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Abstract 

Plastic is a unique material, it is lightweight, resilient, non-reactive, waterproof, and low-cost. 

Due to its versatility and use in everyday products and consumption, it has become a huge 

environmental concern. In 2015, it was reported that 381 million tonnes of plastic waste were 

produced, black plastics making up 15% and the electronics industry contributing 20% from e-waste.  

Currently there is no effective sorting technology to sort black or very dark colored plastics as 

they absorb most of the probing energy. Therefore, they cannot be sorted or recycled and end up in 

landfills. To solve this problem, a new technique must be established.  

In this thesis, we propose the use of Terahertz (THz) and Mid-Wave Infrared (MWIR) 

Spectroscopy with machine learning algorithms to interpret and identify different types of e-waste 

black plastics. Each black polymer material that interacts with terahertz and MWIR rays affect the 

shape of the spectrum and has a unique spectral signature. Thus, combining terahertz with MWIR 

spectroscopy to get multidimensional sensory data will allow us to train a classification model 

identify black plastics with high accuracy while mitigating the shortcomings of both technologies.  
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Chapter 1 

Introduction 

1.1 Background 

Plastic is a unique material, it is lightweight, resilient, non-reactive, waterproof, and low-cost. 

Due to this, its use in e-waste has increased in types and quantity. It's over-consumption and 

versatility in everyday use poses a major environmental concern. Plastic pollution has become a 

significant environmental issue as the rapid increase of plastic products far outweighs the world’s 

ability to deal with them. In 2015, it was reported that 381 million tons of plastic waste are produced 

[1], 20% of which comes from e-waste [2] and 15% are black plastics which cannot be recycled and 

end up in landfills [3]. 

There are multiple reasons e-waste plastics end up in landfill. First, there are inconsistent 

regulations regarding e-waste recycling. For example, the US and Europe have different definitions of 

e-waste. In Europe, small household appliances such as refrigerators, microwave ovens, coffee 

makers and toasters are considered as e-waste, but are not by the US. Even e-waste from nations with 

strict environmental regulations still continue to be shipped to countries where the environmental 

regulations are not strict and/or labor is cheaper (e.g., China, India, Pakistan, Nigeria) [4]. Secondly, 

it is cheaper for manufacturers to use new plastic rather than use recycled due to the higher cost of 

recycled plastic, as well as not enough regulations and incentives for manufacturers to reduce their 

use of new plastic [5]. Additionally, recycled plastic that has low purity rate has poor strength and 

stiffness, exhibiting nonlinear behavior and deformation before failure due to lower interfacial 

adhesion [6]. Thus, there are no high demand for recycled plastic. 

Waste Electrical and Electronic Equipment (WEEE) plastic contains a wider array of 

hazardous chemicals such as brominated flame retardants (BFRs). Environmental impacts and human 

exposure can arise from soil and water contamination from nearby recycling and moulding facilities 

due to these chemicals. BFRs are a group of different substances that are used in many polymers to 

prevent fire hazards. However, most of them are not fixed to the polymer by chemical binding and 

therefore leak into the surrounding environment [7]. The chemical structure of BFRs make them 

persistent in the environment and can be found present in air, wildlife and, in adults and infants [8]. 

Studies have shown that BFRs have potential adverse affects on central nervous and reproductive 

systems [9], [10]. Current plastic recycling processes are not designed to remove chemical additives. 
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The presence of BFRs in recycled plastic can be the result of polymer mixing and contamination 

during the recycling process. Hence, plastics with BFRs additives are re-introduced into the plastic 

recycling loop, meaning these additives can seep into other sensitive plastic products (e.g., food 

packaging and toys). Acrylonitrile butadiene styrene (ABS) and high-impact polystyrene (PS) are of 

most concern as they are commonly used in electric and electronic equipment and contain the highest 

concentration of BFRs [11]. Therefore, these plastic types require proper identification and sortation 

before recycling. 

1.2 Current Sorting Technology 

One of the biggest challenges in recycling e-waste plastic is sorting them for processing into 

raw materials. For proper recycling, plastics must be sorted by polymer [12]. Current plastic sorting 

technology uses Short Wave Infrared (SWIR) cameras [13]. SWIR hyperspectral scanners cover 1000 

to 2500 nm on the spectral band and are ideal for detecting light colored plastics. They illuminate 

light on plastics that are to be sorted, then read the spectral signature of the reflected light from the 

plastic. Different plastics have different signatures, and they are sorted based on their unique spectral 

signature. The drawback of SWIR based sorting is that it cannot sort black or very dark colored 

plastics because dark colors tend to absorb most of the illuminated light and reflect almost nothing 

back [14]. This leads to black plastics ending up in landfills or incinerated.  

1.3 Literature Review 

E-waste plastic identification/sortation with both terahertz and MWIR technology is a 

relatively untouched subject. However, there are multiple studies characterizing materials with 

terahertz spectroscopy as well as studies utilizing SWIR spectroscopy for non-black plastic 

characterization with machine learning classification models. 

1.3.1 Terahertz Characterization of Materials 

Terahertz is a frequency band that falls between far infrared and microwave on the 

electromagnetic spectrum. The properties of terahertz radiation can be used to investigate solid and 

chemical structures. Terahertz waves can penetrate objects like plastic, and it is non-destructive and 

safe [15]. Due to major advancements that have brought down the cost and size of the instruments, it 

has enabled terahertz technology to be used in industrial settings [16]. Most materials and 

compositions have distinct fingerprints in the terahertz spectrum. Terahertz time-domain spectroscopy 
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(THz-TDS) has been shown to be useful for distinguishing pharmaceuticals [17], cancer cells [18], 

explosives [19] and biohazards [20]. Additionally, THz-TDS has been used to study different polymer 

types, successfully extracting its unknowns such as the thickness, the absorption coefficient and 

refractive index [21], [22].  

1.3.2 Infrared Spectroscopy and Material Classification 

Infrared spectroscopy is the analysis of infrared light interacting with matter. It can be done 

by measuring the material absorption, emission, and reflection. It is primarily used to determine 

functional groups of molecules by measuring the vibrations of atoms. The range of infrared 

wavelength is 700 nm to 1mm, and are usually classified into three regions, near infrared (700-

2500nm), mid infrared (2.5-25µm) and far infrared (25µm-1mm) [23]. By analyzing the infrared 

spectrum, one can identify unknown materials, extract information on the quality of a sample and 

determine the chemical components present in a mixture. By illuminating infrared light on a sample 

and measuring the absorption or reflectance of the light at each wavelength, the infrared spectrum is 

obtained with corresponding frequency of absorbed radiation. All material that interacts with infrared 

rays will display characteristic vibration frequencies and information about its molecular structure on 

its measured spectrum. Due to the high information of infrared spectroscopy, it is a very powerful 

tool for substance identification. There are many studies that have successful uses of SWIR (1-2.5µm) 

hyperspectral imaging on different type of materials such as plastic, glass and metal, combined with 

identification techniques like deep learning [14], [24], support vector machines (SVMs)[25] and 

partial least squares-discriminant analysis (PLS-DA)[26]–[28] that have very high classification 

accuracies (above 90%). However, these studies do not include e-waste black plastics as SWIR range 

does not have enough spectral features on black materials to be identified. 

1.3.3 Prior Art 

A previous research project at WEEE lab at Conestoga College, already dealt with sorting e-

waste black plastic samples with a Mid-Wave Infrared (MWIR) hyperspectral camera. Hyperspectral 

cameras analyze wide spectrums of light instead of assigning primary colors like red, green, and blue 

to each pixel. The captured light at each pixel is broken down into many spectral bands that provide 

high information on what was imaged. The processed hyperspectral image from the camera is a 

unique signature of an object as each pixel contains a full spectrum. Thus, providing both spectral and 

spatial information.  
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The set up used in the project is the same as they study done by Dr. Tehrani and Dr. Karbasi 

in [14] but with an MWIR hyperspectral camera with a spectral range of 3-5µm instead of a SWIR 

hyperspectral camera with a spectral range of 1-2.5µm. The setup can be seen in Figure 2,  

 

Figure 1: MWIR Sorting Machine 

SWIR wavelength is not effective to identify black plastics as the carbon content absorbs 

most of the probing energy. However, MWIR hyperspectral line-scan on black plastics has enough 

spectral information to be identified. The MWIR hyperspectral camera had 320 pixels per line and 

256 spectral bins. The MWIR hyperspectral camera was integrated into the sorting machine for high-

speed sorting. The machine works as follows, 1-inch square black plastic flakes to be sorted are 

placed on the shaker, which vibrate the plastics to slowly fall on the conveyor belt going at 3m/s. The 

plastic pieces are flung under the illumination units and exposed to MWIR for a short period of time. 

The reflected radiation is picked up by the MWIR hyperspectral camera and the spectrum is sent to 

the computer with a trained shallow neural network classifier. The ejectors then sort ABS from other 

plastic flakes based on the classifier result into separate bins. The sorting machine is able to sort ABS 

from PE and PS plastic flakes with more than 80% accuracy in real-time.  



 

 5 

1.4 Thesis Objectives 

In this thesis, the focus is creating an effective way to identify and sort e-waste black plastics 

with high efficiency. To achieve this goal, the use of THz spectroscopy and MWIR spectroscopy 

techniques are discussed. The objective of this thesis is to determine the effective frequency bins in 

the THz and MWIR regions that characterize e-waste black plastics for real-time applications.  

 In the THz region the polymers investigated are High-Density Polyethylene (PE), 

Polycarbonate (PC), Acrylonitrile Butadiene Styrene (ABS), High Impact Polystyrene (PS), Ultra-

High Molecular Weight Polyethylene (UHMW), and Polyoxymethylene (POM). In the MWIR 

region, the polymers investigated are ABS, PS and PE.  

 We want to establish a method that extract the distinguishable features from both THz and 

MWIR spectrums of black polymers, combine the multi-spectral data, and simulate a sorting system 

that identifies different polymers with the multi-spectral data.  

1.5 Thesis Organization 

 This thesis consists of four chapters, background information of e-waste black plastics as well 

as the current methodologies of dealing with them is described in Chapter 1. The research and 

development of a sorting system for e-waste black plastic using only THz time-domain spectroscopy 

is discussed in Chapter 2. The fusion of THz and MWIR spectrums and identifying e-waste black 

plastic using both techniques is discussed in Chapter 3. Lastly, the conclusion and future 

recommendations are given in Chapter 4. 
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Chapter 2 

Real-time Terahertz Based Sorting System 

 The goal of this project is to create a prototype of a real-time terahertz based sorting system 

capable of identifying falling e-waste black plastic pieces from a stream and eject them based on the 

plastic type. This chapter will discuss the research and development of the real-time black plastic 

sorting system as well as the research challenges and results. 

2.1 Terahertz Time-Domain Spectroscopy 

THz-TDS is a powerful tool for material characterization due to the ability of terahertz radiation 

to penetrate through objects like plastic, clothing and packaging contact-free [29]. Spectroscopy refers 

to energy/frequency of photons that pass through or reflect off a sample. For THz-TDS, the time-

domain signal directly measures the transient electric field. The terahertz electric field at the receiver 

is commonly in the range of 10-100V/cm with a time duration of few picoseconds. Since direct 

electrical detectors have nanosecond to picosecond rise and fall times, it does not have enough 

resolution to reach sub-picosecond. Therefore, optical techniques with ultrashort optical pulses (less 

than 100 femtoseconds) are used. For measuring the time-domain of an unknow terahertz field, a 

femtosecond (fs) laser pulse beam splits along two paths to the THz transmitter and the receiver. The 

terahertz field is obtained only when the optical laser pulse arrives simultaneously with the terahertz 

pulse. Since the optical pulse is significantly shorter than few picoseconds and the THz receiver is only 

sensitive when the split pulses arrive at the same time to the sensors, then the terahertz field can be 

measured as a function of time. The measured signal is the terahertz field power at single point in time. 

To measure terahertz field at all time points an optical delay is introduced. As the fs laser pulse is split 

into two beams, one beam is used to generate the terahertz radiation and the other goes to a path that 

has adjustable temporal delay, commonly by a high precision stepper motor (stage) with micrometer 

resolution. The TDS set up can be seen in Figure 1. 
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Figure 2: Simplified THz-TDS transmission setup 

Moving the stage allows for measuring the THz field at all time points and by adjusting the 

speed of the stage, higher or lower sampling resolution can be achieved. Higher resolution can be 

achieved by moving the stage slower but would take a longer time to finish a measurement. While 

lower resolution can be achieved by moving the stage faster and measurements would be achieved 

quicker. 
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2.2 System Overview 

PC

Bins

THz

Vibratory 
Feeder

Prox. 
sensorsFPGA

Ejectors

    

Vibratory 
Feeder

Proximity 
Sensors

THz 
Spectrometer

Ejectors

Bins

Polymers

PC
(LabVIEW)

FPGA
(LabVIEW)

Digital

TCP

USB

Digital

 

Figure 3: System Overview 

The system is similar to the MWIR sorting machine mentioned in Chapter 1, 1-inch black 

plastic flakes to be sorted are placed on the shaker. The shaker vibrates and gradually slide the pieces 

to be detected by proximity sensors before they fall in between THz sensors. When the plastic pieces 

are falling, a THz-TDS spectrometer takes the spectrum of the falling pieces and determines the type 

of plastic with a neural network algorithm. The neural network is a shallow fully connected network 

trained from multiple time-domain signals of different black plastic samples. The input of the neural 

network is the time-domain signal of the falling piece, and the output is the determined plastic type. 

Depending on the returned plastic type from the neural network, the pneumatic valves are either 

turned on to eject the piece or let it fall through. Thus, sorting into two compartments.  

There are four main systems for this project. First, the system development PC that performs 

data acquisition, analysis, classification, and optical control. Secondly, the FPGA system that reads 
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the proximity sensors and controls the pneumatic valves. Third, the THz spectrometer that has the 

components necessary for fast THz-TDS in multiple regions. Lastly, the vibratory feeder system 

where the plastic pieces are fed into and stream down to be sorted. 

2.3 Vibratory Feeder System 

2.3.1 Ramps 

The vibratory feeder has three ramps where one leads into the other. The top and middle 

ramp, seen in Figure 4, shake with vibrating motors to slide the plastic pieces down in a steam. To 

better separate the plastics, the top ramp’s inclination is lower than the middle ramp. The third ramp 

is mounted right after the middle ramp and is a smooth plastic material that is parabolic in shape and 

helps the plastic pieces gradually enter free fall before it is detected by the proximity sensors. 

  

 

Figure 4: Vibratory feeder ramps, (a) top ramp, (b) middle ramp 

2.3.2 Deflectors 

 The defectors are used as separators for the plastic parts. The parts will slide down the middle 

ramp and into the deflector, where they will be separated into three streams. This is achieved using 

two triangles with the tips pointing upwards seen in Figure 6. The deflectors can also be rotated 180 

a) 

b) 
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degrees if only two streams are desired instead of three. The plastic parts get separated into three 

streams as they fall on the third ramp where they will be detected by proximity sensors as seen in 

Figure 5.  

 

Figure 5: (a) Deflectors, (b) Third ramp, (c) Proximity Sensors 

 

Figure 6: (a) Deflector topside, (b) Deflector underside  

 There is a bar of aluminum extrusion in front of the third ramp so that the proximity sensors 

can be mounted to detect the plastic pieces that are sliding down. Beneath the ramp, the terahertz 

sensors are mounted so that they can detect the plastic parts in free fall. Under the terahertz sensors is 

the pneumatic valve bank that will blow air onto the plastic parts that need to be ejected from the 

stream of plastic. On the bottom, there are two collection bins. One collection bin is positioned so that 

a) 

c) 

b) 

a) 

b) 
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the falling objects will fall directly into it, while the other collection bin is positioned so that when the 

air blows the part it will land in the second collection bin.  

2.4 Detection and Ejection System 

This system’s main purpose is to allow for communication between the proximity sensors to 

the development PC, and the development PC to the pneumatic valve bank. The pneumatic valve 

actuators and proximity sensors are connected to CompactRIO (cRIO) by National Instruments. The 

cRIO system provides a real-time operating system and a chassis containing programmable FPGA 

modules. The cRIO uses a visual programming language that is similar to flow diagrams called a 

Virtual Instrument (VI). The FPGA system provides precise timing, very little control latency, and 

high-speed logic which makes it suitable for sorting application. The cRIO detection and ejection 

system runs a simple algorithm seen in Figure 7, the proximity sensors returns either True or False. If 

a falling plastic piece is detected it is True and if not, it is False. The three Boolean status is converted 

to an array (e.g., if sensor 3 is detected and 1 and 2 are not, the array will be 0000 0100) and it is sent 

to the development PC via TCP/IP.  

TCP packet 
to boolean

cRIO FPGA

Region 
to eject Pnuematic Bank 

Control

Proximity
Sensor 3

Proximity
Sensor 2

Proximity
Sensor 1

Plastic 
detected?

True/
False Boolean 

array

Detected
regions

Actuate 
air valve 

Boolean 
array

Dev PC

Dev PC Ejectors 

Boolean to 
TCP packet

 

Figure 7: cRIO FPGA Process Flow 

 Once, the development PC determines if it is a plastic of interest, it will send a Boolean array 

back via TCP/IP specifying the region to eject (e.g., if the plastic was detected at proximity sensor 3, 

the returned array will be 0000 0100). That region is fed to the pneumatic bank control VI which 
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actuates the air valves and ejects the falling plastic as seen in Figure 8 and 9 respectively. This 

process runs indefinitely.   

 

Figure 8: Pneumatic actuators 

 

Figure 9: Plastic ejection  

2.5 The Terahertz Spectrometer 

 The spectrometer used was the Rigel 1550 Spectrometer from TeTechS Inc. It is a portable 

and compact terahertz time-domain system that is capable of non-destructive material sensing and 

characterization applications. The transmitter and the receiver are both fiber coupled and have the 

freedom to be mounted in any test setting as long as they are optically aligned. It has a built in 1550 

nm femtosecond fiber laser and a laser beam distribution chassis (more information can be seen in 

Appendix A). The overall process for scanning falling plastic pieces is seen in Figure 10.  

Region 1 actuators Region 2 actuators Region 3 actuators 

  Pneumatic Ejectors 
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Figure 10: THz spectrometer process flow 

 The process is as follows: the fs laser is split into two, one for the receivers and the other for 

the THz generators. The fs laser beam for the transmitter is fed into an optical switch that directs the 

laser source into a specified sensor head. The receiver beam goes through two optical delay modules 

before it reaches the optical switch for the receivers. The first optical delay module is a high precision 

stepper motor (stage) for adjusting the optical delay. The second optical delay module is a voice coil 

(shaker) that has lower step resolution than the stage but capable of oscillating faster. Both the optical 

switch for the receiver array and the transmitter array are told which sensor pair must be active from 

the region detected from the proximity sensors triggered from the Detection and Ejection System. The 

active pair will receive the transmitter laser beam as well as the delayed receiver beam. The relay 

switches for the DC bias of the transmitter array and well as the output of the receiver array must to 

be switched to the same sensor pair before the optical switch. The output of the receiver from the 

active sensor pair is processed with a low-noise and lock-in amplifiers which are used to avoid 

unwanted noise and to improve measurement sensitivity. Finally, the output is read by an analog to a 

digital converter and the digital signal is then sent to the development PC via USB for post-

processing.   

2.5.1 Femtosecond Laser and Beam Splitter 

 The femtosecond laser module emits wavelengths in the range of 1550 nm. The output from 

the laser is given to the power splitter through fiber optics. The power splitter splits in the ratio of 
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50:50 and the outputs are sent to the transmitter and receiver fiber optic switches. The laser module is 

connected to the development PC through USB and turned on/off by a laser control VI. 

2.5.2 The Stage 

 The stager is a stepper motor that delays the femtosecond laser by moving in a linear up and 

down motion. The stepper motor can move at high precision with a minimum size of 0.1µm per step. 

The stage is used to calibrate and locate the peak of the THz pulse as well as for high resolution 

scans. The stager must be at the peak of the terahertz signal in order to scan using the shaker. A 

software application called Zaber is used to move the stage from the development PC via USB.  

2.5.3 High Speed Optical Delay Line  

Hollow mirrorLaser beam path Voice coil

+2V

-2V

10mm

 

Figure 11: Shaker Module 

 The high-speed optical delay line (shaker) is a voice coil that delays the femtosecond laser to 

the receiver fiber switch by moving in a linear motion as seen in Figure 11. It is faster than the stage 

and capable of real time THz-TDS. It takes -2V to 2V as its input voltage from an NI digital to analog 

converter (DAC) and has a travel distance of up to 10mm. The NI DAC sends voltage levels 

following a sine wave. This allows the shaker to delay the fs laser beam up to 20mm. A sine wave is 

used instead of sawtooth wave that has a linear speed because a sine wave gradually decreases its 

oscillation speed at its peaks and troughs. This is required when the voice coil is oscillating at high 

speeds like 80Hz. At high speeds a sawtooth wave would carry too much momentum and cause the 

shaker to slam to its top or bottom boundaries. The shaker module is controlled by the development 

PC through the NI DAC. 
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2.5.4 Fiber Optic Switches 

 

Figure 12: Fiber optic switch [30] 

 By implementing fiber optic switches to the system, the spectrometer can utilize multiple 

THz sensor pairs instead of one. This also avoids the need to have expensive fs laser sources and 

optical delay lines for each sensor pair. The fiber optic switches in use is the Sercalo fiber optic 

SC1x4 switch. This switch uses micro-electromechanical systems (MEMS) to redirect the input laser 

source to one of its four ports. The switch has very low insertion loss and low crosstalk between 

channels (more information can be seen in Appendix B). The switch uses either UART, I2C or 

parallel interface. For this project, both the switches for the THz transmitter array as well as the THz 

receiver array are controlled via parallel interface, from the development PC through an NI digital 

output module. Both the fiber optic switches receive which region to switch to from the development 

PC. To specify which channel turns on for the laser, three digital input pins on the switches are 

utilized, PD0, PD1, and PD2. By specifying the digital value (i.e., 5V for 1 and 0V for 0) from a 

digital output module, there are five states the switches can be in. Each state specifies a channel to 

direct the laser beam through except for standby mode as seen in Table 1 below. 

Table 1: Fiber Switch Active States 

Active 

Channel 
PD0 PD1 PD2 

Standby 0 0 0 

1 1 0 0 

2 0 1 0 

3 1 1 0 

4 0 0 1 
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2.5.5 Relay Switch Module 

 The purpose of the relay switch coincides with the fiber optic switches, so that the 

spectrometer can utilize multiple THz sensor pairs instead of just one. By implementing fiber optic 

switches to the system, relay switches must also be used for switching the DC bias to the active 

transmitter and reading the output of the active receiver. The relay switch module for the THz 

transmitter array has one input channel and eight output channels. The same relay switch design is 

used for the THz receiver array; eight input channels and one output channel. This module is 

controlled from the development PC through an NI digital output module. Both the relay switches 

receive which region to switch to from the development PC. To specify which channel turns on for 

the DC bias as well as for the active receiver output, eight digital input pins on the switches are used 

as seen by the ribbon cable in Figure 13.  

 

Figure 13: Relay switch for sensor bias and output 

 The digital output module from the development PC chooses between the eight channels 

based on the region detected from the Detection and Ejection system. Each channel has a numeric 

constant which is the binary representation of the selected channel number. The digital output module 

outputs 24V as 1 and 0V as 0 which latches the relay. For example, to open channel number 3, the 

binary representation 11111011 or the decimal representation 251 is written to the digital output 

module. Only one digital output module is used for both relay switches. 
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2.5.6 Lock-in Detection 

The lock-in amplifier is used to measure small signals within a noisy background. The lock-in 

amplifier selectively amplifies a signal given a reference frequency, in this case, it would be the 

frequency of the square wave bias signal [31]. The square wave bias is in the few kHz modulation 

range. The noisy signal coming from the active THz receiver, which is the terahertz time-domain 

signal, is multiplied by a sine wave at the reference frequency and applied a low pass filter to obtain 

the DC component. The DC output of the lock-in is read by an analog to digital converter and sent to 

the development PC via USB.     

2.6 System Development PC 

The development PC is the ‘brains’ of the sorting system. It controls all the parameters 

required for measuring the THz TDS of a falling plastic piece, determining if it is a plastic of interest 

and communicating to the cRIO to eject or not. The main programming environment used was 

LabVIEW Real-Time, it is a system application by National Instruments that is used to create and 

deploy software real-time. It ensures reliable and precise timing for testing, monitoring, and 

controlling the sorting systems. It uses the same graphical programming language (LabVIEW) as the 

cRIO. The development PC data flow and processing can be seen in Figure 14.  
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Figure 14: Development PC Process Flow Chart 
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2.6.1 Optical Initialization 

 The initialization of the system begins with turning on the fs laser for the spectrometer. This 

is done by an API that controls the state of the laser. Secondly, the shaker control VI initializes the 

shaker voice coil by positioning it on its center (at 5mm). After the shaker is positioned, the shaker VI 

uses an NI DAC to generate a sine wave for the shaker to follow. The voice coil takes -2V to 2V as its 

input, they correspond to the upper (10mm) and lower (0mm) boundaries of the motor. The shaker VI 

generates the sine wave parameters for the NI DAC to output. The parameters are the amplitude and 

frequency of the sine wave. The amplitude corresponds to the optical delay, or the scanning range and 

the frequency corresponds to the scanning speed of the THz-TDS. Each period the shaker travels 

from the sine wave input are two scans. From the peak to the trough, and trough to the peak results in 

two scans per period as seen in Figure 15. The shaker runs indefinitely unless its sinewave parameters 

must be changed.  

2.6.2 Relay and Fiber Optic Switch Control 

 The PC and cRIO communicate via TCP/IP. Once the proximity sensor has been triggered, 

the cRIO will signal the PC to optically activate the terahertz sensor pair in the desired region. The 

region detected and sent from the cRIO is fed into two control VIs, first to the relay switch controller 

and then the fiber switch controller. Both control modules have a case structure to convert the 

detected region number, which is an unsigned 8-bit binary number, to the corresponding digital 

outputs. After the relay and fiber switch controllers turn on the THz sensor pairs in the detected 

region, the time-domain signal is acquired from the lock-in amplifier.  

2.6.3 Time-domain Signal Acquisition 

 The LabVIEW program that reads the output analog signal of the spectrometer (lock-in amp) 

uses an NI high speed data acquisition device (DAQ). There are multiple analog scans coming from 

the spectrometer due to the oscillation of the shaker (up to 80Hz or 160 scans per second). To 

separate the downward scan from the upward scan of the shaker, the sine wave output from the shaker 

NI DAC is referenced to trigger the NI DAQ to distinguish where the scans begin and end. The 

trigger is a digital signal derived from the slope of the sine wave. If the slope of the referenced sine 

wave is negative, it is scanning the time-domain signal when the optical delay is moving downwards. 

If the slope is positive, it is scanning the time-domain signal of the upward motion of the optical delay 
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as illustrated in Figure 15. The time-domain scan of the upward motion is backwards, so it is 

reversed.  

2V

-2V

Downward 
scan

Upward 
scan

Downward 
scan

Upward 
scan

T T

+ve slope

-ve slope

Shaker 
input

DAQ 
Trigger

 

Figure 15: TDS scan trigger from shaker oscillation 

2.6.4 Identification 

 When the NI DAQ acquires a single scan of the time domain signal, it generates a scan 

number unique to that scan. Both the scan ID and the measured scan are packaged together and sent 

to a trained neural network for identification via TCP. The neural network is a python script that runs 

concurrently with the LabVIEW code and determines what type of plastic it is from the received scan. 

It returns the plastic identification along with the scan ID back to the LabVIEW program via TCP. 

Once the plastic type and scan ID are received, it determines if the falling plastic is the type to be 

sorted. If it is a plastic to be sorted, the program determines which region it was detected in from the 

scan ID and sends that region back to the cRIO. The cRIO will trigger a section of the pneumatic 

valves to eject the falling part from the stream based on the specified region sent from the PC. If it is 

not a plastic of interest, the program will not communicate anything to the cRIO and allows it to fall 

through. 

A shallow neural network is used to identify the scan of the plastic. Since the system is heavily 

time dependent, a simple shallow neural network has advantages in fast data processing and 
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classification. The shallow neural network contains 3 fully connected layers which reduces the feature 

size by a quarter at each layer of the network. The structure of the neural network is shown in Figure 

16. 

 

Figure 16: Neural network architecture 

 In this implementation, the neural network inputs are the time domain signal captured by the 

NI DAQ which are roughly 310 points. Each point is a 4 bytes floating number which can be sent on 

one TCP packet for cutting down transmission time. The time domain signal is used instead of the 

FFT because the shaker at high speeds adds significant amount of noise and has a very small scanning 

range. Due to these constraints, the time-domain signal was used instead as it still had a significant 

features to be trained with compared to the FFT signal. Due to the size of this neural network and the 

small amount of data being processed, it is run on CPU. The CPU processed the neural network at a 

rate of 65 microseconds per inference.  

2.6.5 Training 

 The network was trained using time domain signals from high impact polystyrene (PS), 

Acrylonitrile butadiene styrene (ABS), and polycarbonate (PC) plastic sheets with the size of 12 x 12 
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inch. All the sample plastics had a black coloring and had the thickness of 3.175 mm except for ABS 

which had thickness of 1.59 mm. The training setup can be seen in Figure 17. 

 

 

Figure 17: Sample scanning for neural network 

 

Figure 18: Scan read from NI DAQ with rate of 30 scans per second 

 The first the neural network was trained using the scan data when the shaker was oscillating 

at 15Hz (30 scans per second) with the scanning range of 4 mm. Time-domain scan data from the NI 

DAQ are shown in Figure 18. During training, the signal had random noise added to it to simulate the 

noisy environment of the sorting system. The network was able to classify these plastics with up to 

99% accuracy showing very promising results.  
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The neural network was later trained with e-waste plastic samples with the size of 1 x 1 inch while 

the shaker was moving at 40Hz (80 scans per second) with the scanning range of 2.2 mm. The 

network showed 90% accuracy.  

2.7 Implementation and Results 

 During the development of implementing an array of THz sensor pairs to the sorting line, the 

current femtosecond laser was not strong enough to generate a viable signal from newly purchased 

compact THz sensors. A stronger laser source would be required to use the compact THz sensors and 

unfortunately, there was no budget for a stronger fs laser. Due to this reason, only one sensor pair was 

implemented which was the THz sensor pair that came with the Rigel 1550 THz spectrometer. 

Therefore, only single region sorting was implemented as seen in Figure 19. This also meant the relay 

and fiber optic switches could not be implemented but both modules were working in accordance to 

their unit tests.  

 

Figure 19: Single THz sensors mounted after proximity sensors and before ejection 

  The first problem encountered was the THz-TDS signal was very sensitive to the thickness 

of plastic samples. The thickness difference from e-waste black plastic samples had a significant 

effect in the time-domain signal, which lowered the accuracy of the neural network. This was due to 

the similarity and overlapping of the time-domain signal of different plastic samples with little 
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varying thicknesses. For example, a PS sample with a thickness of 3 mm had a very similar time 

domain signal as a PC sample with a thickness of 3.175 mm. Due to the limiting scanning range of 

the shaker, this problem could not be mitigated by increasing the scanning length. The THz sensors 

were also not sensing the 1x1 inch falling plastic samples at 40Hz scanning rate. The plastic pieces 

were too small and falling too fast for the spectrometer to capture any scan of it. To overcome these 

challenges, the thickness of the plastic was controlled to be the same and larger plastic pieces were 

used. Additionally, only two black plastic samples were used which were PC and PS.   

 After adjusting the plastic samples, the sorting system was able to identify and eject PC from 

PS and vice versa. However, many challenges arose from this implementation. First, the plastic 

samples had to be at least 3 x 5 inches for the THz sensors to be able to detect it. The shaker was 

moving at its top speed which was 80Hz (160 scans per second) for it to be able to scan a falling 

plastic piece, identify it, and eject it. As the frequency of the shaker increases, the amplitude 

(scanning length) must decrease as they are inversely proportional. Moving at its max speed results in 

a very small scanning range for the THz-TDS and the lock-in amplifier averaging the time-domain 

signal greatly reducing the features of the THz pulse. Essentially, the real-time THz-TDS sorting 

system was only looking at a single sub-THz frequency for differentiating the plastic pieces. Scanning 

a plastic with a single sub-THz frequency in the time-domain results in the spectrometer outputting a 

flat DC signal, which greatly negate the advantages of the neural network. 
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Chapter 3 

THz and MWIR Fusion 

 MWIR is a mature technology compared to THz in terms of availability of the cheaper source 

and detector. MWIR uses frequency domain line scan cameras and measure reflective spectroscopy. 

They are excellent in detecting and sorting black plastics at high-speed and high throughput but 

sensitive to surface conditions. Many plastic components that go through the recycling process end up 

coated in dust or oil. This can cause reflective spectroscopy techniques to detect the spectral signature 

of the contaminant on the surface of the plastic leading to false classifications. Also, there is very 

little study done to detect chemical additives such as flame retardant with MWIR. 

 Terahertz technology on the other hand is still under research and development. Terahertz is 

mostly used as a time domain point detection and capable of measuring both reflective and 

transmissive spectroscopy. In this thesis, only transmissive is used. Compared to MWIR, it is slow in 

point detection and throughput. In transmission mode, it shows promising ability to detect the effects 

of chemical additives if the thickness of the sample is known. The comparison of MWIR and THz 

specifications used for data/sensor fusion in this chapter can be seen in Table 2. 

Table 2: MWIR vs THz 

 MWIR THz 

Maturity Mature Under R&D 

Domain Frequency Time 

Spectroscopy Reflective Transmissive 

Scan rate 380 Hz Up to 160 Hz 

Resolution 640 spatial by 308 spectral 4096 points/THz 

 

3.1 Plastic Types 

 After the development of the THz-TDS based sorting system came to an end, high resolution 

spectrums of both THz and MWIR were gathered for different black plastic types. Different plastic 

types were purchased and cut into 12 x 12 inch samples. The available plastic samples are seen in the 

table below. 
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Table 3: Plastic types available for high resolution THz-TDS 

Plastic Color Thickness (inches) 

High-Density Polyethylene (PE) Black, White 1/16, 1/8 

Polycarbonate (PC) Black, Clear 1/8 

Acrylonitrile Butadiene Styrene (ABS) Black, White 1/16, 1/8 

High Impact Polystyrene (PS) Black 1/8 

Ultra-High Molecular Weight Polyethylene 

(UHMW) 

Black, White 1/8 

Polyoxymethylene (POM) Black 1/8 

 

 High-resolution THz-TDS scans of all the plastics listed in Table 3 are taken at the CIARS 

THz lab at University of Waterloo. For gathering MWIR spectrum of black plastics, Specim kindly 

provided high-resolution scans of different types of black plastic with their latest MWIR camera, 

FX50. The provided MWIR spectrum of black plastic types were high-impact polystyrene (PS), 

acrylonitrile butadiene styrene (ABS) and high-density polyethylene (PE). 

3.2 THz Spectrum 

 The plastic samples for the THz-TDS scanning were all cut into 12 x 12 inch sample sizes 

and had thicknesses of 1/16 and 1/8 inch. The samples were measured at 24°C with humidity of 47%. 

The optical pulse generated by the femtosecond laser had duration of 100 fs and central wavelength 

of 800 nm. The stage speed was 0.025 mm/s with scanning range of 14 mm. The THz spectroscopy of 

the black plastic samples were taken in the configuration seen in Figure 2. The average of the scanned 

samples can be seen in Figure 20 and 21 representing the time and frequency domain respectively. 
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Figure 20: High resolution time-domain signal of black plastics 

 

Figure 21: High resolution THz FFT of black plastics 
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 We see that in the time-domain spectroscopy, all the black plastics have their own unique 

signatures. The time-domain signal of air is the THz signal of just air as its medium and the rest are 

the black plastic samples introduces in the air medium, hence the delay of the signals. From these 

measurements, the dielectric properties of the polymers can be calculated. 

3.2.1 Complex Dielectric Properties of Black Plastics 

 One of the advantages of THz time-domain spectroscopy is that the dielectric properties of 

the measured sample can be extracted. From the measured THz-TDS signal, we want to extract the 

complex permittivity  𝜀̃ = 𝜀′(𝜔) − 𝑗 ∙ 𝜀′′(𝜔) or equivalently, 𝑛̃ = 𝑛(𝜔) − 𝑗 ∙ 𝑘(𝜔) which is the 

complex refractive index of the material. The complex frequency spectra of the reference (air) 𝐸̃𝑟𝑒𝑓 

and the sample (plastic) 𝐸̃𝑠𝑎𝑚 are extracted from the FFT of the measured time-domain waveforms. 

The refractive index, 𝑛𝑠 and its complex part, 𝑘𝑠 of the measured plastic samples can be determined 

analytically from the ratio of 𝐸̃𝑟𝑒𝑓 and 𝐸̃𝑠𝑎𝑚 as follows [22]:: 

 𝐸̃𝑠𝑎𝑚

𝐸̃𝑟𝑒𝑓

=  𝜌(𝜔) ∙ 𝑒−𝑗𝜑(𝜔) 
( 1 ) 

 

 𝑛𝑠(𝜔) =  
𝑐

𝜔𝑑
∙ 𝜑(𝜔) + 1 ( 2 ) 

 

 
𝑘𝑠(𝜔) =

𝑐

𝜔𝑑
∙  ln (

4𝑛𝑠(𝜔)

𝜌(𝜔) ∙ (𝑛𝑠(𝜔) + 1))2
) 

( 3 ) 

Here, 𝜌(𝜔) denotes the magnitude, while 𝜑(𝜔) denoted the phase of the two FFT signal ratio at the 

angular frequency, 𝜔. The thickness of the sample is 𝑑 and 𝑐 is the speed of light in a vacuum. The 

absorption coefficient, 𝛼𝑠, can be calculated from the imaginary part of the refractive index,  𝑘𝑠, as, 

 
𝛼𝑠(𝜔) =

2𝜔𝑘𝑠(𝜔)

𝑐
 

( 4 ) 

From the complex refractive index and the absorption coefficient, the real and imaginary part of the 

complex permittivity (dielectric constant) are calculated from the equations, 
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𝜀𝑠

′(𝜔) = 𝑛𝑠(𝜔)2 − (
𝑐𝛼𝑠(𝜔)

2𝜔
)

2

 
( 5 ) 

  
 

 𝜀𝑠
′′(𝜔) = 2 𝑛𝑠(𝜔)𝑘𝑠(𝜔) ( 6 ) 

Finally, with the dielectric constant, the dielectric loss tangent can be determined as, 

 

tan 𝛿 =
𝜀𝑠

′′(𝜔)

𝜀𝑠
′(𝜔)

 

( 7 ) 

The loss tangent denotes the dissipation of energy that goes into a material in a varying electric field. 

Using Equations, (1)-(7) the refractive index, absorption coefficient, and dielectric loss are calculated 

and can be seen in Figures 22 - 24. 
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Figure 22: Calculated refractive index of black plastics 
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Figure 23: Calculated absorption coefficient of black plastics 
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Figure 24: Calculated loss tangent of black plastics 

 By looking at the dielectric properties of the different black polymers, it is evident that there 

are frequencies that these plastics absorb differently than each other. We see the different variations at 

frequencies, 0.088 THz, 0.205 THz, 0.498THz, 0.527THz, 0.586 THz, 0.656 THz, 0.68THz, 0.727 

THz, 0.75THz and 0.815THz. These identified frequencies can be visualized with principal 

component analysis (PCA).  

3.2.2 PCA Visualization of THz bins 

 By focusing on the frequency identified after analyzing the dielectric properties, PCA is used 

to provide overview of the spectral data. The PCA of the THz spectrum with the focused frequencies 

can be seen in Figure 25. With three principal components, the THz spectral data seems to be easily 

distinguishable. 
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Figure 25: PCA on THz focused bins of black plastics (0:ABS, 1:PS, 2:PC, 3:PE, 4:UHMW, 5:POM) 

3.2.3 Color Pigment on THz Spectra 

 The comparison of the THz spectra of plastic types with the same composition but different 

color pigments was performed. The analysis was performed on ABS, PC, PE and UHMW black 

plastics versus the same types but with different color pigment. All measured samples had the same 

thickness. The calculated refractive index, absorption coefficients and dielectric losses of the said 

plastics can be seen in Figures 26 - 28.  
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Figure 26 Refractive index of plastic types with different color pigment 
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Figure 27: Absorption coefficient of plastic types with different color pigment 
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Figure 28: Loss tangent of plastics with different pigment 

 We see that ABS, PC, PE and UHWM ultimately have very similar dielectric properties as its 

colored counterparts. However, we see that color pigments have enough effect on THz radiation to 

have distinguishable features in the spectrum especially for ABS and PC.  

3.3 MWIR Spectrum 

 The MWIR spectrum was kindly provided by Specim. Specim is a global leader in 

hyperspectral imaging, with many recycling plants using their cameras to sort different types of 

plastic [32]. The spectrum was captured using their FX50 camera. It is a high-speed line-scan camera 

that collect hyperspectral data in the medium wavelength infrared region from 2.7 to 5.3 μm with 8.44 

nm spectral resolution (308 pixels). The spectral camera has spatial resolution of 640 pixels (more 

information can be seen in Appendix C). The captured spectrums are normalized by the white and 

dark references. The spectrum is normalized using the formula ((Value - Dark) / (White - Dark)). The 

average MWIR spectrum of black ABS, PS and PE are seen in Figure 29. 
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Figure 29: Average MWIR spectrum of black plastics 

 The raw MWIR spectra is very noisy for direct analysis. Therefore, data pre-processing is 

used to enhance the spectral features. Commonly in literature, pre-processing strategies such as 

scatter correction, spectral derivatives, and principal component analysis (PCA) are used [33]–[40]. 

3.3.1 Spectral Derivative 

 Savitzky-Goley smoothing and differentiation is used on the spectrum data to reduce noise 

and amplify small variations. The MWIR spectrum is applied the Savitzky-Goley filter and can be 

seen in Figure 30. 
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Figure 30: MWIR average spectra after Savitzky-Goley filter 

3.3.2 Scatter Correction 

 Standard Normal Variate (SNV) is applied after the Savitzky-Goley filter. SNV transforms 

the measured spectrum into a signal with zero mean and uniform variance. By doing so, it removes all 

effects of unrelated chemical nature of the sample such as path length differences and particle size. 

The MWIR spectrum after SVN can be seen in Figure 31. 
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Figure 31: MWIR average spectra after scatter correction 

 We can see in Figure 31 that, that ABS, PE and PS have different absorptions at 2701nm, 

2777nm, 3082nm, 3149 nm, 3394 nm, 3656nm, 3783nm, 3901nm, 4467nm, 5000 nm, and 5288 nm. 

These identified wavelengths can be visualized with principal component analysis. 

3.3.3 PCA Visualization of MWIR bins 

 By focusing on the wavelength identified after scatter correction, PCA is used to provide 

overview of the spectral data. The PCA of the MWIR spectrum with the focused wavelengths can be 

seen in Figure 32. With three principal components, the MWIR spectral data is distinguishable. 
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Figure 32: PCA of MWIR spectrum with focused bins (0: ABS, 1: PS, 2: PE) 

3.4 THz and MWIR Data Fusion 

 Since we only have both THz and MWIR spectrums of black ABS, PS and PE, only these 

three plastics are used for data fusion. The THz FFT signals of the three black plastics are normalized 

with the air reference. Using the normalized THz spectrum, as well as the ten identified frequencies 

(THz bins), we can extract 20 features. Since the FFT gives both magnitude and phase at each THz 

bin. Secondly, the focused wavelengths (MWIR bins) identified from the MWIR spectrum analysis 

gives 11 features. Combining the focused THz and MWIR bins give total of 31 multispectral features 

what define the characteristics of the different black polymer types. The multispectral features are 

used train a classification model to simulate a sorting system. Three classification models are used to 

identify the different types of black plastic which are, Support Vector Machines (SVM), followed by 

a Fully Connected Neural Network (FCNN) and then a Convolutional Neural Network (CNN) which 

are commonly used in literature for spectral data. The architecture of the neural networks can be seen 

in Figure 33. 
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Figure 33: CNN Architecture (left) and FCNN Architecture (right) 

3.4.1 Results 

 Using the combined spectral data of the black plastic types (ABS, PS and PE), the three 

models are trained and tested. The SVM classifier had accuracy of 96%. The FCNN and CNN both 

had accuracy of 100%. The confusion matrix of the classifiers are seen in the tables below.  

Table 4: SVM confusion matrix  

 Predicted 

ABS PS PE 

A
ct

u
a

l ABS 57 0 0 

PS 7 43 0 

PE 0 0 61 
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Table 5: FCNN and CNN confusion matrix  

 Predicted 

ABS PS PE 

A
ct

u
a

l ABS 57 0 0 

PS 0 50 0 

PE 0 0 61 

 

 All the trained models identified the three black plastic types with very high accuracy. This 

validates that combining both THz and MWIR spectrums of different black plastic types provide 

enough information to sort them with high purity rate. As mentioned before MWIR is very sensitive 

to surface conditions, and THz is sensitive to thickness of the sample. By combining the data from 

both spectrums, we have proved that it can overcome these challenges as THz TDS in transmission 

mode is not as easily affected by surface conditions and MWIR is not affected by thickness of the 

sample. It is important to note that the used THz and MWIR data was very high resolution and 

captured in a controlled lab setting.  
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Chapter 4 

Conclusion and Future Work 

4.1 Conclusion 

 In this thesis, a novel approach to identifying e-waste black plastics with THz and MWIR 

technologies was studied. Identifying and sorting e-waste black plastics with just THz TDS was 

recognized with conditional requirements. The plastic size and thickness had to controlled due to the 

limitation of the scanning speed and the corresponding spectral information.  

 Secondly, the effective frequency bins that characterize e-waste black plastics was identified 

for both THz and MWIR regions. As well, successfully creating an effective classification algorithm 

to identify ABS, PS, and PE black plastics with very high accuracy using the combined multi-spectral 

bins. The classification models, SVM, FCNN, and CNN gave very promising results.   

Additionally, THz technology is currently not mature enough to be applied in a real-time sorting 

application as discussed in Chapter 2. The scanning speed of THz technology needs to catch up with 

MWIR without loss of spectral information. However, thanks to the growing technologies of THz, 

MWIR and computing power, it is possible to sort different e-waste black plastics, especially ABS 

and PS, in real-time using the techniques discussed in this thesis. Real-time identification and sorting 

of different black plastics is essential for solving the crisis of e-waste and plastic pollution. 

4.2 Future Work 

 There are several key issues that need to be addressed to implement a sorting system that is 

capable of segregating black plastics in real-time.  

4.2.1 Improvements in Hardware 

 The next generation of sorting machines are most likely to utilize multiple (more than 2) 

sensor-based systems to obtain precise and optimum sorting of black plastics. In terms of the THz 

TDS set up used in this thesis, it is still early for it to be introduced to industrial recycling facilities, 

while MWIR cameras seem more suitable with its high-speed scanning and throughput. For further 

potential research, other low-cost alternatives can be investigated such as THz frequency multipliers 

and capacitive sensing.   
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 THz frequency multipliers generate low THz frequencies by multiplying the frequency of the 

driver source in a nonlinear device to generate higher order harmonic frequencies. Schottky planer 

diodes can be used as they are simple and cost-effective in generating and detecting THz frequencies 

up to 2.5 THz [41]–[45]. Black plastics analyzed in this thesis were already distinguishable under 1 

THz. This eliminates the need for expensive lasers and the complexity of fiber optic switches which 

were a major hurdle in developing an array of THz sensors in the THz based sorting system.  

 Capacitive sensing also has potential for future research. Capacitive sensors are able to 

measure the dielectric properties, mainly the electric permittivity of materials. Current studies have 

proven to be able to detect solid waste like paper and plastic[46], [47]. Addition of this sensor to the 

THz and MWIR combination could yield better real-time sorting and has potential for adoption due to 

its low cost.    

4.2.2 Improvements in Plastic Identification 

 The spectral data used for identification were high resolution scans of clean samples collected 

in a lab setting in comparison to a plastic sample typically found in recycling facilities. More data 

collection and analysis of other plastic samples for both THz and MWIR need to be studied as data 

fusion was limited to ABS, PS, and PE in this thesis. Further studies could be on the low and high 

THz frequencies (up to 5 THz) on black polymer blends and aged black plastics.  

 Lastly, the trained classification model should be deployed with in the LabVIEW 

environment instead of running concurrently in a python script. This would be better suited for a time 

dependent system by reducing the TCP/ IP packet transmission and receival times between programs.   
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Appendix A 

Rigel 1550 Terahertz Spectrometer 
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Appendix B 

Sercalo Fiber Optic SC1x4 switch  
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