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Abstract

In 1981, Duffus, Gould, and Jacobson showed that every connected graph either

has a Hamiltonian path, or contains a claw (K1,3) or a net (a fixed six-vertex

graph) as an induced subgraph. This implies that subject to being connected,

these two are the only minimal (under taking induced subgraphs) graphs with

no Hamiltonian path.

Brousek (1998) characterized the minimal graphs that are 2-connected, non-

Hamiltonian and do not contain the claw as an induced subgraph. We char-

acterize the minimal graphs that are 2-connected and non-Hamiltonian for two

classes of graphs: (1) split graphs, (2) triangle-free graphs. We remark that

testing for Hamiltonicity is NP-hard in both classes.
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1. Introduction

Graphs in this paper are finite and without loops or parallel edges. For a

graph G and X ⊆ V (G), G[X ] denotes the induced subgraph of G with vertex

set X , and G\X denotes G[V (G)\X ]. A Hamiltonian path (resp. Hamiltonian

cycle) in a graph G is a (not necessarily induced) subgraph H of G which is
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Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie
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a path (resp. cycle), and V (H) = V (G). A graph is Hamiltonian if it has a

Hamiltonian cycle.

We say that a graph H is an HP-obstruction if H is connected, has no

Hamiltonian path, and every induced subgraph of H either equals H , or is

not connected, or has a Hamiltonian path. Analogously, a graph H is an HC-

obstruction if H is 2-connected, has no Hamiltonian cycle, and every induced

subgraph of H either equals H , or is not 2-connected, or has a Hamiltonian

cycle.

The claw is the complete bipartite graph K1,3. The net is the unique graph

with degree sequence (3, 3, 3, 1, 1, 1), and equivalently the graph with vertex set

{a, b, c, a′, b′, c′} and edge set {a′b′, b′c′, a′c′, aa′, bb′, cc′}. The snare is the graph

obtained from a net by adding a vertex and making it adjacent to every vertex

of the net. The following theorem of Duffus, Gould, and Jacobson characterizes

all HP-obstructions.

Theorem 1 ([1]; see also [2]). There are exactly two HP-obstructions: the claw

and the net.

Following the same line of thought, in this note we are interested in un-

derstanding HC-obstructions. In [3], Brousek gave a complete characteriza-

tion of HC-obstructions that do not contain the claw as an induced subgraph,

and Chiba & Furuya [4] further studied induced subgraphs of non-minimal 2-

connected non-Hamiltonian graphs. Ding & Marshall [5] obtained a complete

characterization in the case when “induced subgraph” is replaced by “induced

minor” in the definition of an HC-obstruction.

Let us describe our main results. A clique in a graph G is a set K of pairwise

adjacent vertices. A stable set in a graph G is a set S of pairwise non-adjacent

vertices. A split graph is a graph G with a partition (S,K) of V (G) such that

S is a stable set and K is a clique in G.

An n-sun is a graph obtained from a cycle C with 2n vertices v1, . . . , v2n

that occur in this order along C by adding all edges v2iv2j for distinct i, j ∈

{1, . . . , n}. An n-nova is obtained from an n-sun by adding a vertex w and edges
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Figure 1: From left to right: the snare, the 2-nova, a theta, and a triangle-free wheel. Squiggly

edges represent paths of length at least one.

wv2i for all i ∈ {1, . . . , n}. Our first theorem, the following, gives a complete

characterization of HC-obstructions that are split graphs.

Theorem 2. The snare and all n-novae for n ≥ 2 are HC-obstructions. More-

over, these are the only HC-obstructions which are split graphs.

A theta is a graph consisting of two non-adjacent vertices u and v and three

paths P1, P2, P3 from u to v and each of length at least two, such that the

sets V (P1) \ {u, v}, V (P2) \ {u, v}, V (P3) \ {u, v} are disjoint and have no edges

between them. The vertices u and v are the ends of the theta. A closed theta

is a graph obtained from a theta with ends u, v by adding the edge uv.

A graph is triangle-free if it contains no three-vertex clique. A wheel is a pair

(W, v) such that W is a cycle, and v is a vertex with at least three neighbours

in W 2.

Theorem 3. All thetas, triangle-free closed thetas, and triangle-free wheels are

HC-obstructions, and they are the only HC-obstructions which are triangle-free.

2. Split graphs

In this section we prove Theorem 2. The following is well-known (see, for

example, [6]):

2In a standard definition of a wheel, the cycle W is required to be of length at least four.

Note that this does not matter for our purposes as we are only concerned with triangle-free

wheels.
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Lemma 4. Let G be a graph and X ⊆ V (G). If G \ X has more than |X |

connected components, then G has no Hamiltonian cycle.

From this, we deduce:

Lemma 5. The snare and all n-novae for n ≥ 2 are 2-connected graphs with

no Hamiltonian cycle.

Proof. Clearly, these graphs are 2-connected. First, consider the snare. Suppose

it has a Hamiltonian cycle; then, a Hamiltonian path of a net can be obtained

by deleting one particular vertex of the snare. This is a contradiction. Next,

consider an n-nova for n ≥ 2. The graph is non-Hamiltonian, by Lemma 4 with

X = {v2i : i ∈ {1, . . . , n}}, where the vertex labels are as in the definition.

In view of Lemma 5, in order to prove Theorem 2, it is sufficient to prove:

Theorem 6. Let G be a 2-connected split graph with no induced subgraph iso-

morphic to the snare or an n-nova for n ≥ 2. Then G has a Hamiltonian

cycle.

Proof. Suppose for a contradiction that G has no Hamiltonian cycle. Let (S,K)

be a partition of V (G) such that S is a stable set, K is a clique, and subject to

this, |K| is maximized. Then S 6= ∅, because every 2-connected complete graph

has a Hamiltonian cycle.
(

Our choice of (S,K) ensures that for each vertex

s ∈ S, we have N(s) ( K; otherwise, if some vertex s0 ∈ S has N(s0) = K,

then (S \ {s0},K ∪ {s0}) is a partition of V (G) that contradicts our choice of

(S,K).
)

We first prove:

(1) There is a k ∈ K with |N(k) ∩ S| ≥ 3.

Suppose not; that is, suppose that each k ∈ K has at most 2 neighbours in

S. For every s ∈ S, let us pick two distinct edges e1(s) and e2(s) incident with

s, subject to the number of cycles in H = (V (G), {ei(s) : s ∈ S, i ∈ {1, 2}})

being as small as possible.
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If H has no cycles, then, since every vertex in H has degree at most two, H is

a disjoint union of a setK∗ ⊆ K of isolated vertices and of paths P1, . . . , Pt, each

containing at least one edge, with ends in K, and with S ⊆ V (P1)∪· · · ∪V (Pt).

Let P ∗ be a path containing all vertices of K∗ (possibly empty). Then, since all

non-empty paths among P1, . . . , Pt, P
∗ have ends in K (and thus are pairwise

adjacent), the concatenation of P1, . . . , Pt, P
∗ is a Hamiltonian cycle of G, a

contradiction.

Therefore, we may assume that H has a cycle. Since H is not a Hamiltonian

cycle of G, it follows that there is a cycle C in H such that V (C) 6= V (G). Since

every vertex in K has at most two neighbours in S, it follows that G[V (C)] is a

(|V (C)|/2)-sun and N(s) ∩ V (C) = ∅ for all s ∈ V (G) \ V (C); therefore, there

is a vertex k′ ∈ K \ V (C). If N(k′) ∩ V (C) ∩ S = ∅, then G[V (C) ∪ {k′}] is a

(|V (C)|/2)-nova, a contradiction. Now, let s ∈ N(k′) ∩ V (C) ∩ S, and consider

the graph H ′ = (V (G), (E(H)\{e1(s)})∪sk′) obtained by choosing sk′ as e1(s)

instead. Note that H ′[V (C)] is a path (obtained from C by removing the edge

e1(s)), and therefore H ′[V (C)∪ {k′}] is connected, contains sk′, and contains a

vertex of degree one (the end of e1(s) in K). Since all vertices of H ′ have degree

at most two, it follows that the component of H ′ containing sk′ is a path. This

contradicts our choice of H , since H ′ has fewer cycles than H , and (1) follows.

(2) If s, s′ ∈ S are distinct and |N(s) ∩N(s′)| ≥ 2, then N(s) ∪N(s′) = K.

Let k, k′ ∈ N(s) ∩ N(s′) be distinct; and suppose for a contradiction that

there is a vertex k′′ ∈ K \ (N(s) ∪N(s′)). Then G[{k, k′, k′′, s, s′}] is a 2-nova,

a contradiction. This proves (2).

(3) Let k ∈ K and let s1, s2, s3 ∈ S ∩N(k) be distinct. Then N(s1) ∩N(s2) ∩

N(s3) = {k} and N(si) ∪N(sj) = K for all distinct i, j ∈ {1, 2, 3}.

If there is a vertex k′ ∈ (N(s1)∩N(s2)∩N(s3))\{k}, then G[{k, k′, s1, s2, s3}]

is a 2-nova in G, a contradiction; this proves the first part of (3).

Since G is 2-connected, we may choose ki ∈ N(si) \ {k} for all i ∈ {1, 2, 3}.

Note that k1, k2, k3 need not be distinct. Since G[{k, k1, k2, k3, s1, s2, s3}] is
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not a snare, it follows that G contains an edge sikj for distinct i, j ∈ {1, 2, 3}.

By symmetry, we may assume that i = 2 and j = 1. By (2), it follows that

N(s1)∪N(s2) = K. By symmetry, we may assume that k3 ∈ N(s1), and so again

by (2), it follows that N(s1)∪N(s3) = K. If (N(s2)∩N(s3))\{k} 6= ∅, then (3)

follows from another application of (2). Now, assume that N(s2)∩N(s3) = {k}.

Since K \N(sj) ⊆ N(s1) for j = 2, 3, we have K \ (N(s2)∩N(s3)) = K \ {k} ⊆

N(s1). Therefore, N(s1) = K. This contradicts our choice of (S,K), and (3)

follows.

(4) |N(k) ∩ S| ≤ 3 for all k ∈ K.

Suppose not; let k ∈ K, and let s1, s2, s3, s4 in N(k) ∩ S be distinct. Let

k′ ∈ N(s4) \ {k}. Note that at least two of s1, s2, s3, say s1, s2, are adjacent

to k′, as otherwise there exist distinct i, j ∈ {1, 2, 3} with k′ 6∈ N(si) and

k′ 6∈ N(sj), and so N(si) ∪ N(sj) 6= K, a contradiction with (3). But then

{k, k′} ⊆ N(s1) ∩N(s2) ∩N(s4), which again violates (3). This proves (4).

Let k, s1, s2, s3 be as in (3). For i ∈ {1, 2, 3}, let Ki = K \N(si), and note

that Ki is non-empty since N(si) 6= K (by our choice of (S,K)). It follows that

Ki ⊆ N(sj) for all distinct i, j ∈ {1, 2, 3}, and that K = {k} ∪K1 ∪K2 ∪K3.

(5) |S| = 3.

Suppose that there is a vertex s4 ∈ S \ {s1, s2, s3}. If N(s4) ∩Ki contains

two distinct vertices k′, k′′ for some i ∈ {1, 2, 3}, then G[{k′, k′′} ∪ {sj : j ∈

{1, 2, 3, 4} \ {i}}] is a 2-nova, a contradiction.

Let k1, k2 be two distinct neighbours of s4; then k1, k2 6= k by (4), so we

may assume by symmetry that ki ∈ Ki for i = 1, 2. Now, let k3 ∈ K3. Since

G[{k1, k2, k3, s4, s3}] is not a 2-nova, it follows that s4 is adjacent to k3, and

therefore to every vertex in K3; and thus, by symmetry, to every vertex in

K1 ∪K2 ∪K3. This implies that |K1| = |K2| = |K3| = 1, since we proved that

s4 has at most one neighbour in each of these sets. Also, every vertex in K has

three neighbours in {s1, s2, s3, s4}, and so by (4), |S| = 4. Thus |V (G)| = 8
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and traversing the vertices in the order k, s1, k2, s3, k1, s4, k3, s2 is a Hamiltonian

cycle, a contradiction. This proves (5).

Now, let ki ∈ Ki for i ∈ {1, 2, 3}, and let P be a (possibly empty) path

containing all vertices of K \ {k, k1, k2, k3}. Then the concatenation of P and

the path k, s1, k2, s3, k1, s2, k3 is a Hamiltonian cycle of G. This concludes the

proof.

3. Triangle-free graphs

In this section, we prove Theorem 3.

Lemma 7. Thetas, closed thetas, and triangle-free wheels are 2-connected graphs

with no Hamiltonian cycle.

Proof. Again, 2-connectivity can be checked easily. Thetas and closed thetas

have no Hamiltonian cycles by Lemma 4, letting X be the set of the ends of the

(closed) theta. For a triangle-free wheel H = (W, v), note that every edge e of

W contains a vertex of degree two in H , and therefore every Hamiltonian cycle

of H contains e. It follows that every Hamiltonian cycle contains all edges of W ;

but these edges form a cycle that does not contain v, and hence no Hamiltonian

cycle exists.

We assume that the reader is familar with standard definitions for graph

minors and planar graphs. A model of graph H in graph G is a collection of

disjoint sets (Ah)h∈V (H) such that G[Ah] is connected for all h ∈ V (H), and for

every edge e = hh′ ∈ E(H), there is at least one edge between Ah and Ah′ in

G. We say that graph G contains H as a minor (or contains an H-minor) if

G contains a model of H . A graph is outerplanar if it has a planar embedding

with all vertices incident with the outer face.

Theorem 8 ([7]). A graph is outerplanar if and only if it has no K2,3-minor

and no K4-minor.

Lemma 9 ([7]). Every 2-connected outerplanar graph is Hamiltonian.
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In view of Lemma 7, in order to prove Theorem 3, it suffices to prove the

following.

Theorem 10. Let G be a triangle-free 2-connected graph with no induced sub-

graph that is isomorphic to a theta, a closed theta, or a wheel. Then G has a

Hamiltonian cycle.

Proof. We first prove:

(6) G has no K4-minor.

Suppose for a contradiction thatG contains a model ofK4 with setsA1, A2, A3, A4.

We first construct an induced cycle in G[A1 ∪ A2 ∪ A3] with at least one

vertex from each of A1, A2, A3. Let P be a shortest path in G[A1 ∪ A2] from

A1 ∩N(A3) to A2 ∩N(A3). Let x ∈ A1 and y ∈ A2 be the ends of P . Let Q

be a shortest path from N(x) ∩ A3 to N(y) ∩ A3. Clearly, each of P,Q is an

induced path of G. Moreover, from the choice of P , no vertex of P \ {x, y} has

a neighbour in V (Q) ⊆ A3, and from the choice of Q, each of x, y has a unique

neighbour in Q. Thus, C = G[V (P ) ∪ V (Q)] is an induced cycle.

If there is a vertex in G \ C that has at least two neighbours in C, then G

contains a theta or a triangle-free wheel, a contradiction.

Now, let x ∈ A4. Let Pi be a shortest path in G[Ai∪A4] from x to V (C) for

i ∈ {1, 2, 3}. For i ∈ {1, 2, 3}, let yi ∈ V (Pi) ∩ V (C). Since G is triangle-free,

not all of y1, y2, y3 are pairwise adjacent; by symmetry, say y1 and y2 are non-

adjacent. Then G[V (P1) ∪ V (P2)] contains a path between two non-adjacent

vertices of C; we let R be a minimum-length path such that the ends a and b of

R are non-adjacent vertices of C, and V (R) \ {a, b} ⊆ V (G) \ V (C). Let a′, b′

be the neighbours of a and b in R, respectively. If no vertex in V (R) \ {a, b}

has a neighbour in V (C) \ {a, b}, then the graph G[V (R) ∪ V (C)] is a theta, a

contradiction.

Let w ∈ V (C) \ {a, b} be a vertex that has a neighbour y in V (R) \ {a, b}.

Then, y ∈ V (R) \ {a, b, a′, b′}, because a′, respectively, b′ cannot have two (or

more) neighbours in C. Therefore, from the choice of R, it follows that w is
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adjacent to both a and b. If there is a vertex z in V (C) \ {a, b, w} such that

z has a neighbour y′ in V (R) \ {a, b}, then again z is adjacent to both a and

b, and therefore non-adjacent to w. But now the path obtained from z, y′, the

subpath of R from y′ to y, y, w is shorter than R, contradicting the choice of R.

Hence, there are no edges between V (R) \ {a, b} and V (C) \ {a, b, w}.

It follows that C′ = G[(V (C) ∪ V (R)) \ {w}] is an induced cycle, and x

has at least three neighbours in it, namely, a, b, y; thus, G contains an induced

triangle-free wheel, a contradiction. This proves (6).

(7) G has no K2,3-minor.

Suppose that G has a K2,3-minor. It follows that G contains a subdivision

of K2,3 as a (not necessarily induced) subgraph. Choose such a subgraph H

with as few vertices as possible, and let u and v be the two vertices of degree

three in H . Let the three paths between u and v be P1, P2, P3.

Note that each of the paths P1, P2, P3 is induced in G except for possibly the

edge uv, otherwise, we can replace it with a shorter path. Since G has no K4-

minor by (6), it follows that there are no edges between V (P1) \ {u, v}, V (P2) \

{u, v} and V (P3) \ {u, v}.

If uv is an edge, then G[V (H)] is a closed theta. If not, then G[V (H)] is a

theta. This is a contradiction, and proves (7).

By (6), (7), and Theorem 8, it follows that G is outerplanar. Now, the result

follows from Lemma 9.
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