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Statement of Contributions

• In Chapter 4, I give explicit definitions that build upon the C∗-model to describe

quantum systems that can be applied in topics of quantum information theory

such as embezzlement of entanglement.

• In Chapter 5, I give a characterization of linear system game in infinite dimen-

sions under the commuting operator model [4].

• In Chapter 6, I describe a protocol for performing perfect embezzlement of

entanglement in the commuting operator and C∗-model, as well as the impos-

sibility of an exact protocol in the tensor product model [26].

• In Chapter 7, I describe a protocol for performing self-embezzlement in the

commuting operator model and C∗-model, and the impossibility of approximate

self-embezzlement in the tensor product model [7].

.
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Abstract

The study of quantum entanglement under quantum information has mostly been

done in the mathematical model of tensor product of Hilbert spaces. In infinite di-

mensions, this model cannot capture all cases of non-local systems, and a more general

model needs to be adopted; the most commonly used model here is the commuting

operator model. We introduce another model, the C∗-model, to describe non-local

quantum systems in infinite dimensions. Instead of using Hilbert spaces to describe

the states of a quantum system, a C∗-algebra is used to describe the operators of a

quantum system. The combination of two local quantum systems under this model is

achieved by taking the tensor product of the two C∗-algebras. The C∗-model can be

converted into the commuting operator model using the GNS representation theorem

[13, 29], and it is a generalization of the tensor product of the Hilbert spaces model.

One of the applications of infinite dimensional entanglement is the so-called linear

system games. Linear system games are non-local games derived from linear systems

of equations. We show that a linear system game has a perfect commuting operator

strategy if and only if the equations have a potentially infinite-dimensional operator

solution, and this is related to the properties of the representations of a certain group

called the solution group of the system of equations. This understanding of linear

system games is used as the foundation for the work in [30] in which the author

showed significant progress toward Tsirelson’s problem[31].

Another application of infinite entanglement is the problem of embezzlement and

self-embezzlement. Embezzlement is the task of locally creating an EPR pair using

a shared state without changing the shared state; whereas self-embezzlement is the

task of creating a copy of a shared entangled state locally without changing the
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original shared state. These tasks can be achieved if there exist infinitely many

EPR pairs in the shared state, and thus would require a stronger model such as

the commuting operator model to be used. We show the protocol for embezzlement

and self-embezzlement using both the commuting operator model and the C∗-model.

An interesting property of embezzlement and self-embezzlement is that under the

tensor product of the Hilbert spaces model, embezzlement is impossible to achieve,

and self-embezzlement is impossible to approximate. These two problems show that

the C∗-model is indeed more powerful than the tensor product of the Hilbert spaces

model in handling infinite-dimensional quantum systems.
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Chapter 1

Introduction

1.1 Quantum mechanics, Quantum Information, and

entanglement

Quantum mechanics studies the law of physics at the microscopic level. At the sub-

atomic level, particles are no longer simply particles — they also behave like waves.

The concept that matter is both continuous (wave-like) and discrete (particle-like)

seems to be intuitively contradictory, and yet the wave-particle duality has been con-

firmed by countless experimental scrutiny over the past century. The oddity of quan-

tum mechanics does not stop there. The wave-like property of particles allows them

to superimpose on top of each other, sometimes causing two particles to cancel out

each other at certain points due to the interference of their waveforms. Entanglement

allows two particles to hold some shared information about each other so that even

when they are spatially separated, measuring one particle in any coordinate system

can determine the measurement outcome of the other particle in the same coordinate
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system. The idea that the action on a particle will affect another particle arbitrarily

distant apart seems to violate the principle of relativity. Einstein himself, even though

his paper on the photoelectric effect puts him as one of the founders, was skeptical

about quantum mechanics. His famous paper with Podolsky and Rosen on the EPR

paradox [11] is an attempt to formalize this discrepancy mathematically. It was not

clear to physicists at the time what exactly the issue was regarding entanglement.

In modern times, the study of quantum information looks at quantum mechanics

from the angle of information theory. Instead of describing quantum mechanics based

on physical systems, quantum information uses the abstract notation of qubits as the

basic description of a quantum state. A pure qubit is described by a unit vector in

C2. Similar to a classical bit that has a binary value between 0 and 1, a qubit can

be expressed in terms of basis element |0〉 and |1〉 in C2. Using the Dirac notation

for quantum states, the description of qubits contains no physical information, such

as the position and momentum of a particle, about the underlying quantum system,

and can be viewed as a purely mathematical object.

Multiple qubits are defined in terms of the tensor product of C2’s. The compu-

tational basis state of n qubits is typically expressed in terms of n-bit binary strings

in the ket notation. It is not necessary to have a direct connection between the ab-

stract n qubits and the corresponding physical system. An n-qubit state could be

n particles with spins, or a single particle with 2n energy levels, or something else

entirely, although the n particle system is a more common interpretation. The Bell

states, studied by J. S. Bell to refute the EPR paradox [3], are four maximally entan-

gled two-qubit quantum state states |00〉+|11〉√
2

, |00〉−|11〉√
2

, |10〉−|01〉√
2

, and |10〉+|01〉√
2

. They are

typically considered as entangled states between two parties, which in turn implies

that there is somehow a physical separation between the underlying physical object
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behind the two qubits. Nevertheless, the type of physical object behind a Bell state

is not important in quantum information, and the mathematical abstraction gives a

clearer picture in explaining the EPR paradox.

We focus our discussion on the mathematical descriptions of non-local quantum

systems in quantum information. There are different models describing non-locality.

The most common model is the tensor-product model, which is extremely useful in

cases where the dimension of the quantum system is finite. In infinite dimensions,

the commuting operator model has been adopted by quantum field theory to describe

localized systems. With models having their own strengths and shortcomings, we

introduce a less commonly studied C∗-model which acts as an in-between model.

1.2 The tensor product model and its shortcomings

Typically, when non-local systems are studied in quantum information, the default

mathematical framework that is used to describe the system is the tensor product of

Hilbert spaces. For a bipartite system between Alice and Bob, each of their quantum

systems is usually a Hilbert space, HA and HB, and the combined system is HA ⊗

HB. Alice and Bob can have their quantum states and operators on their individual

subsystems, and the overall system can be described by taking their tensor product.

For finite-dimensional quantum systems, the tensor product model describes the

system accurately. It can be natural to assume that by simply taking the limit from

finite to infinite dimensions, the tensor product model can also be used to describe

infinite dimensional non-local quantum systems. After all, if Alice’s quantum system

can be described by an infinite dimensional Hilbert space, and so can Bob’s quantum
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system, it would make sense to take the tensor product of the two Hilbert spaces to

describe the combined system.

However, such intuition is unfortunately insufficient to describe infinite dimen-

sional non-local quantum systems. It may be surprising to many that the simple

idea of having infinitely many Bell states shared between Alice and Bob cannot be

described by taking the infinite tensor product of Bell states. In fact, as long as Alice

and Bob are using the tensor product model, they are not able to share infinitely

many Bell states. One may think that infinitely many Bell states can be achieved

by taking the limit of n → ∞ for n pairs of Bell states. However, this approach

does not make sense mathematically, because for different n, the dimension of the

Hilbert space for the state to be in is different, and as a result, there is no meaningful

distance between n copies of Bell states and n + 1 copies of Bell states. There is no

such limit because the Hilbert spaces for different states are not comparable. One

way to circumvent this issue is to start with infinite-dimensional Hilbert space, and

a n-copy Bell states is a state with n copies Bell states in the first 2n qubits and |00〉

in the rest of the qubits. This allows the meaningful comparison between n and n+ 1

copies of Bell states, and one may think that the limit of n → ∞ would make sense

in this case. However, the issue here is different. The Hilbert space in this case is a

space with all but finitely many qubits being |00〉 (or in other words, all the vectors

in this Hilbert space must have infinitely many |00〉 at the end). By taking n→∞,

the resulting state will not have infinitely trailing |00〉, and as a result, does not lie in

the Hilbert space defined earlier. In spite of these failed approaches, there is a more

fundamental reason behind why infinitely many Bell states cannot exist in a tensor

product model that is somewhat technical. It relies on the analysis of the Schmidt

coefficient of the state, which will be discussed later.
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1.3 The commuting operator model

Despite the shortcomings in the mathematical modelling discussed earlier, the idea of

having infinitely many Bell states is an intuitive one. In fact, there is a more general

model of locality that has been used in quantum field theory to handle infinite-

dimensional quantum systems, the commuting operator model, that can be used to

describe infinitely many Bell states. The commuting operator model, different from

the tensor product model, considers localities in a different way. Instead of having

individual quantum subsystems tensor products together, the commuting operator

model has only one Hilbert space that encompasses all of its subsystems. The notion

of locality lies not in the structure of the Hilbert space itself, but in the structure

of the operators on the Hilbert space. For example, consider a system with Alice

and Bob’s local systems in the commuting operator model. Alice and Bob share a

single Hilbert space H, and what makes Alice’s local system “separated” from Bob’s

local system is that all of Alice’s operators must mutually commute with all of Bob’s

operators. The rationale behind this commutivity requirement is the following. If a

state is shared between Alice and Bob who are far apart, and they each apply some

local operation to the state without any communication, the final resulting state

should be the same regardless of whether Alice or Bob applied their operations first.

Since there is only one Hilbert space for the entire system, any operator A Alice can

perform must commute with any operator B Bob can perform, in other words, they

must satisfy AB = BA. This is a generalization of the tensor product model since,

in the tensor product model, Alice’s operator will be of the form A ⊗ I and Bob’s

operator will be of the form I ⊗B and those two operators always commute.

Since the locality of a commuting operator model depends on the sets of the local
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operators, it is the structure of the operators that give rise to different local “parts” of

the quantum system under the same Hilbert space. With the same Hilbert space, and

the same quantum state, different sets of local operators could imply very different

“ownership” of the state. An extreme example would be Alice’s operators are all the

bounded operators on the Hilbert space, and Bob’s set of local operators will be forced

to contain only the trivial identity operator. This is analogous to Alice having access

to the entire quantum system leaving Bob with nothing in his hand. In another case,

Alice and Bob could have some non-trivial mutually commuting sets of operators, and

there exists another set of operators that mutually commute with both Alice’s and

Bob’s operators. In this case, Alice’s and Bob’s quantum systems combined are not

the entire quantum system described by the Hilbert space, and there could potentially

be a third party with local quantum systems separated from Alice and Bob.

In the commuting operator model, it is difficult to single out part of a quantum

state that “belongs” to a quantum subsystem, because everything is described un-

der the same Hilbert space. Although the definition of the separable and entangled

state exists in the commuting operator model, it is less clear where the boundaries

are between different local systems. In the discussion of non-local quantum sys-

tems, it is often desirable to be able to think about different local systems separately

and combine them or isolate out parts of the system. While the commuting oper-

ator model provides a powerful mathematical tool for handling infinite-dimensional

quantum systems, the single Hilbert space makes it difficult to consider different local

systems individually. For example, consider Alice and Bob having two identical quan-

tum systems in their local lab, and share some entangled state between them. Under

the commuting operator model, since Alice and Bob’s systems both rely on the same

Hilbert space, they have two individual sets of operators. To express that their local
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systems are identical, there needs to be some equivalence relationship between Alice

and Bob’s operators. Furthermore, the idea that Alice and Bob share two copies of

the same state would be tricky to define because there is only one single Hilbert space

and the state cannot be split into two different parts. These issues can be addressed

properly with careful definitions. However, the fact that such a simple concept would

require extra effort in the basic definitions may raise the question of how approachable

the commuting operator model is in discussing more complex problems.

1.4 The C∗-model

Wanting the power of the commuting operator model in handling infinite-dimensional

quantum systems, as well as the clarity of having a tensor product to describe local

systems, a different model, which we call the C∗-model will be discussed. The C∗-

model is a mathematical model that can use the tensor product as a separator for dif-

ferent local quantum systems, can be used to handle some of the infinite-dimensional

cases the tensor-product model fails to, and can be mapped into the commuting op-

erator model through a standard conversion. Instead of using Hilbert spaces as the

fundamental building blocks for quantum systems, the C∗-model uses C∗-algebras.

There is no inherent Hilbert space in the C∗-model, and quantum states are simply

functions that map operators in the C∗-algebras into numbers. This may sound like a

foreign and even arbitrary idea to those who are used to considering quantum states

as vectors or density operators, but it is in fact very closely related to the conven-

tional model. When taking measurements of a quantum state, the standard way is to

take the trace of the product of the density operator and the measurement operator.

This mapping from operators to scalars is abstracted in the definition of an abstract
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state on a C∗-algebra. In the C∗-model, a state is defined by its measurement out-

comes with respect to measurement operators, just like how a density operator can

be viewed as a probabilistic mixture of different measurement outcomes. Without

going into the details, the quantum operators in the C∗-model are defined similarly

to the quantum operators in the conventional Hilbert space model. Having different

local quantum systems is equivalent to having different C∗-algebras, and combining

them is a matter of taking the tensor product (with some technicality here) of the

C∗-algebras. In a way, the C∗-model can be made to “look like” the tensor product

model in describing non-local quantum systems, and have similar properties when

manipulated.

The benefit of the C∗-model is that it can correctly capture some infinite dimen-

sional cases that the tensor product model fails to capture, such as having infinitely

many Bell states. It can be converted into the commuting operator model if one

prefers the more standard notations for quantum mechanics. In a way, it can be

viewed as an in-between model between the tensor product and commuting operator

model.

1.5 Applications of the Models in Quantum Infor-

mation

A natural question following the discussion of these more general models of locality

is when they are useful in quantum information. The quantum state with infinitely

many Bell states is an example of a useful state that cannot be achieved by the

tensor product model but can be defined in the commuting operator model and the
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C∗-model. A few places where this particular state is useful include in the non-

local game of linear system games, as well as the protocol of embezzlement and

self-embezzlement. In these cases, the ability to define the infinitely many Bell states

allows these applications to achieve something that could not be achieved using the

tensor product model.

1.5.1 Non-Local Games

A non-local game is a set of rules involving multiple (typically two) players and a

referee. In the two-player (Alice and Bob) case, the players are physically separated

and not allowed to communicate once the game starts. The referee sends each player

some classical input string from a set of inputs at random, and each player must

reply with a classical output string. The outcome of the game is determined by a

predefined payout metric, and the players win if their output strings satisfy the metric

requirement of the income strings they received.

A simple example of a non-local game is when Alice and Bob each receive a single

bit a, b ∈ {0, 1}, and output a single bit s, t ∈ {0, 1}, and they win if and only if

a · b = s⊕ t. This game is called the CHSH game and it has the surprising property

that if Alice and Bob share a maximally entangled state, they can win the game with

a probability of around 85%; whereas if they only share classical information, their

maximal winning probability is mere 75%. There are also non-local games where Alice

and Bob can win the game with certainty (probability 1) if they share entanglement

but without entanglement, their chance of winning is strictly lower. The details of

the games will be discussed later.

An interesting property of non-local games like the CHSH game is the existence

9



of a gap between classical and quantum winning probability. Even though the input

and output strings of non-local games are of finite length, there are non-local games

that require infinite-dimensional quantum states to perform optimally. With infinite-

dimensional quantum systems, the question comes to whether it is under the tensor

product model or the commuting operator model. It turns out that whether there is

a gap between the optimal game-winning probability of the tensor product and the

commuting operator model is directly related to Connes’ Embedding Conjecture in

mathematics [12, 16, 22]. The Connes’ Embedding Conjecture was recently shown

to be false by some very complex protocols developed using quantum information

theory.[15]

A simpler example of non-local games demonstrating the power of the commuting

operator model over the tensor product model is the linear system games. In linear

system games, the questions and answers for the game come from a set of (binary)

linear systems of equations. Without entanglement, Alice and Bob can only win the

game with certainty if the set of linear systems of equations has a satisfying assignment

of binary numbers to each of the variables. With entanglement, the players can win

the game with probability 1 if there is an assignment of linear operators satisfying a

variation of the original linear system of equations. The use of operators allows more

general strategies between the players. One property of the linear system games is

that the dimension of the operator solution does not need to be finite. When the

dimension of the operator solution is finite, there exists a tensor product strategy

for the players to win the game with probability 1. However, if the dimension of

the operator solution is infinite, a commuting operator solution is needed to achieve

winning probability 1.

10



1.5.2 Embezzlement and Self-Embezzlement

Another example where the commuting operator model as well as the C∗-model,

outperforms the tensor product model is the protocol of embezzlement and self-

embezzlement. Embezzlement is based on the idea that if Alice and Bob share an

infinite amount of entanglement (resource state), they should be able to locally re-

trieve a Bell state out of their resource state without changing it. Self-embezzlement

is similar to embezzlement except instead of a single Bell state, Alice and Bob want

to extract a copy of their resource state.

Even though infinitely many Bell state cannot be defined in the tensor product

model, with some clever design of the resource state in finite dimensions, embezzle-

ment can be achieved approximately when Alice and Bob extracts a Bell state and

end up with a state that is close to the resource state [8]. The larger the dimension

of the resource state, the closer the resulting state of Alice and Bob is to the resource

state, and the approximation can be achieved for arbitrary precision. However, it can

be shown that as long as Alice and Bob are under the tensor product model, perfect

embezzlement is not possible. In other words, one cannot simply take a limit to make

the resource state infinite-dimensional and get rid of the approximation.

To achieve embezzlement exactly, the commuting operator model (or the C∗-

model) can be used. The resource state contains infinite copies of Bell states, and

Alice and Bob can swap out a Bell state while keeping the resource state intact.

Self-embezzlement is embezzlement with a twist. Alice and Bob’s goal is to locally

turn one copy of the resource state into two copies of the same state. The resource

state can be any state (including finite-dimensional states) as long as it has at least as

much entanglement as a single Bell state. The interesting aspect of self-embezzlement
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is that it can be achieved exactly using the commuting operator model, whereas if

Alice and Bob are restricted to the tensor product model, they cannot get the resulting

state to approximate two copies of the resource state more than some constant strictly

below 1.
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Chapter 2

Quantum Mechanics and The Hilbert

Space Model

2.1 Mathematical models for Quantum Mechanics

This section will briefly discuss the commonly used mathematical model for quantum

mechanics.

2.1.1 Quantum states

One of the main aspects of quantum mechanics is that quantum states are described

using wave functions. A wave function is a complex function over some domains such

that it forms a probability density distribution. For example, consider a quantum

state consisting of a particle in one-dimensional space with location x ∈ R. The wave

function ψ(x) for this particle is a function indicating the probability density of being
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at location x:
∫ xa
xb
|ψ(x)|2dx gives out the probability that the particle is between

location xa and xb. The particle exists somewhere along the x axis, and therefore∫ ∞
−∞
|ψ(x)|2dx = 1. (2.1.1)

In Dirac’s notation, a quantum state can be described by a vector in the Dirac

notation |ψ〉 in a Hilbert space H where 〈ψ|ψ〉 = 1.

On the surface, the two definitions of quantum states appear very different from

each other. The wave function ψ(x) is a concrete description of the location of a

particle, whereas |ψ〉 is an abstract vector that might appear to have little correspon-

dence with the physical quantum system. It turns out that these two models are

equivalent. For two wave functions ψ(x) and φ(x), define the inner product between

the two functions to be

〈φ|ψ〉 =

∫ ∞
−∞

φ∗(x)ψ(x)dx. (2.1.2)

With this inner product, an orthonormal basis can be defined for the wave functions.

This orthonormal basis can then be further extended into a Hilbert space.

2.1.2 Observables on quantum states

Observables are physical properties of a system that can be measured. Examples of

observables in classical mechanics include a physical system’s position, momentum,

and energy. In quantum mechanics, observables are Hermitian linear operators acting

on the quantum states, and every observable in classical mechanics has a counterpart

in quantum mechanics.

Given an observable Ô, the possible measurement outcomes are the eigenvalues of

Ô. Let Ô =
∑
λn |n〉 〈n| be the eigendecomposition of Ô, and a measurement outcome
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of λn indicates that the system is in state |n〉. Given a state |ψ〉, the expected value

of |ψ〉 on observable Ô is 〈ψ| Ô |ψ〉.

A typical example of observable is the Hamiltonian, which indicates the energy of

a given system. Let Ĥ be a Hamiltonian describing a quantum system with a particle

in a one-dimensional axis x. Let’s further assume that the number of eigenstates of

Ĥ is countable. Let |n〉 be the eigenstates of Ĥ, satisfying Ĥ |n〉 = En |n〉, where the

En’s are sorted in ascending order. En is the system’s energy level, with E0 indicating

the lowest energy any state in this system could have. A quantum state can be written

as |ψ〉 =
∑
|n〉 〈n|ψ〉, where 〈n|ψ〉 =

∫
〈n|x〉 〈x|ψ〉dx, and {|n〉} form a basis of the

Hilbert space |ψ〉 is in.

2.1.3 Dynamics

Quantum states evolve in time according to the time-dependent Schrodinger’s equa-

tion

Ĥ |ψ〉 = i~
∂

∂t
|ψ〉 , (2.1.3)

where Ĥ is Hermitian. We adopt the hat notation for operators commonly used by

physicists here in a discussion related to quantum mechanics.

As an operator, the time-evolution of a quantum system is Û(t) = e−iĤt such that

a state |ψ(t)〉 = Û(t) |ψ(0)〉 where |ψ(0)〉 is the quantum state of the system at time

0 and |ψ(t)〉 is the evolved quantum state at time t. If |ψ〉 is an eigenstate of Ĥ with

eigenvalue E, Û(t) |ψ〉 = e−iEt |ψ〉.

The conceptualization that quantum states evolve over time, whereas observables

remain unchanged, is called Schrodinger’s picture. In contrast, according to Heisen-
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berg’s picture, quantum states are fixed, and evolution happens on the observables.

An observable Ô at time t is described by Ô(t) = Û∗(t)ÔÛ(t), where Û(t) is the same

evolution unitary operator mentioned earlier. These two pictures are equivalent to

each other mathematically. At time t, performing observable Ô on a state |ψ〉 gives

〈ψ(t)| Ô |ψ(t)〉 = 〈ψ| Û∗(t)ÔÛ(t) |ψ〉 = 〈ψ| Ô(t) |ψ〉 , (2.1.4)

where both the Schrödinger’s picture and Heisenberg’s picture will give rise to the

same measurement outcome.

2.2 Hilbert Space Model and Quantum Information

In quantum information theory, considering the physical interpretation of wave func-

tion behind a quantum state is rare, as they contain physical information of the

quantum system. Quantum information treats quantum states as abstract units of

information, and as a result, it is not concerned about the physical interpretation

behind the abstraction. Whether a state in |0〉 corresponds to the location, energy,

spin, or polarization of a particle is irrelevant, and only key concepts from quantum

mechanics, such as observables and unitaries, are adopted.

2.2.1 Hilbert Spaces

This section discusses the Hilbert space model of quantum mechanics, as well as some

basic elements of quantum information. The Hilbert space model is the mathematical

model used to describe systems in quantum information, and we start with a review

of Hilbert spaces and their properties.
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Definition 2.1. A Hilbert space H is a complex or real inner product space that is

complete in metric space under the norm induced by the inner product.

An inner product space is a vector space V over a field F with an inner product

〈·, ·〉 : V × V → F satisfying the following: for all x, y, z ∈ V , α ∈ F ,

• 〈x, y〉 = 〈y, x〉,

• 〈αx, y〉 = α 〈x, y〉 and 〈x+ z, y〉 = 〈x, y〉+ 〈z, y〉,

• 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0.

Inner product spaces have a norm, ‖ · ‖ : V → F defined by

‖x‖ =
√
〈x, x〉. (2.2.1)

The distance function induced by the inner product d : V × V → F is defined as

d(x, y) = ‖x− y‖. (2.2.2)

Complete under a norm ‖ · ‖ in metric space means that every Cauchy sequence

converges. :et {xi}i∈N be a sequence containing elements of V . Then {xi}i∈N is a

Cauchy sequence if it satisfies for any ε > 0, there exists N ∈ N such that for all

i, j > N , ‖xi−xj‖ < ε. Converging means that for all Cauchy sequences {xi}i∈N ⊆ V ,

limi→∞ xi exists and limi→∞ ∈ V .

Given two Hilbert spaces H1, H2, it is possible to consider the composition of the

two spaces in two ways, the direct sum and the tensor product.
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Definition 2.2. The direct sum of two Hilbert spaces H1,H2 is a Hilbert space de-

noted by H1 ⊕H2 where for any a, c ∈ H1, b, d ∈ H2,

〈a⊕ b, c⊕ d〉 = 〈a, c〉H1 + 〈b, d〉H2 . (2.2.3)

The addition rule for the direct sum is, for a, c ∈ H1, b, d ∈ H2, λ ∈ C,

(a⊕ b) + λ(c⊕ d) = (a+ λc)⊕ (b+ λd). (2.2.4)

Definition 2.3. The tensor product of two Hilbert spaces H1, H2, is a Hilbert space

denoted by H1 ⊗H2 where for any a, c ∈ H1, b, d ∈ H2,

〈a⊗ b, c⊗ d〉 = 〈a, c〉H1〈b, d〉H2 . (2.2.5)

The addition rule for the tensor product is, for a, b ∈ H1, b, d ∈ H2, λ, γ ∈ C,

(a+ λb)⊗ (c+ γd) = (a⊗ c) + γ(a⊗ d) + λ(b⊗ c) + λγ(b⊗ d). (2.2.6)

For finite dimensional Hilbert spaces, ifH1 has dimensionm andH2 has dimension

n, then the dimension of H1 ⊕ H2 is m + n, whereas the dimension for H1 ⊗ H2 is

mn.

A linear operator on a Hilbert space H is a mapping H → H that is also linear.

For finite-dimensional Hilbert spaces, they can be expressed in terms of finite square

matrices. In quantum mechanics, most of the operators in discussion are linear. We

will review some properties of linear operators commonly used in quantum mechanics.

Definition 2.4. The norm ‖ · ‖ of a linear operator O : H → H is defined as

‖O‖ = sup{‖Ox‖ | x ∈ H, ‖x‖ = 1}. (2.2.7)
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The norm of an operator in H depends on the inner product used to define H.

More properties of operators can be defined with the definition of the operator norm.

Note that not all operators have a finite norm.

Definition 2.5. A linear operator O : H → H is bounded if ‖O‖ < ∞. The set of

all bounded linear operators in H is denoted by B(H).

All finite-dimensional operators are bounded.

Definition 2.6. An operator A ∈ B(H) is self-adjoint if A = A∗ 1

Definition 2.7. An operator P ∈ B(H) is an orthogonal projection if P = P ∗ = P 2.

Definition 2.8. An operator P ∈ B(H) is called a positive operator, denoted by

P ≥ 0, if for all x ∈ H, it holds that 〈x, Px〉 ≥ 0.

Let P ∈ B(H) be an orthogonal projection. Then the space H′ = {Px | x ∈ H}

is a subspace of H, and P is the projector onto H′. P is used to convert the elements

of H to elements of H′ as well as to convert the linear operators in B(H) to B(H′).

Definition 2.9. Let H be a Hilbert space and H′ be a subspace of H. Let P be the

projection onto H′. The projection of operator ·|H′ : B(H)→ B(H′) is defined as

A|H′ = PAP (2.2.8)

for all A ∈ H.

Given an operator B ∈ B(H), its range Ran(B) is the set of vectors it can map to

Ran(B) = {x ∈ H | ∃y ∈ H s.t. x = By}. (2.2.9)
1While physicists prefer to use the notation A† to denote the conjugate transpose, we adopt the

mathematician’s notation of A∗ in this thesis.
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If the dimension of Ran(B) is finite, then B is said to have a finite rank.

An operator is compact if its image of the unit ball is compact. Equivalently,

Definition 2.10. An operator K ∈ B(H) is compact if there exists a family {Ai}i∈N
of finite rank operators such that limn→∞ ‖K − An‖ = 0. The set of all compact

operators is denoted by K(H).

Next, we look at an important class of operators that are closely related to the

evolution of quantum systems, namely the unitary, isometry, and co-isometry.

Definition 2.11. A unitary U ∈ B(H) where UU∗ = U∗U = I.

Similar to unitary is the definition of isometry.

Definition 2.12. An operator W ∈ B(H) is an isometry if W ∗W = I; W ∈ B(H)

is a co-isometry if WW ∗ = I.

A unitary is an operator that is both an isometry and a co-isometry.

Definition 2.13. An operator W ∈ B(H) is a partial isometry if there exists some

P ∈ B(H) where P is an orthogonal projection such that W ∗W = P .

It is also possible to define isometry and co-isometry on operators mapping from

one Hilbert space to a different Hilbert space. For W : H1 → H2, isometry means

W ∗W = I2, and co-isometry means WW ∗ = I1.

Next, we will define trace in infinite dimensions. Unlike in finite dimensions, the

trace cannot be defined in general on all bounded operators in a Hilbert space. We

will need to first define the class of operators where a trace can be taken, called the

trace class.
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Definition 2.14. Let H be a Hilbert space and T ∈ B(H), let s1, s2, · · · be the singular

values of T . T is in trace class if

‖T‖1 =
∑
i

|si| <∞. (2.2.10)

We denote the set of trace class by TC(H) = {T ∈ B(H) : ‖T‖1 <∞}.

The trace class of H is spanned by the density operators in H.

For any T ∈ TC(H), the sum of the singular value converges and is the trace of

T .

Definition 2.15. The trace Tr: TC(H) → C is a map defined in terms of an or-

thonormal basis {ei} of H, where for any A ∈ TC(H),

Tr(A) =
∑
i

〈Aei, ei〉. (2.2.11)

The sum is independent of the choice of the basis {ei}

The trace operator satisfies Tr(AB) = Tr(BA) for all A,B ∈ TC(H).

For finite-dimensional operators, the trace is simply the sum of all the diagonal

elements.

Closely related to trace is the definition of partial trace. Given an operator that

acts on the tensor product of Hilbert spaces, it is possible to map it to an operator

only acting on a subspace of the original space.

Definition 2.16. Let H1 and H2 be Hilbert spaces. The partial trace of H1 ⊗ H2

on H2 is a map TrH2 : TC(H1 ⊗H2)→ B(H1) where for any a ∈ TC(H1 ⊗H2), we

write a =
∑

i,j αija1i ⊗ a2j,

TrH2(a) =
∑
i,j

αij Tr(a2j)a1i. (2.2.12)
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The Hilbert space H2, in this case, is called being traced out from operator a.

2.2.2 Quantum States

In this section, we look at the basic properties of quantum systems described by

Hilbert spaces. Let Q denote a quantum system, andH be the Hilbert space modelling

Q.

We start by defining the quantum states as density operators.

Definition 2.17. A state in Q is described by ρ ∈ B(H), satisfying ρ ≥ 0 and

Tr(ρ) = 1. The set of all quantum states is denoted by D(H).

D is also called the set of density operators.

Definition 2.18. A quantum state ρ ∈ D(H) is pure if and only if there exists

|ψ〉 ∈ H such that ρ = |ψ〉 〈ψ|. If a state is not pure, it is called mixed.

By linearity, a probabilistic mixture of density operators is also a density operator.

Let {pi} be a probability distribution and ρi ∈ D(H), then
∑

i piρi ∈ D(H).

The set of density operators is a convex set, with the extremal points being the

pure states.

In the case of pure states, it is common to use |ψ〉 instead of |ψ〉 〈ψ| to denote a

quantum state.

In quantum information, it is common to break down the basis of a Hilbert space

into tensor products of C2’s, so that the states are manipulated at the “bit-wise” level

called qubits. A qubit is simply a state |ψ〉 ∈ C2 with orthonormal basis {|0〉 , |1〉} or

explicitly, {( 1
0 ), ( 0

1 )}.
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The computational basis of multiple qubits is usually expressed in a string of {0, 1}

with the tensor product omitted. For example, for a Hilbert space with 2 qubits, the

computational basis is {|00〉 , |01〉 , |10〉 , |11〉}.

2.2.3 Operations on Quantum States

There are different types of operations that can be performed on a quantum state.

The basic operators that can change quantum states are the unitary operators.

Unitary operators in a Hilbert space maps one set of orthonormal basis in the Hilbert

space to another set of orthonormal basis. LetH be a Hilbert space, and let U ∈ B(H)

be unitary. Then there exists two sets of orthonormal basis {|ei〉} and {|fi〉} of H

such that U =
∑

i |fi〉 〈ei|. A unitary can also be seen as a rotation of quantum states

where the angle between states is preserved. Let |ψ〉 , |φ〉 ∈ H, so that U |φ〉 and

U |ψ〉 are the states after evolution U . Then 〈ψ|φ〉 = 〈ψ|U∗U |φ〉. A unitary applied

to a density operator ρ is the conjugation of U to ρ, UρU∗.

For single-qubit, the unitaries are 2 by 2 matrices that can be expressed in terms

of linear combination of the Pauli matrices, X = ( 0 1
1 0 ), Y = ( 0 −i

i 0 ), Z = ( 1 0
0 −1 )

and I = ( 1 0
0 1 ), because they form the basis of B(C2). Note that the Pauli matrices

themselves are also unitaries.

There are also non-unitary evolutions to quantum states. The most general form

of the evolution is called channels, or CPTP (completely positive trace-preserving)

maps.

Definition 2.19. A quantum channel is a linear map Φ : B(H)→ B(H) that satisfy

the following two conditions.
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1. For any Hilbert space H1 and P ∈ B(H⊗H1), P ≥ 0 =⇒ (Φ⊗ I)(P ) ≥ 0.

2. For all O ∈ B(H), Tr(O) = Tr(Φ(O)).

The first condition is the completely positive condition. It ensures that applying

the channel to part of a state still gives a positive operator. The second condition

is the trace-preserving condition that makes sure applying the channel to a quantum

state still results in a state.

It turns out that any channel Φ can be expressed in terms of some set of operators

called the Kraus operators, {Ai} ⊆ B(H) with
∑

iA
∗
iAi = I, such that for any

O ∈ B(H),

Φ(O) =
∑
i

AiOA
∗
i . (2.2.13)

The Stinespring dilation theorem states that for any completely positive map

Φ : B(H) → B(H), there exists a Hilbert space K and a unital ∗-homomorphism

π : B(H)→ B(K) and V : H → K such that Φ(a) = V ∗π(a)V for all a ∈ H.

Moreover, for a mixed state ρ ∈ D(H), there exists a Hilbert space K = H ⊗H′

and a state |ψ〉 ∈ K such that TrH′(|ψ〉 〈ψ|) = ρ. |ψ〉 is called the purification of

ρ. Let ρ =
∑

i pi |ψi〉 〈ψi|, then |ψ〉 =
∑

i

√
pi |ψi〉 ⊗ |ei〉, where {|ei〉} ⊆ H′ is an

orthonormal set, is the purification of ρ.

Measurement operators are operations that can be performed on quantum states to

get an outcome. A pure state |ψ〉 is a linear combination of basis elements {ei} of the

Hilbert space, |ψ〉 =
∑

i αi |ei〉 where αi ∈ C and a measurement in the orthonormal

basis {ei} can give rise to outcome i with probability |αi|2, which can be interpreted

as the state |ψ〉 has a probability of |αi|2 to be in the state |ei〉 after measurement.
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A type of general measurement operator is called the POVMs (positive operator-

valued measurements).

Definition 2.20. A POVM is a set of operator {Pi} ⊆ B(H) satisfying Pi ≥ 0 for

all i and
∑

i Pi = I.

If Pi = P 2
i for all i, then {Pi} are projective measurements.

Applying POVM {Pi} on a state ρ ∈ D(H) will give rise to measurement outcome

i with probability Tr(Piρ).

There are arguments on the interpretation of a state after measurement. Some

would say a state collapses and is gone for good after a measurement is being per-

formed, and others consider the state to change to a different state in accordance

with the measurement operator. In particular, given some projective measurement

{Pi} and a state ρ, if the outcome of the measurement is i, then the state becomes

ρ′ =
PiρP

∗
i

Tr(PiρP ∗i )
. (2.2.14)

In quantum information, measurement outcomes tend to focus on which element

of POVM it corresponds to, rather than the eigenvalue of an observable, as is the

case in quantum mechanics.

2.2.4 Quantum Circuits

A useful tool to describe algorithms in quantum computing is the quantum circuit dia-

gram. An algorithm usually consists of multiple steps of broken-down tasks. For quan-

tum algorithms, even though all the steps can be combined into an all-encompassing
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(a) X |ψ〉 (b) SWAP gate

•

(c) CNOT gate

Figure 2.1: Quantum circuit gates

unitary, a circuit diagram can be helpful in visualizing the logical flow of the algo-

rithm in alignment with the broken-down steps. A quantum circuit diagram consists

of lines that represent qubits, boxes that represent gates (or unitaries), and sometimes

a special object that represents measurements (typically in the computational basis).

The flow of the diagram is from left to right, so the left-most gate is applied to the

qubits first.

For example, the following circuit diagram Fig 2.1a describes a single-qubit state

|ψ〉 passing through a Pauli X gate, followed by a measurement operator. As a result,

the state X |ψ〉 will be measured in the computational basis {|0〉 , |1〉}.

There are other operations that can be described by the circuit diagram. For ex-

ample, Fig 2.1b is a swap gate, which interchanges the two qubits. The corresponding

unitary would be

USWAP = |00〉 〈00|+ |01〉 〈10|+ |10〉 〈01|+ |11〉 〈11| . (2.2.15)

Fig 2.1c shows a CNOT (controlled not) gate that flips the bit value of the second

qubit if the first qubit is |1〉. The corresponding unitary is

UCNOT = |00〉 〈00|+ |01〉 〈01|+ |10〉 〈11|+ |11〉 〈10| . (2.2.16)

The swap gate can also be expressed in terms of three CNOT gates, as shown in

Fig 2.2.
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Figure 2.2: SWAP by CNOT

Quantum circuits can provide visual guidance to describe quantum algorithms

with more clarity. An example is the quantum circuit for the 2-qubit quantum Fourier

transform. A quantum Fourier transform (QFT) is the mapping of

|j〉 → 1√
N

N−1∑
k=0

ωjkN |k〉 (2.2.17)

where |j〉 is a computational basis state and ωN = e
2πi
N

Example 2.1. Let UQFT2 be the unitary for 2-qubit quantum Fourier transform with

the mapping

UQFT2 |j〉 =
1

2

3∑
k=0

ijk |k〉 . (2.2.18)

Let H = 1√
2
( 1 1

1 −1 ) be the Hadarmard gate and R = ( 1 0
0 i ) be the phase gate. Then

the 2-qubit Fourier transform can be expressed as the following decomposition

UQFT2 =
1

2


1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i

 = (I ⊗H)USWAP


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i

 (H ⊗ I). (2.2.19)

Using quantum circuits, UQFT2 can be expressed as

Note that in Equation 2.2.19, the deconstructed unitary multiplication will be

applied to states from right to left, where the right-most unitary (H ⊗ I) is applied

27



H R

• H

Figure 2.3: 2-qubit QFT circuit for UQFT2

first. In contrast, the corresponding quantum circuit is drawn from left to right, so

the left-most unitary (H ⊗ I) will be the first to apply to states.
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Chapter 3

Locality under the Hilbert Space

Models

Locality is a concept of a larger system consisting of smaller subsystems that are

separated from (thus local to) each other, and any exchange of information between

local systems is non-local.

Typically, when a quantum system Q is the composition of multiple subsystems,

the subsystems are considered to be separated either physically or logically. For

physically separated quantum systems, an entangled state is said to have non-local

correlations between the two systems.

Einstein and others were skeptical about quantum mechanics [11] because quan-

tum entanglement seems to be able to achieve something that is not classically possi-

ble. In the famous EPR paradox, the idea that a pair of entangled particles that are

spatially separated could somehow "know" each other’s spin if one of them is mea-

sured seems to be a violation of the no-signalling principle in relativity. To Einstein
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et al., the so-called "spooky action at a distance" was a defect in the formulation

of quantum mechanics, and with Bohm, they suggested that there must be some

"hidden-variable" that contributes to the non-local effect brought by quantum entan-

glement.

Today we know that non-locality in quantum mechanics does not violate special

relativity, but the problem remained open until Bell formulated his famous Bell’s

theorem in 1964. Bell’s theorem essentially provides a concrete way to test for whether

the world we live in is quantum mechanical or not in terms of the principle of locality.

There are two commonly used mathematical models describing multipartite quan-

tum systems, the tensor product model and the commuting operator model. The

commuting operator model is a generalization of the tensor product model, and with

infinite dimensions, these two models can be shown to be equivalent. However, the

precise relationship between these two models in infinite dimensions is not known in

general. More discussions on this topic can be found in [31, 28, 16, 12].

3.1 Tensor Product Model for Multipartite Quan-

tum Systems

When there are multiple local quantum systems, the typical way to describe them is

to use a Hilbert space for each and every one of the local quantum systems and com-

bine them by taking their tensor product. Given quantum systems {Q1,Q2, · · · ,Qn},

described by Hilbert spaces {H1, · · · ,Hn}, the combined system is described by

H1⊗· · ·⊗Hn. The dimension of these Hilbert spaces can be finite, countably infinite,

or uncountably infinite.

30



For example, let H1 and H2 be two Hilbert spaces. Let an orthonormal basis of

H1 be {|ea〉}a∈Σ1 where Σ1 is a set of indices that can potentially be uncountable.

Similarly, let an orthonormal basis ofH2 be {|fb〉}b∈Σ2 where Σ2 is a set of (potentially

uncountable) indices. The tensor product of H = H1 ⊗H2 has an orthonormal basis

{|ea〉 ⊗ |fb〉}a∈Σ1,b∈Σ2 .

If each of the quantum systems Qi has a state ρi defined in Section 2.18, then

the corresponding combined state in Q is ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn. A state in the

combined system Q, however, is not necessarily a direct composition of states from

the subsystems.

Consider Q = (Q1,Q2) with Hilbert space H = H1 ⊗H2.

Definition 3.1. A state ρ ∈ D(H) = D(H1 ⊗ H2) is a product state if there exist

density operators ρ1 ∈ D(H1) and ρ2 ∈ D(H2) such that

ρ = ρ1 ⊗ ρ2. (3.1.1)

Definition 3.2. A state ρ ∈ D(H) = D(H1 ⊗H2) is separable if it is a probabilistic

distribution of product states. In other words, there exists some probability distribution

{pi} and density operators {σi} ∈ D(H1), {γi} ∈ D(H2) such that

ρ =
∑
i

piσi ⊗ γi. (3.1.2)

If ρ is not separable, it is entangled.

For pure states, the separability condition is more straightforward. Let |ψ〉 ∈ H =

H1 ⊗ H2 be a state. Then |ψ〉 is separable if there exists |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2

such that |ψ〉 = |ψ1〉 ⊗ |ψ2〉.
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One interesting property of states in uncountably infinite dimensional Hilbert

spaces is that they can be expressed as a linear combination of countably many basis

elements of the Hilbert space.

Theorem 3.1. Let |ψ〉 ∈ H be a quantum state in which H has an orthonormal

basis {|ea〉}a∈Σ where Σ is an uncountable set. Then |ψ〉 can be written as a linear

combination of countably many basis elements

|ψ〉 =
∑
i∈N

αa |ea〉 . (3.1.3)

Proof. We can write |ψ〉 =
∑

a αa |ea〉 for some {αa}a∈Σ. For |ψ〉 to be a state, we must

have
∑

a |αa|2 = 1. Since αa’s are square summable, only countably many of them can

be non-zero. This can be shown by considering the sets Sn := {αa : 1
n+1

< |αa|2 ≤ 1
n
}

for n ∈ N. |Sn| ≤ n because |αa|2 sums to 1. Then the set of all non-zero of αa is ∪nSn.

The union of countably many finite-sized sets is countable. Therefore, |ψ〉 only has

countably non-zero coefficients with respect to the orthonormal basis {ea} ⊂ H.

Similarly, if a quantum state |ψ〉 ∈ H1 ⊗ H2 is in the tensor product of two

Hilbert spaces that have uncountable dimensions, it can be written in a Schmidt

decomposition |ψ〉 =
∑

a αa |ea〉 ⊗ |fa〉 for {|ea〉} and {|fa〉} being orthonormal basis

for H1 and H2 respectively, and the number of non-zero coefficients αa’s must be

countable. In other words, we can write |ψ〉 =
∑

i∈N αi |ei〉 ⊗ |fi〉.

3.1.1 Schmidt Decomposition in Infinite Dimensions

In infinite dimensions, the Schmidt Decomposition of quantum states across the ten-

sor product of two arbitrary Hilbert spaces can be achieved similar to the Schmidt

Decomposition in finite-dimensional spaces.
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Theorem 3.2. Let |ψ〉 ∈ H1 ⊗ H2 where H1 and H2 are arbitrary (potentially un-

countable) dimensional Hilbert spaces. Then there exists a decomposition of |ψ〉 such

that

|ψ〉 =
∑
i∈N

xi |ui〉 ⊗ |vi〉 (3.1.4)

where {|ui〉} and {|vi〉} are orthonormal sets in H1 and H2 and xi ≥ 0. Moreover,

the coefficients {xi} are unique.

Proof. Let {|ea〉 : a ∈ Σa},{|fb〉 : b ∈ Σb} be the orthonormal basis of H1 and H2

respectively. As a result of Theorem 3.1, |ψ〉 can be expressed in terms of countable

linear combination |ψ〉 =
∑

i,j xi,j |ei〉 ⊗ |fj〉

Define X =
∑

i,j xi,j |i〉 〈j|. Since xi,j comes from the coefficients of a quantum

state |ψ〉, X is a compact operator in H. We will show in Lemma 3.2.1 that X can

be decomposed in terms of X = UDV where U =
∑

i,j ui,j |i〉 〈j| is a partial isometry,

D =
∑

k dk |k〉 〈k| is diagonal, and V =
∑

i,j vi,j |i〉 〈j| is unitary.

Moreover, write U =
∑

i,j ui,j |ei〉 〈ej|, then X = UDV =
∑

i,j,k ui,kdkvk,j |i〉 〈j|

which gives us xi,j =
∑

k ui,kdkvk,j.

The last step is to re-write |ψ〉 in terms of |ψ〉 =
∑

k dk |uk〉 ⊗ |vk〉 for some |uk〉

and |vk〉 that are orthonormal sets.

Let |uk〉 = U |ek〉 =
∑

i ui,k |ei〉. Since U is a partial isometry and |ek〉 are or-

thonormal sets, |uk〉 must be orthonormal. Let Ṽ =
∑

i,j vi,j |fj〉 〈fi|. Since V =∑
i,j vi,j |i〉 〈j| is a unitary, Ṽ with the same coefficients and different orthonormal

basis must also be a unitary. Let |vk〉 = Ṽ |fk〉 =
∑

j vk,j |fj〉, then |vk〉 must be an
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orthonormal set in H2. Finally, putting all of these together, we have

|ψ〉 =
∑
i,j

xi,j |i〉 ⊗ |fj〉 (3.1.5)

=
∑
i,j

∑
k

ui,kdkvk,j |i〉 ⊗ |fj〉 (3.1.6)

=
∑
k

dk

(∑
i

ui,k |i〉

)
⊗

(∑
j

vk,j |fj〉

)
(3.1.7)

=
∑
k

dkU |k〉 ⊗ Ṽ |fk〉 (3.1.8)

=
∑
k

dk |uk〉 ⊗ |vk〉 . (3.1.9)

Lemma 3.2.1. Let H be a Hilbert space and X be a compact operator in X : H → H,

then there exists a decomposition X = UDV where U is a co-isometry, D is diagonal

and V is unitary.

Proof. Define |X| = (X∗X)1/2, which is compact and positive. |X|, therefore, can be

decomposed by its eigenvalues

|X| = V ∗DV (3.1.10)

where V =
∑

i,j vi,j |i〉 〈j| are unitaries and D =
∑

k dk |k〉 〈k| is diagonal. {dk} are

the eigenvalues of |X|, and the singular values of X.

By the polar decomposition, there exists a partial isometry W such that W |X| =

X. Let U = WV ∗ =
∑

i,j ui,j |i〉 〈j|, so

X = W |X| = WV ∗DV = UDV =
∑
i,j,k

ui,kdkvk,j |i〉 〈j| . (3.1.11)

Since W is a partial isometry and V is a unitary, U = WV ∗ is also a partial isometry.
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3.2 Definitions and properties of the Commuting Op-

erator Framework

The commuting operator framework uses a different notion of locality. This formalism

is used in quantum field theory as a more general model for the tensor product

framework. See [31, 28, 10, 16, 12] for more discussions.

In the commuting operator framework, there is an overall Hilbert space H, and

each local quantum systems Q1, · · · ,Qn are described by different sets of operators

O1, · · · ,On ⊆ B(H) such that for all Xi ∈ Oi, XiXj = XjXi if i 6= j.

For simplicity, we consider bipartite systems between Alice and Bob, where Alice’s

set of operators is A and Bob’s set of operators are B. The definitions and properties

can be extended into multipartite systems. We use bold font letters to denote local

sets of operators.

3.2.1 Separability

Definition 3.3. A pure quantum state |ψ〉 ∈ H is a product state between A and B

in the commuting operator model if and only if for all A ∈ A, B ∈ B,

〈ψ|AB |ψ〉 = 〈ψ|A |ψ〉 〈ψ|B |ψ〉 . (3.2.1)

This is similar to the definition in the tensor product framework, where a pure

state |ψ〉 ∈ HA⊗HB is separable if and only if it can be written as |ψA〉⊗|ψB〉, where

for all A ∈ B(HA) and B ∈ B(HB),

(〈ψA| ⊗ 〈ψB|)(A⊗B)(|ψA〉 ⊗ |ψB〉) = 〈ψA|A |ψA〉 〈ψB|B |ψB〉 . (3.2.2)
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Similar to the definition in the tensor product framework, we start the definition of

separable density matrices in the commuting operator model by first defining what

product states are.

Definition 3.4. A quantum state ρ ∈ D(H) is a product state between A and B in

the commuting operator model if and only if for all A ∈ A, B ∈ B,

Tr(ABρ) = Tr(Aρ) Tr(Bρ). (3.2.3)

Definition 3.5. A quantum state ρ ∈ D(H) is separable between A and B in the

commuting operator model if and only if it is a probabilistic mixture of product states

between A and B.

From the definition, separable pure states in the commuting operator model are

also product states.

3.2.2 Partial state

In the commuting operator framework, there is only one Hilbert space, as a result,

a state in this space has to be shared by Alice and Bob. Within the Hilbert space,

the model for a state only belonging to Alice does not exist. Attempts to trace out

a part of the state will change the structure of the Hilbert space. Instead, equivalent

classes of states can be defined to describe states having the same part in Alice’s local

system (or Bob’s).

Definition 3.6. Two states |ψ1〉 , |ψ2〉 ∈ H are equivalent with respect to A in the

commuting operator framework if for all A ∈ A,

〈ψ1|A |ψ1〉 = 〈ψ2|A |ψ2〉 . (3.2.4)
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The equivalence relation is denoted by |ψ1〉
A∼= |ψ2〉.

In other words, if two states are equivalent with respect to Alice, then all mea-

surements on the two states performed by Alice will be the same.

Another way to look at the equivalence relation is to consider the bi-partite system

with a commuting set of operators A and B. If there is a unitary UB ∈ B such that

|ψ1〉 = UB |ψ2〉, then for any A ∈ A,

〈ψ1|A |ψ1〉 = 〈ψ2|U∗BAUB |ψ2〉 = 〈ψ2|U∗BUBA |ψ2〉 = 〈ψ2|A |ψ2〉 , (3.2.5)

so |ψ1〉
A∼= |ψ2〉. This means that if Bob can transform a state |ψ1〉 to a state |ψ2〉

using only local operations, then Alice’s part of these two states must be equivalent

to each other.

3.2.3 Comparing states between Alice and Bob

In the tensor product model, if Alice and Bob have the same Hilbert space H, the

overall Hilbert space is H⊗H. They can each hold a copy of the same state |ψ〉 ∈ H,

where the overall state is simply |ψ〉 ⊗ |ψ〉.

In the commuting operator model, with a single Hilbert space and two different

sets of operators, comparing states between Alice and Bob requires a bit more work.

Definition 3.7. In the commuting operator model, Alice and Bob have identical quan-

tum systems if there exists an *-isomorphism between A and B.

It turns out that the *-isomorphism can be converted into conjugation by unitary.
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Proposition 3.3. Let A,B ⊆ B(H) be two commuting sets of operators. If there

exists an *-isomorphism between A and B, then there exists Ã, B̃ ⊆ B(H′) that are

*-isomorphic to A and B, and some unitary W ∈ B(H′) such that for all A ∈ Ã,

WAW ∗ ∈ B̃, (3.2.6)

and for all B ∈ B̃,

W ∗BW ∈ Ã. (3.2.7)

Proof. Let H′ = H⊕H, and let α : A→ B be the *-isomorphism. Define

Ã :=


a 0

0 α(a)

 : a ∈ A

 , B̃ :=


b 0

0 α−1(b)

 : b ∈ B

 , W =

0 I

I 0

 .

(3.2.8)

Then Ã is isomorphic to B̃ with a unitary W that converts between them.

With the above proposition, we can say without loss of generality that if A, B are

*-isomorphic to each other, there exists some unitary W that will convert between A

and B.

In other words, Alice and Bob’s operators differ only by conjugation of some

unitary W , and their elements have the same structure when performing addition,

multiplication, and the ∗-operation. We sometimes write this as WAW ∗ = B.

With this, we can define in the commuting operator model the situation where

Alice and Bob each hold a copy of the same state.

Definition 3.8. Let A and B be two commuting sets of the operator such that

WAW ∗ = B for some unitary W . A state |ψ〉 is said to be the same under A

and B if

|ψ〉 = W |ψ〉 . (3.2.9)
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The definition is based on the idea that for any measurement operator in A,

conjugation by W will give a corresponding operator in B, and if |ψ〉 = W |ψ〉, the

measurement outcome of the state will be the same for the matching measurement

operators.

3.2.4 Combination of local quantum systems

When there commuting operator model is used to describe multiple local quantum

systems, it still has one single Hilbert space, and each local quantum system is de-

scribed by a set of operators that mutually commute with all the other sets of op-

erators. Consider a multi-partite quantum systems {Q1,Q2, · · · ,Qn}. In the tensor

product model, each of those quantum systems can be described using a Hilbert space

{H1, · · · ,Hn}, and the combination of any subset of the quantum system with indices

{i1, i2, · · · , im} ⊆ {1, 2, · · ·n}, {Qi1 ,Qi2 , · · · ,Qim}, is simply described by the tensor

product of their corresponding Hilbert space,

Hi1 ⊗Hi2 ⊗ · · · ⊗ Him . (3.2.10)

In the commuting operator model, with a single Hilbert space H, the local quan-

tum systems are described by multiple sets of bounded operators B1, · · · ,Bn ⊆ B(H)

where Bi and Bj mutually commute for all i 6= j. To describe the combined quan-

tum system consisting of a subset of the local systems with indices {k1, · · · , km}, the

corresponding operators {Bk1 , · · · ,Bkm} need to be combined. Unlike in the tensor

product model where the combination process is simply taking the tensor product of

the corresponding Hilbert spaces, in the commuting operator model, combining dif-

ferent sets of bounded operators is more than taking the superset of those operators.
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The very first step is to put the sets together to form Bk1 ∪ · · · ∪Bkm , and then

take the completion of the new sets Bk1 ∪ · · · ∪Bkm so that any linear combination

of the elements in the set is covered. While one might be tempted to think that this

is all the work that is required to combine the two quantum systems, this is not the

end of the process yet.

The set of operators Bi for a local quantum system Qi can be viewed as a C∗-

algebra of the observables associated with measurements that can be performed to

the quantum states in Qi. Combining two quantum systems Qi,Qj should result in a

set of operators that are local to Qi and Qj as general as possible, containing Bi ∪Bj.

Let Q̃ = {Qk1 , · · · ,Qkm} be the set of quantum systems we are interested in. Let

B̃ = Bk1 ∪ · · · ∪Bkm be the C∗-algebra associated with Q̃. Let U ∈ B(H) be a unitary

operator. U is in the set of operators for our quantum system of interest Q̃ if the

following two conditions are satisfied.

1. U does not change anything outside Q̃; or U is localized to Q̃. More specifically,

for any X ∈ B(H) where X commutes with B̃ (this includes all elements of

Bj, j 6∈ {k1, · · · , km}), conjugating X by U should not change X:

U∗XU = X. (3.2.11)

2. If an operator is within Q̃, U will not move it outside the set; or U preserves

the C∗-algebra associated with Q̃. More specifically, if an operator X ∈ B̃, the

operator resulting from conjugation by U is still in the same set,

U∗XU ∈ B̃. (3.2.12)

Conjugation by the unitary U to an operator in the Heisenberg’s picture is equivalent

to applying the unitary U to a quantum state in the Schrödinger’s picture.
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The first condition essentially dictates that U has to commute with any operators

that are not within the subset. Equation 3.2.11 is equivalent to UX = XU (by

multiplying U from the left on both sides of the equation).

Condition 2 allows U to be something that is more general than simply the set

Bk1 ∪ · · · ∪Bkm . U can mix elements across different subsets of operators that may

not be achievable by linear combinations, as long as the end result remains in the

overall subset of operators. An example of such a unitary U is shifting of infinite

indices, and the details will be discussed in Chapter 6.

3.3 Non-local games and tests for locality

Non-local games are the extension of the idea that different notions of locality can

result in different types of achievable correlations that can be tested. (The term

“game" is in reference to games in game theory.) The simplest form of a non-local

game involves a referee and two players, Alice and Bob. At the beginning of a game,

the referee selects two inputs from a finite set s, t ∈ Σin drawn according to some

probability distribution p, and sends s to Alice, t to Bob. Alice and Bob are required

to return some output from a finite set a, b ∈ Σout to the referee. The referee then

decides whether the players win based on some payoff function f(a, b|s, t). Σin, p, and

f are known to the players, and they could decide on their strategy together before

the game starts. However, once the game starts, they are not allowed to communicate

with each other and can only use their local resources to produce their output. The

enforcement of no-communication is typically achieved by assuming the players are

spatially separated and requesting the players to reply within a short time frame.

Assuming the no-signalling principle in special relativity holds, there is not enough
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time for them to communicate before sending their output to the referee.

3.3.1 Strategies Based on Different Notions of Locality

There are different types of restrictions on what Alice and Bob are allowed to share

non-locally, based on the correlations Alice and Bob are allowed to share during the

game. The most restrictive model is the classical model where Alice and Bob do

not have any power beyond discussing strategies before the game starts, and possibly

sharing some pre-determined classical random values during the game. The winning

probability of the optimal strategy in the classical model is called the classical value

of the game.

Relaxing the restrictions, we get the quantum mechanics model where Alice and

Bob are allowed to share entangled qubits. The entanglement allows Alice and Bob

to share correlations that are not available in the classical model and thus may give

them more power in the game. Under this model, Alice and Bob’s operators fall under

two categories discussed earlier – the tensor product framework and the commuting

operator framework. If Alice and Bob are restricted to tensor products of their

individual operators, the winning probability of the optimal strategy is called the

tensor-product value. If Alice and Bob are allowed to use commuting operators, the

optimal winning probability is the commuting operator value.

The most relaxed restriction is when Alice and Bob may share any correlation

as long as there is no faster than the speed of light communication (often called no

signalling) involved. In this case, non-signalling forbids Alice from learning anything

about Bob’s input, so her output can only depend on her own input and cannot be

correlated to Bob’s input in any manner. More formally, it means that for any input
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s Alice receives, the probability of her outputting a is the same for all the possible

input t Bob receives, and vice versa for Bob.

To illustrate the point, consider the following game where the possible inputs and

outputs are binary bits {0, 1}, and consider a fixed strategy for Alice and Bob. Let

Ps,t,a,b be the probability of Alice and Bob outputting (a, b) given input (s, t) for this

particular strategy. When the value of an input or output is not specified, the symbol

∗ is used in the subscript. For example, the probability of Alice outputting a = 1

with input s = 0 is

P0,∗,1,∗ =
1

2
(P0,0,1,0 + P0,0,1,1 + P0,1,1,0 + P0,1,1,1). (3.3.1)

The factor of a half is in place because we assume Bob will receive input t = 0 or 1

with equal probability.

For any input (s, t) pair, the sum of all the probabilities of possible output Ps,t,∗,∗ =

1.

The strategy is non-signalling if and only if for all Alice’s input-output (a, s) pair,

Ps,0,a,∗ = Ps,1,a,∗, (3.3.2)

and for all Bob’s input-output (b, t) pair

P0,t,∗,b = P1,t,∗,b. (3.3.3)

Note that the non-signalling strategy only serves as an upper bound for what

non-local strategies can achieve, and there is no currently no physical interpretation

as to what kind of resources needs to be shared between Alice and Bob to achieve it.

What we are more interested in are the classical and the quantum strategies which

have physical consequences.
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3.3.2 CHSH Game

The CHSH game is a non-local game with binary input and output. The referee selects

s, t ∈ {0, 1} uniformly at random independently. The players outputs a, b ∈ {0, 1}.

They win the game if a⊕ b = st. In other words, f(a, b|s, t) =

1 if a⊕ b = st

0 otherwise
.

If the players do not share quantum entanglement, they can only rely on shared

information before the game starts. In this case, the optimal probability of winning

the game is 75%, where they always output the same bit 0.

First, a deterministic strategy would be optimal because the winning probability

of any probabilistic strategy is the convex combination of the winning probability of

deterministic strategies, and cannot get larger than the best deterministic strategy.

While it is possible to enumerate all the deterministic strategies and find out the

optimal one, it is easier to see that the all-zero output is indeed optimal. It is easy to

see that the game cannot be won all the time. Let a0, a1, b0, b1 be Alice and Bob’s

output for different value of s and t. To win the game all the time, the following must

be satisfied

a0 ⊕ b0 = 0 (3.3.4)

a1 ⊕ b0 = 0 (3.3.5)

a0 ⊕ b1 = 0 (3.3.6)

a1 ⊕ b1 = 1. (3.3.7)

By summing all the four equations, we get 0 = 1 which is a contradiction. Therefore,

Alice and Bob can’t possibly win on all four possible inputs of (s, t). The next best

outcome is for them to win on three inputs, which is the case they output 0 all the

time. Thus outputting 0 is the optimal strategy and the winning probability is 3/4.
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However, if the players are allowed to share entangled states, then by sharing a

Bell state |ψ〉 = |00〉+|11〉√
2

, they can achieve the optimal winning probability 1
2

+ 1√
2
.

When Alice receives input 0, she will measure her qubit of |ψ〉 in the computational

basis {|0〉 , |1〉}; and if Alice receives 1, she measure her qubit in the Hadamard basis

{|+〉 , |−〉} where |+〉 = 1√
2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉). If Bob receives input

0, he measures his qubit in {|a0〉 , |a1〉} basis where |a0〉 = cos π
8
|0〉 + sin π

8
|1〉 and

|a1〉 = − sin π
8
|0〉 + cos π

8
|1〉, and output i if his outcome is |ai〉. If Bob receives

1, he measures in the basis {|b0〉 , |b1〉} where |b0〉 = cos π
8
|0〉 − sin π

8
|1〉 and |b1〉 =

sin π
8
|0〉+ cos π

8
|1〉, and outputs i for output bi.

|0〉

|1〉
|+〉|−〉

|a0〉

|a1〉

|b0〉

|b1〉

Figure 3.1: Measurements Associated with the CHSH game

Figure 3.1 shows the relative positioning of the basis where Alice’s basis is in

solid lines and Bob’s basis is in dotted lines. It is easy to calculate the probability

Alice and Bob’s output matches any given input. For example, on input (0, 0), the

probability Alice and Bob output (0, 0) is the probability of |ψ〉 projected onto |0〉

for Alice and |a0〉 for Bob, which correlates to the angle between |0〉 and |a0〉, which

is | 〈a0| 0〉|2 = cos2 π
8
. Using the same argument, for any input other than (1, 1), the

winning outputs are (0, 0) and (1, 1), and the probability of Alice and Bob outputting

the same bit is cos2 π
8
. If the input is (1, 1), Alice and Bob’s winning outputs are (0, 1)

and (1, 0), and thus the winning probability relates to the angle between {|+〉 , |b1〉},
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and {|−〉 , |b0〉}, which is again cos2 π
8
. The overall winning probability with this

strategy is, therefore, cos2 π
8

= 1
2

+ 1√
2
. Tsirelson’s inequality dictates that cos2 π

8
is

indeed the maximum possible winning probability so the above strategy is optimal.

If the only limitation for the players is the non-signalling principle between spa-

tially separated non-local parties, then this means the probability distribution of one

player’s output is independent of the other player’s input. In term’s of the CHSH

game, this can be translated to the probability of Alice outputting 0 is the same for

t = 0 and t = 1, and the probability of Bob outputting 0 is the same for s = 0 and

s = 1. Under the non-signalling restriction, the best strategy would allow the players

to win the game with probability 1.

s\t 0 1

a\b 0 1 0 1

0
0 1/2 0 1/2 0

1 0 1/2 0 1/2

1
0 1/2 0 0 1/2

1 0 1/2 1/2 0

Table 3.1: Probability Output of CHSH Non-signalling Strategy

Table 3.1 shows a perfect non-signalling strategy for Alice and Bob. The first row

and column are Alice and Bob’s inputs, and the second row and column are Alice

and Bob’s outputs. The entries in the table are the probability of Alice and Bob

producing the designated outputs given the corresponding inputs. For example, the

probability of Alice and Bob outputting (0, 0) given input (0, 1) from the table is 1/2.

It is easy to see that all the non-zero entries in the table correspond to a winning
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input-output combination. The strategy is non-signalling because Alice’s probability

of outputting 0 and 1 is the same for each of her inputs regardless of what Bob’s

output is.

By repeating the CHSH game, it is statistically possible to determine which version

of the non-locality holds.

3.3.3 Binary Constraint System Games

A binary constraint system game [5] is a generalization of the CHSH game. It is a

non-local game based on a system of binary linear equations (the constraints).

For the non-local game, Alice receives a mod-2 linear equation from the list of

equations as constraints, and Bob receives a variable that appears in Alice’s equation.

Alice is required to output an assignment of all the variables in her equation, and Bob

is required to output the assignment of the variable he receives. They win the game if

Alice’s assignment satisfies the equation and Bob’s assignment matches with Alice’s

output of the variable. If the system of linear equations is not restricted to being

binary, it is called linear system games. More discussions on linear system games will

be made in Chapter 5.

In the case of the CHSH game, the linear equations are

a1 ⊕ a2 = 0 (3.3.8)

a1 ⊕ a2 = 1. (3.3.9)

Alice will receive one of the two equations (1 and 2) and Bob will receive one of

the two variables (a1 and a2). Assuming Alice and Bob would like to have an optimal
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strategy, Alice only needs to output the value for the first variable a1. This is because

the game is automatically lost if Alice’s output does not satisfy the equation, and the

value of a2 is determined by the value of a1. Table 3.2 shows all the possible input

and output for the CHSH game and the outcome of the game (W for win and L for

lose).

Input \ Output (0, 0) (0, 1) (1, 0) (1, 1)

(1, 1) W L L W

(1, 2) W L L W

(2, 1) W L L W

(2, 2) L W W L

Table 3.2: Outcome for binary constraint version of CHSH

Input \ Output (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) W L L W

(0, 1) W L L W

(1, 0) W L L W

(1, 1) L W W L

Table 3.3: Outcome for standard CHSH

Table 3.2 is essentially identical to the outcome table for the standard version

of the CHSH game shown in Table 3.3, and therefore the binary constraint system

version of the game is equivalent to the standard CHSH game.

In general, an equation in the linear system of equations may not contain all the

variables in the system. As a result, Bob’s input will depend on which equation Alice
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gets. An interesting example of the binary linear system game is Mermin’s Magic

Square game.

3.3.4 Mermin’s Magic Square Game

In the CHSH game, the 75% vs. 85% difference between classical and quantum

strategies can be a little unsatisfactory to some. If two parties claim to share quantum

entanglement, there is a more definitive way to prove that they are lying (assuming

there are no errors in the qubits and measurements). The magic square game [24,

1, 6], based on Mermin’s magic square [20, 19], gives an example where the optimal

classical strategy has a winning probability of 17/18, whereas the optimal quantum

strategy can win with certainty 1.

1 2 3

4 5 6

7 8 9

Figure 3.2: Mermin’s Magic Square

A Mermin’s magic square, as illustrated in Fig 3.2, has nine nodes, and six hyper-

edges with 3 nodes each. Each of the hyperedge ei has a parity value of 0 or 1. The

goal of the magic square is to assign binary value ai to each node i, such that for the

three nodes that share the same edge, the sum of the value of the nodes corresponds

to the parity of the edge. In the original paper, all the horizontal edges have parity
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0 and the vertical edges have parity 1.

a1 ⊕ a2 ⊕ a3 = 0 a1 ⊕ a4 ⊕ a5 = 1

a4 ⊕ a5 ⊕ a6 = 0 a2 ⊕ a5 ⊕ a8 = 1

a7 ⊕ a8 ⊕ a9 = 0 a3 ⊕ a6 ⊕ a9 = 1.

(3.3.10)

A slight modification to the magic square is to set the parity of all edges to 0 except

for the edge with nodes 3, 6, and 9, where the parity is set to 1. This version of the

magic square is equivalent to the original definition by flipping the value of a7 and

a8. The new set of equations is

a1 ⊕ a2 ⊕ a3 = 0 (e1) a1 ⊕ a4 ⊕ a5 = 0 (e4)

a4 ⊕ a5 ⊕ a6 = 0 (e2) a2 ⊕ a5 ⊕ a8 = 0 (e5)

a7 ⊕ a8 ⊕ a9 = 0 (e3) a3 ⊕ a6 ⊕ a9 = 1. (e6)

(3.3.11)

We focus our discussion on this modified version of the magic square.

Another equivalent form of the magic square is to change the nodes to take the

value (−1)ai instead of ai, and the equation for the edges are multiplications of the

variables, equaling to −1 to the power of the parity of the edges. This gives us a

different set of equations from Eq 3.3.11,

a1 · a2 · a3 = 1 a1 · a4 · a5 = 1

a4 · a5 · a6 = 1 a2 · a5 · a8 = 1

a7 · a8 · a9 = 1 a3 · a6 · a9 = −1.

(3.3.12)

It is easy to see that there is no assignment of the nodes that can satisfy all the

parity of the edges at the same time. Since a2
i = 1 for all ai, multiplying all the edges

together will give us a contradiction of 1 = −1.
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However, if the ai’s are allowed to be matrices Ai’s, there is a satisfying assignment

for the following systems of equations.

A1 · A2 · A3 = I A1 · A4 · A5 = I

A4 · A5 · A6 = I A2 · A5 · A8 = I

A7 · A8 · A9 = I A3 · A6 · A9 = −I.

(3.3.13)

In order for a matrix assignment to make sense, the following two conditions must be

met.

1. A2
i = I for all i. This is in line with the fact that a2

i = 1 for all i.

2. If node i and j appear in the same edge, AiAj = AjAi. This commutivity

condition serves two purposes. First, in Equation 3.3.12, the order of ai does

not matter; and second, mutually commuting observables in quantum mechanics

can be measured simultaneously.

The following is an assignment of binary observables that satisfy the above con-

ditions
A1 = I2X A2 = XI2 A3 = XX

A4 = Y I2 A5 = I2Y A6 = Y Y

A7 = Y X A8 = XY A9 = ZZ.

(3.3.14)

where I2, X, Y, Z are the 2×2 Pauli matrices and we omitted the ⊗ between each

pair of operators. (i.e. I2X is shorthand for I2 ⊗X etc.)

The set of equations in Mermin’s magic square can be used to form a binary

constraint system game. In this particular game, Alice and Bob are given Equa-

tion 3.3.11 from Mermin’s magic square. At the start of the game, Alice is given a

random number from 1 to 6, where each number corresponds to one equation (ei) in
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Equation 3.3.11; and Bob is given a random number from 1 to 9, where each number

corresponds to one variable a1 to a9; the variable Bob receives must appear in Alice’s

equation. Alice is required to output 3 bits that assign a binary value to each vari-

able in the equation she receives, and Bob is required to output 1 bit which is the

assignment of the variable he receives. The players win the game if Alice’s output

satisfies the linear equation she receives, and Bob’s assignment of the variable is the

same as Alice’s assignment of the same variable.

For example, if Alice’s input is 2, the equation she receives is a4 ⊕ a5 ⊕ a6 = 0,

and she will need to assign value to variable a4, a5, and a6 as her output. Bob in this

case may receive input from {4, 5, 6}. If Bob receives 5, he will need to assign a bit

value to a5 as his output. If Alice’s assignment is 0, 1, 1, then Bob’s output must be

1 to win the game.

If Alice’s assignment does not satisfy the equation, the game is lost right away.

Therefore, it is reasonable to consider in the setting of optimal strategy that Alice

always satisfies her assignment. This means that she only needs to output the first

two bits, and the third bit is automatically determined by the parity of the equation.

If Alice and Bob are not allowed to share any entanglement, a deterministic strat-

egy would be optimal because the winning probability of any probabilistic strategy

is the convex combination of the winning probability of deterministic strategies, and

cannot get larger than the best deterministic strategy. It turns out that the best

strategy for them is to always output 0 for all inputs. In this case, they will win on

all the inputs except when Alice receives 6 and Bob receives 9.

If Alice and Bob are allowed to share entanglement, there exists a strategy where

they can win the game with certainty. To begin the game, Alice and Bob shares two
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pairs of maximally entangled qubits in Bell state, |ψ〉 = 1
2

∑3
j=0 |j〉 ⊗ |j〉. To output

the value of variable ai, Alice applies measurements Ai defined in Equation 3.3.14 her

part of the shared state, and Bob applies measurement ATi to his part of the shared

state. Alice and Bob’s outcome of the same measurement will be the same because

〈ψ|Ai ⊗ ATi |ψ〉 = 〈ψ|AiAi ⊗ I |ψ〉 = 〈ψ |ψ〉 = 1. (3.3.15)

Note that all the Ai’s are binary observables with eigenvalue ±1, and while Alice is

required to perform two measurements, her two observables commute with each other,

meaning the measurements could be performed simultaneously without affecting the

outcome of each other.

In [2], Arkhipov showed that a generalization of Mermin’s magic square game to a

special type of binary constraint system game where each variable appears in exactly

two constraints, there exists a polynomial time algorithm to determine if a perfect

entangled strategy exists.
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Chapter 4

The C∗-model

The use of operator algebras to describe quantum systems has been studied before,

notably by von Neumann. However, in quantum information theory, quantum systems

have been studied mainly under the Hilbert space model. In particular, the notion

of local quantum systems is typically described using the tensor product of Hilbert

spaces, or sometimes a single Hilbert space with commuting sets of operators. We

want to introduce the operator algebra approach to describe (potentially infinitely

many) qubits. In particular, we consider the formulation of quantum information

theory using C∗-algebras.

4.1 Basic Systems in C∗-model

For readers who are not familiar with operator theory, we start by introducing the

basic definitions of C∗-algebras. They can be seen as an abstraction of complex

square matrices, or generalization of linear operators on Hilbert spaces. In general,
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the calligraphic font for capital letters, such as A,B, etc., are used to denote C∗-

algebras, except H for Hilbert spaces, and I for the identity element.

4.1.1 Definition of a C∗-algebra

Definition 4.1. A C∗-algebra A is a normed associative algebra over the field of

complex numbers with operator ·∗ : A → A, such that for all a, b ∈ A and α ∈ C,

• (a∗)∗ = a,

• (ab)∗ = b∗a∗,

• (αa+ b)∗ = ᾱa∗ + b∗,

• ‖a‖2 = ‖aa∗‖,

• ‖ab‖ ≤ ‖a‖‖b‖,

and the algebra is complete under its norm.

The set of bounded operators on a Hilbert space is an example of a concrete

C∗-algebra.

Example 4.1. Let H = Cn. The set of bounded operators on H, which are all

the n × n complex matrices, forms a C∗-algebra Mn. The ∗ operator on Mn is

the adjoint of the matrices, and the norm ‖ · ‖ on Mn is the operator norm on the

matrices, defined by

‖M‖2 = sup
|ψ〉∈H,‖|ψ〉‖=1

〈ψ|MM∗ |ψ〉 (4.1.1)

for any M ∈Mn.
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4.1.2 Basic Properties of C∗-Algebras

Here we discuss some basic properties of C∗-algebras that are useful for describing

quantum systems. Many of these concepts can be found in the books by Pederson

[25] and Davidson [9].

Definition 4.2. A C∗-algebra is unital if and only if it contains the multiplicative

identity I, and I = I∗.

Since the identity operator is essential in quantum information, we require all our

C∗-algebras to be unital. This requirement can be easily satisfied since any non-unital

C∗-algebra has a unique conversion to an unital C∗-algebra that contains the original

C∗-algebra.

Proposition 4.1. Let A be a non-unital C∗-algebra. Then there exists an unital

C∗-algebra that contains A isometrically as a subalgebra.

Proof. Let A+ := A ⊕ C be an algebra. Any a ∈ A can be mapped to a ⊕ 0 ∈ A+.

The product rule for a⊕ λ, b⊕ γ ∈ A+ is the following

(a⊕ λ) · (b⊕ γ) = (ab+ λb+ γa)⊕ λγ. (4.1.2)

Therefore, the multiplicative identity element in A+ is 0⊕ 1.

For any a⊕ λ ∈ A+, we define the following as the norm:

‖a⊕ λ‖ = sup
b∈A,‖b‖A≤1

‖ab+ λb‖. (4.1.3)

1 With the above norm defined, we obtain unital C∗-algebra containing A.
1In [25], it is proven that ‖a⊕ 0‖ = ‖a‖

56



With the above result in mind, all the C∗-algebras for the C∗-model are unital

unless specified otherwise.

Next, we introduce a few definitions that are useful for quantum information.

Definition 4.3. Let A be a C∗-algebra. p ∈ A is positive, denoted by p ≥ 0 if and

only if there exists some x ∈ A such that p = xx∗.

Definition 4.4. Let A be a C∗-algebra. p ∈ A is a projection if and only if p ≥ 0

and p = p2.

Definition 4.5. Let A be a C∗-algebra. u ∈ A is a unitary if and only if uu∗ =

u∗u = I.

Definition 4.6. Let A, B be two C∗-algebras. A linear map π : A → B is a ∗-

homomorphism if and only if for all x, y ∈ A,

π(x)∗ = π(x∗), (4.1.4)

π(xy) = π(x)π(y). (4.1.5)

If a *-homomorphism π preserves the identity element, it is called unital *-

homomorphism. We are primarily interested in the unital *-homomorphism, so the

*-homomorphisms we discuss later are all unital.

A special case of ∗-homomorphism is ∗-isomorphism.

Definition 4.7. Let A,B be two C∗-algebras. A linear map π : A → B is a ∗-

isomorphism if and only if it is a ∗-homomorphism and is invertible.

Similar to ∗-isomorphism is the definition of ∗-automorphism.
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Definition 4.8. Let A be a C∗-algebra. The map α : A → A is a ∗-automorphism

if α is a ∗-homomorphism and is invertible. Aut∗(A) denotes the set of all ∗-

automorphisms on A.

α is called a inner ∗-automorphism if there exists some unitary u ∈ A such that

for all a ∈ A, α(a) = uau−1. The set of all inner ∗-automorphisms on A is denoted

as Inn∗(A).

Out∗(A) := Aut∗(A)\Inn∗(A) is the set of all outer ∗-automorphisms on A.

For some C∗-algebras, all ∗-automorphisms are inner ∗-automorphisms. We will

discuss more about such C∗-algebras in Theorem 4.2.

4.1.3 States and Measurements in the C∗-model

While our goal is to use C∗-algebras to describe quantum systems, we are not inventing

new definitions for quantum mechanics. In particular, the C∗-model is an abstraction

of the typical Hilbert space model and can be easily converted back to the Hilbert

space model.

We start with defining states and measurement operators in the C∗-model.

Definition 4.9. Given a C∗-algebra A, a map φ : A → C is positive, denoted by

φ ≥ 0, if and only if for all x ∈ A, x ≥ 0 =⇒ φ(x) ≥ 0.

With the above definition of positive operators, we can now define states in the

C∗-model.

Definition 4.10 (States). Given a C∗-algebra A that describes a quantum system Q,

a state s is a positive linear map s : A → C satisfying s(I) = 1.
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The states in the C∗model are also called the abstract states. These abstract

states are simply an abstraction of the states in the Hilbert space model.

We define a special type of state that corresponds to the maximally mixed states

in the Hilbert space model.

Definition 4.11 (Tracial states). Given a C∗-algebra A, an abstract state τ : A → C

is tracial if for all a, b ∈ A, τ(ab) = τ(ba).

The term tracial is referring to the fact that τ has the same cyclic property as

a trace. For the C∗-algebra of n × n complex matrices, Mn(C), a tracial state τ

correspond to the ordinary trace scaled by 1
n
(so that identity is mapped to 1), Trn.

The state can also be seen as s(x) = Tr(ρnx) where ρn is the density operator corre-

sponding to the maximally mixed state inMn.

A general finite dimensional C∗-algebra is a direct sum of matrix algebras,M =⊕m
k=1 Mnk for some m. A tracial state onM is then a weighted sum on Trnk :

τ(A1 ⊕ · · · ⊕ Am) = w1 Trn1(A1) + · · ·+ wm Trnm(Am), (4.1.6)

where w1 + · · ·+ wm = 1 is a weighted probability distribution.

Consider the C∗-model where the C∗-algebra A is the set of bounded operators

on a Hilbert space H. A state s : A → C can be defined in terms of either a

pure state |ψ〉 ∈ H : ‖ |ψ〉 ‖2 = 1 as s(X) = 〈ψ|X |ψ〉, or a density operator2

ρ ∈ B(H) : ρ ≥ 0,Tr(ρ) = 1 as s(X) = Tr(ρX). In fact, the Hilbert space model can

be seen as a representation of the C∗-model, as we will see in the discussion about

the GNS construction later.
2A density operator ρ is a positive bounded operator that has trace 1. While not every bounded

operator has a trace, we only consider operators with a trace here.
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The most general form of measurement operator in the Hilbert space model is the

positive operator-valued measure or POVM. We define the measurement operators in

the C∗-model in a similar manner.

Definition 4.12 (Measurements). Let A be a C∗-algebra describing a quantum system

Q. Let Σ be an alphabet. {Ei}i∈Σ ⊂ A is a POVM in A if for all i, Ei ≥ 0, and∑
iEi = I.

The set of POVMs of A gives all the measurement operators for Q. We discuss

the details of measurements in a later section.

4.1.4 Evolution in the C∗-model

The Hilbert space model is typically considered under Schrödinger’s picture, where

the evolution of the system is based on the evolution of states. However, in the C∗-

model, while it is possible to consider the evolution of states, it is more natural to

use Heisenberg’s picture, where the evolution acts on the operators.

Definition 4.13 (Evolution). Let A be a C∗-algebra describing a quantum system Q.

Then, the set of evolution on Q is the set of ∗-automorphisms in A.

Given a state s : A → C, and a ∗-automorphism α : A → A, the evolved state

s′ : A → C is defined as

s′(a) = s(α(a)). (4.1.7)

We check that s′ is indeed a state. Because ∗-automorphisms preserve the multiplica-

tive identity, s′(I) = s(I) = 1; moreover, α(a) ≥ 0 ⇐⇒ a ≥ 0 so s′ is positive.
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We note that some automorphisms are inner, but not all of them can be described

this way. Nevertheless, we can use common techniques from quantum information to

show that, as a weaker version of the Skolem-Noether theorem, all ∗-automorphisms

on full finite-dimensional matrices are inner.

Theorem 4.2. Let Mn = Cn ⊗ Cn be the set of all n × n complex matrices. Let

α :Mn →Mn be a ∗-automorphism. There exists a unitary U ∈ Mn such that for

all X ∈Mn,

α(X) = UXU∗. (4.1.8)

Proof. Let H be a n-dimensional Hilbert space so B(H) = Mn. Let {|i〉} be the

computational basis of H. We will show that for all i, there exists a state |ψi〉 ∈ H

where α(|i〉 〈i|) = |ψi〉 〈ψi|. Let U =
∑n−1

i=0 |ψi〉 〈i|, then U is a unitary and α(X) =

UXU∗ for all X ∈Mn

We start by proving Tr(X) = Tr(α(X)). Let Ei,j = |i〉 〈j| for i, j ∈ {1, · · · , n}. If

i 6= j, for any k,

Tr(α(Ei,j)) = Tr(α(Ei,k)α(Ek,j)) = Tr(α(Ek,j)α(Ei,k)) = Tr(α(Ek,jEi,k)) = 0.

(4.1.9)

The diagonal entries are all equal: for any i, j,

Tr(α(Ei,i)) = Tr(α(Ei,jEj,i)) = Tr(α(Ej,iEi,j)) = Tr(α(Ej,j)). (4.1.10)

Furthermore, we know that Tr(α(I)) = Tr(I) = n, which gives us Tr(α(Ei,i)) = 1.

Let xi,j = 〈i|X |j〉 be the (i, j)-th entry of X, then

Tr(α(X)) = Tr(α(
∑
i,j

xi,jEi,j)) =
∑
i,j

xi,j Tr(α(Ei,j)) =
∑
i

xi,i = Tr(X). (4.1.11)
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Let ρi = α(Ei,i). ρi is a density operator: ρi = ρ∗i ρi so ρi ≥ 0, and Tr(ρi) = 1

Since ρ2
i = ρi, ρi is a pure state. Let |ψi〉 ∈ H be a state such that ρi = |ψi〉 〈ψi|

(|ψi〉 is unique up to a phase and can be found explicitly).

The set {|ψi〉}i∈{1,··· ,n} forms an orthonormal basis: for i 6= j,

| 〈ψi|ψj〉|2 = Tr(ρiρj) = Tr(α(Ei,iEj,j)) = 0.

Next we show that we can write α(Eij) = |ψi〉 〈ψj|. Since {|ψi〉} form a basis, we

can write α(Eij) =
∑

k,l βk,l |ψk〉 〈ψl| for some βk,l. (βi,i = 1) Then

α(Eij) = α(EiiEijEjj) = |ψi〉 〈ψi|α(Eij) |ψj〉 〈ψj| = βi,j |ψi〉 〈ψj| .

We also know that α(EijE
∗
ij) = α(Eii) so |βi,j|2 = 1. Recall that |ψi〉 is unique up to

a phase. We redefine {|ψi〉}i≥2 by incorporating the phase βi,j in the following sense.

α(E1,j) = |ψ1〉 〈ψj| .

Then all the phases vanish and we get

α(Eij) = α(Ei1E1j) = |ψi〉 〈ψj| .

The operator U , defined by U :=
∑

i |ψi〉 〈i| is therefore a unitary. To show

that U is the correct unitary for the ∗-automorphism, we show that X = U∗α(X)U

entrywise. For all i, j,

〈i|U∗α(X)U |j〉 = 〈ψi|α(X) |ψj〉 = Tr(α(X) |ψj〉 〈ψi|) = Tr(α(X)α(Ej,i)) (4.1.12)

= Tr(α(XEj,i)) = Tr(XEj,i) = 〈i|X |j〉 = xi,j. (4.1.13)

This concludes the proof that there exists a unitary U ∈Mn satisfying α(X) = UXU∗

for all X.
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With measurements, states, and evolution defined, the C∗-model can be used to

describe the basic aspects of quantum systems.

4.1.5 Paulis as Example of an Abstract C∗-algebra

We give an example of an abstractly defined C∗-algebra that corresponds to very

familiar objects: the 2× 2 Pauli Matrices.

Example 4.2. Consider the C∗-algebra P formed by linear combinations of {X, Y, Z, I},

satisfying

• X = X∗, Y = Y ∗, and Z = Z∗,

• X2 = Y 2 = Z2 = I,

• XY = −iZ.

From the above relations, one can also deduce that any of the two {X, Y, Z} anti-

commute:

Y X = (XY )∗ = (−iZ)∗ = iZ = −XY (4.1.14)

XZ = X(iXY ) = iY = −(iY )∗ = −(XZ)∗ = −ZX (4.1.15)

ZY = (iXY )Y = iX = −(iX)∗ = −(ZY )∗ = −Y Z. (4.1.16)

For any a ∈ P , one can write a = a0I + a1X + a2Y + a3Z for some ai ∈ C. To finish

the definition, let the norm of a be

‖a‖ = |a0|+
√
|a1|2 + |a2|2 + |a3|2. (4.1.17)
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As one might have already noticed, while P is defined abstractly, it has a very

familiar faithful representation: the set of bounded operators acting on a single qubit,

where X, Y , and Z are represented by single-qubit Pauli matrices ( 0 1
1 0 ), ( 0 −i

i 0 ), and

( 1 0
0 −1 ) respectively. The norm on P is equivalent to the operator norm on 2 × 2

matrices.

By considering P as the abstraction of 2×2 matrices, one can consider any abstract

state s on P as the abstraction of some one qubit states |ψ〉. For a ∈ P , letMa be the

2× 2 matrix representing a with the aforementioned Pauli representation. Then, for

any one qubit state |ψ〉, the corresponding abstract state sψ is defined as s : P → C,

sψ(a) = 〈ψ|Ma |ψ〉 . (4.1.18)

Since I, X, Y and Z form the basis of P , by linearity, to define a state s, it is

sufficient to define it over its action on X, Y , and Z (s(I) = 1 is always fixed). For

example, the state s0 corresponding to |0〉 is defined by

s0(X) = 〈0|X |0〉 = ( 1 0 )( 0 1
1 0 )( 1

0 ) = 0 (4.1.19)

s0(Y ) = 〈0|Y |0〉 = ( 1 0 )( 0 −i
i 0 )( 1

0 ) = 0 (4.1.20)

s0(Z) = 〈0|Z |0〉 = ( 1 0 )( 1 0
0 −1 )( 1

0 ) = 1. (4.1.21)

By Theorem 4.2, all the ∗-automorphisms on P are inner-automorphisms, and

therefore can be expressed in terms of conjugation by unitaries u ∈ P , uu∗ = u∗u = I.

These unitaries are precisely the set of unitary evolutions on one-qubit systems.
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4.2 Combination of local systems in C∗-model

The next part of this section focuses on defining the combination of local quantum

systems using the C∗-model, which is also the motivation for considering the C∗-

model.

4.2.1 Tensor product of C∗-algebras

Under the tensor product of the Hilbert spaces model, combining two local quantum

systems can be achieved by taking the tensor product of the corresponding Hilbert

spaces.

Let Q be a quantum system consisting of local subsystems {Q1, · · · ,Qn}, and

write Q = {Q1, · · · ,Qn}. The model used to describe Q needs a method to combine

the subsystems in a natural way. In particular, the following conditions should be

satisfied.

1. Each local system Qi can be described individually.

2. Any subset of the local systems S ⊆ {1, · · ·n} can be combined to form a larger

quantum system QS = {Qi}i∈S

3. If S, T ⊆ {1, · · · , n} and S ∩ T = ∅, then combining QS with QT gives QS∪T .

The above rules ensure that the local systems can be combined to form a larger

quantum system in a consistent manner.

In the Hilbert space model, the tensor product framework achieves the above

conditions by defining the combination of two local systems as the tensor product
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of their corresponding Hilbert spaces. Under the commuting operator framework,

the Hilbert spaces remain unchanged, and combining two subsystems is achieved by

combining the set of operators of the two systems and taking the closure.

In the C∗-model, we define the combination of two local systems using the tensor

product of their corresponding C∗-algebras.

Definition 4.14 (Combination of local systems). Let A1,A2 be the C∗-algebra for

two local quantum systems Q1, Q2. The C∗-algebra for the quantum system combining

Q1 and Q2 is A1 ⊗A2.

To understand the above definition, we need to take a closer look at what the

tensor product of C∗-algebra means exactly. Let A, B be two C∗-algebras. Let A⊗B

be their algebraic tensor product: for any x =
∑

i ai ⊗ bi and y =
∑

j cj ⊗ dj,

xy =
∑
i,j

aicj ⊗ bidj (4.2.1)

and

x∗ =
∑
i

a∗i ⊗ b∗i . (4.2.2)

A ⊗ B is a *-algebra. In order to make it into a C∗-algebra, a norm needs to be

defined so that A⊗ B can be completed in the norm.

Definition 4.15 (Min and Max Norm). Let x ∈ A ⊗ B. Then ‖x‖max and ‖x‖min

are defined as the following:

‖x‖max = sup{‖π(x)‖ : π : A⊗ B → B(H) is a *-homomorpihsm}. (4.2.3)

Let π1 : A → B(H) and π2 : B → B(H) be *-homomorphisms. Define π1⊗π2 : A⊗

66



B → B(H⊗H), to be (π1 ⊗ π2)(a⊗ b) = π1(a)⊗ π2(b). Then,

‖x‖min = sup{‖(π1⊗π2)(x)‖ : π1 : A → B(H), π2 : B → B(H) are *-homomorphisms}.

(4.2.4)

Any C∗-norm on A⊗ B lies in between these two norms, and therefore the name

min and max norm. With the two norms defined, we can now define the min and

max tensor product of C∗-algebras.

Definition 4.16 (Min and Max tensor product). The completion of A ⊗ B by the

norm ‖x‖min is a C∗-algebra denoted by A ⊗min B, and the completion of A ⊗ B by

the norm ‖x‖max is denoted by A⊗max B.

In some cases, the min and max tensor products of C∗-algebras are identical.

In general, they may not be equal. As a result, in our definition of the combined

local systems, we often do not specify which tensor product to use, so that it can be

determined case by case based on the application.

Moreover, while the min tensor product of C∗-algebras is defined by the norm of

the tensor product of two *-homomorphisms, its representation might not be a tensor

product of operators on two Hilbert spaces. We will discuss this more in detail in

Chapter 6.

4.2.2 Combined States and Entanglement

One of the advantages of the tensor product framework over the commuting operator

framework is that given a state on a combined system, the state of each subsystem

can be found easily by taking the partial trace to trace out the other subsystems. In
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the C∗-model, the state on a subsystem can be defined in a similar fashion using the

partial trace.

Definition 4.17 (Partial trace on states). Let A = A1 ⊗ A2, and s : A → C be a

state. Taking partial trace on s to trace out A2 results in a state s1 : A1 → C defined

by

s1(a1) = s(a1 ⊗ I). (4.2.5)

We also denote the partial trace as TrA2 : (A1 ⊗A2 → C)→ (A1 → C), so

(TrA2(s))(a1) = s1(a1). (4.2.6)

Given local states on two local systems, it is easy to combine the two states into

a state in the larger system by taking the tensor product between them.

Definition 4.18 (Tensor product of states). Let s1 : A1 → C and s2 : A2 → C be

two abstract states. Then the combined state s1 ⊗ s2 : A1 ⊗ A2 → C is defined as

(s1 ⊗ s2)(a1 ⊗ a2) = s1(a1)s2(a2) (4.2.7)

for all a1 ∈ A1, a2 ∈ A2.

If s : A1 ⊗A2 → C can be written as s = s1 ⊗ s2, then s is a product state.

The above definition is in fact a state on any A1 ⊗ A2. It is trivial that s(1) =

(s1⊗s2)(1⊗1) = 1. We show that s is indeed positive. Let H1, |ψ〉1 , π1 : A1 → B(H1)

be the GNS representation3 of A1 and s1, H2, |ψ2〉 , π2 : A2 → B(H2) be the GNS

representation of A2 and s2. Then H1⊗H2, π = π1⊗π2, and |ψ〉 = |ψ1〉⊗|ψ2〉 forms a
3We defer the discussion of GNS representation theorem to Section 4.3.2.
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representation of A1⊗A2 and s where s(a) = 〈ψ| π(a) |ψ〉 for all a ∈ A1⊗A2. Since ∗-

homomorphism preserves positivity, for any a ≥ 0, π(a) ≥ 0 so s(a) = 〈ψ|π(a) |ψ〉 ≥

0.

We only need to define the state on all operators of the form a1 ⊗ a2, since the

value of the state on all the other operators can be determined based on linearity and

continuity.

Having defined product states, it is possible to define separable states in a way

that is similar to separable states in the tensor product framework.

Definition 4.19 (Separable states). Let s : A1⊗A2 → C be a state. s is a separable

state if and only if s can be written as a convex combination of product states.

s =
∑
i

pi(ri ⊗ ti), (4.2.8)

where {pi} is a probability distribution, ri : A1 → C and ti : A2 → C are states.

Entanglement can also be defined.

Definition 4.20 (Entangled states). Let s : A1 ⊗A2 → C be a state. s is entangled

if and only if s is not separable.

While it is easy to define what entangled states are, it is not clear what is the

best way to measure the amount of entanglement a state has, since in many cases,

an abstract state can have an infinite amount of entanglement. Nevertheless, it is

possible to define whether a state is maximally entangled.

Definition 4.21 (Maximally entangled states). A state s : A1 ⊗ A2 → C is called

maximally entangled if s is pure, and TrA1(s) and TrA2(s) are tracial.
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Note that the set of states is a convex set. A state is called pure if it is an

extreme point of this set. We defer the discussions on the details of pure states to

a later section because it involves using the GNS construction which has not been

introduced yet.

This definition of a maximally entangled state is compatible with the definition

of maximally entangled states in the tensor product model. In the tensor product

model, a state |ψ〉 ∈ H1 ⊗ H2 is maximally entangled if its Schmidt coefficients are

the same over all Schmidt basis. In other words, if we trace out Hi from |ψ〉, we will

end up with a maximally mixed state, which corresponds to the tracial state in the

C∗-model.

4.2.3 Local Evolutions and Measurements

Having defined states on the tensor product of C∗-algebras, we now consider what local

operators and measurements are in the C∗model. In particular, given some quantum

systems {Q1, · · ·Qn} described by C∗-algebras {A1, · · · ,An}, how to describe local

measurements and evolutions on a subset of the quantum systems. Recall that in

the commuting operator model, defining local operators relative to local quantum

systems was not a straightforward task. It turns out that, fortunately, the definitions

in the C∗-model are relatively simple.

The overall combined C∗-algebra is A1⊗· · ·⊗An. For a single quantum system Qi,

the local evolution on Qi is simply the set of evolution on Ai and identity on all other

C∗-algebras. In other words, it is the set of ∗-automorphisms αi : Ai → Ai tensor

product with identity: I1⊗· · ·⊗αi⊗· · ·⊗In. Similarly, the local measurement on Qi

is simply the measurement operators on Ai tensor product with identity everywhere
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else.

For a subset of local systems, we take the tensor product of their corresponding

C∗-algebra as the C∗-algebra of the combined system and use the corresponding local

evolution operators and measurements on the combined C∗-algebra. For example,

the local system containing Q1 and Q2 is described by A1,2 = A1 ⊗ A2. The local

evolutions are therefore the ∗-automorphisms on A1,2.

4.3 Equivalences between the Hilbert space and C∗-

model

As mentioned in the previous section, the C∗-model is an abstraction of the Hilbert

space model. This section will discuss the correspondences between the two models.

It turns out that the two models can be converted to each other in a standard

manner.

4.3.1 Hilbert Space to C∗-Model

The Hilbert space model and the C∗-model are equivalent in the sense that they can

be converted to each other to describe the same quantum system. The conversion

from the Hilbert space model to the C∗-model is straightforward.

Theorem 4.3. Given a Hilbert space H, there exists a C∗-algebra A, and a ∗-

isomorphism π : B(H)→ A such that for all M ∈ B(H), for all unit vector |ψ〉 ∈ H,

there exists a state s : A → B where 〈ψ|M |ψ〉 = s(π(M)).
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Proof. The proof is straightforward. Define A = B(H), and for each |ψ〉 ∈ H,

a ∈ B(H), define s|ψ〉(a) = 〈ψ| a |ψ〉.

The above conversion will map any Hilbert space model into the C∗-model. How-

ever, for combined systems such as the commuting operator model, the converted

C∗-algebra will not have the structure of the localized tensor product. It turns out

that the commuting operator model can be converted into the max tensor product of

C∗-model in the following sense.

Theorem 4.4. Let H be a Hilbert space and A,B be two mutually commuting sets

of operators that are algebraically closed under the operator norm. Then there exists

two C∗-algebras A,B with a ∗-homomorphism π : A ⊗max B → B(H) where for all

a ∈ A, b ∈ B, π(a⊗ I) ∈ A and π(I ⊗ b) ∈ B.

Proof. Let A,B be the C∗-algebra of the presentation of A and B. Then A⊗max B is

a C∗-algebra where A⊗ I and I ⊗ B is also a presentation of A and B. This gives a

∗-homomorphism π that maps the presentation A⊗I and I⊗B to the representation

A and B.

It is easy to see that since A⊗I commutes with I ⊗B, π(A⊗I) commutes with

π(I ⊗ B), which match with the fact that A commutes with B.

The max tensor product is required here because there is a single ∗-homomorphism

π maps A⊗max B to a single B(H).

4.3.2 C∗ to Hilbert Space: The GNS Construction

While going from Hilbert space to abstract C∗-algebra is straightforward, the converse

is less obvious. To convert abstract C∗-algebras to operators on Hilbert spaces, we
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invoke the Gelfand-Naimark-Segal (GNS) theorem.

Theorem 4.5 (Gelfand-Naimark-Segal). Let A be an abstract C∗-algebra. Then there

is a Hilbert space H and a map π : A → B(H) such that

• π is a ∗-homomorphism,

• ‖π(x)‖ = ‖x‖ for all x ∈ A.

Moreover, if A is unital, then it is possible to arrange that π(1) = IH.

The two conditions above ensure that π(A) is a C∗-algebra of operators. If a state

is defined, the GNS representation theorem on states will give a representation of the

state in addition to the Hilbert space and ∗-homomorphism.

Theorem 4.6 (GNS State Representation Theorem). Let A be a C∗-algebra, and

s : A → C be a state. Then there exists a Hilbert space H, a ∗-homomorphism

π : A → B(H), and a unit vector |ψ〉 ∈ H such that for all a ∈ A, s(a) = 〈ψ| π(a) |ψ〉.

Moreover, {π(A) |ψ〉} is dense in H.

Proof. Let As := {a ∈ A, s(a∗a) = 0}. As is a left ideal of A. We define the quotient

space of A by As as Ã = A/As. Elements of Ã are of the form a+ I where I is from

the left ideal As of A.

Elements of Ã form a vector space, and to get a Hilbert space, we define the

following inner product to take the norm of the vectors in:

〈a+ I, b+ I〉 = s(a∗b), ∀a, b ∈ A. (4.3.1)

Let H be the Hilbert space formed by elements of Ã completed by the inner product

defined above.
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Define the ∗-homomorphism π : A → B(H) as

π(a)(b+ I) = ab+ I, (4.3.2)

and let |ψ〉 = 1 + I = I ∈ Ã. (The identity element exists because we only consider

unital C∗-algebras. There are walk-arounds for non-unital C∗-algebras which we will

omit the details here.) Then we have what we desired:

〈ψ| π(a) |ψ〉 = s(IaI) = s(a). (4.3.3)

It is also clear that since |ψ〉 = I, π(a) |ψ〉 = a+ I so π(A) |ψ〉 gives every element of

Ã, which is dense in H.

The above equivalence relations between the two model means that they have

measurements and states that can give the same measurement outcomes. The missing

part is the equivalence between the evolutions in the two models. We consider the

evolution in the Hilbert space model to be unitaries on the Hilbert space since any

channel has a Stinespring form that is unitary in a larger Hilbert space.

Since conjugation by unitary in a C∗-algebra is a∗-automorphism, the conversion

from unitary in the Hilbert space to ∗-automorphism on the corresponding C∗-algebra

is trivial.

Let H be a Hilbert space, A be a C∗-algebra, and π : B(H) → A be a ∗-

isomorphism. For all unitary U ∈ B(H), UU∗ = U∗U = I, the corresponding ∗-

automorphism αU : A → A is αU(π(X)) = π(UXU∗).

While all conjugation by unitaries is ∗-automorphisms, the converse is not neces-

sarily true. Let α : A → A be a ∗-automorphism that cannot be expressed in terms

of α(a) = uau∗, where u ∈ A is a unitary. In order to convert α into a unitary in
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the Hilbert space model, the C∗-algebra needs to be extended before performing the

GNS construction. More details of this extension can be found in the book of [25] in

the chapter that discusses cross products.

Proposition 4.7. Assume u 6∈ A. Let Aα be the C∗-algebra that contains A as a

subalgebra and is generated by A and one extra element u, such that α(a) = uau∗

for all a ∈ A, and uu∗ = u∗u = I. Then for all b ∈ Aα, there exists some ai ∈ A,

ni ∈ Z, and βi ∈ C such that b =
∑

i βiaiu
ni.

Proof. We start by showing that the left multiplication of u or u∗ to an element of A

is equal to the right multiplication of u or u∗ of another element of A.

For any x ∈ A, ux = yu where y = uxu∗ = α(x) ∈ A, and similarly, u∗x = y∗u∗

where y∗ = u∗xu = α(x)∗ ∈ A.

Since Aα is the extension of A with u, any element b ∈ A can be written as a

product of some sequence of u, u∗, and some a ∈ A. By the property shown above,

all the u and u∗ in b can be moved to the right to give the expression of the form

b = aun for some n ∈ Z. (Since u is unitary, u−1 = u∗.)

Before applying GNS on the extended C∗-algebra Aα, we need to extend the state

s : A → C to act on the extended algebra sα : Aα → C. The extension exists by Hahn

Banach theorem, and in many cases, it is possible to simply define the extension as

sα(aun) = 0 for a ∈ A, n 6= 0. This type of extension is called the canonical extension,

and in general, there are many other possible extensions given by the Hahn-Banach

theorem. We provide the statement of the Hahn Banach theorem below and omit the

proof.
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Theorem 4.8 (Hahn-Banach extension theorem). Let X be a normed linear space

over F, let Y ⊆ X be a subspace, and let f : Y → F be a bounded linear functional.

Then there exists an extension g : X → F that is also a bounded linear functional and

satisfies ‖g‖ = ‖f‖.

Applying the GNS construction on Aα and sα gives a Hilbert space H, a state

|ψ〉 ∈ H, and a ∗-homomorphism π : Aα → B(H) such that s(a) = 〈ψ|π(a) |ψ〉 for

all a ∈ Aα.

We note that by Hahn-Banach theorem, when s is extended to sα on Aα, sα is

also a state because the extension preserves the norm where ‖sα‖ = 1 and sα(I) = 1

are still satisfied.4

If there are more than one ∗-automorphisms used that cannot be expressed in

terms of conjugation by unitaries in A, then Aα needs to be the extension of A that

includes the unitaries for each of the ∗-automorphisms.

So far, the equivalence between the C∗-model and the Hilbert space model is based

on some abstract state s. As a result, only a subset of the states in the C∗-algebra

has their corresponding states in the Hilbert space model. More precisely, we call

these states the set of states affiliated with s.

Definition 4.22. Given a C∗-algebra A, and a state s : A → C, a state s′ is called

affiliated with s if and only if there exists u ∈ A such that for all a ∈ A, s′(a) =

s(uau∗).

Given a C∗-algebra, not all states are affiliated with each other. If we want the

equivalence relation to hold for all states in the C∗-algebra, a more general version of
4It is shown in [9] and [23] that if s(I) = 1 then ‖s‖ = 1 if and only if s ≥ 0.
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the GNS construction can be used. In particular, given a C∗-algebra A, if two states

s, t : A → C are not affiliated with each other, it is possible to apply GNS on s and

on t separately to get two Hilbert spaces Hs and Ht, and define the overall Hilbert

space to be H = Hs ⊕ Ht.5 For a ∈ A, the corresponding operator in the Hilbert

space is then π(a) = πs(a) ⊕ πt(a), where πs and πt are the ∗-homomorphisms from

the individual GNS constructions with state s and t. In general, one could apply the

GNS construction on a C∗-algebra A directly without any states by taking the direct

sum of the Hilbert space from applying GNS on all the states that are not affiliated

with each other. The resulting Hilbert space model will be equivalent to the C∗-model

on all possible states.

In general, there can be uncountably many states that are not affiliated with each

other, so if we consider the Hilbert space that arises from applying GNS to encompass

all possible states, the dimension of the Hilbert space has to be uncountable.

4.3.3 Tensor product of C∗-algebra to commuting operators

As we have shown, while the C∗-model can appear to be more powerful than the

Hilbert space model, the two models are in fact equivalent and can be transformed

into each other. However, as we will see below, when it comes to describing local

quantum systems, the C∗-model has a little more structure than the commonly used

commuting operator model in infinite dimensions.

Given two local quantum systems Q1 and Q2, the combined system Q can be de-
5If the two states are affiliated with each other, this construction still works, but it is also

possible to perform GNS on one state and get the other state in the same Hilbert space with a

unitary transformation.
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scribed under the tensor product of the Hilbert space model, the commuting operator

model, and the tensor product of C∗-model. We show that the tensor product of the

Hilbert space model is a special case of the tensor product of C∗-model, which is, in

turn, a special case of the commuting operator model.

Let H = H1⊗H2 be the Hilbert space consisting of two local quantum subsystems

Q1 described by H1 and Q2 described by H2. Let A1 = B(H1) and A2 = B(H2).

Then A = A1⊗A2 is the C∗-algebra that can be used to describes the same quantum

systems under the C∗-model: For each |ψ〉 ∈ H, define s|ψ〉 : A → C as s|ψ〉(X) =

〈ψ|X |ψ〉.

Proposition 4.9. Let A = A1 ⊗A2 be the C∗-algebra describing two local quantum

systems Q1 and Q2. Then there exists a commuting operator model with Hilbert space

H, two sets of mutually commuting operators B1, B2 ⊆ B(H) that can be used to

describe the same quantum system as the C∗-model.

Proof. Apply the GNS construction onA gives a Hilbert spaceH, and a ∗-homomorphism

π : A → B(H). Define B1 = {π(a1 ⊗ I) : a1 ∈ A1}, and B2 = {π(I ⊗ a2) : a2 ∈ A2}.

Then by definition, elements of B1 commute with every element of B2. For any state

s : A → C, the GNS also gives a state |ψs〉 ∈ H such that s(a) = 〈ψs|π(a) |ψs〉 for all

a ∈ A.

One of the key properties of this relation is that since the GNS construction is

applied to the overall C∗-algebra, the ∗-homomorphism does not necessarily have the

tensor product structure. As a result, the resulting operators could only preserve the

commutativity between them.
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4.4 More Properties of C∗-Model in Quantum Infor-

mation

Equipped with the GNS theorem, we are able to discuss more properties of the C∗-

model that are useful for quantum information theory.

4.4.1 More about States

Given a quantum state, it is natural to ask whether the state is pure or not. In the

Hilbert space model, a pure state is an extreme point on a convex set of states. The

pureness of an abstract state is defined similarly.

Definition 4.23 (Pure states). A state s : A → C is pure if it cannot be expressed

as a convex combination of other states.

While the above is a natural definition of pure states, it is not a very practical

one: given a state s, it is not clear how one could use the above definition to figure

out whether the state is pure or not. Alternatively,

Corollary 4.1. Let A be a C∗-algebra and s : A → C be a state. Let Hs, |ψ〉 ∈

Hs, πs : A → B(Hs) be the GNS representation of A and s. Then s is pure if and

only if πs(A)′ = C · IHs.

Note that the commuton ′ symbol means that A′ = {T ∈ B(Hs), aT = Ta, ∀a ∈

A}.

Proof. If πs(A)′ 6= C⊗ IHs , then there exists a projection P ∈ πs(A)′ that is neither

0 or IHs . Let |ψ1〉 = P |ψ〉, and |ψ2〉 = (I − P ) |ψ〉. By the GNS representation
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theorem, {πs(A) |ψ〉} is dense in Hs, so |ψ1〉 = 0 or |ψ2〉 = 0 would mean P = 0 or

P = IHs .

Let ti = ‖ |ψi〉 ‖2, and let

s1(a) = t−1
1 〈ψ|Pπs(a)P |ψ〉 = t−1

1 〈ψ1|πs(a) |ψ1〉 ,

s2(a) = t−1
2 〈ψ| (I − P )πs(a)(I − P ) |ψ〉 = t−1

2 〈ψ2| πs(a) |ψ2〉 .
(4.4.1)

Then we can write s(a) = t1s1(a) + t2s2(a), which is not a pure state.

Next we show that if s is mixed, then πs(A)′ 6= C · I. Instead of showing the full

proof which can be found in [25], we omit some of the details of the proof and use

some results directly from [25] our proof.

For simplicity, consider s = t1s1 + t2s2 where t1, t2 > 0, t1 + t2 = 1 and s1, s2

are different pure states. The proof can be easily extended to s =
∑

i tisi. Consider

the GNS representation {π1,H1, |ψ1〉} for A and s1, and {π2,H2, |ψ2〉} for A and

s2. Let Hs := H1 ⊕ H2, πs : A → Hs where πs(a) = π1(a) ⊕ π2(a), and |ψ〉 =
√
t1 |ψ1〉 ⊕

√
t2 |ψ2〉. Then Hs, πs, |ψ〉 is a representation of A, s, because

s(a) = 〈ψ|πs(a) |ψ〉 = t1 〈ψ1| π1(a) |ψ1〉+t2 〈ψ2|π2(a) |ψ2〉 = t1s1(a)+t2s2(a). (4.4.2)

We use the following results from [25] to show that {πs,Hs, |ψ〉} is indeed a GNS

representation of A, s.

Lemma 4.9.1 ([25]). Let A be a C∗-algebra and s1, s2 : A → C be two different pure

states. Let {π1,H1, |ψ1〉} and {π2,H2, |ψ2〉} be the GNS representation of A, s1 and

A, us2. Let s = t1s1 + t2s2 where t1, t2 ≥ 0, t1 + t2 = 1, be a mixed state. Then

{π1 ⊕ π2,H1 ⊕H2,
√
t1 |ψ1〉 ⊕

√
t2 |ψ2〉} is a GNS representation of A, s.

Let P be the projection from Hs to H1 so P |ψ〉 =
√
t1 |ψ1〉 ⊕ 0. Then for all
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a ∈ A,

Pπs(a) |ψ〉 =
√
t1π1(a) |ψ1〉 ⊕ 0 = πs(a)P |ψ〉 , (4.4.3)

which means P ∈ πs(A)′. Since P 6= 0 or IHs , this gives us πs(A)′ 6= C · IHs .

In the Hilbert space model, sometimes it is possible to project a state from a larger

Hilbert space to a subspace. When this is done, the projected state is re-normalized.

We describe what it means to project a state in the C∗-model.

Definition 4.24 (Projection of states). Let p ∈ A be a projection, and let Ap =

pAp := {pap : a ∈ A}. Let Ap be the C∗-algebra generated by Ap. The projection of

s : A → C to sp : Ap → C is defined as

sp(ap) =


s(ap)

s(p)
s(p) 6= 0

0 s(p) = 0

(4.4.4)

for all ap ∈ Ap.

Note that in Ap = pAp, the identity element is IAp = p ∈ A, which differs from

the identity element I ∈ A. As a result, the re-normalization of state s′ is necessary

to ensure sp(p) = 1.

From the Hahn-Banach theorem, given a state s : A → C where A is a subalgebra

of Ap, there exists a state s′ : A′ → C such that sp(a) = s(a) for all a ∈ A. Moreover,

this extension is unique. So given a projected state, it is always possible to extend it

to a state acting on a larger C∗-algebra.

A longstanding philosophical question regarding quantum mechanics is what hap-

pens to the quantum system after an observer performs a measurement. Do mea-

surements change the system and cause the quantum state to collapse, or does it
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cause the observer to jump into one of the many multi-worlds? While we do not plan

on dwelling on the different interpretations of quantum mechanics, it is natural to

consider the state of a quantum system (or universe) after performing some measure-

ments. Under the Hilbert space model, one can describe the residual state based on

the outcome of the Kraus operators for the measurement given.

Under the Hilbert space model, given a set of Krauss operators {E1, · · · , En}

where
∑

iE
∗
iEi = I, it can be used to perform a measurement with outcome {1, · · · , n}

on the density operator ρ of a state. The probability of obtaining outcome i is

Tr(EiρE
∗
i ), and the residual state σi is

σi =
EiρE

∗
i

Tr(EiρE∗i )
. (4.4.5)

Let A be a C∗-algebra. Let M = {M1, · · · ,Mn} ⊂ A be a set of operators that

satisfy
∑

iM
∗
iMi = I. Applying M as a measurement on abstract state s : A → C

will yield outcome i with probability s(MiM
∗
i ), and the residual state si : A → C is

si(x) =
s(M∗

i xMi)

s(MiM∗
i )
. (4.4.6)

It is easy to verify that si’s are in fact abstract states. si(I) =
s(MiM

∗
i )

s(MiM∗i )
= 1, assuming

the probability of obtaining outcome i is not zero. si is positive because for any x ≥ 0,

MixM
∗
i ≥ 0 so si(x) ≥ 0.

4.4.2 Norms of Operators

There are many similarities between the Hilbert space model and the C∗-model for

quantum information. One of the interesting relations is between the operator norm of

an operator in the Hilbert space model and the norm of an element of the C∗-algebra.
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Recall that in the Hilbert space model, given a Hilbert space H, the operator norm

of X ∈ B(H) can be expressed as

‖X‖2 = sup
|ψ〉∈H,‖|ψ〉‖=1

〈ψ|X∗X |ψ〉 .

While the norm for a C∗-algebra can appear more abstract, using the notion of

abstract state, it can be expressed in a similar form.

Theorem 4.10. Let A be a C∗-algebra, and a ∈ A. Let S := {s : A → C : s ≥

0, s(I) = 1} be the set of all abstract states.

‖a‖2 = sup
s∈S

s(aa∗).

Proof. For a ∈ A, ‖a‖ ≤ r ⇐⇒ r2I − aa∗ ≥ 0. Therefore, for any s ∈ S,

s(r2I − aa∗) ≥ 0, which in turn gives s(aa∗) ≤ r2 for any r ≥ ‖a‖. Therefore, we

have s(aa∗) ≤ ‖a‖2.

At the same time, it is known that if x ∈ A is positive, then there exists a state

sx : A → C such that sx(x) = ‖x‖. A sketch of the proof of the above statement is

the following. Consider the sub-algebra of A generated by I and x. Let s be a state

on this sub-algebra defined by s(x) = ‖x‖. Then there exists an extension of s to A

by the Hanh-Banach Theorem.

Since aa∗ is Hermitian, there exists a state such that s(aa∗) = ‖aa∗‖ = ‖a‖2.

4.5 Example: CAR-Algebra

An example of a natural C∗-algebra for quantum information is the CAR algebra

(canonical anticommutation relation). Intuitively, it is the algebra of finite Paulis

acting on infinitely many qubits.
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Recall in Example 4.2, P is a C∗-algebra that is the abstraction of operators on

single-qubit systems. We define the CAR algebra in a similar spirit, using relations

similar to what was used to define P .

4.5.1 Definition of CAR-Algebra

We consider the following algebra over C generated by elementsXi, Zi, i ∈ N satisfying

1. X2
i = Z2

i = I for all i,

2. X∗i = Xi, Z∗i = Zi for all i,

3. XiZi + ZiXi = 0 for all i,

4. XiZj = ZjXi, XiXj = XjXi, ZiZj = ZjZi for all i 6= j.

For a set S, let C∗(S) denote the C∗-algebra generated by {s, s∗ : s ∈ S}.

We start by considering C∗({Xi, Zi}) for some particular i.

From the previous restrictions, we have

(XiZi)
2 = XiZiXiZi = −X2

i Z
2
i = −I. (4.5.1)

Let Yi = −iXiZi so that Y 2
i = I, then

C∗({Xi, Zi}) = span{Xi, Zi, Yi, I} 'M2, (4.5.2)

where Xi ' σ1 = ( 0 1
1 0 ), Yi ' σ2 = ( 0 −i

i 0 ), Zi ' σ3 = ( 1 0
0 −1 ) and I ' ( 1 0

0 1 ) are the

Pauli matrices as the basis for M2. Alternatively, we can write the basis elements as

Xj
i Z

k
i for j, k ∈ {0, 1}.
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From Relation 4., for any i 6= j, C∗({Xi, Zi}) commutes with C∗({Xj, Zj}). So

C∗({Xi, Zi, Xj, Zj}) 'M4 with basis Xk
i Z

l
iX

s
jZ

t
j = Xk

i X
s
jZ

l
iZ

t
j for k, l, s, t ∈ {0, 1}.

In general, C∗({Xi, Zi : 1 ≤ i ≤ n}) 'M2n , and has basis

n∏
i=1

X
a(i)
i Z

b(i)
i =

n∏
i=1

X
a(i)
i

n∏
j=1

Z
b(j)
j (4.5.3)

for all functions a, b that maps {1, 2, · · · , n} into {0, 1}.

Instead of functions, we can also see a, b as binary strings of length n, the i-th

element of the string is a(i) and b(i). This allows us to write the basis of C∗({Xi, Zi :

1 ≤ i ≤ n}) as XaZb where a, b ∈ {0, 1}n and

Xa =
n∏
i=1

X
a(i)
i , Zb =

n∏
i=1

Z
b(i)
i . (4.5.4)

At index i, XaZb is Xa(i)
i Z

b(i)
i which is isomorphic to the Pauli matrix σa(i)

1 σ
b(i)
3 .

It can be interpreted as a quantum system with n qubits, where operator XaZb

corresponds to Pauli operator σa(i)
1 σ

b(i)
3 acting on qubit i for each 1 ≤ i ≤ n. For

example, let n = 4 and a = 0110, then Xa can be represented as σ0
1 ⊗ σ1

1 ⊗ σ1
1 ⊗ σ0

1 =

I ⊗ σ1 ⊗ σ1 ⊗ I which is Pauli σ1 acting on qubit 2 and 3.

Let Cn =C∗({Xi, Zi : 1 ≤ i ≤ n}). Any x ∈ Cn can be represented by a 2n × 2n

matrix M . Let ‖x‖ = ‖M‖ be the operator norm of the representation of x. We

define the CAR algebra as

C =
∞⋃
n=1

Cn. (4.5.5)

C has a basis XaZb for a, b ∈ {0, 1}∗ where all but finitely many a(i), b(i) are

0. Similar to Example 4.2, we defined the Xi and Zi in a way that they each can

be represented by the 2 × 2 Pauli matrices. It can be interpreted that Xi and Zi
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are infinite-dimensional operators with indices, where at index i, they are the 2 × 2

Pauli X and Z, and at all other indices, they act as identity. Each of Xa and Zb

can be seen as a product of Xai
i and Zbi

i . For example, let a = 01100 · · · (where the

infinitely many trailing 0’s are omitted), then similar to the previous example, Xa

can be represented as I ⊗ σ1 ⊗ σ1 ⊗ I ⊗ I · · · .

We also note that the above is not the standard way to define CAR algebra.

[9] provides an example of how the CAR algebra is typically defined. Although the

definitions may appear very different, they share the same underlying structure that is

fundamental to the CAR algebra, which is having finite weight elements on infinitely

many copies of M2. The definition of CAR algebra as finite weight Pauli matrices

makes it more accessible to quantum information.

In later chapters, with abuse of notation, we will use X, Y, Z at times to denote

the 2× 2 Pauli matrices instead of σ1, σ2, σ3.

4.5.2 Application of the CAR-Algebra

One property of the CAR algebra is that C ⊗max C = C ⊗min C, due to the fact that C

is nuclear. More discussions on this can be found in [9, 25].

Consider a quantum system with countably infinitely many qubits. To model it

under the Hilbert space model, it is natural to consider a countably infinite dimen-

sional Hilbert space, which would have a basis equivalent to {|0〉 , |1〉 , |2〉 , · · · }. Let

H0 be a countably infinite Hilbert space with basis {|0〉 , |1〉 , |01〉 , |11〉 , · · · }. Each

bit in the basis describes the state of the corresponding qubit in the quantum sys-

tem. For example, |0〉 ≡ |0〉⊗∞ is the state where all the qubits are in state |0〉, and

|01〉 ≡ |0〉 ⊗ |1〉 ⊗ |0〉⊗∞ is the state where the second qubit is in state |1〉, and all
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other qubits are in state |0〉. Under this model, every element of the basis has the

property that only finitely many bits are non-zero, and as a result, all but finitely

many qubits of the corresponding basis state are in state |0〉.

WhileH0 is a natural Hilbert space to describe the quantum system with infinitely

many qubits, it has its limitations. By construction, its basis states must only have

finitely many qubits in |1〉. Therefore, a quantum state where all qubits are in |1〉,

|1〉⊗∞, is not in H0. In order to allow states with infinitely many |1〉 at the end to

be part of this Hilbert space model, H0 needs to be extended. Let H1 be the Hilbert

space with basis {|1〉⊗∞ , |0〉⊗|1〉⊗∞ , |10〉⊗|1〉⊗∞ , · · · } describing the quantum system

where all but finitely many qubits are in state |1〉. Then H = H0 ⊕H1 is a Hilbert

space that can describe quantum states that end with both infinitely many |0〉’s and

infinitely many |1〉’s.

However, there are still many quantum states H cannot describe. For example,

the state where all qubits are in |+〉 = |0〉+|1〉√
2

, |+〉⊗∞, or the state with alternating

|0〉 and |1〉, |01〉⊗∞, are not in H. In general, there is no countable Hilbert space that

can fully describe all possible quantum states with countably infinitely many qubits.

(Simply consider states that correspond to the binary form of different real numbers

between 0 and 1 – they are mutually orthogonal, and therefore form an uncountable

basis.)

An alternative way to describe the quantum system with infinitely many qubits

is by using the CAR algebra in the C∗-model. Let C be a CAR algebra. To describe

a state in the system, a corresponding abstract state s : C → C can be defined by

specifying its action on all elements of C. Since states are linear, only elements of the

form XaZb, where a, b ∈ {0, 1}∗ are binary strings, need to be specified.
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For example, consider the state where all the qubits are in |0〉. The corresponding

abstract state is

s(XaZb) =
∞∏
i=0

〈0|XaiZbi |0〉 , (4.5.6)

where ai, bi are the bit value of a and b at index i. Similarly, if the state has |1〉 at

qubit j and |0〉 everywhere else, then it can be defined as

s(XaZb) =
∏
i 6=j

〈0|XaiZbi |0〉 〈1|XajZaj |1〉 . (4.5.7)

Under this system, a quantum state can be defined as long as its action on any

finite weight Pauli XaZb can be specified.

Another useful state the CAR-algebra can help defining is the infinite tensor prod-

uct of Bell states, |ψ〉 = |00〉+|11〉√
2

. We will see in a later Chapter that such a state

does not exist under the tensor product of the Hilbert space model. Using the CAR-

algebra, we define the state s : C ⊗ C → C to be

s(XaZb ⊗XcZd) =
∞∏
i=0

〈ψ|XaiZbi ⊗XciZdi |ψ〉 . (4.5.8)

s is properly defined and has the property that at each index i, it acts exactly like

the Bell state. [18] describessuch astate as an example of the notion of an “infinitely

entangled state”. are
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Chapter 5

Linear System Games

A linear system game is a specific type of non-local game based on a linear system of

equations. Mermin’s magic square game, as described in Section 3.3.4, is a particular

example of a linear system game.

5.1 Binary Linear System Games

Consider the binary linear system of equationMx = b whereM ∈ Zm×n2 , and b ∈ Zm2 .

If there exists a vector X ∈ Zn2 such that Mx = b, then x is a solution to this linear

system. This linear systemMx = b contains n variables, x1, · · · , xn, and m equations

of the formMi,1x1+· · ·+Mi,nxn = bi. With the binary system, some of the coefficients

can be zero, so each equation i might only contain a subset of the variables.

Recall that in the case of Mermin’s magic square game, the linear set of equations
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are
a1 + a2 + a3 = 0 a1 + a4 + a5 = 0

a4 + a5 + a6 = 0 a2 + a5 + a8 = 0

a7 + a8 + a9 = 0 a3 + a6 + a9 = 1.

(5.1.1)

A binary linear system game based on Mx = b is a non-local game with the

following rules. As inputs, Alice receives one linear equation from the system, and

Bob receives one variable contained in the same equation (with a non-zero coefficient).

Without communication, Alice must output an assignment to all the variables in her

equation, and Bob must output an assignment for his variable. To win the game,

Alice’s assignment must satisfy the linear equation given to her, and Bob’s output

must match Alice’s assignment on the common variable. A classical strategy is a

strategy in which Alice and Bob do not share any entanglement, and an entangled

quantum strategy is a strategy where Alice and Bob share an entangled quantum

state |ψ〉. If the state |ψ〉 is a bipartite state in a tensor product of Hilbert spaces

HA ⊗HB, the strategy is called the entangled strategy in the tensor product model.

A perfect strategy is a strategy where the players can win with probability 1.

Interestingly, there exist games with perfect entangled quantum strategies, but no

perfect classical strategies. Mermin’s magic square is an example of such a game. It

is easy to summarize the condition for the existence of a perfect classical strategy.

Theorem 5.1. A binary linear system game based on Mx = b has a perfect classical

strategy if and only if the system of equations has a solution.

Proof. If there exists a solution x such thatMx = b, Alice and Bob can always output

the assignment of variables from x to win the game.
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To show the converse, it is important to note that using probabilistic strategies

does not improve the probability of winning, because the winning probability of a

probabilistic strategy is a convex combination of the winning probability of deter-

ministic strategies. For a deterministic strategy, Alice and Bob must decide on their

output for each possible input before the start of the game. Therefore the value for

each xi must be fixed. In order to win with certainty, Alice must use the same as-

signment, and xi must satisfy every equation in the linear system. In other words,

the assignment of x in the deterministic strategy must be a solution to the linear

system.

The condition for the existence of perfect entangled quantum strategies, however,

is not as simple. As a starting point, we consider the perfect entangled strategy under

the tensor product model.

5.2 Tensor-product model

Cleve and Mittal [5] investigated binary linear system games as an extension of Mer-

min’s magic square game under the tensor product model. A binary linear system of

the form Mx = b can be written in multiplicative form, where a vector x ∈ {±1}n

satisfies equation l if and only if

x
Ml,1

1 x
Ml,2

2 · · · xMl,n
n = (−1)bl . (5.2.1)

Alternatively, let

Vl = {k1, k2, · · · , kr} = {1 ≤ k ≤ n : Ml,k = 1} (5.2.2)
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be the set of indices of variables in equation l, and equation l can be expressed as

xk1xk2 · · ·xkr = (−1)bl . (5.2.3)

In order for a binary linear system game to have a perfect entangled strategy

in the tensor product model, [5] showed that a finite-dimensional operator solution,

which is a generalization of binary solutions, to the linear system must exist.

Definition 5.1. An operator solution to a binary linear system Mx = b is a sequence

of bounded self-adjoint operators A1, · · · , An on a Hilbert space H such that

1. A2
i = I for all i ≤ i ≤ n.

2. If xi and xj appear in the same equation, then AiAj = AjAi (local compatibility).

3. For each equation of the form xk1xk2 · · ·xkr = (−1)bl,

Ak1Ak2 · · ·Akr = (−I)bl (5.2.4)

(constraint satisfaction).

The first condition enforces that the Ai’s are binary observables. The term local

compatibility in the second condition comes from quantum mechanics, where two

observables commute if and only if they are compatible in the sense that they can be

measured simultaneously. The local compatibility condition also matches the fact that

in the original linear system, all variables appearing in the same linear equation can

be placed in any order. The third condition simply forces the operators to multiply

in the same way that satisfies the original constraint.

92



Theorem 5.2. A binary linear system game based on Mx = b has a perfect entangled

strategy in the tensor product model if and only if there exists a finite-dimensional

operator solution to the linear system.

The proof of this result can be found in the original paper [5] by Cleve and

Mittal and is outside the scope of our discussion. In [5], it was required that the

Hilbert space must be separable. However, this condition can be dropped because

any entangled state |ψ〉 in a Hilbert space H can be expressed in terms of a countable

linear combination of some orthonormal basis elements |ei〉 ⊗ |fj〉, namely

|ψ〉 =
∑
i,j

αi,j |ei〉 ⊗ |fj〉 . (5.2.5)

5.3 Commuting operator strategy and solution group

Now consider the commuting operator strategy where the entanglement shared by

Alice and Bob, |ψ〉, is in a joint Hilbert space H. Alice’s and Bob’s measurements are

observables on H, with the restriction that all of Alice’s observables commute with

Bob’s observables. More specifically, using the Vl defined in Eq 5.2.2, we have the

following definition.

Definition 5.2. LetMx = b be an m×n binary linear system. A commuting operator

strategy for the non-local game associated to Mx = b consists of a Hilbert space H,

a state |ψ〉 ∈ H, and two collections of self-adjoint operators on H, {A(l)
i : 1 ≤ l ≤

m, i ∈ Vl} and {Bj : i ≤ j ≤ n}, such that

(a) (A
(l)
i )2 = B2

j = I for all 1 ≤ l ≤ m, i ∈ Vl, and i ≤ j ≤ n

(b) A(l)
i Bj = BjA

(l)
i for all 1 ≤ l ≤ m, i ∈ Vl, and 1 ≤ j ≤ n.
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(c) A(l)
i A

(l)
j = A

(l)
j A

(l)
i for all i ≤ l ≤ m and i, j ∈ Vl (local compatibility).

Different commuting operator strategies will give Alice and Bob different proba-

bilities of winning the binary linear system game. A commuting operator strategy

is perfect if it can be used to win the binary linear system game with probability

1. As one may recall, this requires Alice and Bob’s output for the same variable

to be identical, and Alice’s outputs have to satisfy the constraint she is given. We

give the mathematical conditions for a perfect commuting operator strategy later in

Proposition 5.4.

It turns out that for a perfect commuting operator strategy to exist, the binary

linear system game must have an operator solution. Unlike the case with perfect

tensor product strategies, the operator solution here may be infinite-dimensional.

To prove that the existence of a perfect commuting operator strategy is equivalent

to having operator solutions, we define an intermediary object called the solution

group.

Definition 5.3. The solution group of a binary linear system Mx = b is the group

Γ generated by g1, · · · gn and J satisfying the following relations (where e is the group

identity):

1. g2
i = e for all 1 ≤ i ≤ n (gi’s are involutions).

2. If xi and xj appear in the same equation, then gigj = gjgi (local compatibility).

3. For each equation of the form xk1xk2 · · ·xkr = (−1)bl, the generators satisfy

gk1gk2 · · · gkr = J bl (5.3.1)

(constraint satisfaction).
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4. giJ = Jgi for all i ≤ i ≤ n, and J2 = e (J commutes with each generator).

Apart from the inclusion of the object J , the definition of the solution group

appears almost identical to that of the operator solution defined in Definition 5.1. In

fact, they are closely related.

Theorem 5.3. Let Mx = b be a binary linear system. Then the followings are

equivalent:

1. There exists a perfect commuting operator strategy for the non-local game asso-

ciated with Mx = b.

2. There exists an operator solution for Mx = b

3. The solution group for Mx = b has the property that J 6= e.

The third condition enforces J in the solution group to be a non-trivial element

that commutes with the rest of the group, and since J2 = e, J behaves as the identity

multiplied by the scalar −1.

5.4 Proof of Equivalences

To prove Theorem 5.3, we start by considering the conditions for a commuting oper-

ator strategy to be perfect.

Proposition 5.4. A commuting operator strategy
(
H, |ψ〉 ,

{
A

(l)
i

}
, {Bj}

)
is perfect

if and only if
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1. A(l)
i |ψ〉 = Bi |ψ〉 for all 1 ≤ l ≤ m and i ∈ Vl (consistency between Alice and

Bob) and

2.
∏

i∈Vl A
(l)
i |ψ〉 = (−1)bl |ψ〉 for all 1 ≤ l ≤ m (constraint satisfaction).

Proof. In order for Alice’s and Bob’s outputs to be consistent,

〈ψ|A(l)
i Bi |ψ〉 = 1 (5.4.1)

for all 1 ≤ l ≤ m and i ∈ Vl. Since A(l)
i and Bj are unitary operators, their product

is also unitary. Given that |ψ〉 is a unit vector, Eq 5.4.1 is equivalent to

A
(l)
i Bj |ψ〉 = |ψ〉 . (5.4.2)

Since (A
(l)
i )2 = I, by left-multiplying A(l)

i on both sides, Eq 5.4.2 becomes the condi-

tion in Part 1. of the proposition. Similarly, in order for Alice’s assignment to satisfy

equation l,

〈ψ| (−1)bl
∏
i∈Vl

A
(l)
i |ψ〉 = 1. (5.4.3)

Using the same argument that (−1)bl
∏

i∈Vl A
(l)
i is unitary, Eq 5.4.3 becomes the

condition in Part 2. of the proposition.

The next step is to show that a perfect commuting operator strategy can be turned

into an operator solution for the linear system.

Lemma 5.4.1. Let
(
H, |ψ〉 ,

{
A

(l)
i

}
, {Bj}

)
be a perfect commuting operator strategy

forMx = b. Then there exist some Q1, · · · , Qn ∈ B(H) that form an operator solution

for Mx = b.

The idea of the Lemma is to project Alice’s operators onto a smaller subspace.

Recall the definition of the projection onto a subspace, ·|H.
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Definition 5.4 (Def 2.9). The operator ·|H0 is the projection from B(H) to a subspace

B(H0). Let P be the projection from H to H0, and A ∈ B(H), then

A|H0 = PAP. (5.4.4)

Let A be the unital algebra generated by {A(l)
i }, and A |ψ〉 = {A |ψ〉 : A ∈ A}.

Let H0 = A |ψ〉, and Qi := A
(l)
i |H0 for some l with i ∈ Vl. We show that the Qi’s

defined this way form an operator solution.

The above lemma can be verified by checking all the conditions in the definition

of an operator solution are satisfied.

Proof of Lemma 5.4.1. Before starting the verification, we first show that Qi is the

same regardless of the choice of l.

Let B be the unital algebra generated by {Bj}. Given a perfect commuting oper-

ator strategy, by Proposition 5.4, A(l)
i |ψ〉 = Bi |ψ〉 for all l where i ∈ Vl. Therefore,

for every A ∈ A, there exists B ∈ B such that A |ψ〉 = B |ψ〉. This means that

A |ψ〉 = B |ψ〉 and H0 = B |ψ〉. Let A,A′ ∈ A such that A |ψ〉 = A′ |ψ〉. Then for all

B ∈ B,

AB |ψ〉 = BA |ψ〉 = BA′ |ψ〉 = A′B |ψ〉 . (5.4.5)

Since B |ψ〉 = H0, the above equation means that the action of A on any element

of H0 is the same as the action of A′ on any element of H0. Because A and A′ are

continuous, A|H0 |φ〉 = A′|H0 |φ〉 for all |φ〉 ∈ H0, and as a result A|H0 = A′|H0 . For

perfect commuting operator strategy, A(l)
i |ψ〉 = Bi |ψ〉 = A

(l′)
i |ψ〉 for any i ∈ Vl ∩ Vl′ ,

which means A(l)
i |H0 = A

(l′)
i |H0 so Qi is uniquely defined for each i.

Next, we show that the ·|H0 is a ∗-homomorphism on A. Let P be the orthogonal

projection from H to H0. Then for any |φ〉 ∈ H0, P |φ〉 = |φ〉, and for all A ∈ A,
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A|H0 = PAP . Let A,A′ ∈ A. Then

A|H0A
′|H0 = PAPPA′P = PAPA′P = (APA′)|H0 . (5.4.6)

For any |φ〉 ∈ H0, A′ |φ〉 ∈ H0 so APA′ |φ〉 = AP (A′ |φ〉) = AA′ |φ〉 for all |φ〉 ∈ H.

This is equivalent to the homomorphism requirement

A|H0A
′|H0 = (APA′)|H0 = (AA′)|H0 . (5.4.7)

The ∗ condition comes simply from the fact P = P ∗:

(A|H0)
∗ = (PAP )∗ = PA∗P = A∗|H0 . (5.4.8)

Similarly, using the same argument, we can prove that ·|H0 is a ∗-homomorphism

on B.

Moreover, we have that for any A ∈ A, A |ψ〉 ∈ H so

A|H0 |ψ〉 = PAP |ψ〉 = PA |ψ〉 = A |ψ〉 . (5.4.9)

Similarly, for all B ∈ B, B|H0 |ψ〉 = B |ψ〉.

The first condition is to show that Q2
i = I for all i.

Q2
i = (A

(l)
i |H0)

2 = (A
(l)
i )2|H0 = I. (5.4.10)

The second condition requires QiQj = QjQi if i, j ∈ Vl for some l.

QiQj = A
(l)
i |H0A

(l)
j |H0 = (A

(l)
i A

(l)
j )|H0 = A

(l)
j |H0A

(l)
i |H0 = QjQi. (5.4.11)

The last condition is to show that Equation 5.2.4 is satisfied:∏
i∈Vl

Qi = (−1)bl ∀l. (5.4.12)
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To show this, we need to show that the projection ·|H0 is a homomorphism on the

algebra generated by both A and B combined. Let A ∈ A and B ∈ B. To show that

the projection is a homomorphism, it is necessary to have (AB)|H0 = A|H0B|H0 .

A|H0B|H0 = PAPPBP = PAPBP = (APB)|H0 (5.4.13)

for any |φ〉 ∈ H0, B |φ〉 ∈ H0 so PB |φ〉 = B |φ〉

PAPBP |φ〉 = PAB |φ〉 = PABP |φ〉 = (AB)|H0 |φ〉 . (5.4.14)

This means (AB)|H0 = A|H0B|H0 .

Next we show that QiB |ψ〉 = BQi |ψ〉 for any B ∈ B.

QiB |ψ〉 = A
(l)
i |H0B|H0 |ψ〉 = B|H0(Qi |ψ〉) = BQi |ψ〉 . (5.4.15)

Since any state in H0 can be written as B |ψ〉 for some B ∈ B,∏
i∈Vl

QiB |ψ〉 = B
∏
i∈Vl

Qi |ψ〉 = B
∏
i∈Vl

A
(l)
i |ψ〉 = (−1)blB |ψ〉 , (5.4.16)

and again by continuity, we have the constraint satisfaction condition∏
i∈Vl

Qi = (−1)bl (5.4.17)

satisfied.

Showing Condition 2 implies Condition 3 in Theorem 5.3 is relatively straightfor-

ward.

Lemma 5.4.2. If Mx = b has an operator solution, then J 6= e in the solution group

Γ of Mx = b
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Proof. Let Q1, · · · , Qn be an operator solution of Mx = b. Then the following map-

ping is a representation of Γ:

gi 7→ Qi, 1 ≤ i ≤ n, and J 7→ −I. (5.4.18)

In this representation, J = −I 6= I, which means J 6= e in Γ.

Having shown that Condition 1 implies Condition 2 (Lemma 5.4.1) and Condition

2 implies condition 3 (Lemma 5.4.2), the last step of the proof of Theorem 5.3 is to

show that Condition 3 implies Condition 1.

Lemma 5.4.3. If Mx = b has a solution group Γ with J 6= e, then there exists a

perfect commuting operator strategy for the associated binary linear system game.

Proof. The goal here is to construct a Hilbert space, two sets of operators for Alice

and Bob, and a state |ψ〉 that constitutes a perfect commuting operator strategy.

Define a Hilbert space H to be

H =

{∑
g∈Γ

αg |g〉 : αg ∈ C such that
∑
g∈Γ

|αg|2 <∞

}
. (5.4.19)

H is the completion of the algebra of Γ, and {|g〉 : g ∈ Γ} form an orthonormal basis

for H. Let Lg, Rg ∈ B(H) where they are the left and right multiplication operators

for g on H. In other words,

Lg |h〉 = |gh〉 and Rg |h〉 = |hg〉 . (5.4.20)

Lg and Rg are unitaries because they move the orthonormal basis elements around.

Furthermore, for all g, h ∈ Γ, it is easy to see that

LgRh = RhLg, LgLh = Lgh, RgRh = Rhg. (5.4.21)
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To get Alice and Bob’s operators, let

A
(l)
i = Lgi for all 1 ≤ l ≤ m, i ∈ Vl, (5.4.22)

and

Bj = Rgj for all 1 ≤ j ≤ n. (5.4.23)

The state for the solution group is

|ψ〉 =
|e〉 − |J〉√

2
. (5.4.24)

Because J 6= e, |ψ〉 is a well defined unit vector.

Now we show the above sets of operators and states will constitute a perfect

commuting operator strategy. First, it needs to be a commuting operator strategy.

For (a) in Definition 5.1,

(A
(l)
i )2 = L2

gi
= Lg2i = Le = I = R2

gi
= B2

i . (5.4.25)

To see (b),

A
(l)
i Bj = LgiRgj = RgjLgi = BjA

(l)
i . (5.4.26)

To show (c), we use the Condition 2 in Definition 5.3 that gigj = gjgi if i, j ∈ Vl for

some l:

A
(l)
i A

(l)
j = LgiLgj = Lgigj = Lgjgi = A

(l)
j A

(l)
i . (5.4.27)

To see that this commuting operator strategy is perfect, Proposition 5.4 needs to be

satisfied. For Condition 1, we evoke giJ = Jgi for all i, so that

A
(l)
i |ψ〉 = Lgi

|e〉 − |J〉√
2

=
|gi〉 − |giJ〉√

2
=
|gi〉 − |Jgi〉√

2
= Rgi |ψ〉 = Bi |ψ〉 . (5.4.28)

For Condition 2, ∏
i∈Vl

A
(l)
i |ψ〉 =

∏
i∈Vl

Lgi |ψ〉 = LJbl |ψ〉 . (5.4.29)
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If bl = 0,

LJbl |ψ〉 = Le |ψ〉 = |ψ〉 , (5.4.30)

and if bl = 1,

LJbl |ψ〉 = LJ |ψ〉 =
|J〉 − |e〉√

2
= − |ψ〉 . (5.4.31)

This gives us
∏

i∈Vl A
(l)
i |ψ〉 = (−1)bl |ψ〉 which finishes the proof of the equivalence

relations.

5.5 Discussion

The results here can be generalized to linear system games with linear systems over

Zn for any integer n ≥ 2. Instead of outputting binary numbers, Alice and Bob will

output each variable from Zn. The commuting operator strategy is based on a unitary

U that is the principle n-th root of unity, Un = I, instead of U2 = I. Similarly, the

solution group would require gni = e and Jn = e instead of g2
i = e and J2 = e. The

state for the commuting operator strategy |ψ〉 will be

|ψ〉 =
1
√
p

n−1∑
i=0

e
2πi
n

∣∣J i〉 . (5.5.1)

One interesting question regarding a perfect commuting operator protocol of a

linear system game constructed from the solution group is how much entanglement

the state |ψ〉 contains if the minimum dimension of the operator solution is infinite.

Intuitively, the entanglement should be infinite, since otherwise, the protocol would be

able to be converted into a finite-dimensional and therefore a tensor-product protocol.

However, there is no clear method to calculate the amount of entanglement in the

commuting operator model. It is not clear, that how the structure of the commuting
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operators, which are left and right multiplications, in this case, give rise to meaningful

entanglement in a state of the form |e〉−|J〉√
2

. Typically, to show some state contains

at least one set of Bell state, one only need to show that CHSH inequality can be

maximally violated using this state. In this particular case, how to violate the CHSH

inequality from this state is not immediately clear. Future work can be done on how

to analyze and quantify the entanglement in the commuting operator framework.
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Chapter 6

Embezzlement

Entanglement is a type of resource that is key to quantum communication. The Bell

state, |ψ〉 = |00〉+|11〉√
2

has the largest amount of entanglement (in terms of entanglement

entropy which we will discuss later) two qubits can ever hold. It is often called the

maximally entangled state. What makes it extremely useful is that it gives out the

same measurement outcome for any two compatible measurements performed on the

individual qubits. Due to its versatility, the above Bell state is used in many quantum

communication protocols.

In order to turn two separable qubits into an entangled pair, joint operators on

both qubits must be applied. It is not possible to create entanglement with local

operations.

Definition 6.1 (Entanglement entropy). Let H1⊗H2 be a finite-dimensional Hilbert

space and |ψ〉 ∈ H1 ⊗ H2 be a quantum state with a Schmidt decomposition |ψ〉 =
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∑
i αi |ui〉 ⊗ |vi〉. The entanglement entropy of |ψ〉 is

S(|ψ〉) = −
∑
i

|αi|2 log(|αi|2). (6.0.1)

Entanglement entropy is a measure of the amount of entanglement across a bi-

partite quantum system HA ⊗ HB. It is not possible to increase the entanglement

entropy of a state |ψ〉 ∈ HA ⊗HB using local unitaries of the form A⊗B since such

local operator cannot change the Schmidt coefficients of |ψ〉.

The discussion about entanglement and entanglement entropy is mostly on finite-

dimensional systems. In an infinite-dimensional quantum system, however, there can

be an infinite amount of entanglement present. The law of conservation of entangle-

ment by local operations becomes less clear in this case since adding or subtracting a

finite number from infinity still gives infinity. The idea here is born out of curiosity

as to what will happen if one starts manipulating an infinite amount of entanglement

using local operations. Is it possible to create some entanglement locally, if there is

an infinite amount of entanglement at one’s disposal? If it can be done, will the pro-

cess be convoluted due to the subtleties in manipulating infinite-dimensional Hilbert

spaces? Can infinite entanglement be modelled intuitively? The answers to all these

questions are yes, as we will find in the study the protocol for embezzlement that

“steals” finite entanglement from a resource state with infinite entanglement.

6.1 Embezzlement in tensor product model

Our first task is to tackle the problem of embezzlement of entanglement. The problem

is studied in [26] where the commuting operator model for embezzlement is estab-
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lished. We discuss the results in [26] as well as the C∗-model for embezzlement in this

thesis.

The original term “embezzlement” refers to stealing a tiny proportion from many

large sums of money so that the thief ends up with a sizable profit whereas the change

in the original accounts is unnoticeable. For example, if Eve could somehow take out

0.2 cents each from ten million bank accounts, she will up with $20000 without any

of the account owners even noticing anything.

The embezzlement of entanglement has a similar spirit. If Alice and Bob share a

large entangled state, can they use it to turn a pair of qubits in the product state into

a Bell state (or some other entangled state with non-trivial entanglement entropy)

using only local operations without making noticeable changes to the original state?

More formally, under the tensor-product model,

Definition 6.2 (Embezzlement of entanglement (tensor product)). Let HA and HB

be two Hilbert spaces owned by Alice and Bob, and let |ψ〉 ∈ HA ⊗ HB be a shared

state. Embezzlement of entanglement is a protocol where Alice and Bob each applies

some local unitaries UA ∈ U(C2⊗HA), UB ∈ U(HB ⊗C2) to turn |0〉⊗ |ψ〉⊗ |0〉 into
1√
2
(|0〉 ⊗ |ψ〉 ⊗ |0〉+ |1〉 ⊗ |ψ〉 ⊗ |1〉).

If the resulting state is 1√
2
(|0〉⊗|ψ′〉⊗|0〉+|1〉⊗|ψ′〉⊗|1〉) instead, where | 〈ψ|ψ′〉| ≈

1, the protocol is called approximate embezzlement.

Approximate embezzlement was studied by [8]. The authors showed that approx-

imate embezzlement could be achieved to arbitrary precision if the dimension of HA

and HB can be arbitrarily large. In [14], the authors devised a non-local game based

on the idea of embezzlement where the players can approximate embezzlement with

precision ε if they share entanglement of the size Ω(1
ε
).
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Since larger dimensional Hilbert spaces lead to better approximation, a natural

follow-up question is, if HA and HB are infinite-dimensional, can embezzlement be

achieved exactly?

Theorem 6.1. Embezzlement of entanglement is not possible under the tensor product

model, regardless of the dimension of HA and HB.

The proof is simply based on the idea that local operations cannot change Schmidt

coefficients.

Recall that backed in Chapter 3, we had Theorem 3.2 on Schmidt decomposition.

Theorem 6.2. Let HA and HB be two Hilbert spaces with arbitrary (potentially un-

countable) dimensions, and let |ψ〉 ∈ HA⊗HB be a bipartite state. Then there exists

a Schmidt decomposition

|ψ〉 =
∞∑
i=0

si |ui〉 ⊗ |vi〉 (6.1.1)

where the number of non-zero Schmidt coefficients are countable.

Knowing that the Schmidt coefficients exist and are always countable, we can

now finish off the proof of the no-go result. Let |ψ〉 =
∑

i si |ui〉 ⊗ |vi〉 be a Schmidt

decomposition of |ψ〉 ∈ HA ⊗HB, where si’s are sorted in descending order.

The largest Schmidt coefficients of the starting state |0〉 ⊗ |ψ〉 ⊗ |0〉 is s1; the

largest Schmidt coefficients of the target state 1√
2
(|0〉 ⊗ |ψ〉 ⊗ |0〉+ |1〉 ⊗ |ψ〉 ⊗ |1〉) is

1√
2
s1. Since local operations preserve Schmidt coefficients, the starting state cannot

be converted into the target state locally.
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× × × × × ×

· · ·

× × × × ×

Figure 6.1: Hilbert Hotel

6.2 Perfect Embezzlement and the Hilbert Hotel

While perfect embezzlement is not possible in the tensor product model, there seems

to be an intuitive way to achieve it with an infinite amount of entanglement. The

idea behind this is the famous “Hilbert Hotel”.

A Hilbert Hotel is an imaginary hotel with infinitely many rooms where all rooms

are full. If a new guest arrives, the hotel manager can simply ask every guest to

move to the next room adjacent to their original room, and the first room becomes

available.

As for embezzlement, if there are infinitely many Bell states in a quantum system,

is it possible to shift the state somehow so that one of the Bell states can be “swapped

out” with a separable state while the rest of the state remains unchanged? In this

case, since a separable state needs to be added and a Bell state needs to be removed

without altering the original state, the original state must contain infinitely many Bell

states and infinitely many separable states. Figure 6.2 describes such an imaginary

protocol.

Let |ψ〉 be a state with infinitely many qubit pairs shared between Alice and Bob,

indexed with integers from −∞ to ∞ (each circle represents a qubit). The qubits on

non-positive indices are in state |00〉 (disconnected circles on the left), and the qubit

pairs on positive indices are Bell states 1√
2
(|00〉 + |11〉) shared across Alice and Bob
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· · ·· · ·
Alice

Bob

-3 -2 -1 0 1 2 3 4

-3 -2 -1 0 1 2 3 4

Figure 6.2: Starting State of Embezzlement

· · ·· · ·

-3 -2 -1 0 1 2 3 4

-3 -2 -1 0 1 2 3 4

Figure 6.3: Left shift of Alice’s Qubits by 1

(connected circles on the right).

To perform embezzlement, Alice and Bob shift all of their qubits from index i to

i−1, so that the qubits at index 0 becomes a Bell state. Figure 6.3 shows the state of

the qubits if Alice shifts her qubits before Bob does anything, and Figure 6.4 shows

the states of the qubits when Bob shifts his qubits and Alcie does nothing. Figure 6.5

shows the final state when both Alice and Bob performed the left shift.

· · ·· · ·

-3 -2 -1 0 1 2 3 4

-3 -2 -1 0 1 2 3 4

Figure 6.4: Left shift of Bob’s Qubits by 1
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· · ·· · ·

-3 -2 -1 0 1 2 3 4

-3 -2 -1 0 1 2 3 4

Figure 6.5: Leftshift of Both Alice and Bob’s Qubits

Then, each of them swaps out their qubit at index 0 with an “outsider” qubit in

|0〉, as shown in Figure 6.6

· · ·· · ·

-3 -2 -1 0 1 2 3 4

-3 -2 -1 0 1 2 3 4

Figure 6.6: Swapping Out Qubits at Index 0

In the end, Alice and Bob end up with the original state |ψ〉 and a freshly swapped

out extra Bell state. The final state is shown in Figure 6.7

While the above protocol makes sense intuitively, we know it cannot be converted

into one that works in the tensor-product model due to the no-go theorem. If one

attempts to translate it, the very first hurdle is that a state that contains infinitely

many Bell states does not exist in the tensor product model. The Schmidt coefficients

of n maximally entangled qubit pairs are all
√

2
−n

, so the Schmidt coefficients of
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· · · +· · ·

-3 -2 -1 0 1 2 3 4

-3 -2 -1 0 1 2 3 4

Figure 6.7: Final state of embezzlement

infinitely many Bell states must be all 0, and a state cannot have all 0 Schmidt

coefficients.

6.3 Embezzlement in the Commuting Operator Model

The failure of embezzling with tensor product leads us to consider embezzlement in

the more general commuting operator model. While Alice and Bob cannot share

infinitely many Bell states in the tensor product model, there is no such restriction

in the commuting operator model.

Definition 6.3 (Embezzlement in Commuting Operators). Consider a quantum sys-

tem with HA ⊗ H ⊗ HB as its Hilbert space, where H is the Hilbert space shared

between Alice and Bob, and HA = HB = C2 are Alice and Bob’s private Hilbert space

of one qubit. Let A ⊆ B(C2 ⊗H) be Alice’s set of operators, and B ⊆ B(H⊗ C2) be

Bob’s set of local operators such that for all A ∈ A, B ∈ B,

(A⊗ I2)(I2 ⊗B) = (I2 ⊗B)(A⊗ I2). (6.3.1)

Embezzlement in the commuting operator model is a protocol with a starting state
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|ψ〉 ∈ H, and local unitaries A ∈ A, B ∈ B such that

(A⊗ I2)(I2 ⊗B) |0〉 ⊗ |ψ〉 ⊗ |0〉 =
1√
2

(|0〉 ⊗ |ψ〉 ⊗ |0〉+ |1〉 ⊗ |ψ〉 ⊗ |1〉) . (6.3.2)

The conditions for Equation 6.3.1 can be illustrated by the quantum circuit dia-

gram in Figure 6.8.

C2

A
H

B
C2

=
A

B

Figure 6.8: Operators That Commute for Embezzlement

The commuting operator protocol for embezzlement is illustrated by Figure 6.9.

|0〉
A

|ψ〉
B

|ψ〉
|0〉

 |00〉+ |11〉√
2

Figure 6.9: Commuting Operators Protocol for Embezzlement

Theorem 6.3. Embezzlement in the commuting operator model can be achieved.

We provide two proofs to the above theorem – a shorter existence proof based

on C∗-algebra and previous results from [8], and a longer constructive proof with the

explicit protocol.
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6.3.1 Existence of embezzlement protocol

The concept behind the existence proof of a perfect commuting operator strategy for

embezzlement is the following. We first define an abstract C∗-algebra that will capture

the essence of Alice and Bob’s commuting sets of operators for use for embezzlement.

We then consider properties of abstract states on the C∗-algebra that will allow the

state and the C∗-algebra can be converted into a commuting operator protocol for

embezzlement. Finally, we show that such state exists by converting the result from

about [8] approximate embezzlement into abstract states and taking the limit of those

abstract states. In the framework set up by [8], a perfect embezzlement strategy

cannot be achieved because the limit of their approximate embezzlement states does

not exist. In the abstract state framework, the system is closed so the limiting state

exists. By taking the abstraction, we convert an approximate tensor product strategy

into an exact C∗-algebra strategy, which in turn will can be converted into an exact

commuting operator strategy.

We start by looking into defining an algebra we call U2 that behaves like 2 × 2

unitary over some algebras. To define U2, we need to get a good understanding of the

structure of Alice and Bob’s unitary operators. We first take a look at the breakdown

of Alice’s unitary operator U ∈ B(C2 ⊗H).

U =

U00 U01

U10 U11

 =
1∑

i,j=0

|i〉 〈j| ⊗ Uij, Uij ∈ B(H). (6.3.3)

Since U is unitary, UU∗ = U∗U = ( I 0
0 I ) so Uij must satisfy the 8 constraints generated

by U00 U01

U10 U11

U∗00 U∗10

U∗01 U∗11

 =

I 0

0 I

 =

U∗00 U∗10

U∗01 U∗11

U00 U01

U10 U11

 . (6.3.4)
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Similarly, Bob’s unitary V =
∑1

i,j=0 Vij ⊗ |i〉 〈j| needs to satisfy 8 similar constraints.

Moreover, in order for Alice and Bob’s operators to commute,

(U ⊗ I2)(I2 ⊗ V ) = (I2 ⊗ V )(U ⊗ I2). (6.3.5)

Expanding the above equation to Uij and Vkl, we get the following proposition.

Proposition 6.4. Let U ∈ B(C2⊗H) and V ∈ B(H⊗C2), and write U =
∑1

i,j=0 |i〉 〈j|⊗

Uij, V =
∑1

k,l=0 Vkl ⊗ |k〉 〈l|. Then (U ⊗ I2)(I2 ⊗ V ) = (I2 ⊗ V )(U ⊗ I2) if and only

if UijVkl = VklUij.

Proof. We prove the equivalences by expanding the terms in the unitaries.

(U ⊗ I2)(I2 ⊗ V ) =

(∑
i,j

|i〉 〈j| ⊗ Uij ⊗ I2

)(∑
k,l

I2 ⊗ Vkl ⊗ |k〉 〈l|

)

=
∑
i,j,k,l

|i〉 〈j| ⊗ UijVkl ⊗ |k〉 〈l| .
(6.3.6)

Similarly,

(I2 ⊗ V )(U ⊗ I2) =
∑
i,j,k,l

|i〉 〈j| ⊗ VklUij ⊗ |k〉 〈l| . (6.3.7)

Equating Equation 6.3.6 with Equation 6.3.7 gives us UijVkl = VklUij as desired.

We note that for any AB = BA where A is invertible, A−1B = BA−1. Since

U is unitary, U−1 = U∗ so (U∗ ⊗ I2)(I2 ⊗ V ) = (I2 ⊗ V )(U∗ ⊗ I2). This gives

us U∗ijVkl = VklU
∗
ij for all i, j, k, l ∈ {0, 1}. This property is called {Uij} and {Vkl}

*-commute.

Next we dfine an algebra that is the abstraction of Uij where U = (Uij) is unitary.
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Let U2 be a ∗-algebra generated by 1 and uij for i, j ∈ {0, 1} satisfyingu00 u01

u10 u11

u∗00 u∗10

u∗01 u∗11

 =

1 0

0 1

 =

u∗00 u∗10

u∗01 u∗11

u00 u01

u10 u11

 . (6.3.8)

Then there exists a ∗-homomorphism π : U2 → B(H), π(uij) = Uij where
∑1

i,j=0 |i〉 〈j|⊗

Uij is a unitary. U2 captures all unitaries that can be broken down into 2× 2 blocks

of operators on H.

To make U2 a C∗-algebra. a norm needs to be defined. For x ∈ U2, let

‖x‖ = sup {‖π(x)‖ : π is a *-homomorphism} . (6.3.9)

This is the norm we adopt to take the completion in and make U2 a C∗-algebra.

We want our abstract algebra to capture the commutivity between Alice and

Bob’s operator U and V , or by Proposition 6.4, Uij and Vkl must commute. To

do this, we consider the C∗-algebra U2 ⊗max U2. There exists a ∗-homomorphism

π : U2 ⊗ U2 → B(H) where

π(uij ⊗ 1) = Uij, π(1⊗ vij) = Vij, (6.3.10)

such that U = (Uij) and V = (Vij) are unitaries, UijVkl = VklUij for all i, j, k, l ∈

{0, 1}.

Remark 6.3.1. We note that the generators of U2, uij themselves are not unitaries,

but the 2 × 2 matrix containing them ( u00 u01u10 u11 ) is a unitary. Moreover, U2 ⊗ U2 are

mapped to the decomposed version of Alice and Bob’s operators, which act on B(H)

instead of B(C2 ⊗H) for Alice and B(H⊗ C2) for Bob.

With U2 ⊗ U2 defined, we are equipped with the tool to prove the existence of

perfect commuting operator strategy for embezzlement.
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Theorem 6.5. A perfect commuting operator strategy for embezzlement exists if and

only if there exists a state s : U2 ⊗ U2 → C where the following four conditions are

satisfied.

• s(u00 ⊗ u00) = 1√
2

• s(u10 ⊗ u00) = 0

• s(u00 ⊗ u10) = 0

• s(u10 ⊗ u10) = 1√
2
.

To prove the existence of a perfect commuting operator strategy, we only need to

show the only if the direction of the above theorem. For completeness, we will include

the other direction of the proof as well.

Proof. (⇐) Assume there exists a state s satisfying the four equations listed above.

Applying the GNS construction on U2⊗U2 and s, we get a ∗-homomorphism π : U2⊗

U2 → B(H) and a state |ψ〉 ∈ H such that for all i, j,

π(uij ⊗ 1) = Uij, π(1⊗ ukl) = Vkl, UijVkl = VklUij (6.3.11)

and

〈ψ|UijVkl |ψ〉 = s(uij ⊗ vkl). (6.3.12)

Let U =
∑1

i,j=0 |i〉 〈j| ⊗ Uij and V =
∑1

kl=0 Vkl ⊗ |k〉 〈l|, then (U ⊗ I2)(I2 ⊗ V ) =

(I2 ⊗ V )(U ⊗ I2), and U , V are unitaries. Because s(u00 ⊗ u00) = s(u10 ⊗ u10) = 1√
2
,

1 = | 〈ψ|U00V00 |ψ〉 |2 + | 〈ψ|U10V10 |ψ〉 |2

≤ ‖U00V00 |ψ〉 ‖2 + ‖U10V10 |ψ〉 ‖2 (6.3.13)

≤ ‖U00V00 |ψ〉 ‖2 + ‖U10V10 |ψ〉 ‖2 + ‖U10V00 |ψ〉 ‖2 + ‖U00V10 |ψ〉 ‖2.
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We note that {U00V00, U10V00, U00V10, U10V10} is the entry of the first columns of the

unitary (U ⊗ I2)(I2 ⊗ V ). Applying (U ⊗ I2)(I2 ⊗ V ) to |0〉 |ψ〉 |0〉 gives us

‖U00V00 |ψ〉 ‖2 + ‖U10V10 |ψ〉 ‖2 + ‖U10V00 |ψ〉 ‖2 + ‖U00V10 |ψ〉 ‖2 = 1. (6.3.14)

Combining Equation 6.3.13 with Equation 6.3.14, we get

‖U10V00 |ψ〉 ‖ = ‖U00V10 |ψ〉 ‖ = 0⇒ U10V00 |ψ〉 = U00V10 |ψ〉 = 0; (6.3.15)

as well as

‖U00V00 |ψ〉 ‖ = ‖U10V10 |ψ〉 ‖ = | 〈ψ|U00V00 |ψ〉 | = | 〈ψ|U10V10 |ψ〉 | =
1√
2
, (6.3.16)

which gives us U00V00 |ψ〉 = U10V10 |ψ〉 = 1√
2
|ψ〉. Therefore,

(U ⊗ I2)(I2 ⊗ V ) |0〉 |ψ〉 |0〉 =
∑
ij

|i〉 ⊗ Ui0Vj0 |ψ〉 ⊗ |j〉

=
1√
2

(|0〉 |ψ〉 |0〉+ |1〉 |ψ〉 |1〉),
(6.3.17)

which is in line with the perfect embezzlement protocol.

(⇒) Assume that there exista perfect commuting operator protocol with U ∈

B(C2 ⊗H), V ∈ B(H⊗ C2) and |ψ〉 ∈ H so that

(U ⊗ I2)(I2 ⊗ V ) |0〉 |ψ〉 |0〉 =
1√
2

(|0〉 |ψ〉 |0〉+ |1〉 |ψ〉 |1〉). (6.3.18)

Decompose U and V into U =
∑

ij |i〉 〈j| ⊗ Uij and V =
∑

ij Vij ⊗ |i〉 〈j|. Define a

∗-homomorphism π : U2⊗U2 → B(H) to be π(uij ⊗ 1) = Uij and π(1⊗ uij = Vij, and

state s : U2 ⊗ U2 → C to be s(uij ⊗ vkl) = 〈ψ|UijVkl |ψ〉. Then from Equation 6.3.18,

we have

U00V00 |ψ〉 = U10V10 |ψ〉 =
1√
2
|ψ〉 , U10V00 |ψ〉 = U00V10 |ψ〉 = 0, (6.3.19)
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which in turn gives us

s(u00 ⊗ u00) = s(u10 ⊗ u10) =
1√
2
, s(u10 ⊗ u00) = s(u00 ⊗ u10) = 0. (6.3.20)

To finish up the existence proof, we need to show the aforementioned state s

indeed exists.

Theorem 6.6. There exists a state s : U2⊗U2 → C that satisfies the four equations in

Theorem 6.5, and as a result, a perfect commuting operator strategy for embezzlement

exists.

Proof. In [8], the authors showed that for any integer n, there exists an n-dimensinoal

Hilbert space Hn, a state |ψn〉 ∈ Hn, as well as unitary operators Un ∈ B(C2 ⊗Hn)

and Vn ∈ B(Hn ⊗ C2). such that

‖(Un ⊗ I2)(I2 ⊗ Vn)(|0〉 |ψn〉 |0〉)−
1√
2

(|0〉 |ψn〉 |0〉+ |1〉 |ψn〉 |1〉)‖ <
1

n
. (6.3.21)

These operators induce ∗-homomorphisms πn : U2 → U2 → B(Hn) together with a

state s : U2 ⊗ U2 → C2 defined as s(x) = 〈ψn| πn(x) |ψn〉. The state sn then satisfy

• |sn(u00 ⊗ u00)− 1√
2
| < 1

n

• |sn(u10 ⊗ u00)| < 1
n

• |sn(u00 ⊗ u10)| < 1
n

• |sn(u10 ⊗ u10)− 1√
2
| < 1

n
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The sequence of state {sn} leads to a limit of these states s = limn→∞ sn. The

limiting state s exists because a C∗-algebra, U2 ⊗ U2 in our case, is compact in the

weak *-topology1. Since s is the limit of {sn}, it will satisfy the four conditions in

Theorem 6.5.

6.3.2 Construction of embezzlement protocol

Recall that the state for embezzlement from the Hilbert Hotel intuition consists of

infinitely many |00〉 pairs and infinitely many Bell pairs. To model it in with a Hilbert

space, we consider a countably infinite-dimensional Hilbert space where all but finitely

many qubits are fixed.

To model infinitely many |00〉 qubit pairs, let x, y ∈ N0 be integers in binary, and

xi, yi are the i-th binary digits of x and y. We express a basis state as |· · ·x2x1x0, · · · y2y1y0〉,

or as |x, y〉, where xi and yi are the state of the i-th qubit for Alice and Bob.

Next, consider the infinitely many Bell basis states, where all but finitely many

qubit pairs are in 1√
2
|00〉+ 1√

2
|11〉. Instead of using the computational basis, we use

the Bell basis as shown in Table 6.1 for each of the qubit pairs.

More succinctly, a basis state |ab〉 in the Bell basis is

1√
2
|0b〉+

1√
2

(−1)a|1b̄〉. (6.3.22)

in the computational basis, where b̄ is the negation of the bit value of b.
1Let A be a C∗-algebra and S(A) denote the set of all states on A Then S(A) is a convex set

and is closed under weak *-topology, meaning any net of sates {sλ} converges to a state s if and

only if limλ |sλ(a)− s(a)| = 0 for all a ∈ A
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Bell Basis Computational basis

|00〉 1√
2
|00〉+ 1√

2
|11〉

|01〉 1√
2
|01〉+ 1√

2
|10〉

|10〉 1√
2
|01〉 − 1√

2
|10〉

|11〉 1√
2
|00〉 − 1√

2
|11〉

Table 6.1: Bell to Computational Basis

Again, let x, y ∈ N0 be two binary integers, but this time with negative indices

i ∈ Z−. We denote a basis state as |0.x−1x−2x−3 · · · , 0.y−1y−2y−3 · · · 〉 where x−j and

y−j represent the state of the qubit pair in position −j for Alice and Bob in the Bell

basis. For example, the state |0.0, 0.0〉 is a state where all qubit pairs are in the state

|00〉 of the Bell basis, or 1√
2
|00〉 + 1√

2
|11〉 in the computational basis; and the state

|0.01, 0.10〉 is a state where qubit pair in position −1 are in state |10〉 of the Bell

basis, which is 1√
2
|00〉− 1√

2
|11〉, and qubit pair in position −2 are in state |01〉 of the

Bell basis, which is 1√
2
|01〉+ 1√

2
|10〉.

By taking the tensor product of the two aforementioned Hilbert spaces, we get

a countably infinite-dimensional Hilbert space where half of the states are in the

computational basis, and the other half are in the Bell basis. It is convenient to

denote an orthonormal basis of this combined Hilbert space as

|· · ·x2x1x0 · x−1x−2 · · · , · · · y2y1y0 · y−1y−2 · · · 〉 , (6.3.23)

where x and y are two-way infinite binary strings with all but finitely many bits set

to 0. The non-negative indices are qubits in the computational basis, and the neg-

ative indices are qubits in the Bell basis, separated by the centred dot as a marker.
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This gives a state with infinitely many |01〉 in the computational basis on the left

(non-negative indices), and infinitely many |00〉 in the Bell basis on the right (neg-

ative indices). The centred dot · is used as an indicator to separate between the

computational and Bell basis.

To achieve embezzlement, we need to define operators that mimic the action of

shifting and swapping qubits on the Hilbert space.

6.3.3 Left-shift operations

We start by considering the left-shift operator where all the qubits are shifted to the

left by 1. First, let L1 be the simple shift operation that moves the digits of x and y:

L1 |· · ·x2x1x0 · x−1x−2 · · · , · · · y2y1y0 · y−1y−2 · · · 〉 (6.3.24)

= |· · ·x1x0x−1 · x−2x−3 · · · , · · · y1y0y−1 · y−2y−3 · · · 〉 . (6.3.25)

L1 is a unitary because it is a permutation of the basis states. However, L1 does

not implement the desired left shift because the qubits in position −1 are in the Bell

basis, but the qubits in position 0 are in the computational basis. L1 simply moved

the bit value without performing a basis conversion. To properly perform a left shift,

a basis conversion at position 0 must be done.

Let L2 be the operator that converts the 0th qubit pair from Bell to computational

basis:

L2 |· · ·x2x1x0 · x−1x−2 · · · , · · · y2y1y0 · y−1y−2 · · · 〉 (6.3.26)

=
1√
2
|· · ·x2x10 · x−1x−2 · · · , · · · y2y1y0 · y−1y−2 · · · 〉 (6.3.27)

+
1√
2

(−1)x0 |· · ·x2x11 · x−1x−2 · · · , · · · y2y1ȳ0 · y−1y−2 · · · 〉 . (6.3.28)
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L2 is a unitary because it is a direct sum of 4×4 unitaries. Lastly, define L = L2L1

to be the left-shift operator, which is also a unitary since both L1 and L2 are unitaries.

L is a unitary that maps |0.0, 0.0〉 to 1√
2
|0.0, 0.0〉 + 1√

2
|1.0, 1.0; 〉, which is the

overall effect we would like to achieve using after both Alice and Bob performed their

left shift in the Hilbert Hotel model. Ideally, we would like to decompose L into two

local (aka commuting) left-shift operations for Alice and Bob. However, it turns out

that the Hilbert space has to be enlarged to accommodate local left shifts.

As shown in Figure 6.3, when Alice shifts all her qubits to the left by one, and

Bob’s qubits are unchanged, the indices of the Bell basis become misaligned. Consider

i ∈ Z−. Before the shift, qubits in xi and yi are in the Bell basis; however, after the

shift, qubits xi and yi+1 are in the Bell basis instead. The new states in the misaligned

basis are not in the original Hilbert space, since they have infinitely many misaligned

Bell states, and cannot be expressed in terms of linear combinations of the original

basis states.

Moreover, if Alice can perform a local left shift, she should also be allowed to

perform it arbitrarily many times, as well as its inverse. Each time Alice performs a

local left (or right) shift without Bob, the offset for the misalignment of the Bell basis

changes. For example, performing the local left-shift r times will put qubit xi and

yi+r in the Bell basis for all i ∈ Z−. As a result, the Hilbert space must be enlarged

to accommodate states with any offset value.

Let H be a Hilbert space with an orthonormal basis |r, x, y〉, where r ∈ Z is the

offset value, and x, y are the same two-way infinite binary strings defined earlier.

The state |r, x, y〉 can be interpreted as the following. xi and yi are qubit pairs in

the aligned basis (computational or Bell depending on the value of i). However, since
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there is an offset between the alignment of the physical qubits, while yi is the state

of the i-th qubit for Bob, xi is the state of the i− r-th qubit for Alice.

Define Alice’s left shift LA as

LA|r, x, y〉 = |r + 1, x, y〉 . (6.3.29)

We extend the overall left-shift operation L0 to this new Hilbert space by per-

forming L0 on x and y and leaving the offset r unchanged.

Since LA and L act on different components of the Hilbert space, they commute.

This allows us to define Bob’s local left shift as

LB = LL∗A. (6.3.30)

Alice’s left shift changes the offset of the alignment of the Bell basis from r to r + 1,

and when Bob performs a left shift, this offset gets reversed from r + 1 to r (which

is the action of L∗A), and the pair of qubits at index 0 changes from the Bell basis to

the computational basis (which is the action of L).

6.3.4 Swap operations

The next step is to define the local operators that can swap out Alice and Bob’s 0-th

qubit in H with their local qubits in HA and HB, as shown in Figure 6.6. We need

to create operators that satisfy the correct commuting relation with LA and LB.

Let SB be Bob’s local swap defined as the local unitary acting on H⊗HB:

SB |r, x, · · · y1y0 · y−1 · · ·〉 ⊗ |t〉 = |r, x, · · · y1t · y−1 · · ·〉 ⊗ |y0〉 . (6.3.31)
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SB is clearly a unitary and commutes with LA ⊗ I2 since they act on different com-

ponents of |r, x, y〉.

The corresponding Alice’s swap is, however, more complicated. We start by con-

sidering the same naïve swap as Bob’s. Let S̃A be the following unitary

S̃A |s〉 ⊗ |r, · · ·x1x0 · x−1 · · · , y〉 = |x0〉 ⊗ |r, · · ·x1s · x−1 · · · , y〉 . (6.3.32)

Recall that r is the offset for Alice’s left shift, and as a result, x0 does not describe

the 0-th qubit in Alice’s system: the state of Alice’s 0-th qubit is described by x−r.

Performing the naïve swap directly will swap out the wrong qubit. Moreover, S̃A

does not commute with LB. To correctly swap out Alice’s qubit in position 0, we first

define the controlled-L, denoted as C, acting on H as the following:

C |r, x, y〉 = Lr |r, x, y〉 . (6.3.33)

C is a unitary since each Lr is unitary, and C is a direct sum of all Lr. Essentially,

applying C to |r, x, y〉 re-aligns Alice’s physical qubit location with the corresponding

index of the state.

Define Alice’s actual swap as

SA = (I2 ⊗ C∗)S̃A(I2 ⊗ C). (6.3.34)

It is clear that SA is unitary. The last step is to show that SA commutes with SB

and LB. Since the effect of SA is localized to Alice’s qubits and the effect of SB is

localized to Bob’s qubits, SA must commute with SB.

Next, we consider a basis state |s〉 ⊗ |r, x, y〉 ∈ HA ⊗H. Since S̃A is independent
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of the value of r, S̃A commutes with I ⊗ LA,

SA(I2 ⊗ LB) |s〉 ⊗ |r, x, y〉 = (I2 ⊗ C∗)S̃A(I2 ⊗ CLB) |s〉 ⊗ |r, x, y〉 (6.3.35)

= (I2 ⊗ C∗)S̃A(I2 ⊗ CL) |s〉 ⊗ |r − 1, x, y〉 (6.3.36)

= (I2 ⊗ L1−r)S̃A(I2 ⊗ Lr) |s〉 ⊗ |r − 1, x, y〉 (6.3.37)

= (I2 ⊗ L1−r)S̃A(I2 ⊗ LrL∗A) |s〉 ⊗ |r, x, y〉 (6.3.38)

= (I2 ⊗ LL∗AL−r)S̃A(I2 ⊗ Lr) |s〉 ⊗ |r, x, y〉 (6.3.39)

= (I2 ⊗ LBC∗)S̃A(I2 ⊗ C) |s〉 ⊗ |r, x, y〉 (6.3.40)

= (I2 ⊗ LB)SA |s〉 ⊗ |r, x, y〉 . (6.3.41)

This shows that SA commutes with I2⊗LB, and as a result it is a valid operator for

Alice.

6.3.5 The protocol

The last step is to put everything together to create the protocol for embezzlement.

Alice and Bob start with the shared state |0, 0.0, 0.0〉, apply LA and LB, then swap

out qubits in position 0 of H with HA and HB using SA and SB. Alice’s operation is

UA = SALA, and Bob’s operation is UBSBLB. UA and UB clearly commute, and the

evolution of the state during the protocol is:

0. Initial state: |0〉 ⊗ |0, 0.0, 0.0〉 ⊗ |0〉

1. after LALB: |0〉 ⊗
(

1√
2
|0, 0.0, 0.0〉+ 1√

2
|0, 1.0, 1.0〉

)
⊗ |0〉

2. after SASB: 1√
2
|0〉 ⊗ |0, 0.0, 0.0〉 ⊗ |0〉+ 1√

2
|1〉 ⊗ |0, 0.0, 0.0〉 ⊗ |1〉
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This completes the embezzlement protocol in the commuting operator framework.

On the surface, converting the state |0〉⊗|0, 0.0, 0.0〉⊗|0〉 to 1√
2
|0〉⊗|0, 0.0, 0.0〉⊗

|0〉 + 1√
2
|1〉 ⊗ |0, 0.0, 0.0〉 ⊗ |1〉 might appear to be too simple and perhaps almost

as if we are somehow “cheating”. However, the carefully defined left shift LA and

LB are performing all the necessary hard work behind the scene such as the basis

transformation from the Bell to computational basis. This basis change is critical to

embezzlement as it ensures that the state |0, 0.0, 0.0〉 is not a simple separable state,

but a rather state with infinitely many Bell basis hidden in it.

6.4 Embezzlement in the C∗-model

While the evolution of the state for the embezzlement protocol at the end was rela-

tively simple, the construction of the states and operators was far less straightforward.

Starting from a simple idea of shift and swap, one may even find the final construction

overly convoluted. After all, the construction had to handle a direct sum of infinitely

many infinite-dimensional Hilbert spaces arising from the local shift offset, changing

between computational basis and Bell basis at the correct position, keeping track

of the difference between the position of physical qubits and logical indices, as well

as making sure that the correct commutation relation is satisfied. While we are not

excluding the possibility that a simpler protocol for embezzlement may exist, the pro-

tocol above is a relatively straightforward reflection of the idea behind embezzlement

based on the Hilbert Hotel’s intuition. However, if we consider the C∗-model, we can

come up with a cleaner solution for embezzlement.

The work with the C∗-model, we need first to find a reasonable definition for

embezzlement. Recall that in the C∗-model, Alice and Bob each own some C∗-algebra,
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and a shared state is an abstract state acting on the tensor product of the two C∗-

algebras.2 To perform embezzlement, we first define the C∗-algebra corresponding to

the single-qubit state.

Let M2 := B(C2) be the algebra of 2× 2 matrices, corresponding to single qubits.

Let s0 : M2 → C be a state that corresponds to |0〉: for all M ∈M2,

s0(M) = 〈0|M |0〉 . (6.4.1)

Define sbell : M2 ⊗M2 → C two be the two-qubit state corresponding to the Bell

state: for any M,N ∈M2,

sbell(M ⊗N) =
1

2
[(〈00|+ 〈11|)M ⊗N(|00〉+ |11〉)]. (6.4.2)

Definition 6.4. Embezzlement under the C∗-model is a protocol with two C∗-algebras

A and B, an abstract state s : A ⊗ B → C, and *-automorphisms αA : M2 ⊗ A →

M2 ⊗A, αB : M2 ⊗ B →M2 ⊗ B,3 such that for all M,N ∈M2, A ∈ ⊗A, B ∈ ⊗B,

(s0 ⊗ s0 ⊗ s)(αA ⊗ αB(M ⊗N ⊗ A⊗B)) = sbell(M ⊗N)⊗ s(A⊗B). (6.4.3)

Knowing that embezzlement can be achieved in the commuting operator model,

it is not surprising that,

Theorem 6.7. Embezzlement protocol can be achieved in the C∗-model.
2We will not get into the discussion of which tensor product should be used to define the protocol,

since our protocol uses CAR-algebra as the local C∗-algebras, and all the tensor product between

CAR-algebras are the same. In the definition, ⊗ between two C∗-algebras can be any tensor product.
3To simplify the expression, we let αA⊗αB act on M2⊗M2⊗A⊗B instead of M2⊗A⊗M2⊗B

where the location of the center two C∗-algebras are swapped. αA acts on the first and third

C∗-algebra and αB acts on the second and fourth C∗-algebra in the tensor product.
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6.4.1 The state

Recall that a CAR algebra C is a C∗-algebra that consists of infinitely many Paulis

with finite weight, and can be used to describe a quantum system with infinitely

many qubits. Let C be a CAR algebra. Similar to the construction in the commuting

operator framework, we first consider the state that corresponds to infinitely many

|00〉 states and infinitely many Bell states.

Let s00 : C ⊗ C → C be an abstract state where for any XaZb, XcZd ∈ C,

s|00〉(X
aZb ⊗XcZd) =

∞∏
i=0

〈00|XaiZbi ⊗XciZdi |00〉 . (6.4.4)

The two CAR algebras will be part of Alice and Bob’s local C∗-algebras.

Similarly, let s|ψ〉 : C⊗C → C be an abstract state where for any XaZb, XcZd ∈ C,

s|ψ〉(X
aZb ⊗XcZd) =

∞∏
i=0

〈ψ|XaiZbi ⊗XciZdi |ψ〉 (6.4.5)

where |ψ〉 = 1√
2
|00〉+ 1√

2
|11〉.

Again, the first CAR algebra belongs to Alice and the second CAR algebra belongs

to Bob.

To combine the two, consider the C∗-algebra A = B = C ⊗ C, which is also a

CAR algebra. Consider XaZb ∈ A. For a and b, instead of using binary strings with

natural numbers as indices, we use two-way infinite binary strings where its indices

are integers. The non-negative indices are the qubits in the computational basis, and

the negative indices are the qubits in the Bell basis. Let s : A⊗B → C be an abstract

state where for any XaZb ∈ A, XcZd ∈ B,

s(XaZb⊗XcZd) =
∞∏
i=0

〈00|XaiZbi⊗XciZdi |00〉
−∞∏
i=−1

〈ψ|XaiZbi⊗XciZdi |ψ〉 . (6.4.6)
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Essentially, s is s|00〉⊗ s|ψ〉 where the CAR algebras are rearranged in different order.

We let A be Alice’s C∗-algebra and B be Bob’s C∗-algebra.

6.4.2 The local operators

The next step is to define the ∗-automorphisms that correspond to shifting and swap-

ping out qubits.

The goal of the shift is to move the qubit pairs in the direction such that the qubit

at index 0 converts from |00〉 to a Bell state. Based on the state s defined above,

qubit i needs to be shifted to qubit i + 1. Shifting the index of the qubit up by one

is equivalent to shifting the index of the operators down by one.

Let Σ be the set of all two-way infinite (integer indices) binary strings with finitely

many 1’s. Let π : Σ→ Σ be the following shift operation: for all a ∈ Σ, π(a)i = ai+1.

Let απ : A → A be a linear map such that for all XaZb ∈ A,

απ(XaZb) = Xπ(a)Xπ(b). (6.4.7)

It is not difficult to see that απ is a ∗-automorphism. ∗ preservation: απ(XaZb)∗ =

Xπ(a)Xπ(b) = απ((XaZb)∗); existence of inverse: α−1
π (XaZb) = Xπ−1(a)Zπ−1(b) where

π−1(a)i = ai−1. To show that it is a homomorphism, we use the fact that απ is a

bit-wise operation.

Since X and Z anti-commute, XaZb = (−1)f(a,b)ZbXa. f : Σ × Σ → {0, 1} can

be defined as f(a, b) =
⊕∞

i=0 ai ∧ bi, where ∧ and ⊕ are the binary operators AND

129



and XOR. It is clear that f(a, b) = f(π(a), π(b)) for all a, b. For XaZb, XcZd ∈ C,

απ(XaZbXcZd) = (−1)f(b,c)απ(Xa⊕cZb⊕d) (6.4.8)

= (−1)f(π(b),π(c))Xπ(a)Xπ(c)Zπ(b)Zπ(d) (6.4.9)

= Xπ(a)Zπ(b)Xπ(c)Zπ(d) (6.4.10)

= απ(XaZb)απ(XcZd). (6.4.11)

απ is the local shift operation for both Alice and Bob. (A = B so απ is also defined

for Bob).

The swap operation is exactly as one might expect. We use a different a font a, b

to denote single bits while a, b are infinite strings. Let αswap : M2⊗A be a linear map

such that for any XaZb ⊗XaZb ∈M2 ⊗A, a, b ∈ {0, 1}, a, b ∈ σ

αswap(XaZb ⊗XaZb) = Xa0Zb0 ⊗Xa′Zb′ (6.4.12)

where

a′0 = a, b′0 = b and a′i = ai, b
′
i = bi for i 6= 0. (6.4.13)

It is clear that αswap preserves ∗, and it is its own inverse. The proof for αswap

being a homomorphism is almost exactly the same as the proof for απ:

αswap((XaZb ⊗XaZb)(XcZd ⊗XcZd)) (6.4.14)

= (−1)b⊕c⊕f(b,c)Xa0Xc0Zb0Zd0 ⊗Xa′Xc′Zb′Zd′ (6.4.15)

= (−1)b0⊕c0⊕f(b′,c′)Xa0Xc0Zb0Zd0 ⊗Xa′Xc′Zb′Zd′ (6.4.16)

= Xa0Zb0Xc0Zd0 ⊗Xa′Zb′Xc′Zd′ (6.4.17)

= αswap(XaZb ⊗XaZb)αswap(XcZd ⊗XcZd). (6.4.18)

Again, αswap is the local swap operation for Alice and Bob.
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6.4.3 The protocol

Let αA = αB = (I ⊗ απ) ◦ αswap. The last step is to show that the state s and

the ∗-automorphisms indeed achieve embezzlement. We start by applying the ∗-

automorphism on generators of the C∗-algebra,

αA ⊗ αB(XaZb ⊗XcZd ⊗XaZb ⊗XcZd) (6.4.19)

= (I ⊗ I ⊗ απ ⊗ απ)(αswap ⊗ αswap(XaZb ⊗XcZd ⊗XaZb ⊗XcZd))

(6.4.20)

= Xa0Zb0 ⊗Xc0Zd0 ⊗ απ(Xa′Zb′)⊗ απ(Xc′Zd′) (6.4.21)

= Xa0Zb0 ⊗Xc0Zd0 ⊗Xπ(a′)Zπ(b′) ⊗Xπ(c′)Zπ(d′). (6.4.22)

Finally by applying the state s0 ⊗ s0 ⊗ s to the resulting element, we show that
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embezzlement is indeed achieved:

s0 ⊗ s0 ⊗ s(Xa0Zb0 ⊗Xc0Zd0 ⊗Xπ(a′)Zπ(b′) ⊗Xπ(c′)Zπ(d′)) (6.4.23)

= 〈0|Xa0Zb0 |0〉 〈0|Xc0Zd0 |0〉
∞∏
i=0

〈00|Xa′i+1Zb′i+1 ⊗Xc′i+1Zd′i+1 |00〉

−∞∏
i=−1

〈ψ|Xa′i+1Zb′i+1 ⊗Xc′i+1Zd′i+1 |ψ〉 (6.4.24)

= 〈0|Xa0Zb0 |0〉 〈0|Xc0Zd0 |0〉 (Change of indices)
∞∏
i=1

〈00|Xa′iZb′i ⊗Xc′iZd′i |00〉

−∞∏
i=0

〈ψ|Xa′iZb′i ⊗Xc′iZd′i |ψ〉 (6.4.25)

= 〈0|Xa0Zb0 |0〉 〈0|Xc0Zd0 |0〉 (By Eq 6.4.13)
∞∏
i=1

〈00|XaiZbi ⊗XciZdi |00〉

〈ψ|XaZb ⊗XcZd |ψ〉
−∞∏
i=−1

〈ψ|XaiZbi ⊗XciZdi |ψ〉 (6.4.26)

=
∞∏
i=0

〈00|XaiZbi ⊗XciZdi |00〉 (Change of indices)

−∞∏
i=−1

〈ψ|XaiZbi ⊗XciZdi |ψ〉 〈ψ|XaZb ⊗XcZd |ψ〉 (6.4.27)

=sbell ⊗ s(XaZb ⊗XcZd ⊗XaZb ⊗XcZd). (6.4.28)

This shows that we indeed end up with a Bell state and a copy of the original

state, which finishes our embezzlement protocol.
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6.5 Comments on embezzlement

We showed that embezzlement cannot be achieved perfectly in the tensor product

model, but can be achieved under the commuting operator and the C∗-model. In the

commuting operator model, the embezzlement protocol requires careful manipulation

of the Hilbert spaces and the operators. As one might have noticed, Alice and Bob’s

full set of commuting operators was never defined. The only operator defined in the

protocol is the shift and swap operators. There is no information on what Alice and

Bob could perform as measurements on their joint Hilbert space. Since in the com-

muting operator framework, the notion of locality depends solely on the commuting

sets of operators, the lack of fully defined commuting sets of operators makes the

description of locality in this quantum system incomplete. One natural question is,

given the missing information, is there actually an infinite amount of entanglement

in the shared state between Alice and Bob? To put it more bluntly, is it possible

that Alice and Bob (well, the author) cheated in this protocol? Luckily, even with in-

complete information, this protocol achieved something that was not achievable with

a finite amount of entanglement. In particular, the following restrictions made sure

that an infinite amount of entanglement must exist in the protocol even with very

few operators defined.

1. Alice and Bob need to convert a product state to a Bell state.

2. The only allowed operators are local unitaries

3. The shared state must remain unchanged after the protocol.

Condition 2 ensures that the total amount of entanglement between Alice and Bob

cannot change, while Condition 1 and 3 forces the shared amount of entanglement
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to increase by a constant amount. If the total amount of entanglement is finite,

increasing it by a constant amount would violate Condition 2. Satisfying all three

conditions at the same time ensures that the shared state must capture some form of

infinite entanglement.

In contrast, the C∗-model has a more complete description of the quantum system.

The set of measurements operators Alice and Bob can perform on any state is defined

by the CAR algebra. A lot of the work done to show how embezzlement works in the

C∗-model is to show that these local measurement operators are still well defined and

behave as one would expect them to.

Moreover, as discussed earlier, in the commuting operator framework, the state

|0, 0.0, 0.0〉 contains infinitely many Bell basis. This is not obvious by looking at the

state itself and only becomes apparent when the left shift operators are applied. In

the C∗-model, the fact that the state s contains infinitely many Bell basis is clear

from its definition.

The Hilbert space H in the commuting operator framework only accepts states

that have a particular structure that can be expressed in terms of finite non-zero

binary strings in the computational basis and the Bell basis and their shifted versions.

A state that has infinitely many |11〉 on the left in the computational basis, for

example, is not part of the Hilbert space. In the C∗-model, in contrast, there is more

freedom to what a state can be; the aforementioned state that was outside the Hilbert

space in the commuting operator model can be easily defined in the C∗-model. The

only catch is that if multiple states are defined in the C∗-model when converting it to

the commuting operator model, the GNS construction may need to be applied to each

state and the resulting Hilbert space will have to be a direct sum of all the Hilbert

spaces arising from different states.
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Chapter 7

Self-embezzlement

In essence, embezzlement of entanglement is a protocol that extracts a Bell state

from a state containing infinitely many Bell states. It matches with the intuition

that infinity plus one is still infinity. Naturally, one may wonder, since infinity plus

infinity is also infinity, whether it is possible to create a protocol that turns infinitely

many Bell states into two copies of the same state. This is answered by studying the

problem of self-embezzlement [7]. Self-embezzlement has a very interesting property

that while it is possible to come up with a protocol under the commuting operator

and the C∗-model, no protocol under the tensor product of the Hilbert space model

exists to approximate it. This in turn shows a gap between the tensor product of the

Hilbert space model and the commuting operator model. Another protocol with the

similar property of a gap between the tensor product and the commuting operator

model is the task of steering studied in [21].
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7.1 Definitions of Self-embezzlement

Self-embezzlement is a variation of embezzlement. Instead of creating a single pair

of Bell states locally using some resource state as a catalyst, the goal is to create

a copy of the resource catalyst state using only local operations. In other words,

self-embezzlement turns a state |ψ〉 ⊗ |00〉 into |ψ〉 ⊗ |ψ〉 with local operations. If

|ψ〉 is a product state, self-embezzlement is trivial. Therefore, we require |ψ〉 to

contain some non-trivial amount of entanglement for self-embezzlement. Informally,

self-embezzlement must satisfy the following conditions.

1. Alice and Bob each have two quantum systems A1, A2, B1, and B2. (A1,A2) is

the joint local system for Alice and (B1,B2) is the joint local system for Bob.

2. There is a resource (catalyst) state |ψ〉 on the joint system (A1,B1), and |ψ〉 is

non-trivially entangled. More specifically, |ψ〉 must be able to maximally violate

the CHSH inequality by a factor of
√

2 across A1 and B1.

3. The initial state shared between Alice and Bob is |ψ〉 on (A1,B1), some state

|φA〉 on A2 and |φB〉 on B2. We denote this by |ψ〉 ⊗ |φA〉 ⊗ |φB〉

4. Alice and Bob are allowed to perform local operations on their local systems.

5. The final state after their local operations is |ψ〉 on (A1,B1), and |ψ〉 on (A2,B2),

denoted by |ψ〉 ⊗ |ψ〉.

Approximate self-embezzlement is the same as above, except it allows |ψ〉 to vio-

late the CHSH inequality by a factor
√

2−ε, and the final state to be an approximation

of |ψ〉 ⊗ |ψ〉 with fidelity 1− ε.
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Based on the above principles, we can define self-embezzlement in the conventional

tensor product model, the commuting operator model, as well as the C∗-model.

7.1.1 Tensor product model

We start by defining what self-embezzlement is in the tensor product mode.

Definition 7.1. A self-embezzling scheme is a tuple of the form (HA,HB, |ψ〉 , |φA〉 , |φB〉 , UA, UB)

where

1. HA and HB are Hilbert spaces (for quantum system Ai and Bi, i ∈ {1, 2}).

2. |ψ〉 ∈ HA ⊗ HB is a state (unit vector) that violates the CHSH inequality by

factor
√

2− ε.

3. |φA〉 ∈ HA, |φB〉 ∈ HB are two quantum states.

4. UA ∈ B(HA ⊗HA) is a unitary, and UB ∈ B(HB ⊗HB) is a unitary.

5. Let Π(UA ⊗UB) be the unitary UA ⊗UB acting on HA ⊗HB ⊗HA ⊗HB where

the order of the center two Hilbert spaces are swapped. 1

6. Applying Π(UA ⊗ UB) on |ψ〉 ⊗ |φA〉 ⊗ |φB〉 results in the state |ψ〉 ⊗ |ψ〉.

If we change Condition 6 to the following, we have the definition of an ε-approximate

self-embezzlement scheme.

6’. Applying Π(UA ⊗ UB) on |ψ〉 ⊗ |φA〉 ⊗ |φB〉 yields a state within fidelity 1 − ε

to |ψ〉 ⊗ |ψ〉.
1Π does not have any physical implication; it is only a notation to ensure that the unitaries are

acting on the intended quantum systems.
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7.1.2 C∗-model

We can define self-embezzlement in the C∗-model similar to the definition of it in the

tensor product model.

Definition 7.2. A self-embezzling scheme is a tuple of the form (A,B, ψ, φA, φB, αA, αB)

where

1. A and B are C∗-algebras corresponding to (respective) quantum systems Ai and

Bi, i ∈ {1, 2}.

2. ψ : A⊗min B → C is a pure abstract state that violates the CHSH inequality by

factor
√

2.

3. φA : A → C, φB : B → C are two pure abstract states.

4. αA : A ⊗min A → A ⊗min A and αB : B ⊗min B → B ⊗min B are two ∗-

automorphisms.2

5. Let Π(αA⊗αB) be the ∗-automorphism applied on A⊗minB⊗minA⊗minB where

the center two C∗-algebras are swapped.

6. Applying Π(αA ⊗ αB) maps the state ψ ⊗ φA ⊗ φB to ψ ⊗ ψ.

The main difference between the tensor product model and the C∗-model, apart

from the abstraction, is that the evolution operator of the state in the C∗-model are

local ∗-automorphisms instead of local unitaries.
2We choose to adopt the min tensor product in this definition to make the definition of self-

embezzlement as restrictive as possible. This is not an issue since under the min tensor product,

self-embezzlement is achievable.
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7.1.3 Complications in the Commuting Operator Model

While the definition of self-embezzlement under the tensor product model and the

C∗-model have a lot of similarities, it is more involved to define self-embezzlement

in the commuting operator model properly. There is only one Hilbert space H in

the commuting operator model. To describe the four quantum systems A1,A2,B1,B2,

there must be four corresponding set of operators that mutually commute, denoted

by A1, A2, B1, B2.

In order for the final state |ψ〉 ⊗ |ψ〉 to make sense, (A1,B1) must share the same

structure as (A2,B2) so that the state |ψ〉 can exist on both joint systems. In the

previous two definitions, this was achieved using the same underlying mathematical

model to describe the systems; HA for both A1 and A2, HB for both B1 and B2 for

example.

In the commuting operator model, however, A1 and A2 are two individual sets of

operators on H that mutually commute. So we need a way to express the fact that

A1 and A2 share the same structure. (Of course, the same property must also apply

to B1 and B2.)

Moreover, we need to consider how to define the allowed set of operators on joint

systems, such as (A1,A2), in the commuting operator framework.

To address the problem where A1 and A2 must share the same structure, we

require A1 and A2 to be ∗-isomorphisms.

Define SA : A1 → A2 to be the ∗-isomorphism between A1 and A2, then A1 ∈ A1

gets mapped to its equivalent SA(A1) ∈ A2. Similarly, we require B1 to be isomorphic

to B2 with ∗-isomorphism SB : B1 → B2.
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To properly define states for self-embezzlement, we need to consider the following

properties of states in a commuting operator model. Some of these definitions are

also discussed in Section 3.2.

Definition 7.3 (State with Bell Pair). Let A,B ∈ B(H) be two mutually commuting

sets of operators. A state |ψ〉 ∈ H is said to contain at least one maximally entangled

pair of qubits over A and B if there exist operators in A and B on |ψ〉 such that the

CHSH inequality can be maximally violated.

The state |ψ〉 defined above contains the non-trivial amount of entanglement in

the commuting operator framework.

Next, we consider what it means for two states |ψ〉 and |φ〉 to contain the same

partial state.

Definition 7.4 (two states containing the same partial state). Let A ∈ B(H) be

some set of bounded operators. |ψ〉 , |φ〉 ∈ H be states. |ψ〉 and |φ〉 is said to contain

the same state over A if for all A ∈ A, 〈ψ|A |ψ〉 = 〈φ|A |φ〉.

The intuition behind the above definition is that, for all observables in A, |ψ〉 and

|φ〉 will give the same measurement outcome, and therefore the part of the two states

related to A are identical. In the tensor product and the C∗-model, this property can

be expressed in terms of the partial trace of the state.

The last missing piece of information we need is to define when a state contains

two copies of the same state on two different sets of commuting operators.

Definition 7.5 (product state of two copies of the same partial state). Let A,B ∈

B(H) be two mutually commuting sets of operators that are *-isomorphic to each other
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with ∗-isomorphism S : A→ B. Let |ψ〉 ∈ H be a state. Then |ψ〉 is said to contain

the same state over A and B if for all A ∈ A, 〈ψ|A |ψ〉 = 〈ψ|S(A) |ψ〉

In order for a state to contain two copies of the same states, the underlying

mathematical structures behind the two copies of the same state must be equivalent

to each other. This forces A to be equivalent to B, and the reason behind A being

isomorphic to B.

Next, we recall how to combine quantum systems A = (A1,A2) where A1,A2 are

disjoint quantum systems in the commuting operator model. Let H be the Hilbert

space describing A. We describe A1,A2 with C∗-algebras A1, A2 ∈ B(H) be C∗-

algebras where A1 and A2 mutually commute. Consider A = A1 ∪A2, which is the

C∗-algebraic closure of A1∪A2. The set of allowed local operations on A is the set of

operators that preserves the observables in A and does nothing to observables outside

A. Mathematically, this means that

Definition 7.6. U ∈ B(H) is a local operator on A if

• U does not change observables outside A: For any B ⊆ B(H) where B mutually

commutes with A, for all B ∈ B, U∗BU = B. 3

• U preserves the observables in A: for all A ∈ A, U∗AU ∈ A.

Note that this is the same definition we had in Chapter 3 in Equation 3.2.11 and

Equation 3.2.12.
3Alternatively we could use for all B that commutes with A instead of B. By using B, we are

emphasizing other local quantum systems instead of individual operators.

141



7.1.4 Definition in Commuting Operator Model

Now we can define self-embezzlement in the commuting operator model.

Definition 7.7. A self-embezzling scheme in the commuting operator model is a tuple

(H,A1,A2,B1,B2, |ψ〉 , |φ〉 , U, V ), on quantum system (A1,A2,B1,B2) where

1. H is a Hilbert space, and A1,A2,B1,B2 ⊆ B(H) are local set of operators for

A1, A2, B1, B2 that mutually commute.

2. There exists *-isomorphisms SA : A1 → A2 and SB : B1 → B2.

3. |ψ〉 is a product state over three subsystems (A1,B1), A2, and B2: for all X ∈

A1 ∪B1, Y ∈ A2, Z ∈ B2,

〈ψ|XY Z |ψ〉 = 〈ψ|X |ψ〉 〈ψ|Y |ψ〉 〈ψ|Z |ψ〉 . (7.1.1)

4. |ψ〉 can be used to violate the CHSH inequality by factor
√

2 using operators

from A1 and B1.

5. U, V ∈ B(H) are local unitaries to the systems (A1,A2) and (B1,B2).

6. The final state |φ〉 = UV |ψ〉 must contain two copies of the same state over

(A1,B1) and (A2,B2); and |φ〉 must contain the same entangled state in |ψ〉 over

A1,B1 and A2,B2. For all X ∈ A1, Y ∈ B1,

〈φ|XY |φ〉 = 〈φ|SA(X)SB(Y ) |φ〉 = 〈ψ|XY |ψ〉 . (7.1.2)

142



7.2 Impossibility under tensor product model

Recall that under the tensor product model, embezzlement cannot be achieved per-

fectly, but can be approximated to arbitrary precision. The existence proof of perfect

embezzlement protocol in the commuting operator model relies on the fact that ap-

proximate embezzlement protocols exist. What makes self-embezzlement remarkable

is that it can be achieved in the commuting operator model, but cannot be approxi-

mated to arbitrary precision in the tensor product model.

We start by showing that self-embezzlement is impossible to achieve under the

tensor product model.

Theorem 7.1. There exists an ε0 > 0 such that approximate self-embezzlement to

precision ε0 is impossible in the tensor product model.

The proof for the no-go result, once again, relies on the analysis of Schmidt coef-

ficients.

Without loss of generality, consider the Schmidt decomposition of the resource

state |ψ〉 to be of the form

|ψ〉 =
∞∑
k=1

λk |k〉 ⊗ |k〉 , (7.2.1)

where λi’s are arranged in descending order. The Schmidt coefficients of the initial

state |ψ〉 ⊗ |φA〉 ⊗ |φB〉 is {λ1, λ2, · · · }.

Self-embezzlement can be achieved if we can convert state

|00〉 ⊗ |ψ〉 ≡
∞∑
k=1

λk |0〉 |k〉 ⊗ |0〉 |k〉 (7.2.2)
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into the state

|ψ〉 ⊗ |ψ〉 ≡
∞∑
k=1

∞∑
l=1

λkλl |k〉 |l〉 ⊗ |k〉 |l〉 (7.2.3)

using local operations.

The Schmidt coefficients for |00〉⊗ |ψ〉 are the same as the Schmidt coefficients of

|ψ〉, {λ1, λ2 · · · }. The Schmidt coefficients of |ψ〉 ⊗ |ψ〉 are {λ2
1, λ1λ2, λ1λ2, λ

2
2 · · · }.

Since the local operations in the tensor product framework preserve the Schmidt

coefficients, the two sets of Schmidt coefficients need to be the same. However, the

largest Schmidt coefficient of |00〉 ⊗ |ψ〉 is λ1 and the largest Schmidt coefficient of

|ψ〉 ⊗ |ψ〉 is λ2
1. The two sets being equal implies λ1 = λ2

1, which gives us λ1 = 1.

With λ1 = 1, |ψ〉 is a separable state and can be trivially self-embezzled.

If |ψ〉 contains any entanglement, λ1 < 1, which means the two sets of Schmidt

coefficients are different. Therefore, self-embezzlement is impossible.

7.2.1 Impossibility of approximation

It turns out that self-embezzlement is not only impossible to achieve under the tensor

product framework but it also cannot even be approximated. To properly prove this,

it is necessary to clarify what approximate self-embezzlement means.

Consider a starting state |00〉⊗|ψ〉 in where |00〉 , |ψ〉 ∈ HA⊗HB. As discussed in

the previous section, an exact self-embezzlement would use local operators onHA⊗HA

and HB ⊗ HB to achieve the state |ψ〉 ⊗ |ψ〉, which is impossible. An approximate

self-embezzlement scheme would require local operators to turn |00〉 ⊗ |ψ〉 into some

state |ϕ〉, such that |ϕ〉 is very close to the target state |ψ〉 ⊗ |ψ〉. In particular, an

ε-approximate self-embezzlement is achieved when ‖(〈ψ| ⊗ 〈ψ|) |ϕ〉 ‖2 < 1− ε.

144



While exact self-embezzlement is impossible under the current tensor product

framework, one might expect that perhaps using some clever tricks, ε-approximate

self-embezzlement can be achieved for arbitrarily small ε > 0. In this case, even

though one may not get perfect self-embezzlement, arbitrary approximation should

give a “close enough” result.

However, unfortunately, it turns out that self-embezzlement cannot be approxi-

mated below some constant ε, even if the original state |ψ〉 only contains one EPR

pair. The argument for it, again, lies in the Schmidt coefficients.

For any |ψ〉 =
∑

k λk |k〉 ⊗ |k〉, define |ψinitial〉 and |ψtarget〉 to be the states in

Equation 7.2.2 and Equation 7.2.3,

|ψinitial〉 =
∑
i

λi |i〉 |0〉 ⊗ |i〉 |0〉 , (7.2.4)

|ψtarghet〉 =
∑
i

∑
j

λiλj |i〉 |j〉 ⊗ |i〉 |j〉 , (7.2.5)

and we consider the distance between U ⊗ V |ψinitial〉 and |ψtarget〉.

Theorem 7.2. There exists ε0 such that for any |ψ〉 that is (
√

2−ε0)-CHSH violating,

for any local unitary U an V , the distance between U ⊗ V |ψinitial〉 and |ψtarget〉 is at

least 2
9
.

Proof. We start the proof with the rigidity results from [27] about Bell states. If a

state |ψ〉 is (
√

2 − ε)-CHSH violating, then there exits local unitary acting on |ψ〉

such that it is within distance O(
√
ε) from a state of the form 1√

2
(|00〉+ |11〉)⊗ |ψ′〉.

This implies that the largest Schmidt coefficient of |ψ〉, λ1 ≤ 1√
2

+O(
√
ε). By using

bounds in [17], it can be shown that by setting ε0 = 1
50
, λ1 ≤

√
2/3.

With small enough λ1 we can consider the minimum distance between U⊗V |ψinitial〉

and |ψtarget〉 by comparing their Schmidt-coefficients. Since local unitaries preserve
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the Schmidt coefficients, U ⊗ V |ψinitial〉 has the same Schmidt coefficients as |ψinitial〉.

By Lemma 1 in [32], the fidelity between two states is maximized if the Schmidt bases

are the same and the Schmidt coefficients are arranged in the same descending order.

Since |ψinitial〉 and |ψfinal〉 have the same Schmidt basis, the local unitaries U and V

only need to re-arrange these Schmidt basis in |ψinitial〉 as some permutation.

Instead of discussing {λi} directly, we look at the probability distribution associ-

ated with {λi}: let p = (λ2
i ) arranged in descending order. We consider the smallest

variation distance between p and p⊗ p up to any permutation. Recall that the vari-

ation distance between p and q, 1
2
‖p− q‖1 = 1

2

∑
i |pi − qi|. The variation distance is

minimized when p and q are sorted in the same order. Let q = π(p ⊗ p) where π is

the sorting function that outputs its input set elements in descending order.

Lemma 7.2.1. Let p be a probability distribution and q = π(p⊗ p) be the probability

distribution defined above. If p1 ≤ 2/3, then the variation distance between p and q

is at least 2/9.

Proof. Let m = max{m ∈ N, p1 + · · · + pm ≤ 2
3
}, and S = {1, · · · ,m}, and p(S) =∑

i∈S pi. Then
1

3
< p(S) ≤ 2

3
. (7.2.6)

The first inequality arise from the fact that if p(S) ≤ 1
3
, pm+1 ≤ 1

3
and p1+· · ·+pm+1 ≤

2
3
.

Now let µ = p(S). Next we show that q(S) ≤ µ2. Recall that q(S) is the sum of

the m largest components of p⊗ p, which must be contained in the set

(p1, · · · , pm)⊗ (p1, · · · , pm) = (pipj), 1 ≤ i, j ≤ m. (7.2.7)
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This containment is clear: if for some k ≤ m, qk = pipj where i > m, then qk ≤ plpj

for all l ≤ m which means k > m.

Therefore, we have

q(S) ≤
m∑

i,j=1

pipj = µ2, (7.2.8)

and the variation distance for the m largest elements of p and q is

1

2

m∑
i=1

|pi − qi| ≥
1

2

∣∣∣∣∣
m∑
i=1

pi −
m∑
i=1

qi

∣∣∣∣∣ ≥ 1

2
(µ− µ2) =

1

2
µ(1− µ) ≥ 1

2

(
2

3

)(
1

3

)
=

1

9
.

(7.2.9)

Then the variation distance between p and q is at most

1

2
(µ− µ2) +

1

2
[(1− µ2)− (1− µ)] = µ− µ2 ≥ 2

9
. (7.2.10)

Back to the proof of the theorem, since p = (λi), the variation distance between p

and q is the same as the probability of distinguishing (U⊗V ) |ψinitial〉 and |ψtarget〉 using

measurements in the Schmidt basis. This implies that the trace distance between

(U ⊗ V ) |ψinitial〉 and |ψtarget〉 is at least 2
9
which completes the proof.

Corollary 7.1. There exists a constant ε0 > 0 such that for any |ψ〉 that is (
√

2 −

ε0)-CHSH violating, for any local unitary operations U and V , the fidelity between

(U ⊗ V ) |ψinitial〉 and |ψtarget〉 is at most
√

1− (2/9)2 < 0.974996 < 39/40.
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7.3 Self-embezzlement in the Commuting operator

model

Before getting into the technical details of a self-embezzling system in the commuting

operators, we first take a look at the intuition behind how self-embezzlement would

work.

7.3.1 Intuition

The idea behind self-embezzlement is similar to the idea of embezzlement. The re-

source state for Alice and Bob is the same resource state as embezzlement, where

half of the infinite-dimensional state is maximally entangled and the other half a

product state. The target state for self-embezzlement is simply a state with infinitely

many copies of the same separable states as the ones in the resource state. Self-

embezzlement is achieved by performing permutations qubits across the two states.

· · ·· · ·
Alice

Bob
· · ·· · ·

-2 -1 0 1 2 3

-2 -1 0 1 2 3

-2 -1 0 1 2 3

-2 -1 0 1 2 3

a

b

c

d

Figure 7.1: Self-embezzlement Starting State |ψ〉

As shown in Figure 7.1, the starting state |ψ〉 consists of four parts a, b, c, and d

where a and c are Alice’s qubits, b and d are Bob’s qubits. We use ai to denote the

i-th qubit of a, bi for the i-th qubit of b and so on. The part of the state over a and
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b is the same as the state in the embezzlement protocol, where the two qubits joined

by a line means the states are in the Bell basis. The part of the state over c and d is

a simple separable state. To achieve self-embezzlement, Alice perform the following

permutation σ : {0, 1} × Z → {0, 1} × Z, where (0, i) corresponds to ai and (1, i)

corresponds to ci, satisfying

σ(0, i) =

(0, 2i) i ≥ 0

(0, i) i < 0

, σ(1, i) =


(0, 2i− 1) i > 0

(1, i
2
) i ≤ 0, i is even

(1, −i+1
2

) i < 0, i is odd

. (7.3.1)

We set a′, c′ to be the permuted qubits for Alice, where a′i correspond to σ(0, i)

and c′i correspondS to σ(1, i). Then, we can write

a′i =

a2i i ≥ 0

ai i < 0

, c′i =


a2i−1 i > 0

c i
2

i ≤ 0, i is even

c−i+1
2

i < 0, i is odd

. (7.3.2)

This permutation σ can be visualized by Figure 7.2, where the positive indices of

a get split into the positive indices of a′ and c′; the indices of c are combined into the

non-positive indices of c′. The grey area indicates the indices of qubits that are in

the Bell basis. Bob performs the same permutation on his qubits over b and d.

With the above permutation, one copy of the entangled state is moved to two

copies of the same state, as shown in Figure 7.3.
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- + - +
a c

- + - +

a′ c′

Figure 7.2: Permutation for Self-Embezzlement

· · ·· · ·
Alice

Bob
· · ·· · ·

-2-2 -1 0 1 2 3

-2 -1 0 1 2 3

-2 -1 0 1 2 3

-2 -1 0 1 2 3

a′

b′

c′

d′

Figure 7.3: Self-embezzlement Resulting State |φ〉

7.3.2 Base Hilbert Space

By formalizing the above intuition, self-embezzlement can be achieved in the commut-

ing operator framework. We start with a Hilbert space H with basis states |a, b, c, d〉

of the form

| · · · a−2a−1a0.a1a2 · · · , · · · b−2b−1b0.b1b2 · · · , · · · c−2c−1c0.c1c2 · · · , · · · d−2d−1d0.d1d2 · · · 〉

(7.3.3)

where a, b, c, d are binary strings with all but finitely many ai, bj, ck, dl are 0. The dot

acts as an indicator of where the index 0 a0, b0, c0, d0 are in the doubly infinite string.

Let A1,A2,B1,B2 ∈ B(H) be mutually commuting sets of operators, where A1

acts only on a, A2 acts only on c, B1 acts only on b, and B2 acts only on d. A1 is

generated by linear combinations of finite-weight Paulis, so that for any A1 ∈ A1,
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A1 only affects finitely many ai’s and acts as identity everywhere else, and a similar

property holds for A2,B1,B2. We write the generators of the Paulis as P i
a, P

j
b , P

k
c ,

P l
d where P i

a ∈ {X i
a, Y

i
a , Z

i
a, I ia} is one of the four Paulis acting on qubit ai and so on.

A1,A2,B1,B2 are in fact C∗-algebras of operators that are closed under the operator

norm.

When i > 0, the ai and bi are in the Bell basis, which is the same as the state

defined in the embezzlement protocol. For i > 0, applying P i
aP

i
b to |a, b, c, d〉 is the

same as applying PaPb to 1√
2
|0bi〉 + 1√

2
(−1)ai

∣∣1b̄i〉 and converting the state back to

the Bell basis at ai and bi. For example, applying X i
a |a, b, c, d〉 is the same as applying

X⊗I to the Bell basis state of |aibi〉, which gives us XI
(

1√
2
|0bi〉+ 1√

2
(−1)ai

∣∣1b̄i〉) =

(−1)ai 1√
2

(∣∣0b̄i〉+ (−1)ai |1bi〉
)
which is (−1)ai

∣∣aib̄i〉 in the Bell basis. Therefore

X i
a |a, b, c, d〉 = (−1)ai

∣∣a, · · · bi−1b̄ibi+1 · · · , c, d
〉
. (7.3.4)

The rest of P i
a and P i

b for i > 0 can be defined in similarly, in line with the intuitions

that they are the single-qubit Paulis acting on qubit ai and bi.

For i ≤ 0, P i
a and P i

b are Pa and Pb applied directly to the state at location ai and

bi. For example, X |ai〉 = |āi〉 so

X i
a |a, b, c, d〉 = |· · · ai−1aiai+1 · · · , b, c, d〉 . (7.3.5)

The action of the other P i
a, P i

b for i ≤ 0 can be defined in a similar manner. Similarly,

since c and d are in the computational basis, P k
c and P l

d applied directly to ck and dl

similar to the definiton in Equation 7.3.5.

Next, we show that A1,A2,B1,B2 are indeed mutually commuting sets of opera-

tors on |a, b, c, d〉, taking the Bell basis states into consideration. We note that only

(ai, bi) are in the Bell basis for i > 0, so we only need to show that P i
a, Qi

b commutes

151



for i > 0. The intuition behind the commutivity is that P i
a acts as P ⊗ I and Qi

b

acts as I ⊗ Q on the Bell basis state of |aibi〉, and P ⊗ I commutes with I ⊗ Q.

Therefore the resulting P i
a and P i

b should commute on |a, b, c, d〉. The verification of

this is tedious but straightforward. We give two examples here and leave out the rest.

Consider X i
a and Zi

b for i > 0, then

X i
aZ

i
b |a, b, c, d〉 = (−1)ai |a, · · · bi−1bibi+1 · · · , c, d〉 = Zi

bX
i
a |a, b, c, d〉 . (7.3.6)

For X i
a and X i

b with i > 0, we have

X i
aX

i
b |a, b, c, d〉 = (−1)ai(−1)bi

∣∣· · · ai−1aiai+1 · · · , · · · bi−1bibi+1 · · · , c, d
〉

= (−1)ai(−1)bi
∣∣· · · ai−1aiai+1 · · · , · · · bi−1bibi+1 · · · , c, d

〉
= X i

bX
i
a |a, b, c, d〉 .

(7.3.7)

The rest of the cases apply in a similar manner and we omit the details.

Moreover, there exist ∗-isomorphisms SA : A1 → A2 and SB : B1 → B2 where

SA(P i
a) = P i

c and SB(P j
b ) = P j

d .

As suggested in Figure 7.1, any basis state of |e〉 ∈ H has a very special property

that is it is a product state across different i and j in the following sense. For all

i 6= j,

〈e|P i
aP

j
aP

i
bP

j
b |e〉 = 〈e|P i

aP
i
b |e〉 〈e|P j

aP
j
b |e〉 , (7.3.8)

and similarly,

〈e|P i
cP

j
c P

i
dP

j
d |e〉 = 〈e|P i

cP
i
d |e〉 〈e|P j

c P
j
d |e〉 . (7.3.9)

If we consider the C∗-algebra Pi and Pj generated by linear combinatinos of P i
aP

i
b

and P j
aP

j
b , it is easy to show that by linearity, |e〉 is a product state across Pi and Pj.
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7.3.3 Permutation and Its Aftermath

We define Alice’s operator U to be a unitary that performs the permutation shown

in Equation 7.3.2. U only acts on a and c. Ideally, we want to be able to claim that

U |a, b, c, d〉 = |a′, b, c′, d〉 where a′ and c′ are defined by Equation 7.3.2. However,

the result of correctly applying U to |a, b, c, d〉 is a rather obscure state that can be

visualized in Figure 7.4.

· · ·· · ·

· · ·· · ·

Alice

Bob

· · ·· · ·

· · ·· · ·

-2 -1 0 1 2 3

-2 -1 0 1 2 3

-2 -1 0 1 2 3

-2 -1 0 1 2 3

a′

b

c′

d

Figure 7.4: State after Alice’s Permutation

The state in Figure 7.4, is not exactly |a′, b, c′, d〉. This is because |a′, b, c′, d〉 is

the result of a simple permutation that only moves the value of the qubits around

without changing the basis of the system so a′i and bi are in the Bell basis. The state

we want to achieve with the correct permutation has a Bell basis between a′i and b′i
instead.

Similar to in embezzlement where a left shift causes the state to become orthogonal

to all states in the original Hilbert space, this permutation results in a state that

is orthogonal to all elements of H, and cannot be expressed in terms of a linear

combination of elements in H.

Moreover, the target state |φ〉 shown in Figure 7.3 is also not in H. To accom-

modate these states, we include two more elements in the basic state. Let p be the
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number of times Alice performs permutation in Equation 7.3.2, and q be the number

of times Bob performs his part of the permutation, then the corresponding basis state

will be |p, q, a, b, c, d〉. This expands the Hilbert space H to a larger Hilbert space con-

taining p, q ∈ Z, and we will use this larger Hilbert space for the commuting operator

protocol. Let U be Alice’s operator for her permutation and V be Bob’s operator for

performing his permutation. Then we have

U |p, q, a, b, c, d〉 = |p+ 1, q, a′, b, c′, d〉 , (7.3.10)

V |p, q, a, b, c, d〉 = |p, q + 1, a, b′, c, d′〉 . (7.3.11)

Clearly, U and V commute. Therefore applying U and V together will give us

UV |0, 0, a, b, c, d〉 = |1, 1, a′, b′, c′, d′〉. For example, let a = b = c = d = 1.1 then

a′ = b = 1.0, c = d = 11.1 as per Equation 7.3.2 and Figure 7.4 so

UV |0, 0, · · · 01.10 · · · , · · · 01.10 · · · , · · · 01.10 · · · , · · · 01.10 · · ·〉

= |1, 1, · · · 01.0 · · · , · · · 01.0 · · · , · · · 011.10 · · · , · · · 011.10 · · ·〉 .
(7.3.12)

Now we need to define how to extend the operator from A1,A2,B1,B2 to act

on the new Hilbert space with basis of the form |p, q, a, b, c, d〉. We start by setting

the base case on |0, 0, a, b, c, d〉 where no permutation has been performed by Alice or

Bob. P i
a P

j
b P

k
c and P l

d should act exactly the same as they would before on |a, b, c, d〉,

ignoring the first two zero elements.

We now give an example of how P i
a P

j
b P

k
c and P l

d act on |p, q, a, b, c, d〉 by con-

sidering the action of X i
a and X i

c to |1, 0, a′, b, c′, d〉 on i > 0 where the qubits are

entangled and basis changes are required.

Consider the σ defined in Equation 7.3.1 where σ(i, j) = (k, l), define σ(i, j)[0] = k
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and σ(i, j)[1] = l.4 Let i > 0. Because σ(0, i)[0] = 0, we have a′i = aσ(0,i)[1]. This

means (a′i, bσ(0,i)[1]) are in the Bell basis, and X i
a to |1, 0, a′, b, c′, d〉 is

X i
a |1, 0, a′, b, c′, d〉 = (−1)a

′
i

∣∣1, 0, a′, · · · bσ(0,i)[1]−1bσ(0,i)[1]bσ(0,i)[1]+1 · · · , c′, d
〉
. (7.3.13)

Since σ(1, i)[0] = 0, c′i = aσ(1,i)[1] so c′i is in the Bell basis with bσ(1,i)[1]. Applying X i
c

to |1, 0, a′, b, c′, d〉 is

X i
c |1, 0, a′, b, c′, d〉 = (−1)c

′
i

∣∣1, 0, a′, · · · bσ(1,i)[1]−1bσ(1,i)[1]bσ(1,i)[1]+1 · · · , c′, d
〉
. (7.3.14)

The other Paulis can be applied in a similar manner by considering their action on

the correct corresponding qubits. For different values of p and q, the Bell basis is

between qubits after the corresponding permutations. Applying the P i
a, P

j
b , P

l
c , P

k
d to

|p, q, a, b, c, d〉 thus must take into account the correct permutation that is done by

(p, q).

More formally, we define the operators A1, A2, B1, B2 as we enlarge them to

act on the new Hilbert space. Because the permutation changed the location of the

computational basis and the Bell basis, we need the operators to act correctly on the

new location. Alice’s operators are A1 and A2, which are C∗-algebra of operators,

so we can take the combined set of operators as A1 ∪A2 where the bar means it is

the C∗-algebraic closure, and similarly Bob’s combined set of operators as B1 ∪B2.

Define a ∗-automorphisms πA : A1 ∪A2 → A1 ∪A2 to be the following: for P i
a ∈ A1,

4This is similar to the notation of the array access in computer science, where [0] accesses the

first element k of the tuple (k, l) and [1] accesses the second element l of the tuple.
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P j
c ∈ A2,

πA(P i
a) =

P
i
a i ≤ 0

P 2i
a i > 0

and πA(P j
c ) =


P 2i−1
a i > 0

P
i/2
c i ≤ 0 is even

P
(i−1)/2
c i ≥ 0 is odd

. (7.3.15)

πA essentially performs the permutation in Equation 7.3.2 on Alice’s operators. We

define πB : B1 ∪B2 → B1 ∪B2 in a similar manner for Bob. For A ∈ A1 ∪A2,

A |p, q, a, b, c, d〉 := UpV qπpA(A)U−pV −q |p, q, a, b, c, d〉 . (7.3.16)

The idea is to move |p, q, a, b, c, d〉 back to some
∣∣∣0, 0, ã, b̃, c̃, d̃〉 so that the operators

acting on these states are already defined; apply the operator on the permuted qubits,

and perform bring the state back to the form |p, q, a, b, c, d〉. And similarly, for B ∈

B1 ∪B2,

B |p, q, a, b, c, d〉 := UpV qπqB(B)U−pV −q |p, q, a, b, c, d〉 . (7.3.17)

We note that U commutes with all B ∈ B1 ∪B2 because

BU |p, q, a, b, c, d〉 = B |p+ 1, q, a′, b, c′, d〉

= Up+1V qπqB(B)V −qU−p−1 |p+ 1, q, a′, b, c′, d〉

= Up+1V qπqB(B)V −qU−p |p, q, a, b, c, d〉

= UB |p, q, a, b, c, d〉 .

(7.3.18)
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Similarly, V commutes with all A ∈ A1 ∪A2. Moreover, AB = BA because

AB |p, q, a, b, c, d〉 = UpV qπpA(A)U−pV −qUpV qπpB(B)U−pV −q |p, q, a, b, c, d〉

= UpV qπpA(A)πqB(B)U−pV −q |p, q, a, b, c, d〉

= UpV qπpA(A)πqB(B)
∣∣∣0, 0, ã, b̃, c̃, d̃〉

= UpV qπqB(B)πpA(A)
∣∣∣0, 0, ã, b̃, c̃, d̃〉

= UpV qπqB(B)πpA(A)U−pV −q |p, q, a, b, c, d〉

= BA |p, q, a, b, c, d〉 ,

(7.3.19)

where {ã, c̃} is applying the inverse of Alice’s permutaiton to {a, c} in Equation 7.3.2

p times, and {b̃, d̃} is the inverse of Bob’s permutation applied q times to {b, d}.

Let |ψ〉 = |0, 0, 0, 0, 0, 0〉, where the |0〉 for a, b, c, d are means all of ai, bj, ck, dl

are 0, and we completely defined a protocol for self-embezzlement in the commuting

operator framework.

7.3.4 Verification of Protocol

The final step is to verify that the H, A1, A2, B1, B2, |ψ〉, U , V defined above satisfy

the definition of a perfect commuting operator protocol for self-embezzlement.

Condition 1 to 5 in Definition 7.7 are either satisfied by definition or are trivial

to show. We focus our attention on Condition 6, which requires |φ〉 = UV |ψ〉 =

|1, 1, 0, 0, 0, 0〉 to satisfy for any A1 ∈ A1, B1 ∈ B1,

〈φ|A1B1 |φ〉 = 〈φ|SA(A1)SB(B1) |φ〉 = 〈ψ|A1B1 |ψ〉 . (7.3.20)

Since |ψ〉 = |0, 0, 0, 0, 0, 0〉 is a basis state, recall that |ψ〉 is a product state across

different i an j in the sense that for all i 6= j, 〈ψ|P i
aP

j
aP

i
bP

j
b |ψ〉 = 〈ψ|P i

aP
i
b |ψ〉 〈ψ|P j

aP
j
b |ψ〉.
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|φ〉 is a permutation of the bits of |ψ〉 where Alice and Bob perform the same permu-

tation. Therefore, |φ〉 also satisfies the same property. This means we only need to

verify Equation 7.3.20 on P i
aP

i
b for all i.

Assume i ≤ 0. Then πA(P i
a) = P i

a and πB(P i
b ) = P i

b , and SA(P i
a) = P i

c , SB(P i
B) =

P i
d. We get

〈φ|P i
aP

i
b |φ〉 = 〈1, 1, 0, 0, 0, 0|UV πA(P i

a)πB(P i
b )U

−1V −1 |1, 1, 0, 0, 0, 0〉

= 〈0, 0, 0, 0, 0, 0|P i
aP

i
b |0, 0, 0, 0, 0, 0〉

= 〈ψ|P i
aP

i
b |ψ〉 .

(7.3.21)

And if i is even,

〈φ|SA(P i
a)SB(P i

b ) |φ〉 = 〈1, 1, 0, 0, 0, 0|UV πA(P i
c)πB(P i

d)U
−1V −1 |1, 1, 0, 0, 0, 0〉

= 〈ψ|P i/2
c P

i/2
d |ψ〉 .

(7.3.22)

Recall that |ψ〉 at location ci/2di/2 has the same value as |ψ〉 at location aibi, which is

|00〉 in the computational basis. Therefore, 〈ψ|P i/2
c P

i/2
d |ψ〉 = 〈ψ|P i

aP
i
b |ψ〉. Similarly,

if i is odd, 〈φ|SA(P i
a)SB(P i

b ) |φ〉 = 〈ψ|P i
aP

i
b |ψ〉.

If i > 0, πA(P i
a) = P 2i

a and πA(P i
c) = P 2i−1

a , which gives us

〈φ|P i
aP

i
b |φ〉 = 〈1, 1, 0, 0, 0, 0|UV πA(P i

a)πB(P i
b )U

−1V −1 |1, 1, 0, 0, 0, 0〉

= 〈ψ|P 2i
a P

2i
b |ψ〉 ,

(7.3.23)

and

〈φ|SA(P i
a)SB(P i

b ) |φ〉 = 〈1, 1, 0, 0, 0, 0|UV πA(P i
c)πB(P i

d)U
−1V −1 |1, 1, 0, 0, 0, 0〉

= 〈ψ|P 2i−1
a P 2i−1

b |ψ〉 .
(7.3.24)
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|ψ〉 at a2ib2i and a2i−1b2i−1 are |00〉 in the Bell basis, which is the same as |ψ〉 at aibi.

Therefore, we have

〈ψ|P 2i
a P

2i
b |ψ〉 = 〈ψ|P 2i−1

a P 2i−1
b |ψ〉 = 〈ψ|P i

aP
i
b |ψ〉 . (7.3.25)

7.4 Self-embezzlement in the C∗-model

We start with a recollection of the CAR algebra. Recall that a CAR algebra is

a C∗-algebra where its basis elements are consisting of finite weight Paulis of the

form XaZb for a, b ∈ {0, 1}∗. We use R to denote a CAR algebra. Recall that

R⊗min R = R⊗max R, so we simply use R⊗R for this tensor product.

While a typical R has XaZb as a basis where a and b are one-way infinite strings,

we could map R to R⊗R via a *-isomorphism so a and b become two-way infinite

strings. Next, we consider ∗-automorphisms on R. An inner *-automorphism on

R can be expressed in terms of an unitary u ∈ R where αu(a) = u∗au is the *-

automorphism R → R. A ∗-automorphism that cannot be expressed in this manner

is called an outer *-automorphism and an example of this is a bilateral shift that

maps XaZb to Xa′Zb′ where a′i = ai+1 and b′i = bi+1.

The C∗-algebra we will use for self-embezzlement is R⊗R⊗R⊗R where the first

and third copy of R corresponds to Alice’s local system A1, A2, and the second and

fourth copy of R correspond to Bob’s local system of B1, B2. The intuition behind

self-embezzlement under the C∗-model is the same as the one behind the commuting

operator model, where Alice and Bob perform an appropriate permutation across

their states to double the entangled state.
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7.4.1 The State

We note that since the basis of R is XaZb, the basis of R⊗R is XaZb⊗XcZd where

a, b, c, d are two-way infinite strings. By linearity and continuity, to define a state on

R⊗R, we only need to define it on all the basis elements.

We start by considering the state |Ψ〉 = 1√
2
(|00〉+ |11〉) and a state with infinitely

many copies of |Ψ〉. We know from the previous discussions that such a state does

not exist in the tensor product framework. However, such a state can be expressed

as an abstract state in the C∗-model. Let sΨ : R⊗R → C be an abstract state with

infinitely many copies of |Ψ〉 in the positive indices state such that

sΨ((XaZb)⊗ (Xa′Zb′)) =
∞∏
i=1

〈Ψ| (XaiZbi)⊗ (Xa′iZb′i) |Ψ〉 . (7.4.1)

From previous chapters, we know that for a maximally entangled state |Ψ〉, and

A,B ∈ B(C2), 〈Ψ|A⊗B |Ψ〉 = 〈Ψ| I ⊗BAT |Ψ〉. This gives us

〈Ψ| (XaiZbi)⊗ (Xa′iZb′i) |Ψ〉 = 〈Ψ| I ⊗Xa′iZb′iZbiXai |Ψ〉

= (−1)ai(bi⊕b
′
i) 〈Ψ| I ⊗Xai⊕a′iZbi⊕b′i |Ψ〉 .

(7.4.2)

Furthermore, it is easy to show 〈Ψ| I ⊗X |Ψ〉 = 〈Ψ| I ⊗Z |Ψ〉 = 〈Ψ| I ⊗XZ |Ψ〉 = 0.

This allows us to write

sΨ((XaZb)⊗ (Xa′Zb′)) =
∞∏
i=1

δaia′iδbib′i , (7.4.3)

where δi,j =

0 i 6= j

1 i = j

is the Kronecker delta function.

Similarly, we define s00 : R⊗R → C as the abstract state corresponding to the
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infinitely tensor product of |00〉 in the non-positive indices:

s00((XaZb)⊗ (Xa′Zb′)) =
−∞∏
i=0

〈00|XaiZbi ⊗Xa′iZb′i |00〉 =
−∞∏
i=0

(1− ai)(1− a′i). (7.4.4)

Combing the two states, we define the catalyst state of self-embezzlement ψ : R⊗R →

C to be

ψ((XaZb)⊗ (Xa′Zb′)) =
∞∏
i=1

δaia′iδbib′i

−∞∏
i=0

(1− ai)(1− a′i). (7.4.5)

For the state we want to copy ψ onto, we first define φ : R → C to be

φ(XaZb) =
∞∏

i=−∞

〈0|XaiZbi |0〉 =
∞∏

i=−∞

(1− ai), (7.4.6)

and Alice and Bob each have one copy of this state, so the combined state φ ⊗ φ :

R⊗R → C is

(φ⊗ φ)((XaZb)⊗ (Xa′Zb′)) =
∞∏

i=−∞

(1− ai)(1− a′i). (7.4.7)

The initial state for self-embezzlement in the C∗-model is therefore

ψ ⊗ φ⊗ φ : R⊗R⊗R⊗R → C (7.4.8)

where ψ is over A1 and B1, φ⊗ φ is over A2 and B2.

7.4.2 The Permutation

We now consider the local operation on A1,A2 and B1, B2. To achieve self-embezzlement,

we perform a permutation that maps the positive indices of A1 to the positive indices

of A1 and A2. With this permutation, the entangled Bell basis is mapped from the

positive indices of A1 to the positive indices of A1,A2 and therefore becomes two copies
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of the original entangled state. To reduce clutter, instead of writing XaZb as basis

elements for R, we use the notation Pα, α ∈ {a, b, c, d}, where P i
α = XaiZbi is a single

bit Pauli at index i. Then the basis of R⊗R⊗R⊗R can be expressed in terms of

Pa ⊗ Pb ⊗ Pc ⊗ Pd where Pa is a finite weight Pauli on the CAR algebra of A1, and

Pb is on B1, Pc is on A2, and Pd is on B2. This notation is similar to what we used in

the commuting operator framework of self-embezzlement, except Pa, Pb, Pc, Pd are in

a tensor product here whereas in the commuting operator model they are mutually

commuting operators.

We define the following maps from (a, c) to (a′, c′) that corresponds to a permu-

tation of the indices of (a, c).

a′i =


ai i ≤ 0

a i
2

i > 0 is even

c i+1
2

i > 0 is odd

, c′i =

c2i i ≤ 0

c−2i+1 i > 0

, (7.4.9)

and similarly, from (b, d) to (b′, d′)

b′i =


bi i ≤ 0

b i
2

i > 0 is even

d i+1
2

i > 0 is odd

, d′i =

d2i i ≤ 0

d−2i+1 i > 0

. (7.4.10)

We note that this is the reverse of the permutation in Equation 7.3.2 used for the

commuting operator model. This is because in the commuting operator model the

permutation is performed on the quantum state, whereas in the C∗-model the per-

mutation is performed on the operators.

Define αA : R⊗R⊗R⊗R → R⊗R⊗R⊗R as Alice’s *-automorphism for her
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permutation where

αA(Pa ⊗ Pb ⊗ Pc ⊗ Pd) = Pa′ ⊗ Pb ⊗ Pc′ ⊗ Pd. (7.4.11)

αA is local to A1 and A2 because it is invariant over the second and fourth CAR

algebra.

Similarly, we define αB : R ⊗ R ⊗ R ⊗ R → R ⊗ R ⊗ R ⊗ R to be Bob’s

*-automorphism for the permutation where

αB(Pa ⊗ Pb ⊗ Pc ⊗ Pd) = Pa ⊗ Pb′ ⊗ Pc ⊗ Pd′ . (7.4.12)

The combined *-automorphism is α = (αA ◦ αB) that maps Pa ⊗ Pb ⊗ Pc ⊗ Pd to

Pa′⊗Pb′⊗Pc′⊗Pd′ , where a′, b′, c′, d′ are related to a, b, c, d according to Equation 7.4.9

and 7.4.10.

7.4.3 The Verification

We started with the state ψ ⊗ φ⊗ φ and applies the *-automorphism to it. The last

step is to check that sfinal : R⊗R⊗R⊗R → C defined by

sfinal(x) := (ψ ⊗ φ⊗ φ)(α(x)) (7.4.13)

is indeed ψ ⊗ ψ.

Let P be the C∗-algebra of single-qubit Paulis. Let Ψ : P ⊗ P → C be the state

for all P,Q ∈ P ,

Ψ(P ⊗Q) = 〈Ψ|P ⊗Q |Ψ〉 , (7.4.14)

where |Ψ〉 = 1√
2
(|00〉 + |11〉) is the Bell state defined earlier. Let Φ : P → C be the

single qubit |0〉 state

Φ(P ) = 〈0|P |0〉 . (7.4.15)
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We note that by definition of ψ and φ, for all Pa ⊗ Pb ⊗ Pc ⊗ Pd,

(ψ⊗φ⊗φ)(Pa⊗Pb⊗Pc⊗Pd) =
∞∏
i=1

Ψ(P i
a⊗P i

b )
−∞∏
i=0

(Φ⊗Φ)(P i
a⊗P i

b )
∏
j

Φ(P j
c )
∏
k

Φ(P k
d ).

(7.4.16)

So if we apply ψ ⊗ φ⊗ φ to Pa′ ⊗ Pb′ ⊗ Pc′ ⊗ Pd′ , we get

(ψ ⊗ φ⊗ φ)(Pa′ ⊗ Pb′ ⊗ Pc′ ⊗ Pd′)

=
∞∏
i=1

Ψ(P i
a′ ⊗ P i

b′)
−∞∏
i=0

(Φ⊗ Φ)(P i
a′ ⊗ P i

b′)
∏
j

Φ(P j
c′)
∏
k

Φ(P k
d′)

=
∏
i≤0

φ⊗ φ(P i
a ⊗ P i

b )
∏
i>0
even

Ψ(P i/2
a ⊗ P

i/2
b )

∏
i>0
odd

Ψ(P
i+1
2

c ⊗ P
i+1
2

d )

∏
i≤0

(Φ⊗ Φ)(P 2i
c ⊗ P 2i

d )
∏
i>0

(Φ⊗ Φ)(P−2i+1
c ⊗ P−2i+1

d )

=
∏
i≤0

(Φ⊗ Φ)(P i
a ⊗ P i

b )
∏
i>0

Ψ(P i
a ⊗ P i

b )
∏
i>0

Ψ(P i
c ⊗ P i

d)∏
i≤0

(Φ⊗ Φ)(P i
c ⊗ P i

d)

=ψ(Pa ⊗ Pb)ψ(Pc ⊗ Pd)

=(ψ ⊗ ψ)(Pa ⊗ Pb ⊗ Pc ⊗ Pd).
(7.4.17)

Since any element of R⊗R⊗R⊗R is a linear combination of Pa⊗Pb⊗Pc⊗Pd, by

linearity and continuity, (ψ⊗ φ⊗ φ)(α(x)) = (ψ⊗ ψ)(x) for all x ∈ R⊗R⊗R⊗R.

This completes the constructino of a C∗-model strategy for self-embezzlement.
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Chapter 8

Summary

The description of infinite dimensional entanglement in quantum information requires

a mathematical model more powerful than the tensor product of the Hilbert spaces

model. The typical model used is the commuting operator model, where the local

operators mutually commute and act on the same single Hilbert space. It is a gener-

alization of the tensor product of the Hilbert spaces model since any operator tensor

identity commutes with the identity tensor of any operator. In the commuting oper-

ator model, the commutivity defines the structure of locality, and sometimes it may

not be clear how to describe a local sub-system in this model. In the discussion of lin-

ear system games, we showed that a game has a commuting operator strategy if and

only if there exists a potentially infinite-dimensional operator solution to the game

through the solution group. The construction of the commuting operator strategy

from the solution group gives rise to Alice’s and Bob’s operators that correspond to

the left and right multiplications of the group elements. In this case, the locality of

the operators comes from the commutivity of the left and right group multiplications.
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It is not exactly clear, given a state under this set of commuting operators, what it

means to talk about Alice’s or Bob’s part of the localized state. There is no underly-

ing bipartite structure in these commuting operators, and analysis of entanglement,

in this case, can be tricky.

We also showed the formulation of quantum information theory using C∗-algebras

instead of Hilbert spaces as the foundation. The C∗-model can be adopted to describe

infinite entanglement that cannot be described by the tensor product of Hilbert spaces,

using the tensor product of C∗-algebras. Unlike the commuting operator model that

has one single Hilbert space and relies on the commutivity to describe locality, the

tensor product of C∗-algebras has a more intuitive bipartite (or multipartite for mul-

tiple local subsystems) structure in describing local quantum subsystems.

Table 8.1 summarizes some of the differences between the tensor product of Hilbert

spaces, the commuting operators, and the C∗-model for non-local quantum systems.

The tensor product and the C∗-model share a lot of similarities in terms of their struc-

tures on local quantum systems. The commuting operator model is the most general

model because the C∗-model can be converted into it using the GNS construction,

but the conversion the other way is not as clear. However, the commuting operator

model does not have a lot of those structures in the tensor product and C∗-model.

The tensor product is a special case of the commuting operator, and the C∗-model is

a generalization of the tensor product model. With the GNS representation theorem,

it is possible to convert the C∗-model to the commuting operator model. There are

situations where the structure of the C∗-model comes in handy in describing quantum

systems that cannot be defined by the tensor product model intuitively.
1We omit the statement ∀A ∈ A, B ∈ B in some of the entries where applicable

2There is technically no partial state in the commuting operator framework.|ψ1〉
A∼= |ψ2〉 only
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Tensor Product Commuting Operator1 C∗-algebra

Operators on

System (A,B)
B(HA)⊗ B(HB)

A,B ⊆ B(H)

[A,B] = 0
A⊗ B

Product state |ψA〉 ⊗ |ψB〉
|ψ〉

〈ψ|AB |ψ〉 = 〈ψ|A |ψ〉 〈ψ|B |ψ〉
sA ⊗ sB

Partial State

on A
TrB(|ψ〉 〈ψ|) |ψ1〉

A∼= |ψ2〉 2 sA(a) = s(a⊗ 1)

Same Type of

System for A,B
HA = HB

S : A→ B

S is ∗-isomorphism
A = B

Local Evolution

on A
UA ⊗ IB

U ∈ B(H)

UBU∗ = B, UAU∗ ∈ A

αA ⊗ I

αA ∗-automorphism

Table 8.1: Description of Local System under Different Models

In particular, we gave the example of embezzlement and self-embezzlement, where

the commuting operator model for the protocols requires careful consideration of

nitty-gritty details. In contrast, we can construct the C∗-model protocol directly from

intuition. Moreover, since both embezzlement and self-embezzlement are impossible

to achieve in the tensor product of the Hilbert space model, it shows that the C∗-

model is more powerful in describing infinite-dimensional non-local systems than the

tensor product of the Hilbert space model.

Using CAR-algebra, we can define quantum states that are intuitive but do not

exist in the tensor product of the Hilbert space model, such as infinitely many Bell

states. The interpretation of the CAR algebra as finite-weight Paulis acting on in-

shows that the part of the state related to A of |ψ1〉 and |ψ2〉 are the same.
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finitely many qubits makes it easy to formalize intuitions on operations performed

on infinitely many qubits, such as shift or permutation of the qubits. With the ten-

sor product of CAR algebra, we can easily visualize the ownership of local quantum

systems.

The CAR-algebra is only one example of what the C∗-model can do. It is possible

that other C∗-algebras have applications in the intuitive description of some other

quantum systems or problems. This thesis aims to serve as a stepping stone for more

potential uses of the C∗-model in quantum information theory.
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