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Abstract

Lifetime predictions of used nuclear fuel containers destined for permanent storage in
Deep Geological Repositories (DGRs) are challenged by the uncertainty surrounding the
environment and the performance of both containers and engineered barriers over repos-
itory timescales. Much of the work to characterise the response of engineered barriers to
postulated evolving environmental conditions and degradation mechanisms is limited to
very short-term laboratory tests or at best in-situ large-scale experiments spanning less
than a few decades. While much is learned from these test programmes, the fact remains
that long-term performance of many tens of thousands of Used Fuel Containers (UFCs)
across a timescale of 100,000 years or more cannot be estimated with a significant degree
of confidence by extrapolating single point results of short-term experiments. This is par-
ticularly true when there is a desire to understand the progression of container failures and
the timing of contaminants subsequently released into the geosphere. Used Fuel Container
(UFC) lifetime predictions require a probabilistic approach to address uncertainty. Accord-
ingly, this thesis addresses three objectives. The first is to develop a probabilistic model to
estimate the time to penetrate through the copper coating of a UFC, assuming sulphide-
induced corrosion is the primary degradation mechanism of concern. Within this model,
also develop a framework to account for the design of the Engineered Barrier System (EBS)
and proposed repository layout. The second is to enhance the probabilistic corrosion model
by integrating the potential effects of latent copper coating defects and the single temper-
ature transient predicted for the repository. The third is to develop a stochastic process
model for pitting corrosion, integrate the same into the sulphide-induced corrosion model,
and estimate the time to penetrate through the copper coating based on both degradation
mechanisms. To satisfy the first two objectives, this work presents a unique Monte Carlo
probabilistic framework. With respect to the third objective, modelling pitting corrosion in
copper under postulated repository environments poses a significant challenge since there
is no relevant data and the likelihood of this mechanism remains a much debated topic.
To overcome this challenge and facilitate demonstration of the approach to modelling pit
growth, surrogate data is utilised. In addition to detailing various options for modelling
pit growth, this work presents a novel and more transparent, self-contained approach to
the estimation of the underlying process intensity when pit growth is modelled via a non-
homogeneous Markov process. Finally, the combined effect of pitting and sulphide-induced
corrosion on UFC copper-coating lifetimes is demonstrated. The modelling results are for
the purpose of illustrating a potential methodology only.
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Chapter 1

Introduction

For a Canadian DGR, the two primary engineered barriers employed to provide contain-
ment and isolation are the UFC and highly compacted bentonite clay (Hall and Keech
2017). Figures 1.1 through 1.3 provide an illustration of a conceptual DGR, a UFC, and a
section of an emplacement room with a UFC inside a bentonite clay buffer box surrounded
by gap fill, respectively. The present design of the Canadian UFC consists of a carbon
steel structure, comprising a 47-mm thick cylindrical shell with 30 mm thick hemispherical
ends, Figure 1.2. For corrosion protection, a nominally 3-mm-thick copper layer is elec-
trodeposited onto the external surfaces of the container and head prior to encapsulation.
Forty-eight CANada Deuterium Uranium (CANDU®) used nuclear fuel bundles will be
encapsulated within each UFC, which will be welded shut, after which a cold spray process
will be used to complete the copper coating. Each UFC is to be contained within a buffer
box, which consists of bentonite clay buffer compacted to a specified dry density. Once the
buffer boxes are placed into emplacement rooms, gaps formed between the buffer boxes and
the emplacement room walls will be filled with compacted bentonite pellets, Figure 1.3.

Microbiologically Influenced Corrosion (MIC) due to sulphides from Sulphate-reducing
Bacteria (SRB) is presently identified as the most consequential of potential environmental
degradation mechanisms to which the UFC copper coating is susceptible over the timescale
of the DGR (King et al., 2017). Accordingly, a 1.3 mm corrosion allowance is presently
defined for the UFC for 106 years (Kwong, 2011). Validating the present configuration
of the UFC with respect to evolving conditions in a DGR, particularly those that may
compromise the currently proposed corrosion allowance, has been the focus of programmes
at the Nuclear Waste Management Organization (NWMO) and for the international waste
management community targeting the use of copper for nuclear waste containers. As a re-
sult, to date significant research has been performed to better understand the corrosion of
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Figure 1.1: Hlustration of a Deep Geological Repository, DGR (courtesy of NWMO)

copper under repository conditions (Chen et al., 2010, 2011, 2014, 2017a,b, 2018; Martino
et al., 2014, 2017). While this body of research has provided a high degree of confidence
with respect to understanding the fundamental mechanisms of copper corrosion—a re-
quirement critical to the underpinning of mechanistic-based models, most of this research
is focused on short-term experiments with a limited number of variables under consider-
ation. Deterministic, single-point estimates of the time to fully penetrate UFC copper
coatings, which are derived by extrapolating experimental results, are necessary for the
evaluation of proposed corrosion allowance but are of limited utility to safety assessments
interested in forecasting both the fraction and uncertainty in the timing of failed UFCs over
the timescales of interest. Consequently, UFC lifetime predictions require a probabilistic
approach.

Numerous container lifetime models have been developed in support of safety (per-
formance) assessments for a range of container reference materials (Bullen, 1996; Hansen
et al., 2014; Johnson et al., 1996; Pensado and Pabalan, 2008; Qin and Shoesmith, 2008;
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Figure 1.2: Artistic rendering of a Used Fuel Container (courtesy of NWMO)

Rechard et al., 2014a,b; Shoesmith et al., 1995, 1997; SKB, 2011). While some of these
models are probabilistic in framework, to the best of this author’s knowledge, and at the
time two papers from this work were published, a fully probabilistic lifetime model did not
appear to exist for copper-coated UFCs. The first part of this work has filled this gap by
presenting a fully probabilistic UFC lifetime model, using a simple Monte Carlo approach
and based solely on sulphide-induced corrosion.

Although overwhelming evidence to date points to sulphide-induced corrosion as the
dominant degradation mechanism affecting the UFC copper-coated surface, there has been
an on-going interest to consider the plausibility for pitting corrosion to occur during the
early, oxic phase or—more importantly—the latter, long-term anoxic period in a repository.
Historically, as summarised in King and Lilja (2014), pitting corrosion in copper canisters
was first treated empirically using a pitting factor derived from long-term burial tests and
archaeological artefacts. A pitting factor is the ratio of the maximum to the mean pit



Figure 1.3: Artistic rendering of an emplacement room, showing a sequential view of a
fuel pellet (1), a fuel bundle and pencil (2), a UFC (3), a bentonite buffer box (4), and
emplacement room walls (5) (courtesy of NWMO).

depths. With time, as more relevant test data became available, pitting corrosion was seen
to manifest as surface roughening (King and Lilja, 2013, 2014). This remains the prevailing
view (e.g., see Hall et al., 2021). Additionally, within the context of a Canadian DGR,
it was shown experimentally by Li et al. (2019) that postulated environmental conditions
adjacent to a UFC copper surface are unfavourable to the formation of a passive state,



which is a necessary pre-condition for pitting corrosion to occur. This conclusion holds
true for both the oxic and anoxic periods postulated for a DGR.

Notwithstanding, at least two probabilistic approaches have been applied to modelling
pitting corrosion in copper canisters destined for geological repositories. The first appears
to be by King and LeNeveu (1991), who applied Extreme Value Analysis (EVA) to account
for pitting corrosion damage in 25-mm thick copper shell containers. The second, and more
recent, is by Briggs et al. (2021), who developed a deterministic pitting corrosion model
(with distributed parameters) for copper canisters planned for deposition into a Swedish
DGR. While the Briggs et al. (2021) model is not a lifetime model, it is noteworthy because
of the novel approach employed to predict the likelihood of pitting in the face of limiting
data. Independent of and occurring concurrently with the work by Briggs et al. (2021),
this author developed a stochastic process approach for estimating the extent of pitting
corrosion in a UFC during the short oxic period of a DGR. As will be discussed in Chapter 5,
the stochastic process approach is developed using surrogate data from short-term pitting
corrosion experiments and is easily integrated into the UFC lifetime model presented in
the preceding chapters. Implied in this perspective is the eventual availability of short-
term, relevant copper pitting corrosion data, which may be generated during in-situ studies
planned for the Underground Demonstration Facility of a DGR (pg. 58 Noronha, 2016).
But unlike a simple regression model that may be fitted to short-term pitting corrosion
data and used subsequently to predict pit depths outside the model time domain, the
stochastic model presented here first formulates an expression for the underlying intensity
of the pitting process by approximating the occurrence of extreme pit depths as a NHPP,
with pit depth magnitudes modelled by a time-variant Generalised Pareto Distribution
(GPD) within a Peaks-Over-Threshold (POT) framework. Subsequently, the stochastic
model uses this intensity in a Non-homogeneous Markov Process (NHMP), specifically a
Continuous-Time Markov Chain (CTMC), to propagate an initial distribution of pitting
damage to a future time. The incorporation of a well-defined, stochastic process intensity
into the Markov model is novel. Moreover, to maximise the utility of available data, pit
depth exceedances—rather than pit depth maxima—are propagated through the Markov
chain.

Consequently, this thesis presents a single probabilistic UFC copper-coating lifetime
model that integrates a Monte Carlo methodology, which accounts for sulphide-induced
corrosion over the entire timescale of a DGR, with a stochastic process approach for es-
timating the extent of pitting corrosion during the oxic period of a DGR. No such model
appears to exist. The results of this model are for the purpose of illustrating a potential
methodology to assess the life of copper coatings within a proposed repository environment.



1.1 Objectives

The objectives of this thesis are as follows:

1. With sulphide-induced corrosion as the single degradation mechanism, develop a
probabilistic framework to estimate the copper coating life of UFCs. Within this
framework, to the extent possible given the present knowledge, aim to account for
the physical constraints imposed by the EBS; that is, formulate a model that is
realistic in capturing the restrictions presented by the repository layout and EBS.

2. Extend this model to account for the effect of both latent defects in the UFC corrosion
barrier and variation in repository temperature on predicted UFC copper coating
lifetimes.

3. Review stochastic models for pitting corrosion, develop a stochastic model that read-
ily integrates into the above framework, and subsequently demonstrate the ability to
estimate the copper coating lifetimes of UFCs under the combined effect of general
sulphide-induced and pitting corrosion.

1.2 Organisation

Chapter 2 provides a historical overview of UFC models, focusing particularly on the
evolution of models developed for the Canadian scenario. Models developed by various
other international jurisdictions are also discussed to a limited extent, where relevant.

Chapter 3 presents a detailed formulation of a baseline probabilistic model to predict
UFC lifetimes. The chapter introduces the concept of a physics-of-failure model, within
which several important model constructs are introduced. One is the effective diffusion
length parameter; a parameter critical to transforming an otherwise 3-D problem to one
that is 1-D and fully amenable to simple Monte Carlo simulation methods. A second
important construct is the identification of a random outcome viewed from the perspective
of the proposed physics-of-failure model and a hypothetical repository. Together these two
constructs form the underpinning of the baseline model. The contents of this chapter were
accepted for publication on July 8, 2019 in Nuclear Engineering and Design (Jarvine et al.,
2019).

Chapter 4 extends the formulation of the baseline model by incorporating additional
life-limiting factors, such as latent defects postulated to occur in the UFC external cop-



per coating and repository temperature. The contents of this chapter were accepted for
publication on December 1, 2019 in Nuclear Technology (Jérvine et al., 2020).

Chapter 5 details the two-part stochastic model, comprising a non-homogeneous Poisson
process approximation for the pitting corrosion intensity and a pure-birth, linear-growth-
rate Markov process (non-homogeneous in rate) for modelling the evolution of pit depths
exceeding a time-variant threshold level. This chapter concludes with an estimate of the
combined effect of sulphide-induced and pitting corrosion on UFC lifetimes for an oxic
period of arbitrary length.

Lastly, overall conclusions and proposed future work are summarised in Chapter 6.






Chapter 2

Brief Historical Review of Used Fuel
Container Models

This chapter provides a historical review of lifetime models developed internationally for
used nuclear fuel waste containers, with particular focus on the Canadian experience. Sec-
tion 2.1 reviews the early Canadian experience with modelling lifetimes for titanium con-
tainers. Section 2.2 details the subsequent Canadian work on predicting container lifetimes
with copper as the reference material. Section 2.3 highlights the approach undertaken in
Sweden for copper shell waste containers. Section 2.4 brings attention to the complemen-
tary modelling work carried out in the United States for a two-layered waste container,
whose outer layer is constructed from a corrosion resistant nickel-based alloy. The prob-
abilistic framework exemplified by the United States experience is especially pertinent to
the approach adopted in this work. Lastly, section 2.5 summarises the chapter.

2.1 Canadian Experience—Titanium Used Fuel Con-
tainer Life Prediction

With respect to the Canadian context for container life prediction modelling, the seminal
work of Doubt (1984) provided a rigorous assessment of the type and sources of defects
likely to affect the longevity of containers on the basis of lessons learned from inspection
of components (e.g., pressure vessels) for power generation applications and CANDU®
reactor components such as fuel bundles and fuel channel calandria/pressure tubes. Using
a geometric mean of the combined data, Doubt estimated that approximately 1 in 5000



containers placed in a repository would contain a significant partial through wall or entirely
through wall defect sufficient to initiate early failure. The estimate was later revised to 1
in 10 to 1 in 10* containers would contain a life-limiting defect (Johnson et al., 1994).

By the 1990s, results of experimental testing allowed life prediction methodologies to
develop suitably, resulting in a first-generation repository post closure model based on
corrosion-resistant Grade-2 titanium (Ti-2) as the reference container material, with place-
ment of containers into vertical bore holes the emplacement strategy (Shoesmith et al.,
1995, 1997). Crevice corrosion and hydrogen-induced cracking were the two degradation
mechanisms modelled for Ti-2, and early failures arising from undetected defects were also
incorporated into the model. With respect to the latter, a Binomial distribution consist-
ing of N trials, where N represented the number of containers in a repository sector, and
probability, p, where p represented the probability of any container having a significant
undetected defect, was sampled to determine how many containers per repository sector
would possess a significant defect and fail very early in life. The probability p was treated
as a random variable with a Lognormal distribution, having a geometric mean equal to
2 x 107* container failures per year (i.e., 1 in 5000 containers). Left tail of the Lognormal
distribution was truncated at 10™* container failures per year (i.e., 1 in 10000 containers),
while the right tail was truncated at 1072 container failures per year (i.e., 1 in 1000 con-
tainers), to reflect the results of Doubt (1984). The model assumed that within 50 years
post closure, all containers with undetected defects would fail.

Crevice corrosion was assumed to initiate immediately following closure and modelled
as a temperature dependent mechanism. Three temperature zones (hot, cold, and cool)
were assigned to the repository to represent the temperature of the containers based on
their location (i.e., in the centre versus the extremities of the repository, and somewhere in
between). Three distinct temperature profiles as a function of time were created to reflect
the expected yet variable evolution of temperatures in the repository within each of the
zones.

This first-generation model predicted that approximately 97% of Ti-2 containers would
fail by crevice corrosion, with only 0.1% failing by crevice corrosion before 1,000 years.
Within 6,000 years, all Ti-2 containers were predicted to fail. The model generated a
cumulative distribution, which provided the fraction of failed Ti-2 containers as a function
of post closure time.
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2.2 Canadian Experience—Copper Used Fuel Con-
tainer Life Prediction

A shift away from the bore-hole emplaced Ti-2 containers to the in-room emplaced cop-
per shell containers was introduced formally in the post-closure long-term vault (reposi-
tory) safety assessment by Johnson et al. (1996). Unlike the modelling for Ti-2 containers
(Johnson et al. (1994); Shoesmith et al. (1995, 1997)), where two significant degradation
mechanisms were postulated to cause eventual failures of containers within 6,000 years
post closure, long-term assessment of copper shell containers, of which two designs were
under consideration, would not identify a single corrosion degradation mechanism capable
of causing failure of the copper shell within 10° years post closure (Johnson et al., 1996).
Failure in the copper shell container scenario was defined as either full penetration of the
25-mm thick copper shell by a combination of pitting and uniform corrosion (King and
LeNeveu, 1991), where pitting and uniform corrosion were both limited to the aerobic
period in the evolution of the repository, or if the copper shell sustained 16 mm of uni-
form corrosion, thereby inducing structural failure from buckling. Uniform corrosion was
predicted to result in a maximum wall penetration of 11 pym. After all the Os in the reposi-
tory was consumed, however, uniform corrosion of the copper shell would stop. Pitting was
treated outside the corrosion model using an extreme-value analysis of pit depth data from
the literature. Again, pitting was limited to the aerobic period in the repository, and the
maximum pit depth over a period of 10° years was predicted to be less than 6 mm. Since
both pitting and uniform corrosion were not predicted to occur in the anoxic period of the
repository, the onset of which was estimated to occur 670 years after repository closure
(Kolar and King, 1995), the maximum pit depths estimated by extreme-value analysis for
a 10%-year timescale would never be realised and, therefore, failure of containers could not
occur either by uniform corrosion, pitting, or both within 10° years following closure.

In addition to uniform corrosion and pitting, the long-term assessment of the copper
shell containers also considered the potential contribution from atmospheric corrosion,
stress corrosion cracking, radiolysis by vy-radiation, crevice corrosion, and MIC. All these
were summarily evaluated and determined to either have negligible effect or to be very
unlikely due to the absence of factors necessary for the respective mechanisms to be active.
The exception was MIC.

Microbiologically influenced corrosion arising from the formation of biofilms on the con-
tainer surface was ruled out due to the predicted relatively dry and “sterile” conditions
prevailing immediately following placement. Relatively dry conditions were expected be-
cause at the beginning and sometime after the placement rooms are sealed, the placement
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rooms are both unsaturated due to low flow of groundwater into the placement room and
hot as a result of decay heat from used fuel bundles. As well, the initially partially satu-
rated clay buffer material immediately adjacent to the container surfaces was predicted to
undergo desiccation. Moreover, vy-radiation effects on microbial colonies in the clay buffer
material immediately adjacent to the container surfaces would cause bacterial populations
to die out or become dormant, thereby leading to“sterile” conditions. But MIC from the
by-products of active anaerobic bacteria in remote areas of the repository during the anoxic
period was understood to be very likely.

From the results of corrosion tests on Cu/compacted bentonite clay electrodes in
de-aerated saline solution with Na,S added as an analogue to sulphide produced from
reduction of sulphate by anaerobic bacteria (e.g., SRB), King and Stroes-Gascoyne (1995)
demonstrated a lowering of the corrosion potential due to diffusion of inorganic sulphide
through the bentonite clay. Extending this belief forward and incorporating the mass-
balance approach of Werme et al. (1992) to estimate depth of corrosion, King and Stroes-
Gascoyne (1995) calculated a corrosion rate of 0.4 nm/yr for a copper container assuming,
among other things, steady-state diffusion and a constant remote-area sulphide concen-
tration of 1 ppm (3 x 107® mol/L). Remote areas in the repository were defined as the
interface between the host rock and the bentonite clay backfill. At a rate of 0.4 nm/yr,
total depth of corrosion in 10° years post closure was estimated at 0.4 mm. In the Johnson
et al. (1996) safety assessment, however, an equivalent corrosion depth of approximately
1 mm was calculated over the same timescale and under similar assumptions but using
instead 3 ppm (9 x 107 mol/L) for the remote-area sulphide concentration. Apparently,
the 3 ppm (9 x 107° mol/L) sulphide concentration represented the maximum concentra-
tion observed from unpublished MIC experiments at the time (Johnson et al., 1996), which
were designed to replicate the experiments by King and Stroes-Gascoyne (1995) but with
biotically produced sulphide.

Although sulphides are not found in crystalline and sedimentary groundwaters antic-
ipated for a Canadian DGR (McMurry, 2004), a remote-area sulphide concentration of
3 ppm has been considered as a carried-forward estimate for the corrosion allowance from
MIC over a 10%-year assessment period of interest (Kwong, 2011). The same level of con-
servatism is integral to the implicit assumption for no container failure by corrosion in the
Base Scenario employed in all subsequent published reference case studies (Garisto (2012,
2013); Gierszewski et al. (2004); NWMO (2012)). Within ongoing site investigation work
by the NWMO, sulphide concentrations are being assessed.

As indicated in Chapter 1, Briggs et al. (2021) have very recently developed a proba-
bilistic model that provides a novel means to account for pitting corrosion in the Swedish
Nuclear Fuel and Waste Management Company (SKB) copper containers. The point to
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raise here from the perspective of probabilistic models is that this model employs an empir-
ical relationship, with distributed parameters, to characterise the growth of pits, allowing
for a simple Monte Carlo scheme to account for uncertainty. The Monte Carlo scheme is
not the novel component of the Briggs et al. (2021) model, however.

2.3 SKB Copper Container Safety Assessment

For the long-term safety assessment of copper spent fuel canisters at Forsmark Sweden
(SKB, 2011), corrosion calculations were performed conservatively using a constant sul-
phide concentration derived from analysis of groundwater samples. In particular, for the
intact clay buffer scenario, a sulphide concentration of 10~ mol/L was chosen, representing
the 90% upper bound of a modified cumulative distribution of groundwater samples (SKB,
2010b). For a partially eroded buffer scenario, the mean of the modified distribution of
groundwater samples, 5 x 107¢ mol/L, was assigned to each canister borehole in the corro-
sion calculations. As in the Canadian experience, the SKB long term safety assessments and
supporting corrosion calculations incorporate a deterministic—yet conservative—approach
to corrosion of copper by sulphide. Although cumulative distributions of corrosion rates
are also generated in the SKB assessments, the distributions arise primarily from sampling
of flow distributions associated with site-specific hydrogeological Discrete Fracture Net-
work modelling SKB (2010b, 2011) and not, rather, by also sampling the distribution of
groundwater sulphide concentrations. Notwithstanding, the approach taken by SKB for in-
corporating the groundwater sulphide concentration data into long-term safety assessment
has been deemed reasonable by an independent review Bath (2014).

2.4 U.S. Yucca Mountain Performance Assessment Ex-
perience

In the U.S.; spent nuclear fuel and high-level nuclear waste were planned for disposal in
waste containers to be placed in an underground repository located potentially in Yucca
Mountain, Nevada (DOE (U.S. Department of Energy), 2008). A two-barrier system, con-
sisting of a corrosion resistant outer layer (Alloy 22) and a structural support inner layer
(Type 316 stainless steel), defines the waste container design (DOE (U.S. Department of
Energy), 2002). Depending on the configuration, some containers would incorporate an
overhead drip shield made of titanium to protect from drips from the repository ceiling
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and falling rock. A container configured with a drip shield is referred to as a waste pack-
age. As part of performance assessment, waste package degradation is simulated using a
stochastic model named WAste Package DEGradation (WAPDEG), which incorporates a
set of empirically and semi-empirically derived degradation models to account for various
waste package outer layer degradation mechanisms postulated to be active over the evolv-
ing conditions in the repository (Hansen et al., 2014; Pensado and Pabalan, 2008; Rechard
et al., 2014a,b).

While both the alloy systems employed in the proposed U.S. waste containers and the
postulated Yucca Mountain repository environment do not share strong similarities with
their counterparts in the current Canadian reference cases, the stochastic approach to ma-
terials degradation adopted by the WAPDEG model is of significant interest to this work.
In fact, a review of the available literature of life expectancy models developed by various
international entities for used fuel (and/or high-level waste) containers (or canisters) has
not identified a more comprehensive and detailed model than WAPDEG. The WAPDEG
model calculates rates of degradation based on user-specified waste container exposure
histories that consist of temperature and relative humidity time histories arranged in a
look-up table format. Exposure histories allow for spatial and temporal variation in waste
container environment and when coupled with environment-dependent degradation models
a stochastic approach to waste container life expectancy is facilitated.

Eighteen different probability distributions are implemented in WAPDEG. These give
the user considerable flexibility in modelling variability. One very pertinent example is
WAPDEG's ability to account for parameter uncertainty by sampling from various degra-
dation model parameter distributions. The WAPDEG model also enables the variance of
a probability distribution to be shared among the three levels defined by the waste con-
tainer (first level), a patch on a waste container surface (second level), and sites on the
patch for localised corrosion degradation (third level). Further, spatial variability within
a container and from container to container is also one of the most relevant uses of the
probability distributions. Patches arise from the discretization of the container surface into
sub-areas (i.e., patches), each with assumed homogenous corrosion properties. The extent
of variability from patch to patch within a single container can be also user defined.

Besides modelling general corrosion and localised corrosion (from various mechanisms),
WAPDEG also permits the incorporation of manufacturing defects into a waste container
to account for their effect on life expectancy. The process includes user-defined inputs such
as the probability that a barrier (e.g., outer layer) of a waste container has manufacturing
defects, the distribution of the number of manufacturing defects per barrier, and the dis-
tribution of defect size. Once degradation of a container outer layer has begun, WAPDEG
randomly samples a number from the interval 0 to 1 and compares the randomly selected
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number to the probability that a container has manufacturing defects. If the random num-
ber selected is greater than the probability of container defects, then WAPDEG samples
from the number of manufacturing defects per barrier distribution and assigns the num-
ber of defects selected to the container barrier by distributing randomly the number of
manufacturing defects across all patches.

Of the many available outputs (e.g., average number of patch failures, average number
of pit failures, etc.), WAPDEG also provides a cumulative distribution of waste container
failure times over the analysis time defined by the user.

It’s important to recognise that other waste package models incorporating a probabilis-
tic framework were also developed for the Yucca Mountain albeit to a smaller and less
comprehensive scale, targeting specific degradation processes (e.g., Bullen, 1996; Qin and
Shoesmith, 2008). In general, however, the WAPDEG model is the most comprehensive.

2.5 Review Summary

The foregoing historical perspective is by no means exhaustive, but it is sufficient to provide
an understanding of the various approaches pursued by international groups to estimate
life expectancy of UFCs. One recent UFC lifetime prediction review (King, 2014) has
highlighted the importance of being able to justify long-term used-fuel container lifetime
predictions from degradation models based on empirical results derived over very short
experimental timelines (relative to repository timescales). A crucial and necessary re-
quirement is, therefore, the ability to underpin predictions by coupling empirically derived
models to a strong understanding of degradation mechanisms. In this respect, the work
to date on the corrosion of copper has gone a long way towards providing a measure of
confidence in the ensuing estimates of UFC lifetimes. However, greater confidence in UFC
lifetime estimation is achieved when uncertainty in degradation model inputs is treated
from a probabilistic perspective.

15






Chapter 3

Baseline Model

This chapter summarises the evolution of the DGR environment (Section 3.1), within
which the two degradation mechanisms addressed in the UFC lifetime model (Section 3.2)
are placed in time. Following this, Section 3.3 formulates sulphide-induced corrosion as a
mass-balance, mass-transport phenomenon. Section 3.4 introduces the effective diffusion
length, a model construct critical to the employment of a Monte Carlo methodology and
arising from the discretisation of the UFC surface. With the ground work laid, Section 3.5
develops the probabilistic framework for the baseline UFC lifetime model. Limitations of
the model are discussed in Section 3.6. A brief summary of the chapter is provided in
Section 3.7.

In a very generic sense, the problem statement addressed by this chapter may be defined
as the solution for the time to failure ¢ in the failure condition expressed by h — X (t) < 0.
Here, X (t) is a RV representing total degradation sustained on the surface of a UFC by
time ¢ at a rate of degradation R, and h is the copper coating thickness. This generic
representation of the problem statement is given to aid the understanding but is not used
explicitly in the model formulation. The precise problem statement addressed by this
chapter is to characterise the distribution of first times to failure for UFCs placed in a
crystalline rock DGR. Failure is defined as full penetration of the copper coating.
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3.1 Long-term Evolution of a Conceptual DGR

The present understanding of the long-term evolution of a conceptual DGR has been
recently summarised by King et al. (2017). The major highlights are as follows.

The DGR is predicted to sustain a single temperature transient lasting approximately
10° years following closure. For a conceptual DGR in crystalline rock (for example), the
transient is due to decay heat generated by the placement of approximately 108000 UFCs
(Noronha, 2016). The actual shape of the temperature transient profile will depend on var-
ious factors, not least of which are site-specific variables such as: the times to re-saturate
emplacement rooms (i.e., rate of in-flux of groundwater); the degree to which re-saturation
occurs homogeneously (i.e., spatial, time variant distribution of re-saturation); and the
impact of a 30-year placement period (Noronha, 2016), which leads to a staggered input of
heat as rooms and panels are sequentially sealed off. Notwithstanding the preceding uncer-
tainties, numerical models developed to date to simulate heat transport in crystalline rock
in the Canadian Shield (Guo, 2015, 2016, 2017) are consistent with other crystalline rock
repository thermal transient simulations (Ikonen and Raiko, 2015) and can be employed
with a measure of confidence to predict the temperature profile. As shown in Figure 3.1,
the most recent model results estimate a peak UFCs surface temperature of less than 90°C
within the first 100 years post-closure.

During the thermal transient period, the repository (or more precisely the near-field) is
also predicted to undergo several transient stages before long-term, stable conditions set in,
Standish et al. (2016); King et al. (2017); Ibrahim et al. (2018). As will be discussed shortly,
the (sum) total estimated duration of the early stages is expected to be short relative to the
final (long-term) stage. This implies that degradation mechanisms operative during the
early stages will have finite timespans in which to be of consequence to the life expectancy of
a UFC. In the ensuing discussion, the stages advanced by King et al. (2017) are introduced
and viewed from the perspective of the near-field. The near-field environment comprises
the UFC, the buffer, and the portion of the geosphere significantly altered by the presence
of the repository.

Stage 1, which is identified as the immediate post-placement period, lasting days to
months depending on various factors, is characterised as a period where the near-field
environment will be aerobic due to trapped oxygen in the sealed emplacement rooms and
humid, with relative humidity (RH) ranging from approximately 80% at the start to slightly
above 40% towards the end of the stage. Additionally, the dose rate from gamma radiation
as a result of mostly fission product decay in the spent fuel will be at its highest during
this stage. Some estimates put the dose rate at the external surface of the UFC—at
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Figure 3.1: UFC surface temperature profile per Guo (2017).

placement—at approximately 1.1 Gy/hr (corresponding to 30 years post-reactor removal),
decaying approximately exponentially thereafter to levels approaching 107> Gy/hr within
the first 500 years (Morco et al., 2017). Of significance to the UFC life expectancy is the
potential for aqueous corrosion to occur during Stage 1 due to high humidity and oxic
conditions.

Stage 2 is characterised as the dry-out period. As the near-field transitions from Stage
1 to Stage 2, higher temperatures due to continuing decay heat from the spent fuel bundles
will drive moisture from a volume of bentonite buffer material immediately adjacent to the
surface of the UFC towards the host rock. Experimentally, large-scale mock-up (Fernandez
and Villar, 2010) and real-scale in-situ (Chijimatsu et al., 2001; Rutqvist et al., 2001; Salas
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et al., 2014; Samper et al., 2018; Zheng et al., 2011) tests have confirmed that water
content in the bentonite buffer material adjacent to simulated containers (with constant or
variable heat sources) is reduced and driven to the extremities of the experimental set-up
(e.g., host rock or large-scale container). In the latter region (i.e., at the buffer /host rock
interface), water vapour condenses and is absorbed by the bentonite interfacing with the
host rock, causing localised swelling (swelling of the bentonite from groundwater in-flux can
also occur at the same interface during this period but is dependent on local hydrogeologic
conditions). The preceding references record that migration of the vapour phase away from
the heat source is quite rapid and dependent on both the temperature of the container and
the porosity of the bentonite barrier (i.e., dry density). Consequently, it is anticipated that
for the first group of UFCs emplaced in any given emplacement room, the onset of Stage 2
may occur before or soon after the same emplacement room is sealed off. Simplistically,
Stage 2 ends when the advancing saturation front originating from the host rock begins
to raise the relative humidity of the near-field above its minimum. Thus, the duration
of Stage 2 is governed by the thermal conductivity and vapour phase permeability of the
buffer material and the rate and spatial and time-variant distribution of groundwater in-
flux. Of significance to the UFC life expectancy is the implication that aqueous corrosion
is very unlikely during Stage 2.

Stage 3 refers to the gradual saturation of the bentonite buffer and the eventual re-
wetting of the UFC. Stage 3 is a transition period, characterised by a change from low
RH (e.g., approximately 40%) to full (i.e., 100%) bentonite buffer saturation. According
to King et al. (2017), the near-field is expected to reach a fully saturated state within
approximately 50 years. There are, however, many factors that determine the time to reach
full saturation. For low permeability crystalline rock, the assumption of a homogeneous
in-flux of groundwater acting over the interface of the bentonite buffer and host rock is
challenged by the occurrence of hydraulically active fractures in the excavation damage zone
(EDZ). As shown by Dessirier et al. (2016, 2017), saturation in bentonite can be localised to
hydraulic fracture sites intersecting the emplacement room, with surrounding regions of the
bentonite buffer remaining relatively unsaturated. Consequently, the duration of Stage 3 is
highly dependent on the hydrogeological characteristics of the host site and the nature of
the EDZ. Of significance to the UFC life expectancy is the potential for aqueous corrosion
to occur during Stage 3 as a result of increasingly humid conditions (particularly at > 75%
RH), subsequent absorption of moisture by deliquescent salt deposits previously formed
during the desiccation of the bentonite in immediate contact with the UFC (Stage 2), and
the presence of oxidants either from residual oxygen and/or radiolysis.

Stage 4 is the final stage and represents a state in which the near-field is fully saturated
with anoxic bentonite pore water. However, the early part of Stage 4 denotes a gradual
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cool down of the near-field to ambient, long-term repository temperatures, along with a
gradual change of the pore water chemistry from partially to fully anoxic, depending on
the levels of radiolytic oxidant production at this stage. Of significance to the UFC life
expectancy is the potential for aqueous corrosion to occur indefinitely in Stage 4. The four
stages are summarised pictorially in Figure 3.2.

Thermal Transient — Four Stages
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Figure 3.2: Four stages predicted during the thermal transient in a conceptual crystalline
rock DGR. Temperature profile represents repository Panel E after Guo (2017), and the
stage durations after King et al. (2017). Hatched regions represent periods during which
RH is predicted to be greater than 75%.
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3.2 Degradation Mechanisms of Concern

For the purposes of this work, two degradation mechanisms are of concern. The first and
primary is sulphide-induced corrosion, which is predicted to be operative during Stage 4.
The second is localised or pitting corrosion, which is considered plausible but unlikely
during the oxic period characterising Stage 1 and to a much lesser extent Stage 2. Other
copper-related degradation mechanisms are discussed in Hall et al. (2021) but are not
modelled herein because they are not presently considered of significant impact to UFC
life expectancy.

Sulphide-induced Corrosion—Anozic Period

The onset of Stage 4 is defined by the realisation of 100% saturation of the near-field
under fully anoxic conditions. Used fuel container surface temperatures are expected to
be slightly below peak temperatures (e.g., < 90°C) at the start of Stage 4, and with time
near-field pore-water chemistries will normalise towards an equilibrium with groundwater
chemistries and be pH neutral. It is also anticipated that with diminishing gamma fields,
the near-field environment will become predominantly reducing. Consequently, under these
conditions the UFC copper surfaces will be thermodynamically stable but only in the
absence of HS™ (Bojinov et al., 2004; Bojinov and Makela, 2003; Smith, 2007). The
introduction of sulphide anions (HS™) will de-stabilise and anodically dissolve copper via
a two-step process (pg 133 Smith, 2007) that leads to the growth of a cuprous sulphide
(CupS) film (Smith et al., 2007):

Cu+HS™ = Cu(HS), 4, +e¢, (3.1)
Cu(HS),4 + Cu+HS™ = CusS +e™.

For a Canadian DGR, the dominant source® of aqueous sulphides is from microbial activity
occurring at the host rock/buffer interface due to SRB (King et al., 2017). However, sul-
phide concentrations arising from SRB activity are predicted to be quite low (< 107 M).
For such low concentrations, it is argued that the interfacial anodic reaction (i.e., at the
copper /bentonite interface) will be governed by HS™ mass transport (King et al., 2017).
This is a slow diffusion process controlled by the diffusivity of HS™ in saturated bentonite.

"'While there are other potential reactions that lead to the release of hydrogen sulphide ions, such as
chemical dissolution of sulphide-containing minerals (e.g., pyrite) from the bentonite buffer, hydrogen sul-
phide produced from anaerobic microbial activity in the near- and far-field is expected to be the dominant
source for corrosion of the copper coating.
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Consequently, sulphide-induced corrosion is modelled as a mass-balance, mass-transport
phenomenon.

Localised (Pitting) Corrosion—QOuzic Period

Lasting anywhere from 6 months to 1.5 years (Fig 2(d) King et al., 2017), the oxic
period may result in localised corrosion of the UFC surface due to the reaction of copper
with some of the trapped oxygen in an emplacement room. Oxygen (along with chlo-
ride) concentration determines the corrosion potential (an electrochemical measure of the
tendency for corrosion to occur). When the corrosion potential is greater than the oxide-
film breakdown potential, pit initiation occurs. Subsequent pit growth happens while the
corrosion potential is greater than the repassivation potential, the potential at which a
passive oxide film is formed and pit growth is arrested. Together, these make up the un-
derlying criteria for localised corrosion. In this work, the theoretical formulation for the
electrochemical processes governing pit initiation, growth, and arrest are ignored. Instead,
the occurrence of extreme pit depths during the oxic period is approximated phenomeno-
logically by a non-homogeneous Poisson process, specifically a counting process, with pit
depth evolution modelled as a non-homogenenous Markov process. Both to be discussed
in Chapter 5.

3.3 Sulphide-induced Corrosion Formulation

Equation 3.3 describes the overall sulphide-induced copper corrosion reaction:
2Cu+ H,O+HS = CuyS+ Hy + OH™. (3.3)

Under a mass-transport-limited corrosion process, corrosion depth per unit time dcgyr,
which is equivalent to corrosion rate, may be calculated simplistically using the mass-

balance approach adopted by SKB (SKB, 2010a):

__ NusfusMcu

doorr = 3.4
¢ ACorrpCu ( )

where Nyg is the amount of sulphide reacting at the copper surface, which is directly related
to the flux of HS™ at a specified area of the UFC per unit time; fyg is the stoichiometric
coefficient for the reaction shown in Equation 3.3, which is 2, for 2 moles of copper react
with 1 mole of HS™; M, is the molar mass of copper; Acqr is the specified area on the
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surface of the UFC where corrosion takes place; and pc, is the density of copper. For Nyg
Fick’s First Law of diffusion is employed (excludes any reaction/sink terms) to conveniently
describe the diffusion of HS™, denoted Jyg, through the groundwater-saturated bentonite
barriers under steady-state conditions:

Jus = —DysVC. (3.5)

The diffusion of HS™ to a discrete point on the surface of the UFC is inherently a 3-D prob-
lem, where the concentration gradient, V', is a function both of diffusion distance, defined
as a 3-D path (Al,, Al,, Al,), and initial and final HS™ concentrations (Cy,C) present on a
boundary characterised by irregularly shaped surfaces (e.g., corner of buffer box). As writ-
ten, Equation 3.5 implies the HS™ effective diffusion coefficient (Dyg)—associated with
mass transport through the bentonite clay barriers—is isotropic and constant through-
out the volume of material. Invoking the assumption that Dyg is isotropic and constant
throughout, the amount of HS™, Nyg, reacting at a specified area, Acer, on the surface of
copper-coated UFC can be determined as per Equation 3.6:

Nus = —DusVC Acopy- (3.6)

Due to the 3-D geometry of both the emplacement room and the rectangular buffer
boxes encapsulating the UFCs, a numerical approach is typically required to solve the
HS™ diffusion problem represented by Equation 3.6, . Such calculations were performed
recently by Briggs et al. (2017) and hereafter referred to as the Briggs model. Within the
Briggs model, which is built on COMSOL Multiphysics®, the sulphide diffusion problem
is handled under two scenarios: (1) a constant external boundary sulphide concentration
for a single UFC within a buffer box, and (2) a constant external boundary sulphide
concentration for a representative set of UFCs within an emplacement room. Their results
for a single UFC within a buffer box, Figure 3.3, showed that sulphide flux is greatest at the
hemispherical ends of the UFC and lowest in areas on the cylindrical portion of the UFC
located directly opposite the corners of the buffer box. These results underscore the need
to assess the mass-transport problem from a 3-D perspective, or at minimum incorporate
the 3-D effects into 1-D analyses.

To facilitate the use of Equations 3.4 through 3.6, the following assumptions are for-
mally employed: the sulphide-induced copper corrosion process is mass-transport-limited,
Dygs is isotropic and constant throughout, and a steady-state diffusion condition exits from
start of analysis. The latter is a conservative assumption within the Briggs model. For
simplicity, the present model treats the base level defining the lifetimes of UFCs in a hy-
pothetical DGR as a HS™ diffusion problem for a single UFC placed inside a buffer box,
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Figure 3.3: Flux distribution shown for one half of a UFC, Cy = 9.07 x 10 M (3 ppm),
Briggs et al. (2017), with permission.

with the external surfaces of the buffer box defining the initial HS™ concentration bound-
ary. Essentially, the additional diffusion path afforded by the bentonite pellet backfill is
ignored in this model, and all HS™ produced at the rock/backfill interface is conservatively
assumed to be transferred to the external surfaces of the buffer box. Further, saturation is
assumed to occur uniformly within an emplacement room such that, over time as steady
state is approached, the HS™ concentration normalises to a constant value throughout the
emplacement room. This assumption implies that [HS™] is time-invariant once steady state
is reached—an assumption that may not necessarily be conservative. These assumptions
are summarised below:

e Saturation of the emplacement rooms (and buffer boxes) by the in-flow of ground-
water occurs homogenously.

e At saturation, the [HS™| at the gap-fill/rock interface normalizes to a constant value
throughout the entire emplacement room.

e The boundary for the diffusion problem is transferred from the walls of the emplace-
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ment room (i.e., gap-fill/rock interface) to the external surface of each buffer box,
effectively eliminating the gap-fill diffusion path.

e The boundary condition at the buffer box external surface is defined by a constant
[HS™], which is time-invariant once the emplacement room reaches 100% saturation.

e The effective diffusion coefficient for the bentonite buffer is isotropic and constant
throughout a buffer box.

e Steady state condition exists at the start of analysis (i.e., time for [HS™] to normalize
at the gap-fill/rock interface and time for establishment of steady state diffusion is
ignored).

e The sulphide-induced copper corrosion process is mass-transport-limited.

3.4 Discretisation of UFC Surface

The approach adopted is to transform an inherently 3-D sulphide diffusion problem for the
corrosion of the copper-coated UFCs into one that is 1-D in formulation, analytical (i.e.,
closed form), amenable to Monte Carlo methods, and relatively true to the conditions of
the original problem.

3.4.1 Effective Diffusion Length

To achieve the above objectives under assumed steady-state conditions, Equation 3.5 is re-
written in one-dimensional form and re-arranged, as shown in Equation 3.7, by introducing
the term “effective” diffusion length, l.g. The formulation in Equation 3.7 assumes the
concentration gradient across the buffer box is linear, and that conservatively all HS™
arriving at the UFC surface is immediately used up to form the cuprous sulphide film (i.e.,
C'=0). For very dilute concentrations of HS™, where interfacial reaction rates are higher
than HS™ mass transport rates, this assumption is reasonable.

C -Gy
Jus

lot = —Dhs (3.7)

The effective diffusion length represents the equivalent diffusive path taken by all HS™
reaching an arbitrary, small area on the surface of the UFC from a specified external

boundary of known constant HS™ concentration, Cy. This is somewhat analogous to an
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equivalent point load derived from a uniformly distributed load or from hydrostatic pressure
acting over a small area. The results of the Briggs model revealed that, for a constant Cj,
points on the UFC directly opposite the corner regions of the buffer box exhibited the
lowest fluxes. Intuitively, this is reasonable given that corners of the buffer box are further
away from the opposite surfaces of the UFC than other locations on the buffer box. But a
straight one-to-one correlation does not exist between flux and diffusion path as indicated
by Equation 3.7. Simply transforming the 3-D problem into one dimension by equating the
diffusion path taken as the absolute distance separating a point on the corner of the buffer
box from a directly opposite point on the cylindrical surface of the UFC, for example,
does not correspond with the flux determined by the 3-D numerical diffusion calculations
performed in the Briggs model. The reason for this is the contribution from adjacent
regions in the corner of the buffer box, which gives rise to a 3-D flux profile. The effective
diffusion length, therefore, is a convenient means of transforming the 3-D problem into
one that is 1-D, provided the surface of a UFC is divided into reasonably small contiguous
areas and a means exists to estimate l.g. While the computation of [.g is based on the
results of a numerical model (i.e., Briggs model) where the boundary condition defined at
the outer surface of the buffer box (and by implication at the host rock) assigns a constant
HS™ concentration, this does not pose a limitation to the proposed model framework. The
effective diffusion length is dependent on geometry (i.e., buffer box and UFC) and not
on boundary conditions associated with chemical species concentration. Consequently, a
heterogeneous [HS™| may be assigned to the buffer box boundary by simply defining C as
a function of node position. This then is a flexibility and not a limitation.

3.4.2 UFC Surface Mesh Models

To support computation of l.g, a UFC surface was discretised using COMSOL Multiphysics®
into a series of seven meshes consisting of triangular elements. Discretisation was carried
out by Dr Briggs at the NWMO and subsequently supplied to this author in support of
the modelling framework. Average characteristic lengths? for the triangular elements were
chosen as 0.02 m, 0.03 m, 0.04 m, 0.06 m, 0.08 m, 0.10 m, and 0.12 m to assess mesh-size
sensitivity and identify a computationally optimal mesh size without significantly compro-
mising agreement with the Briggs model. Figure 3.4 and Figure 3.5 illustrate the smallest
and largest of these. Owing to the symmetry of the UFC geometry, and because the work
in the Briggs model showed that maximum fluxes occur at the hemispherical ends, the
model developed hereafter considers only one quarter of one hemisphere.

2Characteristic length of a triangular mesh element in COMSOL Multiphysics® refers to the longest
edge length.
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Figure 3.4: Discretisation of UFC surface shown with triangular elements and an average
characteristic length of 0.02 m. The colour scale represents the element size.

For each mesh model, flux values (Jug) obtained from the numerical results of the Briggs
model were assigned to each node of the triangular elements. Assignment of flux values
was achieved by recognising that each node of the triangular-element mesh represents a
coordinate point in 3-D space, or equivalently a vector. Consequently, the mesh design em-
ployed by the Briggs model was vectorised such that all nodes were assigned corresponding
vector and flux values. The vectorised results from the Briggs model were subsequently
compared with the vector representation of each mesh model and closest matching vectors
were assigned a corresponding flux value from the Briggs model. Once flux values were
assigned to each node in each mesh model, Equation 3.7 was used to calculate l.g for each
node by using the values for Cy and Dyg employed in the Briggs model. Histograms of
legg for the 0.02 m and 0.12 m mesh models, along with the Briggs model, are shown in
Figure 3.6, Figure 3.7, and Figure 3.8, respectively.
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Figure 3.5: Discretisation of UFC surface shown with triangular elements and an average
characteristic length of 0.12 m. The colour scale represents the element size.
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Figure 3.6: Histogram of effective diffusion lengths for the 0.02 m UFC mesh model.
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Figure 3.7: Histogram of effective diffusion lengths for the 0.12 m UFC mesh model.
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Figure 3.8: Histogram of effective diffusion lengths for the Briggs model.
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For comparison, the Empirical Cumulative Distribution Function (ECDF)s associated
with the flux values derived from the above discretisation scheme are compared with the
Briggs model (Figure 3.9 through Figure 3.11). These results indicate that the 0.02 m mesh
model is a very good approximation of the Briggs model, but the coarser discretisation
models are not significantly different. The triangular elements are also referred to as
“panels”, a term which will be used later in this thesis.

Flux Distribution Quarter Hemisphere

1.0 —— Briggs Model
—— 0.02m panel size

0.8

0.6
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0.2

0.0

56 58 6.0 6.2 6.4 6.6 6.8 7.0
Flux (molim2/sec) le-12

Figure 3.9: Comparison of ECDF flux values for the 0.02 m mesh model and the Briggs
model (Briggs et al., 2017).
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Figure 3.10: Comparison of ECDF flux values for the 0.06 m mesh model and the Briggs
model (Briggs et al., 2017).
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Figure 3.11: Comparison of ECDF flux values for the 0.12 m mesh model and the Briggs
model (Briggs et al., 2017).
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3.5 Probabilistic Framework

3.5.1 Time-to-Failure Formulation

Based on the above, the amount of HS™ arriving at the ¢th node of the discretised UFC
model per unit time, designated as Njq, is

és e ZACorrﬁ (38)

where AL, and [’s represent the unit area and the effective diffusion length assigned to
the ith node, respectively. Moreover, from Equation 3.4 corrosion depth per unit time for

the ith node d&,,, which is equivalent to corrosion rate, is

. NisfusMey

orr T ] 3 9
¢ AZCorrpCu ( )

Substituting Equation 3.8 into Equation 3.9 leads to a final expression for the corrosion

rate of the ¢th node
i DusCofusMcy

Corr "

legPCu (3.10)
It follows that the time TTF(,,, to fully penetrate, or breach the full thickness, of the
copper coating at the ith node, as a result of sulphide-induced corrosion, can be calculated
by dividing the node-specific copper coating thickness ti,, by the node-specific corrosion

i
rate de,,,:

i CuléPou
TTF.,,, : DinsCo firs Mo (3.11)
Simply put, TTF(,,, represents the ith node time-to-failure. The objective of the baseline
UFC model is to characterise the distribution of TTF, ., specifically the distribution of
the minimum of TTF{, . This is equivalent to characterising the distribution of UFCs
first times to failure.

3.5.2 Multi-level Model Formulation

Inspection of Equation 3.11 informs the reader that in an arbitrary emplacement room,
across the surface of a given UFC, node times to failure are directly proportional to the
products comprising copper coating thickness t&, , effective diffusion length I’g, and a con-
stant defined as pcy/DusCofusMcy. That the expression pey/DusCo fus Mey represents a
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fixed value for a randomly selected UFC, located inside an arbitrary emplacement room,
stems from the assumptions employed in Section 3.3, and is exploited subsequently to
structure a model with multiple levels representative of the proposed DGR configuration
in crystalline rock.

To bring the multi-level framework into sharper focus, consider that for a conceptual
crystalline rock DGR, there are presently 375 buffer boxes assigned per emplacement room
(Noronha, 2016). Based on the assumption that the effective HS™ diffusion coefficient Dyg
varies from buffer box to buffer box, one can define the jth effective diffusion coefficient Diq
(j=1,2,...,375) to represent the effective HS™ diffusion coefficient assigned to the buffer
box surrounding the jth UFC under evaluation. Similarly, by invoking the assumption that
[HS™] normalises with time as steady state diffusion is approached, the argument is made
that at steady state [HS™] is constant for any given emplacement room—but different
from room to room. This is one interpretation of homogeneous (uniform) saturation.
Additionally, for a conceptual crystalline rock DGR, there are presently 36 emplacement
rooms assigned per repository panel (Noronha, 2016). As a result, one can speak of the
kth (k= 1,2,...,36) emplacement room in a repository panel where [HS™] has attained a
steady state, constant value designated by the symbol C¥. Lastly, out of convenience the
quotient pcy/(fusMcu) is replaced by a single symbol K to inform the reader that it is a
constant. Within this framework, Equation 3.11 can be re-written more succinctly as

TTF,, = —* K. 3.12
“ DiCl .

Equation 3.12 provides a means to estimate the time to failure of the ith node of the
jth UFC, in the kth emplacement room, in an arbitrarily selected repository panel. This
framework could be extended to support differentiation of the [th repository panel, but
presently there are only two types of panels (four of each type, eight total), suggesting
limited value in further extending the multi-level framework (though this decision could
easily be revisited). Consequently, for the proposed framework expressed by Equation 3.12,
three levels are in view, Table 3.1.

Level 1—UFC/Buffer Box

Equation 3.12 shows that at Level 1 ¢4, and I’ are the only model parameters subject
to variation. While [’; varies across the UFC surface from node to node, it is not a
random variable: it is predetermined by the UFC and buffer box geometries, which—for the
purpose of this model—remain (sufficiently) constant throughout the repository timescales
of interest. In contrast, t&, is considered to vary randomly across the surface of a UFC. On
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Table 3.1: Multi-level framework for the UFC lifetime model

Level Description Index
1 UFC Node 1
2 UFC/Buffer Box J
3 Emplacement Room k

this basis, one can define X, as the set of all independent and identically distributed (iid)
random variables (RVs) X7 o, Visi=1,2,...,n, where X} ., represents the copper coating
thickness assigned to the ith node from the baseline distribution characterising the expected
thickness tolerance in the coppper coating manufacturing process. For convenience, the
symbol t4, was used earlier to facilitate development of Equation 3.12. Now, it is clearer
if differentiation is made between the baseline distribution for tc,—associated with the
manufacturing process—and the RV Xticm which takes on a value from the baseline t¢,
distribution. Also, this differentiation emphasises that each UFC will possess a collection
Xy, of RVs X7, such that

C
X ={Xi. } Vi;i=1,2,...,n,

with n equal to the number of nodes (equivalently the number of panels) associated with
a particular mesh size. Continuing with Equation 3.12, a new iid RV x may be defined as
the set of all n elements that represent the product X X lig:

N GBS S
X-—{:L‘.l’— tCueH} Vije=1,2,...,n.

The RV z° represents the product of the node-specific copper coating thickness and the
node-specific effective diffusion length. From a time-to-failure perspective, the interest lies
in finding the inputs to Equation 3.12 for which TTF{, , attains its minimum over the
set of all candidate X; —and Ig (i.e., argminy; i {TTF,.}), for a given UFC, in an
arbitrary emplacement room. Consequently, define for Level 1 the RV X to represent the
minimum of the set of all #* for an arbitrary UFC; that is,

Xy:=min(x) = min {X; lg} Viyi=12,... n (3.13)

Strictly speaking, the RV X; should contain the superscript j to demonstrate that it is
assigned to the jth UFC. For reasons to be discussed below, however, the superscript is
not included in the formulation. Also, the unit of X; is m? (i.e., area), but area has no
immediate significance.
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Across an emplacement room X; will vary randomly. While X; is certainly a model
construct, defined to transfer knowledge of Level 1—in the form of a pertinent RV—to the
remaining levels of the modelling framework, it also offers some insight into the factors
that contribute to TTF¢, .. For example, X; may be viewed as a variable that points
to where failure on the surface of an arbitrary UFC will occur first, or where z’ is at a
minimum across a quarter of a hemispherical end-cap. While not immediately useful in
this work, interest in future modelling may lie in locating the point of first release (i.e.,
leak) of radioactive species from a UFC.

Currently, the UFC copper coating processes are electrochemical deposition for the
entire surface and cold spray technology only at the closure welds. A thickness equal to
3.0mm + 1.0/0.0 mm is specified for the UFCs. For modelling purposes, the baseline
distribution for tc,—associated with the preceding manufacturing processes—is assumed
arbitrarily to be adequately described by a Lognormal® function, truncated at the minimum
and maximum values given in Table 3.2. Practically speaking, this is equivalent to stating
that each node on an arbitrary UFC takes on a value from this distribution. Alternatively,
this means that X/ is ~Lognormal, and that for every UFC there exists a collection X,
representing the set of n RVs sampled from the Lognormal Probability Density Function
(PDF) shown in Figure 3.12.

Table 3.2: Assumed values for the UFC copper coating thickness

Description Value (m)

Geometric Mean 3.55 x 1073
Minimum 3.00 x 1073
Maximum 4.00 x 1073

90th Percentile 3.80 x 1073

The computation of X; requires the vector or array associated with the set of I’;, whose
values (along with the magnitude of n) are mesh size dependent. In this work, the optimal
mesh size was determined by examining the mean, minimum, and maximum value of 1000
X, random samples drawn for each mesh size (i.e., 0.02 m, 0.03 m, 0.04 m, 0.06 m, 0.08 m,

3In the early days of formulating the UFC lifetime model, the expected variation in the as-manufactured
copper coating thickness was better explained by the Lognormal function versus, say, the Normal distri-
bution. As time progressed, the expected copper coating thickness variation changed, suggesting that
the Normal distribution would adequately express this variation. However, since all the code had been
developed with the Lognormal distribution in mind, the decision was made to stay with the Lognormal.
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0.10 m, and 0.12 m). The results showed that a reasonable compromise between accuracy
(i.e., statistics similar to those of the smaller mesh sizes) and computational efficiency
(i.e., lowest number of nodes reasonably possible) was achieved for a 0.06-m mesh size.
Consequently, a mesh size of 0.06 m, resulting in n = 255, was adopted for all ensuing
simulations.

To examine the variation in X7, one could restrict attention to a single emplacement
room, but this would yield a sample of size 375 (for 375 UFCs per emplacement room),
which arguably could be subject to sampling distribution variability arising from differences
in Xy, from UFC to UFC. Alternatively, across a single panel in the proposed crystalline
rock DGR there are 36 x 375 = 13000 planned UFCs, which represents a more statistically
valid sample size. Note, one can extend this to include the eight panels planned for the
DGR in crystalline rock (Noronha, 2016), resulting in a total of 8 x 36 x 375 = 108000
UFCs. While this number offers very robust sampling distribution statistics (i.e., sampling
distribution of min(x)), it is considered unnecessarily excessive for the purposes of this
work. To reduce the computational burden while securing a reasonable level of statistical
robustness in the proposed modelling framework, a repository “panel” was chosen as the
representative statistical unit for this model, with a chosen sample size of 10000 UFCs
(instead of 13000) to streamline calculations and maintain a level of independence® from
realised UFC emplacement numbers. Consequently, a sample size of 10000 UFCs was
chosen to assess the distribution of Xj;.

In practical terms, n random samples were drawn using a 1-D Latin Hypercube Sam-
pling (LHS) scheme® (discussed later in this chapter) from the distribution shown in Fig-
ure 3.12. Each draw represented the RV X} .,» Which was assigned to one of the n nodes
on the discretised surface of an arbitrary UFC—1 of 10000 arbitrary UFCs. The resultant
collection X, consisting of n RVs Xj_ , was multiplied element-wise by the (constant)
vector comprising n unique elements [lg Vi. The element-wise product constituted the
set x. Moreover, the minimum of x, Equation 3.13, represented a single realisation from
the postulated X distribution (conversely, the distribution of X; represents the sampling
distribution of min(x)). Repeating this for another 9999 realisations and combining the
results offered an estimate of the X distribution, which is depicted in Figure 3.13. Algo-
rithm 1 provides a basic summary of the process, with X;:={X;}. Gains in computation

4By independence it is meant that the achieved UFC emplacement numbers will vary due to geological
factors encountered during exacavation of the emplacement rooms. Consequently, the number 10000 is
independent of geological factors constraining the number of UFCs and is as equally valid as 13000.

5Sampling of the Lognormal distribution shown in Figure 3.12 did not necessitate a 1-D LHS scheme.
But because it was necessary to do so for subsequent sampling within the proposed multi-level modelling
framework, a decision was made early on in the writing of the computer code to standardise to a LHS
sampling scheme, making slight modifications as required from 1-D to two-dimensional (2-D).
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efficiency were achieved by transforming the “for-loop” structure into matrix operations
and by parallel processing. All scripts were written in Python 3.6.9.

UFC Copper Coating
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Figure 3.12: Postulated copper coating thickness distribution. An arbitrary node/panel of
an arbitrary UFC takes on a value from this distribution. The distribution is Lognormal,
truncated at 3 mm and 4 mm, having the parameters listed in Table 3.2.
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Figure 3.13: Estimated distribution for RV X, based on a 0.06-m mesh size.
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Algorithm 1 Generation of postulated X; distribution

Require: f;,~ Lognorm,{l's}Vi;i=1,2,...,n
1: Initialise variables, arrays: x, X; = 0,0
2: for r in range(10000) do
3: for i in range(n) do
4 X}, <« sample f.,

5: llg < sample {l'g
6: zt— X x Ul

7 x.append(z?)

8 Xy  min(x)

X;.append (X))

10: plot X,
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Level 2—Buffer Boxz/Emplacement Room

From the perspective of an arbitrary emplacement room, Equation 3.12 communicates
that UFC time-to-failure is inversely proportional to the effective diffusion coefficient ex-
hibited by the manufactured buffer boxes. More specifically, for any given buffer box, sur-
rounding an arbitrarily chosen UFC, in any arbitrarily chosen emplacement room, a unique
value for the HS™ effective diffusion coefficient Djjq in compacted bentonite is assumed.
Here, the superscript j denotes the jth arbitrarily selected buffer box (or equivalently
the jth UFC). In fact, when expressed in terms of X;, Equation 3.14, the message con-
veyed is that from the perspective of an arbitrary emplacement room (i.e., the perspective
understands C§ and K are constant) the first UFC to fail (to sustain a 100% through-
coating penetration by sulphide-induced corrosion) occurs when the quotient X/ D{{S is
at a minimum.

X1

TTF,, = —' K.
DiisCo

(3.14)

In keeping with the formulation introduced in Level 1, one can thus define Xp,, as
the set of all iid RVs X{)HS Vi, = 1,2,...,m, where X{)HS represents the effective HS™
diffusion coefficient assigned to the jth buffer box (equivalently the jth UFC), in the kth
emplacement room, from the baseline distribution characterising the expected manufac-
turing variation in Dyg. Similarly, a new iid RV y is defined as the set of all m elements
that represent the quotient X/ X%HS; that is,

y::{yj;yj:Xl/XéHs} Vj’]:]_,Q?,m

Of the m = 375 UFCs located in an arbitrarily selected emplacement room, the first UFC
failure will occur at min {y',y?,...,y™}. Consequently, define for Level 2 the RV X to
represent the minimum of the set of all ¢/ for an arbitrary emplacement room:

Xo=min(y) = min {X1/X}, .} Viji=12...,m (3.15)

While the unit of X5 is time, it does not represent time to failure. Instead, X, indicates
where across an arbitrarily selected emplacement room first failure will occur, or which
UFC fails first. Again, this may become advantageous in future modelling where there
may be interest in locating the region of first radioactive release.

The RV X %HS takes on values from the baseline distribution that will be governed by
many factors, least of which is the large-scale manufacturing route chosen for the produc-
tion of compacted bentonite. For this work, for dry densities in excess of 1500 kg/m?, Dyg
is sourced from SKB’s SR-Site safety assessment data report (SKB, 2010b) and is assumed
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for ambient repository temperatures (i.e., 11°C, Guo, 2017)—actual ambient repository
temperature will be site- and depth-specific. A truncated distribution is assigned for Dyg
by fitting arbitrarily a Lognormal function to the data in Table 3.3. The postulated Log-
normal PDF for Dyg is shown in Figure 3.14. As a result, X%HS ~ Lognormal, and for
every emplacement room there exists a collection Xp,, representing the set of m RVs
sampled from the Lognormal distribution shown in Figure 3.14.

Table 3.3: Assumed values for the effective HS™ diffusion coefficient Dyg in compacted
bentonite

Description Value (m?/yr)

Geometric Mean ~ 3.15 x 10~
Minimum 3.15 x 107°
Maximum 1.89 x 1073

90th Percentile 1.00 x 1073

It is important to pause for a moment and understand the subtle but important differ-
ence in using X; in lieu of X7 in Equation 3.14. The use of X7 restricts the scale of the
problem to 375, 13500, or 108000 UFCs and would unnecessarily add complexity to the
modelling framework (i.e., the tracking on a per UFC basis of the quotient X7 /X %HS) with-
out accompanying statistical gains. Restricting the scale of the problem to 10000 UFCs
offers a generic, independent approach (i.e., the sampling of the X distribution) without
loss of statistical robustness.

Estimating the distribution of X5 requires additional consideration, particularly since
X, is a model construct whose validity rests on the imposed constraint that C§ is constant
across the kth emplacement room. From this perspective, the sampling unit is a single
emplacement room, but to ensure robust sampling distribution statistics (i.e., min(y))
the number of samples is set to 10000—a generic scale restriction. Application wise, this
translates to calculating 3/ by assigning at random an effective diffusion coefficient to X %HS
from the distribution for Dyg, Figure 3.14, while also drawing a single sample from the
X, distribution. The collection y represents the set of all 3/ for a single emplacement
room. Computing X, := min(y) subsequently amounts to drawing a single sample or one
realisation from the distribution for X5. Alternatively, this is viewed as one simulation of an
arbitrary emplacement room. Additionally, to improve the performance of the basic Monte
Carlo sampling technique when sampling from the X; and Dyg distributions, respectively,
a 2-D LHS technique was employed (Groen et al., 2014; McKay et al., 1979). The basic
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Figure 3.14: Postulated distribution for the effective HS™ diffusion coefficient Dyg in com-
pacted bentonite. As part of the Level 2 modelling framework, an arbitrary buffer box (or
UFC) located in an arbitrary emplacement room takes on a single value from this distri-

bution. The distribution is Lognormal, truncated at the lower and upper limits defined in
Table 3.3.

process is described in Algorithm 2. Consequently, after 10000 realisations, the resultant
distribution for X, was estimated, as illustrated in Figure 3.15.

46



Algorithm 2 Generation of postulated X, distribution

Require: fp,~ Lognorm, fx,,m
1: Initialise variables, arrays: y, X, = 0,0
2: for r in range(10000) do
3: for j in range(m) do

4 Xp, ¢ sample fpy
5: X; < sample fx,

6: yj < X1+ X%)HS

7 y-append(y’)

8: Xy < min(y)

9: Xy.append(Xy)

10: plot X,
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Figure 3.15: Estimated distribution for RV X5, based on a 0.06-m mesh size.
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Level 3—Emplacement Room/Panel

For any given emplacement room, within an arbitrarily chosen panel, a unique value for
C¥ (i.e., [HS™] at the buffer box/gap-fill /host rock interface) is assumed. The superscript k
denotes the kth arbitrarily selected emplacement room, of which there are 36 in one panel,
and for which each will with time sustain a first failure of a UFC. Rewriting Equation 3.14
in terms of the RV X, leads to the expression

X5

TTFéOI'I' = C(_(]]g

K, (3.16)
which tells that the first UFC failure occurs when the quotient X,/CF is at a minimum.
Consequently, following the probabilistic framework defined for the previous two levels, one
can define for Level 3 X, to be the set of all iid RVs Xgo Vk:k=1,2,...,q, where Xgo
represents the steady state, constant [HS™] assigned to the kth emplacement room from
the assumed baseline distribution of Cj in crystalline rock. Accordingly, let z be defined
as a new iid RV, representing the set of all z* elements expressed by the quotient X5 /X, 50:

z::{zk:zk:Xg/Xgo} Vk:k=1,2,...,q.

For ¢ = 36 emplacement rooms, the first UFC failure occurs at min(z). Then, as with the
previous levels, let X3 be a new RV defined for Level 3 such that

Xz=min(z) x K = min {Xo/X¢& } x K Vkik=12,....q. (3.17)

The unit of X3 is time, and it represents the time of the first UFC failure among 36
emplacement rooms, or time to first failure TTFY, ... Knowledge of the first emplacement
room to sustain a radioactive leak is ascertained if one tracks which k£ of 36 emplacement
rooms leads to X3. This would be of particular use if Cy was also spatially distributed
within the crystalline rock DGR. In such a case, the formulation may be adjusted to
include differences between repository panel regions (e.g., assuming simplistically that dif-
ferent mean [HS™| apply to each panel). The current guidance from the NWMO (NWMO,
2017) is that the concentration of HS™ within a repository will vary from 0.15 uM (5
ppb) to 2.72 pM (90 ppb), with further specifics provided in Table 3.4. In the present
work, a truncated distribution was assigned to Cj by fitting a Lognormal function to the
specifications provided in Table 3.4. The resultant distribution is shown Figure 3.16.

The distribution of X3 represents the variation in the minimum UFC times to failure and
was estimated by employing a 2-D LHS scheme to draw 10000 simultaneous samples from
the X5 and Xgo distributions, respectively. Algorithm 3 describes the general sampling
process. The resultant distribution is depicted in Figure 3.17.
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Table 3.4: Assumed values for [HS™] in a crystalline rock DGR (NWMO, 2017)

Description ~ Value (uM (ppb))

Median 0.60 (20)
Minimum 0.15(5)
Maximum 2.72 (90)

90th Percentile 1.28 (42)

Algorithm 3 Generation of postulated X3 distribution

Require: fo~ Lognorm, fx,,q
1: Initialise variables, arrays: z, X3 = 0,0
2: for r in range(10000) do
3 for k in range(q) do
4: X¢, « sample fc,

5: Xs < sample fx,
6: 2k Xo+ Xé()

7 z.append(2*)

8 X3 < min(z) x K
9: X3.append(Xs)

10: plot X3
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Figure 3.16: Postulated distribution for the concentration of HS™ found in a crystalline
rock DGR. As part of the Level 3 modelling framework, an arbitrary emplacement room
takes on a single value from this distribution. The distribution is Lognormal, truncated at
the lower and upper limits defined in Table 3.4.
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Figure 3.17: Estimated distribution for UFC first times to failure (i.e., RV X3), based on
a 0.06-m mesh size.
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3.5.3 Time-to-Failure Predictions

The ECDF for the first or minimum UFC times to failure is presented in Figure 3.18.
Corresponding general statistics for the times to first failures are provided in Table 3.5.
From these results, half of the first UFC failures are estimated to occur by 8 x 10° years
following repository closure, which is approximately equal to the mean time to first failure.
The first UFC failure is predicted to occur between 5.42 x 10° to 10.9 x 10® years—a range
of ~ 5.5 x 10° years—after repository closure.
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Figure 3.18: Empirical CDF for UFC first times to failure (i.e., RV X3), based on a 0.06-m
mesh size.
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Table 3.5: Summary statistics for times to first UFC failures (Baseline Model)

Statistic Time (10° years)
Mean 7.84
Median 7.82
Standard Deviation 1.10
Minimum 5.42
Maximum 10.9

3.5.4 Bounding Point Estimate Comparison

A bounding point estimate was calculated using the appropriate extremes of the model
input variables shown in Table 3.6. The bounding point estimate (lower bound) for the
first UFC failure time TT F,;,, is 5.23 x 10% years, which is in very good agreement with the
minimum first time to failure, 5.42 x 10° years, predicted by the current model, Table 3.5.
Increasing the number of realisations from 10000 to 100000, for example, would likely
reduce the observed difference.

Table 3.6: Bounding point estimate verification summary (Baseline Model)

Parameter Units
tin 0.003 m
[min 0.1279221 m
Dyg® 1.89 x 1073 m?/yr
cyer 2.72 uM
Jus 2
My 63.55 g/mole
PCu 8.92 x 106 g/m?

TTFE in 5.23 x 108 yrs

Equivalent Corrosion Rate 5.73 x 1071 m/yr
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3.5.5 Uncertainty and Sensitivity Analysis

In terms of uncertainty, one can only speak of the predicted mean minimum time-to-failure
(7.84 x 10° years) and the associated variance ((1.10 x 10%)? years?). Anything more is
not very meaningful in the context of the present lack of site- and EBS-specific data for
the input parameters associated with a Canadian repository. In terms of aleatory (i.e.,
random) and epistemic (i.e., lack of knowledge) uncertainties, in the present modelling
framework all three input parameters (tcy, Dus, Co) have been treated essentially as random
variables with aleatory uncertainty. There is epistemic uncertainty surrounding both the
distributions chosen for each parameter (model form uncertainty) and the distribution
parameters (second order uncertainty). However, due to lack of site- and EBS-specific data
and limited expert elicitation, epistemic uncertainty concerning the model input parameters
was not given further attention in this work.

The objective of a sensitivity analysis is to decompose the uncertainty (e.g., variance in
TT Foor, (1.10 x 10%)? years?) into its corresponding parts, which are directly associated
with input parameter (e.g., tcy, Dus, Co) uncertainties. In simple words, and in the present
context, sensitivity analysis aims to determine what percent of the uncertainty defined by
(1.10 x 10%)? years? is attributable to each of tcy, Dys, Co. Typically, for deterministic
models—where the same output is obtained for a given set of inputs—one can apply vari-
ance decomposition to examine the influence of input variability on the output variance.
Variance decomposition methods designed to achieve this objective are discussed in Saltelli
et al. (2004, 2008). For the present model, however, the model constructs X;, Xo, and X3
were developed having in mind argming)(TT Fcon) at each level. This confounds the in-
fluence of tcy, Dus, Co on the variance of TT F,,,. Instead, an ad hoc approach is adopted
here to understand how the input parameters under the present multi-level model struc-
ture influence the variability in T7T Fc,... A more detailed analysis is not warranted since
the uncertainties associated with tc,, Dgs, Cp were, to a great extent, chosen arbitrarily to
facilitate model development and may bear no strong resemblance to final as-manufactured
or EBS-related results.

In view of the level-specific argmin . (TT Fcor) approach employed in the curent model,
it was anticipated that the influential region of the input space (i.e., the region that ulti-
mately impacts TT Fcor; ), defined by the 3-D hyperspace, whose axes represent respectively
the domains of ¢y, Dus, Cy, would be smaller—perhaps significantly so—than the available
input space. To assess this assertion, the values for X7 o X%HS, and Xgo, which resulted
in the corresponding values for X7, X5, and X3 and which are effectively a sampling from
the baseline distributions for tc,, Dys, Cy (equivalently, a trajectory from the input space),

were traced throughout the multi-level realisations in the model. For expediency, the num-
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ber of realisations per level in this exercise was limited to 1000 and the mesh size to 0.012 m
(n = 73). The resultant distributions for the traced values for XtiCu, X {)HS, and Xgo, which
contributed to TT Forr, were computed and compared against the starting baseline distri-
butions for tcy, Dus, Co. Additionally, for this exercise only, the effective diffusion length
g was treated as a RV and traced throughout the realisations at each level. A further
comparison was made against times to failure determined using a “naive” approach, where

the explicit multi-level formulation expressed by Equation 3.12 was replaced by

toule
TT Foon = mm{ Curell K} : (3.18)

with all variables treated as distributed parameters, and the distribution for T7T F, 0b-
tained by simple Monte Carlo sampling of the parameters. More specifically, a sample of
size n = 73 was drawn from each of the baseline distributions for tcy, Dus, Cp to compute
a single value (representing a single realisation) for 7T F,,, based on Equation 3.18. This
was repeated until 1000 samples were generated and a distribution constructed.

Figure 3.19 summarises the results in four plots, comprising three distributions for each
of the input parameters tcy, ler, Das, Co. Note that Figure 3.19 uses the following nomen-
clature for the preceding variables: tCu, Leff, DiffCoef, and HSConc. In Figure 3.19,
the distribution defined by the variable with the suffix “ min” represents the resultant
sampling distribution for the variable in question as it is traced through the sampling
of X1, X5, and X3 used in the multi-level “Baseline” model presented thus far. The dis-
tribution for the variable with the suffix “no_level” represents the resultant sampling
distribution of the variable of interest as it is traced through the determination of first
UFC times-to-failure calculated as per Equation 3.18. Lastly, the distribution for the
variable with the suffix “_baseline” represents the initial baseline distributions (i.e., as-
sumed manufacturing-based distributions) used in the formulation of the multi-level base-
line model (e.g., Figure 3.12, Figure 3.14, and Figure 3.16). The results confirm the initial
assertion that the influential input space is significantly smaller than the available space.
But the results also show that this is true only for the input parameters t¢,, Dys, which
sustain a significant reduction in variance, but not for the resultant Cy distribution. This
observation was corroborated by a simple linear regression of 1T F,,, on the traced values
for tcu, ler, Dus, Co associated with X, X5, and X3. The regression (results not shown)
showed that a significant portion of the variance in TT Fg,,, could be explained by the
resultant values for Cy. This is not too difficult to accept since the computation of X3
(Equation 3.17) is the only instance in which the baseline distribution for Cy is sam-
pled. In contrast, the computation of X5 and X3 in effect leads to a re-sampling of the
traced values for X/ o, and X ,]:‘)HS. Therefore, a consequence of the sequential level-specific
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argming(TT Fcon) approach adopted in the present modelling framework is a 77 For
variability that is influenced predominantly by the input parameter Cy, which is the last
input parameter to be directly sampled at the last structural level of the model. This bias,
which links a significant portion of the variance in 7T F, to Cy occurs at the expense of
the narrowing of the influential regions of the respective distributions for tc, and Dys (as
well as l.g when treated temporarily as RV in this exercise).

3.6 Limitations

The obvious limitation of the present model is the assumption that local environmental
conditions affecting the characteristic distributions of the input parameters Dyg and Cj,
including potentially l.g, are time invariant (with the manufacturing distribution for tc,
assumed to be constant over the 30-year DGR emplacement period). While the stability
and predictability of the geosphere is one of the major reasons for placing used nuclear
fuels in a DGR, to assume absolute time-invariance over the timescales of interest may
be found—by some—to be simply too difficult to fully justify. The assumption that the
characteristics/integrity of the copper coating, compact bentonite buffer, and geosphere
lead to time-invariant distributions for t¢y,, Dus, Co, including l.g, is an idealisation that
enables the present model to be structured as shown, but may not be fully compatible
with reality. Unfortunately, formulating expressions that capture sufficiently the stochastic
nature of the input parameters is a challenge that possesses its own set of limitations and
questions.

A more subtle limitation associated with the use of the proposed probabilistic frame-
work is the assumption concerning iid RVs, which is not likely to be correct in all cases.
Factors that may invalidate the assumption of iid include spatial and time-dependent vari-
ation of temperature across an emplacement room, potential localised effects from discrete
fracture networks in the geosphere, which may influence saturation times and flow of nu-
trients that support SRB growth, and other localised factors that may be susceptible to
time-variant effects (e.g., characteristics of bentonite buffers) because of the +30-year op-
eration life of the DGR (Noronha, 2016). Copper coating thickness may also be correlated
with specific regions of the UFC where geometrical factors during electrodeposition lead
to certain biases (autocorrelations) in the coating thickness. Consequently, spatial varia-
tions in copper coating thickness may need to be modelled more specifically. As more data
becomes available, the impact of the iid assumption can be better assessed.

Notwithstanding, the proposed model offers the user a considerable degree of flexbility
to experiment with competing understandings of how the input parameters are distributed
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Figure 3.19: (a) Sampling distributions for tCu_min, tCu_no_level, and tCu_baseline
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Figure 3.19: (b) Sampling distributions for Leff_min, Leff no_level, and Leff_baseline
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(d) Sampling distributions for HSConc_min, HSConc_no_level, and
HSConc_baseline
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locally and spatially, DGR layout, etc. With additional effort, the model can also be used
to simulate random initiation of radioactive leaks both in time and space across a DGR.

3.7 Summary

A UFC lifetime model has been developed to represent the current understanding that
sulphide-induced corrosion of a copper-coated UFC in a conceptual DGR will be mass-
transport-limited, with corrosion depth predicted simply by mass balance. A probabilis-
tic framework was constructed to utilise Monte Carlo methods within a 1-D, multi-level
representation of the sulphide-induced corrosion mechanism postulated for the proposed
crystalline rock DGR. Within the model construct and associated assumptions, the model
predicts that 50% of UFC first failures will occur by approximately 8 x 10° years after
placement®, with all first failures occurring by roughly 11 x 10° years after placement.

6The statements “following repository closure” and “after emplacement” are, for the purposes of this
work, synonymous. While the NWMO presently targets an operational life of approximately 30 years for
the repository (Noronha, 2016), in the context of the timescales of a DGR the time from individual UFC
placement in an emplacement room to final repository closure is interpreted to be insignificant by this
author.
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Chapter 4

Effect of Latent Defects and
Repository Temperature

This chapter extends the baseline model developed in Chapter 3 by examining the effect
on UFC lifetimes of both latent defects in the UFC copper coating and potentially higher
than baseline corrosion rates during the temperature transient postulated for the DGR.
Section 4.1 details the probabilistic approach applied to latent copper-coating defects,
concluding with a simple sensitivity analysis to compare the effect on UFC first times
to failure. Section 4.2 describes the higher corrosion rate formulation and compares the
combined effect of latent defects and high corrosion rates on UFC lifetimes against baseline
results. The chapter concludes with a summary, Section 4.3.

Continuing with the generic problem statement introduced in Chapter 3, this chapter
seeks to solve for the time to failure ¢ in the following two generic failure conditions:
h — Xgia — X(t 4+ t7)|Xaer = 1] < 0 and [h — X (¢t + t7)| X4y = 0] < 0, whichever is
applicable, with X (¢t + t7) = R x t + Ry x tr. Here, Xy, represents the diameter of a
latent defect, X5 represents a RV that takes on values 1 or 0, signifying the presence or
not of a copper coating defect, Rr is the elevated degradation rate during the postulated
temperature transient, and t7 is the transient duration during which the degradation rate is
elevated above baseline. As before, the generic problem statement helps to understand the
objective of this chapter. Actual implementation is more complicated because the ensuing
formulation must integrate with the probabilistic framework developed in the preceding
chapter.

The precise problem statement addressed by this chapter is to characterise the distri-
bution of first times to failure for UFCs placed in a crystalline rock DGR when provision
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is made to account for potential copper coating defects and high corrosion rates due to
higher than baselines temperatures sustained by the UFC during the postulated tempera-
ture transient.

4.1 Latent Defects Model Formulation

To account for the potential for subsurface defects within the UFC copper coating, the
approach taken in the present modelling framework is to treat each UFC as a Bernoulli
RV, designated as Xgof, where “def” denotes a coating defect. Two outcomes are possible:

1, if UFC is defective,

. . . (4.1)
0, if UFC is not defective,

Xaer ~ Bern(p) = {

where p is the probability of defect, or equivalently that a single UFC contains at least
one copper coating defect (synonymous with stating that a UFC is defective). For the
Bernoulli RV X, the Probability Mass Function (PMF) is the special case of the Binomial
distribution with £ = 0,1; N = 1, Bin(N, p)

4.2
1—p, ifk=0. (42)

P(Xdef — k) — <]Z)pk<1 _p)N—k _ {p7 if k= 17

The probability of a defective UFC (i.e., defect-bearing UFC coating) is handled in

a manner similar to Doubt (1984) and Johnson et al. (1994), where the probability of a
defect, p, is also treated as a RV. In the present work, a Lognormal distribution is assumed
for p, with the distribution truncated at the minimum (1 in 10000) and maximum (1 in
1000) probabilities as per the guidance offered in Doubt (1984) and Johnson et al. (1994).
Additionally, for the present model, the general shape of the Lognormal distribution was
chosen to coincide with a pre-selected geometric mean and 90th percentile. In the absence of
more recent (or relevant) inspection data for electrodeposited copper coatings on large-scale
structures, the approach adopted herein was to choose the geometric mean to reflect the
belief that Non-destructive Examination (NDE) techniques will lead to a lower likelihood of
subsurface-defect-bearing UFCs (i.e., closer to 10~%), with higher probabilities of defective
coatings (i.e., at 1073) observed at much lower frequencies. This belief, which is entirely
arbitrary, is expressed in Table 4.1. The resultant distribution for p is shown in Figure 4.1.
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Table 4.1: Postulated distribution parameters for p, the probability of a defective UFC

Description Value

Geometric Mean 1.5 x 1074
Minimum 1.0 x 107*

Maximum 1.5 x 1073
90th Percentile 5.0 x 1074

Probability of a Defective UFC

Truncated -
Lognormal

— Lognormal

6000

5000

4000

T
E 3000

2000

1000

D - -
I I I I I I I
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012
Probability, p

Figure 4.1: Postulated distribution for the probability p of a defective UFC.
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As of the time this part of the UFC lifetime model was in development, there was no
data available for the distribution of defects expected in the nominally 3-mm thick elec-
trodeposited copper coating. However, the NWMO position at the time (Kremer, 2017)
indicated that, while work was ongoing, the maximum diameter of a latent subsurface
defect was not expected to exceed 0.8 mm, with 100% detection anticipated for both
surface-breaking defects and defect diameters greater than 0.8 mm. For the purpose of
this model, a right-tailed Lognormal distribution for defect diameters is assumed, having
a geometric mean located near the lower end of the range of diameters to reflect obser-
vations for some engineering materials where grain sizes and porosity typically follow a
right-tailed, distribution (sometimes Lognormal). The foregoing implies that most of the
subsurface coating defects are postulated to be at the low end of the distribution range,
with larger defects (i.e., 0.8 mm) seldom observed. Accordingly, the geometric mean and
the 90th percentile were chosen to be 0.15 mm and 0.35 mm, respectively, Table 4.2. The
corresponding truncated Lognormal distribution is shown in Figure 4.2.

Table 4.2: Postulated UFC copper coating subsurface defect diameters

Description Size (m)

Geometric Mean 0.15 x 1073

Maximum 0.8 x 1073
90th Percentile 0.35 x 1073

With the aforementioned distributions defined, it is possible to frame the problem of
the effect of defects in a probabilistic framework. Following the approach from the previous
chapter, a subsurface defect diameter is subsequently defined as an iid RV, designated X};,,
and randomly assigned to the ith node on a UFC if the Bernoulli RV X is equal to 1. This
is accomplished by sampling from the corresponding PMF, Equation 4.2, with p randomly
sampled from its parent distribution, Figure 4.1. More succinctly, when Xgof = 1 the net
copper coating thickness is equal to Xj — X, with X; sampled as per section 3.5.2
and X}, from its parent distribution, Figure 4.2. Consequently, the net copper coating
thickness, chu — X%, replaces XfCu in Equation 3.13. Otherwise, if Xgor = 0, X, = 0.

The foregoing procedure randomly assigns a subsurface defect diameter to all nodes
on a UFC if X4 = 1. Such a methodology does not differentiate between latent defects
with varying propensity to occur at any node (or at all nodes) on a discretised UFC
surface. Instead, the approach adopted here is to conservatively assume that a defective
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Figure 4.2: Postulated distribution for subsurface defect diameters for a defective UFC.

UFC implies defects present throughout the copper coating. However, since the proposed
defect sizes are relatively small and perhaps more representative of inherent porosity in
coatings, the position taken in the present modelling framework is that latent defects can be
approximated in a manner akin to simulating widespread porosity. For latent defects that
result from external or Foreign Object Damage (FOD), the arbitrary assignment across
the entire surface is not likely to be very representative of reality. Damage arising from
FOD—if it were to occur—is anticipated to arise at vulnerable areas of the UFC, such as
contact points during loading/unloading and extremities of the UFC subject to inadvertent
contact during transport to the emplacement rooms. Further, FOD would likely require
a different distribution and a different interpretation of size, depth, and spatial coverage.
But a similar framework may be developed to allow for its incorporation into the present

67



model.

As a result of the above, to account for the effect of subsurface coating defects, which
results in a net copper coating thickness at the ¢th node Xfcej, the earlier formulation for
RV X, becomes

Xy:=min(x) = min { X" llg} Vi;i=1,2,....n, (4.3)
where
Xpoti= Xy, = Xg Vi1 =12, (4.4)

When a UFC is not defective, X} is simply X7_ .

Figure 4.3 shows the resultant distribution of X; when defects are assigned to a UFC
with probability p. When compared with Figure 3.13, the resultant plot demonstrates
that at 10000 realisations (simulations in the figure) and with the assumed distribution for
p, a limited number of observations occur to the left of the distribution. Increasing the
number of realisations to 100000, or greater, would result in more observations to the left
of the distribution and would be more relevant for safety assessments since presently 96000
UFCs are estimated for permanent storage within a Canadian DGR!. For the purpose of
showing the utility of the present model, however, the current number of realisations is
deemed adequate. To derive distributions for RVs X5 and X3 for the baseline model, the
same methodology described in section 3.5.2 is followed. The only exception is that due to
the sparseness of the left tail of the X, distribution, the sampling scheme to estimate X,
(and subsequently X3) was changed from LHS to stratified random sampling with Neyman
allocation (pg 24 Kalton, 1983).

'Nominally, 108000 UFCs are slated based on the number of panels, but a fraction of the panels will
not have 100% space utilization due to a potential need to seal hydraulically conductive fractures.
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Figure 4.3: Estimated distribution for RV X;, based on a 0.06-m mesh size and with
probability p of subsurface defects modelled by a right-tail Lognormal distribution.
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4.1.1 Time-to-Failure Predictions

Figure 4.4 illustrates the distribution of first times to failure (i.e., RV X3) for UFCs with
finite probabilities of subsurface defects. Accompanying summary statistics are included in
Table 4.3. When compared with the results for no defects (Table 3.5, Figure 3.17), subsur-
face defects less than 0.8 mm in diameter, which exhibit a right-tail Lognormal distribution,
have a noticeable but not significant effect—relative to repository timescales—in reducing
the first times to failure. More specifically, the mean (7.84 x 10° years) and standard
deviation (1.08 x 10° years) are—at two significant digits to the right of the decimal—
unchanged, but the minimum time to first failure (5.00 x 10° years), when compared with
the baseline model, is reduced on average by approximately 8% or 420000 years, at two
significant digits to the right of the decimal. The observed reduction in minimum first
times to failure is considered a real, “on average” effect as the random seed used in the
computer simulations was kept constant throughout all evolutions of the model.

Table 4.3: Summary statistics for times to first UFC failures (Defect Model)

Statistic Time (10° years)
Mean 7.84
Median 7.82
Standard Deviation 1.08
Minimum 5.00
Maximum 10.96

4.1.2 Bounding Point Estimate Comparison

A bounding point estimate was calculated using the appropriate extremes of the model
input variables shown in Table 4.4, including the smallest copper thickness ¢ after
accounting for the largest defect diameter 0.8 mm, the minimum effective diffusion length
[ the maximum effective diffusion coefficient for HS™, D7é*, and the maximum [HS™],
C*. The bounding point estimate (lower bound) for the first times to failure TTF,,,;, is
3.84 x 108 years, which while noticeably less is still the same order of magnitude (5.23 x 108
years) predicted by the baseline model, Table 3.6. From an equivalent corrosion rate
perspective, the difference is again noticeable but of the same order of magnitude, 7.81 x
1071 m/yr with probabilised defects versus 5.73 x 1071 m/yr without.
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Figure 4.4: Estimated distribution for RV X3, based on a 0.06-m mesh size and with
probability p of subsurface defects modelled by a right-tail Lognormal distribution.

4.1.3 Uncertainty and Sensitivity Analysis

Subsurface defects are expected to fall under aleatory uncertainty, with the form of the
distribution and corresponding parameters exhibiting epistemic uncertainty. The shape
of distribution in the present model (i.e., right-tail Lognormal) was entirely subjective
but loosely based on the author’s personal experience with other metallurgical processes.
Changing the distribution form and parameters may lead to very different results. To
explore this, a two-parameter Weibull function was selected for the defect diameter distri-
bution, with a median and 90th percentile equal to 0.6 mm and 0.7 mm, respectively. The
shape of the distribution essentially clusters the defect diameters towards the higher end
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Table 4.4: Bounding point estimate verification summary (Defect Model)

Parameter Units
tin 0.0022 m
[rin 0.1279221 m
Dyg® 1.89 x 1073 m?/yr
cyer 2.72 uM
Jus 2
Mcy 63.55 g/mole
PCu 8.92 x 108 g/m?

TTFE in 3.84 x 108 yrs

Equivalent Corrosion Rate 7.81 x 1071  m/yr

of the assumed range, Figure 4.5, which is opposite to the right-tail Lognormal distribu-
tion of defect diameters assumed for the present defect model. Using the left-tail Weibull
distribution, a revised distribution for RV X3 was computed with 10000 realisations, Fig-
ure 4.6. Corresponding summary statistics are included in Table 4.5. An 8% reduction
on average in the minimum first times to failure, which is equal to approximately 400000
years, is observed when compared with the results derived from the right-tail Lognormal
distribution for defect diameters.

Table 4.5: Summary statistics for times to first UFC failures (Weibull Defect Model)

Statistic Time (10° years)
Mean 7.79
Median 7.79
Standard Deviation 1.10
Minimum 4.60
Maximum 10.82
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Figure 4.5: Postulated left-tail Weibull distribution for subsurface defect diameters for a
defective UFC.

4.2 Repository Temperature Model Formulation

Similar to the methodologies employed by Johnson et al. (1994); Shoesmith et al. (1995,
1997), variation in cooling rates across a DGR may be modelled by creating two temper-
ature zones, Figure 4.7, with corresponding temperature profiles, Figure 3.1, associated
with an arbitrary point on the UFC surface (Guo, 2017). Two temperature zones is a
simplification of actual temperature variations anticipated in the DGR but is consistent
with the work presented in Guo (2017). The four interior panels comprise the high temper-
ature zone (Zone I), or the zone for which cooling rates are lower than in other placement
rooms in the DGR, and, therefore, UFCs in Zone I would sustain high temperatures (or
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Figure 4.6: Estimated distribution for RV X3, based on a 0.06-m mesh size and with
probability p of subsurface defects modelled by a left-tail Weibull distribution.

dry-out periods) for a longer period of time than other UFCs in the DGR. The four exte-
rior panels comprise the low temperature zone (Zone II), or the zone for which the cooling
rate is higher than the placement rooms in Zone I. For the present work the UFC surface
temperature profile at Panel F (Zone II) is considered.

Inflow of groundwater during saturation will be characterised by higher than ambi-
ent temperatures and will commence at different times for each of the two temperature
zones due to differences in cooling rates. Consequently, the effect of higher than ambient
temperatures in the advancing groundwaters will be reflected in higher porewater effective
diffusion coefficients for HS™. The effect of temperature on the diffusivity of ions in clays
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Figure 4.7: Simplified temperature zones within a hypothetical crystalline rock DGR
(Noronha, 2016).

has been demonstrated by Mon et al. (2016) and Rowe et al. (2005) to be reasonably
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approximated by the temperature correction applied to free-water diffusion:

D _ T (4.5)

Dy, Tin;
Equation 4.5 is the well-known Einstein-Stokes equation (Einstein, 1905) for a spheri-
cal particle under Brownian motion, with (absolute) temperatures T;,7T;, temperature-
dependent diffusion coefficients Dr,, Dt;, and the temperature-dependent dynamic or
kinematic viscosity of water 7;,7;, all associated with repository time periods %, ;. For
the present model, the effect of temperature on the effective diffusion coefficient of HS™
in bentonite buffer pore water is approximated by applying the correction proposed by
Equation 4.5, with dynamic viscosity of water determined as per Huber et al. (2009). This
approach was employed by Briggs et al. (2017) and more recently by Rashwan et al. (2022).
To simplify computation, additional assumptions and approximations are employed as dis-
cussed below.

The near-field is assumed to attain full saturation by the time UFC surfaces reach peak
temperature in Panel F (i.e., at approximately 83°C), which presently is estimated to occur
roughly 50 years after repository closure. From a modelling perspective, this translates to
effectively starting simulations approximately 50 years after repository closure, an error
which is inconsequential relative to repository timescales and ignored in the calculations of
UFC minimum times to failure. Additionally, the expected temperature gradient from the
hotter UFC surfaces to the colder regions of the emplacement room walls is ignored, and the
temperature to which the bentonite clay buffer is elevated as hydrogen sulphide ions diffuse
from the geosphere to the UFC surfaces is taken as the estimated, time-dependent UFC
surface temperature, Figure 3.1 (Panel F'). This is a conservative assumption. Lastly, a step
function is used to approximate the UFC surface cooling profile presented in Figure 3.1
(Panel F) over the range from peak temperature to ambient conditions. A correction factor
derived from Equation 4.5 is applied subsequently at each temperature step for the step
duration. Correction factors and time-temperature steps employed in the modelling are
included in Table 4.6. Note, the correction factor is applied to the randomly drawn effective
diffusion coefficient for HS™.

The multi-level probabilistic formulation developed in Chapter 3 cannot be directly
applied to account for temperature effects without some modification. In particular, the
variable of interest at each time step is now the corrosion rate, or more specifically, the total
corrosion damage (i.e., equivalent depth) sustained during each time-temperature step.
Corrosion rate can be expressed using Equation 3.9, modified to account for the multi-
level framework. Moreover, because the objective is first times to failure, the maximum
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Table 4.6: Step function approximation of cooling curve on UFC surface, Panel F

Time  Start End Step  Temp Temp  Viscosity  Correction

Step  Time  Time Length (°C) (°K) Factor

r t,
(vears) (years) (years) (8r)

1 44 100 56 83  356.15 0.0003425 4.800
2 100 230 130 75 348.15 0.0003785 4.246
3 230 200 270 70 343.15 0.0004046 3.915
4 500 900 400 66  339.15 0.00042804 3.657
) 900 1700 800 61 334.15 0.00046038 3.350
6 1700 3750 2050 24  327.15 0.00051294 2.944
7 3750 7000 3250 48 321.15 0.0005667 2.616
8 7000 11000 4000 42 315.15 0.00063006 2.309
9 11000 17000 6000 35  308.15 0.0007191 1.9789
10 17000 25085 8085 27 300.15 0.00085304 1.6249
11 25085 35100 10015 21 294.15 0.00097964 1.386
12 35100 45118 10018 16 289.15 0.00111104 1.201
13 45118 55134 10016 14 287.15 0.00117204 1.131
14 55134 65150 10016 12 285.15 0.00123952 1.062
15 65150 75167 10017  11.5 284.65 0.00125639 1.046
16 75167 85184 10017 11 284.15 0.00127326 1.030
17 85184 95200 10016  10.5 283.65 0.00129013 1.015
18 95200 100210 5010 10 283.15  0.001307 1

T

rr’

X9 XE fusMe
X = max{ D ¢y s } (4.6)

corrosion rate, labelled X 7" is the real variable of interest:

d T 3
e léﬂpru

The maximum corrosion rate Xj** is a RV and represents the quotient of the product
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of two RVs (X éHS and X§ ) and Ilg, multiplied by a constant (fusMcu/pey). With X740
known, the total corrosion depth, labelled Xg¥ ., can be determined by multiplying the
maximum corrosion rate for the rth time-temperature step by the time length ¢, of the rth
step; that is,

max max

depthr = Xgo X tr- (4.7)

Consistent with the previous formulation, Equations 4.6 and 4.7 identify two RVs of in-
terest, representing respectively the maximum corrosion rates and depths for a given time
step r. Separating out the components in Equation 4.6 that contribute to the overall cor-
rosion rate allows use of the multi-level framework. For instance, a cursory inspection of
Equation 4.6 reveals that from among the equation parameters, at the UFC level (i.e.,
Level 1), only the effective diffusion length I’ varies (deterministically). This means that
one must look beyond Level 1 to account for the variation in relevant properties within an
emplacement room that contribute to maximum corrosion rates. More specifically, within
a given emplacement room the only components of Equation 4.6 subject to variation are
X ]j)Hs and ['z. Further, Equation 4.6 informs the reader that the maximum corrosion rate
in any given emplacement room will occur on the UFC where the quotient X%HS Jlig is
a maximum, since all other equation parameters are constant. An understanding of the
levels in a DGR as discussed in Chapter 3 suggests that the maximum corrosion rate in an
arbitrary emplacement room always occurs where [ is a minimum regardless of the value
of X%HS. That this is clear, one needs only to consider an arbitrary emplacement room
with 375 UFCs, each of which are surrounded by a single buffer box that takes on a single
value (i.e., from section 3.5.2 the RV X gHS is assigned a value randomly) from the baseline
distribution for Dys. Of all possible values across a single UFC (i.e., a fixed j) which the
quotient X{)HS/ Il assumes, the maximum occurs at the minimum [%;Vi. Extending this
across all 375 UFCs in an arbitrary emplacement room, it is easy to see that the maximum
value for X})Hs/lf;ﬁc Vi, j occurs at the maximum of the set {X%)HS Jmin {lig}}.

To account for the effect on temperature, the correction factor 3, from Table 4.6 is
applied to X%HS. Therefore, for any arbitrary emplacement room, at time step r, corre-
sponding to a cooling period during a temperature transient, the maximum corrosion rate
occurs at maz {8, X éHS /min{liz}}. Define for Level 2 the RV Y7 such that

min

5 Xp -
Yy = mazr { — Vij=1,2,...,375. (4.8)
eff

Equation 4.8 may be interpreted to mean that for any given emplacement room, the max-
imum corrosion rate will always occur at the jth UFC where X IJDHS is maximum among all
assumed (assigned) values and at the node associated with [7#". This is true regardless of
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f3,. Both S, and ["¥™ are constants for any time step r in Equation 4.8. The RV Y] points
to where the maximum corrosion rate occurs—both in an arbitrary emplacement room and
locally on the UFC sustaining the highest rate of corrosion. This does not mean that the
first failure will occur here, however. A subtle but important point to understand.

Extending the above formulation to Level 3, by bringing the RV Y into the context of
Equation 4.6, one can re-define Xj'™* as Y7,

Y7 XE Mcy
Yy = maa:{ 2 COfHS ¢
PCu

} Vi k=1,2,...,36. (4.9)

With Equation 4.9, the interpretation becomes clearer such that for any given panel, the
maximum corrosion rate will occur at the kth emplacement room associated with the
greatest [HS™], at the jth UFC with largest ijjHS, and at the node associated with 74"
As before, this does not mean that the first failure will occur here because (net) copper
thickness varies across the UFC and may not necessarily be at a minimum at the node

corresponding with (74"

To employ Equations 4.8 and 4.9, one needs to step through each time step, estimating
at each time step the distribution of Y3 and multiplying the same by the length of the time
step t, from Table 4.6 to obtain an estimate of the maximum corrosion sustained during
the time step. Accordingly, Equation 4.7 becomes

Xpas = Y] xt,. (4.10)

Consequently, the total maximum corrosion damage X{it ioa1, Sustained by the end of
the cooling period, is given by

g’égfh total - Z Yr X tp. (411)

At each time step, a LHS scheme was employed with 10000 realisations to estimate Y3 and
Y3, similar to the approach used in section 3.5.2. The estimated distribution for X5 (.
is depicted in Figure 4.8.

Once the cooling period is complete, the estimation of first times to failure can be
determined by following the methodology described in section 3.5.2. The only exception
is that now there is a correction to the RV X; defined in Equation 3.13 to account for
the total “accelerated” corrosion damage sustained during the cool down. Consequently,
also taking into the account the potential for coating defects (Equation 4.3), the effect of
temperature on X; may be expressed as follows:

X1:=min(x) = min {(X]" — X729 a)leg)  Visi=1,2,....n, (4.12)

tou
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Figure 4.8: Estimated distribution for RV X@0% ..}, representing the distribution in the
total maximum corrosion depth at the end of the cooling period, for a 0.06-m mesh size.

where n is the number of nodes associated with the mesh size. With the potential for
defects—and subsequently sparsely populated long left-tail distributions for X; and X,—
stratified random sampling with Neyman allocation was applied to Equation 4.12, along
with the rest of the methodology described in section 3.5.2. To be consistent, compu-
tations for net copper thickness were carried out using the right-tail Lognormal function
representation for the defect diameter distribution.

80



4.2.1 Time-to-Failure Predictions

Figure 4.9 illustrates the resulting first times to failure, with the summary statistics pro-
vided in Table 4.7. The results show that for the short cooling period defined by Figure
3.1, the combined effect of temperature and subsurface defects leads to a further reduc-
tion, on average, of approximately 400000 years on UFC first times to failure, which is
approximately equal to the effect of subsurface defects alone (right-tail Lognormal rep-
resentation). When compared with the minimum UFC lifetime predicted by the baseline
model (i.e., 5.42x10° years, Table 3.5), the effect of temperature alone represents a decrease
of approximately 7.4% on average in predicted minimum UFC lifetimes.

Table 4.7: Summary statistics for times to first UFC failures (Defect & Temperature Effect
Model)

Statistic Time (10° years)
Mean 7.65
Median 7.65
Standard Deviation 1.12
Minimum 4.60
Maximum 10.71

4.3 Summary

Incorporating latent defects into the baseline model leads naturally to shorter predicted
UFC first times to failure, but the reduction in UFC lifetime is not too significant relative
to DGR timescales of interest. This is in part attributed to the assumed distribution shape
for defect diameters, which only becomes a significant factor in reducing UFC lifetimes—in
the order of 800000 years—when a more pessimistic outlook on the distribution of defects is
assumed (e.g., left-tail Weibull). The simple evaluation of epistemic uncertainty associated
with the chosen distribution for defect diameters underscores the need to better characterise
coating defects. While not assessed in this work, the distribution for p—the probability
of a defective UFC coating—is a significant factor in determining the fraction of early
UFC failures. Therefore, the fraction and timing of early failures will be governed by the
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Figure 4.9: Estimated distribution for RV X3, based on a 0.06-m mesh size. The distribu-
tion accounts for the probability p of subsurface defects modelled by a right-tail Lognormal
distribution and temperature effects causing accelerated corrosion damage during a cooling
period.

respective distributions chosen for p and defect diameters. Admittedly, a gap in knowledge
exists concerning p as it pertains to UFC electrodeposited copper coatings, particularly
within a large-scale manufacturing setting. Latent defects are not limited to subsurface
coating defects, however, though this was the interpretation applied in the present model.
In one respect, the interpretation of latent defects as being similar to coating porosity,
for instance, precludes the use of p since it may be argued that all copper coatings will
have porosity to varying degree (i.e., it is inherent to both the electrodeposition and cold
spray processes). Although this is a valid perspective, the intent here was to develop a
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framework that would allow for the incorporation of defects; and this was accomplished
irrespective of the nature of the defects. But more work is required if there is a need to
account for spatial variability such as the propensity for defects to manifest or cluster at
specific surface regions of a UFC.

Latent defects can take the form of FOD introduced to the UFC surfaces on route from
encapsulation to placement. In fact, FOD may result in defects that are effectively greater
in depth than the maximum assumed subsurface coating defect diameter (i.e., 0.8 mm) not
detectable by present NDE methods planned immediately following electrodeposition. The
potential for latent defects due to FOD needs to be adequately assessed along the entire
manufacturing-placement process route.

Under the present assumptions concerning the distributions of p and defect diameters,
increasing the number of realisations from 10* to at least 10° would likely give rise to
shorter UFC first times to failure. This point was made clear by the bounding (lower
bound) point estimate results, where it was evident that the bounding point estimate was
still noticeably lower than the predicted minimum UFC lifetime at 10* realisations though
still within the same order of magnitude. Given the chosen distributions for p and defect
diameters, and the multi-level probabilistic framework, it is anticipated that a significantly
large number of realisations (e.g., > 10°) would be required to approach the lower bound
point estimate. The lower bound point estimate may be seen as a rare event, however.

The effect of temperature on UFC lifetimes was explored using a simple correction
applied to the effective diffusion coefficient for HS™ based on the Einstein-Stokes equation.
Several additional simplifying yet overall conservative assumptions were incorporated to
permit computational estimates of UFC lifetimes under the effect of temperature. For
the cooling period duration anticipated in a hypothetical Canadian crystalline rock DGR,
temperature decreased the minimum UFC lifetimes by approximately 400000 years and
had an equivalent effect to that of latent defects represented by a right-tail Lognormal
distribution. Relative to the baseline model, the effect of temperature on average leads to
an approximate 7.4% reduction in the predicted minimum UFC lifetime. This result is lower
than that reported by Briggs et al. (2017), who estimated a 12% increase in the flux of HS™
arriving at the surface of the UFC over a timespan of 10° years when incorporating the effect
of repository temperatures via the Einstein-Stokes equation. A possible explanation for this
discrepancy is the fact that the repository temperature profile used by Briggs et al. (2017)
was stated by the authors to over-predict the expected temperatures in the time interval
from 200 to 2000 years, which is when the correction factor is relatively large. Assuming
the approach employed to quantify the effect of temperature is reasonable, temperature
can be seen as a contributing factor to reduced UFC lifetimes but one that is potentially
less significant than latent defects, depending on the actual defect distribution.
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Chapter 5

Stochastic Process Model

This chapter presents a stochastic process model to approximate pitting corrosion in the
copper coating of UFCs. Pitting corrosion is assumed plausible during the brief oxic
period postulated for the DGR environment. The chapter unfolds in the following way.
A brief literature review of different stochastic processes used to model pitting corrosion
is provided in Section 5.1, with an emphasis on the more prevalent approach. Introduced
in Section 5.2 is the surrogate data employed in the model fitting. The chapter then
turns to development of the stochastic process model, which requires two steps. The first
formulates an expression to approximate the intensity of the pitting process in terms of
occurrence and magnitude of pit depths consequential to UFC lifetimes. The NHPP and
the GPD, with a POT framework, are employed in this step. The second incorporates the
aforementioned intensity function into a first-order NHMP for the purpose of estimating pit
depth distributions at some time ¢, representing the length of the oxic period. Estimation of
pit depth distribution occurs by the propagation of an initial pit depth distribution across
a Markov chain. The two steps are detailed in Section 5.3 and Section 5.4, respectively,
with model efficacy demonstrated in Section 5.4. Assignment of relevant pit depths onto
the surface of a UFC is covered separately in Section 5.5. Section 5.6 compares the results
of the baseline model (Chapter 3) with that resulting from the combined effect of sulphide-
induced and pitting corrosion. For completeness, this section also compares the more
traditional extreme value statistical approaches for modelling evolution of pit depths with
the present results. Lastly, Section 5.7 provides a brief summary of the chapter. The
problem statement addressed in this chapter is to characterise the distribution of extreme
pit depths for an arbitrarily selected time span, which is an approximation to the length of
the oxic period in the DGR, and to determine subsequently a means to assign pit depths
to a UFC for estimating lifetimes.
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5.1 Brief Literature Review

Historically, stochastic processes used to model pit growth, or the growth of corrosion
defects, include the stationary Gamma process (Cheng and Pandey, 2012; Zhang and Zhou,
2013), the Fokker-Planck process (Camacho et al., 2011), the inverse Gaussian process
(Zhang et al., 2013), the geometric Brownian motion process (Zhang and Zhou, 2015), and
the It6 linear stochastic process (Fontes et al., 2015). The Markov process, however, seems
to be the most popular approach. A detailed literature review of pit growth modelled as a
Markov process is found in Appendix A. Here, only a brief summary is provided.

Since Provan and Rodriguez I1I (1989), who appear to be the first to apply the Markov
process—specifically a Markov chain—to pit growth, a host of authors such as Caleyo
et al. (2009); He et al. (2019); Hong (1999a); McCallum et al. (2014); Ossai et al. (2016);
Timashev et al. (2008); Valor et al. (2007, 2010, 2013); Xie et al. (2018) have applied the
Markov process to pitting corrosion, corrosion defects, or environmentally-induced wear.
But the approach put forward by Valor and colleagues has gained the most traction, being
adopted entirely, or in part, by He et al. (2019); McCallum et al. (2014); Ossai et al. (2016),
each with varying degrees of success.

What sets the work by Valor and colleagues apart is the simplicity with which a key
process parameter is determined. Very briefly—as this is discussed in much more detail in
the sections to follow, a Markov chain is used to model a process, whose possible states are
represented by the points where the chain links connect. The process is said to transition
from state to state along the chain, with a rate or intensity of transition (also called the
intensity function) determined by a single parameter, often labelled A (or A(¢) if time-
dependent). Without this parameter, a Markov chain cannot be employed. In addition to
justifying the use of a Markov chain to model the evolution of a process, the major challenge
facing a modeller is the determination of A. If there is sufficient process data, time-
independent A may be obtained by solving sequentially a system of differential equations
governing the state probabilities. When A is a function of time, the functional form is
required a priori. Until Valor et al. (2007), the formulations proposed for A(¢) in earlier
works were complicated and lacked physical justification or clear basis. Instead, Caleyo
et al. (2009); Valor et al. (2007, 2010, 2013) proposed two formulations!:

1. M(t) = xwt“~!, where Weibull parameters x and w are determined through the
minimisation of an error function comprising—in a very general sense—the difference

! Alma Valor is a co-author in Caleyo et al. (2009) and very likely the inspiration behind the formulations
for A(t) presented in Caleyo et al. (2009).
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in mean and variance of a limiting form of the cumulative distribution function for
pit depth maxima and the Gumbel distribution fitted to data.

2. A(t) = B/(t—tsq), where the parameter 3 stems from the empirical power-law expres-
sion for the mean of pit depth maxima D(t) = a(t —t4)®, with t and t,4 representing
an arbitrary future time and the start of the pit growth process (i.e., after initiation),
respectively.

Both formulations described above were employed in a pure-birth, linear-growth-rate
(time-dependent) model of the Markov process, but only the second formulation was used
by the authors in a Markov chain to propagate an initial distribution of pit depth max-
ima to a future time t. To facilitate the use of a Markov chain, Caleyo et al. (2009);
Valor et al. (2013) employed Parzen’s (Parzen, 2015) closed-form solution for the set of
differential equations governing the state probabilities of a pure-birth, linear-growth-rate
(time-dependent) model, substituting subsequently into that solution their expression for
A(t). Consequently, the second formulation for A(¢) is the focus of this brief review.

Caleyo et al. (2009); Valor et al. (2013) argue the validity of the second formulation
based on the work by Cox and Miller (1987), who—for pedagogical reasons—present an
analysis termed “deterministic” to gain insight into the (statistical) expectation of a pop-
ulation size, and to show thereby that this expectation is the same as that derived for the
size of a population modelled as a pure-birth, linear-growth-rate stochastic process, with
time independence. The equivalence of the “deterministic” and stochastic expectations
is used by Caleyo et al. (2009); Valor et al. (2013) to justify their proposition that the
empirical power-law expression for the mean of pit depth maxima D(t) == a(t — t.q)? is
equivalent to the expected population size when modelled by a pure-birth, linear-growth-
rate stochastic process, with time dependence. Of note, Cox and Miller (1987) examined a
time-independent process for both the “deterministic” and stochastic model. Caleyo et al.
(2009); Valor et al. (2013) extend this equivalence to the time-dependent case for A(t),
without proof or explicit justification. It turns out, as shown in Section A.2.2, that the
illustration presented by Cox and Miller (1987) also holds for A(¢) though with a slight
change in formulation. For completeness, the three main points that underpin the assertion
of equivalence by Caleyo et al. (2009); Valor et al. (2013) are summarised below (details
are found in Section A.2.2):

1. (Cox and Miller (1987)) The size of a population n(t) at time ¢ is not random but

“deterministic” and large enough to be treated as a continuous function of ¢t. Further,
let the intensity function be defined as the product of the intrinsic transition rate A
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and the size of the population (i.e., n(t)\, which is analogous to a pure-birth, linear-
growth-rate process), and for a small interval of time At the size of the population
increases by n(t)AAt. Provided the limit At — 0 exists, the expected size of the
population at time ¢, given the initial population size ng, is

n(t) =nge". (5.1)

2. (Cox and Miller (1987)) For a random population N (), modelled as a time-independent
pure-birth, linear-growth-rate stochastic process, the expected size is

E[N(t)] = Noe", (5.2)
where Ny is the initial population size.

3. (Caleyo et al. (2009); Valor et al. (2013)) By virtue of 1 and 2, the expected size of
a random population N (t), modelled as a time-dependent pure-birth, linear-growth-
rate stochastic process, is equivalent to the “deterministic” mean of pit depth max-
ima; that is,

E[N ()] = No(to)e*®=200) = D(t) == a(t — t,4)°, (5.3)
where A(t,ty) == fti A(7)dr.? Thus, when ty = 0 and Ny(ty) =1,

A(t) =In[a(t — t:0)"] (5.4)
dA(t) _ o B
o M=y >

Equation 5.3 is valid provided the increase in the deterministic pit depth, AD, over
a short time At, may be defined as

AD = \(t)DAt, (5.6)

and A(t), interpreted as the intrinsic transition rate for a deterministic pitting corro-
sion process, may be defined as A\(t) = \(t) =8/(t — tsa).

The simple expression for A(t) (Equation 5.5) positions the Caleyo et al. (2009); Valor

N =

et al. (2013) approach well above others; and the equivalence “deterministic”= stochastic

ZNote, Caleyo et al. (2009); Valor et al. (2013) use the label p(¢) instead of A(t), but for consistency
with the labelling used in this chapter, the latter has been used.
3To be precise, tg > teq > 0.
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facilitates the use of experimental or field corrosion data, whose mean may be justifiably
characterised by a power-law expression, or any other suitable regression fit. The last
statement is altogether implied in their approach, though it is not explicitly stated as such.
This indicates that the functional form of A\(¢) is dependent on the regression fit chosen to
characterise the data, having no probabilistic basis. By extension, their approach should
appply equally to say the average pit depth above a specified threshold. In other words, the
assertion that any regression fit to corrosion data, whether pit depth maxima or pit depths
above some threshold, may be equated to the expected size of a population modelled by
a pure-birth, linear-growth-rate time-dependent stochastic process should still hold. The
strength of this assertion appears to be the condition attached by Caleyo et al. (2009);
Valor et al. (2013) that restricts the process by which a change in the deterministic pit
depth occurs to that defined for a pure-birth, linear-growth-rate time-dependent process,
Equation 5.6. Put differently, if the pitting process can be mimicked by a pure-birth,
linear-growth-rate time-dependent process, then—argue Caleyo et al. (2009); Valor et al.
(2013)—the assertion implied by Equation 5.3 is valid.

The work by Caleyo et al. (2009); Valor et al. (2013) focused on the propagation of pit
depth maxima. Pit depths above a specified threshold were also examined in Rivas et al.
(2008); Valor et al. (2010, 2013), but under the second A(t) formulation and entirely to
improve the minimisation scheme and not as the distribution of pit depths to propagate.
As far as this author can tell, the propagation of pit depths above a threshold (vs pit
depth maxima) across a pure-birth, linear-growth-rate time-dependent CTMC has not
been demonstrated in the literature.

The work presented in the sections to follow seeks to show that A(¢) may be derived
solely from stochastic and asymptotic arguments without the need to resort to an equiv-
alence between a deterministic—empirically derived—regression expression for pit growth
and a stochastic representation of the same. Moreover, an assertion will be made and
demonstrated that A(¢) for a NHPP is in fact equivalent to that characterising a NHMP,
enabling its employment in a pure-birth, linear-growth-rate time-dependent CTMC. Lastly,
it will also be demonstrated that pit depths above a specified threshold may be adequately
propagated across a pure-birth, linear-growth-rate time-dependent CTMC, increasing the
utility of existing data and enabling UFC lifetime predictions associated with the effect of
pitting corrosion to be more realistic.
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5.2 Surrogate Pitting Corrosion Data

The data used in this work originates from Li et al. (2019). This author reached out to the
primary author for the full dataset since the article only focused on maximum pit depths.
The full dataset was subsequently received with permission (private communication).

Figure 5.1 shows the evolution of pit depths with time. The data, which is left-truncated
arbitrarily by Li et al. (2019), represents pooled results from 100 304-stainless-steel cor-
rosion coupons, arranged into sets of ten samples (samples and coupons are used inter-
changeably throughout). The exposed corrosion coupon surface area was approximately
10 mm x 50 mm. Each set of samples was immersed in 3.5 wt% NaCl solution at 30°C
for 7, 14, 21, 28, 30, 60, 90, 120, 150, and 180 days, respectively. At each exposure period,
one set was removed and pits measured.

Importantly, the data consists of two distinct experiments. The first experiment, which
includes exposure periods 7-28 days, was used by Li et al. (2019) to generate a simple
power-law model that was subsequently applied to predict the results for exposure periods
30-180 days. One will note that there is a slight difference in the pit depth trends between
the two experiments, which is most pronounced at the 28- and 30-day exposure periods.
While the experiments were, in principle, identical in terms of conditions, clearly there
was variability between the two. For this work, the two experiments were considered one
experiment, and any goodness-of-fit effects were ignored. Additional background relating
to the challenges in finding suitable data are further discussed in Appendix B, Section B.2

5.3 Occurrence of Extreme Pit Depths as a NHPP

The focus of this section is to formulate an expression for the intensity density function
of the stochastic process model, which is proposed to approximate the occurrence and
magnitude of pit depths consequential to UFC lifetimes. Before proceeding with model
formulation, however, it is beneficial (to the reader) to formally define a stochastic process,
a Homogeneous Poisson Process (HPP), and finally a NHPP. Additionally, the form of the
likelihood function, which is used to estimate the parameters of the NHPP, is reviewed.
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EVOLUTION OF PIT DEPTHS
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Figure 5.1: Pit depths versus time for 304 stainless steel coupons immersed in 3.5 wt%
NaCl solution at 30°C (Li et al., 2019, by permission). The maxima per exposure period
are highlighted in blue.

5.3.1 Preliminaries—Stochastic Process

Stochastic Process

Simply, a stochastic* process X := {X(t);t € T} is a collection (some authors use set,
family, or ensemble) of RVs X (¢), which take on values at ¢ in some state space S, accord-

4The word stochastic is synonymous with “random” and originates from the Greek verb ‘ocroxdCopar’,
which is understood to express the sentiment ‘to shoot at, aim at, guess at’, Grimmett and Stirzaker
(2001, pg 213). Some authors use random processes instead (e.g., Gray and Davisson (1986); Grimmett
and Stirzaker (2001); Hajek (2015); Peebles Jr. (2002)), but it is more common to associate random with
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ing to some probability law®. The parameter ¢, sometimes referred to as the index of the
process, takes on values in the parameter or index set T. For the present work, T is the set
of non-negative real numbers R, (i.e., T := [0, 00)), representing time typically defined in
years, unless otherwise stated. A more elegant definition—one that emphasises the aim of
this chapter—is: “A stochastic process is the mathematical abstraction of an empirical pro-
cess whose development is governed by probabilistic laws,” Doob (1953). Following Beichelt
and Fatti (2002, pg 47), a stochastic process X = {X(t);t€ T} is completely determined
if for all n=1,2,... and for all n-tuples {t1,ts,...,t,}, with ¢; € T, the joint probability
distribution functions of the random vectors (X (t1), X (t2), ..., X (t,)) are known:

Fx(6),x(t2),. X (0) (1, T2, .., Tn) = P(X (1) <aq, X(t2) <@, ..., X (1) <y). (5.7)

The set of joint distribution functions defined by Equation 5.7 fully defines the probability
distribution of the stochastic process X. In the present work, X := {X (¢);¢ € T} represents
a continuous parameter, continuous state space, stochastic process.

Homogeneous Poisson Process

For many real-life applications, stochastic processes are nothing more than a random
distribution of points (Brémaud (2020b, pg vii), Resnick (1987, pg 300)) or a localisation of
events as points in time (Kass et al., 2014, pg 564). In such cases, they are more commonly
referred to as point processes. The ”canonical” Point process is the one-dimensional HPP.
The HPP defines the number of points, events, or shocks® in a prescribed interval of time;
that is, the HPP is the underlying process that governs the number of events by time t.
The event of interest is the occurrence of the RV X (¢).

Define arrival of events as points in time given by {to, t1,ts,...,t;—1,%;, ... }, and define
event inter-arrival times (i.e., times between events) by {7, 7o, ..., 7i—1, i, ... }, where ty =
0 and 7, = t; — ty. For the HPP, event inter-arrival times are Exponentially distributed;
that is, 7; ~ Exp()), where \ is the constant, instantaneous rate of arrivals. When A is
constant, it is time-invariant. This is the meaning of the term homogeneous. Moreover,
for the HPP the number of counts N(s,t) in a time interval [s,t),s,t > 0, is Poisson-
distributed; that is, N(s,t) ~ Pois(AAt), with At=t — s signifying that the HPP exhibits
the stationary increments property—the distribution of counts is dependent on the width
of the interval but not on the location (time) of the process. A homogeneous instantaneous

variables and stochastic with processes (Gallager, 2013, pg 16).
5The very simple definition of a probability law is a probability distribution function Fx(x), where
Fx(z)=P(X <), of a numerical valued random phenomenon represented by X, Parzen (1960, pg 177).
5The expression “shocks” to a system are more common in reliability analysis (e.g., Cha and Finkelstein
(2018)).
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rate of arrival implies a process that is stationary. Subsequently, characterisation of a HPP
often amounts to counting the number of points (events) within an interval of time. This
is referred to as a counting or arrival process N:= {N(t) : t > to}, where t; is the initial
time, typically set to zero, and N(t) counts the number of events in [0, ¢]. The HPP may
also be characterised by the inter-arrival times. In the context of the pitting corrosion
data and the stochastic model proposed, the focus will be on counting the occurrence of
extreme pit depths.

Non-Homogeneous Poisson Process

For the NHPP (also referred to as inhomogeneous, non-stationary, or temporal), which
by definition is also a counting process N, the following properties hold (see Cha and
Finkelstein (2018, pg 77); Cinlar (1975, pg 94); Kao (2019, pg 56); Parzen (2015, pg 125);
and Snyder and Miller (1991, pg 41)):

1. P(N(ty) = 0) = 1;

2. For tg < s < t, the increments N(s,t) = N(t) — N(s) is Poisson-distributed with
parameter A(s,t):=A(t) — A(s),
1
P(N(s,t) =n) = = (A(t) = A(s))"e” MO n = 0,1,2,., (5.8)
n!
where A(t) is the intensity measure of the process (also called the mean value function,
the mean measure, parameter function, or cumulative rate), and is a finite-valued,
non-negative, non-decreasing function of . Simply put, A(s, t) is the statistical expec-
tation or the expected number of events in the interval [s, t) (i.e., E[N(s,t)] = A(s,1))
If the following limit” exists
1—P(N(t+At)— N(t) =0)

li = .
i, A A0, (59)

P(N(t+ At) — N(t) =

1
"This limit is also expressed as lima;_,o+ ) = A(t) and implies that P(N(t +

At
At) — N(t) = 1) = A(t)At 4 o(At). The Landau symbol “little o of At,” o(At), represents a function of
At such that

f(A)

At—0 At

:0’

expressing the idea that the function f(At) approaches zero faster than At (pg 124 Canuto and Tabacco,
2015).
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then A(t) is said to be differentiable, right-continuous, and can be expressed as

At) = /t A, (5.10)

where ¢ty =0, typically. The function A\(¢) is termed the intensity (density) function,
representing the instantaneous average rate of the process at time ¢—the instanta-
neous average rate that points (events) occur. One can then write

t n
P(N(s,t) = n) = — </ A(T)dT) e AT 01,2, (5.11)

~ ol

For At very small,

P(N(t+ At,t) =1) = A(t)At, (5.12)
and
lim P(N(t+ At) — N(t) > 1) N
At—0+ At

indicating that the probability of more that one event is negligible over the interval
At very small (i.e., P(N(t+At)—N(t) >2)=o0(At)). A counting process that has the
probability defined in the latter parentheses is said to be orderly or regular (Cha and
Finkelstein, 2018, pg 25 and Snyder and Miller, 1991, pg 44); that is, qualitatively
speaking multiple events do not occur simultaneously. This is the assumption made
in this work.

3. {N(t) : t > to} has independent, non-stationary increments. Independence means
that the number of counts observed over disjoint subintervals are independent.

4. Inter-arrival times for a NHPP are ~ Exp(A(s, 1))

Likelihood Function for Non-Homogeneous Poisson Process

Suppose a sample path of an arbitrary NHPP N with intensity density function (¢ : 7),
consisting of n events, is observed over the interval (0,7] at times t = t; <ty < -+ < t,
with no events occurring in the interval (¢,, T]. Here, the intensity function is parametrised
with some arbitrary parameter vector n. Define p as the event that the aforementioned
sample path is observed®. With reference to Equation (5.11) and Equation (5.12), the

8More concretely, the event p is defined as the observed sample path of points and corresponding
cumulative count (i.e., p:={t1,t2,...,tn, N(t)=n}) for an arbitrary NHPP N :={N(t)=t; <t < T} on
the interval [to, T).
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probability of the event p is the probability of observing no events (i.e., points) in the
interval (0,¢;), one event in [t1,t; + Aty), no events in the interval [t; + Aty,t3), one
event in [tg,ts + Aty), ..., up to no events occurring in the interval [t,, + At,, T| (see Cha
and Finkelstein (2018, pg 78); Kao (2019, pg 59); and Snyder and Miller (1991, pg 61)).
Consequently, the probability of the event p is

P(p) = exp (— /Otl A(T:n)df) A(r 2 ) At - exp <— /;2 )\(T:n)d7> () At

1+At
T
-~ exp (—/ A(T n)dT) .
ti+At;

The corresponding joint density fx(p)? for the occurrence of event p is obtained by
taking the limit as At; — 0"

P
Inlp) = lim ™, A (pg "

= H)\ n)exp(—A(T)).

Suppose further that m such paths are observed on intervals (0, 7], where j = 1,2,...,m,
consisting of n; events each, then the joint density (Lawless, 1987), which is the likelihood

function, is
L(n|t) :H{H)‘ ij 1) exp( A(T))} (5.13)

J=1

5.3.2 NHPP-GPD Model Postulates

The objective of this section is to transform a cumulative degradation process, such as
pitting corrosion, into an “equivalent” Point process—specifically a NHPP—by interpreting
extreme pit depths as events that arrive (on the surface of a corrosion coupon) according
to some intensity. As discussed in Appendix D, Section D.3, this is accomplished by simply
placing a point at (¢, X (¢)) on a timeline for any extreme pit depth observation X (¢) taken
at time ¢. More formally, if the RV X (¢) represents the depth of a pit at time ¢, which
equivalently is interpreted as an event at t, and if sequences of pit depths over time are
represented by X = {X(t);t € T}, then a stochastic process is an adequate probabilistic

9Also referred to as the sample-function density, Snyder and Miller (1991, pg 60).
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framework to characterise the occurrence of pit depths. This is a reasonable proposition,
provided suitable probability laws exist for X (¢). Two probability laws are proposed. One
to account for the occurrence of pit depths, specifically the number of pit depths in a
specified interval of time. The other to govern the magnitude of pit depths over the same
interval. Both are discussed below.

For this work, the occurrence of extreme pit depths across a corrosion coupon within
a specified time interval is approximated by a NHPP. Concretely, the expected num-
ber or count of extreme pit depths, measured across a corrosion coupon, in the interval
[s,t],0 < s < t, is approximated by invoking the counting process N = {N(t) : t > o}
characterisation of a NHPP. Accordingly, for the surrogate data, the expected number of
extreme pit depths recorded at each exposure period per coupon is E[N(s,t)] == A(s,t).
Additionally, the corresponding probability law is N(s,t) ~ Pois(A(s,t)), Equation 5.8.
Employing a NHPP approximation implies that there is an underlying process for extreme
pit depths that may be characterised by the parameter A(s,t). Extreme pit depths need
definition, however.

Pit depths applied to a UFC must be consequential (conservative) to UFC lifetimes.
In this model, consequential and extreme pit depths are synonymous and defined as pits
characterised by the right tail region of a time-dependent pit depth distribution. To be
precise, an extreme pit depth is any pit depth X () greater than or equal to some specified
depth u; (i.e., X(t) > u;). The variable u; is termed a threshold pit depth and is time-
dependent. Consequently, the proposed probability law governing X (¢) > u, is the time-
variant GPD (Equation 5.14), defined within a POT framework. The GPD is the limiting
distribution of events above some threshold, referred to as exceedances. Hence, X (t)| X (t) >
uy is a pit depth exceedance, an extreme pit depth:

. 1/k¢
GPD(x | i, o, K, Uy) = {1 — {1 — /@tw} } , (5.14)

Oét*

(x —uy)

*
QY

defined for sy # 0, af > 0, and 1 — K >0, with of = ay — k(ug — ).

Here, = represents the realisation of the RV X(t), and «y, i, k¢ are respectively the scale,
location, and shape parameters, defined as some functions of time t.

Counts of extreme pit depths N (¢) and the magnitude of extreme pit depths X (¢)| X (¢) >
u; are assumed independent of each other, although both are dependent on the time loca-

tion of events. Consequently, as proposed, the underlying stochastic process that governs
the occurrence of X (t) > wu; is the NHPP, with the magnitude of X (¢)|X(¢) > u; char-
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acterised by the GPD, within a POT framework. This is also known as a marked Point
process, specifically a marked Poisson Point process (Brémaud, 2020a, pg 6).

To summarise, the proposed stochastic model to approximate extreme pit depth occur-
rences and their magnitude includes the following postulates:

1. The occurrence of extreme pit depths X (¢)| X (¢) > u; as events observed in a corrosion
coupon, within an arbitrary time interval [s,t],0<s< ¢, is governed by a NHPP.

2. The number of extreme pit depths N(¢) observed in a corrosion coupon, within an
arbitrary time interval [s,t],0 < s < ¢, are ~ Pois(A(s,t)), with intensity measure

A(s, ).

3. The magnitudes of extreme pit depths are independent of the number of extreme-
pit-depth events observed in a corrosion coupon by time ¢ and follow a time-variant
GPD, within a POT framework.

5.3.3 Intensity Measure A(t)

To fit the aforementioned stochastic model to the surrogate pitting corrosion data, the
likelihood function defined earlier for m paths of a general NHPP (Equation 5.13) must be
modified to account for the number of corrosion coupons used to generate the data. More
concretely, following the work of Smith (1994, pg 231), the 10 corrosion coupons used per
exposure period are treated as if data were collected for 10 identical exposure periods,
equivalent to the pooling of 10 time blocks into a single dataset. This modification is
accomplished by inserting the factor C, (C, = 10 corrosion coupons) into Equation 5.13,
as follows:

=1

Lty =1 {ﬂ Alti;:m) eXp(—CpA(Tj))} : (5.15)

J=1

For the surrogate pitting corrosion data, Equation 5.15 represents the likelihood func-
tion for j = 1,2,...,10 exposure periods, with durations 7} from initial time Ty = 0 and
which consist of n; pooled pit depths per exposure period. Equation 5.15 does not, how-
ever, satisfy the first postulate of the stochastic model as all pit depths are included in
the variable n;. The interest is in X (¢)|X () > w;. To do so, n; must represent all the
pooled, extreme pit depths per exposure period that are equal to or greater than a specified
pit depth threshold u; applicable to the exposure period. This requires the definition of a
time-variant threshold. Similarly, A(7}) and A(#;;) also need to be formulated in agreement
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with the three postulates defined above. Specifically, A(T}) takes on the meaning of the
expected number of exceedances or extreme pit depths observed in a corrosion coupon by
time 7}, with A(¢;;) representing the instantaneous average rate that exceedances or ex-
treme pit depths occur when at a specified magnitude of extreme pit depth at time ¢;;. The
intensity function A(¢;;) may be viewed as an intrinsic parameter of the pitting process.
For brevity, all of the algebraic details and assumptions associated with the equations for
A(T};) and A(t;;), which follow shortly, are left to the appendices. Here, only the results
are presented.

As shown in Appendix D, for limiting or asymptotic arguments, if, for an arbitrary
exposure period of length ¢ from initial time ¢, = 0, the magnitude of pit depth exceedances
above some time-variant threshold u; follow a time-variant GPD, and if the number of
pit depth exceedances are ~ Pois(A(t | @)), then the intensity measure A(t | @) may be

formulated as 1

A(t]0) = {1—/@ (“t_“t)}“t. (5.16)

(7

The parameter set @ = {y, o, k; } represents the location, scale, and shape parameters of
the limiting distribution of pit depth maxima (per corrosion coupon), and the subscript
t signifies a formulation with time as co-variate. The relationship between the limiting
distribution of pit depth maxima (see Appendix B, Equation B.5) and that for pit depth
exceedances (Equation 5.14) is such that 8 is common to both (Castillo et al., 2005, pg 264).

Appendix C details the methodology used to arrive at suitable pit depth thresholds wu;.
For the surrogate data, a power-law relationship (i.e., u; = ut§, where j is the jth exposure
period) adequately captures the change in pit depth threshold with time, Figure 5.2. In
this figure, the thresholds are labelled low1, which is simply a designation arising from the
approach applied to select appropriate thresholds (see Appendix C for further information).
When applied to the surrogate data, the time-dependent thresholds result in pit depth
exceedances, illustrated in Figure 5.3.

Time-dependent location and scale parameters p; and a; were also adequately modelled
using a power-law relationship with time as co-variate (i.e., p; = ,ut? and oy = at?, and j is
the jth exposure period). For reasons described in Appendix B, the shape parameter k was
maintained constant and independent of time. The methodology, including assumptions
and model fit assessment, are described first in Appendix B, which details the fitting of
the GEV distribution to pit depth maxima, and subsequently in Appendix C, where the
fit is verified against the GPD within a POT framework.

With the form of the time-dependent relationship well defined for w;, u, and «y, the
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PLOT OF ESTIMATED PIT DEPTH THRESHOLDS
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Figure 5.2: The change in the (lowl) thresholds with time is captured by a power-law
relationship, fitted by Ordinary Least Squares.

appropriate formulation for A(¢|0), satisfying the three postulates, is

1
uts — utl \ | K
At]O)=|1— 2 7 5.17
<|>[m<at?)], (5.17)
and, as per Smith (1994, pg 231), the corresponding intensity density function A(z;;|8) is
1
—
ON(z;|0) 1 Tij — wtt \ | &
Az, 0) = =L\ ) 2 g [ . 5.18
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Figure 5.3: Scatter plot of exceedances arising from the employment of the (low1) thresh-
olds.

In the partial derivative of Equation 5.18, the ith extreme pit depth—ith exceedance—
associated with the jth exposure period, z;;, has replaced the time-variant threshold pit
depth u,;. This is consistent with understanding that the intensity density function is
dependent on the exceedance level z;;, a concept more readily understood within the
alternative context of a limiting distribution of a Point process, Appendix D, Section D.1.
The function A(x;;|@) stands in contrast to that proposed by Caleyo et al. (2009); Valor
et al. (2013), Equation 5.5, which has no dependence on the magnitude of pit depths. It
should also be noted that the non-homogeneity of the intensity density function is captured
through the inclusion of time as co-variate in the location and scale model parameters ut?
and ozté’-, respectively.
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The complete form of the likelihood function for the surrogate data, satisfying the above
postulates, becomes

1 1
1 uti — ut? K e 1 1 Tij — /,Lt? P (5 19)
" at? = ath " at? T

In Equation 5.19, N =10, 8 := {u,a, k, b}, x;;, and n; represent respectively the num-
ber of exposure periods, the parameter vector for the NHPP with points marked by the
GPD, the ith realisation of the exceedance RV at the jth exposure period, and the num-
ber of exceedances for exposure period j. The parameter set 8 to be estimated in the
maximisation of the likelihood function does not include threshold power-law parameters
w and ¢ as these are predetermined (Appendix C). Numerical maximisation of the natural
logarithm of Equation 5.19 (i.e., {(0 | x,t)) was performed with Python 3.6.9, with the
optimisation algorithm SLSQP. Constraints applied to the maximisation were 1/at® > 0,
1 — k(ut® — ut®)/at® > 0, and 1 — k(z;; — pt®) /at® > 0. Results are presented in Table 5.1
for threshold level lowl.

L(0|X7t) = vazl €xXp 7Cp :

Figure 5.4 shows the expected number of extreme pit depths with time, estimated
from the maximum likelihood estimators ji, &, &, b. Included in Figure 5.5 are, respectively,
plots of the instantaneous average rate of pit depth occurrences A(z;;|@) estimated for
the 7-day and 180-day exposure periods. The intensity density function follows a very
similar trend with respect to exceedances for all other periods. Note, the intensity density
function is independent of the corrosion coupon size and is, therefore, a measure of the
“intrinsic” propensity for the occurrence of extreme pit depths when at a specified pit
depth exceedance z; ; at time ¢;. Loosely speaking, this may be interpreted as the proba-
bility of growing a pit deeper than its current (extreme) depth. The trends in Figure 5.5
demonstrate that this propensity decreases almost linearly with pit depth exceedances,
particularly for pit depths close to the threshold. Further away, the rate of decrease tapers
gradually to an endpoint, which is consistent with the right endpoints exhibited by the
limiting distribution for maxima (i.e., GEV) with a positive x parameter (see Appendix B).
Put another way, pit depths further away from a valid threshold become very rare. This
definition is consistent with the probability statement expressed by Equation 5.12. Its
significance will become more apparent in the next section. Figure 5.6 provides a comple-
mentary view as a function of time, at time-variant threshold levels. The physical meaning
assigned to this plot is that it represents in graphical terms a measure of the likelihood
of exceeding time-variant thresholds. Together with Figure 5.4, the overall picture is that
the number of extreme events (i.e., pit depth exceedances) increases with time but at a
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decreasing rate as the probability of exceeding an ever-increasing time-variant threshold
diminishes with time.

Table 5.1: Maximum Likelihood Parameter Estimates for the
NHPP with Exceedances ~GPD

Threshold f & R b 1(0|x,t)

lowl! 0.04876 0.00399 0.34450 0.40926 1660.94
' u =0.04147 and ¢ = 0.38854 (Appendix C).

By way of comparison, the intensity measure predicted by the formulation in Equa-
tion 5.4, as proposed by Caleyo et al. (2009); Valor et al. (2013), is plotted in Figure 5.7.
In this plot, the parameters o and (3 were determined from a power-law fit to pit depth ex-
ceendances derived for the low1 thresholds. Their formulation was applied with ¢, = 0 and
the time-to-initiate pits tgq ~ 0, taken from Li et al. (2019). While the shape of the plot
is similar to the one derived solely from asymptotic arguments (Figure 5.4), the function
is negative, violating the definition given in Section 5.3.1. One would arrive at a similar
conclusion regardless of the statistic chosen for fitting a power-law (i.e., whether pit depth
thresholds, mean, or median), indicating that the proposed formulation, irrespective of the
regression fit, simply doesn’t satisfy the stochastic definition of an intensity measure. The
unexpected outcome raises questions for this author, some of which are examined in greater
detail in Appendix A, Section A.2.2. Here, suffice to say that Caleyo et al. (2009); Valor
et al. (2013) do not appear to use the functional form of the intensity measure precisely
as proposed by Equation 5.4, though they explicitly point to an identical equation in their
work. Unfortunately, the precise form used is unknown. What follows is a synopsis of the
findings in Section A.2.2, presented herein to shed light potentially on the functional form
employed by Caleyo et al. (2009); Valor et al. (2013).

A direct application of Equation 5.4, using the power-law parameters (ry,v; from the
two articles cited above) derived for their piping material and the “All Soils” condition,
results in the plot shown in Figure 5.8. The actual plot provided in the two articles is
reproduced in Figure 5.9 by a spline fit to eight arbitrarily selected data points. The two
plots are clearly not in agreement. Further examination of Figure 5.9 informs the reader
that the time axis starts at 5 years. This happens to be the year for which the pitting
corrosion data in one example presented in the two articles was chosen to represent the
initial pit depth distribution. The same was subsequently used to make predictions for a
future time ¢t. Consequently, let to=>5, which implies that Equation 5.4 does not apply in
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INTENSITY MEASURE
Expected Number of Events
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Figure 5.4: Expected number of extreme pit depths (events) E[N(t)] per coupon by time
t given A(t : 0).

its present form. However, as shown in Section A.2.2, when ¢y # 0 and N(ty) # 1, the
complete expression for A(t) becomes

A(t) = In [k (t — ta)"] + In i (fo — tsa)"] — In N(tyq) — In N (t). (5.20)

Since t4; is the time to initiate a pit, it would follow that the size of the population at t4
should be N(t54) = 1. Working on this premise simplifies the expression for A(t) to

A(t) = In [k (t — ta)"] + In ke (fo — tea)”"] — In N (L), (5.21)

but N(ty = 5) is unknown; it is neither defined nor described in Caleyo et al. (2009); Valor
et al. (2013). Subsequently, for exploratory reasons, let A(t) be defined by the first two
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Figure 5.5: Instantaneous average rate of occurrence for pit depth exceedances, A(z;;|0),
estimated for (a) the 7-day and (b) 180-day exposure period data.
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PROCESS INTENSITY: NHPP-GPD/POT
Propensity for Pit Depths over Threshold
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Figure 5.6: Instantaneous average rate of occurrence for pit depth exceedances, A(z;;|6),
estimated at threshold level.

terms on the right side of the equality of Equation 5.21. A resulting plot of this two-term
function, Figure 5.10, reveals a strikingly similar trend to the plot presented in the two
articles, Figure 5.9, except that the two-term plot is translated down along the y-axis.
More specifically, Figure 5.9 shows that A(t =5) =1. It’s not immediately clear to this
author why the expected number of events at ¢ = 5 years should be set to 1. However,
if the difference in the two plots is simply a matter of translation, then an estimate for
the value of the third term in Equation 5.21 (i.e., N(t, = 5)) may be deduced by setting
A(t = 5) = 1. This leads to the plot shown in Figure 5.11, which includes the plot from

Figure 5.9. Remarkably, the two plots are in very good agreement.
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There are several problems, however, with the deduced final form for A(t). Two are
mentioned here briefly. First, the deduced value for N(ty=5)=0.03148 is nonsensical in
the sense that N (t) represents the size of a population—an integer value—and is analogous
to the damage state of a discrete state Markov chain. Along the same line of argument,
N(ty = 5) £ 1, seeing N(t,q = 2.9) = 1.1 However, if one simultaneously treats the size
of the population N() as a positive, real-valued function—as postulated by Caleyo et al.
(2009); Valor et al. (2013) in Section 5.1, then N(tsq = 2.9) = 0.03148 would be consistent
with their reasoning. Unfortunately, this leads to confusion. Two, there are no reasons
known to this author why the expected number of events should be restricted in value,
particularly to the value of 1, as was the case above. A careful re-read of the papers failed
to provide further clarity, but it is possible that the size of the population—damage state
of the Markov chain—was indeed 1.1 Assuming that Equation 5.20 is correct, then it
would appear that, at best, the approach proposed by Caleyo et al. (2009); Valor et al.
(2013) lacks transparency. At worst, it is not a workable proposition; that is, it cannot be
employed to estimate the expected number of events from ¢, =0, starting with a population
of size 1 (N(tg)=1). Consequently, the functional form proposed by Caleyo et al. (2009);
Valor et al. (2013) will not be given further consideration in this work.

10 Alternatively, one may set N(tp = 5) = 1 as demonstrated in Section A.2.2, which would then result
in N(tsq =2.9) = 0.03148, but this would not alleviate the concerns with N(t) € R.

1This author made many attempts to contact Caleyo et al. (2009); Valor et al. (2013) by various means,
but received no replies.
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INTENSITY MEASURE
Expected Number of Events: Valor et al (2013)
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Figure 5.7: Expected number of extreme pit depths (events) E[N(t)] per coupon by time
t predicted by the approach proposed by Caleyo et al. (2009); Valor et al. (2013), with
the parameters a = 0.04644 and g = 0.39762 derived from a power-law fit to pit depth

exceedances (lowl).
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INTENSITY MEASURE
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Figure 5.8: Expected number of extreme pit depths (events) A(t) by time ¢ predicted by
the approach proposed by Caleyo et al. (2009); Valor et al. (2013), with the parameters

ke = 0.164 and v; = 0.780 taken from Tables 1 and 2, Valor et al. (2013).
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INTENSITY MEASURE

Expected Number of Events: Valor et al (2013) Figlh All Soils
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Figure 5.9: Expected number of extreme pit depths (events) A(t) by time ¢, showing actual
data points from Figlb Valor et al. (2013).
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INTENSITY MEASURE

Expected Number of Events: Valor et al (2013) Figlb (Two Terms)
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Figure 5.10: Expected number of extreme pit depths (events) A(t) by time ¢, with the
parameters k; = 0.164 and v, = 0.780 taken from Tables 1 and 2, Valor et al. (2013), using

the first two terms to the right of the equal sign in Equation 5.21.
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INTENSITY MEASURE
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Figure 5.11: Expected number of extreme pit depths (events) A(t) by time ¢, showing

actual data points from Figlb Valor et al. (2013) and a deduced plot with parameters

taken from Tables 1 and 2, Valor et al. (2013).
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5.4 Evolution of Extreme Pit Depths as a NHMP

The objective of this section is to model pit growth using a special class of stochastic
processes called Markov. Motivation for doing so stems in part from their prevalence in
modelling pitting corrosion (Section 5.1) and partly from the potential to improve on a
specific aspect of the methodology widely adopted in the literature. More concretely, the
first and most significant improvement proposed here is the replacement of the empirically
derived intensity of transition function, employed by Valor et al. (2013) and others, by the
asymptotically derived intensity density function defined by Equation 5.18, whose merit
rests entirely on its origins as an intrinsic stochastic process parameter. Invoking the equiv-
alence between a NHPP and a first-order NHMP process enables this proposal. A second
improvement is the modelling of pit depth exceedances instead of pit depth maxima. The
former not only supports better utilisation of available data but also facilitates assignment
of more than one relevant pit depth to the surface of a UFC. These two improvements are
considered meaningful contributions to the modelling of pit growth via Markov processes.
To support development of the Markov model, some preliminaries are helpful.

5.4.1 Preliminaries—Markov Process

A Markov process is the label given to a physical or empirical system that exhibits proper-
ties that obey probability laws, for which the future state of the system—given the knowl-
edge of the present—is independent of its prior history (Cinlar, 1975, pg 187). Markov
processes are defined or classified by the characteristic or nature of their states and time
parameter. A Markov process with discrete states, which may be integer-valued, denumer-
able, or finite, and sometimes countably infinite, is called a Markov chain, and a Markov
chain with a continuous-time parameter is typically referred to as a Continuous-Time
Markov chain CTMC.

Formally, a continuous-time, non-homogeneous stochastic process {S(t);¢ > 0} with an
arbitrary state space No:={0,1,2,...} is called a CTMC if, Vs<t, s,t R, Vi, j, k € Ny,

pia(s. 1) = P(S(H)=j] S(s) =k, S(u)=i,0 < u < s)

P(S(t) =] S(s)=F), (5.22)

and
pr(t) = P(S(t) = k). (5.23)

Equation 5.23 defines the probability that the state of the process at time ¢ is k. Similarly,
pjx(s,t) defines the conditional probability that the state of the process at time ¢ is k
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given that at time s the process was in state j. The function p;x(s,t) is referred to as the
transition probability function. Equivalently, p; «(s,t) represents the conditional probability
of transitioning from j to k over the time interval t—s, when at time s. Note, p;(s,?)
is conditionally dependent on s and is, therefore, time non-homogeneous. Conditional
dependence on the current state of the process defines a first-order Markov process.

Computationally, it is more expedient to work with matrices when analysing a CTMC.
Consequently, define the probability transition matriz P(s,t),

P(s,t) ={pjr(s,t)} VjkeNyandt>s>O0. (5.24)

The family {P(s,t)} Vs, t > 0, t > s represents the transition probability matrices for the
non-homogeneous CTMC. One of the attractive features of non-homogeneous (and homo-
geneous) Continuous-Time Markov Chains (CTMCs) is that they can be uniquely deter-
mined by their initial state distribution and their transition probability matrices (e.g., see
Brémaud (2020b, pg 298) and Stroock (2005, pg 84)). Subsequently, for a non-homogeneous
CTMC with an arbitrary state space Ny, let the row vector v, = {P(N(s)=1i)} Vi € Np
represent the initial state distribution at time s. Then,

vy = vP(s,1) (5.25)

defines the state distribution of a non-homogeneous CTMC at future time ¢. An expres-
sion for P(s,t) is derived by invoking the assumption that there exist particular limit
functions'?, also called infinitesimal transition functions (or infinitesimal transition rates
or probabilities), defined as follows.

Infinitesimal Transition Functions

For each state j €Ny in a non-homogeneous CTMC, there is a non-negative continuous
function ¢;(t) defined by the limit

1
lim —

AN {1 — pj,j(t7t+ At)} = qj(t) 0< qj(t) < OO,\V/] c N(), (526)

and for each pair of states j and k, with j#k, k € Ny, there is a non-negative continuous
function g;x(t) defined by the limit

) 1

12This is equivalent to prescribing that such functions exist—in the limit—for the empirical system
modelled as a Markov process
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The rate at which the process leaves or transitions out of state j at time ¢ is given by ¢;(t),
also called the intensity of passage. Simply put, 1—p; ;(t, t+At) is the probability of a jump
from state j to another state within the infinitesimally small time interval [¢, ¢ + At], which
is approximately equal to ¢;(t)At 4+ o(At). By extension, p;x(t,t + At) is the probability
of transitioning from states j to k during an infinitesimally small time interval [¢,¢ + At],
which is also approximately equal to g;x(t)At 4+ o(At). The function g¢;(t) is called the
intensity of transition to state k given that at time t the state was j. The infinitesimal
transition functions ¢;(t) and g, ;(t), along with the transition probability function p; x(s, t),
lead to the formulation of Kolmogorov’s Forward Differential equation (Parzen, 2015):

0
57 Pik(s:0) = —au(O)pjn(s, t) + > vl )ain(t). (5.28)
itk
A useful interpretation of the right side of Equation 5.28 is minus the rate of probability
flow out of state k plus the rate of probability flow into state k from all other states (Hajek,
2015, pg 127). The solution to Kolmogorov’s Forward Differential equation ultimately leads
to an expression P(s,t), to be shown later in this chapter.

5.4.2 NHMP Model Postulates

In this work, following the example of others (see Section 5.1), a special class of CTMC
models, called pure-birth, linear-growth-rate, will be employed to express the evolution
of corrosion pits. In the pure-birth, linear-growth-rate stochastic model, also referred to
as the Yule process (see Kao (2019, pg 249) and Taylor and Karlin (1998, pg 334)), the
underlying or instantaneous rate of the process is directly proportional to the state of the
process, which is represented by the size of the population for some living organism (e.g.,
bacteria). While the Yule Process analogy is useful, it is necessary to move from a state
space defined by population sizes to one that maps pit depth to an integer-valued damage
state. Formulating pit growth as a pure-birth, linear-growth-rate non-homogeneous CTMC
requires several postulates, which are discussed below.

Pure-birth, Linear-growth-rate Model

In the context of a CTMC, the pure-birth, linear-growth-rate stochastic process means:

1. Transitions can only occur to the next adjacent state (i.e., 7 — 7 + 1), which means
there are only births and no deaths. This is the sentiment expressed by pure birth.

2. The intensity of passage out of state j at time ¢, g;(¢), is equivalent to the intensity
of transition to state j + 1 during the time interval [t,t 4+ At].
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3. The process population always begins with a single member, so the state space is the
set of all non-negative integers Ny :={1,2,...}.

4. Each member of the population can give birth at the same rate. Given that the
state space of the pure-birth, linear-growth-rate process represents the set of all
possible sizes for the population, it follows that the intensity of transition g¢;(t) for
a population of size j at time ¢ is linearly (directly) proportional to the population
size and re-defined

q; () =X () =JA(t). (5.29)

Equation 5.29 implies a linear growth rate. The term A(t) is re-introduced here
because it represents the intrinsic (single) member rate of transition, which, when
Equations 5.9 and 5.26 are compared, it is immediately evident that for a population
of size j=1 (i.e., a single member) ¢;(t)=A(t).

Owing to the four points above, one can describe the pure-birth, linear-growth-rate
non-homogeneous CTMC by a simple transition rate diagram, Figure 5.12:

@wm @jw@ Omwmé

Figure 5.12: Transition rate diagram for a pure-birth, linear-growth-rate non-homogeneous
CTMC, with states {1, j, k, m,n€N; } and absorbing state n (i.e., A,(t) :=nA(t)=0), shown
with an infinite transition rate into itself to illustrate the point that it is an absorbing
state. The times {¢;,¢;,...,t,} represent respectively the times when the process is at
states {i,7,...,m}.

It follows that the set of Kolmogorov’s forward equations (Parzen (2015)), for the pure-
birth, linear-growth-rate non-homogeneous CTMC, may be derived for the set of arbitrary
times {s,t} and states {j,k} as

0 .
_pj,k(‘S? t) = _k)‘<t)p]',k(8> t) + j>‘(t>pj,j(87 t>7

o (5.30)
apj,j(& t) = —jAt)pj;(s;t),
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or in more general, compact notation (i.e., A;(t)=jA(t) and j, k arbitrary and not neces-
sarily sequential)

0
Epj,k(s»t) = —M(t)pjr(s,t) + M1 (t)pjn—1(s, 1),
(5.31)

0
apj,j(s» t) = =Xj(t)pj;(s,1).

Conveniently, Parzen (2015, pg 302) demonstrates, by means of a probability generating
function transformation of p;;(s,t) and Lagrange’s method for solving a first-order linear
partial differential equation, that the above equations can be solved explicitly without the
need to resort to numerical methods. Accordingly, a closed-form expression for the proba-
bility transition function p;(s,t), for the pure-birth, linear-growth-rate non-homogeneous
CTMC, is given by the Negative Binomial distribution NegBin(k—j, p), with parameters
k—7 and p:

pik(s,t) = (/]: j)p](l —p)*, for k> j+1, (5.32)

where

p = e~ AO-AW) (5.33)

A(t) = /0 ) (5.34)

Consequently, for a finite (i.e., n-state), integer-valued (i.e., 7, k € Ny ), non-homogeneous
(i.e, A(t), t>0) CTMC, modelled as a pure-birth, linear-growth-rate process (i.e., \;(t) =
JA(t)), the probability of k—j jumps, or equivalently the probability of transitioning from
states j to k, over the time interval [s,t], is a discrete RV ~ NegBin(k — j,p), having
parameter p :=exp {—[A(t) — A(s)]}. Moreover, the corresponding probability transition
matrix P(s,t) for the pure-birth, linear-growth-rate non-homogeneous CTMC is

-pi,i(sﬂ t) pi,j(s7 t) pi,k(sv t) s pi,m(87 t) pi,n(sv t)
0 pii(s:t) pik(s,t) o pim(s,t)  pin(st)
0 0 s,t) ... m(s,t n(s,t
P(s,t) = | . ) el d) o (5:8) Prn(s:1) , (5.35)
0 0 o 0 Pmm(S,t) Pmn(s,t)
|0 0 0 0 Pnn(s,t) |

which is a square n x n, upper triangular matrix, consistent with the four points above.
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FEvent E(t) and Damage State D(t)

Let the stochastic event FE;(t) C Ry be defined by the interval [y;,y; + Ay), where
i = 1,2,...,np for some positive integer np, t > 0, and y;, Ay € R, (Ay a constant).
Further, let y; < X (t)—u; <y;+ Ay, where X () is the time-variant RV pit depth exceedance,
and wu; is the time-variant pit depth threshold. Consequently, let the event space E =
{Ei(t) : y; < X(t)—w <y; + Ay}. Put simply, E is the set of np real-valued semi-open
intervals containing all possible!® time-variant pit depth excesses. As per Section 5.3,
X (t)| X (t) > uy is characterised by the GPD, within a POT framework, and u; = ut®.

Define the finite damage state space D :={D(t)=i;i =1,2,...,np} of a pure-birth,
linear-growth-rate non-homogeneous CTMC, and let f be a function that maps F;(t) to
D(t)=i, f:E— D.

1, if yp < X(t)—ur < yo;

2, if yo < X(t)—uy < ys;
X(t)—ut% Y2 () t << Y3

nD) lf ynD—l S X(t)_ut < ynD'

Then, let
pi(t) = P(D(t)=1) = P(y; < X(t)—u; < yi + Ay). (5.36)

Equation 5.36 defines the probability of being in state ¢ at time t as the probability that a
pit depth excess X (t)—u; at time ¢, falls in the interval [y;, y; + Ay), with Ay representing
the event interval width.

Heuristically speaking, Ay is chosen such that calculated pit depth excesses can be
readily binned to produce reasonable density histograms, which necessarily implies having
a minimum number of events (i.e., pit depth exceedances). Based on the current pit depth
data, setting Ay =0.001 mm yields reasonable distributions across all exposure periods.
With the interval width known, the number of states np in the non-homogeneous CTMC
is defined by establishing reasonable bounds for the range of expected pit depth excesses.
From the data (e.g., see Figure 5.3), an upper bound labelled L was selected as 0.050 mm.
Typically, L represents the distance traversed by a degradation mechanism through a
structural member (e.g., thickness of plate, shell, etc.) and is normally known beforehand.
In the present case, L was chosen to reflect the maximum anticipated pit growth sustained
in the present model for the time interval of interest, which was chosen arbitrarily to

13Within measurement instrument precision, it is implied that all measured pit depths and pit depth
excesses calculated to the same precision are contained within the set of semi-open intervals.
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represent the short oxic period. For Ay = 0.001 mm and L = 0.050 mm, the number of
states in the Markov chain was defined as the quotient L/Ay, or np = 50 states. By this
formulation, the event space E :={(0,0.001),[0.001,0.002),...,[0.049,0.050)} is mapped
to the finite damage state space D :={D(t)=i;i = 1,2,...,50}, facilitating employment
of a non-homogeneous CTMC as a mathematical abstraction to model the evolution of pit
depth excesses in time. The finite damage state space D is a subset of Nj.

Equivalence of a NHPP and a NHMP

It has already been mentioned that for a single member (i.e., j = 1) ¢;(¢)=A(¢). This
suggests that the NHPP and the NHMP are equivalent. To discuss their equivalence, it
is convenient to speak of the Markov process as a jump process, which is defined as a
stochastic process that transitions between discrete states at times that can be fixed or
random (Ibe, 2013, pg 50). For the jump process of interest here, the system enters a state,
spends a random amount of time in the state, which is referred to as holding (also dwell,
occupancy, or sojourn) time, and then jumps (i.e., transitions) to another adjacent state,
where it dwells for another random period of time before it jumps again. As discussed
in Section 5.3.1, for a HPP inter-arrival times—equivalent to dwell times in the present
context—are ~ Exp()\), whilst for the NHPP, inter-arrival times are ~ Exp(A(s, t)), where
A(s,t)=A(t) — A(s). For a positive, integer-valued, homogeneous CTMC, the dwell times
are ~ Exp()) (see Ibe, 2013, pg 86 and Breuer, 2003, pg 331). By extension, the dwell times
for a positive, integer-valued, non-homogeneous CTMC are ~ Exp(A(s,t)) (Gokhale et al.,
2004). Consequently, a positive, integer-valued, homogeneous CTMC is a HPP, and a
positive, integer-valued, non-homogeneous CTMC is a NHPP (Gokhale et al., 2004). That
this equivalence holds true when a non-homogeneous CTMC is modelled as a pure-birth,
linear-growth-rate process is self-evident as the system transitions to the next damage
state whenever one of the population members gives birth first. The time to give birth is
the inter-arrival time: it is independent!* of the size of the population but dependent on
the time of the last birth. The probability that a birth will occur is proportional to the
population size, however.

Based on the foregoing, the equivalence of NHPP and NHMP means that A(¢) represents
the expected number of extreme pit depth events (= expected number of stochastic events)
by time ¢, or in the context of a non-homogeneous CTMC the expected number of state
transitions. This, however, is different from the expected state of the chain E[D(t)], which,
as shown in Section A.2.2 is

E[D(t)] = M, (5.37)

141t is independent in the sense that there is no factor applied explicitly to the Exponential distribution
to account for the size of the population. Instead, the effect of the size of the population is captured within
the intensity measure formulation, specifically the threshold equation.
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when the non-homogeneous CTMC is modelled as pure-birth, linear-growth-rate stochastic
process and the initial state of the chain is 1. Using Equation 5.17 with parameters
from Table 5.1, the expected state of a non-homogeneous Markov chain E[D(t)], whose
event space E = {E;(t) : v; < X(t)—u; <y; + Ay} is mapped to the damage state space
D={D(t)=i;i =1,2,...,np}, is shown in Figure 5.13.

To summarise, the proposed stochastic model to approximate the growth of extreme
pit depths embraces the following postulates:

1. The magnitude of extreme pit depths X (¢)| X (t) > wu;, which represent time-variant
events observed in a corrosion coupon, can be organised into real-valued semi-open
intervals representing all possible values of pit depth excesses X (t) — u¢| X (t) > uy.
The collection of such intervals is defined as the event space E,

E={E(t) : v, <X(t)—u:<y; + Ay}.

Definition of the event space is possible provided reasonable allowance is made for the
anticipated maximum pit depth excess sustained by time ¢ in the structure of interest
and sufficient prior pit depth data exists to define an interval width adequately.

2. The mapping of the event space to a subset of the non-negative integer line allows
pit depth excesses X (t) — uy|X () > u; to be represented by an equivalent discrete,
finite damage state space D,

D:={D(t)=i;i=1,2,...,np},

mimicking states of damage through which a structure undergoing pitting corrosion
transitions.

3. The process of transitioning through discrete damage states is modelled by a pure-
birth, linear-growth-rate non-homogeneous CTMC, whose intensity of transition A(z; ; |
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is derived from the NHPP representation of extreme pit depth occurrences, with
X (t)|X(t) > us ~ GPD. This is possible because of the equivalence of event inter-
arrival times of a NHPP and the process dwell times of a NHMP. Transitioning
through the states is simulated by propagating an initial damage distribution vy
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EXPECTED SIZE OF A POPULATION
Equivalently: Expected State D(t) of a non-homogeneous CTMC
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Figure 5.13: Expected state of a pure-birth, linear-growth-rate non-homogeneous CTMC,
whose event space E = {E;(t) : y; <X (f) —u; <y; + Ay} is mapped to the damage state
space D:={D(t)=i;1 =1,2,...,np}, with intensity measure A(¢) given by Equation 5.17
with parameters from Table 5.1. The chain starts at state ¢ = 1 at ¢t = 0. Note, the chain
exists only at integer-valued states, but for convenience E[D(t)] is plotted as a real-valued
function.
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through the CTMC to predict a damage distribution v, at time ¢ by means of a
probability transition matrix P(s,?):

vy = vP(s,1)

5.4.3 NHMP Model Efficacy

The efficacy of the pure-birth, linear-growth-rate non-homogeneous CTMC model is as-
sessed for the current pitting corrosion data by propagating an initial distribution of pit
depth excesses through the Markov chain and subsequently comparing qualitatively pre-
dicted distributions at each exposure period with those observed. This was accomplished
as follows.

For an initial distribution, pit depths from the 7-day exposure test (i.e., vy, s=7/365)
were selected. Corresponding pit depth excesses were calculated by substracting the lowl
threshold from the data. Due to the limited number of data points (i.e., pit depth ex-
cesses) for the 7-day exposure test, however, the initial (empirical) distribution was ap-
proximated with a GPD (Equation (5.14)) using the parameters from Table 5.1. This
approach provided a well-defined density histogram as an initial distribution. The “ob-
served” distribution of pit depth excesses at each remaining exposure period (i.e., t =
14/365,21/365,...,180/365) were similarly determined. The initial distribution of pit
depth excesses was then mapped to the damage state space, resulting in initial damage
state distribution. This damage state distribution was propagated subsequently across the
Markov chain by means of Equation 5.25 to produce the “predicted” distribution (his-
tograms) of damage states. A backward mapping of the damage states to the event space
yielded a set of predicted pit depth excess distributions. Adding the low1 thresholds gen-
erated a set of pit depth exceedance distributions, depicted in Figure 5.14, which were
subsequently compared with the “observed” distributions.

Generally, the Markov-based predictions tend towards longer tails when compared with
the fitted GPD. Certainly, fine tuning Ay and np would improve the qualitative goodness
of fit, but that is not the objective here. The results clearly demonstrate the efficacy of
modelling pit depth exceedances with a non-homogeneous Markov process, specifically the
class of Markov models defined by the pure-birth, linear-growth-rate process. Moreover,
the use of the NHPP rate A(¢) for the infinitesimal transition rate in the non-homogeneous
CTMC has been validated for the surrogate data, and modelling pit depth exceedances
economises the use of available data over that limited to only predicting pit depth maxima.
The last two points, in particular, are considered meaningful contributions to the existing
body of knowledge.
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The efficacy of the NHMP can be further illustrated by comparing predicted, expected
pit depth exceedances with those observed. Effectively, this is achieved by calculating
the expectation of the Negative Binomial distribution (Equation 5.32). More concretely,
Equation A.13 from Section A.2.2 and Equation 5.37 are used to first estimate the expected
damage state of the Markov chain from some initial time ¢5 to an arbitrary future time
t. Here, the initial time ¢y is once again taken as the 7-day exposure period (i.e., 7/365
years), and t > 7/365. Subsequently, the expected damage state of the Markov chain at
time ¢, given that at time t; the damage state was Dy, is

E[D(t)] = Doelt)=Alto), (5.38)

The initial damage state of the Markov chain Dy can be approximated by mapping to the
damage state space D the observed average pit depth excess at ¢ty = 7/365 years. Such a
mapping leads to Dy ~ 1.38, which rounding to the nearest whole number (i.e., D(t) CNy)
results in Dy = 1.

To facilitate comparison with observed pit depth exceedances, the results of Equa-
tion 5.38 need to be mapped back to the event space characterised by pit depth excesses,
whereupon the corresponding time-dependent thresholds are added. Backward mapping
was carried out by fitting a simple linear regression formula to the relationship between
the central point of each interval in the event space E and the damage state space D.
Figure 5.15 compares the expected pit depth exceedances derived from the NHMP with
those observed for lowl thresholds along with an Ordinary Least Squares (OLS) fitted
to pit depth exceedances. The agreement between the NHMP-based expected pit depth
exceedances and the OLS fit is exceptionally good.
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NHLPE Markov Chain-GPD Comparison
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Figure 5.14: Distribution of pit depth exceedancess across all exposure periods, with the
initial distribution represented by the 7-day exposure period exceedances and the lowl
threshold level plotted as dashed line. The figure compares the “predicted” distributions
from the Markov process model (here represented by the shortened abbreviation non-
homogeneous linear pure birth (NHLPB)) and the “observed” distributions represented by

fitting the GPD to the observed exceedances.
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EVOLUTION OF PIT DEPTH EXCEEDANCES
CTMC Expected State Space Mapped to Event Space
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Figure 5.15: Plot of pit depth exceedancess across all exposure periods. The figure com-
pares “predicted” expected pit depth exceedance (red line), estimated from the Markov
process model, with observed exceedances. Also included is the OLS fit to pit depth ex-
ceedances, plotted by a dashed line. For the CTMC, the 7-day exposure period exceedances
(low1 threshold level) were used for the initial distribution.
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5.5 Algorithm to Assign Pit Depth Exceedances

The basic approach to assign a random pit depth exceedance to each discretised panel on
a UFC is to sample from the “predicted” Markov-based distribution, labelled farkon (T, 1),
at the desired time period ¢. The underlying assumption is that in the future, data similar
to the one employed in this work will be generated for copper under relevant repository
conditions over timescales that, ideally, permit either interpolation (i.e., bound the ex-
pected oxic period) or at most some level of extrapolation (i.e., outside the timescales of
the experiment) without necessarily introducing significant uncertainty.

Consequently, the algorithm receives as input the timescales for the early, dry oxic
period where pitting corrosion is considered a potential degradation mechanism. For sim-
plicity, this could be represented by a time vector, T', covering the minimum and maximum
timescales ty,in, tmas anticipated (i.e., T = [tyin, tmaz]). Additional inputs include the total
number of panels m on the UFC, the ratio M of the UFC surface area to corrosion coupon
area (also referred to as size effect), the intensity measure A(¢; é), which defines for a single
corrosion coupon the expected number of exceedances at projected time period ¢, and the
distribution of initial copper coating thickness, f;.,.

From Section 3.5, the number of panels m for the 0.06-m mesh size model is 255. The
ratio M of the surface area of the quarter hemispherical end-cap and a single corrosion
coupon is 251. Consequently, the total expected number of pit depth exceedances n,
assignable to the quarter hemispherical end-cap for time ¢, consisting potentially of a
maximum of one pit depth exceedance per panel, is MA(t; 0) or 255 if MA(t; 0) > 255.

In words, the algorithm selects a time ¢; from T and calculates n;, which is com-
pared with m. The initial distribution farko0(, %) is then propagated across the Markov
chain to the desired time t;, resulting in “predicted” distribution of pit depth exceedances
frtarkou (2, t;). The algorithm then samples randomly n; thicknesses from the initial copper
coating thickness distribution. Arrays of pit depth exceedances (Dynin, Dy,,,,) are gener-
ated by sampling n; pit depth exceedances from fysurko0(, t;). Modified arrays of copper
coating thickness are subsequently created by subtracting from the initial copper coating
thickness array pit depth exceedances from each time segment. The modified initial cop-
per coating thickness arrays are then fed into the original UFC lifetime code for continued
processing (not shown here). Algorithm 4 summarises the approach.
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Algorithm 4 Pit Depth Exceedance Assignment—NHMP Process

Require: T, m, M, A(t; é),ftcm frtarkon (T, o)
1: Initialise variables, arrays: ¢,D; . . Dy .. Cu,Cuy
2: Uy, ¢ < select threshold level k&
3: for t; in T do
4: ny < int(MA(t; 0))

Cut'maz

min?

5: if n; > m then

6: ng '=m

7: Jatarkoo (T, 15) < fararkos (7, o)

8: Cu < sample randomly n; thicknesses from f;

9: if t; == min(T') then

10: Dy, . < sample randomly n, pit depth exceedances from fararkon(T, ;)
11: Cw,,, < Cu—D,,

12: else

13: Dy, < sample randomly n; pit depth exceedances from fsa ko (T, t;)
14: Cuy,,,, +— Cu— Dy, ..

5.6 Effect of Sulphide-induced & Pitting Corrosion

In this section, the effect of sustaining pitting corrosion during the oxic period, followed
by sulphide-induced corrosion, is compared against the baseline sulphide-induced corrosion
model of Chapter 3. Specifically, a comparison is made between the NHMP (or CTMC)
model developed in the previous sections and competing EVA approaches such as mod-
elling growth of maximum pit depths by the GEV distribution (Appendix B) and pit depth
exceedances directly via the GPD within a POT framework (Appendix C). Another ap-
proach to compare with the Markov process is to use directly the stochastic process defined
in Section 5.3 to predict pit depth exceedances (Appendix D), which here is labelled Point
process. Note, this approach is essentially the same as that shown in Appendix C, with the
exception that the number of pit depth exceedances assigned to the UFC are governed by
MA(t; é) These approaches are described in detail in their respective appendices, along
with the algorithms for assigning pit depths to a UFC. For brevity, these details are omit-
ted here. The comparison is performed by simulating pit growth for an arbitrary two-year
oxic period and by making a few minor modifications to the baseline UFC lifetime model
(Chapter 3). These modifications are discussed below.

The first modification represents the employment of the UFC discretised model with a
mesh size of 0.02 m. Refining the mesh size from 0.06 m to 0.02 m increases the number of
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panels on the quarter hemispherical end-cap from 255 to 1599 and allows for the algorithms
associated with the Point process and the CTMC to assess the expected number of ex-
ceedances at a future time of interest against the number of panels. Without this change the
algorithms would be—relatively speaking—uninteresting because M A(t; é) would always
be greater than 255, restricting n; to 255. The second modification targets the number of
realisations executed at each level of the UFC model. To expedite the simulations, without
loss of generality—particularly since this is surrogate data, the number of realisations for
RVs X, and X3 are reduced respectively from 10000 each to 5000 and 1000. A reduction
in the number of realisations impacts the ability to sample more accurately from the tails
of the respective distributions. This effect also manifests in a final distribution for RV X3
that is different than that shown in Figure 3.17. For the purpose of comparing the various
models, this loss in sampling accuracy and change in distribution shape is of little impact.

Figure 5.16 shows the Gaussian Kernel density estimation distributions, derived from
the density histograms of predicted UFC lifetimes, estimated from the GEV distribution
(extrapolated in time and space, Equation B.35), the GPD, the non-homogeneous Point
process, and the pure-birth, linear-growth-rate non-homogeneous CTMC. Also included in
the figure is the density histogram and corresponding Gaussian Kernel density estimation
distribution for the baseline UFC lifetime model (i.e., sulphide-induced corrosion only).
Table 5.2 lists the mean and standard deviation estimated from the respective distributions.

Consistent with the respective pit depth assignment algorithms, the mean UFC lifetime
was the lowest for the GEV distribution, extrapolated in time and space, since a single
maximum pit depth was assigned to each panel. This is very conservative, but in com-
parison to the mean lifetimes predicted by the other models, the results suggest that it is
not overly conservative. The algorithm for the assignment of pit depths using the GPD
also assigns a single pit depth to each panel but from pit depth exceedances, which results
in slightly longer mean lifetime than that predicted by the GEV distribution extrapolated
in time and space. In contrast, the algorithms for both the Point process and the CTMC
determine the number of pit depth exceedances to assign from the expected number of
exceedances after accounting for size effects, which is the ratio M. If this number is less
than the number of panels, then a lower number of pit depth exceedances are assigned
when compared with that assigned by the GEV and GPD algorithms. After two years of
pit growth, the expected number of exceedances after accounting for size effects was in
fact less than the number panels. Generally speaking, the results are consistent and quite
similar, indicating that any one of the four modelling approaches is a viable option. For
the reasons just discussed, the trend in the mean minimum lifetime is also observed in the
standard deviation trend.

From the perspective of the effect of pitting corrosion on UFC mean lifetimes, the results
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indicate that for the surrogate data, pitting corrosion during a 2-yr oxic period reduces
the average minimum UFC lifetimes (i.e., baseline) by approximately 10° years. This is a
negligible amount when compared with the mean minimum lifetimes, which are in the order
of 10° years. However, when coupled with the potential for latent defects and the effect of
the single repository temperature transient, and when a greater number of realisations are
applied, minimum UFC lifetimes may sustain noticeable reductions. Again, due to the fact
that results are based on surrogate data, one is advised to exercise a measure of caution.
This is particularly true when one seeks from this work to quantify the effect of pitting
corrosion on UFC lifetimes or to draw premature conclusions concerning the adequacy—or
lack thereof—of the present corrosion allowance. Indeed, the important point to emphasise
is that should pitting corrosion be a credible cause for concern, a probabilistic model has
been presented that offers a fresh perspective into the interpretation of pitting corrosion as
a series of stochastic events. With the NHMP model for pitting corrosion discussed in this
chapter, not only does a user have the ability to propagate a distribution of pits forward
in time, the user also gains insight into the intrinsic intensity of the pitting process. From
an engineering perspective, the latter is significant because one can both speak about the
number of expected pits greater than some critical depth at some future time of interest
and account for the same in any model that is concerned with the number of potential
radioactive waste leak sites on a UFC surface.

Table 5.2: Mean and Standard Deviations for the UFC Minimum Lifetimes
Predicted by the GEV Distribution, the GPD, the Point process, and CTMC

Statistic Baseline! GEVY2  GPD Point Process CTMC

Mean (108 yrs) 8.4528 8.1519  8.1757 8.2496 8.3422
Std Dev (105 yrs)  1.7528 1.6747 1.6474 1.7112 1.7202

! Minimum UFC lifetimes due to sulphide-induced corrosion
2 GEVM is the GEV distribution extrapolated in time and space, Equa-
tion B.35.
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EFFECT OF PITTING & SULPHIDE CORROSION
Extreme Value & Stochastic Process Models
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Figure 5.16: Distribution of predicted minimum UFC lifetimes (X3), estimated from EVA
models such as the GEV distribution and the GPD (both time- and space-extrapolated)
and from the stochastic process models Point and CTMC. Pit depths are estimated for a
two-year oxic period and for a UFC mesh size of 0.02 m, which is equivalent to 1599 nodes
or panels. Computational effort was minimised by reducing the number of realisations (i.e.,
Sims) required to generated an empirical distribution for X, and X3. Minimum lifetimes
due to sulphide-induced corrosion are represented by the histogram results labelled Baseline
and corresponding Kernel density estimation (blue line).
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5.7 Summary

A pure-birth, linear-growth-rate non-homogeneous CTMC has been applied successfully
to model the evolution of pit depth exceedances in the quarter hemispherical end-cap of
a UFC. While others in the literature have employed Markov chains to model pit depth
maxima, as far as this author is aware, this is the first time pit depth exceedances have
been modelled by a CTMC. Moreover, the non-homogeneous Markov process model pre-
sented here is unique in the incorporation of a well-defined intensity measure and intensity
density function, both having direct and transparent origins in the NHPP and the asymp-
totic basis underpinning the GEV distribution. This contrasts the semi-empirical approach
prevalent in the literature for formulating an expression for the pit growth process intensity,
which again has been restricted to pit depth maxima applications. For the surrogate data
employed in this work, the assumptions made concerning the length of the oxic period,
and the limited simulations carried out, pitting corrosion was shown to reduce on average
the mean minimum UFC lifetimes by approximately 10° years, relative to the mean min-
imum lifetime predicted as a result of sulphide-induced corrosion alone. When compared
with the mean minimum UFC lifetimes, which are in the order of 10° years, the effect
of pitting corrosion is not considered significant or consequential to the current corrosion
allowance. However, this needs to be placed within the context of this work. Additionally,
the engineering significance of the stochastic model is further demonstrated by its ability
to estimate the expected number of extreme pit depths on the surface of a UFC. Owing to
the reasonable assumption that extreme pit depths can be likely sites for the perforation
of UFC copper coatings and eventual leakage of radioactive waste, the ability to estimate
the number of leak sites is considered important from an engineering perspective.
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Chapter 6

Conclusions

6.1 Summary

A baseline UFC copper-coating lifetime model, developed on the basis that sulphide-
induced corrosion is the only degradation mechanism of concern, has been successfully
developed to account for the effect of critical variables presently understood to be of sig-
nificance to UFC lifetimes. These include copper coating thickness, HS™ effective diffusion
coefficient in compacted bentonite, and [HS™| in the geosphere. Building upon the proba-
bilistic framework of the baseline model, the present work has also integrated the required
formulation to account for the effects of both latent copper-coating defects and repository
temperatures within the existing 1-D, multi-level representation of the sulphide-induced
corrosion problem. Model utility has been demonstrated in the incorporation of uncertainty
for UFC life-limiting variables such as HS™ diffusivity in bentonite clay, emplacement room
[HS™], UFC copper coating thickness and potential defects, and repository emplacement
room temperatures (via enhanced corrosion rates).

The question of how to account for the potential for pitting corrosion within the prob-
abilistic framework described above was examined in this work using a stochastic process
model applied to surrogate data. This resulted in two meaningful contributions to the
general body of literature associated with modelling pit growth via Markov chains, as dis-
cussed below. Overall, within the context of the surrogate data used in this work, the effect
of pitting corrosion during the short oxic period postulated for the DGR was found to have
negligible effect on UFC lifetimes, relative to repository timescales, and inconsequential to
the existing corrosion allowance.
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From an engineering perspective, the significance of the combined model was illustrated
in the ability to provide a distribution of minimum UFC lifetimes, from which fraction of
first failures over timescales of interest may be computed. Further engineering signifi-
cance was highlighted by the facility to quantify the number of potential locations on the
UFC surface where deep pits can lead to leaks of radioactive fuel—sites for release of con-
taminants into the geosphere. While not explicitly demonstrated though discussed, the
combined model also allows for the identification of sites on the UFC surface where leaks
will first occur. This can be extended to which UFCs in an emplacement room will leak
first and to which emplacement rooms within a panel will exhibit first leaks. The modelling
results of this work are for the purpose of illustrating a potential methodology.

6.2 Research Contributions

e The primary and most significant research contribution from this work is the for-
mulation of a probabilistic framework for predicting UFC lifetimes based on both
sulphide-induced and pitting corrosion. Presently, to the author’s best knowledge,
no such model exists for copper-coated UFCs or copper-clad used fuel waste contain-
ers.

e The second research contribution is the successful employment of a pure-birth, linear-
growth-rate non-homogeneous Markov process to propagate pit depth exceedances
across a CTMC. To the best of this author’s estimation, pit depth exceedances have
not been modelled in this manner before.

e The third and final research contribution is the use of the NHPP intensity measure
and intensity density function for modelling growth of pit depth exceedances in a
CTMC. The value of this contribution is that the intensity of a pitting process may be
derived solely from stochastic and asymptotic arguments without the need to resort
to popular methods that invoke an equivalence between a deterministic—empirically
derived—expression for pit growth and a stochastic representation of the same.

6.3 Future Work

One of the significant assumptions employed in the current model is that distributed proper-
ties assigned to the factors associated with the DGR /engineered barriers are time invariant.
For example, the distribution assigned to the [HS™] is assumed to remain fixed over the
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timescales of the DGR. The same assumption applies to the distribution of the HS™ effec-
tive diffusion coefficient in the bentonite buffer box, which is also assumed to be isotropic
and constant throughout. Future conditions in the evolving repository environment may
violate these assumptions. One hypothetical scenario is the delayed hydraulic activation of
fractures in the EDZ of emplacement room walls, which could lead to non-uniform ground-
water saturation and potentially localised growth of SRB. However, the likelihood of this
and other potential scenarios that are hypothesised to violate these assumptions need to be
thoroughly assessed by qualified experts. Should such an assessment establish a reasonable
likelihood of occurrence, one approach that could be considered in future work is to treat
these scenarios as “shocks” in the timescale of the DGR.

4

A very significant limitation of the current probabilistic model is the need to “re-
calibrate” the effective diffusion length against some numerical diffusion analysis every
time the design of the UFC and buffer box change. Future work may consider a completely
different framework to eliminate this dependency.

Lastly, this work has considered only a very small part of a very complex problem.
While the research to date points to sulphide-induced corrosion as the most consequential
degradation mechanism for the copper coatings, there are many other factors that can
contribute to failure of a UFC. Future work may consider expanding the definition of
failure adopted in this model.
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Appendix A

Pit Growth with Markov
Process—Detailed Literature Review

The purpose of this appendix is to provide a more detailed literature review of the appli-
cation of Markov processes for modelling pit growth. The focus is primarily on the more
prevalent approach proposed by Valor and colleagues for propagating a distribution of pit
depths across a non-homogeneous CTMC.

A.1 Early Work on Pit Growth as Markov Process

Essential to the Markov process is the identification of the intrinsic rate(s) at which the
state of the process transitions. The plural form is used here because, for non-homogeneous
processes, transition rates are time dependent, and depending on the class of Markov
models employed, transition rates may also be state-dependent. Transition rates are also
referred to as intensities of the process, analogous to the intensities of the Point process
discussed in Appendix D. For a discrete state space Markov process, one speaks of a Markov
chain, and the overlapping links of the chain are viewed as discrete nodes or states of the
process. Consequently, finding the appropriate formulation to express the transition rates
or intensities of the process is a task faced by all modellers.

Provan and Rodriguez IIT (1989), who appear to be the first to apply a CTMC to
pitting corrosion, presented an expression for the intensity of the process at an arbitrary
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state 7 and time ¢

(T4 A1)
;= j)\m, Ak > 0.
The parameters A and x were determined by an iterative process that minimised the differ-
ence between the mean and variance of the actual and predicted distribution of maximum
pit depths, at specified times (i.e., exposure periods). To do so, Provan and Rodriguez
IIT (1989) transformed actual maximum pit depths into probability histograms, with bin
widths corresponding to 1/100 of the thickness of corrosion coupons—implying a discrete
Markov chain with 100 states. While remarkably good agreement was observed qualita-
tively for the actual and predicted probability histograms, particularly for one of the two
alloy systems assessed, the reasons for choosing the specific algebraic expression for the
intensity function was never discussed, leaving questions as to the basis for choosing the
formulation. Moreover, the minimisation scheme was not sufficiently clear, and neither
was the methodology for generating pit depth distributions from the Markov model pa-
rameters. The latter is normally achieved by propagating through the Markov chain an
initial distribution of pit depths. Lastly, while transition rates were defined as functions
of state and time, the transition probabilities were not formulated explicitly, and these are
required to fully specify the Markov model. Provan and Rodriguez 11T (1989) specified the
differential equations—called the Kolmogorov differential equations—that govern the rate
of change of the transition probabilities. The solution to the Kolmogorov differential equa-
tions yield the transition probabilities of the Markov chain, also known as the transition
probability function. Unfortunately, Provan and Rodriguez III (1989) did not discuss how
the Kolmogorov equations were solved, especially in the context of their intensity function.

Following the work by Provan and Rodriguez III (1989), Hong (1999a,b) modelled the
evolution of maximum pit depths in piping with a homogeneous Markov process (discrete
state). By modelling the Markov process as homogeneous, which means the intensity of
the process is time invariant, transition probabilities were obtained without difficulty since
solutions for the Kolmogorov differential equations are readily available.

Timashev et al. (2008) applied a homogeneous pure-birth Markov model to pit growth
in piping by solving the closed-form solution to the Kolmogorov differential equations
sequentially. In their case, A was state-dependent but time-independent.

All of these authors were—to varying degrees—successful in modelling pit growth as
a Markov process, but only Provan and Rodriguez III (1989) presented a time-dependent
formulation for the intensity function.
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A.2 Pit Growth Modelling by Valor & Colleagues

Of importance to this work are the two derivations for A(t) proposed by Valor and col-
leagues. These are discussed below in chronological order.

A.2.1 First Formulation for \(t)

Valor et al. (2007) modelled pit growth as a non-homogeneous Markov process, represented
by a pure-birth, linear-growth-rate model. A Weibull process was proposed to express the
time-dependent intensity function A(¢) used subsequently in the Markov process:

A(t) = v (E— )", (A1)

with
p(t) = / AM7r)dr = x (t—t)" w<1. (A.2)

Here, t; is the time to initiate a pit for the kth pit, assuming pit initiation times are
distinct.

To solve for parameters x and w, Valor et al. (2007) proposed a minimisation scheme
whose objective function comprises the means and variance of two distribution functions:
a Gumbel distribution directly fitted to pit depth maxima, and a limiting distribution
function for pit depth maxima “calibrated” against a Gumbel distribution. The process
is somewhat involved, requiring simultaneous adjustment of five parameters, two of which
define the parameters of a separate Weibull distribution for initiation time t;, one of
which represents the number of pits initiated m, and the last two which are used in A(t).
The limiting distribution of pit depth maxima, which is calibrated against the Gumbel
distribution, originates from the transition probability function p; ;(t — t;) derived by
Parzen (2015) for the transition from state 1 to some discrete state j over the time interval
[t — t], for a stochastic process modelled as pure-birth, linear-growth-rate. Valor et al.
(2007) did not use the complete transition probability function p;x(s,t) for any states
J, k and times s, ¢ presented in Parzen (2015), but chose instead to define the underlying
Cumulative Distribution Function (CDF) of a single pit by the sum of py ;(¢ — t;) for all
values of j. More concretely, for a discrete RV S, representing the state of a Markov chain,
the CDF may be expressed as

Fs(i,t —ty) Zpljt—tk — 1 — {1 —elpt-l)' (A.3)
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with p(t — tx) given by Equation A.2. In words, Equation A.3 represents the probability
that the state of Markov process will be ¢ or less. It is also simply a re-arrangement of
Equation (5.25) in Parzen (2015, pg 304), which is represents the Geometric distribution.

From the theory of EVA (see Appendix B), the limiting distribution of state maxima,
for large m, may be approximated by the GEV family of distributions. But Valor et al.
(2007) argue, by solving for the normalisation constants and testing for the appropriate
domain of attraction (e.g., see Castillo (1988, pg 100)), that Fs(i,t — tg) is in the Gumbel
domain of attraction. Thus,

[Fs(i,t —t)]™ = (1 —{1- e[*P(t*tk)]}i>m ~ Gmbl(z) = exp {exp [—a.(x — Be)]}, (A.4)

where z is pit depth, and a, . are the estimated parameters of the Gumbel distribution.
To solve for a, and B, [Fs(i,t — tx)]™ is computed for i = 1,2, ..., n, where n is the final
state of the chain, across all initiation times ¢, for a single (corrosion experiment) exposure
time t, and subsequently extracted from a Gumbel probability paper plot, for example. In
compact form, the set of points to plot (after transforming the state i to its corresponding
pit depth x) on a Gumbel probability paper plot (Castillo, 1988, pg 134) is, after assuming
ty are iid,

{[Fg(i,t —tk>]m . VZ} = {ﬁ Fs(Lt — tk),ﬁFs(Q,t — tk), .. .,ﬁFs<n,t — tk)} (A5)

k=1

Once a., 8, are estimated from the Gumbel probability paper plot for a particular set
{[Fs(i,t — tx)]™ : Vi}, the corresponding Gumbel distribution mean and variance ., o2 are
estimated. At the same time, the Gumbel distribution is fitted directly to the experimental
data to obtain the observed Gumbel distribution mean and variance j,, 2. This is repeated
for all N exposure times. Finally, the objective function Er, which is proposed by Valor

et al. (2007) to approximate the total error, is calculated:

N

Bri= 3 |z -t o = o). (A.6)

T=1

A Monte Carlo procedure was employed by the authors to generate sets of initiation times
of size m. No information was provided with respect to the values explored for m. Min-
imisation of Ep leads to estimates of y and w, and subsequently A(t).

The approach by Valor et al. (2007) was subsequently revised by limiting the states of
the Markov process—to be applied in the minimisation of Er—to only the equivalent pit
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depths greater than or equal to a specified percentile, obtained from the observed Gumbel
distribution (Rivas et al., 2008; Valor et al., 2010, 2013). Specifically, the argument made
was that an improvement between observed (direct Gumbel fit to data) and estimated
(Markov process calibrated against Gumbel distribution) pit depth maxima distributions
is possible only if pit depths above some threshold u are used in the underlying distri-
bution Fs(i,t — tg). Threshold levels approximated using a mean residual life plot (e.g.,
see Figure C.1 for a similar application) were compared with the a = 0.005 percentile
values, designated u,, estimated from the observed Gumbel distribution fitted at each ex-
posure period. The resulting good agreement was subsequently used as a basis by Valor
et al. (2010) to justify shifting the Markov states from i to i + u, in Equation A.5. This
meant, effectively, using pit depth exceedances. Further, Rivas et al. (2008) suggested
{0.0005, 001,005} as possible values for « in u, based on a comparison between the aver-
age number of observed exceedances at each u, on a corrosion coupon and those estimated
by solving for the expression of expected number of exceedances A\. The latter was de-
rived by assuming the number of exceedances at any exposure period was ~ Pois(\), with
time-independent parameter A\, and the magnitude of exceedances follow a time-invariant
GPD, with Gumbel as the associated limiting distribution for maxima.! Valor et al. (2010)
applied this improved approach to the minimisation scheme discussed earlier and obtained
estimated Gumbel distribution parameters for {[Fs(i,t — tx)]"™ : Vi}, with ¢ replaced by
i+ Uq, ue = 0.0005, and assuming all pits initiated at the same time (i.e., t, = 0). The last
adjustment simplified the computations significantly by reducing to three the adjustable
parameters (i.e., x,w,m). In particular, the number of pits m was no longer associated
with number of initiated pits, but rather with the number of exceedances. The same ap-
plication was subsequently reproduced in Valor et al. (2013), where it was disclosed that
m = 7.6, and where it was concluded that m = 7.6 &~ 8 compared well with the expected
number of exceedances A ={10,5,12,9,6,9} estimated at the six exposure periods exam-
ined. The estimation for A\ was, as stated earlier, estimated for exceedances ~ GPD and
the number of exceedances ~ Pois(\).

Admittedly, it is quite easy to miss a few subtleties in the work by Rivas et al. (2008);
Valor et al. (2007, 2010, 2013). Perhaps, of greatest consequence to the question of validity
is that originally, the derivation proposed in Valor et al. (2007) and subsequently extended
in Valor et al. (2010, 2013), the parameter m was presented as the number of pit depths
observed in a corrosion coupon, which, when approaching a large number (e.g., m —
o0), permits the approximation of [Fs(i,t — ¢x)]™ by the limiting Gumbel distribution
for maxima. Perhaps an objection could be raised that m = 7.6 is hardly considered a

!The time-invariant GPD associated with the Gumbel for maxima is the Exponential distribution,
Exp(A).
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large number. Asymptotic theory states that for large enough m, the probability that
the maximum of the sequence Xy, Xy, -+, X,,, where X; ~ F| is less than x, converges
to the limiting distribution as m approaches a large number. In other words, it is a long
sequence of RVs, representing pit depths, whose probability P(maz { X1, Xo, -+, X} < )
converges. This is the justification given in Appendix B, where it is assumed for the
surrogate data that a sufficiently large number of pits were initiated within a coupon for
the asymptotic condition to hold. Moreover, the asymptotic requirement for the sequence
to be long still applies even when the sequence of RVs is conditioned on X; > u, where
u is some large enough threshold. This is effectively demonstrated in the derivation for
the intensity measure, Section D.2, where the summation is taken to oco. Additionally,
that good agreement was reported between A={10,5,12,9,6,9} and m ~ 8 in Valor et al.
(2013) speaks potentially to a misunderstanding of the meaning of the parameter m. The
expected number of exceedances )\ is an average, whereas m is the size of the sequence
of exceedances. While this author does not deny the obviously good results presented in
Valor et al. (2013, Figure 5), where the Gumbel fit to experimental pit depth maxima are
compared with a distribution derived by the minimisation scheme at each exposure period,
it could be argued that the good agreement may have more to do with forcing a good fit
between one Gumbel distribution (observed) and another Gumbel distribution (estimated)
by adjusting x,w, m and u,, and less to do with the validity of the proposed Markov model.
Lastly, while Valor et al. (2007, 2010, 2013) do model pit growth as a pure-birth, linear-
growth-rate non-homogeneous Markov process, a Markov chain is not explicitly employed
in a classical sense in producing the estimated distributions of pit depth maxima. Valor
et al. (2013) do use the word “chain” but in the context of converting pit depths to interger-
valued damage states in {[Fg(i,t — t;)]™ : Vi}. To be clear, this formulation of A(t) was
not used to propagate an initial distribution of pit depths across a CTMC. The second
formulation for A(t) proposed by Valor et al. (2010) does. This is discussed next.

A.2.2 Second Formulation for A(%)

The second formulation for A(t) proposed by Caleyo et al. (2009); Valor et al. (2013) is
bty

A(t) - (A7)

The parameter v, in Equation A.7 represents the exponent in a power-law fit to pit depth
maxima, t is a future time, and .4 the time to initiate a pit. The origins of Equation A.7
can be traced to a statement made by Cox and Miller (1987, pg 157), who equate the size
a population, modelled as a deterministic function, to the expected size of a population
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modelled as particular stochastic process—a pure-birth, linear-growth rate model, with
time-independent rate. Caleyo et al. (2009); Valor et al. (2013) borrow this equivalence
and apply the term “deterministic” to an empirical expression for the average maximum pit
depth. In what follows, the equivalence statement from Cox and Miller (1987) is explored
to fully appreciate the implications in the use of the formulation for A(t) proposed by
Caleyo et al. (2009); Valor et al. (2010).

Cox and Miller (1987) present a simple analysis, which they term “deterministic,” to
gain intuition for the expectation of the size of a population, which is eventually mod-
elled as a pure-birth, linear-growth-rate (time-independent rate) stochastic process (i.e.,
{N(t),t > 0}, where N(t) represents the size or state of the population at time ¢). The
“deterministic” analysis assumes that the size of the population n(t) is not random but
large enough to be treated as a continuous function of ¢ (thereby allowing for the limit
to exist, as will be discussed shortly). Additionally, the “deterministic” analysis defines
an intensity function An(t), representing the rate at which the population increases, to be
the product of the actual or intrinsic transition rate A and the population size n(t). This
definition implies a pure-birth, linear-growth-rate process. Subsequently, for a small time
interval At, the population size increases by An(t)At. Then,

n(t+ At) — n(t) = An(t)At
n(t + At) — n(t)

A M0
dn(t)
= An(t
22— (),
whose solution is simply
n(t) = nee™,

and where ng is the initial condition for the size of the population.

Cox and Miller (1987) then proceed to show, by solving the set of Kolmogorov’s dif-
ferential equations for a pure-birth, linear-growth-rate (time-independent rate) stochastic
process, that the expectation for N(t), E[N(t)], is

E[N(t)] = nge™,
assuming initial conditions tg = 0 and N(0) = ny. Consequently, (Cox and Miller, 1987,
pg 159) assert that the “deterministic” analysis (theory) produces exactly the “stochastic”

mean. But these authors qualify their statement, which is quoted verbatim:
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In later examples, this agreement will not always occur. A sufficient condition
for equality is that for an arbitrary positive integer r, the structure of the
process starting from rng individuals is identical with that of the sum of r
separate systems each starting individually from initial state ng. Note, that
even when deterministic theory and stochastic mean do agree, they do not
necessarily give a good idea of the behaviour of individual realizations. (pg 159,
Cox and Miller, 1987)

Based on the assertion of equivalence between deterministic theory and stochastic mean,
Caleyo et al. (2009); Valor et al. (2013) proceed to assert that the “deterministic” func-
tion for the average maximum pit depth D(t), derived empirically by fitting a power-law
function to pit depth maxima, is equal to the stochastic mean of a population E[N(t)],
modelled by a pure-birth, linear-growth-rate stochastic process, with a time-dependent
rate. Mathematically,

D(t) = ky(t — tog)" = E[N(t)]= No(t)erO=e(t0), (A.8)

Taking as initial conditions ty=0 and D(0)=1, where D(0) is the initial damage state
of the pitting process (analogues to the initial size of the population Ny), and under a
further assumption that the change in the average maximum pit depth AD during a small
interval of time At is adequately described by A(t) DAt, Caleyo et al. (2009); Valor et al.
(2013) further propose that

E[D(t)] = Dy(to)eP®=rt) = D(t) = ky(t — o)™, (A.9)

Upon substitution for initial conditions, followed by re-arranging for p(t), leads to

p(t) = In [k, (t — tea)"], (A.10a)
) ::% 0 = (A.10b)

If pit initiation times t,4 are assumed to be negligibly small relative to inspection intervals
for field data or exposure periods for experimental data, Eqn A.10b reduces further to
simply the quotient v;/t. Surprisingly, this approach leads to very good predictions of
Monte-Carlo simulated maximum pit depth distributions (e.g., Figure 5 in Caleyo et al.
(2009)) and generally reasonable predictions of experimental corrosion coupon data (e.g.,
Figure 9 in Caleyo et al. (2009)). This formulation for A(t) appears to also have become the
de facto approach for modelling evolution of pits with a Markov chain, as evidence by its
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adoption for modelling—to varying degrees of success—maximum pit depths (McCallum
et al. (2014); Ossai et al. (2016); Xie et al. (2018)) and evolution of wear depths in steam
generator tubes (He et al., 2019).

While arguably the appeal of the second formulation for A(t) is its simplicity, there are a
few observations worthy of note. First, Cox and Miller (1987) use a time-independent rate
analogy to arrive at their equivalence statement. Caleyo et al. (2009); Valor et al. (2013)
apply it directly to a time-dependent stochastic process, without clarification or justifica-
tion. However, as will be shown shortly, the stochastic mean of a population modelled
with a time-dependent rate is in fact equal to E[N(t)], right side of identically equal sign
in Equation A.8. For example, for a pure-birth, linear-growth-rate (time-dependent rate)
stochastic process, the characteristic function ¢y—n(s)(u) for the change in population
size N(t) — N(s) over a time interval [s,t], where t > s > 0, conditioned on the fact that
the size of the population at time s is m, is

iu{N(#)—N(s)} e~ [p(t)—p(s)] m
QON(t)_N(S)(UJ = E |:€ |N(S) = m] = {1 . (1 o 6—[P(t)—P(S)])eiU} . <A11>

The first derivative of the characteristic function yields the first moment or expectation of
a RV. Thus,
11 d
o [@W(t)N(s)(U)] = E[N(t) = N(s)|N(s) = m]
u=0
= mel =) (1 — ~lPO=p(o)) (A.12)

— (PO 1)
which, for initial conditions s = 0 and N(0) = 1, simplifies to

E[N(t)] = E[N(t) — N(0)] 4 1 = =0 = ¢r(® (A.13)

Second, a plot of p(t), Equation A.10a, for x, = 0.164, v, = 0.780, and t,q = 2.9,
which represent power-law fitting parameters and initiation times, respectively, for the
“All soils” class applicable to pitting in underground piping modelled by Caleyo et al.
(2009), is presented in Figure A.1. This plot, which is reproduced by directly applying
Equation A.10a with D(t;) = 1—the condition applied to derive this equation, is compared
with Figure A.2. The last figure is a reproduction of Figure 2a in Caleyo et al. (2009) and
Figure 1b in Valor et al. (2013) for the “All Soils” condition and same parameters. It
is important to note that Caleyo et al. (2009); Valor et al. (2013) explicitly reference the
formulation p(t) =In [k¢(t — ts4)"*] as the means by which to generate the plot in Figure A.2.
A comparison of Figure A.2 with Figure A.1 would suggest that this was not the case.
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INTENSITY MEASURE
Expected Number of Events: Valor et al (2013) D{f;) =1
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Figure A.1: Expected number of extreme pit depths (events) by time ¢ predicted by the
approach proposed by Caleyo et al. (2009); Valor et al. (2013), with parameters x; = 0.164
and v, = 0.780 taken from Tables 1 and 2, Valor et al. (2013).

To arrive at a plausible formulation employed by Caleyo et al. (2009); Valor et al. (2013)
to generate Figure A.2, one should observe that in Figure A.2 p(5) = 1, suggesting to # 0.
In fact, ty = 5 represents one time period used by the authors to facilitate comparison
with predictions generated for a later time. Thus, it would appear that ¢ty = 5 was used to
generate Figure A.2, implying that one must revisit Equation A.9 to arrive at a complete
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INTENSITY MEASURE
Expected Number of Events: Valor et al (2013) Figlh All Soils
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Figure A.2: Expected number of extreme pit depths (events) by time ¢ predicted by the
approach proposed by Caleyo et al. (2009); Valor et al. (2013), with the parameters k; =
0.164 and v, = 0.780 taken from Tables 1 and 2, Valor et al. (2013).

expression for p(t). For instance,

Do(to)ep(t)—p(to) = k(b — tg)”
In Dy(to) + p(t) — p(to) = In [ke(t — tsq)"] (A.14)
p(t) = In [t — t,0)"] — In Do(to) + plt):

If it is true that p(t) =In [k (t — tsq)"*], then it stands to reason that p(to) =In [k (to — tsa)"*],
provided D;_,(tsq) = 1, else p(to) =In[ki(tg — tsa)"] — In Dy, (tsq). Consequently,

p(t) = In[ki(t — tsa)"] + In[ke(to — tsa)”] —In Do(to) — In Dy, (tsa), (A.15)
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which presents two unknowns Dy () and D, (tsq)-

A possible process of elimination to deduce the values of these unknowns, assuming
to =5, is to plot the first two terms to the right of the equality sign in Equation A.15.
The resulting plot, shown in Figure A.3, is very similar in shape and almost identical in
height to that displayed in Figure A.2. Additionally, if one assumes Dy(tg) = 1; that is,
if one lets the damage state at to = 5 be equal to 1, Equation A.15 is further reduced to
three terms. Since the two-term plot appears to be identical to the actual plot, but only
that it is translated down on the ordinate, the magnitude of D;_,(ts4) may be deduced by
shifting the two-term plot along the ordinate until p(5) = 1. The quantity of this shift
approximates — In D;_,(tsq). Figure A.4 shows the shifted plot along with the results from
Figure A.2. Almost perfect agreement is observed, suggesting that Equation A.15 is the
likely formulation applied by Caleyo et al. (2009); Valor et al. (2013). From the foregoing,
there are three points worthy of consideration.

One is that in general D(t), Dy(to), or Dy, (tsq) represent integer-valued damage states,
analogous to the size of a population. The result D;_,(ts4) = 0.03148, while mathematically
convenient and consistent (i.e., D;_(tsa) < Do(ty)), cannot represent an integer-valued
damage state. It is inconsistent to define it as an integer-valued state of a Markov chain,
as is the case in Caleyo et al. (2009); Valor et al. (2013), while at the same time use it
as a positive, real-valued function. Two, there is nothing in Caleyo et al. (2009); Valor
et al. (2013) to explain why p(5) = 1. Strictly speaking, p(t) is an average mean rate
of occurrence, or equivalently the expected number of stochastic events—the expected
number of transitions in a Markov chain from ¢ = 0 to ¢ (see Section 5.3.1). There is no
obvious reason to fix the expected number of events or transitions to a set number for
any time t. Three, taken together the formulation proposed in Equation A.10a is not a
workable solution for ¢y = 0 since the function is negative (Figure A.1): this is a violation
of the fundamental definition of p(t) for a stochastic process (Section 5.3.1).
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INTENSITY MEASURE
Expected Number of Events: Valor et al (2013) Figlb (Two Terms)
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Figure A.3: Expected number of extreme pit depths (events) by time ¢, with the parameters
ke = 0.164 and 1, = 0.780 taken from Tables 1 and 2, Valor et al. (2013), using the first
two terms to the right of the equal sign in Equation A.15.
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INTENSITY MEASURE
Expected Number of Events: Valor et al (2013) Figlb, Dy{ty) =1
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Figure A.4: Expected number of extreme pit depths (events) by time ¢, showing actual
data points from Figlb Valor et al. (2013) and a deduced plot with parameters taken from
Tables 1 and 2, Valor et al. (2013).
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Appendix B

Extreme Value Analysis

The objective of this appendix is to provide the mathematical details leading to the use
of parameters p, v, k, and b in the intensity measure formulation, Equation 5.17, in Chap-
ter 5, Section 5.3.3. Owing to the fact that the first three of these parameters have their
origin in the limiting distribution of maxima, also referred to as the GEV family of dis-
tributions, this chapter includes sufficient EVA background framed in the context of pit
depth maxima. This framework is also helpful in understanding the GPD, which represents
the limiting distribution of exceedances. Moreover, because both the work on the GPD
in Appendix C and the stochastic process model developed in Chapter 5 heavily rest on
the confidence of fitted GEV parameters, significant effort is placed on the goodness-of-fit
assessments and validity of model assumptions. Questions such as why use the Maximum
Likelihood Estimator (MLE) as a parameter point estimator, what about the effect of small
sample size (e.g, surrogate data) on the bias of MLE, etc. are also addressed—almost
exhaustively—in this appendix. Consequently, this appendix is necessarily detailed.

B.1 Generalised Extreme Value

For completeness, let X, Xo,..., X, be a sequence of iid RVs, with common but unknown
distribution function F'. Define M,, as

M, = max(Xy, Xo, ..., X,), (B.1)
and

PM, <z)=P(X; <x,Xo<uz... ,X,<z)=I[F(2)]" = F'(z),z € R, (B.2)
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In the present case, the RV X and the sequence of RVs X1, X5, ..., X,, represent the
depth of a corrosion pit and z1, z», ..., x, a sequence of corrosion pit depths observed on a
corrosion coupon. Following the theory of extreme value (see Coles, 2001, pg 47; Castillo
et al., 2005, pg 54; Resnick, 1987, Ch 0; and Leadbetter et al., 1983, Ch 1), with appropriate
sequence of normalising constants {a,,> 0} and {b,€ R}, referred to typically as scale and
location respectively, the sequence M} = {(M, — b,)/a,} converges in distribution as
n — oo, such that

P(M; <z)=P(M,—0b,) /an < z) = F"(a,z + by) N H(z) as n — oc. (B.3)

The cumulative distribution function H(z) is referred to as an “extremal distribution func-
tion,” Pickands (1975), and F'(z) is said to be in the “maximal domain of attraction” of
H(z) if Equation (B.3) is satisfied for at least one pair of normalising constants {a, > 0}
and {b, € R}, Castillo, 1988, pg 195. Without the normalising constants, F"(x) degen-
erates as n — oo. Visually, this means that the PDF of M, shifts to the right and its
variance decreases as n increases, and the CDF of M, (i.e., F"(x)) also moves to the right,
acquiring a large positive slope as n increases. Together, this indicates that the distribution
of M,, degenerates to a point mass (i.e., a one-point distribution) on its upper endpoint.
More precisely, for any = < x,, where 2, := sup {x : F(x) < 1} is the upper endpoint of F’
(or in words, x is the smallest value of x where F((z) = 1), F™(x) — 0 as n — oco. There-
fore, in the limit, F™(x) takes only values 0 or 1, satisfying the definition of a degenerate

distribution:
1, if I 1
lim F"(z) =< 1 ()
0, if F(z) <1

’ (B.4)

Consequently, provided the normalising constants exist, H(z) is non-degenerate and
converges or belongs to one of three types of limiting distributions (i.e., Gumbel type,
Fréchet type, and the Weibull type). As discussed by Jenkinson (1955), the three types
of limiting distributions may be combined into a single family of distributions—the GEV
distribution family, having the form shown in Equation (B.5). To be clear, H(z) is the
GEV CDF shown in Equation (B.5). In practice, the need to determine the normalising
constants is avoided by recognising that for large n, P(M} < z) ~ H(z) and P(M,, < 2) =~
H((z — by)/ay) that, as n — oo, is equal to H*(z), representing another member of the
GEV distribution family. Since both distributions H(z) and H*(z) require a different set
of fitted parameters, it’s immaterial which distribution is chosen (see Coles, 2001, pg 49).
Consequently, provided n is large, one works directly with M,,, and z can be replaced by
x without loss of generality.
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The formulation for the GEV CDF employed in this thesis is taken from Castillo et al.,
2005, pg 64:

1
GEV (M, <z)=GEV(z|p,a, k) =expg — [1_H(x—u)1,€ ;1_K(x—,u> >0,

(6] (0%

(B.5)
where € R, a> 0, and k # 0 are the location, scale, and shape parameters, respectively,
and x represents maximum pit depth observed over a given area of interest. Equation B.5
is identical to the more popular expression given in Coles, 2001, pg 47, except for s, which
is the negative of the one used in Coles (2001). However, the form used in Equation B.5
is more common in the environmental literature, which has proved to be a good source of
many helpful references in handling Peaks-Over-Threshold in this work. One additional
note, from this point onward the RV X represents the maximum pit depth for a given
corrosion coupon and z the observed maximum pit depth. The use of X in lieu of M,, (or
Z, for example) is to limit the number of variables used throughout though at times M,
will be used simply to emphasise its definition (Equation B.1).

To employ Equation B.5, pit depth maxima are obtained by arranging “observed” max-

imum pit depth data (i.e., x1,xs, ..., T, ) into m “blocks.” In the present context, “blocks”
represent corrosion coupons, and the maximum pit depths for each coupon represent the
block maxima (i.e., x1, s, ..., x,). The GEV distribution is then fit to the block maxima.

Since GEV (x) is an asymptotic model, the number of observed pits n per coupon should
be sufficiently large to satisfy asymptotic assumptions. As discussed below, the number of
pits per coupon for which depth measurements were recorded was on average greater than
ten. However, the corrosion coupon data is left-truncated, which means the originators
of the data chose to ignore pits smaller than an arbitrary depth, suggesting that n per
coupon was likely much greater than ten, but unknown. For this work, it is assumed that
a sufficient number of pits were generated per coupon, though not measured, to satisfy
asymptotic assumptions. Additionally, since n is unknown, but assumed to be large, the
approximation P(M* < z) ~ H(z) is implied in this thesis wherever the equal sign occurs.

The corresponding PDF for the GEV CDF is obtained by taking the derivative of
Equation B.5 with respect to x, holding all previous parameter constraints:

1 1

st~ [ e (O] () L (2 20
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For most of the analysis covered in this work, the GEV CDF and PDF will suffice to ade-
quately provide the necessary probability laws. In most extreme value analysis problems,
however, the interest more often than not lies with predicting the magnitude of a rare event,
or the quantile x,, of the GEV distribution, where p is called the non-exceedance probabil-
ity (adopting the terminology from Castillo et al. (2005), whereas Coles (2001) refers to
p as the exceedance probability). For a non-exceedance probability p, the quantile z, is
derived by inverting Equation B.5:

Ty = p+ =1 = (~lnp)T5k £ 0. (B.7)

The quantile z,, will feature prominently in the explanatory discussions under Section B.4
and is included herein for that purpose only.

B.2 Surrogate Data

Ideally, data from the Denison and Romanoff (1950) study would be a good starting point,
but a few issues explained below render it unsuitable for the task at hand. The Denison
and Romanoff data is approximately 74-88 years old (as at the time of the writing of
this thesis). It represents long-term (14 years) underground (shallow trench) tests for
copper and various copper alloy pipe specimens buried in a range of soil conditions across
many sites in the United States of America. Five exposure periods were sampled over
the 14 years, with two pipe specimens, each approximately 305 mm long and 43 mm in
outer diameter, sampled per exposure period. The results, which comprised measured
maximum and average pit depths, were ultimately fit to a power-law relationship in time.
While important from many points of view, including a test duration well exceeding most
small-specimen laboratory tests, the number of specimens sampled per exposure period
was very limited (e.g., sometimes just two specimens were sampled) and the observed
variability large, resulting in a sparse dataset that offered limited scope for additional
analysis (i.e., it would be difficult to be confident of extrapolation in time, to say the least).
Additionally, soil conditions surveyed were not necessarily representative of postulated
DGR environments (only two soil conditions were considered in the Briggs et al., 2021
model, further limiting the utility of the data). While soil condition is not necessarily a
deterrent for employing the Denison and Romanoff data in this work, it does represent a
source of additional variability (i.e., lack of experimental control) that is undesirable. More
importantly, the available data effectively restricts any study to potentially a block maxima
analysis—but such an endeavour would be highly dubious since the number of blocks (i.e.,
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the number of corrosion coupons) is, statistically speaking, too small. Consequently, no
further consideration was given to the Denison and Romanoff data for this analysis.

It is important for the reader to note that King and LeNeveu (1991) applied EVA to the
Denison and Romanoff data in their modelling of pitting corrosion in 25-mm thick copper
shell containers. Specifically, King and LeNeveu (1991) fitted a simple two-parameter
Gumbel distribution using least squares to some of the Denison and Romanoff maximum
pit depth data, on a per period basis. Pit data for some of the copper alloy types and soil
conditions, spanning the six test periods including the 14-year period, was combined to
form a single data set. One of the two fitted parameters was argued to exhibit some time
dependence and was subsequently represented by a simple linear equation in logarithmic
time scale. This formulation allowed for the extrapolation in time and space (i.e., size
effect) of the Gumbel distribution for maximum pit depths to repository timescales. The
work by King and LeNeveu (1991) is simply mentioned here for completeness and to credit
their efforts. However, the lack of data remains a problem and, in particular, the poor fit
employed to represent the time dependence of one of the Gumbel distribution parameters
makes it is difficult for this author to justify their approach here.

The data used in this work originates from Li et al. (2019). This author reached out
to the primary author for the full dataset since the paper focused on maximum pit depths
only. The full dataset was subsequently received with permission (private communication).

Figure B.1 shows the evolution of pit depths with time. The data, which is left-
truncated arbitrarily by Li et al. (2019), represents pooled results from 100 304 stainless
steel corrosion coupons, arranged into sets of ten samples (samples and coupons are used
interchangeably throughout). Each sample having an exposed surface area 10 mm X
50 mm. The sets of samples were immersed in 3.5 wt% NaCl solution at 30°C for 7, 14,
21, 28, 30, 60, 90, 120, 150, and 180 days, respectively. At each exposure period, one
set was removed and pits measured. With the exception of two exposure periods, the
number of pooled pit depths recorded per exposure period was greater than 100. Of the
two exposure periods with less than 100 pooled recorded pit depths, 82 and 92 pooled pit
depths, respectively, were recorded. Formally, for the block maxima GEV modelling, a
block is represented by the size of each coupon, and there are ten blocks for each exposure
period. The block maxima (i.e., the maximum pit depths for each coupon per exposure
period) are highlighted in blue in Figure B.1.

It is important to note that the data consists of two distinct experiments. The first
experiment, which included exposure periods 7-28 days, was used by Li et al. (2019) to
generate a simple power-law model that was subsequently applied to predict the results
for exposure periods 30-180 days. One will note that there is a slight difference in the
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pit depth trends between the two experiments, which is most pronounced at the 28- and
30-day exposure periods. While the experiments were, in principle, identical in terms of
conditions, clearly there was variability between the two. A small effect was noticed when
fitting the block maxima data. (A greater effect was noticed for the threshold function
discussed later in this document.)

EVOLUTION OF PIT DEPTHS
(Ten Coupons Per Exposure Period)
Exposure Period (days)
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Figure B.1: Pit depths versus time for 304 stainless steel coupons immersed in 3.5 wt%
NaCl solution at 30°C (Li et al., 2019, by permission). The maxima per exposure period
are highlighted in blue.
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B.3 Extrapolation in Time

To model evolution of maximum pit depth with time, a decision was made to assume a
power-law relationship for the location (u) and scale () parameters, each having a com-
mon exponential term, while leaving the shape (k) parameter invariant to time. Strictly
speaking, i, = ut’, oy = at®, and s are parameters of the model, and y, o, and b hyperpa-
rameters. For simplicity, however, the term “parameters” will be adopted for u, a;, k and b.
That the location and scale are chosen—seemingly arbitrarily—to increase by the same
exponent b, is a choice based on the behaviour observed typically for carbon steels (Lay-
cock et al., 1990) and is assumed here to be true for 304 stainless steels immersed in
3.5 wt% NaCl solution at 30°C. Also, the decision to leave the shape parameter constant is
consistent with the approach adopted successfully by Laycock et al. (1990); Scarf (1992);
Scarf et al. (1992); Scarf and Laycock (1994), particularly for modelling stainless steels.
Consequently, the revised GEV distribution with time as covariate and the corresponding
density function are shown respectively in Equation B.8 and Equation B.9:

1
—ut®\ 1k — ut®
GEV (z,t|p, o, k,b) = exp —[1—H<xat¢f )]K ;1—,<¢(xatéﬁ >20; (B.8)
1 1
K

1 x — pt? P x — pt?
g(x,t|,u7a,f<;,b):@{1—/<a( b >] exp —{1—/4;(?)} (B.9)

Equation B.8 is the non-stationary representation (as chosen in this work) of the stationary
GEV distribution given in Equation B.5. Assuming that a confidence interval for the shape
parameter x does not include zero, the support of GEV (z,t|pu, o, k,b) is © < ,ut?- + at?/m,
which results in an upper endpoint x, = ut? + ozt? /K.

B.4 Parameter Estimation and Goodness-of-Fit

The literature offers many methods for deriving point estimates of the stationary GEV dis-
tribution parameters. Traditionally, the most popular methods are Probability-Weighted
Moments (PWM), Hosking et al. (1985); L-Moments (LM), Hosking (1990), which are
related to the method of PWM; and Maximum Likelihood (ML), Smith (1985). A review
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of the literature would show that in surprisingly many instances, authors simply state the
selected parameter estimation method without due consideration for the implications of
their choice. However, among these there are at times more discriminating authors who
include a statement to the effect that any necessary conditions associated with the pa-
rameter estimation method are assumed to apply. Fortunately, the literature is replete
with examples where more careful thought is given to the consequence of choosing one
estimation method over another on predictions concerning extreme events—whether these
are in finance, insurance, or civil and environmental engineering. The point being made
is that given the purpose of this thesis—to develop a probabilistic model for UFC lifetime
predictions—it is incumbent on this author to offer at least a justification for the parameter
estimation method chosen and to state simply the implications for ensuing analyses. The
intent, however, is not to provide an exhaustive review of the various methods and their
merits, but rather to grant the reader a measure of appreciation for the choice made.

The method of ML is preferred by this author simply because of both its intuitiveness
and flexibility in handling the non-stationary GEV. However, there are other benefits that
attract many users to ML. These include: (7) the ability to estimate standard errors—and
by extension confidence intervals—for estimated model parameters by invoking asymptotic
normality assumptions, and (i7) the relative ease with which a simple approach (e.g.,
deviance statistic) can be applied to assess whether a complex model (in the sense of more
parameters) is a better fit to data than a simpler model (i.e., a simpler model whose set
of parameters is contained within the set of parameters of the more complex model). A
very good, accessible summary of these benefits are provided in Coles (2001, Sec. 2.6.3),
Beirlant et al. (2004, Sec. 5.1), and Castillo et al. (2005, Ch. 5.1).

There are three main concerns with the method of ML, however. First, the so-called
“regularity conditions” that govern the applicability of asymptotic normality assumptions
are restricted to k < 0.5, Smith (1985)!. Second, for small-sized samples the ML method
can lead to both unrealistic estimates for x and large bias and variance for the GEV
parameter estimations, including large bias and variance for quantile estimates of extreme
events (i.e., for return levels associated with some very small exceedance probability),
Hosking et al., 1985. By small sample size it is meant m < 25, as demonstrated by
Hosking et al., 1985 through simulations. The results of Hosking et al., 1985 have been
replicated by several authors (e.g., see Coles and Dixon, 1999 and Martins and Stedinger,
2000) and represent legitimate concerns. The last concern is the potential for convergence
problems when maximising the likelihood function by numerical algorithms. In the present
work, this problem was not experienced and is not discussed further. Regularity conditions

IFor a more recent assessment of the asymptotic normality assumptions in the context of the GEV
distribution and a critique on the paper by Smith (1985), see Biicher and Segers (2017).
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are assumed met, but the interested may consult Casella and Berger, 2002, pg 516, and
Lehmann and Casella, 1998, pg 440 for a detailed description of regularity conditions. The
effect of small sample size is discussed separately below. However, to better understand
the ensuing discussion the method of ML is presented first.

B.4.1 The Maximum Likelihood Method

What follows has been adapted from many of the references already cited above, but of
particular noteworthiness is the book by Pawitan (2013) that—aside from being somewhat
of an exhaustive yet very readable exposition of the maximum likelihood method—provides
the reader with some great historical perspectives on the evolution of the concept of sta-
tistical inference.

Assume that X7, X, ... are iid RVs, representing a sequence of corrosion pits on a par-
ticular coupon with density gg(z,t), where the subscript € implies a fixed parameter vector
(i.e., go(x) = g(z,t]0)), and 6 = (u, a, k,b). Under the assumption of independence, the
joint distribution of X, Xy, ... is expressed by

go(x1,2,.... 1) = [ [ g0 (i, t). (B.10)
=1

A note of clarification is required here. Equation B.10 describes the joint distribution
for m corrosion pit maxima at a fixed exposure time t. For k distinct exposure times,
where m maxima are observed for each, the joint distribution of a sequence of RVs
X11,X21, ..., Xk, where X; ; is the random variable associated with the observed max-
imum corrosion pit z; ; of the ith coupon at the jth exposure period, takes the following
form

k m
gg(.Tl’l,l’QJ,...,tl,tg,...) —H{ gg((lfi’j,tj)}. (B].l)
j=1 Li=1
The assumption that m maxima between exposure periods are independent and identically
distributed is worthy of a brief discussion. Suppose for a moment the m maxima repre-
sent a univariate time series of consecutive observations across all exposure periods. It
could then be said that the data exhibit “temporal” dependence in the form of a non-
linear trend with time (e.g., see Figure B.1). Such a trend would raise questions as to the
validity of the limiting GEV distribution since Equation B.5 indicates clearly that it is
invariant to time. Fortunately, the limiting GEV distribution is still applicable provided
non-hyperparameters (i.e., p; and a4, in the present case) are defined as functions of time
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(Coles, 2001, Ch 6), as is the case in Equation B.8. One can thus say that non-stationarity
or temporal dependence in the data, which violates the assumption of identically dis-
tributed, is overcome—more accurately “relaxed”—by defining the parameters of the GEV
model as functions of time and thereby assigning a single distribution to the RV X ;. The
question of independence of m maxima between exposure periods is also satisfied. For
example, events {X;1=x1,} and {X;2==;5} are independent in that the value of the
former provides no information on the value of the latter. Intuitively, this is consistent
with our understanding that the corrosion tests at each exposure period are distinct and
non-interacting subsets of the larger corrosion experiments (and were not generated as a
result of consecutive observations). Consequently, the m maxima between exposure peri-

ods are iid (i.e., P g(x,t]0)), which is understood to mean that maxima across all time
periods are independent and are (loosely speaking) also identically distributed as per the
parametrisation of the non-stationary GEV model . With the assumption of iid justified,
the form of Equation B.11 holds. (The concept of dependence is revisited in the next
chapter under the Markov process model for the evolution of pit depth exceedances over a

specified threshold.)

Assuming X1, Xo1, ..., Xmx w g(x,t]0), then the likelihood function L, which rep-
resents the likelihood of observing the data z1,x21,... across k exposure periods (i.e.,
{t; e Ry :5=1,2,...,k}), for a given parameter vector 0, is defined by

L(9|ZL’171,LE2’1, Ce ,tl,tg, o ) = H {ng<xi,j7tj)} . <B12)

j=1 Li=1

Subsequently, the MLE of 0 is defined as
0= arggle%L(m:cm, Toq, ... b1, ta,...). (B.13)

For the sample observed z; 1,221, ..., the MLE 0 is the estimate for @ that maximises L
across the parameter space ©, where @ € ® and ® C R?, d an integer > 1. Put in other
words, L is the likelihood of @, with 0 treated as a variable, conditional on the observed
data. It is often more convenient to work with the log-likelihood function [, which represents
the natural logarithm of Equation B.12:

k m
l(0|$1’1,$271, Ce ,tl,tQ, .. ) = Z {Zlng9<$i7j,tj)} . <B14)



This is possible because the solution to the maximisation problem (Equation B.13) is
invariant to the natural logarithm of L (i.e, invariant to a strictly monotone increas-
ing transformation—the natural logarithm function is strictly increasing on the interval
(0,00)). Consequently,  may be defined as

6 = 16 cotita, ). B.1
arg%lea(-})( ( ‘xl,laxQ,la s U1y U2, ) ( 5)
To simplify notation, let x,t :={xy1,221,...,t1,t2,... }. The maximisation problem re-

quires taking the partial derivatives of L or [ with respect to 8 and setting the same to
zero. Consequently, 6 is the solution to the likelihood equation that, for the multi-parameter
case of the non-stationary GEV distribution, is expressed as the vector of component-wise
partial derivates set to zero

VIO |x,t) =

<8l(é|x,t) olB|x,t) 9l(f]x,t) 05(9|X’t))T_0 (B.16)

o oo 0K 0b

where (- )T represents transpose and 0 is a 4 x 1 zero column vector. For the non-stationary
GEV distribution, it is more convenient to solve for 6 in Equation B.15 by applying suitable
numerical maximisation algorithms (more precisely, minimisation routines applied to the
negative log-likelihood function (i.e., —I(6|x,t)). VI(0]x,t) is also known as the score
vector S(6|x,t), and the MLE satisfies the condition S(8 |x,t)=0. Also, under certain
regularity conditions, the expectation of S(8]x,t) is equal to zero (i.e., £ [S(@|x,t)]=0).

The covariance of S (i.e., Cov [S]=F [SST]| — E[S| E [S]"), which is a d x d matrix, is
called the Fisher information matriz 1(-) and represents the negative expectation (taken

with respect to the RV X ;) of the Hessian H—the matrix of second partial derivatives of
the log-likelihood function:

SUbkt)  9%U(Gxt)
9S(0]x,t)  9%(0]x,t) Oubdy 2udk
ubxt) . 9UGk.t)
obdp 2bb
and
I(0]|x,t) = —E[H(0|x,t)]. (B.18)

The Fisher information matriz 1 is a measure of the expected curvature of the log-
likelihood function, which intuitively informs us as to the shape—flat or peaked—of the
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log-likelihood function in the vicinity of its maximum (i.e., evaluated at 60 :é) While in
practice this is not directly exploited, it has been observed that when —/ is minimised via
numerical algorithms, difficulties in convergence or numerical instabilities may arise when
[ is very flat in the neighbourhood of its maximum. Again, in the present work this was
not experienced.

For a random maxima sample of size m, observed across k exposure periods, the above
equations signify

k m k m
62
0|X, t) = E { 8080T In ge I,L’J, } E { E H(O’.Ti’j, tj)} s <B19)
j i=1

j:1 =1 :

and, therefore,
I(0|x,t) Z {ZE CIERN )]}. (B.20)

Distributing the expectation into the Hessian can be messy algebraically (e.g., see Equa-
tion B.25). Alternatively, one can compute the Observed information matriz Io(-) that,
in the present context, is defined as the negative of the Hessian

To(0|x,t) = —H(O|x,t). (B.21)

Coles (2001, pg 32) suggests that estimates of parameter confidence intervals (to be dis-
cussed shortly) derived using Io(- ) are often more accurate than those estimated with I(-).
Further, Castillo et al. (2005, pg 111) state that if / is approximately quadratic in the neigh-
bourhood of the maximum, then I(-) ~ Io(-), evaluated at §=8. It is certainly simpler to
perform the computations for Io(- ) than for I(-) (e.g., see Scarf (1992) for a complete com-
putation for the non-stationary GEV distribution), but when used to estimate parameter
uncertainties both forms of the Fisher information matriz lead to the same vulnerability
to small-sized sample effects. Moreover, recently Cao and Spall (2012) showed that under
a mean squared error criterion I(-) outperforms Io(-) in estimating the covariance matrix
of the MLE 8. Consequently, while computationally attractive, there are no immediate
compelling reasons to consider Ig(-) for estimation of parameter uncertainties.

It is now possible to speak more specifically of the reasons why the ML method remains
a popular statistical inference tool. Under certain regularity conditions, the MLE 6 exhibits
desirable properties (Castillo et al., 2005, pg 110), which are: it is a consistent, efficient,
and an asymptotically normal estlmator of 8. In few words, consistent means that as
m — oo, 60 — 0, or the variance of 6 — 0. Efficient speaks to the characteristic that as an
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estimator it has minimum variance. Asymptotically normal highlights that it convergences
in distribution to the normal distribution Ny with mean vector @ and covariance matrix
equal to the inverse of the Fisher information matriz (i.c., 6 —Ly Nu(8, I(0]x,t)"), where
the subscript d in N4 denotes d — dimensional). The last point, in particular, allows
for estimation of parameter uncertainty via the computation of symmetrical confidence
intervals. More precisely, the square root of the diagonals of I(@ | x,t)™!, evaluated at
0= é, yields estimates of the standard errors (65, d4,0%4,6;) for the MLEs i, &, &, and l;,
from which the respective (1 — «)100% confidence intervals ji £ 2420, & £ 24/204, ~ =
Za/20%, and b+ 2q/207 follow, with 2./, equal to the standard normal quantile and a the
confidence level.

From the foregoing, one can better appreciate that the Fisher information matriz pro-
vides a “number” that equates to a bound on the variance of 8. The larger the value
of the Fisher information matriz, the more “information” is derived about @ from the
observed sample x;1,%21,...,%1,%2,..., and the smaller the bound on the variance of ]
(Casella and Berger, 2002, pg 338). The above discussion has only but touched on the ML
method and its properties. The interested reader is encouraged to examine the following
references, which this author found to be of substantial benefit in appreciating the subject
matter. They are listed in order of increasing difficulty, with respect to required level
of mathematics and statistics: Rice, 2007, Ch 8 Estimation of Parameters and Fitting
of Probability Distributions; Wasserman, 2010, Ch 9 Parametric Inference; Casella and
Berger, 2002, Ch 10 Asymptotic Evaluation; Pawitan, 2013; and van der Vaart, 2000, Ch 5
M- and Z-Estimators.

Small Sample Size

Coles and Dixon (1999) showed that indeed large bias and large mean square error are
computed for the GEV ML estimators fi, &, and & when the number of samples is less
than 25. In their assessment, they noted that the difference between the GEV ML and
PWM quantile estimators was due mainly to the negative skewness in the distribution of
the shape parameter estimate &, which in turn led to large bias in quantile estimations.
They attributed the better performance of the PWM quantile estimators to the implicit
assumption used in the PWM methodology, which assumes « > —1. This assumption
effectively maps the unbounded x parameter space (—oo, o) to the bounded-below & pa-
rameter space (—1,00). Coles and Dixon (1999) subsequently argued that the constraint
k > —1 acts very much as prior information, an argument they then used to develop a
“penalised” MLE. Effectively, in the penalised scheme the likelihood function is multiplied
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by a user-defined probability distribution, in a manner similar to some extent to that of a
Bayesian formulation for parameter estimation. Penalised ML quantile estimators exhibit
both improved bias and mean square error for small samples.

Around the same time as Coles and Dixon (1999) were submitting their manuscript
for the “penalised” MLE, Martins and Stedinger (2000) were developing a modified ML
method approach for small samples, which they called Generalised Maximum Likelihood
(GML)? and whose parameter estimate was defined as the Generalised Maximum Likeli-
hood Estimator (GMLE). The assertion made by Martins and Stedinger (2000) was that
for hydrologic data it is reasonable to expect x to lie within a certain range. When this
assertion is viewed from the perspective of a “belief,” it permits explicit definition of a
prior distribution 7(-) for s, m(k), whose domain is bounded (i.e., k = [k, ky]), where
L and U are lower and upper, respectively. Based on experience and some analysis, a Beta
distribution was chosen for 7(x), and the Generalised Likelihood (GL) function was defined
as the product of the likelihood function and the Beta prior. (As an aside, Martins and
Stedinger (2000) defined the domain of m(x) as [—0.5,0.5], which effectively addressed con-
cerns with satisfying regularity conditions (Smith, 1985)). Point estimates for p, o, and &
were obtained by numerical maximisation, using the Newton-Raphson method, of the GL
function. With the GMLEs acquired, ensuing Monte Carlo simulations demonstrated lower
Root Mean Square Error (RMSE)—in comparison with the methods of ML and PWM—
for quantiles calculated across non-exceedance probabilities ranging from 0.001 to 0.999
and k < 0, and for a sample of size 25. Maximisation of the GL function led to GMLEs
it, &, and k& that, in the context of a Bayesian formulation, represented the mode—not the
mean—of the respective Bayesian posterior parameter distributions. However, for clarifica-
tion, maximisation of the GL function resulted in point estimates, not posterior parameter
distributions. Martins and Stedinger (2000) acknowledged that the method of GL was a
semi-Bayesian analysis procedure suitable were insufficient regional data (domain know-
how, in the context of this thesis) precluded definition of priors for y and a.

Perhaps it could be argue that Coles and Tawn (1996) were the first® to carry out a full

2The expression generalized mazimum likelihood was used by Berger (1985, pg 133) in reference to the
use of the mode of the model parameter posterior distribution as one of several potential parameter point
estimates.

3From the point of view that Coles and Tawn (1996) were the first to exploit fully a Bayesian framework
by utilising the computational efficiencies offered by a Markov Chain Monte Carlo (MCMC) procedure to
estimate the posterior parameter distribution 7(@ | x). Smith and Naylor (1987) were the first to apply
a Bayesian framework in the context of extreme value analysis but for the three-parameter Weibull and
with a numerical (integration) methodology invoking asymptotic normality assumptions for the posterior
parameter distribution (i.e., assuming explicitly that 7(€ | x) is multi-variate normal—see Naylor and
Smith (1982) for further details).
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Bayesian analysis of extreme data—in their case rainfall data. Unlike others before them,
Coles and Tawn (1996) chose to develop informative priors for quantiles (namely quantile
differences) rather than for the GEV model parameters directly. Specifically, quantiles were
determined for particular exceedance probabilities (i.e., rainfall return levels for specified
return periods) by eliciting the knowledge of subject matter experts. Coles and Tawn (1996)
opined that “it was unlikely that prior beliefs on extremal behaviour could be adequately
elicited directly in terms of GEV parameters.” Consequently, the joint prior distribution
of the quantiles (modelled arbitrarily by Gamma distributions) were defined and subse-
quently transformed into a prior distribution 7 (@) for the GEV parameter vector 8, where
0 = (i, a, k). The posterior parameter vector distribution 7(@|x), where x represents the
observed data (i.e., X := x1, o, ... ), was calculated by multiplying 7(@) by the likelihood
function, which was expressed in terms of a non-homogeneous Poisson point process. The
latter requires an estimate of the threshold level for the determination of exceedances that,
as will be discussed later, brings with it additional uncertainty—an uncertainty Coles and
Tawn (1996) partly addressed. Subsequently, a MCMC method was applied to estimate
the marginal posterior distributions for i, &, and . The authors subsequently showed
that, when expert knowledge can be elicited, the full Bayesian formulation has definite
advantages in both reducing standard errors for model parameter estimates and provid-
ing more realistic quantile confidence intervals—credible intervals—for very long return
periods. This is particularly true for quantile predictions where the use of the Bayesian
predictive distribution (i.e., f(zpy1 |21, 22, .. X [o f(@ni1|0)(0] 21, 20, 2,)d6,
where x,,,1 is the new observation of interest4 see Bolstad 2010, pg 54) is viewed as “the
most natural summary of an extreme value mference” (quoted in a follow-up paper by
Coles and Pericchi (2003) in reference to Coles and Tawn (1996)).

With respect to the work by Coles and Pericchi (2003), including the work by Coles
et al. (2003), a full Bayesian formulation was applied to extreme-value analysis of daily
rain-fall data spanning approximately 50 years of record taking on the coast of Venezuela.
Using a point process formulation for the likelihood function and zero-mean normal priors
for u,Inc, and k (i.e., p,Ina ~ N(0,10%), and x ~ N(0,10%)), the posterior marginal
parameter distributions for each were estimated by the MCMC method. Similarly, Coles
and Tawn (2005) analysed extreme surges on the east coast of the United Kingdom with a
full Bayesian framework, but with seasonality accounted for by the incorporation of time as
a covariate only in the formulation of u(¢) and «(t), holding x time invariant. While Coles

*Namely, for a quantile of interest z,, the formula is P(ZL < 2z, |x) = [gP(Z < z,|6) (0| x)d#,
where Zp, is a maximum for some future period L (Coles and Tawn, 1996). The integral can be readily
estimated by the MCMC procedure. A very good explanation of the predictive distribution in the setting
of extreme value analysis is provided by Renard et al. (2013) and Stephenson (2016).
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and Tawn (2005) do not specify the use of priors for the hyper-parameters associated with
p(t) and «(t), they do present normal marginal posterior distributions for each, suggesting
that independent vague normal priors were used, as is typically the case when there is no
information to suggest otherwise (Stephenson, 2016). The point of highlighting the full
Bayesian approach adopted by Coles and Pericchi (2003), Coles et al. (2003), and Coles
and Tawn (2005), is to demonstrate that an apparent change of mind can occur even
when one expresses a strong opinion about the identification of priors. For instance, the
reader may recall that Coles and Tawn (1996) expressed their incredulity in the validity of
assigning meaningful priors for the GEV model parameters, which led them to do so for
quantiles after eliciting expert opinion. In contrast, the last set of investigators abandoned
this thought and adopted what are referred to as vague normal priors for parameter or
hyper-parameters. In doing so, computations are greatly simplified, but the impact to
parameter bias and RMSE remains unknown as these were not evaluated by the last set
of investigators.

Notwithstanding, the attraction of the GML method remained strong as several au-
thors (e.g., El Adlouni et al. (2007) and Yoon et al. (2010)) continued to pursue it as an
improvement to method of ML for small-sized samples. For El Adlouni et al. (2007), the
GML method proposed by Martins and Stedinger (2000) was adopted for parameter esti-
mation in several non-stationary GEV models, with p expressed as a linear or quadratic
function of time, a as an exponential function of time, and a Beta prior for x. But in-
stead of employing numerical maximisation routines, El Adlouni et al. (2007) estimated
the posterior GEV parameter distribution 7(6 | x) and corresponding marginal posterior
parameter distributions for /i, &, and & via the MCMC method. From each they chose the
mode to represent the GMLEs. Perhaps the real attraction in the GML method—at least
for E1 Adlouni et al. (2007)—was the flexibility with which covariates, such as time, could
be integrated into various non-stationary GEV models, which they considered and subse-
quently fitted to data. Arguably, because the GML method defines an informative prior
only for one parameter (i.e., the Beta prior for k), integrating non-stationarity into the
rest of the model parameters did not significantly challenge the computational efficiency
of the MCMC method.

Concerning the work of Yoon et al. (2010), the GML method proposed by Martins
and Stedinger (2000) was extended to a full Bayesian framework for the stationary GEV
distribution by including vague® prior distributions for g and «, with u,Ilna ~ N(0,10%).
In comparison with the full Bayesian approach applied by Coles and Pericchi (2003), the
method by Yoon et al. (2010) replaces the prior distribution for &, x ~ N(0, 10?), with the

SFor normal priors (e.g., ~ N(0,102 — 10%), the terms “proper” (Coles and Pericchi, 2003) and “vague”
(Yoon et al. (2010) and Stephenson (2016)) are synonymous.

184



Martins and Stedinger (2000) Beta prior but with a slight change to the Beta parameter
values, which were derived by minimising a separate parameter selection criterion. Both
approaches—vague priors vs vague priors for g and Ina but informative (Beta) prior for
r—in the context of small sample size were formally assessed by Yoon et al. (2010) via
simulation for a sample size of 30. Their results showed that the vague prior approach leads
to larger positive bias and RMSE for quantile estimates at high non-exceedance probabil-
ities (i.e., p > 0.99). In fact, Yoon et al. (2010) found that the vague priors approach did
not differ significantly from the ML method, which they postulated to be due to a lack of
constrain in the domain of the vague prior for x. This conclusion indicates that, for small
sample size, a full Bayesian framework with vague priors is still subject to high bias and
RMSE for quantile estimates at high non-exceedance probabilities, and this vulnerability
appears to be linked to the selection of a vague prior for k. (The field of Bayesian inference
in extreme value analysis has grown significantly over the last few decades, especially with
the availability of the freely available statistics software program R (R Core Team, 2021).
Only a brief review has been presented herein. For a more detailed and relatively recent
review of Bayesian inference within the context of extreme value analysis and R, the reader
is referred to Stephenson (2016).)

Reasons for Choosing the ML Method

When viewed from the perspective of facility to estimate the marginal distributions
for fi,&, and &, a full Bayesian framework is advantageous, particularly when compared
with the ML method, which requires additional steps to obtain estimates of parameter
confidence intervals, or the various modified ML methods presented above, which are not
fully Bayesian. Additionally, with the potential to reduce bias and RMSE for small-sized
samples, under appropriate selection of informative prior for x, a natural question to ask is
“why not adopt a full Bayesian approach right from the start and forego the penalised ML
or GML methods?” The answer is simply that expert knowledge is not always available to
support definition of an appropriate, informative prior for , and eliciting subject matter
experts is no mean task. Depending on the design situation and the necessity for highly
reliable quantile estimates, it could be argued that the extra effort is worth it—perhaps
required. This point was brought into sharp focus by Coles and Pericchi (2003) in the
context of the 1999 catastrophic rainstorm in Venezuela. Admittedly, with UFC lifetime
predictions in view, the natural recommendation for this thesis (and for those wishing to
apply extreme value statistics to estimate lifetimes of UFCs) would be to adopt a full
Bayesian framework for the estimation of the GEV parameters. Unfortunately, due in part
to lack of relevant Cu pitting corrosion data (i.e., for postulated repository conditions)
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and a desire to eventually adopt into the present model some aspects of the active/passive
mechanistic pitting approach presented in the model by Briggs et al. (2021), it is simply
beyond the scope of this thesis to pursue a full Bayesian formulation at this time. But
clearly, this is a recommendation for future work arising from this study (possibly even a
stand-alone thesis topic).

While this work does not pursue a Bayesian framework (either full or partial), it would
not be accurate to say that any meaningful prior knowledge is therefore ignored in the
process of determining the MLEs. On the contrary, work on pitting corrosion in some
stainless steels indicates 0 < k < 0.5 (Laycock et al., 1990). It follows that one can incor-
porate this prior knowledge and simultaneously satisfy regularity conditions and mitigate
small sample size effects by defining the parameter set for x by the closed interval [0, 0.5].
Indeed, this is the approach followed herein.

Lastly, to further support the adoption of the MLL method, the reader may recall that
a small sample is 25 or less observations (as defined by Hosking et al. (1985)), which in
the block maxima context means m < 25. In this work, the number of block maxima per
exposure period was fixed a priori at 10 (i.e., m = 10) by Li et al. (2019). As a conse-
quence, had the stationary GEV model been fitted separately to each exposure period and
subsequently used to predict quantile maximum pit depths for some very small exceedance
probability, the ensuing prediction would be expected to exhibit large bias and variance,
even when x:=[0,0.5]. However, as will be demonstrated below, the non-stationary GEV
model (i.e., Equation B.8) was fitted simultaneously to the data comprising all 10 exposure
periods, representing a combined sample size of 100 block maxima. It is proposed—without
proof—that the resulting bias and variance inherent in the MLE 0 are thereby significantly
reduced.

B.4.2 Parameter Point Estimations

Point estimates of the GEV distribution parameters by ML method were obtained by
minimising the negative likelihood function (Equation B.22) or the negative log-likelihood
function (Equation B.23), with the constraints 1 — & (z — ut®/at’) > 0, at® > 0, and
k:=10,0.5], where 6; represents the model parameter vector (i.e., 01 = {u, a, k,b}):

1 1
10 nj b —=—1 b —
1 Tig— Pt \ | K Tij— pli \ | K&
L %) = [[ Hﬁll—m<7 O I ,
j=1 | i=1 7 j j
(B.22)
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j=1 i=1

1 Tij — pt]
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In Equation B.22 and Equation B.23 the index n; is the number of maxima observed for the
jth exposure period. For coding purposes, this formulation is more general than adopting
m maxima per exposure period (e.g., Equation B.14), though in this work n; was constant
for all j and equal to m (i.e., j=m=10).

with y; ; defined as

Two optimisation algorithms from the Scipy Optimize module for Python, the Limited
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) and the Sequential Least Squares Pro-
gramming (SLSQP), were utilised in a script written in Python 3.6.9. Verification and
validation of the Python results was accomplished in parallel by the minimisation of the
negative log-likelihood function in Excel and in LibreOffice Calc spreadsheets, using re-
spectively the Generalized Reduced Gradient for Nonlinear Programming (GRG) and the
DEPS Evolutionary Algorithm (DEPS-EA) solvers. The Scipy and the GRG were in ex-
cellent agreement, while the DEPS-EA solver converged to a slightly lower log-likelihood
function value.

Initial values pg, ag, kg, and by were required to facilitate numerical minimisation for
all algorithms. A four-step approach was employed to obtain initial estimates. First, the
Quantile Least Squares method (see Castillo et al. (2005, pg 224)) was used to obtain
pre-initial estimates for ug, agp, and ko. Second, using the pre-initial parameter estimates,
the stationary GEV model was fitted to the data from each exposure period, resulting in a
10-element vector for each of y,,ay;, and Ky, where ¢; refers to the jth exposure period.
Third, a power-law fit of the form y = a;x% was fitted to the vectors for u and « versus
exposure time to yield an initial estimate for p and « (i.e., a3 = p or o). Additionally,
the exponential term ay from each of the two power-law fits was averaged to obtain an
estimate for b (both exponential terms were quite close in value). Lastly, an estimate for
k was obtained by averaging the individual shape parameters derived from the stationary
GEV model fit. This estimate, rounded to four decimal points, was £ = 0.0466. For
completeness, rounded to four decimal points, the initial starting values pug, ag, kg, and by
were (0.0477,0.0027,0.0466, 0.3969). Overall, convergence took in the order of fractions of
seconds for the Python scripts and approximately < 2 seconds for the Excel and LibreOffice
Calc spreadsheets. Actual times will vary depending on the CPU processors utilised. Note
that there is a discontinuity at x = 0, so the actual bound used was x = [0.01, 0.5].
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Table B.1 lists the ML estimates of the GEV distribution parameters to sufficient
number of decimal points to facilitate comparison with those to be determined later in this
chapter for the GPD. Of particular interest is /&, which is well within the bounded interval
[0.01,0.5] imposed on the numerical solution, indicating on first inspection that the Gumbel
distribution, derived by taking the limit x — 0 in Equation B.8, is not a more valid model
based on the data. Also included are the standard error (SE) and 95% Confidence Interval
(CI), both of which were derived from the Bootstrap method (to be discussed). Figure
B.2 shows the maximum pit depths per coupon per exposure period. Also included in the
figure is the fitted GEV model and the expected maximum, Equation B.25 (Laycock et al.
(1990)), which is bounded above and below by the two standard deviations determined
from Equation B.26 as per Laycock et al., 1990. In Equation B.25 and Equation B.26, the
model parameters are replaced by the estimates in Table B.1. For comparison, a simple
power-law relationship was obtained via Ordinary Least Squares (OLS) and included in
the figure. Overall, the GEV model fits the data well relatively speaking, but there are
some obvious issues.

Table B.1: GEV Likelihood Function Parameters, Equation B.22

i é i b 1(0; |x,t)
(SE)! (SE) (SE) (SE)
[95%C1)? 95%CT] [95%C1] 95%CT]
0.04788425 0.00400945 0.34294222 0.40294282 498.96
(0.00078) (0.00035) (0.07447) (0.00716)

[0.04632, 0.04943] [0.00326, 0.00464] [0.22442, 0.52428] [0.38875, 0.41681]

I Standard error of Bootstrap sampling distribution (10,000 repetitions)
2 Based on percentile method of Bootstrap parameters

tb tb
EM,)=pt + 2 - D1+ )ik > —1 (B.25)
K K
at’ 9y 1/2 1
o(M,) = — {PA+2r) = [TA+r)} k5> ~3 (B.26)

As mentioned before, a distinct shift downward in the data occurs at 30 days of ex-
posure, which coincides with the onset of the second set of experiments. While this shift
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EVOLUTION OF MAXIMUM PIT DEPTHS
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Figure B.2: Maximum pit depths versus time for 304 stainless steel coupons immersed in
3.5 wt% NaCl solution at 30°C Li et al. (2019)

clearly affects the overall accuracy of the fit, the effect is ignored for the sake of having
a larger dataset from which to work. The data also exhibits an increase in variance with
exposure time, which is consistent with typical corrosion experiments where time tends
to cause a divergence in results. Unfortunately, this implies that the GEV distribution
becomes more dispersed with time, leading to greater uncertainty in predictions. Figure
B.3 captures this trend.

Model diagnostics were carried out by Goodness-of-Fit tests, the first of which was per-
formed graphically using a Quantile-Quantile (Q-Q) plot (Beirlant et al., 2004, pg 3), fol-
lowed thereafter by a hypothesis test via a likelihood ratio test (Castillo et al., 2005, pg 243).
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TIME-EXTRAPOLATED MAXIMUM PIT DEPTH DENSITY
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Figure B.3: Maximum pit depth density functions for 304 stainless steel coupons immersed
in 3.5 wt% NaCl solution at 30°C Li et al. (2019).

Standard errors were also estimated for fi, &, & and b to further confirm—in particular—
that & # 0 (i.e., the rejection of the Gumbel model as a better fit to the data). Model
diagnostics are further described and discussed below.

Due to the strict violation of the identically distributed requirement, the data used to
fit the non-stationary GEV model needed to be transformed to iid RVs. The two most
common options are transformations to the Gumbel or Exponential distributions (see Coles
(2001, pg 110) and Beirlant et al. (2004, pg 216)). For this work, the transformation to
the standard Exponential distribution is preferred as it naturally leads to the use of the
Bootstrap method (Efron and Tibshirani (1994) and Davison and Hinkley (1997)) for the
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estimation of parameter standard errors and confidence intervals. The empirical (discon-
tinuous) quantile function of the standard Exponential distribution (Exp(1)) is defined as
Q(pm) :=—1In(1 — p; ), where the plotting position p is defined as p;,, € (0,1);i/(n+1) <
Pin < (i +1)/(n+ 1). Other formulations of the plotting position are available, but
the most commonly used has been adopted here. To assess if the non-stationary GEV
model with the estimated parameters fits the data well via the Q-Q plot, two steps are
required. One, the non-stationary GEV model with the estimated parameters is evalu-
ated at the observed pit depths across all exposure periods. Two, the resultant percentiles
GEV(x,t| él) are ordered, subsequently transformed into standard Exponential quantiles,
defined as —In(1 — GEV;,,), where GEV;,, €(0,1) are the ordered GEV model percentiles,
and plotted in the vertical axis of the Q-Q plot. For reasons that will become obvious
shortly, let the residual r; be defined as r; == —In(1 — GEV,,,). Subsequently, on the
horizontal axis are plotted the empirical quantiles Q(pm) determined from the plotting
positions for GEV, ,,.

Figure B.4 shows the resultant Q-Q plot. Generally, a large majority of the data falls
on or is clustered around the 1:1 diagonal, which is a strong indication that the observed
data fits the proposed model well despite the fact the data comprises two distinct datasets.
Approximately four data points located within the last six transformed quantiles exhibit
poor fit, however. Inspection of the data reveals that these are associated with the two
deepest maximum pits on days 7 and 180. This result is not too surprising given the trend
depicted in Figure B.2. On balance, the Q-Q plot provides strong evidence in favour of the
non-stationary GEV model though it offers no information on the Gumbel goodness-of-fit.
The likelihood ratio provides this insight.

For the Likelihood Ratio (LR) test, the objective is to test the null hypothesis Hy, which
is that the underlying distribution of the maximum pit depths is Gumbel, with k = 0 (i.e.,
0y = {p,,0,b}), against the alternative hypothesis Hy (i.e., 81 = {u, a, k,b}) that the
underlying distribution is GEV, or at least that it is a better fit to the data. Specifically,
this test compares the difference in the log-likelihoods evaluated at the proposed parameter
vectors:

LR=2 {z<él %, t) — l(éo|x,t)} . (B.27)

Under suitable regularity conditions and large n, LR~ x? with 1 degree of freedom, and x?
is the Chi-square distribution. The null hypothesis Hj is rejected at the significance level
a if LR > x1%(1 — a). For a = 0.05, the critical (1 — a) quantile of the y;? distribution
is 3.8415. Consequently, after re-arrangement of Equation B.27, Hj is rejected if the
differences between the two log-likelihoods is greater than 1.92075, or equivalently l(éo |
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Figure B.4: Quantile-Quantile plot of maximum pit depths fitted to the non-stationary
GEV model using the parameter set listed in Table B.1

x,t) <497.04. The Gumbel distribution and density functions are

th —
Gmbl(z,t|pu, a,b) = exp {— exp (,u T x>] , (B.28)
1 utt — ut® —x
gmbl(x,t|p, o, b) = g OXP {— exp ( T )] exp < o , (B.29)

and the corresponding likelihood and log-likelihood functions are

10 g
1 pti — pti —
L(00|X,t) = H {H Jjb exp |:— exXp (W)} exp (W 5 (B30)

j=1 Li=1
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1(00|x,t):;{—njlna—b;lntj—;exp[—( ooth )]—;( ot )}
(B.31)

Point estimates of the Gumbel parameters were determined in three steps. First, the
Probability Paper Plot method (see Castillo et al. (2005, pg 141)) was employed to obtain
stationary Gumbel model initial parameter estimates for each exposure period. Essentially,
this method transforms the Gumbel distribution function into a linear form, which allows
plotting and subsequent estimation of parameters from the slope and intercept derived
from a linear regression fit to the plotted data. The result of this analysis is a 10-element
vector of stationary parameter estimates. Second, as with the GEV model fitting, fitting a
power-law to the elements of the p and « vectors with time led to both an initial estimate of
1o and ag from the respective coefficients of the power-law fit and an estimate of by based on
the average of the exponential terms of the power-law fits. The last step involved modifying
the Python script to minimise numerically the negative of the log-likelihood function,
Equationn B.31, based on the initial estimates (0.0475,0.0031,0.3947) for ug, g, and by,
rounded to four decimal points. On average, algorithm convergence occurred in fraction
of a second; and the results, listed in Table B.2, are strikingly similar to those shown in
Table B.1. However, at a 5% level of significance, there is sufficient evidence to reject the
null hypothesis Hy; that is, l(éo | x,t) = 487.01 < 497.04. Altogether, the observed data
better supports the GEV model over the Gumbel.

Table B.2: Gumbel Likelihood Function Parameters, Equation B.30

L a b 16| x, 1)

0.0477146 0.00408946 0.4084677  487.01

The final steps in model diagnostics involved estimating the standard error and confi-
dence intervals for ;. Although these have already been presented in Table B.1 (without
discussion), the application of the Bootstrap method to estimate confidence intervals or
standard errors for the non-stationary GEV model parameters requires the same transfor-
mation to the data as with the method applied to generate the Q-Q plot. However, this
transformation is extended one step further to simplify the sampling process. For exam-
ple, the Boostrap method involves sampling the original data with replacement. For the
non-stationary GEV model, the data is not iid, and the transformation —In(1 — GEV;,,),
which results in a quantity that is independent and identically ~ Exp(1), is required before
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sampling can take place. As before, let r;:==—In(1 — GEV,,), then

ri =—In(l — GEV,,)
e""=1-GEV,,
GEV,,=1—¢"
IGEV;, =In(1—e) (B.32)
1

xiyn—utb P r
(RTCEETE)

Equation B.32 informs the reader that the expression to the left of the equal sign is also
~ Exp(1)—a conclusion arrived at by considering the definition of a Cox-Snell residual.
Briefly, from classical survival analysis the cumulative hazard function H(t) is the negative
of the natural logarithm of the survival function S(t), or reliability function R(t), given by
1 — F(t), where F(t) is the cumulative distribution function of an arbitrary RV T'. Cox
and Snell (1968) showed that values for H(t), referred to as Cox-Snell residuals €, may be
considered as originating from censored samples, exponentially distributed with parameter
equal to 1 (i.e., H(t) ~ Exp(1)). Subsequently, it should become apparent to the reader
that F', where F':=e™" is the same as GEV, and consequently the Cox-Snell residual ¢; ;°
may be defined as

(B.33)

Sampling of ¢; ;, with replacement and with 8; replaced by 6,, permits estimation of para-
metric Bootstrap standard errors and confidence intervals. The basic procedure (Brown
et al., 2008; Cannon, 2010; Davison and Ramesh, 2000; Katz et al., 2002; Khaliq et al.,
2006; Kharin and Zwiers, 2005; Panagoulia et al., 2014) is as follows:

1. Transform the maximum pit depth data z; ; into time-corresponding Cox-Snell resid-
uals as per Equation B.33.

2. Sample randomly with replacement from ¢, ;, while keeping track of the exposure
period ¢; to obtain a Boostrap sample of residuals efsj

6The reader should also note that the ordered Cox-Snell residuals and corresponding plotting positions
could also have been implemented in the Q-Q plot since ¢; ; ~Exp(1).
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3. Transform the Bootstrap sample of residuals efsj into corresponding Bootstrap max-
imum pit depths xfsj according to the expression in Equation B.34.

4. Fit the non-stationary GEV model to the Bootstrap maximum pit depths :Efsj and
store the estimated model parameters (fiys, (s, Kps, Bbs).

5. Repeat steps 2-5 for the desired number of repetitions.

The transformed maximum pit depths are obtained by re-arranging Equation B.33 to
isolate z; ; and using the initial GEV model parameters 6;:

Lij =

K

bs atg(l—;*j) + it (B.34)

For this work, j x n; = 100 random samples were drawn with replacement from ¢; ;,
with 102,103, and 10* repetitions. For comparison, stratified sampling was also employed
to ensure equal representation from each block. To ensure sufficient coverage of the esti-
mated model parameters by the numerical minimisation algorithm (and to assure oneself
of validating the preceding model diagnostic results), the bounds for all parameters were
broadened, particulary s, whose closed interval was revised to [—0.1,0.8]. Standard er-
rors were determined by calculating the standard deviation of the respective parameter
Bootstrap sampling distribution. Two approaches were employed for estimating the 95%
confidence intervals; namely, the simple percentile method of ordered Bootstrap parame-
ters (i.e., lower Lq 2, upper U;_,/2), and the “basic Bootstrap” confidence interval, which
is [2@1 — Ui—a/2, 20, — Lea o). As will be seen shortly in the resultant sampling distribu-
tions, the need to employ more “accurate” confidence interval estimation methods, such as
Studentized and bias-corrected and accelerated, was unwarranted; that is, it was clear that
improving the accuracy of the estimated intervals would not alter the conclusion concern-

ing the validity of the parameter estimates—especially the rejection of the null hypothesis
Hy.

As a simple visual check against the statement that ¢; ; ~Exp(1), a histogram of ¢; ; is
plotted along with the standard Exponential density function (i.e., frxp(€ij) =€), Fig-
ure B.5. The resultant histogram closely resembles the standard Exponential density func-
tion, confirming the Cox-Snell assertion. While this can be more formally evaluated with
the Anderson-Darling goodness-of-fit test (Anderson, 2011; Anderson and Darling, 1954;
Stephens, 1986), it is not critical to do so for the objective at hand. The Anderson-Darling
goodness-of-fit test will be utilised later for assessing thresholds in the GPD assessment.
Figures B.6-B.9 illustrate respectively the parametric Bootstrap sampling distributions for
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i, &, &, and 13, for 10,000 repetitions, which was sufficient to achieve stable estimates for
standard errors and confidence intervals. Similar results were obtained for stratified sam-
pling. However, stratified sampling led to slightly smaller standard errors and narrower
confidence intervals and was not pursued further. Most critical to model diagnostic is the
sampling distribution for &, which clearly confirms that the data does not support the
Gumbel distribution. Overall, there is strong confidence in the fit and resultant parame-
ters, allowing for sufficient assurance to proceed with the balance of the modelling efforts
in this thesis (i.e., GPD, NHPP, and NHMP), which are highly dependent on the validity

of the GEV model.

COX-SNELL RESIDUALS—TRANSFORMED PIT DEPTHS
Density-Histogram Plot (Non-stationary GEV Model)
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Figure B.5: Plot of Cox-Snell residuals for the maximum pit depths fitted to the non-
stationary GEV model using the parameter set listed in Table B.1

196



PARAMETER BOOTSTRAP SAMPLING DISTRIBUTION
Location Parameter (Non-stationary GEV Model)

1
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Figure B.6: Bootstrap sampling distribution for the non-stationary GEV model location
parameter . Included in the plot as vertical dashed lines are the percentile and “basic
Bootstrap” 95% confidence intervals, with the numerical values of the former also listed in
the plot.

197



PARAMETER BOOTSTRAP SAMPLING DISTRIBUTION
Scale Parameter (Non-stationary GEV Model)
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Figure B.7: Bootstrap sampling distribution for the non-stationary GEV model scale pa-
rameter &. Included in the plot as vertical dashed lines are the percentile and “basic
Bootstrap” 95% confidence intervals, with the numerical values of the former also listed in
the plot.
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PARAMETER BOOTSTRAP SAMPLING DISTRIBUTION
Shape Parameter (Non-stationary GEV Model)
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Figure B.8: Bootstrap sampling distribution for the non-stationary GEV model scale pa-
rameter . Included in the plot as vertical dashed lines are the percentile and “basic
Bootstrap” 95% confidence intervals, with the numerical values of the former also listed in
the plot.
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PARAMETER BOOTSTRAP SAMPLING DISTRIBUTION
b Parameter (Non-stationary GEV Model)
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Figure B.9: Bootstrap sampling distribution for the non-stationary GEV model time ex-
ponential parameter b. Included in the plot as vertical dashed lines are the percentile and
“basic Bootstrap” 95% confidence intervals, with the numerical values of the former also

listed in the plot.
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B.4.3 Extrapolation in Time and Space

Size effect is an important step in the transfer of experimental results derived from small
coupons to real structures. This concept, however, is not new, and has been in practice
for quite some time but in the context of a return period (e.g., Shibata, 1994). Here, size
effect is applied directly to the limiting distribution of the maximum over M units of area.
Subsequently, the GEV distribution, Equation B.8, is modified following the approach
in Laycock et al., 1990 and Scarf, 1993, as show in Equation B.35, which leads to the
corresponding density function, Equation B.36. The size effect, typically labelled M, is
the ratio of the UFC surface area to the corrosion coupon area and is approximately equal
to 251.

M
— ut’\1 ~
(GEV (2, £:0.))" = { exp{ — [1 K (5” tff )} K (B.35)
Q@
1 1
MFE T — g P T — i\ | K
[t g, anr, k8,0, M) = — |1 — K exp — (1=~
ot o g
(B.36)
Where the re-parametrisation of the location and scale parameters as uy; and ayy is:
at®
piar = pt® + — 1= M7 (B.37)
ay = o’ M~ (B.38)

Figure B.10 shows the UFC-area-extrapolated maximum pit depth with time. Also
shown is the expected maximum for the area-extrapolated maximum pit depths, which is
based on Equation B.39. The size-effect significantly reduces the variance Equation B.40
of the area-extrapolated density, noted most prominently when Figure B.11 and Figure
B.3 are compared.

tr atbtM*
E[M,],, = ut* + 0‘7 - T(1+ k)i k> —1 (B.39)
oM~ 1
o (M), = = ——{T(1+20) - [P+ P23k > -5 (B.40)
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EVOLUTION OF AREA-EXTRAPOLATED MAXIMUM PIT DEPTHS
(Ten Coupons Per Exposure Period)
Exposure Period (days)
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Figure B.10: Maximum pit depths versus time for 304 stainless steel coupons immersed

in 3.5 wt% NaCl solution at 30°C Li et al. (2019). Extrapolation to UFC surface area
included.
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AREA /TIME-EXTRAPOLATED MAXIMUM PIT DEPTH DENSITY
(Ten Coupons Per Exposure Period)
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Figure B.11: Maximum pit depth density functions for 304 stainless steel coupons immersed
in 3.5 wt% NaCl solution at 30°C Li et al. (2019). Extrapolation to UFC surface area
included.

B.4.4 Algorithm to Assign Maximum Pit Depths

The basic approach to assign a random maximum pit depth to each discretised panel on the
UFC is to sample from the appropriate time-and-space-extrapolated GEV density function
(e.g., Figure B.11). The underlying assumption is that in the future, data similar to the one
employed in this work will be generated for copper under relevant repository conditions over
timescales that, ideally, permit either interpolation (i.e., bound the expected oxic period) or

203



at most some level of extrapolation (i.e., outside the timescales of the experiment) without
necessarily introducing significant uncertainty.

Consequently, the algorithm receives as input the timescales for the early, dry oxic
period where pitting corrosion is considered a potential degradation mechanism. For sim-
plicity, this could be represented by a time vector, T', covering the minimum and maximum
timescales tin, tmae anticipated (i.e., T = [tmin, tmaz)). Additional inputs include the total
number of panels on the UFC, which represent the number of samples to draw randomly
from the appropriate time-and-space-extrapolated GEV density function, and the distribu-
tion of the initial copper coating thickness. The copper coating thicknesses are log-normally
distributed (i.e., fi., ~ Lognorm)).

Presently, because of both symmetry and the location on the UFC surface anticipated
to sustain the greatest sulphide flux, the UFC lifetime model (Jarvine et al., 2019, 2020)
simulates sulphide corrosion for only one quarter of one of the UFC hemispherical end-caps.
For the 0.06-m mesh size, the quarter hemispherical end-cap is discretised into m = 255
panels.

In words, the algorithm samples randomly m maximum pit depths from the GEV
distribution extrapolated in both times t,,i,, tmee and space M, where M =~ 251 is the
ratio of the UFC quarter hemispherical end-cap area to the corrosion coupon area. The
sampling generates two arrays of maximum pit depths (Dymnin, Ds,,...), one for each time
segment. The algorithm then samples randomly m thicknesses from the initial copper
coating thickness distribution, creating an array of thicknesses. A new array is created
by subtracting from the copper coating thickness array the maximum pit depths. This is
done twice, once for each time segment, to generate two modified initial copper coating
thickness arrays, which would then be fed into the rest of the original UFC lifetime code
for continued processing (not shown here). The algorithm is summarised in Algorithm 5.
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Algorithm 5 Max Pit Depth Assignment—GEV

Require: T, M, m, f(x,t; pur, an, k,b, M), fi, ~ Lognorm
1: Initialise variables, arrays: ¢,D; . , D, .. .Cu,Cuy . ,Cuy,,,
2: C'u < sample randomly m thicknesses from f;_,
3: for ¢; in T do
F(On) < f(x,ti; par, g, Ky by M)
if t; == min(T') then
D, . < sample randomly m maximum pit depths from f(6x)
Cuy,,, +— Cu— D,
else
Dy,,.. < sample randomly m maximum pit depths from f(6y,)
10: Cu,,,, < Cu—Dy, .

min )

>

min
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Appendix C

Peaks-Over-Thresholds

The objective of this appendix is to provide the mathematical details governing the fitting
of the GPD, within a POT framework, to pit depth exceedances. Particular attention
is given to the methodology applied to select appropriate pit depth thresholds, as this is
critical to the validity of the stochastic process model developed in Chapter 5. The excellent
agreement obtained with GEV distribution parameters further strengthens support of the
methodologies adopted.

C.1 GPD within a POT Framework

The GPD in the POT framework is used to model excesses or exceedances over a threshold
u, and like the GEV distribution it represents the family of generalised Pareto distributions.
It can be shown (Pickands, 1975) that when w is large (i.e., near the upper end of the
distribution of a RV X)) those realisations of X that exceed u follow a GPD. In other
words, the distribution function of (X — u), conditional on X > w, is approximately that
shown in Equation C.1. Formally, all X > u are referred to as exceedances and (X —u) as
excesses. The immediate implication is that if the block maxima for X follow approximately
the limiting GEV distribution, then the exceedances over a large enough threshold follow
approximately the limiting GPD (see Castillo et al., 2005, pg 263; and Coles, 2001, pg 75).
This also means that, other than u, the GPD parameters are equivalent to those determined
by fitting the GEV distribution. Consequently, the parameters of the GPD are the location
i, scale a, and shape x parameters from the GEV distribution, Table B.1. Since for the
current data k > 0 (see Table B.1), the primary constraints applied to Equation C.1 are
af=a—k(u—p) > 0and 1 — k(z —u)/a* > 0. Here, the random variable X is the
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observed pit depth within a block, and X > u. As with the fitting of Equation B.8 for
block maxima, a GPD model is fit to data by pooling together all blocks per exposure
period (see Figure B.1).

_ 1/ _
GPD(x | p, o, k,u) = {1— {1_/{(:60[*10] };/{7&0,04* 20,1—/@<x *u) >0, (C.1)

«

o =a—k(u—p). (C.2)

C.2 Extrapolation in Time

The re-parametrisation of Equation C.1 with time as covariate follows the same formulation
as that for maximum pit depth (i.e., Equation B.8). The challenge with the GPD model,
however, is the proper selection of a threshold, which often begins with a trade off between
model bias and variance. (This is also true for the GEV, but in the current work the number
of blocks, which govern bias and variance, were already fixed by Li et al. (2019)). Low
thresholds result in the realisation of many exceedances that can compromise the validity
of the asymptotic assumptions intrinsic to the limiting GPD, leading to bias in the model
estimates. With larger thresholds, however, there is stronger support for the asymptotic
assumptions, but the result is a reduced number of exceedances and an increased variance in
the model estimates (i.e., higher estimate uncertainty). The challenge is compounded when
the threshold are time variant and the form of the threshold expression when parametrised
with time needs to be adequately defined.

Generally, expert judgment is often the default approach to selecting a threshold level.
In lieu of a subject matter expert, such as in the present case, the literature presents
several methodologies for determining threshold levels. The more classical approach is the
graphical method or the assessment of a Mean Residual Life (MRL) plot (also referred to
as mean excess plot), popularised by Coles (2001), Davison and Smith (1990), and Smith
(2003), but underpinned by the work of Hall and Wellner (2017) and Yang (1978). The
other approach is loosely divided in two camps. The first performs a sequential, point-wise
goodness-of-fit test (e.g., Bader et al., 2018; Choulakian and Stephens, 2001). The second,
with increasing complexity, performs threshold diagnostics (e.g., Northrop and Coleman,
2014; Wadsworth, 2016; Wadsworth and Tawn, 2012). And of course, there are many
variants on these approaches.

The MRL plot was chosen for this study as a base estimator of appropriate thresholds.
To this was added a sequential, point-wise goodness-of-fit test with the Anderson-Darling
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(Anderson, 2011; Anderson and Darling, 1954; Stephens, 1986) test statistic AD? to val-
idate independently MRL plot threshold estimates. Lastly, in anticipation of the Non-
homogeneous Poisson Point Process (NHPPP) approach (Appendix D), two additional
assessments were included. One, thresholds must be greater than the lower endpoints of
the limiting GEV distribution. Two, thresholds must satisfy the requirement that when =z is
replaced by u in A(z) (Equation D.2), V' (u) is a finite-valued, non-negative, non-decreasing
function of time.

C.3 Mean Residual Life Plot

Briefly, the MRL plot is a graphical means to assess the existence of an empirical, linear
relationship between the expected value of (X — u), given X > w and u (Smith, 1994), as
implied by the —x/(1 + k)u term in Equation C.3:

*

o a—k(u—p)

E[X—u|X>u]:1+K— T+ r

(C.3)

In practice, due to the extent of scatter typically observed in the MRL plot, one simply
looks for a region where there is a trend in the data that reasonably resembles a straight
line (Smith, 1994), and one subsequently chooses the minimum threshold in that range.
While the slope in the straight-line region of the MRL plot can be used to estimate x (e.g.,
Castillo et al., 2005, pg 281), scatter in the data makes this estimate unreliable (Smith,
2003, pg 24). One does, however, confirm visually that the sign of the slope and that of
the estimated x (per exposure period) agree.

Figure C.1 provides an example of an MRL plot for the corrosion pit depth data after
seven days of exposure. Approximate, symmetrical 95% confidence intervals are included
under the assumption that means are normally distributed. Confidence intervals can also
be estimated with a point-wise bootstrap approach (e.g., Smith, 2003, pg 24), but there was
no obvious advantage to doing so for the objective at hand. To the untrained eye, a linear
trend could be discerned from the lowest threshold (i.e., v = 0.005 mm) to approximately
u = 0.0085 mm. However, this range can be divided into several subregions with different
slopes, and one would need to decide which subregion is the correct one. If one were to
pick an intermediate subregion within this range, thereby rejecting preceding and ensuing
subregions, this would contradict one of the attractive properties of the GPD, which is
that it is stable with respect to truncations from the left (see Castillo et al., 2005, pg 263).
This means that if ug leads to the GPD being a valid model for the data (i.e., (X —ug) ~
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GPD(«o — k(ug — p), k)), then for uy > uy GPD(a — k(u; — ), k) would also be a valid
model. Based on this, it is better to identify a linear trend in the data by working from
the right to the left of the MRL plot. Data points at the right end of the MRL plot will
exhibit significant variability simply because of the limited number of data points. As one
moves further to the left in the plot, the variability decreases, and one looks for the first
consistent linear trend. In Figure C.1, this linear trend region occurs approximately in the
range 0.009 mm to 0.010 mm.

7-DAY PIT DEPTHS: MEAN RESIDUAL PLOT
(Ten Coupons Per Exposure Period)

0.0030 R 095 % Conf Int
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Figure C.1: Mean residual life plot for the 7-day exposure period pit depths

For the current analysis, four threshold levels, labelled lowl, low2, med, and high,
were selected arbitrarily within the linear region identified above. The reasonableness of
the four threshold levels was assessed qualitatively by fitting the GPD to the excesses, using
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«* in the unexpanded form, and gauging the goodness of fit with both a Q-Q plot and a
histogram of excesses overlaid with the density function of the GPD. Examples of Q-Q and
density histogram plots for the “low1” thresholds, seven days of exposure, are displayed in
Figure C.2 and Figure C.3, respectively. Good agreement between model predictions and
observed quantiles (typified by a locus of points lying along the 45° line) in the Q-Q plot
and the relative capture of the trend in the histogram by the model density function suggest
that the “low1” threshold v = 0.009 mm is reasonable. The aforementioned methodology

was repeated for the rest of the exposure periods, leading to a set of potential threshold
levels, Table C.1.

7-DAY GPD QUANTILE-QUANTILE PLOT
(Ten Coupons Per Exposure Period) lowl

00115
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Figure C.2: Quantile-Quantile plot for the 7-day exposure period pit depths (low1)
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T-DAY GENERALIZED PARETO DISTRIBUTION
(Ten Coupons Per Exposure Period) lowl
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Figure C.3: Density-histogram for the 7-day exposure period pit depths (low1)

C.3.1 Sequential Goodness-of-Fit Tests

Mean residual life plots suffer from a high degree of subjectivity and those generated in this
study are no exception. To underpin the proposed threshold levels presented in Table C.1,
sequential, point-wise goodness-of-fit tests were conducted using the Anderson-Darling
statistic AD? for the null hypothesis that Cox-Snell residuals are exponentially distributed
with rate parameter A= 1. Recall, from classical survival analysis the cumulative hazard
function H () is the negative of the natural logarithm of the survival function S(¢), or reli-
ability function R(t), given by 1 — F'(t), where F(t) is the cumulative distribution function
of an arbitrary RV T'. Cox and Snell (1968) showed that values for H(t), referred to as
Cox-Snell residuals €, may be considered as originating from censored samples, exponen-
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Table C.1: Mean Residual Life Plot Threshold Levels

Exposure Period (days) lowl! low?2 med  high

7 0.009  0.00901 0.0091 0.0092
14 0.0125 0.012505 0.0126 0.0127
21 0.0138  0.0141  0.0144 0.0148
28 0.0155 0.015503 0.0156 0.0157
30 0.0135 0.013505 0.0136 0.0137
60 0.021  0.02106 0.0212 0.0214
90 0.025  0.0255  0.026  0.027
120 0.026  0.0266  0.027  0.028
150 0.028  0.0286  0.029  0.030
180 0.034 0.0344  0.035 0.036

L All thresholds in mm

tially distributed with parameter equal to 1 (i.e., H(t) ~ Exp(1)). This means that for
exceedances X over threshold u, the Cox-Snell residuals € are

e=H(z)=—-InS(z) =—In[l — F(x)] = —In[l — GPD(x,u | 0)], (C4)

or

e=—1m {1 _ Hu} | (C.5)

K 0%

Consequently, if a model is a good fit to data, the residuals (Equation C.5) are ~ Exp(1),
which means the ECDF for € (F,, = i/n), should closely match that for ¢ ~ Exp(1), or
€ ~1—e . The Anderson-Darling test, which is an ECDF-based goodness-of-fit test
(Stephens, 1986), is applied to the exceedances derived from a GPD model via Equa-
tion C.5, with the null hypothesis Hy defined as Hy:=e~Exp(1). At a level of significance
a = 0.05—chosen arbitrarily, there is sufficient evidence to reject Hy if the p—value < 0.05.
To calculate the p—value, the Anderson-Darling statistic AD? Equation C.6, is computed
for the observed residuals and compared against the AD? calculated for Bootstrap residual
samples. This approach is widely used in the environmental science literature (e.g., Brown
et al., 2008; Cannon, 2010; Davison and Ramesh, 2000; Katz et al., 2002; Khaliq et al.,
2006; Kharin and Zwiers, 2005; Panagoulia et al., 2014).

n n

1 1
AD? = —n+ —= 2% —1)InF. — — on—2i+1)InF., .
n+ n;u )In F, n;(n i+1)InF, (C.6)
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The sequential procedure (i.e., as u is allowed to vary) has been applied by various authors,
with varying degrees of automation (see Bader et al., 2018; Choulakian and Stephens, 2001;
Northrop and Coleman, 2014; Wadsworth, 2016; Wadsworth and Tawn, 2012; Solari et al.,
2017; Zhao et al., 2019). The concern with the sequential, point-wise automated procedure,
as raised by Bader et al. (2018), is the potential for premature stoppage (i.e., p—value
> 0.05) due to random effects leading to false threshold selection, which Bader et al.
(2018) mitigate through a proposed modification. For the present analysis, the application
of the Anderson-Darling test is more sequential and point-wise than automated; that is,
there is no stoppage criteria applied. The resulting p—values are plotted in a diagnostic plot
to validate the MRL-derived threshold estimates and random effects, which do occur, are
simply observed. Figure C.4 demonstrates the Bootstrap distribution of the AD? statistic
for the 7-day exposure period, at © = 0.009 mm.

The resultant p—value is > 0.05, indicating that there is insufficient evidence to reject Hy.
Figure C.5 compares the ECDFs for the Cox-Snell residuals F,, and that for ¢ ~ Exp(1),
for the 7-day exposure period at v = 0.009 mm. Qualitatively, there is reasonable overlap
and no significant vertical distance separations between the two distributions, consistent
with the calculated p—value.

Figure C.6 shows a typical diagnostic plot of the point-wise goodness-of-fit test per-
formed by the aforementioned procedure. In this particular plot, for the 7-day exposure
period, there is support for the “subjective” conclusion reached by the MRL plot, which
is that candidate thresholds are in the region defined by 0.0009 < u < 0.0010 mm.

The sequential, point-wise goodness-of-fit test methodology discussed above was con-
ducted for the pooled pit depth data at each exposure period. The minimum threshold,
Umin, Was defined as that level for which subsequent thresholds > u,,;, resulted in p—values
approximately consistently above 0.05. The resultant minimum thresholds are included in
Table C.2, along with the MRL plot thresholds, for comparison. Remarkably, there is very
good agreement between these two methods, adding confidence to the estimates derived
from the MRL plots.

C.3.2 Point Process Constraints

To support the Point process modelling in Chapter D, the thresholds must be greater than
the lower endpoints of the limiting GEV distribution (Equation B.5) at each exposure pe-
riod (the reason for this is explained in Chapter D, Section D.1). There is no finite lower
endpoint for the GEV distribution (z_), however, so a reasonable—though conservative—
point estimate is the minimum of the block maxima per time period. Lower endpoint
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ANDERSON-DARLING (AD?) TEST
Bootstrap Residuals (7 Days) Threshold: 0.009 mm
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Figure C.4: Distribution of bootstrapped AD? statistic for the 7-day exposure period pit
depths, with threshold v = 0.009 mm.

estimates are also included in Table C.2. Aside from a few exceptions, the lower end-
point estimates are remarkably quite close to the MRL plot and goodness-of-fit threshold

estimates.

The last constraint placed upon the selection of thresholds is that the intensity measure
for the NHPPP must satisfy one of the fundamental properties of a non-stationary counting
process, which is that the intensity measure must be finite-valued, non-negative, and a non-
decreasing function of time (see Snyder and Miller, 1991, pg 42). To evaluate candidate
thresholds against this constraint, the realisation x of the RV X, representing exceedances,
is replaced by the proposed thresholds v in A(z), Equation D.2. This substitution translates
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COX-SNELL RESIDUALS - TRANSFORMED PIT DEPTHS
Empirical Distribution Plot (7 Days) Threshold: 0.009 mm
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Figure C.5: Empirical distribution functions for the observed Cox-Snell residuals for the
7-day exposure period pit depths, with threshold v = 0.009 mm, and the Exp(1).

to estimating the expected number of exceedances at the four candidate levels (i.e., at
thresholds lowl, low2, med, and high), for each exposure period. However, because the
GEV distribution is parametrised with time as covariate (see Equation B.8), it is necessary
to assess the correct functional form of the thresholds with time as dependent variable—
the very challenge presented at the beginning of section C.2. Since p and « in the GEV
distribution are modelled with a time power-law relationship, it seemed reasonable to
assume the same for the thresholds. Figure C.7 provides a graphical perspective into the
trend in thresholds with time for the [ow1 thresholds estimated by the MRL plot.

The trend is adequately captured by the power-law function fitted to the data. No-
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Figure C.6: Diagnostic plot of point-wise Anderson-Darling goodness-of-fit test for the
7-day exposure period pit depths.

ticeable in the figure are the thresholds at 30-, 120-, and 150-days, which are consistently
lower than the trend line. A similar observation is made (though not plotted) for thresholds
estimated by the goodness-of-fit tests and the GEV lower endpoints, suggesting this is a
systemic effect for these three exposure periods. Power-law functions were subsequently fit-
ted to the low2, med, and high thresholds, resulting in overall adequate capture of trends.
The corresponding coefficient and exponential terms of the power-law functions are found
in Table C.3.

With the functional form of the thresholds established, A(z) can be parametrised with

time as shown in Equation C.7, using conveniently the coefficient and exponential terms
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Table C.2: Mean Residual Life Plot, AD? and GEV Lower Endpoint Thresholds

Exposure Period (days) lowl! low2 med  high AD?: ., GEV:iz_
7 0.009  0.00901 0.0091 0.0092 0.0089 0.00962
14 0.0125 0.012505 0.0126 0.0127 0.01155 0.01186
21 0.0138 0.0141 0.0144 0.0148 0.01172 0.0141
28 0.0155 0.015503 0.0156 0.0157 0.01517 0.01592
30 0.0135 0.013505 0.0136 0.0137 0.01187 0.01391
60 0.021 0.02106 0.0212 0.0214 0.01751 0.02078
90 0.025 0.0255 0.026  0.027 0.02154 0.02446
120 0.026 0.0266 0.027  0.028 0.02567 0.02857
150 0.028 0.0286 0.029  0.030 0.02737 0.03088
180 0.034 0.0344 0.035 0.036 0.03321 0.03577

L All thresholds in mm

derived for the GEV distribution parameters, and threshold levels defined in Table C.3.
However, since the intent of this section is to demonstrate the use of the GPD in a POT
framework for the analysis of pitting corrosion data, Equation C.1 is reformulated with

Table C.3: Thresholds Modelled

with Power-law Functions

Level k gt Ch

lowl 1 0.04147 0.38854
low2 2 0.04240 0.39422
med 3 0.04312 0.39637
high 4 0.04481 0.40482

! Functional form is wt

time as covariate (Equation C.8 and Equation C.9) and parameters u, a, £ and b estimated
by maximising the corresponding likelihood function, Equation C.10.

Ao = |1

upt* — ut?

1

atb
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PLOT OF ESTIMATED PIT DEPTH THRESHOLDS

(Ten Coupons Per Exposure Period)
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Figure C.7: The change in the low]l thresholds with time is captured by a power-law
relationship, fitted by Ordinary Least Squares.

Ck 1/’6 Ck
GPD(a:,t\HQ):{l—[l_KM} }m¢07a*20’1_ﬁ(x wt™) o
vk .
(C.8)
with o = at® — k(ugpt* — pt?).
1
1 (@ — uyt*) P
t162) = 1 - C.9
f (337 ’ 2) ath — /{(uitck _ Mtb) |: H(]_/tb — /{(uktck — ljltb> ( )
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10 n;

—1
1 Tij — Pt K
L(6 t) = 1-— : .
(6: | .) H H ath — k(ugtst — pth) [ " (ozt? — m(ugtt — pth)

j=1 | i=1

b
with z; ; > ukt;?’“ and the constraint that 1 — & (atb _JZ(JU téitj_ 5 ) > 0.
j Kt — ptj)

Numerical maximisation of the natural logarithm of the likelihood function L(0, | x,t),
with the noted constraints, for the different thresholds, resulted in the GPD parameter es-
timates presented in Table C.4. Included in this table are the estimates for the numerical
value of the log-likelihood function of the GEV distribution (EquationB.23), with param-

eter set By = {GPD D, QR l;} substituted for @;. This was added as a comparison to

assess the quality of the fit and to gauge quantitatively the “merit” of the threshold lev-
els. The results indicate that low1 thresholds lead to MLE-based parameters for the GPD
that, when employed for the evaluation of I( |z, t), are in better in agreement with GEV
distribution parameters than the other levels, though the first three levels (lowl, low2, and
med) lead to very similar results. An interesting outcome is that with increasing thresh-
old levels, both I(@, |2, t) and (6, | x,t) decrease. With higher thresholds, the absolute
number of exceedances decrease, and this reduces the sum in the log-likelihood function.
Consequently, the more relevant comparisons are the log-likelihood function values in the
right most column of Table C.4. For completeness, a scatter plot of GPD exceedances for
the various exposure periods, derived from the functional form of the lowl thresholds, is
shown in Figure C.8.

The analysis is now in a good position to assess the last constraint on the thresholds,
which is with respect to intensity measure A(z) of the NHPPP. Figure C.9, which is a
plot of A(t:0) for the lowl thresholds (plotted for A(t:60) > 1.25), shows a finite-valued
function, non-negative, and non-decreasing, thereby satisfying the last constraint. Similar
plots were generated for the remaining three levels. All levels with the exception of the high
thresholds, satisfied the constraint. Threshold level high exhibited a decreasing function
with time. With increasing threshold levels (i.e., going from lowl to med), the maximum
in A(¢:0) across the range of exposure period decreases. Table C.5 provides a summary of
these findings.
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Table C.4: Maximum Likelihood Parameter Estimates for the GPD with Time

as Covariate

Threshold /i a Iz b 10y, t) 1(0;|x,t)
lowl  0.04816 0.00410 0.35452 0.40634 1617.14  498.75
low2  0.04841 0.00397 0.34749 0.40635 1522.34  498.69
med — 0.04765 0.00411 0.32456 0.40651 1431.40  497.87
high  0.04934 0.00332 0.30212 0.40238 1230.51  486.03
GEV?  0.04788 0.00400 0.34294 0.40294 — 498.96

! l(él | x,t) is the log-likelihood for the GEV distribution, Equation B.23,
determined by substituting parameter set 8, for 6; at each threshold level.
2 GEV distribution parameters 6, Table B.1

Table C.5: Non-homogeneous Poisson Process Intensity Characteris-

tics
Level At :0) max(Range)
lowl finite-valued, non-negative, non-decreasing 3.34
low2 finite-valued, non-negative, non-decreasing 3.18
med  finite-valued, non-negative, non-decreasing 2.43
high finite-valued, non-negative, decreasing —

! Maximum expected number of exceedances per corrosion coupon

over the range of exposure periods.
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Figure C.8: Scatter plot of exceedances arising from the employment of the low1 thresholds.
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INTENSITY MEASURE
Exceedances Over Threshold
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Figure C.9: Non-homogeneous Poisson process intensity measure for the low1 thresholds.
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C.3.3 Algorithm to Assign Pit Depth Exceedances

Similar to the assignment of pit depths to a UFC from the GEV distribution, a fitted, time-
extrapolated GPD (e.g., Equation C.9) may be sampled for pit depth exceedances. While
size effect needs to be accounted for, as shown in the algorithm in section B.4.4, this is done
simply by considering the fact that the total number of observed exceedances n; over a
time-specific threshold u; (u; = uxt}*) is a function of the total number of blocks pooled for
the specific exposure period. In the present case, ten blocks were pooled for each exposure
period, and each block = coupon has already been determined to be approximately 1/251th
the size of the surface area of the UFC quarter hemispherical end-cap. An unbiased,
point-wise estimate of the total number of exceedances expected for the UFC quarter
hemispherical end-cap nY" is n; x 251/10 or nJ¥° ~ 25.1n;. Furthermore, since the
assignment of pit depths occurs at the panel level, and there are m = 255 panels on the UFC
quarter hemispherical end-cap, it follows that the number of pit depths to be sampled from
the time-extrapolated GPD is int(25.1n;) if 25.1n; < m, else m otherwise. The limitation
here is that when extrapolating outside of experimental conditions, which is the more
likely case, one does not know n; in advance. The GPD modelling framework, without
a Point process perspective, does not afford estimation of the number of exceedances.
Consequently, a conservative approach is to assign one pit per panel, or equivalently to
sample m pit depth exceedances from the fitted GPD.

Note, it has been assumed that investigators seeking to apply a GPD to model corrosion
pitting have no knowledge of Point processes and are unaware that A(t : ) may be used to
estimate the expected number of exceedance per coupon area. Additionally, it is assumed
that the functional form of the thresholds has been identified and thresholds levels meeting
requirements prescribed in the preceding sections have been selected—necessarily without
satisfying the Point process constraints as these would be unknown to the investigator.

In words, the algorithm samples randomly m maximum pit depths from the GPD
distribution extrapolated in time T = {t,1in, tmaz }» Where toin, tmae are the minimum and
maximum timescales anticipated for the DGR during the dry, oxic period, respectively.
The sampling generates two arrays of pit depth exceedances (Dypin, Dy,,..), one for each
time segment. The algorithm also samples randomly m thicknesses from the initial copper
coating thickness distribution (f;., ~ Lognorm), creating an array of thicknesses. A new
array is created by subtracting from the copper coating thickness array the pit depth
exceedances. This is done twice, once for each time segment, to generate two modified
initial copper coating thickness arrays, which would then be fed into the rest of the original
UFC lifetime code for continued processing (not shown here). The algorithm is summarised
below.
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Algorithm 6 Pit Depth Exceedance Assignment—GPD

Require: T,m, f(x,t; u, a, k, b, ug, cx), fie, ~ Lognorm
1: Initialise variables, arrays: ¢,D; . , Dy . .Cu,Cuy, . ,Cuy,,.
2: Uy, ¢ < select threshold level &
3: C'u < sample randomly m thicknesses from f;
4: for t; in T do

5 flz,t: ég) — f(z, b py oy Ky by ug, cg)

6 if t; == min(T") then

7: D, .« sample randomly m pit depth exceedances from f(z,t : )
8 Cuy,, < Cu—D, .

9 else

10: Dy,... < sample randomly m pit depth exceedances from f(z,t: éz)
11: Cuw,,,, — Cu—Dy, .
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Appendix D

Non-Homogeneous Poisson Point
Process

The objective of this appendix is to provide the mathematical details covering the asymp-
totic arguments used to derive the intensity measure formulation in Chapter 5, Sec-

tion 5.3.3, Equation 5.17. Two arguments are presented: Point process characterisation
and the NHPP-GPD characterisation.

D.1 Point Process Characterisation

The convergence of the sequence of pit depth maxima M}, Equation (B.3), occurs if and
only if (Pickands, 1971; Smith, 1989)

n[l — F(a,z +b,)] » —InH(x) = A(z) as n — oo, (D.1)

and
1

Alz) = {1-%%“)}’? (D.2)

Equation (D.1) follows from the approximation lim, ,.(1+t/y)¥ = ¢' and by re-arranging
Equation (D.1) in the form lim, ,o(1 — A(z)/n)" = e 2@ (see Leadbetter et al., 1983,
pg 36; Resnick, 1987, pg 39). The normalising constants a, and b, are those introduced
in Section B.1, and A(z) is the argument of the negative exponential term in the GEV
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distribution, Equation (B.5). Note, z in H(z) (Equation (B.3)) has been replaced by x in
Equation (D.1) without loss of generality.

To put the above equations into perspective, following the example in Smith (1994),
define a Point process P, on the closed interval [0,1]xR by placing a point at each
{i/(n+1),(X; —by)/an}, 1 <i<mn, where n is the total number of points in the process.
The i/(n + 1) scaling ensures that the process is always mapped to [0, 1], whereas the
normalisation of X; stabilises the behaviour of extremes as n — oo (Coles, 2001, pg 129).
The argument made by Smith (1989) is that the normalised X; in the Point process P,
will tend to cluster near the lower endpoint of the (re-scaled) distribution. Away from the
boundary, however, the process will look like a NHPP. Put in other words (Coles, 2001,
pg 130), if z_ and x, are the respective lower and upper endpoints of the limiting GEV
distribution (Equation (B.3) and Equation (B.5)), then as n — oo the sequence of Point
processes

P,={(i/(n+1),(X; —by)/a,) :i=1,...,n} (D.3)

converges on regions of the form [0, 1] X [y, o], for any y > x_, to a NHPP P, with intensity
measure on a region A = [t1,ts] X [x,2,], 0 < t; <ty <1, given by

A(A) = (t, — t)A(2). (D.4)

The expected number of points in [0, 1] X (y, 00) for any fixed y > z_ is n[l—F(a,y+0b,)]
which, according to Equation (D.1), converges to A(z). As explained by Smith (1994), in
practice it is more practical to work directly with a NHPP applied to all observations
over a threshold u. This in lieu of constructing a limiting Point process with the required
renormalisation. Consequently, for any observation X;, taken at time ¢, for which X; > wu,
a point is placed at (¢, X;). This procedure is treated as part of a NHPPP on R x (u, 00)
whose intensity measure (i.e., expected number of exceedances over u) satisfies

1

A{(t1,t2), (2,00)} = (ta — t1) {1 K (“" - “)} Rt <to,a > (D.5)

Smith (1994, pg 231) proposed that if A(x) is defined as per Equation D.2, and v(z) =
—0A(z)/0x, then if one observes a random number N of exceedances (7}, X;) with X; > u
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over a time period (0,7), the approximate likelihood function is

L(p, k) = exp{—TA(u)} - H
1 1 (D.6)

el R - (2

J=1

The parameters p, o, and & can be estimated by numerical maximisation of Equation (D.6).
Subsequently, the intensity (density) function of the process is

1
o(z) = —OA(z) /I =A(z) = é {1 . (3“” - “)} K (D.7)

«

Additionally, Smith (2003, pg 14) indicates that for “non-stationary processes”, in which
the parameters i, «, and k are dependent on time, then the intensity function in Equa-
tion (D.7) is replaced by

1 - P -
)\(t,x):a—[l—/ﬁt (Ia'ut>]ﬁt ,[1—/£t(xaut>
t t t

where i, oy, and k; are functions of time.

> 0, (D.8)

The foregoing examples were concerned with environmental applications. To the best
of this author’s knowledge, the only application of a Poisson Point process for pit growth is
presented in Scarf and Laycock (1996). Here, the authors refer to Smith (1989) and Smith
(1994) to present a likelihood function for a NHPP. In particular, Scarf and Laycock (1996)
state that if a random number N of exceedances X; > u over a unit area or time interval
are observed, the likelihood function is

N

L= oxp{~ 1= wu /e } TL{ 2 11~ ntas = el 47},

J=1

Scarf and Laycock (1996) further state that “the product of the likelihood over different
time periods is considered in the usual way, when combining data;” and “if the time periods
differ in length, then” Equation (B.35) (and its derivative, Equations B.37 and B.38) may
be used to rescale u and o accordingly.
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Another example of modelling pitting corrosion by a stochastic process is found in the
work by Datla et al. (2008), who modelled the number of pits in steam generator tubes
of nuclear power reactors as a NHPP, with an intensity density function that assumed
the form of a Weibull process or power-law function (i.e., A(t) = at’~1). Datla et al.
(2008) ultimately derived the form of the GEV distribution whose argument A,(t), in the
function GEV = exp(—A,(t)), expressed the expected number of pit depths exceeding a
critical through-wall depth z. The intensity measure A,(t):=A(t)(1 — Fx(z)) was derived
by fitting a GPD defined with time-invariant parameters (referred to as Fx(z) in their
work) to pit depth exceedance data, with A(¢):= [" at?~'dt. The parameters e and 3 were
estimated by maximising the likelihood function or joint density of the number of pits in
discrete inspection intervals, which was simply the product of the non-homogeneous form
of the Exponential distribution. Maximisation of the likelihood function was relatively
straight forward to achieve. The closed-form solution from the method of moments was
employed to estimate the GPD parameters. Ultimately the GEV distribution was used to
estimate the probability of exceeding a critical pit depth. Assuming the Weibull for the
number of pits generated with time and the time-invariant form for the GPD simplified
greatly the computational effort. In the present work, neither the assumption of a Weibull
process nor time-invariant exceedances apply.

D.2 NHPP-GPD Characterisation

The preceding section showed that, in the limit as n — 0o, a Point process, whose points are
normalised (i.e., (X;—b,)/a,), converges to a NHPPP in a region of the form [0, 1] x [y, oo},
for any y > x_. Moreover, the expected number of points in [0, 1] X (y, 00), for any fixed
y > x_, is n[l — F(a,y + by)], which, according to Equation (D.1), converges to A(z).
The intensity measure A(x) and the intensity density function A(z) = —0A(x)/0z for a
NHPPP, in the space [0, 1] x [y, o], for any y > x_, are thus defined.

Alternatively, one can arrive at the same expression for A(z) by specifying the conditions
that (i) the number of events N, over some large enough threshold u are ~ Pois(A(x)),
with parameter A(x), and that (i7) the magnitude of events X|X > u follow a GPD, with
a POT framework. For example, assume

(x—w)
Fxixsu(z) =1—|1— /@m x>y, — Ky —p) >0, (D.9)
and
P(N, =n) = M. (D.10)



Then, the distribution Fy, of the largest exceedance Y, = maz(X1, Xs, ..., X,,) for all
n is
o Alx ne—A(x)
Fy, (z Z Fxixsu( ()—
n=0

n!

n 1l
G_A(x)z [FX\X>u(x)] ]

= ¢ M@ Fxpu@A@) (after invoking power series of efxIx>u(@A@)

— eA(m)[FX|X>u(l")—1]

_A(x)[l—fi%]l/ﬁ

(D.11)
=e (after substituting for Fx|x-.(z), Equation D.9).
However, as per Appendix B, for large n,

_{1_5(95*#)]1/“

Consequently,

oM@ [1r ]'" 1oz ]

a—r(u—p) ~ e a ,

which, after re-arranging and solving for A(z), leads to

D.3 Pitting Corrosion as a NHPPP

Pitting corrosion is a cumulative degradation process, where pit depth X (¢) at future time ¢
is uncertain. From a stochastic process perspective, a natural approach to modelling pitting
corrosion is to employ stochastic cumulative processes, such as the stationary Exponential
or Gamma process, both of which sum or convolve iid pit depth increments per unit time
(e.g., see Cheng and Pandey (2012); van Noortwijk (2009)). In this work, a cumulative
degradation process is transformed into an “equivalent” Point process, specifically the
NHPP, by interpreting an extreme pit depth X (¢)|X(¢) > u(t) at time ¢, u(t) a threshold
pit depth, as an event, a point on a timeline, whose arrival is governed by a time-dependent
process intensity.
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By way of illustration, consider Figure D.1la where pitting corrosion, depicted as a cu-
mulative degradation process, is simulated arbitrarily by 10 random trajectories or degra-
dation paths observed (sliced) at an arbitrary moment in time ¢, with three extreme pit
depths X(t) > u(t) observed. At the time slice at ¢, the observer only records the pit
depths; the progression of pit depths over the time interval [0, ¢] is unobserved. In a Point
process representation, extreme pit depths arrive on the surface of a corrosion coupon as
discrete events at different times over the same time interval [0,%]. Because events occur
at times less than ¢, their arrivals are unobserved at time slice ¢, Figure D.1b. Instead, at
time t the total count of extreme events is recorded, Figure D.1c. As soon to be shown,
re-interpreting a cumulative damage process as a non-homogeneous Point process is carried
out simply enough by placing the points (¢, X (t)), corresponding to observed extreme pit
depths (e.g., see Figure 5.3), on a timeline. This is possible because the likelihood function
formulation with time as co-variate shows that the intensity of the process, leading to the
number of events occurring in a specified time interval, is dependent on the duration of
the interval and the magnitude of the events (i.e., depth of extreme pits). Consequently,
one only needs to know the count and magnitude of extreme pit depths at the time slice
t, which occurs at the end of the time interval of interest, to apply the Point process
representation.

From the foregoing sections, following the practical approach from Smith (1994) to place
a point at (¢, X (t)) for any observation X (t) >u(t) at time ¢, the likelihood function for the
pitting corrosion data, when formulated as a NHPPP with time-variant threshold w(t), is
expressed as per Equation D.6, with the modification suggested to account for the pooling
of ten blocks (i.e., C,, = 10 corrosion coupons per exposure period). This formulation is
expressed by Equation D.12. Here, the pooling of ten blocks (i.e., ten unit areas; a unit
area = one coupon area) is interpreted to be equivalent to observing exceedances over ten
unit time intervals, or 7' = 10 in Equation D.6. The intensity density function of the
process v(z; ;| 03) (or A(z;;|0s3)) is invariant to the number of blocks pooled.

L(0s]|x,t) = H {exp {=C,-V(6s)} - Hv(mm- : 93)}

1 1 (D.12)

c o\ 1 = b -1
N ut; —pti \ | K 1 Tij— Pt \ | K
- szl €Xp 7CP ’ [1 -k ( até’- : Hzil ?tz], I-k at?

In Equation D.12, N = 10, 85 .= {NHPPP : p, a, K, b}, z; ;, and n;, represent respectively
the number of exposure periods, the parameter vector for the NHPPP, the ¢th realisation of
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the exceedance RV at the jth exposure period, and the number of exceedances for exposure
period j. The constraints applied to the numerical maximisation of the natural logarithm
of Equation (D.12), which was carried out in Python 3.6.9 with the optimisation algorithm
SLSQP, were 1/at’ > 0, 1 — x(ut® — ut®)/at® > 0, and 1 — k(z;; — pt®)/at® > 0. Results
are presented in Table D.1 for threshold levels low1, low2, and med.

Table D.1: Maximum Likelihood Parameter Estimates for the NHPP with
Time as Covariate

Threshold i a Iz b 1(65|x,t) 1(6;]x,t)!

lowl 0.04876 0.00399 0.34450 0.40926  1660.94 498.20
low2 0.04875 0.00396 0.33940 0.40911  1540.89 498.21
med 0.04874 0.00385 0.31620 0.40933  1429.01 497.98

GEV? 0.04788 0.00400 0.34294 0.40294 — 498.96

11(0, | x,t) is the log-likelihood for the GEV distribution, Equation B.23,
determined by substituting parameter set 85 for 8, at each threshold level.
2 Estimated GEV distribution parameters, Table B.1

For the three threshold levels, the numerical values of the equivalent GEV log-likelihood
function are essentially within a decimal place of each other, similar to the results for the
GPD (Table C.4). However, the GPD parameters yield results that are marginally closer to
the numerical value of the GEV log-likelihood function. Observed differences may simply
be due to the sensitivity of the likelihood functions to the optimisation algorithm settings,
though care was exercised to assess this sensitivity and maintain consistency. Overall,
however, there is very good agreement within the GEV, GPD, and NHPPP maximum
likelihood estimates for the extreme value parameters p, «, k., b.

Under a NHPPP representation of the pitting corrosion process, the expected number
of pit depth exceedances A(t; 83), observed in a single corrosion coupon (for the surrogate
data), vary with time as depicted in Figure D.2.
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Figure D.1: Pitting corrosion as a cumulative degradation process is simulated by (a) 10
trajectories or degradation paths observed (sliced) at an arbitrary moment in time ¢, with
three extreme pit depths X (¢) > u(t) observed. (b) In a Point process representation, the
three extreme pit depths arrive unobserved at different times over the time interval [0, ¢],
according to some intensity measure A(x,t), leading to (c¢) three counts by time ¢.

234

0.4

0.6

()

0.8

Normalised Exposure Time Interval

1.0



INTENSITY MEASURE
Expected Number of Events

| ]

—_

E[N(t)] = Alt : 8;) (per coupon)

et

N e e L/s
0.5 ‘U\f : B::‘.J = |:1 - hw}

0.0+

0.0 0.1 0.2 0.3 0.4 0.5
Exposure Period (vrs)

Figure D.2: Expected number of pit depth exceedances (events) per coupon by time ¢ for
the NHPPP, with parameter A(t : 63).

D.4 Algorithm to Assign Pit Depth Exceedances—
NHPPP

With the intensity measure A(t; 03) defined, the number of pits n; to be assigned at some
future time j is estimated directly from int(251A(¢;053)), since A(t;03) is the expected
number of exceedances over some threshold for unit area pertaining to a single corrosion
coupon, whose area is approximately 1/251th of the surface area of the UFC quarter
hemispherical end-cap. If this number exceeds m = 225—the number of panels on the
UFC quarter hemispherical end-cap, then n; :=m pits are assigned. Note, for most times
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J, A(t;03)) > 1 (see Figure D.2) and thus n; = 225, which translates to assigning one
pit depth exceedance to every panel in the quarter hemispherical end-cap. Otherwise, the
algorithm for pit depth assignment is very much that of the GPD approach (the simulation
approach in the preceding section serves to validate the use of A(¢;603) directly in lieu of
the more computationally intense simulation). Note, sampling for pit depth exceedances
is done from the GPD parametrised with @3. This process is summarised in Algorithm 7.

Algorithm 7 Pit Depth Exceedance Assignment—NHPPP

Require: T, m, A(t; ég), fla, t|p, o, k, by ug, cx), fic, ~ Lognorm
1: Initialise variables, arrays: t, Dy, . , Dy,...,Cu,Cuy,, ,Cuy,,..
2: uy, ¢ < select threshold level k&

3: for ¢; in T do
4: n; < int(251A(t; 03))

5 if n; > m then

6 n;=m

7: Cu < sample randomly n; thicknesses from f;,

8 f(x,t|é3) — f(z, ti| p, 0, &, by ug, )

9: if ¢t; == min(T') then

10: D, .. < sample randomly n; pit depth exceedances from f(x,t| ég)
11: Cuy,, < Cu—D, .

12: else

13: D,,.. + sample randomly 7, pit depth exceedances from f(z,t|83)
14: Cuw,,,, < Cu—Dy, .
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