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Abstract

Many complex phenomena like shock-shock interactions, shock-vortex interactions,
stratified flows, etc., are governed by nonlinear hyperbolic conservation laws. Higher order
numerical schemes like the discontinuous Galerkin (DG) method are increasingly being
used in computational fluid dynamics (CFD) codes to solve such conservation laws. Os-
cillations often develop in the numerical solutions obtained using higher-order methods.
These spurious oscillations can lead to numerical instabilities and eventual degradation of
the solution. Slope limiting is one of the mechanisms used to suppress such oscillations, and
thus, stabilize the numerical solution. Slope limiters were originally introduced for finite
volume (FV) methods, where the reconstructed slope in an element is modified to prevent
oscillations while maintaining second-order accuracy and stability of the numerical solu-
tion. Limiters tailored specifically for the DG method have also been proposed. However,
developing efficient higher order limiting techniques for the DG method on unstructured
meshes remains an open problem. Many factors influence the design of a suitable limiter
for the DG method, e.g., the domain discretization involved, the basis functions used to
approximate the solution, the choice of limiting directions, and the neighborhood used to
reconstruct the solution coefficients, to name a few.

In this work, we propose high-order moment limiters for the DG method on un-
structured two-dimensional (triangular, quadrilateral, curvilinear triangular) and three-
dimensional (tetrahedral) meshes. The limiters work by relating the solution coefficients
(moments) to directional derivatives along specified directions and limiting said direc-
tional derivatives independently using a one-dimensional slope limiter. The limiting is
performed hierarchically starting at the highest moment and stops on reaching a set of
moments/derivatives that remains unchanged, thereby preventing overlimiting.

To use available computational resources efficiently, simulations often employ run-time
adaptive mesh refinement strategies. In this thesis, we present a high-order limiter for the
DG method on nonconforming triangular meshes that arise in such adaptive computations.
Moreover, we also propose a simple algorithm to update the reconstruction stencil of ele-
ments in an adaptively refined triangular mesh. Our algorithm is implemented entirely on
the graphics processing unit (GPU) and avoids race conditions.

We provide numerical examples to show that limited solutions retain the theoretical
rate of convergence and are robust in the presence of discontinuities. Finally, we perform
wall clock studies to analyze the performance of the proposed limiter for the computational
cost involved in executing the limiter.
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Chapter 1

Introduction

Nonlinear hyperbolic conservation laws can be used to model several complex physical
phenomena like shock-vortex interactions, stratied ows, ows around a turbine, etc.
Closed-form analytical solutions do not exist for many of these problems, thus making it
necessary to rely on numerical simulations to obtain approximate solutions. Many of these
simulations, for example modeling atmospheric ows for weather forecasting, simulations
of oceanic surface waves and their interaction with coastlines, etc. involve large variations
in length and time scales. Moreover, we require high accuracy in the numerical solution to
e ciently capture complex phenomena over such large scales. Using traditional techniques
like a simple nite volume (FV) formulation often prove to be computationally expensive,
especially to achieve the required high accuracy of the solution. Therefore, higher order
numerical schemes are being progressively used in computational uid dynamics (CFD)
codes to solve nonlinear conservation laws. Due to its compact computational stencil and
ease in handling adaptive re nement (of both the computational element and the polyno-
mial numerical approximation of the solution in an element) over complex geometries, the
discontinuous Galerkin (DG) method o ers an attractive alternative to traditional schemes.

Numerical solutions obtained from high order methods often develop spurious oscilla-
tions near solution discontinuities which can lead to numerical instabilities and eventual
degradation of the solution. For example, consider the linear advection equation

@ @
— — 0; 1.1
U gl &g ;/J , (1.1)
with "aj;ape  “1;0e and the initial condition u™x;0e Uy X given by
¢

L L0p IBO0:25 §BO:25

; . (1.2)
{:050; otherwise

Ug Xe
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in the domain 11 1;1. Figure 1.1 compares the cross-section of the exact
solution of the advecting square pulse at 0:5 with the numerical solution obtained
using a second order DG approximation. We can clearly observe spurious oscillations,
also referred to as "Gibbs oscillations”, near the discontinuities at 0:25 andx 0:75.
These spurious oscillations are undesired as they often lead to numerical instabilities and
reduced accuracy in regions where solution is smooth. The issue is further exacerbated

Figure 1.1. Cross-section ay 0:5 of an advecting square pulse dat 0.5, obtained with
a second order numerical approximation.

for nonlinear hyperbolic conservation laws, where the presence of oscillations can lead to
nonlinear instabilities. Consider the Noh test case [3] for the two-dimensional Euler system
of equations given by

] “ ] u “ ) V “
@-u— @-u? p— @- w —
@tv— @x w — @y Vv? p— 0 (1-3)
E* "E  peu’ E pev*

where is the density, u and v are thex- and y-direction momenta,E is the energy, and
the pressurep, is given by the equation of statgp =~ 1% 5 u? v2¢Z The test case
involves the time evolution of a symmetric circular shock structure. Figure 1.2 shows how
spurious oscillations have severely deteriorated the numerical approximation of density,
obtained using a second order DG approximation. In certain situations, these oscillations
can potentially lead to nonphysical values for the numerical solution, for example, negative



values for density, energy, and/or pressure. Therefore, it is imperative that we suppress
such spurious oscillations and stabilize the solution.

Figure 1.2: Numerical solution (density) att  2: for the Noh test case with a second order
DG approximation.

Designing e cient and robust techniques to control such spurious oscillations near
solution discontinuities remains one of the challenges in developing robust higher order
methods for solutions of nonlinear hyperbolic conservation laws. Several techniques have
been successfully developed to suppress numerical oscillations resulting from higher order
discretizations employed in traditional methods like nite volume methods, nite di erence
methods, etc. Many of these techniques, for example, arti cial viscosity methods [4, 5],
ux limiters [4, 6, 1], spectral lters [7, 8, 9], weighted essentially non oscillatory (WENO)
reconstruction [10, 11], and slope limiters [12, 1, 13, 14] have been successfully applied to
the DG formulation.

1.1 Slope Limiters

Slope limiting, originally proposed for FV methods, is one of the techniques used to sup-
press oscillations by controlling the gradient of the solution in an element. It is a natural
limiting method for second order formulations, especially in the context of FV methods as
it involves reconstructing the slope without altering the average value in an element. For
example, consider the one-dimensional hyperbolic conservation law given by

@ Q.. .



Let the approximate linear solutionU; in an element ; be

U U O “x X (1.5)

where U; is the solution average in j, Oi is the gradient of the solution in the element,
and X is the element centroid. As shown in Figure 1.3, slope limiting reconstructs the

Figure 1.3: Reconstruction of the slopes of the solution using slope limiting.

slope of the solution resulting in a modi ed solution given by

G Ui AR'Oi "X Xo®, (16)
whereR M is the ratio of the forward and backward di erences inJ. Figure 1.4

i i1 . . o
shows some of the commonly used one-dimensional slope limiters.

E cient limiters [6, 15, 16, 17] based on the total variation diminishing (TVD) prop-
erty have been successfully developed for second order methods in one-dimension. However,
TVD schemes reduce solution accuracy near smooth extrema [18] to rst order and, thus,
are at most second order accurate. Through numerical examples, it was shown in [19]
that limiters based on the TVD property on two-dimensional Cartesian grids can achieve
an accuracy of at most rst-order. Recently, using an isotropic de nition for total vari-
ation, it was shown numerically in [20] that the limited second order DG solutions of
two-dimensional hyperbolic equations are TVD in the means. However, due to a limited
theoretical basis for the TVD property in high dimensions, most practical limiters were
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Figure 1.4: Stability regions for commonly used one dimensional slope limiters [1].

developed using geometrical arguments or by direct extension of ideas rigorously developed
in one dimension, e.g., requiring solution values at speci ed points not to exceed solution
averages in a chosen neighborhood [21, 13]. More recently, the local maximum principle
(LMP) of the solution averages,

.. —n _—n 1 —n
Lnﬂlun U, BU; B'L‘lﬁ?‘uk’ (1.7)
has been employed to develop newer limiters for second-order methods [22, 2, 23]. For scalar

problems, the LMP guarantees that solution averages remain bounded for all computational
time.

Designing limiters in higher dimensions comes with its own speci ¢ challenges. Unlike
in one dimension, there is no unique set of directions in which to limit solution gradients.
The number of components of the gradient to be limited also increases in higher dimensions.
For high-order methods, mixed derivatives appear, which further complicates the limiting
process.

One of the rst limiters on unstructured meshes in higher dimensions was proposed in
[21] for FV methods. The solution gradient is limited by scaling it with a constant coe -
cient > 0;1. A less diusive limiter was proposed in [24], where the components of the
gradient were scaled by separate multipliers. Limiters from the FV framework have been
successfully extended to the DG method. Limiters tailored speci cally for the DG method
have also been proposed [12, 25, 10, 11, 26, 22, 23, 27]. For example, the WENO recon-
struction in [11], hierarchical limiting using a local Taylor series expansion in [28, 29, 13],



and limiting in the directions of the medians [26] have been proposed for the DG method
on unstructured triangular and quadrilateral meshes. A high-order hierarchical moment
limiter for the DG method on Cartesian grids was proposed in [25]. More recently, a second
order moment limiter for the DG method was proposed in [2] for unstructured triangular
meshes and in [23] for tetrahedral meshes. They limit the numerical solution by nding the
directions in which the linear solution moments decouple and reconstructing the gradient
along these directions using a one-dimensional limiter. In three-dimension, a WENO re-
construction [30], and an a posteriori sub-cell nite volume limiter [31] have been proposed
for the DG method on tetrahedral meshes. Limiters designed to preserve speci ¢ properties
of the solution, e.g., positivity preservation [32, 33, 34] and entropy stability [35, 36, 37, 38]
for nonlinear system of equations have also been proposed. However, limiters present in the
literature for the DG method on unstructured meshes are either computationally expen-
sive, too restrictive or not robust, i.e., they involve problem-dependent tuning parameters.
Therefore, developing compact and robust limiting techniques for the higher order DG
method on higher dimensional and unstructured meshes remains an open problem.

Traditional limiting techniques [25, 10, 2, 27, 29] were designed for conforming meshes,
i.e., meshes where an edge is shared between only two elements. Nonconforming meshes,
I.e., meshes where an element shares an edge with more than one neighboring element, of-
ten arise in simulations employing run-time adaptive mesh re nement [39, 40, 41, 42, 43].
Adaptive computations allow us to e ectively use computational resource where they are
needed the most, e.g., to better capture the ne features of the solution. To ensure numer-
ical stability and maintain accuracy of a high-order DG discretization, it is necessary to
use limiting techniques compatible with nonconforming meshes. It is known that applying
conventional limiters on nonconforming or nonuniform meshes might lead to oscillations.
For example, it was shown in [1] that in one dimension applying a second-order TVD lim-
iter developed for uniform grids to non-uniform grids leads to overshoots/undershoots in
the solution. A limiter taking into account mesh structure was shown to eliminate this
problem. In [44], a direction-aware slope limiter for nite volume (FV) methods on three-
dimensional adaptively re ned cubic grids was proposed. Extensions of limiters for the DG
method to adaptively re ned meshes have been proposed in [45, 46, 47]. In order to limit
the solution in an element ;, solution values in the neighboring elements are projected
onto a ghost element with either the same re nement level or similar cell size as. Then,
the numerical solution is limited by reconstructing solution gradients using the projected
solutions. While such approaches are shown to work well, they are computationally ex-
pensive and di cult to implement on unstructured meshes. Before discussing limiters in
detail, we provide a brief description of the DG formulation in the next section.



1.2 Discontinuous Galerkin method

Consider a hyperbolic conservation law
u © F'ue O0; (1.8)

where the vector of conserved variables™x;te is de ned on 0;T , s the spatial
domain, T is the nal time, and F"ue is the ux function. Additionally, assume that the
initial condition u”x;0¢ Uy xe is provided along with relevant boundary conditions.

The discontinuous Galerkin method is constructed by splitting the domain into a
mesh of elements ;, such that i . The elements can be triangles, quadrilaterals or
curvilinear triangles in two-dimensions or tetrahedras in three-dimensions. A weak form
of the conservation law is obtained by multiplying (1.8) by a test functionv >H1" ;+ and
integrating on ;. Using the following identity

S VO Fuedx g F'ue ©Ovdx g © “vF uee dx; (1.9
and applying the divergence theorem, we obtain

S uwvdx s FTue Ovdx 5@_VFAu- ndl 0; ! v>HY e; (1.10)

wheren “ny;nye is the outward facing unit normal on element ;'s boundary @ ;.

The exact solution on ; is approximated by U;, a linear combination of the basis
functions ', of degree up top, i.e.,

Ui 5 Oi;m IAm; (1'11)

m 0

where Oi;m are the degrees of freedom (DOFs) anB is the number of the degrees of
freedom. The basis function$ 4 can be de ned locally on element ;, for example by using

a local Taylor series expansion or a local Lagrange basis. However, to obtain a simple set
of semi-discrete equations (shown below) it is more convenient to use orthonormal basis
functions de ned on a canonical reference element,.

We give a brief description of the mappings, basis functions and the nal set of semi-
discrete equations for the mesh elements considered in subsequent chapters. For triangular
elements, we map ; to the right unit triangle o, “0Br;s B1,0Br sB1e (Figure 1.5)



Figure 1.5: Mapping of ; to the canonical triangle ¢ by (1.12).

using the transformation

’ Xu ’ Xl,l X|,2 Xi;3“ ’ 1 r' S“
=Y— =Yi1 VYiz2 VYi3 r= (1.12)
10

1 1 1° s °

where™ X ;Vik*; K ~1;2;3e, are the vertices of ;. The Jacobian of the transformation is

J: G%(i;z Xi;l Xi;3 Xi;lx . (1 13)
" Vi2 Vi1 Yis Vi1 '
On o, the Dubiner basis [48]
VA | k| ~ 2S - ko 2k 1:0- . )
K nse C 2Ly 1T 171 re“P, 2r 1.; 0Bl kBp; (1.14)

forms an orthonormal set with respect to the_? inner product. Above,C| are normaliza-
tion constants, L " xe is the Legendre polynomial of degreke [49]

~ 1ok gk
1% d 2.k

L Xe KT Ok XK (1.15)

and P "**xs is a Jacobi polynomial of degreé [49]

: "1 . d
2 1,0~ ~ . ~ ~ .
P o T 1 xe 21 o 1 x2"1 xe2k 1 - (1.16)



With the basis functions (1.14), the numerical solutiorlJ; is written as

p
Ui'nsite Q 0L te | orse: (1.17)
I kO
As continuity of the solution at element interfaces is not imposed, the solution can be
multivalued at the boundary between two neighboring cells. Therefore, a numerical ux
F*"Ui;U;je is introduced to allow communication between the neighboring elements
and ;. Choosingv to be' |, equation (1.10) under the map (1.12) becomes

d |

groik S OFAUP "©' | J; tedr

1
detJi jg\lie S@ iij

\F¥"U;;Uj* ny dl; 0Bk |Bp;

(1.18)
whereJ; is the Jacobian given by (1.13)N¢€ is the list of indices of the elements that share

an edge with , @ ;; is the edge shared by ; and ;, and |“xe ' |°r;se.

Figure 1.6: Mapping of ; to the canonical square o by (1.19).

For quadrilateral elements, we map ; to aunitsquare o ~ 1B ; B1e (Figure 1.6)
using the transformation

- "1 1 e I I R I I R "1 S .
Xi 5 * X1 2 Xi; 2 2 Xi;3 1 Xi;4f1

(1.19)

wherexix  “Xik;Yik®; kK 71;2;3; 4+, are the vertices of ;. Regrouping the terms, (1.19)



can be simpli ed to get
XiA ;e Ci;xO Ci;xl Ci;x2 C:i;x3 ; (120)

where the coe cients C;. are

1. 1.
Ci;><0 Z X1 X2 Xz Xja®, Ci;xl Z Xii2 Xz X1 Xja®;
1 1 (2.22)
Cix2 7 Xi3 Xia Xi1 X2 Cixs 7 Xi1 Xiz Xi2 X!
The Jacobian of the transformation is
J. G§ ‘ G%l,xl ixx3 i;x 2 X3 « : 1.22
Yy iyt Ciys Ciy2 Ciys (1.22)

and the determinant of the Jacobian is
detJ; detJ;, detJ;; detd;,; (1.23)
where the coe cients detJ;;; j "0;1;2, are

det\]i;O Ci;xlCi;yZ Ci;XZCi;yl; detJi;l Ci;xlCi;y3 Ci;x3Ci;yl;

(1.24)
detJi; GCixsCiyz Cix2Ciys:
On o, the tensor product basis
» k
R "2 172 1
. 5 L™ oLy o (1.25)

forms an orthonormal set with respect to the.? norm, whereL;"x¢ is the Legendre poly-
nomial of degreg [49]. With basis functions (1.25), the numerical solutiorJ; is written
as
P
U« Q 0f 'k « (1.26)
j Ok O

Choosingv to be' Jk the equation (1.10) under the map (1.19) becomes

p
Q Omﬁjﬁ %Oﬁr s FUj*"© KJ tedetdidr Q Se ' KFFUG Uye ngy dI; (1.27)
r 0;s 0 V>N € iv

where 0Bj; k Bp, detJ; is the determinant of the Jacobian (1.23)N¢ is the list of indices
of elements that share an edge with;, @ ;., is the edge shared by ; and , and n;, is
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the outward pointing unit normal on @ ;,,. The mass matrixM; on ;, whose entries are
given by

B

mi® g 'K sdetdidr; (1.28)
0

is computed during the pre-processing stage and stored.

Figure 1.7: Mapping of ; to the canonical ¢ by (1.29) (A) for q 2 and (B) forq 3.

For curvilinear triangular elements, we map the element; to a unit triangle o “0B
r;s B1e (Figure 1.7) using the transformation

q
Xi'rse  Q Ry 'nse: (1.29)
I kO

The coe cients X} depend on how the nodegix “Xik;Vik®; 1Bk B%Aq 1-°q 2, 0n

i are mapped to nodes on ( (Figure 1.7). Moreover, the above coe cients can be easily
computed in the pre-processing stage by plugging the nodes on ; and their corre-
sponding mappings on g into (1.29) and solving the resulting linear system of equations.
The Jacobian of the transformation (1.29) is

XSA

3 @ s (1.30)
Yr Ys
and the determinant of the Jacobian is
detdi Jrys Xsyr$ (1.31)

With the basis functions (1.14), the numerical solutiorJ; is written as in (1.17). Choosing

11



v to be' Jk the equation (1.10) under the map (1.29) becomes

P s d

Q ms aL’Jﬁr s F'Uje @ [Jtedetdidr Q s 'FF™U;;Uye nyy di; (1.32)
¥ 0

r 0;s 0 V>Nie @ iy

where 0Bj; k Bp, detJ; is the determinant of the Jacobian (1.30)N¢ is the list of indices

of elements that share an edge with;, @ ;., is the edge shared by ; and , and n;, is

the outward pointing unit normal on @ ;,,. The mass matrixM; on ;, whose entries are

given by

mi® g 'K sdetdidr; (1.33)
0

B

is computed during the pre-processing stage.

Figure 1.8: Mapping of ; to the canonical tetrahedron o by (1.34).

Finally, for tetrahedral elements, we map ; to the reference tetrahedron , "0 B
r;s;t B1le (Figure 1.8) using the a ne transformation

1° @1 1 1 18t

P Xe @i Xiz Xiz XigArl TS e
—Y— &1 Yiz Yis VYiap— r — (1.34)
—z— &1 Z2 Ziz Ziaho S — '

where Xix "Xk Vik; Zik®, K T1;2;3;4+, are the vertices of ;. The Jacobian of the
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transformation is
"Xip2 Xp1 Xz Xj1o Xiao Xja“
Jio=Vi2 Vi1 Vi Yir Y4 Yii— (1.35)
Zi;2 Zi;1 Zi;3 Zi;l Zi;4 Zi;l.

On g, the Dubiner basis [48]

: : 2t s r 1 0 28 r 1 :
vhkma o l; A 2k 1,0 ~ :0n o
¢nsite G2 et L s re P e ——=+" 1 relPg % 202r 1o,
(1.36)
where OBk | m Bp, forms an orthonormal set with respect to thel.? inner product.

Above, Cl'(;m are normalization constants,L " xe is the Legendre polynomial of degrek
[49] and Plz" 10~y is a Jacobi polynomial of degre&[49]. With the basis functions (1.36),
the numerical solutionU; is written as

Ui“r;te Q Oip ter (M re: (1.37)
Il kmOoO

.Im

Choosingv to be , equation (1.10) under the map (1.34) becomes

%OEL" S FUi 0 3 tear detJ, 2.5, ImE$y . Ueny di; OBk | mBp;
Ne @i
(1.38)
whereJ; is the Jacobian given by (1.35)N ¢ is the list of indices of the elements that share

I;m A v Ikm A

an edge with ;, @ j; is the face shared by ; and ;, and [""xe ' " re.

The volume and boundary integrals in (1.18), (1.27), (1.32), and (1.38) are evaluated
using appropriate numerical quadratures. Finally, we use an explicit Runge-Kutta (RK)
method of order"p 1e to solve the above semi-discrete system of equations in time.

1.3 Outline

This thesis is concerned with the design and implementation of compact, robust, and e -
cient limiting techniques for the DG method on higher dimensional unstructured meshes.
In Chapter 2, we describe a second order moment limiter for the DG method on adap-
tively re ned triangular meshes. Further, we also discuss a simple algorithm to update the
limiting neighborhood under adaptive mesh re nement. In Chapters 3 and 6, we propose,
respectively, an arbitrarily high-order moment limiter for the DG method on unstructured
triangular and quadrilateral meshes. Next, we present and analyze the stability of a class
of second order slope limiters in Chapter 4 and a second order moment limiter in Chapter

13



5 for the DG method on quadrilateral meshes. In this process, we propose a new measure
of cell size for quadrilateral elements. In Chapters 7 and 9, we discuss how to extend the
high-order moment limiter for the DG method on triangles to isoparametric curvilinear tri-
angular meshes and three-dimensional tetrahedral meshes, respectively. Finally, we present
and analyze the stability of a class of second order slope limiters for the DG method on
tetrahedral meshes in Chapter 8.
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Chapter 2

Limiting on adaptively re ned
nonconforming triangular meshes

In this chapter, we present a second order limiter for DG approximations on adaptively
re ned nonconforming triangular meshes. The limiter works by decoupling linear solution
coe cients along two pre-determined directions in an element and limiting the gradients
along these directions using a one-dimensional minmod limiter. The limiter is an extension
of the second order moment limiter proposed in [2] for the DG method on unstructured
triangular meshes. Limiting the numerical solution in an element ; requires access to
solution averages in some neighborhood of, for example, a vertex neighborhood (shaded
polygon, Figure 2.1b). The vertex neighborhood of an element in a nonconforming mesh
usually contains more elements (of varying sizes) compared to a conforming mesh (Figure
2.1a). Further, when the mesh is adaptively re ned, with every re nement (and coarsen-
ing), the vertex neighborhood can change its composition and the number of elements in
it. Therefore, updating the limiting neighborhood of an element in an adaptively re ned
nonconforming mesh is necessary.

15



(a) Conforming mesh. (b) Nonconforming mesh.

Figure 2.1: Examples of conforming and nonconforming triangular meshes.

A direct approach to maintaining and updating an element's limiting neighborhood,
sayLN, requires storing a list of IDs of all elements ilLN ;. This list is modi ed whenever
the elements in it undergo re nement or coarsening. This process is straightforward in
serial computing. However, a parallel implementation on a GPU leads to race conditions,
i.e., reading from and writing to the same memory location simultaneously, which can
lead to an incorrect neighborhood. Alternatively, we propose an approach that entails
maintaining a vertex to element and element to vertex connectivity, i.e., for each element

i, we store the list of IDs of the vertices associated with it, and for each vertex, we
store the list of IDs of elements that share vertex; and update the corresponding IDs
with every re nement (coarsening).

2.1 Limiting algorithm

In this section, we describe the proposed second order moment limiter for the DG method
on nonconforming triangular meshes. The limiter works by decoupling linear solution co-
e cients along two speci ¢ directions and limiting the slopes along said directions using a
one-dimensional minmod limiter. The choice of the limiting directions and the reconstruc-
tion stencil are described below.

16



2.1.1 Moment limiter

The second order DG approximation on ; can be written in terms of computational

variables’r; se as

U'rse 0% 3°rse O 3 rse 0% 9°rse:

The basis functions' are given by

'9%rse 2
'3nse 2 6

[0} _ 0 _ [0} _
'9°mse 23 2 3 4 3s

Figure 2.2: Reference triangular element,.

2

(2.1)

(2.2)

Consider the vectorsv; 9—-"1; 12+ and v, "0;1e in the computational space

5

(Figure 2.2). The linear solution coe cients Oi;lo and 0.91 can be expressed, respectively,

1
as the directional derivatives along/; and v, as
(o}

5
0i;lo E D, U;
0i(;)l %é D V2 Ui;

(2.3)

(2.4)

l.e., the linear solution coe cients decouple along these directions. Using (1.12) for,
we map the vectorsv; and v, from the computational to the physical space and, after

17



normalization, obtain the following unit vectors

Jivy | Jiva

YJiV]_Y' h2 YJiVZY' (25)

Vi1
where J; is given by (1.13). Using the mapping (1.12) and the Jacobian (1.13), (2.5) can
be simpli ed to

1 1. 1.
Viii —<Xj2 = Xj1 Xpz*®, Vi — Xiz Xja1°*; (26)

where
1.
hi;l \Xi;2 Exi;l Xi;3'\; hi;2 Ys(i;3 Xi;lY: (27)

Using (1.12), (2.5), and (2.6) in (2.3), the linear solution coe cients can be expressed
as directional derivatives alongv;.; and v;., as

i
0y 5Dy, U; (2.8)
05 ELD,.U; (2.9)

Therefore, we can limit the solution coe (:ientsOi;l0 and Oi?l separately by comparing them
to the forward and backward di erences alongs/;.; and v;.,, respectively. The di erences
are reconstructed using the solution averages on neighboring elements in the reconstruc-
tion stencil shown in Figure 2.3 (shaded elements). Computing these di erences requires
interpolated solution vaIuesUif;k and U}, at the forward and backward interpolation points

x}:k and xffk, k 71,2 (black squares in Figure 2.3a).
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(a) Reconstruction neighborhood. (b) Reconstruction stencil along v 1.

Figure 2.3: Reconstruction neighborhood and stencil for;.

To nd the interpolation points, we rst form a polygon by joining the cell centroids
of elements that share a vertex with ;. Next, we construct two lines passing through
the centroid of ; and parallel tov;.; and v;., (Figure 2.3a). The points where these two
lines intersect the polygon give the required interpolation pointxif;k and xit;’k. Finally, the
solution values at the interpolation pointsxif;k and x}) are obtained using linear interpola-
tion of cell averages from the closest neighboring elements. For example, the forward and
backward interpolated solution vaIuesUif;1 and Ui?l alongv;.; are given by (Figure 2.3b)

Uif;l if;lUm "1 peUp; Uk Uy "1 U

where if;l; P, > 0;1 are linear interpolation weights.

After computing the forward and backward di erences, we use (2.8) and (2.9) to limit
solution coe cients or moments as follows

h,U, U h., U UP*
0l mlnmod NS 61%'; i;lo;lit;’l'—él ldb '1.,
d‘-l i1
oo mlnmod If 02 7 I; 0. b g2 7! Tz .
il |24 3 d{;z i1 |,24 3 d|b2 N

where the scaling coe cientslif;k; 5., k 71,2+, are nonnegative,U; is the cell average
in , and d}:k and d) are, respectively, the distances of the interpolation pointx.{;k and
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