root node (x, 0) visits the vertex v at states 1
and 2, and [1] ̸⊇ [2].

Batch Algorithm: Similar to the batch algorithm in Section 4.3, the batch RSPQ
algorithm [121] starts a DFS traversal of the product graph from every vertex x ∈ V
with the start state s0, and constructs a DFS tree, Tx. Each DFS tree maintains a set of
markings that is used to prevent a vertex being visited more than once in the same state in
a Tx. A node (u, s) is added to the set of markings only if the depth-first traversal starting
from the node (u, s) is completed and no conflict is detected. Mendelzon and Wood [121]
show that a RSPQ QR can be evaluated in O(n · m) in terms of the size of the graph
G by the batch algorithm in the absence of conflicts – the same as the batch algorithm
for RAPQ evaluation presented in Section 4.3. A query QO

R on a graph G is conflict-free
if: (i) the automaton A of R has the suffix language containment property, (ii) G is an
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acyclic graph, or (iii) G complies with a cycle constraint compatible with R. In following,
the persistent RSPQ evaluation problem is considered where the notion of conflict-freedom
[121] is shown to be applicable to sliding windows over streaming graphs, admitting an
efficient evaluation algorithm in the absence of conflicts.

4.4.1 Append-only Streams

First, consider an incremental algorithm for RSPQ evaluation based on its RAPQ counter-
part (Algorithm RSPQ) with implicit window semantics with complexity matching that
of the batch algorithm for RSPQ evaluation on static graphs [121], i.e., it admits efficient
solutions under the same conditions as the batch algorithm.

Definition 28 (Prefix Paths). Given a node (u, s) ∈ Tx, the prefix path p for node (u, s)
is defined as the path from the root to (u, s). The notation p[v], v ∈ V is adopted to denote
the set of states that are visited in vertex v in path p, i.e., p[v] = {s ∈ S | (v, s) ∈ p}.

Definition 29 (Conflict Predecessor). A node (u, s) ∈ Tx is a conflict predecessor if for
some successor (w, t) of (u, s) in Tx, (w, q) is the first occurrence of vertex w in the prefix
path of (u, s) and there is a conflict between q and t at w, i.e., [q] ̸⊇ [t].

In addition to tree index ∆ of Algorithm RAPQ in Section 4.3, Algorithm RSPQ
maintains a set of markings Mx for each spanning tree Tx. The set of markings Mx

for a spanning tree Tx is the set of nodes in Tx with no descendants that are conflict
predecessors (Definition 29). In the absence of conflicts, there is no conflict predecessor
and Mx contains all nodes in Tx. Algorithm RSPQ does not visit a node in Mx (Lines 16
in Algorithm RSPQ and 15 in Algorithm Extend) and therefore a node (u, s) appears
in the spanning tree Tx at most once in the absence of conflicts. Consequently, Algorithm
RSPQ maintains the second invariant of ∆ and behaves similar to the Algorithm RAPQ
presented in Section 4.3.1. On static graphs, the batch algorithm adds a node (u, s) to
the set of markings only after the entire depth-first traversal of the product graph from
(u, s) is completed, ensuring that the set Mx is monotonically growing. On the other hand,
tuples that arrive later in the streaming graph S might lead to a conflict with a node (u, s)
that is already in Mx, and Algorithm RSPQ removes (u, s)’s ancestors from the set of
markings Mx. As described later, Algorithm RSPQ correctly identifies these conflicts and
updates the spanning tree Tx and its set of markings Mx to ensure correctness. The conflict
detection mechanism signals to the algorithm that the corresponding traversal cannot be
pruned even if it visits a previously visited vertex. In other words, a node (u, s) ̸∈ Mx

may be visited more than once in a spanning tree Tx to ensure correctness. Consequently,
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Algorithm RSPQ:
input : Input streaming graph S,
Window size ω,
Regular expression R,
output label O
output: Output streaming graph SO

1 A(S,Σ, δ, s0, F )← ConstructDFA(R)
2 Initialize ∆
3 SO ← ∅
4 R← ∅
5 foreach sgt = (u, v, l, ts,D) ∈ S do
6 Gts ← Gts−1 (op) e(u, v) // update snapshot graph
7

8 ExpiryRSPQ(Gts, ω, Tx, ts ) ∀Tx ∈ ∆ // on user-defined slide intervals
9 foreach s, t ∈ S where t = δ(s, l) do

10 if s = s0 ∧ Tu ̸∈ ∆ then
11 add Tu with root node (u, s0)

12 end
13 foreach Tx ∈ ∆ do
14 if (u, s) ∈ Tx ∧ (u, s).ts > ts− ω then
15 p← PATH(Tx, (u, s)) // the prefix path
16 if t ̸∈ p[v] ∧ (v, t) ̸∈Mx then
17 R← R+ Extend(Gts, Tx, p, (v, t), e(u, v))
18 end
19 end
20 end
21 end
22 end
23 foreach sgt t ∈ R do
24 push t to SO

25 end
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Algorithm Extend:
input : Snapshot graph Gts,
Spanning tree Tx rooted at (x, s0),
Prefix path p,
child node (v, t),
edge (u, v)
output: Set of results R

1 R← ∅
2 if q = FIRST (p[v]) and [q] ̸⊇ [t] then
3 Unmark(Gts, Tx, p) // q and t have a conflict at vertex v

4 else
5 if t ∈ F then
6 R← R + (x, v, O, (v, t).ts, p)
7 end
8 if (v, t) /∈ Tx then
9 Mx ←Mx

⋃
(v, t)

10 end
11 add (v, t) as (u, s)’s child in Tx
12 pnew ← p+ [v, t]
13 pnew.ts = min(e.ts, p.ts)
14 foreach edge e(v, w) ∈ Gts s.t. δ(t, ϕ(e)) = r do
15 if r ̸∈ pnew[w] ∧ (w, r) ̸∈Mx then
16 R← R+ Extend(Gts, Tx, pnew, (w, r), e(v, w))
17 end
18 end
19 end
20 return R
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Algorithm Unmark:
input : Snapshot graph Gts,
Spanning Tree Tx,
Prefix Path p

1 Q← ∅
2 while p ̸= ∅ ∧ (v, t) = LAST (p) ∧ (v, t) ∈Mx do
3 Mx ←MX \ (v, t)
4 Q← Q+ (v, t)
5 p← PATH(Tx, (v, t).parent

6 end
7 foreach (v, t) ∈ Q do
8 foreach edge e(w, v) ∈ GW,τ s.t. t = δ(q, ϕ(e)) do
9 if (w, q) ∈ Tx ∧ t /∈ p[v] then

10 pcandidate ← PATH(Tx, (w, q))
11 Extend(Gts, Tx, pcandidate, (v, t), e(v, w))
12 end
13 end
14 end
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Algorithm ExpiryRSPQ:
input : Snapshot graph Gts,
Window size ω
timestamp ts,
Spanning tree Tx
output: The set of invalidated results RI

1 RI ← ∅
2 E = {(v, t) ∈ Tx | (v, t).ts ≤ ts− ω} // expired nodes
3 P ←Mx ∩ E
4 Tx ← Tx \ E // prune Tx
5 Mx ←Mx \ E // prune Mx

6 foreach (v, t) ∈ P do
7 foreach (u, v) ∈ Gts s.t. (u, s) ∈ Tx ∧ t = δ(s, ϕ(u, v)) do
8 p← PATH(Tx, (u, s))
9 P ← P\ Extend(Gts, Tx, p, (v, t), e(u, v))

10 end
11 end
12 foreach (w, q) ∈ P do
13 if all siblings of (w, q) are in Mx then
14 Mx ←Mx + (w, q).parent
15 end
16 if q ∈ F then
17 RI ← RI + (x,w,O, (w, q).ts, p)
18 end
19 end
20 return RI
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Algorithm RSPQ traverses every simple path that satisfies the given query QR if every
node in Tx is a conflict predecessor (Mx = ∅), leading to exponential time execution in
the worst case. In summary, Algorithm RSPQ differs from its arbitrary path semantics
counterpart in two major points: (i) it may traverse a vertex in the same state more than
once if a conflict is discovered at the vertex, and (ii) it keeps track of conflicts and maintains
a set of markings to prevent multiple visits of the same vertex in the same state whenever
possible.

For each incoming tuple (u, v, l, ts,D), Algorithm RSPQ finds prefix paths of all
(u, s) ∈ Tx (Line 15 ); that is, the set of paths in Tx from the root node to (u, s) (note that
there exists a single such node (u, s) and its corresponding prefix path if (u, s) ∈Mx). Then
it performs one of the following four steps for each node (u, s) ∈ Tx and its corresponding
prefix path p:

1. t ∈ p[v]: The vertex v is visited in the same state t as before, thus path p is pruned as
extending it with (v, t) leads to a cycle in the product graph PG,A (Line 16 in RSPQ
and Line 15 Extend).

2. (v, t) ∈ Mx: The target node (v, t) has already been visited in Tx and it has no
conflict predecessor descendant. Therefore path p is pruned (Line 16 in RSPQ, 15
in Extend).

3. q = FIRST (p[v]) and [q] ̸⊇ [t]: States q and t have a conflict at vertex v (Line 2
in Extend), making (u, s) a conflict predecessor. Therefore, all ancestors of (u, s)
in Tx are removed from Mx (Algorithm Unmark). During unmarking of a node
(vi, si) ∈Mx, all (w, q) ∈ Tx where (w, vi) ∈ Gts and si = δ(q, ϕ(w, vi)) are considered
as candidate for traversal as they were previously pruned due to (vi, si) being marked.

4. Otherwise path p is extended with (v, t), i.e., (v, t) is added as a child to (u, s) in Tx.
(Line 4 in Extend)

As described previously, an important difference between the proposed streaming al-
gorithm and the batch algorithm [121] is that the streaming version may remove nodes
from the set of markings Mx whereas a node in Mx cannot be removed in the batch model.
Hence, the batch algorithm can safely prune a path p if it reaches a node (u, s) ∈ Mx as
the suffix language containment property ensures correctness. The streaming model, on
the other hand, requires a special treatment as Mx is not monotonically growing. Case 2
above prunes a path p if it reaches a node (u, s) ∈Mx as in the batch algorithm. Unlike the
batch algorithm, a node (u, s) may be removed from Mx due to a conflict that is caused by
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(z, 1)
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(y, 2)

(w, 2)

Figure 4.4: A spanning tree Tx constructed by Algorithm RSPQ for the example in Figure
4.2.

an edge that later arrives. This conflict implies that path p should not have been pruned.
Case 3 above and Algorithm Unmark address exactly this scenario: ancestors of a conflict
predecessor is removed from Mx.

Whenever a node (u, s) is removed from Mx due to a conflict at one of its descendants,
Algorithm Unmark finds all paths that are previously pruned due to (u, s) by traversing
incoming edges of (u, s) ∈ Gts and invokes Algorithm Extend for each such path. It
enables Algorithm Extend to backtrack and evaluate all paths that would not be pruned
by Case 2 if (u, s) were not in Mx, ensuring the correctness of the algorithm.

The following example illustrates this behaviour of Algorithm RSPQ.

Example 9. Consider the streaming graph and the query in Figures 4.1 and 4.2, respec-
tively, and the their spanning tree given in Figure 4.3(a). Assume for now that Algorithm
RSPQ does not detect conflicts and only traverses simple paths in Gts. After processing
edge (x, y) at time t = 13, it adds node (u, 2) as a successor of (y, 1). Edge (z, u) arrives
at t = 14, however (u, 2) is not added as (z, 1)’s child as (u, 2) already exists in Tx. Later
at t = 18, edge (v, y) arrives, but (y, 2) is not added to the spanning tree Tx as the path
⟨x, y, u, v, y⟩ forms a cycle in Gts. As a result, (y, 2) is never visited and (x, y) is never
reported even though there exists a simple path in Gts from x to y, that is ⟨x, z, u, v, y⟩.

Instead, Algorithm RSPQ detects the conflict at the vertex v between states 1 and
2 after edge (v, y) arrives at time t = 18 as FIRST (p[y]) = 1 and [1] ̸⊇ [2]. Algorithm
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Unmark removes all ancestors of (y, 2) from Mx and, during unmarking of (u, 2), the prefix
path p from (x, 0) to (z, 1) is extended with (u, 2). Finally, Algorithm Extend traverses
the simple path ⟨x, z, u, v, y⟩ and updates the result set. Figure 4.4 depicts the spanning
tree Tx ∈ ∆ at time t = 18.

Similar to its arbitrary counterpart, Algorithm RSPQ invokes Algorithm ExpiryR-
SPQ at each user-defined slide interval β. It first identifies the set of candidate nodes
whose timestamp is not in (ts− ω, ts] (Line 2). Unmarked candidate nodes (Mx \ E) can
safely be removed from Tx as the unmarking procedure already considers all valid edges to
an unmarked node. Hence, Algorithm ExpiryRSPQ reconnects a candidate node with a
valid edge only if it is marked (Line 6). Finally, it extends the set of marking with nodes
that are not conflict predecessors any longer (Line 12).

Theorem 4. The algorithm RSPQ is correct and complete.

Proof. If: If the proposed algorithm traverses the path p, it correctly adds it to the result
set R and consecutively to the output streaming graph SO (Line 6 and 24 in Algorithm
Extend). The reason p is not traversed is due to a marked node (Case 2 of the proposed
algorithm) as no vertex appears more than once in p (as it is a simple path). Let the last
node visited in p be (v, t) and its successor on p be (w, r). The initial part of path p from
(x, s0) to (v, t) is not extended by (w, r) as (w, r) ∈Mx If (w, r) is removed from Mx due to
a conflict predecessor descendant of (w, r), Algorithm Unmark guarantees that the initial
part of path p from (x, s0) to (v, t) is extended with (w, r) as (v, t) ∈ Tx and (v, w) ∈ E
and r = δ(t, ϕ(v, w)) (Line 2 of Algorithm Unmark). As a result, the path p from (v, t)
to (u, sf ) is discovered and (x, u,O, (u, sf ).ts, p) is added to SO. If (w, r) remains in Mx,
(w, r) does not have any descendants that is a conflict predecessor. Therefore, (u, s) must
have been traversed as a descendant of (w, r), adding (x, u,O, (u, s).ts, p) to SO.

Only if: Assume that p is not simple, meaning that there exists a node v that appears
in p more than once. The first such occurrence is (v, s1) ∈ p and the last such occurrence is
(v, s2) ∈ p. For (v, s2) to be visited, [s1] ̸⊇ [s2] must have been false (Line 2 in Algorithm
Extend). The containment property (Definition 26) implies that there exists a path p′

from (v, s1) to (u, s2f ), s2f ∈ F such that the sequence of vertices on p′ is identical to those
in p from (v, s2) to (u, sf ). Note that (v, s1) and (v, s2) are the first and last occurrences
of v in p, therefore there exists a simple path in PG,A from (x, s0) to (u, s2f ), s

2
f ∈ F where

the vertex v appears only once. A simple induction on the number of repeated vertices
concludes that there is a simple path in G from x to u where the path label is in L(R),
and thus (x, u,O, (v, s2f ).ts, p) is added to SO.
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Theorem 5. The amortized cost of Algorithm RSPQ is O(n · k2), where n is the number
of distinct vertices in the window W and k is the number of states in the corresponding
automaton A of the query QR.

Proof. The proposed algorithm might take exponential time in the size of the stream in the
presence of conflicts as RSPQ evaluation is NP-hard in its general form [121]. Therefore,
first focus on streaming RSPQ evaluation in the absence of conflicts and show that the
cost of updating a single spanning tree Tx and its markings Mx is constant in the size of
the stream.

The cost of Algorithm RSPQ for updating a single spanning tree Tx is determined by
the total cost of invocations of Algorithm Extend. In the absence of conflicts, Algorithm
Extend never invokes Algorithm Unmark, and the cost of updating R (Line 6), Mx (Line
9) and Tx (Line 11) are all constant. Therefore the cost of Algorithm Extend and thus
the cost of Algorithm RSPQ are determined by the number of invocations of Algorithm
Extend.

Algorithm Extend checks if a prefix path p whose last node in (u, s) for some t = δ(s, l)
can be extended with (v, t). Each node (v, t) appears in Tx at most once. The first
time Algorithm Extend is invoked with some prefix path p and node (v, t), path p is
extended and node (v, t) is added to Tx and Mx (Line 4). Consecutive invocations of
Algorithm Extend with node (v, t) do not perform any modifications on Tx or Mx as (v, t)
is guaranteed to remain marked in absence of conflicts. Therefore, each node (v, t) appears
only once in each spanning tree Tx in the absence of conflicts (a node is removed from
Mx only if a conflict is discovered at Line 2). For an incoming tuple with edge (u, v) with
label l, there can be at most k2 pairs of prefix path p of (u, s) and node (v, t), for each
s, t ∈ S. Algorithm Extend is invoked for each such pair at most once; either (i) when
the edge e(u, v) first appears in the stream and (u, s) ∈ Tx but not (v, t) (Line 17), or (ii)
e(u, v) with label l previously appeared in the stream when (u, s) is first added to Tx and
(v, t) /∈ Tx (Line 16). Over a stream of m tuples, Algorithm Extend is invoked O(m · k2)
times for the maintenance of a spanning tree Tx. Therefore, amortized cost of maintaining
a spanning tree Tx over a stream of m edges is O(k2). Given that there are O(n) spanning
trees, one for each x ∈ V , the amortized complexity of Algorithm RSPQ is O(n · k2) per
tuple.

Consequently, the amortized cost of Algorithm RSPQ is linear in the number n of
vertices in the snapshot graph Gts, similarly to its RAPQ counterpart (described in Section
4.3.2).
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4.4.2 Explicit Deletions

Algorithm RSPQ processes negative tuples similar to its RAPQ counterpart. First, it
identifies whether the edge of a negative tuple (x, u, l, ts,D) corresponds to a tree edge
in a spanning tree Tx. If so, it traverses the subtree of the deleted edge in Tx and sets
the timestamp of each node −∞. Similar to its RAPQ counterpart, it invokes Algorithm
ExpiryRSPQ on the spanning tree Tx. Finally, Algorithm ExpiryRSPQ processes each
expired node in Tx (whose timestamp is set to −∞) and reconnects it to the spanning tree
Tx if there exists another path from a valid node in Tx.

Similar to explicit edge deletion under arbitrary path semantics, the amortized time
complexity of processing sequence of m explicit edge deletions is O(n2 · k) where n is the
number of distinct vertices and k is the number of states in the corresponding automaton
of a RSPQ QR.

4.5 Experimental Analysis

The feasibility of the proposed persistent RPQ evaluation algorithms are evaluated over
both real and synthetic streaming graphs. First the throughput and the edge processing la-
tency of Algorithm RAPQ is systematically evaluated over append-only streaming graphs,
analyzing the factors affecting its performance (Section 4.5.2). Then, its scalability is as-
sessed by varying the window size ω, the slide interval β and the query size |QR| (Section
4.5.3). The overhead of Algorithm Delete over Algorithm RAPQ for explicit deletions
is analyzed in Section 4.5.4 whereas Section 4.5.5 analyzes the feasibility of RSPQ for
persistent RPQ evaluation under simple path semantics. Finally the proposed algorithms
are compared with other systems (Section 4.5.6). Since this the first work to address RPQ
evaluation over streaming graphs, the only possible comparison is against an emulation of
persistent RPQ evaluation using RDF systems with SPARQL property path support.

The highlights of the results are as follows:

1. The proposed persistent RPQ evaluation algorithms maintain sub-millisecond edge
processing latency on real-world workloads, and can process up-to tens of thousands
of edges-per-second on a single machine.

2. The tail (99th percentile) latency of the algorithms increases linearly with the window
size ω, confirming the amortized costs in Table 4.1.
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3. The cost of expiring old tuples grows linearly with the slide interval β, which enables
constant overhead regardless of β when amortized over the slide interval.

4. Explicit deletions can incur up to 50% performance degradation on tail latency,
however the impact stays relatively steady with the increasing ratio of deletions.

5. Although RPQ evaluation under simple path semantics is NP-hard in its most-general
form, the results indicate that the majority of the queries formulated on real-world
and synthetic streaming graphs can be evaluated with 2× to 5× overhead on the tail
latency.

6. The proposed algorithms achieve up to three orders of magnitude better performance
when compared to existing RDF systems that emulate stream processing functional-
ities, substantiating the need for streaming algorithms for persistent RPQ evaluation
on streaming graphs.

4.5.1 Methodology

Implementation

For this study, simple, in-memory prototypes of the proposed algorithms are developed
— out-of-core processing is left as future work. The tree index ∆ is implemented as
a concurrent hash-based index where each vertex v ∈ Gts is mapped to its corresponding
spanning tree Tx. Similarly, each spanning tree Tx is assisted with an additional hash-based
index for efficient node look-ups. RAPQ (RAPQ and ExpiryRAPQ), RSPQ algorithms
(RSPQ, and ExpiryRAPQ) employ intra-query parallelism by deploying a thread pool
to process multiple spanning trees in parallel that are accessed for each incoming edge.
In particular, the processing of each spanning tree Tx is handled by a single thread of
execution, enabling consistency within a context of single spanning tree and parallelism
across the tree index ∆. Window management is parallelized similarly.

Experiments are run on a Linux server with 32 physical cores and 256GB memory with
the total number of execution threads set to the number of available physical cores. The
metric is the time it takes to process each tuple; report the average throughput and the
tail latency (99th percentile) after ten minutes of processing on warm caches are reported.
The prototype implementation is a closed system where each arriving sgt is processed
sequentially. Thus, the throughput is inversely correlated with the mean latency.
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Table 4.2: The most common RPQs used in real-world workloads (retrieved from Table 4
in [32]).

Name Query Name Query
Q1 a∗ Q7 a ◦ b ◦ c∗
Q2 a ◦ b∗ Q8 a? ◦ b∗
Q3 a ◦ b∗ ◦ c∗ Q9 (a1 + a2 + · · ·+ ak)

+

Q4 (a1 + a2 + · · ·+ ak)
∗ Q10 (a1 + a2 + · · ·+ ak) ◦ b∗

Q5 a ◦ b∗ ◦ c Q11 a1 ◦ a2 ◦ · · · ◦ ak
Q6 a∗ ◦ b∗

Workloads and Datasets

Although there exists streaming RDF benchmarks such as LSBench2 and Stream WatDiv
[62], their workloads do not contain any recursive queries, and they generate streaming
graphs with very limited form of recursion. Therefore, persistent RPQs used in these
experiments are formulated using the most common recursive queries found in real-world
applications, leveraging recent studies [31, 32] that analyze real-world SPARQL query logs.
The most common 10 recursive queries from [32] are selected; these cover more than 99%
of all recursive queries found in Wikidata query logs. In addition, the most common non-
recursive query (with no Kleene stars) is added for completeness, even though these are
easier to evaluate as resulting paths have fixed size. Table 4.2 reports the set of real-world
RPQs used in the experiments. For queries with variable number of edge labels, k is set to
3 as the SO graph only has three distinct labels. Table 4.3 lists the values of edge labels
for graphs are used in these experiments. These queries are run over the following real and
synthetic edge-labeled graphs.

Stackoverflow (SO) is a temporal graph of user interactions on this website containing
63M interactions (edges) of 2.2M users (vertices), spanning 8 years [135]. Each directed
edge (u, v) with timestamp t denotes an interaction between two users: (i) user u answered
user v’s questions at time t, (ii) user u commented on user v’s question, or (iii) comment at
time t. SO graph is more homogeneous and much more cyclic than other datasets used in
this study as it contains only a single type of vertex and three different edge labels. 7 out
of 11 queries in Table 4.2 have at least 3 labels and cover all edges in the graph. Its highly
dense and cyclic nature causes a high number of intermediate results and resulting paths;
therefore, this graph constitutes the most challenging one for the proposed algorithms.
The window size ω is set to 1 month and the slide interval β is set to 1 day unless specified

2https://code.google.com/archive/p/lsbench/
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Table 4.3: Values of label variables in real-world RPQs (Table 4.2) for graphs used in this
chapter.

Graph Predicates
SO knows, replyOf, hasCreator, likes

LDBC SNB a2q, c2a, c2q
Yago2s happenedIn, hasCapital, participatedIn

otherwise.

LDBC SNB is synthetic social network graph that is designed to simulate real-world
interactions in social networking applications [53]. The update stream of the LDBC work-
load is extracted, which exhibits 8 different types of interactions users can perform. The
streaming graphs generated by LDBC consists of two recursive relations: knows and re-
plyOf. Therefore, Q4, Q5, Q9 and Q10 in Table 4.2 cannot be meaningfully formulated over
the LDBC streaming graphs; other remaining queries are used from Table 4.2. A scale
factor of 10 is used that generates approximately 7.2M users and posts (vertices) and 40M
user interactions (edges). LDBC update stream spans 3.5 months of user activity and the
window size ω is set to 10 days and the slide interval β is set to 1 day unless specified
otherwise.

Yago2s is a real-world RDF dataset containing 220M triples (edges) with approxi-
mately 72M different subjects (vertices).3 Unlike existing streaming RDF benchmarks,
Yago2s includes a rich schema (∼100 different labels) and the full set of queries listed in
Table 4.2 can be represented over Yago2s. To emulate sliding windows on Yago2s RDF
graph, a monotonically non-decreasing timestamp is assigned to each RDF triple at a fixed
rate. Thus, each window defined over Yago2s has equal number of edges. The window size
ω is set such that each window contains approximately 10M edges and the slide interval β
to 1M edges, unless specified otherwise.

Additionally, gMark [19] graph and query workload generator is employed to system-
atically analyze the effect of query size |QR|. A pre-configured schema is deployed that
mimics the characteristics of LDBC SNB graph and generates a synthetic graph with 100M
vertices and 220M edges. It also creates synthetic query workloads where the query size
ranges from 2 to 20 (the size of a query, |QR|, is the number of labels in the regular expres-
sion R and the number of occurrences of ∗ and +). Each RPQ is formulated by grouping
labels into concatenations and alternations of size up to 3 where each group has a 50%

3https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/
yago-naga/yago/
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probability of having ∗ and +. As gMark generates the entire LDBC SNB network as a
single static graph, a monotonically non-decreasing timestamp is assigned to each edge at
a fixed rate.

4.5.2 Throughput & Tail Latency

Figure 4.5 shows the throughput and tail latency of Algorithm RAPQ for all queries on
all datasets. The algorithm discards a tuple whose label is not in the alphabet ΣQ of QR

as it cannot be part of any resulting path. Hence, what is reported is only the latency of
tuples whose labels match a label in the given query. First, observe that the performance
is generally lower for the SO graph due to its label density and its highly cyclic nature.
The tail latency of Algorithm RAPQ is below 100ms for even the slowest query Q3 on
the SO graph and it is in sub-milliseconds for most queries on Yago2s and LDBC graphs.
Similarly, the throughput of the algorithm varies from hundreds of edges-per-second for
the SO graph (Figure 4.5(c)) to tens of thousands of edges-per-second for LDBC graph
(Figure 4.5(b)).

The total number of trees and nodes in the tree index ∆ of Algorithm RAPQ on
the SO graph provides a better understanding of the diverse performance characteristics
of different queries (Figure 4.6). Recall that nodes and their corresponding paths in a
spanning tree Tx ∈ ∆ represent partial results of a persistent RPQ. Therefore, the amount
of work performed by the algorithm grows with the size of tree index ∆. As expected, a
negative correlation between the throughput of a query (Figure 4.5(c)) and its tree index
size (Figure 4.6). It is known that cycles have significant impact on the run time of queries
[31], and the analysis confirms this. In particular, Q3 and Q6 have the largest index
sizes and therefore the lowest throughput, which can be explained by the fact that they
contain multiple Kleene stars. Similarly, Q4 and Q9 have a Kleene star over alternation
of symbols, which covers all the edges in the graph as the SO graph has only three types
of user interactions. Therefore, Q4 and Q9 both have large index sizes, which negatively
impacts the performance. In parallel, Q11 has the highest throughput on all datasets as it
is the only fixed size, non-recursive query employed in the experiments.

4.5.3 Scalability & Sensitivity Analysis

In this section, the impact of the window size ω and the slide interval β on algorithm
performance is studied followed by an analysis of the performance implications of the use
of DFAs and the query size |QR|.
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Figure 4.5: Throughput and tail latency of the Algorithm RAPQ. Y axis is given in log-
scale.
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Figure 4.6: Size of the tree index ∆ on the SO graph.
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Figure 4.7: The tail latency on Yago2s graph with various ω and β.
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Figure 4.8: The window maintenance cost on Yago2s graph with various ω and β.

In this experiment, Yago2s dataset is used, since windows with a fixed number of edges
that are created over Yago2s enable precise assessment of the impact of window size. Figure
4.7 presents the tail latency of the algorithm where the window size changes from 5M edges
to 20M edges with 5M intervals. As expected, the tail latency for all tested queries increases
with increasing ω, which conforms with the amortized cost analysis of Algorithm RAPQ
in Section 4.3.1. Similarly, the time spent on Algorithm ExpiryRAPQ increases with
increasing window size ω (Figure 4.8), in line with the complexity analysis given in Section
4.3.1. The same experiment is replicated using LDBC and Stream WatDiv datasets by
varying the scale factor which in turn increases the number of edges in each window. The
results show a degradation on the performance with increasing scale factor on Stream
WatDiv, confirming the Yago2s findings. However, no similar trend is observed on LDBC
graphs, which is due to the linear scaling of the total number of edges and vertices with the
scale factor. Increasing the scale factor reduces the density of the graph, which may cause
the proposed algorithms to perform even better in some instances due to a smaller tree
index size. Furthermore, only a subset of queries can be formulated on these datasets as
described previously. Therefore, only the findings on Yago2s graph are explicitly reported.

Next, the impact of the slide interval β on the performance of the proposed algorithms
is assessed. Figure 4.7 plots the tail latency of Algorithm RAPQ against β and shows that
the slide interval does not impact the performance. Recall that Algorithm ExpiryRAPQ
is invoked periodically to remove expired tuples from the tree index ∆. It first identifies
the set of expired nodes in a given spanning tree Tx ∈ ∆, and searches their incoming edges
to find a valid edge from a valid node in Tx. Therefore, Algorithm ExpiryRAPQ might
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Figure 4.9: The number of states k in corresponding DFAs of queries in the synthetic
workload for (a) the social network schema that mimics the characteristics of LDBC SNB
benchmark, and (b) the online shop schema that mimics the characteristics of WatDiv
benchmark.

traverse the entire snapshot graph Gts in the worst-case, regardless of the slide interval
β. However, Figure 4.8 shows that the time spent on expiry of old tuples grows with
increasing β, which causes its overhead to stay constant over time regardless of the slide
interval β. Therefore, this algorithm is robust to the slide interval β. It also suggests that
the complexity analysis of Algorithm ExpiryRAPQ given in Section 4.3.1 is not tight.

Finally, the effect of the query size |QR| and the automata size k on the performance
of the algorithms is assessed using a set of 100 synthetic RPQs that are generated using
gMark. Combined complexities of the algorithms presented in Section 4.3 and Section 4.4
are polynomial in the number of states k, which might be exponential in the query size
|QR|. Figures 4.9(a) and 4.9(b) show the total number of states in minimized DFAs for 100
RPQs that created using gMark’s social network and online shop schemas, respectively.
In practice, the size of the DFA does not grow exponentially with increasing query size
for the considered RPQs despite the theoretical upper bound. Green et al. [74] has also
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Figure 4.11: Throughput and tree index ∆ size for synthetic RPQs with k = 5

indicated that exponential DFA growth is of little concern for most practical applications
in the context of XML stream processing.

The next study considers the impact of the automata size k on performance. Figure 4.10
plots the throughput against the number of states k in the minimal automata for synthetic
RPQs generated by gMark. No significant impact of k on performance is observed; yet,
performance differences for queries with the same number of states in their corresponding
DFA can be up to 6×. Such performance difference for RPQ evaluation has already been
observed on static graphs and has been attributed to query label selectivities and the size of
intermediate results [172]. To further verify this hypothesis in the streaming model, Figure
4.11 depicts the throughput versus the tree index ∆ size for queries with k = 5. Confirming
the results in Section 4.5.2, a negative correlation exists between the throughput of a query
and its tree index size.
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Figure 4.12: Impact of the ratio of explicit deletions on tail latency for all queries on Yago2s
RDF graph.

4.5.4 Explicit Edge Deletions

Although most real-life streaming graphs are append-only, some applications require ex-
plicit edge deletions, which can be processed in the framework (Section 4.3.2). Explicit
deletions are generated in this study by reinserting a previously consumed edge as a neg-
ative tuple and varying the ratio of negative tuples in the stream. Figure 4.12 plots tail
latency of all queries on Yago2s varying deletion ratio from 2% to 10%. In line with the
findings in the previous section, explicit deletions incur performance degradation due to
the overhead of the expiry procedure (Figure 4.8). However, this overhead quickly flattens
and does not increase with the deletion ratio. This is explained by the fact that the sizes
of the snapshot graph Gts, and the tree index ∆ decrease with increasing deletion ratio.

4.5.5 RPQ under Simple Path Semantics

Results in Section 4.4 confirm that the amortized time complexity of Algorithm RSPQ
under simple path semantics is the same as its RAPQ counterpart in the absence of con-
flicts.

In this section, the feasibility and the performance of this algorithm are empirically
analyzed. Table 4.4 lists the queries that can be successfully evaluated under simple path
semantics on each graph. Q1, Q4 andQ11 are restricted regular expressions, a condition that
implies conflict-freedom in any arbitrary graph. Therefore, these queries are successfully
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Table 4.4: Queries that can be evaluated under simple path semantics & the relative
slowdown.

Graph Succesfull Queries Latency Overhead
Yago2s All 1.8×−2.1×

Stackoverflow Q1, Q4, Q7, Q10, Q11 1.4×−5.4×
LDBC SF10 Q1, Q2, Q5, Q7, Q11 1.8×−3×

evaluated on all tested graphs (except Q4 that cannot be defined over LDBC graph as
discussed in Section 4.5.1). In particular, all queries are free of conflicts on Yago2s, and
they can successfully be evaluated.

Table 4.4 also reports the overhead of enforcing simple path semantics on the tail
latency. This overhead is simply due to conflict detection and the maintenance of markings
for each spanning tree in the tree index ∆. Overall, these results suggest the feasibility of
enforcing simple path semantics for majority of real-world queries, considering that most
queries are conflict-free on heterogeneous, sparse graphs such as RDF graphs and social
networks. Conversely, the arbitrary path semantics may be the only practical alternative
for applications with homogeneous, highly cyclic graphs such as communication networks
like Stackoverflow.

4.5.6 Comparison with Other Systems

This is the first work that investigates the execution of persistent RPQs over streaming
graphs; therefore, there are no systems with which a direct comparison can be performed.
However, there are a number of streaming RDF systems that can potentially be considered.
These were reviewed in Chapter 2; unfortunately, as noted in that chapter, these systems
only support SPARQL v1.0 and therefore cannot handle path expressions or recursive
queries. With the introduction of property paths in SPARQL v1.1, the support for path
queries have been added to a few RDF systems such as Virtuoso [54] and RDF-3X [77, 76].
However, these are designed for static RDF datasets, and they do not support persistent
query evaluation. Therefore, in this study persistent query execution over Virtuoso is
emulated to highlight the benefit of using incremental algorithms for persistent query
evaluation on streaming graphs.

A middle layer is built on top of Virtuoso that emulates persistent query evaluation
over sliding windows, similar to Algorithm RAPQ. This layer inserts each incoming tuple
into Virtuoso and evaluates the query on the RDF graph that is constructed from the
content of the window W at any given time t. For fairness, Virtuoso is configured to
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Figure 4.13: Relative speed-up of Algorithm RAPQ over Virtuoso for all queries on Yago2s
RDF graph. Y axis is given in log-scale.

be memory-resident and its transaction logging is disabled to eliminate the overhead of
transaction processing. In this study, Yago2s RDF graph is used with default ω and β
for this experiment. Queries Q1, Q4, Q6, Q8, Q9 and Q10 are modified by prepending a
single predicate a to each query due to Virtuoso’s limitation forbidding vertex variables
on both ends of property paths at the same time. Figure 4.13 plots the average speed-up
of RAPQ with respect to this simulation for both throughput and tail-latency. RAPQ
consistently outperforms Virtuoso across all queries and provide up to 3 orders of magnitude
better throughput and tail latency. This is because Virtuoso re-evaluates the RPQ on the
entire window and cannot utilize the results of previous computations. Conversely, RAPQ
indexes traversals in ∆ and only explores the part of the snapshot graph Gts that were not
previously explored. In summary, these results suggest that incremental evaluation as in
the proposed algorithms have significant performance advantages in executing RPQs over
streaming graphs.

Remark 4 (Window maintenance cost). The combined time complexity of the window
management (expiry) routine is O(n ·m · k2), which implies that the expiry procedure, in
the worst case, might traverse the entire snapshot graph Gts that is constructed from the
contents of the windowW at time ts. However, this cost is amortized over the slide interval
β, as described in Section 4.3.2. Figure 4.8 shows that the time spent on the expiry of old
tuples grows linearly with increasing β, which causes its overhead to stay constant over time
regardless of the slide interval β. In addition, the time spent for the expiry of old tuples on
Virtuoso is measured, similar to those of Algorithm ExpiryRAPQ. All the queries listed
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Figure 4.14: The average window maintenance cost for Virtuoso on Yago2s RDF graph
with ω = 10M and β = 1M .

in Table 4.2 are used on Yago2s RDF graph with ω = 10M and β = 1M so the results
are comparable with ones reported in Figure 4.8. Figure 4.14 shows the average window
maintenance cost on Virtuoso for Q1 −Q11; algorithms proposed in this chapter spent less
time on window management across all the tested queries.

4.6 Discussion

This chapter studies the evaluation of Regular Path Queries over streaming graphs. As
identified in Chapter 3, path navigation queries are an essential feature of graph querying,
and the RPQ model provides the basic navigational mechanism to express path navigation
queries adapted by many practical graph query languages. However, the existing literature
on RPQ evaluation solely focus on static graphs. The characterization in this chapter of
the design space of persistent RPQ evaluation algorithms allows the study of alternative
path semantics and window semantics in a uniform manner: algorithms are proposed for
both arbitrary and simple path semantics that can handle explicit deletions. In particular,
the algorithm for simple path semantics has the same complexity as the algorithm for
arbitrary path semantics in the absence of conflicts, and it admits efficient solutions under
the same condition as the batch algorithm. Experimental analyses using a variety of real-
world RPQs and streaming graphs show that proposed algorithms can support up to tens
of thousands of edges-per-second while maintaining sub-second tail latency.
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The unbounded nature of the streaming graphs makes it infeasible to employ blocking,
batch algorithms for query evaluation; therefore, it is crucial to employ query evaluation
algorithms with non-blocking behaviour in the streaming graph query processing frame-
work proposed in this thesis. Algorithms presented in this chapter facilitate incremental
evaluation of the path navigation fragment of the queries targeted in this thesis. In the
next chapter, a Streaming Graph Algebra (SGA) is proposed, which precisely defines the
semantics of query operators and query execution plans in the context of streaming graphs.
The algorithms proposed in this chapter are utilized as physical operator implementations
in the SGA query processor prototype.
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Chapter 5

An Algebraic Framework for Evaluation
Streaming Graph Queries

5.1 Introduction

There is a plethora of algorithms for evaluating persistent queries over streaming graphs.
These specialized algorithms are largely tailored for the needs of singular applications
and often rely on different semantics and computational models such as subgraph pattern
queries [9, 90, 42] and its specialized forms [103], cycle detection queries [137] and path
navigation queries [131]. A general-purpose streaming graph query processor needs to
unify all these functionality in a principled manner. The lack of a foundational framework
inhibits the development of a general-purpose query processor for streaming graphs.

Chapter 3 introduced SGQ as a formal query model that addressed the requirements
of streaming graph querying outlined in this thesis. SGQ constitutes a tool to describe the
semantics of streaming graph queries targeted in this thesis and to study its expressivity
and complexity. Nonetheless, as a logic-based, declarative language, SGQ does not describe
how streaming graph queries are evaluated. Chapter 4 studied the evaluation of RPQ over
streaming graphs and provided non-blocking, incremental algorithms for this important
subclass of SGQ. The objective of this chapter is to study the design of a streaming graph
query processor for the SGQ model.

A crucial task in designing general-purpose streaming graph query processor is to iden-
tify a set of primitive operators that can be used as the building blocks of query execution
plans with the following requirements:
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• their semantics should be consistent with the SGQ model;

• they should be expressive enough to support the evaluation of queries that can be
represented in the SGQ model;

• they should be closed over the streaming graph data model (Section 3.2), making it
possible to construct complex pipelines; and

• they should yield to incremental, non-blocking implementations.

This chapter introduces the Streaming Graph Algebra (SGA) as the foundational ba-
sis for representing query evaluation plans and describes a prototype implementation of a
streaming graph query processor based on SGA. SGA defines a stream-native operator alge-
bra for SGQ as a temporal generalization of the Regular Property Graph Algebra (RPGA)
[30]. This chapter provides a concrete algorithm to generate an SGA expression for any
given SGQ, showing that SGA has the expressive power to formulate query evaluation
plans for all queries that can be represented in the SGQ model. All SGA operators take
and return streaming graphs as inputs and outputs, making it possible to form arbitrarily
complex query evaluation pipelines while ensuring correctness. An important character-
istics of the SGA is the explicit use of windowing primitives. As previously described
in Chapter 3, time-based sliding windows are used to restrict the scope of computations
over potentially unbounded streams. Rather than integrating window semantics into every
single operator, SGA simplifies operator semantics through an explicit time-based sliding
windowing operator that adjusts validity intervals of sgts. This chapter also provides at
least a single, non-blocking implementation of each SGA operator, and describes a con-
crete implementation of a streaming query processor based on the Timely Dataflow (TD)
system [125]. TD provides abstractions to model low-level system details such as oper-
ator scheduling, inter-operator queues etc., and it lend itself to realizing the framework
proposed in this chapter by implementing the SGA operators and query execution plans
using TD abstractions.

In the remainder of this chapter, Section 5.2 first introduces the Streaming Graph
Algebra (SGA) and the translation of SGQs into SGA expressions. Section 5.3 provides an
overview of a streaming graph query processor based on SGA, and Section 5.4 describes
physical operator implementations in details. Finally, Section 5.5 presents an experimental
evaluation of a prototype implementation of SGA-based streaming graph query processor,
and Section 5.6 concludes this chapter by summarizing its contributions in the context of
the streaming graph query processing framework proposed in this thesis.
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5.2 Streaming Graph Algebra

This section presents the logical foundation of the streaming graph query processing frame-
work. The streaming graph algebra (SGA) and the semantics of its operators are first
introduced (Section 5.2.1). SGA’s role in the proposed framework is similar to that of
relational algebra (RA) in relational systems: it enables formulation of query plans inde-
pendent of specific physical implementations. It differs from RA in the following ways to
tackle the aforementioned challenges of streaming graph querying (R1-R5 in Chapter 1):

• SGA is a closure of a set of operators over graph streams, not static relations – this
distinction is important;

• SGA operators generalize their non-temporal counterparts through implicit treatment
of sgts’ validity intervals;

• time-based sliding windows and path navigations are specified via novel WSCAN and
PATH, respectively;

• SGA supports processing of paths as first-class citizens.

Section 5.2.2 describes transformation of SGQs (Definition 17) into canonical SGA ex-
pressions and illustrates logical query plans, and Section 5.2.3 discusses its closedness and
composability.

5.2.1 SGA Operators

For ease of exposition, the rest of this chapter assumes that inputs to each SGA operator are
partitioned into one more streaming graphs Sa based on tuple labels where each Sa contains
sgts with the same label a ∈ Σ (see Section 3.2 for a detailed discussion). The output of
each operator is also a streaming graph So where each sgt has the label o ∈ Σ \ ϕ(EI).1
SGA contains the following operators: windowing (Definition 30), filter (Definition 31),
union (Definition 32), subgraph pattern (Definition 33), and path navigation (Definition
34).

1ϕ(EI) ⊂ Σ is reserved for input graph edges and cannot be used by operators as labels for resulting
sgts. In other words, ϕ(EI) ⊂ Σ corresponds to EDBs in Datalog as described in Section 3.3.
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Definition 30 (WSCAN). The windowing operator W transforms a given input graph
stream SI to a streaming graph S by adjusting the validity interval of each sgt based on the
window size ω and the optional slide interval β, i.e., Wω,β(S

I) := S :
[
(u, v, l, [t, exp),D :

e(u, v, l)) | (u, v, l, t) ∈ SI ∧ exp = ⌊t/β⌋ · β + ω
]
.

The window size ω determines the length of the validity interval of sgts and the slide
interval β controls the granularity at which the time-based sliding window progresses [15,
131]. If β is not provided, default is β = 1, i.e., single time instant with the smallest
granularity, and it defines a sliding window that progresses at every time instant.

The WSCAN operator defines the semantics of time-based sliding windows. It acts as
an interface between the external streaming graph sources and the query plans and it is
responsible for providing data from input graph streams to a query plan, similar to the
scan operator in relational systems. WSCAN manipulates the implicit temporal attribute
of sgts and associates a time interval to each sgt representing its validity. The use of time-
interval representing streaming graphs provide a concise representation for validity of sgts
by treating time differently than the data stored in the graph. (see Remark 1 for a detailed
discussion). The use of an explicit windowing operator makes it possible to distinguish
operator semantics from window semantics and eliminates the redundancy caused by inte-
grating sliding window constructs into each operator of the algebra. SGA operators access
and manipulate validity intervals implicitly, generalizing their non-streaming counterparts
with implicit handling of time.

Example 10. Consider the real-time notification task of Example 1 with a 24-hour win-
dow of interest. WSCAN W24 sets validity intervals of sges of the input graph stream and
produces a streaming graph where each sgt is valid for 24 hours, as shown in Figure 3.2.

Definition 31 (FILTER). Filter operator σΦ(S) is defined over a streaming graph S and
a boolean predicate Φ involving the distinguished attributes of sgts, and its output stream
consists of sgts of S on which Φ evaluates to true. Formally:

σΦ(S) =
[
(u, v, l, [ts, exp),D) |

(src, trg, l, [ts, exp),D) ∈ S ∧ Φ((src, trg, l,D))
]
.

Definition 32 (UNION). Union ∪[d] with an optional output label d ∈ Σ \ ϕ(EI) merges
sgts of two streaming graphs S1 and S2, and assigns the new label d if provided. Formally:

S1 ∪[d] S2 =
[
t | t ∈ S1 ∨ t ∈ S2

]
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Definition 33 (PATTERN). The streaming subgraph pattern operator is defined as
⋊⋉src,trg,d

Φ (Sl1 , · · · , Sln) where each Sli is a streaming graph, Φ is a conjunction of a finite
number of terms in the form posi = posj for posi, posj ∈ {src1, trg1, · · · , srcn, trgn} where
srci, trgi are endpoints of sgts in Sli, and src, trg ∈ {src1, trg1, · · · , srcn, trgn} are the
endpoints of resulting sgts, and d ∈ Σ \ ϕ(EI) represent the label of the resulting sgts.
Formally:

⋊⋉src,trg,d
Φ (Sl1 , · · · , Sln) =

[
(u, v, d, [ts, exp),D : e(u, v, l)) |

∃ti = (srci, trgi, li, [tsi, expi),Di) ∈ Sli , 1 ≤ i ≤ n

∧ Φ((src1, trg1, · · · , srcn, trgn))∧
u = src ∧ v = trg ∧

⋂
1≤i≤n

[tsi, expi) ̸= ∅∧

ts = max
1≤i≤n

(tsi) ∧ exp = min
1≤i≤n

(expi)
]
.

Given a subgraph pattern expressed as a conjunctive query, PATTERN finds a mapping
from vertices in the stream to free variables where (i) all query predicates hold over the
mapping, and (ii) there exists a time instant at which each edge in the mapping is valid.

Example 11. Consider the real-time notification query given in Example 1; the recentLiker
relationship defined in the form of a triangle pattern can be represented with PATTERN
⋊⋉src1,src4,RL

ϕ where ϕ = (trg1 = trg2 ∧ src1 = src3 ∧ src2 = trg3). Its output over the
streaming graph, given in Figure 3.2, consists of sgts (y,RL, u, [28, 37), (y,RL, u)) and
(u,RL, v, [29, 31), (u,RL, v)) that correspond to derived edges with label recentLiker.

SGA operators may produce multiple value-equivalent sgts with adjacent or overlapping
validity intervals. Unless otherwise specified, such sgts in resulting streaming graphs of
SGA operators are coalesced to maintain the set semantics of streaming graphs and their
snapshots (Definition 10). To illustrate, consider PATTERN in the above example: over the
streaming graph given in Figure 3.2, the PATTERN operator finds two distinct subgraphs
with vertices (u, b, v) and (u, c, v). Consequently, it produces two value-equivalent tuples
(u,RL, v, [29, 31), (u,RL, v)) and (u,RL, v, [30, 31), (u,RL, v)), which are coalesced into a
single sgt by merging their validity intervals.

Definition 34 (PATH). The streaming path navigation operator with RPQ semantics is
defined as Pd

R(Sl1 , · · · , Sln) where R is a regular expression over the alphabet {l1, · · · , ln} ⊆
Σ, and d ∈ Σ\ϕ(EI) designates the label of the resulting sgts. The sgt t = (u, v, l, [ts, exp),D :
p) is an answer for P l

R if there exists a path p between u and v in the snapshot of S at
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time t, i.e., p : u
p→ v ∈ τt(S) = Gt, and the label sequence of the path p, ϕp(p) is a word

in the regular language L(R). Formally:

Pd
R(Sl1 , · · · , Sln) =

[
(u, v, d, [ts, exp),D) | ∃p : u p→ v∧

∀ei ∈ p, ∃ti = (srci, trgi, li, [tsi, expi),Di) ∈ Sli∧
ϕp(p) ∈ L(R) ∧

⋂
t∈p

[t.ts, t.exp) ̸= ∅∧

ts = max
t∈p

(t.ts) ∧ exp = min
t∈p

(t.exp) ∧ D = p
]
.

PATH finds pairs of vertices that are connected by a path where (i) each edge in the
path is valid at the same time instant, and (ii) path label is a word in the regular language
defined by the query. This closely follows the RPQ model where path constraints are
expressed using a regular expression over the set of labels [171]. Path navigation queries in
the RPQ model are evaluated under arbitrary and simple path semantics (as discussed in
detail in Chapter 4). The former allows a path to traverse the same vertex multiple times,
whereas under the latter semantics a path cannot traverse the same vertex more than once
[12, 171, 18]. The remainder of this chapter adopts the arbitrary path semantics due to its
widespread adoption in modern graph query languages [11, 12, 165], and the tractability
of the corresponding evaluation problem [18].

Example 12. In the example of Figure 1 the path navigation over the derived recentLiker
edges is represented by PATH PRLP

RL+ . Its output over the resulting streaming graph of PAT-
TERN of Example 11 consists of sgts (y,RLP, u, [28, 37), (y,RL, u)), (u,RLP, v, [29, 31),
(u,RL, v)), and (y,RLP, v, [29, 31), ⟨(y,RL, u), (u,RL, v)⟩) that correspond to materialized
paths with label recentLikerPath of length one and two.

Most existing work on RPQ focuses on finding pairs of vertices that are reachable
by a path conforming to given regular expression [121, 106, 94, 131]. By adapting the
materialized path graph model (Definition 6), Streaming Graph Algebra with its PATH
operator is equipped with the ability to return paths, i.e., each resulting sgt contains the
actual sequence of edges that form the path with a label sequence conforming to given
regular expression.

SGA builds on the Regular Property Graph Algebra (RPGA) [30], which is itself based
on Regular Queries (RQ). Of course, both RPGA and RQ formulate graph queries over
static graphs, while SGA operators are defined over streaming graphs (Definition 8), and
they access and manipulate validity intervals implicitly. Thus they generalize their non-
streaming counterparts with implicit handling of time. This follows from the fact that
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window semantics are explicitly defined via the WSCAN operator, and the semantics of
the remaining SGA operators are defined such that they satisfy the snapshot reducibility
(Definition 15). That is, the snapshot of the result of an SGA operator over a streaming
graph S at time t is equal to the result of the corresponding non-streaming operator on
the snapshot of the streaming graph S at time t.

5.2.2 Formulating Query Plans in SGA

SGA can express all queries that can be specified by SGQ (Section 3.3). This section
provides an algorithm for the conversion.

Given a SGQ Q(S,Wω) over a streaming graph and a time-based sliding window def-
inition, Algorithm SGQParser produces the canonical SGA expression. The algorithm
processes the predicates of a given SGQ and generates the corresponding SGA expression in
a bottom-up manner: each EDB l corresponds to a WSCAN over an input streaming graph
SI
l , each application of transitive closure corresponds to a PATH, each IDB d corresponds

to a UNION or PATTERN based on the body of the corresponding rule.

Theorem 6. There exists a SGA expression e ∈ SGA for any Q ∈ SGQ.

Proof. The dependency graph of an RQ is acyclic as RQ is non-recursive (Definition 14);
hence, Line 2 is guaranteed to define a partial order over Q’s predicates. Algorithm SGQ-
Parser generates an SGA expression for each predicate in this order (Line 4) and caches
it in exp array. In particular, Line 8 generates an SGA expression for each EDB predicate
and Line 11 generates a PATH expression for each body predicate with a Kleene star. For
each rule d(src, trg) := l1(src1, trg1), · · · , ln(srcn, trgn), Line 15 generates a PATTERN ex-
pression. Finally, Line 16 generates a UNION expression if there are multiple rules with the
same head predicate d. Due to the partial order defined by the dependency graph GQ, exp
is guaranteed to have SGA expressions for each predicate rj(1 ≤ j ≤ i) when processing
predicate ri. Once all predicates are processed, Line 25 returns the SGA expression of the
Answer predicate. Hence, Algorithm SGQParser correctly constructs an SGA expression
for a given SGQ.

The complexity of evaluating SGA expressions is the same as RQ given their relation-
ship noted above: NP-complete in combined complexity and NLogspace-complete in data
complexity [138, 30].

Figure 5.1 (left) illustrates the logical plan for the same SGQ that consists of SGA
operators.
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Algorithm SGQParser:
input : Streaming Graph Query Q(S,Wω)
output: SGA Expression e

1 GQ ← Graph(Q) // dependency graph
2 [r1, · · · , rn]← TopSort(GQ) // topological sort
3 exp← [] // empty mapping
4 for 1 ≤ i ≤ n do
5 switch ri do
6 case l(src, trg), l ∈ ϕ(EI) do
7 exp[l]←Wω(Sl)
8 end
9 case l∗(x, y)asd do

10 exp[d]← Pd
l∗(exp[l])

11 end
12 otherwise do
13 d(src, trg)← ri.head, [b1, · · · , bn]← ri.body
14 Φ← GenPred(ri.body)
15 e←⋊⋉src,trg,d

Φ (exp[b1], · · · , exp[bn])
16 if exp[d] ̸= ∅ then
17 exp[d]← exp[d] ∪ e
18 end
19 else
20 exp[d]← e
21 end
22 end
23 end
24 end
25 return exp[Answer]
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Figure 5.1: (left) Logical plan for the SGA expression in Example 13, and (right) binary
join tree for its PATTERN.
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Example 13 (Canonical Translation). For the real-time notification task in Example 1
and its corresponding RQ in Example 3, Algorithm SGQParser generates the following
canonical SGA expression for its corresponding SGQ with a sliding window of 24 hours:

⋊⋉(src1,trg2,notify)
ϕ2

(
PRLP

RL+

(
⋊⋉src1,src2,RL

ϕ1

(
W24(Sl),W24(Sp),PFP

f+

(
W24(Sf )

)))
,

W24(Sp)

)
ϕ1 = (trg1 = trg2 ∧ src1 = src3 ∧ src2 = trg3),

ϕ2 = (trg1 = src2)

5.2.3 Closedness and Composability

Algebraic closure is a required property of any query algebra as it enables query rewriting
and query optimization. Composability is a desired feature for a declarative query language
as it facilitates query decomposition, view-based evaluation, query rewriting etc. SGA
operators are closed over streaming graphs as defined in Section 3.2; that is, the output of
an SGA operator is a valid streaming graph if its inputs are valid streaming graphs. Thus
SGA queries are composable, i.e., the output of one query can be used as input of another
query.

SGQ language is also closed (Theorem 6) – each query takes one or more streaming
graphs as input and produces a streaming graph as output. It is also composable as the
output of a query can be the input of the subsequent query. As such, G-CORE variation
that is used as the user-level query language example in this thesis (Section 3.3.2) attains
composability exactly as its original version is composable over property graphs [11]. This
is in contrast to the other graph query languages that lack an algebraic basis, e.g., SPARQL
and Cypher are not composable and may not be closed. Cypher 9 requires graphs as input,
but produces tables as output so the language is neither closed nor composable – the
results of a Cypher query cannot be used as input to a subsequent one without additional
processing. SPARQL can produce graphs as output using the CONSTRUCT clause, and is
therefore closed; however, it requires query results to be made persistent and therefore not
easily composable [30].
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5.3 Query Processor Overview

This section describes implementation details of a prototype streaming graph query proces-
sor2 based on SGA. The goal is to build a plausible conceptual framework for expressing
and evaluating SGQ – not to have a full-fledged streaming graph management system.
Consequently, the focus in this chapter is the construction of query execution plans and
physical implementations of logical SGA operators. Optimization of query evaluation plans
is discussed in the following chapter.

Conceptually, SGQ can be evaluated by repeatedly evaluating from scratch the corre-
sponding one-time query at each point in time (Section 3.3.1). Albeit semantically correct,
such a re-execution strategy is, of course, infeasible. Streaming systems instead focus on
the incremental evaluation of persistent queries where re-running the query from scratch
is avoided by computing the changes to the output in real-time as the stream is ingested.
Such data-driven (push-based), incremental execution is key to supporting high ingestion
rates as opposed to demand-driven (pull-based) query processing employed in traditional
systems [71]. Streaming systems like Apache Flink, Spark Streaming and Timely Dataflow
(TD) provide abstractions for communication, scheduling, distribution etc., enabling users
to build efficient streaming applications without focusing on low-level system issues. With
proper care to implementing windowing constructs, operator semantics, etc., any streaming
system that supports stateful, iterative (recursive) computations can be used to evaluate
persistent graph queries. Apache Flink and Spark Streaming do not have support for iter-
ative computations in the streaming settings – Flink’s iteration API and Spark’s GraphX
library can handle recursion, but they are both limited to batch computations. Exten-
sions of Flink’s Iteration API and GraphX to support incremental computations are not
straightforward and require adjustments to these systems that go beyond the research
goals of this thesis. TD, on the other hand, provides abstractions to model such compu-
tations, and it lends itself to realizing a prototype streaming graph query processor by
implementing the physical algebra operators using TD abstractions. Consequently, the
prototype implementation presented here uses TD as the underlying execution engine and
focus on providing building blocks for expressing and evaluating streaming graph queries
while leaving low-level stream handling to the underlying engine.

Applications in TD are expressed as a directed graph of operations where vertices
correspond to user-defined computations and edges correspond to the flow of data between
them. In executing an SGQ, the query processor first creates a logical plan from the
canonical SGA expression of the given SGQ using the Algorithm SGQParser (Section

2https://dsg-uwaterloo.github.io/s-graffito/
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5.2.2). The syntax tree of the canonical SGA expression, where leaf nodes represent input
streaming graphs, intermediate nodes represent logical SGA operators, and edges represent
the stream of tuples between the operators, corresponds to the logical query plan. Figure
5.1 (left) depicts the logical query plan generated from the canonical SGA expression in
Example 13 for the real-time notification task in Example 1. The physical execution plan
in the form of a TD dataflow graph for a given logical plan is constructed by:

1. creating source vertices for the leaves of the logical query plan that consume input
graph streams;

2. replacing logical SGA operators with physical operator implementations (to be de-
scribed momentarily in Section 5.4); and

3. creating a sink vertex for the root of the logical query plan that pushes results back
to the application.

Consequently, resulting physical execution plans (dataflow graphs) are tree-shaped, similar
to the logical plans that are based on the canonical SGA expressions. Figure 5.2(a) illus-
trates the physical execution plan in form of a TD dataflow constructed using the logical
plan in Figure 5.1. Physical operator implementations, i.e., vertices of these physical
execution plans, are described in Section 5.4 in detail.

TD associates each input data with a logical timestamp that enables fine-grained syn-
chronization and progress tracking. Consequently, each input graph stream is represented
as an evolving collection where each item represents an sge (Definition 4) and event times-
tamps assigned by the source are used as logical timestamps. Upon the arrival of a new
edge, TD propagates the corresponding sge through the physical execution plan and com-
putes the new output at the given logical timestamp.

TD’s Differential Dataflow (DD) layer [120] provides a set of built-in, high-level pro-
gramming primitives (operators) that can be used to compose arbitrary dataflows for
general-purpose computations, and it automatically incrementalizes these. Consequently,
DD can be asked to evaluate SGQ by (i) creating a dataflow of DD operators for a given
SGQ and (ii) maintaining the window content as an evolving collection. Indeed, such a
strategy is used as a competitive baseline for evaluating the performance of the streaming
graph query processor implementation described in this chapter (Section 5.5.2). In par-
ticular, the physical execution plan in the form of a dataflow of DD operators for a given
SGQ is constructed by:

1. generating the logical plan using the canonical SGA expression as described above;
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Figure 5.2: SGA and DD based physical execution plans based on the logical query plan
in Figure 5.1 for the the real-time notification task in Example 1.

2. representing sliding windows over input graph streams as dynamic collections where
window movements corresponds to insertions and deletions to the underlying collec-
tion;

3. mapping stateless operators FILTER and UNION to DD’s filter and concat operators;

4. mapping PATTERN operator to DD’s join; and

5. mapping PATH operator to DD’s iterate.

Figure 5.2(b) illustrates the physical execution plan in form of a DD dataflow constructed
using the logical plan in Figure 5.1. However, DD’s generality comes at a performance
cost for evaluating SGQ, as shown in Section 5.5.2. Next section describes how to devise
physical operator implementations specific to SGQ by utilizing the properties of the SGQ
model.
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5.4 Physical Operator Algebra

This section describes the physical operator implementations incorporated in the streaming
graph query processor described in the previous section. Note that these are exemplars
to demonstrate the implementability of the SGA operators and to show their effectiveness
as illustrated in the experimental study (Section 5.5); other physical implementations are
certainly possible and it is expected that further research on streaming graph querying and
graph algebras will uncover alternatives (as it has occurred in relational query processing).

5.4.1 Stateless Operators

Physical operator implementations for streaming systems have two requirements: they
should be push-based and non-blocking, so they do not need the entire input to be available
before producing the first result. Stateless operators produce a resulting sgt by processing
a single incoming sgt; therefore, physical implementation of stateless operators do not need
to maintain internal state. The standard dataflow implementations of stateless FILTER and
UNION operators can be used in SGA, and WSCAN can be implemented via map operator
that adjusts the validity intervals of sgts based on window specifications.

WSCAN

The time-based sliding window operator WSCAN takes an input graph stream and produce
a streaming graph where the validity interval of each sgts is set based on the window
specification (Algorithm WSCAN).

Algorithm WSCAN:
input : Input graph stream SI , window size ω, output label d
output: Streaming graph SO

1 SO ← ∅
2 foreach (u, v, l, t,D) ∈ SI do
3 push (src, trg, d, [t, t+ ω),D : e(u, v, l)) to SO

4 end
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FILTER

FILTER evaluates a predicate Φ on each incoming sgt; it appends the sgts to the output
streaming graph if the predicate evaluates to true and discards it otherwise (Algorithm
FILTER).

Algorithm FILTER:
input : Streaming graph S, predicate ϕ, output label d
output: Streaming graph SO

1 SO ← ∅
2 foreach t = (u, v, l, [ts, exp),D) ∈ S do
3 if Φ((src, trg, l,D)) then
4 // evaluate the predicate
5 push (src, trg, d, [ts, exp),D) to SO

6 end
7 end

UNION

FILTER produces a single output streaming graph by appending all sgts from its input
streaming graphs (Algorithm UNION).

Algorithm UNION:
input : Streaming graphs S1, S2, output label d
output: Streaming graph SO

1 SO ← ∅
2 foreach t = (u, v, l, [ts, exp),D) ∈ S1, S2 do
3 push (src, trg, d, [ts, exp),D) to SO

4 end

5.4.2 Stateful Operators

Stateful operators need to maintain an internal operator state that is accessed during
query processing. This section focuses on the stateful operators of SGA, i.e., PATTERN
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and PATH. These operators maintain an excerpt of their input streams that is updated
as new sgts enter the window and old sgts expire. As discussed earlier, time-based sliding
windows ensure that the portion of the input that may contribute to any future result is
finite, making incremental, non-blocking computation possible.

PATTERN

Subgraph pattern queries can be modeled as conjunctive queries, which is commonly eval-
uated using a series of non-blocking binary joins such as pipelined hash join [170, 64]. A
binary join tree is constructed for a given PATTERN operator where leafs represent stream-
ing graphs as input streams and internal nodes represent pipelined hash join operators.
For instance, Figure 5.1 (right) shows the logical plan for the query in Example 1 and the
join tree for its PATTERN. The ordering of predicates in PATTERN is used to construct the
join tree.

Remember that the standard implementation of pipelined hash join is based on the
negative tuple approach [170]: a hash table is built for each input stream and upon arrival
(expiration) of a tuple, it is inserted into (removed from) its corresponding hash table
and other tables are probed for insertion (expiration) matches [163, 66]. A straightforward
adaptation of this standard implementation for time-based sliding windows represents each
sgt by a pair of elements that are processed by the operator: a positive (+) element
signaling sgt’s insertion, and a negative (−) element signaling sgt’s expiration (Remark
1). Based on the observation that expirations from a time-based sliding window follow
a temporal pattern [67], it is possible to determine exactly when a resulting sgts expires
and to eliminate the need for negative tuples. A resulting sgt is expired when one of its
participating input sgts expire; consequently, the validity interval of a resulting sgt is the
intersection of validity intervals of its participating sgts (see Definition 33 for the semantics
of PATTERN). Algorithm PATTERN utilizes this temporal pattern of window movements
to eliminate the use of negative tuples for signaling expirations. It maintains a priority
queue based on the expiry timestamps of sgts as a secondary index to the internal operator
state, i.e., elements of the priority queue are references to sgts in internal hash tables and
priorities are expiry timestamps. As windows slide, expired sgts can be directly located and
removed from the operator state without negative (−) elements to signal their expirations.

PATH

DD’s iterate allows constructing cyclic dataflows that can model arbitrary nested iterations,
and it can be used to evaluate PATH and its recursive path expressions (Section 5.3).
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Algorithm PATTERN:
input : Streaming graphs S1 and S2,
predicate Φ,
output fields src, trg ∈ {src1, trg1, src2, trg2},
output label d
output: Streaming graph SO

1 SO ← ∅
2 Initialize OS1 // operator state for the left input
3 Initialize OS2 // operator state for the right input
4 foreach t = (u, v, l, [ts, exp),D) ∈ {S1, S2} do
5 Γ← ∅ // Set of matching tuples
6 if t ∈ S1 then
7 // sgt t is from S1

8 Insert(OS1, t) // insert the new sgt to OS1

9 Expiry(OS2, ts) // remove expired sgts from OS2

10 Γ← Probe(OS2, t, Φ) // retrieve matching tuples
11 end
12 else
13 // sgt t is from S2

14 Insert(OS2, t) // insert the new sgt to OS2

15 Expiry(OS1, ts) // remove expired sgts from OS1

16 Γ← Probe(OS1, t, Φ) // retrieve matching tuples
17 end
18 foreach t′ = (u′, v′, l′, [ts′, exp′),D)′ ∈ Γ do
19 push (src, trg, d, [ts, exp) ∪ [ts′, exp′),D ◦ D′) to SO

20 end
21 end
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However, the use of recursion in SGQ – the class of queries targeted in this thesis – is limited
to transitive closure (Section 3.3), and the RPQ-based semantics of PATH is sufficient to
evaluate this limited form of recursion (Theorem 6). Consequently, the streaming RPQ
evaluation algorithms presented in Chapter 4 can be used as a physical, non-blocking
implementation for PATH. Remember that the Algorithm RAPQ incrementally performs
a traversal of the underlying snapshot graph under the constraints of a given RPQ and
maintains a compact representation of partial path segments in a spanning forest. Such a
compact representation facilitates the recovery of actual paths and allows queries to return
and manipulate paths as first-class citizens. Additionally, adopting a specialized streaming
RPQ algorithm as the non-blocking, physical implementation of PATH operator eliminates
the need for cycles in physical execution plans.

The notion of update pattern awareness [67] can be adapted for the physical imple-
mentation of PATH, similar to PATTERN, and the temporal pattern of expirations from
time-based sliding windows can be used to simplify state maintenance. In a nutshell, Al-
gorithm S-PATH utilizes the validity intervals of sgts to maintain a single entry for each
intermediate path segment by finding the path with largest expiry timestamp, that is, the
path segment that will expire furthest in the future. The tree index ∆ and its spanning
trees are augmented with a priority queue as a secondary index based on the expiry times-
tamps of paths segments. This enables finding expired path segments through look-ups
on the secondary index without the need for Algorithm ExpiryRAPQ, simplifying the
state maintenance for PATH. This is possible due to the separation of the implementation
of sliding windows from operator semantics via an explicit WSCAN operator. The modified
algorithm (S-PATH) is used as the physical implementation of the PATH operator (Ap-
pendix A describes it in detail). The following example illustrates how S-PATH utilizes
the temporal pattern of window movements to simplify state maintenance for processing
expirations.

Example 14. Consider the SGQ of Example 1 whose SGA expression is given in Example
13, and excerpt of the input to PRL+

RLP (Figure 5.3(a)). Both approaches behave similarly
until t = 28 as all vertex-state pairs in Tx have a single derivation at t = 27 (Figure 5.3(b)).
Upon arrival of the sgt (y, u,HI, [28, 37),D = {(y,HI, u)}) at t = 28, the negative tuple
approach does not update Tx as (u, 1) is already in Tx, whereas the direct approach updates
the validity interval and the parent pointer of (u, 1) ∈ Tx (Line 23 in Algorithm S-PATH).
Then, incoming sgts at times t = 28 and t = 29 are processed similarly, adding (v, 1) and
(s, 1) as children of (u, 1). Figures 5.4(a) and 5.4(b) depict the corresponding spanning trees
at t = 30 for the direct and the negative tuple approaches, respectively. Note that in Figure
5.4(a), the validity intervals of nodes in the subtree rooted at node (u, 1) reflects the newly
discovered path from x to u through y in G30. The negative tuple and the direct approach
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Algorithm S-PATH:
input : Input streaming graph S, Regular expression R, output label o
output: Output streaming graph SO

1 A(S,Σ, δ, s0, F )← ConstructDFA(R)
2 Initialize ∆− PATH
3 SO ← ∅
4 R← ∅
5 foreach (u, v, l, [ts, exp),D) ∈ S do
6 foreach s, t ∈ S where t = δ(s, l) do
7 if s = s0 ∧ Tu ̸∈ ∆− PATH then
8 add Tu with root node (u, s0)
9 end

10 if s = s0 then
11 if (v, t) ̸∈ Tu then
12 R← R+ Expand(Tu, (u, s0), (v, t), e(u, v))
13 end
14 else if (v, t).exp < exp then
15 R← R+ Propagate(Tu, (u, s0), (v, t), e = (u, v))
16 end
17 end
18 T← ExpandableTrees(∆− PATH, (u, s), ts)
19 foreach Tx ∈ T do
20 if (v, t) ̸∈ Tx then
21 R← R+ Expand(Tx, (u, s), (v, t), e(u, v))
22 end
23 else if (v, t).exp < min((u, s).exp, exp) then
24 R← R+ Propagate(Tx, (u, s), (v, t), e = (u, v))
25 end
26 end
27 end
28 end
29 foreach sgt t ∈ R do
30 push t to SO

31 end
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Figure 5.3: (a) A streaming graph SRLP as the input for PATH operator, (b) spanning tree
Tx at t = 28.

differs at t = 31 as multiple nodes expire. The original Algorithm ExpiryRAPQ marks
the entire subtree of (z, 1) as potentially expired (Figure 5.4(b)), and performs a traversal of
the snapshot graph G31 to find alternative, valid paths for expired nodes. These traversals
undo the effect of expired sgts via explicit deletions. Upon discovering alternative paths for
nodes (u, 1), (v, 1) and (s, 1) that are valid at time t = 31, they are re-inserted into Tx.
Instead, Algorithm S-PATH can directly determine the expired nodes based on the validity
intervals (nodes (z, 1) and (t, 1) as shown in Figure 5.4(a)) without additional processing.

5.5 Experimental Analysis

The main objective of this section is to demonstrate the feasibility of implementing a
performant system based on the algebraic framework proposed in this chapter. In the
remainder, Section 5.5.1 describes the workloads and streaming graphs used for the experi-
mental analysis, Section 5.5.2 provides an end-to-end performance analysis of the proposed
algebraic approach for persistent evaluation of streaming graph queries using the proto-
type implementation described in Section 5.4. Finally, Section 5.5.3 assess the scalability
by varying the window size ω and the slide interval β.
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5.5.1 Methodology

Setup

Experiments are run on a Linux server with 32 physical cores and 256GB memory. For
each query and configuration, the tail latency of each window slide, i.e., the total time to
process all arriving and expired sgts upon window movement and to produce new results,
and the average throughput after ten minutes of processing on warm caches are reported.

Datasets

Stackoverflow (SO) and LDBC SNB (SNB) graphs are used for the experimental analy-
sis; these are publicly available, large-scale graphs with labelled and timestamped edges on
which persistent queries with complex graph patterns can be formulated. SO is a temporal
graph of user interactions on the stackoverflow website containing 63M interactions (edges)
of 2.2M users (vertices), spanning 8 years [135], and SNB is a synthetic social network graph
that simulates the interactions of an online social network [53]. The update stream of the
LDBC workload that contains 8 different types of interactions are extracted from its data
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generator, and replyOf, hasCreator and likes edges between users and posts, and knows
edges between users are used. Unless specified otherwise, experiments on LDBC workload
use the scale factor of 10 with 7.2M users and posts (vertices) and 40M user interactions
(edges). SO contains only a single type of vertex and 3 different edge labels, and its cyclic
nature causes a high number of intermediate results and resulting paths; so it is the most
challenging one for the proposed algorithms. Finally, the window size ω is set to 1 month
and the slide interval β is set to 1 day unless specified otherwise.

Workloads

A through literature search revealed that no current benchmark exists featuring RQ for
graph DBMSs. The existing benchmarks are limited to UCRPQ thus not capturing the full
expressivity of RQ even for static graphs. Streaming RDF benchmarks such as LSBench
(https://code.google.com/archive/p/lsbench/) and Stream WatDiv [62] only
focus on SPARQL v1.0 (thus not even including simple RPQs), and their workloads do
not contain any recursive queries. Hence, the set stremaing graph queries used for the
experiments are formulated from existing UCRPQ-based workloads: First, a set of graph
patterns in the form of UCRPQ from existing benchmarks and studies [172, 32, 131, 53, 19]
are collected, and a set of complex graph patterns are constructed from these UCRPQs by
applying a Kleene star over each graph patterns. Table 5.1 lists the set of graph patterns
of increasing expressivity (from RPQ to complex RQ with complex graph patterns) that
are used to define streaming graph queries. Q1 −Q4 are commonly used RPQs in existing
studies [172, 32, 131], and they are used to test SGA’s PATH operator. Q5 & Q6 are CRPQ-
based complex graph patterns based on SNB queries IS7 and IC7 [53]. For instance, Q6 –
IC7 of SNB – with edge labels knows, likes and hasCreator asks for recent likers of a person’s
messages that are also connected by a path of friends. Q7 – Ex. 1 – is the most expressive
RQ-based complex graph patterns used to demonstrate the abilities of the proposed SGA
to unify subgraph pattern and path navigation queries in a structured manner and to treat
paths as first-class citizens. It defines a path query over the complex graph pattern of Q6;
it finds arbitrary length paths where users are connected by the recentLiker pattern. Note
that this query cannot be expressed in existing graph query languages such as Cypher
and SPARQL due to the presence of recursion over a graph pattern (these UCRPQ-based
languages limit recursion over edges). The final query workload from this set of complex
graph patterns is instantiated by choosing appropriate predicates, i.e., edge labels, for each
query edge from each dataset and by setting the duration of time-based sliding windowsWω

as described above. Finally, the physical query execution plan for each query is constructed
using its canonical SGA expression as previously described in Section 5.3.
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Table 5.1: Q1 − Q4 correspond to common RPQ observed in real-world query logs [32],
and Q5 − Q7 are Datalog encodings of RQ-based complex graph patterns that are used
to define streaming graph queries. Q5 and Q6 correspond to complex graph patterns of
LDBC SNB queries IS7 and IC7 [53], respectively, and Q7 corresponds to the complex
graph pattern given in Example 1 that is defined as a recursive path query over the graph
pattern of Q6. a, b and c correspond to edge predicates that are instantiated based on the
dataset characteristics.

Name Query
Q1 ?x, ?y ← ?x a∗ ?y
Q2 ?x, ?y ← ?x a ◦ b∗ ?y
Q3 ?x, ?y ← ?x a ◦ b∗ ◦c∗ ?y
Q4 ?x, ?y ← ?x (a ◦ b ◦ c)+ ?y
Q5 RR(m1,m2) ← a(x, y), b(m1, x), b(m2, y), c(m2,m1)
Q6 RL(x, y) ← a+(x, y), b(x,m), c(m, y)

Q7
RL(x, y) ← a+(x, y), b(x,m), c(m, y)
Ans(x,m) ← RL+(x, y), c(m, y)

5.5.2 Query Processing Performance

Throughput & Tail Latency

Table 5.2 (SGA) shows the aggregated throughput and tail latency of the streaming graph
query processor introduced in this chapter for all queries in Table 5.1. Streaming graph
edges whose label is not in a given SGQ is discarded, and tail latencies reflect the 99th per-
centile latency of processing a window slide and produce the corresponding resulting sgts.
Across queries, the performance is lower for SO graph because it is dense and cyclic. The
throughput ranges from hundreds of edges-per-second for the SO to hundreds of thousands
of edges-per-second for SNB.

Comparative Analysis

Existing work on query processing over streaming data such as data stream management
systems and streaming RDF systems cannot process queries in Table 5.1 as they focus on
relational queries and SPARQL v1.0, respectively (Chapter 2). TD with its DD layer is
the only general-purpose system that can be used to incrementally evaluate recursive com-
putations that are modelled as cyclic dataflows. Consequently, the comparative analysis
presented here considers two systems built on top of TD: DD and the SGA-based streaming
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Table 5.2: (Tput) The throughput (edges/s) and (TL) the tail latency (s) of SGA and DD
systems for queries in Table 5.1 on SO and SNB graphs with ω = 30 days and β = 1 day.

SO SNB
SGA DD SGA DD

Q1
Tput 2762 1209 97187 121133
TL 3.3 6.3 1.5 0.8

Q2
Tput 8513 4512 237313 299245
TL 4.3 5.8 1.9 1.2

Q3
Tput 413 368 245766 316267
TL 120 121.7 1.9 1.1

Q4
Tput 379 374 277475 303068
TL 102.4 82.8 0.4 0.2

Q5
Tput 231064 63330 13345 12053
TL 0.3 1 79.1 109.5

Q6
Tput 374 283 428592 402048
TL 52.7 72.6 0.8 0.9

Q7
Tput 376 275 131250 21284
TL 56.3 74 10.2 141
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Figure 5.5: The performance of the SGQ processor prototype wrt window size ω on SO
graph.

graph query processor described in Section 5.3; other comparisons would not be appropri-
ate or fair without these supporting primitives. Table 5.2 (DD) reports the throughput
and tail latency of DD dataflows for all queries in Table 5.1. Overall, the SGA-based query
processor outperforms the DD baseline on SO and provides a competitive performance
on the SNB dataset. On SNB, Q6 & Q7 do not have the Kleene-plus over a as it causes
DD to timeout. Due to highly cyclic structure of SO, there are many alternative paths
between each pair of vertices, and the streaming RPQ algorithm for PATH implementa-
tion (Chapter 4) maintains a compact representation of valid path segments and utilizes
the temporal patterns of sliding window movements to simplify expirations (Section 5.4).
DD-based query processor provides better performance on linear path queries Q1–Q4 on
SNB, but not others. This is due to the tree-shaped structure of replyOf edges in SNB,
where there is only one path between a pair of vertices, so PATH specific optimizations
do not apply. Performance variations on SNB suggest optimization opportunities for re-
cursive graph queries when selecting physical operator implementations, as in the case for
streaming relational joins [67]. These results demonstrate the feasibility of the algebraic
approach for evaluating SGQ that is introduced in this chapter.

5.5.3 Sensitivity Analysis

This section analyzes the impact of the window size ω and the slide interval β on end-
to-end query performance of the proposed streaming graph query processor. SO graph is
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Figure 5.6: The performance of the SGQ processor prototype wrt slide interval β on SO
graph.

used for this experiment as its dense and cyclic structure pose a challenge for physical im-
plementations of the stateful operators PATTERN and PATH. Fig. 5.5 reports the aggregate
throughput and the tail latency for each query across various window sizes ω. As expected,
the throughput of all tested queries decreases with increasing ω, as a larger window size
increases the # of sgts in each window. Similarly, the tail latency of each window slide
increases with the increasing window size.

Analysis of the impact of the slide interval β on performance reveals a dissimilar be-
haviour. As previously mentioned, the slide interval β controls the time-granularity at
which the sliding window progresses, and the prototype implementation introduced in this
chapter uses β to control the input batch size. Figure 5.6 shows that the aggregate through-
put and the tail latency for each query remain stable across varying slide intervals. This
is due to tuple-oriented implementation of physical operators of SGA; SGA operators are
designed to process each incoming tuple eagerly in favour of minimizing tuple-processing
latency, and they do not utilize batching to improve throughput with larger batch sizes.
Consequently, the tail latency of window movements increases with increasing slide inter-
val. This is in contrast to DD whose throughput increases with increasing β as shown in
Figure 5.7. DD and its underlying indexing mechanism, i.e., shared arrangements [119],
are designed to utilize batching and improve throughput with increasing batching size: all
sgts that arrive within one interval are batched together with a single logical timestamp
(epoch) and DD operators can explore the latency vs throughput trade-off by changing the
granularity of each epoch. The investigation of batching within SGA operators and the
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Figure 5.7: The tail latency of each window slide and the aggregate throughput of SGQ
evaluation on DD with increasing slide interval β on SO graph.

identification of other optimization opportunities is a topic of future work.

5.6 Discussion

This chapter studies the evaluation of streaming graph queries and describes a proto-
type implementation of a streaming graph query processor. Its main contribution is the
Streaming Graph Algebra that consists of a set of operators defined over streaming graphs,
complementing the SGQ model (Chapter 3) as the foundational basis of the streaming
graph query processing framework introduced in this thesis. SGA provides primitives for
expressing query evaluation plans for SGQ as:

• its operators form temporal generalizations of their non-temporal counterparts through
implicit treatment of sgts’ validity intervals;

• time-based sliding windows and path navigations are specified via novel WSCAN and
PATH operators, respectively; and

• SGA expressions return and manipulate paths as paths as treated as first-class citi-
zens of the data model.

By defining the semantics of a set of operators that can be used as building blocks, SGA
enables representation of query evaluation plans independent of system-specific details.
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Section 5.2.1 proves that SGA has at least the same expressive power as SGA and provides
a concrete algorithm for translating SGQs into their canonical SGA expressions. Clear
separation of operator and query semantics from implementation details simplifies (i) the
implementation of physical operators consistent with the semantics, and (ii) the design of
a query processor that use these physical operators as building blocks. Sections 5.3 and
5.4 describe alternative physical implementations for SGA operators using the TD system
as the underlying execution engine: one based on the general-purpose DD primitives and
one based on SGQ-specific implementations, respectively.

An important result presented in this chapter is the closedness of SGA and the compos-
ability of SGA expressions over streaming graphs. Optimization of SGQs in a principled
way relies on the systematic exploration of the space of equivalent plans, which is only
possible by first establishing an algebraic representation amenable to rewrites through
equivalence rules. Defined as the closure of a set of operators over the streaming graph
data model, SGA provides such a representation for SGQ in which a query optimizer can
reason about transformations and equivalences of query execution plans. The next chapter
introduces a set of transformation rules that hold in SGA and describes the design of an
SGA-based query optimizer for the systematic exploration of the rich plan space using
these rules.
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Chapter 6

Optimization of Streaming Graph
Queries

6.1 Introduction

It is well-known that the performance of different evaluation plans for a query may be
widely different: Figure 6.1 illustrates the performance variations of different but equiv-
alent plans for a streaming graph query with a complex path pattern over two different
streaming graphs [132] (generation of equivalent plans will be discussed momentarily in
Section 6.2). Finding the right evaluation plan for a given query, known as query opti-
mization, is a notoriously challenging problem. The separation of query semantics from
the implementation details provides the necessary degree of freedom to explore the space
of possible plans systematically, and query optimizers find an “efficient” execution plan for
a given query from among a subset of possible execution plans. At a high level, query
optimization can be defined as a search problem with three components [40]:

• a search space with a set of operators and a set of transformation rules that represents
the set of equivalent query evaluation plans for a given query;

• a cost model that estimates a relative measure of the resource usages of query eval-
uation plans;

• and an enumeration algorithm for systematic exploration of the plan space.
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Figure 6.1: The throughput and tail latency of Q4 (Table 5.1 in Chapter 5) on (top) SO
and (bottom) SNB for equivalent SGA plans.

Query optimization is perhaps one of the most studied topics in database systems, and
existing work predominantly focuses on relational queries in the snapshot model. Con-
sequently, realizing the long-term vision envisioned in this thesis (Section 1.2.2) requires
re-thinking this optimizer architecture in the context of streaming graph queries. First of
all, the search space of an SGQ optimizer needs to incorporate plans with path naviga-
tion queries. SGA and its PATH operator provide the necessary tool to represent query
evaluation plans for such queries. Next, rules with well-defined semantics representing
equivalences between SGA expressions are needed. This enables the optimizer to explore
the search space and to find equivalent plans through algebraic rewrites. Also, traditional
cost models estimate the resource usage (e.g., execution time, network cost) required to
complete the execution of a given query by using a set of statistics available about the un-
derlying dataset. However, SGQs are continuously evaluated over potentially unbounded
streaming graphs, requiring a fundamental change in cost metrics and statistics used by
the cost model.

This chapter addresses the aforementioned challenges of SGQ optimization. It describes
the design of a cost-based SGQ optimizer framework in the context of the streaming graph
query processing framework proposed in this thesis. Building a full-fledged optimizer is an
enormous undertaking, as demonstrated by the five decades of work on relational query
optimizers. The objective here is to provide the foundational tools upon which SGQ op-
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timizers can be developed. In line with this objective, this chapter first formally defines
the search space for SGQ evaluation plans by introducing a set of transformation rules
for SGA operators (Section 6.2). Some of the rules are streaming generalization of their
non-streaming counterparts. A set of new rules for SGA’s novel operators WSCAN and
PATH is introduced, enabling the search space to incorporate plans for queries that return
and manipulate paths. These rules define equivalences between SGA expressions (and cor-
responding query evaluation plans) and enable systematic exploration of the plan space
described by SGA expressions. Then, an SGA-specific cost model is described for esti-
mating the resource usage of SGA operators (Section 6.3). This cost model is based on
the unit-time model, which was originally developed for relational joins over tuple streams
[87], and characterizes the resource usage of continuous query operators and query plans
per unit application time. Using SGA-specific operator formulas, it is shown that the out-
put streaming graph characteristics and the resource usage of an operator can be estimated
based on its input streaming graph characteristics. Given the estimations for its individ-
ual operators, the resource usage of an entire query plan is calculated by summing up
the operators’ resource usage. A prototype implementation of a Cascades-style cost-based
SGQ optimizer is described (Section 6.4). This implementation is based on the Apache
Calcite optimizer framework [24] and incorporates the search space and the cost model
introduced in this chapter. Finally, an experimental study that demonstrates the feasibility
of the cost-based optimization of SGQ using this prototype implementation is presented
(Section 6.5).

6.2 Search Space

The search space for query optimization has two main components: (i) a set of opera-
tors defined over the underlying data model for representing query plans, and (ii) a set
of transformation rules that are used to rewrite an algebraic expression into equivalent
ones. As shown in Section 5.2.1, SGA and its operators provide the foundational basis to
represent query evaluation plans for SGQ. This section describes a set of transformation
rules holding in SGA in the form of algebraic equivalences. These rules formally describe
the equivalences between query evaluation plans for SGQ (Definition 35) and enable query
optimizers to explore the search space through query rewrites systematically.

Definition 35 (Plan Equivalence). Let P1 and P2 be query evaluation plans that consist of
SGA operators for two SGA expressions over the same set of input streaming graphs, and let
S1 and S2 be their output streaming graphs, respectively. P1 and P2 (and their corresponding
SGA expressions) are said to be equivalent if and only if their output streaming graphs are
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equivalent (Definition 13). That is, P1 and P2 are equivalent iff snapshots of their output
streaming graphs, τt(S1) and τt(S2) are equivalent at any given time t ∈ T.

P1 ≡ P2 ⇐⇒ S1 ≡ S2

6.2.1 Conventional Transformation Rules

Recall that UNION, FILTER and PATTERN operators are streaming generalizations of their
relational counterparts and their semantics are formaly defined using the notion of snapshot-
reducibility (Definition 15). Consequently, some of the traditional relational transformation
techniques such as join ordering, and predicate pushdown are applicable in SGA. The set
of algebraic transformation rules that are derived from their relational counterparts are as
follows:

1. Commutativity of UNION: Sa ∪[d] Sb ≡ Sb ∪[d] Sa

2. Idempotentancy of FILTER: σΦ
(
σΦ(S)

)
≡ σΦ(S)

3. Conjunctive FILTER predicates: σΦ2

(
σΦ1(S)

)
≡ σΦ1∧Φ2(S)

4. Disjunctive FILTER predicates: σΦ2(S) ∪ σΦ1(S) ≡ σΦ1∨Φ2(S)

5. Associativity of FILTER: σΦ2

(
σΦ1(S)

)
≡ σΦ1

(
σΦ2(S)

)
6. Distributivity of FILTER over UNION: σΦ

(
Sa ∪[d] Sb

)
≡ σΦ(Sa) ∪[d] σΦ(Sb)

7. Commutativity of PATTERN: ⋊⋉src1,trg2,d
trg1=src2 (Sa, Sb) ≡⋊⋉src2,trg1,d

trg2=src1 (Sb, Sa)

8. Associativity of PATTERN:

⋊⋉src1,trg2,d
trg1≡src2

(
Sa,⋊⋉src1,trg2,d1

trg1=src2 (Sb, Sc)
)
≡⋊⋉src1,trg2,d

trg1=src2

(
⋊⋉src1,trg2,d1

trg1=src2 (Sa, Sb), Sc

)
9. FILTER pushdown through PATTERN (left):

σΦ
(
⋊⋉src1,trg2,d

trg1=src2 (Sa, Sb)
)
≡⋊⋉src1,trg2,d

trg1=src2

(
σΦ(Sa), Sb

)
, ifattr(Φ) ∈ {src1, trg1, la}

10. FILTER pushdown through PATTERN (right):

σΦ
(
⋊⋉src1,trg2,d

trg1=src2 (Sa, Sb)
)
≡⋊⋉src1,trg2,d

trg1=src2

(
Sa, σΦ(Sb)

)
, ifattr(Φ) ∈ {src2, trg2, lb}

Lemma 2. Conventional transformation rules are applicable in SGA over expressions
involving UNION, FILTER and PATTERN operators.
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Proof. The correctness of the above transformation rules over SGA directly follows from
the snapshot reducibility of UNION, FILTER and PATTERN to their relational counterparts
and the equivalence of streaming graphs (Definition 13). Let P1 be an SGA expression for
a streaming graph query Q, and P2 be the optimized SGA expressions after applying a
conventional transformation rule. To prove the equivalence of P1 and P2 (hence the correct-
ness of conventional transformation rules), it is sufficient to show that output streaming
graphs S1 and S2 are equivalent. Due to snapshot reducibility, at any point in time t,
snapshot graphs τt(S1) and τt(S1) are equivalent to the outputs of one-time counterparts
of the original and optimized plans P1 and P2, respectively. The correctness of the con-
ventional rules over one-time relational operators implies that snapshot graphs τt(S1) and
τt(S2) are equivalent at any given time t, showing that output streaming graphs S1 and S2

are equivalent. Consequently, the original and optimized SGA expressions are equivalent,
concluding the proof.

6.2.2 Transformation Rules for WSCAN

WSCAN (Wω) commutes with operators that do not alter the validity intervals of sgts, i.e.,
UNION and FILTER. Formally:

12. FILTER pushdown through WSCAN: Wω(σϕ(S)) ≡ σϕ(Wω(S))

13. Distributivity of WSCAN over UNION: Wω(S1 ∪[d] S2) ≡ Wω(S1) ∪[d]Wω(S2)

Pushing FILTER down the WSCAN operator can potentially reduce the rate of sgts and
consequently the amount of state the windowing operator needs to maintain. The correct-
ness of transformation rules for WSCAN directly follows from the definitions of stateless
SGA operators UNION and FILTER (Section 5.2.1). WSCAN commutes with these stateless
operators as UNION and FILTER operate only on the explicit attributes of sgts, i.e., they
do not manipulate the validity intervals of tuples, whereas WSCAN only operate on the
implicit attributes of sgts.

6.2.3 Transformation Rules for PATH

Remember that the semantics of PATH is based on the RPQ model where path expressions
are specified as regular expressions over the alphabet of edge labels. A complex regular
expression R can be decomposed into its fragments where each fragment is a sub-expression
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of R. This decomposition of R is used to transform an SGA expressions involving PATH
into its equivalent expressions. Formally:

14. Decomposition of concatenation: Pd
r1·r2(S) ≡⋊⋉

src1,trg2,d
trg1=src2

(
Pd1

r1
(S),Pd2

r2
(S)

)
15. Decomposition of alternation: Pd

r1|r2(S) ≡ Pd
r1
(S) ∪ Pd

r2
(S)

16. Substitution of transition: Pd
a(S) ≡ Sa, if a ∈ Σ

17. Decomposition of Kleene star: Pd
r∗(S) ≡ Pd

d∗1

(
Pd1

r (S)
)

The correctness of these rules follows from the semantics of PATH (Definition 34) and
the structure of regular expressions (Definition 18). In the following, the proof for decom-
position of concatenation rule is provided; the proofs for other rules are quite similar and
straightforward.

Lemma 3 (Decomposition of concatenation). Transformation rule 14 correctly decomposes
a PATH operator with concatenation, that is, the output streaming graphs of the original
and optimized expressions over the same set of input streaming graphs are equivalent.

Proof. Definition 35 states that two SGA expressions are equivalent iff their output stream-
ing graphs are equivalent. Consequently, the proof proceeds by showing the equivalence of
output streaming graphs of the original expression P1 = Pd

r1·r2(S) and the optimized ex-
pression P2 =⋊⋉src1,trg2,d

trg1=src2

(
Pd1

r1
(S),Pd2

r2
(S)

)
. An sgt t = (u, v, d, [ts, exp),D) is in the output

streaming graph of the original SGA expression P1 if and only if there exists a length-2
path p→: ⟨t1, t2⟩ between vertices u and v s.t.:

1. t1 = (u, x, r1, [ts1, exp1),D∞) ∈ S,

2. t2 = (x, v, r2, [ts2, exp2),D∈) ∈ S,

3. and [ts, exp) = [ts1, exp1) ∩ [ts2, exp2).

For any such pair of sgts t1, t2 ∈ S, the optimized SGA expression produces the same
sgt t = (u, v, d, [ts, exp),D) as:

1. there exists t′1 = (u, x, d1, [ts1, exp1),D) ∈ Pd1
r1
(S),

2. there exists t′2 = (x, v, d2, [ts2, exp2),D) ∈ Pd2
r2
(S),
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3. Φ(t′1, t
′
2) = true and [ts, exp) = [ts1, exp1) ∩ [ts2, exp2)

Following the definition of PATTERN, it is easy to see that no other pair of sgts in S could
participate in a resulting sgt for P2. Consequently, the output streaming graphs of the
original and optimized SGA expressions are the same, which concludes the proof.

These transformation rules enable the exploration of a rich plan space for SGQ that is
represented by SGA. Remember that except for the windowing operator WSCAN, SGA op-
erators are snapshot-reducible to their one-time, non-temporal counterparts. Consequently,
these transformation rules (except the transformation rules for WSCAN presented in Sec-
tion 6.2.2) are applicable one-time queries over static graphs. In particular, PATH and
its transformation rules enable the integration of existing approaches for RPQ evaluation
with standard optimization techniques such as join ordering and pushing down selection
in a principled manner. Traditionally, path query evaluation follows two main approaches:
graph traversals guided by finite automata or relational algebra extended with transitive
closure, i.e., alpha-RA [131, 94, 144, 55, 18, 172]. Yakovets et al. introduce a hybrid
approach (Waveguide) and model the cost factors that impact the efficiency of RPQ eval-
uation on static graphs [172]. SGA enables the representation of these approaches in a
uniform manner, and the above transformation rules enable the exploration of the plan
space that subsumes these existing plans. Section 6.5.3 demonstrates the use of these
transformation rules and illustrates the potential benefits of exploring the rich plan space
offered by SGA.

6.3 Cost Model

Cost models enable query optimizers to make resource usage predictions based on system
characteristics and to choose the “right” evaluation plan from the set of possible plans.
Traditional cost models rely on intermediate result cardinalities for estimating the execu-
tion time of a given query plan. It is well-documented that traditional, cardinality-based
cost models are not applicable in the streaming model [167, 68] as (i) the notion of “exe-
cution time” is ill-suited for long-running, persistent queries, and (ii) unbounded streams
make it infeasible or even impossible to estimate cardinalities. Consequently, a novel
cost model to estimate the resource usage SGQ evaluation plans is needed. This section
first describes the streaming graph characteristics used to model the inputs and outputs of
SGA operators. Then, operator formulas that are used to estimate these characteristics of
the output streaming graph of an SGA operator based on its input streaming graphs are
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provided. Based on these characteristics, the resource usage of physical implementations
of SGA operators and their corresponding cost formulas are described.

6.3.1 Streaming Graph Characteristics

A streaming graph S is modelled by the following parameters:

• r – the arrival rate of a streaming graph, which is determined by the average time
between the start timestamps of consecutive sgts

• v – the average length of validity intervals in a streaming graph

The arrival rate r corresponds to the number of sgts processed per unit application
time and impacts the resource usage of every SGA operator. The average interval length
v, on the other hand, represents the duration for which an sgt will be valid. Consequently,
v controls the duration that an incoming sgt could participate in future results for stateful
SGA operators PATTERN and PATH. These two together determine the size of the data
structures that are used to maintain the internal operator state. As in the rest of this thesis
(Section 3.2), the cost model uses the event (application) time, and both parameters are
computed per application time. Consequently, the output streaming graph of an operator
(query plan) solely depends on its input streaming graphs, and it is not impacted by
the physical properties of the underlying execution engine, such as the physical algorithm
implementations, scheduling decisions, or the parallelization model. In that sense, these
parameters represent the logical properties of streaming graphs that are relevant to the
cost model, and the estimation of these parameters is analogous to cardinality estimation
in traditional cost models of RDBMSs.

In the following, formulas for estimating the output streaming graph characteristics of
SGA operators are provided. Table 6.1 lists the terms used in operator formulas.

Operator Formula 1 (WSCAN). Given a WSCAN operator with window size ω, the pa-
rameters of SO can be estimated as:

rO = ri (6.1)
vO = ω (6.2)

WSCAN adjusts the interval length of each sgt by setting expiration timestamp to ts+ω
(Definition 30), directly controlling the average interval length of SO.
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Table 6.1: Summary of terms and definitions used in estimation this chapter.
Si the ith input streaming graph
ri rate of the ith input streaming graph
vi average interval length of the ith input streaming graph
Φ Boolean operator predicate
f operator selectivity
SO the output streaming graph
rO estimated rate of the operator output
vO estimated average interval length of the operator output
Ct the average cost of evaluating a single sgt
CO the average cost of pushing a single sgt through a streaming graph
Ud the update cost of a single entry in a data structure d
Pd the access cost of a single entry in a data structure d

Operator Formula 2 (FILTER). Given a FILTER operator with a predicate Φ, let f be the
selectivity of Φ, i.e., the ratio of sgts that satisfy the predicate Φ in the input streaming
graph Si. The parameters of SO can be estimated as:

rO = f · ri (6.3)
vO = vi (6.4)

Output rate of FILTER is reduced by the selectivity f as the probability of an sgt
satisfying the filter predicate Φ is f . As the filter operator does not change the validity
interval of sgts, the validity interval (and the window size) of the output stream remains
the same.

Operator Formula 3 (UNION). Given a UNION operator with n input S1, . . . , Sn, the
parameters of SO can be estimated as:

rO =
n∑

i=1

ri (6.5)

vO =

∑n
i=1 vi · ri
rO

(6.6)

Output rate of UNION is simply the sum of the rates of all of its input streaming
graphs. Average length of validity intervals, on the other hand, is computed as the weighted
average length of its inputs. As ri determines the number of sgts with validity interval vi,
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the average validity interval length is computed by the sum of weighted validity intervals
divided by the the output rate (the sum of weights).

Operator Formula 4 (PATTERN). Given PATTERN operator over two input streaming
graphs S1, S2 where the selectivity of the predicate Φ is f , the parameters of SO can be
estimated as:

rO = f · (v2 · r2) · r1 + f · (v1 · r1) · r2 (6.7)

vO =
v1 · v2
v1 + v2

(6.8)

The first part of the Equation 6.7 corresponds to the output rate due to arrivals for the
input streaming graph S1 while the second part does so for S2. (v2·r2) is the average number
of sgts from S2 that might have temporal overlap with arrivals from S1. Consequently,
f · (v2 · r2) · r1 is the average number of resulting sgts due to arrivals from S1 during a given
time instant, i.e., the output rate due to arrivals from S1. Similarly, the second part of the
equation computes the output rate due to arrivals from S2.

The validity intervals of sgts in the output streaming graph of PATTERN is the inter-
section of the validity intervals of participating sgts. Consequently, vO corresponds to the
average overlap of validity intervals from S1 and S2. Without loss of generality, let v1 ≥ v2.
By shifting an interval of length v2 over an interval of length v1, the expected length of an
overlap can be calculated. In brief, there are v1 + v2 − 1 combinations for two intervals of
length v1 and v2: v1 − v2 + 1 complete overlaps of size v2, two overlaps of size v2 − 1, two
overlaps of size v2 − 2 and it continues in this pattern. Under the uniformity assumption
(i.e., the distribution of the length of validity intervals of a streaming graph is uniform),
the expected overlap length is (v2) · (v1 − v2 + 1) + 2 ·∑v2−1

i=1 i = v1·v2
v1+v2−1

.

Note that these calculations depend solely on the semantics of the PATTERN and do not
make assumptions about particular physical implementations. Section 6.3.2 investigates
the impact of particular physical implementations on the resource usage.

Remark 5 (Complex PATH expressions). PATH is an operator with an arbitrary arity
that might feature a complex path expression that consists of multiple operations (e.g.,
alternation, concatenation, and Kleene star). To estimate the characteristics of the output
streaming graph of PATH with a complex path expression R, R is first decomposed into its
fragments using its parse tree. The parse tree of a regular expression R is a tree where leafs
are symbols (edge labels) from the alphabet and the nodes are primitive regular expressions,
i.e., regular expressions with a single concatenation, alternation or Kleene star operation
(Figure 6.2 illustrates the parse tree of the regular expression R =

(
(a|(b · c))∗ · d

)∗). Then,
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the characteristics of the final expression can be estimated using the following formulas for
individual nodes in a bottom-up manner.

Operator Formula 5 (PATH with concatenation). Given a path expression R = a · b over
streaming graphs Sa and Sb, the parameters of SO can be estimated as:

rO = f · (vb · rb) · ra + f · (va · ra) · rb (6.9)

vO =
va · vb
va + vb

(6.10)

Remember that PATH with a path expression R = a · b over streaming graphs Sa and Sb

corresponds to a PATTERN with a subgraph pattern of sgts over labels a and b in the form
of a linear path (Section 6.2). Consequently, the operator formulas of PATTERN can be
used for a PATH operator over streaming graphs {Sa, Sb} with a path expression R = a · b.
f corresponds to the selectivity of the linear path pattern a · b (similar to the selectivity of
PATTERNsrc1,trg2,d

trg1=src2 (Sa, Sb)).

Operator Formula 6 (PATH with alternation). Given a R = a | b over streaming graphs
{Sa, Sb}, the parameters of SO can be estimated as:

rO = ra + rb (6.11)

vO =
ra · va + rb · vb

rO
(6.12)

Similarly, PATH with path expression R = a | b over streaming graphs {Sa, Sb} is
equivalent to union of Sa and Sb and therefore the formulas for UNION can be for PATH
with alternation.

PATH operator can be used to query arbitrary-length paths by using a path expression
with a Kleene star, which corresponds to the traversal of the given expression zero or more
times. Consequently, cost formulas for PATH with a Kleene star depends on the maximum
path length, i.e., the number of iterations. Here, it is assumed that the maximum path
length for PATH with a path expression R∗ is given.1

Operator Formula 7 (PATH with Kleene star). Given the maximum path length m, the
path expression R∗ can be written using alternation and concatenation as follows:

R∗ = R0 | R1 | · · · | Rm where R0 =, Ri = Ri−1 ·R (6.13)
1Existing graph query languages such as Cypher and SPARQL v1.1 explicitly support the bounded

Kleene operator to specify lower and upper bounds for lengths of path expressions. Also, the maximum
path length for path expression R∗ can be bounded by the diameter of the graph induced by R relation
on any graph.
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Kleene
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Kleene

Alternation
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b c

d

Figure 6.2: The parse tree obtained by decomposition of the complex path expression(
(a|(b · c))∗ · d

)∗.
Then, the rate and the average interval length for each path segment of length i, i.e., Ri,
can be estimated using the concatenation formula as follows:

rRi = i · r · (frv)i−1 (6.14)

vRi =
v

i
(6.15)

Finally, given a R∗ over a streaming graph SR and the maximum path length m, the
parameters of SO can be estimated as:

rO =
m∑
i=1

rRi (6.16)

vO =

∑m
i=1 vRi · rRi

rO
(6.17)

The following example demonstrates how a complex path expression with multiple
operations can be decomposed into its simple fragments.

Example 15 (Complex path expression). Consider the path expression R =
(
(a|(b·c))∗·d

)∗.
Its parse tree is shown in Figure 6.2. Given a PATH over streaming graphs {Sa, Sb, Sc, Sd},
characteristics of SO can be computed by applying above formulas in a bottom-up manner:
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1. Formula 5 over b and c to obtain (b · c)
2. Formula 6 over a and (b · c) to obtain (a|(b · c))
3. Formula 7 over (a|(b · c)) to obtain (a|(b · c))∗

4. Formula 5 over (a|(b · c))∗ and d to obtain
(
(a|(b · c))∗ · d

)
5. Formula 7 over

(
(a|(b · c))∗ · d

)
to obtain

(
(a|(b · c))∗ · d

)∗
6.3.2 Operator Cost Formulas

The previous section describes the estimation of streaming graph characteristics for SGA
operators. This is analogous to the cardinality estimation of intermediate results in tra-
ditional cost models of RDBMSs, as the output streaming graph characteristics of an
operator solely depend on its input streaming graphs and the operator semantics, not
particular physical implementations. Based on these streaming graph characteristics, this
section describes how to estimate the resource consumption of SGQ query evaluation plans.
In addition to the streaming graph characteristics described in the previous section (the
rate r and the average length of validity intervals v), the following constants are used the
cost model:

• Ct – the average cost of evaluating a single sgt by the particular physical operator
implementation

• CO – the average cost of pushing a single sgt through output streaming graph of an
operator

In the following, cost functions that estimate the processing costs of physical imple-
mentations of SGA operators are provided. These cost functions are based on the physical
implementations presented in Section 5.4, and they model the dominant factors of corre-
sponding algorithms in terms of operations performed over the attributes of sgts. They
estimate the processing cost of an operator per unit application time at a steady state, i.e.,
after the initialization of operators according to sliding window definitions.

Operator Formula 8 (WSCAN). WSCAN’s processing cost per unit-time is calculated as:

Ct = rO · CO (6.18)

Operator Formula 9 (FILTER). FILTER’s processing cost per unit-time is calculated as:

Ct = ri · Cσ + rO · CO (6.19)
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where Cσ is the cost of evaluating the filter predicate on a single sgt; and, ri and rO
represents the rate of input and output streaming graphs, respectively. FILTER processes
every incoming sgts and append the ones that satisfy the selection predicate.

Operator Formula 10 (UNION). UNION’s processing cost per unit-time is calculated as:

Ct = rO · CO (6.20)

where rO represents the output rate of UNION.

The cost formulas for stateless operators solely depend on per-tuple processing costs
as each incoming sgt is processed on the fly. PATTERN and PATH, on the other hand,
are stateful operators that maintain internal operator states, and the cost formulas for
these operators include the update and look-up operations over their corresponding data
structures.

Remark 6 (PATTERN Operator State). The operator state of PATTERN consists of all sgts
from one input that might have overlapping validity intervals with any future sgts from the
other input. Hence, each sgt from one input needs to be kept as long as its validity interval
can overlap with sgts from the other input. The physical implementation of PATTERN
(Section 5.4.2) is based on the well-known symmetric hash join algorithm: each incoming
sgts is processed by (i) inserting the sgt into the operator state, (ii) performing lookups to
find matching tuples, and (iii) removing expired sgts from the operator state. The internal
operator state is maintained as a hash table. Upon the arrival of an sgt, it is inserted
into its corresponding hash table, and the other table is probed for matches. However,
determining expired sgts might require a complete scan of the hash table for the worst case.
The physical implementation of PATTERN described in Section 5.4.2 maintains a secondary
index to efficiently identify expired sgts. References to the sgts in the primary index are
maintained in a priority queue organized in accordance with their expiration timestamps,
allowing the algorithm to locate the expired sgts directly.

Operator Formula 11. PATTERN’s processing cost per unit-time is calculated as:

Ct = r1 · (I1 + P2 + E2) + r2 · (I2 + P1 + E1) + rO · CO (6.21)

where I1, P1, and E1 corresponds to the insertion, processing and expiration cost of a single
sgt from the first input of PATTERN and their detailed formulas are given below. Due to
the symmetric nature of the physical implementation of PATTERN (Section 5.4.2), these
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costs regarding the second input can be calculated in a similar manner.

I1 = Uh + Upq · log (r1 · v1) (6.22)
P1 = Ph (6.23)
E1 = Uh + Upq · log (r1 · v1) (6.24)

In brief, the insertion cost I1 is a combination of inserting an entry into the hash table
and the priority-queue-based secondary index for S1, which is logarithmic in the number
of sgts maintained for S1. Similarly, processing expirations involves probing the secondary
index to retrieve expired sgts and removing those from the hash index. Consequently, E1

is calculated as a combination of updating the hash index and the priority queue-based
secondary index. Finally, P1 is the cost of performing a lookup over the corresponding
hash table, which is expected to be constant on average in a typical in-memory hash table
implementation.

Remark 7 (PATH Operator State). The physical implementation of PATH is based on the
the streaming RPQ algorithm S-PATH (Section 5.4). The operator state of PATH is main-
tained as the specialized data structure: ∆-tree index, which encodes partial path segments
for the path expression R in the form of spanning trees where each spanning tree Tx consists
of all nodes that are reachable by the vertex x through a path whose label conforms to R.
Each incoming sgt is processed by (i) inserting new path segments into the ∆-tree index
due to the incoming sgt, and (ii) removing invalid path segments from the ∆-tree index due
to expired sgts. Similar to PATTERN, the ∆-tree index and its spanning trees are organized
using a hash table that is backed by a priority queue-based secondary index to locate the
expired sgts efficiently.

As described Remark 7, the physical implementation of PATH is based on the streaming
RPQ algorithm S-PATH. Chapter 4 provides a detailed amortized complexity analysis for
both insertion and expiration operations over the ∆-tree index, which the cost formula for
PATH is based on.

Operator Formula 12 (PATH). Given a PATH with a regular expression R as its path
conditions over streaming graphs {S1, · · · , Sk}, its processing cost per unit-time is calculated
as:

Ct = ri · (I + E) + rO · CO (6.25)
(6.26)
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where ri is the rate of the union of the input streaming graphs {S1, · · · , Sk}, and I and E
correspond to the insertion and expiration cost, respectively, of a single sgt. Their detailed
formulas based on the complexity analysis presented in Chapter 4 are given below. The
cost formulas rely on the number of vertices in the snapshot graph of the input streaming
graphs and the number of states in the minimal DFA for the path expression R, which are
denoted by n and k, respectively.

I = Ph · n · k2 + Upq · n · k · log (n · k) + Uh · k (6.27)
E = Ph · n2 · k + Ppq · n · log n+ Upq · n · k · log (n · k) + Uh · k (6.28)

The insertion cost I can be calculated as a combination of (i) the cost of performing
look-ups on the ∆-tree index to check existence of nodes, and (ii) the cost updating the
∆-tree index for new path segments. Similarly, the expiration cost E is a combination (i)
the cost of priority queue look-ups to determine potentially expired spanning trees nodes,
and (ii) the cost of updating the the spanning trees due to expirations.

Finally, based on these operator formulas for calculating the resource usage of individual
SGA operators, the resource usage of a given execution plan is computed by summing up
the individual costs of all operators in the plan. This simplifies the cost model and enables
the cost model to provide resource usage estimations independent of low-level system issues
such as scheduling and parallelism. Consequently, the planning decisions guided by the
resource usage estimations described here are not affected by the internals of the underlying
execution engine. They solely depend on: (i) input streaming graph characteristics, (ii)
the query semantics, and (iii) particular physical implementations of SGA operators.

6.4 Prototype Implementation

As described previously, the main objective of this chapter is to lay out the fundamental
primitives for SGQ optimizers, and the previous sections formally define the search space
for SGA-based query evaluation plans and an SGA-specific cost model for SGQ. The final
component of query optimization is the enumeration algorithm that finds an “efficient” plan
for a given query from the space of equivalent plans. Plan space enumeration has been ex-
tensively studied, which has led to several extensible optimizer frameworks. Extensible op-
timizer frameworks employ rule engines that allow the addition of new transformation rules
and operator definitions to extend the search space and use generalized cost functions that
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allow changes in the cost estimation. Existing optimizer frameworks can be broadly catego-
rized based on their enumeration algorithms: (i) dynamic programming-based bottom-up
techniques such as Starburst [147, 82] and (ii) memoization based top-down techniques
such as Volcano and Cascades [72, 73]. This section describes a prototype implementation
of a cost-based SGQ optimizer with a top-down, Cascades-style enumeration algorithm. In
the remainder, Section 6.4.1 describes how to integrate these SGA-specific primitives into
Apache Calcite, a state-of-the-art Cascades-style optimizer framework and Section 6.4.2
discusses the limitations of this prototype implementation by analyzing the underlying
assumptions.

6.4.1 Apache Calcite Integration

Apache Calcite is a modular, extensible query processing framework for heterogeneous data
sources [24]. At its core, Calcite’s cost-based optimizer employs a top-down enumeration
algorithm with extensible operator algebra, equivalence rules, and cost formulas. Similar
to Cascades, plan enumeration in Calcite is done in a single step using two types of rules:
transformation rules that define logical equivalences and implementation rules that map
logical operators to their physical implementations. Calcite uses traits to enforce physical
properties associated with operators such as sort order and partitioning key. An important
feature of Calcite is the calling convention trait that represents the execution backend
where the query plan is executed. It enables Calcite to choose appropriate physical operator
implementations for a given logical expression. Given a logical algebra expression, traits,
and the optimizer uses the cost model to find the final, optimized query evaluation plan.
Extending Calcite for SGQ optimization requires:

• integrating SGA operators and their algebraic equivalences to define the search space
for SGQ evaluation plans, and

• incorporating SGA-specific statistics and cost formulas to estimate resource usage of
query plans that consist of SGA operators.

Calcite data adapters are used to define data access for different sources. The proto-
type SGQ optimizer incorporates the streaming graph data model (Section 3.2) by defining
the structure (format) of streaming graph tuples using Calcite primitive data types. Then,
SGA operators defined in Section 5.2.1 are implemented as logical operators with streaming
graphs as input and outputs. These operators are not associated with a calling convention
as they are used to form logical query evaluation plans that are independent of a particular
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execution backend. The canonical SGA expressions generated from SGQs (Section 5.2.2)
are formed using these logical operators. Algebraic equivalences given in Section 6.2 are
provided as transformation rules over these logical operators. Finally, following the Calcite
terminology, TD calling convention is created to represent TD as the target execution en-
gine (Section 5.3), and the physical operator implementations described in Section 5.4 are
defined using the TD calling convention. An implementation rule for each SGA operator is
used to map SGA operators to their corresponding physical implementations.

Calcite provides interfaces to plug custom metadata information into the optimizer. In
SGA, the inputs and outputs of operators and query evaluation plans are streaming graphs.
Consequently, the metadata catalogue is extended with rate and average interval length
to account for streaming graph characteristics. The prototype SGQ optimizer implements
operator formulas given in Section 6.3.1 to estimate the characteristics of intermediate and
output streaming graphs. These estimations, in turn, are used in operator cost formulas
(Section 6.3.2) to estimate the resource usage of physical implementations of SGA opera-
tors. Finally, the prototype SGQ optimizer calculates the cost of an evaluation plan as the
cumulative sum of that of all of its operators.

6.4.2 Underlying Assumptions

The prototype SGQ optimizer models streaming graphs using r and v to determine the time
between consecutive sgts and the length of sgts’ validity intervals. These parameters are
assumed to be steady on average during the execution of a query – a common assumption
in streaming systems [167, 66]. Representing these parameters using sophisticated models
that can capture complex distributions is possible, but continuously updating such models
would be fairly expensive in a streaming environment. Consequently, the operator formulas
in Section 6.3.1 use averages for these parameters.

Another critical parameter in operator cost formulas is the selectivity factor (f) – the
number of tuples that satisfy a given predicate. Selectivity estimation is a challenging
problem with a significant impact on the quality of cost model and cost estimations [102].
This chapter makes the standard assumptions of uniformity and inclusion to simplify the
selectivity estimation. In the context of streaming graph queries, uniformity refers to the
uniform distribution of source and target values of sgts in a given streaming graph, i.e.,
the uniform degree distribution of vertices in the snapshot graph of a streaming graph.
Inclusion refers to the containment of vertex sets when two streaming graphs are joined
together. Under these assumptions, the System-R approach [147] can be used to estimate
the selectivity factors of SGA operators by maintaining the number of distinct source and
target vertex counts for each input and intermediate streaming graph.
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Remember that the main objective of this chapter is to demonstrate the feasibility of
cost-based optimization of SGQs using the streaming graph query processing framework
introduced in this thesis. Consequently, the prototype implementation and its experimental
analysis presented in this chapter are designed under these assumptions. In real-world
applications, the characteristics of streaming graphs are expected to fluctuate during the
lifetime of a streaming graph query; consequently, the cost estimations and query planning
might need to be adjusted periodically as the underlying streaming graphs evolve. The
issue of adaptive query optimization is orthogonal to the design of such an SGQ optimizer
and is not pursued further.

6.5 Experimental Analysis

6.5.1 Methodology

This section presents an experimental evaluation to validate the optimizer framework pre-
sented in this chapter. The objective is to understand (i) whether the cost model and its
operator formulas can correctly predict the behaviour of operators and (ii) whether the
optimizer can pick an “efficient” plan from the space of equivalent plans for a given SGQ
using the cost model and the algebraic transformation rules. Prototype SGQ optimizer
implementation described in Section 6.4 is integrated into the SGQ processor described in
Chapter 5, and the same test environment is used for the evaluation.

The experimental evaluation presented here uses synthetic streaming graphs to control
the degree distribution of vertices and to ensure that the underlying assumptions about
the characteristics of the input streaming graph hold (Section 6.4.2). First, a synthetic
graph dataset with multiple labels is generated using the gMark [19] graph generator.
The generated graph consists of 1M vertices, 45M edges, and nine different edge labels.
A continuous for loop consumes its edges and generates an input streaming graph by
assigning monotonically increasing timestamps, which in turn controls the rate of the input
streaming graph. As commonly done for the evaluation of streaming systems [65, 95],
the input streaming graph is pushed through the query plan as fast as possible, which
corresponds to the maximum input load the query processor can handle. Under these
settings, the system time and the application time are not necessarily equivalent as the
input rate depends on the system’s processing capacity, and it might be greater than the
original stream rate. Nonetheless, this does not alter either the operator state or the query
answer, as both depend on the temporal semantics based on the application timestamp.
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Furthermore, this reveals the maximum load that the underlying system can sustain under
given parameters.

For each experiment, two measurements are reported: (i) measured system latency as
the average time it takes to process sgts of one unit of application time (i.e., the first and
last sgts are separated by one unit of application time), (ii) and the estimated model cost as
the cumulative cost that is calculated by the query optimizer using the cost model presented
in Section 6.3. Remember that the cost formulas for operator resource usage estimation
use cost constants to mask implementation-specific details and system-dependent costs. A
common practice in literature is to use constant weight factors that are either hard-coded
by system developers or chosen empirically [101, 87, 109]. The prototype optimizer used
here takes a similar approach and uses weight factors calculated empirically.

6.5.2 Validation of the Cost Model

WSCAN, UNION and FILTER are stateless operators where each sgt is processed on the fly,
independent of others. The processing cost of stateless operators depends only on the rate
of the input streaming graph. Figure 6.3 shows the measured system latency (left) and the
estimated model costs (right) of WSCAN over input graph streams with various rates and
interval lengths. It is seen that the estimated model cost of WSCAN only depends on the
rate of the input graph stream, not the average length of validity intervals. Other stateless
operators UNION and FILTER exhibit similar trends. Overall, it is seen that the relative
performance of WSCAN with different parameters (i.e., rate and average interval length)
are similar to estimated model costs.

PATTERN and PATH are stateful operators where the processing of each sgt depends on
the internal operator state. Therefore, their processing costs are affected by both the rate
and the average length of their input streaming graphs. In the following, the cost formulas
for stateful SGA operators PATTERN and PATH are validated by comparing the measured
and the estimated costs.

Figure 6.4 shows measured system (left) and estimated model costs (right) of PATTERN
(⋊⋉src1,trg2,d

Φ (S1, S2) for Φ = {src2 = trg1}) over streaming graphs with various characteris-
tics. In this experiment, the total rate of the two input streaming graphs remains constant
(1000 sgts/sec) while their relative rates vary. This ensures that, for a given validity in-
terval length (i.e., window size), the total number of sgts maintained in the internal state
remains the same while the output rate of PATTERN differs. In other words, the cost of
maintaining the internal data structures are the same (e.g., insertion and expiration costs),
whereas the cost of producing the output sgts changes. In line with the cost formulas for
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Figure 6.3: (left) Measured system and (right) estimated model costs WSCAN operator
with varying input graph stream rates.
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Figure 6.4: (left) Measured system and (right) estimated model costs PATTERN operator
with varying input graph stream rates.
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Figure 6.5: (left) Measured processing and (right) estimated model costs PATH operator
with varying input graph stream rates.

PATTERN, the processing cost is highest when the rate of two input streaming graphs is
equal as the rate of the output streaming graph is the highest under this combination.2
Additionally, the processing cost of PATTERN is not affected by the ordering of its inputs.
This is expected: the physical implementation of PATTERN is based on the symmetric hash
join algorithm where the processing of the two input graph streams are identical (Section
5.4.2). Most importantly, it is seen that the cost model’s estimation accurately captures
the shape of PATTERN’s resource usage graph.

A similar trend is observed for PATH. Figure 6.5 shows the measured system cost (left)
and the estimated model cost (right) for Pd

R(Sa) where R = a+ over input streaming graphs
with different characteristics. Overall, the estimated model cost exhibits the same trend
as the measured processing latency, though the actual differences between plans are not
the same as predicted. This is a common trend observed in all experiments because the
cost model only considers the dominant factors of physical operator implementations, not
the system-specific implementation details such as queueing, scheduling, etc.
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Table 6.2: Characteristics of the input streaming graphs used in the experiments for or-
dering complex query plans.

Input streaming graph Rate r Interval length ω
Sa 2000 sgt/s 100s
Sb 4000 sgt/s 100s
Sc 6000 sgt/s 100s
Sd 8000 sgt/s 100s

GRAPH VIEW output_stream AS (
CONSTRUCT (s) -[:r]-> (t)
MATCH (u1)

(v)-[:a]->(s1)
(s)-[:b]->(v2)
(s)-[:c]->(v3)
(s)-[:d]->(t)

ON input_stream WINDOW (100) )

Figure 6.6: G-CORE representation of a star subgraph pattern query Qs.

6.5.3 Ordering Complex Query Plans

The previous section provides an empirical validation of the cost functions for each SGA
operator presented in Section 6.3. This section further validates the prototype SGQ opti-
mizer framework by analyzing its optimization decisions, i.e., whether the optimizer picks
an efficient plan among a set of equivalent plans for SGQs with complex patterns. For these
experiments, the optimizer is modified to output all non-trivial plans and their correspond-
ing costs for two SGQs with complex graph patterns: Qs features a star-shaped subgraph
pattern that tests the join ordering decisions of the proposed optimizer, and Qp is recursive
path pattern (similar to Q4 from Table 5.1 in Chapter 5) that tests the PATH operator and
its novel transformation rules. Figure 6.6 and 6.7 depict the G-CORE representations of
Qs and Qp, respectively.

Consider the star-shaped subgraph pattern query QS: the following SGA expressions
Q1

s-Q4
s represent the four equivalent plans that are generated by the query optimizer using

PATTERN’s transformation rules. Figure 6.8 (right) illustrates estimated model costs per
unit-time for all four plans over the same input streaming graphs (whose characteristics are

2See Equation 6.7 for the calculation of output streaming graph rate of PATTERN.
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GRAPH VIEW output_stream AS (
CONSTRUCT (u1) -[:l]-> (u2)
MATCH (u1) -/ <:(a/b/c)+> /-> (u2)
ON input_stream WINDOW (100) )

Figure 6.7: G-CORE representation of a recursive path navigation query Qp.

given in Table 6.2): Q3
s has the lowest estimated cost among all plans, and picked by the

proposed SGQ optimizer for Qs. Figure 6.8 (left) shows the measured processing costs for
these plans; the lowest cost plan for the start query is Q3

s, as predicted by the optimizer.
In addition, it is seen that the relative processing costs of the four plans are similar to the
estimated costs, and the optimizer’s estimations correctly order the query evaluation plans
for Qs.

• Q1
s: ⋊⋉t1,t2,r

s1=s2

(
Sa,⋊⋉s1,t2,bcd

s1=s2

(
Sc,⋊⋉s1,t2,bd

s1=s2 (Sb, Sd)
))

• Q2
s: ⋊⋉t1,t2,r

s1=s2

(
Sa,⋊⋉s1,t2,bcd

s1=s2

(
Sb,⋊⋉s1,t2,cd

s1=s2 (Sc, Sd)
))

• Q3
s: ⋊⋉t1,t2,r

s1=s2

(
⋊⋉s1,t2,abc

s1=s2

(
Sc,⋊⋉s1,t2,ab

s1=s2 (Sb, Sa)
)
, Sd

)
• Q4

s: ⋊⋉t1,t2,r
s1=s2

(
⋊⋉s1,t2,abc

s1=s2

(
Sb,⋊⋉s1,t2,ac

s1=s2 (Sc, Sa)
)
, Sd

)
Similarly, consider the recursive path navigation query Qp: the following SGA expres-

sions represent the seven plans that are generated by the prototype optimizer using PATH’s
transformation rules. The first expression, Q1

p represents the FA-based evaluation plan
that is commonly used in literature for the evaluation of RPQs. Q2

p and Q3
p represent

α-RA-based plans that are based on the materialization of intermediate results. Q4
p-Q7

p

represent novel hybrid plans that are possible due to PATH operator and its transformation
rules. Figure 6.9 (left) shows the measured average processing time (i.e., latency) per unit
application time over the input streaming graphs in Table 6.2: Q2

p is has the lowest process-
ing cost. Estimated model costs for all seven plans are depicted in Figure 6.9 (right): the
optimizer correctly estimates that Q2

p has the lowest processing cost per unit application
time. Furthermore, the relative ordering of plans by the optimizer matches the ordering of
plans by their measured processing cost, further validating the feasibility of the optimizer
presented in this chapter.
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Figure 6.8: (left) Measured processing and (right) estimated model costs of different plans
(Q1

s −Q4
s) for the star pattern query Qs.

• Q1
p: P l

(a·b·c)+(Sa, Sb, Sc)

• Q2
p: P l

q+

(
⋊⋉src1,trg2,q

trg1=src2

(
⋊⋉src1,trg2,p

trg1=src2 (Sa, Sb), Sc

))
• Q3

p: P l
q+

(
⋊⋉q

trg1=src2

(
Sa,⋊⋉src1,trg2,p

trg1=src2 (Sb, Sc)
))

• Q4
p: P l

(d·c)+
(
Sc,⋊⋉src1,trg2,d

trg1=src2 (Sa, Sb)
)

• Q5
p: P l

(a·d)+
(
Sa,⋊⋉src1,trg2,d

trg1=src2 (Sb, Sc)
)

• Q6
p: P l

q+

(
⋊⋉src1,trg2,q

trg1=src2

(
Pp

a·b(Sa, Sb), Sc

))
• Q7

p: P l
q+

(
⋊⋉src1,trg2,q

trg1=src2

(
Sa,Pp

b·c(Sb, Sc)
))

A common trend observed in all experiments is that the estimated model costs exhibit
similar trends as the measured processing costs. However, actual differences between plans
are not as high as predicted. This is primarily due to: (i) the cost model only considers the
operations performed over the attributes of sgts and operators’ internal data structures,
not system-specific implementation details such as inter-operator queues and scheduling,
(ii) and operator cost formulas do not consider system issues such as caching, parallelism,
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Figure 6.9: (left) Measured processing and (right) estimated model costs of different plans
(Q1

p −Q7
p) for the recursive path pattern query Qp.

etc. Nonetheless, the ranking of plans by the estimated model cost matches the actual
ranking.

6.6 Discussion

This chapter studies optimization of SGQs in the context of the streaming graph query
processing framework proposed in this thesis. It formally defines the search space by intro-
ducing a set of transformation rules held in SGA. It is shown that some of the traditional
relational transformation strategies such as join ordering and predicate pushdown apply to
SGA’s UNION, FILTER and PATTERN operators due to snapshot-reducibility. Additionally,
new rules involving novel SGA operators WSCAN and PATH are described. These rules
are expressed in the form of equivalences between SGA expressions, and they facilitate
the generation of equivalent SGA expressions for a given SGQ through algebraic rewrites.
Second, a cost model for estimating the resource usage of SGA-based query evaluation
plans is introduced. This cost model identifies the necessary streaming graph characteris-
tics to model resource usage of SGA operators and defines closed-form formulas for each
SGA operator. The cost model presented in this chapter is based on the per unit-time
cost model, originally developed for relational joins over relational streams [87]. Finally, a
concrete implementation of a cost-based SGQ optimizer as an extension of Apache Calcite
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– a Cascades-style extensible optimizer framework – is described. This prototype imple-
mentation incorporates the search space and the cost model presented in this chapter into
Apache Calcite. It adapts Calcite’s top-down (Cascades-style) search algorithm for plan
space enumeration. The feasibility of cost-based optimization of SGQ is shown through an
experimental analysis using this prototype implementation.

It is essential to highlight that the main objective of this chapter is to provide the
foundational tools upon which SGQ optimizers can be built. Consequently, the prototype
implementation described here has several limitations due to the underlying assumptions.
First of all, the prototype SGQ optimizer lacks a sophisticated selectivity estimation mech-
anism, and it adopts the System-R approach for selectivity estimation. Consequently, the
selectivity formulas make the standard assumptions on the distribution of values and in-
clusion of domains. Also, the characteristics of streaming graphs are expected to be steady
on average, enabling the optimizer to use averages instead of complex distributions that
are expensive to calculate and maintain. Experimental analysis shows that the optimizer
can accurately estimate the relative resource usage of different plans and choose the “right”
plan for a given query when the characteristics of input streaming graphs are inline with
these assumptions. Nevertheless, it might produce estimates with significant errors in
cases where these assumptions do not hold, or the system conditions and streaming graph
characteristics might drastically change over time. Finally, the SGA search space consists
of a single physical implementation for each SGA operator, limiting the space of possi-
ble execution plans considered by the prototype implementation. On the other hand, the
SGQ optimization framework described in this chapter makes adding new physical imple-
mentations as simple as defining (i) a new implementation rule (Section 6.4) and (ii) an
operator-specific cost formula. Section 7.2 discusses these limitations in detail and lays out
possible directions for future research in the context of the query processing framework
presented in this thesis.
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Chapter 7

Conclusions and Future Work

7.1 Summary of Contributions

This thesis studies the problem of query processing over streaming graphs and introduces
models and algorithms for representing, evaluating, and optimizing complex queries over
streaming graphs. The primary motivation behind this study is to support an emerging
class of applications that continuously monitor and process interaction data that can be
modeled as a streaming graph. This is a challenging problem due to (i) the complexity of
processing graph queries with subgraph patterns and path navigations, and (ii) the need
for non-blocking, incremental techniques to tackle the unboundedness and arrival rate of
real-world streaming graphs. This thesis develops a principled approach to supporting this
class of workloads, and presents principled solutions to a number of technical challenges
that need to be addressed. The main contribution is the design and implementation of a
general-purpose streaming graph persistent query processing framework. This framework
realizes the well-known steps of a query processing pipeline by rethinking its components
in the context of streaming graph queries, from query representation and plan generation
to cost-based query optimization and physical operator implementations.

The central query model, Streaming Graph Queries (SGQ), is introduced in Chapter
3. SGQ is based on a subset of Datalog that consists of binary, non-recursive predicates
augmented with transitive closure. This formalism has multiple advantages. First, the
SGQ model can provably express the class of workloads targeted in this thesis. It uni-
fies subgraph patterns and path navigations by properly closing conjunctive queries under
recursion. Second, its underlying data model treats paths as first-class objects, enabling
queries to return and manipulate paths. Also, the SGQ model constitutes a streaming
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generalization of RPGQ [30] by incorporating time-based sliding windows into its query
semantics, enabling it to formalize queries in existing graph query languages in the stream-
ing context. This is demonstrated by mapping G-CORE constructs to SGQ.

The SGQ model precisely describes what the query results should be at any point
time; however, it does not prescribe how SGQs can be evaluated efficiently. As in any
streaming system, it is desirable for SGQs to be evaluated incrementally, avoiding re-
computation of the entire results by only computing the changes to the output as new
sgts arrive. Chapter 4 focuses on the most pressing challenge for incremental evaluation
of streaming graph queries and proposes the first streaming algorithms for RPQs – the
de-facto standard for expressing path navigations. The design space of streaming RPQ
algorithms is categorized along two dimensions, and concrete algorithms that uniformly
treat this design space are introduced along with their formal properties. These algorithms
enable efficient, incremental evaluation of path navigations over streaming graphs and form
the basis for a physical implementation of a general-purpose path navigation operator.

Chapter 5 formally introduces the foundational basis of the streaming graph query pro-
cessor proposed in this thesis. Streaming Graph Algebra (SGA) is defined as a closure of a
set of logical operators over streaming graphs. SGA provides the precise definition of oper-
ator semantics and query evaluation plans independent of low-level system details. SGA’s
expressivity is proven by showing a mapping from SGQs to SGA expressions, demonstrat-
ing the feasibility of the proposed algebraic approach for modelling SGQ evaluation plans.
Chapter 5 also describes a prototype implementation of a streaming graph query processor
based on SGA. This prototype consists of non-blocking, incremental algorithms as physi-
cal implementations of SGA operators. The feasibility and the performance benefits of the
proposed SGA-based query processor are shown empirically.

Finally, Chapter 6 discusses the optimization of SGQs. The query optimization problem
is defined as a search problem over the space of possible plans for a given query. This
chapter first formally defines the search space over SGA expressions and introduces a set
of rewrite rules in the form of algebraic equivalences for the systematic exploration of the
search space. Then, a cost model for SGA-based query evaluation plans is developed.
The cost model provides resource usage estimations for physical query evaluation plans
and enables the optimizer to choose an “efficient” one among equivalent plans. Finally,
a prototype implementation of a cost-based SGQ optimizer based on the Apache Calcite
optimizer framework is described. This prototype employs a Volcano-style top-down search
algorithm and systematically explores the search space through the proposed rewrite rules
and cost model.

To conclude, this thesis addresses one of the most fundamental research challenges in
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streaming graph processing and provides the foundational tools for the design and devel-
opment of a general-purpose streaming graph query processor. This is an important step
towards the vision laid out in Section 1.2.2. The proposed techniques have been imple-
mented as a part of the prototype system called S-Graffito1. The main objective of this
prototype is to demonstrate the feasibility of the models and algorithms proposed in this
thesis and to show the potential benefits that can be gained through empirical analysis
over real-world and synthetic streaming graphs.

7.2 Directions for Future Research

7.2.1 Querying Graphs with Data

The class of queries considered in this thesis consists of structure-based predicates that
query the graph topology. However, the Property Graph Model (PGM) contains data
values with vertices and edges, and many practical applications query the data stored on
the graph in addition to its topology [30]. It is possible to treat streaming graphs as
relational streams by representing each attribute in a separate column and using relational
stream languages to query the stored in the graph, such as CQL [15]. A critical issue
involves supporting attribute-based predicates in recursive path navigations. Consider the
recursive path expression of the running example given in Figure 1.1 and assume that each
vertex contains attributes such as name, age, and city. A simple extension of this query that
restricts paths only to contain users from the same city is already outside existing query
models. One possible area for exploration is the use of the register automata model that
allows comparisons of data values along paths [106, 104]. Preliminary results suggest that
evaluating path queries with data is a non-trivial problem [124], and no systems support
these in the streaming model.

7.2.2 Extending the Query Processor

The cost-based optimization framework used in the proposed prototype has several limita-
tions that need to be improved in the future. First, it provides a single physical implemen-
tation for each SGA operator. Also, the prototype optimizer employs a System-R style
selectivity estimation technique and makes the standard assumptions of uniformity, inclu-
sion, and independence, which might produce significant estimation errors on real-world
datasets [101].

1https://dsg-uwaterloo.github.io/s-graffito/
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Physical operator implementations described in Chapter 5 are exemplars to demon-
strate the implementability of the SGA operators and to show their effectiveness; alter-
native physical implementations are certainly possible. For instance, Ammar et al. [9]
introduce a worst-case optimal join algorithm for incremental evaluation of subgraph pat-
tern queries that can be adapted as an alternative physical implementation of the PATTERN
operator. As discussed in Chapter 6, new physical implementations can be incorporated
by augmenting the cost model with new operator formulas and introducing corresponding
implementation rules, which the proposed optimizer can use to navigate the “extended”
space of plans. Furthermore, new algebraic equivalences in the form of transformation
rules can be defined to extend the space of plans considered by the query optimizer.

Tackling the standard assumptions of uniformity, inclusion, and independence for se-
lectivity estimation is one of the grand challenges in database research, and the streaming
model poses additional challenges. Histogram-based methods are commonly adopted in
traditional cost-based query optimizers, but their maintenance cost makes them unfeasi-
ble for streaming graphs. A potential solution is to use streaming graph summarization
techniques such as TCM [159] that constructs a graph sketch incrementally. Graph-
based sketches preserve the underlying graph’s structure and can be used to approximate
predicate selectivities. A recent trend in query optimization is to use learned models for
cardinality estimation [158, 111, 112]. Existing research mostly focuses on static settings
due to the high up-front cost of model learning. A potential avenue for further research
is to investigate online learning techniques for incrementally maintaining the underlying
model as the input streaming graphs evolve.

7.2.3 Adaptive query processing

Applications require predictable, stable performance to be robust to workload changes.
Evaluation of persistent SGQs is particularly challenging as the cost of a query plan might
change in the lifespan of a query due to changes in the system conditions such as available
memory and network bandwidth, changes in the arrival rate or distribution of the input
streaming graph. A possible direction for future research is to employ adaptive query
processing and optimization techniques based on the framework proposed in this thesis.
Two important questions that need to be answered are: (i) how to detect significant drifts
in underlying streaming graph characteristics and (ii) how to react to these changes and
adapt the physical execution plan efficiently.

The query optimizer and its corresponding cost model presented in Chapter 6 assume
that the streaming graph characteristics are stable over time and use averages to quantify
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these characteristics. One potential solution for detecting drifts in input characteristics
is maintaining online averages and periodically updating the cost estimations. When the
difference between the original cost estimate and the updated cost estimate exceeds a
pre-defined threshold, the query processor can re-evaluate whether the chosen plan is still
“optimal” under the updated input streaming graph characteristics.

A significant drift in the input streaming graph characteristics might render the ex-
isting query plan “sub-optimal”, and modifying or replacing the current execution plan is
complicated in the presence of stateful operators like PATH and PATTERN. Dynamic plan
migration requires deriving the internal state of the operators in the new plan from the old
plan to produce correct results. Furthermore, the migration itself has an associated cost
that should be considered during the optimization phase. The cost model proposed in this
thesis can be augmented with the cost of plan migrations, enabling the query optimizer to
assess the potential benefits of updating the execution plan against the cost of doing so.

7.2.4 Scaling-out SGQ Processing

This thesis focuses on centralized settings, but scale-out systems are arguably the most
reasonable approach to tackle real-world streaming graphs’ size and growth rate. A fun-
damental issue in designing scale-out systems concerns data partitioning, which is the
process of physically or logically distributing a dataset to a set of machines. It enables
many queries to be executed at different sites in parallel in the form of inter-query and
intra-query parallelism. A recent development in graph partitioning is the streaming model
that performs a single pass over the stream and makes partitioning decisions on the fly, a
natural fit for applications considered in this thesis. Compared to traditional partitioning
algorithms, the streaming model significantly reduces partitioning time and enables graph
to be partitioned as it becomes available. A potential avenue for future research is dis-
tributed implementations of SGA’s operators that can utilize streaming graph partitioning
techniques to reduce the communication cost.
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Appendix A

Algorithm S-PATH

Section 5.4 describes the use of validity intervals in conjunction with an explicit WSCAN op-
erator for devising alternative physical implementations for SGA’s stateful PATTERN and
PATH operators based on the direct approach. This section describes the novel Stream-
ing Path Navigation (S-PATH) that can be used as an alternative physical operator for
the PATH operator (Definition 34) in detail. In contrast to the streaming RPQ algorithm
described in Chapter 4, Algorithm S-PATH utilizes the validity intervals of path seg-
ments to simplify the state maintenance in the absence of explicit deletions. Algorithm
RAPQ in Chapter 4 are based on the negative tuple approach; expirations due to window
movements are processed using the same machinery as explicit deletions. Upon expiration
(deletion) of an edge, it first finds all results that are affected by the expiration (deletion),
then it traverses the snapshot graph to ensure that there is no alternative path leading
to the same result. This corresponds to re-derivation step of DRed [78], optimized for
RPQ evaluation on streaming graphs. Instead, S-PATH utilizes the temporal pattern of
sliding window movements and adopt the direct approach, i.e., it can directly determine
expired tuples based on their validity intervals. This is possible due to the separation of
the implementation of sliding windows from operator semantics via an explicit WSCAN
operator.

Algorithm S-PATH incrementally performs a traversal of the underlying snapshot
graph under the constraints of a given RPQ as sgts arrive. It first constructs a DFA
from the regular expression of a PATH operator, and initializes a spanning forest-based
data structure, called ∆ − PATH, that is used as the internal operator state during query
processing. ∆ − PATH is used to maintain a path segment, i.e., a partial result, between
each pair of vertices in the form a spanning forest under the constraints of a given RPQ,
consistent with Definition 34. Upon the arrival of an sgt, Algorithm S-PATH probes
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∆− PATH to retrieve partial path segments that can be extended with the edge (or a path
segment) of the incoming sgt. Each partial path segment is extended with the incoming
sgt, and Algorithm S-PATH traverses the snapshot graph Gt until no further expansion
is possible.

Definition 36 (Spanning Tree Tx). Given an automaton A for the regular expression R
of a PATH operator PR

d and a streaming graph S at time t, a spanning tree Tx forms a
compact representation of valid path segments that are reachable from the vertex x ∈ Gt

under the constraints of a given RPQ, i.e., a vertex-state pair (u, s) is in Tx at time t if
there exists a path p ∈ Gt from x to u with label ϕp(p) such that s = δ∗(s0, ϕ

p(p)).

A node (u, s) ∈ Tx indicates that there is a path p in the snapshot graph with label
ϕp(p) such that s = δ∗(s0, ϕ

p(p)), and this path can simply be constructed by following
parent pointers ((u, s).pt) in Tx. Under the arbitrary path semantics, there are potentially
infinitely many path segments between a pair of vertices that conform to a given RPQ due
to the presence of cycles in the snapshot graph and a Kleene star in the given RPQ. Among
those, S-PATH materializes the path segment with the largest expiry timestamp, that is,
the path segment that will expire furthest in the future. Consequently, for each node
(u, s) ∈ Tx, the sequence of vertices in the path from the root node to (u, s) corresponds
to the path from x to u in the snapshot graph with the largest expiry timestamp. This is
achieved by the coalesce primitive (Definition 11) with an aggregation function max over
the expiry timestamp of path segments. 1 Upon expiration of a node (u, s) in Tx and its
corresponding path segment in the snapshot graph, this guarantees that there cannot be an
alternative path segment between x and u that have not yet expired. Hence, expired sgts
can be directly found based on their expiry timestamps. This is based on the observation
that expirations have a temporal order unlike explicit deletions, and S-PATH utilizes these
temporal patterns to simplify window maintenance.

Definition 37 (∆−PATH Index). Given an automaton A for the regular expression R of a
PATH operator PR

d and a streaming graph S at time t, ∆−PATH is a collection of spanning
trees (Definition 36) where each tree Tx is rooted at a vertex x ∈ Gt for which there is an
sgt t ∈ S(t) with a label l such that δ(s0, l) ̸= ∅ and src = x.

∆ − PATH encodes a single entry for each pair of vertices under the constraints of a
given query, consistent with the set semantics of snapshot graphs (Section 3.2). Due to
spanning-tree construction (Definition 36), actual paths can easily be recovered by following

1Arbitrary path semantics provides the flexibility for the aggregation function fagg of the coalesce
primitive.
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Algorithm Expand:
input : Spanning Tree Tx rooted at (x, s0),parent (u, s),

child (v, t), edge e(u, v)
output: Set of results R

1 R← ∅
2 Insert (v, t) as (u, s)’s child
3 (v, t).ts = max(e.ts, (u, s).ts)
4 (v, t).exp = min(e.exp, (u, s).exp)
5 if t ∈ F then
6 p← PATH(Tx, (v, t))
7 R← R + (x, v, O, [(v, t).ts, (v, t).exp), p)

8 end
9 foreach edge e(v, w) ∈ Gts s.t. δ(t, ϕ(e)) = q do

10 if (w, q) ̸∈ Tx then
11 R← R+ Expand(Tx, (v, t), (w, q), e(v, w))
12 end
13 else if (w, q).exp < min((v, t).exp, e.exp) then
14 R← R+ Propagate(Tx, (v, t), (w, q), e(v, w))
15 end
16 end
17 return R
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Algorithm Propagate:
input : Spanning Tree Tx rooted at (x, s0), parent (u, s),

child (v, t), edge e(u, v)
output: Set of results R

1 R← ∅
2 (v, t).pt = (u, s)
3 (v, t).ts = min((v, t).ts,max(e.ts, (u, s).ts))
4 (v, t).exp = max((v, t).exp,min(e.exp, (u, s).exp))
5 if t ∈ F then
6 p← PATH(Tx, (v, t))
7 R← R+ (x, v, O, [(v, t).ts, (v, t).exp), p)

8 end
9 foreach edge e = (v, w) ∈ Gts s.t. δ(t, ϕ(e)) = q do

10 if (w, q).exp < min((v, t).exp, e.exp) then
11 R← R+ Propagate(Tx, (v, t), (w, q), e(v, w))
12 end
13 end
14 return R
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the parent pointers; hence, ∆− PATH constitutes a compact representation of intermediate
results for path navigation queries over materialized path graphs. ∆ − PATH is designed
as a hash-based inverted index from vertex-state pairs to spanning trees, enabling quick
look-up to locate all spanning trees that contain a particular vertex-state pair. Upon
arrival of an sgt t = (u, v, l, [ts, exp),D), Algorithm S-PATH probes this inverted index
of ∆ − PATH to retrieve all path segments that can be extended with the incoming sgt,
that is, spanning trees that have the node (u, s) with an expiry timestamp smaller than ts
for any state s ∈ {s ∈ S | δ(s, l) ̸= ∅} (Line 18). If the target node (v, t) for t = δ(s, l)
is not in the spanning tree Tx, Algorithm Expand is invoked to expand the existing path
segment from (x, 0) to (u, s) with the node (v, t) and to create a new leaf node as a child
of (u, s). In case there already exists a path segment between vertices (x, 0) and (v, t) in
∆ − PATH, i.e., the target node (v, t) is already in Tx, Algorithm S-PATH compares its
expiry timestamp with the new candidate (Line 23). If the extension of the existing path
segment from (x, 0) to (u, s) with (v, t) results in a larger expiry timestamp than (v, t).exp,
Algorithm Propagate is invoked to update the expiry timestamp of (v, t) and its children
in Tx. Algorithms Expand and Propagate traverse the snapshot graph until no further
update is possible.
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