
Topological Order in String Liquids
and Weyl Semimetals

by

Dan Sehayek

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Science
in

Physics

Waterloo, Ontario, Canada, 2022

© Dan Sehayek 2022



Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Statement of Contributions

Research Presented in Chapter 3

Chapter 3 contains unpublished work. In this work, I wrote all of the code pertaining to
the diffusion map algorithm. The Monte Carlo data was generated using code written by
Roger G. Melko, who provided a supervisory role during the course of the project.

Research Presented in Chapter 4

Chapter 4 contains research based off of [1] where I was the main author. In this work, I
wrote all the code pertaining to the persistent homology algorithm using the python Ripser
library [2]. The Monte Carlo data was generated using code written by Roger G. Melko,
who provided an supervisory role during the course of the project.

Research Presented in Chapter 5

Section 5.4 contains research based off of [3] where I was the main author. In this work,
I completed the calculations pertaining to the derivation of domain wall bound states and
the nonlinear sigma model for 2Q ̸= π. Section 5.5 contains original, unpublished work.
Anton. A. Burkov played a supervisory role during the course of both of these projects.

iii



Abstract

Outside Landau’s paradigm of symmetry-breaking orders is the class of topological
orders, which cannot be described by a local order parameters. Such orders are gener-
ally defined by the presence of a gauge symmetry and possess many interesting features,
including fractionalized excitations and topological degeneracy on closed manifolds. The
first half of thesis will be dedicated to exploring various techniques for detecting topological
order in string liquids, which are spin-1/2 systems with a local Z2 symmetry. Such a local
symmetry gives rise to a loop condensate in the low temperature regime, which allows for
emergent fractionalized excitations and topological degeneracy defined by the presence of
non-contractible loops. Generally, such phases can be described by the Wegner-Wilson
and ’t Hooft loop observables, which are non-local string order parameters, and possess a
phase transition between perimeter and area laws in spatial dimensions D ≥ 3. We will
demonstrate the ability of various numerical techniques to detect this Z2 topological order
based on σz measurements sampled using a Monte Carlo algorithm for the classical Z2

gauge theory. First, we will show that the diffusion map algorithm can be used to cluster
spin configurations according to their topological sector and hence identify the topological
degeneracy for the 3-dimensional case. Next, we will show that the first Betti number of
geometric complex constructions of spin configurations can be used to measure the promi-
nence of closed loops defined by the local Z2 symmetry, and that a persistent homology
analysis can be used to distinguish loop structures according to their geometry. We will
additionally show that both the diffusion map algorithm and the first Betti number of
geometric complex constructions can be used to detect the topological phase transition
in the Wegner-Wilson loop between perimeter and area laws. The second half of thesis
will be dedicated to exploring a construction of Z4 topological order in Weyl semimetals,
which possess topologically protected gapless nodes hosting Weyl fermions and a chiral
anomaly response. Such a construction was first proposed by C. Wang, L. Gioia and A.
Burkov, and involves superconducting pairing and vortex condensation. We will show that
the same Z4 topological can be obtained from charge density wave (CDW) interactions,
which involves applying a similar vortex condensation procedure to 2D Dirac fermions at
the interface between the two degenerate CDW ground states at a Weyl node separation
of 2Q = π. As in the original construction, fractionalized statistics will emerge in the
uncondensed vortices, with odd flux vortices possessing Majorana zero modes and flux 2π
vortices possessing semions. Finally, we will derive the theory of the surface states based
on the hydrodynamic BF theory for this Z4 topological order.
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Chapter 1

Introduction

1.1 Topology in Condensed Matter

Over the past few decades, topology has continued to play an important role in the field of
condensed matter. One example of this is in the band theory of solids, where topological
equivalence classes of Hamiltonians are defined by continuous transformations that avoid
closing the energy gap and breaking existing symmetries. Any corresponding topological
invariants that are physically observable have important applications in fields such as
quantum computing, due to their resilience to local perturbations of the physical system
[4]. One example of such an invariant is the Landau filling factor in integer quantum Hall
states, which corresponds to the total Chern number (see Section 5.2.1). Additionally,
the boundaries of topological insulators and superconductors are generally characterized
by symmetry-protected gapless edge states. In [5], Kitaev provides a complete framework
for the classification of topological insulators and superconductors using the K-theory of
vector bundles.

X. G. Wen refers to the above notion of topology as classical topology [6]. In essence,
the term topological in topological insulators and superconductors really means symmetry-
protected. On the other hand, the term topological in topological order generally refers
to the presence of long-range entanglement. Wen refers to this notion of topology as
quantum topology. Within Landau’s theory of phase transitions, all ordered phases are
described by a local symmetry-breaking order parameter, such as the magnetization order
parameter in the case of ferromagnetic phases. However, beginning with the discovery of
the Kosterlitz–Thouless (KT) transition of the 2D XY model [7], where the ordered phase
is instead described by the binding of vortex and anti-vortex defects, it was realized that
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not all ordered phases of matter are described by a local order parameter. One category
of such phases is indeed the class of topological orders, which will be the central topic of
this thesis. The defining features of topological orders are quasi-particle excitations with
fractionalized statistics and topological degeneracy on closed manifolds, which generally
require long-range entanglement and originate from the presence of a local symmetry [6].
Beside their theoretical intrigue, such properties have been recognized to be applicable to
the development of fault-tolerant quantum computing [8, 9]. Therefore, a major effort is
underway to search for and identify topologically ordered phases in materials [10], devices
[11, 12], and synthetic quantum matter [13].

The challenge of detecting topological order usually involves examining the system’s
configuration space. Due to the lack of an order parameter, this can involve using tools such
as the topological entanglement entropy [14, 15]. In situations where system configurations
are represented by data, such as in computer simulations or in projective measurements of
a quantum device, such tools can be prohibitively computationally expensive. This moti-
vates the search for interpretable techniques which are inherently sensitive to topological
structures in data, while remaining tractable on large finite-size lattice systems of interest
to condensed matter and quantum information physics.

1.2 Outline

The outline for this thesis is as follows. In Chapter 2, we will review one of the most
well known examples of topological order, namely the toric code [16]. The toric code
falls under a more general class of topological orders known as quantum string liquids,
which are spin-1/2 systems defined by a local Z2 symmetry, and refer to any such system
in which the ground state wavefunction is an equal superposition over all closed string
configurations [17, 6]. Generally, quantum string liquids possess topologically degenerate
ground state wavefunctions which differ by the presence of non-contractible closed-strings
on the torus, and two distinct quasi-particle excitations with fractionalized statistics. The
order parameter defining these string liquids are the Wegner-Wilson loop and ’t Hooft loops,
which are non-local string operators and are invariant under the local Z2 symmetries, as
required by Elitzur’s theorem. Following this review of string liquids, Chapters 3 and 4 we
will be dedicated to exploring various numerical techniques for detecting this topological
order based on σz measurements. Specifically, we will sample spin configurations in the
σz basis according to the classical Z2 gauge theory, which possesses a topological phase
transition in the Wegner-Wilson loop for spatial dimensions D ≥ 3 [18, 19].

In Chapter 3, we will show that the diffusion map algorithm [20, 21], which is a manifold
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learning technique designed for clustering points according to their global connectivity, can
be used to cluster spin configurations for the D = 3 classical Z2 gauge theory according to
their topological sector, and hence can be used to identify the 8-fold topological degener-
acy. Such an application of the diffusion map was first proposed in [22], where the same
identification of topological sectors was successfully shown for the classical XY model and
the classical Z2 gauge theory in D = 2. We will additionally show that ch metric, which
compares the average size of the clusters to the average distance between clusters, peaks
closest to the deconfinement transition, and hence can be used to identify the location of
the topological phase transition. A similar idea was used [22, 23], where various clustering
metrics were shown to successfully identify topological phase transitions in the XY model.

In Chapter 4, we will explore the persistent homology algorithm, which computes the
significance and frequency of general loop structures in point clouds via the formation of
geometric complexes [24, 25, 26, 27]. Application of the persistent homology algorithm
was recently explored in the context of various symmetry-breaking and topological orders,
including 1D quantum models and 2D XY models [28, 29, 30, 31, 32]. Here, Monte Carlo
configurations are classified based on their persistence diagram, which contain the signifi-
cance and frequency of loop structures identified in the geometric complex constructions.
In our case, we will use the Vietoris-Rips (VR) complex to map Ising spin configurations
from the classical Z2 gauge theory into geometric complexes of simplices. We will demon-
strate that the resulting first Betti number can be used to measure the prominence of
closed strings in the two-dimensional case and hence is largest in the topologically or-
dered regime, and can additionally be used to detect the topological phase transition in
the three-dimensional case. This demonstrates that a full persistent homology analysis is
not necessarily required to identify the phase transition. Instead, we will emphasize the
persistent homology analysis as a tool for interpreting the types of loop structures that
form in construction of the VR complex.

Finally, Chapter 5 will be dedicated to exploring topological order in the context of Weyl
semimetals, which are characterized by topologically protected gapless nodes hosting Weyl
fermions, and possess a chiral anomaly response under the presence of an electromagnetic
field. We will review the model proposed by C. Wang, L. Gioia and A. Burkov [33],
in which a gapped Weyl semimetal with Z4 topological is constructed by first adding
superconducting pairing and then condensing flux 4π superconducting vortices. In this
3-dimensional model, it is the uncondensed Φ = nπ loops for n < 4 that survive as gapped
excitations and possess non-trivial statistics. Namely, an odd flux loop induces a Majorana
zero mode upon intersection with an atomic xy plane, which implies non-Abelian statistics
of loop braiding, while a Φ = 2π loop induces a semion upon intersection with an atomic xy
plane, which implies non-trivial Abelian statistics of loop braiding. We will additionally
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review the corresponding BF field theory description derived by M. Thakurathi and A.
Burkov in [34].

Following this, we will show that the same Z4 topological order can be achieved from
charge density wave interactions. To begin with, we will show that a Weyl semimetal with
such interactions possesses two degenerate ground states, corresponding to two different
values of phase of the charge density wave order parameter: φ = 0, π. We will then show
that massless 2D Dirac fermions exist at the domain wall between these two degenerate
ground states. Using the Hamiltonian for these domain wall bound states, we will shown
that the same Z4 topological order as described above, namely odd flux vortices with
Majorana zero modes and flux 2π vortices with semions, can be constructed following
superconducting pairing and condensation of flux 4π vortices.

Finally, we will derive the edge theory of the BF theory description for this topological
order. It is well known that the 2D fractional quantum Hall (FQH) liquid is described by a
2+1D Chern-Simons theory, and that the resulting edge theory is a chiral Luttinger liquid,
which describes a chiral wave propagating along the boundary [35, 36]. In following the
approach of X.G. Wen for the 2D FQH liquid, which involves restoring gauge-invariance
by gauge-fixing on the boundary [35], we will show that the resulting 2D surface state
Lagrangian for the BF theory possesses the same propagator as that of a chiral Luttinger
liquid along a single direction. Ultimately, further studies of this edge theory will be left
for future work.
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Chapter 2

Review of Z2 Topological Order in
String Liquids

One of the most well-known examples of topological order is the toric code, which falls
under the class of general spin-1/2 string liquids [6]. The toric code is described by the
following Hamiltonian [16]:

H = −Jz
∑

p

Pp − Jx
∑

s

Ss (2.1)

where Pp =
∏

ℓ∈p σ
z
ℓ and Ss =

∏
ℓ∈s σ

x
ℓ are plaquette and star operators, and σ describes

spin-1/2 degrees of freedom on the links of a periodic lattice (see Figure 2.1). In the σz basis,
any spin configuration for which Pp = +1 for all p is a ground state configuration, and the
transformation defined by the star operators acts as a Z2 gauge transformation: [H,Ss] = 0
with S2

s = 1. Similarly, in the σx basis, any spin configuration for which Ss = +1 for all s
is a ground state configuration, and the transformation defined by the plaquette operator
acts as a Z2 gauge transformation: [H,Pp] = 0 with P 2

p = 1. The local symmetries defined
by these gauge transformations lead to a large ground state degeneracy and ultimately
long-range entanglement in the ground state wavefunctions. More specifically, the ground
state wavefunctions can be understood as an equal superposition over all closed string
configurations, where strings are formed over links of the direct (dual) lattice for which
σx = −1 (σz = −1) (see Figure 2.2). As described in [6], this long-range entanglement
can be understood as the microscopic origin for the defining features of topological order,
namely quasi-particle excitations with fractionalized statistics and topological degeneracy,
which will we review in the following sections.
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Figure 2.1: Toric code on a square lattice. Open dots represent locations of spin-1/2
degrees of freedom. The plaquette operator Pp is shown in red and the star operator Ss is
shown in blue.

Figure 2.2: Examples of closed strings in the σz basis, where blue dots represent down
spins. The application of a single gauge transformation to a configuration consisting solely
of up spins generates a closed string of minimal size. Arrows depict steps in which single
adjacent gauge transformations are applied, which stretches this loop to greater sizes.
Generally, ground state configurations will consist solely of closed strings.
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2.1 Anyon Excitations

In the σx and σz bases, excitations are defined by star and plaquette operators with negative
parity, respectively. Such defects are generated by single spin flips are always come in
pairs. It is common to refer to Ss = −1 excitations as electric (e) particles and Pp = −1
excitations as magnetic (m) particles. The reasoning behind this can be understood as
follows. We begin by introducing field variables Eab and Aab where a and b denote sites on
the lattice and ab denotes the link between sites a and b.

σx
ab = eiEab

σz
ab = eiAab

which implies that both Eab and Aab can assume values 0, π (mod 2π). Expressing Ss in
terms of the electric field variable:

Ss = σx
s,s+x̂σ

x
s,s+ŷσ

x
s,s−x̂σ

x
s,s−ŷ

= exp{i (Es,s+x̂ + Es,s+ŷ + Es,s−x̂ + Es,s−ŷ)}
= exp{i(divE)s}

Since Ss = ±1, it follows that the divergence of the electric field for a given star can assume
one of two values: (divE)s = 0, π (mod 2π). Hence, any given star can be viewed as having
a Z2 charge, and the Ss = −1 excitation is referred to as an electric (e) particle. Similarly,
we can express Pp in terms of the vector potential field variable:

Pp = σz
i,i+x̂σ

z
i+x̂,i+x̂+ŷσ

z
i+x̂+ŷ,i+ŷσ

z
i+ŷ,i

= exp{i (Ai,i+x̂ + Ai+x̂,i+x̂+ŷ + Ai+x̂+ŷ,i+ŷ + Ai+ŷ,i)}
= exp{i(∇× A)p}
= exp{iBp}

Since Pp = ±1, we see that the curl of vector potential for a given plaquette, which can
be interpreted as the magnetic flux through that plaquette, can assume one of two values:
Bp = 0, π (mod 2π). Hence, any given plaquette can be viewed as having a Z2 flux, and the
Pp = −1 excitation is referred to as a magnetic (m) particle. The m particle is sometimes
referred to as a π flux excitation or a vison.

2.1.1 Braiding

As mentioned above, quasi-particle excitations with non-trivial statistics is one of the defin-
ing features of topological order. Generally, the probabilities described by a wavefunction
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ψ(r1, r2) for two identical particles located at r1 and r2 should remain the same upon
exchange of the two particles:

|ψ(r1, r2)|2 = |ψ(r2, r1)|2

which implies ψ(r1, r2) = eiθψ(r2, r1). The cases θ = 0 and θ = π correspond to our
familiar bosons and fermions, respectively. As was first shown in [37], it turns that it is
possible for particles to possess non-trivial exchange statistics θ ̸= 0, π in the case of two
spatial dimensions. Such particles are referred to as anyons, and have gained deep interest
in the quantum computing community [9].

In the case of the toric code, the e and m particles possess trivial bosonic statistics
with respect to themselves, and form a composite fermionic particle f . However, the e
and m particles possess non-trivial exchange statistics θ = π/2 with respect to each other.
Namely, wrapping an e particle around an m particle induces a phase shift of π. Hence,
the e and m particles are referred to as mutual semions. To see this, we will follow the
argument from L. Balents [38], which begins by considering an initial state |ψ1⟩ containing
exactly one e particle and one m particle. One can wrap the e particle around the m
particle by applying a string of σz

i operators on a closed contour C.

|ψ2⟩ =
∏

i∈C
σz
i |ψ1⟩

This product of σz
i operators over C is equivalent to a product all plaquette operators

contained within the region enclosed by C:

∏

i∈C
σz
i =

∏

p∈A
Pp

where C = ∂A. Since this enclosed region contains exactly one m particle, it follows
that exactly one plaquette operator has negative parity. Hence, we find that |ψ2⟩ = − |ψ1⟩
and we conclude the e and m particles are mutual semions.

As described above, the ground state wavefunction of the toric code can be understood
as a superposition over all closed string configurations, with a +1 coefficient assigned to
each configuration. Generally, one can obtain different non-trivial braiding statistics by
modifying the rules for assigning coefficients [17, 6]. For example, if one assigns coefficients
of -1 (+1) to configurations with an odd (even) number of closed strings, then the e and
m particles possess semionic statistics with respect to themselves. Hence, this model is
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referred to as the double semion model [17]. Generally, the class of Z2 string liquids refer
to all spin-1/2 systems whose ground state wavefunctions are an equal superposition over
all closed string configurations, with the braiding statistics of the quasi-particle excitations
determined by the rules for assigning coefficients.

2.1.2 Fusion

Topological orders can be further classified according to the fusion rules of the anyons.
Following D. Tong [36], the fusion of two anyons a and b is represented as:

a ⋆ b =
∑

c

N c
abc (2.2)

where N c
ab = N c

ba follows from a ⋆ b = b ⋆ a and the trivial state 1 satisfies a ⋆ 1 = a for
all a. Recall that in the case of the toric code, the e and m particles forms a composite
fermionic particle f . Furthermore, we recall that the e and m particles can only be created
and annihilated in pairs: flipping a single spin will always flip the parity of two plaquettes.
For this reason, the toric code and general string liquids are referred to as having a Z2

topological order. Ultimately, the fusion rules for the toric code are as follows:

1 ⋆ e = e 1 ⋆ m = m 1 ⋆ f = f
e ⋆ m = f e ⋆ f = m m ⋆ f = e
e ⋆ e = 1 m ⋆m = 1 f ⋆ f = 1

2.2 Topological Degeneracy

Recall that the toric code and general spin-1/2 string liquids are defined on a periodic lat-
tice. Hence, it is possible to have closed strings that are non-contractible. Generally, there
are two topologically distinct families of non-contractible loops on a torus, which cannot be
smoothly deformed into each other (see Figure 2.3). Generating a single non-contractible
loop in a ground state configuration requires applying a string of spin flips, such that the
pair of e or m particles generated upon the first spin flip eventually meet and annihilate.
Ultimately, ground state configurations differing by the presence of a non-trivial string are
said to belong to different topological sectors and are restricted to their topological sector
at sufficiently low temperatures and sufficiently large system sizes, since non-trivial strings
cannot be generated or removed using gauge transformations. Since there are two topolog-
ically distinct families of non-trivial loops, there are four distinct topological sectors, and
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Figure 2.3: Examples of topologically distinct non-trivial contours C1 and C2 on the torus.

hence four topologically distinct ground state wavefunctions. Since this degeneracy is due
to the topology of the torus, it is commonly referred to as topological degeneracy. Note
that adding multiple non-trivial strings does not define additional sectors, since pairs of
non-trivial strings of the same kind can be eliminated via gauge transformations.

2.3 Higher Form Symmetry

Another general feature of topological orders is the presence of higher form symmetries [39,
40]. In fact, higher form symmetries can be understood as the mechanism for topological
order. Recall that in the context of the toric code and general string liquids, the plaquette
and star operators act as symmetry operators in the σx and σz bases. The presence of such
local symmetries forbids the presence of a local order parameter by Elitzur’s theorem [41].
Intuitively, any observable that does not possess invariance under these local symmetries
will tend to zero due to gauge fluctuations. In the context of string liquids, the only gauge-
invariant observables are the Wegner-Wilson loop and ’t Hooft loop observables, which are
defined as:

WC =
∏

ℓ∈C
σz
ℓ (2.3)

VC̃ =
∏

ℓ∈C̃

σx
ℓ (2.4)

where C and C̃ define closed contours on the direct and dual lattices, respectively (see Figure
2.4 for examples). The Wegner-Wilson loop acts as the most general gauge transformation
for spin configurations in the σx basis, with WC for the smallest contour corresponding to
a plaquette. Similarly, the ’t Hooft loop acts as the most general gauge transformation
for spin configurations in the σz basis, with VC̃ for the smallest contour corresponding
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Figure 2.4: Examples of the Wegner-Wilson loop and ’t Hooft loop observables. Any
Wegner-Wilson loop acts as a symmetry operator for the toric code in the σx basis, since
it intersects any star operator an even number of times, and hence leaves the parities of all
the star operators unchanged. Similarly, any ’t Hooft loop acts as a symmetry operator for
the toric code in the σz basis, since it intersects any plaquette operator an even number of
times, and hence leaves the parities of all the plaquette operators unchanged.

to a star. Since these symmetry operators are defined in terms of 1-dimensional strings
of Pauli operators, they are referred to as 1-form symmetries [42]. In the topologically
ordered phase, ⟨WC⟩ and ⟨VC̃⟩ are non-zero due to invariance with respect to the 1-form
symmetries, and go to zero upon condensation of m and e particles, respectively.

The string operators WC and VC̃ can also be used to determine the topological sector
of ground states. Namely, if C1 belongs to the family of non-trivial loops of the first kind,
then WC1 = −1 implies the existence of an odd number of non-trivial closed strings of the
second kind. This holds since all trivial closed strings must intersect C1 an even number
of times, while all non-trivial closed strings of the second kind must intersect C1 an odd
number of times. Similarly, if C2 belongs to the family of non-trivial loops of the second
kind, then WC2 = −1 implies the exist of an odd number of non-trivial closed strings of the
first kind. Hence, WC1 and WC2 collectively determine the topological sector of a ground
state configuration in the σz basis. If one enters the topologically ordered phase upon
the confinement of m particles, then ⟨WCα⟩ will transition from zero to ±1. This can be
understood as a higher-form symmetry breaking, with the symmetry breaking in the case
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corresponding to the selection of a topological sector. Such a topological phase transition
can be driven with the presence of an external field term hx

∑
ℓ σ

x
ℓ . Namely, one can show

that there exists a critical value of the external field at which the Wegner-Wilson loop
transforms between perimeter and area laws [18, 19, 43]:

⟨WC⟩ ∼ exp(−α(T )PC) (2.5)

⟨WC⟩ ∼ exp(−β(T )AC) (2.6)

where PC and AC are the perimeter and area of the closed contour C. Namely, PC refers to
the number of links contained in C, while AC refers to the number of plaquettes contained
within C. Here, the phase whereWC obeys a perimeter law corresponds to the topologically
ordered phase where Z2 flux is expelled, and the area law corresponds to the disordered
phase where Z2 flux proliferates. An analogous discussion can be made for the ’t Hooft
loop in the σx basis.

Finally, we note that if one instead considers open strings L and L̃ on the direct and
dual lattices, then the loop observables become generators of the quasi-particle excitations.
Namely,WL generates a pair of e particles upon application to a ground state configuration
in the σx basis, with each end of the open string containing one e particle. Similarly, VL̃
generates a pair of m particles upon application to a ground state configuration in the σz

basis, with each end of the open string containing one m particle.
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Chapter 3

Detecting Topological Order with
Manifold Learning

As discussed in Chapter 2, both non-trivial braiding statistics of the quasi-particle excita-
tions and topological degeneracy on closed manifolds are defining features of topological
order, and ultimately originate from local Z2 symmetries in the case of general string liq-
uids. In Chapters 3 and 4, we will exploit various numerical techniques based on geometry
and topology to identify the topological degeneracy, closed loop structures and higher-form
symmetry breaking resulting from the local Z2 symmetry defined by Ss. We will sample
spin configurations in the σz basis according to the classical Z2 gauge theory [19, 18]:

H = −Jz
∑

p

Pp (3.1)

where Pp =
∏

ℓ∈p σ
z
ℓ are the plaquette operators as defined in the toric code. Specifically,

we employ a standard classical Monte Carlo method consisting of cluster updates (Z2 gauge
transformations) and local updates (spin flips) to sample spin configurations according to
the Metropolis algorithm. Following a standard Peierls argument, the classical Z2 gauge
theory described by Equation 3.1 can be shown to possess a perimeter to area law transition
in the Wegner-Wilson loop for D ≥ 3 [19, 18, 44].

In this chapter, we will explore the application of a manifold learning algorithm, namely
the diffusion map [20, 21], to the classification of Monte Carlo configurations based on their
topological sector, and hence the identification of the topological degeneracy. This concept
was first proposed in [22], where the diffusion map was shown to be successful in sector
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classification in the context of the classical XY model and the pure classical Z2 gauge theory
in D = 2. Standard clustering metrics were then shown to be successful in identifying
the location of the vortex-antivortex deconfinement transition in the case of the 2D XY
model. We will investigate the ability of the diffusion map to identify the 8-fold topological
degeneracy in the 3D pure classical Z2 gauge theory, as well as the deconfinement transition
of the Wegner-Wilson loop. To begin, we will introduce the diffusion map algorithm.

3.1 The Diffusion Map Algorithm

A fundamental object in unsupervised clustering algorithms is the kernel matrix, which
measures local similarity between points in a feature space. If xα =

(
x1α, ..., x

D
α

)
represents

a single point α in a D-dimensional feature space, then the kernel matrix comparing two
points xα and xβ is denoted K(xα, xβ). It assumes a value of 1 if the points are identical
and tends to zero as the distance between the points tend to infinity. One of the most
commonly used kernel matrices is the Gaussian kernel:

K(xα, xβ) = exp

(
−|xα − xβ|2

ϵ

)
(3.2)

where ϵ is the size of the kernel. Namely, two points with a fixed distance of separation
will generally have smaller similarity for smaller ϵ. In standard clustering algorithms, two
points with a larger value of K(xα, xβ) are more likely to be identified as belonging to
the same category. We notice however, that such a notion is not effective for clustering
points based on global connectivity. Namely, the kernel contains no information about
global connectivity between points in the feature space. There does however exist a class
of clustering algorithms called manifold learning algorithms that are precisely designed
to cluster data based on global connectivity [45], and one example of this is the diffusion
map [20, 21]. While the kernel matrix does not possess any information about global
connectivity, it serves as an important first step in the diffusion map algorithm. We begin
by normalizing the kernel matrix as follows:

Pαβ =
K(xα, xβ)

zα
(3.3)

where zα =
∑

ℓK(xα, xℓ) and Pαβ is referred to as the diffusion matrix. With this normal-
ization, Pαβ can be interpreted as the probability of moving from point α to point β in a
single time step of a random walk. The essence of the diffusion map is to then integrate
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these local connectivities to determine global connectivities: P t
αβ can be interpreted as the

probability of moving from point α to point β after t time steps. For example, if two data
points are present, then P 2

11 = p11p11+p12p21. The first term is the probability of remaining
stationary after two time steps, while the second term is the probability of moving from 1
to 2 in the first time step and then from 2 back to 1 in the second time step. Ultimately,
one can then formulate a global connectivity metric using this diffusion matrix.

Dt(xα, xβ) =

√∑

ℓ

∣∣P t
αℓ − P t

ℓβ

∣∣2 (3.4)

This is called the diffusion distance. Namely, two points with high global connectivity will
have a small diffusion distance, while two points with low global connectivity will have a
large diffusion distance. To see this, note that

∣∣P t
αℓ − P t

ℓβ

∣∣ makes a large contribution for
any point ℓ that is globally connected to solely α or β. While this metric is effective at
computing global connectivity, it quickly becomes intractable. To circumvent this issue,
one can alternatively map the data to diffusion space by diagonalizing the diffusion matrix.
Namely, if the diffusion matrix possesses k eigenvalues and eigenvectors {λi,ψi}, then the
mapping of a given data point xα to diffusion space is given by:

Ψ(xα) =



λ1ψ1(xα)

...
λkψk(xα)


 (3.5)

where ψi(xα) refers to component α of eigenvector ψi. Namely, for each data point x,
there exists one diffusion coordinate for each of the k eigenvectors, with more significant
coordinates corresponding to larger eigenvalues. Following [21], one can show that the
Euclidean distance in this diffusion space is the diffusion distance in the original Euclidean
space. With this mapping, one can finally use a simple k-means algorithm to identify
clusters based on global connectivity. Figure 3.1 shows a simple example, where a diffusion
map is applied to a set of data points, where each data point can clearly be associated with
one of two manifolds: a circle of radius r = 1 and a circle of radius r = 10. Upon mapping
the data to diffusion space, these global clusters become local clusters. In this case, the
diffusion coordinate with the largest eigenvalue is sufficient for distinguishing the two global
clusters, and can be viewed as measuring the radius of any given point. With this, we see
that the diffusion map also serves as a dimensionality reduction technique. Namely, only
the diffusion coordinates with the largest eigenvalues are necessary for distinguishing the
global clusters of points. In this case, while the points live a 2-dimensional feature space,
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the diffusion map successfully identifies that only one coordinate is required to distinguish
the two manifolds, namely the radius coordinate r.

3.2 Detecting Topological Degeneracy

As discussed in Section 2.2, the toric code possesses topological sectors defined by the
presence non-trivial loops of ↓ spins on the torus. The results in distinct topological sectors
and hence a topological degeneracy of the ground state wavefunction for the toric code. As
discussed in Section 2.3, the topological sector to which a given ground state configuration
belongs is generally determined by the sign of the Wegner-Wilson loop observables WCα ,
where Cα represent non-trivial contours on the torus. In the D = 3 case, there are three
distinct non-trivial contours, and hence 8 unique topological sectors. In this section, our
goal is to identify this topological degeneracy by clustering spin configurations according
to their topological sector. Namely, we will use the manifold learning algorithm described
above to identify a unique manifold in configuration space for each topological sector. To
use any clustering algorithm, we require a metric for comparing spin configurations. The
most obvious choice is the standard Euclidean metric:

d2(σα,σβ) =
1

N

∑

ℓ

(
σz
α,ℓ − σz

β,ℓ

)2
(3.6)

where σα represents a single Monte Carlo configuration and ℓ labels one of N = 3×L3

links on the lattice. This however is insufficient for our problem, as it fails to consider
the local Z2 symmetry of the model. As an example, any two ground states that are
equivalent under a global Z2 transformation belong to the same topological sector for
even L, but would have maximal separation and minimal similarity under this Euclidean
metric. Ideally, ground state configurations belonging to the same topological sector should
have zero distance and maximal similarity, if our goal is to identify unique manifolds in
configuration space for each topological sector.

As discussed above, the star operator Ss is the generator of the local Z2 symmetry of
the classical Z2 gauge theory. This implies that any two ground state configurations σ1

and σ2 belonging to the same topological sector are equivalent via gauge transformations.
More precisely, one can always find a string of gauge transformations Ss1 · · ·Ssn such that
σ1 = Ss1 · · ·Ssnσ2. This is no longer the case for two ground states belonging to different
topological sectors, since generating a non-trivial string requires applying a string of local
spin flips of the linear size of the lattice. Motivated by this, we consider a modification
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Figure 3.1: Top: Set of data points. Each data point can clearly be associated with one
of two distinct manifolds: a circle of radius r = 1 (shaded red) and a circle of radius
r = 10 (shaded blue). Bottom: Histogram of first diffusion map coordinate for circle
data. Ultimately, we see that the global clusters in the original space become local clusters
in the diffusion space. In this case, one diffusion map coordinate is clearly sufficient for
distinguishing the two global clusters.
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of the Euclidean metric that involves a preliminary gauge-matching step, which was first
proposed in [22] for the D = 2 case. Namely, for any two spin configurations σα and σβ,

we generate a random sequence of sites {ri}NG

i=1 on the lattice. At each step i, one can
compute σ′

a = G(ri)σa and accept the gauge transformation only if d(σ′
a,σb) ≤ d(σa,σb)

for the standard Euclidean metric defined in Equation 3.6.

Our goal then is to implement the diffusion map algorithm described above using the
Euclidean metric with this preliminary gauge-matching step. Specifically, we apply this
algorithm on spin configurations generated using a Metropolis sampling of Equation 3.1.
For a given temperature, 8 separate Monte Carlo routines are executed, with the initial
configurations of these routines belonging to distinct topological sectors from each other,
so as to allow for the formation of all possible sector manifolds. For a single Monte
Carlo routine and a sufficiently low temperature, such that no local spin flips are applied,
the system will remain in the topological sector of the initial configuration. Assuming
a sufficient number of proposals, all spin configurations in this routine will have zero
distance with respect to each other and hence belong to the same point in configuration
space under the metric defined above. As the temperature is increased, spin configurations
with vison defects will begin to appear, and points in configuration space with steadily
increasing distances from the point representing ground state configurations will begin to
form. Ultimately, this defines a sector manifold, and there exists one of these distinct
manifolds for each topological sector, as is shown in Figure 3.2 for the D = 3 case. We
additionally see that the sector manifold to which a given spin configuration belongs can
be determined by the averaged Wegner-Wilson loop:

W̄α =
1

N

∑
W (i)

α (3.7)

where N is the linear size of the lattice. The sign of W̄α can be interpreted as the proximal
sector, and the value can be interpreted as the closeness to this sector, where W̄α = 0
indicates that the given configuration cannot be uniquely associated to any given sector.
As the temperature is increased, vison pairs or open strings become more prominent, and
W̄α = 0 becomes more likely.

3.3 Detecting Deconfinement

As was shown in [22, 23], the diffusion map algorithm can additionally be used to identify
topological phase transitions, which in our case is the perimeter to area law transition
in the Wegner-Wilson loop. Generally, one expects that as the temperature is increased,
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these sector manifolds expand and eventually merge, since proliferation of vison defects
would allow for the formation or elimination of non-trivial strings and hence would allow
for hopping between sectors. The idea proposed and successfully implemented in [22,
23] is to use the point at which a standard classification algorithm is no longer able to
distinguish these sector manifolds as a signal for the topological phase transition. Following
the mapping of spin configurations to diffusion space, we follow the approach of [23] and
compute a k-means clustering metric known as the Calinski-Harabasz (ch) index for each
ensemble of spin configurations at the temperatures considered. Essentially, the k-means
clustering will attempt to assign each spin configuration to one of k clusters or categories.
The ch index then compares the average inter-cluster distance to the average size of the
clusters. Values of the ch index for various temperatures are shown in Figure 3.3. As is
found in [23], we find that the ch metric is largest close to the critical point, which in our
case is located at a critical temperature of Tc = 1.314.
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Figure 3.2: Left: Average Wegner-Wilson loop observables of Ising configurations generated
from a Monte Carlo for the classical Z2 gauge theory in D = 3 with cluster updates. Eight
independent Monte Carlo runs are executed, each with an initial state corresponding to a
different topological sector. 160 samples are generated in each run. Black dots correspond
to samples with W̄α = 0. Right: Diffusion map construction for Monte Carlo samples. Top
and bottom plots correspond to T = 0.9 and T = 1.3 respectively.
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to diffusion space, a k-means clustering is applied and the ch metric is computed for each
temperature. As was observed in [23] for various XY models, there exists a peak in the ch
index close to the critical temperature.
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Chapter 4

Detecting Topological Order with
Persistent Homology

In Chapter 3, we demonstrated the ability of the diffusion map algorithm to identify the
topological degeneracy and detect the topological phase transition in the Z2 gauge theory.
In this chapter, we will explore another framework for studying the topological order of
the Z2 gauge theory, which will focus on studying the topology of geometric complexes
constructed from Ising spin configurations. This concept has already been explored in the
context of 1D quantum models, 2D XY models and the 3D XXZ model [29, 30, 31, 32].
In these papers, machine learning algorithms are used to classify spin configurations and
hence construct phase diagrams according to their persistence diagrams, which encode the
size and frequency of loop structures resulting from their geometric complex constructions.
The framework for identifying and distinguishing these loop structures is referred to as
persistent homology, which we will introduce below.

In this chapter, our goal will be to identify the closed loop structures resulting from
the local Z2 symmetry using the Vietoris-Rips (VR) complex construction, which can
be understood as a mapping of Ising configurations to a simplicial complex, and will be
introduced below. Upon this construction, we will show that the resulting first Betti
number is largest in the topologically ordered regime, where loops are condensed. We
will additionally show that this first Betti number successfully identifies the deconfinement
transition in the D = 3 case. This work will be unlike the work done in [29, 30, 31, 32] in
that the persistent homology analysis will not be used to construct persistence diagrams
for machine learning classification, and will instead simply be emphasized as a tool for
interpreting the types of loop structures that form in the construction of the VR complexes.
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Before discussing this framework, we will begin with a review of fundamental concepts in
algebraic topology.

4.1 Review of Algebraic Topology

Topology is concerned with global properties of shapes: properties that remain unchanged
under smooth transformations that avoid cutting and pasting. If such a transformation
exists between two objects, then the two objects are regarded as topologically equivalent. In
this section, we will first introduce the concept of homotopy, which will make the notion of
topological equivalence more clearly defined. Following this, we will review homology and
the notion of simplices, which provide a framework for computing homotopy. Finally, we
we will review the Vietoris-Rips complex, which is a formalism for detecting loop structures
and ultimately assigning topologies to point clouds (0-dimensional manifolds).

4.1.1 Homotopy

Homotopy provides a rigorous formalism for establishing topological equivalence between
objects, and is based on the notion of equivalence classes of loops. We say that any two
loops γ1(t) and γ2(t) defined on a manifold M belong to the same homotopy class if there
exists a continuous function H(t, s) on M such that H(t, 0) = γ1(t) and H(t, 1) = γ2(t).
As examples, we consider the two manifolds shown in Figure 4.1, where B differs from A
by the presence of a hole. One can draw infinitely many loops on A, but all such loops can
be continuously deformed into each other. Since all possible loops on A are contractible
to a single point, their respective homotopy class is labelled the trivial class.

Now consider B. Any loop that encloses the hole is not contractible to a single point,
and hence belongs to a nontrivial class. Since loops are allowed to self-intersect, there exists
a new nontrivial class for each winding number around the hole. The set of all homotopy
classes for a given manifold can be used to form a group, where the trivial class is the
identity element and the group operation is the addition of loops. For example, adding
two loops of winding numbers m and n forms a loop of winding number m + n. Such a
group of a manifold M is called the homotopy group of M or π1(M). Since the homotopy
group of A consists solely of the trivial class, π1(A) ∼= 0. Since the homotopy group of B
consists of an additional homotopy class for each winding number n ∈ Z, π1(B) ∼= Z.
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Figure 4.1: Two manifolds A and B and two curves γ1 and γ2. In A, γ1 and γ2 are
homotopically equivalent, since they can be smoothly deformed into each other. However,
in B, γ1 and γ2 are not homotopically equivalent, since γ2 winds around a hole while γ1
does not. Generally, there exists a homotopy class for each winding number around any
given hole.

The subscript in π1 refers to the fact that 1-dimensional loops are used to construct
homotopy classes. π1 is called the first homotopy group or the fundamental group. It is
possible to construct higher order homotopy groups from n-loops, these are denoted πn.
Higher order homotopy groups are necessary for detecting higher dimensional holes. For
example, consider the circle S1 and the sphere S2. 1-loops are capable of detecting the hole
in S1, and ultimately π1(S

1) ∼= Z following the same line of reasoning as above. However,
1-loops are not capable of detecting the higher dimensional hole in S2: all 1-loops on the
surface of a hollow sphere are contractible to a single point. Hence, π1(S

2) ∼= 0. Instead, one
can use 2-loops (two-dimensional closed surfaces). In analogy with the discussion above,
there exists a homotopy class of 2-loops for each winding number around the 3-dimensional
hole. Hence, π2(S

2) ∼= Z.

Generally, a manifoldM withm holes of dimension n has a homotopy group πn−1(M) =
Z⊕ · · ·⊕Z ≡ Zm, since a set of nontrivial winding classes exists for each hole. Ultimately,
these homotopy groups allow for a rigorous notion of topological equivalence. Namely,
two objects A and B are topologically equivalent if πn(A) ∼= πn(B) for all n. One can
additionally define a set of topological invariants known as the Betti numbers, where the
nth Betti number of a manifold M, denoted bn, corresponds to the number of n + 1
dimensional holes of M, and is given by the rank of the nth homotopy group:

bn(M) = rank (πn(M)) (4.1)

Namely, if πn(M) = Zm then bn(M) = m.
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4.1.2 Homology

Homology is a framework for computing homotopy. To begin with, let us consider a general
graph X constructed from cells. Generally, an n-cell is an n-dimensional object, and the
boundaries of an n-cell are n−1 cells. For example, a 0-cell is a point, a 1-cell is a directed
line, and a 2-cell is a oriented disk. Any combination of n-cells is then referred to as n-chain
of the graph X. If Cn denotes the set of all n-chains of a graph X, and ∂n is the boundary
operator of n-chains, it follows that ∂n : Cn → Cn−1. The n

th homotopy group of the graph
X can then be computed via the nth homology group of X:

Hn(X) =
Zn(X)

Bn(X)
=

ker (∂n)

im (∂n+1)
(4.2)

where Zn(X) = ker (∂n) refers to the n-dimensional cycles of X (called n-cycles) and
Bn(X) = im (∂n+1) refers to n-dimensional boundaries of X (called n-boundaries). To
understand the motivation behind this, we consider the two graphs shown in Figure 4.2.
Both graphs possess the same 0-chains and 1-chains, where 0-cells and 1-cells are labelled
by greek and roman letters respectively. However, graph B possesses an additional 2-cell
labelled by A. The boundaries of each of the 1-cells are as follows:

∂1(a) = α− γ

∂1(b) = β − α

∂1(c) = γ − β

∂1(d) = δ − β

∂1(e) = γ − δ

Any 1-cycle satisfies ∂1 = 0. For example, a+b+c forms a 1-cycle, since ∂1(a+b+c) = 0. To
determine all 1-cycles, one can then solve ∂1(n1a+n2b+n3c+n4d+n5e) = 0 where ni ∈ Z,
which yields a system of linear equations. This gives ker ∂1 = ⟨a+ b+ c, a+ b+ d+ e⟩ ∼=
Z⊕ Z ≡ Z2, implying their are 2 independent cycles. Since there are no 2-chains, B1(A) =
0. Hence, the homology of A is given by:

H1(A) =
Z1(A)

B1(A)
∼= Z2

0
= Z2 (4.3)

This is the result one would expect for homotopy: there exists a set of nontrivial homotopy
classes for each independent cycle, since each independent cycle corresponds to a hole.
However, the process has now been reduced to one of simple linear algebra.
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Figure 4.2: Two graphs A and B. 0-cells (points) and 1-cells (lines) are labelled by greek
and roman letters respectively. B differs from A by the presence of an additional 2-cell,
labelled A, which fills one of the cycles.

Now let us consider B. Since A and B are equivalent in terms of 0-chains and 1-chains,
Z1(A) = Z1(B). However, B possesses an additional 2-chain given by A. Hence, B1(B) is no
longer zero. Instead, since ∂2(A) = a+b+c, it follows thatB1(B) = im∂2 = ⟨a+ b+ c⟩ ∼= Z.
Hence, the homology of B is given by:

H1(B) =
Z1(B)
B1(B)

∼= Z2

Z
= Z (4.4)

Once again, this is precisely the expected result for homotopy. Namely, only one of the
independent cycles contributes a set of nontrivial winding classes, since the other is filled by
a 2-cell. This is the motivation behind computing cycles mod boundaries. Any independent
cycle is a hole and hence contributes a set of nontrivial winding classes, unless it is filled
by a higher dimensional cell.

To generalize this method to any smooth manifold, one can apply a preliminary tri-
angulation step, in which the the manifold is first transformed into a simplicial complex
using a homeomorphism (see Section 4.1.3). This general procedure of applying a homology
computation following a triangulation is referred to as simplicial homology.

4.1.3 Simplices

A simplex is a higher dimension generalization of a triangle. If {v0, ...,vn} is a set of n+1
points or vertices, then an n-simplex ∆n is described by the convex hull of these points:∑

i civi where
∑

i ci = 1 and 0 ≤ ci ≤ 1 are the barycentric coordinates. Following this
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Figure 4.3: Illustration of first four simplices. The faces of any n-simplex are n−1 simplices.
Both the 2-simplex and the 3-simplex are completely filled.

Figure 4.4: Point cloud X and associated VR complex Vℓ(X). At a radius of r = ℓ,
connections (1-simplices) form between all neighbouring points. The resulting complex is
homeomorphic to a circle, and ultimately has a first Betti number of b1 = 1.

definition, a 0-simplex is a point, a 1-simplex is a line, a 2-simplex is a filled triangle, and
a 3-simplex is a filled tetrahedron (see Figure 4.3). It additionally follows that the faces
of any n-simplex are (n− 1)-simplices. More concretely, the boundary of any n-simplex is
given by:

∂(∆n) =
n∑

α=0

(−1)α (v0 · · · v̂i · · · vn) (4.5)

where the hat symbol denotes omit and each term in the sum denotes an oriented face of
the simplex. Following this definition, a simplicial complex is simply a set of connected
and disconnected simplices satisfying the following rule: any two simplices that intersect
must share a common face.
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4.1.4 Vietoris-Rips Complex

The Vietoris-Rips (VR) complex is a tool for extending homology to point clouds [25]. As
an example, we consider the set of points X shown in Figure 4.4. As a set of points, X
has no topology (bn = 0 ∀n). However, it is clear that X has an underlying loop structure.
To identify this loop structure, one can consider the ℓ VR complex of X, denoted Vℓ(X).
In this simple case, the Vℓ(X) is constructed by forming connections (1-simplices or lines)
between neighbouring points (all points within a distance of 2ℓ away from each other). The
resulting graph, which is homeomorphic to a circle, clearly has a nontrivial first homology
group given by H1(Vℓ(X)) ∼= Z. Ultimately, the VR complex construction has allowed us to
assign a topology to X, and the underlying loop structure has been successfully identified.

Generally, the r VR complex Vr(X) of a point cloud X is constructed by forming
an n-simplex for every subset of n + 1 data points, denoted {x0, ..., xn} ⊂ X, satisfying
d(xi, xj) ≤ 2r, where d is the selected metric. For a D dimensional point cloud, this can
be visualized as expanding D-spheres of radius r around each point. If the spheres of
two points overlap, a 1-simplex (line) is formed using these points. If the spheres of three
points all overlap with each other, the a 2-simplex (filled triangle) is formed using these
points. Generally, the formation of higher simplices is important for identifying higher
homologies. For example, the nontrivial second homology associated with a 2-sphere can
only be successfully identified under the formation of 2-simplices.

4.2 The Persistent Homology Algorithm

At this point, several questions arise. How does one know what radius to choose? And how
does one measure the significance of these loop features? In regards to the latter question,
one can imagine a scenario in which tinier loop structures exist on the edges of the circle
considered in Figure 4.4. We consider such loop structures, which could be formed for
example due to noise in a dataset, as being of less interest. To address these questions,
one can compute the VR complexes Vr(X) and the resulting homology groups Hn(Vr(X))
for many different values of the radius r. The resulting sequence of VR complexes, with
each element in the sequence corresponding to the formation of new simplices, is referred
to as the filtration [25]. If a given loop structure forms at a radius rb in the filtration and
dies at a radius rd in the filtration, then the significance (persistence) is measured by the
difference in these radii: p = rd − rb.

To illustrate this procedure, we consider the example shown in Figure 4.5. As connec-
tions form and simplices are filled in, holes in the corresponding graph form and disappear.
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In this particular example, two holes, labelled A and B, form at a radius of 2r = ℓ, where
ℓ is the minimal distance between points. Holes A and B then disappear at a radius of
2r = ℓ

√
2 and r = ℓ, due to the filling of simplices. Generally, the radius at which a hole

forms and disappears is referred to as the birth and death of that hole, respectively. The
significance of the corresponding loop structure in the data can then be measured as death
minus birth, which is referred to as the persistence of the hole. In this case, the persistence
of holes A and B are pA = 2ℓ− ℓ = ℓ and pB = ℓ

√
2− ℓ ≈ 0.4ℓ, respectively. Hence, A is

regarded as a more significant topological feature in the data, since pA > pB. Persistence
can be understood in terms of stability [46]: topological features with greater persistence
are more stable against perturbations in the data. Ultimately, this procedure allows one
to detect and measure the significance of all loop structures in the data, and is referred to
as persistent homology.

4.3 Homology for the Z2 Gauge Theory

As discussed in Chapter 2, the ground state wavefunction of a general spin-1/2 string liquid
can be understood as a quantum superposition over all closed string configurations. This
holds if strings are formed over links of the direct lattice for which σx = −1, and similarly
over links of the dual lattice for which σz = −1. Alternatively, these closed strings can be
defined using the VR complex. If σ represents a configuration of spins, then we begin by
defining Xσ as a graph consisting of a 0-simplex (point) at the location of each down spin.
Closed strings can then be identified as nontrivial H1 homologies of the corresponding VR
complex at r = ℓ: Vℓ(Xσ) where 2ℓ is the lattice spacing. Ultimately, each closed string
will contribute to the first Betti number:

b1(σ) := rank(H1(Vℓ(Xσ))), (4.6)

while the size of each closed string can be measured by the persistence. Namely, in the
persistent homology computation of Xσ, each closed string will correspond to an H1 birth-
death point with rb = ℓ, while the size of each closed string can be measured as rd−rb. We
note that b1 accounts for all closed strings except those of minimal size (those generated by
applying a single gauge transformation to an initial configuration consisting of all up spins).
Such loops correspond to H1 birth-death points with rb = ℓ/

√
2 and rd = ℓ. Examples of

closed strings are shown in Figure 4.6 for the case of a D = 2 square lattice.

What about ground state configurations of the classical Z2 gauge theory in D = 3? In
Figure 4.7, we show the VR complexes of graphs Xσ′ and Xσ′′ , where σ′ (σ′′) are generated
by applying one (two) gauge transformations to an initial configuration consisting solely
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of up spins. The complex shown in Figure 4.7a for σ′ holds generally for ℓ/
√
2 ≤ r < ℓ.

Such a complex, which is homeomorphic to a hollow sphere, possesses second Betti number
b2 = 1.

The complex shown in Figure 4.7b for σ′′ holds generally for ℓ ≤ r < ℓ
√

3/2. Such
a complex is homeomorphic to a sphere with 4 holes. This in turn is homeomorphic to
a plane with 3 holes: simply imagine expanding one hole. Hence, the corresponding first
Betti number is b1 = 3.

Applying a string of adjacent gauge transformations can then be understood as “gluing”
planes with holes. Generally, if σn is generated by applying n adjacent gauge transforma-
tions to a configuration consisting of all up spins, then the number of holes is given by
b1(σ

n) = 3n. On the other hand, generating vison defects through spin flips can be under-
stood as eliminating connections (1-simplices) in the complexes considered above. Hence,
vison defects will generally reduce the number of holes, and one expects ⟨b1⟩ to decrease
with increasing T .

4.4 Numerical Results

To generate configuration data for the classical Z2 gauge theory in arbitrary dimensions, we
employ a standard classical Monte Carlo method, consisting of cluster updates (Z2 gauge
transformations) and local updates (spin flips) to sample the state at finite temperature
according to the Metropolis algorithm. Then, persistent homology calculations are done on
this configurational data using the Python Ripser package [2]. To reduce computational
runtime, we set the threshold parameter (the radius r at which to stop the persistent
homology computation) to 2 for the 3D case. It is additionally possible to restrict the
computation to lower homology groups. Furthermore, to account for the periodic boundary
conditions, we use the following modified metric:

d(x,y) =

√√√√
D∑

α=1

min [yα − xα, (xα − ℓ1) + (ℓ2 − yα)]
2 (4.7)

where yα > xα and ℓ2 > ℓ1 are the locations of the boundaries. In our case, ℓ1 = 0 and
ℓ2 = L, and any data point x will correspond to the location of a down spin on the lattice.

Generally, the nth Betti number bn of the Vr complex of a Monte Carlo configuration σ
will be given by the number of Hn birth-death points in the persistent homology compu-
tation with birth value rb ≤ r and rd > r. In the remaining sections, we will compute the
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expectation value of ⟨b1⟩ averaged over an ensemble of Monte Carlo sampled configurations
for various temperatures T .

4.4.1 Two dimensional Z2 gauge theory

We begin by examining the D = 2 case. In Figure 4.8, average loop densities ⟨b1⟩/L2 are
shown for various temperatures and lattice sizes N = 2 × L × L, with 2000 Monte Carlo
samples used for each temperature. We find that the frequency of closed strings generally
decreases with increasing T . This is expected: as the temperature increases, vison defects
(open strings) generate and hence reduce the number of closed strings.

Figure 4.8 additionally reveals that smaller system sizes possess slightly larger loop
densities. In other words, we find that ⟨b1⟩ is not perfectly extensive. Recalling Figure 4.6,
the size of a closed loop can be measured by the corresponding persistence value, which is
given by p = rd− rb. In Table 4.1, we show the total frequency of loops with various death
values and birth value rb = ℓ. Here, we observe that the the frequency of loops with death
value rd = 3ℓ is larger for L = 8, despite being the smallest system size. On the other
hand, loops with death values rd > 3ℓ occur for all sizes but L = 8. This is consistent with
the deviation of ⟨b1⟩ from perfect extensiveness. While their are no dynamics in a loop
condensate, it would make sense that the frequency of loops of larger sizes is restricted by
the size of the lattice. If larger loops are more likely to form for larger system sizes, then
one would expect the average loop density to decrease. Such an argument is weaker when
comparing two larger system sizes, since there is an overall limit to the size of loops that
can form.

This data confirms the general expectation that ⟨b1(T )⟩ decreases with increasing tem-
perature. However, since the 2D gauge theory has no phase transition at any non-zero
temperature, the data in Figure 4.8 shows no sharp features or non-analytic behavior.
One can ask the question whether this quantity behaves different in the presence of a
phase transition. To this end, we next consider the 3D case, which has a critical point at
Tc ≈ 1.314. In other words, we ask under the VR complex construction, can the first Betti
number be used to detect the deconfinement transition between the topologically ordered
and disordered regimes?

4.4.2 Three dimensional Z2 gauge theory

To examine the D = 3 case, we use our Monte Carlo simulation of Equation 3.1 on a
cubic lattice to produce 1000 samples at each temperature for various lattice sizes. Figure
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rd/ℓ
√
2

√
2.5

√
4.5 3

√
10

√
12.5

√
13

L = 8 124.73 151.30 57.47 59.55 0 0 0
L = 16 125.65 150.90 59.99 1.28 35 9 1
L = 24 125.63 149.28 60.16 2.20 164 59 3
L = 32 124.59 149.45 60.14 3.06 562 188 12

Table 4.1: Frequencies of H1 birth-death points with birth value rb = ℓ and various death
values rd. Based on 2000 Monte Carlo samples used to generate Figure 4.8 with T = 0.02.
No vison defects are present. Frequencies for 2 ≤ rd ≤ 3 are divided by L2 and rounded to
2 decimal places to illustrate minimal changes in density.

rb = ℓ rb = ℓ/
√
2

rd/ℓ
√

3/2
√
2

√
5/2

√
3/2

√
2 2 > 2

L = 6 774.52 8.76 0.05 97.65 7.09 13.88 0
L = 10 779.81 8.93 0.10 99.25 10.06 0 3.00
L = 14 778.77 8.85 0.09 98.73 11.27 0 1.09
L = 18 778.82 8.87 0.09 98.81 11.72 0 0.51

Table 4.2: Frequencies of H1 birth-death points over 1000 Monte Carlo samples (divided
by L3). Based on 1000 Monte Carlo samples used to generate Figure 4.10 with T = 0.7.
No vison defects are present. Frequencies are divided by L3 and rounded to 2 decimal
places.

4.9 shows the value of ⟨b1⟩ for various linear system sizes L as a function of temperature.
Similar to the D = 2 case, we find that the first Betti number increases with decreasing
temperature, as expected in the case of decreasing vison defects, and that smaller system
sizes have slightly larger loop densities. Once again, we see that from Table 4.2 that is
due to the presence of larger loops in larger system sizes. Namely, loops with birth value
rb = ℓ/

√
2 and death value rd = 2ℓ occur only in L = 6, while loops with the same birth

value and larger death values only occur in the larger system sizes. Among these larger
system sizes, we see that the frequencies of loops with rd > 2ℓ decreases with increasing
system size, which again agrees with the idea that larger loops are more prominent in larger
system sizes, hence reducing the overall frequency of loops.

The temperature range in Figure 4.9 includes the known value of the critical tempera-
ture in the 3D model, at Tc ≈ 1.314. It is clear from the data that ⟨b1⟩ has a sharp feature
at Tc, indicating that this quantity is sensitive to critical fluctuations that are manifest in
the loop structures present in the spin configurations. Above the critical temperature, we
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see a particularly rapid rise in ⟨b1⟩ as the transition is approached. We find that this can
be accurately fit to ⟨b1(T )⟩ ∼ (T −Tc)

ϕ, where ϕ ≈ 0.544 is an estimate obtained from the
largest system size considered in Figure 4.9.

Finally, we note that the full Betti number (all loops with birth values rb ≤ ℓ and death
values rd > ℓ) is not required to detect this transition. As an example, Figure 4.10 shows
the frequency of loops with birth value rb = ℓ and death value rd = ℓ

√
3/2. As before,

we find that the deconfinement transition is detected by a sharp feature in the average
frequency. Note the exact structure of these loops was discussed in Section 4.3. Once
again, if we assume that the expectation value takes the form (T − Tc)

ϕ for T > Tc, then
we can obtain a value of ϕ ≈ 0.582 from the largest system size considered.
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Figure 4.5: Illustration of persistent homology applied to a set of data points (blue dots).
For any radius 2r < ℓ, no circles overlap, and hence, no connections form. At a radius
of 2r = ℓ, all points within a distance of ℓ from each other form connections. The corre-
sponding graph has 2 holes, labelled A and B. Since these holes form exactly at 2r = ℓ,
they are said to be born at 2r = ℓ. At a radius of 2r = ℓ

√
2, diagonal connections of

length ℓ
√
2 form, and the resulting simplices (triangles) are filled in (pink). Since hole B

is no longer present, it is said to have died at 2r = ℓ
√
2. Similarly, at a radius of r = ℓ,

one final connection forms, and two more simplices are filled in. Since hole A is no longer
present, it is said to have died at r = ℓ. To measure the significance of each hole, one can
compute the persistence as death minus birth. These are given by pA = 2ℓ − ℓ = ℓ and
pB = ℓ

√
2−ℓ ≈ 0.4ℓ for holes A and B, respectively. Since hole A has a greater persistence

than hole B, it is considered to be a more significant topological feature in the data.
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Figure 4.6: Examples of Vℓ complex constructions of ground state configurations of the Z2

gauge theory, where blue dots depict down spins. The first configuration is generated by
the application of a single gauge transformation to a configuration consisting solely of up
spins, which generates a closed string of minimal size. Such a configuration corresponds
to an H1 homology that is born at r = ℓ/

√
2 and dies at r = ℓ. Arrows depict steps

in which single adjacent gauge transformations are applied, which stretches this loop to
greater sizes. In the context of persistent homology, this corresponds to generating loops
of greater persistence. The remaining three configurations correspond to H1 homologies

that are born at r = ℓ and die at r =
{
ℓ
√
2, ℓ
√
5/2, ℓ

√
9/2
}
respectively.

Figure 4.7: Top (bottom): Illustration of VR complex corresponding to σ′ (σ′′), which is
generated by applying one (two) gauge transformations to a configuration consisting solely
of up spins. Blue points depict down spins. Red structures are hollow and beige structures
are filled. The top VR complex of σ′ holds generally for ℓ/

√
2 ≤ r < ℓ. The bottom VR

complex of σ′′ holds generally for ℓ ≤ r < ℓ
√

3/2. ∼= denotes homotopic equivalence.
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Figure 4.8: Average first Betti number of r = ℓ VR complexes of configurations in the
Z2 gauge theory with D = 2. ⟨b1⟩ is averaged over 2000 samples for each temperature.
Standard errors bars defined as 99% Gaussian confidence intervals.
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Figure 4.9: Average first Betti number of r = ℓ VR complexes of configurations in the Z2

gauge theory with D = 3. ⟨b1⟩ is averaged over 1000 samples for each temperature. Dashed
line indicates theoretical value of critical temperature. Location of the phase transition
is correctly identified by a change in the concavity of ⟨b1⟩. Statistical error bars are not
visible.
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Figure 4.10: Average frequency of H1 homologies with birth and death values rb = ℓ and
rd = ℓ

√
3/2. Based on the same Monte Carlo configurations used in Figure 4.9.

38



Chapter 5

Z4 Topological Order in Weyl
Semimetals

In the previous chapters, we discussed topological order in the context of lattice spin sys-
tems. Topological order can also occur in electron fluids, and the most well-known example
of this is the 2D fractional quantum Hall (FQH) liquid. This chapter will be structured as
follows. First, we will provide a brief review of topological order in the context of the 2D
FQH liquid. Next, we will review band topology and Weyl semimetals, which are defined
by the separation of Weyl fermions of opposite chirality in momentum space, and possess
a chiral anomaly response. Finally, we will review an alternative construction of an elec-
tron system with topological order using a Weyl semimetal, which involves gapping a Weyl
semimetal with superconducting pairing and condensing flux 4π superconducting vortices
[33, 34]. We will show that this Z4 topological order can alternatively be constructed from
charge density wave interactions, and will derive the surface state Lagrangian for the BF
theory of this topological order.

5.1 2D Fractional Quantum Hall Liquids

5.1.1 Integer Quantum Hall Effect

The physical setup for the classical Hall effect simply consists of a current travelling through
a 2D slab, and a magnetic field that is perpendicular to the slab. Such a magnetic field
induces a Lorentz force on the electrons, which causes the accumulation of electrons at one
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end of the slab. At a certain point, this polarization of charge induces an electric force
that is equal and opposite to the Lorentz force, which prevents further accumulation of
charge. The resulting potential difference across the slab is called the Hall voltage VH .
The quantum Hall effect refers to cases where the resulting Hall conductance is quantized
in units of e2/h:

σ =
I

VH
= ν

e2

h

where ν ∈ Z. In a 2D electron gas with a uniform magnetic field B, the energy levels are
given by En = ℏωc(n+ 1/2) where ωc = eB/mc and are referred to as Landau levels. The
total number of states that can be occupied by each Landau level are given by Nϕ = ϕ/ϕ0

where ϕ := LxLyB is the total magnetic flux through the sample and ϕ := hc/e is the
magnetic flux quantum. Hence, increasing the external magnetic field B or the area of the
slab A = LxLy increases the number of allowed states per Landau level. Ultimately, one
can show that ν directly corresponds to the number of filled Landau levels, and hence is
referred to as the Landau filling factor [36].

5.1.2 Fractional Quantum Hall Effect

It turns out that it is possible to obtain fractional filling of the Landau levels for certain
values of the external magnetic field. Such phases generally possess topological order. In
the case of Laughlin states, which refer to states with filling factor ν = 1/m, quasi-hole
and quasi-particle excitations can each be shown to have fractional exchange statistics
θ = π/m and fractional charges e∗ = ±e/m [36]. Topological degeneracy then becomes
a direct consequence of these anyons. Following the argument of [36], one can define two
cycle operators T1 and T2, which create a pair of quasi-hole and quasi-particle anyons, and
move these anyons around of two topologically distinct non-contractible loops of the torus,
before annihilating. It follows that T1T2T

−1
1 T−1

2 corresponds to taking one anyon around
the other. For anyons with statistics θ = π/m, it then follows that T1T2 = e2πi/mT2T1. The
smallest representation of this algebra has dimension m:

T1 |n⟩ = e2πni/m |n⟩
T2 |n⟩ = |n+ 1⟩

and hence the topological ground state degeneracy is m. This generalizes to mg on a Σg

Riemann surface [47].
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5.2 Topological Semimetals

As mentioned in the beginning of this chapter, our goal will be to discuss an alternative
construction to topological order in electron systems involving Weyl semimetals. Hence,
this section will be dedicated to reviewing the defining features and resulting responses of
Weyl semimetals. To begin with, we will review topology in the context of band theory,
where we follow along [36, 48].

5.2.1 Topological Band Theory

Let us consider the eigenstates |n(λ)⟩ of a Hamiltonian H(λ) parameterized by λ. If the
parameters λ are varied sufficiently slowly, a system that begins in eigenstate |n(λ)⟩ will
remain in that eigenstate, assuming that this eigenstate at no point becomes degenerate
with any other eigenstate (i.e. there are no level crossings). This famous result is known
as the adiabatic theorem. It follows then that if we begin in the nth energy eigenstate and
complete an adiabatic time evolution along a closed loop in parameter space, such that
λ(t0) = λ(tf ) for initial and final times t0 and tf , then the final state will simply differ
from the initial state by a phase. This phase includes the expected dynamical phase of the
form e−i

´
dtEn(t)/h where En(t) is the energy corresponding to the nth eigenstate at a given

time t. However, it includes an additional contribution known as the Berry phase [49]:

eiγ = exp

(
−i

˛
C
Ai(λ)dλ

i

)
(5.1)

where C defines the closed loop in parameter space and Ai(λ) is the Berry connection:

Ai(λ) = −i ⟨n| ∂λi
|n⟩ (5.2)

Since the Berry phase has no time dependence and depends only on the geometry of the
loop in parameter space, it is sometimes referred to as the geometric phase. In the context
of the differential geometry of surfaces, γ can be interpreted as a holonomy angle, which is
the angle by which a vector rotates upon parallel transport around the closed curve C. Such
a quantity will generally depend on the geometry of the surface being considered, and is
computed as the line integral of the connection along C. In our case, the surface is defined
in the parameter space of the Hamiltonian, and the Berry phase is the holonomy angle of a
state vector after parallel transport around a closed parameter curve representing physical
adiabatic time evolution. One can also define the Berry curvature:
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Fij(λ) =
∂Aj

∂λi
− ∂Ai

∂λj
(5.3)

from which it follows by Stoke’s theorem that:

eiγ = exp

(
−i

˛
C
Ai(λ)dλ

i

)
= exp

(
−i

¨
S

FijdS
ij

)
(5.4)

where S is the region enclosed by C. In the context of surfaces, the integral of the curl of
the connection on an open surface S has the interpretation of the total curvature of S. If
such an integral is computed over an entire manifold M, then the value of this integral
also has a direct relationship to the topology of M:

"
M

FijdS
ij = 2πχ(M) = 4π(1− g) (5.5)

where χ(M) is a topological invariant of M known as the Euler’s characteristic and g is
the number of holes or genus of M. This remarkable theorem, which provides a direct
relationship between local geometry and global topology, is known as the Gauss-Bonnet
theorem. In our context, χ(M) is commonly denoted C and is referred to as the Chern
number or Chern invariant. While a complete proof of the Gauss Bonnet theorem is
complicated, it is easy to see that the integral of the curvature over any closed surface
must be quantized in units of 2π. Notice that in transforming the line integral of the
connection to a surface integral of the curvature, there is some freedom in regards to which
surface to choose. Namely, one can choose either the interior or exterior region. Let us call
the resulting Berry phases γ1 and γ2.

γ1 =

¨
inner

FijdS
ij (5.6)

γ2 =

¨
outer

FijdS
ij (5.7)

Consistency requires that eiγ1 = eiγ2 and hence γ2 = γ1 + 2πC where C is an integer. In
the limit that the interior region is made infinitely small, we obtain:"

S

FijdS
ij = 2πC (5.8)

Equation 5.8 is sometimes called the Gauss-Bonnet-Chern theorem. Interestingly, this
equation reduces to the Dirac quantization condition for magnetic monopoles in the case
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of a spin in a magnetic field. In the case of a particle of charge q moving along a closed-loop
with enclosed magnetic flux ϕ, the resulting Berry phase is given by eiqϕ [36]. This is the
Aharonov-Bohm effect.

Ultimately, we see that integration of the Berry curvature over a closed region in the
parameter space of a Hamiltonian defines a topological invariant C. Namely, the Chern
number C will remain unchanged as long as the topology of the surface defined by the
Hamiltonian remains unchanged. As one could imagine, the robustness of a Chern invariant
to local perturbations in the parameters of a Hamiltonian would be useful in the context
of encoding fault-tolerant quantum information, which is indeed an active field of research
[9]. As we will see, Weyl semimetals are one example of materials with non-trivial band
topology.

5.2.2 Weyl Semimetals

Weyl fermions are described by the massless Dirac equation in odd spatial dimensions [50].
In three spatial dimensions, the massless Dirac equation simplifies to:

i∂tψ± = H±ψ± (5.9)

where H± = ∓p · σ. This describes fermions that propagate parallel or anti-parallel
to their spin, which defines their chirality. Generally, Weyl fermions must always exist in
pairs of opposite chirality. However, Weyl fermions of opposite chirality can be separated
in momentum space. Such materials possessing this momentum-space separation of Weyl
fermions are referred to as Weyl semimetals. To make this concrete, we will review the
example provided in [51], which considers the following Hamiltonian:

H = vF τ
zσ · k +∆τ z (5.10)

where τ is an additional set of Pauli matrices that describes the two nodes. Equation
5.10 describes a single pair of opposite chirality Weyl nodes located at the same crystal
momentum. One can separate these nodes by imposing an external magnetic field:

H = vF τ
zσ · k +∆τ z + bσz (5.11)

To see this, one can diagonalize the σz block of the Hamiltonian upon applying canonical
transformations σ± → τ zσ± and τ± → σzτ±. The Hamiltonian then reduces to:

H± = vF (σ
xkx + σyky) +m±(kz)σ

z (5.12)
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Where m±(kz) = b ±
√
v2Fk

2
z +∆2. We see that m−(kz) = 0 if kz = ±k0 where k0 =

1
vF

√
b2 −∆2. Since the Hamiltonian takes the form H = ±vFσ · k at these values of

kz, gapless nodes hosting Weyl fermions of opposite chirality are indeed present in these
locations in momentum space. Such nodes are referred to as Weyl nodes. In the vicinity
of a Weyl node, the Berry curvature takes a universal form F (k) = ±k/2k3 such that

C =
1

2π

ˆ
F (k) · dS = ±1 (5.13)

where the sign refers to the chirality of the Weyl node. Namely, Weyl nodes can be be
viewed as point sources or sinks of Berry curvature, and hence are topologically protected!
The non-zero Chern number associated with a Weyl node at a given point in momentum
space is sometimes referred to as the topological charge of that point [52].

5.2.3 Chiral Anomaly

The fact that Weyl nodes are topologically protected implies that any responses defined by
the momentum space separation of Weyl fermions of opposite chirality are also topologically
protected. One response resulting from the presence of Weyl nodes is the presence of chiral
edge modes in the region of momentum space existing between the two Weyl nodes. For
the concrete example shown above, [52] indeed shows that there exists chiral zero energy
states localized at the boundary as long as −k0 ≤ kz < k0. Such an interval in momentum
space is referred to as the Fermi arc, and the resulting surface states are referred to as
Fermi arc surface states.

Several more interesting responses can be obtained upon the application of an external
electromagnetic field. Generally, the pairing of Weyl fermions in momentum space can be
understood as as direct consequence of the Nielsen-Ninomiya theorem, which states that
Weyl fermions must generally exist in pairs of opposite chirality. It is however possible
to break this conservation of chiral charge by imposing an external electromagnetic field.
Namely, applying an electric field E over a time interval ∆t will induce a momentum shift
∆p = eE∆t for the charged particles. This is the chiral anomaly and is described as [52]:

∂µj
µ
5 =

e2

2π2
E ·B (5.14)

To see that this anomaly has physically observable consequences, we begin by noting that
this equation can be obtained from the following action for an electromagnetic field:

S = − e2

4π2

ˆ
dtd3rbµϵ

µναβAν∂αAβ (5.15)
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where bµ = (b0,−b) couples to the chiral current jµ5 just as the electromagnetic gauge field
Aµ couples to the ordinary current jµ. Hence, bµ is referred to as the chiral gauge field.
In the context of Weyl semimetals, one can show that b0 and b describe the energy and
momentum space separation of the Weyl nodes [52]. Topological responses can then be
obtained upon varying the action with respect to the electromagnetic gauge field Aµ:

j =
e2

2π2
(E × b) (5.16)

j =
e2

2π2
b0B (5.17)

The first of the two equations describes an electrical conductance that is proportional to
the momentum space space separation of the Weyl nodes: σxy = e2

h
2|b|
2π

. The second of
the two equations describes a current along a magnetic field under the presence of energy
space separation between the Weyl nodes. This is referred to as the chiral magnetic effect
and is described in more detail in [52].

5.3 Topological Order in Weyl Semimetals

In Wang et al. [33], the question was asked as to whether or not it is possible to gap Weyl
semimetals while preserving the electrical and thermal responses resulting from the chiral
anomaly. To begin with, they consider gapping the Weyl nodes with superconducting
pairing. The presence of such interactions breaks translational symmetry due to density
modulations, and breaks charge conservation symmetry due to the formation of a Cooper
pair condensate. They then show that it is indeed possible to restore these symmetries
and ultimately the original chiral anomaly response by condensing flux 4π vortices in the
superconducting order parameter at a Weyl node separation of 2Q = π. In this case,
the remaining uncondensed Φ = nπ loops for n < 4 survive as gapped excitations with
non-trivial statistics. Namely, they show that the intersection of an odd flux loop with
an atomic xy plane induces a Majorana zero mode, which implies non-Abelian statistics
of loop braiding. Furthermore, they show that the intersection of a Φ = 2π loop with
an atomic xy plane induces a semion, which implies non-trivial Abelian statistics of loop
braiding. Hence, the resulting state possesses Z4 topological order. In a follow-up paper
by M. Thakurathi and A. Burkov [34], the hydrodynamic BF theory for this model was
derived. Before proceeding to the work done in this thesis, we will review their derivation
of the field theory for the model first proposed in [33].
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5.3.1 The Hydrodynamic BF Theory

Ref. [34] begins by considering the following Hamiltonian for a gapless Weyl semimetal
[53, 54]:

H =
∑

k

ψ†
k [σx sin (kx) + σy sin (ky) + σzm(k)]ψk (5.18)

where σi describes the pair of touching bands. This Hamiltonian describes Weyl nodes
located at kz = ±Q. The charge and spin degrees of freedom of the electron operator
ψr can be separated by first considering the following parton representation: ψr = eiθrfr
where eiθr represents a charged boson and fr represents a neutral fermion [55]. If nr is
the chargon number operator, then we must have that nr = f †

rfr and that [θr, nr] = −i.
Decoupling of the spinon and chargon variables can then be accomplished by applying a
Hubbard-Stratonovich transformation [56]. This gives L = Lf (χ, arµ, fr) + Lb(χ, arµ, θr)
where χ and ari are the magnitude and phase of the Hubbard-Stratonovich field and ar0
is a Lagrange multiplier which enforces the constraint nr = f †

rfr [57]. Upon the addition
of Bardeen–Cooper–Schrieffer (BCS) pairing, the spinon Hamiltonian takes the form:

H =
∑

k

f †
k [σx sin (kx) + σy sin (ky) +m(k)σz] fk +∆

∑

k

(
f †
k↑f

†
−k↓ + f−k↓fk↑

)

=
1

2

∑

k

f̃ †
k {σx sin (kx) + σy sin (ky) +[m(k)±∆]σz} f̃k

where f̃k =
(
fk↑, fk↓, f

†
−k↓, f

†
−k↑

)
is the Nambu spinor. For ∆ > 1, this describes a

gapped topological superconductor with a chiral Majorana edge mode and a zero-energy
Majorana bound state in the hc/2e = π-flux vortex core [58, 59]. Vortex condensation can
then be achieved upon considering the charge sector of the theory:

Lb = inr (∂τθr + Ar0 + ar0)− χ cos (∆iθr + Ari + ari) (5.19)

Decoupling the cosine term using a Villain transformation gives [60, 57]:

Lb = iJrµ (∆µθr + Arµ + arµ) +
1

2χ
J2
rµ (5.20)
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where Jrµ are integer chargon currents due to minimal coupling with the external
electromagnetic gauge field Arµ, and exist on the links of the square lattice. Integrating
out θr leads to a divergence-free constraint:

∆µJrµ = 0 (5.21)

which implies chargon conservation. This constraint can be solved as:

Jµ =
1

4π
ϵµνλρ∆νbλρ (5.22)

where bµν ∈ 2πZ are defined on plaquettes of the dual space-time lattice. This equation
possesses gauge invariance with respect to the transformation: bµν → bµν +∆µgν −∆νgµ.
Such a constraint on the two-form gauge field can be relaxed by introducing a cosine term:

Lb =
i

2π
(Aµ + aµ) ϵµνλρ∆νbλρ +

1

8π2χ
(ϵµνλρ∆νbλρ)

2 − t cos (∆µαν −∆ναµ + bµν) (5.23)

where αµ satisfies the transformation law αµ → αµ−gµ under the gauge transformation
bµν → bµν +∆µgν −∆νgµ in order to ensure gauge invariance. Since e−iαrµ is the creation
operator for a vortex loop on the link (r, µ) of the dual lattice, the cosine term is a vortex
kinetic energy term [61]. Conventional vortex condensation correspond to t ≫ 1. This
however results in a Meissner term for the gauge field bµν and produces a trivial Mott
insulator with zero electrical Hall conductivity, which would correspond to the condensation
of flux 2π vortices. This can be resolved by again decoupling the resulting cosine term using
a Villain transformation:

Lb =
i

2π
(Aµ + aµ) ϵµνλρ∆νbλρ +

1

8π2χ
(ϵµνλρ∆νbλρ)

2 (5.24)

+ iJµν (∆µαν −∆ναµ + bµν) +
1

2t
(Jµν)

2 (5.25)

where Jµν are integer vortex currents. Namely, ∆µJµν = 0 follows from integrating out αµ,
which is a vorticity conservation law. This can be solved as

Jµν =
1

2π
ϵµνλρ∆λcρ, (5.26)
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where cµ ∈ 2πZ are defined on the links of the original space-time lattice. This equation
possesses gauge invariance with respect to the transformation: cµ → cµ + ∂µf . Integrating
over cµ produces a trivial Mott insulator. However, repeating the same procedure with
a modified vortex kinetic energy term of the form −t cos (∆µαν −∆ναµ + 2bµν) produces
responses consistent with the flux 4π vortex condensation considered in [33]. Namely, the
resulting theory for the charge sector with the addition of a Chern-Simons term gives:

Lb =
i

2π
(Aµ + aµ + 2cµ) ϵµνλρ∂νbλρ −

2i

4π
ϵzµνλcµ∂νcλ (5.27)

Integrating out bµν gives cµ = −Aµ+aµ
2

. One can then justify the interpretation of Jµν as a

vortex current as follows. First, we note that Equation 5.20 simplifies to Lb = (∆µθr − 2cµ)
2

upon varying with respect to Jµ. Minimizing the action then requires that ∇θ = 2c. Then
it follows that:

˛
∇θ · dℓ = 2πn = 2

˛
c · dℓ = 2

¨
∇× c · dS = 4π

¨
J0 · dS (5.28)

where the final equality follows from the fact that J0i describes the magnetic field for cµ:

J0i =
1

2π
ϵijk∂jck =

1

2π
bi (5.29)

From the term J0i∂ταi in Equation 5.25 it follows that [αi, J0i] = i and hence that eiαi

generates a vortex along direction i. The fact that t≫ 1 generates a trivial Mott insulator
before taking bµν → 2bµν in the vortex kinetic energy term implies that eiαi specifically
generates flux 2π vortices. This also follows from the observation that minimal coupling of
Jµν to the two-form gauge field bµν reveals that Jµν describes charge-1/2 semions. Namely,
one can consider minimally coupling the gauge fields bµν and cµ to currents jµν and jµ.
With spinon coupling ignored, this gives:

Lb =
i

2π
(Aµ + 2cµ) ϵµνλρ∂νbλρ −

2i

4π
ϵzµνλcµ∂νcλ + ibµνjµν + icµjµ (5.30)

Setting jµν = 0 and integrating out bµν gives:

Lb = − i

8π
ϵzµνλAµ∂νAλ −

i

2
jµAµ (5.31)
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which reveals that jµ describes charge-1/2 bosons. The first term gives the expected
electrical Hall conductivity σxy = 1/4π. For example, varying with respect to Ax gives:

jx =
i

4π
(i∂tAy + i∂yφ) = − 1

4π
(∂yφ+ ∂tAy) =

1

4π
Ey

With the mean-field assumption that all fields are uniform in the z direction, setting jµ = 0
and integrating out cµ gives:

Lb =
2i

4π
ϵzµνλbµz∂νbλz −

i

2π
Aµϵzµνλ∂νbλz + ibµzjµz (5.32)

The Chern-Simons term for bµz implies that jµz describes particles with statistics θ = π/2.
This follows from the flux attachment argument. Namely, ignoring Aµ and varying with
respect to bµz gives:

jµz =
1

π
ϵµνλ∂νbλz

which implies that a charged particle carries flux Φ = π. Then it follows that the
braiding of one such particle around the other induces a Aharonov-Bohm phase of eiΦ =
eiπ = −1. The second term then implies that jµz describes particles with charge 1/2.
Ultimately, the presence of a charge-1/2 semion is consistent with the expected result for
a flux 2π vortex line. We also note that following cµ = −aµ/2 and Equation 5.28 we have:

˛
∇θ · dℓ = −

¨
∇× a · dS (5.33)

which implies that a vison excitation of the Z2 gauge field describes a flux π vortex.
Hence the vortex current for flux π superconducting vortices is of the form 1

π
ϵzµνλ∂νaλ.

Following the argument from [33], a flux π vortex line induces a Majorana zero mode. Such
a vortex line can also be verified to induce a charge-1/4. Namely, substituting cµ = −Aµ+aµ

2

into 5.27 gives:

L = Lf (−aµ)−
i

8π
ϵzµνλAµ∂νAλ −

i

4π
ϵzµνλAµ∂νaλ −

i

8π
ϵzµνλaµ∂νaλ

which confirms that an odd flux vortex line induces charge-1/4.
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5.4 Weyl Charge Density Wave State

We now consider an alternative construction to this Z4 topological order using charge den-
sity wave interactions. Once again, we begin the Hamiltonian for a gapless Weyl semimetal
given in Equation 5.18. We add the following repulsive electron-electron interaction term:

Hint = U
∑

i

ψ†
i↑ψ

†
i↓ψi↓ψi↑ = −U

2

∑

i

(
ψ†
iσzψi

)2
(5.34)

Decoupling this interaction term using a Hubbard-Stratonovich transformation gives
the following imaginary-time action:

S =

ˆ β

0

dτ

{∑

k

ψ†
k [∂τ +H0(k)]ψk +

∑

i

(
∆iψ

†
iσzψi +

∆2
i

2U

)}
(5.35)

where the auxiliary field ∆i is a charge density wave (CDW) order parameter [62]. We
will take ∆i to be of the form ∆i = ∆cos (2Q · ri + φ) where ri labels a lattice point.
Substituting this form for ∆i and applying the Fourier transform ψi = 1√

N

∑
k ψke

ik·ri

gives:

S =

ˆ β

0

dτ

(∑

k

ψ∗
k (∂τ +H0(k))ψk +

∑

i

(
∆

2

[
ei(2Q·ri+φ) + e−i(2Q·ri+φ)

]
ψ∗
i σzψi +

1

2U
∆2

i

))

=

ˆ β

0

dτ

(∑

k

ψ∗
k (∂τ +H0(k))ψk +

∆

2

∑

k

(
ψ∗
k+2Qσzψke

iφ + ψ∗
kσzψk+2Qe

−iφ
)
)

With a Brillouin zone of −Q ≤ kz < Q, we can rewrite the Hamiltonian as:

H =
∑

k

c†kH0(k)ck +
∆

2

∑

k

(
c†k+2Qσzcke

iφ + c†kσzck+2Qe
−iφ
)

=
1

2

∑

k

c†k+2QH0(k+ 2Q)ck+2Q +
1

2

∑

k

c†kH0(k)ck +
∆

2

∑

k

(
c†k+2Qσzcke

iφ + c†k−2Qσzcke
−iφ
)

=
1

2

∑

k

c†k+2QH0(k+ 2Q)ck+2Q +
1

2

∑

k

c†kH0(k)ck +
∆

2
cosφ

∑

k

(
c†k+2Qσzck + h.c.

)
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Introducing spinor ψk = (ck+2Q, ck) gives:

H =
∑

k

(
ψ†
k

1

2
(1 + τ z)H0(k+ 2Q)ψk + ψ†

k

1

2
(1− τ z)H0(k)ψk +∆cosφψ†

kτxσzψk

)

As in [33, 34], we assume a Weyl node separation of 2Q = πẑ. This gives:

H =
∑

k

ψ†
k (σx sin kx + σy sin ky + m̃ (2− cos kx − cos ky)σz + τzσz cos kz +∆cosφτxσz)ψk

Diagonalizing the coefficient of σz block gives a term of the form m±(k)σz where:

m±(k) = m̃ (2− cos kx − cos ky)±
√
cos2 kz +∆2 cos2 φ

Thus the band dispersion is given by εrs(k) = s
√
sin2 kx + sin2 ky +m2

r(k) where s, r = ±.
It follows that φ = 0 and φ = π are the energetically preferred values of the phase of the
CDW order parameter, since the band gap is maximal for these cases.

5.4.1 Domain Wall States

We would now like to find the analytical solution for the domain wall bound state between
the two CDW ground states: φ = 0 and φ = π. Namely, we consider a scenario in which
φ(z → −∞) = π and φ(z → ∞) = 0. Since the band gap closes at φ = π/2, we expect
a zero energy state to be localized at the interface. Beginning with the Hamiltonian in
Equation 5.4, we apply a unitary rotation in τ space such that τy → −τz and τz → τy.
This gives:

H =
∑

k

ψ†
k (σx sin kx + σy sin ky + m̃ (2− cos kx − cos ky)σz + τyσz cos kz +∆cosφτxσz)ψk

Then applying the canonical transformation τ± → σzτ
± and σ± → τzσ

± gives:

H =
∑

k

ψ†
k (σxτz sin kx + σyτz sin ky + m̃ (2− cos kx − cos ky)σz + τy cos kz +∆cosφτx)ψk
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Taylor expanding the cos kz term to linear order around kz = π/2 gives cos kz → i∂z. Then
assuming kx = ky = 0 gives:

H(k) = iτy
∂

∂z
+∆cosφτx

We would like to solve for the zero energy state Hψ = 0, which we expect to be localized
at the interface between the two phases. Let us assume ψ(z) = τye

f(z)|x⟩. Then we have:

(
iτy

∂

∂z
+∆cosφτx

)
ef(z)τy|x⟩ = 0 ⇒

(
∂f

∂z
+ τz∆cosφ

)
|x⟩ = 0

where we choose τz|x⟩ = |x⟩. Hence it follows that f(z) = −∆
´ z

0
dz′ cosφ (z′). From

τz|x⟩ = |x⟩ it also follows that τzτy|x⟩ = −τyτz|x⟩ = −τy|x⟩. Thus we ultimately have:

ψ(z) = exp

(
−∆

ˆ z

0

dz′ cosφ (z′)

)
|τz = −1⟩

Hence, our zero energy state is indeed localized at z = 0. By this construction we have:

H2D (k)ψ(z) = [σxτz sin kx + σyτz sin ky + m̃ (2− cos kx − cos ky)σz]ψ(z)

= [−σx sin kx − σy sin ky + m̃ (2− cos kx − cos ky)σz]ψ(z)

Thus the Hamiltonian for our domain wall bound state takes the form of a massless 2D
Dirac fermion:

H2D (k) = −σx sin kx − σy sin ky + m̃ (2− cos kx − cos ky)σz (5.36)

5.4.2 Z4 Topological Order

Now let us take the 2D Dirac Hamiltonian from Equation 5.36 and consider applying the
same vortex condensation procedure as in the construction of the hydrodynamic BF theory.
Fourier transforming to real space and coupling to an external electromagnetic field gives:

H =
∑

r

[
i

2
ψ†
r (σi − im̃σz)ψr+ie

iAri + h.c. −2m̃ψ†
rσzψr + iAr0ψ

†
rψr

]
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Once again, we consider the parton representation ψr = eiθrfr and decouple the two
variables using a Hubbard-Stratonovich transformation to obtain L = Lf + Lb where:

Lf = f †
r (∂τ − iar0) fr − 2m̃f †

rσzfr +
iχ

2
f †
r (σi − im̃σz) fr+ie

−iari + h.c. (5.37)

Lb = inr (∂τθr + Ar0 + ar0)− χ cos (∆iθr + Ari + ari) (5.38)

where arµ is the phase of the Hubbard-Stratonovich field and couples the chargons and
spinons. Exactly as before, we add a BCS term to the spinon Hamiltonian to obtain:

H = −
∑

k

f †
k [χσx sin (kx) + χσy sin (ky) + σzm(k)] fk −∆

∑

k

(
f †
k↑f

†
−k↓ + f−k↓fk↑

)

= −1

2

∑

k

f̃ †
k {χσx sin (kx) + χσy sin (ky) +[m(k)±∆]σz} f̃k

where f̃k =
(
fk↑, fk↓, f

†
−k↓, f

†
−k↑

)
. This describes a topological superconductor with a

chiral Majorana edge mode and a zero-energy Majorana bound state in the hc/2e = π-flux
core [58, 59]. Next we consider the charge sector of the theory. Decoupling the cosine using
a Villain transformation gives:

Lb = iJrµ (∆µθr + Arµ + arµ) +
1

2χ
J2
rµ (5.39)

where Jrµ are integer chargon currents defined on the links of the lattice. Integrating out
θr produces a conservation law for the chargon currents:

∆µJrµ = 0

which may be solved as:

Jµ =
1

2π
ϵµνλ∆νbλ

where bµ ∈ 2πZ are defined on the links of the dual lattice. This constraint can be relaxed
by introducing a cosine term:

53



Lb =
i

2π
(Aµ + aµ) ϵµνλ∆νbλ +

1

8π2χ
(ϵµνλbλ)

2 − t cos (∆µϕ+ bµ) (5.40)

To describe the condensation of flux 4π vortices, we consider modifying the cosine term to
be −t cos(2∆µϕ+ 2bµ). Applying another Villain transformation to decouple this cosine
term gives:

Lb =
i

2π
(Aµ + aµ) ϵµνλ∆νbλ +

1

8π2χ
(ϵµνλbλ)

2 + 2iJ̃µ (∆µϕ+ bµ) +
1

2t
J̃2
µ

where J̃µ are integer vortex currents. Integrating out ϕ produces a vorticity conservation
law of the form ∆µJ̃µ = 0 which may be solved as

J̃µ =
1

2π
ϵµνλ∆v b̃λ

where b̃µ ∈ 2πZ. Adding a Chern-Simons term for b̃µ and taking the continuum limit:

Lb =
i

2π

(
Aµ + aµ + 2b̃µ

)
ϵµνλ∂νbλ −

2i

4π
ϵµνλb̃µ∂ν b̃λ (5.41)

which possesses the same responses as Equation 5.27. Namely, the same flux attachment
calculation used above demonstrates that flux 2π vortices induce charge-1/2 semions. Fur-
thermore, integrating out bµ gives:

b̃µ = −Aµ + aµ
2

Plugging this back into the full Lagrangian gives:

L = Lf (−aµ)−
i

8π
ϵµνλAµ∂νAλ −

i

4π
ϵµνλAµ∂νaλ −

i

8π
ϵµνλaµ∂νaλ (5.42)

which implies that visons and hence odd flux vortex loops carry charge 1/4 in addition to
Majorana zero modes. Ultimately, Equation 5.41 can be generalized to 3D by promoting
the one-form gauge field bµ to a two-form gauge field bµν . This expresses the fact that
vortex excitations, which are particles in 2D, becomes vortex loops in 3D.
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5.5 Edge Theory

In this section, our goal will be derive the edge theory of the BF theory given in Equation
5.27. As reviewed in Section 5.3.1, the one-form gauge field cµ and the two-form gauge
field bµν possess gauge transformations cµ → cµ + ∂µf and bµν → bµν + ∂µgν − ∂νgµ. One
can verify that the Lagrangian given in Equation 5.27 is indeed invariant under these
transformations. Namely, the Lagrangian would acquire the following additional terms:

∆L =
i

2π
ϵµνλρ∂µ (f∂νbλρ) +

i

π
ϵµνλρ∂µ (gν∂λcρ) +

i

2π
ϵµνλρ∂µ (zνf∂λcρ)

which vanish upon integration. However, this invariance no longer holds under the
presence of a boundary. Namely, the contribution of ∆L becomes non-vanishing. Following
the approach of Wen for the 2D FQH liquid [35], which is described by a 2+1D Chern-
Simons term, we recognize that gauge invariance can be restored by explicitly gauge-fixing
on the boundary: c0 = 0 and b0µ = 0. Now let us derive the resulting edge theory.
Beginning with the BF term:

SBF =
i

2π

ˆ β

0

dτ

ˆ
d3rϵµνλρcµ∂νbλρ

=
i

2π

ˆ β

0

dτ

ˆ
d3r(c0(∂x(byz − bzy) + ∂y(bzx − bxz) + ∂z(bxy − byz))

+ cx(∂τ (bzy − byz) + ∂y(b0z − bz0) + ∂z(by0 − b0y))

+ cy(∂τ (bxz − bzx) + ∂x(bz0 − b0z) + ∂z(b0x − bx0))

+ cz(∂τ (byx − bxy) + ∂x(b0y − by0) + ∂y(bx0 − b0x))

Integrating out c0 gives ϵijk∂ibjk = 0 which can be solved as bij = ϵij∂igj. Next we note:

−cx(∂ybz0 − ∂zby0) = −(∂y(cxbz0)− bz0∂ycx) + (∂z(cxby0)− by0∂zcx)

+cy(∂xbz0 − ∂zbx0) = +(∂x(cybz0)− bz0∂xcy)− (∂z(cybx0)− bx0∂zcy)

−cz(∂xby0 − ∂ybx0) = −(∂x(czby0)− by0∂xcz) + (∂y(czbx0)− bx0∂ycz)

Integrating out total derivatives and noting that the ∂y terms cancel since we fixed
b0i = 0 on the boundary, these terms simplify to −bx0(∂ycz − ∂zcy) + by0(∂xcz − ∂zcx) −
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bz0(∂xcy−∂ycx). Hence integrating out b0i gives ϵij∂icj = 0 which can be solved as ci = ∂iφ.
Then finally we have:

S =
1

2π

ˆ
d4x (cx∂τ (bzy − byz) + cy∂τ (bxz − bzx) + cz∂τ (byx − bxy)))

=
1

2π

ˆ
d4x (∂xφ∂τ (∂zgy − ∂ygz) + ∂yφ∂τ (∂xgz − ∂zgx) + ∂zφ∂τ (∂ygx − ∂xgy)))

=
1

2π

ˆ
d4x (∂x (φ∂τ (∂zgy − ∂ygz)) + ∂y (φ∂τ (∂xgz − ∂zgx)) + ∂z (φ∂τ (∂ygx − ∂xgy)))

− φ (∂x∂τ (∂zgy − ∂ygz) + ∂y∂τ (∂xgz − ∂zgx) + ∂z∂τ (∂ygx − ∂xgy))

=
1

2π

ˆ
y=0

d3xφ∂τ (∂xgz − ∂zgx)

Following a final integration by parts, we obtain the following contribution to our boundary
Lagrangian from the BF term:

LBF = − ϵij
2π
∂τφ∂igj (5.43)

Now let us consider the Chern-Simons action:

SCS = − i

2π

ˆ β

0

dτ

ˆ
d3rϵµνλρzµcν∂λcρ

= − i

2π

ˆ β

0

dτ

ˆ
d3rc0 (zx(∂ycz − ∂zcy) + zy(∂zcx − ∂xcz) + zz(∂xcy − ∂ycx))

+ cx (z0(∂zcy − ∂ycz) + zy(∂tcz − ∂zc0) + zz(∂yc0 − ∂tcy))

+ cy (z0(∂xcz − ∂zcx) + zx(∂zc0 − ∂tcz) + zz(∂tcx − ∂xc0))

+ cz (z0(∂ycx − ∂xcy) + zx(∂tcy − ∂yc0) + zy(∂xc0 − ∂tcx))

where the translational gauge field zµ allows for a coordinate-independent formulation.
Integrating out c0 gives ci = ∂iφ as above. This holds, since all terms containing spatial
derivatives of c0 simply contribute to the first line of terms. For example, cxzz∂yc0 becomes:

cxzz∂yc0 = ∂y(cxzzc0)− c0∂y(cxzz) = ∂y(cxzzc0)− c0(cx∂yzx − zz∂ycx)
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where the first term cancels since we fixed c0 = 0 on the boundary and the second
term cancels since we assume dz = 0. Substituting ci = ∂iφ into the remaining terms and
integrating by parts gives:

SCS = − i

2π

ˆ
d4x∂xφ(zy∂τ∂zφ− zz∂τ∂yφ) + ∂yφ(zz∂τ∂xφ− zx∂τ∂zφ) + ∂zφ(zx∂τ∂yφ− zy∂τ∂xφ)

= − i

2π

ˆ
d4x∂y(zx∂zφ∂τφ− zz∂xφ∂τφ)

where we note that the additional terms zx(∂y∂zφ − ∂z∂yφ) + zy(∂z∂xφ − ∂x∂zφ) +
zz(∂x∂yφ− ∂y∂xφ) resulting from integrating by parts all cancel. This gives the following
boundary Lagrangian:

LCS =
i

2π
ϵijzi∂τφ∂jφ (5.44)

Overall our surface state Lagrangian is given by:

L = LCS + LBF =
i

2π
ϵijzi∂τφ∂jφ− i

2π
ϵij∂τφ∂igj (5.45)

Let us confirm that this edge theory Lagrangian produces an electrical response that is
consistent with the bulk. To begin, we add a coupling term for the external electromagnetic
field:

L =
i

2π
ϵijzi∂τφ∂jφ− i

π
ϵij∂τφ∂igj +

i

2π
ϵµνλAµ∂νgλ (5.46)

Varying with respect to φ gives ϵij∂τ∂i(zjφ+gj) = 0 and hence gi = −ziφ. On the other
hand, varying with respect to gi gives ϵij∂j(∂τφ − A0/2) = 0 which implies ∂τφ = A0/2.
From the coupling term for the electromagnetic gauge field, we also have that:

ρ = − 1

2π
ϵij∂igj = − 1

2π
ziϵij∂jφ (5.47)

following gi = −ziφ. Then acting 1
2π
ziϵij∂j on both sides of ∂τφ = A0/2 gives:

∂τρ = − 1

4π
ziϵij∂jA0 (5.48)

This is the chiral anomaly equation for an electrical Hall conductance of σxy = 1/4π.
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5.5.1 Propagator

We would now like to study the properties of this edge theory. In the case of the 2D FQH
liquid, doing so requires the addition of a symmetry-allowed term of the form v(∂xφ)

2.
With this term, the resulting electron propagator for a Laughlin state with ν = 1/m takes
the form of a chiral Luttinger liquid [35]:

G(x, t) =
〈
Ψ(x, t)Ψ†(0, 0)

〉
∼ 1

(x+ vt)m
(5.49)

where Ψ = eimφ is the electron operator. This describes a chiral wave propagating with
speed v along the boundary. The symmetry-allowed term v(∂xφ)

2 can in fact be derived
explicitly be generalizing the gauge-fixing condition to be ct = vcx at the boundary and
considering a change of coordinates [36]. For our edge theory described in Equation 5.45,
which includes the one-form field gi, we consider an additional symmetry-allowed term of
the form (ϵij∂igj)

2. Ultimately, we write our full edge theory Lagrangian as:

L =
i

2π
ϵijzi∂τφ∂jφ− i

π
ϵij∂τφ∂igj + vφ (∂iφ)

2 + vg (∂igj − ∂jgi)
2 (5.50)

Integrating out gi gives:

L =
i

2π
ϵijzi∂τφ∂jφ+ vφ (∂iφ)

2 +
1

4π2vg
(∂τφ)

2 (5.51)

For our original case of zx = 0 and zz = 1, this reduces to:

L =
i

2π
∂τφ∂xφ+ vφ (∂iφ)

2 +
1

4π2vg
(∂τφ)

2 (5.52)

To compute the propagator, we need the Green’s function for the field φ:

S =

ˆ
d3x

i

2π
∂τφ∂xφ+ vφ (∂iφ)

2 +
1

4π2vg
(∂τφ)

2

=
∑

qΩ

(
i

2π
qxΩ− vφ|q|2 −

1

4π2vg
Ω2

)
φ(q,Ω)φ(−q,−Ω)

=
∑

qΩ

G−1
φ (q, iΩ)φ(q,Ω)φ(−q,−Ω)
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Hence, the real-space Green’s function for φ is given by:

Gφ(x, z, τ) = 4π2

ˆ
dqxdqzdΩ

ei(q·x−Ωτ)

aΩ2 + bΩ + c
(5.53)

where a ≡ −1/vg, b ≡ 2πiqx, and c ≡ −4π2vφ|q|2. To compute the integral over Ω, we can
simply complete the square and compute the shifted inverse Fourier transform of 1

x2+a2
.

Namely we have:

Gφ(x, z, τ) =
4π2

a

ˆ
dqxdqzdΩ

ei(q·x−Ωτ)

(Ω + A)2 +B
(5.54)

(5.55)

where A = b
2a

and B = c
a
− b2

4a2
. The shifted inverse Fourier transform is given by:

ˆ
e−iΩτ

(Ω + A)2 +B
dΩ = eiAτ π√

B
e−

√
B|τ | (5.56)

And hence the propagator evaluates as:

Gφ(x, z, τ) =
4π2

a

ˆ
dqxdqze

iq·xeiAτ π√
B
e−

√
Bτ

= −4π2

ˆ
dqxdqz

eiq·xeπvgqxτe−πvg
√

q2x+v|q|2τ
√
q2x + v|q|2

= −4π2

ˆ
dqxdqz

eiq·xeπvgqxτe−πvg
√

(1+v)q2x+vq2zτ

√
(1 + v)q2x + vq2z

where v ≡ 4vφ
vg

. In the qz = 0 case, this simplifies to:
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Gφ(x, τ) = −4π2

ˆ
dqx

eiqxx+πvg(qx−
√
1+v|qx|)τ

√
1 + v|qx|

= −8π3

L

1√
1 + v

∑

qx>0

(
eix+πvg(1−

√
1+v)τ

)qx

qx

= −8π3

L

1√
1 + v

L

2π

∑

nx>0

(
e2π(ix+πvg(1−

√
1+v)τ)/L

)nx

nx

= − 4π2

√
1 + v

ln
(
1− e

2π(ix+πvg(1−
√
1+v)τ)

L

)

where we have chosen qx > 0. We can expand to first order if we assume x ≪ L and
ṽ|t| ≪ L where ṽ := πvg(1−

√
1 + v):

Gφ(x, τ) = − 4π2

√
1 + v

ln

(
−2π(ix+ ṽτ)

L

)
= − 4π2

√
1 + v

ln

(
x− iṽτ

L

)
+ CST

Hence, the propagator for our charge operator Ψ(r, τ) = eiφ is given by:

G(r − r′, τ − τ ′) = ⟨Ψ(r, τ)Ψ†(r′, τ ′)⟩
= e−Gφ(0,0)eGφ(r−r′,τ−τ ′)

= e−Gφ(0,0)

(
L

(x− x′)− iṽ(τ − τ ′)

) 4π2
√
1+v

Ultimately, this shows that the edge theory for the BF theory described in Equation
5.27 behaves as a chiral Luttinger liquid along the x direction. Namely, for correlations
strictly along the x direction, the charge propagator reduces to G(x, t) ∼ 1

(x+ṽt)m
where

m = 4π2√
1+v

. Based on this observation, we anticipate that the full surface theory behaves
as a stack of chiral Luttinger liquids that are coupled along the z direction. Ultimately,
developing a deeper understanding of the properties of this surface theory is left as a
problem for future work.
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Chapter 6

Conclusions and Outlook

6.1 Detecting Topological Order

6.1.1 Summary of Chapters 3 and 4

In Chapter 2, we reviewed two of the defining features of topological order, namely quasi-
particle excitations with non-trivial braiding and topological degeneracy, in the context of
the toric code and general Z2 string liquids. In the case of the toric code, the quasi-particle
excitations are defined by star and plaquette operators with negative parities, which are
referred to as e and m particles, and possess mutual semion statistics. Furthermore, the
topological degeneracy is 4-fold: there exists 4 distinct topological sectors differing by
the presence of non-contractible strings of down spins. Ultimately, these properties are a
manifestation of the local Z2 symmetries defining the model. The presence of such local
symmetries forbids the existence of a local order parameter by Elitzur’s theorem. One can
however define the Wegner-Wilson and ’t Hooft loop observables, which are invariant under
these local symmetries, and exhibit transitions between perimeter and area laws with the
tuning of external field parameters.

We consider identifying the topological degeneracy, loop structures and topological
phase transition in the Wegner-Wilson loop using σz configurations sampled from the
classical Z2 gauge theory using a Monte Carlo algorithm. In Chapter 3, we consider an
implementation of the diffusion map algorithm to identify this topological degeneracy by
clustering spin configurations according to their topological sector. Such an idea was
first proposed and successfully implemented for the 2-dimensional case of the classical Z2

gauge theory in [22]. We show that this implementation is successful in the 3-dimensional
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case, and we additionally show that a diffusion map analysis can successfully identify the
location of the topological phase transition, namely the perimeter to area law transition
in the Wegner-Wilson loop, as a peak in the ch metric, which compares the average size
of clusters to the average distance between clusters. The use of a ch metric for identifying
topological phase transitions following a diffusion map analysis was first considered in [23]
in the context of XY models.

In Chapter 4, we consider the application of the Vietoris-Rips (VR) complex construc-
tion and persistent homology to the same Monte Carlo configurations, which is motivated
by the interpretation of the Z2 gauge theory in the topologically ordered regime as a loop
or string-net condensate [16, 17, 6]. The VR complex construction can be understood
as a mapping of Ising configurations to geometric complexes of simplices. We show that
the resulting first Betti number is indeed largest in the loop condensate phase, and hence
propose the first Betti number of VR complexes as a new signature for topological order.
In the 3-dimensional model, we show that this quantity is additionally successful in identi-
fying the topological critical point, and is consistent with a functional form (T −Tc)

ϕ with
an exponent ϕ ≈ 0.544. Rather than using the persistent homology analysis to identify
this critical point following a machine learning classification [29, 30, 31, 32], we simply
emphasis persistent homology as a tool for interpreting and distinguishing the various loop
structures that form in topologically ordered regime.

6.1.2 Comparison of Approaches

From the machine learning perspective, both the diffusion map and persistent homology
analysis have several advantages in comparison to neural network classification for the
identification of phase transitions. Namely, both approaches are unsupervised in that no
pre-labelling of the training data is required, and additionally do not possess any learning
parameters or hyper-parameters. Hence, there is no parameter complexity, and no required
tuning or hyper-parameter grid search. In regards to the sample complexity, we note
that that the preliminary gauge-matching step in the diffusion map algorithm possesses a
heavy bottleneck. Namely, the total number of computations for distances between spin
configurations scales as O(M2NG), where M is the total number of spin configurations
and NG is the total number of proposals required for the evaluation of a single element of
the kernel matrix. On the other hand, we expect that the minimum number of samples
required to correctly identify the phase transition in the homology computation of the first
Betti number decays as 1/L3 for lattices with N = D × LD degrees of freedom, since the
first Betti number is shown to be extensive to a very good approximation.
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We note that while the diffusion map algorithm is unsupervised, computation of the
kernel matrix still requires knowledge of the local symmetry defining the model due to the
preliminary gauge-matching step. Knowledge of the local symmetry is also required in the
construction of any non-local order parameter used to identify the topological order. In
contrast, computation of the first Betti number of the VR complex requires no previous
knowledge of the system, and is completely interpretable. Namely, a general persistent
homology analysis will allow one to identify and distinguish the various loop structures
in any given configuration based on their corresponding birth and death values, with no
previous knowledge of the gauge structure underlying the model.

6.1.3 Outlook for Diffusion Map Analysis

While it is true that the metric defined for the diffusion map algorithm requires knowledge
of the local Z2 symmetry due to the preliminary gauge-matching step, there has been recent
work on using machine learning algorithms to learn gauge symmetries [63, 64]. Hence, it
may be possible to design an algorithm that can detect topological degeneracy without
the need for any pre-existing knowledge of the physical system. Namely, an unsupervised
learning algorithm could be used to first identify the local symmetry defining the topological
order, which could in turn be used in the construction of the kernel for the diffusion map
algorithm. In regards to the bottleneck, it was noticed both in our calculations and in the
pre-existing work [22] that the number of required proposals for gauge-matching is at least
on the order of 103 for minimal system sizes of N = 6×6×2. It may be possible to reduce
the number of proposals and hence reduce the bottleneck by implementing a reinforcement
learning agent [65, 66], with the objective of minimizing the Euclidean distance between
any two spin configurations in the smallest number of proposals.

6.1.4 Outlook for Persistent Homology Analysis

One future model of interest would be the toric code with external field terms hX
∑
σx

and hZ
∑
σz, which can be mapped to the classical 3D Z2 gauge theory with a uniform

field [67]. Such a model possesses two distinct deconfinement transitions characterized by
the condensation of e particles (for hX ≫ 1) and m particles (for hZ ≫ 1). In the 2+1D
membrane picture and the σx basis, hX can be viewed as a parameter for the surface
tension of membranes (since

∑
σx is a string tension term) and hZ can be viewed as a

parameter for the frequency of holes in the membranes (since
∑
σz is a generator for

pairs of e particles) [68]. In this case, we expect that the frequency and persistence values
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for H1 and H2 homologies may serve as useful tools for detecting and distinguishing the
deconfinement transitions.

It would of additional interest to explore the behaviour of these Betti numbers in
phase transitions not characterized by anyon condensation. One example would be the
Haldane phase with hidden Z2 × Z2 symmetry breaking [69]. The prominent structure of
this nontrivial symmetry-protected topological (SPT) phase is closed strings of +1 and -1
spins, as defined by the string order parameter of den Nijs and Rommelse [70]. Another
example would be the transitions between SPT phases and their gauge theory duals. For
example, the transition between the toric code and double semion ground states was studied
in [71] and was shown to possess stripe order. Here, we expect ⟨b1⟩ to be minimal at the
center of the stripe order transition.

Finally, we note that all of the discussion so far has been based on geometric complex
constructions and persistent homology of individual spin configurations. It is however
possible to apply the same analysis to the configuration space, where each point in the
construction of the geometric complex would represent one spin configuration in the Monte
Carlo sampling. Such an idea was considered in [28] in the context of the mean-field XY
model and lattice ϕ4 model. One idea would be to apply the persistent homology analysis on
the diffusion space of Monte Carlo configurations, which can essentially be understood as a
dimensionality reduction of the original configuration space. In this case, we would expect
that the rank of the homology group H0, which corresponds to the number of connected
clusters, would be equal to the number of topological sectors in the low temperature regime
assuming a sufficient number of Monte Carlo samples, and would drop to one at the
deconfinement transition, namely the point at which the sector manifolds merge.

6.2 Topological Order in Weyl Semimetals

6.2.1 Summary and Outlook for Chapter 5

In Chapter 5, we reviewed the defining property of Weyl semimetals, namely topologically
protected gapless nodes hosting Weyl fermions with momentum space separation, and the
resulting chiral anomaly response. Following this, we reviewed a construction for Z4 topo-
logical order, which involves produced a gapping a Weyl semimetal with superconducting
pairing, and condensing flux 4π superconducting vortices [33]. Namely, Φ = nπ loops
for n < 4 survive as non-trivial gapped loop excitations, with odd flux loops possessing
non-Abelian statistics and flux 2π loops possessing non-trivial Abelian statistics.
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We have shown that the same topological order can be constructed from considering
charge density wave interactions in a gapless Weyl semimetal. Namely, at a Weyl node
separation of 2Q = π, there exists two degenerate ground states corresponding to two
different values of the charge density wave order parameter: φ = 0, π. The same Z4 topo-
logical order as described in [33, 34], namely odd flux vortices with non-Abelian statistics
and flux 2π vortices with non-trivial Abelian statistics, can be constructed upon apply-
ing BCS pairing and flux 4π vortex condensation to the Hamiltonian for the domain wall
bound states.

We have additionally computed the edge theory of the BF theory description for this
topological order. The 2D surface state Lagrangian, which is obtained upon imposing a
boundary on the BF theory and gauge-fixing to restore gauge invariance, appears to behave
as a chiral Luttinger liquid along the x direction, since the charge propagator is shown to
be G(x, t) ∼ 1

(x+vt)m
. Ultimately, there is still much to be explored about the nature of

the edge theory, including the nature of transport along the z direction. We leave this
exploration for future work, noting that one possibility may be to follow the approach of
L. Balents and M. Fisher, which studies the 2d chiral surface theory of a 3d quantum Hall
sample using a standard renormalization group [72]. It would also be interesting to explore
work done by X. Chen et al, which studies the surface theory of a (3+1)d BF theory with
a gauged Z2 symmetry [73].
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[64] D. Lozano-Gómez, D. Pereira, and M. J. P. Gingras, “Unsupervised machine learning
of quenched gauge symmetries: A proof-of-concept demonstration,” 2020. arXiv:
2003.00039.

70



[65] J. Jia and W. Wang, “Review of reinforcement learning research,” in 2020 35th Youth
Academic Annual Conference of Chinese Association of Automation (YAC), pp. 186–
191, 2020.

[66] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep rein-
forcement learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34, no. 6,
pp. 26–38, 2017.

[67] I. S. Tupitsyn, A. Kitaev, N. V. Prokof’ev, and P. C. E. Stamp, “Topological mul-
ticritical point in the phase diagram of the toric code model and three-dimensional
lattice gauge higgs model,” Phys. Rev. B, vol. 82, p. 085114, Aug 2010.

[68] A. M. Somoza, P. Serna, and A. Nahum, “Self-dual criticality in three-dimensional Z2

gauge theory with matter,” 2020.

[69] T. Kennedy and H. Tasaki, “Hidden z2×z2 symmetry breaking in haldane-gap anti-
ferromagnets,” Phys. Rev. B, vol. 45, pp. 304–307, Jan 1992.

[70] M. den Nijs and K. Rommelse, “Preroughening transitions in crystal surfaces and
valence-bond phases in quantum spin chains,” Phys. Rev. B, vol. 40, pp. 4709–4734,
Sep 1989.

[71] M. Dupont, S. Gazit, and T. Scaffidi, “Evidence for deconfined u(1) gauge theory
at the transition between toric code and double semion,” Phys. Rev. B, vol. 103,
p. L140412, Apr 2021.

[72] L. Balents and M. P. A. Fisher, “Chiral surface states in the bulk quantum hall effect,”
Phys. Rev. Lett., vol. 76, pp. 2782–2785, Apr 1996.

[73] X. Chen, A. Tiwari, C. Nayak, and S. Ryu, “Gauging (3+1)-dimensional topological
phases: An approach from surface theories,” Phys. Rev. B, vol. 96, p. 165112, Oct
2017.

[74] L. D. Landau, “On the theory of phase transitions. I.,” Phys. Z. Sowjet., vol. 11, p. 26,
1937.

[75] N. Read and S. Sachdev, “Large-n expansion for frustrated quantum antiferromag-
nets,” Phys. Rev. Lett., vol. 66, pp. 1773–1776, Apr 1991.

[76] X. G. Wen, “Mean-field theory of spin-liquid states with finite energy gap and topo-
logical orders,” Phys. Rev. B, vol. 44, pp. 2664–2672, Aug 1991.

71



[77] M. Freedman, C. Nayak, K. Shtengel, K. Walker, and Z. Wang, “A class of p,t-
invariant topological phases of interacting electrons,” Annals of Physics, vol. 310,
no. 2, pp. 428–492, 2004.

[78] J. McGreevy, “Lecture notes in topology from physics,” May 2021. University of
California at San Diego.

[79] J. Knolle and R. Moessner, “A field guide to spin liquids,” Annual Review of Con-
densed Matter Physics, vol. 10, no. 1, pp. 451–472, 2019.

[80] J. Carrasquilla and R. G. Melko, “Machine learning phases of matter,” Nature Physics,
vol. 13, pp. 431–434, May 2017.

[81] Y. Zhang and E.-A. Kim, “Quantum loop topography for machine learning,” Phys.
Rev. Lett., vol. 118, p. 216401, May 2017.

[82] V. S. Dotsenko, P. Windey, G. Harris, E. Marinari, E. Martinec, and M. Picco, “Criti-
cal and topological properties of cluster boundaries in the 3d ising model,” Phys. Rev.
Lett., vol. 71, pp. 811–814, Aug 1993.

[83] V. S. Dotsenko, G. Harris, E. Marinari, E. Martinec, M. Picco, and P. Windey, “The
phenomenology of strings and clusters in the 3-d ising model,” 1994. arXiv:hep-
th/9401129.

[84] D. Sehayek, M. Thakurathi, and A. A. Burkov, “Charge density waves in weyl
semimetals,” Phys. Rev. B, vol. 102, p. 115159, Sep 2020.

[85] T. Senthil, “Symmetry-protected topological phases of quantum matter,” Annual Re-
view of Condensed Matter Physics, vol. 6, no. 1, pp. 299–324, 2015.

72


	List of Figures
	List of Tables
	Introduction
	Topology in Condensed Matter
	Outline

	Review of Z2 Topological Order in String Liquids
	Anyon Excitations
	Braiding
	Fusion

	Topological Degeneracy
	Higher Form Symmetry

	Detecting Topological Order with Manifold Learning
	The Diffusion Map Algorithm
	Detecting Topological Degeneracy
	Detecting Deconfinement

	Detecting Topological Order with Persistent Homology
	Review of Algebraic Topology
	Homotopy
	Homology
	Simplices
	Vietoris-Rips Complex

	The Persistent Homology Algorithm
	Homology for the Z2 Gauge Theory
	Numerical Results
	Two dimensional Z2 gauge theory
	Three dimensional Z2 gauge theory


	Z4 Topological Order in Weyl Semimetals
	2D Fractional Quantum Hall Liquids
	Integer Quantum Hall Effect
	Fractional Quantum Hall Effect

	Topological Semimetals
	Topological Band Theory
	Weyl Semimetals
	Chiral Anomaly

	Topological Order in Weyl Semimetals
	The Hydrodynamic BF Theory

	Weyl Charge Density Wave State
	Domain Wall States
	Z4 Topological Order

	Edge Theory
	Propagator


	Conclusions and Outlook
	Detecting Topological Order
	Summary of Chapters 3 and 4
	Comparison of Approaches
	Outlook for Diffusion Map Analysis
	Outlook for Persistent Homology Analysis

	Topological Order in Weyl Semimetals
	Summary and Outlook for Chapter 5


	References

