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Abstract 

Multiple Criteria Deuson Making (MCDM) is a problem that has been studied 

extensively. Most pitf& are by now wd-known, and many proven algonthms 

permit choices to be made efliciently. But, when the problem is a multiple criteria 

subset selection, new difficulties appear, and mos t algorit hms of MCDM are eit her 

inapplicable or impractical. 

Even when actions are independent. so th& cumulative effects are additive, 

multiple criteria subset selection is a chdenging problem. Moreover, applicable 

multiple criteria subset selection approaches s&er from large computational re- 

quirements. To deal with these difficulties. techniques are introduced for screening 

individual actions when a subset of a large discrete set of independent actions is to 

be selected, both when the number of actions to be selected is given a priori, and 

wlien the subset to be selected must satisfjr several constraints. 

Wlien actions are interdependent the subset selection problem becomes even 

harder . A novel defini tion and characterization of the int erdependence of actions 

in the context of multiple criteria subset selection problems are presented. Most 

of the interdependence discussion can be generalized to sets of actions rather than 

individual actions. Exploration of the main relationships of set-independence and 

action-independence produces several different methods for evaluating a set of inter- 

dependent actions. A general approach to evalnate a combination of interdependent 

actions is proposed and applied to the multiple criteria structure. The effects of 

interdependence of actions on the modeling and resolution of a subset choice prob- 

lem are illustrated, and the importance of taking interdependence of actions into 

account is demonstrated. 

The subset selection problem under interdependence of actions is formuiated as 



a multiple criteria integer program and two solution methodologies are proposed. 

The advantages of these approaches in cornparison to others are discussed. These 

methodologies and associated analytical techniques are applied to an on-going water 

supply planning problem in the Regional Municipality of Waterloo. The results 

indicate both the importance of intadependence of actions and the effectiveness of 

the proposed methodologies. 
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Chapter 1 

Motivation and Objectives 

1.1 Motivation 

MCDM problems naturdy arise in many situations. both strategic and routine. For 

instance, a typical multiple criteria problem takes place when a f d y  uses criteria 

such as pnce, size, distance from shopping and schools, and aesthetics in order to 

decide which house to buy from a wide seiection. Given the expectation of the f d y  

and availability of houses, often tbere does not exist a house that satisfies ail the 

necessities. Hence, the family must trade-off among diEerent criteria to select the 

house t hat gïves maximum satisfaction. Another example is a goverment's decision 

about which combination of alternative sources of energy generation to select in 

order to meet long-term energy demand, while considering cost and environmental 

impacts cnteria. Many methods and theories have been developed during the past 

two decades in both continuous and disaete problems for solving a wide range of 

multiple criteria decision situations. 
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The definition and generation of actions ' is an important step in the process 

of employing MCDM. but one to which little research effort has been devoted 

[63. 129, 1201. For most MCDM tools. it is assumed that the deusion maker de& 

with a predefined and clearly spedied set of actions, perhaps defined by a set of 

decision variables and constraints, from which a preferred action(s) is to be selected. 

In many real world decision problems, the decision rnaka(s) is interested in 

selecting a combination of actions rather than an individual action. For example. 

the manager of a Company might like to select a set of products to manufacture. 

Research and development depart ments often consider a set of project s for analysis. 

Also? a govenunent which is responsible for developing the long term water supply 

for a region may employ a combination of sources. such as ground-water, lakes, and 

river water. to satisfy future demand. 

Situations in whicb a subset of actions is to be selected fkom a discrete set of 

actions have not received much attention in the multiple criteria literature [127]. 

Moving fiom single action selection to multiple criteria subset selection increases the 

complexity of the decision problem. In fact. most available multiple criteria subset 

selection methods for finding the set of non-dominated solutions are applicable 

only to s m d  problems [127]. Hence. it is usefd to develop techniques for removing 

inferior actions before at temp ting to solve the problem through formal methods. 

Several screening approaches have been suggested in the literature. But, most of 

them are only suitable for single action selection. Therefore, there is a need to 

develop procedures for adapting these screening approaches for multiple criteria 

subset selection problems. 

Most multiple aiteria models assume strict independence of actions. Yet inter- 

=In thh research toe discriminate between action and alternative. An action is cusumed to be 
an individual object and by aiternative we m a n  a combination of actions. 
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dependence of actions can be found in many red-world subset selection problems. 

Consider, for instance. the pressing problem of disposing solid wast es. Possible ac- 

tions include using one or more of a number of potential dumping sites, incineration 

at one or more Iocations~ introducing by-laws to reduce the amount of waste gen- 

erated in the Erst place, plus a range of recycling measures. Cnteria may include 

cost, infrastructure reqnirements, environmental risk, potential acceptability, and 

aesthetics. An optimal solution may consist of a set of actions that, typicdy are 

interdependent for one or more of the miteria on which they are to be evaluated. 

O tker examples may include the selection of different products to be produced in a 

h m ,  research and development or investment projects, transport ation routes, and 

cornputer systems. 

Often, interdependence of actions is overlooked or it is treated in some unnaturd 

way which leads to the solutions which are not the best choices [BI]. This is due 

partly to the ill-s truct ure of the interdependence relation, difficulty in formulating 

them, and trouble in measuring the amount of interdependence [112,31]. Recently, 

however, as the importance of interdependence in some applications was recognized, 

techniques were developed for estimating the amount of interdependence of actions 

[IiZ]. 

Interdependence of actions is more crucial in MCDM problems, because different 

types of interdependencies may occur across several codicting criteria and change 

the solutions of the problem. Moreova, the set of non-dominated solutions may 

be changed extensively in the presence of interdependent actions. Even though 

sever al formulations of inter de pendence appear in the literature, all restnct the 

type or extent of interdependence in some ways. 

In this thesis, we present a novel definition of interdependence of actions and 

sets of actions in MCDM and assess the main properties of interdependence using 
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these definitions. The effects of interdependence on subset selection, especidy in 

the multiple criteria fkamework, are exarnined and techniques for evaluating subsets 

of actions that are interdependent according to spe&c criteria are presented. 

1.2 Objectives 

The main objective of tkis thesis is to develop models and associated analytical 

techniques for multiple criteria subset selection problems under interdependence of 

actions. Figure 1.1 depicts the main focus of this thesis. The following are some 

specific goals: 

1. To introduce effective techniques for screening actions when a subset of a 

large discrete set of actions is to be selected. This includes: 

O identifying conditions under which individudy dominated actions can 

be screened out from the set of feasible actions, 

O developing techniques to remove inferior actions when the number of 

actions to be selected is given a priori, and 

proposing techniques for screening individudy dorninated actions when 

the possible subset to be selected is defined by a set of constraints. 

2. To present a general fiamework for independence and interdependence of sets 

of actions in MCDM problems. This includes: 

a analyzing the effects of interdependence of actions in multiple criteria 

subset selection problems, 
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presenting a foundation for the definition and characterization of inter- 

dependence of actions, especially in the presence of multiple criteria, 

O assessing the relationship between the independence of h o  sets and in- 

dependence of their proper subsets, and 

O proposing different techniques to facilitate the evaluation of sets of in- 

t erdependen t actions. 

3. To propose a solution methodology to solve a multiple criteria subset selection 

problem under interdependence of actions. This requires: 

fomulating a discrete multiple criteria subset selection problem under 

interdependence of actions. 

0 exploiting the structure of the formdated problem to propose an im- 

proved solution met hodology, and 

0 developing a methodology that generates a representative subset of non- 

dominated solutions, and overcomes some of the difficulties existing in 

current satisficing approaches. 

4. To apply the suggested solution methodology to a real-world water supply 

planning problem in the Regional Municipality of Waterloo, located in south- 

ern Ontario, Canada. This indudes: 

identifying the critena, available actions and interdependence among 

O constructing a mathematical mode1 that represents all criteria, as well 

as resource and technological constraint s , and 

0 demonstrating the importance of interdependence of actions in the Wa- 

terloo Water Supply Planning Problem. 
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I 

Figure 1.1: The Main Areas of Study in the Thesis 
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1.3 Overview of the Thesis 

This chapter presents the motivation and the main objectives of the thesis. Chapter 

2 presents a brief overview of MCDM concepts and reviews some of the multiple 

criteria subset selection problem approaches. Additionally, the reference program- 

ming methods are discussed in detail. Next, Chapter 3 introduces new techniques 

for screening individual actions in multiple criteria subset selection problem. IR this 

chapter it is assumed t hat t here is not any interdependence arnong actions. Further- 

more, it is shown that usage of conventional dominance procedures for screening 

may eliminate some good actions 60m the set of feasible actions. Subsequently, 

techniques are proposed to examine individnally dominated actions for multiple 

criteria subset selection problems with respect to two specific cases: when the 

number of actions to be selected is specified a priori. and when a set of constraints 

specifies the number of actions to be chosen. 

Chapter 4 focuses on m o d e h g  interdependence of actions in MCDM. The im- 

portance of interdependence of actions in multiple criteria subset selection is shown 

and a general fiamework for interdependence of sets of actions is presented. DifFer- 

ent types of interdependence and important special cases are also discussed. Then. 

the main merences of our definition with conventional definitions of interdepen- 

dence are explained. Following the introduction of interdependence, Chap ter 5 

discusses the evaluation of interdependence of actions. It begins with presenting a 

general formulation for eduating the consequences of a set of interdependent ac- 

tions. Next, several techniques are presented to examine the independence of two 

sets of actions and to evaluate the sets of interdependent actions. Furthemore, in 

this chapter usefùl connections between independence of two sets and independence 

of their propa subsets are explored. Finally, this chapter ends with presenting a 
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new definition of additivity of a set of interdependent actions. Using this definition 

it is shown how to decompose a set of interdependent actions into some subsets 

such that minimum number of interdependence evaluations is necessary. 

Chapta 6 provides a formulation for subset selection problems under interde- 

pendence of actions. Then- two solution methodologies are presented to solve the 

formulated problem. Findy, the main advantages of the proposed methods in 

cornparison with other available approaches are discussed. 

To demonstrate the effectiveness of the proposed methods and to show the 

effects of interdependence of actions on solutions. a real world water resources 

planning problem in the Regional Municipality of Waterloo is studied in Chapter 

7. The experience gained and lessons learned in applying the proposed approaches 

to the Waterloo Water Supply Strategy, are discussed. Subsequently, a summary of 

the accomplishments and main contributions of the thesis are given in Chapter 8. 

F indy ,  this thesis ends by presenting some possible directions for future research. 



Chapter 2 

Background and Literature 

Review of MCDM 

2.1 A Brief Historical Perspective of MCDM 

Today, it is well understood that most decision problems inherently involve choices 

that ought to be judged according to more than one criterion. In fact, MCDM 

problems a ise  naturally in many situations, both strategic and tactical, and MCDM 

methods have been widely applied in public policy. engineering, and design. For 

example, in the selection of plans for a road, cons tmction costs, usage, and expected 

rate and severity of accidents are some of the main criteria. In water resources 

planning, aiteria such as power generation capacity, flood control capability, and 

environmental impacts may be essential. In designing a gear-box, several criteria, 

indnding volume of material, maximal peripheral velocity between gears, width 

of the gear-box, and distance between axes of input and output shafts, should be 

minimized simdtaneously 1881. Increasing the output quality level and reducing 



CHAPTER 2. BACKGROUND AND LITERATURE ReVTEW O F  MCDM 10 

the overall inspection cost are two codicting criteria applicable to the design of 

quality control policies in a production line. 

MCDM dates back to the late 19th century, when the concept of equilibrium 

in consumer economics was introduced by Edgeworth and Pareto [115, 1161. How- 

ever, MCDM became a usefui decision technology in the early 1970s, when the 

applications of operations research extended to strategic Ievels of decision making. 

Specifically, after the h s t  conkence on MCDM. held at the University of South 

Carolina in 1973. the field kas been one of the fastest growing areas in operations 

research, as evidenced by the enormous number of books, journal articles, and 

congresses in both the theory and application of MCDM methods (129, 1181. 

2.2 MCDM: Concepts and Definitions 

MCDM consists of a set of tools to help a Decision Maker (DM) or a group of DMs to 

make a decision by f inding, selecting. sort ing,  or ranking  a set of actions according 

to two or more criteria. which are usually conflicting. A possible set of actions, 

A. may be s p e d e d  explicitly by listing its member, or implicitly by identGing 

a set of decision variables and the constraints they must satisG. The definition 

and generation of actions is an important step in the process of MCDM but one 

to which relatively Little research effort has ben devoted 1129, 63, 1201. For most 

real-world problems there is no pre-existing set of well-defined actions. Most often, 

before, any formal decision analysis can be undertaken, some preliminary work to 

define, combine, expand. or reduce the set of feasible actions is necessary. The set of 

feasible actions can be reduced by removing some inferior actions, ident-g those 

that do not meet some level of acceptability, or that do not meet key performance 

standards on criteria. Despite many potential applications, situations in which a 
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subset of actions (alternative) is to be selected 60m a discrete set cf actions have 

not received much attention within the mdtiple criteria literature [127]. Moreover, 

in many real-world multiple critexia subset selection problems, there are some kinds 

of interdependence among actions. Yet. most multiple criteria models assume strict 

independence of actions. 

The set of criteria. P. by which actions are to be compared, is another element of 

MCDM. There is no consistent definition of a criterion by researchers. Vincke [129] 

defines a criterion as a function f ,  defined on set of actions, taking its values in a 

t o t d y  ordered set. Bouyssou (131 defines a criterion as a tool for comparing actions 

according to a particular significance axis. Finally, Yu [137] expresses criteria as a 

set of h c t i o n s  that are relevant to making a decision.' 

The critaia are nsually in codict with each other, especially if each criterion 

represents the interest of a speciiic group of DMs. For example, building a factory 

in a region may generate job opportunities, but on the other hand rnay introduce 

adverse environmental impacts. Increasing the fkequency of inspection in a pro- 

duction line decreases the number of defects but, on the other hand, increases the 

cost of quality contd .  Thus. it is rare to tind an action that is best accordhg 

to all criteria, and asking for an optimal solution to an MCDM problem does not 

make sense. Rather, one must search for a comp~omise solution that appropriately 

reconciles the different criteria. To find this compromise solution, it is necessary 

to learn something about the DM'S preferences over the criteria. Hence, the role 

of the DM in MCDM is more explicit, and more crucial than in single objective 

optimization. There are many difticdties in introducing value judgments of the 

DM(s) into MCDM problems. One should keep in mind as well that due to the 

bekavioral influence of tradeoffs across criteria, in many situations it is impossible 

'In this thesis, the ternis criterion and objective are wed intemhangeably. 
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to find a solution simply by implementing a mathematical model (1051. 

Once the actions and the criteria are constnicted, one m u t  m e m e  or evaluate 

each actions according to each criteri~n. Most optimization procedures are based 

on the assumption that one can assign a real numbtr to represent the consequences 

of an action according to a criterion. However, in many real-world applications this 

is often a very difficult task. This issue is more important in MCDM, because in 

many MCDM applications some criteria are not quantitative. Often, the natural 

way to express the consequences of actions is by using ordinalinformation, whereby 

the actions are ranked according to each non-quantit ative ait erion. 

MCDM can be dassified into two main branches. Multiple Attribute Decision 

Making (MADM) and Multiple Objective Mathematical Programming (MOMP ) . 
The former applies mainly when the set of actions. A. is defined explicitly by listing 

its finite members: the latter when A is defined implicitly by a set of constraints to 

be satisfied. Usually? in MADM the size of A is s m d  and in MOMP the number of 

actions is large. Even tliough both MADM and MOMP have been used for solving 

multiple criteria subset selection problems, a natural way to tackle these problems 

is through MOMP approaches2. Figures 2.1 and 2.2 shows some of different types 

of MADM and MOMP approaches, respectively. This thesis mainly concerned with 

MOMP problems. 

Without loss of generality, assume that all criteria are to be maximized. Then, 

an MOMP problem can be expressed as follows: 

' A H P  (Andytic Hiemrchy Pmcess) [IO81 and PROMETHE V [15] are among MADM ap- 
proaches that have been used for subset selection problems (see [2] and [108]). 
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Figure 2.1: Some of the Diffèrent Types of MADM Approaches 



Figure 2.2: Some of the DifKerent Types of MOMP Approaches 
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where, f,(z) is the ptli objective function, x is the vector of decision variables and 

X is the feasible space. The main characteristics of a multiple criteria problem 

which distinguishes i t from single criterion problems is that there generdy does 

not &st a solution that simultaneously rnaximizes all of the objectives. A solution 

which is best according to aIl objectives is called the ideal point and is denoted 

where zi = max{ f , ( z ) )  and x E X. Some MCDM approaches use this ided 

point for assessing other solutions. Most theories of MCDM can be characterized 

according to the non-dominated (efficient or Pareto optimal) solution concepta3 

Definition 2.1 A solution x in (BI) is defined to be non-dominated if there is no 

other solzltion z0 such th.at: 

f,(xO) 2 f p ( 4  VP = 17 7 l p 1, 
and fp(xo) > f,(x) for at least one p. 

The set of efficient solutions of X is denoted by Ef f (X). Geofkion [35] introduces 

the concept of propedy eficient solutions. He argues that all members of E f f (X) 

31n thU thesis, eflcient solutions and non-dominated solutiont wiil be used interchangeably. 
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may not be considered as reasonable solutions and a rational DM would always 

choose an action which is propdy efiicient. 

Definition 2.2 Solution x is properly ejîcient,  i f  it is eficient and for any y E X 

and any criterion p; the following ratio Ls bounded above for some k[35]: 

The above ratio shows the improvement in criterion p divided by the decrement 

in criterion k with cliano$ng a decision fkom x to y. Hence, if this ratio is not 

bounded fkom above. a very small decrement in the criterion II  leads to a very large 

improvement in criterion p and a rational DM usually prefers this exchange [102]. 

Nevertheless, in most practical problems, the concepts of efficient and properly 

escient solutions are not very different. The improper eficzent solutions can only 

occur in some specific types of nonlinear multi-objective and multi-criteria discrete 

optimization problems with an infinite number of actions. For more description 

and examples see [118]. 

Basically, in single objective problems, the study is conducted in a decision 

space. However? in multiple objective programrning, it is more convenient to trans- 

form the feasible region in the decision space X into a feasible region in criterion 

space ', 2. Hence, a feasible region in criterion space is the image of X under f,(-) 

for all p. The following example illustrates this concept. 

lNote thot, for the sin& objective problena, the feasible region in criterion space is a stmight 
line segment. 
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Figure 2.3: The Set of Feasible Actions in (a)Decision Space. (b)Criterion Space 

Example 2.1 Consider the following 2-criterion problem. 

Figure 2.3a shows the set of feasible points in the decision space and Figure 2.3b 

shows the set of feasible solutions in the criterion space. Every extreme point in X 

corresponds to an extreme solution in 2. Any solution that lies on the line 23 - z4 
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is an efficient solution. Likewise, all points on line x3 - z4 are efficient point S. 

Much research has been devoted to finding effective ways for obtaining the set 

of efficient solutions [102]. Geofion's theorem provide some basic research ideas. 

Consider Problem B 1. 

Theorem 2.1 I f  x EX mmimizes 

for some A,  where A, E A and 

then x is an escient  sohtion [35]. 

The above theorem iiidicates that regardless of the shape of the feasible space and 

fP(.)? if x is the maximal solution of the convex combination of all criteria, then 

x is efficient. However. this theorem provides only a necessary condition. To be 

suscient more conditions are required. 

Theorem 2.2 If X is convex, let z E X be eficient.  Then there ezists A E A in 

which action z is a maximum solution of (2.2) [35]. 

Due ta 

explore all 

ming. 

the convexity assumption of Theorem 2.2, Geoffrion's theorem cannot 

extreme efficient points in non-convex discrete and nonlinear program- 
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For the linear case. the solution of (2.2) is basically the set of non-dominated 

eztreme points, and if the DM'S tnie atility fanction is nonlinear (which is the 

case in most situations). then it is possible that his best solution will  not lie on 

the extreme points. To liandle this, methods have been developed for generating 

otlier non-extreme efficient points. These methods are mainly based on the convex 

combinations of the extreme efficient points [118, 1021. 

Another concept of efficiency is weak-eficiency or quasi-eficiency, which is de- 

noted by Qe(X). Consider Problem BI, 

Definition 2.3 Soliltioii x b called quasi-eficient i f  there does n o t  ex& another 

sol-ution xo such that [118]: 

By setting X > O in (2.3).  Theorem 2.1 produces quasi-efficient solutions. Quasi- 

efficiency is a more relaxed definition of efficiency and one can observe that: 

The notion of efficiency is especidy important in studying deterministic prob- 

lems. although selected concepts such as stochastic dominance, mean vanance dom- 

inance, probability and utilzty dominance have &O been defined in the MCDM lit- 

erature 11371. Note that efficiency is weaker than optimality in the sense that in 

most cases there exist many efficient points but no ideal point. Hence, after finding 

the set of efficient soiutions the DM stiU must choose one member of this set. 
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2.3 Overview of Multiple Objective Mat hemati- 

cal Programming 

One important feature of MCDM is the great diversity of developed procedures. In 

fact, the wide variety of methods has encouraged some researchers to build models 

for selecting the best MCDM approach in some general and specsc application 

areas [53, 491. In this section, some of the w d  known MOMP approaches that 

will be addressed in upcoming sections are discussed. One can classiS. MOMP 

approaches according to Iiow and when preference information is articulated: 

1. A priori preference information. 

2. Progressive articulation of preference information, and 

3. Posterior preference information, 

Below each of these approaches are bnefly explained. 

2.3.1 A priori preference information 

A prion preference information methods of MOMP begin with an exploration of 

the value function of the DM. Once the preference structure of the DM has been 

assessed, all objectives are aggregated into one, thereby changing the problem to 

a single objective optimization problem. In most cases, assessrnent of the DM's 

value function is quite dScult  and involves a great deal of subjectivity. Many 

theories and procedures have been developed for determination and characterization 

of the DM's preference structure for bot h deterministic and probabilistic cases. The 

capability of these procedures in conditions of uncertainty, and their usefuhess foi 
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sensitivity analyses are among th& advantages (601. In addition, the theoretical 

foundations of these methods add to t heir at tractiveness. However, t hey generally 

require the assumption that a vaiue function exists, and often that it is additive; 

even if one is prepared to make these assumptions. it may be extremely difEcult to 

construct a value fnnction in practice. It is worth mentioning that these approaches 

have been mainly used in MADM. In addition to the additive form of the value 

function, others snch as multiplicative, polynomzal. partially additive, and so on, 

have b e n  proposed in the literature. 

2.3.2 Progressive articulation of preference information 

Due to the great difficulty of determining a DM'S preference explicitly, many proce- 

dures try to elicit ihem progressively. Methods that alternate between computation 

and interaction with the DM are called interactive. The process starts with little 

or no preference information. At each iteration, a set of solutions (usually, non- 

dominated solutions) is presented to the DM. As each solution is examined, the DM 

decides upon the updated preference information and inputs it into the model. The 

process terminates when the DM is satisfied with the solution currently proposed 

by the model. 

The f i s t  interactive method called STEM, was proposed by Benonyan et al. 

in 1971 (81. Although originally proposed for solving linear problems, its structure 

permits it to be applied to integer and nonlinear problems. This procedure is 

based on reducing the feasible space by adding more constraints, obtained through 

interaction with the DM. The augmented weighted Chebyshev method is used for 

assessing the compromise solution at each s tep. 

The GDF method of Geofbion et al. [36] is another interactive approach to 
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MOMP. Using an impliut utility fnnction, this method attempts to find the best 

solution using the Frank- Wolf gradient algorithm. 

The method of Zionts and Wallenious [142] is applicable to linear problerns. 

Relying on the assumption that the DM'S utiIity function is pseud~concave, this 

met hod generates extreme efficient points at each iteration. Adjacent extreme 

points are compared by the DM and this information is added to the mode1 for the 

next iteration. 

The method of Steuer and Choo [119] generates samples of the efficient points 

by using the augmented weighted Chebyshev nom. Using a filtering algorithm, 

this method gives a pre-specified number of efficient points, that are dispersed 

tkroughout the space of efficient solutions, and can be considered representative. 

For fnrther information about other types of interactive method see S teuer [118]. 

2.3.3 Reference Programming 

One of the main class of approaches which are used both as a prion preference infor- 

mation as well as in progressive articulation of preference is reference programming. 

The main concept of reference programming is based on a rationality frame- 

work, cded satisficing (a combination of satisfactory and sufficient) decision mak- 

ing proposed by Simon [114]. For many organizations, a solution that is as close 

as possible to a goal is more acceptable than an optimal solution. This reflects the 

fact that usually mal-world problems are dynamic, prone to error in measurernent, 

under time pressure, cornplex, and ill-defmed. The goals or aspiration leuels to be 

satisfied may be based on past performance, the DM'S intuition, the level of corn- 

petition, etc. Moremerl these goals are not fixed. and can be changed to reflect 

a circumstance such as the difficulty of reaching previous goals. Eilon [26] states 
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that "optimizing is the science of the ultimate and satisfiüng is the art of feasiblen. 

In fact, the idea of using heuristics to address a problem is inspired by the idea 

of satisfichg, an acceptable and usudy good solution in hand is better than an 

optimal solution in the bush. The satisficing approach is sometimes c d e d  bounded 

rationality. Below, t k e e  main methods of reference programming are discussed. 

Goal Programming 

One popular method w l k h  is designed primarily for use with a priori preference 

information is Goal Progamming. Goal Programming (GP) is perhaps the first 

formal technique of MCDM. The term GP was first used by Charnes and Cooper 

in 1961 [19]. This method kas been recognized as the most popular and most 

accepted method in MOMP [134, 571. Different versions of GP have been proposed 

in the literature. The fundamental idea is that the best solution is as close as 

possible to some predefined goals. Therefore, one must implement the following 

two s teps before solving the problem: 

specify the level of goals for all  criteria, 

define the distance metric, to measure the closeness of feasible solutions to 

the target. This distance metric is usnally c d e d  the achievement function. 

It is assumed that the DM can spe+ the desired goal (G,) for each objective. 

Therefore, problem B1 can be written as follows: 
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Subject to : 

The information in parentheses on the left shows the goals specified for different 

objective functions. Tlie achievement function in GP is to minimize the deviations 

(positive and/or negative) from DM'S aspiration level, according to a distance func- 

tion. The achievement function in GP is based on the following general distance 

metric: 

where w p  is the importance of the deviation &om goal on pth criterion? & > O is the 

normalizing constant for ptli criterion. and Gp is the aspiration level on criterion p. 

Note that the above expression does not differentiate between positive and neg- 

ative deviations. In more general case. one can assign different penalties for over- 

achievement and under-achievement. Charnes and Cooper [19] define the following 

change of variables: 

whese d: and dg represent negative and positive deviations koom a specified goal 

on criterion p. Adding (2.7) and (2.8) gives, 
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Su bs ti tu ting t his in t hc achievement function (2.6). 

Biit. d:.d; = O. because botli positive and negative devintions cannot be sirnulta- 

ncously nonzero. Hencc. (2.10) can bc written as: 

(2.11) 

Ori the otlier liand. siil~tracting (2.8) from (2.7) givcs: 

whicli can be servecl as n god  restriction for the ptli objective function. It follows 

tliat taking into accoutit botli (2.7) and (2.8) the adlievernent function is equivalent 

to: 

(B3) Subject t o  : 

Program B3 dong witli the original constraints of (B2) constitute the generd 

structure of a GP prohlem. Using different values of a for measuring the o v e r d  

distance of the objectives from goals leads to different types of GP  techniques. By 

increasing the value of a. more empliasis is given to the largest deviations frcm 

goals in (B3). Wi t h a = 1 t lie achievement function is a simple additive func tion. 
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In this case. the GP problem is c d e d  Archemedian (weighted) GP. 

IPI IPI 
Minirnize z = wp ($1 - 1 wp (5) . 

p= l  p=l 

Subject t o  : 

.Uso. when a = 2. t l i ~  aclLievernent function is an Euclidean function given as 

follows: 

Minimize ,- = 
p=l  

Tliere lias been little usage of the EiicLidean achicvement fiinction in GP applica- 

tions. Setting a = oc leads to minirnax or Chebyshev GP. In this case. o d y  the 

largest deviation from tlic goal is taken into accoiint. 

Therefore. selecting a = 1 and nssuming that objective functions have been 

norrnalized. the G P  foriiiulation of (B2) can be represented as follows: 

P l  
(B4) Minimize wp d; . 

p=l 

Subject t o  : 
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Note that because tlie objective function in the original proaam is maximization. 

the positive deviations do not have any penalty and therefore have been omit- 

ted in (B4). The GP problems can be solved with most standard mathematical 

propamming procedure and software. Hence, it can be supported by strong sensi- 

tivity analysis capabilities of these procedures such as shadow prices and analyses 

of ranges. 

In spite of the above mentioned advantages. one should be very cautious when 

applying this approacli. Except to tlie Chebychev type. the same assumptions as 

multi-attribute value tlicory are necesswy in GP siich as additive independence of 

nttributes. ratio scdetl weights. and interval scdcd attribute value function [52]. 

Moseover. if the goals are assigned at or greater tlian ideal point. the Archemedian 

GP chosses the same solution as linear additive function. 

The most critical problem in GP is that sometimes the optimal solution may 

be dominated. This plienomenon was f i s t  noted by Zeleny and Cochrane [141] 

and Colion and Marks [2]: and afterwards discussed by oth« researchers. The 

following example demonstrates this issue for a simple integer problem: 

Example 2.2 Consider t lie following multiple crit eria integer program: 

Maximize f l ( x ) = x l ~  

Maximize f 2 ( x )  = t2 

Subject to : 

21 + 2 2  5 7 

xi I 5 ,  X? < 5: 

x l , x z  integer. 
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Optimal Solution 

Figure 2.4: Tlic Dominated Solution in Goal Programming 

Figure 2.4 shows the fcasible criterion space. Assume that the DM assigns (7.1) 

as the goals for first aiid second criteria, respectively. witli equal importance for 

deviations fsom the goal ou eacli critcrion. The Arcliemedian GP formulation is. 

Minimize d; + d; 

Subject to : 
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T h  optimal solution is f;(x) = 5 and f;(x) = 1. Tlus solution is obviously 

doniinated by (fi(x) = 5. f2(x) = 2).  as shown in Figure 2.4. The solution is dso 

do~ninated for the corrcsponding Chebyshev GP. 

Anotlier difficulty in GP  nrises when the levels of gods are significantly different. 

In tlGs case. regmdlcss of the importance of each criterion. the mode1 may yield a 

solution in favor of the criteria with large levels. 

Compromise Programming 

To be as close as possible to an ideal  point. that is. a point which is the best from 

,dl points of vicw. is a ratiorial approacli [139]. Based on tliis idea. Zeleny proposes 

the compromise prograiiiming method. He believes t i n t  tlie DM makes tradeofE's 

aniong actions with respect to thek distance from an ideal point and lie selects the 

closest point. Tliereforc. similar to GP. cornpromisc programming is based on a 

rcfcrence point and a nlcasuie of dis tance in wlucli the reference point is the ideal 

point and the rneasure of distance is the family of weiglited La metrics as follows: 

wliere ri is the optinid solution of objective function p. A point which minimizes 

tliis metric is considered as a solution. By clianging the value of parameter a. 

(1 5 a 5 CO), the compromise set (C(A))  will be constructed. This set. for w, > 0' 

is dways efficient. givcii tliat at least one solution for a = m is efficient [102]. For 

tliis case, one can observe tliat: 
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Furthermore. Zeleny argues that humans strive to be as far as possible from an 

anti-ideal (nadir) point. Tlierefore, one could also build up a compromise set based 

on tlie <uiti-ideal point and select the points whicli are in both sets as a best repre- 

sentative of the ~ r e f e ~ ~ c d  solution [139]. 

Reference Point Method 

As explained before. one of the main criticism of GP is tliat an optimal solution of 

tliis approacli may be do~uinated. This weakness of GP lias led to the development 

of an approacli. ciillctl tlic reference point metliod. Tlie reference point method of 

Wicrzbicki [135] is a iiitiltiple criteria approacli bascd oii tlie satisficing concept.= 

In the reference point iiictliod. tlie aspiration level s~ecified by the DM is projecteci 

oiito the non-dorninatctl space. Hencc. even if a DM underes timates the aspiration 

level. the mode1 does iio t generate dominated solutions. 

Tlre reference point inethod uses a scalarizing function similar to the Cheby- 

sliev norm, to find a solution close to an aspiration level. Sawaragi e t  al. [110] and 

Wierzbicki [13û] liave sliown that the Chebysliev norm type is tlie only scalarizia- 

tion function that proctiices non-doininated solutions. regxdlcss of t hc structure of 

the problem. However. a scdariziation function of Chebysliev norm may also pro- 

duce quasi-efficient soli1 t ions. To exclude quasi-efficient solut ions. an augmented 

Clicbyshev norm is uscd in tliis metliod. Hence. tlie reference 

duces efficient solutions in nonlinear as well as cliscrete multiple 

[77l 

point method pro- 

objective problems 

Let q E ~ l ~ i  be a. reference point in tlie criterion s ~ a c e . ~ .  Then? a typical 

' Wierzbic& colis his upproach a quasi-satisficing method. 
GNote that the refercnce point does not need tu be in the feasible criterion space. 2. 
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scdarizing function usctl in tlie reference point metliod is 

IPI 

wliere c is a sufficiently small positive number. Tlie amount of w, is usually cal- 

culated according to tlie values of ided and nadir points of the problem (see, for 

example, [84]). A quasi-sntisficing solution is ob t iuned by solving the following 

program: 

(B5) Minimize S(q. z.  t u )  

Subject to  : z E X. 

The main clifference bctween the function in (2.16) and other types of functions used 

in goal or compromise progmming is that the aspiration level ? does not need to 

bc ilnattainable in ortlcr for the progr'un to acliicve efficient solutions. because 

tliis function remains irionotone. even if the reference point is located inside of 2. 

In other words. depeiiding upon the location of the reference point. this function 

swit ches from miiGmization to maxiniization [TT ] .  Note tliat the reference point 

inetliod is usually uscd in an interactive manner. Hence. the DM can changes lis 

aspiration level at eacli iteration. 

2.3.4 Posterior preference information 

Pos tcrior preference information metliods s t art by solving the problem without ar- 

ticulating the prefercnce structure. Tlien a compromise solution is obtained by 

assessing the preferencc structure. Usually, the first step is carried out by vec- 

 a an^ diflerent Xinds ofscalarizingfinctions haue been proposed for the rejerence point method. 
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tor optimization. by  wliich a set of efficient solutions. or a subset, is generated. 

Tliree main approaclies for generating efficient solutions are the .wezghted approach 

which uses the Geofiion's theorem. kth objective E-constraint. and k- th  objective 

Lagrangian approach. Firiding the set of efficient solutions in situations for which 

tlie decision space is not convex (sucli as in subset selection problems) is a diffi- 

cult problem. The next section reviews the main techniques a d a b l e  to deal with 

multiple objective intcger problems. 

Discrete Multiple Objective Mathematical Programming 

Coinbinatorid optimiantion is a powerful tool for niniiy red-world applications. De- 

spi t e recent improvemcti t s in bo th coriibinntorid ancl multiple crit eria op timization. 

t licre have been few advatices in multiple criteria combinatorial optimization. In his 

bibliograpliy on the applications of multiple criteria optimization. White [134] listed 

more than 500 papers. iticluding only a few on multiple criteria combinatorial prob- 

Icnis. This is due partly to the inlierent difficulty of combinatorial optimization. 

wliich becomes more tlificult by int roducing multiple objectives. Hence. because 

of the many applicatioiis usiug this niethod and its cunexit theoretical weakness. 

this field is considered an important cliallenge for future research [127]. 

Geoffrion's t licorenis . wliich provide the fundanient al procedure for finding effi- 

cient points; cannot find ail efficient solutions of discrete problems. Thus. obtaining 

the set of efficient points in multiple criteria discrete problems is generally quite 

difficult . Consider the following problem: 
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(B6) Maximize f,(x)=C,z: Q p ~ l P l  

Subject to  : 

x E X  

32 E {O, 1): 

wliere C, is a vector of size 1 A 1. Due to the non-convexity of (B6). Geofiion's 

theorem can only find the Svpported Eficient solutions. Unsupported efficient 

solutions are efficient points which are dominated by some convex combination of 

otiicr efficient points. Tliesefore. those efficient solutions which ,are unsupported 

(convex dotninated) rciiiain l~idden. In Figure 2.5. z5 and za are unsupported 

efficient points whch  arc dominated by the convex combination of z4 and 2'. Due 

to tùis fact and the inlicrent differences between discrete and continuous problems. 

mos t of the theories and procedures developed for multiple criteria continuous (and 

e s ~ e c i d y  linear) problcxiis are not applicable to discrete cases. In some applications 

sucli as sliortest-patli problems. using Geofiion's tlieorem as an approximation 

mcthod to find a subsct of efficient solutions may omit large portions of efficient 

solutions [IXI]. 

Tegliem and Kunscli [125] review interactive models in multiple objective intcger 

Iinear programming. Tliey state that because of the great difficulty of finding all 

efficient points in int eger cases, interactive methods are quite useful. However, 

they criticize mos t interactive procedures for asking the DM too many questions. 

Rasmussen 1991 reviews multiple criteria zero-one prograrnming and concludes that 

the study of this area of research lias not advanced very far: most methods can be 

used only for srnall problems. One procedure for solving multiple criteria zero-one 

problems is proposed by Pasternak and Passy [go]: who use a variant of Balas' filter 

rnethod. 
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Figure 2.5: Tlie Unsiipported Efficient Solutions 

Bitrail [SI proposes mi iniplicit enumerntion rnetliod tliat gencrates ,d efficient 

points for multiple cri tcrin zero-one problems. He introduces a relaxation of (336) 

as: 

(B7) Maximize fJz) = C,z: V P ~ P  1 
Subject t o  : 

z E {O. 1). 

He argues that dl efficicnt points of (B7) tliat are feasible in the original Problem 

me also efficient in (B6). To deterinine the 0 t h -  efficient points of (B6),  one 

sliould identify tliose points that are dominated by the points in (B7) which are 

not feasible in (B6). Tlius. Bitran's procedure has two main steps: 

1. detecting the efficient points of the relaxed problem (B7). and 

2. examining all non-efficient points and obtaiiiing those wliich are dominated 

by infeasible points in (B7). 
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The main shortcoming of tliis approach is the required large computation time. 

wliich makes it suitable only for s m d  ~roblerns. 

Later, in 1979. Bitran [IO] improved his algoritlim. This revised algorithm kas a 

greet computational advantage over tlie first one. Bitran and Lawrance [Il] applied 

tliis B i t r d s  new procedure to a service office location problem. Bitran and Rivera 

[12] propose an implicit cnumeration method for solving multiple criteria zero-one 

problems. Tliey also tnilor tlieir algoritlim for use witli a particular class of fncility 

location problems. 

Villameal and Kxu-wan [125] introcluce a combined dynamic programming ap- 

proacli for solving lincar multiple critcria integer progcamming wlùcli codd also be 

iiscd for zero-one prograrnming. 

Deckro and Winkofsky [24] propose an implicit enurneration metkod for linear 

multiple criteria zero-one problems. Tliis approacli is based on boundmg and di- 

rection of preferences niid compares favorably witli Bitran's second method. They 

coiiclude that tlieis approacli may be useful for large sparse problems. 

S teuer and Clioo [l 181 suggest an interactive ureighhted Che byshev met hod for 

multiple criteria linex optimization tliat can also be used for linear integer pro- 

gramniing. This metliod can find both supported and unsupported efficient solu- 

tions. 

Gabbani and Magazine [34] propose an interactive heuristic procedure for mul- 

tiple criteria integer programming. Their method lias two main parts. First. an 

algorithm searclies for a set of criterion weights tliat would produce tlie most pre- 

fesred solution of a liiiear utility function. Second. the searcli space is narrowed 

down using interactions witli the DM. This approacli can find only the supported 

efficient points. 
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Korhonen e t  al. [74] present a procedure in wliich the DM's utility function is 

assumed to be <izrnsi-co7icaue. Using the DM's responses? convex cones. that are 

used for eliminating inférior solutions. are generated. 

Lee and Luebbe [?6] propose a metliod for zero-one goal progranming problems. 

Tlieir algorithm is based on finding iion-zero variables that satisfy eack constra.int 

and each priority level. and the partitioning of tlie problem into subproblems ac- 

cording to priori ty levcls. 

Rcmesli e t  al. [9S] provide an interactive brandi and bound metliod for multiple 

criteria integer probleiiis. similar to t lie procedure of Zionts and Wdeninus [la. 

1431 for multicriteria liiiear programnling. The DM's utility function is assiimed to 

be pse- doco concave. This riiethod uses t lie notions of convex cones and A - c o n s t ~ a i n t s  

for removing undesirable points. 

Karaivanova e t  al. [ G l ]  present an interactive lieuristic approacli for application 

to linear, multiple critcria integer problems. Tlieir rnetliod is based 0x1 the aug- 

merzted weighted Chebysheu m e t n e  for generating siipported and unsupported solu- 

tions. To solve the sitigle objective integer problcni obtained from the axgmented 

weiglited Chebysliev tiictric. a lieuristic approacli is used. This method requires 

less computational timc for large problems than Steuer and Choo's approacli [119]. 

Ulungu and Teghem [l2?]  present a comprehensive survey on multiple criteria 

combinatorid op timization. reviewing multiple objective transshipmen t ,  netzuork 

Jorn. location, trauelzng salesman, se t  covering and knapsacb problems. This study 

sliows that most multiple criteria conibinatorial procedures are applicable only for 

sniall problems and tlic lack of good lieuristics is dso quite obvious in this field. 
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Summary 

In this chapter. some MCDM concepts that are related to the discussion in the 

fort licoming chap ters. were reviewed. We focused on well-known approaches of 

MOMP problems. In pai-ticular. different methodologies of reference programming 

wcre reviewed. Difficiiltics of finding ilon-dominated solutions in multiple criteria 

sttbset selection problciiis were discussed and avdable techniques to solve multiple 

cri tcria integer probleiiis were s tudiecl. 



Chapter 3 

Screening in Multiple Criteria 

Subset Choice 

3.1 Introduction 

In many MCDM probleins. DMs are interested in selecting a combination of actions 

rat her tlian one individual action. Moreover. in practical decision pro blems the set 

of feasible actions is of'ten very large. making it worthwhile to identify the most 

promising actions for niore detailed investigation. This is particularly important 

when a subset of actions is to be selected, since the number of available alternatives 

(conibinations of actions) can be enormous due to the combinatorid nature of the 

problem. Hence, in the e z l y  stages of the decision process. it is generdy very usefd 

to dis tin,pisli t liose actions (or subsets of actions) t liat seem reasonable from tliose 

tliat seem inferior. If tliis phase of tlic selection process. called screening, is carried 

out effectively. tlien the prior phase - generating new actions - will be facilitated 

and encouraged. 
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The main objective of screening is to remove inferior actions fiom the set of 

potential actions. so tliat those remaining can be subsequently investigated in more 

detcd. perhaps using more accurate information or more refined assessrnent crite- 

ria. Several approaclics for screening actions have been addressed in the literat ure. 

among t hem feasibilit y testingo the dominance relation. elementary me thods. suc- 

cessive elimination. and b o m d i n g  the performance level. Tliese methods have been 

iised in the context of ccrtainty as wcll as uncertainty. in single and multiple criteria 

problems. and for qudtative as well as quantitative criteria (80. 551. Most of them. 

Iiowcver. are not suitable for subset selection problcrns: as Exampie 3.2 (bclow) will 

dcinonstrate. tliey slioiilcl bc used only with extrenie caution. 

One popular tecliniqrie for screening actions in iMCDM is the dominance rela- 

tion. An action is doruinatecl when tliere exists ânother action that scores at least 

as well on all criteria and strictly better on at least one criterion. In many cases. 

tlie set of non-dominntctl actions is very large. so tliat even after dominated actions 

as<: removed from consideration. the DM may still face a difficult task. Hence. 

sigriificant effort lias been devoted to enriching and extendhg tlie dominance rela- 

tionslùp to screen out cven more actions. Most of tlicse approaches are based on 

including information about the DM's preference structure. and thereby reducing 

the decision space by screening out actions tliat arc un-dorninated but dispreferred 

[û. 53. 70,' 741. 

This chapter addrcsses procedures for screeniiig actions wlien a subset of a 

large discrete set of actioiis is to be selected. We show some difficulties that may be 

encountered in screening actions in t his context . In ~articular. we demonstrate t hat 

not aIl individually dominated actions can be safely removed from consideration. 

Subsequently. we givc conditions under which an individually dominated action 

cannot possibly belonp to an optimal subset, and so can be safely screened from 
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Table 3.1: Tlie Effect of Screening Actions in Subset Selection 

the set of feasible actioris. 

J 

Note tliat it is very iiseful to have reliable proccdui-es to screen out individudy 

infcrior actions in su bset selection problems. Table 3.1 demons trates numericdy 

liow screeiiing actions can reduce the size of a subset selection problem. In tliis table 

A is tlie set of actions and m is the niimber of actions to  be selected. For instance. 

if A contains 20 actions of which foiir are to be selected. reducing A by 30% (6 

actions) reduces the nu~nber of feasible alternatives by 79%. Screening individud 

actions can make many subset selection met hodologies applicable by dramaticdy 

reducing the size of tlie problem. 

We address the problern of screeiiing actions in subset selection problems for 

two cases: 

- 
Number of 

Actions in A 

10 

20 

50 

100 

1. Tlie m-best actioiis problem: tlie number of actions to be selected. m. is given 

% of Reduction 
of A 

10 
20 
30 

10 
20 
30 

10 
20 
30 

10 
20 
30 

% of Reduction of Feasible Alternatives 
m = 1 

10 
20 
30 
10 
20 
30 

10 
20 
30 

10 
20 
30 

m = 2 
20 
38 
53 
19 

m =( A 1 /5 
20 
38 
53 
37 

m Unrestricted 

50 
75 
87 
75 
93 
98 

96 1 
99.9 
99.9 

99.9 
I~ 
i 

99.9 
99.9 I 

37 1 62 
52 79 
19 69 
36 1 92 
51  [ 9s 

19 1 90 
36 1 99 
51 1 99.9 
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a prion'. 

2. The j-constraints problern: the possible subsets to be selected satisfy j con- 

straints. 

Note kliat the j-constrnints problem is a generalization of the m-best actions prob- 

lem. 

3.2 The m-best Actions Problem 

In tlis section. we consider a subset clioice problem in wliich a pre-specified numbcr 

of actions. m 2 2. is to be selected. Sucli problems may mise in practical cases such 

as selecting sites for m ncw fricilities or choosing candidates for m open positions. As 

will be seen below. tlie particular features of screening appear in even the sirnplest 

special case. m = S. 

Severd procedures have been proposed for tlic m-best action problem in the 

MCDM Literature. Tlic rnethod of Sage and Wliitc [ log] obtains a preferred sub- 

set of actions by reducing the number of feasible actions. Dominance relations. 

rcs trictions on criterion weiglits, and available information about the DM's utility 

function are used for tlus purpose. Korhonen et al. [74] provide a procedure whicli 

requires the DM to compare pairs of actions. Using corzes of inferior solutions. 

tliis procedure makes p<airwise cornparisons to eliminate inferior actions. Koksalan 

et al. [70] present sonie variations of the cones of inferior solutions to reduce the 

number of required coriiparisons. Assuming the DM's utility to be quasiconcave. 

Koksalan [69] presents a metliod similar to the methods of Korhonen et al. [74] 

and Koksalan e t  al. [70] for subset selection. 
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First we explain tlic terminology =and notation. Thoughout this thesis. the 

word consequence (oiitcome) will be used to refer to an objective measure of an 

action or alternative according to a criterion. and tlie word value will be used to 

refer to DM's subjective cvaiuation of a consequence. For cxample, a criterion for 

potential waste disposd sites is capacity. Capacity may be measured objectively as 

a consequence (such as inillions of cubic meters) os subjectively. as the contribution 

of that additional capacity to a comrnunity's welfare. 

It lias been observcrl in practice t hat the consequence on any criterion is usucdy 

additive when more tlinri one action is seiected. Hence. the consequence of a subset 

of actions can bc obtnined by sumiiiing the conscquences of each action in the 

subset. The vdue of n siibset. liowever. caiinot tisiiaily be obtained by summation 

of the individual values. often because of a saturation. or diminishing marginal value 

effect. Figure 3.1 sliows n typicd vduc function on a single consequence. Note tliat 

usucdy value is considcred as a function of the consequences of td criteria. and may 

not be additive across critesia. 

Let A be tlie set of actions, and P the set of criteria. We assume that A and 

P are both finite. Deiiote tlie conseqiience of action ai E A on criterion p E P by 

$ ( n i )  = ck. Tlius. action al is described by its consequences. 

1 1 c ( a l )  = (cl. . . . . c,, . . . . cfp$ 

Tlie DM's ove rd  value (utility) fcr action al E A is a function? v(.) of IP 1 variables. 

1 ci. . . . . c,' . . . . cfpl Tlius. we write 
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Figure 3.1 : A Typicd Monotonie Value Func tion. 

Tliroughou t . we assume tliat v(. ) is a s trictly rnonotonicdy increasing function 

in each of its [PI xgunicnts. For instance. the value function used in Example 3.2 

(bclow ) is a linear function of consequences. and hcnce: 

wliere w, > O is the global importance of criterion p. Note tliat tlie value function 

(3.1) is very simple aritl does not reflect any saturation efFects. 

Let V denote the set of strictly rnon~tonic~dy increasing value functions. 

1 Tlius, for eacli v E V. v : FLIPl + R by u(a i )  = v(c , ,  . . . . c',, . . . , cfpl), and v is 

strictly rnonotonicdy iiicrcasing in each argument. Note that the assumption of 

value as an increasing function of consequences is for exposition only. and can be 

easily e x ~ a n d e d  to include values that are decreasing in consequences such as cost 

or damage to the environment. Define VL c V to be the set of all linear value 
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functions. as in (3.1). 

In general. when subsets of actions are to be evaluated. it will be assumed that 

consequences are additive over subsets. but values need not be. Thus: if S A. 

t hen 

An action ai E A d«m.irmtes actioii ar. E A iff c i  2 cb V p  'p P and 3 p  E P such 

tliat ck > ck . In t l k  case. we write al + ak. An action tliat is not dominated by 

any other action is ccdctl cficient. 

For any set of actioiis. S Ç A. let Dom(S)  = { a  E A : a0 > a 3a0 E S). Tlius. 

D v m ( S )  is the set of all actions doiiiinated by sorne action in S. In particular. 

Do.m(A) is the set of nU dominated actions. and 

is the set of all efficient actions. 

For any action a E A. let d m - ' ( a )  = {a0 E A : ao + a ) .  For any set of actions 

S 2 A: let Dom-'(S) = {a0 E A : a0 r a. 3a E S). Tlius. dom-'(a) is the set of 

actions that dominate a. and D a - ' ( S )  is the set of actions that dominate sorne 

action in S. Clearly, 

D~-'(s) = U{dom- ' (a)  : a E S). 
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Table 3.2: Consequences of Seven Feasible Actions 

Actions 

For any action a E A define 

d ( a )  = dont,-'(a) n E f f (A) .  

Tltcn d(a)  is the set of' efficient actioris tliat dominate a. The following example 

illi~strates the above ciclfini tions: 

Example 3.1 Let A = { a l . .  ... a7).  1 P 1= 3. aiid S = {a30a4+.z5} 2 A. The 

coIisequences of the actions in A according to eacli criterion are shown in Table 

3.2. For tliese actions. 

E f f ( A )  = {a , .ac ,a i ) .  and Dom(A) = { a l . a ~ . a 3 . a 5 ) .  

D o n ~ ( s )  = O. dom-' ( a 5 )  = {a6 ,  a,}.  dom-'(a3) = {a?. as, a r )  

Dom-'(S) = {a2 .  as,  a7}. and 

d(as)  = dvrn-'(a5) r) E f f ( A )  = {aeo a7) .  and 

d(a3) = dom-'(a3) n E f f ( A )  = {a6,  a7) .  

It is immediate tliat if a  E E f f (A). then d(a )  = 0. The converse of this 

observation is also truc. 



CHAPTER 3. SCREENING IN MULTIPLE CRITERIA SUBSET CHOICE 46 

Proof: Suppose that al  E D a ( A ) .  Then there exists a? # al such that a2 r al. 

I f  a? E E f f (A). the proof is complete. If not. a? E Dom(A). and there exists 

a3 such that a3 > az. Because domination is a transitive relation. a3 > al also. 

If a3 E E f  f(A), the proof is complete. Otherwise. note that ai.  a2 and a3 must 

bc distinct , because domination is anti-reflexive. Continue in this way. choosing 

a4 + a3. etc. Since A. and therefore Dm(A) .  is finite. eventually a, E Ef f (A)  

wiU be found such that a, + a,_l + . . . >- a l .  iï 

As aLeedy pointecl out. a widely used screening metliod for the best action selec- 

tiori problem is removd of dominated actions. The following simple example shows 

tliat in subset selectioti. good subsets may be lost when individually dominated 

actions are removed. 

Example 3.2 Assume tliat a pair of actions is to be selected. The consequences 

of actions a l .  a?. aso a4. and a5 according to criterin. 1.2. and 3. are given in Table 

3.3. Observe tliat action al  is dominated by action as. Following tlie standard 

screening procedure. action al is rernoved from furtlier examination; it is assumed 

tliat the best pair of actions is to be found among the remaining non-dominated 

actions. Suppose tliat tlie DM'S value function is Linex additive with global weights 

(0.2. 0.6. 0.2) for the tliree criteria. Table 3.4 shows tlie scores of ail possible pairs 

of actions on each criterion and their overall values. ClearIy, the combination of 

actions al and as is better than any other combination of two actions. Hence, it 

would be a mistake to eliminate al from the set of feasible actions-the optimal 

combination of two actions would becorne unavailabie. 

As Example 3.2 shows. wlien a subset of actions is to be selected. the dominated 

set Dom(A) should not be removed without further consideration. Yet. attempting 

to include d feasible actions in the MCDM process may resdt in a problem of 
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Table 3.3: Consequcnces of Five Feasible Actions 

Table 3.4: Consequences of Possible Pairs of Actions 

Criteria 

1 value 11  U 

weight Act ions 

at l a2 l a3 I a4 I a5 

t - - 

P3 

O v e r d  
Value 

Criteria 

Pi 
P2 

1 

0.2 
1.0 

weight 

O. 3 
0.6 

i 1 

7 
12 

6 
10.4 

11 
11.2 

Pair of Actions 

9 
14 

a2.q 

18 
9 

9 
9.2 

a 4 4 5  

15 
15 

a2,as 

17 
12 

a3.a4 1 at 'as  
14 
14 

13 
13 
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Figtire 3.2: (a)IncLividiial Actions in Criterion Space(b)Pairs of Actions in Criterion 
Space 

unnianageable size. Tlicrefore. it woitld be very useful to have exact (or heuristic) 

rnetliods to eliminate tliose dominated actions tliat cannot possibly be in a best 

subset. no matter what tlic DM'S value function. 

Clearly. in an rn-bcs t actions problcm. an action wliich is inchvidually dominated 

c m  be included in an efficient subset. A geometric illustration is given by Figure 

3.2. Action a? is doniinated by action al as sliown in Figure 3.3(a). but the pair 

{ a t .  a?) is efficient in tlic 2-best actioiis problem (Figure 3.2 (b)) .  

In what follows. WC discuss conditions under wiiich a dominated action can be 

s&ly removed in a subset selection problem. The following theorem demonstrates 

tliat a dominated action can be included in an optimal subset? A', only if all actions 

that dominate it are also included in A". 

Theorem 3.2 Suppose that A' is an rn-best subset for some m >_ 2.  Let al E 

Dorn(A) . If dom-' (ai) A'. then ai As. 

Proof: Assume tliat ai E A- but dom- ' (a l )  g' A'. Tlien there exists al. E Ef f (A)  
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such that ak > al and a~ $ A'. Consider A' = A'u { a k ) -  ( a l ) .  Clearly. 1 A' I= m. 

and for any criterion p. %(A0) = + ( A a )  + c: - CL. It follows t hat . for every criterion 

p. cp(A0) 2 c.(A*) nricl. for some criterion. p' E P. c,. (Ao) > c,. (A-).  It follows 

from monotonicity thnt v ( A O )  > v(A' ). contradicting the kypothesis that the value 

of A' is a maximum. Thus. al A'. completing the proof. O 

According to Tlieorem 3.2. if tlic best set of actions A' does not contain 

dum-' (a l ) .  then al caii be eelimminated in the selection process. On the other 

liand. it follows that 

so tliat. when a dorninnted action is in the optimal subset. then every action tliat 

donunates it (and in particular every efficient actions that dominates it  ) must also 

be in the optimal subsct. 

To apply Tlieoreni 3.2 to screening. one must examine whetlier dom-' ( a l )  c A-. 

For tliis purpose. onc &en can use an easily evaluated approximation to v ( - )  to 

demonstrate that doni- ' (al)  < A'. wliich implies tliat al need not be considered. 

See 17. 53. 681. for example. for procedures to approximate the d u e  function. 

In an m-best actions problem. suppose that action a E D a ( A )  satisfies [dom- ' (a)  1 2 

m.. Then Theorem 2 implies that a c m  be screened out. beceuse I d m - ' ( a )  u (a)l  > 

m + 1. 
For action a E A satisfying I d m - ' ( a )  1 < m. we propose below a procedure 

to determine whether a can possibly be included in the optimal subset under any 

nionotonic value function. i. e. whetlier a can be screened out. For this purpose. we 

introduce the concept of Dominated Potentially Optimal ( D P O ) .  The idea is that 

arnong dominated actioiis only a DPO, action caii be included among the m best 

actions. We first define the concept of Potentially Optimal (PO): 
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Definition 3.1 Action a; E A is potentially optimal (PO) zf there ezists ut least 

one v E V svch that  ai) 2 v(ai) for al1 al E A. 

Tlie set of potentially optimal actions in A is denoted P O ( A ) .  The following 

mathematical program can be used to determine whether action a; is potentially 

optimal: 

(Dl(ai)) Minimize 

Subject t o  : 

v (ai ) 

The above program seeks a value function v that minimizes 6. For instance. if 

v E VL as in (3.1). the program (Dl(û;)) determines the criterion weights. w,. that 

rninimize 6 . If the op t imd value of this problem is non-positive. then a; E P O ( A ) .  

because 6- 5 O implies that there is a value function that makes a; a t  le& as 

preferable as all other actions. 

Example 3.3 Consider Table 3.3. To examine if action a2 is ~otentially optimal 

within {ai, . . . . a s )  based on linear value functions (VL) only, the foIlowing program 

is constructed: 

( W a ?  1) Minimize 6 

Subject t o  : 

4 ~ 1  - 4w2 - 2'U3 f 6 2 O, 
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wliere E in the Last set of constraints is a s m d  positive uumber and ensures that 

tlic value function is strictly increasiiig. Tlie optimal solution of this program is 

6' = -1.92 with ru1 = 0.98. w? = 0.01. and w3 = 0.01. Hence. a? is potentially 

optimal. However. if WC construct a sirnila program to determine whether a4 is 

PO. we obtain 6- > O. Hencc. ac is not potentially optimal. 

Slie concept of potcntially optimal actions lias been addressed by some re- 

searchers in the conte.uk of multi-at tribute decision t heory (see for example. [47]. 

[GO]. [5]. [133]). Tliis notion has beeii especially useful in situations where some 

partial information on the DM'S preferences is available [5]. White [133] proves 

tliat under a strictly iiionotonic function a poteiitidy optimal action is always 

non-dominated. Howevcr. there may be some non-dominated actions which are not 

potentidy optimal. Tlierefore. 

Hence: when the value function is strictly monotonic. a dominated action in A 

cannot be potentidy optimal in A. In general, howevero tliere is no such relation 

be tween potentially op t imd and efficient actions. Consider a 2-criterion problem 

with the actions shown in Figure 3.3. Assume that u(a )  = wlcl(a) + w2cz(a) .  such 

tlint ut1 2 O.w? 2 O. Tlien. action al  is dominated but potentidy optimal. and 
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Figure 3.3: Doniinated and Potenticdy Optimd Actions. 

action a3 is efficient biit not potenticdy optimal. 

Now. consider Exaniple 3.2 (see Table 3.3) and assume tliat v E VL. Tlien action 

ai is non-dominated. but it is not potcntidy optimd for v E Va. because no linex 

value function can make it better thnn both as and a2 simultaneously.' In fact. 

Hazen [47] proves tliat for an additive value function. if an action is non-dominated 

biit not potentially optiinal. tlien it is dominated by a convex combination of other 

actions. In Example 3.2. action a4 is dominated by a convex combination of actions 

a5 and az. 

It is noteworthy that if the DM is confident of some relations on the parame- 

ters of v. such as upper and lower bounds on critcrion weights, or if the DM can 

1iolisticCdy state some relations among actions, then tliis information may be aclded 

to the set of constraints of (Dl(ai ) ) .  In tlùs way. more specific solutions may be 

'No te  that if the value fiinclion is not restricted to VL, a4 2s potentially optimal. For instance. 
a4 marirnizes the rnonotonic value function v ( c l ,  c?, c3) = CI + C? + c3 + 20c1 .min(c~ ,  CZ, ~ 3 ) .  
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Example 3.4 Consider Exnrnple 3.3 in which it was shown that action a? is po- 

tentially optimal. Now assume tliat tlie DM specifies the following information for 

cri terion importance: 

Uiider tliis partial information. 6- > I) in (Dl(a?)). Hence. action a? is no longer 

potentially optimal. 

We now define the notion of donirnated potei i t idy optimal. The concept of 

PO was defined witli respect to the standard problem of selecting the best action. 

But mernbership of an action in the set of DPO actions depends on the number of 

actions to be selected. Lct A(,) denote the collectioii of <dl subsets of A tliat contain 

il. actions. For instance. A(?> is the collection of <di pairs of actions in A. Hence. 

siniilar to PO( A) wliicli deno tes individual potentkdy optimal actions. P O  (A(,) ) 

is tlie set of potentidy optimal subsets with cnrdinality n witliin set A(,). Note 

tliat A:,) E PO(A( , ) )  iinplies that tliere exists a d u e  function sucli that Af,, is 

as good as any otlier siibset with cardinality n. In tlie m-best actions problem. the 

co~icept of '; DPO '' is dcfined as follows: 

Definition 3.2 Action a k  E A belongs to the Dorninated Potentially Optimal set 

of the m-best actions p~~oblems. D P O , ( A ) ,  if 

1 )  an E D a ( A ) ,  and 

2) there exists A:,) E A(,) s w h  that ak E ~ f , ) ,  a n d  Af,) E PO(A(,)). 

According to Definition 3.2 an action is DPO, (A)  if it is dominated, yet is also 

a member of at least oiic potentidy optimal subset witli carclînality m. Moreover. 
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Definition 3.2 states tliat i f a  dominated action. ae. is not in DPO,(A), then there 

is no ~ f , )  E A(,) that includes ak such that A:,, E PO(A(,)). Further. according 

to the definition of P O  actions, ak cannot be a member of any m-best subset of 

action. Hence, ak  can be removed from the set of actions. In other words, 

To use Definition 3.2 to determine wliether ak E DPO, (A), the sets A(,) and 

P O ( A ( , , )  must be known. However. as pointed out above. A(,) may be quite large: 

gcnerating PO(A( , ) )  iiiay be curnbersorne and excessively demanding in tirne and 

coniputstion. Hence. it ivould be quitc iiseful to dctcrmine rnembersliip of an action 

in DPO, (A)  by exariiining individual actions ratlier tlian subsets in A(,). The 

foilowing t heorem proviclcs an alternative way to determine if al, is a D PO, action. 

Note that if Idom-'(ak)l 2 m. then ak # D P O , ( A ) .  

Theorem 3.3 Let ak E Dom(A), and m > Idem-'(ak)). Then ak E DPO,(A) 

i f f  for sorne q 21 A -m. 3s E A(,+,). svch that n k  E S and ak E P O ( S )  . 

Proof: 

1) Suppose that q and S are as stated in the hypotliesis and that ah c PO(S). We 

prove that ak E T for some T E At,, such that T E PO(A(,)). By assumption, 

there exists vo E V sucli that vo(ak) 2 vo(ai) Vai E S .  Note that 1 S I =  q + 1. or 

1 S I I (  A 1 -m + 1. 

Under value function vo, ar; scores at least as lugh as 1 A 1 -m + i actions in 

A. Hence, there must exist T E A(,) containing ak such that T is optimal under 

uo. In1 O ther words, 

ar; E T E PO(A(,)) .  



Assume that T is optimal under vu E V. Under vo. al. is no less preferred than 

a t  least IAl - rn actions. because otlierwise an action not in T would have been 

included in it. Hence. S = A - T U {ar) lias the property that 1S1 =I A 1 -m + 1 

and vo(ak) 3 vo(al) ,  Y q  E S. Thus ar; E P O ( S ) .  

In Theorem 3.3. tlic set S cannot contain dmA' ( a i ) .  because. according to 

relation (3.2). an. caniiot be PO in a set that contains actions that dominate it. 

Hence. in Tlieorem 3.3. S C A - dom-'(ak). 

Example 3.5 Considcl Table 3.2 in Example -3.1 wlth rn = 4. Note that an E 

D o m ( A ) .  and dom-'((r5) = {a6, a;). Becawe nr. > [ d o m - ' ( a s ) ] ,  Theorem -3.3 

repires that q 2 3. To detennine wl~ether as E D P O ( A ) .  it is suficzent to deter- 

mine whether there ezi.4.s n set S C A - dom-'(a5). SILC/L  that ISI = 4. a5 E S. and 

as E P O ( S ) .  

To clarify Tlieoreiii 3.3. consider the problem of selecting a pair of actions 

( m  = 2).  wliere / d m - ' ( n k )  I= 1. Tlic following corollary is the immediate result 

of Theorem 3.3 and Dcfinition 3.2: 

Corollary 3.1 Suppose ak E D a ( A ) ,  and Idm- ' (ak)  [ = m - 1. Then al: E 

D PO, (A)  zff a k  E P O ( A  - d m - '  (ae)). 

We utilize the following mathematical program to show wliether ak E D P O ( A )  

in an m-best actions problem: 
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Minimize S 

Subject t o  : 

wlicre iM is a sufficie~itly large numbcr and q 2 /A(  m. The following theorem 

shows liow Program D%(akj  determines wliether action ak is DPO: 

Theorem 3.4 Let al. G D o m ( A )  and rn > Idm-'(ak)l. Then a~ E DPO,(A) ifl 

the optimal soiution of Probien D 2 ( a k )  is non-positive (6- 5 0 ) .  

Proof: First. Ive sliow tliat when da 5 0. tlien there exists a v E V and a set 

S C A \ (dom- ' (ak)  U { a h ) )  such tlint 

Tliis irnplies that ak E D P O , ( A ) ,  according to Definition 3.2 and Theorem 3.3. 

Note that if al = O tlien constraint 1 in the constraint set (a) becomes 

Bccause M is a large number. (3.4) is always true. and will not affect the solution 

of ( D 2 ( a k ) ) .  On the otlier liand, wlien al = 1. constraint 1 in constra.int set (a) 
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becomes: 

Let N' = j{Z : ai = 1)/ at the optimal solution of Problem D2(ak ) .  To satisfy 

constraint ( b ) .  IV' must equal q. In this case. there are q constraints similar to (3.5) 

for different values of 1 such that al E A \, ( d o m - ' ( a k )  U { a k ) ) .  Therefore. 6- < O 

means that there exists a value function va E V mch tliat zio(ak) 2 vo(ar )  for at 

least q actions. ai. Hcxice. u k  is PO in a set of q + 1 actions within A \, d o m - ' ( a k )  

and. according to Tlieorern 3.3. ai  E D PO, (A) .  

Yow we show that if n i  is in DPO,(A).  the optimal solution of D2(aij is non- 

positive. Suppose that (5' > O. Hence. Program D 2 ( a k )  cannot find a set S C A(,, 

sticli thet v O ( a k )  2 ~ ~ ~ ( ~ z i )  for a vo f V. From Theorem 3.3. a i  is not i ~ i  DPO,(A) .  

'7 
Li 

For the special case when rn = 2 and 1 d o m - ' ( a e )  /= 1. Theorem 3.3 requires 

that q 21 A j -1. Hence. action al. is to be cornpared with all actions in A - 

dom-' ( a k ) .  In Prograni D2(ak). conscraint (5) bccomes 

cil = 1. Yai E A \ { d m - ' ( a k )  U { n i ) ) .  

Tlien Program ( D 2 ( a k )  ) reduces to the fouowing: 
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Example 3.6 Consider Table 3.3, and assume that a pair of actions is to be se- 

lected. To determine if action al, wllich is dominated by as, is D P O Î ( A )  under 

litaear value functions. we note that dom-' (al ) = { a s ) .  Consequently, we cons truct 

the following program: 

(D3(al ) ) Minimize 

Subject t o  : 

wliere. w, > O is tlie weiglit of criterion p in a linear value function in VL as in 

(31) .  The optimal solution of tlie above program is d' = -0.97. Hence. al is in 

D P 0 2  (A).  On the otlier linnd. if the score of action ai on the second criterion 

were changed to 5. tlien the optimal value of Problem D3(a1) would be 6' = 0.33. 

implyiiig that al is not in D P 0 2  (A).  

The following tlieoreni shows that to determine whetlier an action is DPO. it is 

only necessary to compare it with actions in Ef f (A)  \ (dom-'(ak) U {aa)) rather 

tlian A \ (dom-'(ak) U {ak)). Clearly. this reduces the number of actions tliat al. 

should be compared witli. 
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Theorem 3.5 Let ar: 5 Dom(A) and rn >I dom-'(ai) 1 in an m-best actions 

pro blem. Then. 

Proof: Cleady. if ai; D PO, (A).  tlien QL E D PO, ( E  f f (A)  U { ak ) ) .  because 

aL E D o m ( A )  and tlic former set contains the latter: if a k  is DPO in a set. it is 

dso  DPO in any subsct. 

Now. we sliow tliat 

According to Tlieoreni 3.1. any dominated action is doniinated by at Ieast one 

efficient action. On tlic otlier hand. according to Tlieorem 3.1. a dominated action 

al, is DPO ifF tlic opti~iial solution of Problem D2(ai;) is 6' 5 0. Now. suppose 

ai E D m ( A )  and a j  G (lm-' (ai). 

Consider tlie two coiistraiiits in Problem D2(ak)  in which action ak is cornpared 

witli actions ai and a;. First. suppose that ai and aj have been set to be one in 

tlic optimal solution of (D2(ak) ) .  so tliat 

at tlie optimal solution. Since v is an increasing monotonic function. aj > ai implies 

i 7 ( a j )  >  ai). Therefore. if 5 O in (1). for some i l  E V. then this v dso satisfies 



CHAPTER 3. SCREEiVlNG IN MULTIPLE CRITERIA SUBSET CHOICE 60 

(2)  with 6' 5 O. Hciice. including constraint (2)  in Problem D2(ak) does not 

change the value of tlic optimal solution. permitting us to remove all  constraints 

corresponding to domiiinted actions in (D2(ak)). Now suppose that in the optimal 

solution of (D2(ak))' cri = 1 and aj = O. so that 

Iri tliis case. removal of a; rnay cliaiige the optimal solution of (D2(ai)). But. 

note tliat removing a;. rlccreases the iiumber of rr that lias to be one to ensure 

ak E DPO,(A). becaiisc. in this case. q = IA \ {o;)l - m. 

Clearly. wlicn cri = O and aj = 1 or when botli ni and aj are zero. removing ai 

does not ctiangc tlic optimd solution of (D2(ar,)). This completes the proof that 

any action wliicli is in D PO, ( E f f (A)  u { a r ) )  is dso in DPO, (A) .  and vice versa. 

Note tliat when oiic appiies the result of Theorem 3.5 to Program D 2 ( a k ) .  

q = 1 E f f (A)  1 -m. To sumrnarize the discussion in this section. we first demon- 

s trated t hat in a subset selec tion problem. an individuaily dominated action should 

not be removed from the set of actions without further examination. Then we 

defined the concept of a DPO, action in m-best actions problem (Definition 3.2). 

Subsequently. a method to identify a DPO, action by inspecting individual actions 

ratlier than subsets of actions (Tlieorem 3.3) was exhibited. Program D2(aç) was 

introduced as a practical way to identify DPO, actions. Figure 3.4 demonstrates 

the relationslip among some of the screening concepts introduced in this section. 

Tlie following example illus trat es our results: 

Example 3.7 Considcr Table 3.5 wliich sliows the consequenees of eiglit actions 
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Figure 3.4: Relationsliip among Scrcening Concept S. 

according to three critcria. Suppose tliat m = 4 actions are to be selected. The 

dominance relations arc 

To examine wliether a l .  wliich is dominated by a7 and as! c m  be removed from the 

set of actions, we can do the following: 

According to Definition 3.1: a k  E AR only if ar, E DPO,(A). Hence. we must 

determine whether ah E DPO,(A). Because, d m - '  ( a l )  = {a7: as) ,  the number 

of actions that would be selected in addition to dom- ' (a i )  is 

Hence. the minimum number of actions to whicli ai must be preferred to be eligible 
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for inclusion in A'. is 

Note that as introduced in Theorem 3.3, q =I A 1 -m = 4. which equals 

the above expression. Accorcling to Tlieorern 3.4. al E DPO,(A) ZR the optimal 

solution of the followiiig mat hematicd program is non-positive: 

For linear value fiiiictions. of the form (3.1) .  tlic Program D2(a l )  becomes: 

( W a i ) )  Minimize 6 

Subject to : 

-5wl + w2 + tu3 + 6 2 - M ( 1  - az) 

4UJl - 3w2 - 2w3 4- 6 2 - M ( 1  - a3) 

2 ~ 1  + tu2 - 5 ~ 3  + S 3 - M ( 1  - ~ 1 ~ )  

wl - IV? - 6 ~ 3  + S > - M ( 1  - a5) 
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The optimal solution of ( ~ ' 2 ( a l ) )  is 6' = -0.82 with wl = 0.96' tu? = 0.02. WJ = 

0.02. The program assigns the value 1 to the binary variables a ~ .  ad. as, aoy and 

selccts A(41 = {n3:a4.(rs. n6) .  Tlierefore. action ai  is DPOl and sliouid not be 

rcmoved from the set of actioiis. If tlie DM specifies wl 5 lu2 5 w3: then action a i  is 

not p~ten t i~dly  optimal. Notc that we can utilize Tlieorem 3.5 to simplify the above 

program. Since ( a 3 .  a,) E Dom(A). it is not neccssary to compare action al witli 

actions a3 and a4: one can lise the same procedurc with q =I E f f (A) 1 -m = 2. 

111 this case. Program D'2 ( a l )  reduces to tlie foIIowing program: 

Subject to  : 
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Table 3.5: Corisequences of Actions According to Three Criteria 

TIie optimal solution of ( ~ " 2 ( a ~ ) )  is 6- = -0.82. indicating that a l  is DPOa. Note 

tliat if m = 3 actions (ratlier than four) are to be selected. the optimal solution of 

the Program ~ ' 2 ( a I )  or ~ " 2 ( a l )  is 6' = 1.219. Hcnce. in tliis case action al is not 

in D POa and c m  bc climinated from the set of feasible actions. 

3.3 The j-Constraints Problem 

WC now address tlie sanie problem as in previous section. except tliat the number 

of actions to be selectcd is not pre-specified. Instead. the subsets tliat may be  

selected are defined by a set of constraints. In fact. tlie j-constraiuts problem is a 

geiieralization of the m-bes t actions problem. because m-best actions problem is a 

1-constraints problem iii wliich the only constraint specifies that m actions are to 

be selected. 

Here. ive consider only the binanj multidzrnensional knupsack problem with 

multiple objectives. wllicli cornmonly arises in project selection. Without loss of 

gciierality, assume that ,dl criteria are to be maximized. The problem under con- 

sideration is as fouows: 



CHAPTEn 3. SCREEIVING IN MULTIPLE CRITERIA SUBSET CHOICE 65 

Maximize z, = C~Z;: 

iEA  

Subject t o  : 

wliere P is the set of critcria. J is the set of constraints. ck > O is the consequence 

of action a; on criteriori p. bij 2 O is tlie rate of consumption of the jtli resource by 

action ai. and Bj is tlic total amount of the j t h  resource available for consumption. 

'ïlic binary variable z; is tlefined as follows: 

selcç t ed: 

no t selected. 

Note that the main difference between tlie j-constraints problem and the m-best 

actions problem is tliat luxe a dominated action may be included in Am. because 

of its low rate of resource consumption. In the co~itext of Program D4 we define 

the notion of T-eficienc!j  of an action as follows: 

Definition 3.3 Action a; is T-eficiettt (T-nondorninatcd) if there does not exzst 

aîzother action ah svch fhnt 

(1 )  c: < c: V p  E P! a n d  

(2) b, 2 bhj v j €  J. 

with one of the inequnlities in (1) being st r ic t .  

When an action is T-dominated. there is anotlier action that would improve 

any selection of actions. We denote tlie set of T-dominated actions by D u ~ ~ ( A ) .  

' T-eficiency Y tands for Total-eflciency. 
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<muid its cornphnent by E f fT(A) = A - D a T ( A ) .  For each ak E D m T ( A ) ,  

the set of actions doniinating ar, is denoted by dm&'(ak) .  Moreover. dT(ak) = 

dom,'(ak) n E f f * ( A ) .  Clearly. any action in dom&k) is prefmed to al. for 

inclusion in the best set of actions, because each objective will be increased by an 

equd or greater amount with equal or less consumption of resources. 

As discussed in Chapter 2: it is difficult and time-consuming to solve s multiple 

criteria integer probleni. siicli as Program D4 [127]. Hence. it is iiseful to remove 

any S-dominated actions and thereby reduce the size of the problem. However. 

an individually T-domiiiated action uiay be in the best set of actions. unless some 

specific conditions hold. 

The foIlowing theorcm. wliich is similar to tlic Tlieorem 3.2. shows that a T- 

doniinated action. a ~ .  cannot be included in the optimal solution of (D4) when 

dom~'(ac , )  Am. 

Theorem 3.6 S~upposc  A* is the o p t i m a l  sol~ut ion of Program D4. Let al: E 

D w T L ~ ( A ) .  Then 

h,'(ak) A' - a L  @ A'. 

Proof: Suppose al. E A' and dom~'(r ik)  A'. Coiisider an action a, E dom$'(al:). 

Construct anotlier set AU $ A- by dropping ak arid including a,. 

A' = A' u (a.)  - ( a e )  

Since a, E dom&l:). we have a, > a&. First. we notice that A' is feasible. 

because accordinp to the definition of T-efficiency. b, 5 bkj V j 7  and therefore. 
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Also: a, + a& implies $ 2 c i  V p  E P and cz > ck for some p. Hence. 

for d po with strict inequality for al least one p E P. Hence. A* is not optimal. 

co~itradicting the assuniption and completing the proof. O 

To determine whetlier a T-dominated action al. can be removed from the List 

of feasible actions in Program D4. one can employ n concept similar to DPO, in 

tlic previous section. However. as explainecl previoiisly. one of tlie requirements to 

examine whetlier a i  E D PO, (A)  is knowing, a priori. tlie number of actions to be 

sclected. m. In the j-cotistraints problem. tlie nuniber of actions to be selected is 

iiot given a priori. Lct tzk E D o m r ( A )  and m and m' be any two positive integers 

siicli that m < m'. Tlicn. according to the defiiiition of P O  and DPO in the 

previous section, 

fil; DPO,. (A)  =+ a& 6 DPO,(A) .  

Tlierefore. if m is tlie biggest nurnber of actions tliat can be selected in Program D4. 

ail tlie procedures for tlic m-best actions problem can be used in the j-constraints 

problern. 

Hence. we first construct a program to obtain tlie maximum number of actions 

tliat can possibly be included in a feasible solution of (D4): ruid then we utilize the 

results of the m-best actions problem for this case. Let action ak be T-dominated. 

Tlien the following progmni determines the maximum number of actions that can 

be included in a feasiblc solution of (D4). in addition to d o m ~ ~ ( a ~ ) :  
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Tlic Program D5(nk)  is a zero-onc program that. because of the structure of its 

objective function. can be solved ratlier easily. Suppose f i* is the optimal solution 

of ( D 5 ( a k ) ) .  Wlien +.- is known. the j-constraints problem can be reduced to 

an 7it'-best actions problem. Hence. let PO(A(*.  ,) denote the set of potentially 

optimal subsets witli cudinnlity ma. as defined according to Definition 3.1. Tlien. 

the concept of T-Dornir~ated Potentially Optimal is defincd as follows: 

Definition 3.4 Actior~ n k  E A is T-dominated potentiallg optimal (ak E D P O T )  

it 
1 )  ai, E DoTTL~(A).  a72d 

2)  there ezists A:,.) E A(,. ) such thnt a k  E A ; ~ .  ,. and A:&.) E PO(A[&. ) ). 

The following theorcm shows tliat if Problem D5(ak) is infeasible or its optimal 

solution is non-positive. tlien ak cannot be in the optimal subset: 

Theorem 3.7 Consider the j-constrnznts problem D4! and let ak E D m T ( A ) .  

If Program D 5 ( a k )  B. infeasible or  its optimal soht ion.  e'. i s  non-positive, then 

ak # A'. 

Proof: The optimal solution of the Program D5 is the maximum number of actions 

tliat can be selected if sct dom.rl(ak) lias akeady beeti selected. The infeasibility 
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of Progam D5 indicntcs tlint d m $ ' ( a k )  $ A'. But. accorcling to Theorem 3.6. 

Tlius: a k  cannot be iri A'. Similady. fi' = O indicstes tliat if d-+l(an) c A= no 

more actions can bc i~icluded in A'. Tlius. ar; $ A-. O 

Now. suppose tliat the optimal solution of ( D 5 ( a k ) ) .  &* > O. i.e. IAœ( - 
/ d a ? ' ( a k ) l  2 1. 

Since +* is an uppcr bound for tlie size of solutions in D4. all the proccdures for 

m.-bcst actions are applicable in this case. One c m  utilize Program D2(ak)  from 

tlic last section with rl =( A j -6~- to determine whetlier ak E D P O T ( A ) .  Then 

6- < O indicates tliat tlicre exists a value function under wlfich ak is better than at 

least q other actions in A \ dom?' ( a k ) .  Tlierefore. al. may bbelong to tlie best set of 

actions. Otherwise. 8- > 0. and a k  caxi be removed from the set of feasible actions. 

as dlustrated next. 

Example 3.8 Consider a subset selection probleni in whicli ( A 1=  6. 1 P 1=  3. 

and 1 J 1 =  2: 

Maximize 5x1 f i z 2  + 4x3 + f 6z5 + TZ6; 

2x1 + 3x2 + 2x3 + h4 f 3z5 + 7z6; 

Maximize 7x1 + 2x3 f 6x3 + Zq + 2z5 + 3x6; 

Subject t o  : 

2x1 + 4x2 + 5x3 + X.4 $ 3x5 + 8z6 5 8; 

5x1 + Gzz + 7x3 + 5x4 +- 8z5 + 7 2 6  < 18. - 
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In this problem, D w T ( A )  = {a3) ,  d m + ' ( a 3 )  = { a l ) :  and E f fT(A) = {al7 a?, aq. as. a s ) .  

To determine whether action as can be removed from the set of feasible actions. we 

f i s t  solve the following program to find the maximum number of actions that can 

be selected, assuming al lias already been selected. 

Maximize = xl x:! + 2'3 + 2 4  + xs + 2 6 ;  

Subject t o  : 

Tlie solution of this problem is 2' = 2. Hence. at most two more actions can be 

selccted in addition to a l .  Thus. m = 2 and q = 2. We can construct Problem 

D 2 ( a 3 )  as follows: 

or. assuming the DM'S d u e  function is linear, 

( W a d )  Minimize S 

Subject to : 

-3wl + 4w3 2 -M( I -  a?): 

wl + 5w3 2 -M(1 - a4); 
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Tlie solution of tlic above problcm is (6' = -3.78) with wl = 0.02. lu2 = 

0.02.7~3 = 0.098 as optimal parameters. Hence. a3 E D P O T ( A )  and a3 may be 

incliided in the bes t set of actions. Note tliat if tlic consequence of action a6 on tlie 

last criterion changes to S. tlien 6- is positive end a3 $ D P O T ( A ) .  

If the DM c m  assigii soine partial information to tlie vdue function. the result 

niay change. For exaniplc. assume tliat the following information on parameters of 

tlic value function is given: 

Under t h  information. dg = 0.7 and a3 $! D P O T ( A ) .  

3.4 Conclusions 

Tllis cliapter addresses tlie problem of screening individual actions in an MCDM 

subsct selection probleiii. It is shown tliat removing individually dorninated actions. 

even though it may create a problem that is considerably easier to solve. may be 

unsatisfactory in tliat optimal subsets might become inaccessible. Subsequently. 
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tlic concept of DPO actions is defined for both m-best actions and j-constraints 

problems and it is sliown tlint those individudy dominated actions tliat are not 

DPO cannot be in klic best subset of actions. Moreover. conditions are given 

for which a dominatecl action is DPO are explorecl and a method is proposed to 

recognize the DPO actioxis for both thc rn-best actions and j-cons traints problems. 



Chapter 4 

Modeling Act ion-Int erdependence 

in MCDM 

4.1 Introduction and Literature Review 

In the previous cliapter. it was pointetl out tliat in uiany WCDM problems. a given 

decision maker m u t  solcct a subset of actions ratlier tlian a single action. Tliere 

are two main approaclies to analyzing a subset selection problem. The f i s t  is to 

enurnerate aU subsets. remove those that are infeasible. and then select the best 

using conventional MADM methods. Tliis process might begin, for example. with 

the identification of doniinated subset S. 

The second approacli is to find the best subset of actions directly from the set 

of dl available actions. The main advantage of the fîrst approach is that one can 

employ directly any MADM procedure to select the best subset. Moreover. since 

only one subset is to be cliosen, interdependence of actions is not relevant; one 

incorporates the interclcpendence of actions in their evaluations under the relevant 
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criteria: and not in the actud selection procedure. However, when the nurnber of 

actions is large. enumcrating and evaluating dl feasible subsets can be extremely 

time consuming. For example. Rajabi et  al. [93] mode1 a large-scale water resources 

planning problem in the Regional Municipality of Waterloo. Ontario. Canada. Even 

though many actions wcre recognized to be infeasible and removed in the prelimi- 

nary phase of the study. more than 2" 0 l O l 5  combinations of actions remained. 

In most situations. cvduntion according to a criterion may be readily available 

for individual actions but not for sets of actions' bccause tliese values are typiccdy 

obtained from experts in dXerent fields wlio prefer to evaluate eacli inrlividud 

action on its own. III i.ccdity. time considerations. divcrsity of fields. and lack of 

establislied procedures for eliciting information about interdependence mean tliat 

often knowledge about interdependence is sketchy. As a result. a great deal of sub- 

jectivity may be involvcd in aggregating values of actions into values of subsets of 

actions [2]. Tlierefore. in most real-world applications. especially wlien the number 

of actions is large. it is preferable to tackle a multiple criteria subset selection prob- 

leni directly tlxougli t lie underlying individual actions. Even t hough t his chap ter 

and the next ded  mai1i1y witli the second approacii. most of the discussion in tliese 

two cliapters also applies to the first npproach. 

Some standard MCDM procedures are applicable to subset selection. but they 

generally rely on the assurnp tion of independence of actions. Unfortunately, actions 

are clearly interdepexiclent in many rcal-world subset selection problems. For in- 

stance. in decisions about how to dispose of solid wastes from a metropolitan area. 

possible actions include using one or more of a nuniber of potential dumping sites. 

incineration at one or more locations. introducing by-laws to reduce the amount 

of waste generated in the f i s t  place. plus a range of recycling measures. Criteria 

for evaluating each action may include cost, infrastructure requirements. environ- 
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mental risk, political acccptability. and aesthetics. A satisficing or optimal solution 

may consist of a set of actions that. typicdy. are interdependent for one or more 

of the criteria on whicli tiiey are evaluated. 

Other examples in which interdependence of actions may occur include selec- 

tion of research and tlevelopment or investment projects. transportation routes. 

cornputer sys tems. and time stream tlecisions (see d so  [31] and [112] for more ex- 

amples). 

This chap ter is maiiily concerned wi t h exploring t lie notion of interdependence 

of actions and the adaptation of MCDM methods to subset selection in the presence 

of interdependence. Fdowing a brief literature review in t l ~ s  section. Section 4.2 

piits forward a s m d  case s tiitly to intsoduce tlie problern. Subsequently. Section 4.3 

pscsents some definitions of independcnce and intcrdependence of sets of actions. 

cliscusses their main featiires. and explains some special cases. General approachos 

for evaiuating a set of interdependent actions and the relationship between inde- 

pcndence (interdependence) of sets and independcnce (interdependence) of actions 

me discussed in the next cliapter. 

Various formulations of interdependence appear in the li terature. However, most 

restrict the type or extcnt of interdependence in some way. One cornmon approach 

is to consider only interdependence between two actions. or binary interdependence. 

Fisliburn and LaValle [31] give a thorough discussion of the evaluation of subsets of 

actions when interactions are binary. They identify necessary conditions on prefer- 

ences in order that the value of any subset equals the sum of individual action values 

plus binary interaction tcrms. Addit iondy,  they cliaracterize preferences between 

two subsets when the only available values are those of the individual actions. Fish- 

burn and LaValle also provide the f i s  t ordinal characterization of int erdependence. 

Tliey lis t transportatioii-route seiectioii, liousehold and corporate budgets. student 
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admissions, res t aurant-menu composition, and op tional accessories for a new car 

as represent ative decision problerns in which interdependence of actions should be 

considered- 

Oftent the existence of interdependence among actions has been overlooked or 

ignored. For instance. an andysis by Keeney and colleagues to select three out 

of five sites for nuclear wastc disposai employed multi-attribute utility theory [81]. 

However. after reviewi~ig tlieir proposal. the U.S. Dcpartment of Energy selected a 

different subset from tlie one tliey proposed. In assessing tliis disparity, Keeney 16.11 

q u e d  tliat tlie logic of the nnalysis involved evaliiating individudy each of the 

five sites. However. tlic selection of the sites sliould have been based on portfolio 

sclection principles. recognizing tliat iiidividual performance is not as important as 

tlic performance of tlic wliole. He concluded tliat the individual examination of the 

sitcs did not address souie important considerations that affected dl sites. 

Rajabi et al. [92] niodel a multiple criteria subset selection problem witli any 

number of interdependciit actions as n non-linear multiple criteria integer program- 

nung problem. They siiggest a vaxiant of goal progrrirnrning for solving the problem. 

Elsewliere. they apply tlieir approacli to a long term water supply planning problem 

[93. 951. 

Santhanam and Kyparisis [112] prcsent a mode1 for tlie selection of information 

sys t em projects in tlie presence of interdependence. They formulate the subset 

selection problem as an integer progrnmming problern witli some nonlinear terms 

to reflect interdependence. Tliey apply their procedure to choosing management 

information system projects wit h any number of actions. 

Gomes [42] introduces the concept of interdependence between two actions in an 

urban transportation system. Having assumed the probability of choosing higliway 
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project j to be p j ,  lie ticfines the value of another project. i. that is interdependent 

with j according to soriic criterion. as 

wliere v;lj is the vdue of action i wlien action j lias been selected and v+j is the  

value of action i when j lias not been selected. Tlirough an example lie shows that  

tlic ranking of actions inay be changed as a result of this kind of interdependence. 

Tzeng and Teng [126] ilse a fuzzy mdti-objective mode1 to select a subset of in- 

terdependent transport ation projects. They classify such projects as independeni .  

compZementartj. or additzi t ive.  For independent projects. the objective value of 

the combination is e q i d  to the sum of individual performances according to each 

criterion. Two projects are called coniplementary if the result of inves tment of their 

coiiibination is geater tlian the sum of the individud results. and substitutive if 

the amount of their combination is less than their sum. Further. Tzeng and Teng 

measure performance aiid interdependence using fuzzy numbers. 

Aaker and Tyebjee [l] describe intcrdependence among R&D projects in a sin- 

gle objective fiiunework. Tliey addxess t hree different types of interdependence: 

overlap in project resoiirce utilization. in which thc projects use a common budget. 

facilities. or manpower: technical interdependence. in which the success or failure 

of a project influences the progress of other projects. and e ffect interdependence, in 

wliich there is synergy among projects. In the latter case utilities are not additive 

wliere subset of projects is selected. 

Evans and Fairbakn [29] note that many NASA mission projects are higlily 

interdependent. But tlieir primary concern is liow this interdependence should 

.dTect t lie project implementat ion sequence. 



Interdependence of enteria has been dso  adhessed in the MCDM literature 

(see. for example. 1481). Criteria may be interdependent due to correlations among 

the elements of the evaluation matrix (the values of the actions according to the 

criteria); this is called statistical interdependence. Alternatively, criteria can be 

intcrdependent in the frmework of rnulti-at tribu te t heory. When the directions 

of increase or decrease on two or more criteria are the same. then these criteria 

arc correlated. Generally. statistical interdependcnce of two criteria suggests t lie 

existence of factors tlint affect both criteria in tlic same direction or in opposite 

chcc tions. 

Much researcli lias hcen tievoted to the concept of interdependence of criteria in 

rniilti-at tribute tlieory (see. for exaniple. [65]). Criterion pl is preferentidy inde- 

pc~ident of pz if the relative preferencc of actions tliat diEer only in their evduation 

according to pl does iiot depend 0x1 tlieir evaluation on criterion p?. Let (x.  y )  

denote the evaluation of an action according to criteria pl and p?. Shen pl and p2 

arc prefërentidy indepcndent 28 

Hence. when the criterin are preferentidy independent. one can rank a set of actions 

according to a criterion wit liout considering the rest of the criteria. Preferential 

independence among n criteria can be defined similarly [65. 32). 

The primary purpose of this chapter is to present new and general definitions of 

interdependence of actions and of sets of actions, and to assess the main properties 

of int erdependence using the definitioiis. The effect s of interdependence on subset 

clioice, especidy in a multiple objective framework. are examined? and several 

techniques for evaluating subsets of actions t hat are interdependent according to a 
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specific cri terion are prcsented. 

4.2 Interdependence in Multiple Criteria Subset 

Select ion 

R e c d  that A is tlie set of possible actions. and P is the set of criteria on which they 

arc to  be evaluated. Dcnotc the value of A0 C A with respect to criterion p E P 

by $(A0). If A0 = {ai, . ni2. . ain)-  write %(A0) = %(il. i2: - - . in). Without loss 

of generality. set ~ ( 0 )  = O. Note tliat this notation implies that consequence is a 

subset property. L e .  tlie cotisequencc of Ao C A never depends on the order of 

selection of the actions witliin A'. 

Before introducing a formal definition of interdependence. an example is pre- 

sen tcd to demons trate the importance of interdependence in multiple criteria subset 

selection problems. Tliis exmple sliows that a nnive application of conventional 

MCDM methods can produce serious crrors in subsct selection problems. especidy 

wlicn actions are interclcpendent. 

Tlie example will bc ccded the Waste Disposal Location (WDL) problem. The 

objective is to identify tlie two best among five potential sites of equal capacity. 

Tlie criteria are prozimity to populationo infrastn~ctvre reqvirements (such as need 

for roads, water. and electricity supply), and enoironrnental rZsk. All criteria are 

measured so that higher values are preferred. 

The WDL problem is cliaracterized by certain interdependencies. Building a 

new road near sites 4 and 5 could serve both sites; if sites 4 and 5 are both selected. 

a swing in infrastructure investment will be obtained. In this case? the total value 

of sites 4 and 5 is increased by 10% if botli are selected. Hence. sites 4 and 5 have 
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Table 4.1: WD L Example: Normalized Conseqiiences of Five Fensi ble Sites 

n positive synergy of 10% on tlie infrastructure criterion. As well. if sites 1 and 2 

togetlier are selected. tlicn a single power plant fircility may be built for both. tak- 

ing advantage of econoiiiies of scrile. Tlius. actions 1 and 2 have a positive synergy 

of 30%. Fincdylly' the cvaluntion of site 4 or 5 on the environmental risk criterion 

depends on whether tlic 0 t h  site is selected. If either of the sites is selected. 

tlicn selecting tlie otlier aggravates thc risk of environmental damage in the region 

and. lience. these two actions have a i q a t i u e  synelgy of 30% on tlie environmental 

risk criterion. Figure 4.1 illustrates tlie interdepeiidence of the five actions on tlie 

infrastructure and environment al risk criteria. 

Criteria 

( 1)Population 
(2)Infrastnicture 
(3)Environmental Risk 
Additive Value 

- - -  . 

Infrastructure Requirements Encimnmenfal Risk 

Figure 4.1 : WDL Example: Interdependent Actions and S ynergy Levels 

Table 4.1 shows tlic individual pcrforrnance of eacli action according to each 

Actions Wezghts 

0.23 
0.39 
0.38 
1 

7. 

al 1 a2 a3 

1 
0.75 

0.5 
0.713 

0.45 
0.8 
0.6 

0.45 
0.7 

0.87 

a4 

0.55 
0.83 
0.75 

0.735 0.644 1 0.707 

a5 

0.84 
0.83 

0.6 

0.745 
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critcrion. When applying a Zïnear value fvnction with the weights shown in Table 

4.1. action a5 is best. and action a l  second best. Note that in this example the 

additive value of an action a. v(a)' is calculated as follows: 

wliere w, is the weight of criterion p. and $ ( a )  is the evaluation of action a on 

criterion p. Tkereforc. a naive conclusion. which would apply if there were no in- 

tesrlependencies. is tlint the optimal subset is A; = {a4.a5) .  Note. however. that 

dtliougli v ( 4 )  = O.i3*5 and ~ ( 5 )  = 0.745. v(4 .5 )  = 1.351 because of interdepen- 

dence. 

A l e s  naive metliod of subset selcction is to select tlie single best action. then 

re-cvaluate each action according to the amount tliat it would incrase  or decrease 

the value on eacb critcrion if selected. then choose the best of these, etc. This is 

called the greedy algorithm. Ifit  is applied after as is selected. a3 is found to add tlie 

most value. To reiterate. the overall value increment of action a3 when as is selected 

is greater than the incrernent of any other action. Because of interdependencies. 

~ ~ ( 4 . 5 )  - ~ ~ ( 5 )  = 0.996 and c3(4. 5 )  - c 3 ( 5 )  = 0.34. Therefore. A = { a 5 .  a3). with 

~ ( 3 . 5 )  = 1.157. is certainly an improvement over A; = { a 4 .  a5) .  Table 4.2 shows 

the reevaluated conseqiiences of acting when action a5 is selected. 

However. by exhaustive examination one finds that the best subset of actions is 

A= = {ai. al ) .  with r(  1 . 2 )  = 1.526. Note that action a? is in the fourth position 

in Table 4.1. and action al  is not only in Wth position. but it is also dominated by 

actions as and a+ Table 4.3 depicts the reevaluated consequences of actions when 

action a2 is selected. 

One should keep in niind that the presence of several criteria is crucial to draw- 
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Table 4.2: WDL Example: Reevaiusted Site Consequences after Selecting Site 5 

1 Critelia 11 Actions 11 Weiqht (I 

Table 4.3: WDL Example: Reevduated Site Consequences d t e r  Selecting Site 2 

I. 

(2)Infias tructiue 
(3)Environme1itd Risk 
Increment to Value 

Criteria I Actions 1 Wezght II 
- - -  

Infrastructure 1.25 0.75 0.83 0.83 0.39 
Environmental Risk 0.6 0.5 0.75 0.6 0.35 
IncrementtoValue 10.819 0.713 0.735 0.745 1 

u - 

0.8 
0.6 

0.644 

0.7 
0.87 

0.707 

U 
0.39 
0.35 
1 

1 

0.75 
0.5 

0.713 

0.99 
0.34 

0.503 
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ing conclusions about the WDL example. Suppose. for example. that only the 

environmental risk criterion (including interdependence) were taken into account. 

Tlien the best feasible subset of actions is {a2 ,  a,}. This choice remains the same 

using either of the naive choice metliods (isolated values or greedy algorithm) or 

using exhaustive examination of ail feasible subsets. Hence. subset selection can be 

sensitive to interdependcncc of actions in multiple criteria decision making. 

Another use of MCDM iiiethods is to identify <ail efficient (non-dominated) sub- 

sets. R e d  that in tlic WDL example. only subscts with two actions are feasible. 

Igiioring interdependence. t lie efficient feasible subscts are 

However. taking into accouiit t lie intcrdependence of actions. the efficient feasible 

subsets becorne 

Tlic subset {a4.  a s ) .  wliich dorninatcs severd otlicr pairs in the Erst case. is now 

itself dominated. Also. note tliat eveii tliough there is no interdependence between 

ai and as. the pair { a l .  a s )  is included as an efficient pair in the second case. Tlius. 

a fcasible subset can bc efficient when interdependence is taken into account. but 

not when it is ignored. even though the mernbers of that subset exhibit no inter- 

dependence on any criterion. In general, the set of efficient solutions may change 

extensively in the presence of interdcpendence of actions. Furthermore, when an 

aggregate evaluation function is given. an example can be found with the property 

tliat the optimal solution remains tlic same when interdependence is considered. 

but the set of efficient solutions changes significantly. Hence. interdependence of 
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actions can be important in virtually eny MCDM procedure. 

The WDL examplc. dthough very simple. demonstrates that when there ,zre 

interdependent actions. cd subsets ~iiust be examined in order to find the best 

one. or to find the set ot escient solutions: selection according to the ranked list 

of individual actions niny not yield tlie optimal solution. Moreover, this example 

illustrates that the selection of a subset of actions based on the greedy algorithm can 

be qGte misleading. 111 the next section. a formal definition and cliaracterization 

of interdependence of sets of actions aiid interdependence of actions are presented. 

Siibsequently. important specid cases are discussecl. 

4.3 Interdependence of Sets of Actions 

Bclow. a formai definition of the interdcpendence of actions is presented. However. 

firs t the interdependence of sets of actions is considcred: t lien interdependence of 

actions is treated as a spccid case of set interdependence. In fact, it is more usefd 

to define dependence as tlic amount of interdependence. and independence as the 

absence of interdependcnce. 

Roughly? two sets of actions. Ai and Az are independent on criterion p if the 

selection of Al lias no effect on the cvaluation of Al, and vice versa, no matter 

what other actions have already been selected. If Al and AI are not independent. 

tlien they are interdepcndent. R e c d  that for any S 2 A? ç,(S) is tlie evaluatioli 

(or consequence) of S on criterion p E P. 

Definition 4.1 Let Al. A2 E A! Al n A2 = 0. Al # 0. A3 f 0, and let Ao C 
A \ (Al u A2).  Then the arnount of interdependence of Al on A2! given A', on  
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criterion p fP zs 

Note that the amount of interdependence of A2 on Al equals the amount of inter- 

dependence of Al on A?. because it follows from (4.2) that 

It is notewortliy tliat if Al fi A? f 0. one caii include common actions in A* 

and use (4.2). or alteriiatively define the amount of interdependence as 

We wiU not pursue ttiis definition hem. but will always assume that Al  and A? axe 

disjoint. 

Definition 4.2 Let AL.& C A. Ai n A2 = @.Al # @.Aa # 0, and let A0 2 

A \ (A1 U A2). Then AL and Aa are independent gzven A'. according to cntenon 

P E P .  .if 

&,(Ai. A2 1 A') = 0. 

In this case, we write Al(Ip 1 A')A~.  Independence of Al and A2 implies that the 

arnount by which the selection of set Al increases the consequence on criterion p 

does not depend on wlietlier A2 is also selected. 
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Note that indepentlence given A0 on criterion p. (1, 1 A'), is a relation on the 

disjoint subsets of A \ A'. Moreover. since &(Al. A? 1 A') is symmetric in Al and 

A?. (1, 1 A') is a symnietric relation. L e .  

However . independcnce is not necessarily transitive. In particular. if Al ,  A?. 

and A3 are nonempty and p,airwise disjoint. tlien it can liappen that 

Al(Ip 1 A')A? and A& / A')A~ h ~ t  - (Al(I, 1 A')A& (4.5) 

wlicre -. [-] syrnbolizes .-Not" of [ m l .  To illustrate liow non-transitivity of indepen- 

dence can occur in rcrility. assume tlint Al,  A2. and A3 are t h e e  ground-water 

sources in different rcgions. If A? is located far fi-om botli Al and A3. then the 

aniount of water extraction from Al or Aj would typicdy not affect the amount 

of water extraction h o u  A? and vice versa. However. tliere may be a close re- 

Iationsliip between water extraction from Al and A3. if they are adjacent. Thus 

Al  and A2: and A2 alid A3. may bc independent. while Al and Ag are highly 

inter de pendent. 

To appreciate the nieaning of independence. note from (4.2) that Al(& 1 A0)A2 

if 

C ~ ( A O  u A l )  - Ç,(A') = cp(A0 u Al u A?) - C ~ ( A O  u A2) .  (4-6) 

Tlus relation indicates t hat the increase in consequence on cri terion p following 

the selection of Al docs not depend on whether A, lias already been selected. In 

O tlier words, if Al and A2 are independent, the increase in consequence following 

the selection of Al is %(A0 u Ai)  - $(A0), wlietlier or not Az is also selected. 
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Likewise? the increase in consequence after choosing A2 is cp(A0 U A?) - cp(AO): 

whether or not Al is also selected. It follows that. if Al and Az are independent. 

tlien the increase in consequence subsequent to tlie selection of both of them is 

%(A0 U Al) + $(A0 u A2) - 2Ç,(A0). 

Kence. if (4.6) does not hold, there is a synergistic relation between Al and A2 

on criterion p. Define tlie synergy of Al and Az, given A'. on criterion p as 

Note that 

Actud incrcase in consequence - Independent increase in consequence 
Independent inc~ease in consequence 

Hence. the synergy of two sets Ai axid A2 is the smount of their interdependence 

divided by the %dependent" increase in consequence following the selection of 

botli sets. l For instance, in the WDL example. if A' = 0, then the synergy of 

actions a4 and a5 on tlie infrastructure criterion is 

' N o t e  that y, con takc nny numerical vahie-positive or negative. 
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By substituting (4.7) into (4.2): the consequence of the combination of Al and 

A? given A' equals 

Expression (4.9) shows Iiow synergy. g. can be interpreted as an increase? or a 

decrease. in the consequeilce of joint selection of two actions. Note that 7, can take 

both positive and negative values. If -(,(Ai.A2 1 A') > O .  we say that Al and 

A? liave positive synergy given A'. Similady. if -fP(Al. AI 1 A') < O. Al and A2 

have negative synergy given A'. -4s an example of negative synergy. suppose that 

ai and a, are two sites tliat can utilize some cornmon facilities. thercby reducing 

infrastructure costs in tlie WDL example. Hence. with the sehction of both a; 

and aj. the total infrastructure cost will be decreased. On tlie other Iiand. assume 

tliat the selection of botli ai and aj aggravates the environmental situation of tlie 

region. Accordingly. tlic synergy of tlicse two actions on environmental risks would 

be positive. 

As is evident frorn (4.7). the synergy of two sets of actions depends on the set 

A* that has already bcen selected. In fact. it is possible for the synergy of two sets 

to be positive when A: is selected and negative wlien A! $ A: is selected. 

Example 4.1 L e t  %(l) = 4 2 )  = 4 3 )  = ~ ~ ( 4 )  = 2. ~ ~ ( 1 . 2 )  = 4 2 . 3 )  = 

544 .3 )  = 3.cJ1.3) = ~ ( 1 . 4 )  = 4. cJ1.2.3) = 5. ~ ( 1 . 4 . 3 )  = 4. Then the 

s y n e r g y  levels of two actions al and a3. given a? and g iuen  a4' are 
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Suppose that the value according to criterion p P is to be maxirnized. Then. 

if 7JA1< AI / A') is a large positive number. Al and A2 approach a ~ o r n p i e r n e n t a n ~  

relation. On the other liand. if 7,(Ai. A? 1 A') is a large negative number. Ai and 

A2 are close to being n iu tudy  exclusive. Concepts similar to complementary and 

m u t u d y  exclusive have bcen widely used in project selection decision problems. 

Definition 4.3 Let A l . A 2  E A. Al TI A? = O. A l  = 0.A2 f O .  and let Ao 

A ' (Al u A t ) .  Then Al and  A2 are independent  o n  cn'tcrion p. if 

Tlius. two sets of actioxis Al and A? are independent if they are independent given 

any A0 Ç A \ Ai u A?. Lf Al and A? are not independent on criterion p. they are 

interdependent  on criterion p. It follows from the above definition that AI and A? 

are interdependent on rriterion p if 

3 A* Ç A (Al  IJ A?) srich that - [A1 (Ip / A") A?]. (4.11) 

Hence. Ai and A? are interdependent on criterion p if there exists A0 such tkat 

(4.6) does not hold. W e  c d  two sets unconditiotially interdependent if they are 

interdependent ( i .e .  (4.G) fafis) for ail A'. and conditionalig interdependent if they 

are interdependent givcn some A'. In particular. AI and A2 are conditionally 

interdependent if they are independent given some A:. but not given some Ai $ A:. 

Another possibility. shown in Example 4.1. is that A l  and A? have positive synergy 

given A:. but negative synergy given A: f A:. 



Since independence is a symmetric relation. interdependence (which is the nega- 

tion of independence) is also symmetric. Moreover. interdependence is not neces- 

sarily transitive. Consider the following example: 

Example 4.2 Assume A0 = 0. Conaider t h ~ e e  se t s  Al .  A?. and A3. szch that 

Then it follo-ws that 

Thu-.  

- [Al (1, j A') A?]. - [A? (1, 1 A') A3]. and Al (1, 1 A') As 

It is easy to overlook conditional interdependence. although it can be  as im- 

portant as unconditional interdependence in applications. Consider two sets of 

ground-water sources Ai and A? that are independent. If a third set of ground- 

water sources close to botli sources is selected. the total water extraction of the two 

sources. Al and A?. may be reduced. making Al and A2 interdependent. 

As another examplc of conditional interdependence. consider the select ion of 

two software systems tliat work independently. The total benefit of their usage 

thus equals the sum of tlie individual benefits. However. suppose that with the 

selection of appropriat e hardware. tliese t wo software systems produce positive 

synergy. Thus. the systems are independent if tlie hardware is not selected. and 
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interdependent if it is selected. Accordingly, we cnl l  these two software programs 

conditionally interdependent. An important special case of conditional interdepen- 

dence is defined next. 

Definition 4.4 Let Al.  A? C A. Al n Aî = 0. Al $. 0, A2 # 0. Then Al and A? 

are s imply  independent if Al(& 1 0)Az; otherwise. Ai and A? are s imply  interde- 

pendent. 

Note that by (4.2).  Al and A2 are simply indepcndent if #JAt. A2 1 0) = 0. 

According to (4.6). tliis is cquivalent to 

bccause %(a) = O. Iti otlier words. two sets are sirnply independent if the value 

of their combination rtquals the sum of tlieir individual values. This concept is 

sirnilar to the idea of coiivcntional independence of actions. AN past research on 

interdependence of actions is restricted to the concepts of simple independence and 

interdependence. 

Note that two sets of actions may be simply independent. yet interdependent 

(wlien some non-empty set of actions lias already been selected). as shown by the 

following example: 

Example 4.3 Consider three actions al, a? and a3 such that %(l) = ~ ( 2 )  = 

4 3 )  = 2 and ~ ( 1 . 2 . 3 )  = 5. ~ ( 1 . 2 )  = 3, 4 2 . 3 )  = 3. and ~ ( 1 ' 3 )  = 4. Ac- 

t ions  ai and as are sim.plg independent on  en tenon  p ,  because 



CHAPTER 4- iMODELIiVG ACTION-INTERDEPENDENCE IN MCDM 92 

But when action a2 hns nlready been selected, ai and a3 are interdependent .  becanse 

so that 

If two sets are coiiditiondy indcpendent given A'. one may need to know 

wlietlier these two sets are dso independent given n subset or superset of A'. In 

wliat follows. we explore conditions under which ttic independence of two sets @en 

AU implies their indepcndence on any subset or superset of A'. Let A0 and A'' be 

two nonempty sets of actions such tliat A'' C A'. The following theorem sliows a 

relationship between A& 1 Ao)A2 and Al(Ip 1 A")A?. 

Theorem 4.1 Let Al .  A?. A'. A'' bc nonempty sets such that Al n A2 = 0. A'' C 
A'. A0 E A \ Al UA?.  Define B = A0 \ A". Then 

A1(Ip 1 A0)A2 Al& 1 A ' ' ) A ~  when 

P r o  of: see Appendix A.1. 

l)At(I, 1 A*')B, 

2)A& 1 A")B, and 

3)(A1 U A2)(Ip 1 AO')B.  

The above theorem sliows that independence of two sets given A0 does not imply 

tlieir independence on subset or superset of A0 unless t h e e  indicated conditions 
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in t h s  theorem hold. The following corollary is a special case of Theorem 4.1 when 

A'' = 0. This corollary sliows a usefd relationsliip between simple independence 

and conditional indepeiidence of two sets. 

Corollary 4.1 Let Al .  Ai. A* be nonempty sets s.uch that At n A2 = 0. Then 

A i ( &  I A O ) A ?  6 Ai(Ip 1 @)A2. when 

Tlie above corollary indicates tliat simple independence of two sets implies thek 

coiiditional independeilcc given A'. wlien botli sets and tlieir union are simply 

inclependent witli A'. Tlieorem 4.1 ancl Corollary 4.1 can dso  be used for examining 

interdependence of two sets. For instance. 

- [Al($I A')&] - [A1(Ip 1 @)A2]. when 

Tlie following theorem sliows another relationsliip between simple and condi- 

tional independence. 

Theorem 4.2 Let AI .  AI! and AS be three nonempty  and disjoint sets of actions. 

and le t  A& 1 0)A?. Then Al(Ip 1 &)A3 iflA1(Ip 1 0)(A2 U A3). 

Proof: in Appendix A.2. 

Tlie following corollary. an immediate consequence of Theorem 4.2. shows a 

relationship between siiiiple and conditional interdependence. 
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Corollary 4.2 Let Al .  A?. and AI be three nonempty and disjoint sets of actions.  

and let Al(Ip 1 @)A?. Thcn -- [Al(Ip 1 A*)A3] 28 - [A& 1 @)(A? U &)]. 

The following theorcm is a gener=dization of Theorem 4.2. 

Theorem 4.3 Let A l .  A l . .  . . . A, bc nonempty and disjoint sets of act ions.  Then 

AI(Ip 1 0)A2uA3 . . .UA,-l UA,! provided that Ai(Ip 1 @A2. A& 1 A2)A3? Al(Ip ( 

A? U A3)A4. . . . . a d  Al( Ip  1 A, ü A: 

Proof: in Appendix A.3 

A, .  

For two sets to bc interdependent. interdepenclcrlce on one criterion siiffices. 

-- [Al (1 1 A') A?] 3 3 p  E P such that - [Al (1, 1 A')A~]. (4.13) 

so tliat (1 1 A') exprcsses independcnce on cvery criterion. Hence. two sets of 

actions are interdependent if tkere is at least one criterion under which tliey are 

interdependent. 

We now define two special cases of set-independence. namely interdependence 

of a set and an action. aiid interdependence of two individual actions. 

Definition 4.6 Let a; E A. S C A \ {a; ) ,  S # 0 .  and let A0 C A \ ( S  U { a ; ) ) .  

Then a; and S are independent  i f  



Note that &(ai. S 1 A") is defined by (4.2). 

The next example sliows that even though independence of an action and a set 

is a symmetric relation. i. e. 

the independence of ai and S is a property of tlie two sets {ai) and S and not of 

the set {ai) CI S. 

Example 4.4 Considc7- th.ree actions ai. a? and a3 such that % ( l )  = ~ ( 2 )  = 

4 3 )  = 2 and ~ ~ ( 1 . 2 )  = 4. ~ ~ ( 1 . 3 )  = 4. ~ ~ ( 2 . 3 )  = 5.  and ~ ( 1 . 2 . 3 )  = 7. Then 

al (1, ) 0 ) { a 2 .  a 3 )  bec<m.v 

0 7 1  the other hand: 

5,(1.2) - ~ ( 1 . 2 . 3 )  i 4 3 )  # O. 

In general. suppose S 1. S2 2 S' Si 4 S2 and AOnS = 0.  Then. the independence 

of Si and S \ S 1 on criterion p. S1 (1, 1 A') (S \ S ). does not imply the independence 

of S2 and S \ S2 under criterion p; as the example shows. - [S2(Ip 1 A') (S \ S?)] is 

possible. 

One important case of interdependence is interdependence of two actions. Al1 

previous researcli of interdependence has been limited to the concept of interde- 

pcndence of actions ( s e .  for example. [31], and [l]). The importance of interde- 

pendence of actions stcms from the fact that often a set of actions is selected by 
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clioosing individual actions. one at a time. Moreover. carefdy designed procedures 

for dealing witli interdependence of actions niay be expandable to interdependence 

of sets. 

Two actions a; and aj are independent given A" if the amount by which action 

ai increases the evaluation on criterion p does not depend on whether action a j  is 

also selected. In other words. for p E P. a;,aj E A. and any A0 C A \ {a; .aj) .  

wlicre &(.. . 1 .) is as in (4.2). Note thnt ai (L, 1 A') nj denotes the independence of 

actions a; and a j on crit crion p given A'. Similar t O tlie interdependence of sets. we 

denote the conditional interdependence of actions ai and aj  by - [a; (Ip i A o ) a j ] .  

For instance. - [ai(Ip 1 {nk))aj] indicntes that &(ai. aj  1 al.) + O. 

4.4 Conclusions 

This chapter introduces a new definition and ckaracterizntion of interdependence of 

actions for subset selection problems. It is shown tliat ignoring interdependence of 

actions in multiple criteria decision problems is riskier than in single criterion deci- 

sion problems. Througli a simple example it is demonstrated that using the greedy 

algorithm to choose n small subset of actions in tlie presence of interdependence 

can be quite misleading. 

The interdependence of actions is generalized to set interdependence. In fact. 

interdependence of actions is treated as an special case of set interdependence. 

Interdependence is chwacterized as conditional and unconditional, and the main 

differences of conditioiial and unconditional interdependence. compared to conven- 
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tioiial approaches. arc cxplained. Tlic next chapter is mainly concerned with ex- 

ploring the relationships bet ween se t-interdependence and ac tion-interdependence. 



Chapter 5 

Int erdependence Evaluat ion 

5.1 Introduction 

In tlie previous cliaptcr the notion of interdependence of sets of actions was intro- 

ditced. Additiondly. as specid cases. the interdependence of two actions and inter- 

dependence of an actioii and a set were discussed. This chapter presents a generd 

framework for evaluating tlie consequence of a set of interdependent actions. More- 

over. the relationship between set-interdependence and action-interdependence is 

explored. Section 5.2 prcsents a general rnethodology to evaluate the consequence 

of a set in the presence of interdependence. It also puts forward a new and general 

definition for order of interdependence. Next, Section 5.3 discusses the evaluation 

of interdependence of two sets according to the amount of interdependence of thek 

subsets. A t horough niidysis of the relationship between interdependence of sets 

and interdependence of actions is addressed in Section 5.4. Subsequently. Section 

5.5 presents a new definition of additivity of a set of interdependent actions. Finally, 

coticlusions are drawn in Section 5.6. 
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5.2 Evaluating a Set of Interdependent Actions 

on a Criterion 

In this section. we present a general framework to evaluate a subset of interdepen- 

dent actions. It lias bcen observed in practice tliat. often. the evduation on any 

criterion is additive wlien more than one action is selected. For instance. the over- 

<dl cost of a set of indcpendent projects is the sum of ail individual project costs. 

However. interdependciice of actions does occur: our objective is to measure and 

account for its effects. 

Define %(Al j A') = c p ( A O  U Al)  - %(A0), wliere p E P and Al 0 A' = B. We 

c c d  %(Al 1 A') the corwcqaence i n c r e m e n t  of Al given A' on criterion p. From 

(4.2) 

Equation (5.2) shows tliat independence of two sets is equivalent to the additivity 

of t heir consequence increments. Moreover, (5.1) indicates how the ez i s tence  and 

amount of interdependence between two sets depends upon the set of actions A0 

that has aheady been selected. To simplify the discussion in the rest of this section. 

we consider only the concepts of simple independence and simple interdependence 

of actions, and hence we assume that A' = 0. Tlie results are expandable to the 

general case. unless ot lierwise specified. 
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The symbol Ap(S) wil i  denote the amount of s i m p l e  dependence vtithin set S C 

A on criterion p. We c c d  A,(S) the dependence of set S. Following Fishburn and 

LaValle [30], we define Ap(S): for any set S E A and p E P' as follows: 

Note that the value of A,(S) can always be calculated. as it depends only on the 

value of c&). For a sct of actions witli two or tluce elernents 

( a i  j a )  = ( - } - ( j )  - ( ) - ( j .  ) + ( )  + ( j )  + ( k )  (5.5) 

Based on the above definition. Fisliburn and LaValle prove tliat the vdue of 

any set of actions. S. 1 S (> 2. can bc calculated as follows: 

Models (5.3) and (5.6) include dependencies within any number of actions. In 

many practical cases. tliere are a priori restrictions on dependence. Define the order 

of dependence of set S on criterion p E P? O,(S), as the cardinality of largest subset 

of S, T, such that A,(T) # O. Hence. when OJS) = k. then the value of S can be 
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cdculated as 

because Ap(T) = O for any (TI > k- In general. define the order of dependence on 

criterion p. Op: as the cardinalityof the  largest subset. T C A. such that Ap(T) f O. 

Hence. when O, = k.  tlie value of any set of actions in A can be cdculated using 

(5.7). Note that OJS) is a property of set S. and 0, is a property of the set of 

actions. A. In practical cases. it is usefd to find the order of dependence within a 

set of actions. The following tlieorern shows how to  find tlùs quantity: 

Theorem 5.1 Let  S C A. 1 S 

cri terion p is 12. where 1; 5 1 S 

1 2. T h e n  the order of dependence of S .  O,(S). on 

1 ,  iff the consequence of S can be wri t ten as: 

Proof: See Appenduc A.4 

Note that Expression 5.5 depends only on ç,(+ Hence. it can be used to 

determine the order of interdependence of a set. 

Example 5.1 Using Tlieorem 5.1 one can show tliat O,(S ) = 2' and OJS) = 3 if 
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Cledy:  when OJS) = 1. tlie consequence of set S can bc written as the sum- 

mation of the conseqiicnces of its individual actions. By convention. 0 , ( S )  = O 

means that there is no other way to oxpress ç,(S). The following corollary is tlie 

imrnediate result of tlic &finitions of set-interdepmdence and order of dependence: 

Corollary 5.1 Let 0 = Si C A.  0 f S2 Ç A. and SI Ti S2 = 0. Moreover. let 

O,(Sl) = kl and 0,(S2) = &. Then 

In some cases. it niay be difficult to estimate the amount of dependence within 

large sets of actions. Moreover7 the computationd requirements to evduate a set 

increase rapidly as tlie order of dependence increases. Hence. in some situations it 

is beneficial to ignore liigher order dependence. For example. Fishburn and LaValle 

[31] restrict their mode1 to dependencies within pairs of actions only. As is shown 

in Sections 5.4 and 5.5. restricting the order of dependence can produce useful 

connections between intadependence of sets and interdependence of actions. 
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5.3 Evaluating Interdependence of Sets on a 

Criterion 

In the previous section. tlie amount of dependence within a set of actions was 

defined. We now derivc useful expressions to evduate the interdependence of an 

action and a set. and ~iibsequently~ generalize it for interdependence of one set and 

another. In particulm. wc demonstrate how the aniount of interdependence of two 

sets can be expressed in terms of the amount of interdependence of their proper 

subsets. Here. we coiisider only simple independcnce and interdependence. and 

Lcnce we assume that A' = 0. However. the results are applicable to more general 

cases. iinless otherwisc rpecified. For the sake of simplicity in notation. we denote 

&(Si: S2 1 0) and Si(I,!0)S2 by &(Si- S2) and Si 1, S2, respectively. 

The followinp theorem givcs an expression for the amount of interdependence 

of an action and a set of actions in terms of dependence within individual actions. 

Note that dP(S1, S2) is the amount of interdependence of SI and S2 and is defined 

according to (4.2). wliile A p ( S )  is tlependence within the set S and is defined 

according to (5.3).  

Theorem 5.2 Let S = {a,.  ? a,, - - . a,), S C A \ {ai). a n d  +p(ai' S )  deno t e  t h e  

amoant o f  in te îdepende t ice  o f  action ai and se t  S .  Then the dependence  o f  a; and 

S can be represen ted  as  follows: 

wltere Ap ( {a ; )  U T )  zs d 4 n e d  according to (5.3). 
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Proof: According to 4.2. when A' = 0 

But. based on (5.6) 

Substituting (5.14) into (5.13) gives: 

A recursive expression for the amount of interdependence of an action and a set 

can be usefd in estimating the consequence of a set of interdependent actions. The 

following theorem est ablislies a relation between t lie amount of interdependence of 

ai and Sn' and of ai and Sn+1. 

Theorern 5.3 Let a; E A and Sn, Snil A \ (a;). Sn = {al. a?, . a j . .  O -  : a,) 

and Sncl = Sn u {u,,~). Then 

(Note that the sumnation includes a T = 0 t e r m . )  
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Proof: According to 4.2. when A0 = 0 

But. using (5.6): 

and 

Substituting into (5.17) givcs: 

With sequential substitution of interdependence terms as in Theorem 5.3. one 

can find a recursive expression for the interdependence of a set and an action. Let 
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sk = * 7 a i )  \ {ai)- s k - t  = {al'  * al.+) \ {ai): arid st = ( a k - t + l ,  . . . , a k )  \ 
{ai) .  Then, for every t < k (see Appendk A.5).  

For example. consider S5 = ( a l .  - -  . a s ) .  If &,(ai. S3) is known. where S3 = 

{ a l .  a?: as), then 

The amount of intcrdependence of two sets can be obtained sirnilarly. 

Theorem 5.4 Assume S1. S2 2 A. and Si f~ S2 = 0. Then the amo-unt of interde-  

pendence of S l  and S2 1i; as fofollows: 

Proof: See Appenduc A.G. 

For instance. the amount of interdependence of sets { a l .  a 2 )  and {a3 ,  a4) equds 
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Similar to (5.18). tliere is a recursive expression for interdependence of two 

sets in terms of interdcpendence of tlieir subsets. Let SI.  S 2  C A 7 S l  # 0,S, $: 

0. SI n S2 = 0. Si SI. and S; C S?. Then, 

where A,(.) is defined according to (5 .3) .  

5.4 Relationship Between Interdependence of Sets 

and Interdependence of Actions 

One of the main riifficulties in evaluating the consequence of a set of actions is mea- 

swing t lie interdependence among i t s component S. This issue has been addressed 

by many researcliers (for example, (311. [112], [93]. [94]). In fact, decision makers 

and analys ts often ignore interdependence and use additive models to evaluate the 

consequence of a set of actions because of the difficulty of measuring interdepen- 

dence. Moreover? studies that do consider interdependence impose limitations on 

its type or structure. Recently, however. as the importance of interdependence in 

some applications was recognized, tecliniques were developed for estimating the 

amount of interdependciice among two or more actions (1 121. 
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In this section. WC propose several different approaches to testing whether ac- 

tions, or sets of actions. are independent. ,and to evaluating sets of interdependent 

actions. Furt hermore. we es tablish usefd connections among t hese approaches. 

The relationships between independence of sets and independence of actions pro- 

vide a basis for these procedures. For instance, to estimate the consequence of a 

set. one c m  partition it into independent subsets such that the consequence of the 

set can be represented as an additive function of the consequences of its subsets. 

Oiie can dso decomposc the set so as to minimizc the number of interdependence 

t erms in the evaluation. 

On the other liand. in some red-world applications only partial information 

concerning the conseqiicnces of individual actions and subsets of actions is avnilable. 

For instance, it is possible tliat only the consequences of individual actions. and 

of interactions for a fcw subsets, are available. NonetheIess, one can estimate the 

dependence of actions iising this information. The discussion in this section sheds 

soine liglit on tliese issues. 

R e c d  tliat indepeiidence of an action ai with individual actions does not imply 

independence of a; witli the set consisting of theh union. For example, it may be 

t hat 

ai(1, 1 A O ) ~ ~  and ai& 1 ~ O ) a k ,  but -. [ai(Ip ( A ~ ) { U ~ . U ~ ) ] .  

Tliis can occur when { a j ,  an)  has properties not sliared by any individual action. 

For instance, in the context of the WDL example. it could be that sites a l ,  a? and 

a3 are pairwise independent on the infrastructure criterion, but if all three sites 

wcre selected together. a large cornmon facility could be built for ail sites to take 

the advantage of economies of scale. 

WC address the interrelationship bctween set-independence and action-independence 
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in two cases: 

1. Tliere is no restriction on the sign of synergy on the criterion. 

2. Synergy on tlie criterion is either always non-negative. or always non-positive. 

5.4.1 General Case: Int erdependence Unrestricted 

First. we make no assiimptions about the sign of synergy of interdependent sets 

of actions. Tlie rrnioiiiit of interdependence may be zero. positive. or negative. 

Using some stronp conditions. usefd relations betwcen the interdependence of sets 

of actions and interdepciidence between pairs of actions contained in these sets c m  

bc establisbed. 

Interdependence cati be a difficult property to understand as it does not pass 

clirectly from sets to tlicir subsets or supersets. For example. it is possible for an 

action to be interdepetident with somc or all actions in a set. yet to be independent 

of tliat set considered as a avhole. Tlùs occurs wlien tlie values of the interdepen- 

dence of an action witli different subsets of a set "canceï'. For example-. assume 

tliat Ap(ai, aj) = -5. A,(ai. ak)  = 3. and A,(ai. aj.  ak) = 2. Then 

Hence, aiIP{aj: ah), but [ai Ip aj ]  and [ai Ip ah]. 

Tlie followinp t heorem est ablishes t lie relation between independence of a set 

and an action, and independence of two actions. 1x1 par t icda ,  it is shown that to 

adjoin a set of actions to either of a pair of independent sets such that independence 

is preserved, the augmcnting subset sliould be indcpendent of 
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1. the set it is addcd to. and 

2. the union of thc original sets. 

Theorem 5.5 Let S. S' C A. S f~ S' = 0. Assume S; and S; partition s'. Then. 

for an9 A* A \ (S u SI). if s;(I, 1 A(')$ and s;(I,, 1 AO)(S; u S). then 

S(Ip 1 A')s' if f S(1, 1 A*)$. 

Proof: Assume thaf 

(1, 1 A')$ aiid s;(I, 1 A')($ u S ) .  

+ ( S  U A") - +(A') = (+(S G S' U A') - c p ( s f  U A'). 

Because. s;(I, 1 A')$ it now follows that 

0x1 the other hando because s;(I, 1 A')($ U S), we have 



CHAPTER 5. INTERDEPENDENCE EVAL U't.1TION 

Substituting (5.21) into (5.22) yields 

cp(S U Au) - cp(AO) = c p ( s ;  U S U A') - cp(s; u A'). 

which means, by definition. 

S(1, 1 A')$. 

( 2 )  Proofthat S(IJA')S; -S(I,~AO)S'.  

Since si(& 1 A*)(s; L S). (5.22) holds. Because s;(I, 1 A')S;. 

ç,($ U A'') - (+(A') = CJS; ii S; Li A') - c . ( s ;  Ci A'). (5.34) 

Suhstituting (5.23) into (.5.34) yields 

cJS U S; U S; U A') - c+(S U S; U A') = Ç,(s; L' S; U A') - + ( s ;  ü A*). (5.25) 

On the other hand. S(1, 1 A')s; implies 

cp(S L' A'') - C ~ ( A O )  = c p ( S  U S; u A') - cp(s; U A'). 

Substituting ( 5 . 2 6 )  into (5.25) gives 

c p ( S  U A') - c J A O )  = cJS U S; U S; U A') - cp($ U S; U A'). (5.27) 

wliich implies by definition that 

S(I, 1 A')($ U s').a 
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Tlieorem 5.5 can be in terpreted as providing sufficient conditions for the indepen- 

dence of two sets to bc implied by the independence of one of them with a proper 

subset of the other. and vice versa. 

Now, we state a special case of Tlieorem 5.5 which shows what conditions are 

required to preserve independence of two actions wlien additional actions are joined 

to one of them. 

Corollary 5.2 Assumr: o c t o n s  ai. a j .  and ak E A. and A' C A \, {a;. aj.  ak). If 

n j ( I p  1 AO)ak and ae(1, 1 AU)(a;.ûj) . t h e n  a& 1 Ao)(aj .  ak )  iff ai(&, ( Ao)aj. 

The relation between in terdependence  with a set and with one of its subsets 

follows from the theoreni for independence. 

Corollary 5.3 Let S . s 1  2 A.S n S' = 0 and AU 2 A \ (S U S I ) .  Assame that 

S; and  S; par t i t ion  s r .  Then S and S; are interdependent given A0 ifl S and S' 

are in terdependent  gloen A0 provided th.at 

Proof: The proof is inimediate from Theorem 5.5.0 

In summary, unless more conditions liold. interdependence (independence) of one 

set with another does riot imply interdependence (independence) of the set with 

any proper subset, and vice versa. 

Note that dependence within a set of actions does not imply the dependence 

within any of its proper subsets. For instance. for three actions it is possible that 
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tliere is no interdependence within pcairs of actions. yet dependence does exist when 

tliree actions are selectad. Figure 5.2 shows three different situations which may 

a i s e  in dependence of t h e  actions and below is a numerical example illustrating 

Figure 5.2. 

W P  O 
(3). Combina lion of (1) and (2) 

l 

Figure 5.1 : Kinds of Interdependence aiiiong Sliree Actions. 

wliich corresponds to case (1) in Figure . 
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wliich corresponds to case (2) in Figure 2. 

(3) F indy?  if ~ ( i ,  j )  = 5. ~ ( i ,  k) = 3. cp ( j ,  I r )  = 6 and %(i. j .  k) = 7' then 

wliicli corresponds to case (3) in figure 5.2. 

Another consequencc of Theorem 5.5 is a c~roll~ary that provides an alternative 

way to assess independcnce or interdependence. 

Corollary 5.4 Sets S and S' are i n d e p e n d e n t  gzuetz A' Ç A \ ( S  U s') if S' can be 

partitioned i n t o  tewo srrbsets. S; a n d  si. such that 

According to Coroilary 5.4. to dernonstrate the independence of two sets. S and s'. 
it is sufficient to find n partition of S' into two subsets such that (5.28) holds. On 

the other hand, according to Corollary 5.3. S and S' are interdependent if any part 

of (5.28) fa&. 

The following example demonstrates a possible use of Theorem 5.5 and its corol- 

laries. In particular, it shows how Theorem 5.5 can help to find the amount of 

dependence within all pairs of actions with partial information on dependence of 

some pairs of actions. 
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Example 5.3 Assumc S = {aly a?). S' = {a3, a4.a5) ,  A' = 0 ,  and S($ 1 AO)S'. 
Let A,(az.a3) = Ap(a , .a5)  = 2, Ap(a3,as) = 0. and suppose that dependences 

among more than two actions are all negligible (i.e. Op = 2) .  Find the dependence 

witlun all pairs of actions. 

According to Tlieorem 5.5 and Corollary 5.3. since S 1, s'. one can partition S' 

into S; = (a3 )  and S; = { a 4 . a 5 )  such tkat 

Using the definition of set i~iterdepelidence. and tlie assuinption that dependence 

of Inore than two actiolis is zero. we lrave 

Using (5.29)' (5.30)! and ( 5 . 3 1 ) .  

Using the same procedure and partitioning S' into {a3 .a4)  and { a s ) .  one can 
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find that A,({al: as ) )  = -2 and A,({al, a 4 ) )  = -A,({a , ,  a*)). 

5.4.2 Case 2: Unicity of Sign of Synergy on a Criterion 

In real-world problems. criteria often have the property that actions. or sets of 

actions? are either indcpendent or always have synergy of the same sign. These 

arc c d e d  positive syrzcrTy or negative synergy criteria. Moreover, when there exist 

bot11 positive and negntivc synergies on a criterion. one c ~ m  often decompose the 

critcrion into positive aiid negative siib-criterin: t lien evaluation of actions can be 

cmied out using eacii siib-cri terion. 

Building the set of criteria in such a way that all criteria are either positive 

or negative makes it casier to derive useful connections between action and set 

interdependence. Hc~icc. utilization of the multiple criteria structure eliminates 

sonie of the difficulties of evaluating a set of interdependent actions. This. in 

ti1l-n. helps in irnplemctiting some efficient procedures to estimate the amount of 

intcrdependence. It is iioteworthy tliat. in general. unicity of sign cannot be used 

with utility or aggregatcd value functions. Tlirougliout this section. we assume tliat 

a criterion is either positive or negative. The following tlieorern shows that in the 

case of unicity, independence of two sets implies independence of ail their subsets: 

in other words. in tkis case independence is hereditary. 

Theorem 5.6 Assume that p E P is positive or negative. Let S C A, S' A,  

S # 0,s' # 0 and S O S '  = 0. Then S 1, S' implies Si 1, S; t/ Si S. 

Proof: Without loss of generality assume t hat p E P is a positive criterion. Assume 
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tliat 3 S I  C S and 3 S2 E s'. such that &(SI, S2)  > O. According to (5.20) 

(bP(s. SI) = gp(Slo S,) + (Pp(S \ sio s r )  + 4Js. S' \ S2) (5.32) - - 
a b 

Since S 1, sr .  &(S. S' = O. Tlius? for vanishing the right Land side of (5.32). at 

least one of the terms a or b sliould be negative. But. this is against tlie assumption 

tliat p is a positivc critcrion. Hence. SI and S2 nmst be independent on criterion 

According to Slieorcni 5.6 under unicity of synerpy, if two sets are independent. 

tlien alI their subsets riiust be independent. 

It foLIows from Tlicorein 5.6 that for every Si C A and S2 2 A such tliat 

SI n S3 = 0, 

In 0 t h  words. interdependence of two sets implies interdependence of their super- 

sets. The next corollary is an irnmediate consequeiice of Theorem 5.6. 

Corollary 5.5 Let a; E A and S C A \ ( a i ) .  Then ai I, S implies that a; 1, S' 

vs' S.  

In many decision problems, one wants to examine the independence of two sets 

wlien the relations anlorig some of tlieir subsets are known. Let S c k )  denotc tlie 
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collection of c d  subsets of S with cardinality k. The following theorem indicates 

necessary and suficient conditions for independence of two sets to be implied by 

independence of their proper subsets. under the unicity of the synergy condition. 

Theorern 5.7 Let m. n > O and fiz S E A(,) and T E A(,, such that S n T = 0. 

Th.en S 1, T iflAp(S u T) = O and VSl E S+,). Tl E T(,-llt Si Ip Tl. 

Proof: The conditioii is necessary according to Tlieorem 5.6. which states that 

To prove tlint it is sufficient. we must show that &,(S. T) = O. According to (5.19). 

Because SI 1, Tl 

wliere i 5 n - 1. j 

V SI E S+I) and Tl E T~,-ll. Theorern 5.6 implies 

5 rn - 1. Therefore. &(Sl,Tl) = O wlienever Si 2 S. 1 Si 15 
n - 1. Tl T. / Tl 15 )IL - 1. But! because of the unicity of sign of synergy, 

(bp(Si- Ti) = O Ap(S1 U Tl) = O. 

for any such Si and Tl. Hence, (5.19) reduces to: 

&(S? T) = A,(S U T). 
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But. by assumption. Ap(S u T) = O. Hence. &(S .  T) = O and S I, T. 0 

In summary. Theoreln 5.7 shows that. in order to prove independence of two sets 

S and T1 1 S I= n. 1 T I =  m. one lias to examine n x m independence relations 

arnong the n subsets of S1,-ll and the m subsets of T(,-l,, and also show that 

Ap(S ü T) = O. For instance. to use this methocl to show the independence of 

S = {ai. a?: as. a4 ) .  and T = {as.  as. a?). twelve independence relations have to be 

proven. as well as Ap(S u T) = O. The foUowing corolIary is the immediate result 

of Theorem 5.7. 

Corollary 5.6 Let ni 5 A and S Ç A \ a;. Thcrz ai Ip S if and only if ai 1, S 

'YS1 E S(n-i). and A,({(L;) u S) = O .  

For instance. to show t lie independeilce of al  and S = {a?. a ~ .  a4 ) .  t ke following 

relations must be provm: 

1, {a? .  0 3 )  al Ip {a?. a4) .  al 1, {a3. a r } .  

AP((al .  a?. as. a,)) = 0. 

Recall from (5.2) tliat the order of dependence on criterion p. Op' is the cardi- 

nality of the largest subset T C A such that Ap(T) f O. As explaiiied previously. 

in some cases it is more convenient to restrict the order of dependence of a set. 

The following theorem is useful for proving independence of two sets according to 

independence of their proper subsets under a restriction on the order of dependence. 

Theorem 5.8 Assume that the order of dependence  on a positive or negative cr i -  

t e r i o n p ~ P  iaOp =/< .  L e t S i c A .  S i # @ .  i =  I . - * * . n .  n n d T j c  A.  Tj f 0. 
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j = l : - - - ? m !  and Si n Tj = 0. Moreover, let 1 Si  u Tj 12 k .  Then the following 

statements are equzvale+rit: 

Proof: (1) implies ( 2 )  because. according to Theorem 5.6. if two sets are indepen- 

<lent then any pair of their subsets is nlso indepenclcnt. 

TO show that (2 )  iniplics (1). assunie that Si 1, Tj. V i . j .  Let S = (Ji Si and 

S = Uj Tj. We liave to show tliat $,(S. T) = O.  According to (5.19) 

To demonstrate t h t  this expression vanishes. we c m  show that al1 the inter- 

dependent terms A,(. ) are zero. Sincc Si Ip Tj. Yi. j .  then according to Theorem 

5.6 under the assumption of unicity of sign Si# 1, Tjd for any Si. S; and sny 

Tjl Tj. Therefore. 

C C Ap(Sit U T,I ) = O; Vi. j. 
WS,I csi O$Tj, CTj 

On the other hand. the order of interdependence is lz! and 1 Si U Tj 12 k. Hence 

Tlius: all interdependence terms in (5-7) are zero and hence (Ui S;) 1, (Uj Tj). 
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The following theorem is a usefd way of recognizing independence or interde- 

pendence of two sets. Recall that for any set S Al  the collection of subset. 

BO(S) = {Sl. .. ..Si'. . . .Sn)? is a cover of S ifl U i S i  = S. Let O(S) denote the 

class of all covers of set S. and Bo(S) represent an element of O(S). 

Theorem 5.9 Assumc that order of dependence on a positive or  negative cntenon. 

~ E P .  k O , = k .  L e t S C A . T C A .  a n d S n T = 0 .  ThenS1,T i f l 3 8 ; ~  O(S), 

and 38; E O ( T ) ?  such thvat for e v e q  Si E 8;: T j  E 01. 1 Si u Tj 12 1. and Si Ip Tj. 

Proof: Immediate frorii Thcorem 5.5. O 

In summary. to show the independence of two sets it is sufficient to find two covers 

for encli set such that ail pairs of sets. one from eacli cover. are independent. 

Note that Tlieoreni 5.9 iinplies tliat d i e n  0, = 2. tlien two sets are independent 

iJCd pairs of actions. one from each set. are independent. The following example 

shows a simple application of Theorems 5.8 and 5.9. 

Example 5.4 Lct S = {a i .a2 .a~ .a4}  and T = {as:as .a7) .  Suppose that the 

following information is available concerning the relations among ditferent subsets 

of S and T: 

Suppose that 0, = 3. Tlien according 

rcspectively, equivalent to 

and 

and 

and 

to Theorem 5.8. (l), (2),  and (3) are. 
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But (4),(5), and (6) imply tliat 

Hence, when O, = 3. ~ $ 3  U T) = ~ ( s )  + ç,(T). 

5.5 Additivity of an Interdependent Set 

In tlùs section. propertics of a set of actions are explored to show liow the con- 

sequence of a set of interdependent actions can be represented in terms of tlie 

consequences of its propcr subsets. Here? the main objective is to propose an alter- 

native approach for evnlueting tlie consequence of a set of actions. Spe~ific~dy. we 

show how to decomposc a set so tliat the consequence of the set c m  be evaluated 

additively, as the sum of the consequences of the subsets in the partition, or such 

tliat the number of interdependence terms is minimized. Recall from Section 5.2 

tlint in general the consequence of a set of interdependent actions can be evduated 

using the following expression: 

As pointed out in previous sections, estimating A,(.) is the difficult part of 

evaluating the consequence of a set. Here we introduce alternative ways to represent 

an interdependent set and to evaluate its consequence in a way that avoids the need 
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to estimate czll interdependencies in that set. 

For sake of simpLicity in discussion. we assunie throughout this section the 

following, unless explicitly s tated, otlierwise. 

1. Actions are either independent or have simple interdependence. Recail that 

two actions a; and n j  are simply interdependent iff A* = 0. 

2. The sign of intcrdcpendence of actions on eacli criterion is either positive or 

negative. Le.  tlic tinicity of sign of interdeperidence Iiolds for every criterion. 

Later. we will show tliat tkese assumptions can be rekured. with some modifications. 

5.5.1 Additivity of An Interdependent Set: Definitions and 

Concepts 

As cxplained beforc. otic of the basic assumptions in the conventional subset selec- 

tion problem is that tlic consequencc of a set of actions can be represented as the 

sum of tlie consequenccs of individual actions. 111 otlier words, it is assurnecl that 

for any set S = {a ..a;.. ... a,) 2 A. 

Usudy, a set that satisfies (5.35) is said to be additive. In Section 5.2 we observed 

tliat this assumption is not true for a set of actions with interdependence; one lias 

to use (5.34) to find the consequence of the set. In this section, we introduce new 

definitions and tecliniqnes tliat generalize the notion of additivity of a set of actions. 

We c d  a set of actions. S, additive if its consequence equals the sum of the 

consequences of the subset in tlie partition of S. R e d  that $ = {Si?. . . . Sj , .  . . . S,) 
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is a partition of S iff Sj f 0 Vj:  njé+ Sj = 0 and Uje+ Sj = S. Let @(S) be the 

class of ail partitions of set S. Then. the notion of additivity of a set S is defined 

as follows: 

Definition 5.1 Let 0 + S Ç A. Then S is additive on p .with respect to + E 8 ( S ) ,  

Wiien S is additive in rcspect to partition $J. tlicn the cardinality of the largest 

subset in $ is ccded tlic degrce of additivity of S with respect to $. and is denoted 

by D,(S ( $). More spci:ificcdy. 

Definition 5.2 Let O # S C A .  and $J = {Si.. . . . Sj.. . . . S,) be a partition of 

S such thet (5.36) holds. Then the degree of additiuity of S with respect to 11 on 

Note that D p ( S  1 II,) is n property of 

mny have different degees of additivity 

a specific partition of S. $. 
" . - .. , 

(5.37) 

Hence, set S 

for various choices ot y!~ satisfying (5.36). 

Moreover, additivity of a set S is defined according to a specific criterion p; the 

degree of additivity of a set may be different for various criteria. 

Clearly, when the consequence of S can be represented as the sum of conse- 

quences of individual actions in S, then + = {ai.. . . ,ai,. . . ,a , )  satisfies (5.36), 

and therefore? the degree of additivity of S on p in respect to q!~ is one and vice versa. 

In other words. Dp(S  1 +) = 1 implies conventional additivity of S. on criterion p. 

The following theorcm shows the necessary and sufficient conditions for a set of 

actions to be additive in respect to a partition: 
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Theorem 5.10 Let 0 + S C A, d E Q ( S ) ,  $ = {SI,. . . . Sj, .  . . . S,). Then S 61 

additive with respect t o  $J iff 

Proof: Tlie condition is necessary according to the definition of additivity of set 

S. Hence. 

Sj 1, Sjf fur* j f j f  E + S is additive witli respcct to $J. 

To sliow that it is dso  sufficient. note tkat if S is additive with respect to $J 

t hcn 

Now assume tliat for soriie SI; and Sl iii i,. Sk and Sl are not indcpendent. Thcn. 

It follows tliat because of unicity of sign 

wliich contradicts the assumption. Tlius, 

According to Theorem 5.10: to represent the consequence of a set of actions as 

siim of the consequences of its disjoint subsets. one Lias to find a partition with 

independent elements. In the prcvious sections, we showed the required conditions 
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for independencc of two sets of actions based on independence of their proper 

subsets. Here ive assume that the sign of interdependence on each criterion is 

the same and tliere is only simple interdependence nmong actions, enabling us to 

examine the independaice of two sets. using Theorems 5.7 and 5.8. It is no tewort hy 

that with these theorenis one can determine the independence of two sets in more 

general cases. 

Clearly. there may bc several partitions t hat satisfy the conditions in Theorem 

5.10. Let @,(s) C * ( S )  bc the set of dl partitions witli respect to whicli S is 

additive on criterion p. CVe want to find a partition in $,(s) tliat haç the maximum 

ntirnber of elements. In otlicr words. we seek a partition in !&,(s) such tliat the 

cxclinalities of its cleniciits is minimized. Our interest stems from the fact that 

most often it is easier to nieasure the consequences of smaller subsets of actions. 

Tlùs is even more important in multiple criteria situations. when there are several 

consequences on differeiit critcria to bc. evaluated. Let $J~(s )  E @,(s) be a. partition 

of S that satisfics (5.36) aiid lias the rnaximum number of elements. We c d  $JE(S) 

the maximal partition of set S on critcrion p. 

Later. we will show tliat for evesy set of actions there is one and o d y  one 

maximal partition on cach criterion. The cardinality of tliat maximal partition. 

$(S), determines how much set S can be decomposed without violating (5.36). 

Hence, it is c d e d  tlie degree of separabiCty of S on criterion p. Since the degree 

of additivity and the dcgree of separability have inverse properties. we denote the 

degree of separability by D,(s). Hence. 

Clearly, a set may liave different degrees of separability on different criteria. 
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Tlic following corollary is the immediate result of Theorem 5.10 and the definition 

of degee of separability. 

Corollary 5.7 Let  0 f S C A. T h e n  the degree of  separability of S is the largest 

integer II such  tha t  act ions in S can be partitioned into k independent  sets. 

Recall tliat we liavc clefined the degree of additivity of a set on a partition. 11. 

as the cardinality of tlic largest subset in .61>. Thc overall degree of additivity of a 

set . S. on criterion p is defined in respect to its maximd partition. and is denoted 

by D,(S)- 

Definition 5.3 The o v c r d  degree of ndditivity of n set  o n  a cn ten 'on  p. Dp(S) i s  

the cardinality of the Largest subset of its maximal  partition. $O. In other words. if 

$ J O ( S )  = (5'::. . . . SjO . . . . S:) is the max imal  partition of S .  then 

Dp(S) = max 1 S; 1 .  
j=l ,....q 

Definition 5.3 indicatcs tliat Dp(S) is the smcdlest degree of additivity on ail 

partitions of S satisfying (5.36). Hence. 

Note that the degree of additivity. D,(S),  is different from the order of depen- 

dcnce. O,(S), that was defined in Section 5.2. Tlie former is the property of the 

maximal partition of S on criterion p and is defined as the cardinality of the larges t 

subset in the maximal partition. The latter is the largest cardinality of any T C S 

with non-zero amount of simple dependence. Nevertheless. it is clear that when 
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OJS) = 1. then Dp(S) = 1. Also. it can be shown that for any nonempty set of 

actions Dp(S) 2 U J S ) .  

As pointed out. tlic degree of separability and degree of additivity have inverse 

properties. When D J S )  increases. Dp(S) decreases and vice versa. Two specid 

cases require more explanation. When DP(s)  = 1S1. then D p ( S )  = 1. In this case. 

according to Theorem 5.10 al1 actions in S are independent and the consequence of 

S can be written as the sum of the consequences of its individual actions. On the 

otlier liand. D P ( s )  = 1 or Dp(S) =I S 1 implies tliat tlie maximal partition of S has 

only one element. wliicli is the set S itself. In this case. set S is called a completely 

interdependent set. Tlic concept of a completely interdependent set is an important 

notion that we will use later in this section. 

Definition 5.4 Let S A. 1 S 12 2 .  Then .  S is completely interdependent if S 

cannot be partitioned i r ~ t o  two subsets sach that  (5..36/ holds. 

We now propose tlic following theorem the proof of whicli follows directly from 

tlie above definition ancl result of Theorem 5.9. 

Theorem 5.11 Let S C_ A. 1 S 1> 2. and OP(S) = L. Then S is completely 

interdependent on p i f f  for e u e q  two disjoint subsets of S, Si and SI such that 

Si l~ S2 = S. 3s; C Sl and  3s; c S2.  and (s; u $ 1  5 k.  -. [s; 1, $1. 

The following corollary is the specid case of Theorem 5.11 when' 0,(S) = 2. 

Corollary 5.8 Let S Ç A. 1 S 12 2: and Op(S) = 2.  Then  S is completely interde- 

pendent 2 f f  for every two nonernpty disjoint mbsets. Si and Sz, that couer S ,  there 

exist two interdependciit actions. one in  Si and one in S2. 
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The focowing example summarizes the above discussion: 

Example 5.5 Let set S = {al, . . . . as), and OJS) = 2. and suppose the set of 

interdependent pcairs of actions on criterion p is 

Consider an arbitrxy partition of S as follows: 

All elements of partition & are independent. because there are no interdepen- 

dent pairs of actions. fi-om Werent subsets in tlic partition. Hence. according to 

Tlieorem 5.10, S is additive with respect to &. 

The degree of additivity of S in rcspect to $1 is calculated as follows: 

However. $i is not tlic maximal partition of S because its second element ( i . e  

{a ; .  as' ac, aa. as)) can bc decomposed into {a4: as. ug )  and {a3, as)  witliout violat- 

ing tlie additivity of S. Moreover. tliis element is not completely interdependent. 

The maximal partition of S is 

7 4 ;  = ({al, a,), {a+ a., as), {a3 a8)< {a7)). 

Tlierefore, D,(S)  =( 1= 4 and D p ( S )  = 3. 

Even thougli 0, (S)  = 2 in tlie above example. the degree of additivity of S 
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equals 3. In most cascs. evduating the consequence of a set of actions through 

its maximal partition is casiest: because this partition decomposes the set into its 

smcdest possible subscts such that (5.36) holds, and evduating smaller subsets is 

easier. The following tlieorem shows that a partition is maximal when it satisfies 

(5.36), and all of its elements are cornpletely interdependent. 

Theorem 5.12 L e t  0 + S C A. T h e n  $@S) is the maxzmal par t i t ion  of S on 

criterion p $f+:(S) E @ p  a n d  al1 e l e m e n t s  of $JP(S) are cornpletely i n t e r d e p e n d e n t .  

Proof: We fkst provc tliat if e ( S )  is maximal. then cd elements of +;(S) are 

conipletely interdependent. 

Assume that $;(S) is rn,ucimal. Suppose that 35. E @(S) such that Se is not 

complet ely interdepenclcnt . Then according to Definition 5.4 and Theorem 5.1 1. Se 

cati be partitioned into two subsets. Se, and Se= sttch that 

Hence. 

Hence, the additivity of S is maintained. implying that $$(S) is not maximal, which 

contradicts the initial assumption. 

Now, we prove that if aLl elements of $$(S) are completely interdependent then 

tlgo(S) is maximal. Wlien every element of $;(S) is completely interdependent. 

tlien according to Definition 5.4, none of them c m  be partitioned into any two 
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independent subsets. Hence. @S) is the largest partition that satisfies (5.36). 

Tlierefore, q!~ i (S)  is maximal, completing the proof. O 

Note that in Example 5.5 ail the elernents of 11$0 are completely interdependent. 

Hence, this partition is maximal. On the other hand, in this example, the second 

element of partition is not completely interdependent and can be partitioned into 

two independent subsets. Tlierefore. tlis partition is not mcaxiucimal. Obviously. there 

may exist several coniplctely interdependent subsets for a set of actions. However. 

we are interested in fiiicting the biggest cornpletely interdependent subset of a set of 

interdependent actions. bccause. according to Tlieorem 5.12. the cardindity of tlie 

bigges t completely intcrdependent subset indicat es the overall degree of additivity 

of a set. The following theorem shows that for cvery set of actions. there is only 

one maximal partition on each criterion. 

Theorern 5.13 Let 0 + S C A. Then there is one and only one maximal partition 

o j  set S on each criterion. 

Proof: Let be the riiaxirnal partition of S. Assume that +: is not unique and 

tliere exists anotliec partition 4; that satisfy (5.36) and 1 ~J>o I=I y!$ 1. We prove 

tlint 4: and S$O are identical by showing that all elements of these two partitions 

arc identical. 

Consider a subset So E $1;. We show that if and 4: both satisfy (5.36) and 

1 4," 1=1 $," 1, then there exists a subset S" E & O i dentical to S". 

According to tlie necessary condition of Theorem 5.12, if $J: is maximalo ail the 

elements of $$ should Lie completely interdependent. On the other hand, if I$;I = 

111$01. then d the elements of 4: must be cornplctely interdependent. Because, 

otlierwise. if one element of 4; is not cornpletely interdependent. then according to 
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tlie sufficient condition of Tlieorem 5.12 this elernent can be partitioned into two 

subsets without violating (5.36), and lience. 

wlllch contradicts tlie assumption. Hcnce. al l  the elernents in 4; and 4: are com- 

plctely interdependent. 

Moreover. sincc $: aicl 4; must satisfy (5.36). according to Theorem 5.10. ail 

thc elements in $: and ail tlie elements in 4: are independent of each otlier. Note 

tliat because of tlie unicity of sign. the independence of two sets Si and S2 indicates 

tliat 

,A a; E Si ,d aj E S2 S U C ~  that - (ai 1 ai). 

Now. we show that for every Si E there exists S2 E 7& identical to SI. For 

tliis purpose, we show tliat cd the elements of SI and S2 are the same. Consider 

al E SI find a set in y!$' t tliat contairis ni. C d  tliis set S2. Because. Si is completely 

interdependent. there is ariotlier action a? in S1 tliat is interdependent with a l .  

Action al sliould also be  in Sz because according to tlie above discussion, all tlie 

elements of 40 should bc independent of each otlier. In the same way, one can show 

that every action that is included in Si should also be in set S2. Hence, Si and S2 

are identical. 

Similady, it can be proven that for any set in $1; tkere is an identical set in 4:. 
Hence. $O and 60 are identical and the proof is complete. 

According to Tlieoreni 5.13, the maximal partition of every nonempty set of 

actions is unique. For any real number x, let 1x1 denote the greatest integer which 

is less than or equal to x. The following theorem establishes a lower bound for the 
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overall degree of additivity of a set. 

Theorem 5.14 Let 0 # S E A and 4); be the maxzmal partition. Then, 

Proof: Let $1; = {SI. . . . . Si. 

sets in partition $O. tlicii: 

. . . S,). Since Dp(S) is the largest cardinality of ail 

The following algoritlim determines a maximal partition of n set of interdependent 

actions. In this algoritlim Fk. k = 1.. . . . q denotes the set of actions interdependent 

with k .  For instance. in the Example 5.5. F5 = (a4.  a6). 

Begin Procedure 

Find the maximal partition of S = { a l ,  . . . , ai, . . . . a,) 

j := l ,d j  := 0, D := S 

WHILE i 51 D 1 
CONSTRUCT Fi for a; E D 

LET 1/>, = Fi 

F o ~ k = i + l t o I D I  
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0 then end 

J a; U a ~ ,  

= a; u Fi 

L E T ~ = ~ + ~ ! D  :=D-lCIj 

END 

Tlic collection of $1, is tlic maximal partition of S. 

End Procedure 

5.5.2 Additivity of a Set and Graph Theory 

Iri tlGs section. we slicd some light on the relationships between concepts intro- 

duced in tlus section aiid siniilar concepts in the tlieory of graphs. The concept of 

additivity of a set of actions is similai- to the notion of a connected graph and stable 

set (independent set ) iii gap l i  tlieory. For a grapli G(V. E). where V denotes t he  

set of vertices and E tlie set of edges. a connected subgraph is n set of vertices sudi 

tliat there is a path bctween any pair of vertices. and a stable se t  of vertices is a 

subset W of V such tliat no two elements of W are connected.' A set W with 

maximum number of clements is c d e d  the rnaximi~rn stable set and the cardioality 

of the maximum stable set is called the order of stabilitg of graph G. A standard 

problem in graph theory and cornbinatorics is to find the maximal stable set of 

vertices for a given grapli. In general. this problem is difficult to solve [16]. 

A set of actions with binary interdependence. i. e. with O, = 2.2 can be repre- 

'For  a detailed description of gmph theory concepts. refer to [16/. 
'Recall that when the order of dependence 2s Iwo. Ap(S) = O for ISI 2 3 .  
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sented as a graph in wliich nodes represent the actions and existence of edges be- 

tween nodes represents t lie binary interdependence relation bet ween actions. Hence. 

for every set of interdependent actions there exists a corresponding graph. Finding 

the maximal partition of a set is equivdent to partitioning the nodes of a corre- 

sponding graph such tliat no edge joins two different elements of the partition. and 

cvery node in each element of that partition is connected to at least one other 

notle. Moreover. every completely interdependent subset of a set corresponds to n 

coiinected subgraph of the corresponding graph and vice versa. For example Figure 

-5.2 shows the correspoiicling graph of set S in Example 5.5.  

Figure 5 .2:  Graph Corresponriing to Example 5.5 

The concept of liyper-graph can be employed to represent a set of actions 

with higher order of dependence. For instance. if in Exarnple 5.5 actions in sets 

{a?. a3. as )  and actions in set { a 4 .  as. as) are interdependent with order of depen- 

dence 3. then the corresponding grapli is shown in 5.3. 

The foIlowing theorem establishes a relation between order of separability of a 

set of actions and order of stability of its corresponding graph. 

3For a set S = {al.. ... a,) and a famdy E = {El.. ... .E, ..... E.} of mbsets of S .  H = 
( S - E )  is a hyper-graph i f E ,  + 0 for j = I ..... e and U, EJ = S .  



Figure 5.3: Hypergrapli Corresponding to Example 5.5 

Theorem 5.15 Let  B = S C A. O,(S) = 2 ,  and suppose the interdependence 

relation o n  actions in S is transitive. Shen the  order of separability o f S  e p a l s  the 

order of stability of the corresponding graph of S .  

Proof: 

Let DJS) and a(S) dciiote the degrec of separability of S and order of stability of 

its corresponding s a p l i .  respectively. Reccd that according to the definition a(S ) 

is tlie maximum riurnbcr of nodes (actions) sucli tliat no two of tliem are connected 

(interdependent). On the otlier lia~id. D,(s) is tlie cardinality of the maximal 

partition of S .  

Since. all the elements in the mcaximal partition, $i(S). must be completely 

interdependent. and since according t o  the assumption aLl interdependence relations 

in S are transitive, from eacli element of $:(s). only one node can be selected for 

inclusion in the corresponding a(S). On the othrr hand, since all the elements of 

$ i (S)  are independent. from every element of q!f(S) one node can be selected in 

cr(S). Therefore, becniise a(S) is the maximum stable set, for every element of 

e(S) there is one and only one node in the corresponding stable set. Therefore. 

1 D,(s) 1 = a(S)? complcting the proof. 
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Note that in general when interdependence is not transitive, the above theorem 

does not necessarily liold. For instance. in Figure 5.2, a(S) = 5, and ( $i(S)  1= 4. 

5.6 Summary and Conclusions 

This chapter addressed general procedures to evaluate the consequence of an in- 

terdependent set of actions. DiEerent approaches were introduced to measure the 

interdependence of two sets of actions according to the amount of interdependence 

of their proper subsets. Tlie order of dependence of a set of actions wns formcdy 

defined and ri prncticd nicthod was presented to determine the order of dependence 

of a set of int erdependciit action. Fur t hermore. several different approaches were 

proposed to determine wlicther actions. or sets of actions. are independent. Ac- 

cordingly, various tecliniques were proposed to evaliiate the sets of interdependent 

actions. 

Thoughout tliis cliapter. useful relationslips between independence of sets and 

independence of actioiis are developed. Using the concept of additivity of a set. 

an approach was introdiiced to evaluate the consequence of a set according to its 

independent partitions. 

The theory of interdependence introduced in tliis chapter, and the preceding, 

can be used in subset selcction problems for MADM, when tliere are s m d  number 

of actions, as well as in MOMP, when there are a large number of actions. In the 

next chapter we propose a general approach in the MOMP Framework to solve a 

multiple criteria subse t sclection problem under interdependence of actions. 



Chapter 6 

Formulation and Solution 

Met hodologies 

6.1 Introduction 

In tlie previous chap ters. several tecliniques were proposed to evaluate the conse- 

quence of a set of interdependent actions. This cliapter is rnainly concerned with 

the formulation of a subset selection problem under interdependence of actions and 

solution methods for tliis problem. Tliroughout tliis chapter. we assume that one 

c m  examine and estiniate the interdependence of actions on each criterion, using 

the t ethniques presented in Cliap ter 5. 

The organization of tlus chapter is as follows. Section 6.2 deals with the state- 

ment and formulation of the problem of selecting a subset of actions from a large 

discrete set of actions. Section 6.3 discusses existing approaches to solve this prob- 

lem and explains the main advantages and disadvantages of each approach. Then. 

Section 6.4 discusses the problem of dominated solutions in Goal Programming 
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(GP) models. Subsequcntly. two solution met hodologies are proposed in Sections 

6.5 and 6.6 to overcomc some of the sliort comings of curent  GP approaches. Fi- 

ncdy. appropriate conclusions are drawn in Section 6.7. 

6.2 Problem Formulation 

Rcccd that A is the set of actions. P is thc set of criteria. and c i  is the consequence 

of action ai according to criterion p. Define the binary variable xi by 

1 if a; is sclected: 
xi = 

O if a; is ~ io t  sclected. 

Without loss of gciicrdty. assume that ail criteria are to be maximized. -4 

multiple c r i  teria subset selection problem is expressed as foIlows: 

IPI - 
Maximize f&) = C +, 

p= 1 

Subject t o  : 

where X denotes the feasible decision set. For example, in the m-best action prob- 

lem addressed in Cliapter 3. 

Now, let L: denotc the set of subsets of actions with order of dependence li 
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a c c o r h g  to criterion p.' For instance. in the WDL example in Ckapter 4, we have 

According to oui. dcfinition of intcrdependence. a general subset selection prob- 

Ierri under interdependence of actions witli resource constraints. when O, = K. is 

forniulnted as a Mdtiplc Criteria Zero-One (MCZO) problcm as follows: 

Subject t o  : 

wliere c i  is the conseqiience of action i according to criterion p.  and Ap(S). defined 

according to (5.3): denotes the amount of simple dependence within set S. Problem 

QI is a generd mathematical form in whicli if all actions in S are selected. then 

n a i E s x i  = i and Ap(S) will be added to the overall consequence of criterion p, 

'For  definition of  order of dependence refer to Section 5.2. 
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f,(z). Program Q1 cnii be rewritten as? 

Subject t o  : 

For example. when O, = 3. the objective functions of ( 4 2 )  can be stated as 

wliere AJi.  j) end AJi .  j. k )  is the amount of simple dependence within a;. a;. 

and witliin a;' a,. and ah. respectively. Thus. a niultiple criteria subset selection 

problem under interdependence of actions is formulated as an MCZO problem with 

soine nonlinear terms. Nonlinearities in ( 4 2 )  may cause some difficulties. The next 

siibsection deah wit h rctnoving the polynomiai terms in ( 4 2 ) .  

6.2.1 Removing Nonlinearity 

Most theory and procedures of integer programming have been developed for the 

case of linear objectives and constraints. Hence, it is useful to find an equivalent 

linear problem for (Q2). Since all xi in (Q2)are restricted to be zero or one, the 

noiilinear terms can be removed easily. 

Fm each S = {a i , .  . . . . ai,:. . . , ni,) E L: for any k and p. define 
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and add the two following constraints: 

where Ys E {O. 1). Tlicse two constraints ensure that Ys takes the value of one zflcd 

actions in S aie selectcd. Hence. to convert (42) to a linear zero-one problern. one 

new binary variable aiid two constraints must be added for each interdependence 

term. 

Glover and Woolsey [3Sj proposed to substituto polynomial cross-product terrns 

by a continuous varinblcs rather than by integer variables. They show tliat these 

continuous variables aritomatically take zero or one values. 

Similarly. we can cliange the variable Ys to a continuous variable by replacing 

(6.4) with the following set of constraints2: 

wliere Ys 2 0. To demonstrate this idea. consider the following example: 

Example 6.1 Supposc tliat a subset selection problem is given as follows: 

I AI 
Maximize f&) = c',ri + A 1 ( 1 ~ 2 ) q r 2  + Al(& 3.4)x2x3x4, 

à= I 

IAl 

Maximize f2(z)  = c i r ;  + A2(2, 3)2?t3 + A2(2. 3. 4)x2x3x4, 
i= 1 

Subject ta : 

'No te  that Glover and Woolsey j  1381 procedure is independent of the number of objectives. 
Hence, their procedure can he applied to a mtrltiple objective case. 



CHAPTER 6. FORMULATION AND SOL UTION METHODOLOGIES 143 

2; E {O, 1). i = 1.2.. . . . (AI. 

This problem can bc converted into a linear integer program as follows: 

Subject to : 

In general. a subset selection problem in MCDM under interdependence of actions 
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c m  be formulated as a linear mixed integer program. 

Subject to : 

z; f {O. 1). vai E A. 

& 2 o. vs E LP. vp. k. 

wiiere Ys is defined according to (6.2). The fouowing sections review some of the 

solution spproaches available to solve (43) and explain tlieir main advantages and 

sliortcomings. Subsequently. two solution met hodologies are proposed. 

6.3 Solution Approaches 

One could choose. for instance. one of the following three general approaches to 

solve Problem 43 (sec also Chapter 2 for a review of solution techniques): 

1. Assess the utility function of the DM to aggregate all objectives into one: 

t hen solve the single objective problem. 

2. Solve a vector optimization problem to find the set of efficient solutions. 

3. Use a G P  approach. 
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Each of the above approaches has its own strengths and weaknesses. Assessing 

the DM'S value function is quite difficult and rnay involve a great deal of subjectivity. 

this is especiaaly criticd when the number of criteria is large. In vector optimization 

there are two main clifficulties. First. the set of efficient solutions is usually large 

so. after using this metliod. the DM still faces a clifficult problem of selecting the 

best solution. For example. Ruhe [IO71 shows that for a particular class of bi- 

cri teria transshipment problem. tliere are 2" supported efficient solutions. where n 

is tlie number of nodcs. Second. due to the non-convexity of tlie decision space 

in (43). the set of unsiipported efficient solutions in a MCZO problem rnay be 

quite difficult to obtaiii (see Chapter 2).  Even for class P of the combinatorid 

pro blems such as assigiinient problem in which t lie unimod.ula~ty property Iiolds 

and the integer solutioris can be foiind by solving linear progamming problem. 

the Geoffrion's tlieorerii cannot find efficient solutions. In fact. most MCZO 

mçthods are applicable only to s m d  problems [127]. Moreover. as pointed out in 

Cliapter 3. wlien one wislies to select a subset of actions. the individually dominated 

actions should not be  renioved first. since there is a substantial possibility that. 

rinder some value functions. a subset including some dominated actions may be 

tlie best alternative (si ihet  of actions). In the presence of interdependence. t liis 

kirid of occurrence becornes cven more Likely. leading to a large number of decision 

variables in the MC20 problem. 

GP is the mos t popular method in MOMP because of its combination of validity 

and acceptance by decision makers. It has been used widely in many different areas 

of application. White il341 surveyed multiple criteria optimization publications and 

found that 280 out of 400 papers involve variations on GP techniques. The main 

strengths of GP were ciescribed in Cliapter 2. 
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Hence, GP can be considered as n suitable approach to solve (43). However, 

conventional GP is not wit hout difficulties. GP is often used to select the best alter- 

native according to tlic aspiration levels and priority of objectives specified by the 

DM. However, in many situations the DM wants only to find some good solutions 

to choose among, possibly using qualitative miteria [86]. Moreover, the optimal 

solution of a GP problcm may be dominated. The following section describes this 

in more detail. 

6.4 Dominated Solutions in G P  Problems 

In spite of tlie popularity and the many recognized ndvantages of GP. tliis method- 

ology has been criticizcd by rcsearcliers from several aspects. As explained in 

Cliapter 2. one of the clificulties in GP is that tlie resulting optimal solution may 

be dominated. In wliat follows. we discuss the issue of non-dominated solutions 

in GP. in more detail. First. we prcsent alternative GP formulations. Suppose 

tliat P = (pl, . . . . pj.. . . . plPl) is tlie set of criteria. For sake of simplicity in nota- 

tion. assume that tlie importance of the criteria decreases according to the order of 

tlieir subscripts. Tlien the multiple objective problem 4 3  can be forrnulated as a 

lexicographie GP problem as follows: 

* 

(44) Lex. Minimize d = (d;. . . . . d i , .  . . . d i i l )  
Subject to  : 
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wliere d i  and d: are negative and positive deviations of solutions from the goal on 

criterion p. Gp, and tlic rest of the  notation is the same as in Q3. Similarly? the 

Archemedian GP modcl of (43) is given by. 

I p I 

(Q5) Minirnize w,d;. 
p= L 

siibject to the same set of constraints as in (44) .  In this problem. w, is tlie weight 

of iiegative deviation fi-orii Gp.  Similarly. the associated Cliebyshev GP formulation 

of (Q3) is. 

Minimize (mar{wld;. . . . . ~ u , $ .  . . . uilPldlpl)) . 

siibject to the same sct of constraints as in (44) .  Now. we define the concept of 

GP-efficient solzltion as follows: 

Definition 6.1 Let S he m g  solution to a GP problem fomulated as (44). (45). 

or (46). and let d;(S) be its associated negative deviation from the goal on  criterion 

p .  Then S is a GP-eficient solution if there does not exzst another feasible solution, 

SO. such that 

with at Zemt one of the inequalzties strict. 

Cledy ,  when a solution is GP-efficient? decreasing its deviation from goal on one 

criterion leads to an iiicrease in the deviation from goal on at least one otlier 
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criterion. The following tlieosem shows that the optimal solution of a GP probiem 

is GP-efficient . 

Theorern 6.1 Let SR be an optimal solution to GP problern 44 or 45. Then S= 

is a GP-eficient solution. Moreover. let H be the set of optimal solutions to ( 4 6 ) .  

Shen there ezists a sok~tion S' E H such that S' is GP-eficient. 

Proof: 

We f i s  t prove tliat if S' is an optimal solution of (Q4), tlien SR is GP-efficient. Let 

S' be an optimal solutioii of (44) and let S' be any feasible solution to the vector 

m;~uimization Problem Q3. Suppose tliat the negntive deviations of solutions Sa 

and S' from the aspiration lcvels are (d;. . . . . di:  . . . . dj,, ) and (dl: . . . 4, . . . . &,). 

rcspectively. For simplicity iri notation. assume thnt the criteria are listed in de- 

creasing order of importance in the iexicographic GP problem. 

In lexicographie GP. fîrst the deviation from the most important criterion is 

minimized; if tliere arc multiple optimal solutions. then in the second stage the 

deviation on t lie second mos t important crit erion is minimized ( without increasing 

thc first deviation), and so on. Hence. di  is the minimum deviation from the most 

important goal wlllcti is ob tained by solving t hc corresponding single objective 

problem. Therefore. d; 5 4. If d; < dl then S' cannot dominate S'. Thus, SR 

is GP-efficient. If d; = dl? we move to the second level of priority. Since d; is the 

minimum deviation from the goal without worsening the f i s t  priority, thus d; 5 d2. 

Similar to the first step. if d; < 4, the proof is cornplete. Otherwise, wc rnove to 

the third priority. The rest of proof is sirnilar to the k s t  and second steps. 

Note that if there are no optimal solutions at one stage? p,  tlien the values of 

the remaining deviations. dp+l, ~4,+~, . . . . dlpl c m  be fixed and the proof for this case 
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is complete. Hence, an optimal solution to (44)  is GP-efficient? 

Now suppose that S* is an optimal solution of Problem 4 5  and let its negative 

deviations from the aspiration levels be ( d i ,  . . . . di? . . . , d i ( ) .  Suppose Sa is not 

GP-efficient. Since tlie set of feasible solutions is finite, there exists a solution for 

(43) s', with negativc deviation (d, . .  . . .$,. . . .$,) such that, 

witli at  Ieast one ineqiic&ty bmng strict. Since in (Q5). wp > O. (6.6) implies tlint 

contradicting the a ssu~nption that S* is optimal. H ce. the optimal solution of 

F i n d y  suppose tlint H is the set of optimal solutions of (Q6). We show that 

there exists a solution in H. ccded S'. which is GP-efficient. Let h' be the value 

of tlie optimal solution of (Q6),  i. c. .  

Suppose that tliere docs not exist any optimal solution in H' which is GP-efficient. 

Let 9 E H be an optimal solution of (46) that is not dominated by another solution 

in H. 

Since the feasible space is finite, the set of GP-efficient solution is not empty. 

Hence, if 9 is not GP-efficient, then there exists a GP-efficient solution. H 

'This part of proof is r indar  to the proof of theorem 1 in [58]. 
ThiS part of proof is aimilar to the proof of generating eficient solutions in weighted approach. 
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whose negative deviations rue {JI: . . . -4,.  . . . dipi) such that 

454  V p E P .  

with at least one inequiility strict. But, because h' is optimal value of (Q6), (6.8) 

implies that 3 is an optimal solution of (Q6) (ie. 3 E H), contradicting the 

assumption. Hence. tliere exists an optimal solution of (96) that is GP-efficient .5 

O 

Therefore. the op tiiiial solutions of (Q4)  and (45) are GP-efficient and at least 

one of the op t imd solutions of (Q6) is GP-efficient. However. a GP-efficient solution 

is not necessarily an efficient solution of the original multiple objective Problem Q3. 

Nwer t heless . it is useful t O examine t lie conditions for which a GP-efficient solution 

is an efficient solution of the original problem. 

Let f;(x) denote the optimal solution of multiple objective problem (Q3) on 

criterion p and let SR bri t lie optimal solution of corresponding GP problem witb dpR 

alid d,fœ as negative and positive deviations on criterion p. Clearly. when negative 

deviations of the GP-efficient solution are nonzero ( i .e .  when dp- > O Qp E P). 

tlien the GP-efficient solution is also an efficient solution of (43). because. in this 

case? the specified aspiration levels are not attainable and f , ' (x )  < Gp. Therefore. 

wluch indicates that tlic optimal solution of the GP problem. S', is an efficient 

solution of (43). Otlierwisc. if d i -  = O for some p. then f , ' ( x )  2 Gp - d i =  + dp' 

or f,'(x) 2 Gp i d;'. iniplying that S' may be dorninated. 

V h i s  part of proof is similar tu the proof of Theorem 14.15 in [1l8]. 
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Hence, a GP-efficient solution of (44): (45)  or (46) is an efficient solution of 

the original problem. ($3). if the optimal solution of the following problem is zero. 

I p I 
($7) Maximize q = 4, 

p=L 

Subject t o  : 

wi tli the rest of constrain ts as in (43). If the optimal solution of the above program 

is positive. then tliere exists one criterion p such tliat 

indicating that objective function p can make its current solution on criterion p 

bctter without worsenitig any other criteria. On the other hand. if the optimal 

solution of (47) is zero. tlien the GP solution is non-dominated because. f , - (2)  = 

Gp - d i  V ~ E  P. 

In the next two sections. two variations of zero-one GP method suitable for prob- 

lems with interdependence of actions are proposed to overcome the aforementioned 

difficulties of GP. The next section presents a method combining lexicograplùc 

GP and vector optimization that generates a subset of non-dominated alternatives 

(subsets of actions). Tlien. Section 6.6 presents a modified GP method based on a 

combination of Archemedian and Chebyshev GP techniques. 



CHAPTER 6. FORMULATION AND SOL UTION METHODOLOGIES 152 

6.5 A Modified Lexicographie G P  Method 

As described in Chapter 2 one type of GP is lexicograpliic (preemptive) GP in 

which the criteria are in priority order. In lexicographic GP, satisfying the first 

priority goal is considered to be much more important than satisfying the second 

one. and so on. This section proposes a modified GP method that generates a 

subset of efficient solutions. In the proposed metliod. first a lexicographic GP is 

solved. and then its solutions are used in a vector optimization problem to find a 

subset of efficient solutions. 

In general. the solution of a lexicographic GP Problem may require as many 

as jPI stages. in wbcli one goal is tried at each stage. Hence. the most important 

criterion is minimized first: if it has multiple optimal solutions. the second step 

is started in whicli d2 will be minimized without worsening achievement on the 

f i s t  goal. and so fortli. The sequential solution is complete as soon as the optimal 

solution of any stage is unique. Tlierefore. in lexicogaphic GP it is possible tliat 

sonie lower priority goals will never be taken into account. 

One of the advantagcs of the iexicognphic zero-oiie approacli is that the problem 

c m  be solved using a sequence of zero-one GP problems. Tliis allows one to use any 

zero-one programming routine so that models of the same size as single objective 

zero-one problems can bc solved (see [57] and [59] for details). 

Solving (44 )  often leads to a unique solution that depends on the aspiration 

levels and goal priorities. This solution may be dominated [140]. As explained 

earlier, when a DM faces a complex problem such as subset selection under interde- 

pendence of actions, slie or lie may be willing to consider more than one attractive 

solution in order to rccxamine and select among them. This way other criteria 

tliat are difficult to state as mathematical functions can be included. enabling the 
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DM to select tlie best alternative according to both qualitative and quantitative 

measures 1921. On the other hand, presenting all efficient alternatives to the DM 

through vector optimization may not be usefd. In fact? due to the huge number of 

non-dominated solutions in practical problems, only those techniques that generate 

a s m d  and representative portion of non-dominated solutions can be considered 

successfd [59. 1441. 

A lexicographie GP technique can be modified to obtain some efficient solutions 

tliat in some sense represent the set of aIJ efficient solutions. We present the pro- 

posed method for two cases: 1) when the optimal solution of (47). q'. is zero. and 

3) when q' > 0. 

6.5.1 Case 1: q* = O 

As described in the prcvious section. when the optimal solution of (Q7), is zero. 

tlie GP-efficient solution is non-dominated. Thus. if qœ = O. we need only to find 

some O ther representative efficient solutions. 

To obtain otlier efficient solutions. when q* = O. tlie DM is asked first to change 

tlic levels of goals on or some of the criteria. Suppose the DM decomposes the 

set of criteria into two disjoint subsets Pl. and P?. The subset Pt is the set of 

criteria that can be degraded or acceptable as they are, subject to improvement on 

one or more criteria in Pz. ' Moreover. suppose tliat g,, O 5 g, 5 1, is the level of - - 
degradation on criterion p E Pl, and let gp, O 5 5 5 1. be the level of improvement 

on criterion p E P2 wliich have been specified by the DM. Consider Problem 4 '4  
- - - - - - - - - - - -- 

= ~ ~ t e  that since the soltrtion is already escient, it is impossible to improue al1 the cri ter ia .  
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below. 

( ~ ' 4 )  Lex. Minimize d = (cl;. . . . . d i ,  . . . y d i , )  

Subject to  : 
K 

witli the rest of constraints similar to (43). R e d  that in the above program. 

Gp is the goal on tlie ptli criterion for tlie initial lexicograpùic problem. 44. As 

discussed in tlie previoiis section. solving (4 '4)  gives an efficient solution when 

But the optimal solution of (Q4) is efficient. Tlius. Gp > fi(x) V p  E PP: which 

implies that Gp(l  + ï&) > f p ( x )  V p  'p Pz. Therefore. to ensure that the optimal 
d-• +dg solution of ( ~ ' 4 )  is efficient. it is required that Gpgp < Gp - f , ' (x) ,  or - < 

Gp - 
V p  E Pl, where d i -  is the negative deviation of optimal solution of Problem 4 4  

on criterion p. Hence. in the second s tep, the Dhl sets the Changes on the goals in 

order to find another efficient solutions. 

Since the efficient solutions obtained fkom solving (Q4) and (4'4) are based on 

the order of importance of criteria and the aspirations Ievels. one of these solutions 

is either optimal or nearsptimal based on the DM'S value function. Therefore, 

other efficient solutions close to these two efficient solutions can be considered as 

an attractive subset of efficient solutions, wlllch most likely includes the optimal 
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solution. 

In what follows we show a simple procedure for finding some attractive eficient 

solutions close to the optimal solutions of (Q4) and (4'4), according to a given 

distance metric. These are ccded adjacent efficient solutions. 

According to GeoEi-ion's Theorem (351, every optimal solution to the following 
P I  program for different value of A. A p  E A = {A E R I P I I A P  > O .  &,=l XP = 1) is 

efficient : 

Maximize A, fp(c). (6.10) 
PEP 

1 siibjcct to the same sct of constraints as in (Q3). Let z' = { z : .  . . . .tP.. . . . z / ~ , )  

aucl z' = {z: .  . . . . ii. . . . . be the criterion vector of optimal solutions of (44) 
and (4'4). respectively. Arnong cd efficient solutions of program Q3_ one would 

like to find some adjacciit efficient soliitioiis to 2'. For tlus purpose. one could use 

t lie following progam: 

( ~ " 4 )  Maxirnize 

Subject t o  : 

witli the rest of constraints as in (43). Constraint 6.11 ensures that every efficient 

solution obtained is in the neighborhood of the first generated efficient solution, z'. 

according to an La distance rnetric. In tlus constraint. xp is a factor for equalization 

of ranges on different criteria and is calcdated by: 
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wiiere R, = Izp - 5 1 . Tliere is no specific rule to determine the amount of distance 

parameter? B. One suggestion is the following: 

wliere Rp and ~r, are defined as abovc. and h is an arbitrary number that indicates 

thc largeness of the ncigliborliood ?. Increasing the value of Ir decreases the num- 

ber of adjacent efficient solutions to be generated. and decreasing it enlarges the 

iieighborliood definitioiis and allows niore solutions to be generated. 

One may add tlie following two sets of constraints to Problern ~ " 4  to shrink the 

feasible space and thercby facilitate solving tlie problem. These constraints specify 

tlint the values of the iiew efficient solutions on cach criterion, p. are bounded by 

1 zP. and 2:. 

Setting cr = 1 (i. e. for the Li norm). the constra.int (1) in ( ~ " 4 )  becomes 

New &fine up - U; = zj - fP(x) b'p E P. Then (6.13) can be replaced with the 

following set of constraints: 

np (up - 11;) 5 8, 
PE P 

' ~ t e u e ~  (1 18h in his fonuard filtering approach, suggests a simifur distance parameter for inz- 
tialzzation of his screenzng approach. He sets h = 4 as a good starting point. 
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Hence. for the Li nom.  ( ~ " 4 )  becornes 

wlicce /3 = zEI ~ ~ 4 , .  A E A. and tlic rest of cons traints are as in (43). Similady. 

for L, . constrnint 6.11 in ( ~ " 4 )  changes to the following: 

lPl 
- 

wilere /3 = ; [& (7rPl?Jq = mm, RP 
h Hence. using either the Li or L, distance 

metric makes ( ~ " 4 )  a lineu integer problem. Other L, metrics correspond to 

nonlinear. and hence iiiore difficult. problems. but en LI, or L, approximation. or 

a combination of these IWO. may find a subset of efficient solutions close to zp for 

any La, when the numbcr of criteria is s m d .  Notc that as the number of criteria 

increases. depending on the shape of the non-dominated solutions rp may be very 

different from the convcx combination of zl and z,. 
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6.5.2 Case 2: q' > O 

Now. suppose tliat in (47): q' > O. Hence, the optimal solution of ( 4 4 )  is not 

efficient. In this case. one way to find a subset of efficient solutions, is to use Han- 

nan's formulation (461. In the context of linear GP. lie proves that for a dominated 

solution. either CU alternative optimal solution that is not dominated can be found. 

or at least one of the objective functions is unbounded. If goals are bounded. 

t lien the following vec t or mnximization program provides a set of non-dominated 

solii tions : 

Maximize f,(x). 

Subject to  : 

subject to the same set of constraints as in (43). Note tliat because of constraints 

(6.14). Problem Q8 is casier to solve tlian the original vector optimization (43). 

In this formulation. di' ruid dp' are the optimal solutions to ( 4 4 )  for specified 

aspiration levels; and Ys is the binary variable siibstituted for (na,,s xi). Note 

that if the DM aspires to a difficult-to-achieve target. there may be no new solution 

for the above probleni: the only optimal solution to (Q8) would be the efficient 

solution of (44). 

Problem 4 8  is a vector optimization problem in which the objectives are the 

original objective functions in (43) plus additional cons traints to ensure t hat the 

objective functions arc not less than Gp - di' + d:-. It is noteworthy that in linear 

GP. it is not necessary to include dp' for the constraints in (Q8).  because for an 
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Table 6.1: Tlie Consequence of Five Actions in WDL example 

Cder ia  Actions 
- al 1 a2 1 a3 1 a4 1 as 

optimal solution of a lirie,u GP problcm. dp' = 0. for any maxirnization criterion. 

Tlie following simple example illustrates the above discussion: 

Example 6.2 Considcr Table 6.1 wlùch shows the ~iormalized consequences of five 

actions according to tliscc criteria. AITOWS show the direction of preference for eacli 

criterion. Suppose tliat a pair of actions are to he  selected. The interdependent 

actions and their corresponding depeiidence values are. 

L: = @. Vlr. L: = { ( a l .  a? ) .  ( a 4 .  a s ) ) .  and L: = ( ( a 4 .  a s ) ) .  

A ? ( 1 . 2 ) = 0 . 3 .  A2(4.5)=-0 .25.  A3(4.5)=-0.2 .  

Assume that (1.0.1.5.1.3) are the aspiration levels for the first. second and tliird 

criteria. respectively with the priority of (d; . d:. d; ). The lexicographie GP for 

ttiis problem is 

Lex Minimize d = (dg, d:. d; ) 

Subject to  : 

+ .45x2 + 1 3  + .55x4 + .84x5 + d; - d: = 1.0. 

- 8 ~ 1  + - 7 1 2  + -75x3 + - 8 3 ~ ~  + -83x5 + .3YiSz - .25K,5 + d; - d$ = 1.5 

-611 + - 5 7 ~ : ~  + .5x3 + .75x4 + -6x5 - 0.?K,5 + dy - d3f = 1.3. 
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Tlie optimal solution of tlùs program using a sequential zero-one approach is (x3: x4) 

witli (1.55.1.58.1.25) for the first. second. and third criteria. respectively. This solu- 

tion is dominated. Now. WC construct the associated vec tor maximization problem: 

Maximize ( f i  (4. f?(+)? fd4)  

Subject t o  : 

.45x1 + .45x2 t z.3 + .55x4 + .S4x5 > 1.0 - O + -55. 

.8x1 + -712 + - 7 5 ~ ~  + .83x4 + .83x5 + 0.3Y1.? - 0.25h.5 2 1.5 - O + .08. 

.6xl + - 5 7 ~ ~  4 .5x3 + .75x4 + -625, - 0.2KV5 5 1.3 - .O5 + 0. 

the set of constraints (6.15). 

Solving this problem using the convex combination of the criteria for different values 

of A E A (see Geofiion's Tlieorem in Cliapter 2 )  gives several GP-efficient solutions 

as foliows: 

1 ( 1 3 :  25)i (11. ~ 2 ) .  

Note that (x3: x5) doniinates (x3, x4). NOW suppose that the DM specifies (2.2.1) 

as the goals. In tliis case the solution of the GP problern is z1 = (xl! x2) with 

deviations of (1.1, .2. -47) from goals. This solution is efficient. Hence, we seek 

other effcient solutions using the DM'S preference information. 
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Suppose that the DM specifies (2.5.1.5J.3) as new goals. Note that the goal 

for the f i s t  criterion hm been improved while the second and third ones have been 

degraded. Solving the lexicographie GP for these go& give z2 = (x3, x5) as another 

efficient solution. Now we search for other efficient solutions in the neighborhood 

of 2. 

Let the L1 metric bc cliosen as distance function. Hence. 

If h = 1 is chosen for the &stance parameter. tlic following program finds some 

otlier efficient solutions close to rl: 

Maximize f (x) = A l  (.45xt + . 4 5 q  + x3 + .55z4 + - 8 4 ~ ~ )  + 
.A2 ( . S X ~  f -722 + -75x3 + - 8 3 ~ ~  i -83x5 + 0.3&,2 - 0.256-5) - 
X3 (-Gzl f -57x2 + - 5 ~ 3  + - 7 5 ~ ~  + -625 - 0.2Kv5). 
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Solving the above problem by selecting XI = 0.1- X2 = 0.8' X3 = 0.1 gives (xI, x5) 

as an another efficient solution in the neighborhood of zl. The optional set of 

constraints (6.16) ensurcs that the criterion values of the solutions of the above 

problem on each criterion. p_ are bounded by ri and r i .  Removing this set of 

constraints rnay lead to producing more non-dominated solutions. 

Note that if more tlinti one DM is involved in the process of decision making. 

cadi DM can assign liis or lier own aspiration levels and the above mode1 can 

bc used to identify desisable alternatives for eacli DM. In this way. a compromise 

solution involving DMs rnay be obtained. The next section cliscusses another 

GP approach to solve Problem 43. 

6.6 Combined Chebyshev- Archemedian Goal Pro- 

gr amming 

As explained in Chaptcr 2. Cliebyshev and Archernedian GP are two widely used 

techniques to solve miil tiple cri teria problems. Despite the many advantages. and 

many successful applications. they have been criticized by some researchers. often 

after thorough experiments i1201. In this section. we propose a new G P  technique 

tliat removes some of the shortcomings discussed in the previous chapter, while 

maint aining the original GP structure. 
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Some difficulties that have been mentioned in the literature in regard to Arche- 

median GP are as follows: 

0 Archemedian G P  may generate solutions which are far from some criterion 

goals. In other words. even tliough the weighted sum of the deviations is 

minimized. the solution may bc far from the goal on some criterion. For 

excample. consider Figure 6.1 in which Z is tlie feasible criterion space. and 

G is the goal specified by the DM. Both criteria are to be maximized. Tlic 

Archernedian GP  solution is located at point (a). Tliis solution has zero 

deviation from tlic goal on h s t  criterion and a relatively large deviation on 

the second criterion. 

In most practical MCDM problems: large deviations from a specified goal are 

more likely to be of importance than s m d  deviations. But Archemedian GP 

does not take tliis issue into account. because. the unit cost for deviations 

of any distance is coiistant. Stewart [120] suggests tlist using the L2 norm. 

instead of Arclicnicdian GP, may deviate tliis difficulty. However. the prob- 

lem is more diffictilt to solve usiiig the Li norni. Moreover. tliere is no special 

justification for iising tliis norm to reflect the DM'S behavior, rather tlian 

O t her dis tance functions. 

In Chebyshev G P  the most criticd criterion always receives the mos t attention. 

tlie solution is not so sensitive to the clioice of weights. and aggregation of deviations 

is avoided. However. Cliebysliev GP rnay produce a solution with a high weighted 

surn of deviations. It lias dso been sliown that Cliebyshev GP solutions rnay reject 

some reasonable solutions in favor of others that are more bdanced [59]. In Figure 

6.1 the point ( b )  is the solution of the Cliebyshev GP problem. 
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Figure 6.1: The Chebysliev and Archemedian GP  Solutions 

Botli Chebysliev aiid Arcliemedian GP  are designed t O obtain one solution. 

However. in some cases DMs prefer more than one good solution. In what fol- 

lows we propose a new GP approacli which may overcome the above-mentioned 

sliortcomings of Chehysliev and Arcliemedian GP techniques. 

Consider Problems Q5 and Q6 prcsented in tlic previous section. We construct 

t lie following two-objec tive pro blem: 

subject to the same set of constraints as in (45) or (46 ) .  We c d  (Q9) a mult iple 

objective GP problem in whicli both the weighted sum of deviations and the maxi- 

mum deviations from goals are to be minimized simultaneously. Now we define the 

concept of combzned GP- e f i c i e n t  solution as follows: 
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Definition 6.2 Let S l e  a solution to (Q9) and d i  ( S )  be its correspondzng devi- 

ation f rom goal o n  criterion p. Withovt  loss of grirzerality. assume thnt al1 criteria 

are t o  be maximited.  T h e n  S is a combined GP-efficient solution i f  there is n o  other 

solution So such that 

niax (wP$(.S)) max (w,~;(s')) . 
r l ~ l l p l  l<pllPl  

lvith at least one of thc E q u a l i t i e s  strict. 

WC now propose the foilowing tlieorem. the proof of whicli foIlows directly from 

Definition 6.2. 

Theorem 6.2 E u e q  d u t i o n  to (Q9) i s  a combitied GP-e f i c ien t  solution. 

Definition 6.2 is indced a description of the efficient solutions of (Q9). Solving 

(Q9) u s u d y  gives sevcral combined GP-efficient solutions which are more balanccd 

tlinn solutions of (Q5) and (Q6).  Clearly. the two solutions to ( 4 9 )  are the optimal 

solutions of ( 9 5 )  and (Q6). because they yicld the best values on the h s t  and 

second criteria. respect ively. 

One can use any of the multi-criteria integer programming techniques? presented 

in Chapter 2, to solve Problem Q9. However. given the difficulty of finding un- 

supported efficient solutions in multi-criteria integer problems and the fact that 

only some representative combined GP-efficient solutions are needed. we use the 

weighted approach (Geofkion's Theorem) to find a portion of the efficient solutions 

of (Q9). Hence. a convex combination of the first and second criteria is suggested 

to solve (Q9) as follows: 
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subject to the same set of constraints as in (44). where O 5 X < 1. and w, and 

d; are defked as before. According to Theorem 2.2 every solution to (Q10) is an 

efficient solution to ($9)- However. because of the non-convexity of the decision 

space. (Q9)  may have efficient solutions that cannot be faund by solving (Q10). 

namely unsupported efficient solutions t hat are corivex dominated by some ot her 

efficient solutions. In extreme cases. when X = O. the optimal solution of ($10) is 

the ..\rchemedian GP solution. and wlien X = 1. it is the Chebyshev GP solution. 

Clearly. if (45) and (Q6) have an identical optimal solution. then (410) has 

one solution identical to the optimal solutions of (45) and (Q6) for al1 A. This 

solution is also the idecl solution of (410) '. 

The objective functioii of (Q10) fan be viewed as a hybrid of the LI  and L, 

norms. which can be denoted as LI,,. X s i d a r  norm can be found in the context of 

locational decision problems. where it is important to consider bot h the total cost of 

serving customers as well as the service for those ciistomers who are located far away 

from a facility [l'ij. Halpern [M. 451 considers a convex combination of p-median 

and p-center problems to locate a facility on an undirected network. Motivated by 

t ke fact that neither the minisum nor the minimax criterion c m  capture the aim of 

most locational problems. Burkard et. al [17] propose a two-criterion (minisum and 

minimax) zeroone problem and explore the properties of the efficient and optimal 

solutions of this problem. 

Note that when there are only two criteria and ail constraints are linear. then 
- -  --- - 

SFor definifion of ideal solution refer to Chapter 2. 
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the combined Chebyshev-Archemedian G P  is similsr to the concept of compromise 

set discussed in Chapter 2. In fact, when the solutions of the L1 and L, problem. 

Lie on the same edge of the feasible region, the solution sets of these two problems 

are identical. 

As shown in Figure 6.1: the contours of Archemedian and Chebyshev GP for 

a ?-criterion problem are diamond and rectangular. respectively. It is useful to 

observe t lie contour of combined Chebyshev- Archemedian GP. 

Let (G1, Ga) be tlic gods specified for criterion fl(x) and f2(x). respectively. 

Tlie convex combinatioii of LI and L, can be writ ten as fouows: 

+ 7 4 f 2 ( 4  - G?I) + 

For simplicity. assume tliat the axes in criterion space are shifted such that 

G1 = O and G2 = O. Heuce, 

Hence, the contour of LI,, for constant C is, 
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Figure 6.2: Combined Cliebyshev- Arcliemedian Contour for n Two-Criterion Prob- 
leni 

wl~icli can be representecl es 

Botli cases together produce the octagon shown in Figure 6.2. 

Solving (Q10) for different values of X gives difirent combined GP-efficient 

solutions for the DM to choose among. Since the objective function in (410) is 

not smooth. we transform it into the following equideiit GP problem: 

[Pl 
Minimize (1 - A)  w,d; + a. 

p=l 

Subject t o  : 
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Problem QI1 c m  be solved by any single-objective integer programming tech- 

nique for different vdiics of A. Moreover. ( Q l l  ) does not destroy the GP structure 

ancl can be solved as efFiciently as any weighted or Chebysliev integer GP problem. 

Example 6.3 Consider t lie following multiple objective linear problem whose cor- 

responding feasible set in decision space and criterion space is shown in Figure 

6.3: 

Maximize: f 1 ( + ) = 2 ~ , + + , .  

Maximize : f2(x) = - î t  + 22,. 

Subject to  : 

-21 f 3x2 5 21. 

2.1 + 32, < 27: 

4x1 + 3x2 5 45. 

3x1 + X* 5 30. 

Suppose that the DM specifies G1 = 40, and G2 = 20 as goals, with equal 

weight. The optimal solution of the Archemedian GP problem is 11 = 3, x2 = 8 

with d; = 26,d; = 7. The optimal solution of Cliebyshev GP problem is xl = 

8.07. +2  = 4.23 with d; = 19.G:d; = 19.6. Note tliat tlie solution of Archemedian 
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110.0I 
Decision Spacc 

Cdenon Spacc (20.- 1 O) 

Figure 6.3: The Set of Feasible Actions in (a)Decision Space. (b)Criterion Space 
(Example 6.3) 

GP problem has a rebtively large deviation from the first criterion. and solution of 

Cliebyshev GP probleni Las a large weighted average devi a t-  ion. 

Using the Iiybrid Clicbysliev-Arclicmedian GP tcclinique. one can find another 

solution xi = 6. x? = 7 witli negative deviations as d; = 21. d; = 12. Hence. tliis 

program lias t h e  supported combincd GP-efficient solutions. 

Tlie DM can select among these three GP-efficient solutions, perhaps using quali- 

tative criteria. 

The above discussion demonstrated that a multiple objective GP approach in 

wllich both weighted deviations and maximum deviation fiom goals are simultane- 

ously minimized. overcomes some of the difficulties of Arcliemedian or Chebyshev 

GP tecliniques t hat nieiitioned earlier. Nevertheless. tliis approacli is not guaran- 
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teed to find efficient solutions. 

Example 6.4 Example 2.2 showed that the solutions of the Archemedian and 

ChebyshevGP can be dominated. It c m  be shown tliat the solution of the combined 

Archemedian-Chebystiev GP is zl = 5. x2 = 1 which is also dominated. 

The metliod presented in Section 6.5 can be used to improve on a dominated 

solution of the combiiicd Archernedian-Chebyshev GP until it is efficient. An al- 

ternative way to providc efficient soliitions in GP is to change the conventional 

structure of GP. as expiained below. 

Section 6.4 shows tliat when a god is attainable. then the optimum solution 

of the GP problem may be dominatecl. The structure of GP  problem is such tkat 

only negative deviations. d i .  are pen,&zed for a m,ucimization criterion p. and only 

positive deviations. d,C. are penalized for a minimization criterion. Without loss of 

generality. assume tliat criteria are to be maximized. Since the only aim of this 

GP metliodology is to riiinimize the ncgative deviations. if the goals are attainable. 

tlien cd optimal solutions are equivalent. provided that d; = O for al1 p. 

An analogy concept to GP can be found in Enforcernent of Environmental Lauis 

and Regulations. Often a firm that does not meet the standards specified by envi- 

ronmental agency pays a penalty. Hciice. if the firm complies, there is no penalty 

but if the f i m  violates. a penalty will be imposed. On the other hand, some laws 

dso offer economic incentives to f i m s  that exceed the standards. These laws re- 

ward k m s  for over-aclùevement on environmental standards (541. They give the 

firm an incentive to exceed the standard. 

The same idea can be used in GP problem. The GP structure can be changcd 

siich that the DM is allowed to assign both a penalty for under-achievement and 
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reward for over-achieveinent. Clearly. the absolute rate of penalty and reward need 

not be necessarily the same. Furthermore, if the DM does not specify any reward 

for exceeding the goal. in otlier words. if he or she assigns the value of zero for 

over-achievement, the11 tlicre is no benefit for exceeding the goals in DM'S point of 

view. Moreover, in sonie cases the DM may believe that over-achieving a goal may 

degrade sorne other intangible and qucditative goals. In these cases. a dominated 

solution generated by GP is called an acceptable dominated solution because it is 

in accordance to the DM'S values. It can be shown tliat the new GP  structure does 

not generate dominatctl solutions: uiider it. the procedure seeks bctter solutions 

wlien the goals are at tainable. 

6.7 Summary and Conclusions 

In tliis chapter. the problem of multiple criteria subset selection was formulated 

as a non-linear MCZO programming inodel. Tecliniques were presented to remove 

the non-Iinearity in tlic niodel. The main difficulties of available approaclies to 

solve the mode1 were discussed and two modified GP solution methodologies were 

proposed to overcome these problems. The h s t  approach used the lexicographic 

GP and vector optimization. in sequence, to obtain a subset of non-dorninated 

solutions. The second approach was based on a two-criterion GP problem in which 

a combination of Archemedian and Chebyshev GP was employed. It was shown 

that the combined Cliebyshev-Arcliemedian GP penerates a subset of balanced 

solutions. The next cliapter employs these solution methodologies in an on-going 

water supply planning project. In the GP models discussed in this chapter, a 

"priori" prefrence is assumed. One could use these models as interactive methods. 
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Case Study: Waterloo Water 

Supply Planning 

7.1 Introduction 

In t llls chap ter. t lie solii tion met hodologies t hat proposed in the previous chap t er 

arc npplied to a long-term water supply planning problem in the Regional Mu- 

nicipality of Waterloo. Ontario. Canada. to select the best combination of water 

suppljr actions. Decisions about watcr resources have been widely recognized as 

being multiple objective in nature. In fact. many theories and concepts of MCDM 

have been inspired by water resources planning problems (see. for example. [120]). 

Usually. water supply planning has diverse econornic. social. environmental. and 

political objectives. Ditring the past two decades. many MCDM techniques have 

been developed for use in water resources planning problems (see. for example. 

[21. 22. 41. 43. 49. 93. 351. and 11221). 

As an example of the use of MCDM in water resources planning. consider the 
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work of Roy et al. [106]. which uses ELECTRE III to program a water supply 

system in Poland by setting up a priority order of water users based on socio- 

economic criteria and then selecting the best water supply sources. Abu-Taleb and 

Mareschal [2] employ PROMETHEE V to select a set of technical. managerial. 

pricing. and regdatory water resources options for Jordan. FKst. aU options are 

evaluated according to an aggregated criterion. Then. a zero-one programming 

approach with budget. geographic dispersion. and cornpatibility constraints' is used 

to select the best combination of options. 

Stewart and Scott il211 develop a scenario-based procedure to select a subset of 

water policies in Sout li Africa. Tliey use a statis tical experimental design technique 

to generate a set s f  sceiiarios c d e d  tlic background .iet. The reference point method 

is tlien used to select scenarios from the backgound set to form the foreg~ound 

set. The weights for t lie --scalarizing functiona* are generated randomly and those 

scenarios that most freqticrrtly rninimize this function are selected for the foregound 

set. A foregound set is gcnerated for every group of DMs. Then the procedure 

searches for consensns among parties. 

Netto e t  al. [85] cniploy a two-stage procedurc for evaluating long-term water 

supply systems in Soutliern France. In the first stage. ELECTRE III is used to 

reduce the number of feasible alternatives. Subsequently. in the second stage. an 

extension of ELECTRE III is employed to carry out multi-actor . multi-cri t eria 

selection among the reniaining alternatives. 

In many water resources planning problems. the definition and generation of 

actions is crucial to effective decision making (661. Yet Little research effort has 

been devoted to this step. Moreover. the optimal choice of a subset of (discrete) 

water supply actions has not received much attention in the literature. Even though 

intedependence of water supply strat egies occurs commonly in real- world problems. 
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multiple objective me tliods have assumed strict independence of individual actions. 

The main objective of tliis chapter is to implement the proposed models and as- 

sociated analytical techniques to select' within a multiple objective framework, the 

best combination of long-term water supply strategies for the Regional Municipality 

of Waterloo, Ontario. Canada. The problem is formdated as a multiple criteria in- 

teger program with interdependent actions. Different types of interdependencies in 

the problem are sliown to be essential features. Duc to the large number of potential 

actions and the non-convexity of the decision space. it is quite dificult to identify 

t lic non-dominated dtcrnatives. Ins tead. the combined Cliebyshev- Archemedian 

GP and the modified Icxicographic GP techniques are suggested to obtain a sub- 

set of non-dominated combinations of actions. Tlic experience gained and lessons 

lewned in applying t hc proposed approach to the Waterloo water supply strntegy. 

<arc discussed. 

The organization of this chapter is as follows. Section 7.2 briefly describes the 

background and cliarac t eris tics of thc Waterloo Water Supply Planning Problem 

(WWSPP). Then! Section 7.3 explains different kinds of interdependencies that ex- 

ist in the WWSPP. T h  generd matliematical model and the combined Chebyshev- 

Archernedian model of WWSPP are presented Sections 7.4 and 7.5. Subsequently. 

Section 7.5 presents a solution methodology to solve the rnodel. Next Section 7.6 

discusses the input data. Subsequently. Sections 7.7 and 7.8 present a brief discus- 

sion of the solutions. Findy. a range of conclusions are drawn in Section 7.9. 
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7.2 Problem Definition 

7.2.1 Background 

Tlie Regional Municipality of Waterloo is located in the southwesteru part of On- 

t ario, Canada and comprises the three cities of Kitchener, Waterloo and Cambridge, 

as well as several rurd  areas. Figure 7.1 shows where Waterloo is located within the 

Great Lake Drainage Basin situated in the center of North America and Canada 

and overlapping parts of Canada and the United States. In fact. the Canadian 

province of Ontario is mi Indian word which means sparklzng water. Figure 7.2 

displays the Grand rivcr basin within wlich the Regional Municipality of Waterloo 

is located. The Waterloo region has an area of almost 1350 kmz and is one of the 

most prosperous and inclustrialized arcas in Canada. with population of c h o s t  0.5 

million people. At present. the Waterloo region is one of the largest communities 

in North America to rely almost entirely on ground water. More than 90% of Wa- 

terloo's potable water is provided by some 126 wells: the remaiinder is drawn from 

tlic Grand River whicli flows througii the region. Due to increases in residential. 

industrial. and commcrcial demand. and decreases in the reliability of ground wa- 

ter sources, the Regiond Government is currently developing a Long Term Water 

S trategy to t lie year 2041 (Associated Engineering [4]). 

7.2.2 Problem Characteristics 

Most water resources planning problems sliare features such as conflicting objec- 

tives: concerned parties witli different points of view, and uncertainty over demand 

and availability of resources. In the WWSPP, conventional multiple objective pro- 

cedures are especially clifficult to apply for the following reasons: 



CHAPTER 7. CASE STUDY: WATERLOO LVATER SUPPLY PLAiV1VING 177 

l 

Figue 7.1: Tlir Location of Regional Municipality of Waterloo 

I l i '  1 
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Available actions have never been stated precisely in a form suitable for corn- 

parison. Most multiple cri teria decision procedures begin wit h a predefined 

set of actions. However. in the WWSPP, the relationships among actions 

require careful stiidy, especidy for reconsidering those actions that had been 

screened out earlier. The problern of generating and defining actions in water 

resources problems was recently addressed by Stewart and Scott [121]. and 

Keeney et  al. [ 6 6 ] .  

0 Most MCDM nictliods assume strict independence of actions. However. it 

is evident t hat t licre ,are significant positive end ncgative synergies among 

actions. Section 7.3 addresses tliis issue in detail. 

0 Both tangible aiid intangible criteria must be taken into account. Moreover. 

su b jectivities unclcrlie some of t lie tangible cri teria. making the evaluntion 

of actions more complicated. For instance' tlie costs of projects are 'affecteci 

by various fundi~ig details. such as who will pay and what assistance will be 

received from liiglicr levels of governrnent. 

0 Objectives are not clearly defined. Objectives introduced by various DMs and 

discussed in teclinical documents. are interdependent and correlated. Hence. 

before modeling tlie problem. tlie criteria must be refined. The next subsec- 

tion addresses tlie main criteria for the WWSPP. 

As in many water resources problems. each criterion reflects the primary inter- 

est of one group of DMs. DZFerent parties are involved in WWSPP including 

among others: Chambers of Co~iimerce. environmentd groups, homebuilders 

associations, service clubs. academia? and agriculture groups [4]. Trade-offs 

among criteria can therefore be difficult. However. the main DM is the Re- 

giond Municipc?lity of Waterloo which is in cliarge of regional water develop- 
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ment. It is noteworthy that some DMs have conflicting interpretations of their 

interests. For example. public perception of water quality diffas especially 

between urban and rural areas. 

Three strategies have been promoted by different parties and are referred to 

as tradition, seciirity. and displacement. Eacli strategy is based on a specific 

philosophy as follows: 

- Tradition mcnns to not expand sources of wster until demand exceeds 

supply. This strategy runs a high risk of sliortages due to unexpected 

events. Tlic Waterloo region has occasionally experienced contamination 

of some wells. leading to short-term water shortages. For example. the 

weUs supplying the town of E h i r a  were closed down due to pollution 

of the underground aquifer. Elmira now receives its water via a pipeline 

from the city of Waterloo. 

- According to the secun'ty strategy. additional capacity should bc devel- 

oped to seciire the region from any potential loss of water resources. 

This strategy increases confidence that water demand wd be met. but 

also increases investment and operating costs. 

- The displacement strategy emphasizes the replacement of current sources 

of water. This would have several advantages. For instance, water from 

alternative sources such as one of the Great Lakes would not require 

domestic softening, and supplies would become more reliable and secure. 

It is clear that each strategy implies a specific volume of water for the region. 

Hence, the best subset of water supply actions may be different for each 

strategy. 
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Demand varies continuously and implementation of each project creates a 

step-size increase in water supply. Intuitively. a water strategy that has a low 

gap between demand and implementation is preferred. 

7.2.3 Crit erion Identifkat ion 

Tlie overall purpose of WWSPP is to design and implement the best water re- 

sources plan to satisfy long-term demand. In light of this purpose. more specific 

objectives such as /ou! cost. good water quality. f e w  infrastructure impacts. mini- 

mum environmental impacts. hzgh sec-rtdy and reliability in order to have Iow r i sk .  

and suficzent supply copbility have been proposecl for measuring the effectiveness 

of possible actions. Bclow is a brief description of each criterion. 

0 Cost - This criteriun measures the cost of water to the year 2041. including 

invest ment cost . operat ions and maintenance costs. cost of purchasing water 

from other regions if required. and cost of standard treatment. 

a Water quality - Tlie O n t a n o  Wnter Resources -Act. implemented in 1972. is 

the main legislativc instrument of the Ministrg of Environment and Energy 

(MOEE) for regiilating water quality in the province. The Ontano Clean 

Water Agency (OCWA) mentioned at the stcrrt of the Ontario Water Resource 

Act is part of the MOEE and its mission is to oversee the development of 

municipal water and waçtewater infras tmcture. AU water sources must meet 

the Ontario Wuter Standards for now and the future. The level of treatment 

depends on the water siipply action. This cri terion also reflects public opinion 

on the aesthetic aspects of water quality. For some actions. it is difficult to 

judge water quality. For instance. the physical. chernical. and bacteriological 

characteristics of ground water from different fields may Vary considerably. 
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Infrastructure Impacts - Each action requires certain modifications to the 

existing water supply system, such as expansion of water mains? and con- 

struction of reservoirs, pumping stations. The main part of this criterion is 

quantitative, but some intangible effects must also be taken inko account. 

Environmental Impacts - This criterion refers to the long-term and short-term 

environmental impacts of actions on environment. Effects of implementing 

each action on agriculture and farm well. fisheries. wetlands. recreation. and 

surface water are considered in this criterion. These impacts are more im- 

portant for actioiis involving new construction sucli as. pipelines. Extensive 

monitoring is reqiiired for ground water sources: its cos t can be considered as 

a tangible portion of the environmental impacts. 

RisL - Maxirnizing the security and reliability that adequate supplies of high 

quality water are provided. is a major concern for dl DMs. Supplementary 

water resources tliat can be used in emergencics'decrease these risks. Selecting 

actions tliat incrcase the flexibility of water siipply leads to a low risk plan. A 

project is flexible if it is multi-purpose. quick to impiement. easy to expand. 

and easy to modify in the case of iinpredicted changes. 

Supply  Capabiliiy - Most water resources planning research considers supply 

capability to be a set of constraints to be satisfied. However. in WWSPP 

difFerent strategies ( L e .  traditionalo security. and displacement) may lead to 

various policies for satisfying water demand. Therefore? supply capability is 

included as an objective that sliould be maximized in the model. According 

to this objective those actions that provide large supply capability in future 

are preferred. Clearly. larger supply capability imposes more cos t. No te t hat , 

meeting minimum demand based on traditional strategy in each region is 
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considered as a liard constraints in the model. 

7.2.4 Available Actions 

The definition and gcneration of actions is an important step in the process of 

multi-ob jective water resources planning, but one to whicli lit tle research effort has 

been devoted. Cliaracteristicdy, water resources planning problems present a wide 

variety of possible actions. Most often. actions are not predefined clearly: in some 

cases. it is hard to determine when actions are feesible [66] .  

Usudy. the numbcr of actions is rcduced to a manageable size using screening 

procedures (see. for example. [55]) or intuitive techniques. However. most of these 

procedures are ad-hoc: iising them rnay eliminate some potentially good alterna- 

tives. This problem is often serious for situations in which a subset of actions is to 

be selected. because as is discussed in Chapter 3. the best subset of actions may 

contain dominated actions [91]. Figure 7.3 categorizes the set of main actions and 

thcir sub-actioiis for the WWSPP. (Capacities are measured in Million Imperia1 

Gallons per Day. or i2IIGD.) 

In the following. cadi main actions is briefly described. 

1. Ground oater (GW) - Cmently. almost all water of the region is provided 

by ground water from wells in different fields. This main action is concerned 

with more developrnent of ground water supplies. 

2 .  Aquifer Recharge ( A Q )  - This set of actions is based on the storage of treated 

drinking water in a suitable aquifer during periods of water surplus for using 

in seasonal peaks. emergency water demand. or for subsequent years as short- 

term and Long-term water supply. 
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iWri1116 km of nfies Souh pUwuh Arcn 

h'irlichener- Waferfoo sr ROS& ,tg& Arta tira 
Ouhi& of 16 km ofciies /-' 

Ground Wuter LIntion (3) 

1 
A quifer 

Lake Ontario (Homaon) 

Lake Iiuron (Goderich) 

Pipeline From Great h k e s  

Figure 7.3: Main Actions and Sub-actions for the Waterloo Water Supply Planning 
Problem and Tlieir Supply Capacities. 
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3. Grand River (GR) - Currently, a s m d  portion of the region's water is provided 

by the Grand River. This action suggests higlier abstraction from this river. 

4. Grand R i v e r  1o.w flow augmentntion ( L F )  - To provide the opportunity for 

additional summcr abstraction. one set of proposed actions is augmentation 

of the Grand River in low flow periods by using some reservoks or pipelines 

fiom one of the Great Lakes. 

5. Pipel ine from Great LaLes (PL) - This set of actions includes constructing 

pipelines from oiic of the Great Lakes througli different routes. 

In addition to the above actions. tliere are many suggested managerial (such 

as incentive policies for recycling water). pn'czng. and regulatonj policies that can 

be implemented dong wit h any solution to the Waterloo water supply problem. 

Even though choice of tliese policies may affect the selection of the best subset. we 

do not include these policies in the subset selection problem. for several reasons. 

Firs tly. including all t liese policies makes the pro blem very large and unmanageable. 

and secondly. these policies in some cases can be implemented independently from 

selection of water actioiis. Moreover. the effects of some poiicies cen be examined 

by considering different scenarios. 

7.3 Interdependence of Actions 

Most systernatic approaclies to water resources planning have assumed indepen- 

dence of actions, even though actions are clearly interdependent in many real- 

world water resources problems. Interdependence of actions is more common in the 

multiple objective context since the combinations of actions rnay be interdepen- 

dent according to differcnt objectives. There has been Little research exploring the 
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concepts and characteristics of interdependence of actions in the water resources 

planning problem. 

In the WWSPP, thcre are different kinds of interdependencies among actions 

that cannot be overlooked. Table 7.1 describes some groups of interdependent 

actions and the criteria under which t hey are interdependent. categorizes the inter- 

dependencies, and indicates whet her t lie interdependence is positive (+) or negative 

( -  Note that in addition to those given in Table 7.1- tliere are some conventional 

interdependencies t hat 'zffec t the implementation of actions. For example. two op- 

tions of aquifer Recharge cannot be iniplemented simultaneously. 

As described in Cliapter 4. actions can be interdependent either conditionally or 

unconditionally. Rec<d that when two actions affect each other (on a criterion) no 

mat ter what O tlier actions are select ed. tliey are unconditionally interdependent. 

but if tlie connection liolds only wlien specific otlier action(s) are selected. they 

are conditionally interdependent. As an example of conditional interdependence, 

suppose that al ,and a3 are two independent web.  However. if well a? is close to 

botli al and a3: then wlien a? is selected the amount of water extraction from either 

al or a3 affects tlie amount that can be extracted from the 0 t h .  Herrce. al and a3 

are conditionally interdependent. 

7.4 Mode1 Building 

This section explains the main elements of the mat liematical mode1 developed to 

select the best combination of actions for the WWSPP. The problem is formulated 

as a multiple-objective mixed-integer programming problem with some non-linear 

terrns that arise due to the interdependence of actions. 
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Table 7.1: Examples of Interdependence of Actions in the Waterloo Water Supply 
Planning Problem 

Groups of 1 Criterion 1 T Y P ~  
Actions 1 1 

1 

Different ground 1 Supply Direct (-) 
wat er fields capability 

Wells in one 1 Supply 1 Direct and 

Recharge 
and Grand River 
low-flow 
augmentation 

si1 bregion capnbility 1 indirect (-) 
Aquifer Cos t ! Direct (+) 

i 
Ground water 

indirect (- ) 

Ground water 
l l 

Environmental Direct ( + ) 
iriipac ts 

low-flow 

gound water Cos t 

I 

Pipeline and 1 Risk / Direct (-) 
ground water 

Description 

Water extraction from one field 
decreases the water extraction 
from O ther fields. 
Water extraction from one well 
affects O t her wells . 
Aquifer Recharge and low fiow 
augmentation could not bc ac- 
cornplished without a new trent- 
ment facility and/or a reservoir. 

The cost of monitoring each well 
decreases when more wells arc 
selected. 
Additional wells aggravate the ef- 
fects on agriculture. farm wells. 
and wetlands. 
Risk increases with the selection 
of these actions. 
Risk increases wi t h the selection 
of these actions. 

The infrastructure increases due 
to the major differences between 
these two actions. 
Because they rely on two com- 
pletely difFerent water sources. 
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7.4.1 Notation 

Tlie notation used for formulating a mode1 for the WWSPP is as follows: 

T = number of planning periods = horizon. The planning horizon 

(1996-2041) lias been divided into five periods. 

t = index coi~csponding to planning period: t = 1.. . . . T. 
R = the set of stibregions, R = {rl:---:r,..-. W h  

r = index corrcsponcling to stibregion: Kit cliener- Wat erloo= 1. Carnbridge=l . 

and rural wcas=3. 

A = the set of actions. A = { a l .  . . . . ai, . . . . alAl). 

A = AGw U AAQ W Acn U ALF U APL: indicating the union of sets of actions 

in ground water. Aquifer Recliarge. Grand River. low flow augmentation. 

and pipeline. 

i = index corresponding to a proposed action. 

t 
xi ,  = the fraction of water from action i assigned to subregion r in period t .  

2;' = binary variable corresponding to action i at time t such that 

1 1 if action i is used in time t ,  
2; = 

( O otlierwise. 

Ci = the supply capability of ith action. Hence, Ci~:r is the amount of 

water of itli action assigned to region r in period t .  

j = index corrcsponding to the actions in use in 1996. 

A' = the set of actions in use in 1996. 

D: = the demand in period t for subregion r according to traditional 
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= the fraction of water from initial action j to be used in subregion 

r in period t .  

= the supply capability of the j th  action currently being used. Hence. 

ciBk is aniount of water from the j t h  old action assigned to region r 

in period t .  

= theset ofcriteria: {cost. infiastnictureimpacts. water 

qiiali ty. environmental impacts. risk. supply capability) 

= index corrcsponding to the set of criteria. p = 1. . . . . 1 P 1. 

= the h e d  score of the itli action according to criterion p. 

= tlie variablc score of the action i for period t according to criterion p. 

= collection of iLU sets of interdependent actions according to criterion p. 

= collection of interdependencies arnong k actions on criterion p. For example. 

L: is the sc t  of nll pairs of interdependent actions on criterion p. 

= the arnount of simple dependence witliin actions in set S on criterion p. 

For example. A,(i. j )  is the amount of simple dependence within actions 

ai and aj  according to criterion p,  and A,(i . j .  I I )  the amount of 

dependence arnong actions a;. a j :  and ak according to criterion p. 

7.4.2 Problem Formulation 

In this section, the objective functions and the main constraints of the WWSPP are 

explained. The solutioiis of the presented mode1 address the following questions: 

1. Which actions arc to be implemented? 
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2 .  What level of capacity from each action is to be selected? 

3. At which time sliotild these actions be irnplemented? 

4. What percentage of each selected actions should be assigned to each subre- 

gion? 

- Objective functions 

For eacli criterion p: p = 1.. . . . 1  P 1 the following functions are to be maximized 

or mininiized: 

In the above set of objective functions. the term a considers the sum of k e d  

scores of all selected actions. For instance, when p = 1. it shows the investment 

cos t of the selected actions. Term b is the surn of variable scores1 of selected actions 

on each criterion over the planning horizon. Term c indicates the sum of variable 

scores of actions in use. The last term of the objective function, term (d ) ,  represents 

the amount of interdependence of actions. For instance. when actions ai and aj are 
- - -- - - - 

' Implementotion of an  action inuolves both f i e d  and variable scores. For exanplc,  the f i e d  
cost of an action is mainly the construction cost which is f ied  regardless of the nurnber of periods 
that this  action is to be used. whzle the uan'able cost zs rnainly maintenance and operation, ztlhich 
depend o n  the number of pcriods the action is used and the amount  of water ettracted from it .  
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interdependent on cri t erion p the quaciratic term (Ap( i7  j ) J i J j )  appears in objective 

function p. The bin.uy variable. & in the set of objective functions is defined as 

follows: 

wliere Ml is a sufficieiitly large number. Expressions 7.1 and 7.2 ensure that d;. 

takes the value 1 if aiid only if action a; is used a t  Least once during the time 

horizon. Introducing variables di. significantly decreases the number of non-linear 

t erms arising from int crtlependent actions. 

- Constraints 

O Demand: 

In accordance to the traditional supply strategy. one must satisfy the average de- 

mand for each subregioii in each period. This set of constraints ensures that for dl 

rcgion and d periods. cnougli water supply is assigned. 

. . 

C C ~ ~ : , + ' ~ ' C ~ &  2 D:. far t = 1 . 2  ..... T.  a n d r  = l , - ? I R ( .  (7 .3)  
i= 1 j=l 

Budget  

Tlie set of constraints in Expression 7.4 specifies tliat the total investment? main- 

tenance and operating costs (fbst criterion) should not exceed available funds for 

each period. 
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for t = 1 : - * * ' T .  
k=2 SEI;: 

(7-4) 
a i E S  

Constraints 7.5 and 7.6 forcc variable 2: to take the value 1. if and only if action 

a; is used at least once in a subregion. Also. (7.7) and (7.8) ensure that the total 

usage of each new and old actions do not exceed tlieir capacities. 

wliere M2 and M3 are sufficiently large numbers. For some main actions, ody one 

sub-action can be selected. For example, 

C zi'51. for t = l . . . . o  T.  
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Tlie set of constraints in (7.9) and (7.10) ensure that at most one action fkom each 

of the variables of low flow augmentation and pipeline actions can be selected. 

Variable types: 

t 
xir > O ; 9 ; T  2 0 :  f a a l I a i E  A. r = l--. .I RI.  and t = 1.-- .T.  

2;': & E {O. 1): f o r  al2 a; E A t = 1. . T. (7.11) 

7.5 Solution Methodology 

The WWSPP. which is formulated in the previous section. is a nonlinear multiple 

criteria mixed integer programming. Since most of the tlieories of integer pro- 

gramming are developed in the framework of linear cases2. it is more convenient 

to convert the above iionlinear progrxm to a linea- one. This can be accomplished 

by iising the techniques presented in Chapter 6. For eacli S = {il i2, . . . . ik) E Li 

(given k and p). define Qs = di, .&, . &, and add the two following constraints: 

In t his way, a multiple objective subset selection problem under interdependence 

of actions can be formulated as a Zinear multiple objective mixed integer problem. 

Tlie difficulty of solving a mixed integer problem is highly dependent upon the 

number of integer variables. Hence, following Glover and Woolsey (1974), one can 

'Most  integer programming approaches are based on solving a sequence of linear problerns. 
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climge each cross-product variable (Qs) to a continuous variable by replacing (7.13) 

with the foIlowing set of inequalities: 

For detailed discussion refer to Section 6.2.1 in the previous chapter. Let dg 

and d; denote positive and negative deviations from goal on criterion p. Then, the 

WWSPP can be reforniulated based on a hybrid LI , ,  norm described in previous 

cliapter as follows: 

P 
e 

Subject t o  : 

for p =  l:....l P 1 .  

The Set of Constraints 7.1 to 7.11. 

In the above formulation. the term sliown by e is the Archemedian part of the goal 

programming problem and f is Chebyshev part. Also, Gp is the aspiration level 

assigned for criterion p. tu, is the amount of penalty for unit deviation of objective 

function p from the specified goal. and X is the coefficient of tendency towards 

Cliebyshev or weighted average norm. The above model can be reformulated as 
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follows: 

Subject to : 

Constraints 7.1 to 7-11 and (7.15). 

The next section provides some numericd information for the WWSPP. 

7.6 Input Data 

Population growtli is tlic main cause of increase in water demand in the Waterloo 

region. Table 7.2 shows the predicted water demand for each subregion. in terms 

of MIGD to the year 2041. 

Table 7.2: Watcï Deniand in Thee  Main Areas to the Yeu 2041 

Note that for some of the WWSPP actions, there exist different variations with 

different capacities and various specifications. To reduce the number of discrete 

variables, in this model. we do not take into account those actions that have been 

removed from the set of available actions in the screening process addressed by 

Kit/Wat 
Cambridge 
Rural 

30.1 
15.1 

4 

31.5 
16 

7 

33.9 
17 

5.3 

36 
18.1 
6.1 

38.2 
19.2 

6.9 

40 
20 

7.4 

41.6 
20.8 

8.1 

43.3 
21.6 

8.5 

44.7 
22.3 

8.9 

46 
23 

9.3 
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Associate Engineers [4] or those actions that are very similar and cannot be selected 

t ogether. Actions that are considered in the mat hematicd rnodeling include: 

Ground water. option 1. (GW1)- Developing additional ground water sources 

in the vicinity of Kitchener-Waterloo, 

0 Ground water. option 2' (GW2) - Developing more gound water sources 

in new fields. The new sources of ground water are located in the South 

Woolwich Area. the Reseville Area. and St. Agatha Area. 

0 Aquifer Recharge. option 1. (AQ1) - Constructing dual purpose Recharge and 

recover wells in Mannheim site with capacity of 10 MIGD. 

Aquifer Recharge. option 2- (AQ2) - Constructing dual purpose Recharge and 

recover wells in MCmnheim site with capacity of 20 MIGD. 

Grand River. (GR)  - water extraction from Grand River during times of peak 

demand. 

Grand River Low Flow Augmentation (LF1)- Augmentation of Grand River 

water flow by implementing West Montrose Dam. 

Grand River Low Flow Augmentation (LF2)- Augmentation of Gsand River 

water flow by constructing a pipeline from Georgian Bay. 

Grand River Low Flow Augmentation (LF3) - Augmentation of Grand River 

water flow by using a pipeline fiom Lake Huron. 

Q Pipeline (PLI) - Transporting water to the region via a high pressure pipeline 

from Lake Ontario. 
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Pipeline (PL2) - Transporting water to the region via a high pressure pipeline 

from Lake Erie using Manticoke water treatment facility. 

O Pipeline (PL3) - Transporting water to the region via a high pressure pipeline 

from Lake Huron in Goderich connection. 

Pipeline (PL4) - Transporting water to the region via a high pressure pipeline 

from Georgian Bay in Thornbury location. 

Tables 7.3 provides the actual values of the water actions according to the main 

criteria. Tlie scores for water quality. environmental impacts and risk criteria are 

es timated according to the preiiminary evduation ob tained by Associated Engi- 

neering [4]. Arrows sliow the direction of preference for each criterion where an 

upward arrow rneans tliat a lugher vdue is more preferred and downward m o w  

intiicates a lower value is more preferred. Here. it is assumed that the preference 

of the DM is mon~ ton ic~dy  increasing or decreasing on each criterion. 

Table 7.4 presenis tlie set of a l l  suggested interdependencies and the es timated 

values of synergy between each pair of actions in WWSPP. Note that synergy be- 

tween two actions is dcfined according to (4.7). For sake of simplicity. only binary 

int erdependencies arc considered. here. Furt hermore. since int erdependence is a 

symmetric relation. only one side of the interdependence between two actions are 

shown in this table. 

Since. there is no erplicit information on the DMs' goal for each criterion. the 

ideal point of the problem is used as the initial target of the problern. Recall that 

tlie ideal point is a soli1 tion which is best according to aIl criteria. In other words. 

we solve the mode1 separately for eacli criterion to find the optimal solution for that 

criterion. The collection of these optimum solutions for ail criteria constitute the 



CHAPTER 7. CASE STUDY: WATERLOO WATER SUPPLY PLANNING 198 

Table 7.3: Scores of Actions According to Criteria 

Table 7.4: Interdependent Actions and Their Estimated Values in WWSPP 

Actions M. 
Impact 4 

U Infra (+0.2) 1 Env. (+0.1) 1 Infra. (+0.2) ( Risk (f0.2) U 

Inves. 
Cost 1 

Actions 

Ground 
Water 

Env. 
Impact ./. 

- 

Low Flow 
- 
- 

Ground Water 
- 

- 

Lo UI Flow 
Grand 
River 

Aqzlifer 
Recharge 

Oper. 
Cost 4 

1 1  Pipeline II Risk (-0.1) Risk ( + O . l )  1 Risk (-0.1) 1 Env. (+0.1) II 

- 

Risk (+0.2) 
Water Qiiality (-0.1) 

Risk (-0.1) 
Infra. (f0.15) 

1 

Wa t er 
quality t 

Risk 4 

G Wl 
GW2 

-a 
AQ2 
GR 
LFl  
LF2 
LF3 
PLI 
PL2 
PL3 
PL4 

7 80 
50 30 60 80 

Grand River 
A 

A 

SUPP~Y 
Capability f 

70 
70 
30 
GO 
GO 
GO 

- _  
29 

20 i 

.r. 

Aquifer Recharge / 
- 
- 

6 

- I - 

Risk (+0.2) - 
Infia.(-0.1) A 

Cost (+0.2) Risk (-0.1) 
Risk (+0.15) Infra. (+0.2) 

$100 
$61 

$8.6 
$17 - 
$5 

$112 
$123.6 

$111.25 
$120.4 

$126 
$181 
$222 

40 
40 

5 
50 

- 
- 
- 
- 
- 

- 
$4 

$2.4 
$5.9 
$3.8 

$2 
$6.2 
$6.6 
$6.7 
$4.2 
$3.4 
$2.3 
$2.5 

* 

50 
50 
80 
60 
70 
70 

unlimited ' 
unlimited 
unlimited 
unlimitedl  
unlimited 1 
unlimited 

40 1 45 

30 
30 
30 
30 

50 
30 
60 
60 
60 

45 
40 
50 
40 
90 
80 
80 

70 
70 

60 
65 

Sû 
70 

60 1 80 
60 1 80 
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ideal point of the WWSPP problem. Solving the overall goal prograrnming problem 

wi t li the ideal point as the target provides some initial solutions to the DM. If the 

DM is not satisfied by this set of solutions, or if lie or she wants to examine the 

robustness of the solutions, the second step is started. 

In the second step. the DM specifies the percentage of the ideal point for each 

criterion that can be downgraded without penalty. Theno the model is solved for this 

new target. The decision process is terminated wlien the DM is satisfied with the 

solution. The model is built such that the DM c m  easily enter these percentages. 

Tlie importance of eacli criterion is reflected as the rate of penalty for unit 

cleviation from the goal of each criterion in the model. Tliese rates are estimated 

according to the prelitiiinary s t udy by Associatecl Engineering [4] and interviews 

with personnel in thc Rcgiond Municipality of Waterloo and are given as follows: 

7.7 Discussion of Results 

Tlie WWSPP is modeled using GAMS (General Algebraic Modeling System) and 

solved with LAMPS (Linear and Mixed-Integer Programming). DXerent logicai 

constraints and special ordered sets are added to the set of constraints to reduce 

the computational time. Also, the planning horizon is divided into 5. rather than 

10 periods to reduce the number of integer variables. The combined Chebyshev- 

Archemedian model is tlien employed to solve the niodel. 

As pointed out, the main objective of studying WWSPP is to select a set of 
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promising subsets of water supply actions. Moreover, in tl6s section it is demon- 

strated that: 

1. Interdependence of actions is important and should not be ignored. In other 

words, it is shown that solutions of the model with uid without interdepen- 

dence are quite different . 

2. The convex combination of weighted and Chebyshev GP produces dXerent 

GP-nondorninatcd solutions. Hence. the DM lias the opportunity to compare 

t hese different solutions by perliaps considering the criteria that could not be 

stated as a matlicrnatical formula. 

To achieve the above rnentioned objectives. several versions of the WWSPP 

were solved: 

1. Different values of O < X < 1. 

2. With and witliout interdependelice, 

3. Weighted and u~iweighted Chebyshev noms.  

4. Combinations of tlre above. 

Solving the model for different values of X provides some combined-GP non- 

dominated solutions to the problem (see Chapter 6). AU these solutions are poten- 

t i d y  good decisions tliat the DM can choose among them according to his or her 

preferred GP objective func tion. 

Even though the mode1 presented in this chapter is inspired by a real-world 

water resources problein. the following simplifications are considered in the model: 
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- N o  explzcit uncertainty - Some of the elements of the WWSPP involve uncertainty 

and inaccuracy. For example, actual water demand may not be as accurate as its 

forecast, the estimated capacities and reliability of some of the proposed actions are 

not accurate, and the cost of implementing actions are not precise. In tliis mode1 

we do not consider any explicit uncertainty for the above mentioned parameters. 

Nonet heless, one can use sensitivity analyses on different uncer tain parameters to 

assess the effect of uncertainty on problem solutions (see for example. (791). 

-Longer time penod  - To reduce the discrete variables and hence to decrease the 

coniputational requircnient. we divide the planning horizon into five periods with 10 

years length. Clearly. iising sliorter time periods provide more accurate solutions. 

Table 7.5 shows the set of selected actions in the case of weighted Chebyshev . 
for ddferent values of A as well as tlic deviations of the solutions from goals for 

two different cases: wlien interdependence of actions is taken into account and in 

tlic case of ignorance of interdependence. The tliird and sixth column of t his table 

shows the deviation of t lie solutions from goals for cost. water quality, infrastructure 

impacts. environmental impacts, risk and supply capability criteria' respectively. 

Also. Figure 7.4 depicts the information in Table 7.5 in a schematic form. 

As Table 7.5 and Figure 7.4 show. the sets of selected actions are merent  for the 

two cases of considering and ignoring the interdependence of actions. When 0.4 5 

A < 0.8 the best solution for the case of interdependence is AQ2 and GW1, and for 

the case of no interdependence is AQ2 and PL2. The reason is that the desirable 

synergetic effects of AQ2 and GW1 is more than desirable synergies between AQ2 

and PL2. As Table 7.4 indicates AQ2 and GW1 hold a desirable synergy on risk 

criterion. But, PL2 and AQ2 have undesirable synergy on both environmental 

effects impacts and risk criterion. Hence, when interdependence of actions is taken 

into account, the combination of AQ2 and GW1 is better than combination of AQ2 
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Table 7.5: WWSPP: Scts of Actions Selected and Deviations from Goal (Weighted 
C hebyshev) 

1 X With 1 Deviations 11 Without ( Deviations I I  
Interdependence from goals 

Figure 7.4: Weighted Case, the Selected Actions for DifTerent Values of X 
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and PL2. 

Note that even thoiigh AQ2 is selected for both cases, the usage of this action is 

quite different. For tlie case of interdependence 17 and 41.5 percent of AQ2 capacity 

is used by rural area. in forth and fifth periods, respectively. However, in case of 

no interdependence tlie same amount of water in the same periods is utilized by 

Kitchener and Waterloo. 

Moreover. Table 7 3  shows that Combined Arcliemedian - Chebyshev model 

produces several differcnt GP non-dominated solutions with different properties. 

Aquifer Recliarge is tlio only action wliich is recommended in all of the cases. The 

niain reason for selectiiig Aquifer Recliarge is that the inves tment cost of this action 

in cornparison with otlier actions is quite Iow (see Table 7.3);  implementation of 

tlus action and using a portion of its cspacity is justifiable. An important practical 

observation of the solution is that if the planning horizon is extended. then other 

actions may be selectctl instead of Aquifer Recharge. 

Note that as tlie value of X increases and hence the objective function of GP 

model approaclies a Clicbysliev norm. the maximum deviation from the goals over 

ail criteria is minimizcd. However, a t  tlie same time the sum of weighted deviations 

is increased substantially. The cost criterion has the maximum deviation in all of 

the situations. Table 7.5 also shows that moving from a pure weighted GP to a 

pure Chebyshev GP docs not make substantial change in the maximum weighted 

deviations. 

Table 7.6 and Figure 7.5 show the same information as in Table 7.5 and Figure 

7.4 when an unweighted Chebyshev is used in the objective function. The solutions 

of the model when 0.15 5 X < 0.6 are different for the cases of interdependence 

and no interdependence. 
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Table 7.6: WWSPP: Sets of Actions Selected and Deviations from Goal. (Un- 
weighted Chebyshev) 

11 X With 1 Deviations (1 Without 1 Deviations 1 

0.0 5 X < 0.15 

Figure 7.5: Unweighted case, the Selected Actions for DXerent Values of X 

L 

Interdependence 

AQ2, PL2 

X = L  

(248,33,111, 

GWI, AQI, 
GR1 

Interdependence 

AQ2, PL2 

- 

(241,33,100, 

80,65,60) 1 
(234,96,105, 
130,101,170) 140,90,170) 

GWl, AQ1, 
GR1 - 

80,65,60) 
(234,87,105, 
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Table 7.7 shows thc percentages of water utilization of each selected action by 

each subregion. when X = -5. interdependence is taking into account? and a weighted 

Chebyshev norm is used in the objective function. For this situation. new ground 

water sources have to be implemented from the early stage of planning. At the 

beginning, only a srnall portion of the capacity of this resource is used (12.5%), 

and g radudy  the usage is increased such that in the fourth and fifth period ail 

the capacity of this action (10 MIGD)  will be used. On the other hand, another 

selected action. AQ2. is only needed in the last two periods. and only 41% of its 

capacity wiU be utilizecl at the end of tlie planning horizon. As pointed out earlier. 

AQ2 is selected becaiisc of its low invcstment cost. cven tliough the operating cost 

of tliis action is relativcly hgh. Additionally. in this case. tlie analysis recommends 

tliat tlie whole capacity of old ground water and Grand River sliould be utilized: 

replacing them with new water sources is not justifiable. This is rnainly because 

cost criterion has tlie Iiigliest priority over other criteria. 

Table 7.5 shows information similar to that in Table 7.7 except that interde- 

pendence of actions is ignored. As i t  is shown in tlis table. the solution is quite 

different in cornparison with the case in which interdependencies are taken into 

account. For tliis situation. a second pipeline option (PL2) is chosen instead of 

ground water. In the first period, only 12% of its capacity is utilized and gradually 

the usage is increased. In the fourth period, the entire capacity of action PL2 is 

used for Kitchener/Wrrterloo while in the Mth penod it is assigned to Cambridge. 

Again, AQ is used pxtially for only the last two periods. Additionally? curent  

water supply actions (ground water and Grand River) are completely being used. 

in periods. Therefore. if the interdependence of actions is ignored, the solution 

changes dramat ically. 

Table 7.9 shows tlie solution of WWSPP, when the GP objective function is 
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Sable 7.7: Optimal Water Supply Assignment for each Subregion (Interdependence 
Case. (A  = -5)) 

1 1 11 Selected Actions 1 1 

11 1996-2001 / Cambridge ii 1 I I 

1 0.125 1 0.307 1 1 

Periods 

11 2002-2011 1 Cambridge 11 
1 1 1 

1 0.411 I n 

Regions 

C 
0.783 

- I 1 

11 2022-2031 1 Cambridge ii 1 I I 

1 1 1 0.036 1 

I 

Rural 

1 KW 

II 3012-2031 

Kw , 

AQ2 

0.51 1 0.586 

I I  
- ,  I 1 1 

Rural 11 0.415 1 1 0.023 1 n 

Cambridge 
Rural 

2031-2041 

1 0.693 
G W 1  1 OGW 

0.217 
OGR 

I I 

0.57 

KW 
Cambridge 

0.059 
O. 168 

1 

f 

0.909 
0.068 

1 
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Table 7.8: Op t ima l  tVaker Supply Assignment for each Subregion (No Interdepen- 
dence Case. ( A  = - 5 ) )  

IF II Selected Actions 1 
Periods 

1996-2001 

2002-20 11 

regions 

KW 

II 2012-3021 

1 Rural 

Cambridge 
Rural 

0.783 

L 

I 

Cambridge 
Rural 

U 1 1 

Cambridge j 

AQ2 

1 

0.455 
0.168 

O. 17 

0.415 

1 

KW /I 

PL2 

0.135 

0.505 
0.005 

1 

1 

2022-203 1 

0.307 

0.87 

KW 
Cambridge 
Rural 

2032-2041 

OGW 
0.693 

0.182 

0.316 
0.491 
0. 193 
0.726 
0.068 
0.211 

KW 
Cambridge 

Rural 

OGR 
0.127 

L 

1 

0.377 1 

1 

1 

- 
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Table 7.9: Optimal Water Supply Assignment for each Subregion (Interdependence 
Case, (A = 1)) 

n 11 Selected Actions I I  
-. 

KW ( 0.586 1 
1996-2001 Cambridge 1 0.364 

11 2002-2011 1 Cambridge il 
1 I l l 

1 0.275 1 1 

- 
Rural 

I K w  
0.125 
0.51 

1 

11 2032-2041 / Cambridge ii 1 
1 I I 1 

1 0.068 1 n 

0.05 
0.586 

Il 2022-2031 

2012-2021 

pu-ely a Chebyshev norni ( L e .  X = 1) and interdependence of actions is considered. 

In this case: three new actions are selected for the region. GW1, AQ1' and GR1. 

Tliese new actions dong with OGW and OGR provide a solution such that its 

maximum deviation fiom the target over all criteria is less than any other feasible 

solutions, even t hougli t lie deviations from ot her criterion goals increase. No te t hat 

for this situation, GR1 is utilized only in last two periods and AQ1 is only needed 

partially in the last period. 

Cambridge 
Rural 

U 

Moreover, the GP  solution is equivalent to the optimal solution of the single 

objective problem when minimizing cost is the only objective. 

Rural 
KW 

Cambridge 
Rural 
KW 

1 

1 0.33 1 1 1 0.023 1 
-. 1 1  l l I l 

I 1 

0.139 
0.773 
O. 059 
0.168 

I 

0.57 

Rural 

1 

0.68 

I 

T 1 0.548 1 1 I 
0.036 
0.139 
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Table 7.10: Optimal Water Supply Assignment for each Subregion (No Interdepen- 
dence Case, ( A  = 1 ) )  

1 1 1 Selected Actions )I 

11 1996-2001 1 Cambridge ii 1 1 1 1 

1 1 0.364 1 n 
Periods 1 regions 

KW 

II 
- 

1 Rural 
I I 

I I 1 0.783 n 

1 G W 1  AQ1 1 GR1 OGW OGR [ 

L 

2012-2021 Cambridge 0.5 0.227 
Rural 0.3'7 

/ 0.125 

II 2002-2011 

1 

Cambridge 
Rural 

1 

0.636 

1 

1 

2022-203 1 

2032-2041 

0.127 1 

C 

1 

1 I 

KW 
Cambridge 
Rural 

KW 
Cambridge 

Rural 

0.505 
0.0055 

0.33 

0.182 

J 

L 

I 1 

0.68 

1 

0.316 
0.491 
0.193 

0.266 

1 

1 
0.523 
0.211 
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7.8 Applying the Modified Lexicographie G P  to 

WWSPP 

In this section we briefly explain the main results of applying the modified lex- 

icographic approacli to WWSPP. Tlie priority and the  level of goals for crite- 

ria are specified in the first and second steps as shown in Table 7.11. Given 

tlus infamation. wc apply a sequential integer program to WWSPP and obtain 

(G W l  .AQ 1.GR1) as tlie bes t solution. This solution is efficient. Hence. according 

to the modified lexicogri-apluc spproach. we must find another efficient solution by 

trading-off on the level of goals for different criteria. 

Suppose the revised level of goals are as sliown in row 5 in Table 7.11. Solving 

the problem using the ncw goals with the same priority on criteria gives (AQ2?PL3) 

as another efficient soliition. Now. we must find other efficient solutions close to 

(GWl.AQl.GR1) accortling to a distance metric. Assume ttiat L1 lias been selected 

as an appropriate distarice metric for measuring closeness. Hence, 

14.53 
nr = .05, ;rz = -03. n3 = .55. n4 = .08, n5 = .043. n~ = .015, and ,8 = -. 

h 

Now tlie following program is solved for different value of h to find sorne other 

efficient solutions: 

Subject t o  : 
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for p = 1, ...J P 1, 

Thc Sct of Constraints 7.1 to 7.11. 

In the above progrmi zk is the criterion value of the first solution and u, and 

IL; are the auxfiary variables that defined in Chaptcr 6. Solving the above problem 

for h = 1 gives (AQ1. PL3) and (AQL. PL2) as new supported efficient solutions. 

Table 7.11: Main Steps of Applying the Modified Lexicographie GP to WWSPP 
(Interdependence Case. L Norm) 

Steps 
1 

j ' 

1 The solution of the Modified i 

l 

1 

Tasks 
Priority of Criteria 

- - 1 The revised Aspiration levels 1 
1 (400. 100, 100, 40, 20, 201 l Il 

Results 
Inves. Cost. Oper. Cost. Risk. Water Quality. [ 

Initial Aspiration levels 

Lexicographie GP 
Type of Soli1 t ion 

! . * ,  1 The Efficient solution with il 

Inf. Impact. Env. Impact. Supply Capability 
(300. 40, 30, 40.30,40) 

(GW1, AQ1, GR1) 
Efficient 

i 

Wlien one selects L, as distance rnetrics, the only efficient solution generated 

by solving the vector optimization problem is (GW1, AQ2. GRI) .  This solution is 

the Revised Aspiration Levels 
The New Solutions of the 
Vector Optimization Problem 

(AQ2, PL31 
(AQL PL31 
@QI, PL21 
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similar to (GW1. AQ 1. GR1) which is generated in the second step. 

Moreover, Table 7.12 shows the s'urie information as in Table 7.11 when inter- 

dependence of actions is ignored. 

Table 7.12: Main Steps of Applying the Modified Lexicogaphic GP to WWSPP 
(No Interdependence. LI Norm) 

jSteps 
1 

3 - 
3 

4 
5 
6 

7.9 Conclusions 

Tash  
Priority of Criteria 

7 

In this chapter. a real-world water supply planning problem was modeled as a 

multiple objective mixed integer programrning problem. The main features of the 

problem. especidy interdependence of actions, were discussed. It was shown that 

duc to tkis characteristics conventional multiple criteria procedures would be diffi- 

cult to apply. This case study showed the importance of interdependence of actions, 

even under moderate amount of interdependence. It was also demonstrated that the 

cornbined Chebyshev-Archemedian GP and the rnodified lexicographic approaches 

Results 1 
Inves. Cost. Oper. Cost. Risk. Water Quality. 1 

Initial Aspiration levels 
The Solution of the Modified 
Lexicograpluc GP 
Type of Solution 
The revised Aspiration Ievels 
The Efficient solution with 

I d .  Impact. Env. Impact. Supply Capability 1 
(300. 40. 30. 40.30.40) ! 

(GW1. AQ1. GR1) I 

Efficient i~ 
(400. 100. 100. 40. 20. 20) 

1 
the Revised Aspiration Levels 
The New Soliitions of the 
Vector Optimizrition Problem 

(AQ1. GR1, PL3) 1 
(AQ1. PL3): (AQ2.PL2) 

(AQ2. PL3) - 
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are usefd to generate rlifferent attractive solutions. Finally? the solutions of the 

mode1 in different cases were discussed and it was shown that the interdependence 

of actions should not bc ignored. 



Chapter 8 

Contributions and Future 

Research 

8.1 Main Contributions of the Thesis 

The main contribution of tkis thesis is the development of novel definitions and 

characterizations of interdependence of actions in multiple criteria subset selection 

problems. Interdependence of actions was generalized to any number of actions and 

extended into set-intcrdependence. In fact . mos t conventional interdependence for- 

mulations c m  be defined as special cases of our definition. Furthermore. the subset 

selection problem under interdependence of actions was formulated as a multiple 

criteria zero-one problem. and two rnodified GP rnethodologies were proposed to 

find a representative subset of solutions. Motivatecl by the fact that most multiple 

criteria integer problems are difficult to solve. an approach was proposed to screen 

out those actions that cannot possibly be in the best set of actions. An application 

to the choice of future sources of municipal water supply for the Regional Munici- 
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pality of Waterloo. Canada. shows the effectiveness of the proposed methodologies 

and associated analytical techniques. In summary. the main contributions of this 

thesis are as follow: 

1. A new screening approach was developed for multiple criteria subset selection 

problems. S pecifidy.  techniques were proposed to find and remove t hose 

individudy dominated actions tliat cannot possibly be in the best set of ac- 

tions. The techniqiies were utilized for bot h m-bes t actions and j-constraints 

problems . 

2. Novel definitions and charac terizations of intcrdependence of actions in mul- 

tiple criteria subset selection problems were introduced. The interdependence 

was identified as conditional and unconditional. and the main Merences of 

conditional and unconditional int erdependence in cornparison with conven- 

tional approaclies were discussed. 

3. The concept of interdependence of actions was generalized to  interdependence 

of sets of actions and useful relationships between set-interdependence and 

action-interdependence were established. 

4. Using relationships between interdependence of sets and interdependence of 

t heir subsets. several different ap proaches were proposed for evaluat ing the 

arnount of interdependence among actions. 

5. The concept of order of dependence was defined and a technique to distinguish 

the order of dependence of a set of interdependent actions was proposed. 

Moreover, the importance of identifying the order of dependence of a set of 

actions to establish useful relationships between independence of two sets and 

independence of tlieir proper subsets were sliown. 
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6. The concept of additivity of a set was introduced and it was shown that how 

to decompose a set such that the its consequence can be evaluated as an 

additive function of the consequences of the subsets in the partition, or such 

that the number of interdependence terms is minimized. Moreover, the main 

relationships between the notion of additivity of a set and independence of 

its subsets were explored. 

7. A generd procedure was introduced to formulate a subset selection problem 

under interdepeiidence of actions. Subsequently, the difficulties of obtaining 

the non-dominated solutions of the formulat cd problem were put forward 

and the following two modified G P  methodologies were developed to find an 

attractive subset of efficient solutions: 

Modified lexicogaphic GP - The lexicogaphic GP and vector optimiza- 

tion approaclies were employed in sequence to find a portion of efficient 

solutions tliat niost likely include the best solution according to the DM'S 

value func t ion. 

a Hybrid Chebyshev-Archemedian GP  - Difficulties of Archemedian and 

Chebyshev G P  were discussed and a GP approach according to the 

convex combination of Arcliemedian and Chebyshev GP was proposed. 

It was shown that this approach overcomes some of the shortcomings of 

the conventional GP. 

S. The proposed concepts and methodologies were applied to a real-world water 

supply planning problem. The problem was formulated as a mixed integer 

programming model. The solutions of the problem demonstrated the impor- 

tance of considering interdependence of actions in subset selection problem 

under moderatc nniount of interdependence. Moreover , the effectiveness of 
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the combined Clicbyshev-Archemedian GP and the modified lexicographie 

GP approaches in generating dXerent GP-efficient solutions for the WWSPP 

were dernonstrated. 

8.2 Suggestions for F'uture Research 

The research containeci in tliis thesis opens up a range of new avenues for future 

productive resenrch. Tlic following are some sugges ted areas of research: 

1. To expand tlie scrcening appronch for subset selection problems under in- 

terdependence of actions. The screening approach presented in Chapter 3 

was restricted to the case when actions are independent. The theory and 

methodology of screening actions in subset selection problems can be ap- 

propriately developed for handling decision situations for which there exist 

int erdependencics among actions. 

2. To modify and iitilize other screening approaclies for subset selection prob- 

lems. In tiiis thesis. we andyzed t lie dominance method for screening actions. 

One can adapt otlier screening approaches wluch were origindy designed for 

multiple criteria single action selection, sucli as successive elimination and 

bounding the performance for subset choice problems. This sliould be ac- 

cornplished for botli m-best actions and j-constraints problems. Due to the 

inherent difficulty of combinatorid problems. it is quite usefd to find meth- 

ods for screening actions and removing those tliat cannot be included in the 

best or efficient subsets of actions. 

3. To apply the screening approaclies to other MCZO problems. In this thesis we 

restricted tlie irnplementation of our screening approach to a multidimensional 
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knapsack problern. The proposed concepts and techniques can be applied to 

other types of MCZO problems. 

4. To investigate tlic computational complexity of the screening approach. The 

screening approacli presented in chapter 3 is considered as a pre-processing 

stage in solving a multiple criteria subset selection problem. Hence, it is useful 

to discuss the coniplexity of the screening approach to justZy its utilization 

as a pre-processing stage. 

5 .  To integrate the screening approach with some well-known iMCDM inter- 

active approacli. In an MCDM interactive npproach. the DM's preference 

information is uscd to rcmove actions that cannot be optimal. This is usually 

referred to as doininance in the reduced decision space. because the decision 

space is made sni'der using the DM's preference information. Most of these 

approaches are suit able for single action selection. The methods of Koksalan 

c t  al. [71] and Korlienon et  al. [74] are among interactive MCDM approaches. 

that can bc integated into the concept of screening presented in Chapter 3.  

More specifically. the cone of inferior sohtions [71' 741 can be built such that 

every action in the cone cannot possibly be i ~ i  the best subset of actions. 

To explore further the notion of interdependence in MCDM subset selection. 

Es tablishing more useful relationships between interdependence of sets and 

interdependence of their proper subsets can be quite useful to evaluate inter- 

dependent set s. 

To investigate the notion of interdependence of actions for ordinal preference 

information. The theory of interdependence introduced in this thesis is con- 

fined to the situations where there exkts cardinal information on consequence 
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and amount of interdependence of actions. However. in many real-world prob- 

lems only ordinal information on interdependence is available. The definition 

and characterization of interdependence can be expanded to take into account 

ordinal and qu'ditative informationo as well as a combination of qualitative 

and quantitative preferences. 

To explore possible dornain of applications of the theory of interdependence 

in real-world decision making problems. 

To ernploy more concepts of grapli theory for exhibiting other properties of 

interdependence of actions. In Chapter 5. some elementary concepts of graph 

tlieory were used to explore features of interdependence of actions. More 

concepts froni tlic tlieory of grepli can be uscd to capture its other proper- 

tics. For examplc. the liypergraph notion can be utilized to cliaracterize tlie 

interdependence of the order of three or more. 

To modify the conventional GP methodology so that in addition to entering a 

penalty for under-achievement. one can input rewards for over-achievement of 

tlie solution. Tlls eliminates some of tlie difficulties in G P  such as generation 

of dominated solutions. 

To integrate screening approaclies with tlie interdependence notion within 

the framework of the GP methodology. In other words, screening actions 

can be accomplished in reference to aspiration levels and in the presence of 

interdependence of actions. 

To construct a more detailed model for WWSPP such that other technical 

information dong with the stocliastic nature of the problem, can be incorpo- 

rated into the model. 



CHAPTER 8. CONTRIBUTIONS AND FUTURE RESEARCH 220 

13. To implement otlier techniques presented in this thesis into WWSPP problem. 

In Chapter 7 wc showed the results of implementation of the elementary 

concept of interdependence, the combined C h e b s h e v - r c h e m e  method 

and the rnodified lexicographie method into the WWSPP problem. It is 

usefd to apply otlier proposed concepts and techniques in this thesis, such as 

screening approacli into WWSPP problem. 

14. To extend WWSPP problem such that botli qualitative and quantitative in- 

formation can be taken into account. Like otlier real-world multiple criteria 

problems. WWSPP contains bot h qualitative and quantitative information. 

Developing a mode1 for WWSPP so that both kinds of information can be 

liandled wouid bo very useful. 

15. To implement n comprehensive sensitivity maiysis for WWSPP problem. A 

comprehensive sctisitivity analysis is required to investigate how the solutions 

of WWSPP are iiifluenced due to changes in mode1 parameter. Designing a 

systematic sensitivi ty analysis is especially important in WWSPP model. be- 

cause in this resexch we have considered only a deterrninistic model. More- 

overo due to the subjectivities involved in nssigning weights and aspiration 

levels in GP. it is quite important to find sensitivity of a solution when the 

GP parameters are changed. 



Appendix A 

Proofs of Theorems 

A S  Proof of Theorem 4.1 

1)Proof that 

AI(I  1 A * ) A ~  =s Al (1 / A")A? 

But AI(I  1 A")B implies that 

%(Ai U A"' U B) - %(A'' U B) = %(At u A") - 4 ( ~ " ' ) .  ( A 4  

However. A'' U B = AU. because B = A0 \ A". Tlius A.2 is quivalent to 
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On the other hand. A2(I 1 A")B gives 

cp(A2 u A") - C~(A")  = cp(A2 u A" w B) - c~(A'' U B), (A-4)  

In addition. (Al u A?)(I j A")B implies that 

$(Al u A2 u A") - C~(A")  = cp(A1 U A ?  u A O ' V  B)  - C ~ ( A "  u B). (A.6) 

Siibstituting the riglit liand sides of (A.2).  (A.3) .(A.5).  into (A.1). 

Sim~lifying and rewri king 11.8 gives, 

2)Proof that 

A1(I 1 A'')A? =s Al(I  1 AO)A~.  
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The proof is similar to the necessary condition and can be obtained by rearranging 

(A.3),(A.5), (A.7),  and substituting into (A.9). O 

A.2 Proof of Theorem 4.2: 

Since A1(I ( @)(A2 L' A3). we have 

cp(Ad = ~ p W 1  U A?) - +&)- 

Substituting ( A . l l )  into (A.lO) and rearrmging. 

2) Proof of sufficient condition is similar to the necessary condition. 
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A.3 Proof of Theorem 4.3: 

Similady. becuase Al(I  1 Az U AS . . . il 

Wi th successive substittition in the same fashion. 

and f i n d y  since A1(I [ 0)A2, 

Y = $(Ai).  

Substituting Y into the left hand side of (A.13). 
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Hence, 

A.4 Proof of Theorem 5.1 

We prove the theorem by induction. We fmt  show that Expression 5.8 is true for 

OJS) 12. 

According to (5.7). wlien 0, = 2. we have 

(A. 14) 

Finding the value of AJT) from (5.4) and substituting it into (A.14) gives: 

Hence, the theorem is true for O,(S) = 2. Now we show that if the theorem is true 

for lr ,  it is also true for X: + 1. For this purpose, first we replace ail k in Expression 

5.8 by k + 1, and then we prove that the resulting expression is true. Replacing k 

by k + 1 in (5.8) gives. 
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1 

((k - l)!) T S 

On the other hanuid according to (5.7), if OJS) = L + 1. then 

But, according to (5.3). the last term in right hand side of (A.16) can be written 

T E S  T C S  

ITI= k t 1  (TI= k JTI=k-1 



APPENDIX A. PROOFS OF THEOREMS 

The above expression cm be rewritten as, 

Now. substituting the amount of C Ap(T) from (A.17).  and amount of 
ITl= k + 1  

C PP(T)  hom (5.5) into (A.16). and remanging produces, 
I T I I k  
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By simplifying the coefficient in (A.18), one can show that (A.18) and (A.15) are 

equivalent and this complete the proof. 0 

A.5 Proof of Expression 5.18 

But . using (5.6) gives. 

and 
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Substituting (A.20) and (A.21) into (A.19), 

(Note that the summation includes a TI = 0 term.) 

A.6 Proof of Theorem 5.4 

According to  (4.2) wlien Ao = 0 

Similar to Appendix A.5, we have 
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Substituting (A.23). ~ $ 3 ~ )  and ç,(S2) into (A.22) gives 
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