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Abstract 

High frame rate ultrasound (HiFRUS) is an imaging paradigm that utilizes unfocused transmissions to 

perform acquisitions at kilohertz frame rates, and its high temporal resolution enables its use in tracking 

dynamic physiological events. Integration of HiFRUS techniques into compact ultrasound scanners 

could enable use of the paradigm in more remote and austere healthcare settings. While desirable, the 

high data rates and dedicated receiver electronics required for HiFRUS acquisitions make their 

implementation on compact systems difficult. Reduction of the number of receiving channels in a 

HiFRUS system can alleviate constraints related to data rate and receiver electronics, however, this 

reduction either limits the field of view of an ultrasound system or it leaves the system prone to spatial 

aliasing artifacts. To enable systems to operate with a reduced set of receiving channels, radiofrequency 

(RF) channel recovery frameworks have been proposed. While initial feasibility has been demonstrated 

for recovery of half of a system’s receiving channels, higher degrees of recovery have minimal 

demonstrated viability. Higher degrees of recovery would allow for additional reduction in a system’s 

receiving channels, enabling HiFRUS principles to be applied in systems with more appreciable 

reductions in cost and form factor. 

The goal of this thesis is to devise a receiver channel recovery framework that is generalizable to 

multiple levels of channel-wise downsampling, and to evaluate its ability to recover RF channels after 

downsampling degrees of 2-times and higher. To facilitate channel recovery at multiple rates, novel 

branching encoder-decoder convolutional neural networks (CNNs) were developed. These CNNs were 

trained to recover omitted RF channels from angled plane wave acquisitions after channel-wise 

downsampling rates of 2-times, 3-times, and 4-times. To evaluate the utility of the trained CNNs, 

recovered RF data was used for ultrasound image formation using delay-and-sum beamforming, and 

for coherent compounding of beamformed images. When the trained recovery frameworks were applied 

to downsampled acquisitions of an in vitro point target, in vivo carotids, and an in vivo quadriceps 

muscle, inclusion of CNN-inferred RF data removed spatial aliasing artifacts from the beamformed 

images, recovering their underlying structure.  

The proposed framework may be used to enable HiFRUS techniques on more compact and 

inexpensive systems. This can help extend the reach of HiFRUS, bringing technology that utilizes this 

paradigm into the hands of more users. Additionally, insights presented in this work can also be used 
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to guide further innovation, such as extension of channel recovery to 3D ultrasound or alternative 

transmissions schemes.  
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Chapter 1 
Introduction 

1.1 Channel Recovery in Compact High Frame Rate Ultrasound Systems 

Ultrasound is currently undergoing innovation drives towards both 1) high frame rate ultrasound 

(HiFRUS) and 2) more compact and inexpensive scanners (Lanza, 2020). The HiFRUS paradigm 

allows acquisitions to be taken with sub-millisecond time resolution, enabling tracking of dynamic 

events in the human body. Meanwhile, the reduction in size and cost of ultrasound scanners allows 

them to be more accessible in remote and austere healthcare settings (Nelson & Sanghvi, 2016; Sippel, 

et al., 2011).  

Implementation of HiFRUS techniques into compact scanners could extend the reach of the HiFRUS 

paradigm throughout the worldwide healthcare system; however, this integration is complicated by the 

large radiofrequency (RF) data volumes received during HiFRUS acquisitions. HiFRUS data rates can 

exceed 10GB/s, requiring high bandwidth connections for data transfer from system front-end to back-

end. Furthermore, the electronics required to sample RF data on a full set of receiving channels during 

a HiFRUS acquisition increases the form factor and complexity of these systems. Both of these 

complications can be alleviated by reducing the number of receiving channels in a HiFRUS system, 

however, this channel reduction will either limit the field of view (FOV) of a system or introduce spatial 

aliasing artifacts due to an increased pitch between receiving channels/elements.   

Direct receiver channel recovery can improve HiFRUS image quality when reduced receiver channel 

counts are used, while enabling a system to utilize lower data transfer rates and less receiving 

electronics. This recovery of received RF channels has been explored for HiFRUS acquisitions using 

compressed sensing recovery techniques (Ramkumar & Thittai, 2020; Anand & Thittai, 2021) and deep 

learning models (Xiao et al., 2022; Kumar et al., 2020). The initial feasibility demonstrated by these 

works showcase direct RF recovery as a promising tool to enable compact HiFRUS systems with low 

receiver channel counts.  

1.2 Outline of Thesis Study 

1.2.1 Motivation and Hypothesis 

Given the advantages associated with receiver channel reduction (described further in section 2.3.2.1), 

it is of practical interest to reduce a HiFRUS system’s receiving channel count by large degrees, 
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provided that the related performance tradeoffs (described further in section 2.3.2.2) can be mitigated. 

While higher degrees of receiver channel reduction translate to more appreciable improvements in 

system portability, bandwidth, and cost, there is limited demonstrated feasibility for receiver channel 

recovery after large degrees of channel-wise downsampling. Compressed sensing techniques show in 

vitro image degradation when inferring RF channels beyond a factor of 2-times (2X; Ramkumar & 

Thittai, 2020), and no in vivo feasibility has been demonstrated for higher degrees of channel-wise 

downsampling. Additionally, deep learning techniques have no displayed feasibility for HiFRUS RF 

channel recovery degrees beyond 2X, and currently explored deep learning frameworks (Xiao et al., 

2022; Kumar et al., 2020) would require architecture changes to facilitate higher degrees of RF 

recovery. As such, there is a need for additional innovation in RF channel recovery to enable its 

implementation in systems with appreciable reduction in channel count. To drive this innovation, we 

plan to develop a novel inference framework that can infer missing RF data after various degrees of 

channel-wise downsampling. We hypothesize that similarities in the time-delayed reflections that each 

channel receives can be used to infer missing channel data, even when the subset of available RF data 

is smaller than ½ of the available channels. Accordingly, we posit that branching encoder-decoder 

CNNs can be used to perform this inference using deep learning principles; an encoder can learn 

compressed features from a received subset of RF channels, and branched decoders can use the 

compressed features to efficiently recover missing RF channels after multiple degrees of 

downsampling. 

1.2.2 Research Objectives 

The overall goal of this research work is to develop a framework that can recover missing RF channel 

data from uniformly downsampled subsets of channels. Specifically, this work aims to accomplish the 

following research objectives:  

1) Develop a deep-learning-based framework that can recover RF channel data from plane wave 

acquisitions that have been downsampled by degrees of 2X, 3X, and 4X. 

2) Evaluate the practical effectiveness of the framework by using recovered in vitro and in vivo 

RF data for ultrasound imaging, specifically delay-and-sum (DAS) beamforming and 

coherent plane wave compounding. 

DAS beamforming and coherent plane wave compounding are two fundamental techniques used to 

produce HiFRUS images (to be described in sections 2.2.4 and 2.2.5). Therefore, an evaluation of the 
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effectiveness of inferred RF data for these operations can provide insight on the utility of the recovery 

framework in a compact HiFRUS system.  

1.2.3 Thesis Organization 

The remainder of this thesis is organized as follows:  

• Chapter 2 provides relevant background on HiFRUS receiver channel reduction and machine 

learning fundamentals. 

• Chapter 3 describes how the proposed RF channel recovery framework was developed, trained, 

and evaluated. 

• Chapter 4 outlines the in vitro and in vivo experimental results from the recovery framework’s 

evaluation. 

• Chapter 5 interprets the results presented in chapter 4, and discusses advantages, limitations, 

and future directions for the RF channel recovery framework.   
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Chapter 2 
Background: High Frame Rate Ultrasound Receiver Channel 

Reduction and Machine Learning Fundamentals 

2.1 Chapter Overview 

The purpose of this chapter is to provide background describing 1) how receiver channel recovery can 

be used to enable compact HiFRUS systems and 2) the machine learning principles that were used to 

develop the proposed recovery framework. First, the principles of HiFRUS operation and its advantages 

and benefits are described. Second, the components of an ultrasound system and the difficulties in 

downsizing HiFRUS systems are outlined; this is accompanied by an explanation of how receiver 

channel reduction can alleviate these difficulties, along with its associated challenges. Third, a literature 

review is provided on current techniques that can enable channel-wise downsampled ultrasound 

systems, along with a description of their limitations. The chapter is concluded with an explanation of 

the machine learning and convolutional neural network (CNN) fundamentals that the proposed recovery 

framework is built upon. 

2.2 High Frame Rate Ultrasound Overview  

2.2.1 High Frame Rate Ultrasound Advantages and Applications 

HiFRUS operation is characterized by an unfocused transmission scheme, which allows acquisitions to 

be performed at frame rates as high as 10,000Hz. These kilohertz frame rates allow the monitoring of 

dynamic events that occur in the human body on a millisecond or sub-millisecond time scale; for 

example, the high temporal resolution provided by HiFRUS enables tracking of physiological processes 

such as arterial pulse waves (Couade et. al, 2011), heart contraction dynamics (Cikes et al., 2014), 

complex blood flow dynamics (Bercoff et. al, 2011; Yiu & Yu, 2016), and shear waves that propagate 

through body tissues (Montaldo et al., 2009). Tracking these physiological processes provides valuable 

information that can be used for medical diagnosis, prevention, and monitoring (Tanter & Fink, 2014). 

The following subsections describe the physical principles that enable HiFRUS to perform such 

acquisitions with high temporal resolution. First, a general introduction to ultrasound physics and image 

formation is provided, and then the HiFRUS paradigm is introduced. 
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2.2.2 Ultrasound Pulse Echo Sensing Principle 

Generally, ultrasound systems operate according to a pulse-echo sensing principle. First, a transducer, 

typically made up of piezoelectric elements, is excited to insonify an imaging medium with pulses of 

ultrasonic waves. As the transmit wave propagates through the imaging medium, echoes are produced 

by reflection and backscattering events (described in section 2.2.3). These echoes are then returned to 

the transducer to be received on each of its individual elements. Received echoes are then converted to 

RF voltage signals with an analog-to-digital converter (ADC) and sampled on the ultrasound device’s 

receiving channels. Once the data has been received and sampled, time of flight (ToF) principles can 

be used to determine the location of the medium’s echoes, forming an ultrasound image through a 

process known as beamforming (described in section 2.2.4).  

2.2.3 Echo Production: Reflection and Scattering 

When an ultrasound wave that has been transmitted from a transducer encounters structures in the 

imaging medium, echoes produced by reflection and backscattering events are returned to the 

ultrasound probe. Reflection occurs when an ultrasound wave that is travelling through a region with a 

specific acoustic impedance encounters another region with a different acoustic impedance; this results 

in the reflection of a portion of the incident ultrasound wave (Humphrey, 2007). The degree of the 

signal that is reflected depends on the mismatch in impedances, with larger differences resulting in 

more reflection. Instances of reflection occur when the structure encountered is relatively large 

compared to the ultrasound wavelength. Conversely, when the structure is not large relative to the 

transmit wavelength, a portion of the incident ultrasound wave can scatter in multiple directions, with 

some signal returning towards the ultrasound probe (Powles et al., 2018).  

2.2.4 Ultrasound Receive Beamforming  

Ultrasound image formation is typically performed through a process called delay-and-sum (DAS) 

beamforming, as described in Figure 2.1. Given an excited scatterer positioned at point P in an imaging 

medium (shown in Figure 2.1 (a)), different channels in an ultrasound array should receive an echo 

signal from the scatterer, albeit at different times. To determine the delay that is experienced before the 

echo signals reach each element, ToF principles can be used. That is, using the distance di between 

point P and an element in question, the ToF for an echo to reach the i’th element is 
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𝑡𝑡𝑖𝑖 = 𝑑𝑑𝑖𝑖 𝑐𝑐0�  (2.1) 

 

where c0 is the speed of sound in the medium and it is usually assumed to be 1540m/s while imaging 

tissue. This delay can be added to the time that it should take before a transmit wave would arrive at 

point P (which can be calculated with similar principles based on one’s transmission scheme); summing 

these two values yields the total delay Ti needed to find samples that correspond to point P’s reflections.  

Once all the delays for each channel have been calculated, the corresponding samples can then be 

summed, as shown in Figure 2.1 (b). Prior to summation, the raw RF signals are converted to analytic 

form through a process such as the Hilbert transform (Perrot et al., 2021). The corresponding analytic 

 

 
Figure 2.1.  Delay and Sum beamforming process. (a) Delay: Shows the process of receiving ultrasound echoes 
and selecting samples for a given point based on ToF principles. (b) Sum: summation of selected samples to 
determine an imaging point’s amplitude.  
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samples for a given position can then be summed in the complex domain. The amplitude of the resulting 

complex signal is then taken to give the ultrasound image value for location P. Lastly, these image 

values are typically logarithmically scaled to compress the image’s overall dynamic range.  This 

process can be repeated for each pixel location in an imaging medium to form an ultrasound brightness-

mode (B-mode) image.  

2.2.5 High Frame Rate Ultrasound Acquisition Scheme 

Traditional ultrasound and HiFRUS acquisition schemes both operate using pulse-echo sensing and 

beamforming, but their main difference is in the transmission and receiving schemes performed during 

an acquisition. These differences are highlighted in Figure 2.2, where (a) shows the traditional focused 

scan-line imaging scheme, and (b) shows an unfocused HiFRUS imaging scheme. In the traditional 

imaging scheme, focused beams are used to insonify specific regions of the imaging medium, and 

echoes from this region are DAS beamformed into a line of image data. This forms one scanline of an 

image, and this process is repeated Nscan times to form Nscan scanlines that make up the final ultrasound 

 

 
Figure 2.2.  Ultrasound (a) focused and (b) unfocused imaging scenarios.  
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image. Conversely, for HiFRUS acquisitions, the entire imaging medium is insonified with a single 

unfocused transmission. All the scanlines in the image are then beamformed together using reflections 

from the individual transmission. By enabling ultrasound image formation from a single transmission, 

the frame rate of an ultrasound system can be significantly increased; typical frame rates for scanline-

based imaging range are ~25Hz whereas HiFRUS can achieve rates as high as 10,000Hz. To achieve 

unfocused transmissions, plane wave (Montaldo et al., 2009) or diverging wave (Jensen et al., 2006) 

transmission schemes can be used, where Figure 2.2 (b) shows a plane wave transmission propagating 

through the medium.  

2.2.5.1 HiFRUS Image Compounding 

While the unfocused nature of HiFRUS enables a much higher frame rate to be achieved, the lack of 

transmission focus results in contrast and resolution degradation in beamformed images. To mitigate 

 

 
Figure 2.3.  Plane wave image compounding process. Beamformed images from multiple steered plane waves are 
added together to form a higher quality compounded image.  
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this loss in image quality, coherent compounding of multiple HiFRUS images can be used (Montaldo 

et al., 2009). As shown in Figure 2.3, image compounding is achieved by adding together the analytic 

beamformed (pre-envelope) images from multiple unfocused transmissions. For plane wave imaging, 

the set of images can be from multiple transmit steering angles. The compounding of multiple lower-

quality images results in a higher quality final image, at the cost of a lower frame rate. Despite the 

reduction in frame rate, compounding HiFRUS images can still result in high quality images formed at 

frame rates above 1000Hz, significantly surpassing frame rates achieved with traditional scanline-based 

imaging.  

2.3 Integrating High Frame Rate Ultrasound into Compact Ultrasound Systems 

Advances in transducer manufacturing, transmit/receive circuitry, and signal processing algorithms 

have paved the way for the development of more inexpensive and compact ultrasound scanners (Baran 

& Webster, 2009). This has led to increased uptake of ultrasound not only within hospital settings, but 

also in prehospital, austere, and remote environments (Nelson & Sanghvi, 2016; Sippel et al., 2011). A 

successful integration of HiFRUS techniques into compact ultrasound scanners should result in a 

broader reach of new HiFRUS applications within the worldwide healthcare system. This section 

outlines the specific difficulties involved in integrating HiFRUS into more compact scanners and 

discusses how receiver channel reduction is a possible solution. This is followed by a description of the 

challenges associated with receiver channel reduction.  

2.3.1 Ultrasound System Hardware Overview and HiFRUS System Constraints 

An ultrasound system needs to be capable of the following operations: 1) generating transmission 

events to insonify a medium, 2) receiving and sampling RF echoes from the medium, 3) subsequently 

processing received/sampled RF echoes, and 4) displaying system outputs to the operator in real time. 

In this thesis, the focus will be on ultrasound scanners that perform the RF processing in a software-

based system back-end. Providing raw received RF channel data to a back-end processing unit provides 

a system with the flexibility to implement numerous different ultrasound techniques that require raw 

channel data as inputs (Boni et al., 2018; Van Sloun et al., 2020). The components required in these 

software-based ultrasound scanners are displayed in Figure 2.4 and described in the following 

subsection.  
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2.3.1.1 Software-Based Ultrasound Scanner System Overview 

The back end of an ultrasound system interacts with the transducer for transmission and receiving 

events, each having its own dedicated electronics (Boni, Yu, Freear, Jensen & Tortoli, 2018). For 

transmissions, a field programmable gate array (FPGA) controls the transmission sequence, and the 

FPGA’s output signals are amplified and sent to the transducer to insonify the medium. Following a 

transmission, switches are first used to connect receiving electronics to the transducer. Next, echo 

signals from the imaging medium are amplified and sampled by digital acquisition (DAQ) units, where 

 

 
Figure 2.4.  Components of a software-based ultrasound scanner. Transmission and receiving events each have 
their own dedicated electronics, and they both interact with the system back-end. Adapted from Fig. 2 in (Boni et 
al., 2018) under CC 4.0. 
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low noise amplifiers (LNAs) and ADCs are often employed to execute this stage. After being processed 

by a memory buffer and a data packet controller FPGA, the received RF channel data is sent to the 

system back-end through a high-bandwidth data streaming connection. Once transferred to the system 

back-end, RF processing such as DAS beamforming may be performed by central processing units 

(CPUs) and graphical processing units (GPUs).  

2.3.1.2 System Constraints Imposed by HiFRUS 

The acquisition scheme performed during HiFRUS places a burden on a system’s electronics and makes 

it difficult to implement this paradigm in compact systems. The difficulties associated with HiFRUS 

are highlighted in red in the system diagram of Figure 2.4. First, receiving RF signals on each 

element/channel at very high pulse repetition frequencies (PRFs) results in a large amount of data being 

produced during imaging. HiFRUS data rates can reach ~75MB/s for a single channel (or almost 

10GB/s in a 128-channel system), requiring very high bandwidth data links between a system’s front-

end and back-end (Boni et al., 2018). Secondly, the requirement to receive RF data on each 

element/channel on each HiFRUS acquisition imposes the need for dedicated receiving electronics for 

the full set of elements/channels. These constraints that are imposed by the HiFRUS paradigm serve as 

an obstacle when trying to reduce size and cost in an ultrasound system.  

2.3.2 Receiver Channel Reduction: A Means of Reducing System Complexity 

2.3.2.1 Advantages of Receiver Channel Reduction 

To decrease system complexity and to alleviate data transfer bandwidth requirements, an attractive 

option is to decrease the number of receiving channels in a system. As channels are decreased, fewer 

receiving electronics are required, allowing a smaller system form factor. Additionally, the total volume 

of received RF data is decreased when less channels receive data, allowing for less taxing data transfer 

bandwidth requirements. Higher degrees of system simplification can be achieved as more receiver 

channels are removed, since fewer receiving electronics are required, and lower volumes of data are 

produced with each acquisition. As shown in Figure 2.5, a tangible reduction in form factor can be 

observed in the US4R-Lite system (us4us Ltd., Warsaw, Poland), which contains 4X less receiving 

(and transmitting) channels compared to its less compact counterpart, the US4R (us4us Ltd., Warsaw, 

Poland). This channel reduction results in a compact system with 32 receiving channels and 128 

transmitting channels. The simplified US4R-Lite has an associated ~4X reduction in total volume 
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(4160cm3 vs. 17550cm3) that is coupled with a 4X reduction in required data bandwidth when 

transferring received RF data to a system back-end.  

2.3.2.2 Difficulties Associated with Receiver Channel Reduction 

While receiver channel reduction is an easily implementable method of reducing ultrasound system 

complexity, there are associated performance tradeoffs. Given a fixed pitch between receiving 

elements/channels, enough channels need to receive RF data to cover the desired imaging FOV. If the 

FOV of a system is to be preserved, this means that the pitch between receiving elements must be 

increased. Systems that have a large pitch relative to their transmit wavelength are susceptible to spatial 

aliasing artifacts that obscure beamformed images. An example of spatial aliasing is given in Figure 

2.6 (a) and (b), where a simulated (Jensen, 1996; Jensen & Svendsen, 1992) point target image is 

obscured with artifacts when only the even numbered channels are used to receive data. The spatial 

aliasing phenomenon is one of the main obstacles that must be overcome when designing low channel 

count systems, and its origin will be explained in the following subsection. 

2.3.2.3 Spatial Aliasing 

Spatial aliasing is a consequence of the pulse-echo nature of ultrasound imaging, since echoes from one 

location can contribute to the RF samples taken while beamforming another location. The potential for 

echo ambiguity is illustrated in Figure 2.6, where received RF channels that contain echoes from the 

 
Figure 2.5.  Size comparison between the US4R-Lite and US4R ultrasound systems.   
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point target shown in (a) are placed into the columns of an image (referred to as an RF image) in (c). 

When arranged in the RF image form, echoes from the point target manifest themselves in a hyperbola 

along the received channels. To beamform pixel locations 1 and 2 in (b), the samples that are selected 

based on ToF principles are highlighted as yellow points in the RF image of (c). As emphasized in the 

red box in (c), the samples that are beamformed for locations 1 and 2 both contain echoes from the 

point target hyperbola. It is desired to sum these echo signals for location 1, as it is the true location of 

the point target. Conversely, location 2 does not contain any object, and it is not desired for these 

samples to coherently sum. Despite this, it is apparent in (b) that when only the even channels are used 

on receive there is some coherence in the summation, as an artifact appears in the beamformed image.  
 

 
Figure 2.6.  Spatial aliasing artifact explanation. (a) Beamformed point target with all channels receiving RF data. 
(b) Aliased point target image when only even channels are receiving. Point target and aliased points of interest 
highlighted in yellow. (c) Corresponding RF image for the beamformed point target. Samples beamformed for 
the points of interest in (b) are highlighted in yellow. Samples in the red box are examined more closely in (d)-
(g). (d) Beamformed samples for point 1 in (b), (e) corresponding analytic samples. (f) beamformed samples for 
point 2 in (b), (g) corresponding analytic samples. 
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When RF echoes are received at an inadequate spatial sampling rate, they can incorrectly appear to 

be coming from multiple locations in the imaging medium. For the beamformed samples in Figure 2.6 

(c), the red-boxed samples are further examined in (d)-(g): (d) and (f) show a close-up of the RF samples 

beamformed for locations 1 and 2, respectively; and (e) and (g) display the corresponding analytic 

signals plotted on the complex plane. For location 1, when samples are removed from the beamforming 

summation (due to removal of channels), the analytic sum will still be coherent, albeit at a lower 

resulting amplitude. Conversely, for location 2 the coherence of the analytic summation is dependent 

on the samples/channels used. Shown in (f) and (g), omission of either odd or even channels will result 

in a partially coherent summation, causing an aliasing artifact to appear in the beamformed image. Due 

to the insufficient spatial sampling rate taken on receive, it incorrectly appears that there is a reflector 

originating at location 2. This spatial aliasing phenomenon may occur at multiple points in an image 

when an insufficient channel pitch is used for beamforming, resulting in the aliased clouds in Figure 

2.6 (b). Additionally, as more receiving channels are removed, the spatial aliasing phenomenon will 

worsen, as is shown in Figure 2.7. As the pitch of the receiving array expands further beyond the 

transmit aperture’s fundamental wavelength λ, the spatial aliasing artifacts become more prominent in 

the beamformed image. It should be emphasized that a more echogenic reflector will result in a more 

prominent spatial aliasing artifact, since higher amplitude samples will coherently sum at the artifact 

 
Figure 2.7.  Worsening spatial aliasing artifacts as a linear array’s receiving pitch is increased. (a) All channels 
receiving, λ pitch. (b) 1/2 channels receiving, 2λ pitch. (c) 1/3 channels receiving, 3λ pitch. (d) 1/4 channels 
receiving, 4λ pitch.  
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location. Consequently, the most obstructive aliasing artifacts in an imaging medium will tend to be 

caused by insufficient sampling of the medium’s most echogenic reflections.  

2.4 Current Research to Enable Low Channel Count HiFRUS Systems 

To improve HiFRUS system performance while enabling a lower receiving channel count, several 

techniques are available. As a hardware-based approach, channel multiplexing can be used to gradually 

receive a full set of channel data over successive transmissions (Yu et al., 2020; Carpenter et al., 2016). 

This method effectively simplifies a system’s electronics; however, it requires multiple transmissions 

to receive a full set of RF data. This reduces a system’s effective frame rate and leaves a system 

vulnerable to motion artifacts caused by object movement between successive transmissions. 

Alternatively, microbeamforming can be performed at the probe’s head and grouped data from multiple 

elements can be transferred together on one channel (Larson, 1993). This method can alleviate the data-

transfer bandwidth imposed by HiFRUS, but it requires additional electronics in the ultrasound probe’s 

head, and the partially beamformed RF data allows less flexibility for subsequent RF processing. Lastly, 

sparse arrays with optimized layouts can be used to minimize spatial aliasing artifacts in beamformed 

images (Lockwood et al., 1996). This method can be used to reduce the spatial aliasing artifacts present 

in beamformed images, but it comes with the cost of increased sidelobe amplitude in beamformed 

images (Diarra et al., 2013).  

To enable low-receiver-count HiFRUS systems without requiring substantial hardware 

modifications, software-based approaches have been explored. Specialized beamformers have been 

proposed to directly recover ultrasound images from subsampled RF channels: compressed sensing 

techniques (Donoho, 2006) have been used to directly recover ultrasound images from subsets of 

channels (Besson et al., 2016; David et al., 2015); deep learning techniques can be used to learn optimal 

channel subsampling schemes and a corresponding direct recovery scheme for ultrasound B-mode or 

doppler images (Hujiben et al., 2020); and a specialized convolution-based nonlinear beamformer has 

been developed to improve ultrasound image quality when a subset of channels are used for image 

formation (Cohen & Eldar, 2018). Additionally, post-beamforming deep learning methods can be 

utilized to suppress spatial aliasing artifacts in ultrasound images (Perdios et al., 2020). While all these 

techniques can improve beamformed image quality while operating with a reduced channel count, they 

all bypass the recovery of a full set of RF channel data for a given transmission. This omission of RF 

channel recovery restricts a system’s ability to implement signal processing techniques that require 
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access to a full set of RF data for a given frame. This includes methods for speed of sound mapping 

(Feigin et al., 2020) and image segmentation (Nair et al., 2020), as well as any specialized beamforming 

algorithms (Synnevåg et al., 2009; Matrone et al., 2015; Cheng & Lu, 2006; Garcia et al., 2013). An 

alternative approach to enable low-receiver-count HiFRUS systems is to directly recover a full set of 

RF data from a subset of channels. This approach gives a higher degree of flexibility in a system for 

subsequent image formation and RF analysis.  

2.5 Machine Learning and CNN Fundamentals 

To achieve RF recovery from multiple levels of downsampling, a CNN-based model was developed 

(described in chapter 3). This subsection describes the machine learning and CNN fundamentals that 

the RF recovery framework is built upon.  

2.5.1  Supervised Learning Overview 

The basic idea behind supervised learning is that by feeding a machine learning model with examples 

that have known inputs and outputs, that model can be trained to learn the underlying function 

describing the relationship between the provided inputs and outputs. If the model can successfully learn 

the underlying function that describes that data, then new examples with unknown outputs can be fed 

into the machine learning model and it should correctly predict the example’s outputs. This supervised 

learning process is outlined in Figure 2.8. Training is facilitated by calculating a loss that takes the 

machine learning model output and the correct training example output as inputs. The machine learning 

model parameters are modified to try and minimize the loss calculations as examples are passed into 

the model. Once suitable parameters have been found, the trained model can be used to predict the 

output from additional inputs that do not have known outputs.  

 When determining what type of model to use for a machine learning problem, the inputs that will be 

fed into the model need to be considered. With traditional machine learning models, inputs are often 

manually produced/handcrafted features. This is compared to deep learning approaches that, due to 

their higher complexity, can learn abstract features from the raw data itself (Dargan et al., 2019). To 

enable inputs of raw received RF data into a recovery framework, a deep learning approach was taken 

in this research work.  
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2.5.2 CNN Overview 

CNNs are a type of deep learning model that is inspired by the visual perception of animals (Gu et al., 

2018). In CNNs, collections of neurons perform operations on local groups of data from a larger gridded 

input, and each local operation’s output is placed on a grid to be fed into another collection of neurons. 

This subsection details the different components and operations that are used to build up a CNN.  

2.5.2.1 Neurons 

The most basic component of a CNN model is a single neuron. As shown in Figure 2.9, neurons perform 

multiplication, addition, and activation operations. When a set of inputs (x1, x2, … xk) are fed into a 

single neuron, each input is multiplied by a unique weight (w1, w2, … wk). Each of these products is 

then summed together along with an additional bias term b. The sum of these terms is then fed into an 

activation function σ, which gives the neural network’s output a. The activation function is often used 

to introduce nonlinearity into the machine learning model, allowing it to approximate more complex 

functions. 1D examples of commonly used activation functions are given in Figure 2.10. The overall 

operation of a neuron that is shown in Figure 2.9 can be summarized by the following equation:  

 
Figure 2.8.  Supervised learning outline. (a) outlines training of a machine learning model. Examples with known 
outputs are given to a model, and parameters are updated based on a loss function. (b) trained models predict 
outputs from examples where the output is unknown. 
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𝑎𝑎 =  𝜎𝜎��[𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖] + 𝑏𝑏
𝑘𝑘

𝑖𝑖=1

� (2.2) 

 

Adjusting the weights or bias of a neuron scales or shifts the inputs to its activation function. The goal 

when training a neural network is to find the optimal weights and biases that result in accurate 

predictions at the output of the network.  

 

 

 
Figure 2.9.  Overview of a single neuron. Inputs are multiplied by unique weights and then summed. The 
summation output is lastly passed into an activation function. 
 

 
Figure 2.10.  Common activation functions used at the output of a neuron. 
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2.5.2.2 Convolutional Neurons 

In a traditional fully connected neural network, all terms of a particular input are simultaneously fed 

into a neuron to produce a single output. This scenario is shown in Figure 2.11 (a), where each input of 

a 5×5 image is fed into a neuron to be multiplied by a unique weight. This arrangement is suitable when 

there are a low number of inputs, but when inputs are scaled up it becomes difficult to implement. For 

example, if a 512×512 image was to be fed into a single fully connected neuron, this would require the 

neuron to contain 512×512 = 262144 individual weights. Typical neural networks have multiple layers 

that contain several neurons, and this can quickly result in an unmanageable number of parameters that 

need to be optimized during training.   

To decrease the number of parameters in a neural network when the size of an input is large, CNNs 

can be used. The basic building block of a CNN is still a neuron, but the way the neuron processes 

inputs becomes different. The method that CNNs use for processing inputs is shown in Figure 2.11 (b), 

where local groups of inputs are individually processed, and a matrix of outputs are given instead of a 

single output. This matrix of activated outputs holds the local features extracted from the neuron input, 

and it is often referred to as a feature map. It is important to note that the weights used for each operation 

in (b) do not change and they are kept in the same orientation; this allows the neuron to contain only 4 

unique weights. Processing inputs in this way allows substantial reduction in the number of parameters 

required in a network. Additionally, processing local patches of an input allows a CNN to learn features 

that may be present in multiple locations of an input (Albawi et al., 2017).  

It can be observed that this alternative method of processing inputs is equivalent to orienting the 

weights of the neuron into a 2-dimensional (2D) filter, performing a 2D cross-correlation of the input 

with the filter, adding a bias, and passing each output through an activation function. This interpretation 

of the operation is given in Figure 2.11 (c), where the cross-correlation with the filter is used to express 

the same operation as is shown in (b). This overall cross-correlation operation can be described by the 

following equation:  

 

𝑎𝑎𝑖𝑖𝑖𝑖 = 𝜎𝜎��� ��𝑤𝑤𝑓𝑓𝑓𝑓𝑥𝑥(𝑖𝑖+𝑓𝑓)(𝑗𝑗+𝑔𝑔)�� + 𝑏𝑏
𝐹𝐹𝑤𝑤

𝑔𝑔=1

𝐹𝐹ℎ

𝑓𝑓=1

� (2.3) 
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Figure 2.11.  Comparison between a fully connected and a convolutional neuron. (a) fully connected neuron 
scenario. Each input of an image is given to a neuron, requiring a unique weight for multiplication with each 
input. (b) Convolutional neuron scenario. Patches of an input image are processed by the same set of weights, 
resulting in a feature map of activated outputs. (c) Convolutional filter interpretation of the scenario presented in 
(b). Neuron weights are arranged in a 2D filter, and 2D cross correlation is performed on the input. A bias is then 
added, and outputs are passed through an activation function. 
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where Fh and Fw are the height and width of the filter, respectively. The double sum operation in the 

center of equation 2.3 is equivalent to a Frobenius inner product (denoted by “:”) between the input 

patch and the filter, resulting in the following expression: 

 

𝑎𝑎𝑖𝑖𝑖𝑖 = 𝜎𝜎��𝑊𝑊:𝑋𝑋𝑖𝑖𝑖𝑖� + 𝑏𝑏� (2.4) 
 

where W corresponds to the 2D weight filter being used for the cross-correlation, and Xij corresponds 

to the 2D image patch that provides output aij. This operation is repeated until each patch of the inputs 

are processed. It should be noted that the cross-correlation operation can be replaced by a convolution 

if the weights in the filter are flipped prior to processing. This is not necessarily performed in practice, 

but conventionally the operation described in Figure 2.11 (b) and (c) is referred to as a convolution 

(Goodfellow et al., 2016). Following this convention, this operation will be referred to as a convolution 

in this work as well.  

2.5.2.3 Specialized Convolutional Operations 

Modifications can be made to the basic convolutional operation to alter its provided outputs. The 

modifications that are utilized in this work are shown in Figure 2.12, where the first, second, and last 

step of each operation are given to highlight their differences. Only the convolutional operation is 

shown here for simplicity, and the addition of a bias and the application of an activation are implied.  

 
Figure 2.12. Specialized convolutional operations. (a) is the standard convolutional operation described in Figure 
2.11 (b) and (c). (b) is a convolution with zero padding, yielding outputs with the same height/width as its input. 
(c) is a strided convolution, where steps greater than 1 are used when selecting input patches of an input matrix. 
(d) is a transpose convolution with stride = 1, used to upsample inputs.  
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A standard convolutional operation (shown in (a)) will result in outputs with reduced size compared 

to the input; there will be an Fh-1 reduction in height and a Fw-1 reduction in width. If this property is 

undesired, the inputs can be zero-padded prior to convolution (shown in (b)). By increasing the input 

dimensions, the output dimensions can be increased to be the original input’s size.  

 Convolutional operations can additionally be modified to downsample or upsample the input feature 

map. Stride corresponds to the distance traversed between each patch of an input map that is processed, 

where the default stride value is 1. Convolutional operations with increased stride (shown in Figure 

2.12 (c)) can be used to learn an effective downsampling scheme in a CNN (Springenberg et al., 2015). 

Conversely, transpose convolutions (Dumoulin & Visin, 2018) can be used to learn an effective 

upsampling scheme in a CNN. Shown in Figure 2.12 (d), a single step of a transpose convolution 

consists of taking a single input value, performing an element-wise multiplication with a convolutional 

filter, and placing each output on a grid. When gridded outputs overlap, they are then added together. 

The stride of the transpose convolutional operation corresponds to the distance between placements of 

the output groups, where a larger stride will result in a larger output feature map. This operation can be 

used to increase the dimensions of an output feature map. 

2.5.2.4 Building up a CNN 

CNNs are typically made up of several layers that consist of multiple neurons.  The way that this is 

scaled is shown in Figure 2.13. (a) shows the single neuron case, where a single 2D filter is applied to 

a 2D input, providing a single 2D output. As additional neurons are added to a layer, this can be 

interpreted as the addition of new filters that each perform their own 2D convolutional operations on 

the input. For a 2D input (shown in (b)), the 2D output from each 2D filter is stacked together to form 

a 3D output with depth Ad, where Ad is the number of filters/neurons in the layer.  

When 3D inputs must be handled by a convolutional layer, the depth of filters will increase to match 

the depth of inputs. For a layer with a single neuron/filter (shown in (c)), the filter depth will increase 

to Xd, where Xd is the depth of the input. Each 2D slice of the 3D input will be 2D-convolved with its 

corresponding 2D slice of the filter, and then each output is summed along the third dimension, resulting 

in a single 2D output for a single neuron/filter. Similarly, when a 3D input with depth Xd is passed into 

a layer that contains Ad total filters/neurons (shown in (d)), each filter will have a depth of Xd to process 

the 3D input, and the output will have a depth of Ad.  
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The general architecture of a CNN is comprised of several convolutional layers that each include 

multiple filters/neurons, where feature map outputs from each layer are passed forward to successive 

convolutional layers for subsequent processing. As the number of layers in a network is increased, the 

network can often yield better performance (Simonyan & Zisserman, 2015; Szegedy et al., 2015). 

Features extracted by a CNN become increasingly more complex and nonlinear as the number of layers 

is increased, allowing complex underlying patterns in data to be learned during training. Additionally, 

the receptive field of a CNN (Araujo et al., 2019) becomes increased through successive convolutional 

operations. A CNN’s receptive field corresponds to the size of the input region that is used to produce 

an output feature. This concept is visualized in Figure 2.14, where two successive 3×3 convolutions are 

performed (indicated by arrows), and the input/output feature maps are shown. Since each feature in 

the 2nd layer is calculated using a 3×3 input in the first layer, the output from a 3×3 convolution on the 

second layer will have used a larger window of values in the first layer. As the number of layers in a 

CNN are increased and the resulting receptive field grows, outputs are provided with more input 

information during inference. 

 
Figure 2.13. Scenarios for scaling up CNNs. (a) 2D input into a single neuron/filter, producing a 2D output. (b) 
2D input to multiple neurons/filters, producing a 3D output. (c) 3D input to a single neuron/filter, producing a 
2D output. (d) 3D input to multiple neurons/filters, producing a 3D output.  



 

 24 

 

2.5.3 Training Neural Networks 

Once a CNN architecture has been determined, the optimal parameters in the network need to be 

calculated. Each convolutional layer is made up of several neurons/filters that contain weights and 

biases. The process of finding the optimal weights and biases in a CNN is called training. The two 

fundamental techniques used to find the optimal parameters in a CNN are gradient descent and 

backpropagation.   

2.5.3.1 Gradient Descent: Training a CNN 

To try and find the optimal parameters in a CNN, first a metric that can be used to grade a model’s 

performance needs to be determined. This metric is known as loss ℒ, and the goal of training is to find 

parameters that minimize the model’s loss. The loss function is determined with reference to a set of 

examples with known outputs. An example of a typical loss function is the mean squared error (MSE), 

given as follows:  

 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2
𝑛𝑛

𝑖𝑖=1

 (2.5) 

 

where yi is a known output for a given input xi, 𝑦𝑦𝚤𝚤�  is the machine learning model’s output when xi is 

input, and n corresponds to the number of examples in the full set being examined (for example in the 

set of training examples). If a model has a relatively high MSE, that means that its prediction error is 

relatively high, which is undesired. An example of two linear regression models (also interpreted as a 

single neuron with a linear activation function) with differing MSE losses is shown in Figure 2.15. (a) 

 
Figure 2.14. Receptive field of a CNN.  
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shows a linear regression fit that does not model the data well, while (b) shows a fit that models the 

data well. The corresponding MSE values for each of these fits are given in (c) and (d), where the MSE 

value for the poor fit is comparatively higher.  

 

Once a proper loss function has been determined, the loss is minimized on a training set of data 

through a process called gradient descent. First, the gradient of the loss function ∇ℒ, that is its derivative 

with respect to each parameter in the neural network, is calculated. Then, steps down the negative 

gradient are taken to minimize the model’s loss and find a model with optimal fit. The gradient of the 

MSE loss for the linear regression fits in Figure 2.15 (a) and (b) are visualized in (c) and (d). To bring 

the model’s fit from that in (a) to (b), the loss gradient terms ( 𝜕𝜕ℒ
𝜕𝜕𝑤𝑤1

, 𝜕𝜕ℒ
𝜕𝜕𝑏𝑏1

) for the model need to be 

calculated at the model’s current parameters (w1 and b1), and then the model needs to alter the 

 
Figure 2.15. Linear regression fits and their corresponding position on an MSE loss landscape. (a) A poor linear 
regression fit. (b) A relatively better linear regression fit. (c) MSE value for the fit in (a). Surrounding MSE values 
for different values of w and b are plotted. Direction of the negative gradient at position (w1, b1) given by the red 
arrow. (d) MSE value for the fit in (b).  
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parameters by stepping down the gradient (shown by the red arrow in (c)). This process can be used to 

find a machine learning model’s optimal fit to a given set of data. In more complex models with a larger 

number of trainable parameters, this process is the same, only the gradient will be made up of a larger 

number of terms (with a term for each parameter in the model).  

To speed up the process of gradient descent and machine learning model training, the gradient of a 

loss function for a training set is often approximated over a batch of the training set. This allows faster 

calculation of the batch gradient, enabling a quicker overall training process. Furthermore, loss 

functions are generally defined in a summation over a set of training examples, allowing the batch 

gradient to be calculated by adding the loss’s gradient for each individual example in the batch. This 

process is repeated until all the batches in a training set have been used in gradient calculations, and 

this constitutes completion of an epoch. Epochs are repeated until a model that produces a suitably low 

loss value is found.  

2.5.3.2 Backpropagation: Finding the CNN’s Gradient 

To calculate an individual training example’s gradient in a neural network, the derivative of that 

example’s loss function needs to be calculated with respect to each parameter (weight and bias) in the 

network. This calculation is predominantly complicated by the feedforward nature of a neural network, 

as network parameters from early layers may be embedded in many operations within the overall neural 

network’s output expression. For example, the output of an M-layer single neuron chain (no 

convolutions) can be described through a recursive implementation of equation 2.2 (k = 1), where the 

layer # is given in bracketed superscripts: 

 

𝑦𝑦� = 𝑎𝑎(𝑀𝑀) = 𝜎𝜎 �𝑤𝑤1
(𝑀𝑀) �𝜎𝜎 �𝑤𝑤1

(𝑀𝑀−1){⋯ } + 𝑏𝑏1
(𝑀𝑀−1)��+ 𝑏𝑏1

(𝑀𝑀)�. (2.6) 

 

Additional expressions of equation 2.2 would be placed in the “…”, depending on the depth M of the 

network. When the output of equation 2.6 is given as an input to a loss function, derivation of the loss 

function expression with respect to a weight or bias in an early layer would require extensive use of the 

chain rule. To implement these calculations practically, backpropagation (Hecht-Nielsen, 1989) 

calculates gradient terms in a systematic fashion from the final layer towards the beginning of a 

network. This flow of calculation is shown for a single neuron chain in Figure 2.16. After an initial 
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forward pass of a particular input example (shown in (a)), the loss can be calculated with the network’s 

output and the correct training label (shown in (b)). To find the loss gradient values for each parameter 

(𝜕𝜕ℒ
𝜕𝜕𝜕𝜕

, 𝜕𝜕ℒ
𝜕𝜕𝜕𝜕

), the derivative of the loss with respect to the predicted output (𝜕𝜕ℒ
𝜕𝜕𝑦𝑦�

)  is calculated, and this begins 

the flow of gradient term calculations back through the network (shown in (c)).  

 

 When calculating the gradient for a more complex neural network such as a CNN, the same 

principles of backpropagation are used. The gradient term calculations become more complicated due 

to the convolutional nature of the network, but the backwards propagation of calculation is still used to 

determine the overall gradient (Bouvrie, 2006). After using backpropagation to determine the gradient 

terms of a CNN, gradient descent can be used to optimize the network’s weights and biases.  

  

 
Figure 2.16.  Backpropagation for a single neuron chain. (a) Neuron operations during a forward pass. (b) Loss 
function calculations. (c) Backpropagation operations for the corresponding neurons in (a).  
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Chapter 3 
CNN-Based Recovery of RF Channels 

3.1 Chapter Overview 

The purpose of this chapter is to introduce the proposed RF recovery framework alongside the physical 

principles that enable its operation. First, the RF structure redundancies that can be exploited to infer 

additional channels are explained. Second, the overall RF inference framework and the details of the 

branching encoder-decoder CNN architecture are outlined. Third, the specific details used to create, 

train, and evaluate CNNs for downsampling levels of 2X, 3X, and 4X are described.  

3.2 RF Redundancy: Shared Reflections in Received Channels 

Even in high degrees of channel-wise downsampling, redundancies in received RF images provide echo 

location information that can be exploited to produced additional RF data. After a medium is insonified, 

the echo signals from a given scatterer should be received on multiple channels at different points in 

time (Xiao et al., 2022). When received channels of RF data are stacked together into an RF image, the 

similar time-delayed echo signals may become distinguishable in the overall image. As shown in Figure 

3.1 (a) and (b), reflections from a point target manifest themselves in a hyperbola due to the ToF 

differences for them to reach each channel (the RF image is logarithmically scaled here to make this 

hyperbola more prominent). This sharing of information amongst channels in RF images is the main 

phenomenon that will be exploited to infer RF data from missing channels. Figure 3.1 shows that even 

though images beamformed with a subset of channels will contain spatial aliasing artifacts (as explained 

in section 2.3.2.3), the corresponding RF images still contain discernable hyperbolas, even at 

downsampling rates as high as 4X. Therefore, by matching similar signals on neighboring channels and 

leveraging the distance between elements/channels, one should be able to infer the RF data for the 

missing channels in this RF image.   
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3.3 Branched Encoder-Decoder CNNs for RF Channel Inference 

A machine learning approach to RF recovery was taken to account for potential inconsistencies in each 

channel’s received signals. While hyperbolas from a given echo event may still be present in 

substantially downsampled RF images, acoustic nonlinearities, anisotropic scattering, directivity of 

transducer elements, and interfering signals from other scatterers may cause differences in the signals 

received on each channel. These differences are expected to be magnified at higher levels of 

downsampling, since further distances are traveled for the echo signal to reach each channel. By 

providing examples of received RF data from realistic imaging scenarios, machine learning can be 

leveraged to determine the underlying patterns of the RF data, allowing inference of additional RF 

channels. 

 
Figure 3.1.  Hyperbolas in downsampled RF images. (a)-(d): B-mode images of point targets beamformed with 
a linear array (λ pitch) after 1X (none), 2X, 3X, and 4X channel-wise downsampling. (e)-(g): corresponding 
logarithmically scaled RF images. Missing channels are given values of 0 (filled in black). 
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To facilitate RF inference from multiple degrees of channel-wise downsampling, novel branching 

encoder-decoder CNN architectures were developed. CNNs are capable of learning from raw 

spatiotemporal data such as RF data (Wang et al., 2020), and our group has previously shown that an 

encoder-decoder architecture can effectively produce omitted RF channel data from half of a received 

subset (Xiao et al., 2022). To facilitate larger degrees of RF inference, novel CNN architectures that 

contain a more complex encoding stage followed by a branched decoding segment that produces 

multiple outputs were developed. The details of the overall recovery framework and the CNN 

architecture are described in the following subsections. 

3.3.1 Overall RF Recovery Framework 

A branched recovery scheme was constructed to facilitate RF recovery from multiple levels of uniform 

downsampling. The overall framework is shown in Figure 3.2. First, a set of uniformly downsampled 

RF data from a steered plane wave transmission is placed into an N×(C/D)×1 RF image. In the RF 

image, N corresponds to the number of samples received on each channel, C is the number of channels 

in the full receiver array, and D is the degree of channel-wise downsampling. After the preprocessing 

step, the input RF image is passed into an encoder-decoder CNN that branches to provide sets of output 

RF images, where each output is a set of RF data with equal dimensions to the original input. The 

physical meaning of these output sets is shown by the colour-coded channel outputs in Figure 3.2; each 

output corresponds to an offset set of channel data that has the same pitch as the input array. The number 

of branches is dependent on D, where D-1 branches are needed to recover a full set of RF data. The 

framework’s number of branches can be easily adjusted to accommodate different degrees of uniform 

 
Figure 3.2.  The proposed recovery framework. Downsampled RF subsets are placed into an RF image and fed 
into a CNN. Outputs from the network correspond to offset subsets of RF data, which are interleaved with the 
network input to recover a full set of RF data. This recovered set of RF data can then be beamformed using 
standard DAS beamforming. In this Figure the RF images and the DAS beamformed image are logarithmically 
scaled for visualization purposes. 
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downsampling, where the only requirement is that the full number of channels C is divisible by the 

desired downsampling degree D. When this requirement is not met, extra channels can be omitted from 

the recovery process and optionally added back during the framework’s interleave step. After inference, 

the branched output sets of RF data can be interleaved together to produce the full set of RF data. From 

here, the RF data can be used for any desired image formation or analysis. In this work, the focus is on 

image formation with DAS beamforming, and coherent plane wave compounding. 

3.3.2 Branched Encoder-Decoder CNNs 

By performing the RF inference step, the branching encoder-decoder CNN is the key component that 

enables operation of the RF recovery framework. A detailed diagram of the CNN architecture is given 

in Figure 3.3 and key features of the architecture are described in the following subsections. 

 

 
 
Figure 3.3.  Encoder-Decoder architecture used for RF inference. Convolutional operations, activations, and 
concatenations are shown by the color-coded arrows. Filter sizes used for convolutions are given above the 
operation. If there is no filter size given, the filter size from the previous operation is used. Feature maps are 
represented by blocks, with their dimensions indicated below each block (with an exception in the branched 
region where the label is between branches). Feature map dimensions for concatenated maps refer to the 
convolutional output only. Note that the RF Images are logarithmically scaled for visualization purposes. 
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3.3.2.1 Encoder-Decoder Structure 

An encoder-decoder CNN is organized into two sections: an encoder that extracts compressed features 

from input data; and a decoder that produces an output based on these compressed features. This 

section-based approach to inference has yielded success when predicting missing sections of natural 

images, also known as inpainting (Elharrouss et al., 2020). To infer missing channel data from 

downsampled RF images, similar principles were adopted: the proposed networks employ strided 

convolutions to encode the received RF subset into a compact feature representation, and then strided 

transpose convolutions decode this compressed representation into additional sets of RF data. 

3.3.2.2 Network Input: Downsampled RF Image 

The RF image input to the CNN only contains the received RF channels, stacked side by side. If 

downsampled RF channels are selected with a uniform sampling scheme, each column is separated by 

an equal pitch and there is no need to encode information on missing channel location with additional 

columns in the RF image. 

3.3.2.3 Network Depth, Filters, and Activations 

The depth, filter sizes, and filter depths of the architecture were chosen to balance computational cost 

and network complexity. The encoder segment for a network employs 7 layers, with strided 

convolutions used to compress the features in the vertical direction (along each channel). The earlier 

layers use a filter size of 5×5 to capture a large receptive field early, and later layers use a filter size of 

3×3 to reduce computational cost. This results in a lateral receptive field of 25 channels at the output 

of each network’s encoder. If RF data is being inferred for a 128-element probe, this means that the 

compressed features output by an encoder segment cover 38% (49/128 elements) of the transducer 

width for 2X downsampling, 58% (74/128 elements) for 3X downsampling, and 77% (99/128 elements) 

for 4X downsampling. The expanding coverage of the receptive field acts to bolster a network’s 

inference ability in the face of larger degrees of downsampling. To increase the complexity of features 

learned throughout the networks, nonlinear activations are used after convolutional operations, 

employing leaky rectified linear unit (leaky ReLU) activations (Maas et al., 2013) with a negative slope 

of 0.01. Feature depth is grown from 1 to 64 throughout the encoder segment to gradually increase the 

number of learned features alongside their complexity. After encoding, the decoder segments of each 

network use an additional 7 layers to infer RF sets from these encoded features. Filter sizes/depths are 
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constructed in a pattern that mirrors the encoder, and strided transpose convolutions are used to 

upsample the network in the vertical direction. 

3.3.2.4 Network Outputs, Branching Decoders, and Feature Sharing  

A branching scheme is used in the decoder segment to 1) output RF sets with the same dimensions as 

the input and to 2) provide each output RF set with specialized upsampling and inference filters. With 

the branching scheme, the path from the input RF set to an individual branch’s output RF set forms a 

symmetrical encoder-decoder CNN (Ronneberger et al., 2015; Mao et al., 2016; Liu et al., 2018). 

Orientation of the CNN in this manner enables the inputs to the CNN to only include the downsampled 

channels (with advantages explained in section 3.3.2.2), while also enabling symmetrical sharing of 

encoder/decoder features via concatenating skip connections. This feature sharing restores some of the 

information lost in the encoding scheme of the network, and it also promotes more stable training by 

enabling direct pathways for the gradient back through the network (Mao et al., 2016). The network’s 

branching point is placed midway through the decoder segment to enable feature sharing between 

outputs during the first half of the decoder while still allowing each individual output RF set to be 

decoded with its own set of specialized upsampling/inference filters. In accordance with the overall 

framework, the number of branches is dependent on the downsampling degree and is given by D-1. At 

the end of each branch, the output sets of RF data are attained through a final convolution followed by 

a linear activation, allowing positive and negative RF values as outputs.  

3.4 Training Dataset Acquisition, Cleaning, and Preprocessing 

To facilitate the training of the recovery framework in a supervised learning fashion, a dataset of 

input/output RF pairs first needed to be acquired. This subsection describes the process taken to acquire, 

clean, and prepare a training dataset for the RF recovery framework.  

3.4.1 Dataset Acquisition 

A dataset of in vivo carotid artery scans from a SonixTouch research scanner (SonixTouch; Analogic 

Ultrasound; Peabody, MA, USA) was used to train the RF recovery architectures. This dataset consisted 

of steered plane wave acquisitions (-15° to 15° range, 1° separation) of 7 volunteers’ (age: 25.9 ± 4.9) 

carotid arteries. The acquisition orientations for the training dataset are shown in Figure 3.4, where both 

the short and long axis of the carotid were scanned. The research scanner was programmed to acquire 

31 steered angles at a time, and a total of 67301 separate RF frames (range: -2048 and 2047 with 12-
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Figure 3.4.  Training dataset acquisition area. Steered plane wave acquisitions were taken of volunteer’s necks.  
Both short axis and long axis scans were acquired. Parameters used in acquisitions are summarized in Table 3.1.  
 

Table 3.1 
Training Data Acquisition Parameters 

Parameter Details 

Ultrasound Scanner SonixTouch 

Ultrasound Probe L14-5 

RF Data Range and Resolution -2048 to 2047, 12 bits 

Number of Tx/Rx Channels 128 

Array Pitch 0.3048mm 

Transmit Frequency 5MHz 

Transmit Angle Range -15° to 15°, 1° separation 

Sampling Rate 20MHz 

Imaging Depth 60mm 

Pulse Repetition Frequency 10kHz 
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bit resolution) were acquired to train the networks. The acquisition was performed with a 128-element 

L14-5 probe; the system operated with a 5MHz transmission frequency, 2-pulse transmissions, a 10kHz 

pulse repetition frequency, and a 20MHz sampling rate. A summary of acquisition parameters can be 

found in Table 3.1. Acquired data was transferred to a computer server (SYS-4028-TRT; Super Micro, 

San Jose, CA, USA) with a Xeon E5-2620 central processing unit (Intel, Santa Clara, CA, USA) to be 

preprocessed in MATLAB (ver. 2020b; MathWorks, Natick, MA, USA). 

3.4.2 Dataset Cleaning 

The acquired dataset was cleaned and preprocessed to facilitate a stable and effective training process, 

with steps shown in Figure 3.5. First, the initial 196 samples of each channel were removed from RF 

images to eliminate the amount of near field reflections present in the training RF images. This resulted 

in N = 1304 samples per channel. Second, the dataset was cleaned by removing RF frames that had an 

excess of clipped samples. Training frames with more than 50 samples valued at 2047 (the maximum 

output value of the Sonixtouch’s ADC) were removed from the training dataset. The removal of 

excessively clipped frames was meant to prevent the network from prioritizing inference of high-

amplitude clipped regions. This removal resulted in 59864 training frames, down from 67301 (89% of 

the original set). The cleaned subset of training data was then normalized to be between -0.5 and 0.5 

prior to being input into the network. 

3.4.3 Dataset Preprocessing 

CNN inputs and outputs were formed by selecting uniformly spaced channels from an RF frame and 

placing them into smaller RF images. For 2X downsampled data, odd numbered channels were selected 

as inputs with even channels selected as network outputs (each sized N×C/D = 1304×64). For 3X 

downsampled data, 3 groups of uniformly spaced channels with 2-element separation were formed 

(N×C/D = 1304×42); this resulted in one group corresponding to the input and two groups for the 2 

branched framework outputs. The first and last channels of the full RF set were discarded to ensure a 

uniform downsampling scheme where inputs and outputs to the network all had the same size (C = 126 

for 3X downsampling). Lastly, for 4X downsampled data, 4 groups of uniformly spaced channels with 

3-element separation were formed (N×C/D = 1304×32), denoting the input and 3 output branches of 

the network. 
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Figure 3.5.  CNN training dataset preprocessing pipeline. Data was cropped, cleaned to remove heavily clipped 
frames, normalized, and parsed by channel for different downsampling scenarios. Note that the RF Images are 
logarithmically scaled for visualization purposes.  
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3.5 CNN Creation 

Networks for each downsampling level were developed and trained in Python (ver. 3.6.7), utilizing 

Tensorflow-GPU (ver. 1.12.0) with the Keras (ver. 2.1.6) application-user-interface. The networks 

(shown in Figure 3.6) were created to conform with the overall architecture outlined in Figure 3.3: for 

2X downsampling there was 1 branch, for 3X downsampling there were 2 branches; for 4X 

downsampling there were 3 branches. The dimensions of the input to each CNN conformed to the 

training dataset created for each degree of downsampling (shown at the bottom of Figure 3.5). The 

encoder section of each network is the same and it is omitted from the figure.   

3.6 CNN Training 

The training of the networks was facilitated using an RTX-1080 GPU (Nvidia, Santa Clara, CA, USA). 

Each layer’s weights were initialized according to a zero-mean uniform distribution with 2/k variance, 

where k is the number of inputs to the layer (He, Zhang, Ren & Sun, 2015), and then the Adam 

optimization algorithm (Kingma & Ba, 2014) was used for gradient-based training; each network 

employed a learning rate of 0.001, a batch size of 32, and 50 total epochs. The mean-absolute-error 

(MAE) from each branch’s output was added together with equal weighting to form the overall loss 

function. 90% of the cleaned dataset was used for training with the remaining 10% used for validation 

of each network. The loss over the training and validation sets over the 50 epochs are plotted in Figure 

3.7.   

It can be seen in Figure 3.7 that the overall losses on the training and validation data followed similar 

trajectories over the training process, with each of them plateauing as 50 epochs were approached. For 

the MAE loss at the output of each branch (which are added to form the overall loss), similar trajectories 

were also observed, although branch 2 experienced a higher error compared to branch 1 and 3 for the 

4X downsampling case. This is expected since the outputs predicted from branch 2 are not adjacent to 

any input channels to the network (as is the case for branch 1 and 3). This results in a more difficult 

inference problem, as there is a larger offset between the predicted channels from branch 2 and the 

input channels to the network. Nonetheless, the loss is progressively minimized over the training 

process for this branch, albeit with a higher overall MAE.  
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Figure 3.6.  Different CNNs for different levels of downsampling. CNN architecture configurations and 
dimensions are the same as outlined in Figure 3.3. Arrow colours also correspond to the legend in Figure 3.3, 
except for the green arrow, which refers to arranging RF channel data into an RF image. 
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Figure 3.7.  Training process for each of the CNNs displayed in Figure 3.6. Individual branched losses in the 
right column are added to form the overall loss shown in the left column.  
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3.7 Recovery Framework Performance Evaluation 

The effectiveness of the RF recovery framework was assessed using both raw RF signal analysis and 

quality comparisons of DAS beamformed images. For image analysis, images were beamformed with 

1) only the downsampled subset of RF channels, 2) the downsampled RF channels + CNN-inferred RF 

channels, and 3) the full original set of RF channels. Additional image quality analysis was performed 

on compounded images, where angled transmissions from each of the 3 groups were compounded 

together. Evaluation of metrics on individual RF data and beamformed images was performed in 

MATLAB (ver. 2020b) with additional statistical testing performed in R (ver. 4.0.5). 

3.7.1 Evaluation Scenarios 

Additional RF datasets were acquired from several different imaging scenarios to evaluate the recovery 

framework’s success. Firstly, 9 additional carotid scans from separate volunteers were acquired for 

evaluating RF reconstruction success and spatial aliasing artifact reduction on subjects apart from the 

training set. These acquisitions were performed using the same imaging parameters as the training data 

(outlined in Table 3.1). Secondly, point target phantom scans were acquired for evaluating RF inference 

success and spatial aliasing artifact reduction in vitro. The acquisitions were performed using the 

parameters in Table 3.1, except for the transmission angles, which were taken from -14.75°:0.5°:14.75° 

to test the framework’s generalizability to unseen transmission angles. Lastly, an additional 3-cycle 

pulse acquisition of a volunteer’s quadriceps muscle was performed for evaluating spatial aliasing 

artifact reduction in acquisitions from a different in vivo region. This acquisition was performed using 

the imaging parameters in Table 3.1, except for a 3-cycle pulse transmission, which was chosen to 

evaluate the framework’s generalizability to acquisitions from a different transmission scheme. All 

scenarios were evaluated at downsampling/recovery levels of 2X, 3X and 4X.  

3.7.2 Evaluation Data Preparation 

Additional RF acquisitions were cropped to have a length of 1304 samples, where the cropping range 

was chosen to retain samples for each acquisition’s desired imaging depth. RF data was normalized and 

partitioned in the same manner as the training data, and downsampled RF images were then fed into 

the trained networks to recover a full set of RF data for each level of downsampling. For subsequent 

image analysis, RF data was first bandpass filtered between 3-7MHz and converted to an analytic signal 

with the Hilbert transform. The analytic data was then DAS beamformed with an F number of 1mm 

and rectangular apodization. Key parameters from the beamforming process are summarized in Table 
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3.2. After beamforming, the final step in the ultrasound image formation procedure was to 

logarithmically-scale the beamformed pixel values to compress the image’s dynamic range. 

 

3.7.3 Beamformed Image Quality Evaluation 

3.7.3.1 Full Reference Image Quality 

To assess the overall image quality restoration due to RF recovery, the structural similarity measure 

(SSIM; Wang et al., 2004) was evaluated on the displayed ultrasound images. For SSIM calculation, 

pixel values from the DAS operation were logarithmically scaled and clipped to values within the 

displayed dynamic range. Images beamformed with a full set of receiving RF data were used as 

reference. The total quantity for the SSIM is taken from the average of several windowed SSIM 

calculations, with the windowed calculation as follows: 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
�2𝜇𝜇𝑦𝑦�𝜇𝜇𝑦𝑦 + (𝐾𝐾1𝑅𝑅)2��2𝜎𝜎𝑦𝑦�𝑦𝑦 + (𝐾𝐾2𝑅𝑅)2�

�𝜇𝜇𝑦𝑦�2 + 𝜇𝜇𝑦𝑦2 + (𝐾𝐾1𝑅𝑅)2��𝜎𝜎𝑦𝑦�2 + 𝜎𝜎𝑦𝑦2 + (𝐾𝐾2𝑅𝑅)2�
 (3.1) 

 

For the SSIM calculation in equation 3.1, 𝜇𝜇𝑦𝑦�  and 𝜇𝜇𝑦𝑦 correspond to the means of an image window and 

its reference window, respectively. 𝜎𝜎𝑦𝑦�  and 𝜎𝜎𝑦𝑦 correspond to the variances of these windows, while 𝜎𝜎𝑦𝑦�𝑦𝑦 

is the covariance between the two windows. The KR terms are used to stabilize divisions when the 

Table 3.2 
Image Beamforming Parameters 

Parameter Details 

Prefilter Passband 3-7 MHz 

Filter Design Method Equiripple (30th Order) 

Apodization Rectangular 

Focusing Constant Fmm = 1 

Image Resolution (Axial and Lateral) 0.1mm/pixel 
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denominator is small; R is the image’s dynamic range, and K1 and K2 correspond to small (<<1) 

constants. In this evaluation, R was set to the displayed dynamic range of 50dB. Following the methods 

used in (Wang et al., 2004), 0.01 and 0.03 were used for K1 and K2 and a window size of 11x11 was 

employed.  

3.7.3.2 Resolution 

To evaluate the resolution of beamformed ultrasound images, the lateral full width at half maximum 

(FWHM) was calculated for beamformed point targets. FWHM is expressed as the width that a point 

spans between half of its maximum value on each side. Since the beamformed images are 

logarithmically scaled, this was calculated as the distance between a 6dB drop on each side of a point 

target. An example of the lateral FWHM calculation for a point target is shown in Figure 3.8. 

 

3.7.3.3 Contrast  

In Vitro Contrast Analysis 

 
Figure 3.8.  FWHM measurement of a point target. A lateral slice of the point target in (a) is displayed in (b). 
The width between a 6dB drop from the maximum on each side denotes the FWHM.   
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The average image amplitude in spatially aliased regions was evaluated to determine the degree of in 

vitro artifact reduction provided by CNN-inferred RF data. Spatially aliased regions were chosen on 

images formed with a subset of receiving channels; the maximum value of a region that did not contain 

point targets was used as the center of the spatially aliased selection. A 4mm×4mm spatially aliased 

region was then centered around the maximum value. An example selection for the 2X downsampled -

0.25° point target transmission is shown in Figure 3.9. The overall region examined for spatial aliasing 

artifacts is shown in the yellow box, with the green box denoting the selected spatially aliased region.  

 

In Vivo Contrast Analysis 

The contrast ratio (CR) of the carotid artery lumen to surrounding tissue regions was taken to evaluate 

the reduction of spatial aliasing artifacts in vivo. CR is measured as: 

 

𝐶𝐶𝐶𝐶 =  𝜇𝜇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝜇𝜇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (3.2) 
 

where μtissue and μlumen correspond to the mean of a tissue and a lumen patch in the beamformed and 

logarithmically scaled ultrasound image. Contrast assessments were taken using both the thyroid and 

the carotid wall as tissue references, where the reference regions were manually segmented on fully 

 
Figure 3.9. Spatially aliased region selection for a -0.25° point target transmission that was beamformed with 
half of the receiving channels.   
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compounded images. Circular regions were selected in the center of the carotid lumen (L) and thyroid 

(T) for their reference regions, and the most reflective part of the bottom of the carotid wall (W) was 

selected for its reference region. An example segmentation is shown in Figure 3.10. CR changes were 

examined at both the individual level and over the larger sample of carotid scans from 9 volunteers. 

The segmentations for each volunteer can be found in Appendix A.  

 

3.7.3.4 Statistical Substantiation of In Vivo Artifact Reduction 

To determine if the inclusion of CNN-inferred RF data during beamforming provided a statistically 

significant change in spatial aliasing artifact amplitude, parametric testing was performed over the 0° 

acquisitions for each volunteer’s carotid. Statistical testing was performed on the isolated set of 0° 

transmissions to ensure independence between samples, and to prevent making a large degree of 

comparisons, which would increase the chance of error being made during multiple hypothesis testing.  

Subject Grouping 

CR measurements from the 0° carotid artery scans of the 9 volunteers were grouped based on reference 

tissue type (T-L and W-L), image formation method (beamformed with a subset of receiving channels, 

beamformed with a subset of receiving channels + CNN-inferred channels), and downsampling degree 

(2X, 3X, 4X). This resulted in a total of 12 groups each with 9 subjects. Groups were paired based on 

downsampling level, transmission angle, and tissue type; for example, each subject’s T-L CR after 2X 

downsampling and no CNN recovery was paired with their corresponding T-L CR after 2X 

downsampling with CNN RF recovery.  

 
Figure 3.10.  ROI Selection for contrast ratio measurement. L, T, and W denote the lumen, thyroid, and carotid 
wall, respectively.  
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Statistical Methods 

For the parametric test, a paired t-test (Student, 1908) was employed to determine if the inclusion of 

CNN-inferred RF data statistically changed the CR of beamformed images. Since multiple comparisons 

were being made between multiple tissue types, levels of downsampling, and transmission angles, 

Bonferonni correction (Armstrong, 2014) was employed to adjust the significance level α of the test. 

To describe the results of the paired t-test, p-values, confidence intervals (Bonferonni-corrected), and 

Cohen’s d effect size (Lee, 2016) were all reported for each pairwise comparison. To ensure that 

samples conformed with the parametric assumptions of normality, a Shapiro-Wilk test (Shapiro & 

Wilk, 1965) was used on each pair’s CR difference measurements.  

3.7.4 RF Recovery Metrics 

3.7.4.1 Root Mean Squared 

To characterize the RF data received from different tissue regions, the root mean squared (RMS) 

measure was used: 

𝑅𝑅𝑅𝑅𝑅𝑅 =  �
1
𝑛𝑛
�𝑦𝑦𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

 (3.3) 

 

where n refers to the total number of RF samples being investigated, and yi is a given sample of the 

original RF data. This metric provides an idea of the overall magnitude of reflections captured in a 

particular region of an RF image. 

3.7.4.2 Normalized Root Mean Squared 

To compare the recovery error between different RF regions, the normalized root mean squared error 

(NRMSE) was used: 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
�1
𝑛𝑛∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2𝑛𝑛

𝑖𝑖=1

𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚
 (3.4) 
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where 𝑦𝑦𝑖𝑖 and 𝑦𝑦�𝑖𝑖 refer to the original and CNN-inferred RF samples, respectively. The denominator is 

used to normalize the error calculation, where 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 refer to the maximum and minimum of 

the original RF data values being examined. The normalization allows RF recovery comparison 

between multiple tissue types, despite potentially differing overall amplitudes due to each tissue’s 

varying depth and echogenicity characteristics. 

3.7.5 Compounding Evaluation 

The compatibility of the recovery framework with the plane wave compounding process was evaluated 

by tracking image metric changes as beamformed images were compounded. Images were compounded 

by adding 1° transmissions sequentially, while omitting the 0° transmission due to a difference in the 

receiver delay time for these acquisitions. Therefore, the compounding pattern went as follows: 1 angle: 

-1°; 2-angle: -1°, 1°; 3-angle: -2, -1°, 1°; 4-angle: -2°, -1°, 1°, 2°; etc. 
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Chapter 4 
Experimental Results of Receiver Channel Recovery 

4.1 In Vitro Experimental Results 

This subsection details the results from the in vitro RF inference experiments. First, an examination of 

RF inference success for hyperechogenic vs. hypoechogenic tissue is described. Second, B-mode 

images beamformed with and without CNN-inferred RF data are compared in terms of full reference 

quality, contrast, and resolution.  

4.1.1 RF Analysis: More Successful Inference Along Hyperbolic Structure 

For the in vitro point target RF data, relatively higher inference success was achieved on more 

hyperbolic RF structure. The B-mode image (full receiving channels) and the corresponding RF image 

for the point target phantom (-0.25° transmission) are shown in Figure 4.1 (a) and (b), where each point 

target in the B-mode image has a corresponding hyperbola in the RF image. Figure 4.1 (c)-(e) compare 

the single-channel inferred RF to the original received RF for each degree of downsampling. The 

channel under investigation is shown in yellow in (b) and the echo data is divided into pre-hyperbolic 

and hyperbolic reflections. The pre-hyperbolic reflections are from less reflective echoes from the point 

target “tissue”, and the hyperbolic reflections are from the point targets themselves. Shown in (c)-(e), 

relatively higher inference success was achieved in the hyperbolic region of the channel data; the single 

channel inference follows the original RF much more closely once the hyperbola begins. This is 

reflected by the >2X lower NRMSE in the hyperbolic region for each level of downsampling.  

4.1.2 B-Mode Point Target Full Image Comparison 

Beamforming in vitro point target images with CNN-inferred RF data resulted in recovery of the 

underlying image structure. Beamformed point target images for a -0.25° and a -14.75° transmission 

are shown in Figure 4.2. Progressive downsampling (2X to 4X) of received RF channels resulted in 

worsening spatial aliasing artifacts that obscure the beamformed images, as shown in (e)-(g) and (l)-

(n). Even though the point targets are visible in these images, spatial aliasing incorrectly results in the 

impression that there other highly reflective regions in the imaging medium. This is contrasted with the 

images beamformed with CNN inferred data, as shown in (b)-(d) and (i)-(k). Spatial aliasing artifacts 

are reduced, and it becomes more apparent that the only objects in the medium are the point targets 
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themselves. This qualitative result is accompanied by a quantitative increase in SSIM; the SSIM 

measure increases for each beamformed image when CNN-inferred RF data is included during the 

beamforming process. While the spatial aliasing artifacts are alleviated, there is still an overall decrease 

in image quality with progressive downsampling, shown by the worsening SSIM values as the 

downsampling degree is increased.  

 
Figure 4.1.  RF reconstruction evaluation for a 0° transmission of a point target phantom. (a) B-mode image of 
the point target image being examined, displayed with a 50dB dynamic range. (b) RF image of the point target 
with the channel examined highlighted in yellow, and the start of the hyperbolic point target reflections denoted 
in green. For visualization, the RF image is logarithmically scaled and displayed with a dynamic range of 40dB. 
(c)-(e) comparison of the original RF data to the inferred RF data for downsampling levels of 2X, 3X, and 4X, 
respectively.  
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Figure 4.2.  B-mode beamformed images of angled point target acquisitions. All images are displayed with a 
dynamic range of 50dB. (a) -0.25° transmission of the point target phantom, all receiving channels. (b)-(d) -0.25° 
point target images beamformed with 1/2 received + 1/2 inferred, 1/3 received + 2/3 inferred, and 1/4 received 
+ 3/4 inferred channels. (e)-(g) -0.25° point target images beamformed with 1/2, 1/3, and 1/4 received channels. 
(h) -14.75° point target images, all receiving channels. (i)-(k) -14.75° point target images beamformed with 1/2 
received + 1/2 inferred, 1/3 received + 2/3 inferred, and 1/4 received + 3/4 inferred channels. (l)-(n) -14.75° point 
target images beamformed with 1/2, 1/3, and 1/4 received channels. 
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4.1.3 Spatial Aliasing Artifact Reduction 

Images beamformed with CNN-inferred RF data achieved suppressed spatial aliasing artifacts across 

multiple transmission angles. The average image amplitudes for spatially aliased regions are shown in 

Figure 4.3; average amplitude for 2X, 3X, and 4X downsampling are shown in (a), (b), and (c), with 

the selected spatially aliased image region for the -0.25° transmission case shown in (d), (e), and (f). 

As shown in (a)-(c), the inclusion of CNN-inferred RF data during beamforming suppresses the 

amplitude in the spatially aliased regions for all transmission angles. While the artifacts are removed 

when CNN-inferred RF data is used, the overall amplitude in these regions is slightly over-suppressed, 

as the image amplitude becomes lower than the case where the original received channel data is used. 

This over-suppression is substantially less than the heightened amplitude caused by the artifacts; the 

spatially aliased regions have average values that are 10.4dB, 11.8dB, and 12.9dB higher than the fully 

sampled case for downsampling levels of 2X, 3X, and 4X, respectively. This is compared to the regions 

beamformed with CNN-inferred data that have average values that are 1.8dB, 2.2dB, and 3.7dB lower 

than the fully sampled case for downsampling levels of 2X, 3X, and 4X, respectively.   

4.1.4 Changes in Point Target Resolution 

The resolution of the point targets experienced slight degradation as higher levels of CNN-inference 

were performed. The FWHMs for the 3 shallowest point targets from the -0.25° beamformed images 

(labelled in Figure 4.4 (a)) were evaluated and the results are shown in Table 4.1; compared to an 

average FWHM of 0.57 for the fully sampled case, the average FWHM was 0.58 (+1.8%), 0.60 

(+5.2%), and 0.60 (+ 5.2%) for CNN recovery rates of 2X, 3X, and 4X. Qualitative examination of the 

bottom row of point targets (shown in Figure 4.4) shows that while resolution is mostly preserved, at 

higher levels of CNN recovery the point target’s max value is reduced (the CNN-inferred image lines 

have slightly lower peaks than the fully sampled or just downsampled counterparts), which can cause 

a slight loss in FWHM/resolution. 
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Figure 4.3.  Spatial aliasing artifact reduction in point target images. Artifacts are evaluated over -
14.75°:0.5°:14.75° transmission angles. (a)-(c) Artifact region mean amplitude comparisons for 2X, 3X, and 4X 
downsampling. (d)-(f) example region selection for a -0.25° transmission after 2X, 3X, and 4X receiver 
downsampling.  
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Figure 4.4.  Lateral cross sections of beamformed point targets. (a) Reference slice of the -0.25° point target 
acquisition. Point targets evaluated for FWHM in Table 4.1 labelled. (b)-(c) Reference slices for point target 
images beamformed with 1/2 received and 1/2 received + 1/2 inferred RF data. (d) plots of the reference slices 
in (a)-(c). (e)-(f) Reference slices beamformed with 1/3 received and 1/3 received + 2/3 inferred RF data. (g) 
plots of the reference slices in (a), (e), and (f). (h) Reference slices beamformed with 1/4 received and 1/4 
received + 3/4 inferred RF data. (j) plots of the reference slices in (a), (h), and (i).  
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Table 4.1 
Single Transmission Point Target Resolution 

Downsampling 
Degree 

Recovery 
Type 

Point 1 Point 2 Point 3 Average 

Fully Sampled None 0.57 0.57 0.56 0.57 

2X CNN 0.59 0.59 0.57 0.58 

2X None 0.56 0.57 0.57 0.57 

3X CNN 0.6 0.59 0.61 0.60 

3X None 0.56 0.57 0.59 0.57 

4X CNN 0.59 0.65 0.56 0.60 

4X None 0.55 0.63 0.56 0.58 

4.2 In Vivo Experimental Results 

This subsection details the results from the in vivo RF inference experiments. First, an examination of 

RF inference success for reflections from different tissue types is described. Second, B-mode images 

beamformed with and without CNN-inferred RF data are compared in terms of full reference quality 

and contrast. Third, image quality is examined as scans of a carotid artery are coherently compounded.  

4.2.1 Raw RF Analysis 

When performing in vivo imaging, more echogenic regions of the imaging medium produced RF data 

with hyperbolic structure. The B-mode image for a carotid/thyroid is shown in Figure 4.5 (a), with its 

corresponding RF image shown in (b).  Different regions in the imaging medium are matched to their 

corresponding reflections in the RF image; 1 indicates the reflections from the hyperechogenic carotid 

wall, 2 indicates an echogenic region with lower amplitude reflections, and 3 indicates the less 

echogenic thyroid. The RMS values for each region’s RF data are given in (b) to reflect the overall 

amplitude of reflections from these regions. As shown in (b), reflections from the echogenic carotid 

wall produce a more hyperbolic shape in the RF image, while reflections from the homogenous, less 

echogenic thyroid do not have any apparent structure in the RF image. Reflections from region 2 are 

lower amplitude (indicated by the lower RMS), but they are manifested in a clear hyperbolic shape.  
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Higher RF recovery success was achieved when inferring RF data from hyperbolic regions of the RF 

image. Figure 4.5 (c) displays the NRMSE values of inferred RF data from each of the regions 

highlighted in (a) and (b). Comparatively higher inference success was achieved in regions with 

hyperbolic RF data. Comparing the carotid wall (region 1) to the thyroid (region 3), the NRMSE was 

>2X lower for each degree of downsampling. Additionally, the NRMSE for region 2 was >2X lower 

than the NRMSE for the thyroid (region 3) for each degree of downsampling, despite the lower 

amplitude reflections in region 2.  

 
Figure 4.5.  In vivo RF reconstruction evaluation for different regions of a carotid artery. (a) Highlighted tissue 
regions on a B-mode image, displayed with a dynamic range of 50dB. 1) carotid wall, 2) lower amplitude 
hyperechogenic region, and 3) thyroid. (b) RF reflections from each highlighted tissue region. Region # is 
displayed below its yellow bounding box, and the region’s RMS is displayed above the box. For visualization, 
the RF image is logarithmically scaled and displayed with a dynamic range of 40dB. (c) NRMSE for the CNN-
inferred RF data from each region. 
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4.2.2 B-Mode Full Image Comparison 

Beamforming in vivo carotid and quadriceps images with additional CNN-inferred RF data revealed 

the underlying structure of the imaging medium. Beamformed images of carotid and quadriceps 0° 

transmissions are shown in Figure 4.6. Progressive downsampling (2X to 4X) of received RF channels 

resulted in worsening spatial aliasing artifacts that obscure the beamformed images, as shown in (e)-

(g) and (l)-(n). These artifacts substantially reduce the visibility of the carotid lumen and the quadriceps 

muscle fibers. When CNN-inferred RF data is included in the beamforming process (shown in (b)-(d) 

and (i)-(k)), visibility of the underlying image structure is improved; the carotid lumen becomes visible, 

and the fibrous structure of the quadriceps is revealed. This qualitative result is accompanied by a 

quantitative increase in SSIM; the SSIM measure increases for each beamformed image when CNN-

inferred RF data is included during the beamforming process. While the spatial aliasing artifacts are 

alleviated, there is still an overall decrease in image quality with progressive downsampling, shown by 

the worsening SSIM values as the downsampling degree is increased. 
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Figure 4.6.  B-mode beamformed images from a carotid and quadriceps muscle. All images are displayed with 
a dynamic range of 50dB. (a) 0° transmission of a carotid artery with the lumen region highlighted, all receiving 
channels. (b)-(d) Carotid images beamformed with 1/2 received + 1/2 inferred, 1/3 received + 2/3 inferred, and 
1/4 received + 3/4 inferred channels. (e)-(g) Carotid images beamformed with 1/2, 1/3, and 1/4 received channels. 
(h) 0° transmission of a quadriceps muscle, all receiving channels. (i)-(k) Quadriceps images beamformed with 
1/2 received + 1/2 inferred, 1/3 received + 2/3 inferred, and 1/4 received + 3/4 inferred channels. (l)-(n) 
Quadriceps images beamformed with 1/2, 1/3, and 1/4 received channels. 
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4.2.3 Multi-Angle Contrast Analysis 

4.2.3.1 Single Acquisition 

Suppression of spatial aliasing artifacts resulted in an increased contrast in the carotid artery over 

multiple transmission angles. The CR measurements for the carotid shown in Figure 4.7 (a) are 

displayed in (b) and (c). When the beamformed images are formed with downsampled sets of RF data, 

the wall-lumen (W-L) CR and the thyroid-lumen (T-L) CR are reduced across all transmission angles. 

When CNN-inferred RF data are included during beamforming, the W-L CR and T-L CR are improved 

across all transmission angles. Relatively higher recovery in contrast was achieved when the carotid 

wall was used as a reference, and this is reflected in the images of Figure 4.6 (b)-(d), as the thyroid 

loses some of its details at higher degrees of downsampling and CNN recovery.  

4.2.3.2 Multiple Acquisitions 

Suppression of spatial aliasing artifacts resulted in an increased contrast of the carotid artery over 

multiple subjects. The CR box plot for all 31 transmission angles and all 9 subjects is shown in Figure 

4.8 (a) and (b). Similar trends to the measurements in Figure 4.7 can be observed: downsampling of RF 

channels resulted in lower CR compared to the fully sampled case; inclusion of CNN-inferred RF data 

improved both the W-L CR and the T-L CR; and W-L CR had comparatively higher improvement 

compared to the T-L CR, which sees progressive losses as downsampling degree is increased. 

The CR improvements achieved with the inclusion of CNN-inferred RF data were found to be 

statistically significant when evaluated on the 0° transmission angles. The box plots for all subjects’ 0° 

transmission angles are shown in Figure 4.8 (c)-(d), where similar trends are present compared to the 

box plots that include all transmission angles. T-L and W-L CR improvements through the inclusion of 

CNN-inferred RF data were deemed significant (p < αadjusted = 0.05/6 = 8.3×10-3) for all degrees of 

downsampling. The Shapiro-Wilk test confirmed that all tested pairs conformed to the normality 

assumption used in the paired t-test (p > α = 0.05). The detailed statistics for the paired 0° comparisons 

can be found in Table 4.2. 
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Figure 4.7.  Contrast evaluation of a carotid lumen over multiple transmission angles. (a) Segmented regions for 
contrast assessment: Lumen (L), carotid wall (W), and thyroid (T). (b) W-L CR evaluations. (c) T-L CR 
evaluations.  
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Figure 4.8.  Contrast measurements over multiple subjects. (a)-(b) W-L CR and T-L CR box plots for all 31 
transmission angles and 9 subjects (279 examples each group). (c)-(d) W-L and T-L CR box plots for 0° 
transmission angle and 9 subjects (9 examples each group).  
 

Table 4.2 
Statistical Testing of Tissue-Lumen Contrast Differences for 0° Transmissions 

Tissue Point 
of Reference 

Downsampling 
Level 

P-value Adjusted 
Confidence 

Interval (dB) 

Mean 
Difference 

(dB) 

Cohen’s d 
effect size 

Wall (W) 2X 4.12×10-7 [8.71, 14.0] 11.4 2.25 

W 3X 2.90×10-7 [10.2, 16.0] 13.1 2.72 

W 4X 8.70×10-7 [11.0, 18.6] 14.8 3.12 

Thyroid (T) 

 

2X 1.46×10-3 [1.7, 11.1] 6.40 2.08 

T 3X 5.9×10-4 [2.2, 10.0] 6.14 2.52 

T 4X 1.5×10-4 [3.0, 9.4] 6.22 2.88 
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4.2.4 Coherent Compounding Analysis 

The contrast and SSIM of images beamformed with CNN-inferred RF data were further improved with 

coherent plane wave compounding. The compounding process of the carotid artery in Fig. 4.6 (a) is 

shown in Fig. 4.9, where compounding resulted in a progressive improvement of contrast and SSIM 

for all beamforming scenarios. Similar to the single-angle cases, the inclusion of CNN-inferred data in 

the beamforming process enabled improved image quality compared to when only the subset of 

receiving channels were used. Firstly, the contrast between the lumen and carotid wall was enhanced 

beyond the case with all receiving channels when CNN-inferred RF data was used in beamforming. 

Secondly, the contrast between the thyroid and the lumen was consistently improved when CNN-

inferred data was included during beamforming, despite the less hyperbolic RF data provided from 

thyroid reflections. Lastly, while the SSIM of all beamformed images improved at higher degrees of 

compounding, higher resultant SSIMs were achieved when CNN-inferred RF data was included during 

beamforming. The recovery attributed enhancement of compounded image quality can be observed in 

Fig. 4.10, where 7-angle-compounded images are displayed. While the compounding of images formed 

with downsampled RF data (Fig. 4.10 (e)-(g)) resulted in a higher quality image compared to their 

single transmit counterparts (Fig. 4.6 (e)-(g)), the images were still obstructed by spatial aliasing 

artifacts. The visibility of the carotid structure was enhanced when CNN-inferred data was also used in 

beamforming (Fig. 4.10 (b)-(d)).  
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Figure 4.9.  Progressive compounding analysis for the carotid artery in Figure 4.6. (a). (a) W-L CR, (b) T-L CR, 
and (c) SSIM metrics are tracked as transmission angles are compounded together.   

 
Figure 4.10.  7-angle compounded images for the carotid artery compounded in Figure 4.9. All images displayed 
with a dynamic range of 50dB. (a) Beamforming performed with all receiving channels. (b)-(d) beamforming 
performed with 1/2 received + 1/2 inferred, 1/3 received + 2/3 inferred, and 1/4 received + 3/4 inferred channels. 
(e)-(g) beamforming performed with 1/2, 1/3, and 1/4 received channels. 
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Chapter 5 
Discussion and Future Directions 

5.1 Branching Encoder-Decoder CNNs as a New Framework for Channel-Wise 
RF Recovery 

Each receiving channel in an ultrasound system imposes a tangible increase in the system’s complexity, 

whether it is through an increased data transfer bandwidth, or through the requirement of additional 

receiver electronics such as analog to digital converters or low noise amplifiers. To enable HiFRUS 

systems with lower channel counts and lower system complexity, we have developed an RF recovery 

framework (Figure 3.2) that can be applied to uniformly channel-wise downsampled RF data. The 

proposed framework leverages novel branching encoder-decoder CNN architectures (Figure 3.3) to 

directly recover RF channels that were omitted during the receive process, restoring a full set of 

received RF data from a uniformly downsampled subset. By restoring access to a full set of RF 

channels, the proposed recovery framework can be used to improve performance of signal processing 

methods that are given raw RF data as inputs such as DAS beamforming.  

Our experiments with DAS beamforming show that including CNN-inferred channels in the 

beamforming process recovered the underlying structure of beamformed images (Figures 4.2, 4.3, 4.6, 

4.7, 4.8). This improvement was generalizable to multiple imaging scenarios, namely an in vitro point 

target, in vivo carotid arteries, and an in vivo quadriceps muscle. Furthermore, inferred RF channels 

provided similar improvements when the network’s inputs were from varying transmission angles. This 

angle-independence of the framework’s inputs enables its use with more advanced RF-processing 

techniques; when inferred RF data from steered transmissions were used for coherent plane wave 

compounding, progressive image quality improvement was also achieved (Figure 4.9 and 4.10). Lastly, 

the raw RF recovery analysis that was performed (Figure 4.1 and 4.5) can be used to explain any image 

quality degradation that may be apparent in beamformed ultrasound images (further detailed in section 

5.2).  

Overall, the performed experiments indicate the proposed framework’s feasibility for RF recovery, 

and they characterize the framework’s performance recovering RF data from different types of tissue 

(hyperechogenic vs. hypoechogenic). This feasibility was demonstrated for recovery from 

downsampling degrees beyond 2X, surpassing the in vivo recovery rates demonstrated by other 
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channel-recovery techniques (Ramkumar & Thittai, 2020; Anand & Thittai, 2021; Kumar et al., 2020; 

Xiao et al., 2022). Given the utility of inferred RF data in the DAS beamforming process, the presented 

RF recovery framework could enable use of additional HiFRUS techniques when operating with a 

reduced receiver channel count. This work could thus aid the adoption of HiFRUS principles into more 

compact systems, extending their reach into more remote and austere healthcare environments.    

5.2 Insights on CNN-Based RF Channel Inference 

5.2.1 Successful Spatial Aliasing Artifact Reduction Stems from Successful 
Hyperbolic RF Inference 

The image quality improvements that CNN-inferred RF data provided to DAS beamformed images can 

be attributed to a reduction in spatial aliasing artifacts. The inhibiting features present in the 

downsampled images of Figures 4.2 and 4.6 are the aliasing artifacts that hide the imaging region’s 

underlying structure. The strong reduction of these aliasing artifacts is expected due to 2 reasons: 1) the 

most prevalent artifacts will occur due to insufficient spatial sampling of the most echogenic reflections 

in the imaging medium (as detailed in section 2.3.2.3); and 2) reflections from more echogenic 

scatterers manifest themselves in RF image hyperbolas, enabling higher accuracy in RF inference 

(shown in Figures 4.1 and 4.5). Therefore, the RF samples provided by the inference framework are 

expected to be highly effective at suppressing the most prominent spatial aliasing artifacts in a medium, 

revealing the medium’s underlying structure. This is visible in the B-mode images of Figures 4.2 and 

4.6, as the spatial aliasing artifacts are minimal in the images beamformed with recovered RF data. This 

suppression was achieved among multiple transmission angles, indicated by the reduction in amplitudes 

of spatially aliased regions in Figure 4.3 and the carotid contrast recovery in Figure 4.7. Furthermore, 

this trend of improved carotid contrast was achieved over multiple subjects, with a statistically 

significant improvement observed at all levels of downsampling when tested on 0° transmissions 

(shown in Figure 4.8).  

While reflections from hyperechogenic structures achieved relatively higher inference success, if 

there was a lack of hyperbolic RF image structure it resulted in a more difficult inference scenario. 

When comparing the NRMSEs of inferred RF data for in vitro (Figure 4.1) and in vivo (Figure 4.5) 

scenarios, the reflections from more echogenic sources had substantially lower NRMSEs. This effect 

was reflected in the DAS beamformed images: carotid W-L contrast had minimal losses when CNN-

inferred RF data was used at all levels of downsampling (Figure 4.7 and 4.8). This is compared to the 
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T-L contrast which was progressively decreased with the downsampling + recovery rate. This loss in 

contrast can be observed in Figure 4.6 (b)-(d), as some thyroid detail is lost with higher degrees of 

downsampling + recovery. A similar effect is shown in the in vitro contrast analysis of Figure 4.3, 

where the spatially aliased regions successfully have their artifacts suppressed, but there is a decrease 

in region amplitude when CNN-inferred RF data is included in beamforming. The amplitude decrease 

is a result of the RF error, as beamformed samples will have a less coherent sum, subduing the resultant 

amplitude. This effect also resulted in a significant impact on SSIM measures, as any inconsistencies 

in less reflective speckle amplitudes caused a large degradation of the SSIM, even if the overall image 

structure was captured. Despite this difficulty, the inclusion of inferred RF data improved the SSIM of 

all beamformed images compared to their strictly channel-wise downsampled counterparts, due to the 

successful inference of spatial aliasing artifacts.  

5.2.2 Inference with Multiple Transmission Angles Allows Enhanced Image Quality via 
Coherent Plane Wave Compounding  

DAS image improvements were observed over the full span of examined plane wave transmission 

angles. Suppression of spatial aliasing artifacts was achieved for in vitro point target acquisitions from 

-14.75° to 14.75° (Figure 4.3) and in vivo carotid artery acquisitions from -15° to 15° (Figure 4.7). This 

confirms the angle-independence of the RF recovery framework’s inputs, allowing it to be used 

alongside advanced signal processing techniques such as coherent plane wave compounding.  

The progressive image quality improvement that was achieved throughout the compounding process 

indicates a general coherence between CNN-inferred data from angled transmissions.  The SSIM, T-L 

CR, and W-L CR were all improved when a carotid artery acquisition was compounded (Figure 4.9). 

The compounding process also improved the quality of images beamformed only with the subset of RF 

channels, but image quality metrics remained higher when CNN-inferred RF data was included. The 

difference provided by the inclusion of CNN-inferred RF data can be seen in Figure 4.10, where the 

images beamformed with CNN-inferred data more closely resemble the image beamformed with all 

receiving channels.  

5.2.3 Potential Ceiling for Channel Recovery Rate 

Due to the different degrees of RF recovery success for different types of tissues, there is not a well-

defined limit to the amount of CNN-based recovery that can be achieved, as it will depend on the 
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medium being imaged and the application at hand. Any errors present in inferred RF data become more 

prevalent as the degree of recovery is increased, imposing tradeoffs to the amount of acceptable 

recovery in a system. In this thesis, these tradeoffs were observed during the process of DAS 

beamforming; while the inclusion of CNN inferred data enabled recovery of underlying beamformed 

image structure due to strong suppression of spatial aliasing artifacts, point target resolution was 

slightly degraded with higher degrees of recovery (Figure 4.4) and some lower amplitude tissue data 

was suppressed at higher degrees of recovery (shown in vitro in Figure 4.3, and in vivo in Figures 4.7 

and 4.8). The impact of these tradeoffs will differ depending on the application of the recovered RF 

data. For example, if compounding is to be performed to acquire higher quality beamformed images, 

the tradeoffs associated with RF recovery are partially mitigated (Figures 4.9 and 4.10). Additionally, 

if the RF data is to be used for a specialized beamforming method such as minimum-variance 

beamforming (Synnevåg et al., 2009), these tradeoffs may be counteracted by the image quality 

improvements imposed by these methods.  

5.3 Advantages and Limitations of Proposed Method 

5.3.1 Implementing a Deep Learning Based Framework in a Compact System  

By using a CNN-based solution for RF recovery, the proposed framework requires hardware that can 

facilitate a forward pass of a CNN. It is important that such a hardware solution would have a small 

form factor, and that it can be implemented in the back end of a system (after data transfer). GPUs are 

a potential candidate for implementation of the RF recovery framework. Convolutional operations are 

easily parallelized using GPUs, and recent innovations have seen significant downsizing of this 

technology in products such as the NVIDIA Jetson platform (Mittal, 2019). This coincides with the 

GPU’s ability to parallelize several other tasks in an ultrasound processing pipeline (beamforming 

being a pertinent example), positioning GPUs as a strong candidate to be included in modern ultrasound 

scanners (So et al., 2011). While GPUs are an attractive means of implementation, they are not the only 

solution, as recent innovations in portable deep learning hardware architectures (Zaman et al., 2021) 

could be leveraged to implement a custom on-chip RF inference solution.   

5.3.2 Performing HiFRUS Tracking in Different Mediums 

A system that implements the proposed recovery framework should be well-suited to track dynamic 

events in the human body using HiFRUS. Given the higher accuracy when inferring reflections from 
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more echogenic scatterers, it is expected that the recovery framework would be of particular use when 

tracking movement of hyperechogenic tissues such as arterial walls (Couade et al., 2011) or muscle 

fibers (Cortes et al., 2015). While scenarios that track the movement of hypoechogenic scatterers may 

be more challenging, insights presented in this work could guide framework/acquisition modifications 

that improve inference success in these scenarios. For example, in flow imaging, contrast enhancement 

could be implemented to increase the echogenicity of blood reflections (Harvey et al., 2001), with 

higher echogenicity expected to improve inference success. 

5.4 Future Directions 

5.4.1 Extension to Additional Imaging Schemes 

With feasibility of the RF recovery framework demonstrated within the context of plane wave 

acquisitions on 1D linear arrays, additional research should be pursued for extending the framework to 

additional imaging schemes. The appearance of hyperbolic structure in RF images is not exclusive to 

plane wave acquisitions, therefore, it is expected that similar results would be seen when applying the 

proposed framework to other imaging schemes such as synthetic aperture imaging (Jensen et al., 2006). 

Additionally, the demonstrated feasibility of >2X RF recovery raises the question of whether the 

framework could be extended towards 2D matrix arrays, since 2D sparse arrays typically require a 

larger reduction in channel count to adequately reduce system complexity (Roux et al., 2018; Mattesini 

et al., 2020; Yu et al., 2020). This extension could be through a row/column-wise application of the 

framework to a downsampled matrix array, or through use of 3D convolutional kernels (Singh et al., 

2019) to infer reflections from 3D hyperbolic structure in RF matrices. 

5.4.2 Feeding Recovered RF Channels into Advanced Signal Processing Algorithms  

Given the framework’s ability to directly recover missing RF channels, a logical progression of this 

work would be to provide inferred RF data as input to advanced signal processing algorithms that take 

raw RF inputs. As mentioned in section 2.4, some of these algorithms include methods of speed of 

sound mapping (Feigin et al., 2020), image segmentation (Nair et al., 2020), and beamforming 

(Synnevåg et al., 2009; Matrone et al., 2015; Cheng & Lu, 2006; Garcia et al., 2013). The insights 

presented in this work can be used to guide investigation related to these other algorithms.  
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5.4.3 Preparation for Inference in a Clinical Setting 

With initial feasibility demonstrated for the RF recovery framework, additional steps should 

subsequently be taken to strengthen the framework’s suitability for clinical adoption. Implementation 

of a deep learning framework in a clinical imaging setting requires more robust preparation, since any 

errors made by the recovery framework can have negative impact on patient outcomes via misdiagnosis.  

The framework needs to be proven to be generalizable, so that it can be applied to different imaging 

scenarios, on patients with differing backgrounds. Given that the framework was trained exclusively 

on in vivo carotid scans, the suppression of spatial aliasing artifacts on an in vitro point target and an in 

vivo quadriceps muscle provide evidence for the framework’s applicability to different imaging regions. 

However, there are several additional regions of the body that are imaged with ultrasound, for example 

breast imaging (Szabo & Lewin, 2013). Prior to a clinical adoption of this framework, the training 

dataset should be expanded to cover a wider range of in vivo imaging scenarios. Additionally, data from 

a more diverse set of patients should be acquired, to prevent prediction bias for one particular type of 

patient (Esteva et al., 2021). Acquiring a larger and wider range of training data should improve the 

generalizability of the framework and reduce the potential for inequalities in the framework’s usage.  

To meet the higher standard of trust that is required to implement a framework in a clinical setting, 

the machine learning model should have a degree of interpretability (Rueckert et al., 2020; McCrindle 

et al., 2021). This can pose a challenge in a deep learning system, as the complexity of a deep learning 

model often results in its treatment as a “black box” where its inner workings are unknown. However, 

there have been efforts recently to increase interpretability of these models. For example, model activity 

can be visualized by displaying input patterns that cause activations in intermediate layers (Zeiler & 

Fergus, 2014), and attribution maps can highlight regions of an input that are most relevant when 

producing a given output (Salahuddin et al., 2021). Additional effort should be made to increase the 

interpretability of the RF recovery framework, to build the level of trust in its operation that is required 

for its use in a clinical imaging setting.  
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Appendix: Hand Segmented Regions of Interest for Contrast 
Evaluation 

This appendix contains the hand-segmented regions of interest for carotid contrast evaluation. The ROI 

selection is shown below in Figure A.1., where the lumen, wall, and thyroid regions were selected for 

9 volunteers.  

 

 
Figure A.1.  Regions of interest chosen for statistical CR evaluation. Selection was performed on fully 
compounded images. All images are displayed with a dynamic range of 50dB.  
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