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Abstract. We study the Max Partial H-Coloring problem: given a graph G, �nd the5
largest induced subgraph of G that admits a homomorphism into H, where H is a �xed pattern6
graph without loops. Note that when H is a complete graph on k vertices, the problem reduces to7
�nding the largest induced k-colorable subgraph, which for k = 2 is equivalent (by complementation)8
to Odd Cycle Transversal.9

We prove that for every �xed pattern graph H without loops, Max Partial H-Coloring can10
be solved:11

• in {P5, F}-free graphs in polynomial time, whenever F is a threshold graph;12
• in {P5, bull}-free graphs in polynomial time;13
• in P5-free graphs in time nO(ω(G));14
• in {P6, 1-subdivided claw}-free graphs in time nO(ω(G)3).15

Here, n is the number of vertices of the input graph G and ω(G) is the maximum size of a clique in G.16
Furthermore, by combining our algorithms for P5-free and for {P6, 1-subdivided claw}-free graphs17
with a simple branching procedure, we obtain subexponential-time algorithms for Max Partial18
H-Coloring in these classes of graphs.19

Finally, we show that even a restricted variant of Max Partial H-Coloring is NP-hard in the20
considered subclasses of P5-free graphs, if we allow loops on H.21
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1. Introduction. Many computational graph problems that are (NP-)hard in24

general become tractable in restricted classes of input graphs. In this work we are25

interested in hereditary graph classes, or equivalently classes de�ned by forbidding26

induced subgraphs. For a set of graphs F , we say that a graph G is F-free if G27

does not contain any induced subgraph isomorphic to a graph from F . By forbidding28

di�erent sets F we obtain graph classes with various structural properties, which can29

be used in the algorithmic context. This highlights an interesting interplay between30

structural graph theory and algorithm design.31

Perhaps the best known example of this paradigm is the case of the Maximum32

Independent Set problem: given a graph G, �nd the largest set of pairwise non-33

adjacent vertices in G. It is known that the problem is NP-hard on F -free graphs34
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unless F is a forest whose every component is a path or a subdivided claw [2]; here,35

the claw is the star with 3 leaves. However, the remaining cases, when F is a sub-36

divided claw forest, remain largely unexplored despite signi�cant e�ort. Polynomial-37

time algorithms have been given for P5-free graphs [34], P6-free graphs [28], claw-free38

graphs [37, 41], and fork-free graphs [3, 35]. While the complexity status in all the39

other cases remains open, it has been observed that relaxing the goal of polynomial-40

time solvability leads to positive results in a larger generality. For instance, for every41

t ∈ N, Maximum Independent Set can be solved in time nO(log2 n) in Pt-free42

graphs [24, 40]. Moreover, if F is �xed a subdivided claw forest, then the problem can43

be solved in time 2O(n8/9) [12, 13]. The existence of such quasipolynomial-time and44

subexponential-time algorithms for F -free graphs is excluded under the Exponential45

Time Hypothesis whenever F is not a subdivided claw forest (see e.g. the discussion46

in [38]), which shows a qualitative di�erence between the negative and the potentially47

positive cases.48

The abovementioned positive results use a variety of structural techniques related49

to the considered hereditary graph classes, for instance: the concept of Gyárfás path50

that gives useful separators in Pt-free graphs [4, 7, 13], the dynamic programming51

approach based on potential maximal cliques [34, 28], or structural properties of52

claw-free and fork-free graphs that relate them to line graphs [35, 37, 41]. Some53

of these techniques can be used to give algorithms for related problems, which can54

be expressed as looking for the largest (in terms of the number of vertices) induced55

subgraph satisfying a �xed property. ForMaximum Independent Set this property56

is being edgeless, but for instance the property of being acyclic corresponds to the57

Maximum Induced Forest problem, which by complementation is equivalent to58

Feedback Vertex Set. Work in this direction so far focused on properties that59

imply bounded treewidth [1, 23, 25] or, more generally, that imply sparsity [38].60

A di�erent class of problems that admits an interesting complexity landscape on61

hereditary graphs classes are coloring problems. For �xed k ∈ N, the k-Coloring62

problem asks whether the input graph admits a proper coloring with k colors. For63

every k ≥ 3, the problem is NP-hard on F -free graphs unless F is a forest of paths64

(a linear forest) [26]. The classi�cation of the remaining cases is more advanced65

than in the case of Maximum Independent Set, but not yet complete. On one66

hand, Hoàng et al. [32] showed that for every �xed k, k-Coloring is polynomial-67

time solvable on P5-free graphs. On the other hand, the problem becomes NP-hard68

already on P6-free graphs for all k ≥ 5 [33]. The cases k = 3 and k = 4 turn out to69

be very interesting. 4-Coloring is polynomial-time solvable on P6-free graphs [17]70

and NP-hard in P7-free graphs [33]. While there is a polynomial-time algorithm for71

3-Coloring in P7-free graphs [5], the complexity status in Pt-free graphs for t ≥ 872

remains open. However, relaxing the goal again leads to positive results in a wider73

generality: for every t ∈ N, there is a quasipolynomial-time algorithm with running74

time nO(log2 n) for 3-Coloring in Pt-free graphs [40], and there is also a polynomial-75

time algorithm that given a 3-colorable Pt-free graph outputs its proper coloring with76

O(t) colors [15].77

We are interested in using the toolbox developed for coloring problems in Pt-free78

graphs to the setting of �nding maximum induced subgraphs with certain properties.79

Speci�cally, consider the following Maximum Induced k-Colorable Subgraph80

problem: given a graph G, �nd the largest induced subgraph of G that admits a proper81

coloring with k colors. While this problem clearly generalizes k-Coloring, for k = 182

it boils down to Maximum Independent Set. For k = 2 it can be expressed as83
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Maximum Induced Bipartite Subgraph, which by complementation is equivalent84

to the well-studied Odd Cycle Transversal problem: �nd the smallest subset85

of vertices that intersects all odd cycles in a given graph. While polynomial-time86

solvability of Odd Cycle Transversal on P4-free graphs (also known as cographs)87

follows from the fact that these graphs have bounded cliquewidth (see [18]), it is88

known that the problem is NP-hard in P6-free graphs [21]. The complexity status89

of Odd Cycle Transversal in P5-free graphs remains open [11, Problem 4.4]:90

resolving this question was the original motivation of our work. Let us point out that91

the complexity ofMaximum Induced k-Colorable Subgraph in hereditary graph92

classes was considered already in the 1980s [42].93

Our contribution. Following the work of Groenland et al. [27], we work with a94

very general form of coloring problems, de�ned through homomorphisms. For graphs95

G and H, a homomorphism from G to H, or an H-coloring of G, is a function96

ϕ : V (G) → V (H) such that for every edge uv in G, we have ϕ(u)ϕ(v) ∈ E(H). We97

study the Max Partial H-Coloring problem de�ned as follows: given a graph G,98

�nd the largest induced subgraph of G that admits an H-coloring. Note that if H is99

the complete graph on k vertices, then an H-coloring is simply a proper coloring with100

k colors, hence this formulation generalizes the Maximum Induced k-Colorable101

Subgraph problem. We will always assume that the pattern graph H does not have102

loops, hence an H-coloring is always a proper coloring with |V (H)| colors.103

Fig. 1. A bull, a 1-subdivided claw, and an example threshold graph.

Fix a pattern graphH without loops. We prove thatMax Partial H-Coloring104

can be solved:105

(R1) in {P5, F}-free graphs in polynomial time, whenever F is a threshold graph;106

(R2) in {P5, bull}-free graphs in polynomial time;107

(R3) in P5-free graphs in time nO(ω(G)); and108

(R4) in {P6, 1-subdivided claw}-free graphs in time nO(ω(G)3).109

Here, n is the number of vertices of the input graph G and ω(G) is the size of the110

maximum clique in G. Also, recall that a graph G is a threshold graph if V (G) can111

be partitioned into an independent set A and a clique B such that for each a, a′ ∈ A,112

we have either N(a) ⊇ N(a′) or N(a) ⊆ N(a′). There is also a characterization via113

forbidden induced subgraphs: threshold graphs are exactly {2P2, C4, P4}-free graphs,114

where 2P2 is an induced matching of size 2. Figure 1 depicts a bull, a 1-subdivided115

claw, and an example threshold graph.116

Further, we observe that by employing a simple branching strategy, an nO(ω(G)α)-117

time algorithm for Max Partial H-Coloring in F-free graphs can be used to give118

also a subexponential-time algorithm in this setting, with running time nO(nα/(α+1)).119

Thus, results (R3) and (R4) imply that for every �xed irre�exiveH, theMax Partial120

H-Coloring problem can be solved in time nO(
√
n) in P5-free graphs and in time121

nO(n3/4) in {P6, 1-subdivided claw}-free graphs. This in particular applies to the Odd122
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Cycle Transversal problem. We note here that Dabrowski et al. [21] proved that123

Odd Cycle Transversal in {P6,K4}-free graphs is NP-hard and does not admit124

a subexponential-time algorithm under the Exponential Time Hypothesis. Thus, it is125

unlikely that any of our algorithmic results � the nO(ω(G))-time algorithm and the126

nO(
√
n)-time algorithm � can be extended from P5-free graphs to P6-free graphs.127

All our algorithms work in a weighted setting, where instead of just maximizing128

the size of the domain of an H-coloring, we maximize its total revenue, where for each129

pair (u, v) ∈ V (G) × V (H) we have a prescribed revenue yielded by sending u to v.130

This setting allows encoding a broader range of coloring problems. For instance, list131

variants can be expressed by giving negative revenues for forbidden assignments (see132

e.g. [29, 39]). Also, our algorithms work in a slightly larger generality than stated133

above, see Section 5, Section 6, and Section 7 for precise statements.134

Finally, we investigate the possibility of extending our algorithmic results to pat-135

tern graphs with possible loops. We show an example of a graph H with loops, for136

which Max Partial H-Coloring is NP-hard and admits no subexponential-time137

algorithm under the ETH even in very restricted subclasses of P5-free graphs, includ-138

ing {P5,bull}-free graphs. This shows that whether the pattern graph is allowed to139

have loops has a major impact on the complexity of the problem.140

Our techniques. The key element of our approach is a branching procedure that,141

given an instance (G, rev) of Max Partial H-Coloring, where rev is the revenue142

function, produces a relatively small set of instances Π such that solving (G, rev)143

reduces to solving all the instances in Π. Moreover, every instance (G′, rev′) ∈ Π is144

simpler in the following sense: either it is an instance ofMax Partial H ′-Coloring145

for H ′ being a proper induced subgraph of H (hence it can be solved by induction146

on |V (H)|), or for any connected graph F on at least two vertices, G′ is F -free147

provided we assume G is F •−◦-free. Here F •−◦ is the graph obtained from F by adding148

a universal vertex y and a degree-1 vertex x adjacent only to y. In particular we149

have ω(G′) < ω(G), so applying the branching procedure exhaustively in a recursion150

scheme yields a recursion tree of depth bounded by ω(G). Now, for results (R3)151

and (R4) we respectively have |Π| ≤ nO(1) and |Π| ≤ nO(ω(G)2), giving bounds of152

nO(ω(G)) and nO(ω(G)3) on the total size of the recursion tree and on the overall time153

complexity.154

For result (R1) we apply the branching procedure not exhaustively, but a con-155

stant number of times: if the original graph G is {P5, F}-free for some threshold156

graph F , it su�ces to apply the branching procedure O(|V (F )|) times to reduce157

the original instances to a set of edgeless instances, which can be solved trivially.158

As O(|V (F )|) = O(1), this gives recursion tree of polynomial size, and hence a159

polynomial-time complexity due always having |Π| ≤ nO(1) in this setting. For re-160

sult (R2), we show that two applications of the branching procedure reduce the input161

instance to a polynomial number of instances that are P4-free, which can be solved in162

polynomial time due to P4-free graphs (also known as cographs) having cliquewidth163

at most 2. However, these applications are interleaved with a reduction to the case164

of prime graphs � graphs with no non-trivial modules � which we achieve using165

dynamic programming on the modular decomposition of the input graph. This is in166

order to apply some results on the structure of prime bull-free graphs [14, 16], so that167

P4-freeness is achieved at the end.168

Let us brie�y discuss the key branching procedure. The �rst step is �nding a useful169

dominating structure that we call a monitor: a subset of vertices M of a connected170

graph G is a monitor if for every connected component C of G−M , there is a vertex171
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in M that is complete to C. We prove that in a connected P6-free graph there is172

always a monitor that is the closed neighborhood of a set of at most three vertices.173

After �nding such a monitor N [X] for |X| ≤ 3, we perform a structural analysis of174

the graph centered around the set X. This analysis shows that there exists a subset175

of O(|V (H)|) vertices such that after guessing this subset and the H-coloring on it,176

the instance can be partitioned into several separate subinstances, each of which has a177

strictly smaller clique number. This structural analysis, and in particular the way the178

separation of subinstances is achieved, is inspired by the polynomial-time algorithm179

of Hoàng et al. [32] for k-Coloring in P5-free graphs.180

Other related work. We remark that very recently and independently of us, Bret-181

tell et al. [9] proved that for every �xed s, t ∈ N, the class of {Kt, sK1+P5}-free graphs182

has bounded mim-width. Here, mim-width is a graph parameter that is less restrictive183

than cliquewidth, but the important aspect is that a wide range of vertex-partitioning184

problems, including theMax Partial H-Coloring problem considered in this work,185

can be solved in polynomial time on every class of graphs where the mim-width is186

universally bounded and a corresponding decomposition can be computed e�ciently.187

The result of Brettell et al. thus shows that in P5-free graphs, the mim-width is188

bounded by a function of the clique number. This gives an nf(ω(G))-time algorithm189

for Max Partial H-Coloring in P5-free graphs (for �xed H), for some function f .190

However, the proof presented in [9] gives only an exponential upper bound on the191

function f , which in particular does not imply the existence of a subexponential-time192

algorithm. To compare, our reasoning leads to an nO(ω(G))-time algorithm and a193

subexponential-time algorithm with complexity nO(
√
n).194

We remark that the techniques used by Brettell et al. [9] also rely on revisiting195

the approach of Hoàng et al. [32], and they similarly observe that this approach can196

be used to apply induction based on the clique number of the graph.197

Organization. After setting up notation and basic de�nition in Section 2 and198

proving an auxiliary combinatorial result about P6-free graphs in Section 3, we provide199

the key technical lemma (Lemma 4.1) in Section 4. This lemma captures a single200

branching step of our algorithms. In Section 5 we derive results (R3) and (R4).201

Section 6 and Section 7 are devoted to the proofs of results (R1) and (R2), respectively.202

In Section 8 we show that allowing loops in H may result in an NP-hard problem even203

in restricted subclasses of P5-free graphs. We conclude in Section 9 by discussing204

directions of further research.205

2. Preliminaries.206

Graphs. For a graph G, the vertex and edge sets of G are denoted by V (G) and207

E(G), respectively. The open neighborhood of a vertex u is the set NG(u) := {v : uv ∈208

E(G)}, while the closed neighborhood is NG[u] := NG(u) ∪ {u}. This notation is209

extended to sets of vertices: for X ⊆ V (G), we set NG[X] :=
⋃

u∈X NG[u] and210

NG(X) := NG[X] \ X. We may omit the subscript if the graph G is clear from211

the context. By Ct, Pt, and Kt we respectively denote the cycle, the path, and the212

complete graph on t vertices.213

The clique number ω(G) is the size of the largest clique in a graph G. A clique214

K in G is maximal if no proper superset of K is a clique.215

For s, t ∈ N, the Ramsey number of s and t is the smallest integer k such that216

every graph on k vertices contains either a clique of size s or an independent set of217

size t. It is well-known that the Ramsey number of s and t is bounded from above by218 (
s+t−2
s−1

)
, hence we will denote Ramsey(s, t) :=

(
s+t−2
s−1

)
.219

For a graph G and A ⊆ V (G), by G[A] we denote the subgraph of G induced by220
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A. We write G − A := G[V (G) \ A]. We say that F is an induced subgraph of G if221

there is A ⊆ V (G) such that G[A] is isomorphic to F ; this containment is proper if222

in addition A ̸= V (G). For a family of graphs F , a graph G is F-free if G does not223

contain any induced subgraph from F . If F = {H}, then we may speak about H-free224

graphs as well.225

If G is a graph and A ⊆ V (G) is a subset of vertices, then a vertex u /∈ A is226

complete to A if u is adjacent to all the vertices of A, and u is anti-complete to A if227

u has no neighbors in A. We will use the following simple claim several times.228

Lemma 2.1. Suppose G is a graph, A is a subset of its vertices such that G[A] is229

connected, and u /∈ A is a vertex that is neither complete nor anti-complete to A in230

G. Then there are vertices a, b ∈ X such that u− a− b is an induced P3 in G.231

Proof. Since u is neither complete nor anticomplete to A, both the sets A∩N(u)232

and A \ N(u) are non-empty. As A is connected, there exist a ∈ A ∩ N(u) and233

b ∈ A \ N(u) such that a and b are adjacent. Now u − a − b is the desired induced234

P3.235

For a graph F , by F • we denote the graph obtained from F by adding a universal236

vertex: a vertex adjacent to all the other vertices. Similarly, by F •−◦ we denote the237

graph obtained from F by adding �rst an isolated vertex, say x, and then a universal238

vertex, say y. Note that thus y is adjacent to all the other vertices of F •−◦, while x is239

adjacent only to y.240

H-colorings. For graphs H and G, a function ϕ : V (G) → V (H) is a homomor-241

phism from G to H if for every uv ∈ E(G), we also have ϕ(u)ϕ(v) ∈ E(H). Note242

that a homomorphism from G to the complete graph Kt is nothing else than a proper243

coloring of G with t colors. Therefore, a homomorphism from G to H will be also244

called an H-coloring of G, and we will refer to vertices of H as colors. Note that245

we will always assume that H is a simple graph without loops, so no two adjacent246

vertices of G can be mapped by a homomorphism to the same vertex of H. To stress247

this, we will call such H an irre�exive pattern graph.248

A partial homomorphism from G to H, or a partial H-coloring of G, is a partial249

function ϕ : V (G) ⇀ V (H) that is a homomorphism from G[domϕ] to H, where domϕ250

denotes the domain of ϕ.251

Suppose that with graphs G and H we associate a revenue function rev : V (G)×
V (H) → R. Then the revenue of a partial H-coloring ϕ is de�ned as

rev(ϕ) :=
∑

u∈domϕ

rev(u, ϕ(u)).

In other words, for u ∈ V (G) and v ∈ V (H), rev(u, v) denotes the revenue yielded by252

assigning ϕ(u) := v.253

We now de�ne the main problem studied in this work. In the following, we254

consider the graph H �xed.255

Max Partial H-Coloring
Input: Graph G and a revenue function rev : V (G)× V (H) → R
Output: A partial H-coloring ϕ of G that maximizes rev(ϕ)

256

An instance of the Max Partial H-Coloring problem is a pair (G, rev) as257

above. A solution to an instance (G, rev) is a partial H-coloring of G, and it is258

optimum if it maximizes rev(ϕ) among solutions. By OPT(G, rev) we denote the259

maximum possible revenue of a solution to the instance (G, rev).260
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Let us note one aspect that will be used later on. Observe that in revenue functions261

we allow negative revenues for some assignments. However, if we are interested in262

maximizing the total revenue, there is no point in using such assignments: if u ∈ domϕ263

and rev(u, ϕ(u)) < 0, then just removing u from the domain of ϕ increases the revenue.264

Thus, optimal solutions never use assignments with negative revenues. Note that this265

feature can be used to model list versions of partial coloring problems.266

3. Monitors in P6-free graphs. In this section we prove an auxiliary result267

about �nding useful separators in P6-free graphs. The desired property is expressed268

in the following de�nition.269

Definition 3.1. Let G be a connected graph. A subset of vertices M ⊆ V (G) is270

a monitor in G if for every connected component C of G −M , there exists a vertex271

w ∈ M that is complete to C.272

Let us note the following property of monitors.273

Lemma 3.2. If M is a monitor in a connected graph G, then every maximal clique274

in G intersects M . In particular, ω(G−M) < ω(G).275

Proof. If K is a clique in G − M , then K has to be entirely contained in some276

connected component C of G −M . Since M is a monitor, there exists w ∈ M that277

is complete to C. Then K ∪ {w} is also a clique in G, hence K cannot be a maximal278

clique in G.279

We now prove that in P6-free graphs we can always �nd easily describable moni-280

tors.281

Lemma 3.3. Let G be a connected P6-free graph. Then for every u ∈ V (G) there282

exists a subset of vertices X such that u ∈ X, |X| ≤ 3, G[X] is a path whose one283

endpoint is u, and NG[X] is a monitor in G.284

Lemma 3.3 follows immediately from the following statement applied for t = 6.285

Lemma 3.4. Let t ∈ {4, 5, 6}, G be a connected P6-free graph, and u ∈ V (G) be a286

vertex such that in G there is no induced Pt with u being one of the endpoints. Then287

there exists a subset X of vertices such that u ∈ X, |X| ≤ t− 3, G[X] is a path whose288

one endpoint is u, and NG[X] is a monitor in G.289

Proof. We proceed by induction on t. The base case for t = 4 will be proved290

directly within the analysis.291

In the following, by slabs we mean connected components of the graph G−NG[u].292

We shall say that a vertex w ∈ NG(u) is mixed on a slab C if w is neither complete293

nor anti-complete to C. A slab C is simple if there exists a vertex w ∈ NG(u) that is294

complete to C, and di�cult otherwise.295

Note that since G is connected, for every di�cult slab D there exists some vertex296

w ∈ NG(u) that is mixed on D. Then, by Lemma 2.1, we can �nd vertices a, b ∈ D297

such that u − w − a − b is an induced P4 in G. If t = 4 then no such induced P4298

can exists, so we infer that in this case there are no di�cult slabs. Then NG[u] is a299

monitor, so we may set X := {u}. This proves the claim for t = 4; from now on we300

assume that t ≥ 5.301

Let us choose a vertex v ∈ NG(u) that maximizes the number of di�cult slabs302

on which v is mixed. Suppose there is a di�cult slab D′ such that v is anti-complete303

to D′. As we argued, there exists a vertex v′ ∈ NG(u) such that v′ is mixed on D′;304

clearly v′ ̸= v. By the choice of v, there exists a di�cult slab D such that v is mixed305

on D and v′ is anti-complete to D. By applying Lemma 2.1 twice, we �nd vertices306
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a, b ∈ D and a′, b′ ∈ D′ such that v − a − b and v′ − a′ − b′ are induced P3s in G.307

Now, if v and v′ were adjacent, then a− b− v − v′ − a′ − b′ would be an induced P6308

in G, a contradiction. Otherwise a − b − v − u − v′ − a′ − b′ is an induced P7 in G,309

again a contradiction (see Figure 2).310

u

NG(u)

D D′

v v′

ab b′a′

Fig. 2. The graph G in the proof of Lemma 3.4 when v anti-complete to some di�cult slab
D′. Dotted lines show non-edges. The edge vv′ might be present.

We conclude that v is mixed on every di�cult slab. Let

A := {v} ∪
⋃

D : di�cult slab

V (D).

Then G[A] is connected and P6-free. Moreover, in G[A] there is no Pt−1 with one311

endpoint being v, because otherwise we would be able to extend such an induced Pt−1312

using u, and thus obtain an induced Pt in G with one endpoint being u. Consequently,313

by induction we �nd a subset Y ⊆ A such that |Y | ≤ t−4, G[Y ] is a path with one of314

the endpoints being v, and NG[A][Y ] is a monitor in G[A]. Let X := Y ∪ {u}. Then315

|X| ≤ t− 3 and G[X] is a path with u being one of the endpoints.316

We verify that NG[X] is a monitor in G. Consider any connected component317

C of G − NG[X]. As NG[X] ⊇ NG[u], C is contained in some slab D. If D is318

simple, then by de�nition there exists a vertex w ∈ NG[u] ⊆ NG[X] that is complete319

to D, hence also complete to C. Otherwise D is di�cult, hence C is a connected320

component of G[A] − NG[A][Y ]. Since NG[A][Y ] is a monitor in G[A], there exists a321

vertex w ∈ NG[A][Y ] ⊆ NG[X] that is complete to C. This completes the proof.322

We remark that no statement analogous to Lemma 3.3 may hold for P7-free323

graphs, even if from X we only require that NG[X] intersects all the maximum-size324

cliques in G (which is implied by the property of being a monitor, see Lemma 3.2).325

Consider the following example. Let G be a graph obtained from the union of n+ 1326

complete graphs K(0), . . . ,K(n), each on n vertices, by making one vertex from each327

of the graphs K(1), . . . ,K(n) adjacent to a di�erent vertex of K(0). Then G is P7-free,328

but the minimum size of a set X ⊆ V (G) such that NG[X] intersects all maximum-size329

cliques in G is n.330

4. Branching. We now present the core branching step that will be used by331

all our algorithms. This part is inspired by the approach of Hoàng et al. [32]. We332

will rely on the following two graph families; see Figure 3. For t ∈ N, the graph St333

is obtained from the star K1,t by subdividing every edge once. Then L1 := P3 and334

for t ≥ 2 the graph Lt is obtained from St by making all the leaves of St pairwise335

adjacent.336
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Fig. 3. Graphs S4 and L4.

Lemma 4.1. Let H be a �xed irre�exive pattern graph. Suppose we are given337

integers s, t and an instance (G, rev) of Max Partial H-Coloring such that G is338

connected and {P6, Ls, St}-free, and the range of rev(·) contains at least one positive339

value. Denoting n := |V (G)|, one can in time nO(Ramsey(s,t)) compute a set Π of size340

nO(Ramsey(s,t)) such that the following conditions hold:341

(B1) Each element of Π is a pair ((G1, rev1), (G2, rev2)), where G1, G2 are {P6, Ls,342

St}-free subgraphs of G satisfying V (G) = V (G1)⊎V (G2). Further, (G2, rev2)343

is an instance of Max Partial H-Coloring, and (G1, rev1) is an instance344

of Max Partial H ′-Coloring, where H ′ is some proper induced subgraph345

of H (which may be di�erent for di�erent elements of Π).346

(B2) For each ((G1, rev1), (G2, rev2)) ∈ Π and every connected graph F on at least347

two vertices, if G1 contains an induced F , then G contains an induced F •.348

Moreover, if G2 contains an induced F , then G contains an induced F •−◦.349

(B3) We have350

OPT(G, rev) =351

max {OPT(G1, rev1) + OPT(G2, rev2) : ((G1, rev1), (G2, rev2)) ∈ Π }.352353

Moreover, for any pair ((G1, rev1), (G2, rev2)) ∈ Π for which this maximum354

is reached, and for every pair of optimum solutions ϕ1 and ϕ2 to (G1, rev1)355

and (G2, rev2), respectively, the function ϕ := ϕ1 ∪ϕ2 is an optimum solution356

to (G, rev) with rev(ϕ) = rev1(ϕ1) + rev2(ϕ2).357

The remainder of this section is devoted to the proof of Lemma 4.1. We �x the358

irre�exive pattern graph H and consider an input instance (G, rev). We �nd it more359

didactic to �rst perform an analysis of (G, rev), and only provide the algorithm at the360

end. Thus, the correctness will be clear from the previous observations.361

Let
T := { (x, y) ∈ V (G)× V (H) : rev(x, y) > 0 }.

By assumption T is nonempty, hence OPT(G, rev) > 0 and every optimum solution ϕ362

to (G, rev) has a nonempty domain: it sets ϕ(x) = y for some (x, y) ∈ T . Consequently,363

the �nal set Π will be obtained by taking the union of sets Πx,y for (x, y) ∈ T : when364

constructing Πx,y our goal is to capture all solutions satisfying ϕ(x) = y. We now365

focus on constructing Πx,y, hence we assume that we �x a pair (x, y) ∈ T .366

Since G is connected, by Lemma 3.3 there exists X ⊆ V (G) such that x ∈ X,367

|X| ≤ 3, G[X] is a path with x being one of the endpoints, and N [X] is a monitor368

in G. Note that such X can be found in polynomial time by checking all subsets of369

V (G) \ {x} of size at most 2. In case |X| < 3, we may add arbitrary to X so that370

|X| = 3 and G[X] remains connected; note that this does not spoil the property that371

G[X] is a monitor. We may also enumerate the vertices of X as {x1, x2, x3} so that372

x = x1 and for each i ∈ {2, 3} there exists i′ < i such that xi and xi′ are adjacent.373
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We partition V (G) \X into A1, A2, A3, A4 as follows:374

A1 := N(x1) \X, A2 := N(x2) \ (X ∪A1),375

A3 := N(x3) \ (X ∪A1 ∪A2), A4 := V (G) \N [X].376377

Note that {A1, A2, A3} is a partition of N(X) (see Figure 4). For i ∈ {1, 2, 3}, denote378

A>i :=
⋃4

j=i+1 Aj and observe that xi is complete to Ai and anti-complete to A>i.379

Moreover, we have the following.380

Claim 4.2. Let F be a connected graph. If G[A1] contains an induced F , then G381

contains an induced F •. If G[Ai] contains an induced F for any i ∈ {2, 3, 4}, then G382

contains an induced F •−◦.383

Proof of Claim. For the �rst assertion observe that if B ⊆ A1 induces F in G, then384

B ∪ {x1} induces F • in G. For the second assertion, consider �rst the case when385

i ∈ {2, 3}. As we argued, there is i′ < i such that xi′ and xi are adjacent. Then if386

B ⊆ Ai induces F in G, then B ∪ {xi′ , xi} induces F •−◦ in G.387

We are left with justifying the second assertion for i = 4. Suppose B ⊆ A4 induces388

F in G. Since F is connected, B is entirely contained in one connected component C389

of G[A4]. As N [X] is a monitor in G, there exists a vertex w ∈ N [X] that is complete390

to C. As w ∈ N [X], some xi′ ∈ X is adjacent to w. We now �nd that B ∪ {w, xi′}391

induces F •−◦ in G. ■392

x1 x2 x3

A1 A2 A3

A4

NG(X)

X

V (G) \NG[X]

Fig. 4. The partition on V (G) in the proof of Lemma 4.1. Solid and dotted lines respectively
indicate that a vertex is complete or anticomplete to a set. Dashed edges might, but do not have to
exist.

The next claim contains the core combinatorial observation of the proof.393

Claim 4.3. Let ϕ be a solution to the instance (G, rev). Then for every i ∈394

{1, 2, 3} and v ∈ V (H), there exists a set S ⊆ Ai such that:395

• |S| < Ramsey(s, t);396

• S ⊆ Ai ∩ ϕ−1(v); and397

• every vertex u ∈ A>i that has a neighbor in Ai ∩ ϕ−1(v), also has a neighbor398

in S.399

Proof of Claim. Let S be the smallest set satisfying the second and the third condition,400

it exists, as these conditions are satis�ed by Ai ∩ ϕ−1(v) . Note that since H is401

irre�exive, it follows that ϕ−1(v) is an independent set in G, hence S is independent402

as well.403

Suppose for contradiction that |S| ≥ Ramsey(s, t). By minimality, for every u ∈ S404

there exists u′ ∈ A>i such that u is the only neighbor of u′ in S. Let S′ := {u′ : u ∈ S}405
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(see Figure 5). Since |S′| ≥ Ramsey(s, t), in G[S′] we can either �nd a clique K ′ of size406

s or an independent set I ′ of size t; denoteK := {u : u′ ∈ K ′} and I := {u : u′ ∈ I ′}. In407

the former case, we �nd that {xi}∪K∪K ′ induces the graph Ls in G, a contradiction.408

Similarly, in the latter case we have that {xi} ∪ I ∪ I ′ induces St in G, again a409

contradiction. This completes the proof of the claim. ■410

xi

S S′

Ai A>i

Fig. 5. Sets S and S′ in the proof of Claim 4.3.

Claim 4.3 suggests the following notion. A guess is a function R : V (H) → 2N [X]411

satisfying the following:412

• for each v ∈ V (H), R(v) is a subset of N [X] such that |R(v) ∩ Ai| <413

Ramsey(s, t) for all i ∈ {1, 2, 3};414

• sets R(v) are pairwise disjoint for di�erent v ∈ V (H); and415

• x ∈ R(y).416

Let Rx,y be the family of all possible guesses. Note that we add the pair (x, y) in the417

superscript to signify that the de�nition of Rx,y depends on (x, y).418

Claim 4.4. We have that |Rx,y| ≤ nO(Ramsey(s,t)) and Rx,y can be enumerated in419

time nO(Ramsey(s,t)).420

Proof of Claim. For each v ∈ V (H), the number of choices for R(v) in a guess421

R is bounded by 23 · n3·Ramsey(s,t): the �rst factor corresponds to the choice of422

R(v) ∩ X, while the second factor bounds the number of choices of R(v) ∩ Ai for423

i ∈ {1, 2, 3}. Since the guess R is determined by choosing R(v) for each v ∈ V (H)424

and |V (H)| is considered a constant, the number of di�erent guesses is bounded by425 (
23 · n3·Ramsey(s,t)

)|V (H)|
= nO(Ramsey(s,t)). Clearly, they can be also enumerated in426

time nO(Ramsey(s,t)). ■427

Now, we say that a guess R is compatible with a solution ϕ to (G, rev) if the428

following conditions hold for every v ∈ V (H):429

(C1) R(v) ⊆ ϕ−1(v);430

(C2) R(v) ∩X = ϕ−1(v) ∩X; and431

(C3) for all i ∈ {1, 2, 3} and u ∈ A>i, if u has a neighbor in ϕ−1(v) ∩ Ai, then u432

also has a neighbor in R(v) ∩Ai.433

The following statement follows immediately from Claim 4.3.434

Claim 4.5. For every solution ϕ to the instance (G, rev) which satis�es ϕ(x) = y,435

there exists a guess R ∈ Rx,y that is compatible with ϕ.436
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Let us consider a guess R ∈ Rx,y. We de�ne a set BR ⊆ V (G) × V (H) of437

disallowed pairs for R as follows. We include a pair (u, v) ∈ V (G) × V (H) in BR if438

any of the following four conditions holds:439

(D1) u ∈ X and u /∈ R(v);440

(D2) u ∈ R(v′) for some v′ ∈ V (H) that is di�erent from v;441

(D3) u has a neighbor in G that belongs to R(v′) for some v′ ∈ V (H) such that442

vv′ /∈ E(H); or443

(D4) u ∈ Ai \ R(v) for some i ∈ {1, 2, 3} and there exists u′ ∈ A>i such that444

uu′ ∈ E(G) and NG(u
′) ∩Ai ∩R(v) = ∅.445

Intuitively, BR contains assignments that contradict the supposition that R is com-446

patible with a considered solution. The fact that x = x1 is complete to A1 and the447

assumption x ∈ R(y) directly yield the following.448

Claim 4.6. For all u ∈ A1 and R ∈ Rx,y, we have (u, y) ∈ BR.449

Based on BR, we de�ne a new revenue functions revR : V (G) × V (H) → R as
follows:

revR(u, v) =

{
−1 if (u, v) ∈ BR;

rev(u, v) otherwise.

The intuition is that if a pair (u, v) is disallowed by R, then we model this in revR by450

assigning negative revenue to the corresponding assignment. This forbids optimum451

solutions to use this assignment.452

We now de�ne a subgraph Gx,y of G as follows:453

V (Gx,y) := V (G) and E(Gx,y) := {uv ∈ E(G) : u, v ∈ Ai for some i ∈ {1, 2, 3, 4} }.454

In other words, Gx,y is obtained from G by removing all edges except those whose455

both endpoints belong to the same set Ai, for some i ∈ {1, 2, 3, 4}.456

For every guess R ∈ Rx,y, we may consider a new instance (Gx,y, revR) of Max457

Partial H-Coloring. In the following two claims we establish the relationship458

between solutions to the instance (G, rev) and solutions to instances (Gx,y, revR).459

The proofs essentially boil down to a veri�cation that all the previous de�nitions460

work as expected. In particular, the key point is that the modi�cation of revenues461

applied when constructing revR implies automatic satisfaction of all the constraints462

associated with edges that were present in G, but got removed in Gx,y.463

Claim 4.7. For every guess R ∈ Rx,y, every optimum solution ϕ to the instance464

(Gx,y, revR) is also a solution to the instance (G, rev), and moreover revR(ϕ) = rev(ϕ).465

Proof of Claim. Recall that ϕ is a solution to (G, rev) if and only if ϕ is a partial H-466

coloring of G. Hence, we need to prove that for every uu′ ∈ E(G) with u, u′ ∈ domϕ,467

we have ϕ(u)ϕ(u′) ∈ E(H). Denote v := ϕ(u) and v′ := ϕ(u′) and suppose for468

contradiction that vv′ /∈ E(H). Since ϕ is an optimum solution to (Gx,y, revR), we469

have revR(u, v) ≥ 0, which implies that (u, v) /∈ BR. Similarly (u′, v′) /∈ BR. We now470

consider cases depending on the alignment of u and u′ in G.471

If u, u′ ∈ Ai for some i ∈ {1, 2, 3, 4} then uu′ ∈ E(Gx,y), so the supposition472

vv′ /∈ E(H) would contradict the assumption that ϕ is a solution to (Gx,y, revR).473

Suppose u ∈ Ai and u′ ∈ Aj for i, j ∈ {1, 2, 3, 4}, i ̸= j; by symmetry, assume474

i < j. As vv′ /∈ E(H), we infer that u′ does not have any neighbors in R(v) in G,475

for otherwise we would have (u′, v′) ∈ BR by (D3). As uu′ ∈ E(G), u ∈ Ai, and476

u′ ∈ A>i, this implies that (u, v) ∈ BR by (D4), a contradiction.477
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Finally, suppose that {u, u′} ∩X ̸= ∅, say u ∈ X. Since (u, v) /∈ BR, by (D1) we478

infer that u ∈ R(v). Then, by (D3), vv′ /∈ E(H) and uu′ ∈ E(G) together imply that479

(u′, v′) ∈ BR, a contradiction.480

This �nishes the proof that ϕ is a solution to (G, rev). To see that revR(ϕ) = rev(ϕ)481

note that ϕ, being an optimum solution to (Gx,y, revR), does not use any assignments482

with negative revenues in revR, while rev(u, v) = revR(u, v) for all (u, v) satisfying483

revR(u, v) ≥ 0. ■484

Claim 4.8. If ϕ is a solution to (G, rev) that is compatible with a guess R ∈ Rx,y,485

then ϕ is also a solution to (Gx,y, revR) and revR(ϕ) = rev(ϕ).486

Proof of Claim. As ϕ is a solution to (G, rev), it is a partial H-coloring of G. Since487

Gx,y is a subgraph of G with V (Gx,y) = V (G), ϕ is also a partial H-coloring of Gx,y.488

Hence ϕ is a solution to (Gx,y, revR).489

To prove that revR(ϕ) = rev(ϕ) it su�ces to show that (u, ϕ(u)) /∈ BR for every490

u ∈ domϕ, since functions revR and rev di�er only on the pairs from BR. Suppose491

otherwise, and consider cases depending on the reason for including (u, ϕ(u)) in BR.492

Denote v := ϕ(u).493

First, suppose u ∈ X and u /∈ R(v). By (C2) we have u /∈ R(v)∩X = ϕ−1(v)∩X ∋494

u, a contradiction.495

Second, suppose u ∈ R(v′) for some v′ ̸= v. By (C1) we have v = ϕ(u) = v′,496

again a contradiction.497

Third, suppose that u has a neighbor u′ in G such that u′ ∈ R(v′) for some498

v′ ∈ V (H) satisfying vv′ /∈ E(H). By (C1), we have u′ ∈ domϕ and ϕ(u′) = v′.499

But then ϕ(u)ϕ(u′) = vv′ /∈ E(H) even though uu′ ∈ E(G), a contradiction with the500

assumption that ϕ is a partial H-coloring of G.501

Fourth, suppose that u ∈ Ai\R(v) for some i ∈ {1, 2, 3} and there exists u′ ∈ A>i502

such that uu′ ∈ E(G) and NG(u
′)∩R(v)∩Ai = ∅. Observe that since u ∈ Ai∩ϕ−1(v)503

and uu′ ∈ E(G), by (C3) u′ has a neighbor in R(v) ∩ Ai in the graph G. This504

contradicts the supposition that NG(u
′) ∩R(v) ∩Ai = ∅.505

As in all the cases we have obtained a contradiction, this concludes the proof of506

the claim. ■507

We now relate the optimum solution to the instance (G, rev) to optima for in-
stances constructed for di�erent (x, y) ∈ T . For (x, y) ∈ T , consider a a set of
instances

Λx,y := { (Gx,y, revR) : R ∈ Rx,y },

and let Λ :=
⋃

(x,y)∈T Λx,y. Note that

|Λ| ≤ |T | · nO(Ramsey(s,t)) ≤ (|V (H)| · n) · nO(Ramsey(s,t)) ≤ nO(Ramsey(s,t)).

We then have the following.508

Claim 4.9. We have OPT(G, rev) = max(G′,rev′)∈Λ OPT(G′, rev′). Moreover, for509

every (G′, rev′) ∈ Λ for which the maximum is reached, every optimum solution ϕ to510

(G′, rev′) is also an optimum solution to (G, rev) with rev(ϕ) = rev′(ϕ).511

Proof of Claim. By Claim 4.7, we have that512

(4.1) OPT(G, rev) ≥ max
(G′,rev′)∈Λ

OPT(G′, rev′).513

On the other hand, suppose ϕ⋆ is an optimum solution to (G, rev). Since T ̸=514

∅ by assumption, hence there exists some (x, y) ∈ T such that ϕ⋆(x) = y. By515
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Claim 4.5, there exists a guess R ∈ Rx,y such that ϕ⋆ is compatible with R; note516

that (Gx,y, revR) ∈ Λ. By Claim 4.8, ϕ⋆ is also a solution to the instance (Gx,y, revR)517

and revR(ϕ⋆) = rev(ϕ⋆). By (4.1) we conclude that ϕ⋆ is an optimum solution to518

(Gx,y, revR) and OPT(G, rev) = OPT(Gx,y, revR). In particular, OPT(G, rev) =519

max(G′,rev′)∈Λ OPT(G′, rev′). Finally, Claim 4.7 now implies that every optimum so-520

lution to (Gx,y, revR) is also an optimum solution to (G, rev). ■521

Claim 4.9 asserts that the instance (G, rev) is suitably equivalent to the set of522

instances Λ. It now remains to partition each instance from Λ into two independent523

subinstances (G1, rev1) and (G2, rev2) with properties required in (B1) and (B2), so524

that the �nal set Π can be obtained by applying this operation to every instance in525

Λ.526

Consider any instance from Λ, say instance (Gx,y, revR) constructed for some
(x, y) ∈ T and R ∈ Rx,y. We adopt the notation from the construction of Gx,y and
Rx,y, and de�ne

Gx,y
1 := Gx,y[A1] and Gx,y

2 := Gx,y[A2 ∪A3 ∪A4 ∪X].

The properties ofGx,y
1 andGx,y

2 required in (B1) and (B2) are asserted by the following527

claim.528

Claim 4.10. The graphs Gx,y
1 and Gx,y

2 are {P6, Ls, St}-free. Moreover, for every529

connected graph F on at least two vertices, if Gx,y
1 contains an induced F , then G530

contains an induced F •, and if Gx,y
2 contains an induced F , then G contains an531

induced F •−◦.532

Proof of Claim. Note that Gx,y
1 is an induced subgraph of G. Moreover, Gx,y

2 is533

a disjoint union of G[A2], G[A3], and G[A4], plus x1, x2, x3 are included in Gx,y
2 as534

isolated vertices, so every connected component of Gx,y
2 is an induced subgraph of535

G. As G is {P6, Ls, St}-free by assumption, it follows that both Gx,y
1 and Gx,y

2 are536

{P6, Ls, St}-free. The second part of the statement follows directly from Claim 4.2537

and the observation that every induced F in Gx,y
2 has to be contained either in G[A2],538

or in G[A3], or in G[A4]. ■539

Now, construct an instance (Gx,y
1 , revR1 ) of Max Partial H ′-Coloring, where540

H ′ = H − y, and an instance (Gx,y
2 , revR2 ) of Max Partial H-Coloring as follows:541

revR1 is de�ned as the restriction of revR to the set V (Gx,y
1 )×V (H ′), and revR2 is de�ned542

as the restriction of revR to the set V (Gx,y
2 )× V (H). Note that by Claim 4.6 and the543

construction of revR, we have revR(u, y) = −1 for all u ∈ V (Gx,y
1 ), so no optimum544

solution to (Gx,y, revR) can assign y to any u ∈ V (Gx,y
1 ). Since in Gx,y there are no545

edges between V (Gx,y
1 ) and V (Gx,y

2 ), we immediately obtain the following.546

Claim 4.11. OPT(Gx,y, revR) = OPT(Gx,y
1 , revR1 )+OPT(Gx,y

2 , revR2 ). Moreover,547

for any optimum solutions ϕ1 and ϕ2 to (Gx,y
1 , revR1 ) and (Gx,y

2 , revR2 ), respectively,548

the function ϕ := ϕ1 ∪ ϕ2 is an optimum solution to (Gx,y, revR).549

Finally, we de�ne the set Π to comprise of all the pairs ((Gx,y
1 , revR1 ), (G

x,y
2 , revR2 ))550

constructed from all (Gx,y, revR) ∈ Λ as described above. Now, assertion (B3) follows551

directly from Claim 4.9 and Claim 4.11, while assertions (B1) and (B2) are veri�ed552

by Claim 4.10.553

It remains to argue the algorithmic aspects. There are at most |V (H)| ·n = O(n)554

pairs (x, y) ∈ T to consider, and for each of them we can enumerate the set of guesses555

Rx,y in time nO(Ramsey(s,t)). It is clear that for each guess R ∈ Rx,y, the instances556

(Gx,y
1 , revR1 ) and (Gx,y

2 , revR2 ) can be constructed in polynomial time. Hence the total557

running time of nO(Ramsey(s,t)) follows. This completes the proof of Lemma 4.1.558
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A simpli�ed variant. In the next section we will rely only on the following sim-559

pli�ed variant of Lemma 4.1. We provide it for the convenience of further use.560

Lemma 4.12. Let H be a �xed irre�exive pattern graph. Suppose we are given561

integers s, t and an instance (G, rev) of Max Partial H-Coloring such that G is562

connected and {P6, Ls, St}-free. Denoting n := |V (G)|, one can in time nO(Ramsey(s,t))563

construct a subgraph G′ of G with V (G′) = V (G) and a set Π consisting of at most564

nO(Ramsey(s,t)) revenue functions with domain V (G) × V (H) such that the following565

conditions hold:566

(C1) The graph G′ is {P6, Ls, St}-free. Moreover, if G is F •-free for some con-567

nected graph F on at least two vertices, then G′ is F -free.568

(C2) We have OPT(G, rev) = maxrev′∈Π OPT(G′, rev′). Moreover, for any rev′ ∈ Π569

for which the maximum is reached, every optimum solution ϕ to (G′, rev′) is570

also an optimum solution to (G, rev) with rev(ϕ) = rev′(ϕ).571

Proof. The proof is a simpli�ed version of the proof of Lemma 4.1, hence we only572

highlight the di�erences.573

First, we do not iterate through all the pair (x, y) ∈ T : we perform only one574

construction of a subgraph G′ and a set of guesses R, which is analogous to the575

construction of Gx,y and Rx,y for a single pair (x, y) from the proof of Lemma 4.1.576

For X we just take any set of three vertices such that N [X] is a monitor in G, and we577

enumerate X as {x1, x2, x3} in any way. The remainder of the construction proceeds578

as before, resulting in a family of guesses R of size nO(Ramsey(s,t)) and a subgraph G′579

of G (the graph Gx,y from the proof of Lemma 4.1). Here, in the de�nition of a guess580

we omit the condition that ϕ(x) = y; this does not a�ect the asymptotic bound on581

the number of guesses. A subset of the reasoning presented in the proofs of Claim 4.2582

and Claim 4.10 shows that G′ is {P6, Ls, St}-free and, moreover, for every connected583

graph F on at least two vertices, if G′ contains an induced F , then G contains an584

induced F •. Note that since we are interested only in �nding an induced F • instead of585

F •−◦, we do not need edges between vertices of X for this. This veri�es assertion (C1).586

If we now de�ne Π := {revR : R ∈ R}, then the same reasoning as in Claim 4.9 veri�es587

assertion (C2). Note here that Claim 4.7 and Claim 4.8 are still valid verbatim after588

replacing Gx,y by G′ and Rx,y by R.589

5. Exhaustive branching. In this section we give the �rst set of corollaries that590

can be derived from Lemma 4.1. The idea is to apply this tool exhaustively, until591

the considered instance becomes trivial. The main point is that with each application592

the clique number of the graph drops, hence we naturally obtain an upper bound of593

the form of nf(ω(G)) for the total size of the recursion tree, hence also on the running594

time. This leads to results (R3) and (R4) promised in Section 1. In fact, we will only595

rely on the simpli�ed variant of Lemma 4.1, that is, Lemma 4.12.596

The following statement captures the idea of exhaustive applying Lemma 4.12 in597

a recursive scheme. For the convenience of further use, we formulate the following598

statement so that s and t are given on input.599

Theorem 5.1. Let H be a �xed irre�exive pattern graph. There exists an algo-600

rithm that given s, t ∈ N and an instance (G, rev) of Max Partial H-Coloring601

where G is {P6, Ls, St}-free, solves this instance in time nO(Ramsey(s,t)·ω(G)).602

Proof. If G is not connected, then for every connected component C of G we apply603

the algorithm recursively to (C, rev|V (C)). If ϕC is the computed optimum solution to604

this instance, we may output ϕ :=
⋃

C ϕC . It is clear that ϕ constructed in this way605

is an optimum solution to the instance (G, rev).606
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Assume then that G is connected. If G consists of only one vertex, say u, then607

we may simply output ϕ := {(u, v)} where v maximizes rev(u, v), or ϕ := ∅ if rev(·)608

has no positive value in its range. Hence, assume that G has at least two vertices, in609

particular ω(G) ≥ 2. We now apply Lemma 4.12 to G. Thus, in time nO(Ramsey(s,t)) we610

obtain a subgraph G′ of G with V (G) = V (G′) and a suitable set of revenue functions611

Π satisfying |Π| ≤ nO(Ramsey(s,t)). Recall here that G′ is {P6, Ls, St}-free. Moreover,612

if we set F = Kω(G) then G is F •-free, so Lemma 4.12 implies that G′ is F -free. This613

means that ω(G′) < ω(G).614

Next, for every rev′ ∈ Π we recursively solve the instance (G′, rev′). Lemma 4.12615

then implies that if among the obtained optimum solutions to instances (G′, rev′) we616

pick the one with the largest revenue, then this solution is also an optimum solution617

to (G, rev) that can be output by the algorithm.618

We are left with analyzing the running time. Recall that every time we re-619

curse into subproblems constructed using Lemma 4.12, the clique number of the cur-620

rently considered graph drops by at least one. Since recursing on a disconnected621

graph yields connected graphs in subproblems, we conclude that the total depth of622

the recursion tree is bounded by 2 · ω(G). In every recursion step we branch into623

nO(Ramsey(s,t)) subproblems, hence the total number of nodes in the recursion tree is624

bounded by
(
nO(Ramsey(s,t))

)2·ω(G)
= nO(Ramsey(s,t)·ω(G)). The internal computation625

in each subproblem take time nO(Ramsey(s,t)), hence the total running time is indeed626

nO(Ramsey(s,t)·ω(G)).627

Note that since both L3 and S2 contain P5 as an induced subgraph, every P5-free628

graph is {P6, L3, S2}-free. Hence, from Theorem 5.1 we may immediately conclude629

the following statement, where the setting of P5-free graphs is covered by the case630

s = 3 and t = 2.631

Corollary 5.2. For any �xed s, t ∈ N and irre�exive pattern graph H, Max632

Partial H-Coloring can be solved in {P6, Ls, St}-free graphs in time nO(ω(G)).633

This in particular applies to P5-free graphs.634

Next, we observe that the statement of Theorem 5.1 can be also used for non-635

constant s to obtain an algorithm for the case when the graph Ls is not excluded.636

Corollary 5.3. For any �xed t ∈ N and irre�exive pattern graph H, Max Par-637

tial H-Coloring can be solved in {P6, St}-free graphs in time nO(ω(G)t).638

Proof. Observe that since the graph Ls contains a clique of size s, every graph
G is actually Lω(G)+1-free. Therefore, we may apply the algorithm of Theorem 5.1

for s := ω(G) + 1. Note here that ω(G) can be computed in time nω(G)+O(1) by
verifying whether G has cliques of size 1, 2, 3, . . . up to the point when the check
yields a negative answer. Since for s = ω(G) + 1 and �xed t we have

Ramsey(s, t) =

(
s+ t− 2

t− 1

)
≤ O(ω(G)t−1),

the obtained running time is nO(Ramsey(s,t)·ω(G)) ≤ nO(ω(G)t).639

Let us note that an algorithm with running time nO(ω(G)α), for some constant640

α, can be used within a simple branching strategy to obtain a subexponential-time641

algorithm.642

Lemma 5.4. Let H be a �xed irre�exive graph and suppose Max Partial H-643

Coloring can be solved in time nO(ω(G)α) on F-free graphs, for some family of644
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graphs F and some constant α ≥ 1. Then Max Partial H-Coloring can be solved645

in time nO(nα/(α+1)) on F-free graphs.646

Proof. Let (G, rev) be the input instance, where G has n vertices. We de�ne647

threshold τ :=
⌊
n

1
α+1

⌋
. We assume that τ > |V (H)|, for otherwise the instance has648

constant size and can be solved in constant time.649

The algorithm �rst checks whether G contains a clique on τ vertices. This can650

be done in time nτ+O(1) ≤ nO(n1/(α+1)) by verifying all subsets of τ vertices in G. If651

there is no such clique then ω(G) < τ , so we can solve the problem using the assumed652

algorithm in time nO(ω(G)α) ≤ nO(τα) ≤ nO(nα/(α+1)). Hence, suppose that we have653

found a clique K on τ vertices.654

Observe that since H is irre�exive, in any partial H-coloring ϕ of G only at655

most |V (H)| vertices of K can be colored, that is, belong to domϕ. We recurse into656 (
τ

≤|V (H)|
)
≤ n|V (H)| subproblems: in each subproblem we �x a di�erent subset A ⊆ K657

with |A| ≤ |V (H)| and recurse on the graph GA := G− (K \A) with revenue function658

revA := rev|V (GA). Note here that GA is F-free. From the above discussion it is clear659

that OPT(G, rev) = maxA⊆K,|A|≤|V (H)| OPT(GA, revA). Therefore, the algorithm660

may return the solution with the highest revenue among those obtained in recursive661

calls.662

As for the running time, observe that in every recursive call, the algorithm either663

solves the problem in time nO(nα/(α+1)), or recurses into n|V (H)| = nO(1) subcalls,664

where in each subcall the vertex count is decremented by at least
⌊
n

1
α+1

⌋
− |V (H)|.665

It follows that the depth of the recursion is bounded by O(nα/(α+1)), hence the total666

number of nodes in the recursion tree is at most nO(nα/(α+1)). Since the time used for667

each node is bounded by nO(nα/(α+1)), the total running time of nO(nα/(α+1)) follows.668

By combining Corollary 5.2 and Corollary 5.3 with Lemma 5.4 we conclude the669

following.670

Corollary 5.5. For any �xed s, t ∈ N and irre�exive pattern graph H, Max671

Partial H-Coloring can be solved in {P6, Ls, St}-free graphs in time nO(
√
n). This672

in particular applies to P5-free graphs.673

Corollary 5.6. For any �xed t ∈ N and irre�exive pattern graph H, Max Par-674

tial H-Coloring can be solved in {P6, St}-free graphs in time nO(nt/(t+1)).675

6. Excluding a threshold graph. We now present the next result promised676

in Section 1, namely result (R1): the problem is polynomial-time solvable on {P5, F}-677

free graphs whenever F is a threshold graph. For this, we observe that a constant678

number of applications of Lemma 4.1 reduces the input instance to instances that can679

be solved trivially. Thus, the whole recursion tree has polynomial size, resulting in a680

polynomial-time algorithm. Note that here we use the full, non-simpli�ed variant of681

Lemma 4.1.682

We have the following statement.683

Theorem 6.1. Fix s, t ∈ N. Suppose F is a connected graph on at least two684

vertices such that for every �xed irre�exive pattern graph H, the Max Partial H-685

Coloring problem can be solved in polynomial time in {P6, Ls, St, F}-free graphs.686

Then for every �xed irre�exive pattern graph H, the Max Partial H-Coloring687

problem can be solved in polynomial time in {P6, Ls, St, F
•−◦}-free graphs.688

Proof. We proceed by induction on |V (H)|, hence we assume that for all proper689
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induced subgraphs H ′ of H, Max Partial H ′-Coloring admits a polynomial-time690

algorithm on {P6, Ls, St, F
•−◦}-free graphs. Here, the base case is given by H being691

the empty graph; then the empty function is the only solution.692

Let (G, rev) be an input instance (G, rev) of Max Partial H-Coloring, where693

G is {P6, Ls, St, F
•−◦}-free. We may assume that G is connected, as otherwise we may694

apply the algorithm to each connected component of G separately, and output the695

union of the obtained solutions. Further, if the range of rev contains only non-positive696

numbers, then the empty function is an optimum solution to (G, rev); hence assume697

otherwise.698

We may now apply Lemma 4.1 to (G, rev) to construct a suitable list of instances699

Π. Note that since s and t are considered �xed, Π has polynomial size and can be700

computed in polynomial time. Consider any pair ((G1, rev1), (G2, rev2)) ∈ Π. On701

one hand, (G1, rev1) is a {P6, Ls, St, F}-free instance ofMax Partial H ′-Coloring702

where H ′ is some proper induced subgraph of H, so we can apply an algorithm from703

the inductive assumption to solve it in polynomial time. On the other hand, as G704

is F •−◦-free, from Lemma 4.1 it follows that G2 is {P6, Ls, St, F}-free. Therefore, by705

assumption, the instance (G2, rev2) can be solved in in polynomial time.706

Finally, by Lemma 4.1, to obtain an optimum solution to (G, rev) it su�ces to take707

the highest-revenue solution obtained as the union of optimum solutions to instances708

in some pair from Π. As the size of Π is polynomial and each of the instances involved709

in Π can be solved in polynomial time, we can output an optimum solution to (G, rev)710

in polynomial time.711

a1

b1

a2

b2

a3

b3

a4

b4

Fig. 6. The graph Q4.

Let us de�ne a graph Qk as follows, see Figure 6. The vertex set consists of two712

disjoint sets A := {a1, . . . , ak} and B := {b1, . . . , bk}. The set A is independent in Qk,713

while B is turned into a clique. The adjacency between A and B is de�ned as follows:714

for i, j ∈ {1, . . . , k}, we make ai and bj adjacent if and only if i ≤ j. Note that Qk is715

a threshold graph.716

We now use Theorem 6.1 to prove the following.717

Corollary 6.2. For every �xed k, s, t ∈ N and irre�exive pattern graph H, the718

Max Partial H-Coloring problem can be solved in polynomial time in {P6, Ls, St,719

Qk}-free graphs. This in particular applies to {P5, Qk}-free graphs.720

Proof. It su�ces to observe that Qk+1 = (Qk)
•−◦

and apply induction on k. Note721

that the base case for k = 1 holds trivially, because Q1 = K2, so in this case we722

consider the class of edgeless graphs. As before, the last point of the statement723

follows by taking s = 3 and t = 2 and noting that both L3 and S2 contain an induced724

P5.725

It is straightforward to observe that for every threshold graph F there exists726
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k ∈ N such that F is an induced subgraph of Hk. Therefore, from Corollary 6.2 we727

can derive the following.728

Corollary 6.3. For every �xed threshold graph F and irre�exive pattern graph729

H, Max Partial H-Coloring can be solved in polynomial time in {P5, F}-free730

graphs.731

We now note that in Corollary 6.2 we started the induction with Q1 = K2, how-732

ever we could also apply the reasoning starting from any other graph F for which733

we know that Max Partial H-Coloring can be solved in polynomial time in734

{P6, Ls, St, F}-free graphs. One such example is F = P4, for which we can derive735

polynomial-time solvability using a di�erent argument.736

Lemma 6.4. For every �xed irre�exive pattern graph H, the Max Partial H-737

Coloring problem in P4-free graphs can be solved in polynomial time.738

Proof. It is well-known that P4-free graphs are exactly cographs, which in partic-739

ular have cliquewidth at most 2 (and a suitable clique expression can be computed in740

polynomial time). Therefore, we can solve Max Partial H-Coloring in cographs741

in polynomial time using the meta-theorem of Courcelle, Makowsky, and Rotics [18]742

for MSO1-expressible optimization problems on graphs of bounded cliquewidth. This743

is because for a �xed H, it is straightforward to express Max Partial H-Coloring744

as such a problem. Alternatively, one can write an explicit dynamic programming745

algorithm, which is standard.746

By applying the same reasoning as in Corollary 6.2, but starting the induction747

with P4, we conclude:748

Corollary 6.5. Suppose F is a graph obtained from P4 by a repeated application749

of the (·)•−◦ operator. Then for every �xed irre�exive pattern graph H, Max Partial750

H-Coloring can be solved in polynomial time in {P5, F}-free graphs.751

Fig. 7. The gem and the graph (P4)
•−◦.

We note here that (P4)
•−◦

is the graph obtained from the gem graph by adding a752

degree-one vertex to the center of the gem; see Figure 7. It turns out that {P5, gem}-753

free graphs have bounded cliquewidth [6], hence the polynomial-time solvability of754

Max Partial H-Coloring on these graphs follows from the same argument as that755

used for P4-free graphs in Lemma 6.4. However, this argument does not apply to756

any of the cases captured by Corollary 6.5. Indeed, as shown in [8, Theorem 25(v)],757

{F1, F2}-free graphs have unbounded cliquewidth (and even mim-width) whenever758

both F1 and F2 contain an independent set of size 3, and both P5 and (P4)
•−◦

enjoy759

this property. Note that this argument can be also applied to infer that {P5, bull}-760

free graphs have unbounded cliquewidth and mim-width, which is the setting that we761

explore in the next section.762
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7. Excluding a bull. In this section we prove result (R2) promised in Sec-763

tion 1. The technique is similar in spirit to that used in Section 6. Namely, we apply764

Lemma 4.1 twice to reduce the problem to the case of P4-free graphs, which can be765

handled using Lemma 6.4. However, these applications are interleaved with a reduc-766

tion to the case when the input graph is prime: it does not contain any non-trivial767

module (equivalently, homogeneous set). This allows us to use some combinatorial768

results about the structure of prime bull-free graphs [16, 14].769

7.1. Reduction to prime graphs. In order to present the reduction to the770

case of prime graphs it will be convenient to work with a multicoloring generalization771

of the problem. In this setting, we allow mapping vertices of the input graph G to772

nonempty subset of vertices of H, rather than to single vertices of H.773

Multicoloring variant. For a graph H, by Pow⋆(H) we denote the set of all
nonempty subsets of V (H). Let H be an irre�exive pattern graph and G be a graph.
A partial H-multicoloring is a partial function ϕ : V (G) ⇀ Pow⋆(H) that satis�es
the following condition: for every edge uu′ ∈ E(G) such that u, u′ ∈ domϕ, the sets
ϕ(u), ϕ(u′) ⊆ V (H) are disjoint and complete to each other in H; that is, vv′ ∈ E(G)
for all v ∈ ϕ(u) and v′ ∈ ϕ(u′). We correspondingly rede�ne the measurement of
revenue. A revenue function is a function rev : V (G)×Pow⋆(H) → R and the revenue
of a partial H-multicoloring ϕ is de�ned as

rev(ϕ) :=
∑

u∈domϕ

rev(u, ϕ(u)).

The Max Partial H-Multicoloring problem is then de�ned as follows.774

Max Partial H-Multicoloring

Input: Graph G and a revenue function rev : V (G)× Pow⋆(H) → R
Output: A partial H-multicoloring ϕ of G that maximizes rev(ϕ)

775

Clearly, Max Partial H-Multicoloring generalizesMax Partial H-Colo-
ring, as given an instance (G, rev) of Max Partial H-Coloring, we can turn it
into an equivalent instance (G, rev′) of Max Partial H-Multicoloring by de�ning
rev′ as follows: for u ∈ V (G) and Z ⊆ V (H), we set

rev′(u, Z) :=

{
rev(u, v) if Z = {v} for some v ∈ V (H);

−1 otherwise.

However, there is actually also a reduction in the other direction. For an irre�exive776

pattern graph H, we de�ne another pattern graph Ĥ as follows: V (Ĥ) = Pow⋆(H)777

and we make X,Y ∈ Pow⋆(H) adjacent in Ĥ if and only if X and Y are disjoint778

and complete to each other in H. Note that Ĥ is again irre�exive and since we779

consider H �xed, Ĥ is a constant-sized graph. Then it is easy to see that the set of780

instances of Max Partial H-Multicoloring is exactly equal to the set of instances781

of Max Partial Ĥ-Coloring, and the de�nitions of solutions and their revenues782

coincide. Thus, we may solve instances of Max Partial H-Multicoloring by783

applying algorithms for Max Partial Ĥ-Coloring to them. Let us remark that784

expressing Max Partial H-Multicoloring as Max Partial Ĥ-Coloring is785

similar to expressing k-tuple coloring (or fractional coloring) as homomorphisms to786

Kneser graphs, see e.g. [31, Section 6.2].787
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Modular decompositions. We are mostly interested in Max Partial H-Multi-788

coloring because in this general setting, it is easy to reduce the problem once789

we �nd a non-trivial module (or homogeneous set) in an instance. For clarity, we790

choose to present this approach by performing dynamic programming on a modular791

decomposition of the input graph, hence we need a few de�nitions. The following792

standard facts about modular decompositions can be found for instance in the survey793

of Habib and Paul [30].794

A module (or a homogeneous set) in a graph G is a subset of vertices B such that795

every vertex u /∈ B is either complete of anti-complete to B. A module B is proper if796

2 ≤ |B| < |V (G)|. A graph G is called prime if it does not have any proper modules.797

A module B in a graph G is strong if for any other module B′, we have either798

B ⊆ B′, or B ⊇ B′, or B ∩B′ = ∅. It is known that if among proper strong modules799

in a graph G we choose the (inclusion-wise) maximal ones, then they form a partition800

of the vertex set of G, called the modular partition Mod(G). The quotient graph801

Quo(G) is the graph with Mod(G) as the vertex set where two maximal proper strong802

modules B,B′ ∈ Mod(G) are adjacent if they are complete to each other in G, and803

non-adjacent if they are anti-complete to each other in G. It is known that for every804

graph G, the quotient graph Quo(G) is either edgeless, or complete, or prime. Note805

that the quotient graph Quo(G) is always an induced subgraph of G: selecting one806

vertex from each element of Mod(G) yields a subset of vertices that induces Quo(G)807

in G.808

The modular decomposition of a graph is a tree T whose nodes are modules of809

G, which is constructed by applying modular partitions recursively. First, created a810

root node V (G). Then, as long as the current tree has a leaf B with |B| ≥ 2, attach811

the elements of Mod(G[B]) as children of B. Thus, the leaves of T exactly contain all812

single-vertex modules of G; hence T has n leaves and at most 2n−1 nodes in total. It813

is known that the set of nodes of the modular decomposition of G exactly comprises814

of all the strong modules in G. Moreover, given G, the modular decomposition of G815

can be computed in linear time [19, 36].816

Dynamic programming on modular decomposition. The following lemma shows817

that given a graph G, Max Partial H-Multicoloring in G can be solved by818

solving the problem for each element of Mod(G), and combining the results by solving819

the problem on Quo(G). Here, H is an irre�exive pattern graph that we �x from this820

point on.821

Lemma 7.1. Let (G, rev) be an instance of Max Partial H-Multicoloring,
where H is irre�exive. For B ∈ Mod(G) and W ∈ Pow⋆(H), de�ne revB,W : B ×
Pow⋆(H) → R as follows: for u ∈ B and Z ∈ Pow⋆(H), set

revB,W (u, Z) :=

{
rev(u, Z) if Z ⊆ W ;

−1 otherwise.

Further, de�ne rev′ : Mod(G) × Pow⋆(H) → R as follows: for B ∈ Mod(G) and
W ∈ Pow⋆(H), set

rev′(B,W ) := OPT(G[B], revB,W ).

Then OPT(G, rev) = OPT(Quo(G), rev′). Moreover, for every optimum solution ϕ′

to (Quo(G), rev′) and optimum solutions ϕB to respective instances (G[B], revB,ϕ′(B)),
for B ∈ Mod(G) ∩ domϕ′, the function

ϕ :=
⋃

B∈Mod(G)∩domϕ′

ϕB
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is an optimum solution to (G, rev).822

Proof. We �rst argue that OPT(G, rev) ≤ OPT(Quo(G), rev′). Take an optimum
solution ϕ to (G, rev). For every B ∈ Mod(G), let

ϕ′(B) :=
⋃

u∈B∩domϕ

ϕ(u),

unless the right hand side is equal to ∅, in which case we do not include B in the823

domain of ϕ′. Observe that ϕ′ de�ned in this manner is a solution to the instance824

(Quo(G), rev′). Indeed, if for some BB′ ∈ E(Quo(G)) we did not have that ϕ′(B) and825

ϕ′(B′) are disjoint and complete to each other in H, then there would exist u ∈ B826

and u′ ∈ B′ such that ϕ(u) and ϕ(u′) are not disjoint and complete to each other in827

H, contradicting the assumption that ϕ is a solution to (G, rev).828

Note that for each B ∈ domϕ′, ϕ|B is a solution to the instance (G[B], revB,ϕ′(B)).
Observe that

OPT(G, rev) = rev(ϕ) =
∑

B∈domϕ′

revB,ϕ′(B)(ϕ|B) ≤
∑

B∈domϕ′

OPT(G[B], revB,ϕ′(B)),

where the second equality follows from the fact that rev and revB,ϕ′(B) agree on all829

pairs (u, ϕ(u)) for u ∈ B ∩ domϕ. On the other hand, since ϕ′ is a solution to830

(Quo(G), rev′), we have831 ∑
B∈domϕ′

OPT(G[B], revB,ϕ′(B)) =
∑

B∈domϕ′

rev′(B,ϕ′(B))832

=rev′(ϕ′) ≤ OPT(Quo(G), rev′).833834

This proves that OPT(G, rev) ≤ OPT(Quo(G), rev′).835

Next, we argue that OPT(G, rev) ≥ OPT(Quo(G), rev′) and that the last assertion
from the lemma statement holds. Let ϕ′ be an optimum solution to the instance
(Quo(G), rev′). Further, for each B ∈ domϕ′, let ϕB be any optimum solution to the
instance (G[B], revB,ϕ′(B)). Consider

ϕ :=
⋃

B∈domϕ′

ϕB

We verify that ϕ is a solution to (G, rev). The only non-trivial check is that for836

any B,B′ ∈ domϕ′ with BB′ ∈ E(Quo(G)), u ∈ domϕB , and u′ ∈ domϕB′ , we837

have that ϕ(u) and ϕ(u′) are disjoint and complete to each other in H. However,838

ϕB , as an optimal solution to (G[B], revB,ϕ′(B)), does not use any assignments with839

negative revenues, which implies that ϕ(u) = ϕB(u) ⊆ ϕ′(B). Similarly, we have840

ϕ(u′) = ϕB′(u′) ⊆ ϕ′(B′). Since ϕ′(B) and ϕ′(B′) are disjoint and complete to each841

other, due to the assumption that ϕ′ is a solution to (Quo(G), rev′), the same can be842

also claimed about ϕ(u) and ϕ(u′).843

Finally, observe that844

rev(ϕ) =
∑

B∈domϕ′

revB,ϕ′(B)(ϕB)845

=
∑

B∈domϕ′

OPT(G[B], revB,ϕ′(B)) = rev′(ϕ′) = OPT(Quo(G), ϕ′),846

847
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where the �rst equality follows from the fact that rev and revB,ϕ′(B) agree on all848

assignments used by ϕ, for all B ∈ domϕ′. This proves that849

OPT(G, rev) ≥ OPT(Quo(G), rev′).850

Combining this inequality with the with the reverse one proved before, we conclude851

that OPT(G, rev) = OPT(Quo(G), rev′) and ϕ is an optimum solution to (G, rev).852

Lemma 7.1 enables us to perform dynamic programming on a modular decom-853

position, provided the problem can be solved e�ciently on prime graphs from the854

considered graph class. This leads to the following statement.855

Lemma 7.2. Let H be a �xed irre�exive pattern graph. Let F be a set of graphs856

such that Max Partial H-Multicoloring can be solved in time T (n) on prime857

F-free graphs. Then Max Partial H-Multicoloring can be solved in time nO(1) ·858

T (n) on F-free graphs.859

Proof. First, in linear time we compute the modular decomposition T of G. Then,860

for every strong module B of G and everyW ∈ Pow⋆(H), we will compute an optimum861

solution ϕB,W to the instance (G[B], revB,W ), where the revenue function revB,W is862

de�ned as in Lemma 7.1. At the end, we may return ϕV (G),V (H) as the optimum863

solution to (G, rev).864

The computation of solutions ϕB,W is organized in a bottom-up manner over the865

decomposition T . Thus, whenever we compute solution ϕB,W for a strong module B866

and W ∈ Pow⋆(H), we may assume that the solutions ϕB′,W ′ for all B′ ∈ Mod(G[B])867

and W ′ ∈ Pow⋆(H) have already been computed.868

When B is a leaf of T , say B = {u} for some u ∈ V (G), then for every869

W ∈ Pow⋆(W (H)) we may simply output ϕB,W := {(u, Z)} where Z maximizes870

revB,W (u, Z), or ϕB,W := ∅ if revB,W has no positive values in its range.871

Now suppose B is a non-leaf node of T and W ∈ Pow⋆(W (H)). Construct
an instance (Quo(G[B]), rev′) similarly as in the statement of Lemma 7.1: for B′ ∈
Mod(G[B]) and Z ∈ Pow⋆(H), we put

rev′(B,W ) := OPT(G[B′], revB′,W∩Z).

Note here that the values OPT(G[B′], revB′,W∩Z) have already been computed, as872

they are equal to revB′,W∩Z(ϕB′,W∩Z). From Lemma 7.1 applied to the instance873

(G[B], revW,B) it follows that if ϕ
′ is an optimum solution to (Quo(G[B]), rev′), then874

the union of solutions ϕB′,ϕ′(B′) over all B′ ∈ domϕ′ is an optimum solution to875

(G[B], revB,W ). Therefore, it remains to solve the instance (Quo(G[B]), rev′). We876

make a case distinction depending on whether Quo(G[B]) is edgeless, complete, or877

prime.878

It is very easy to argue that Max Partial H-Multicoloring can be solved in879

polynomial time both in edgeless graphs and in complete graphs. For instance, one880

can equivalently see the instance as an instance of Max Partial Ĥ-Coloring, and881

apply the algorithm for P4-free graphs given by Lemma 6.4.882

On the other hand, if Quo(G[B]) is prime, then by assumption we can solve the883

instance (Quo(G[B]), rev′) in time T (n). Recall here that Quo(G[B]) is an induced884

subgraph of G[B], hence it is also F-free.885

This concludes the description of the algorithm. As for the running time, observe886

that since H is considered �xed, the computation for each node of the decomposition887

take time nO(1) · T (n). Since T has at most 2n − 1 nodes, the total running time of888

nO(1) · T (n) follows.889
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We can now conclude the following statement. Note that it speaks only about890

the standard variant of the Max Partial H-Coloring problem.891

Theorem 7.3. Let F be a set of graphs such that for every �xed irre�exive pattern892

graph H, the Max Partial H-Coloring problem can be solved in polynomial time893

in prime F-free graphs. Then for every �xed irre�exive pattern graph H, the Max894

Partial H-Coloring problem can be solved in polynomial time in F-free graphs.895

Proof. As instances of Max Partial H-Multicoloring can be equivalently896

regarded as instances of Max Partial Ĥ-Coloring, we conclude that for every897

�xed H, Max Partial H-Multicoloring is polynomial-time solvable in prime898

F-free graphs � just apply the algorithm for Max Partial Ĥ-Coloring. By899

Lemma 7.2 we infer that for every �xed H, Max Partial H-Multicoloring is900

polynomial-time solvable in F-free graphs. As Max Partial H-Multicoloring901

generalizes Max Partial H-Coloring, this algorithm can be used to solve Max902

Partial H-Coloring in F-free graphs in polynomial time.903

7.2. Algorithms for bull-free classes. We now move to our algorithmic re-904

sults for subclasses of bull-free graphs. For this, we need to recall some de�nitions905

and results.906

For graphs F and G, we say that G contains an induced F with a center and an907

anti-center if there exists A ⊆ V (G) such that G[A] is isomorphic to F , and moreover908

there are vertices x, y /∈ A such that x is complete to A and y is anti-complete to A.909

Observe that if a graph G contains an induced F •−◦, then G contains an induced F910

with a center and an anti-center. We will use the following.911

Theorem 7.4 ([16]). Let G be a {bull, C5}-free graph. If G contains an induced912

P4 with a center and an anti-center, then G is not prime.913

Theorem 7.5 ([14]). Let G be a bull-free graph. If G contains an induced C5914

with a center and an anti-center, then G is not prime.915

We now combine Lemma 4.12, Theorem 7.3, and Theorem 7.4 to show the fol-916

lowing.917

Lemma 7.6. For every �xed t ∈ N and irre�exive pattern graph H, the Max918

Partial H-Coloring problem in {P6, C5, St, bull}-free graphs can be solved in poly-919

nomial time.920

Proof. As in the proof of Theorem 6.1, we proceed by induction on |V (H)|.921

Hence, we assume that for all proper induced subgraphs H ′ of H, Max Partial922

H ′-Coloring can be solved in polynomial-time on {P6, C5, St, bull}-free graphs. By923

Theorem 7.3, it su�ces to give a polynomial-time algorithm for Max Partial H-924

Coloring working on prime {P6, C5, St, bull}-free graphs. By Theorem 7.4, such925

graphs do not contain any induced P4 with a center and an anti-center, so in partic-926

ular they do not contain any induced (P4)
•−◦

.927

Consider then an input instance (G, rev) of Max Partial H-Coloring, whereG928

is {P6, C5, St, bull}-free and prime, hence also connected. If the range of rev consists929

only of non-positive numbers, then the empty function is an optimum solution to930

(G, rev), hence assume otherwise. Note that L3 contains an induced bull, hence we931

may apply Lemma 4.12 for s = 3 to compute a suitable set Π of pairs of instances.932

This takes polynomial time due to t being considered a constant.933

Consider any pair ((G1, rev1), (G2, rev2)) ∈ Π. On one hand, (G1, rev1) is an934

instance of Max Partial H ′-Coloring for some proper induced subgraph H ′ of935

H, hence we can apply an algorithm from the inductive assumption to solve it in936
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polynomial time. On the other hand, note that the graph G2 is P4-free, for if it937

had an induced P4, then by Lemma 4.12 we would �nd an induced (P4)
•−◦

in G, a938

contradiction to G being prime by Theorem 7.4. Hence, we can solve the instance939

(G2, rev2) in polynomial time using the algorithm of Lemma 6.4.940

Finally, Lemma 4.12 implies that to obtain an optimum solution to (G, rev),941

it su�ces to take the highest-revenue solution obtained as the union of optimum942

solutions to instances in some pair from Π. Since the size of Π is polynomial and each943

of the instances involved in Π can be solved in polynomial time, we can output an944

optimum solution to (G, rev) in polynomial time as well.945

Finally, it remains to combine Lemma 7.6 with Lemma 4.12 again to derive the946

main result of this section.947

Theorem 7.7. For every �xed t ∈ N and irre�exive pattern graph H, the Max948

Partial H-Coloring problem in {P6, St, bull}-free graphs can be solved in polyno-949

mial time.950

Proof. We follow exactly the same strategy as in the proof of Lemma 7.6. The951

di�erences are that:952

• Instead of using Theorem 7.4, we apply Theorem 7.5 to argue that the graph953

G2 is C5-free.954

• Instead of using Lemma 6.4 to solve P4-free instances, we apply Lemma 7.6955

to solve {P6, C5, St, bull}-free instances.956

The straightforward application of these modi�cations is left to the reader.957

Finally, since S2 = P5, from Theorem 7.7 we immediately conclude the following.958

Corollary 7.8. For every �xed irre�exive pattern graph H, the Max Partial959

H-Coloring problem in {P5, bull}-free graphs can be solved in polynomial time.960

8. Hardness for patterns with loops. Recall that the assumption that H is961

irre�exive is crucial in our approach in Lemma 4.1. However, while H-Coloring962

becomes trivial if H has loops, this is no longer the case for generalizations of the963

problem, including List H-Coloring and Max Partial H-Coloring. See e.g.964

[22, 29, 39].965

Here, List H-Coloring is the list variant of the H-Coloring problem: an966

instance of List H-Coloring is a pair (G,L), where G is a graph and L : V (G) →967

2V (H) assigns a list to every vertex. We ask whether G admits an H-coloring ϕ that968

respects lists L, i.e., ϕ(v) ∈ L(v) for every v ∈ V (G).969

Note that that List H-Coloring is a special case of Max Partial H-Colo-970

ring: for any instance (G,L) of List H-Coloring, de�ne the revenue function971

rev : V (G)× V (H) → R as follows:972

rev(v, u) =

{
−1 if u /∈ L(v);

1 if u ∈ L(v).
973

It is straightforward to observe that solving the instance (G,L) of List H-Coloring974

is equivalent to deciding if the instance (G, rev) of Max Partial H-Coloring has975

a solution of revenue at least (in fact, equal to) |V (G)|. Thus any positive result976

for Max Partial H-Coloring can be applied to List H-Coloring, while any977

hardness result for List H-Coloring carries over to Max Partial H-Coloring.978

Let us point out that if we only aim for solving List H-Coloring, a simple979

adaptation of the algorithm of Hoàng et al. [32] shows that the problem is polynomial-980
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time solvable in P5-free graphs, provided H has no loops. In this section we show981

that there is little hope to extend this positive result to graphs H with loops allowed.982

A graph G is a split graph if V (G) can be partitioned into a clique and an inde-983

pendent set (that we call the independent part). Is is well-known that split graphs984

are precisely {P5, C4, 2P2}-free graphs.985

Let H0 be the graph on the vertex set
⋃

i∈{1,2,3}{ai, bi, ci, di} (see Figure 8). The986

edge set E(H0) consists of the edges:987

• all edges with both endpoints in
⋃

i∈{1,2,3}{ai, bi} (including loops),988

• all edges with both endpoints in
⋃

i∈{1,2,3}{ci, di} (including loops),989

• for each i ∈ {1, 2, 3}, the edges aici and bici,990

• for each i ∈ {1, 2, 3} and j ∈ {1, 2, 3} \ {i}, the edges diai and dibj .991

a1

c1

b2

a2

c2

b1

a3

b3

c3

d1

d2

d3

induce a reflexive clique

induce a reflexive clique

Additional edges:

Fig. 8. The graph H0 used in Theorem 8.1.

Theorem 8.1. The List H0-Coloring problem (and thus Max Partial H0-992

Coloring) is NP-hard and, under the ETH, cannot be solved in time 2o(n):993

(a) in split graphs, even if each vertex of the independent part is of degree 2; and994

(b) in complements of bipartite graphs (in particular, in {P5, bull}-free graphs).995

Proof. We partition the vertices ofH0 into sets A,B,C,D, where A := {a1, a2, a3}996

and the remaining sets are de�ned analogously.997

We reduce from 3-Coloring, which is NP-complete and cannot be solved in998

time 2o(n+m) unless the ETH fails, where n and m respectively denote the number of999

vertices and of edges [20]. Let G be an instance of 3-Coloring with n vertices and1000

m edges. Let V (G) = {v1, v2, . . . , vn} and let [n] := {1, . . . , n}.1001

First, let us build a split graph G′ with lists L, which admits an H0-coloring1002

respecting L if and only if G is 3-colorable. For each i ∈ [n], we add to G′ two vertices1003

xi and yi. Let X := {xi : i ∈ [n]} and Y := {yi : i ∈ [n]}. We make X ∪ Y into a1004

clique in G′. We set L(xi) := {a1, a2, a3} and L(yi) := {b1, b2, b3} for every i ∈ [n].1005

The intended meaning of an H0-coloring of G′ is that for any i ∈ [n] and j ∈1006

{1, 2, 3}, coloring xi with color aj and yi with color bj corresponds to coloring vi with1007

color j. So we need to ensure the following two properties:1008

(P1) for every i ∈ [n] and j ∈ {1, 2, 3}, the vertex xi is colored aj if and only if the1009

vertex yi is colored bj ,1010

(P2) for every edge vivj of G, the vertices xi and xj get di�erent colors (and, by1011

Item P1, so do yi and yj).1012

In order to ensure property Item P1, for each i ∈ [n] we introduce a vertex wi, adjacent1013

to xi and yi, whose list is {c1, c2, c3}. ByW we denote the set {wi : i ∈ [n]}. To ensure1014

property Item P2, for each edge vivj of G, where i < j, we introduce a vertex zi,j1015
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adjacent to xi and yj . The list of zi,j consists of {d1, d2, d3}. By Z we denote the set1016

{zi,j : vivj ∈ E(G) and i < j}.1017

It is straightforward to verify that the de�nition of the neighborhoods of vertices1018

ci, di in H0 forces Item P1 and Item P2, which implies that G is 3-colorable if and1019

only if G′ admits an H0-coloring that respects lists L. The number of vertices of G′1020

is1021

|X|+ |Y |+ |W |+ |Z| = n+ n+ n+m = O(n+m).1022

Hence, if the obtained instance of the List H0-Coloring problem could be solved in1023

time 2o(|V (G′)|), then this would imply the existence of a 2o(n+m)-time algorithm for1024

3-Coloring, a contradiction with the ETH. Furthermore, X ∪ Y is a clique, W ∪ Z1025

is independent, and every vertex from W ∪ Z has degree 2. Thus the statement (a)1026

of the theorem holds.1027

We observe that the set {L(v) : v ∈ W ∪Z} = C∪D forms a re�exive clique in H0.1028

Thus we can turn the set W ∪Z into a clique, obtaining an equivalent instance (G′′, L)1029

of List H0-Coloring. As the vertex set of G′′ can be partitioned into two cliques,1030

G′′ is the complement of a bipartite graph, so the statement (b) of the theorem holds1031

as well.1032

9. Open problems. The following question, which originally motivated our1033

work, still remains unresolved.1034

Question 9.1. Is there a polynomial-time algorithm for Odd Cycle Transver-1035

sal in P5-free graphs?1036

Note that our work stops short of giving a positive answer to this question: we1037

give an algorithm with running time nO(ω(G)), a subexponential-time algorithm, and1038

polynomial time algorithms for the cases when either a threshold graphs or a bull is1039

additionally forbidden. Therefore, we are hopeful that the answer to the question is1040

indeed positive.1041

One aspect of our work that we �nd particularly interesting is the possibility of1042

treating the clique number ω(G) as a progress measure for an algorithm, which en-1043

ables bounding the recursion depth in terms of ω(G). This approach naturally leads1044

to algorithms with running time of the form nf(ω(G)) for some function f , that is,1045

polynomial-time for every �xed clique number. By Lemma 5.4, having a polynomial1046

function f in the above implies the existence of a subexponential-time algorithm, at1047

least in the setting of Max Partial H-Coloring for irre�exive H. However, look-1048

ing for algorithms with time complexity nf(ω(G)) seems to be another relaxation of1049

the goal of polynomial-time solvability, somewhat orthogonal to subexponential-time1050

algorithms [4, 7, 27] or approximation schemes [13]. Note that our work and the re-1051

cent work of Brettell et al. [9] actually show two di�erent methods of obtaining such1052

algorithms: using direct recursion, or via dynamic programming on branch decompo-1053

sitions of bounded mim-width. It would be interesting to investigate this direction in1054

the context of Maximum Independent Set in Pt-free graphs. A concrete question1055

would be the following.1056

Question 9.2. Is there a polynomial-time algorithm forMaximum Independent1057

Set in {Pt,Kt}-free graphs, for every �xed t?1058

In all our algorithms, we state the time complexity assuming that the pattern1059

graph H is �xed. This means that the constants hidden in the O(·) notation in the1060

exponent may � and do � depend on the size of H. In the language of parameterized1061

complexity, this means that we give XP algorithms for the parameterization by the size1062
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of H. It is natural to ask whether this state of art can be improved to the existence1063

of FPT algorithms, that is, with running time f(H) ·nc for some computable function1064

f and universal constant c, independent of H. This is not known even for the case of1065

k-Coloring P5-free graphs, so let us re-iterate the old question of Hoàng et al. [32]1066

(see also [11, Problem 4.1]).1067

Question 9.3. Is there an FPT algorithm for k-Coloring in P5-free graphs pa-1068

rameterized by k?1069

While the above question seems hard, it is conceivable that FPT results could be1070

derived in some more restricted settings, for instance for 2P2-free graphs of {P5, bull}-1071

free graphs.1072

Finally, recall that List H-Coloring in P5-free graphs is polynomial-time solv-1073

able for irre�exive H, but might become NP-hard when loops on H are allowed (see1074

Theorem 8.1). We believe that it would be interesting to obtain a full complexity1075

dichotomy.1076

Question 9.4. For what pattern graphs H (with possible loops) is List H-Colo-1077

ring polynomial-time solvable in P5-free graphs?1078

We think that solving all problems listed above might require obtaining new1079

structural results, and thus may lead to better understanding of the structure of1080

P5-free graphs.1081
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