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Abstract

This thesis addresses a collection of topics that are either directly related to, or have
implications for, current challenges in computational relativity. Consequently, it is divided
into three parts, each with its own separate focus.

In the first part, we explore a spacetime discretization method for computational rela-
tivity, where, instead of foliating spacetime into space-like hypersurfaces for evolution, we
decompose spacetime into spacetime volume elements with null boundaries. This offers
unique computational advantages, for distributing the computation over a large number
of processes, as well as for studying spacetime regions close to black hole singularities. In
Chapter 2, we describe an evolution scheme based on spacetime volume elements in spher-
ical symmetry, and consider evolutions of a Schwarzschild black hole and a self-gravitating
massless scalar field to test the stability and convergence of our discretization scheme.

In the second part, we present a method to construct initial conditions for numerical
evolution of charged, spinning black hole binaries. Evolution of these initial conditions
provide a proxy for binary black hole waveforms in modified theories of gravity. Such
waveforms are expected to play a crucial role in testing general relativity using gravitational
wave observations. In Chapter 3, we construct conformally curved initial conditions for
different configurations of orbiting binaries, e.g., with black holes that are highly charged
or rapidly spinning (90 and 80 percent of the extremal values, respectively), and for generic
spinning, charged black holes. In Chapter 4, we report on exploratory evolutions of head-on
collisions of charged binary black holes, and orbiting binaries for the uncharged case.

In the third part of the thesis, we focus on building an empirical understanding of why
Boolean Satisfiability (SAT) solvers—which form the basis of formal verification methods—
are efficient for real world problems, when, theoretically, the Boolean SAT problem is
computationally intractable. Understanding what makes SAT solvers efficient for real
world instances could open up the possibility of using formal methods for problems that
are currently inaccessible due to their scale; e.g., verification of computational relativity
software. In Chapter 5, we build and evaluate a statistical model based on the hierarchical
community structure of a Boolean SAT formula, to understand why certain SAT problems
are computationally easier to solve, than others. We find that although we improve on
existing results, our parameterization is insufficient for building a general hardness model
for the SAT problem.
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Chapter 1

Introduction

The next generation of gravitational wave (GW) detectors [3, 4, 5] are expected to probe
the strongest, most dynamical regions of the spacetime with much higher sensitivity than
current detectors in operation. This would require gravitational waveform models with
much higher accuracy [6, 7] than those currently available, and numerical (computational)
relativity (NR) is expected to play a crucial role in the development of such models [8].
For NR applications, where one often uses distributed computing to solve a set of time
dependent partial differential equations (PDE), a significant bottleneck to improving the
computational efficiency of a parallel algorithm is the amount of communication required
between processes [9, 10]. Relative to computation, exchanging data between processes
(depending on their physical proximity on the distributed computing hardware) is much
more expensive on modern supercomputers, due to their hierarchical memory architecture.
This limits the computational scalability of these algorithms, which makes it challenging
to improve the accuracy of these large scale numerical simulations, or study interesting
astrophysical scenarios that are particularly expensive to simulate (e.g., binary black hole
mergers with intermediate mass ratios with q ∼ 1/100, or binary neutron star mergers
with more realistic astrophysics). To make progress, one thus needs to develop algorithms
that are not only accurate, but also make efficient use of the current and next generation
of distributed computing hardware [8].

Most large scale evolution codes for NR (e.g., [11, 12, 13]) use a method of lines ap-
proach, or in the context of numerical relativity, a 3+1 decomposition of spacetime, to
construct a time evolution scheme. In this approach, spacetime is foliated into space-
like hypersurfaces, which are then evolved using a time-stepping scheme. To distribute
the computation over multiple processes, each spacelike hypersurface is further subdivided
into smaller computational patches that are solved in parallel. Since these computational
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patches share timelike boundaries, they need to exchange boundary data at every time step,
during evolution. This kind of evolution thus alternates between a computation phase and
a communication phase at every time step. The communication cost, thus, depends both
on the amount of data that needs to be communicated at every time step, as well as the
number of communication phases (equivalently, time-steps) required during evolution.

To improve the computational scalability, several recent works [9, 10, 14] have inves-
tigated more efficient spatial discretization methods (e.g., those based on discontinuous
Galerkin finite element or wavelet based reconstruction methods) to decrease the amount
of data that needs to be communicated at each time step, as well as different models of
parallelism (e.g., task-based, instead of patch-based parallelism) to balance the computa-
tional load more efficiency across multiple processes. However, all these approaches use a
time-stepping scheme, and hence require communication at every time-step. This becomes
a major part of the communication overhead, especially if one requires high spatial res-
olution in some regions of the computational domain (as is often the case in NR, where
one needs to resolve astrophysical phenomena over different length scales), since due to
the Courant–Friedrichs–Lewy (CFL) condition, higher spatial resolution also increases the
number of time-steps (and hence, the total number of communication phases) required for
a stable evolution.

In the first part of this thesis, we consider a spacetime discretization for solving time-
dependent PDEs, which has the potential to significantly reduce the communication over-
head, compared to a time-stepping based approach. In contrast to the method of lines
approach, where one considers a discretization first in space, and then in time, in a space-
time method, one simultaneously discretizes the evolution equation(s) in space and time.
In the context of numerical relativity, this corresponds to decomposing spacetime into
spacetime volume elements instead of spacelike hypersurfaces, and computing the solution
in each spacetime volume element, instead of on each spatial hypersurface.

Such a discretization offers two main advantages. First, it allows for a more accurate,
higher order method in both space and time, in each spacetime element. This is particularly
useful in situations where one requires highly accurate interpolations in both space and
time; e.g., for computing geodesics in numerical spacetimes [15, 16]. Second, if each space-
time element is designed to have null or spacelike boundaries, then each element can be
computed independently of its neighbours, and would only need initial data from elements
in its past. Further, if one chooses to compute the solution using an implicit solver, one
could take much larger time steps, compared to an explicit time-stepping scheme. Together,
a spacetime method could significantly reduce the amount of communication required per
time-step, and hence, might scale much more efficiently than conventional time-stepping
based methods, as was shown by Jayasinghe et al. in [17] for a one dimensional fluid flow
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problem.

A spacetime method also presents unique advantages for studying spacetimes near black
hole singularities, perhaps due to the fact that they are a more natural choice for GR than
a 3+1 decomposition, which introduces an artificial time coordinate. In a standard 3 + 1
scheme, one needs to choose suitable gauge conditions (specifically, a time coordinate) to
ensure stable evolutions. These gauge conditions, however, are designed to avoid singulari-
ties, which makes it difficult to numerically evolve the spacetime region near the singularity.
In contrast, in a spacetime method, one does not need to make a gauge choice related to
a particular foliation, and hence, could potentially allow one to study spacetime regions
closer to the singularity, e.g., by investigating the geometry and evolution trapped regions
in black hole spacetimes, as was done in [18, 19].

In Chapter 2, we investigate a spacetime element method for spherically symmetric
spacetimes in numerical relativity. We describe a spacetime decomposition based on space-
time volume elements with null boundaries (which minimizes the amount of communication
required during evolution between spacetime elements), and use a pseudospectral colloca-
tion method to compute the solution in each element (that allows for hp adaptivity in both
space and time). We investigate the stability, accuracy, and convergence of our method
for evolutions of Schwarzschild spacetime and a self-gravitating scalar wave in spherical
symmetry.

In the second part of the thesis, we change our focus towards the problem of using
numerical relativity simulations to test GR using GW observations. GW observations of
compact binary mergers, primarily binary black holes (e.g., [20, 21, 22]), have made it
possible to test general relativity (GR) in the strong-field, high velocity regime where GR
is most likely to break down (see [23, 24, 25] for results of such tests carried out by the
LIGO-Virgo collaboration). However, these tests are all null tests of one sort or another,
and one would ideally want to compare the predictions of GR for the coalescence of compact
binaries with the predictions of a suite of well-motivated alternative theories (in particular,
[26] discusses some of the problems encountered with certain null tests). To carry out such
comparisons, one needs to construct high-accuracy waveform models in alternative theories,
just as have been constructed in GR. At present, constraints on alternative theories using
binary black hole observations have been restricted to using model waveforms constructed
with only low-order post-Newtonian (PN) calculations in the alternative theories [27, 28].

Numerical relativity simulations of the late inspiral and merger in alternative theories
will be a key ingredient in constructing such waveform models, just as in GR. However, such
simulations come with several challenges. Many of these modified theories either do not
have a known well-posed initial value formulation (making them unsuitable for numerical
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evolution) or lack a construction of constraint-satisfying initial data for compact binaries.
While significant progress has been made towards finding a well-posed formulation for
Einstein-scalar-Gauss-Bonnet, Lovelock, and Horndeski theories at weak coupling [29, 30]
and their subsequent numerical evolution [31, 32, 33], most approaches to simulating binary
black holes in modified theories of gravity depend on an order reduction method [34, 35, 36,
37, 38]. Such approaches compute the effects of modified theories as perturbations to the
GR solution, which leads to a secular drift between the true solution and the perturbative
solution [34, 36], though there are proposals for methods to remove this drift [39]. There
are also approaches that modify the equations to make the theories well-posed [40], but
not yet any evolutions of binary black holes with such approaches.

For theories that do have a known well-posed initial value formulation, evolutions of
binary black hole mergers have been carried out using approximate initial data. Examples
include a study [41] in Einstein-Maxwell-dilaton theory [42] and evolutions in scalar-tensor
theories of gravity [43, 44] where, in the absence of externally imposed scalar field dynamics,
binary black holes in scalar-tensor theory have the same dynamics as those in vacuum GR.

Here we consider charged binary black holes in Einstein-Maxwell theory. This provides
a well-posed framework that mimics some of the features of binary black hole mergers in
modified theories. Additionally, various modified theories besides Einstein-Maxwell-dilaton
theory also contain vector fields with a Maxwell-like kinetic term (see, e.g., [45]), so this is
a first step to performing simulations in those theories. The specific features of Einstein-
Maxwell theory that mimic some of the effects seen in modified theories are modified or
additional PN terms in the dynamics of the binary (see, e.g., [46]) and differences in the
spectrum of quasinormal modes for the final black hole (see, e.g., [47, 48, 49]). Both of
these effects are directly encoded in the binary’s GW signal. In particular, charged binary
black holes with unequal charge-to-mass ratios emit dipole radiation (see, e.g., [46]), a
common feature in several modified theories of gravity, e.g., scalar Gauss-Bonnet (sGB)
gravity [50] and scalar-tensor theories of gravity [51]. Binary black holes emit dipole
radiation due to a charge in sGB gravity, as well, though there it is a scalar charge, as
opposed to the U(1) charge we consider here. Binary black holes in scalar-tensor theories
do not emit dipole radiation, but systems with matter will in general emit scalar dipole
radiation in those theories. Nevertheless, the leading PN effect of the dipole radiation
on the binary’s dynamics will have the same frequency dependence in all cases, viz., a
−1PN order contribution to the orbital phasing and thus to the phase of the GW signal
(in the case where the dipole radiation can be treated as a perturbation to the dominant
quadrupole radiation—see, e.g., [46]).

From an observational perspective, the LIGO-Virgo analyses (e.g., [23, 24, 25]) currently
test for the presence of such an additional −1PN term in the phase. In the absence of
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dipole radiation (which is the case for charged binary black holes with equal charge-to-
mass ratio and the same sign of charge) the deviations from vacuum GR will only occur at
1PN order and above (since the 0PN modifications are degenerate with a rescaling of the
binary’s masses, as discussed in, e.g., [52]). This is similar to some modified theories, e.g.,
dynamical Chern-Simons theory, where the deviations from GR start at 2PN [53]. Many
of the other LIGO-Virgo tests of general relativity check (explicitly or implicitly) for such
deviations in higher-order PN coefficients. Additionally, a recent analysis [49] checks for
the presence of charge in the ringdown waveforms, but finds that one can only place very
weak constraints using the ringdown phase alone due to correlations between the charge
and spin parameters.

Charged binary black hole waveforms, therefore, provide a proxy for BBH waveforms
from modified theories of GR that would allow us to test the sensitivity of current LIGO-
Virgo tests of GR to completely consistent, parameterized deviations from GR (see [54]
for an initial study using phenomenological waveforms). Since the charge can be varied
freely up to the extremal limit, this allows for significant deviations from vacuum GR.
Further, one can use the waveforms from numerical simulations of charged binary black
holes to create a waveform model that one can use to analyze gravitational wave data.
Such a waveform model would likely also have significant input from PN calculations [46,
55] and black hole perturbation theory computations of quasinormal modes [47, 48, 49],
and possibly also from black hole perturbation theory/self-force calculations of waveforms
in the extreme mass-ratio limit (see [56, 57, 58] for work in this direction involving charge).
Such a model would allow one to constrain the charges of observed black holes. Such an
analysis has already been carried out for low-mass, inspiral-dominated signals in [59] using
a simple waveform model created by combining a vacuum GR model with the known,
still relatively low-order PN contributions from the charges from [46]. There is also a
study of GW150914 using numerical relativity waveforms of charged binary black holes
and simple data analysis arguments in [60] (see also further data analysis calculations with
these waveforms in [61]). A full waveform model tuned to numerical relativity simulations
would also allow one to constrain the charges of high-mass binaries, as well as firming up
the constraints obtained with the simple waveform model presented in [59]. As a first step
towards constructing such waveform models, in Chapter 3, we construct initial conditions
for spinning, charged binary black holes in orbit. We generate excision based initial data
for both highly charged and highly spinning binaries using the pseudospectral initial data
solver SGRID [62, 63], and in Chapter 4, we discuss our exploratory evolutions of the initial
data in some cases with both the BAM [13] and HAD [64] evolution codes.

In the third and final part of this thesis, we again switch our focus, but this time, to
understand a problem that is at the foundation of formal verification methods [65], i.e., the
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Boolean Satisfiability (SAT) problem. Formal methods, that aim to prove the correctness
of a design under formal mathematical specifications, have been very successful towards
improving the robustness (e.g., check for hardware and software errors) critical numerical
software; e.g., in nuclear physics and aeronautics [66, 67, 68].

While formal verification methods have yet not found applications in computational
relativity, there are several problems where they could be potentially useful. For example,
formal methods can be used to computationally check for the existence of a solution. In
the context of numerical relativity, such a problem arises routinely when looking for a so-
lution to a set of nonlinear algebraic equations. Consider, e.g., the con2prim problem [69]
in general relativistic magnetohydrodynamic (GRMHD) simulations. Numerical codes for
GRMHD simulations use conserved variables such as baryon number density (D), energy
(τ), and momentum density (Si) for the evolution. However, at each step of the compu-
tation, for a given equation of state, one needs to recover the the primitive variables such
as density (ρ), pressure (p) and matter velocity (vi) in order to compute the stress-energy
tensor and numerical flux terms for fluid and spacetime evolution. This recovery, however,
is non-trivial, since the map between the conserved variables and the primitive variables
is nonlinear. Concretely,

D = ρW, τ = ρhW 2 − p−D, Si = ρW 2hvi, (1.1)

whereW is the local Lorentz factor. The robustness, as well as efficiency of this recovery is
crucial for the reliability of such numerical simulations. However, it has been shown that
the various schemes (all of which use some variant of a root finding algorithm) that have
been proposed to recover the primitive variables from the conserved variables, fail in some
cases [69]. The failure of a root finding scheme, could be, e.g., due to the evolved variables
being unphysical, for which no solution to the set of equations in (1.1) exists. Thus, one
would ideally like to guarantee the existence of a solution before the (often computationally
expensive) root finding algorithm is invoked to find the solution. Since Eq. (1.1) can be
encoded as first-order logic formulas over the real numbers, one could use a SAT-based
theorem prover such as Z3 [70], or dReal [71], to check the existence of the solution to
Eq. (1.1). SAT solvers, therefore, have the potential to improve the overall robustness of
the evolution scheme in GRMHD simulations, e.g., those involving binary neutron star
mergers.

Despite their success and utility in several areas of numerical computing, the efficiency of
formal methods, in practice, remain poorly understood [72]. At their core, formal methods
solve the Boolean satisfiability problem [73]. The SAT problem can be described as follows.
Given a Boolean formula (instance) F (x1, x2, ..., xn) with Boolean literals (x1, x2, ..., xn) in
conjunctive normal form (i.e., as a conjunction of one or more clauses, where a clause is
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is a disjunction of literals), the Boolean satisfiability problem asks whether there exists an
assignment to the variables (x1, x2, ..., xn) such that the formula F (x1, x2, ..., xn) evaluates
to true under that assignment. If there exists such an assignment, the formula F is said
to be satisfiable. If there exists no such assignment, F is said to be unsatisfiable. For
example, the Boolean formula

(x1 ∧ x̄1 ∧ x2) ∨ (x̄3 ∧ x3), (1.2)

is not satisfiable for any possible values of x1, x2 and x3. A SAT solver, in this case, would
give a proof of unsatisfiability, whereas, if there exists assignment(s) for which Eq. (1.2)
evaluates to true, a SAT solver would output one such assignment.

From a theoretical point of view, the SAT problem is computationally intractable,
i.e., it can be proven that any algorithm for solving SAT would, in the worst case, take
exponential (2n) time to solve on instances with n variables [74, 75]. Surprisingly, modern
implementations of SAT solvers based on conflict-driven clause learning (CDCL) [76, 77,
78] routinely solve real world (e.g, those obtained from hardware and software testing,
analysis, and verification applications) instances with tens of thousands of variables with
much higher efficiency, but at the same time, perform very poorly on smaller randomly
generated or cryptographic (i.e. those obtained from verification/analysis of cryptographic
applications) instances. Thus, a key open problem in SAT research is to understand what
makes certain SAT instances easier or harder 1 for a (CDCL) SAT solver to solve, than
others?

As for why SAT solvers are even able to efficiently solve large real world SAT instances
of a computationally intractable problem, it has been argued that theoretically, the SAT
algorithm is expected to take exponential time (in the size of the input) only in the worst
case scenario, whereas, in practice we encounter real world instances that may not be
as hard as an instance representing the worst case scenario. Due to the limitations of
such a worst-case complexity analysis for real world SAT instances, several previous stud-
ies [79, 80, 81, 82, 83, 84, 85] over the past two decades, have worked towards building
a richer (parameterized) computational complexity model for describing the hardness of
SAT instances. The basic idea behind such an approach is based on the assumption that
there exists, preferably a small set of parameters characterizing a SAT instance, that can

1There could be different approaches to measure the hardness of a SAT instance. From an applied
standpoint, one could use the time required for a SAT solver to solve a particular SAT instance as a proxy
for the hardness of the formula. In a theoretical setting, the hardness of a particular instance can be
related to the length of the proof required to show that a formula is unsatisfiable. For a CDCL SAT solver,
which, in a certain sense, iteratively constructs a proof of unsatisfiability for a given SAT instance, the
two notions of hardness can be assumed to be equivalent to each other.
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distinguish between easy and hard instances, such that, for “good” values of these param-
eters, the SAT instance will be easy for a SAT solver, and conversely, for “bad” values of
these parameters, the SAT solver will take exponential time to converge to a solution. In
Chapter 5, we explore a parameterized complexity model for the Boolean SAT problem,
based on the hierarchical community structure of a SAT formula. Specifically, we build an
empirical hardness model for SAT instances that predicts the runtime and category (as a
measure of hardness) of a SAT instance using parameters characterizing the hierarchical
community structure of the SAT formula.
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Chapter 2

A Spacetime Discretization Method
for Computational Relativity

In this chapter, we describe a spacetime method for numerical relativity. While spacetime
methods have existed in the literature for a long time [86, 87], most works have either been
mainly mathematical, or have been investigated in the context of engineering problems [88,
89, 17]. In relativity, while the idea of finding a solution simultaneously in space and time
have been explored in several different contexts (see, e.g., [90, 91, 92, 93, 94]), none of these,
or other works, to the best of our knowledge, have investigated a spacetime decomposition
method using pseudospectral elements with null or spacelike boundaries.

Given the novelty of this approach, we develop a spacetime method for NR, starting in
a lower dimensional setting, specifically, spherically symmetric (that are, from a numerical
point of view, effectively 1+1 dimensional) spacetimes. This allows us to use double null
coordinates to construct spacetime elements with null boundaries. While such a choice of
coordinates is not necessary for a spacetime method in general, it gives a straightforward
way to construct spacetime volume elements, and investigate the convergence and stability
of this method in a simpler setting. We do not prove the (continuous or discrete) well-
posedness of our numerical method; instead, we numerically investigate the stability and
convergence our method, starting with the evolution of the linear scalar wave equation
in 1+1 dimensions, and then considering the fully nonlinear evolution of a Schwarzschild
black hole, and a self-gravitating massless scalar field in spherical symmetry.

This chapter is organized as follows. In Sec. 2.1, we give an overview of our numerical
algorithm to implement an evolution scheme based on a spacetime discretization method.
In Sec. 2.2, we discuss the numerical evolutions we considered for testing our implementa-

9



tion, and in Sec. 2.3 we conclude with a discussion.

2.1 The computational algorithm

Our main computational algorithm has three main parts: the construction spacetime vol-
ume elements using double null coordinates, an asynchronous parallelism model based on
futures, and a pseudospectral collocation method to discretize the evolution equations in
each element. We describe them in the following sections.

2.1.1 Spacetime elements using double null coordinates

We first describe our spacetime decomposition approach specific to spherical symmetry.
Our construction closely follows the suggestion presented in [90]. We use double null coor-
dinates (u, v) to construct spacetime volume elements with null boundaries. In spherical
symmetry, these null coordinates can be defined as

u = t+ r(u, v), v = t− r(u, v), (2.1)

where r(u, v) is a priori, an unknown function of u and v. In Schwarzschild spacetime,
r(u, v) corresponds to the tortoise coordinate

r(u, v) ≡ r∗ = η + 2M ln
∣∣∣ η
2M

− 1
∣∣∣ , (2.2)

where η = v − u.

As shown in Fig. 2.1, we decompose the spacetime into spacetime volume elements with
element boundaries along constant u and v hypersurfaces, such that each spacetime element
has two incoming null boundaries (uin, vin) and two outgoing null boundaries (uout, vout).
This guarantees that the solution on the outgoing boundaries is completely determined by
the initial conditions on the incoming boundaries. The evolution thus proceeds element
by element, where solution on the outgoing boundaries of each element provide initial
conditions on the incoming boundaries of element(s) in its future. Consequently, in Fig. 2.1
(A), elements labelled with a lower number provide initial conditions for the computing
the solution on elements labelled with higher numbers.

For GR evolutions, we solve Einstein’s field equations using an implicit method on each
element. The spherically symmetric metric in double null coordinates is given by [95]

ds2 = −4 a(u, v)2 dudv + r(u, v)2dΩ2 (2.3)
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Figure 2.1: Spacetime discretization using spacetime volume elements in 1+1 dimensions
or spherical symmetry. (A) On the right, we show the tiling to spacetime using spacetime
volume elements with null boundaries. Elements with the same number are causally dis-
connected from each other and are solved parallel. Initial data on the incoming surfaces
is computed by either solving the constraint equations on the boundaries (u0, v0), or using
the solution on the outgoing boundaries from elements in the past of an element, i.e., those
with a lower number. (B) Each spacetime volume element (shown here with 5 collocation
points in each direction) has two incoming null boundaries (uin, vin) (marked in green)
and two outgoing null boundaries (uout, vout) (marked in blue, with red borders). Given
the initial data on (uin, vin), we do an implicit solve for the entire element to compute the
solution on the collocation points marked in blue.

where dΩ2 = dθ2 + sin2 θ dφ2, and (θ, φ) are the standard polar coordinates on the unit
sphere. For a spacetime with a scalar field Ψ(u, v), the field equations reduce to (see,
e.g., [96, 97])

r,uu − 2a−1a,ur,u = − 4πrΨ2
,u (2.4a)

r,vv − 2a−1a,vr,v = − 4πrΨ2
,v, (2.4b)

a−1a,uv − a−2a,ua,v + r−1r,uv = − 4πΨ,uΨ,v, (2.4c)

4r,uv + 4r−1
(
r,ur,v + a2

)
= 0, (2.4d)

Ψ,uv + r−1 (r,uΨ,v + r,vΨ,u) = 0. (2.4e)
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Here, ∂xu = u,x. The first two equations, i.e., Eq. (2.4a) and (2.4b), henceforth referred to
as C1 and C2, constrain the solution (a, r,Ψ) on each null hypersurface, and we use these
equations to solve for initial conditions for on the initial incoming boundaries (u0, v0).
Concretely, given r(u, v) and Ψ(u, v), we solve the first order linear partial differential
equation for a(u, v) to get

ln a(u, v) =

∫ u

u0

4π

(
r

r,u

)
Ψ2

,u du+ C, (2.5)

where C is a constant of integration. To construct initial data, we compute the above
integral numerically, for a given function r(u, v) and Ψ(u, v) on the initial incoming hyper-
surface.

We use remaining equations, i.e., Eqs. (2.4c), (2.4d) and (2.4e), to compute the solution
in each spacetime volume element, using a nonlinear solver based on the trust region
method [98]. As an initial guess to the nonlinear solver, we use a linear superposition of
the initial conditions to extrude the initial data at the boundary into the interior of the
element.

2.1.2 Pseudospectral Collocation Method

We use a pseudospectral collocation method to compute the solution on each element. We
use Chebyshev Gauss-Lobatto collocation points (see Fig. 2.1) along both u and v directions
and a Chebyshev expansion in both u and v directions. Concretely, the collocation points
on an element with arbitrary boundaries, i.e., where umin ≤ u ≤ umax and vmin ≤ v ≤ vmax,
is given by

ui =

[
umax − umin

2

]
xi +

[
umax + umin

2

]
, (2.6a)

vj =

[
vmax − vmin

2

]
xj +

[
vmax + vmin

2

]
, (2.6b)

where xi and xj are the one dimensional Gauss-Lobatto collocation points defined on
the interval [−1, 1], described in in Appendix A. Given a function f evaluated on the
above collocation points, we compute its derivative using the derivative operators (Du,Dv)
defined as

Du = Iij ⊗Dkl, Dv = Dij ⊗ Ikl, (2.7)
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where Iij and Dij are the one dimensional identity and derivative operators (see Ap-
pendix A), respectively, and A ⊗ B corresponds to the Kronecker product between two
matrices, i.e.,

Cikjl = Aij ⊗Bkl. (2.8)

Here, we have suppressed the indices on Du and Dv for notational simplicity. Explicitly,
the action of the derivative operators on function values fij = f(ui, vj) can be represented
as

(∂uf)ij =
∑
kl

Dijkl
u fkl, (2.9a)

(∂uf)m =
∑
n

Dmn
u fn ≡ Duf (2.9b)

where, we have introduced abstract indicesm = ij and n = kl, which allows us to represent
the action of derivative operator as a matrix vector product. We also define an integration
operator

W = Wij ⊗Wjk, (2.10)

where Wij corresponds to the one dimensional integration operator, such that Tr(Wf)
is the value of the definite integral of a function f evaluated at the collocation points.
Here, Tr(A) is the trace of a matrix A. Further, we define a projection operator P and its
inverse P̄, to go between the grid point values (fij) and the expansion coefficients (cpq) of
a function f such that

cpq = Pfij, fij = P̄cpq. (2.11)

where fij and cpq are related by the equation

fij =
∑
mn

cmn T
m(xi)T

n(xj). (2.12)

Here, T p(x) are the Chebyshev polynomials

T p(x) = cos(p cos−1 x). (2.13)

of order p. We compute P as

P = Iij ⊗ Pkl + Pij ⊗ Ikl. (2.14)

Here, Pij is the one dimensional projection operator given by Pij = T i(xj)wj, where wj are
the one dimensional integration weights corresponding to the Gauss Lobatto collocation
points given in Appendix A.
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Figure 2.2: An example showing p and h refinement of a spacetime element as implemented
in our numerical scheme. (A) A single spacetime element. (B) The spacetime element in
(A) after p refinement, where the order of the element has been increased by 1. (C) The
spacetime element in (A) after h refinement, where the spectral order in each element
remains the same, but the size of each element decreases from h to h/2.

To increase the resolution of the computational grid, we consider two kinds of refine-
ment, i.e., h and p refinement. For p refinement we increase the number of points (Np)
(equivalently, the spectral order p) in each element. For h refinement, we increase the
number of elements (Nh) in the same computational domain, by dividing a parent element
into four smaller, equal sized child elements. We shown an example of these two kinds of
refinement for a single spacetime element in Fig. 2.2. In our current implementation, we
do not use locally adaptive mesh refinement, but use a global refinement strategy, where
all elements are refined uniformly across the entire computational grid.

We now discuss the convergence of our method with increasing resolution. In a pseu-
dospectral element scheme, the discretization error in each element of order p = Np − 1
and size h, should scale approximately as

E ∼ O
(
hp+1

)
(2.15)

Thus, for p refinement, we expect the error to convergence exponentially, whereas for h
refinement, where each element is divided into 4 elements with size h/2, we expect the
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error to drop geometrically, i.e.,

Qh =
Eh
Eh/2

∼ O (hp+1)

O
([

h
2

]p+1
) ∼ 2p+1. (2.16)

Equivalently, we expect the ratio Qh to converge to 2p+1 = 2Np with h refinement.

2.1.3 Asynchronous parallelism model

Since each spacetime element has null incoming (and outgoing) boundaries, in Fig. 2.1,
elements labelled with the same number are causally disconnected from each other, and
hence, can be solved in parallel. We implement parallelism by defining the elements as fu-
tures, a standard abstraction in asynchronous programming. In asynchronous computing,
a future is a place-holder object for a value that may not yet exist. When the object is
computed and exists, the future makes its value available to subsequent processes, which
frees up computational resources for those processes that do not depend on its value and
can be computed independently. This allows us to translate the causal dependency be-
tween spacetime elements to a computational dependency graph that can be distributed
asynchronously across several processes.

Concretely, the computation proceeds by calling three main routines: setUVboundary,
computeSTelement, and extractUVboundary. These set initial conditions on (uin, vin),
compute the solution on the element, and extract the computed solution at (uout, vout) for
each spacetime element, respectively. Thus, the routine extractUVboundary depends on
the result of computeSTelement, which in turn, depends on the result of setUVboundary.
The routine setUVboundary, either depends on the the output of extractUVboundary

from elements in the past, or computes initial data on the incoming hypersurfaces by
solving constraint equations on the null hypersurfaces (for elements at the boundary of the
domain). In our algorithm, each of these functions accept a future of the computational
result they require, and return a future to the computation they perform. Hence, the
computation is distributed at the level of tasks that are processed asynchronously, the
order of which depend the casual dependency of the tasks.

2.2 Numerical Tests

We now discuss the convergence and stability of our numerical implementation for the
evolution of a Schwarzschild black hole and a self-gravitating scalar field, in spherical
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symmetry. Before discussing fully nonlinear evolutions of GR spacetimes, we consider the
evolution of a massless scalar wave in 1+1 dimensions. This allows us to test the numerical
stability of our code without the complexities arising from the presence of nonlinearity,
spacetime curvature, or coordinate singularities we encounter in the spherically symmetric
case.

2.2.1 Scalar wave on 1+1D Minkowski

For a scalar field Ψ, the 1+1 dimensional wave equation in Minkowski spacetime in (t, x)
coordinates is given by

−Ψ,tt +Ψ,xx = 0, (2.17)

which, under a coordinate transformation to double null coordinates (u = t+ x, v = t− x)
takes the simple form

Ψ,uv = 0. (2.18)

Note that even in this simple case, it is challenging to establish the well-posedness of
a double null evolution scheme using energy estimates. The main issue is finding an
appropriate definition of an energy norm that bounds the energy of the scalar field in both
u and v directions; see, e.g., Sec. 2.1 in [99]. Due to this reason, and the fact that a double
null evolution scheme is just one of many approaches to constructing a spacetime method,
we refrain from analyzing the well-posedness of our numerical scheme.

For the evolution of scalar wave in 1+1 dimensions, we can freely specify initial condi-
tions. Thus, for initial conditions, we set

Ψ(u0, v) = sin(πv) exp

[
−v

2

σ2

]
, Ψ(u, v0) = sin(πu) exp

[
−u

2

σ2

]
, (2.19)

where σ is a free parameter that determines the width (equivalently, the energy) of the
incoming waves. In Fig. 2.3, we show the numerical solution (and its expansion coefficients)
for the above initial conditions with σ = 0.5, on a computational domain where u, v ∈
[−1, 1]. Since u and v are the characteristic (null) directions, the evolution equations advect
the initial conditions at the incoming boundaries along u and v, as shown in Fig. 2.3.

To compute the error in the numerical solution, we numerically integrate the difference
between the computed and the analytic solution on each spacetime element, and take the
L2 norm of the integrated error over all elements. For the initial conditions given by
Eq. (2.19), the analytic solution is of the form

Ψ(u, v) = sin(πv) exp

[
−v

2

σ2

]
+ sin(πu) exp

[
−u

2

σ2

]
, (2.20)
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Figure 2.3: (Left) Solution to the scalar wave equation in 1+1 dimensions for σ = 0.5,
computed using Np = Nh = 8. The time coordinate t = v + u increases diagonally from
u = v = −1 to u = v = 1. (Right) Exponential decay of the expansion coefficients (cpq) of
Ψ with polynomial order p.

which is just the linear superposition of the initial conditions in Eq. (2.19). In Fig. 2.4, we
show the convergence of this error with p and h refinement for different values of σ. We
observe that for p refinement, the error falls off exponentially with increasing p, until it
saturates around ∼ 10−10. Further, the error in the solution for different values of σ fall off
at different rates. This is expected since a pseudospectral method requires a higher number
of points to resolve sharper peaks (corresponding to lower values of σ) in the numerical
solution. For h refinement, we set Np = 4 in each element. We find that the ratio Qh

eventually converges to the expected value of 23 = 8 with increasing Nh. These results
suggest that our method converges, and is stable for the wave equation in 1+1 dimensions.

Having established convergence and the stability our code in the linear setting, we now
consider nonlinear spacetime evolutions in spherical symmetry.

2.2.2 Schwarzschild spacetime

We now consider the evolution of a Schwarzschild black hole using a spacetime method.
The solution to Eq. (2.4) for a Schwarzschild black hole, i.e., Ψ = 0, is well-known [95,
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Figure 2.4: Convergence results for the evolution of a scalar wave in 1+1 dimensions for
different values of σ. On the left, we show the convergence of the error Ep with increasing
p in each element. On the right, we plot the convergence of Qh with increasing the number
of elements.

100]. Concretely, we have

r(u, v) = uv +
[ r

2M
− 1
]
exp

( r

2M

)
, (2.21a)

a(u, v) = −
[
32M3

r
exp

(
− r

2M

)]1/2
, (2.21b)

whereM corresponds to the mass of the Schwarzschild black hole. We use the Eq. (2.21) to
set initial conditions for a(u, v) and r(u, v) on the initial incoming null boundaries. Since
r(u, v) is an implicit function of u and v in Eq. (2.21a), we use a numerical root finder to
compute r(u, v) as a function of u and v on the initial null hypersurfaces.

With respect to the evolution, we find that our spacetime method is stable, and is able
to evolve spacetime regions very close to the singularity. In Fig. 2.5, we show the numerical
solution for r(u, v) alongside the logarithm of the norm of the constraint residual vector
C = [C1, C2], for a unit mass black hole, on a computational domain where u ∈ [−2, 1], v ∈
[1, 4]. Since our computational domain contains a spacetime singularity at uv = 1 (shown
as the dashed black line in Fig. 2.5 ), we do not compute the solution on those elements
which contain grid points where uv ≥ 1, in order to “excise” the singularity. In elements
close to the singularity (e.g., rmin = 0.404M), even though the constraint violations are
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Figure 2.5: The metric component r(u, v) (left) and the logarithm of the norm of the
constraint violations (right) for the evolution of a Schwarzschild spacetime, with Np =
4, Nh = 16. The horizon is located at u = 0, and the black hole singularity at (uv = 1)
(shown as the dashed black line). Here, the time coordinate increases from left to right,
and the radial coordinate increases from top to the bottom (as shown by the colour scheme)
in each figure.

much larger than in elements far away from the singularity, the constraint violations decay
exponentially with p refinement, as shown in Fig. 2.6.

In Fig. 2.6, we show the convergence of the constraint violations with h and p refine-
ment, for different computational domains that represent spacetime regions with different
minimum distances (r1 = 0.404M, r2 = 1.241M, r3 = 2.541M) from the black hole singu-
larity. As we see from Fig. 2.6, our implementation shows exponential convergence on all
computational domains, even those representing spacetime regions very close to the singu-
larity. Further, we also find the constraint violations to decrease, with a rate approaching
the the theoretical estimate (∼ 8, since we use Np = 4) with increasing Nh. The numerical
error, i.e., the difference between the analytic and numerical solution show similar conver-
gence for both p and h refinement. This indicates that our spacetime evolution scheme
is stable and convergent, even for nonlinear vacuum spacetimes in spherical symmetry.
We therefore test our implementation further, by considering the nonlinear evolution of a
non-vacuum spacetime in spherical symmetry.
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Figure 2.6: (Left) Convergence the constraint violations C for the evolution of
Schwarzschild spacetime in three different computational domains at different distances
(r1 = 0.404M, r2 = 1.241M, r3 = 2.541M) from the singularity. (Right) Convergence of
the ratio (Q = Ch/Ch/2) with h refinement. Here, we used Np = 4 in each element.

2.2.3 Self-gravitating scalar field

We now discuss the evolution of a self-gravitating scalar field in spherical symmetry using a
spacetime method. The evolution of a self-gravitating scalar field in spherical symmetry has
been studied numerically [101, 102, 96, 90] as well as analytically or semi-analytically [97,
103, 104], for investigating critical collapse phenomena, and the interior of black holes.

Here, we only consider subcritical evolutions, i.e., where the collapsing scalar field does
not form a black hole, but instead disperses to infinity. To construct valid initial data on
the incoming null hypersurfaces, we set

r(u, v) = v − u, (2.22a)

Ψ(u, v) = cos (kt− α)
sin kr

kr
, (2.22b)

and compute a(u, v) using Eq. (2.5). Here k and α are constants, and t = u+v. Figure. 2.7
shows the solution for a(u, v) for different initial conditions for Ψ(u, v) that correspond to
different values of k. Here, we consider initial conditions with very low energies; e.g.,
(k ∼ 0.01), to ensure that the collapse of the scalar wave does not lead to black hole
formation. Since the evolution equations (2.4) are singular on the axis, i.e., r(u, v) =
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Figure 2.7: Initial conditions for Ψ(u, v) and the corresponding solution to Eq. (2.5) for
a(u, v) for different values of k.

01, one needs to appropriately regularize these equations on the axis, to avoid overflows
and/or numerical instabilities. We investigated two different approaches to regularize the
evolution equations, but were unable to get a convergent numerical solution for either of the
approaches. Away from the axis, however, our numerical method was stable, and converged
exponentially with p refinement, and at the correct geometric rate for h refinement. In
Fig. 2.8, we show the convergence of the constraint violations for various values of k, on a
computational domain where u ∈ [2, 4], v ∈ [5, 7]. Therefore, we suspect that the problem
with evolutions containing the axis might be related to our approach to regularizing the
evolution equations, which we discuss below.

We first considered implicitly enforcing regularity conditions by considering a pseu-
dospectral collocation grid that puts the axis r = 0 in between collocation points. We
construct such a grid by translating the collocation points by a small amount (∼ 1e − 5)
such that there exists no collocation point where (ui = vj) on the computational grid.
Since the singularities in the evolution equations are “apparent”, i.e., they arise due to our
choice of spherical polar coordinates, the expansion coefficients in a pseudospectral method
will not diverge, as long as the basis functions are regular at the origin [105]. However, for
this approach, we found our implementation to be unstable; i.e., the constraints violations
increased with p refinement.

1While r(u, v) is an unknown function of the coordinate radius, the location of the axis is always fixed
at u = v as a result of spherical symmetry.
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values of the wave number k. For p refinement, we used Nh = 2, and for h refinement we
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Since we found that simply avoiding collocation points at r = 0 might be insufficient for
a stable spacetime evolution scheme, we considered regularizing the evolutions equations
by introducing a new evolution variable s(u, v) defined as

r(u, v) = s(u, v) η (2.23)

where η = v− u. We demand s to be an even functions of η, that is nonzero at the origin.
Substituting Eq. (2.23) in the evolution equations (2.4), we get

s,uv +
s,us,v
s

+
2

η
(s,u − s,v)−

1

η2

(
−s+ a2

4s

)
= 0, (2.24a)

a,uv
a

+
s,uv
s

+ 4πΨ,uΨ,v +
1

η

(
s,u − s,v

s

)
= 0, (2.24b)

Ψ,uv +
1

η
(Ψ,v −Ψ,u) +

1

s
(s,uΨ,u + s,vΨ,v) = 0. (2.24c)

Since η and Ψ are even functions of η, we have

s,η = 0 = s,u − s,v, (2.25a)

Ψ,η = 0 = Ψ,u −Ψ,v. (2.25b)
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Given Eq. (2.25), we observe that the all the singular (1/η) terms in Eq. (2.24) go to zero
on the origin. To regularize the (1/η2) term in Eq. (2.24a) we use L’Hôspital’s rule

lim
η→0

[
u

η2

]
=
u,η
2η

=
u,ηη
2
, (2.26)

where u = −s + a2/4s. Note that in applying the L’Hôspital’s rule, we have implicitly
assumed both u and u,η go to zero at η = 0. Thus, the evolution equations (2.24) on the
axis, reduce to

s,uv +
s,us,v
s

− a

2s

(
a2,η
a

+ a,ηη

)
= 0, (2.27a)

a,uv
a

+
s,uv
s

+ 4πΨ,uΨ,v = 0, (2.27b)

Ψ,uv +
1

s
(s,uΨ,u + s,vΨ,v) = 0. (2.27c)

which are all regular at η = 0. To compute the solution on an element containing the
axis, we thus enforced Eq. (2.27) on collocation points on the axis, and used Eq. (2.24) to
constrain the solution on points not on the axis. In this case, we found that our nonlinear
solver failed to converge to a residual below 10−2 even after 1000 iterations.

A nonlinear solver could fail to converge to a solution for several reasons. It could fail,
e.g., if one one starts from an initial guess that is too far away from the actual solution. In
particular, if the size of the spacetime element is too large, the nonlinear solver might fail
to converge for evolutions of highly nonlinear phenomena. However, in our investigations,
reducing the element size (which, in for our case, also improves the quality of the initial
guess), did not improve the convergence of the nonlinear solver.

To investigate the possibility that our approach for constructing regularized equations
leads to an unstable iteration scheme for the nonlinear solver, we considered the evolution
of a spherical scalar wave on a Minkowski background, i.e., where a(u, v) = s(u, v) = 1,
for which Eq. (2.24c) and (2.27c), simplify to

Ψ,uv +
1

η
(Ψ,v −Ψ,u) = 0, and Ψ,uv = 0, (2.28)

Since Eq. (2.28), is linear, the nonlinear solver always converged. However, similar to the
self-gravitating scalar field case, we found that the error, i.e., the difference between the
numerical and analytic solution [given by Eq. (2.22b)] did not converge below ∼ 10−2 with
increasing resolution. The issue is likely related to the fact that the expansion coefficients
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numerical solution Ψp computed using Np = 18 points.

of the numerical solution for Ψ do decay exponentially with increasing polynomial order,
which prevents the numerical solution from converging to the analytic solution, for higher
resolutions. In Fig. (2.9), we show the numerical error (which clearly shows the presence of
spurious high frequency modes), and the expansion coefficients for the numerical solution
for Ψ that not decay beyond ∼ 10−3.

The saturation of the coefficients near 10−3 is likely not due to aliasing error, which could
be reduced by implementing some form of filtering. As a check, we implemented spectral
filtering, where we set the top 1/3 of the modes of the expansion of each component of the
solution to zero [106] at every iteration of the nonlinear solver. However, our method still
failed to converge for any evolutions containing the axis in the computational domain.

2.3 Discussion

In this chapter, we described a spacetime discretization method based on spacetime vol-
ume elements for numerical relativity evolutions in spherical symmetry. We used double
null coordinates to construct spacetime volume elements with null boundaries, and imple-
mented a pseudospectral method for computing the solution in each spacetime element. We
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tested our discretization scheme by first evolving a test scalar wave on a 1+1 dimensional
Minkowski spacetime, and then evolving a Schwarzschild black hole and a self-gravitating
scalar field in spherical symmetry. We found that our method is stable and converges as
expected for both p and h refinement for the evolution of the test scalar field, as well as for
Schwarzschild black hole, even very close to the singularity. However, for evolutions of the
self-gravitating scalar field, we found that our method converges only in spacetime regions
away from the axis of symmetry located at r = 0. For evolutions in spacetime regions
containing the axis, the nonlinear solver failed converge to a solution.

The failure of the nonlinear solver, we suspect, is due to the numerical inaccuracies
arising from the evolution equations involving terms that are singular on the axis. While
several authors have used different approaches to handling the coordinate singularity in the
double null evolution equations in the past; see, e.g., [101, 102, 96], none of these approaches
are directly applicable to our unique numerical evolution scheme. We investigated two
different approaches to construct evolution schemes that are regular on the axis but neither
of them led to stable, convergent evolutions, even in the simpler case involving the evolution
of a spherical scalar field on a Minkowski background, where the evolution equations are
linear. While it could be useful to investigate a different approach to regularizing the
double null evolution equations in spherical symmetry, it might be more productive—from
the point of view of developing a practical algorithm for NR simulations—to construct
spacetime elements using more general coordinates, e.g., using unstructured spacetime
meshes [107, 108]. This would not only circumvent the problems we faced due to our
specific choice of double null coordinates in spherical symmetry, but also allow for more
flexibility for adapting a spacetime method to more complicated spacetime geometries.
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Chapter 3

Initial data for charged black hole
binaries

In this chapter, we describe our construction of excision based initial data for both highly
charged and highly spinning binaries. Recently, Bozzola and Paschalidis [109] constructed
conformally flat, puncture initial data for multiple charged black holes with linear and
angular momenta (but with zero magnetic fields) using the conformal transverse traceless
approach. Here, we take a different approach to solving for charged binary black hole
initial data.

Specifically, we construct conformally curved excision initial data by extending the ap-
proach developed by Lovelace et al. in [110] to include charge. The approach is based on the
Extended Conformal Thin-Sandwich formalism [111, 112] and uses the superposition of two
boosted Kerr black holes in Kerr-Schild coordinates (weighted by attenuation functions)
for the conformal metric. Compared to the conformal transverse traceless construction,
this approach has several advantages (at least in the uncharged case). For example it
allows for higher spins [110], less junk radiation [113], and better control over the physics
through the boundary conditions at the excision surfaces. For our case, we replace the
Kerr black holes by Kerr-Newman black holes and solve for the final electric field by solv-
ing for a correction to the superposed electric field (given by a scalar potential) to satisfy
the divergence constraint. We use a simple boundary condition for the scalar potential
on the excision surfaces that allows us to fix the charges of the black holes. We compute
the magnetic field from the superposed vector potentials so that it satisfies the divergence
constraint by construction.

This chapter is organized as follows. In Sec. 3.1, we first review the construction
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from [110] and then give its extension to the charged case. In Sec. 3.2, we discuss the details
of our numerical implementation. We then show examples of our initial data construction
in Sec. 3.3, and conclude in Sec. 3.4. We use lowercase Latin letters to denote spatial
indices and Greek letters for spacetime indices, and reserve the index A to label the black
holes. We use geometric units (G = c = 1) and Gaussian units for the electromagnetic
field throughout the chapter.

3.1 Initial Data Formalism

To compute constraint satisfying initial data for a charged black hole binary on a Cauchy
hypersurface Σ, one needs to solve the Hamiltonian and momentum constraints for the
geometry, and the electromagnetic constraint equations for the electric and magnetic field.

With standard decompositions, these constraints constitute a set of coupled, nonlinear,
second order differential equations for a given set of freely specifiable variables, and this
set has to be supplemented with appropriate boundary conditions. There are several
approaches to solving this problem, each with a different decomposition of the gravitational
constraint equations and a corresponding unique group of freely specifiable variables (see,
e.g., [114, 115] for reviews). Different decompositions can result in different initial data,
e.g., with different amounts of junk radiation [114, 116] that could lead to different physical
parameters of the binary. We now review one such decomposition, the Extended Conformal
Thin Sandwich formalism, which forms the basis of our initial data construction.

3.1.1 The XCTS formalism for vacuum GR

The Extended Conformal Thin Sandwich (XCTS) formalism [111, 112] is an alternative
approach to the transverse-traceless construction [117] for calculating initial data. In con-
trast to the transverse-traceless construction, it allows for some degree of control over the
time evolution of the initial data. As is standard, this construction begins by splitting the
spatial metric γij into a conformal factor ψ and the conformally related metric γ̃ij, and
then splitting the extrinsic curvature Kij into its trace K and a traceless part Aij, giving

γij = ψ4γ̃ij, (3.1a)

Kij = Aij +
1

3
γijK. (3.1b)
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In the XCTS formalism, we are allowed to freely specify {γ̃ij, K} together with their time
derivatives {ũij, ∂tK}. We then solve for {γij, Kij} in terms of ψ, the shift vector βi, and
the lapse α multiplied by the conformal factor (αψ), respectively.

For a given choice of freely specifiable variables, the Hamiltonian and momentum con-
straint equations (see, e.g., [118] for an introduction to the gravitational constraint equa-
tions)

R +K2 −KijK
ij = 16πρ, (3.2a)

∇j

(
Kij − γijK

)
= 8πJ i (3.2b)

decompose into a set of coupled elliptic equations for ψ, αψ, and βi given by

∇̃j∇̃jψ − 1

8
R̃ψ − 1

12
K2ψ5 +

1

8
ψ−7ÃijÃij = −2πψ5ρ, (3.3a)

∇̃j

[
ψ7

2(αψ)

(
L̃β
)ij]

− 2

3
ψ6∇̃iK − ∇̃j

[
ψ7

2(αψ)
ũij
]
= 8πψ10J i, (3.3b)

∇̃j∇̃j(αψ)− (αψ)

[
R̃

8
+

5

12
K2ψ4 +

7

8
ψ−8ÃijÃij

]
+

ψ5(∂tK − βk∂kK) = (αψ)
[
2πψ4(ρ+ 2σ)

]
, (3.3c)

where

(L̃β)ij := ∇̃iβj + ∇̃jβi −
2

3
γ̃ij∇̃kβ

k, (3.4a)

Ãij = ψ10Aij =
ψ7

2(αψ)

[
(L̃β)ij − ũij

]
. (3.4b)

In these equations, the terms decorated with a tilde are associated with the conformal
metric. Thus, ∇̃j and R̃ are the covariant derivative and Ricci scalar associated with γ̃ij,
respectively. We also have electric (Ei) and magnetic (Bi) fields due to the presence of
charged black holes, so the expressions for energy density ρ, the momentum density J i,
and the trace of the stress tensor as measured by an Eulerian observer are given by [119]

ρ =
1

8π

(
EiEi +BiBi

)
= σ, (3.5a)

J i =
1

4π
(E×B)i, (3.5b)

where

(E×B)i =
1√
γ
ϵiklF EkBl (3.6)
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is the curved-space version of the cross product. Here γ is the determinant of γij and
ϵiklF = ϵFikl is the flat space Levi-Civita symbol taking values in {0,±1}. Here, and in the
rest of the chapter, we raise and lower indices of the physical fields, e.g., Ei and Bi, using
the physical metric. For the conformally related variables, we use the conformal metric
to raise and lower indices. We use boldface letters to denote three-dimensional vector
quantities.

Given the XCTS equations (3.3), the next step is to make a choice for the freely speci-
fiable variables {γ̃ij, K} and {ũij, ∂tK}. For γ̃ij and K, we closely follow the construction
by Lovelace et al. [110], and superpose two boosted, spinning Kerr-Newman black holes
in Kerr-Schild coordinates (see Appendix B for the complete expressions) weighted by
Gaussian attenuation functions centered around each black hole. Specifically, we set

γ̃ij = fij +
2∑

A=1

e−r2A/w2
A(γAij − fij), (3.7a)

K =
2∑

A=1

e−r2A/w2
AKA. (3.7b)

Here γAij and KA are the spatial metric and the trace of the extrinsic curvature of black
hole A where A ∈ {1, 2}, and fij is the flat space spatial metric. Further, rA and wA

are the coordinate distance from the center of each black hole and the freely specifiable
attenuation weight for that black hole, respectively. The free parameters wA allow one
to control the extent of influence of each black hole on the other. In particular, these
attenuation functions limit significant deviations from maximal slicing assumption (K = 0)
and conformal flatness to the regions surrounding each black hole.1 The choice of wA affects
the amount of junk radiation, and can thus be adjusted to minimize the junk radiation, as
mentioned in [113]. We discuss our choices for these weights in Sec. 3.3.

We set the freely specifiable time derivatives, i.e., {ũij, ∂tK}, to zero, again as in [110].
For binary black holes in quasicircular orbit, or for eccentric orbits at apoapsis, this is
a reasonable approximation, since we can expect the system to be in quasi-equilibrium
in an instantaneously corotating frame. For highly boosted head-on collisions, however,
this approximation will break down with increasing boost, and we can no longer set these
quantities to zero while still obtaining accurate initial data. We will return to this point
in Sec. 3.3.

1While having asymptotically conformally flat data was shown to be necessary for consistency of the
outer boundary conditions (and thus to obtain exponential convergence of the initial data) in [113], the
same argument does not apply to our construction, since we do not put the corotation term in the outer
boundary condition (see Sec. 3.1.1) as was done in [113].
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The final components of our initial data construction for the geometry are the boundary
conditions we need to impose on the domain boundaries. Our numerical grid has two
boundaries (discussed further in Sec. 3.2.1). The outer boundary is located at spatial
infinity (i0) and the inner boundaries are the excision surfaces (SA) for the two black holes.
At spatial infinity, we again follow [110] and set

ψ = 1 at i0, (3.8a)

αψ = 1 at i0. (3.8b)

These equations ensure that our spatial metric is asymptotically flat. For βi, we follow [120]
but remove the corotation and expansion terms (Ω0 × r and ȧ0r

i) from the corresponding
expression, and set

βk = vk0 at i0. (3.9)

Here vi0 is a velocity parameter used to drive the Arnowitt-Deser-Misner (ADM) linear
momentum to zero in our initial data (see Sec. 3.2.3). The corotation and expansion
terms diverge at spatial infinity, and thus cause problems in our numerical setup with
a compactified grid. We introduced auxiliary variables to handle the diverging terms
analytically, but were still unable to get our initial data solver to converge when including
these terms in the outer boundary conditions. Instead, we transfer the corotation and
expansion terms usually included in the outer boundary condition to the inner boundary
condition on βi. This transferral leads to equivalent initial data in the conformally flat
case, as shown for the corotation term in [121] but is not equivalent in the conformally
curved case.2 Note that this transferral is not completely consistent with our assumption of
quasi-equilibrium. Specifically, in the absence of the corotation term at the outer boundary
condition for βi, we are no longer in a corotating frame, and hence not in quasi-equilibrium.
However, we find that our modified boundary conditions for the shift also leads to orbiting
black holes, and thus ignore the inconsistency in this present work. Concretely, we set

βi = αsi − Ωk
rξ

i
(k) − [Ω0 × (r− rCM)]

i

− ȧ0(r− rCM)
i on SA. (3.10)

Here, we use the Euclidean cross product. Further, si is the outward-pointing normal to
the excision surface, Ωk

r is a free parameter (similar to vi0) used to control the magnitude
of the spin of each black hole as in, e.g., [110], and ξi(k) are approximate rotational Killing
vectors on SA. Additionally, r and rCM correspond to the coordinate position vector and

2The same argument also holds for the expansion term, since it is also a conformal Killing vector in
this case.
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the position of the Newtonian center of mass of the binary, respectively. Finally, Ω0 and
ȧ0 correspond to the orbital and radial velocity of the binary, which are adjusted to reduce
the eccentricity of the binary. Here Ωk

r and ξi(k) are in general different for the two black
holes, but we omit the A label on them, for notational simplicity.

We take ξi(k) to be the rotational Killing vectors in flat space, i.e.,

ξi(k) = ϵFikl (r− rBH)
l , (3.11)

the same choice used to measure black hole spins in BAM [122], where rBH is the coordi-
nate location of the center of each black hole (again omitting the A label). Additionally,
these flat space rotational Killing vectors lead to spin measurements that agree well with
PN predictions for nutation [123]. Thus, the more involved approximate Killing vector
constructions in [124, 110] may not necessarily lead to better initial data. In particular,
it is likely most useful for waveform modelling purposes to have spin measurements that
agree well with the PN definitions. However, it would likely be worthwhile to consider the
boost-fixed version of the flat space rotational Killing vectors introduced in [123].

For the rest of the inner boundary conditions, we follow [110] and set

s̃k∂kψ = −ψ
3

8α
s̃is̃j(L̃β)ij −

ψ

4
h̃ij∇̃is̃j +

1

6
Kψ3 on S, (3.12a)

αψ = 1 +
2∑

A=1

e−r2A/w2
A(αA − 1) on S, (3.12b)

where s̃i and h̃ij are the conformally-rescaled surface normal and the conformal 2-metric
on S := S1 ∪S2, respectively. (Here we just refer to S, since these boundary conditions do
not have anything specific to a given excision surface.) Specifically,

hij = γij − sisj = ψ4(γ̃ij − s̃is̃j) = ψ4h̃ij. (3.13)

This inner boundary condition on the conformal factor ensures that the excision surfaces
coincide with the apparent horizons, while the condition on the lapse is a gauge choice that
ensures that the time coordinate near each black hole is close to that of the corresponding
Kerr-Schild spacetime.

3.1.2 Extending to electrovacuum GR

For binary black hole spacetimes with electric charge, we will have nonzero electric and (in
general) magnetic fields. These electromagnetic (EM) fields, like the geometric quantities
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in the previous section, cannot be freely specified on the Cauchy surface and need to satisfy
the EM constraint equations

∇iE
i = 4πρEM, (3.14a)

∇iB
i = 0. (3.14b)

(See [119] for the 3 + 1 decomposition of the Einstein-Maxwell equations.) Here ρEM is
the charge density as measured by an Eulerian observer and ∇i is the covariant derivative
compatible with the physical metric γij. Similar to the XCTS equations, we choose a
particular decomposition of these equations, which uniquely determines the degrees of
freedom we solve for and the choice of freely specifiable variables.

To solve for the electric field, we start by introducing a correction to the background
(superposed) electric field (Esp)

i in the form of a gradient of a scalar potential3 ϕ, giving

Ei = (Esp)
i +∇iϕ. (3.15)

We then insert Eq. (3.15) in Eq. (3.14a) with ρEM = 0 (since we assume the charge to be
contained inside our excision surfaces) to get an elliptic equation for ϕ

∇j∇jϕ = −∇i(Esp)
i. (3.16)

To solve Eq. (3.14b) for the magnetic field, we use an ansatz that satisfies the magnetic
divergence constraint by construction, as described below.

We are free to choose the background field (Esp)
i in Eq. (3.15). We set it to be the

weighted superposition of the electric field of the two individual black holes.

(Esp)
i =

2∑
A=1

e−r2A/w2
AEi

A, (3.17)

and solve for ϕ to construct Ei using Eq. (3.15). See Appendix B for expressions for the
EM fields of a Kerr-Newman black hole in Kerr-Schild coordinates.

To find a magnetic field configuration that satisfies the constraints, we superpose the
magnetic vector potentials Ai

A of the two black holes in the same manner as we superpose
the electric fields

(Asp)
i =

2∑
A=1

e−r2A/w2
AAi

A, (3.18)

3A different method to construct a constraint satisfying electric field would be to superpose the indi-
vidual electric fields weighted by the determinants of the individual physical 3-metrics as suggested by
East [125], which satisfies Eq. (3.14a) by construction. While this is a more straightforward approach, it
does not allow one to control the charge on each black hole.
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and compute the magnetic field as in [119], giving

Bi =
1√
γ
ϵiklF ∂k(Asp)l. (3.19)

Since the divergence of a curl is zero, Eq. (3.19) automatically satisfies Eq. (3.14b). Thus,
we do not explicitly solve for the magnetic field, though the magnetic field of the final
solution is affected by the rest of the solution through the contribution of the conformal
factor to γ.

We want the potential ϕ to approach a constant at infinity for our isolated binary, so
at the outer boundary we set

ϕ = const at i0. (3.20)

The specification of this constant is a gauge choice and we choose it to be zero. On the
inner boundaries, we impose a Neumann boundary condition to control the charge of the
black hole. Specifically, we scale the superposed electric field Esp on S to obtain the desired
charge on each black hole. We set

si∂iϕ =

(
Qd,A

Qsp,A

− 1

)
si(Esp)i on SA. (3.21)

In the above equation, Qd,A is the desired charge on the black hole (i.e., the same charge
used to compute the background Kerr-Newman metric for that hole), and Qsp,A is the
charge on each black hole computed using the superposed electric field on each excision
surface, i.e.,

Qsp,A =
1

4π

∮
SA

(Esp)
i
√
h dSi, (3.22)

where h is the determinant of hij [which is given in Eq. (3.13)], and dSi corresponds to the
directed surface area element on the excision surface. To compute the charge for a black
hole with the final solved electric field Ei, we replace (Esp)

i with Ei in Eq. (3.22).

This construction will not work if the desired charge is nonzero and the superposed
field leads to zero charge (or a much smaller charge than the desired one). However, this
sort of situation seems unlikely to occur in practice, and we have not encountered it in our
numerical investigations. Nevertheless, this is a relatively simple construction to fix the
charge. There is likely a better way to set boundary conditions on the electric field that
is more in line with the isolated horizon boundary conditions used for the geometry. We
leave investigating such conditions for future work.

33



In particular, the obvious requirement on the electric and magnetic fields at the horizon
from the requirement that the excision surface be an isolated horizon (in fact, just a non-
expanding horizon) does not translate into a condition on the normal derivative of ϕ.
Specifically (see, e.g., [126, 127]) the relation

(4)Rµνl
µpν = 0 (3.23)

is satisfied on the apparent horizon for any pν tangent to the horizon. Here (4)Rµν is the
4-dimensional Ricci tensor, and lµ is the outward-pointing null normal to the horizon. In
our Einstein-Maxwell case, Eq. (3.23) implies Fµνl

µpν = 0 (see Sec. II C in [126]). Thus,
from the expression for Fµν in terms of the electric and magnetic fields (see Sec. II in [119]),
we have

[E
∥
i + (s×B)i] p

i = 0. (3.24)

Here the cross product is the curved-space one from Eq. (3.6) and E
∥
i := Ei− sis

jEj is the
projection of Ei perpendicular to the unit normal to the horizon, si. Since the vector pi in
Eq. (3.24) is arbitrary and tangent to the horizon, we get

E
∥
i = −(s×B)i on SA. (3.25)

In Sec. 3.3, we discuss how well this condition is satisfied with our construction.

3.2 Numerical Method

To construct initial data, we solve Eqs. (3.3) and (3.16), together with the boundary
conditions (3.9), (3.10), (3.12), and (3.21) using the pseudospectral code SGRID [63, 62].
We use a Newton-Raphson scheme together with an iterative generalized minimal residual
solver with a block Jacobi preconditioner to solve the linearized equations (see Appendix C
for the linearized XCTS equations) during each Newton step (see Chap. 4 in [128] for details
of the implementation). In the following sections, we first describe our numerical grid and
then discuss how we compute the ADM mass and linear and angular momentum of the
initial data as well as the quasilocal mass and spin of the black holes in our initial data
solver.

3.2.1 Surface Fitting Coordinates

We use the compactified (AAns, BAns, φ) coordinates introduced by Ansorg [129] to cover
all of space outside the two excision regions with two computational domains (see Fig. 3.1).
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In each domain A, the Cartesian coordinates (x, y, z), in terms of the (AAns, BAns, φ) coor-
dinates, read

x = b

[
1

(R2 + X 2)2
+ 1

] X 2 −R2

2
(3.26a)

y = b

[
1

(R2 + X 2)2
− 1

]
RX cosφ (3.26b)

z = b

[
1

(R2 + X 2)2
− 1

]
RX sinφ (3.26c)

where b is the coordinate distance of the centre of the black hole from the origin, φ corre-
sponds to the azimuthal angle around the x-axis, and

X =(1− AAns) {Re [CA(BAns, φ)]−BAns Re [CA(1, φ)]}
+BAns cos

(π
4
AAns + [1− AAns] arg [CA(1, φ)]

)
(3.27a)

R =(1− AAns) {Im [CA(BAns, φ)]−BAns Im [CA(1, φ)]}
+BAns sin

(π
4
AAns + [1− AAns] arg [CA(1, φ)]

)
. (3.27b)

Here CA is a complex function different for positive and negative values of x (the domain
with black hole A), and is given by

CA(B, ϕ) =

√
tanh

[
σA(B,φ) + iπBAns

4

]
(3.28)

where σA(B, ϕ) is a freely specifiable function that determines the shape of the excision
surface. Further, the coordinates AAns and BAns take values between 0 and 1, and AAns = 0
corresponds to the excision surface SA in each computational domain, and spatial infinity
i0 corresponds to the point (AAns = 1, BAns = 0) on the grid.

As in [110], we impose boundary conditions on the excision surface such that the excision
surface coincides with the apparent horizon of each black hole in the solved binary black
hole initial data. We thus set the excision surface around each black hole such that it
coincides with the event horizon of the boosted Kerr-Newman black hole used in the
superposed metric. We do this by numerically solving for σA(BAns, φ) that appears in
Eq. (3.28). Concretely, we place the two black holes on x = ±b, and solve for σA such that
the horizon equation

∥ rS − (χ̂ · rS) χ̂ ∥2
r2+ +M2χ2

+
(χ̂ · rS)2
r2+

= 1, (3.29)

35



−6 −4 −2 0 2 4 6
x/MT

0

2

4

6

8

10

y
/M

T

Figure 3.1: The ϕ = 0 slice in the coordinates we use for the binary black hole configuration
qc-sp7cp5 (see Table 3.1). The black holes are centered at x = ±5MT, where MT is the
total mass of the superposed black holes. Lines of constant AAns and BAns are shown using
purple and red, respectively. The excision surfaces are ellipsoids located at AAns = 0. The
grid is separated into two computational subdomains that meet along the yz-plane (seen
here only as the line x = 0).

is satisfied on each excision surface. Here, rS = (x±b, y, z) is the coordinate vector pointing
from the black hole center to a point on the excision surface (located at AAns = 0). On the
excision surface (A = 0), the coordinate vector rS simplifies to (rS = x ± b, ρ cosφ, sinφ)
where

x = − b sin[σA(BAns, ϕ)]

cos[BAnsπ]− cosh[σA(BAns, φ)]
, (3.30)

ρ =
b sin[σA(BAns, ϕ)]

cos[BAnsπ]− cosh[σA(BAns, φ)]
. (3.31)

For a black hole hole with nonzero velocity, we apply the appropriate Lorentz transfor-
mation to rS to account for the length contraction of the horizon due to the boost. Further,
M , χ, and χ̂ represent the black hole’s mass, the magnitude of its dimensionless spin, and
the unit vector along the spin axis, respectively. Additionally, r+ is the radius of the outer
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horizon of a Kerr-Newman black hole given by

r+ =M +M
√

1− χ2 −Q2, (3.32)

where Q := Q/M , and Q is the charge of the Kerr-Newman black hole.

Finally, at the interface between the two domains and on the x-axis, we impose regu-
larity conditions; see [62, 128]. For the spectral expansions, we use a Fourier basis in the
ϕ coordinate and Chebyshev bases in both AAns and BAns coordinates.

3.2.2 Computing diagnostics

In order to characterize our initial datasets and control our initial data parameters, we
compute the ADM mass and linear and angular momenta of the initial data. We also
compute quasilocal measures of the mass and spin of each individual black hole.

To compute the ADM mass, we follow [130] in obtaining a more numerically accurate
expression by writing the original surface integral at infinity as the sum of a volume integral
and surface integrals over the excision surfaces and removing the second derivatives of the
conformal factor using the Hamiltonian constraint. We correct the expressions from that
paper for a flipped pair of indices in the integrand of the surface integral and generalize
to the conformally curved case; cf. the original versions of the expressions in [131]. In
addition, we also incorporate the source terms arising from the Hamiltonian constraint to
obtain

MADM =
1

16π

∫
V

[
(1− ψ) R̃ + Γ̃k Γ̃i

ki − Γ̃ikjΓ̃kij + ψ−7ÃjkÃjk + ψ5

(
16πρ− 2

3
K2

)]√
γ̃ dV

+
1

16π

2∑
A=1

∮
SA

ψ4(Γ̃k − Γ̃ik
i − 8 ∇̃kψ)

√
h̃ dSk,

(3.33)

where R̃ and Γ̃i
jk are the Ricci scalar and Christoffel symbols computed using the conformal

metric and Γ̃i := γ̃jlΓ̃i
jl. Additionally, V is the region outside the excision surfaces and dV

is the volume element in flat space.

To compute the ADM linear and angular momentum, we follow [120], adding the rele-
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vant source terms due to the presence of the EM fields to get

P i
ADM =

1

8π

2∑
A=1

∮
SA

P ij dSj −
1

8π

∫
V
Gi dV, (3.34a)

Jz
ADM =

1

8π

2∑
A=1

∮
SA

(xP yj − yP xj) dSj (3.34b)

− 1

8π

∫
V
(xGy − yGx) dV,

where Jx
ADM and Jy

ADM are obtained by cyclic permutations of (x, y, z) in the above equation,
and

P ij := ψ10(Kij −Kψ−4γ̃ij), (3.35a)

Gi := Γ̃i
jkP

jk + Γ̃j
jkP

ik − 2γ̃jkP
jkγ̃il∂l(lnψ)− 8πJ i. (3.35b)

As in [120], we apply a rolloff to the volume integrands at large radii in Eqs. (3.34) to reduce
the contributions from numerical noise in the regions near infinity where the integrand is
small and the volume element is large. Specifically we set

Gi
rolloff =

{
Gi if r ≤ Rc

(R2
c/r

2) Gi if r > Rc,
(3.36)

where r is the coordinate distance from the origin, and Rc is the roll-off radius. We apply
the same roll-off to the volume integrand in Eq. (3.33). We set Rc = 500MT, where MT is
the sum of the masses of the two superposed Kerr-Newman black holes.

We also compute the quasilocal mass and spin of the black holes in the standard way,
through integrals over the excision surfaces, with just a small generalization to the charged
case. Specifically, we compute the irreducible mass of the horizon

Mirr =

√
H
16π

, (3.37)

where H is the area of the horizon. We also compute the angular momentum of the horizon
J k using the standard isolated horizon integral [132] with the contribution from the EM
fields as in [133], giving

J k =
1

8π

∮
SA

[Kij + 2(Asp)iEj] ξ
i
(k)

√
h dSj, (3.38)
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where (Asp)i is given by Eq. (3.18) and ξi(k) are the flat space Killing vectors defined in

Eq. (3.11). The sign of the EM term is opposite the one given in [133], since we found
that this gives the correct result for an isolated Kerr-Newman black hole. We presume
that this is due to a difference in sign convention, particularly since [109, 61] use the same
sign as [133], but have not been able to find the exact source of this difference. We then
compute the horizon mass, often known as the Christodoulou-Ruffini mass, MChr [134],
using

M2
Chr =

(
Mirr +

Q2

4Mirr

)2

+
J 2

4M2
irr

, (3.39)

where J the magnitude of the angular momentum given by Eq. (3.38), and Q is the horizon
charge given by Eq. (3.22) (computed using the solved electric field). In Sec. 3.3, we use
the sum of the Christodoulou masses, denoted MT,C, which gives the total mass of the
binary at infinity.

3.2.3 Controlling BH spin and ADM linear momentum

In Sec. 3.1.1, we introduced two parameters in the boundary conditions, vi0 in Eq. (3.9)
and Ωi

r in Eq. (3.10), which we use to control the ADM linear momentum and the black
hole spins, respectively. We discuss how we set them here. As in [120], we iteratively set
vi0 in Eq. (3.9) to drive the ADM linear momentum to zero. However, we use a simpler
iterative procedure, setting

vi0,n+1 = vi0,n −
P i
ADM,n

MT

, (3.40)

where n indexes the Newton iterations. We start the iteration from vi0,0 = 0.

We similarly drive the dimensionless spins to their desired values (those of the super-
posed Kerr-Newman metrics) by adjusting Ωi

r using a simple iteration inspired by the form
of the Kerr-Newman horizon angular velocity [135]. We start with the angular velocity of
the Kerr-Newman spacetime used in the superposition

Ωi
r,0 =

J i
KN

4MChr, KNM2
irr, KN

, (3.41)

where Mirr, KN, MChr, KN, and J i
KN are the irreducible mass, horizon mass (i.e., Kerr-

Newman mass parameter), and angular momentum of each superposed black hole, re-
spectively. We then iteratively update Ωi

r using

Ωi
r,n+1 = Ωi

r,n +
M2

Chr,nχ
i
KN − J i

n

4MChr,nM2
irr,n

, (3.42)
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Name q Q1 Q2 χ1 χ2 MTΩ0 d/MT ζ
qc-sp5 1 0 0 (0, 0, 0.50) (0, 0, 0.50) 0.01941 10 0.5
qc-hs 1.16 0 0 (0, 0, 0.69) (0, 0, 0.79) 0.02848 16 1.25
qc-hc 1.16 0.97 −0.97 (0, 0, 0) (0, 0, 0) 0.02848 10 2
qc-mc 1.16 0.59 −0.45 (0, 0, 0) (0, 0, 0) 0.02848 10 2

qc-sp7cp5 1.16 0.56 −0.43 (0, 0.69, 0) (0.47, 0, 0) 0.02848 10 2

Table 3.1: Summary of the parameters of the initial data sets for orbiting binaries (“qc”
for “quasicircular”), also indicating the case for which we performed a test evolution with
BAM. Here QA and χA are the dimensionless charge and spin on black hole A, respectively.
Additionally, q, Ω0, correspond to the mass ratio and angular velocity, respectively. We set
the radial velocity, i.e., ȧ = 0 for all the cases, except for qc-sp5 where we set ȧ = 0.006531.
Finally, d is the separation between the two black holes and ζ is the attenuation width
parameter defined in Eq. (3.43). We set the velocity of each black hole using the Newtonian
expression in terms of Ω0 and d.

where, as in Eq. (3.40), n indexes the Newton iterations. Thus, e.g., J i
n is the horizon

angular momentum recomputed after the nth iteration on the excision surface under con-
sideration. Additionally, χi

KN := J i
KN/M

2
Chr, KN is the dimensionless spin vector of the

corresponding Kerr-Newman metric used in the superposition.

3.3 Results

We now discuss the initial data we constructed to test the code, particularly its convergence
with resolution, and the exploratory evolutions we performed. We summarize the cases we
consider in Table 3.1.

To test the convergence of our initial data solver, we consider four representative orbit-
ing configurations: two nonspinning cases with high (qc-hc) and moderate (qc-mc) charge,
one uncharged case with reasonably high spins (qc-hs), and finally, a more generic pre-
cessing binary with moderate charges and spins (qc-sp7cp5). We choose opposite signs
for the charges in the charged cases to increase the asymmetry and thus provide a more
stringent test of the solver. We use the same number of points (N) in the AAns, BAns, and
ϕ directions for each configuration, and set

wA = ζ
MA

M1 +M2

d, (3.43)
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Figure 3.2: Convergence of the constraint residuals for four different binary configurations,
a highly spinning case (qc-hs), highly charged (qc-hc) and moderately charged (qc-mc)
cases, and a more generic charged and spinning case (qc-sp7cp5). In all cases, we show the
Hamiltonian and momentum constraints (“ham” and “mom”), and for the charged cases,
we also show the electric and magnetic constraints (“div E” and “div B”). The horizontal
axis gives the number of points used for each coordinate (N) and the vertical axis shows
the L2 norm of the physical constraints over the entire computational grid (scaled by the
total volume of the computational grid). Hence, we scale the L2 norm by the square of the
total Christodoulou massMT,C. For the momentum constraint, this includes the Euclidean
vector norm on the components of the constraint. For N = 12, the initial data solver does
not converge for qc-hs and qc-sp7cp5, since the larger gradients near the horizon from
significant spin require more resolution to reach the convergent regime.
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for the attenuation weights in Eqs. (3.7), (3.17), and (3.18). Here, ζ is a dimensionless free
parameter and d is the coordinate distance between centers of the two black holes. We set
Ω0 and ȧ in Eq. (3.10) by performing iterative eccentricity reduction. For the other initial
data sets, we set Ω0 using the PN expression in [136] for qc-sp5, and set ȧ = 0. As we
discuss later, we do not expect these settings to give low-eccentricity initial data, so we do
not attempt to include the effects of the charge. In Fig. 3.2 we show the convergence of
the geometric (Hamiltonian and momentum) and EM constraint residuals for all the four
cases. We find the expected exponential (spectral) convergence at low resolutions, but find
slower convergence at higher resolution.

In particular, for the geometric constraints, we see spectral convergence only up to
N = 20 for the highly charged case (qc-hc). For the highly spinning case (qc-hs), the
convergence is exponential up to N = 28. For the binary with more generic parameters
(qc-sp7cp5), the rate of convergence is better than for the highly charged case (possibly
due to the fact that the more generic system is less extreme), but the Hamiltonian con-
straint shows subexponential decay after N = 20. While this looks similar to the subexpo-
nential convergence found for the construction without attenuation functions in [113], the
cause of the slower than expected convergence in our case must be due to a different cause:
We use attenuation functions when superposing both the metric and the electromagnetic
fields, which ensures that they fall off rapidly at infinity, so there is no possibility for the
logarithmic term in the solution that caused the subexponential convergence in [113]. In
fact, we do not even have the co-rotation term in the outer boundary condition for the
shift that leads to that logarithmic term in the Hamiltonian constraint when combined
with the 1/r falloff of the conformal metric without attenuation functions. One other pos-
sible cause that we can exclude is the adjustments to v0 and Ωi

r that we perform during the
Newton iterations. We disabled these iterations but found no improvement in the speed
of convergence. For the EM constraints, we see spectral convergence for electromagnetic
constraints up to N = 24 for all the configurations except for qc-sp7cp5 at N = 20. The
rate of exponential decay, however, is much slower for the magnetic constraint than for the
electric constraint.

We also illustrate the solved electric and magnetic fields for the qc-sp7cp5 case, with
its oppositely charged, spinning black holes, in Fig. 3.3. As one would expect, we observe
an overall electric dipole moment aligned along the axis joining the two black holes, and
a magnetic dipole for each black hole aligned with its spin axis. Further, the magnetic
field due to the orbital motion of the black holes (not visible in the figure, since it is
perpendicular to the plane plotted and thus projected out) is consistent with the magnetic
field around two charges with different signs moving in opposite directions. Unsurprisingly,
we find the largest corrections to the unsolved superposed electric and magnetic fields near
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Figure 3.3: The electric (top panel) and magnetic (bottom panel) fields (multiplied by
MT,C) at the grid points around the two black holes in the xy-plane for qc-sp7cp5. The
arrows represent the unit vectors of the projection of the field into the xy-plane. The
magnitude of the projection is shown by the color scheme. The black hole on the left
(right) has its spin aligned along the x- (y-) axis giving rise to two magnetic dipole moments
aligned with the two spin axes.

each black hole.

Finally, we check how well the isolated horizon condition on the EM fields at the horizon
[Eq. (3.24)] is satisfied in our initial data. We do this by computing the L2 norm of the
residual over the horizon, as well as the version with the sign reversed, for comparison.
Specifically, we define

Z±
i := E

∥
i ± (s×B)i, (3.44a)

EB2
res,± :=

∮
SA

γijZ±
i Z

±
j

√
h skdSk, (3.44b)

where EBres,+/EBres,− gives a dimensionless measure of how well the relation is satisfied on
each excision surface. We found the ratio to be the lowest (0.04) for the larger black hole
in qc-sp7cp5 and the largest (0.09) for the smaller black hole in qc-mc. Additionally, in
the nonspinning cases, we found this ratio to depend on the asymmetry of the magnitude
of the two dimensionless charges. Hence, even though the black holes in qc-mc have
smaller charges than in qc-hc, we find the deviations from the isolated horizon condition
to be larger for qc-mc which has the largest dimensionless charge ratio among the charged,
nonspinning configurations.
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3.4 Conclusions

In this chapter, we constructed initial data for spinning, charged, orbiting binary black
holes by extending the superposed Kerr-Schild construction for vacuum binary black hole
initial data presented in [113]. In contrast to previous work [109] which constructed con-
formally flat puncture initial data, our construction gives conformally curved initial data
with excision. It also provides a complementary implementation of the original vacuum
construction in [113] with a different numerical setup and a slightly different choice of
boundary conditions. Specifically, we transfer the corotation and expansion terms from
the outer to the inner boundary condition for the shift. We tested our initial data con-
struction for several cases including binaries with highly charged black holes and black holes
with both charge and spin. We performed convergence tests and found our initial data
implementation gives exponential convergence for low resolutions, but slower convergence
for higher resolutions.
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Chapter 4

Exploratory evolutions of charged
binary black hole initial data

In this chapter, we present the results from the test evolutions of the initial data we con-
structed in Chapter 3. Several previous studies have investigated the dynamics of charged
black holes in full numerical relativity. Zilhão et al. [137, 138] performed simulations of
head-on collisions of nonspinning charged black holes from rest, using either analytic equal
charge-to-mass ratio initial data or a simple numerical initial data construction to ob-
tain opposite charge-to-mass ratios. Liebling et al. [139] carried out evolutions for weakly
charged (electric and magnetic) black holes on quasicircular orbits starting from approx-
imate initial data. More recently, Bozzola et al. evolved a set of nonspinning binary
black holes with small to moderate charges on quasicircular orbits in [60, 61] and head-on
collisions of boosted, charged black holes in [140].

Here we consider evolutions of vacuum data initial data describing orbiting binaries
using the BAM code [13], and head-on collisions of charged, and uncharged boosted black
holes, using the HAD code [64]. We were unable to produce evolutions of orbiting binaries
with HAD1, even when evolving a vacuum case for which the BAM evolution orbited. Thus,
in Sec. 4.1 we discuss the evolution of an uncharged binary in quasi-circular orbit, evolved
using BAM. In sections 4.2 an 4.3, we discuss the evolution of charged, and uncharged,
boosted black holes using HAD, and compare our results with Newtonian estimates. We
conclude with a discussion of our results in Sec. 4.4.

1Specifically, we found that the evolutions of orbiting initial data with HAD initially resemble quasi-
circular orbits, but quickly the trajectory of the black holes becomes nearly head-on. We discuss this issue
further in the Sec. 4.4.

45



4.1 Uncharged binary black holes in orbit

For the uncharged case, we evolved an equal-mass, equal-aligned-spin quasicircular binary
inspiral in orbit (qc-sp5, with dimensionless spins of 0.5 in the direction of the orbital
angular momentum; see Table 3.1) using BAM with the BSSN formulation of the equations
and the standard puncture gauge. Since BAM is designed to evolve puncture initial data,
and our initial data solver generates excision initial data, we used a generalized version
BHfiller algorithm (see Sec.3.2 in [128], or Appendix B in [1], for the generalized version)
to fill inside the non-spherical excision surfaces in BAM.

For this initial test, we used 16 points in each direction to construct the initial data
using SGRID. For the evolution, we use seven refinement levels with three moving levels
and four fixed levels. Each refinement level has half the grid spacing of the previous one
with a minimum grid spacing of 0.0625MT. The outer boundary of the computational
domain is at ∼ 250MT. We use fourth-order spatial finite differencing and fourth-order
integration in time, with a Courant factor of 0.25. We extract the gravitational waves at
a radius of rext = 50MT.

We reduced the eccentricity by adjusting Ω0 and ȧ using the iterative method in [121],
where we measure the eccentricity using the puncture tracks. We found that the eccentricity
one obtains from the post-Newtonian values for Ω0 and ȧ0 given in [136] is large enough
that the iterative method does not reduce the eccentricity when starting from those values.
We thus adjusted those parameters by hand until the eccentricity was small enough that
the iterative method produced further reductions of the eccentricity. We obtained an
eccentricity of about 0.06, which is relatively large, compared to the eccentricities needed for
waveform modeling (e.g., the eccentricities of ∼ 10−3 achieved for some of the simulations
produced in [141]). While we could have carried out further iterations of the eccentricity
reduction procedure, we chose not to for this initial test. In particular, the unusual nature
of the eccentricity reduced setup we obtained, where the coordinate separation between
the punctures increases before decreasing when the data are evolved, deserves more careful
investigation.

In Figs. 4.1 and 4.2, we show the real part of the quadrupolar (l = m = 2) mode of the
Weyl scalar ψ4, and the puncture tracks for the last ∼ 8 orbits before merger, respectively,
for qc-sp5, to illustrate that they are qualitatively as expected. As is clear from the nearly
overlapping puncture tracks, the binary still has a relatively large eccentricity (consistent
with the value of ∼ 0.06 obtained above). An important consideration when constructing
initial data is how much the properties of the binary (e.g., black hole spin) change during
early states of the evolution, as the system relaxes and emits junk radiation. We observed
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Figure 4.1: The real part of the l = m = 2 mode of the Weyl scalar ψ4 from the uncharged,
quasicircular, aligned-spin evolution qc-sp5. The left panel shows the complete waveform,
and the right panel shows the waveform around the merger.

that the dimensionless spins settle to 0.49 (compared to the desired value of 0.5) after the
first 900MT,C during which the system relaxes by emitting junk radiation. The relative
error between the computed and desired spins decreases through the first 900MT,C and is
∼ 6% at its maximum.

4.2 Head-on collisions of charged binary black holes

We now consider head-on collisions of charged black holes. For our tests of charged, head-
on collisions, we evolved equal-mass, equal-charge, nonspinning binaries, as well as some
uncharged, boosted head-on collisions (see Table 4.1 for an overview of these cases). The
charged cases allow us to compare with previous numerical work [137, 138]. In particular
as discussed below, analytical scalings found in their work agree well with our results.

We used a resolution of (18, 18, 12) points in the AAns, BAns, and ϕ directions to generate
the initial data in SGRID. The HAD evolutions used four refinement levels and each
refinement level has half the grid spacing of the previous one, with a minimum grid spacing
of 0.0891MT. The outer boundary of the computational domain is at ∼ 72MT. We used
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Figure 4.2: Puncture tracks of the two black holes for the qc-sp5 evolution. The tracks
show approximately 8 orbits before merger and demonstrate the nonnegligible eccentricity
of ∼ 0.06.

fourth-order spatial finite differencing and third-order integration in time with a Courant
factor of 0.25. We extract gravitational and electromagnetic waves at rext = 50MT. For the
electromagnetic emission, we compute the scalar function Φ2 that contains the transverse
radiative degrees of freedom of the electric field, in the asymptotic limit [142]. The details
of the evolution system (BSSN with the standard puncture gauge plus constraint damping
for the EM equations) and code are described in [41] which evolved binary black holes in
Einstein-Maxwell-dilaton theory. For these evolutions we simply set the dilaton coupling
parameter α to zero.

In Fig. 4.3, we compare the quadrupolar mode of ψ4 between HAD and BAM evolutions
for a head-on collision of two uncharged black holes starting from rest. Both waveforms
are extracted at rext = 50MT. Note that while the junk radiation profiles show some
differences, the merger section of the waveform is in good agreement. While we have not
attempted to quantify the error budgets of the two simulations, we anticipate that the
differences seen are well within the combined error budget, particularly since these are not
particularly high resolution simulations and have rather small GW extraction radii.

In Fig. 4.4, we show the l = 2,m = 0 mode of gravitational and electromagnetic
radiation from the head-on collisions of binary black holes for various charge-to-mass ratios,
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Name Q1 = Q2 v Evol
ho-v0q0 0.0 0.0 HAD, BAM
ho-v0qp1 0.1 0.0 HAD
ho-v0qp3 0.3 0.0 HAD
ho-v0qp5 0.5 0.0 HAD
ho-vp1q0 0.0 0.1 HAD
ho-vp3q0 0.0 0.3 HAD

Table 4.1: Summary of the parameters of the initial data sets for head-on collisions
(abbreviation “ho” ) of equal-mass, equal-charge, nonspinning binaries we constructed and
performed test evolutions of with HAD and BAM. Here, v is the magnitude of the velocity
of each black hole. We set d = 10MT and ζ = 2 for all configurations listed here and set
ȧ0 = −v/d for the head-on collisions.

including the B := 1 −Q2 Newtonian scaling that [137] found to account for most of the
amplitude’s dependence on the charge. In [137] the authors place the black holes on the z-
axis, whereas in our setup, we place them on the x-axis. Thus, to make a direct comparison
with [137], we transformed our waveforms to place the black holes along the z-axis using
the quaternionic package [143, 144]. We find that the waveforms from our evolutions
satisfy the scalings found in [137] for the merger-ringdown portion of the waveform with
reasonable accuracy, though with larger differences than in [137]. Specifically, [137] found
differences of at most 2% compared to the scaling for charges up to 98% of maximal. In our
simulations, however, we found the differences to be larger (up to ∼ 3%) for charges up to
50% of maximal, though our evolutions are preliminary, and we did not attempt to assess
convergence, in addition to the issues with the effects of the filling mentioned previously.

4.3 Head-on collisions of boosted uncharged binary

black holes

We also considered head-on collisions of uncharged black holes boosted towards each other
with velocity parameters of 0.1 and 0.3, as well as an unboosted case, for comparison. In
the boosted cases, the assumption that the system is in quasi-equilibrium breaks down,
and hence our choice of setting uij = 0 becomes increasingly inaccurate for larger initial
velocities. However, we still find that increasing the initial velocity decreases the time to
merger, so we present these results as a further example of the code’s ability to generate
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Figure 4.3: A comparison of the real part of the l = m = 2 mode of ψ4 from the head-on
collision of two uncharged black holes starting from rest (ho-v0q0) evolved using HAD and
BAM. The waveforms are not aligned in any way.

initial data for generic binaries.

To quantify the effects of the boost, we consider the time to merger for each of the
simulations (tsim), which we compare with the Newtonian estimate (tm), as in the charged
case considered above. To compute the merger time from the simulations, we use the time
it takes for each black hole to reach the origin, using the minimum of the lapse as a proxy
for the location of the black hole. To compute the Newtonian estimate for the merger time,
we use energy conservation. Specifically, we generalized the calculation done in [137] to
include boosts. For two black holes each with mass M/2 and charge Q/2 placed initially
at x = ±d/2 with initial velocities of v0, conservation of energy implies

Mẋ2 − M2B
4x

=Mv20 −
M2B
2d

, (4.1)

where x is the position of one of the black holes and the overdot denotes a time derivative.
Rearranging and integrating both sides, we get

tm =
BM
Z3

[
π

2
− arctan

(
2v0
Z

)]
− 2v0d

Z2
, (4.2)
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Figure 4.4: The l = 2,m = 0 mode (in the rotated frame with the black holes on
the z-axis) of ψ4 (top panel) and Φ2 (bottom panel) aligned at merger using the peak of
the amplitude of the real part of the waveform. These waveforms correspond to head-on
collisions of equal-mass, nonspinning charged black holes evolved using HAD for different
charge to mass ratios, i.e., ho-v0qp1, ho-v0qp3, and ho-v0qp5.

where

Z :=

√
BM
d

− 4v20, (4.3)

where we evaluate the arctangent on the right-hand side of the branch cut (so its real part
is π/2) for the cases where Z is imaginary, which ensures the result is always real. For the
unboosted case (ho-v0q0), we find the time from the simulation, tsim, to be larger than tm
with a relative error ∼ 18%. For the boosted cases, similar to the charged case, we scale
both tsim and tm by the corresponding computation for the unboosted case and denote
these scaled values by t̃m and t̃sim, respectively. We find t̃sim to be larger than t̃m for both
ho-vp1q0 and h0-vp3q0, and the relative error between them to be ∼ 57% for ho-vp1q0,
and ∼ 103% for h0-vp3q0.

There could be several reasons behind these large discrepancies for both charged and
uncharged, boosted cases. In particular, our method to infer the collision time from the
numerical evolutions likely overestimates the merger time compared, e.g., to using the
first appearance of a common apparent horizon to determine the merger time, as was
done in [137]. Additionally, for the boosted cases, as mentioned before, we use the quasi-
equilibrium approximation (uij = 0) beyond its regime of validity. This, in addition to the
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issues with filling the black holes described earlier and the effects of junk radiation, can
result in the black holes in the simulation having different initial velocities than those used
in the construction of the initial data.

As a rough check, we estimated the initial velocities of the black holes using the location
of the black hole and finite differencing. We started at 13.5MT,C to be after the initial
transients and considered a time span of 7MT,C, chosen by eye so that a constant velocity
given by the finite difference gives a good approximation to the time dependence of the
black holes’ positions. We found the initial velocities to be 0.087 and 0.130 for ho-vp1q0
and h0-vp3q0, respectively. For h0-v0q0, we found the computed velocity to be zero,
in agreement with the velocity used in the computation of the initial data. Using these
velocities in the merger time calculation reduced the computed merger time as well as
the relative error between t̃m and t̃sim to ∼ 23% and ∼ 74% for h0-vp1q0 and h0-vp3q0,
respectively.

4.4 Discussion

In this chapter, we carried out exploratory evolutions of charged and uncharged initial
data using two different evolution codes (BAM in the uncharged case and HAD with both
charged and uncharged data). Specifically, we evolved a quasicircular, uncharged, spinning
binary with an eccentricity of e ∼ 0.06 for approximately 8 orbits before merger, with BAM.
In the charged case, we considered head-on collisions with different charge-to-mass ratios
and found that our numerical results are consistent with the simple (Newtonian) analytic
scalings presented in [137]. Our estimates of the time of collapse for boosted, head-on
collisions differed significantly from a similar Newtonian estimate. While a number of
factors particular to these results (as discussed in Sec. 4.3) might explain such differences,
we observed that the collapse time decreased with increasing initial velocity as would be
expected.

However, we were unable to obtain an orbiting evolution with HAD even in the un-
charged case. We suspect that failure to orbit may be due to the method of filling the
excised interior developed in HAD for these evolutions. In particular, even though [145]
showed that the constraint violations from the filling do not propagate outside the horizon
in BSSN, the finite difference stencils extend inside the horizon and thus the filling affects
the evolution through the derivatives of the fields. In fact, [145] finds that one needs the
filling to extend out to a coordinate radius at most 0.4 times the horizon radius in order
for the filling not to affect the evolution (though the isotropic coordinate system of their
initial data is rather different from our Kerr-Schild one). However, for our initial data
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construction, the apparent horizon coincides with the excision surface, and so it is neces-
sary to fill all the way to the apparent horizon. It thus might be worthwhile to extend the
construction to allow for the excision surface to be inside the apparent horizon by using
negative expansion boundary conditions, as in [146].
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Chapter 5

Towards a parameterized hardness
model for Boolean SAT instances

In this chapter, we investigate a parameterized hardness model for Boolean SAT instances.
Building such a parameterized hardness model involves two parts. First, one needs to
identify a suitable parameterization of a SAT instance, that is amenable to a theoretical
analysis, i.e., can be used to prove that SAT instances with good values of such parameters
do not have exponential–sized proofs. Second, one needs to also show that such parameters
work well in practice; i.e., predictive of the solver runtime for different categories of SAT
instances. This, however, has been challenging to do in practice. In particular, proposed
parameters amenable to a theoretical analysis have either been empirically shown to be
a poor predictor of solving time [85, 147] or limited in their range of applicability [148],
whereas parameters that have been experimentally shown to be predictive of the solver
runtime, have been shown to have counter examples, i.e., instances with good values of
such parameters have been shown to require exponential–sized proofs to refute, or equiv-
alently, solve [149]. For example, it was empirically shown that parameters based on the
community structure of a graph encoding of a SAT formula are strongly predictive of solver
runtime [150], and are able to distinguish between industrial and random instances [79],
that are known to be easy and hard for a SAT solver to solve, respectively. However,
in [149], Mull et al. were able to show that a SAT instance with good community struc-
ture can have an exponential–sized proof, thus proving that community structure alone is
insufficient to determine the hardness of a SAT instance.

Here, we consider the hierarchical community structure (HCS)1 of a graph encoding of a

1The idea of HCS, in the context of Boolean formula, as introduced in the HCS paper [2] was introduced
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SAT formula. Our main motivation to investigate such a parameterization is twofold. First,
many real world SAT instances are likely to inherit the underlying hierarchical structure of
the human–developed systems they usually represent [151]; e.g., software libraries organized
into functions, which are then organized into modules. Second, such a parameterization,
would avoid the counter example proposed in [149] and thus might be a more suitable
candidate towards building a parameterized hardness model for SAT instances. We use a
machine learning based approach to build an empirical hardness model of a SAT instance
based on the HCS parameterization, to distinguish between different categories of SAT
instances that are generally assumed to be easy or hard for CDCL SAT solvers, as well as
predict the runtime of the solver for these instances.

This chapter is organized as follows. In Sec. 5.1 we discuss the notion of a HCS of
a SAT instance, and in Sec. 5.2, we discuss the details of our empirical model to predict
the hardness of a SAT instance using HCS. Specifically, in Sec. 5.2.1, we investigate the
ability of HCS to distinguish between instances that are known to be easy and hard for
a SAT solver, i.e., those from industrial and randomly generated or cryptographic appli-
cations, respectively, and in Sec. 5.2.2 we build an empirical hardness model to map the
HCS based parameters of a SAT instance to its solving time for a specific SAT solver. Fi-
nally, in Sec. 5.3, we summarize the results of our experiments and discuss the theoretical
implications of those results.

5.1 HCS of a Boolean SAT formula

To describe the HCS of a SAT formula, we first need to define the community structure of a
graph. The community structure H(G) of a graph G is a partition of its vertex set V , such
that for each subgraph (community) over each partition P , there are more inter-community
edges, than edges between two communities [152]. To compute a hierarchical community
structure, one recursively constructs a community structure for each such subgraph, until
a subgraph can no longer be divided into separate communities [153].

There are several ways to construct a community structure for a graph G. We use
an approach that is based on finding a partition P of the vertex set V that maximizes a
quantity called the modularity (Q) over all possible partitions of V , i.e.,

H(G) = argmaxP Q(G,P ). (5.1)

by Ian Li and Vijay Ganesh.
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The modularity Q of a partition P is given by

Q(G,P ) :=
1

2|E|
∑
u,v∈V

[
Au,v −

d(u)d(v)

2|E|

]
δP (u, v), (5.2)

where A is the adjacency matrix of G, d(u) and d(v) are the vertex degrees of vertices u
and v, respectively, |E| is the total number of edges in the graph, and δP (u, v) is quantity
that is equal to one, if both u and v lie in the same community, and zero, otherwise.
Intuitively, Eq. (5.2) computes fraction of the edges that fall within a given partition minus
the expected fraction if edges were distributed at random, thus measuring the strength of
division of a graph into communities. To compute the community structure of a the graph,
we use the Louvain method [154] implemented in the Python package igraph [155].

To compute the HCS of a Boolean formula, we must first encode it into a graph. We
use the simplest possible encoding, called a variable incidence graph (VIG), where each
node corresponds to a literal in the formula, and two nodes share an edge if the two literals
appear in the same clause in any part of the formula. For example, the VIG (and its
corresponding HCS) for the Boolean formula

(x1 ∧ ¬x2 ∧ x3) ∨ (x1 ∧ ¬x3) ∨ (x3 ∧ x4) ∨ (x4 ∧ x5 ∧ x6) ∨ (¬x5 ∧ x6 ∧ x7 ∧ x8), (5.3)

is shown in Fig. 5.1. Note that such an encoding is not bijective, i.e., one cannot recover
the boolean formula from the VIG. Further, the VIG does not encode information about
the polarity of the variables, and furthermore, it compresses large clauses into a clique,
which can significantly distort the overall structure of the VIG.

Given HCS of a Boolean formula, we compute2 several parameters characterizing its
HCS; for a complete list, see [2]. Broadly, for each SAT instance, they summarize the
depth of HCS of decomposition, the size of each community, the number of communities
they are connected to, and the ratio between the number of intra-community edges and
the inter-community edges at each level of the structure. These parameters are not all
independent, and in fact, some of them are highly correlated with each other, and hence,
from an empirical standpoint, redundant. In addition to the HCS parameters, we also
compute a few parameters independent of the HCS (e.g., the clause variable ratio) that
characterize a SAT instance. In total, we use 49 parameters to build our empirical hardness
model for SAT instances. In the next section, we discuss the details of our empirical model
and its performance on a variety of SAT instances.

2The data collection was done by Ian Li and Jonathan Chung, under the guidance of Vijay Ganesh. My
contribution was to build a statistical model to predict if—and which of the various features—are truly
predictive of solver behaviour, and constitute a basis for further theoretical analysis. This was done with
inputs from Ian and Jonathan, and under the supervision of Vijay Ganesh.
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Figure 5.1: (Left) The variable incidence graph (VIG) of the Boolean formula given in
Eq. (5.3) with nested circles showing the hierarchical community structure. Here, C rep-
resents the root level community, that is the entire graph. Further, C1 and C2 are the two
sub-communities containing nodes (x1, x2, x3) and (x4, x5, ..., x8) respectively. The com-
munity C2 can be further decomposed into two communities C2,1 and C2,2, with literals
x4 and (x5, ..., x8), respectively. (Right) The hierarchical structure of the partition of the
vertex set shown as a tree.

5.2 Empirical hardness model for SAT using HCS

Our goal is to understand whether HCS of a SAT instance is predictive of its hardness,
which, in our setting, corresponds to the solving time on a specific SAT solver. To answer
this question, we need a model that maps the HCS parameters to the solving time of a
SAT instance. Since no such canonical map exists in theory, we choose a model (map)
and then evaluate the quality of our parameterization (i.e., HCS) for that model. This
clearly introduces a problem, i.e., if the model performs poorly, how do we determine if
the issue is the model, or the effectiveness of our parameterization. For example, previous
studies [147] have used a linear (e.g., correlation) or higher order polynomial regression
models to evaluate the performance of a particular parameterization in predicting the
solving time of a SAT instance. However, if the relationship between such parameters and
the solving time is highly nonlinear, such a model will perform poorly irrespective of the
suitability of the parameterization in determining the hardness of a formula.

A more consistent approach, is to consider a generic, data-driven model, such as those
used in machine learning. Machine learning based models, however, are often used as a
black box, and known to be difficult to interpret. Since our end goal is to use the most
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Qm, j, tm

Qm,r, k, tnQm,l

Qm,r,l Qm,r,r

xj > tmxj ≤ tm

xk > tnxk ≤ tn

Figure 5.2: An example of a two–level decision tree, with one root node (red), one internal
node (blue) and three leaf nodes (green). At the root node, the data Qm = {xi, y} where
xi are the set of features, and y are the corresponding labels, is split into two subsets
(Qm,l, Qm,r) on the jth feature, using a threshold tm. The subset Qm,r is further split
into Qm,r,l and Qm,r,r on the the kth feature for threshold parameter tn. A split is only
considered if the resulting tree minimizes an overall cost function; else the node terminates
as a leaf node. In this simple case, learning the decision tree would involve learning the
parameters (j, tm, k, tn) that minimizes the associated cost function for the tree.

relevant HCS parameters for a more rigorous theoretical analysis, we use a simple machine
learning model based on random forests [156], which can learn complex, highly nonlinear
relationships, and yet have a relatively simpler structure, which makes them are easier to
interpret than other models (e.g., deep neural networks).

Random forests are based on an ensemble of decision trees. A decision tree [157] is
a nested chain of conditional statements (decision rules) that are learned from the data.
Each node in the tree represents a decision rule, and can either branch into two further
(internal) nodes or terminate in a leaf node, depending on the branching parameters for
that node. Learning the decision tree essentially involves finding the branching parameters
for all the nodes, that minimises a certain overall cost function (e.g., Gini impurity [157]
or a mean squared loss) for the entire tree; see Fig. 5.2.

Once a decision tree is learned, it can then be used to classify data up to the precision
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defined by the leaf nodes. Decision trees, however, have poor generalization error, i.e.,
they tend to overfit the data. Random forests prevent overfitting by constructing a large
number of decision trees, each trained on a randomized subset of the data. In fact, a
remarkable—and perhaps, non-intuitive—feature of random forests is that adding more
trees does not lead to overfitting [156]. These randomized datasets are constructed by first
sampling from the original dataset with replacement (bootstrapping) and then selecting
a subset of features from this new dataset. For classification tasks, the algorithm returns
the class selected by most trees, whereas for regression, it returns the prediction averaged
over the ensemble of decision trees.

To quantify the merit of an HCS based parameterization for predicting the hardness, we
ask two questions. First, we ask how well can we distinguish between different categories
of SAT instances using HCS parameters. Second, we ask how well HCS parameters do in
predicting the runtime of particular SAT instance. The first question naturally lends itself
to a classification problem, whereas the second question corresponds to a regression problem
(since the solving time is a continuous variable). Thus, we train a random forest classifier
and regressor, to predict the category of a SAT instance and its solving time, respectively.
We used an implementation of a random forest from the scikit-learn [158] library in Python.
To train our random forest models, we considered all of the 49 parameters for ∼ 3000 SAT
instances equally distributed among 5 different categories (i.e., from applications generating
such instances, namely verification, agile, random, crafted and crypto) with varying levels
of hardness, and we tested the performance of our learned models over 5 cross-validation
sets, and a sample size of 1000 SAT instances.

5.2.1 Predicting the category of a SAT instance

For the category classification problem, we found that our random forest model to perform
extremely well. Concretely, we found our model to have an average accuracy score of ∼ 0.99
over all the cross-validation sets. In fact, the classifier occasionally misclassified verification
and agile instances, but never between verification and random/crafted instances.

Given the extremely high accuracy of our classifier, one may naturally ask if our model
is overfitting. The remarkably high accuracy of our classifier is perhaps not as surprising
when one considers a lower dimensional visualization of our data. A popular approach
for visualizing higher dimensional data on a lower dimensional space is to use a method
called t–distributed Stochastic Neighbour Embedding (t–SNE) [159]. On a high level, the
t–SNE algorithm converts distances between data points to joint probabilities in both the
high dimensional space as well as in the target lower dimensional space, and then tries
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Figure 5.3: A 2D t–SNE embedding of our 49 dimensional data showing a clear separation
between different categories of SAT instances. The axes x1 and x2 are arbitrary directions
chosen by the t–SNE algorithm for the lower dimensional embedding. Note that the struc-
ture of a t–SNE embedding depends on the choice of certain parameters for the t–SNE
algorithm. We verified that presence of well-separated clusters in the figure is independent
of the choice of such parameters.

to minimize the Kullback-Leibler divergence [160] between the joint probabilities of the
low-dimensional embedding and the higher-dimensional data. In Fig. 5.3, we show a two
dimensional representation of our dataset computed using t–SNE. We observe that the
categories of SAT instances are clearly separated even in the lower dimensional representa-
tion of the data, which suggests that the data might be well-separated even in the higher
dimensional space, which would justify the high accuracy of our random forest classifier.

The high accuracy of our classification model strongly suggests that HCS based param-
eterization is very effective in capturing the underlying structure that make verification
instances different from, e.g., random instances. In the following section, we investigate
whether the underlying structure that distinguishes SAT instances from different cate-
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gories, is also predictive of the hardness of the SAT formula, as measured by the runtime
of the SAT solver for a given SAT instance.

5.2.2 Predicting the runtime of a SAT instance

For predicting the runtime, however, HCS parameters were significantly less predictive than
they were for distinguishing between different categories of SAT instances. Specifically, we
found our regression model to have an R2 score of 0.83. The R2 score measures the fraction
of variance in the data that is unexplained by the model [161]. Thus, our regression model
based on HCS parameters is able to account for only 83% of the variance in the solving
time of a SAT instance. This suggests that the underlying structure that differentiates
between different categories of SAT instances, might in fact be different than the structure
that determines the hardness of a SAT formula, even though, empirically, SAT instances
from different categories such as verification and random, are often considered to be easy
and hard SAT instances, respectively. In Fig. 5.4, we show the predicted runtime by our
random forest regression model with respect to the the actual runtime. We also see that
our model, in general, performs much worse for predicting the solving time for harder
SAT instances, than for easier instances. We also investigated how our regression model
performed separately, for each category of instances. We found that the performance
of our regression model varies with instance category. Concretely, agile outperformed
all other categories with an average R2 value of 0.94, followed by random, crafted and
verification instances with scores of 0.81, 0.85 and 0.74 respectively. Interestingly, the
worst performance was shown by the instances in crypto, with an R2 score of 0.48.

Finally, in order to find those HCS parameters that are most predictive of the runtime
and category of an instance, we calculated the permutation importance score [156] for all
the parameters. Permutation importance measures the average decrease in the predictive
accuracy of the model when a single feature is randomly shuffled. In our case, as mentioned
earlier, many of the HCS parameters are highly correlated, which can lead to inaccurate
interpretations of importance of individual features [156]. Hence, we first performed hierar-
chical clustering on all 49 features to generate 22 clusters, and then picked a single feature
from each of these clusters and ranked them (correspondingly, their parent clusters) ac-
cording to their permutation importance scores. Among the HCS parameters, we found
those based on the leaf-community size and inter-community edges of a SAT instance to
be the most predictive for the accuracy of our hardness model.
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Figure 5.4: Predicted solving time (tpred) vs. the actual solving time (ttrue) for SAT in-
stances with varying levels of hardness computed using the random forest regression model.

5.3 Conclusions

Given the central importance of the Boolean SAT problem in formal methods, and its
potential utility in several areas of science, including numerical relativity, it is crucial
that we understand why, in practice, we are able to solve what is conjectured to be an
computationally intractable problem. Our main goal in this chapter, has been to investigate
the suitability of a hierarchical community structure (HCS) based parameterized model
for describing the hardness of SAT instances. To do this, we built a classification and
regression model based on random forests, to distinguish between different categories of
SAT instances (that are known to be easy and hard in practice) and to predict the solving
time of a SAT instance on a specific SAT solver, respectively. We found that HCS is able
to capture the underlying structural differences between real world (i.e., verification/agile)
instances and random/cryptographic instances with very high (∼ 99%) accuracy and is
independent of the classification model. For predicting the solving time, the efficacy of the
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HCS parameters was more moderate; we found our regression model fit the data with an R2

value of 0.83. This suggests that the underlying structure of the formula that differentiates
between easy (verification/agile) and hard (random/crypto) instances does not completely
determine the hardness, or equivalently, solving time of a SAT instance. Thus, HCS of a
Boolean formula may be necessary, but not sufficient to build a complete and consistent
(with theory) parameterized hardness model.

Our conclusion is consistent with the theoretical results3 presented in [2]. In our em-
pirical investigations, we found the HCS parameters based on leaf-community size and
inter-community edges to be the most predictive for predicting the category or the run-
time of a SAT instance. While we were able to show that one can avoid hard SAT instances
presented as counterexamples in [149] if one restricts the leaf community size of a SAT for-
mula, we found that one can still find hard instances with small leaf communities unless one
explicitly restricts the number of inter-community edges, and thus, hierarchical community
structure alone is insufficient to build a hardness model for SAT instances.

3The theoretical results are due to Noah Fleming, Marc Vinyals, Antonina Kolokolova, Ian Li, and
Vijay Ganesh.
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Chapter 6

Summary & Future Directions

In this thesis, we investigated three different topics, of which, the first two are directly
related to current challenges in computational relativity, and the third concerns a central
problem in computer science, that has the potential to be useful for specific problems in
computational relativity.

In Chapter 2, we investigated a spacetime discretization method in the context of
numerical relativity. A spacetime discretization method, in many ways, is better suited for
spacetime evolutions, than a 3+1 evolution scheme. In particular, they are agnostic towards
a particular choice of a time coordinate, allow for hp adaptivity in both space and time, and
have the potential to scale much more efficiently on distributed computing hardware than
traditional 3+1 evolution methods. To construct our spacetime discretization method, we
decomposed spacetime into spacetime volume elements using double null coordinates in
spherical symmetry. We implemented a pseudospectral method to compute the solution
in each spacetime element, and used an asynchronous computing model to distribute the
computation across multiple processes. To test our numerical algorithm, we considered
the evolution of a scalar wave in 1+1 dimensions, and the evolution of a Schwarzschild
black hole and a self-gravitating scalar wave, in spherical symmetry. We found that our
implementation performs very well (i.e., is stable, and convergences as expected) in all
cases, except for the evolutions that include the axis of symmetry (r = 0), where our
method fails to converge, likely due to numerical inaccuracies caused by the coordinate
singularity at r = 0.

This problem due to the coordinate singularity, however, is not inherent to a spacetime
method, but rather our choice of coordinates, i.e., double null coordinates adapted to
spherical symmetry. While such a choice allowed us to investigate a spacetime method in
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a simpler setting, such an approach based on double null coordinates may fail to work in
higher dimensions, due to the presence of caustics [99]. Therefore, it would be useful to
investigate spacetime methods based on unstructured spacetime elements, such as those
explored in [107, 108].

In Chapter 3, we constructed conformally curved initial conditions for spinning charged
black hole binaries in orbit. Specifically, we generalized the superpose-and-solve construc-
tion by Lovelace et al. [110] to include the effects of charge. Our approach—in addition to
providing a completely independent method to construct charged binary black hole initial
data—offers several advantages over the existing construction in [109], e.g., better control
over the physics through the boundary conditions at the excision surface and the ability to
construct binary initial data with larger spin, above the Bowen-York limit. We constructed
initial data for different configurations of binary black holes (high charge, moderate spins,
and a generic orbiting binary with spins), and found our method to converge exponentially
for lower resolutions, but more slowly for higher resolutions.

There are several improvements one could make to our initial data construction. For
example, it would be useful to understand and mitigate the loss of exponential conver-
gence at higher resolutions, especially for binaries with large charge. This might require
conformally rescaling the EM quantities as was done in [119, 109], and careful handling
of the regularity conditions at the computational domain boundaries, where the gradients
of electric constraint violations are the largest. Our construction can also be extended to
construct initial data for binary black holes in Einstein-Maxwell-dilaton theory. In gen-
eral, this would require superposing numerically constructed single black hole solutions
for spinning black holes [162, 163]. Since analytical solutions are only known for black
holes without spin, and for spinning black holes with specific values of the coupling pa-
rameter [164], an initial implementation could focus on these simpler cases. There are no
additional constraint equations to solve for the dilaton field, just additional source terms
in the Hamiltonian and momentum constraints. Evolutions with such initial data would
improve upon the existing work by Hirschmann et al. [41] using approximate initial data,
and also allow for comparisons with analytical work [46, 55].

In Chapter 4, we discussed some evolutions of charged and uncharged initial data using
the HAD and BAM code. In particular, we discussed the evolution of uncharged, spinning
binary black holes in orbit, using BAM. We also considered head-on collisions of charged
black holes with different charge-to-mass ratios, and head-on collisions of uncharged black
holes with different boosts, evolved using the HAD code. For the head-on collisions of
charged black holes with different charge-to-mass ratios, we found our numerical results to
be consistent with the simple (Newtonian) analytic estimates presented in [137]. For the
head-on collisions of the boosted, uncharged black holes, we observed that the collapse time
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decreased with increasing initial velocity. However, the time of collapse computed from the
numerical simulation differed significantly from the corresponding Newtonian estimate.

Here, we were only able to evolve charged binary black holes for the head-on case, for
the orbiting initial data (even for the uncharged case, which orbits in BAM) failed to orbit
in HAD, likely due to the issues related to the black hole filling in HAD. We will thus need
to resolve the outstanding issues with black hole filling in HAD. In particular, it would
be worth exploring if setting the excision surface to be inside the apparent horizon, as
in [146], mitigates the issues we encountered while evolving our excision initial data using
puncture methods. One goal is to use our initial data to compute low-eccentricity charged
binary black hole waveforms that are sufficiently accurate for data analysis applications.
Such waveforms will allow us to check how sensitive current LIGO-Virgo tests [24, 25] are
to completely consistent, parameterized deviations from GR. To evolve our charged initial
data, it would also be useful to investigate other evolution codes, that use a different
approach to filling inside black holes compared to HAD, and allow us to compute the
quasilocal mass, charge, and spin of black holes during evolution.

In Chapter 5, we constructed an empirical hardness model for Boolean SAT instances
using a parameterization based on the hierarchical community structure of SAT instances.
Specifically, we built a machine learning model based on Random Forests to distinguish
between different categories of SAT instances, and predict the runtime of a SAT solver for
a given SAT instance, based on a characterization of its hierarchical community structure.
We found that our parameterization works very well for distinguishing between different
classes of SAT instances. However, for predicting the runtime of the solver, we discovered
that our parameterization is not as effective, at least for the simple graph encoding based
on a variable incidence graph we considered here. It might be useful to consider a different
graph encoding that better encodes the clause structure of the formula, or consider the
polarity of the Boolean variables. The goal however, cannot be to only improve the accu-
racy of the empirical model, but also investigate parameterizations that are amenable to
a theoretical analysis. From such a point of view, it would be useful to investigate param-
eterizations that are theoretically motivated, rather than which perform well on empirical
tests.

An important goal of this work in the context of this thesis, is to initiate a bridge
between computational relativity, formal verification methods, and Boolean SAT solvers.
There are several areas where Boolean SAT solvers could play an important role in numer-
ical relativity applications, e.g., verification of floating point computations, or checking the
existence of a solution for a set of nonlinear algebraic equations, and it would be interesting
to investigate these, and other such avenues in the future.
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Appendix A

Pseudospectral method using
Chebyshev Gauss Lobatto points

In this Appendix, we list the expressions for the Chebyshev Gauss Lobatto collocation
points, the associated derivative operator, and the integration weights, in one dimension.
The collocation points xi, for a grid of size N+1, corresponding to a pseudospectral method
of order N , are given by

xi = cos

(
πi

N

)
, i = 0, . . . , N (A.1)

The one dimensional derivative operator is given by (see, e.g., [165])

Dij =


(1 + 2N2) /6 i = j = 0
− (1 + 2N2) /6 i = j = N

−xj/
[
2
(
1− x2j

)]
i = j; 0 < j < N

(−1)i+jβi/ [pj (xi − xj)] i ̸= j

(A.2)

where βj = 1 and β0 = βN = 2. Finally the quadrature weights for these collocation points
are given by (see, e.g., Chapter 12 in [166])

wj = 1 +
N∑
j=2

qilj
N(1− j2)

cos

[
πij

N

]
, q0 = qN = 1, qi = 2, (A.3)

where lj = 1 if j is even, and zero otherwise. These weights can be arranged into an
operator Wij = diag(wj), which we denote as the one dimensional integration operator in
Sec. 2.1.2.
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Appendix B

Kerr-Newman black hole in
Kerr-Schild coordinates

In the 3+1 setting, the spatial metric and extrinsic curvature for a stationary Kerr-Newman
black hole in Kerr-Schild coordinates are given by [167, 135]

γij = fij + 2Hlilj, (B.1a)

Kij =
1

2α
(∇iβj +∇jβi − ∂tγij) , (B.1b)

where the lapse α and the shift βi are given by

α =
1√

1 + 2Hl20
, βi = 2Hl0li, (B.2)

writing these in a form that makes it easy to compute their boosted form, following [168].
In the above equations, the metric function H and the null vector lµ

.
= {l0, li} are given by

H =
Mr3 − (Qr)2/2

r4 + (a · x)2
, (B.3a)

lµ
.
=
{
1,
r [x− (â · x) â]− (a× x)

r2 + a2
+

(â · x) â
r

}
, (B.3b)

where x
.
= {x, y, z} is the three dimensional coordinate vector, a = a â is the angular

momentum per unit mass, and M and Q are the mass and charge of the black hole,
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respectively. Here we use
.
= to denote that we are giving the components of a vector. The

parameter r is given by

r2 =
1

2
(ρ2 − a2) +

√
1

4
(ρ2 − a2)2 + (a · x)2, (B.4a)

ρ2 = x2 + y2 + z2. (B.4b)

Note that in Eq. (B.3b) and in Eq. (B.5) below, we use the Euclidean cross product.
To compute the electric and magnetic fields for a Kerr-Newman black hole, we use the
four-potential [135]

Aµ
.
= − Qr3

r4 + (a · x)2
{
1,
r [x− (â · x) â]− a× x

r2 + a2

+
(â · x) â

r

}
, (B.5)

and compute the electric and magnetic field using [119]

Eµ := −nνF
νµ, Bµ := −nν

∗F νµ, (B.6)

where nµ
.
= {α, 0, 0, 0} is the four velocity of an Eulerian observer, and Fµν and ∗F µν are

the Faraday tensor and its dual

Fµν = ∂µAν − ∂νAµ,
∗F µν := −1

2
ϵµνηγFηγ. (B.7)

Here ϵµνηγ is the curved-space Levi-Civita symbol, such that ϵ0123 = −1/
√−g, where g is

the determinant of the full 4-dimensional spacetime metric.

For a boosted Kerr-Newman black hole, we first compute H and the vector quantities
Uµ ∈ {lµ, nµ, Aµ} in the boosted coordinates x̄α, given by

xβ = Λβ
α x̄

α, (B.8)

where xα are the inertial (grid) coordinates and Λβ
α is the Lorentz transformation ma-

trix relating the two frames, and then apply the Lorentz transformation to the vectors
themselves, i.e.,

H(xα) = H̄
(
[Λ−1]β α x

α
)
, (B.9a)

Uδ(x
α) = Λγ

δ Ūγ

(
[Λ−1]β α x

α
)
, (B.9b)

where barred quantities correspond to the boosted frame. We then use Eqs. (B.1), (B.2), (B.6),
and (B.7) to compute the relevant quantities for the boosted black hole.

86



Appendix C

Linearized XCTS equations

To solve the non-linear equations (3.3) and (3.16), together with the boundary condi-
tions (3.9), (3.10), (3.12), and (3.21), we need to compute their linearized counterparts.

Consider the linearized variables ψ̂, β̂i, α̂ψ and ϕ̂. We compute the Fréchet derivatives for
all the terms that are functions of these variables; see, e.g., Appendix C in [105] on how to
compute these derivatives. The linearized versions of Eq. (3.3) read

∇̃2ψ̂ − 1

8
R̃ψ̂ − 5

12
K2ψ4ψ̂ − 7

8
ψ−8ψ̂ÃijÃij +

1

8
ψ−7 ̂̃AijÃij = −2πψ5ρ̂− 10πψ4ψ̂ρ, (C.1a)

∂j

[
7ψ6ψ̂

2(αψ)
− ψ7α̂ψ

2(αψ)2

](
L̃β
)ij

+ ∂j

[
ψ7

2(αψ)

](
L̃β̂
)ij

+
7ψ6ψ̂

2(αψ)
∇̃j

[(
L̃β
)ij]

− ψ7α̂ψ

2(αψ)2
∇̃j

[(
L̃β
)ij]

+
ψ7

2(αψ)
∇̃j

[(
L̃β̂
)ij]

− 4ψ5ψ̂∇̃iK = 80πψ9ψ̂J i + 8πψ10Ĵ i,

(C.1b)

∇̃2(α̂ψ)− (α̂ψ)

[
R̃

8
+

5

12
K2ψ4 +

7

8
ψ−8ÃijÃij

]
− (αψ)

[
5

3
K2ψ3ψ̂ − 7

ψ9
ψ̂ÃijÃij +

7

8
ψ−8 ̂̃AijÃij

]
− 5ψ4ψ̂βk∂kK − ψ5β̂k∂kK = (α̂ψ)

[
2πψ4(ρ+ 2S)

]
+ (αψ)

[
8πψ3ψ̂(ρ+ 2S)

]
+ (αψ)

[
2πψ4(ρ̂+ 2Ŝ)

]
, (C.1c)
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where we have used the two intermediate linearized quantities

̂̃AijÃij =
ψ7

(αψ)

[
Ãij(L̃β̂)ij

]
+

[
14ψ̂

ψ
− 2α̂ψ

αψ

]
ÃijÃij, (C.2)

(L̃β̂)ij = ∇̃iβ̂j + ∇̃jβ̂i −
2

3
γ̃ij∇̃kβ̂

k, (C.3)

and the linearized source terms ρ̂ and Ĵ i that are given by

ρ̂ = Ŝ =
1

4πψ4

[
γ̃jm(B̂jBm + ÊjEm)− 2 γ̃jk

ψ̂

ψ
(BjBk + EjEk)

]
, (C.4)

Ĵ i =
γ̃im

√
γ̃

4πψ6
ϵFmkl

[
γ̃knγ̃lm(ÊnBm + EnB̂m − 6ψ̂

ψ
EnBm)

]
, (C.5)

In the above equations, we have further used

Êj = ∂jϕ̂, (C.6)

B̂i = − 2ψ̂ γ̃ij
ψ3

√
γ̃
ϵjklF ∂k(Asp)l, (C.7)

Further, for Eq. (3.16), the linear equation for ϕ̂ reads

∇̃2ϕ̂+ 2 ∂k

(
ψ̂

ψ

)
∂kϕ+ 2 (∂k lnψ) ∂kϕ̂ =

(
− 2 ψ̂

ψ3
√
γ̃
+

1

ψ2
√
γ̃

)
∂k

[
γ̃km(Esp)mψ

2
√
g̃
]

+
1

ψ2
√
γ̃
∂k

[
2 γ̃km(Esp)m ψψ̂

√
γ̃
]
, (C.8)

which can be simplified further to get

Finally, for those boundary conditions which are functions of the non-linear variables
themselves, i.e., for Eqs.(3.12), (3.10), , and (3.21), we get

s̃k∂kψ̂ = −
[

ψ3

2(αψ)
ψ̂ − ψ4

8(αψ)2
α̂ψ

]
s̃as̃b(L̃β)ab −

ψ4

8(αψ)
s̃as̃b(L̃β̂)ab

− ψ̂

4
h̃ab∇̃as̃b +

1

2
Kψ2ψ̂, (C.9)

β̂i =

[
α̂ψ

ψ
− αψ

ψ2
ψ̂

]
si + 4Ωk

rψ
3ψ̂γ̃imξ

m
(k), (C.10)

γ̃amsm∂aϕ̂ = ζ̂ γ̃amsm(Esp)a, (C.11)
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respectively, where

ζ̂ = −4πQH

[
2

∮
S
ψ̂ψg̃ab(Esp)a

√
h̃ dSb

] [∮
S
ψ2g̃ab(Esp)a

√
h̃ dSb

]−2

(C.12)

is the linearized version of Eq. (3.43). Here S̃a is the conformal spherical surface element.
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