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Abstract

Multiple Criteria Decison Making (MCDM) is a problem that has been studied
extensively. Most pitfalls are by now well-known, and many proven algorithms
permit choices to be made efficiently. But, when the problem is a multiple criteria
subset selection, new difficulties appear, and most algorithms of MCDM are either

inapplicable or impractical.

Even when actions are independent, so their cumulative effects are additive,
multiple criteria subset selection is a challenging problem. Moreover, applicable
multiple criteria subset selection approaches suffer from large computational re-
quirements. To deal with these difficulties, techniques are introduced for screening
individual actions when a subset of a large discrete set of independent actions is to
be selected, both when the number of actions to be selected is given a priori, and

when the subset to be selected must satisfy several constraints.

When actions are interdependent the subset selection problem becomes even
harder. A novel definition and characterization of the interdependence of actions
in the context of multiple criteria subset selection problems are presented. Most
of the interdependence discussion can be generalized to sets of actions rather than
individual actions. Exploration of the main relationships of set-independence and
action-independence produces several different methods for evaluating a set of inter-
dependent actions. A general approach to evaluate a combination of interdependent
actions is proposed and applied to the multiple criteria structure. The effects of
interdependence of actions on the modeling and resolution of a subset choice prob-
lem are illustrated, and the importance of taking interdependence of actions into

account is demonstrated.

The subset selection problem under interdependence of actions is formuiated as

A4
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a multiple criteria integer program and two solution methodologies are proposed.
The advantages of these approaches in comparison to others are discussed. These
methodologies and associated analytical techniques are applied to an on-going water
supply planning problem in the Regional Municipality of Waterloo. The results
indicate both the importance of interdependence of actions and the effectiveness of

the proposed methodologies.
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Chapter 1

Motivation and Objectives

1.1 Motivation

MCDM problems naturally arise in many situations. both strategic and routine. For
instance, a typical multiple criteria problem takes place when a family uses criteria
such as price, size, distance from shopping and schools, and aesthetics in order to
decide which house to buy from a wide selection. Given the expectation of the family
and availability of houses, often there does not exist a house that satisfies all the
necessities. Hence, the family must trade-off among different criteria to select the
house that gives maximum satisfaction. Another example is a government’s decision
about which combination of alternative sources of energy generation to select in
order to meet long-term energy demand, while considering cost and environmental
impacts criteria. Many methods and theories have been developed during the past
two decades in both continuous and discrete problems for solving a wide range of

multiple criteria decision situations.
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The definition and generation of actions ! is an important step in the process
of employing MCDM. but one to which little research effort has been devoted
[63. 129, 120]. For most MCDM tools. it is assumed that the decision maker deals
with a predefined and clearly specified set of actions, perhaps defined by a set of

decision variables and constraints, from which a preferred action(s) is to be selected.

In many real world decision problems, the decision maker(s) is interested in
selecting a combination of actions rather than an individual action. For example,
the manager of a company might like to select a set of products to manufacture.
Research and development departments often consider a set of projects for analysis.
Also, a government which is respounsible for developing the long term water supply
for a region may employ a combination of sources. such as ground-water, lakes, and

river water, to satisfy future demand.

Situations in which a subset of actions is to be selected from a discrete set of
actions have not received much attention in the multiple criteria literature [127].
Moving from single action selection to multiple criteria subset selection increases the
complexity of the decision problem. In fact, most available multiple criteria subset
selection methods for finding the set of non-dominated solutions are applicable
only to small problems [127]. Hence. it is useful to develop techniques for removing
inferior actions before attempting to solve the problem through formal methods.
Several screening approaches have been suggested in the literature. But, most of
them are only suitable for single action selection. Therefore, there is a need to
develop procedures for adapting these screening approaches for multiple criteria

subset selection problems.

Most multiple criteria models assume strict independence of actions. Yet inter-

1In this research we discriminate between action and alternative. An action is assumed to be
an individual object and by alternative we mean a combination of actions.
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dependence of actions can be found in many real-world subset selection problems.
Consider, for instance, the pressing problem of disposing solid wastes. Possible ac-
tions include using one or more of a number of potential dumping sites, incineration
at one or more locations, introducing by-laws to reduce the amount of waste gen-
erated in the first place, plus a range of recycling measures. Criteria may include
cost, infrastructure requirements, environmental risk, potential acceptability, and
aesthetics. An optimal solution may consist of a set of actions that, typically are
interdependent for one or more of the criteria on which they are to be evaluated.
Other examples may include the selection of different products to be produced in a
firm, research and development or investment projects, transportation routes, and

computer systems.

Often, interdependence of actions is overlooked or it is treated in some unnatural
way which leads to the solutions which are not the best choices [81]. This is due
partly to the ill-structure of the interdependence relation, difficulty in formulating
them, and trouble in measuring the amount of interdependence [112, 31]. Recently,
however, as the importance of interdependence in some applications was recognized,
techniques were developed for estimating the amount of interdependence of actions
[112].

Interdependence of actions is more crucial in MCDM problems, because different
types of interdependencies may occur across several conflicting criteria and change
the solutions of the problem. Moreover, the set of non-dominated solutions may
be changed extensively in the presence of interdependent actions. Even though
several formulations of interdependence appear in the literature, all restrict the

type or extent of interdependence in some ways.

In this thesis, we present a novel definition of interdependence of actions and

sets of actions in MCDM and assess the main properties of interdependence using
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these definitions. The effects of interdependence on subset selection, especially in
the muitiple criteria framework, are examined and techniques for evaluating subsets

of actions that are interdependent according to specific criteria are presented.

1.2 Objectives

The main objective of this thesis is to develop models and associated analytical
techniques for multiple criteria subset selection problems under interdependence of
actions. Figure 1.1 depicts the main focus of this thesis. The following are some

specific goals:

1. To introduce effective techniques for screening actions when a subset of a

large discrete set of actions is to be selected. This includes:

o identifying conditions under which individually dominated actions can

be screened out from the set of feasible actions,

e developing techniques to remove inferior actions when the number of

actions to be selected is given a priori, and

e proposing techniques for screening individually dominated actions when

the possible subset to be selected is defined by a set of constraints.

2. To present a general framework for independence and interdependence of sets

of actions in MCDM problems. This includes:

e analyzing the effects of interdependence of actions in multiple criteria

subset selection problems,



ST T Re——

CHAPTER 1. MOTIVATION AND OBJECTIVES 5

e presenting a foundation for the definition and characterization of inter-
dependence of actions, especially in the presence of multiple criteria,

e assessing the relationship between the independence of two sets and in-
dependence of their proper subsets, and

e proposing different techniques to facilitate the evaluation of sets of in-

terdependent actions.

3. To propose a solution methodology to solve a multiple criteria subset selection

problem under interdependence of actions. This requires:

o formulating a discrete multiple criteria subset selection problem under
interdependence of actions.

e exploiting the structure of the formulated problem to propose an im-
proved solution methodology, and

o developing a methodology that generates a representative subset of non-
dominated solutions, and overcomes some of the difficulties existing in

current satisficing approaches.

4. To apply the suggested solution methodology to a real-world water supply
planning problem in the Regional Municipality of Waterloo, located in south-

ern Ontario, Canada. This includes:

e identifying the criteria, available actions and interdependence among
actions,

e constructing a mathematical model that represents all criteria, as well
as resource and technological constraints, and

¢ demonstrating the importance of interdependence of actions in the Wa-

terloo Water Supply Planning Problem.
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Figure 1.1: The Main Areas of Study in the Thesis



CHAPTER 1. MOTIVATION AND OBJECTIVES 7

1.3 Overview of the Thesis

This chapter presents the motivation and the main objectives of the thesis. Chapter
2 presents a brief overview of MCDM concepts and reviews some of the multiple
criteria subset selection problem approaches. Additionally, the reference program-
ming methods are discussed in detail. Next, Chapter 3 introduces new techniques
for screening individual actions in multiple criteria subset selection problem. In this
chapter it is assumed that there is not any interdependence among actions. Further-
more, it is shown that usage of conventional dominance procedures for screening
may eliminate some good actions from the set of feasible actions. Subsequently,
techniques are proposed to examine individually dominated actions for multiple
criteria subset selection problems with respect to two specific cases: when the
number of actions to be selected is specified a priori. and when a set of constraints

specifies the number of actions to be chosen.

Chapter 4 focuses on modelling interdependence of actions in MCDM. The im-
portance of interdependence of actions in multiple criteria subset selection is shown
and a general framework for interdependence of sets of actions is presented. Differ-
ent types of interdependence and important special cases are also discussed. Then,
the main differences of our definition with conventional definitions of interdepen-
dence are explained. Following the introduction of interdependence, Chapter 5
discusses the evaluation of interdependence of actions. It begins with presenting a
general formulation for evaluating the consequences of a set of interdependent ac-
tions. Next, several techniques are presented to examine the independence of two
sets of actions and to evaluate the sets of interdependent actions. Furthermore, in
this chapter useful connections between independence of two sets and independence

of their proper subsets are explored. Finally, this chapter ends with presenting a
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new definition of additivity of a set of interdependent actions. Using this definition
it is shown how to decompose a set of interdependent actions into some subsets

such that minimum number of interdependence evaluations is necessary.

Chapter 6 provides a formulation for subset selection problems under interde-
pendence of actions. Then, two solution methodologies are presented to solve the
formulated problem. Finally, the main advantages of the proposed methods in

comparison with other available approaches are discussed.

To demonstrate the effectiveness of the proposed methods and to show the
effects of interdependence of actions on solutions. a real world water resources
planning problem in the Regional Municipality of Waterloo is studied in Chapter
7. The experience gained and lessons learned in applying the proposed approaches
to the Waterloo Water Supply Strategy, are discussed. Subsequently, a summary of
the accomplishments and main contributions of the thesis are given in Chapter 8.

Finally, this thesis ends by presenting some possible directions for future research.



Chapter 2

Background and Literature

Review of MCDM

2.1 A Brief Historical Perspective of MCDM

Today, it is well understood that most decision problems inherently involve choices
that ought to be judged according to more than one criterion. In fact, MCDM
problems arise naturally in many situations, both strategic and tactical, and MCDM
methods have been widely applied in public policy, engineering, and design. For
example, in the selection of plans for a road, construction costs, usage, and expected
rate and severity of accidents are some of the main criteria. In water resources
planning, criteria such as power generation capacity, flood control capability, and
environmental impacts may be essential. In designing a gear-box, several criteria,
including volume of material, maximal peripheral velocity between gears, width
of the gear-box, and distance between axes of input and output shafts, should be

minimized simultaneously [88]. Increasing the output quality level and reducing
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the overall inspection cost are two conflicting criteria applicable to the design of

quality control policies in a production line.

MCDM dates back to the late 19th century, when the concept of equilibrinm
in consumer economics was introduced by Edgeworth and Pareto [115, 116]. How-
ever, MCDM became a useful decision technology in the early 1970s, when the
applications of operations research extended to strategic levels of decision making.
Spectfically, after the first conference on MCDM, held at the University of South
Carolina in 1973, the field has been one of the fastest growing areas in operations
research, as evidenced by the enormous number of books, journal articles, and

congresses in both the theory and application of MCDM methods (129, 118].

2.2 MCDM: Concepts and Definitions

MCDM consists of a set of tools to help a Decision Maker (DM) or a group of DMs to
make a decision by finding, selecting. sorting, or ranking a set of actions according
to two or more criteria. which are usually conflicting. A possible set of actions,
A. may be specified explicitly by listing its member, or implicitly by identifying
a set of decision variables and the constraints they must satisfy. The definition
and generation of actions is an important step in the process of MCDM but one
to which relatively little research effort has been devoted [129, 63, 120]. For most
real-world problems there is no pre-existing set of well-defined actions. Most often,
before, any formal decision analysis can be undertaken, some preliminary work to
define, combine, expand. or reduce the set of feasible actions is necessary. The set of
feasible actions can be reduced by removing some inferior actions, identifying those
that do not meet some level of acceptability, or that do not meet key performance

standards on criteria. Despite many potential applications, situations in which a
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subset of actions (alternative) is to be selected from a discrete set of actions have
not received much attention within the multiple criteria literature [127]. Moreover,
in many real-world multiple criteria subset selection problems, there are some kinds
of interdependence among actions. Yet, most multiple criteria models assume strict

independence of actions.

The set of criteria, P. by which actions are to be compared, is another element of
MCDM. There is no consistent definition of a criterion by researchers. Vincke [129]
defines a criterion as a function f, defined on set of actions, taking its values in a
totally ordered set. Bouyssou [13] defines a criterion as a tool for comparing actions
according to a particular significance axis. Finally, Yu [137] expresses criteria as a

set of functions that are relevant to making a decision.!

The criteria are usually in conflict with each other, especially if each criterion
represents the interest of a specific group of DMs. For example, building a factory
in a region may generate job opportunities, but on the other hand may introduce
adverse environmental impacts. Increasing the frequency of inspection in a pro-
duction line decreases the number of defects but, on the other hand, increases the
cost of quality control. Thus, it is rare to find an action that is best according
to all criteria, and asking for an optimal solution to an MCDM problem does not
make sense. Rather, one must search for a compromise solution that appropriately
reconciles the different criteria. To find this compromise solution, it is necessary
to learn something about the DM’s preferences over the criteria. Hence, the role
of the DM in MCDM is more explicit, and more crucial than in single objective
optimization. There are many difficulties in introducing value judgments of the
DM(s) into MCDM problems. One should keep in mind as well that due to the

behavioral influence of tradeoffs across criteria, in many situations it is impossible

lIn this thesis, the terms criterion and objective are used interchangeably.
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to find a solution simply by implementing a mathematical model [105].

Once the actions and the criteria are constructed, one must measure or evaluate
each actions according to each critericn. Most optimization procedures are based
on the assumption that one can assign a real number to represent the consequences
of an action according to a criterion. However, in many real-world applications this
is often a very difficult task. This issue is more important in MCDM, because in
many MCDM applications some criteria are not quantitative. Often, the natural
way to express the consequences of actions is by using ordinal information, whereby

the actions are ranked according to each non-quantitative criterion.

MCDM can be classified into two main branches, Multiple Attribute Decision
Making (MADM) and Multiple Objective Mathematical Programming (MOMP).
The former applies mainly when the set of actions, A. is defined explicitly by listing
its finite members: the latter when A is defined implicitly by a set of constraints to
be satisfied. Usually, in MADM the size of A is small and in MOMP the number of
actions is large. Even though both MADM and MOMP have been used for solving
multiple criteria subset selection problems, a natural way to tackle these problems
is through MOMP approaches®. Figures 2.1 and 2.2 shows some of different types
of MADM and MOMP approaches, respectively. This thesis mainly concerned with
MOMP problems.

Without loss of generality, assume that all criteria are to be maximized. Then,

an MOMP problem can be expressed as follows:

*AHP (Analytic Hierarchy Process) [108] and PROMETHE V [15] are among MADM ap-
proaches that have been used for subset selection problems (see [2] and [108]).
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(B1) Maximize {fi(z),.... fpolZ), ..., fir)(2)}
Subject to:

z € X,

where, f,(z) is the pth objective function, z is the vector of decision variables and
X is the feasible space. The main characteristics of a multiple criteria problem
which distinguishes it from single criterion problems is that there generally does
not exist a solution that simultaneously maximizes all of the objectives. A solution

which is best according to all objectives is called the ideal point and is denoted

2= (2. 2.0 55,00 2py)s

where z; = maz{fy(z)} and z € X. Some MCDM approaches use this ideal

point for assessing other solutions. Most theories of MCDM can be characterized

according to the non-dominated (efficient or Pareto optimal) solution concept.?

Definition 2.1 A solution ¢ in (B1) is defined to be non-dominated if there is no

other solution z° such that:

fp(zo) > fp(z) Vp=1,..., ' I |7

and  fo(z°) > fo(z) for at least one p.

The set of efficient solutions of X is denoted by E f f(X). Geoffrion [35] introduces
the concept of properly efficient solutions. He argues that all members of E f f(X)

3In this thesis, efficient solutions and non-dominated solutions will be used interchangeably.
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may not be considered as reasonable solutions and a rational DM would always

choose an action which is properly efficient.

Definition 2.2 Solution z is properly efficient, if it is efficient and for anyy € X

and any criterion p; the following ratio is bounded above for some k[35]:

Foly) = Fo(z) -

fi(z) = fily)
The above ratio shows the improvement in criterion p divided by the decrement
in criterion &k with changing a decision from z to y. Hence, if this ratio is not
bounded from above. a very small decrement in the criterion k leads to a very large
improvement in criterion p and a rational DM usually prefers this exchange [102].
Nevertheless, in most practical problems, the concepts of efficient and properly
efficient solutions are not very different. The improper efficient solutions can only
occur in some specific types of nonlinear multi-objective and multi-criteria discrete
optimization problems with an infinite number of actions. For more description

and examples see [118].

Basically, in single objective problems, the study is conducted in a decision
space. However, in multiple objective programming, it is more convenient to trans-
form the feasible region in the decision space X into a feasible region in criterion
space *, Z. Hence, a feasible region in criterion space is the image of X under f,(-)

for all p. The following example illustrates this concept.

*Note that, for the single objective problem, the feasible region in criterion space is a straight
line segment,
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Figure 2.3: The Set of Feasible Actions in (2)Decision Space, (b)Criterion Space

Example 2.1 Consider the following 2-criterion problem.

Maximize  fi(z) = z; + z2,
Maximize  fi(z) = z;.
Subject to :
=3z, + 2z, £ 2,
-z + 2z, < 5,
4z + 3z, < 20,

321 -T2 S 8,

Figure 2.3a shows the set of feasible points in the decision space and Figure 2.3b
shows the set of feasible solutions in the criterion space. Every extreme point in X

corresponds to an extreme solution in Z. Any solution that lies on the line z3 — z4
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is an efficient solution. Likewise, all points on line z3 — z4 are efficient points.

Much research has been devoted to finding effective ways for obtaining the set
of efficient solutions [102]. Geoffrion’s theorem provide some basic research ideas.

Consider Problem B1.

Theorem 2.1 Ifz € X mazimizes

[P
D Ap-fol), (2.2)
p=l1
for some A, where A, € A and
P
A={reRPl A, >03 A =13, (2.3)
p=1

then z is an efficient solution [35].

The above theorem indicates that regardless of the shape of the feasible space and
fo(.). if = is the maximal solution of the convex combination of all criteria, then
z is efficient. However. this theorem provides only a necessary condition. To be

sufficient more conditions are required.

Theorem 2.2 If X is convez, let z € X be efficient. Then there ezists A € A in

which action z is @ mazimum solution of (2.2) [35].

Due to the convexity assumption of Theorem 2.2, Geoffrion’s theorem cannot
explore all extreme efficient points in non-convex discrete and nonlinear program-

ming.
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For the linear case. the solution of (2.2) is basically the set of non-dominated
extreme points, and if the DM’s true utility function is nonlinear (which is the
case in most situations). then it is possible that his best solution will not lie on
the extreme points. To handle this, methods have been developed for generating
other non-extreme efficient points. These methods are mainly based on the convex

combinations of the extreme efficient points [118, 102].

Another concept of efficiency is weak-efficiency or quasi-efficiency, which is de-

noted by Qe(X). Consider Problem B1,

Definition 2.3 Solution z is called quasi-efficient if there does not ezist another

solution z° such that [118]:

folz) < fo(2) vp. (2.4)

By setting A > 0 in (2.3). Theorem 2.1 produces quasi-efficient solutions. Quasi-

efficiency is a more relaxed definition of efficiency and one can observe that:

Eff(X) € Qe(X). (2.9)

The notion of efficiency is especially important in studying deterministic prob-
lems, although selected concepts such as stochastic dominance, mean variance dom-
inance, probability and utility dominance have also been defined in the MCDM lit-
erature [137]. Note that efficiency is weaker than optimality in the sense that in
most cases there exist many efficient points but no ideal point. Hence, after finding

the set of efficient solutions the DM still must choose one member of this set.
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2.3 Overview of Multiple Objective Mathemati-

cal Programming

One important feature of MCDM is the great diversity of developed procedures. In
fact, the wide variety of methods has encouraged some researchers to build models
for selecting the best MCDM approach in some general and specific application
areas (63, 49]. In this section, some of the well known MOMP approaches that
will be addressed in upcoming sections are discussed. One can classify MOMP

approaches according to how and when preference information is articulated:

1. A priori preference information.
2. Progressive articulation of preference information, and

3. Posterior preference information.

Below each of these approaches are briefly explained.

2.3.1 A priori preference information

A priori preference information methods of MOMP begin with an exploration of
the value function of the DM. Once the preference structure of the DM has been
assessed, all objectives are aggregated into one, thereby changing the problem to
a single objective optimization problem. In most cases, assessment of the DM’s
value function is quite difficult and involves a great deal of subjectivity. Many
theories and procedures have been developed for determination and characterization
of the DM’s preference structure for both deterministic and probabilistic cases. The

capability of these procedures in conditions of uncertainty, and their usefulness for
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sensitivity analyses are among their advantages {60]. In addition, the theoretical
foundations of these methods add to their attractiveness. However, they generally
require the assumption that a value function exists, and often that it is additive;
even if one is prepared to make these assumptions. it may be extremely difficult to
construct a value function in practice. It is worth mentioning that these approaches
have been mainly used in MADM. In addition to the additive form of the value
function, others such as multiplicative, polynomial, partially additive, and so on,

have been proposed in the literature.

2.3.2 Progressive articulation of preference information

Due to the great difficulty of determining a DM’s preference explicitly, many proce-
dures try to elicit them progressively. Methods that alternate between computation
and interaction with the DM are called interactive. The process starts with little
or no preference information. At each iteration, a set of solutions (usually, non-
dominated solutions) is presented to the DM. As each solution is examined, the DM
decides upon the updated preference information and inputs it into the model. The
process terminates when the DM is satisfied with the solution currently proposed

by the model.

The first interactive method called STEM, was proposed by Benonyan et al.
in 1971 [8]. Although originally proposed for solving linear problems, its structure
permits it to be applied to integer and nonlinear problems. This procedure is
based on reducing the feasible space by adding more constraints, obtained through
interaction with the DM. The augmented weighted Chebyshev method is used for

assessing the compromise solution at each step.

The GDF method of Geoffrion et al. [36] is another interactive approach to
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MOMP. Using aun implicit utility function, this method attempts to find the best
solution using the Frank-Wolf gradient algorithm.

The method of Zionts and Wallenious [142] is applicable to linear problems.
Relying on the assumption that the DM’s utility function is pseudo-concave, this
method generates extreme efficient points at each iteration. Adjacent extreme
points are compared by the DM and this information is added to the model for the

next iteration.

The method of Steuer and Choo [119] generates samples of the efficient points
by using the augmented weighted Chebyshev norm. Using a filtering algorithm,
this method gives a pre-specified number of efficient points, that are dispersed
throughout the space of efficient solutions, and can be considered representative.

For further information about other types of interactive method see Steuer [118].

2.3.3 Reference Programming

One of the main class of approaches which are used both as a priori preference infor-

mation as well as in progressive articulation of preference is reference programming.

The main concept of reference programming is based on a rationality frame-
work, called satisficing (a combination of satisfactory and sufficient) decision mak-
ing proposed by Simon [114]. For many organizations, a solution that is as close
as possible to a goal is more acceptable than an optimal solution. This reflects the
fact that usually real-world problems are dynamic, prone to error in measurement,
under time pressure, complex, and ill-defined. The goals or aspiration levels to be
satisfled may be based on past performance, the DM’s intuition, the level of com-
petition, etc. Moreover, these goals are not fixed, and can be changed to reflect

a circumstance such as the difficulty of reaching previous goals. Eilon [26] states
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that “optimizing is the science of the ultimate and satisficing is the art of feasible”.
In fact, the idea of using heuristics to address a problem is inspired by the idea
of satisficing, an acceptable and usually good solution in hand is better than an
optimal solution in the bush. The satisficing approach is sometimes called bounded

rationality. Below, three main methods of reference programming are discussed.

Goal Programming

One popular method which is designed primarily for use with a priori preference
information is Goal Programming. Goal Programming (GP) is perhaps the first
formal technique of MCDM. The term GP was first used by Charnes and Cooper
in 1961 [19]. This method has been recognized as the most popular and most
accepted method in MOMP (134, 57]. Different versions of GP have been proposed
in the literature. The fundamental idea is that the best solution is as close as
possible to some predefined goals. Therefore, one must implement the following

two steps before solving the problem:

e specify the level of goals for all criteria,

o define the distance metric, to measure the closeness of feasible solutions to

the target. This distance metric is usually called the achievement function.

It is assumed that the DM can specify the desired goal (G,) for each objective.

Therefore, problem B1 can be written as follows:

(BZ) goal {ZI = fl(z)} (ZI Z G]_).,
goal {Z: = fo(z)} (Z2 2 Ga),

goal {Zp| = fir((z)} (21 > Gp))s
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Subject to:
z € X.

The information in parentheses on the left shows the goals specified for different
objective functions. The achievement function in GP is to minimize the deviations
(positive and/or negative) from DM’s aspiration level, according to a distance func-

tion. The achievement function in GP is based on the following general distance

metric:
IP| _ all/a
Minimize z = [Z wy GLka‘—’m J ,a€{1.2,3,.. } U{oo}, (2.6)
p=1

where wj, is the importance of the deviation from goal on pth criterion, k, > 0 is the

normalizing constant for pth criterion. and G, is the aspiration level on criterion p.

Note that the above expression does not differentiate between positive and neg-
ative deviations. In more general case. one can assign different penalties for over-
achievement and under-achievement. Charnes and Cooper [19] define the following

change of variables:

d: =1/2[| Gp — folz) | +(Gp — fo(z))], (2.7)
d; = 1/2[| G, — fp(z) | =(Gp — fo(z))], (2.8)

where d} and d represent negative and positive deviations from a specified goal

on criterion p. Adding (2.7) aad (2.8) gives,

dt +d; = |Gy — fo(z))- (2.9)
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Substituting this in the achievement function (2.6).

iP| d* +d=\° e
Minimize z = | w (—"——Lp—-"—) a€{l.2,3....} U {0} (2.10)
p=1

But. df.d; = 0. because both positive and negative deviations cannot be simulta-

neously nonzero. Hence. (2.10) can be written as:

P g\ Pl -\
Minimize z = w’ ( £ ) + > ws (—p) .a€{1.2.3....} U {oo}.
; P\ kp {; Pk, ]
(2.11)
On the other hand. subtracting (2.8) from (2.7) gives:
dy —dS = Gy~ filz). (2.12)

which can be served as a goal restriction for the pth objective function. It follows

that taking into account both (2.7) and (2.8), the achievement function is equivalent

to:
P g\ Pl d-\=]Ye
Minimize z = {Z wy (—I:Z—) +3 ws (Z’L) } ca€{l.2.3,...} U{oo}
p=l p=1 P
(B3) Subject to:
folz) +dy —df =Gy, YpeP.

Program B3 along with the original constraints of (B2) constitute the general
structure of a GP problem. Using different values of a for measuring the overall
distance of the objectives from goals leads to different types of GP techniques. By
increasing the value of a. more emphasis is given to the largest deviations frcm

goals in (B3). With a =1 the achievement function is a simple additive function.
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In this case, the GP problem is called Archemedian (weighted) GP.

5o () - S, (%
Minimize 2= w (—”) +) w (—p) .
p=1 P kp p=1 ? kp
Subject to :

fp(.B) + d; - d; = Gp,

z e X.

Also. when a = 2. the achievement function is an Euclidean function given as

follows:

Minimi gzdgz,gzdszl/z (2.13
Inimize :x = w, l..p -rpzlwp i . 2.13)

p=1
There has been little usage of the Euclidean achievement function in GP applica-
tions. Setting @ = oc leads to minimax or Chebyshev GP. In this case. only the

largest deviation from the goal is taken into account.

Therefore. selecting @ = 1 and assuming that objective functions have been

normalized. the GP formulation of (B2) can be represented as follows:

iP|

(B4) Minimize Zw;d;_
Subject to : ~
filz) +dy —df = G,.
fa(z) +dy ~di = Ga.

f[pl(z) + d‘—Pi - dl.;l = Glp[.
d,.d; > 0.
z € X.
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Note that because the objective function in the original program is maximization.
the positive deviations do not have any penalty and therefore have been omit-
ted in (B4). The GP problems can be solved with most standard mathematical
programming procedure and software. Hence, it can be supported by strong sensi-
tivity analysis capabilities of these procedures such as shadow prices and analyses
of ranges.

In spite of the above mentioned advantages, one should be very cautious when
applying this approach. Except to the Chebychev type, the same assumptions as
multi-attribute value theory are necessary in GP such as additive independence of
attributes. ratio scaled weights. and interval scaled attribute value function [52].
Moreover. if the goals are assigned at or greater than ideal point, the Archemedian

GP chosses the same solution as linear additive function.

The most critical problem in GP is that sometimes the optimal solution may
be dominated. This phenomenon was first noted by Zeleny and Cochrane [141]
and Cohon and Marks [22], and afterwards discussed by other researchers. The

following example demonstrates this issue for a simple integer problem:

Example 2.2 Consider the following multiple criteria integer program:

Maximize filz) = z1,
Maximize fa(z) = zo,
Subject to:
T, +2, <7
z, <35, z2 <9,

T1,Ty tnieger.
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Figure 2.4: The Dominated Solution in Goal Programming

Figure 2.4 shows the feasible criterion space. Assume that the DM assigns (7.1)
as the goals for first and second criteria, respectively. with equal importance for

deviations from the goal on each criterion. The Archemedian GP formulation is.

Minimize di +d5
Subject to:
o, +df —df =1.
T2+ dy —di = 1.
T+ o < T.
z; <5,
T2 <9,

T),z, integer.
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The optimal solution is fy(z) = 5 and f;(z) = 1. This solution is obviously
dominated by (f,(z) = 5. fo(z) = 2). as shown in Figure 2.4. The solution is also

dominated for the corresponding Chebyshev GP.

Another difficulty in GP arises when the levels of goals are significantly different.
In this case, regardless of the importance of each criterion. the model may yield a

solution in favor of the criteria with large levels.

Compromise Programming

To be as close as possible to an ideal point. that is. a point which is the best from
all points of view. is a rational approach [139]. Based on this idea. Zeleny proposes
the compromise programming method. He believes that the DM makes tradeoffs
among actions with respect to their distance from an ideal point and he selects the
closest point. Therefore. similar to GP, compromise programming is based on a
rcference point and a mecasure of distance in which the reference point is the ideal
point and the measure of distance is the family of weighted L, metrics as follows:

=1

ipl Ha
L, = (Z ws (2] —fp(:z:))“) : (2.14)

where z; is the optimal solution of objective function p. A point which minimizes
this metric is considered as a solution. By changing the value of parameter a.
(1 € a < ), the compromise set (C(A)) will be constructed. This set, for w, > 0,
is always efficient. given that at least one solution for @ = oo is efficient [102]. For

this case, one can observe that:

C(A) C Eff(A). (2.15)
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Furthermore, Zeleny argues that humans strive to be as far as possible from an
anti-ideal (nadir) point. Therefore, one could also build up a compromise set based
on the anti-ideal point and select the points which are in both sets as a best repre-

sentative of the preferred solution [139].

Reference Point Method

As explained before. one of the main criticism of GP is that an optimal solution of
this approach may be dominated. This weakness of GP has led to the development
of an approach. called the reference point method. The reference point method of
Wierzbicki [135] is a multiple criteria approach based on the satisficing concept.®
In the reference point method. the aspiration level specified by the DM is projected
onto the non-dominated space. Hence. even if a DM underestimates the aspiration

level. the model does not generate dominated solutions.

The reference point method uses a scalarizing function similar to the Cheby-
shev norm, to find a solution close to an aspiration level. Sawaragi et al. {110] and
Wierzbicki [136] have shown that the Chebyshev norm type is the only scalarizia-
tion function that produces non-dominated solutions. regardless of the structure of
the problem. However. a scalariziation function of Chebyshev norm may also pro-
duce quasi-efficient solutions. To exclude quasi-efficient solutions. an augmented
Chebyshev norm is used in this method. Hence. the reference point method pro-
duces efficient solutions in nonlinear as well as discrete multiple objective problems

(7]

Let § € RI®l be a reference point in the criterion space’. Then, a typical

® Wierzbicki calls his approach a quasi-satisficing method.
CNote that the reference point does not need to be in the feasible criterion space. Z.
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scalarizing function uscd in the reference point method is 7

P
S$(q.z.w) = max {wp@p — f,,(:l:))} + e}: wy fo(z), (2.16)

1<p<|P| p=1
where ¢ is a sufficiently small positive number. The amount of w, is usually cal-
culated according to the values of ideal and nadir points of the problem (see, for

example, [84]). A quasi-satisficing solution is obtained by solving the following

program:

(B5) Minimize S5(g.z.w)

Subject to: z € X.

The main difference between the function in (2.16) and other types of functions used
in goal or compromise programming is that the aspiration level § does not need to
be unattainable in order for the program to achicve efficient solutions, because
this function remains monotone, even if the reference point is located inside of Z.
In other words, depending upon the location of the reference point, this function
switches from minimization to maximization [77]. Note that the reference point
method is usually used in an interactive manner. Hence. the DM can changes his

aspiration level at each iteration.

2.3.4 Posterior preference information

Posterior preference information methods start by solving the problem without ar-
ticulating the preference structure. Then a compromise solution is obtained by

assessing the preference structure. Usually, the first step is carried out by wvec-

" Many different kinds of scalarizing functions have been proposed for the reference point method.
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tor optimization. by which a set of efficient solutions, or a subset, is generated.
Three main approaches for generating efficient solutions are the weighted approach
which uses the Geoffrion’s theorem. kth objective e-constraint. and k-th objective
Lagrangian approach. Finding the set of efficient solutions in situations for which
the decision space is not convex (such as in subset selection problems) is a diffi-
cult problem. The next section reviews the main techniques available to deal with

multiple objective integer problems.

Discrete Multiple Objective Mathematical Programming

Combinatorial optimization is a powerful tool for many real-world applications. De-
spite recent improvements in both combinatorial and multiple criteria optimization.
there have been few advances in multiple criteria combinatorial optimization. In his
bibliography on the applications of multiple criteria optimization, White [134] Listed
more than 500 papers. including only a few on multiple criteria combinatorial prob-
lems. This is due partly to the inherent difficulty of combinatorial optimization.
which becomes more difficult by introducing multiple objectives. Hence. because
of the many applications using this method and its current theoretical weakness.

this field is considered an important challenge for future research [127].

Geoffrion’s theorems. which provide the fundamental procedure for finding effi-
cient points, cannot find all efficient solutions of discrete problems. Thus. obtaining
the set of efficient points in multiple criteria discrete problems is generally quite

difficult. Consider the following problem:
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(B6) Maximize f,(z)=Cpz: Vp€|P |
Subject to :
zeX
z € {0,1},

where Cj, is a vector of size | A |. Due to the non-convexity of (B6)., Geoffrion’s
theorem can only find the Supported Efficient solutions. Unsupported efficient
solutions are efficient points which are dominated by some convex combination of
other efficient points. Therefore. those efficient solutions which are unsupported
(convez dominated) remain hidden. In Figure 2.5. z° and z® are unsupported
efficient points which are dominated by the convex combination of z* and z7. Due
to this fact and the inherent differences between discrete and continuous problems.
most of the theories and procedures developed for multiple criteria continuous (and
especially linear) probleins are not applicable to discrete cases. In some applications
such as shortest-path problems. using Geoffrion’s theorem as an approximation
method to find a subset of efficient solutions may omit large portions of efficient

solutions {130].

Teghem and Kunsch [125] review interactive models in multiple objective integer
linear programming. They state that because of the great difficulty of finding all
efficient points in integer cases, interactive methods are quite useful. However,
they criticize most interactive procedures for asking the DM too many questions.
Rasmussen [99] reviews multiple criteria zero-one programming and concludes that
the study of this area of research has not advanced very far; most methods can be
used only for small problems. One procedure for solving multiple criteria zero-one
problems is proposed by Pasternak and Passy [90], who use a variant of Balas’ filter
method.
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Figurc 2.5: The Unsupported Efficient Solutions

Bitran {9] proposes an implicit enumeration method that generates all efficient
points for multiple criteria zero-one problems. He introduces a relaxation of (B6)

as:

(B7) Maximize fy(z)=Cpz: Vp€|P |
Subject to :
z € {0.1}.

He argues that all efficient points of (B7) that are feasible in the original Problem
are also efficient in (B6). To determine the other efficient points of (B6), one
should identify those points that are dominated by the points in (B7) which are

not feasible in (B6). Thus. Bitran’s procedure has two main steps:

1. detecting the efficient points of the relaxed problem (B7). and

2. examining all non-efficient points and obtaining those which are dominated

by infeasible points in (B7).
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The main shortcoming of this approach is the required large computation time.

which makes it suitable only for small problems.

Later, in 1979. Bitran [10] improved his algorithm. This revised algorithm has a
great computational advantage over the first one. Bitran and Lawrance [11] applied
this Bitran’s new procedure to a service office location problem. Bitran and Rivera
[12] propose an implicit cnumeration method for solving multiple criteria zero-one
problems. They also tailor their algorithm for use with a particular class of facility

location problems.

Villarreal and Karwan [128] introduce a combined dynamic programming ap-
proach for solving lincar multiple criteria integer programming which could also be

used for zero-one programming.

Deckro and Winkofsky [24] propose an implicit enumeration method for linear
multiple criteria zero-one problems. This approach is based on bounding and di-
rection of preferences and compares favorably with Bitran's second method. They

conclude that their approach may be useful for large sparse problems.

Steuer and Choo [L18] suggest an interactive weighted Chebyshev method for
multiple criteria linear optimization that can also be used for linear integer pro-
gramming. This method can find both supported and unsupported efficient solu-

tions.

Gabbani and Magazine [34] propose an interactive heuristic procedure for mul-
tiple criteria integer programming. Their method has two main parts. First. an
algorithm searches for a set of criterion weights that would produce the most pre-
ferred solution of a linear utility function. Second. the search space is narrowed
down using interactions with the DM. This approach can find only the supported

efficient points.
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Korhonen et al. [7T4] present a procedure in which the DM’s utility function is
assumed to be quasi-concave. Using the DM’s responses, convex cones. that are

used for eliminating inferior solutions. are generated.

Lee and Luebbe [76] propose a method for zero-one goal programming problems.
Their algorithm is based on finding non-zero variables that satisfy each constraint
and each priority level. and the partitioning of the problem into subproblems ac-

cording to priority levels.

Ramesh et al. [98] provide an interactive branch and bound method for multiple
criteria integer problems. similar to the procedure of Zionts and Walleninus {142.
143] for multicriteria linear programming. The DM's utility function is assumed to
be pseudoconcave. This method uses the notions of convez cones and A-constraints

for removing undesirable points.

Karaivanova et al. [61] present an interactive heuristic approach for application
to linear multiple criteria integer problems. Their method is based on the aug-
mented weighted Chebyshev metric for generating supported and unsupported solu-
tions. To solve the single objective integer problem obtained from the augmented
weighted Chebyshev metric. a heuristic approach is used. This method requires

less computational time for large problems than Steuer and Choo’s approach [119].

Ulungu and Teghem [127], present a comprehensive survey on multiple criteria
combinatorial optimization. reviewing multiple objective transshipment, network
flow, location, traveling salesman, set covering and knapsack problems. This study
shows that most multiple criteria combinatorial procedures are applicable only for

small problems and the lack of good heuristics is also quite obvious in this field.
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2.4 Summary

In this chapter, some MCDM concepts that are related to the discussion in the
forthcoming chapters. were reviewed. We focused on well-known approaches of
MOMP problems. In particular, different methodologies of reference programming
were reviewed. Difficulties of finding non-dominated solutions in multiple criteria
subset selection problems were discussed and available techniques to solve multiple

criteria integer problems were studied.



Chapter 3

Screening in Multiple Criteria

Subset Choice

3.1 Introduction

In many MCDM problems. DMs are interested in sclecting a combination of actions
rather than one individual action. Moreover. in practical decision problems the set
of feasible actions is often very large. making it worthwhile to identify the most
promising actions for more detailed investigation. This is particularly important
when a subset of actions is to be selected, since the number of available alternatives
(combinations of actions) can be enormous due to the combinatorial nature of the
problem. Hence, in the carly stages of the decision process, it is generally very useful
to distinguish those actions (or subsets of actions) that seem reasonable from those
that seem inferior. If this phase of the selection process, called screening, is carried
out effectively, then the prior phase - generating new actions - will be facilitated

and encouraged.

38
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The main objective of screening is to remove inferior actions from the set of
potential actions, so that those remaining can be subsequently investigated in more
detail, perhaps using more accurate information or more refined assessment crite-
ria. Several approaches for screening actions have been addressed in the literature.
among them feasibility testing, the dominance relation, elementary methods. suc-
cessive elimination. and bounding the performance level. These methods have been
used in the context of certainty as well as uncertainty. in single and multiple criteria
problems. and for qualitative as well as quantitative criteria [80. 55]. Most of them.
however. are not suitable for subset selection problems: as Example 3.2 (below) will

demnonstrate. they should be used only with extreme caution.

One popular technique for screening actions in MCDM is the dominance rela-
tion. An action is dominated when there exists another action that scores at least
as well on all criteria and strictly better on at least one criterion. In many cases.
the set of non-dominated actions is very large. so that even after dominated actions
arc removed from consideration. the DM may still face a difficult task. Hence.
significant effort has been devoted to enriching and extending the dominance rela-
tionship to screen out even more actions. Most of these approaches are based on
including information about the DM's preference structure. and thereby reducing

the decision space by screening out actions that are un-dominated but dispreferred

[6. 83, 70. 74].

This chapter addresses procedures for screening actions when a subset of a
large discrete set of actions is to be selected. We show some difficulties that may be
encountered in screening actions in this context. In particular. we demonstrate that
not all individually dominated actions can be safely removed from consideration.
Subsequently, we give conditions under which an individually dominated action

cannot possibly belong to an optimal subset, and so can be safely screened from
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Table 3.1: The Effect of Screening Actions in Subset Selection

Number of | % of Reduction % of Reduction of Feasible Alternatives
Actions in A of A m=1|m=2|m=|A| /5| m Unrestricted
10 10 20 20 50
10 20 20 38 38 79
30 30 53 53 87
10 10 19 37 75
20 20 20 37 62 93
30 30 92 79 98
10 10 19 69 96
o0 20 20 36 92 99.9
30 30 ol 98 99.9
10 10 19 90 99.9
100 20 20 36 99 99.9
30 30 ol 99.9 99.9

the set of feasible actions.

Note that it is very useful to have reliable procedures to screen out individually
inferior actions in subset selection problems. Table 3.1 demonstrates numerically
how screening actions can reduce the size of a subset selection problem. In this table
A is the set of actions and m is the number of actions to be selected. For instance.
if A contains 20 actions of which four are to be selected. reducing A by 30% (6
actions) reduces the number of feasible alternatives by 79%. Screening individual
actions can make many subset selection methodologies applicable by dramatically

reducing the size of the problem.

We address the problem of screening actions in subset selection problems for

two cases:

1. The m-best actions problem: the number of actions to be selected. m. is given
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a prioTi.

2. The j-constraints problem: the possible subsets to be selected satisfy 7 con-

straints.

Note that the j-constraints problem is a generalization of the m-best actions prob-

lem.

3.2 The m-best Actions Problem

In this section. we consider a subset choice problem in which a pre-specified number
of actions. m > 2. is to be selected. Such problems may arise in practical cases such
as selecting sites for m new facilities or choosing candidates for m open positions. As
will be seen below. the particular features of screening appear in even the simplest

special case, m = 2.

Several procedures have been proposed for the m-best action problem in the
MCDM literature. The method of Sage and White [109] obtains a preferred sub-
set of actions by reducing the number of feasible actions. Dominance relations,
restrictions on criterion weights, and available information about the DM’s utility
function are used for this purpose. Korhonen et al. [74] provide a procedure which
requires the DM to compare pairs of actions. Using cones of inferior solutions.
this procedure makes pairwise comparisons to eliminate inferior actions. Koksalan
et al. [70] present some variations of the cones of inferior solutions to reduce the
number of required comparisons. Assuming the DM’s utility to be quasiconcave,
Koksalan [69] presents a method similar to the methods of Korhonen et al. [74]
and Koksalan et al. [70] for subset selection.
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First we explain the terminology and notation. Throughout this thesis. the
word consequence (outcome) will be used to refer to an objective measure of an
action or alternative according to a criterion. and the word value will be used to
refer to DM’s subjective cvaluation of a consequence. For example, a criterion for
potential waste disposal sites is capacity. Capacity may be measured objectively as
a consequence (such as millions of cubic meters) or subjectively, as the contribution

of that additional capacity to a community’s welfare.

It has been observed in practice that the consequence on any criterion is usually
additive when more than one action is selected. Hence. the consequence of a subset
of actions can be obtained by summing the consequences of each action in the
subset. The value of a subset. however. cannot usually be obtained by summation
of the individual values. often because of a saturation. or diminishing marginal value
effect. Figure 3.1 shows a typical value function on a single consequence. Note that
usually value is considered as a function of the consequences of all criteria, and may
not be additive across criteria.

Let A be the set of actions, and P the set of criteria. We assume that A and

P are both finite. Denote the consequence of action a; € A on criterion p € P by

cplar) = cﬁ,. Thus. action aq; is described by its consequences.
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Value

Consequence

Figure 3.1: A Typical Monotonic Value Function.

Throughout. we assume that v(.) is a strictly monotonically increasing function
in each of its |P| arguments. For instance. the value function used in Example 3.2

(below) is a linear function of consequences. and hence:

v(a) = prcp(a). (3.1)

pepP

where w, > 0 is the global importance of criterion p. Note that the value function

(3.1) 1s very simple and does not reflect any saturation effects.

Let V denote the set of all strictly monotonically increasing value functions.
Thus, for each v € V. v : RIPl 5 R by v(a) = v(c‘l,...,c;,...,cfpl), and v is
strictly monotonically increasing in each argument. Note that the assumption of
value as an increasing function of consequences is for exposition only, and can be
casily expanded to include values that are decreasing in consequences such as cost

or damage to the environment. Define V C V to be the set of all linear value
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functions. as in (3.1).

In general, when subsets of actions are to be evaluated, it will be assumed that
consequences are additive over subsets, but values need not be. Thus, if S C A.

then

An action a; € A dominates action ar € A iff c,l, > Cﬁ Vp € P and dp € P such
that ci, > c;;' . In this case. we write q; > ax. An action that is not dominated by

any other action is called efficient.

For any set of actions. S C A. let Dom(S) = {a € A :a° > a 3a° € S}. Thus.
Dom(S) is the set of all actions dominated by some action in S. In particular.

Dom(A) is the set of all dominated actions. and

Eff(A) = A — Dom(A).

is the set of all efficient actions.

For any action a € A.let dom™!(a}) = {a® € A : a°® > a}. For any set of actions
S C A, let Dom~™'(S) ={a® € A : a® > a. 3a € S}. Thus. dom~(a) is the set of
actions that dominate a. and Dom™1(S) is the set of actions that dominate some

action in S. Clearly,

Dom™!(S) = J{dom™!(a) : a € S}.
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Table 3.2: Consequences of Seven Feasible Actions

Criteria Actions
ay | as l as | a4 J as 1 GGJ az
D1 4 7|1 7| 9| 5| 7| 8
)2 31 2| 2| 1| 3| 4| 3
P3 7| 8| 5| 4| 6| 9| 6

For any action a € A define
d(a) = dom™ (a) N Eff(A).

Then d(a) is the set of cfficient actions that dominate a. The following example

illustrates the above definitions:

Example 3.1 Let A = {a,.....a7}. [P |= 3. and S = {aj,a4,a5} C A. The
consequences of the actions in A according to each criterion are shown in Table

3.2. For these actions.

Eff(A) = {as.as,ar}. and Dom(A) = {ai.as.as.as}.
Dom(S) = 0. dom™(as) = {as, as}. dom™"(as) = {as.as,ar}
Dom™%(S) = {a..as,az}. and

d(as) = dom™(as) N Eff(A) = {ae. ar}.and

d(as) = dom™(az) N Eff(A) = {ae, ar}.

It is immediate that if a € Eff(A), then d(a) = @. The converse of this

observation is also true.

Theorem 3.1 Ifa € Dom(A), then d{a) # 0.
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Proof: Suppose that a; € Dom(A). Then there exists a; # a; such that a; > a;.
If a» € Eff(A). the proof is complete. If not, a; € Dom(A), and there exists
as such that a3 > a,. Because domination is a tramsitive relation, az > a; also.
If a3 € Eff(A), the proof is complete. Otherwise. note that a,.a; and @3 must
be distinct, because domination is anti-reflexive. Continue in this way, choosing
as > ag, etc. Since A. and therefore Dom(A). is finite, eventually a, € Eff(A)

will be found such that @, > @y > ... > a;. O

As already pointed out. a widely used screening method for the best action selec-
tion problem is removal of dominated actions. The following simple example shows

that in subset selection. good subsets may be lost when individually dominated

actions are removed.

Example 3.2 Assume that a pair of actions is to be selected. The consequences
of actions a,, a@s. a3, ay. and a5 according to criteria. 1.2, and 3. are given in Table
3.3. Observe that action a, is dominated by action as. Following the standard
screening procedure. action a; is removed from further examination; it is assumed
that the best pair of actions is to be found among the remaining non-dominated
actions. Suppose that the DM’s value function is linear additive with global weights
(0.2. 0.6. 0.2) for the three criteria. Table 3.4 shows the scores of all possible pairs
of actions on each criterion and their overall values. Clearly, the combination of
actions a; and as is better than any other combination of two actions. Hence, it
would be a mistake to eliminate @, from the set of feasible actions-the optimal

combination of two actions would become unavailable.

As Example 3.2 shows. when a subset of actions is to be selected. the dominated
set Dom(A) should not be removed without further consideration. Yet. attempting

to include all feasible actions in the MCDM process may result in a problem of
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Table 3.3: Consequences of Five Feasible Actions

Criteria || weight Actions
ay J as T ag an (213
D1 0.2 6|10 6| 8| 7
P2 0.6 T 3| 4| 6] 9
Ps 02 | 4] 2] 7] 315

Table 3.4: Consequences of Possible Pairs of Actions

Criteria || weight Pair of Actions
aj,a; | a1,a3 | aj.aq | ay.as [ as.ag
m 0.2 16 12 14 13 16
2 0.6 10 11] 13| 16 7
P3 0.2 6 11 7 9 9
Overall 1.0 104 | 11.2 12 14 9.2
Value
Criteria || weight Pair of Actions
a,a4 | 2,05 | az. a4 | a3, as | as.as
P 0.2 18] 17| 14| 13| 15
P2 0.6 9 12 14 13 15
D3 0.2 5 7 10 12 8
Overall 1.0 10 12 10.8 12.8 13.6
Value
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Figure 3.2: (a)Individual Actions in Criterion Space(b)Pairs of Actions in Criterion
Space

unmanageable size. Therefore. it would be very useful to have exact (or heuristic)
methods to eliminate those dominated actions that cannot possibly be in a best

subset. no matter what tlie DM’s value function.

Clearly, in an m-best actions problem. an action which is individually dominated
can be included in an cfficient subset. A geometric illustration is given by Figure
3.2. Action a, is dominated by action a, as shown in Figure 3.2(a). but the pair

{a;.a.} is efficient in the 2-best actions problem (Figure 3.2 (b})).

In what follows, we discuss conditions under which a dominated action can be
safely removed in a subset selection problem. The following theorem demonstrates
that a dominated action can be included in an optimal subset, A*, only if all actions

that dominate it are also included in A"

Theorem 3.2 Suppose that A® is an m-best subset for some m > 2. Let a; €

Dom(A). Ifdom™'(a;) ¢ A", then a; & A~.

Proof: Assume that a; € A" but dom~!(a;) ¢ A~. Then there exists a, € Eff(A)
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such that a; > a; and a;, € A*. Consider A° = A*U{ar}—{a;}. Clearly, | A° |= m.
and for any criterion p. ¢;,(A%) = ¢,(A")+c5—cl. It follows that. for every criterion
p- ¢(A®%) > c,(A") and. for some criterion, p' € P. cpr(AO) > c(A”). It follows
from monotonicity that v(A°) > v(A"). contradicting the hypothesis that the value

of A" is 2 maximum. Thus. a; € A~. completing the proof. O

According to Theorem 3.2. if the best set of actions A* does not contain
dom™'(a;), then a; can be eelimminated in the selection process. On the other
hand. it follows that

aq € A" = dom™'(a;) C A",

so that. when a dominated action is in the optimal subset. then every action that
dominates it (and in particular every efficient actions that dominates it) must also

be in the optimal subsct.

To apply Theorem 3.2 to screening. one must examine whether dom='(a;) C A".
For this purpose. onc often can use an easily evaluated approximation to v(-) to
demonstrate that dom~'(a;) ¢ A". which implies that a; need not be considered.

See {7, 83. 68]. for example. for procedures to approximate the value function.

In an m-best actions problem. suppose that action a € Dom(A) satisfies [dom™!(a)| >
m. Then Theorem 2 implies that a can be screened out. because |dom~'(a)U{a}| >

m + 1.

For action ¢ € A satisfying |[dom~!(a)] < m. we propose below a procedure
to determine whether a can possibly be included in the optimal subset under any
monotonic value function. i.e. whether a can be screened out. For this purpose. we
introduce the concept of Dominated Potentially Optimal (DPO). The idea is that
among dominated actions only a DPQ,, action can be included among the m best

actions. We first define the concept of Potentially Optimal (PO):
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Definition 3.1 Action a; € A is potentially optimal (PQ) if there ezists at least
one v € V such that v(a;) > v(ai) for all a; € A.

The set of potentially optimal actions in A is denoted PO(A). The following

mathematical program can be used to determine whether action a; is potentially

optimal:

(D1(a;)) Minimize )
Subject to:

v(a;)) — v(a)+4d >0, a; € A\ {a;}.

The above program seeks a value function v that minimizes §. For instance. if
v € Vi asin (3.1). the program (D1(a;)) determines the criterion weights. w,. that
minimize ¢ . If the optimal value of this problem is non-positive, then a; € PO(A).

because §* < 0 implies that there is a value function that makes a; at least as

preferable as all other actions.

Example 3.3 Consider Table 3.3. To examine if action a is potentially optimal

within {a,,....as} based on linear value functions (V) only, the following program

is constructed:

(D1(a2)) Minimize ¢
Subject to :

4'11]1—4’{02—2103-{-(520,
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4w, — lws — Swz + 6 > 0.
2wy — 3wy —lwa+ 4 > 0,
Jw, — 6wy — 3wz +6 > 0,
wy + wp + wz = 1,

wp 2 €, p=1.2,3,

where € in the last set of constraints is a small positive number and ensures that
the value function is strictly increasing. The optimal solution of this program is
3 = —1.92 with w; = 0.98.w, = 0.01. and w3 = 0.01. Hence. a» is potentially
optimal. However. if we construct a similar program to determine whether ay is

PO. we obtain 4 > 0. Hence. a4 is not potentially optimal.

The concept of potentially optimal actions has been addressed by some re-
searchers in the context of multi-attribute decision theory (see for example, [47].
[60]. [5]. [133]). This notion has been especially useful in situations where some
partial information on the DM’s preferences is available [5]. White [133] proves
that under a strictly monotonic function a potentially optimal action is always
non-dominated. However. there may be some non-dominated actions which are not

potentially optimal. Therefore,
PO(A) C Eff(A). (3.2)

Hence, when the value function is strictly monotonic. a dominated action in A
cannot be potentially optimal in A. In general, however, there is no such relation
between potentially optimal and efficient actions. Consider a 2-criterion problem
with the actions shown in Figure 3.3. Assume that v(a) = wici(a) + waca(a). such

that w; > 0,w» > 0. Then. action a, is dominated but potentially optimal. and



CHAPTER 3. SCREENING IN MULTIPLE CRITERIA SUBSET CHOICE 52

Figure 3.3: Dominated and Potentially Optimal Actions.

action aj is efficient but not potentially optimal.

Now. consider Example 3.2 (see Table 3.3) and assume that v € V. Then action
a4 is non-dominated. but it is not potentially optimal for v € V1, because no lincar
value function can make it better than both as and a; simultaneously.! In fact.
Hazen [47] proves that for an additive value function. if an action is non-dominated
but not potentially optimal. then it is dominated by a convex combination of other
actions. In Example 3.2. action a4 is dominated by a convex combination of actions

as and as.

[t is noteworthy that if the DM is confident of some relations on the parame-
ters of v. such as upper and lower bounds on criterion weights, or if the DM can
holistically state some relations among actions, then this information may be added

to the set of constraints of (D1(a;)). In this way. more specific solutions may be

! Note that if the value function is not restricted to Vi, ay is potentially optimal. For instance,
ay mazimizes the monotonic value function v(cy, ¢z, ¢3) = ¢ + ¢2 + c3 + 20c;.min{cy, ca, €3}
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obtained.

Example 3.4 Consider Example 3.3 in which it was shown that action a; is po-
tentially optimal. Now assume that the DM specifies the following information for

criterion importance:
0.1 < €£0.3; 03 <w, <0.6: 0.2< w3 <0.5.

Under this partial information. ¢ > 0 in (D;(as)). Hence. action as is no longer

potentially optimal.

We now define the notion of dominated potentially optimal. The concept of
PO was defined with respect to the standard problem of selecting the best action.
But membership of an action in the set of DPO actions depends on the number of
actions to be selected. Let A, denote the collection of all subsets of A that contain
n actions. For instance. A() is the collection of all pairs of actions in A. Hence.
similar to PO(A) which denotes individual potentially optimal actions, PO(A(n))
is the set of potentially optimal subsets with cardinality n within set A(,. Note
that Afn) € PO(A(n)) inplies that there exists a value function such that Afn) is
as good as any other subset with cardinality n. In the m-best actions problem, the

concept of “ DPO 7 is defined as follows:

Definition 3.2 Action a, € A belongs to the Dominated Potentially Optimal set
of the m-best actions problems, DPO,,(A), if

1) ar € Dom(A), and

2) there exists A{, ) € Am) such that ai € Afm), and Afm) € PO(An))-

According to Definition 3.2 an action is DPO,,(A) if it is dominated, yet is also

a member of at least onc potentially optimal subset with cardinality m. Moreover,
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Definition 3.2 states that if a dominated action, a;. is not in DPO,,(A), then there
is no A, € A(m) that includes a such that Afm] € PO(A(m)). Further, according
to the definition of PO actions, a; cannot be a member of any m-best subset of

action. Hence, a; can be removed from the set of actions. In other words,

ar € DPO,(A) = a;. & A" (3.3)

To use Definition 3.2 to determine whether ax € DPO,,(A), the sets A and
PO(A (m)) must be known. However. as pointed out above, A () may be quite large:
generating PO(A ()) may be cumbersome and excessively demanding in time and
computation. Hence. it would be quite useful to determine membership of an action
in DPO,(A) by examining individual actions rather than subsets in A(,). The
following theorem provides an alternative way to determine if a; is a D PO, action.

Note that if |dom™!(ax)| > m. then a;  DPO,,(A).

Theorem 3.3 Let ar € Dom(A), and m > |dom™(ar)|. Then ar € DPO,,(A)
iff for some q 2| A | —m. IS € A(y11). such that a), € S and a;, € PO(S).

Proof:
1) Suppose that q and S are as stated in the hypothesis and that a;, € PO(S). We
prove that a; € T for some T € Ay, such that T € PO(A(m)). By assumption,
there exists vg € V such that vo(ar) > vo(a;) Va; € S. Note that | S |= g+ 1. or
|IS|>|A|-m+1.

Under value function wvg, ai scores at least as high as | A | —m + 1 actions in

A. Hence, there must exist T € A, containing a, such that T is optimal under

vg. In other words,

ar € T € PO(Am)).
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2) Suppose that ar € T € A(,n), and T € PO(A(.)). We prove that there exists
q > |A|—mand S € A,,y). such that ax € S and ar. € PO(S).

Assume that T is optimal under v, € V. Under vo, a is no less preferred than
at least [A| — m actions. because otherwise an action not in T would have been
included in it. Hence. S = A — T U {a} has the property that |S| =[{ A | —-m + 1
and vo(ar) > vo(a;), Ya; € S. Thus a, € PO(S). O

In Theorem 3.3. the set S cannot contain dom~!(ai). because. according to
relation (3.2), ar cannot be PO in a set that contains actions that dominate it.

Hence, in Theorem 3.3. S C A — dom™!(ay).

Example 3.5 Consider Table 3.2 in Ezample 3.1 with m = 4. Note that a5 €
Dom(A). and dom™'(a5) = {as,a;}. Because m > |dom~'(as)|, Theorem 3.3
requires that ¢ > 3. To determine whether as € DPO(A). it is sufficient to deter-
mine whether there exists a set S C A — dom™'(as). such that |S| = 4.a5 € S. and
as € PO(S).

To clarify Theorem 3.3. consider the problem of selecting a pair of actions

(m = 2), where | dom~'(a) |= 1. The following corollary is the immediate result

of Theorem 3.3 and Definition 3.2:

Corollary 3.1 Suppose a, € Dom(A), and |dom™'(ai)| = m — 1. Then a; €
DPO.(A) iff ax € PO(A — dom="(ax)).

We utilize the following mathematical program to show whether ar € DPO(A)

in an m-best actions problem:
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(D2(ax)) Minimize ¢
Subject to:

(a) v(ag) —v(a)+94 > —-M(1 - ) a; € A\ {dom™(ar) U {ar}}.

(b) > o =q.

le A\{dom~a,)ua,}
(c) o € {0. 1}. le A\ {dom'l(ak) U {ak}}-
(d) veE V.

where M is a sufficiently large number and ¢ > {A| — m. The following theorem

shows how Program D2(a) determines whether action ar is DPO:

Theorem 3.4 Let ar < Dom(A) and m > |dom~(ar)|. Then a; € DPO,(A) iff

the optimal solution of Problem D2(ay;) is non-positive (6= < 0).

Proof: First. we show that when §° < 0. then there exists a v € V and a set

S C A\ (dom~%(ax) U {a}) such that

v(ag) > v(a;) Va;€8S.

This implies that a, € DPO,,(A), according to Definition 3.2 and Theorem 3.3.

Note that if oy = 0 then constraint { in the constraint set (a) becomes

v(ag) —v(a;) +6 > - M. (3.4)

Because M is a large number. (3.4) is always true. and will not affect the solution

of (D2(ax)). On the other hand, when o = 1. constraint [ in constraint set (a)
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becomes:

v(ax) — v(a) + 6 > 0, (3.5)

Let N' = {{l: a; = 1}] at the optimal solution of Problem D2(a;). To satisfy
constraint (b). N' must equal ¢. In this case. there are ¢ constraints similar to (3.5)
for different values of ! such that aj £ A\ (dom™'(ax) U {ar}). Therefore. §~ < 0
means that there exists a value function v € V such that vo(ar) > ve(a;) for at
least q actions. a;. Hence. ar is PO in a set of ¢ + 1 actions within A \ dom~'{a})
and. according to Theorem 3.3. a;. € DPO,.(A).

Now we show that if a; is in DPO,,(A). the optimal solution of D2(ay) is non-
positive. Suppose that o > 0. Hence. Program D2(a,) cannot find aset S C A,

such that vo(ar) > volar) for a vg € V. From Theorem 3.3. ay. is not in DPO,,,(A).

[

For the special case when m = 2 and | dom~*(ay) |= 1. Theorem 3.3 requires
that ¢ >| A | —1. Hence. action ax is to be compared with all actions in A —

dom™!(ai). In Program D2(ay). constraint (b) becomes
=1 VaeA’ {a'om'l(ak} U {Qk}}.
Then Program (D2(a:)) reduces to the following:

(D3(a)) Minimize )
Subject to :
v(ag) —v(a) +8 > 0. a€ A\ (dom™(a;) U {ar}).

veV.
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Example 3.6 Consider Table 3.3, and assume that a pair of actions is to be se-
lected. To determine if action a;, which is dominated by as, is DPO5(A) under
linear value functions. we note that dom='(a;) = {as}. Consequently, we construct

the following program:

(D3(a,)) Minimize é
Subject to:
—dwy + 4w, + 2wz + 4 > 0.
3wy — 3wz +4d > 0.
2wy +ws + w3z +9d > 0.
w; + wy + w3 = 1.

wp, > €. p=1.2.3.

where. w, > 0 is the weight of criterion p in a linear value function in V as in
(3.1). The optimal solution of the above program is 6~ = —0.97. Hence. a; is in
DPO,(A). On the other hand. if the score of action a; on the second criterion
were changed to 5. then the optimal value of Problem D3(a;) would be §* = 0.33.
implying that a, is not in DPO,(A).

The following theorem shows that to determine whether an action is DPO. it is
only necessary to compare it with actions in Eff(A) \ (dom~!(ar) U {ar}) rather
than A \ (dom~'(ax) U {ar}). Clearly. this reduces the number of actions that a

should be compared with.
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Theorem 3.5 Let ai, < Dom(A) and m >| dom~'(ar) | in an m-best actions

problem. Then.

ar € DPO,(A) <= a. € DPOL(EfF(A) U {ar}).

Proof: Clearly. if ar £ DPO,,(A). then ar € DPO,L(Eff(A) U {a}). because
ar € Dom(A) and the former set contains the latter: if a; is DPO in a set. it is

also DPO in any subsct.

Now. we show that

ai € DPOL(Eff(A)U {ax}) = ax € DPO,,(A)

According to Theorem 3.1. any dominated action is dominated by at least one
efficient action. On the other hand. according to Theorem 3.4. a dominated action
ar 1s DPO iff the optimal solution of Problem D2(a;) is 0= < 0. Now. suppose
a; € Dom(A) and a; € dom™!(a;).

Consider the two constraints in Problem D2(ay) in which action ay is compared
with actions a; and a@;. First. suppose that a; and a; have been set to be one in

the optimal solution of (D2(ay)). so that

(1) v(ar) — v(a;) + 6720

(2) v(ay) — v(a:) + 46"~ > 0.

at the optimal solution. Since v is an increasing monotonic function. a; > @; implies

v(a;) > v(a;). Therefore. if 6 < 0in (1), for some v € V. then this v also satisfies
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(2) with 6 < 0. Hence. including constraint (2) in Problem D2(ai) does not
change the value of the optimal solution. permitting us to remove all constraints
corresponding to dominated actions in (D2(ax)). Now suppose that in the optimal

solution of (D2(ax)). i =1 and a; = 0. so that

(1) v(ar) —v(a;) + 0" > -M

(2)  v(ar) - v(a) +4" > 0.

In this case. removal of a; may change the optimal solution of (D2(ax)). But.
note that removing a;. decreases the number of « that has to be one to ensure

ar € DPO,,,(A). becausc. in this case. ¢ = |A \ {a:}| - m.

Clearly. when a; = 0 and a; = 1 or when both «; and «; are zero. removing a;
does not change the optimal solution of (D2(ax)). This completes the proof that
any action which is in DPO,(Eff(A)U{ar}) is also in DPO,,(A), and vice versa.

o

Note that when onc applies the result of Theorem 3.5 to Program D2(a).
q =| Eff(A) | —m. To summarize the discussion in this section, we first demon-
strated that in a subset selection problem, an individually dominated action should
not be removed from the set of actions without further examination. Then we
defined the concept of a DPQ,, action in m-best actions problem (Definition 3.2).
Subsequently, a method to identify a DPQ,, action by inspecting individual actions
rather than subsets of actions (Theorem 3.3) was exhibited. Program D2(ax) was
introduced as a practical way to identify DPQ,, actions. Figure 3.4 demonstrates
the relationship among some of the screening concepts introduced in this section.

The following example illustrates our results:

Example 3.7 Consider Table 3.5 which shows the consequences of eight actions
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Dom(A)

The Set of
Actions

Figure 3.4: Relationship among Screening Concepts.

according to three criteria. Suppose that m = 4 actions are to be selected. The

dominance relations arc

as > ay. az > ay. ag > a;. and ag > as.

To examine whether a;. which is dominated by a-; and ag, can be removed from the

set of actions, we can do the following:

According to Definition 3.1, a; € A" only if ar € DPO,,(A). Hence. we must
determine whether a. € DPO,,(A). Because, dom™'(a;) = {a7.as}, the number

of actions that would be selected in addition to dom~'(a,) is

Hence, the minimum number of actions to which a; must be preferred to be eligible
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for inclusion in A=, is

| A\ (dom™ (a1)U{a1}) | -2 +1=4.

Note that as introduced in Theorem 3.3, ¢ =/ A | —m = 4, which equals
the above expression. According to Theorem 3.4. a; € DPO,,(A) iff the optimal

solution of the following mathematical program is non-positive:

(D2(a,)) Minimize )
Subject to :
v(ay) —v(a) +9 > -M(1 — o) a; € A\ {a;.ar.ag}
o + Qg + xy + a5 + g = 4.
a; € {0.1} l e A\ {a;.az7.as},
veEV.

For linear value functions. of the form (3.1), the Program D2(a;) becomes:

(D'2(ay)) Minimize ¢
Subject to :
—Sw; +wy +wz + 4 > ~-M(1 — a)
4wy — 3wy — 2wy + 0 > -M(1 - a3)
2wy +we —Swa + 0 > —M(1 — ay4)

'IU]_—”IU?_—6‘UJ3+(52—-M(1—C!5)
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Jw; — 4wy — 3wz + 4 > ~M(1 — ag)
art+aztayst+as+as =4

wy + wa + wy = 1:

w, > €. p=1,223.

o € {0. l} le A \ {(11, ay, as}.

The optimal solution of(D'Z(al)) is 0" = —0.82 with w, = 0.96, ws = 0.02. w3 =
0.02. The program assigns the value 1 to the binary variables as. . as, ag, and
selects Ay = {a3.a4.ds.a¢}. Therefore. action a; is DPO, and should not be
removed from the set of actions. If the DM specifies w; < wy < w3, then action a; is
not potentially optimal. Notec that we can utilize Theorem 3.5 to simplify the above

program. Since {aj3.as} € Dom(A), it is not necessary to compare action a; with

actions a3 and a4: onc can use the same procedure with ¢ =| Eff(A) | —m = 2.

In this case. Program D'2(a;) reduces to the following program:

(D"2(a1)) Minimize §
Subject to:

—-dw; + wa+ w3z +68 > ~M(1 —a»)
w) —wy — 6wz +6 > ~M(1 — as)
Jwy — 4wy — 3wz + 9 > -M(1 — ag)
ay +as + ag =2
wy; + ws + w3 = 1;
wp 2 €, p=1,2,3,

Qp € {O’ 1} [ € A \ {aly ag, (14,0.7,0.3}.



CHAPTER 3. SCREENING IN MULTIPLE CRITERIA SUBSET CHOICE 64

Table 3.5: Consequences of Actions According to Three Criteria

Criteria | ay | a2 | a3 | ag | a5 | ag | a7 | ag
D1 511011342816
P2 4 317135856
ps3 31258964105

The optimal solution of (D"2(a;)) is 8~ = —0.82. indicating that a; is DPQ;. Note
that if m = 3 actions (rather than four) are to be selected. the optimal solution of
the Program D'2(a;) or D"2(a,) is * = 1.219. Hence. in this case action a, is not

in DPO; and can be climinated from the set of feasible actions.

3.3 The j~Constraints Problem

We now address the same problem as in previous section. except that the number
of actions to be selected is not pre-specified. Instead. the subsets that may be
selected are defined by a set of constraints. In fact. the j-constraints problem is a
generalization of the m-best actions problem. because m-best actions problem is a
l-constraints problem in which the only constraint specifies that m actions are to

be selected.

Here, we consider only the binary multidimensional knapsack problem with
multiple objectives, which commonly arises in project selection. Without loss of
generality, assume that all criteria are to be maximized. The problem under con-

sideration is as follows:



CHAPTER 3. SCREENING IN MULTIPLE CRITERIA SUBSET CHOICE 65

(D4) Maximize z,= c:;:::,v, p=1.....|P|
i€A
Subject to :

ZbijziSBjr J=1...0J]
IEA
T; € {0.1}

where P is the set of criteria. J is the set of constraints. ¢ > 0 is the consequence
of action a; on criterion p. b;; > 0 is the rate of consumption of the jth resource by
action a;. and B, is the total amount of the jth resource available for consumption.
The binary variable z; is defined as follows:

1 if a; is selected:

Iy =
0 if a; is not selected.

Note that the main difference between the j-constraints problem and the m-best
actions problem is that here a dominated action may be included in A~. because
of its low rate of resource consumption. In the context of Program D4 we dcfine

the notion of T-efficienci’ of an action as follows:

Definition 3.3 Action a; is T-efficient (T-nondominated) if there does not ezist
another action ay such that

(1) c;, < c’; Vp € P, and

(2) bij > by; VjeJ.

with one of the inequalities in (1) being strict.

When an action is T-dominated. there is another action that would improve

any selection of actions. We denote the set of T-dominated actions by Domr(A).

2 T-efficiency stands for Total-efficiency.
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and its complement by Effr(A) = A — Domr(A). For each a;. € Domr(A),
the set of actions dominating ai is denoted by domz'(ar). Moreover, dr(a) =
domz'(ax) N Effr(A). Clearly, any action in domz'(ai) is preferred to ay for
inclusion in the best set of actions, because each objective will be increased by an

equal or greater amount with equal or less consumption of resources.

As discussed in Chapter 2. it is difficult and time-consuming to solve a multiple
criteria integer problem. such as Program D4 [127]. Hence. it is useful to remove
any T-dominated actions and thereby reduce the size of the problem. However.
an individually T-dominated action may be in the best set of actions, unless some
specific conditions hold.

The following theorem. which is similar to the Theorem 3.2. shows that a T-
dominated action. ar. cannot be included in the optimal solution of (D4) when

domz!(ar) ¢ A"

Theorem 3.6 Suppose A" is the optimal solution of Program D4. Let a. €
Domg(A). Then

domz'(ar) € A" = a;. € A"
Proof: Suppose a;, € A" and dom7'(ar) ¢ A-. Consider an action a, € domz'(ar).
Construct another set A° # A" by dropping a;. and including a..

A°=A"U {ae} - {ak}

Since a, € dom7'(a;). we have a. > aj. First. we notice that A° is feasible.

because according to the definition of T-efficiency. b.; < br; V7, and therefore,

2o b= D bbby < Y by <by Vi (3-6)

a,€A0 a;€A" a, €A’



CHAPTER 3. SCREENING IN MULTIPLE CRITERIA SUBSET CHOICE 67

k

Also, a. > a; implies cp 2 c’; Vp€ P and ¢ > ¢, for some p. Hence,

=Y g-ch+> S o, (3.7)
a2, €A® a;€A* a;€A*"
for all p, with strict inequality for al least one p € P. Hence, A" is not optimal.

contradicting the assumption and completing the proof. O

To determine whether a T-dominated action di can be removed from the list
of feasible actions in Program D4. one can employ a concept similar to DPO,, in
the previous section. However. as explained previously, one of the requirements to
examine whether ar € DPO,,(A) is knowing, a priori. the number of actions to be
sclected. m. In the j-constraints problem. the number of actions to be selected is
not given a priori. Let ap € Domr(A) and m and m' be any two positive integers
such that m < m'. Then. according to the definition of PO and DPO in the

previous section,

1, € DPO,_(A) => ax € DPO(A).

Therefore, if m is the biggest number of actions that can be selected in Program D4.
all the procedures for the m-best actions problem can be used in the j-constraints

problem.

Hence, we first construct a program to obtain the mezimum number of actions
that can possibly be included in a feasible solution of (D4), and then we utilize the
results of the m-best actions problem for this case. Let action a; be T-dominated.
Then the following program determines the maximum number of actions that can

be included in a feasible solution of (D4), in addition to domz'(az):
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(D5(ax)) Maximize m = Z z;
a;éA\dom;l(aL.)
Subject to:

> bijz; < Bj — S by j=1....]7]|
ai€A\dom7 (a) a;€dom " (ax)
z; € {0.1}.

The Program D5(ay) is a zero-onc program that. because of the structure of its
objective function. can be solved rather easily. Suppose T~ is the optimal solution
of (D5(ax)). When " is known. the j-constraints problem can be reduced to
an m"-best actions problem. Hence. let PO(A;-)) denote the set of potentially
optimal subsets with cardinality m=. as defined according to Definition 3.1. Then.

the concept of T-Dominated Potentially Optimalis defined as follows:

Definition 3.4 Action a;, € A is T-dominated potentially optimal (ar, € DPO7T)
if

1} ar € Domp(A), and

2) there ezists Afﬁl.) € A such that ar € Afﬁl.,. and Af,ﬁ.) € PO(Aia-))-

The following theorem shows that if Problem D5(a;) is infeasible or its optimal

solution is non-positive. then a; cannot be in the optimal subset:

Theorem 3.7 Consider the j-constraints problem D4, and let ap € Domg(A).
If Program D5(ay) is infeastble or its optimal solution, m™. is non-positive, then

ar € A”.

Proof: The optimal solution of the Program D5 is the maximum number of actions

that can be selected if set domy!(ai) has already been selected. The infeasibility
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of Program D5 indicates that domz'(ar) ¢ A*. But. according to Theorem 3.6.
domi'(ar) ¢ A => ar. € A",

Thus, a; cannot be in A®. Similarly. " = 0 indicates that if a.'om{-l(ak) C A” no
more actions can be included in A*. Thus, ar. € A~. O
Now. suppose that the optimal solution of (D5(ar)), m* > 0. ie. |A"| —

ldomz'(a)| > 1.

Since 72" is an upper bound for the size of solutions in D4, all the procedures for
m-best actions are applicable in this case. One can utilize Program D2(a;) from
the last section with ¢ =| A | —" to determine whether a;, € DPOz(A). Then
0" < 0 indicates that there exists a value function under which ay is better than at
least q other actions in A \ domz'(ai). Therefore. a; may belong to the best set of
actions. Otherwise. ¢ > 0. and ax can be removed from the set of feasible actions.

as illustrated next.

Example 3.8 Consider a subset selection problem in which | A |= 6. | P |= 3.

and | J |=2:

Maximize Ty + TLa + 4z3 + 3y + 6z5 + Tzg;
Maximize 2zy 4 2xy + 223 + 224 + 3z5 + Tze;
Maximize 7zy 4 225 + 623 + T4 + 225 + 3z6;
Subject to :
2zy + 4z 4+ 523 + o4 + 3z5 + 8z < §;

9z + 6y + Tz3 + Sz4 + 8z5 + Tz < 18.
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In this problem, Domr(A) = {as}, domz'(as) = {a:1}, and E f fr(A) = {a,, a2, a4, as. as}.
To determine whether action a; can be removed from the set of feasible actions. we
first solve the following program to find the maximum number of actions that can

be selected, assuming @, has already been selected.

Maximize Z =zy+ T+ T3+ T4+ T5 + Zg;
Subject to :
4z + 523 + T4 + 325 + Sz < 6;

6xa + Tz + 9y + Sz5 + Tz < 13:

The solution of this problem is Z= = 2. Hence. at most two more actions can be

selected in addition to a;. Thus. m = 2 and ¢ = 2. We can construct Problem

D2(a3) as follows:

(D2(a3)) Minimize J
Subject to :
v(ag) —v(@) +48 > -M(1 —a;). L€ A\ (domz'(as) U {as});
Qg + vz + @y + ag +ag = 2;

o € {0.1}, l € A\ (dom7'(as) U {as}),
or. assuming the DM’s value function is linear,

(D2(a3)) Minimize )
Subject to :
—311]1 + dwgy Z —-1‘/[(1 — ag)Z

wy + dwz > —M(1 - ay);
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—2w, —ws +4w3z > —M(1l — as);
—3w, —Sws > - M{ — ag);
az + ay + as + ag = 2;
wy + ws + w3 = 1;
w, 2 €. p=1,23.
aq € {0.1} [ € A\ (dom3!(as) U {as}).

The solution of the above problem is (6 = —3.78) with w; = 0.02.w, =
0.02.w3; = 0.098 as optimal parameters. Hence. a; € DPOr(A) and a3 may be
included in the best set of actions. Note that if the consequence of action ag on the

last criterion changes to 8. then 4 is positive and a3 € DPOr(A).

If the DM can assign some partial information to the value function. the result
may change. For example. assume that the following information on parameters of

the value function is given:
0.1<w;, <03, 0.2<w; <04, 0.3<w;<0.5.

Under this information. 6 = 0.7 and a3 ¢ DPO7(A).

3.4 Conclusions

This chapter addresses the problem of screening individual actions in an MCDM
subset selection problem. It is shown that removing individually dominated actions.
even though it may create a problem that is considerably easier to solve, may be

unsatisfactory in that optimal subsets might become inaccessible. Subsequently,
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the concept of DPO actions is defined for both m-best actions and j-constraints
problems and it is shown that those individually dominated actions that are not
DPQO cannot be in the best subset of actions. Moreover, conditions are given
for which a dominated action is DPO are explored and a method is proposed to

recognize the DPO actions for both the m-best actions and j-constraints problems.



o TR STeE ...

Chapter 4

Modeling Action-Interdependence
in MCDM

4.1 Introduction and Literature Review

In the previous chapter. it was pointed out that in many MCDM problems. a given
decision maker must sclect a subset of actions rather than a single action. There
are two main approaches to analyzing a subset selection problem. The first is to
enumerate all subsets. remove those that are infeasible. and then select the best
using conventional MADM methods. This f)rocess might begin, for example, with

the identification of dominated subsets.

The second approach is to find the best subset of actions directly from the set
of all available actions. The main advantage of the first approach is that one can
employ directly any MADM procedure to select the best subset. Moreover. since
only one subset is to be chosen, interdependence of actions is not relevant: one

incorporates the interdependence of actions in their evaluations under the relevant

73
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criteria, and not in the actual selection procedure. However, when the number of
actions is large. enumerating and evaluating all feasible subsets can be extremely
time consuming. For example. Rajabi et al. [93] model a large-scale water resources
planning problem in the Regional Municipality of Waterloo. Ontario. Canada. Even
though many actions were recognized to be infeasible and removed in the prelimi-

nary phase of the study. more than 2% =~ 10*® combinations of actions remained.

In most situations. evaluation according to a criterion may be readily available
for individual actions but not for sets of actions, because these values are typically
obtained from experts in different fields who prefer to evaluate each individual
action on its own. In reality. time considerations. diversity of fields. and lack of
established procedures for eliciting information about interdependence mean that
often knowledge about interdependence is sketchy. As a result. a great deal of sub-
Jectivity may be involved in aggregating values of actions into values of subsets of
actions [2]. Therefore. in most real-world applications. especially when the number
of actions is large. it is preferable to tackle a multiple criteria subset selection prob-
lem directly through the underlying individual actions. Even though this chapter
and the next deal mainly with the second approach. most of the discussion in these

two chapters also applies to the first approach.

Some standard MCDM procedures are applicable to subset selection. but they
generally rely on the assumption of independence of actions. Unfortunately, actions
are clearly interdependent in many real-world subset selection problems. For in-
stance, in decisions about how to dispose of solid wastes from a metropolitan area.
possible actions include using one or more of a number of potential dumping sites.
incineration at one or more locations. introducing by-laws to reduce the amount
of waste generated in the first place. plus a range of recycling measures. Criteria

for evaluating each action may include cost, infrastructure requirements. environ-
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mental risk, political acceptability, and aesthetics. A satisficing or optimal solution
may consist of a set of actions that, typically, are interdependent for one or more

of the criteria on which they are evaluated.

Other examples in which interdependence of actions may occur include selec-
tion of research and development or investment projects. transportation routes.
computer systems, and time stream decisions (see also [31] and [112] for more ex-

amples).

This chapter is mainly concerned with exploring the notion of interdependence
of actions and the adaptation of MCDM methods to subset selection in the presence
of interdependence. Following a brief literature review in this section. Section 4.2
puts forward a small case study to introduce the problem. Subsequently, Section 4.3
presents some definitions of independence and interdependence of sets of actions.
discusses their main features. and explains some special cases. General approaches
for evaluating a set of interdependent actions and the relationship between inde-
pendence (interdependcnce) of sets and independence (interdependence) of actions

are discussed in the next chapter.

Various formulations of interdependence appear in the literature. However, most
restrict the type or extent of interdependence in some way. One common approach
is to consider only interdependence between two actions, or binary interdependence.
Fishburn and LaValle [31] give a thorough discussion of the evaluation of subsets of
actions when interactions are binary. They identify necessary conditions on prefer-
ences in order that the value of any subset equals the sum of individual action values
plus binary interaction terms. Additionally, they characterize preferences between
two subsets when the only available values are those of the individual actions. Fish-
burn and LaValle also provide the first ordinal characterization of interdependence.

They list transportation-route selection, household and corporate budgets. student
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admissions, restaurant-menu composition, and optional accessories for a new car
as representative decision problems in which interdependence of actions should be

considered.

Often, the existence of interdependence among actions has been overlooked or
ignored. For instance. an analysis by Keeney and colleagues to select three out
of five sites for nuclear waste disposal employed multi-attribute utility theory [81].
However, after reviewing their proposal. the U.S. Department of Energy selected a
different subset from the one they proposed. In assessing this disparity, Keeney {64]
argued that the logic of the analysis involved evaluating individually each of the
five sites. However. the selection of the sites should have been based on portfolio
selection principles. recognizing that individual performance is not as important as
the performance of the whole. He concluded that the individual examination of the

sites did not address some important considerations that affected all sites.

Rajabi et al. [92] model a multiple criteria subset selection problem with any
number of interdependent actions as a non-linear multiple criteria integer program-
ming problem. They suggest a variant of goal programming for solving the problem.
Elsewhere. they apply their approach to a long term water supply planning problem

[93. 95].

Santhanam and Kyparisis [112] present a model for the selection of information
system projects in the presence of interdependence. They formulate the subset
selection problem as an integer programming problem with some nonlinear terms
to reflect interdependence. They apply their procedure to choosing management

information system projects with any number of actions.

Gomes [42] introduces the concept of interdependence between two actions in an

urban transportation system. Having assumed the probability of choosing highway
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project j to be p;, he defines the value of another project, i. that is interdependent

with 7 according to some criterion, as

v = (vy;)p; + (vin) (1 = pj),

where v;; is the value of action ¢ when action j has been selected and vy.; is the
value of action i when j has not been selected. Through an example he shows that
the ranking of actions may be changed as a result of this kind of interdependence.
Tzeng and Teng [126] use a fuzzy multi-objective model to select a subset of in-
terdependent transportation projects. They classify such projects as independent.
complementary. or substitutive. For independent projects. the objective value of
the combination is equal to the sum of individual performances according to each
criterion. Two projects are called complementary if the result of investment of their
combination is greater than the sum of the individual results. and substitutive if
the amount of their combination is less than their sum. Further. Tzeng and Teng

measure performance and interdependence using fuzzy numbers.

Aaker and Tyebjee [1] describe interdependence among R&D projects in a sin-
gle objective framework. They address three different types of interdependence:
overlap in project resource utilization. in which the projects use a common budget.
facilities, or manpower: technical interdependence. in which the success or failure
of a project influences the progress of other projects. and effect interdependence, in
which there is synergy among projects. In the latter case utilities are not additive

where subset of projects is selected.

Evans and Fairbairn [29] note that many NASA mission projects are highly
interdependent. But their primary concern is how this interdependence should

affect the project implementation sequence.
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Interdependence of criteria has been also addressed in the MCDM literature
(see. for example, [48]). Criteria may be interdependent due to correlations among
the elements of the evaluation matrix (the values of the actions according to the
criteria); this is called statistical interdependence. Alternatively, criteria can be
interdependent in the framework of multi-attribute theory. When the directions
of increase or decrease on two or more criteria are the same, then these criteria
arc correlated. Generally. statistical interdependence of two criteria suggests the
existence of factors that affect both criteria in the same direction or in opposite

directions.

Much research has heen devoted to the concept of interdependence of criteria in
multi-attribute theory (sce. for example. [65]). Criterion p; is preferentially inde-
pendent of p, if the relative preference of actions that differ only in their evaluation
according to p; does not depend on their evaluation on criterion ps. Let (z.y)
denote the evaluation of an action according to criteria p; and p,. Then p; and p,

arc preferentially independent iff
(zy.a) = (z2,a) for some a == (z1,8) = (£2.8) for all B. (4.1)

Hence. when the criteria are preferentially independent, one can rank a set of actions
according to a criterion without considering the rest of the criteria. Preferential

independence among n criteria can be defined similarly [65. 32].

The primary purpose of this chapter is to present new and general definitions of
interdependence of actions and of sets of actions, and to assess the main properties
of interdependence using the definitions. The effects of interdependence on subset
choice, especially in a multiple objective framework, are examined, and several

techniques for evaluating subsets of actions that are interdependent according to a
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specific criterion are presented.

4.2 Interdependence in Multiple Criteria Subset

Selection

Recall that A is the set of possible actions. and P is the set of criteria on which they
arc to be evaluated. Denote the valuc of A C A with respect to criterion p € P
by cp(A°). If A® = {a;,.a;,. > " a;, }. write ¢p(A®%) = cp(iy. 42, -+ - in). Without loss
of generality, set ¢,(0) = 0. Note that this notation implies that consequence is a
subset property. i.e. the consequencc of A® C A never depends on the order of

selection of the actions within A°.

Before introducing a formal definition of interdependence. an example is pre-
sented to demonstrate the importance of interdependence in multiple criteria subset
selection problems. This example shows that a naive application of conventional
MCDM methods can produce serious errors in subset selection problems. especially

when actions are interdependent.

The example will be called the Waste Disposal Location (WDL) problem. The
objective is to identify the two best among five potential sites of equal capacity.
The criteria are prozimity to population, infrastructure requirements (such as need
for roads, water, and electricity supply), and environmental risk. All criteria are

measured so that higher values are preferred.

The WDL problem is characterized by certain interdependencies. Building a
new road near sites 4 and 5 could serve both sites; if sites 4 and 5 are both selected,
a saving in infrastructure investment will be obtained. In this case, the total value

of sites 4 and 5 is increased by 10% if both are selected. Hence. sites 4 and 5 have
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Table 4.1: WDL Example: Normalized Consequences of Five Feasible Sites

Criteria Actions Weights
a; as | aﬂ ay [ as
(1)Population 0.45| 0.45 1| 0.55| 0.84 | 0.23
(2)Infrastructure 0.8 0.7] 075 0.83| 0.83 ] 0.39
(3)Environmental Risk 061 0.87 05 0.75 0.6 || 0.38
[ Additive Value 1 0.644 1 0.707 | 0.713 ] 0.735 [ 0.745 || 1

30

a positive synerqy of 10% on the infrastructure criterion. As well. if sites 1 and 2

together are selected. then a single power plant facility may be built for both. tak-

ing advantage of econouies of scale. Thus. actions 1 and 2 have a positive synergy

of 30%. Finally, the evaluation of sitc 4 or 5 on the environmental risk criterion

depends on whether the other site is selected. If cither of the sites is selected.

then selecting the other aggravates the risk of environmental damage in the region

and. hence. these two actions have a negative synergy of 30% on the environmental

risk criterion. Figure 4.1 illustrates the interdependence of the five actions on the

infrastructure and environmental risk criteria.

Infrastructure Requirements

Encironmental Risk

Figure 4.1: WDL Example: Interdependent Actions and Synergy Levels

Table 4.1 shows the individual performance of each action according to each
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criterion. When applying a linear value function with the weights shown in Table
4.1. action as is best. and action a4 second best. Note that in this example the

additive value of an action a. v(a). is calculated as follows:

v{a) = Z wpcp(a).

p=1

where w, is the weight of criterion p. and ¢,(a) i1s the evaluation of action a on
criterion p. Therefore. a naive conclusion. which would apply if there were no in-
terdependencies. is that the optimal subset is A] = {a4.as}. Note. however. that
although v(4) = 0.735 and v(5) = 0.745. v(4.5) = 1.384 because of interdepen-

dence.

A less naive method of subset selection is to select the single best action. then
re-cvaluate each action according to the amount that it would increase or decrease
the value on each criterion if selected. then choose the best of these. etc. This is
called the greedy algorithm. If it is applied after as is selected. a3 is found to add the
most value. To reiterate. the overall value increment of action a3 when as is selected
is greater than the increment of any other action. Because of interdependencies.
c2(4.5) — ca(5) = 0.996 and c3(4.5) — ¢3(5) = 0.34. Therefore. A3 = {as.a3}. with
v(3.5) = 1.457. is certainly an improvement over A} = {aj.as}. Table 4.2 shows

the reevaluated consequences of acting when action as is selected.

However. by exhaustive examination one finds that the best subset of actions is
A" = {a1.a,}. with v(1.2) = 1.526. Note that action a, is in the fourth position
in Table 4.1. and action a; is not only in fifth position. but it is also dominated by
actions as and a4. Table 4.3 depicts the reevaluated consequences of actions when

action a, is selected.

One should keep in mind that the presence of several criteria is crucial to draw-
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Table 4.2: WDL Example: Reevaluated Site Consequences after Selecting Site 5

Criteria Actions Weight
aq as az | a4
(1)Population 0.45| 0.45 1] 0.55 | 0.23
(2)Infrastructure 0.8 0.7 0.75| 0.99 || 0.39
(3)Environmental Risk 0.6 | 0.87 0.5| 0.34 || 0.38
| Increment to Value 0.644 | 0.707 [ 0.713 [0.503 ] 1 1

Table 4.3: WDL Example: Reevaluated Site Consequences after Selecting Site 2

Criteria Actions Weight
ay l Gz l aq I as
Population 0.45 1| 0.55| 0.84] 0.23
Infrastructure 1.25 | 0.75| 0.83!] 0.83 | 0.39
Environmental Risk 0.6 05| 0.75 0.6 || 0.38
Increment to Value [[0.819[0.713 [0.735[0.745 [1
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ing conclusions about the WDL example. Suppose, for example, that only the
environmental risk criterion (including interdependence) were taken into account.
Then the best feasible subset of actions is {as,a4}. This choice remains the same
using either of the naive choice methods (isolated values or greedy algorithm) or
using exhaustive examination of all feasible subsets. Hence. subset selection can be

sensitive to interdependence of actions in multiple criteria decision making.

Another use of MCDM methods is to identify all efficient (non-dominated) sub-
sets. Recall that in the WDL example. only subsets with two actions are feasible.

Ignoring interdependence. the efficient feasible subscts are

{{a2.a3}. {@2.a4}.{as. as}, {as, as}. {as. as}. {as, as}}.

However. taking into account the interdependence of actions. the efficient feasible

subsets become

{{a1. a2}.{a1. as}.{as.a3}. {a2, as}. {az. as}. {as, a4}. {as. as5}}.

The subset {a4.as}. which dominates several other pairs in the first case. is now
itself dominated. Also. note that even though there is no interdependence between
a; and as, the pair {a;.as} is included as an efficient pair in the second case. Thus.
a feasible subset can be efficient when interdependence is taken into account. but
not when it is ignored. even though the members of that subset exhibit no inter-
dependence on any criterion. In general, the set of efficient solutions may change
extensively in the presence of interdependence of actions. Furthermore, when an
aggregate evaluation function is given. an example can be found with the property
that the optimal solution remains the same when interdependence is considered.

but the set of efficient solutions changes significantly. Hence, interdependence of
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actions can be important in virtually any MCDM procedure.

The WDL example. although very simple. demonstrates that when there are
interdependent actions. all subsets must be examined in order to find the best
one. or to find the set ot efficient solutions; selection according to the ranked list
of individual actions may not yield the optimal solution. Moreover, this example
illustrates that the selection of a subset of actions based on the greedy algorithm can
be quite misleading. In the next section, a formal definition and characterization
of interdependence of scts of actions and interdependence of actions are presented.

Subsequently. important special cases are discussed.

4.3 Interdependence of Sets of Actions

Below. a formal definition of the interdependence of actions is presented. However.
first the interdependence of sets of actions is considered: then interdependence of
actions is treated as a special case of set interdependence. In fact, it is more useful
to define dependence as the amount of interdependence. and independence as the

absence of interdependence.

Roughly, two sets of actions, A; and A, are independent on criterion p if the
selection of A; has no effect on the cvaluation of A,, and vice versa, no matter
what other actions have already been selected. If A; and A, are not independent.
then they are interdependent. Recall that for any S C A, ¢,(S) is the evaluation

(or consequence) of S on criterion p € P.

Definition 4.1 Let A1.A; C A, AJ;NA, =0.A, #0.A, # 0, and let A° C
A\ (A, UA,). Then the amount of interdependence of A, on A,, given A°, on
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criterton p € P 1s

bo(A1, Az | A®) = ¢,(A1UA, UA®) — (A UA") — (A, UA®) + ¢, (A°). (4.2)

Note that the amount of interdependence of A, on A; equals the amount of inter-

dependence of A; on A,. because it follows from (4.2) that

dp(Ar. Az | AY) = ¢,(As. A, | A°).

It is noteworthy that if A; N A, = 0. one can include common actions in A°

and use (4.2), or alternatively define the amount of interdependence as

¢P(A‘13A2 i AU) =
cp(ALUAUAY) — (A UA®%) — (A2 UA%) + ¢ [(AL NAL) U AY.
(4.3)

We will not pursue this definition here. but will always assume that A; and A, are

disjoint.

Definition 4.2 Let A;|. Ay C A, Aj1NA, =0.A;, #0. A, %0, and let A° C
A\ (AL UA,). Then A, and A, are independent given A°. according to criterion
pEeP, i

$po(A1.As | A%) = 0.

In this case, we write A;(I, | A®)A,. Independence of A; and A, implies that the
amount by which the selection of set A; increases the consequence on criterion p

does not depend on whether A, is also selected.
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Note that independence given A° on criterion p. (I, | A°), is a relation on the
disjoint subsets of A\ A”. Moreover. since ¢p(A.;. As | A%) is symmetric in A, and

A.. (I, ] A®) is a symmetric relation. i.e.

AL | A%)A, == A,(I, | A%)A,. (4.4)

However, independence is not necessarily transitive. In particular. if A, A,,

and Aj; are nonempty and pairwise disjoint. then it can happen that

AL | AY)A, and As(I, | A%)A; but ~ (A (I, | A%)A,]. (4.5)

where ~ [-] symbolizes "Not™ of [-]. To illustrate how non-transitivity of indepen-
dence can occur in reality. assume that A;, A,. and A; are three ground-water
sources in different regions. If A, is located far from both A; and Aj, then the
amount of water extraction from A; or Aj; would typically not affect the amount
of water extraction from A, and vice versa. However, there may be a close re-
lationship between water extraction from A; and Aj. if they are adjacent. Thus
A, and A,, and A, and Aj. may be independent. while A; and Aj are highly

interdependent.

To appreciate the meaning of independence, note from (4.2) that A;(I, | A%)A,

cp(A°UA|) — (A%) = (AU A U Az) — (AU Ay). (4.6)

This relation indicates that the increase in consequence on criterion p following
the selection of A; does not depend on whether A, has already been selected. In
other words, if A, and A, are independent, the increase in consequence following

the selection of A, is ¢,(A° U A1) — ¢,(A?), whether or not A, is also selected.
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Likewise, the increase in consequence after choosing A; is ¢,(A% U A,) — c,(A9),
whether or not A, is also selected. It follows that. if A; and A, are independent,
then the increase in consequence subsequent to the selection of both of them is

cp(APU Ay) + (AU Aj) — 2¢,(AY).

Hence, if (4.6) does not hold, there is a synergistic relation between A, and A,

on criterion p. Define the synergy of A; and A,, given A°, on criterion p as

Afp(A-ls A, I A—O) =
[cp(A° U Ay U As) ~ cp(A%)] = [cp(A° U Ay) + (AU As) — 2¢,(A°)]
[co(A% U A1) + cp(A° U As) — 2¢,(A0)]
dp(A1. Ay | AO)
(AP U Ay) + cp(A° U As) — 2¢,(A9)

: (4.7)

Note that

0
(AL Az [ A7) = (4.8)
Actual increase in consequence — Independent increase in consequence
Independent increase in consequence

Hence, the synergy of two sets A; and A, is the amount of their interdependence
divided by the “independent” increase in consequence following the selection of
both sets. ! For instance, in the WDL example, if A° = 0, then the synergy of

actions a4 and as on the infrastructure criterion is

= 10%.

¢p(al1 as l 0)

re(anaz |0) = o (@)

! Note that vp can take any numerical value-positive or negative.
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By substituting (4.7) into (4.2), the consequence of the combination of A; and

A, given A° equals

p(A1UALUA®) = [cp(A1UA®) + (A UAY)[L +v,(A1, A, | A9
—co(A%)[1 + 279,(A;. A, [ A)]. (4.9)

Expression (4.9) shows how synergy. v,. can be interpreted as an increase, or a
decrease. in the consequence of joint selection of two actions. Note that v, can take
both positive and negative values. If v,(A;.A. | A%) > 0. we say that A, and
A, have positive synergy given A°. Similarly. if v,(A;. A, | A®) < 0. A, and A,
have negative synergy given A°. As an example of negative synergy, suppose that
a; and a; are two sites that can utilize some common facilities. thereby reducing
infrastructure costs in the WDL example. Hence. with the selection of both g;
and a;. the total infrastructure cost will be decreased. On the other hand, assume
that the selection of both a; and a; aggravates the environmental situation of the
region. Accordingly. the synergy of these two actions on environmental risks would

be positive.

As is evident from (4.7). the synergy of two sets of actions depends on the set
A° that has already been selected. In fact. it is possible for the synergy of two sets

to be positive when AY is selected and negative when A9 £ A9 is selected.
p 1 g 2 F A

Example 4.1 Let c,(1) = c5(2) = 6(3) = (4) = 2. 6(1.2) = ¢,(2.3) =
p(4.3) = 3.¢p{1.3) = c,(1.4) = 4. 5(1.2.3) = 5. ¢,(1.4.3) = 4. Then the

synerqy levels of two actions a; and as. given as and given a4, are
ynerg 1 2

Tp(@1. a3 | {@2}) = 50%
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Ypl@1. a3 | {‘14}) = —-33%.

Suppose that the value according to criterion p € P is to be maximized. Then.
if 75(A1, A» | A®) is a large positive number. A and A, approach a complementary
relation. On the other hand. if 7,(A;. As | A%) is a large negative number. A, and
A are close to being mutually exclusive. Concepts similar to complementary and

mutually exclusive have been widely used in project selection decision problems.

Definition 4.3 Let Al.Ag g A, A'l I Ag = GAI --":' 0A2 7-2-/' 0 and let AO ;
A (A, UA;). Then A, and A, arec independent on criterion p. if

AL, A%)A, YA C A A, UA,. (4.10)

Thus. two sets of actions A; and A, are independent if they are independent given
any A°C A\ A;UA, If A and A, are not independent on criterion p. they are
interdependent on criterion p. It follows from the above definition that A, and A,

arc interdependent on criterion p if
FA°CA (A UA,) suchthat ~[A; (I, | A% A, (4.11)

Hence. A; and A, are interdependent on criterion p if there exists A% such that
(4.6) does not hold. We call two sets unconditionally interdependent if they are
interdependent (i.e. (4.6) fails) for all A°. and conditionally interdependent if they
are interdependent given some A% In particular. A; and A, are conditionally
interdependent if they are independent given some AY. but not given some A9 # A9,
Another possibility. shown in Example 4.1. is that A; and A, have positive synergy

given Af. but negative synergy given AJ # A9,
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Since independence is a symmetric relation. interdependence (which is the nega-
tion of independence) is also symmetric. Moreover. interdependence is not neces-

sarily transitive. Consider the following example:

Example 4.2 Assume A® = (). Consider three sets A,. A,. and As, such that

cp(A1) = p(A2) = c5(Ag) = 3.
CP(AI UA,) = Cp(AZ UA3)=7. and cp(Ap U Ag) =6.

Then it follows that
Pp(A1. Az | A”) = 9,(As. Ag | A®) = 1. but ¢,(A; A5 A%) =0.
Thus.

~[Ay (I, A%) A, ~[As (I, | A°) Aj]. and A; (I, | A%) A,

It is easy to overlook conditional interdependence. although it can be as im-
portant as unconditional interdependence in applications. Consider two sets of
ground-water sources A, and A, that are independent. If a third set of ground-
water sources close to both sources is selected. the total water extraction of the two

sources. A; and A,. may be reduced. making A; and A, interdependent.

As another example of conditional interdependence. consider the selection of
two software systems that work independently. The total benefit of their usage
thus equals the sum of the individual benefits. However. suppose that with the
selection of appropriate hardware, these two software systems produce positive

synergy. Thus. the systems are independent if the hardware is not selected. and
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interdependent if it is selected. Accordingly, we call these two software programs
conditionally interdependent. An important special case of conditional interdepen-

dence is defined next.

Definition 4.4 Let A;. A, CA . A1NA, =0.A, #0,A2 #0. Then A; and A,
are simply independent if A (I, | 0)A,; otherwise. A and A, are simply interde-

pendent.

Note that by (4.2). A, and A, are simply independent if ¢,(A;, A, | 0) = 0.

According to (4.6). this is cquivalent to

col AL U Az) = cp(Ay) + cp( Az). (4.12)

because ¢,(@) = 0. In other words. two sets are simply independent if the value
of their combination equals the sum of their individual values. This concept is
similar to the idea of conventional independence of actions. All past research on
interdependence of actions is restricted to the concepts of simple independence and

interdependence.

Note that two sets of actions may be simply independent. yet interdependent
(when some non-empty set of actions has already been selected). as shown by the

following example:

Example 4.3 Consider three actions a;,as and as such that c,(1) = c(2) =
cp(3) = 2 and ¢,(1,2.3) = 5. 5(1.2) = 3, ¢,(2.3) = 3. and 5(1.3) = 4. Ac-

tions ay and az are simply independent on criterion p, because

cp(1,3) — p(1) — ¢5(3) = 0.
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But when action a, has already been selected, a; and a3 are interdependent, because

ep(1.2.3) = 65(1.2) = cp(2,3) + c(2) = 1.

30 that

Hence

ay (I, ] 0) as and ~ lay(I, | {az2})as].

If two sets are counditionally indcpendent given A°. one may need to know
whether these two sets are also independent given a subset or superset of A°. In
what follows. we explore conditions under which the independence of two sets given
A" implies their indepcndence on any subset or superset of A®. Let A® and A be
two nonempty sets of actions such that A% C A°. The following theorem shows a

relationship between A,(I, | A%)A; and A, (I, | AY)A..

Theorem 4.1 Let A;. As. A AY be nonempty sets such that AN A, =0, AY C
A°. A°CA\A UA, Define B=A°\ AY. Then

1)A(I, | A%)B,
AL |ADA, <= A(I,]| AY)A,, when 2)A,(I, | A%)B,and
3)(A; U A,) (L, | AY)B.

Proof: see Appendix A.l.

The above theorem shows that independence of two sets given A° does not imply

their independence on subset or superset of A° unless all three indicated conditions
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in this theorem hold. The following corollary is a special case of Theorem 4.1 when
A% = (. This corollary shows a useful relationship between simple independence

and conditional independence of two sets.
Corollary 4.1 Let A,.A,. A® be nonempty sets such that A; N Ay = 0. Then

1)A, (I, | 0)A°.
AL |AYYA, = AL, |0)A,. when 2)A, (I, | 0)A%. and
3) (A1 U AL)(I, | 0)A°.

The above corollary indicates that simple independence of two sets implies their
conditional independence given A°. when both sets and their union are simply
independent with A°. Theorem 4.1 and Corollary 4.1 can also be used for examining

interdependence of two sets. For instance.

1)Ay (I, | 0)A°.
~ (A1, | A%)As] = ~[Ay(I, | 0)A,]. when 2)As(I, | 6)A°. and
3)(A; U A;)(I, | 0)A°.

The following theorem shows another relationship between simple and condi-

tional independence.

Theorem 4.2 Let A,. A,, and A3 be three nonempty and disjoint sets of actions.
and let A;(I, | 0)A.. Then Ay(I, | A2)As iff Ai(I, | 0)(A2U Aj).

Proof: in Appendix A.2.

The following corollary, an immediate consequence of Theorem 4.2, shows a

relationship between simple and conditional interdependence.
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Corollary 4.2 Let A,. A,. and A; be three nonempty and disjoint sets of actions,
and let Ai(I, | 0)A,. Then ~ [A(I, | A2)As] iff ~ [A(Ip | B)(A2 U Aj)].

The following theorcm is a generalization of Theorem 4.2.

Theorem 4.3 Let A;. A,..... A, be nonempty and disjoint sets of actions. Then
A.[(Ip I 0)A2UA3 - .UA.n_lLJA.n, pTO’U’LdCd th.at Al(Ip I 0)A.g A.l(Ip l Ag)A;}, Al(Ip |
A.g U Ag)A4, e and A]_(Ip I A.g U A:} .U An-l)An-

Proof: in Appendix A.3

For two sets to be interdependent. interdependence on one criterion suffices.

Definition 4.5 Let A;.A> C A. A;NA, =0.A; # 0.A, # 0. and let A° C
A\ (A, UA,). Then

~[A; (1] A% A,] = 3p € P such that ~ [A; (I,]| A%)A,], (4.13)

so that (I | A%) expresses independence on every criterion. Hence. two sets of
actions are interdependent if there is at least one criterion under which they are

interdependent.

We now define two special cases of set-independence. namely interdependence

of a set and an action. and interdependence of two individual actions.

Definition 4.6 Let a; € A. S C A\ {a;}. S # 0. and let A° C A\ (SuU {a:}).
Then a; and S are independent if

6,(a:.S | A®) = 0.
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Note that ¢,(a;.S | AY) is defined by (4.2).

The next example shows that even though independence of an action and a set

1s a symmetric relation. z.e.

a; (I, | A®)S <= S(I, | A%a;.

the independence of a; and S is a property of the two sets {a;} and S and not of

the set {a;} US.

Example 4.4 Consider three actions aj.as and az such that c,(1) = c,(2) =
p(3) = 2 and ¢5(1.2) = 4. ,(1.3) = 4. ¢5(2.3) = 5. and ¢,(1.2.3) = 7. Then
ay (I, | 0){a2. as} because

epll) ~ cp(1.2.3) + cp(2.3) = 0.

On the other hand:
cp(1.2) — cp(1.2.3) + ,(3) # 0.

Hence,

ﬂ.]_(Ip ‘ 0){02,(13} lmt ~ [{al.ag}(Ip l @) (13].

In general. suppose S;.S, C S, S; # S, and A°NS = (. Then. the independence
of S, and S\ S, on criterion p. S;(I, | A°)(S\S;). does not imply the independence
of S; and S\ S, under criterion p; as the example shows. ~ [Sa(I, | A°)(S\ S.)] is
possible.

One important case of interdependence is interdependence of two actions. All
previous research of interdependence has been limited to the concept of interde-
pendence of actions ( sce. for example. [31], and [1]). The importance of interde-

pendence of actions stems from the fact that often a set of actions is selected by
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choosing individual actions. one at a time. Moreover. carefully designed procedures
for dealing with interdependence of actions may be expandable to interdependence

of sets.

Two actions a; and a; are independent given A° if the amount by which action
a; increases the evaluation on criterion p does not depend on whether action a; is

also selected. In other words. for p € P. a;,a; € A.. and any A° C A\ {a:. q;}.
a; (I, | A®) a; if ¢plai.a;| A°) =0. (4.14)

where ¢p(... | .) is as in (4.2). Note that a; (I, | A?) a; denotes the independence of
actions a; and a; on critcrion p given A°. Similar to the interdependence of sets. we
denote the conditional interdependence of actions a; and a; by ~ [a: (I, | A%)a;].

For instance. ~ [ai(I, | {a+})a;] indicates that ¢,(a:.a; | ar) # 0.

4.4 Conclusions

This chapter introduces a new definition and characterization of interdependence of
actions for subset selection problems. It is shown that ignoring interdependence of
actions in multiple criteria decision problems is riskier than in single criterion deci-
sion problems. Through a simple example it is demonstrated that using the greedy
algorithm to choose a small subset of actions in the presence of interdependence

can be quite misleading.

The interdependence of actions is generalized to set interdependence. In fact.
interdependence of actions is treated as an special case of set interdependence.
Interdependence is characterized as conditional and unconditional, and the main

differences of conditional and unconditional interdependence. compared to conven-
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tional approaches. are explained. The next chapter is mainly concerned with ex-

ploring the relationships between set-interdependence and action-interdependence.



Chapter 5

Interdependence Evaluation

5.1 Introduction

In the previous chapter the notion of interdependence of sets of actions was intro-
duced. Additionally, as special cases. the interdependence of two actions and inter-
dependence of an action and a set were discussed. This chapter presents a general
framework for evaluating the consequence of a set of interdependent actions. More-
over. the relationship between set-interdependence and action-interdependence is
explored. Section 5.2 presents a general methodology to evaluate the consequence
of a set in the presence of interdependence. It also puts forward a new and general
definition for order of interdependence. Next, Section 5.3 discusses the evaluation
of interdependence of two sets according to the amount of interdependence of their
subsets. A thorough analysis of the relationship between interdependence of sets
and interdependence of actions is addressed in Section 5.4. Subsequently, Section
5.5 presents a new definition of additivity of a set of interdependent actions. Finally,

conclusions are drawn in Section 5.6.

98
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5.2 Evaluating a Set of Interdependent Actions

on a Criterion

In this section, we present a general framework to evaluate a subset of interdepen-
dent actions. It has been observed in practice that. often, the evaluation on any
criterion is additive when more than one action is selected. For instance, the over-
all cost of a set of independent projects is the sum of all individual project costs.
However. interdependence of actions does occur; our objective is to measure and

account for its effects.
Define cp(A1 | A%) = (AU A,) — ,(A?), where p € P and A; A% =0. We
call c,(A; | A®) the conscquence increment of A given A° on criterion p. From

(4.2)
$p(A1, Az | A%) = (AL U Ay | A%) — (A | A%) — ¢5(Aq | A?). (5.1)
Now. if A;(I, | A%)As. (5.1) reduces to
(A1 UA; [ A%) = (AL | A%) +¢5(As [ A%). (5-2)

Equation (5.2) shows that independence of two sets is equivalent to the additivity
of their consequence increments. Moreover, (5.1) indicates how the ezistence and
amount of interdependence between two sets depends upon the set of actions A°
that has already been selected. To simplify the discussion in the rest of this section,
we consider only the concepts of simple independence and simple interdependence
of actions, and hence we assume that A° = . The results are expandable to the

general case, unless otherwise specified.
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The symbol A,(S) will denote the amount of simple dependence within set S C
A on criterion p. We call A,(S) the dependence of set S. Following Fishburn and
LaValle [30], we define Ap,(S), for any set S C A and p € P, as follows:

Ap(S) = Ap(ay,....ai.....a0) = c(S) — Z c(T)

TCS
[Tl=n-=1

+ 2 (T 4+ (=1 Y 6(d). (5.3)

TCS i€S
IT)=n -2

Note that the value of A,(S) can always be calculated. as it depends only on the

value of ¢,(.). For a sct of actions with two or three elements

Aplai.aj) = ep(i. J) — cp(i) ~ ep(5) (5.4)

Ap(ai aj.ar) = cp(e. 3.k} — (2. 7) — (. k) ~ cp(5. k) + (%) + cp(5) + cp(k). (5.5)

Based on the above definition, Fishburn and LaValle prove that the value of

any set of actions. S. | S |> 2, can be calculated as follows:

W(S) =il + 3 AT (5.6)
i€S Tcs
ITI22

Models (5.3) and (5.6) include dependencies within any number of actions. In
many practical cases, there are a priori restrictions on dependence. Define the order
of dependence of set S on criterion p € P, Op(S), as the cardinality of largest subset
of S, T, such that A (T) # 0. Hence. when Op(S) = k. then the value of S can be



CHAPTER 5. INTERDEPENDENCE EVALUATION 101

calculated as

(S) =D i)+ D, B,(T), (5.7)
i€S TCs
ITISk

because Ap(T) = 0 for any |{T| > k. In general. define the order of dependence on
criterion p, Oy, as the cardinality of the largest subset. T C A, such that Ay(T) # 0.
Hence, when O, = k. the value of any set of actions in A can be calculated using
{(5.7). Note that O,(S) i1s a property of set S, and O, is a property of the set of all
actions. A. In practical cases. it is useful to find the order of dependence within a

set of actions. The following theorem shows how to find this quantity:

Theorem 5.1 LetS C A. [S |> 2. Then the order of dependence of S. O,(S). on

criterion p is k. where k <| S|, iff the consequence of S can be written as:

oS) = Y TV ~(IS|-k) 3 o(T)

[T I-=sk | T1;=gks_ "
+ (F)UST-RUSI-GE-1D)] T e+
IT.!;fks-:
+ ( _1 ,) (1ST=k)(IS|—(k=1))---(IS]|=2)]Y (i), k<[S}.
(L 1). a;€S

(5.8)

Proof: See Appendix A.4

Note that Expression 5.8 depends only on c¢,(-). Hence, it can be used to

determine the order of interdependence of a set.

Example 5.1 Using Theorem 5.1 one can show that O,(S) = 2, and O,(S) =3 if
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¢p(S) can be represented as (5.9), and (5.10), respectively,

cp(S) = o(T)=(1S1-2) ) i), [|S[>2 (5.9)
TCS 3;€S
[TT:’.'
a(S) = Y (T)-(IS|-3) c(T) (5.10)
B
£ SSI-3(S1-2) T [S[>3.
= a; €S

Clearly, when O,(S) = 1. the consequence of set S can be written as the sum-
mation of the consequences of its individual actions. By convention. O,(S) = 0
means that there is no other way to express ¢,(S). The following corollary is the

immediate result of the definitions of set-interdependence and order of dependence:

Corollary 5.1 Let 0 £ S; C A, 0 # S, C A, and S; NSy = 0. Moreover, let
Op(S1) = ki and Oy(S2) = ka. Then

i‘/[allf{kl,kg} S Op(sl U s-_z) S kl + kg. (511)

In some cases, it may be difficult to estimate the amount of dependence within
large sets of actions. Moreover, the computational requirements to evaluate a set
increase rapidly as the order of dependence increases. Hence. in some situations it
is beneficial to ignore higher order dependence. For example. Fishburn and LaValle
[31] restrict their model to dependencies within pairs of actions only. As is shown
in Sections 5.4 and 5.5. restricting the order of dependence can produce useful

connections between interdependence of sets and interdependence of actions.



CHAPTER 5. INTERDEPENDENCE EVALUATION 103

5.3 Evaluating Interdependence of Sets on a

Criterion

In the previous section. the amount of dependence within a set of actions was
defined. We now derive useful expressions to evaluate the interdependence of an
action and a set. and subsequently, generalize it for interdependence of one set and
another. In particular. we demonstrate how the amount of interdependence of two
sets can be expressed in terms of the amount of interdependence of their proper
subsets. Here. we consider only simple independence and interdependence. and
hence we assume that AY = (. However. the results are applicable to more general
cases. unless otherwise specified. For the sake of simplicity in notation, we denote
$p(S1.52 | 0) and S,(I,|0)S2 by ¢,(S,.S2) and S, I, S», respectively.

The following theorem gives an expression for the amount of interdependence
of an action and a set of actions in terms of dependence within individual actions.
Note that ¢,(S;,S,) is the amount of interdependence of S; and S, and is defined
according to (4.2). while A,(S) is dependence within the set S and is defined

according to (5.3).

Theorem 5.2 Let S = {a;. -+, aj,-.a,}. S C A\ {a;}. and ¢,(a;,S) denote the
amount of interdependence of action a; and set S. Then the dependence of a; and

S can be represented as follows:

$p(ai,S) = > Ap({ai}uT), (5.12)

0£TCS

where Ay({a;} UT) is defined according to (5.3).
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Proof: According to 4.2. when A% =0

dnla:.8) = cp(a: US) = (S) ~ c(d). (5.13)
But. based on (5.6)
c(S) =Y l7) + Ap(T). (5.14)
j€es TCS
ITI>?2

Substituting (5.14) into (5.13) gives:

Bp(ai.S) =D cp(F) + euld) + A (T)
JjES TCs
ITI>2
+ > AHalUT) - o)) - Ap(T) — cp(i).
0#TCS JES TCS
ITI>?
Hence,
bpla:.S)= > Ay({a;}UT).O (5.15)
0zTCS

A recursive expression for the amount of interdependence of an action and a set
can be useful in estimating the consequence of a set of interdependent actions. The
following theorem establishes a relation between the amount of interdependence of

a; and S,,, and of ¢; and S, 4,.

Theorem 5.3 Let a; € A and S,.,Sn+1 € A\ {a:i}. Su = {a1,a2,-**",aj,- -, a,}
and Spyy =S, U{ans1}. Then

¢p(ai3 Sn+1) = ¢’p(aiv Sn) + E Ap ({ai’ an+1} U T) . (516)

TCShn

(Note that the summation includes a T = 0 term.)
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Proof: According to 4.2. when A% =0
@p(@i, Snv1) = (S U {ai.ans1}) — cp(Sn U {an+1}) — cp(1). (5.17)
But, using (5.6):

& (SnU{aian}) = Y i)+ o) +om+1)+ S AL T)

J€ESn TCSa
T2

+ > AH{atuT)+ > Ay({ana}uT)

0£TCSn 0=TCSn
+ Z A, ({aicans 1} UT).
TCSn

and

o(SnU{ami}) = 3wl +en+1)+ 3 A,(T)

JESH TCSa

+ Z Ap({ans1} U T).

0£TCSn
Substituting into (5.17) gives:
Pp(@i.Sni1) = D Ap({a:i}UT)
0=TCSn
+ Y Ap({aianna}UT).
TCSa

or

$o(@:.Sna1) = Bp(ai,Sn) + S Ap({ai, aner} UT).0
TCSn

With sequential substitution of interdependence terms as in Theorem 5.3, one

can find a recursive expression for the interdependence of a set and an action. Let
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St = {ar, - ar} \ {a:}. Si_e = {a1. -, ake} \ {@i}, and S, = {@p_eqy, -+ ax} \
{a:}. Then, for every t < k (see Appendix A.5),

#p(ai, S) = #p(ai-Se—e) + D Y A ({a}UT,UT,). (5.18)
Ti1CSit— 0£T2CS:

For example, consider S5 = {a;,---.as}. If ¢,(a;.Ss) is known, where S; =

{ai.a2,as}, then

¢p(ai,Ss) = dp(ai.Sa)+ Y. Ap({ai,as}uUT)

TCS,s
[T I<I Sy |
+ Z Ap({ai.as} UT) + Z Ap({ai.as.as} U T).
T C S, TCS,s
ITI<iSs | I T1I<ISs]

The amount of interdependence of two sets can be obtained similarly.

Theorem 5.4 Assume S,.S, C A, and S; NSy = 0. Then the amount of interde-

pendence of Sy and S, is as follows:

$5(S1.S2) = Y Yo AT UT,). (5.19)
0¢T1gsl 0¢T2g52

Proof: See Appendix A.6.

For instance. the amount of interdependence of sets {a;,a.} and {a3,a4} equals

#o({a1,as}. {as.as}) = Ap(ar,as) + Ap(ar. aq)
+ Aplaz,a3) + Ap(az. a4)

+ Aplar,as.a3) + Ap(a,. az. ay4)
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+ Ap(alraZi- (14) + Ap(a27 (13,&4)

+ Ap(al,ag, a:,,a.,).

Similar to (5.18). there is a recursive expression for interdependence of two
sets in terms of interdcpendence of their subsets. Let S;. S» C A.S; # 0,S, #

0.S,nNS, =0.S,CS,. and Sf_, C S,. Then,

$p(S1.52) = ‘f)p(S;fS;) + Z Z Ap(T1UT,)
P=T1CS1\S; 0#T2CSa
+ > 3 Ap(T1 U Ts). (5.20)

0£TICS1 P£T2CS2\S,

where A,(.) is defined according to (5.3).

5.4 Relationship Between Interdependence of Sets

and Interdependence of Actions

One of the main difficulties in evaluating the consequence of a set of actions is mea-
suring the interdependence among its components. This issue has been addressed
by many researchers (for example, [31]. [112], [93]. [94]). In fact, decision makers
and analysts often ignore interdependence and use additive models to evaluate the
consequence of a set of actions because of the difficulty of measuring interdepen-
dence. Moreover, studies that do consider interdependence impose limitations on
its type or structure. Recently, however, as the importance of interdependence in
some applications was recognized, techniques were developed for estimating the

amount of interdependence among two or more actions [112].
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In this section, we propose several different approaches to testing whether ac-
tions, or sets of actions. are independent, and to evaluating sets of interdependent
actions. Furthermore. we establish useful connections among these approaches.
The relationships between independence of sets and independence of actions pro-
vide a basis for these procedures. For instance, to estimate the consequence of a
set, one can partition it into independent subsets such that the consequence of the
set can be represented as an additive function of the consequences of its subsets.
One can also decompose the set so as to minimize the number of interdependence

terms in the evaluation.

On the other hand. in some real-world applications only partial information
concerning the consequences of individual actions and subsets of actions is available.
For instance, it is possible that only the consequences of individual actions. and
of interactions for a few subsets, are available. Nonetheless, one can estimate the
dependence of actions using this information. The discussion in this section sheds

some light on these issues.

Recall that independence of an action a; with individual actions does not imply
independence of a; with the set consisting of their union. For example, it may be
that

ai(Ip | A%)a; and a;(I, | A®)ar, but ~ [a(I, | A%){a;, ar}].

This can occur when {a;,ai} has properties not shared by any individual action.
For instance, in the context of the WDL example. it could be that sites a;, a; and
a; are pairwise independent on the infrastructure criterion, but if all three sites
were selected together. a large common facility could be built for all sites to take

the advantage of economies of scale.

We address the interrelationship between set-independence and action-independence
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In two cases:

1. There is no restriction on the sign of synergy on the criterion.

2. Synergy on the criterion is either always non-negative, or always non-positive.

5.4.1 General Case: Interdependence Unrestricted

First, we make no assumptions about the sign of synergy of interdependent sets
of actions. The amount of interdependence may be zero. positive. or negative.
Using some strong conditions. useful relations between the interdependence of sets

of actions and interdependence between pairs of actions contained in these sets can

be established.

Interdependence can be a difficult property to understand as it does not pass
directly from sets to their subsets or supersets. For example. it is possible for an
action to be interdependent with some or all actions in a set, yet to be independent
of that set considered as a whole. This occurs when the values of the interdepen-
dence of an action with different subsets of a set “cancel”. For example. assume

that Ay(a;, a;) = —5. Ap(ai.ar) = 3. and Apy(a;. a;.a;) = 2. Then

bplai. {aj, ar}) = Aplai, aj) + Ap(as, ar) + Aplai, aj,ar) =0

Hence, a;1,{a;, ar}, but ~ [a; I, a;] and ~ [a; I, ai].

The following theorem establishes the relation between independence of a set
and an action, and independence of two actions. In particular, it is shown that to
adjoin a set of actions to either of a pair of independent sets such that independence

is preserved, the augmenting subset should be independent of
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1. the set it is added to. and

2. the union of the original sets.

Theorem 5.5 Let S.S' C A.SNS' = 0. Assume S| and S, partition S'. Then.
for any A® C A\ (SUS'), if S{(I, | A°)S, and S,(I, | A°)(S, US). then
S(I, | A%)S" iff S(I, | A%)S;.

Proof: Assume that
S(L, | A°)S, and Si(I, | A%)(S;US).

(1) Proof of S(I, | AY)S" == S(I, | A9)S;.
Since S(I, | A%)S’.

cp(SUA) — ¢,(A°) = ,(SUS UAY) — ¢, (S UAY).
Because, S, (I, | A%)S, it now follows that

(SUS UA% =
cp(SUA%) = cp(A%) + cp(S; U A®) + 65(S; UA®) — ¢ (A?).
(5.21)

On the other hand, because S,(I, | A%)(S; U S), we have

cp(Sa U A®%) — c(A%) = c(S; US, US U A®) — ¢,(S; USUA). (5.22)
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Substituting (5.21) into (5.22) yields
cp(SUA®) = cp(A%) = 5(S; USUA®) — (S, UAY).

which means, by definition.
S(I, | A°)S;.

(2) Proof that S(I, | A°)S; = S(I, | A%)S".

Since S,(I, | A°)(S] = S). (5.22) holds. Because S;(I, | A”)S;.

(S UA") — p(A°) = (S} US, UAY) — ¢,(S, UAY).

Substituting (5.22) into (5.24) yields

111

(5.23)

(5.24)

ep(SUSTUS, UAY) =, (SUS; UA%) = c,(S;US, UA®) — (S, UAC). (5.25)

On the other hand. S(I, | A°)S; implies
p(SUA") = cp(A®) = ,(SUS; UAY) — (S, U A?).

Substituting (5.26) into (5.25) gives

cp(SUA®) — ¢, (A°) = ,(SUS, US, UA®) — ¢, (S; US, UAY).

which implies by definition that

S(I, | A°)(S, US').o

(5.27)
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Theorem 5.5 can be interpreted as providing sufficient conditions for the indepen-
dence of two sets to be implied by the independence of one of them with a proper
subset of the other. and vice versa.

Now, we state a special case of Theorem 5.5 which shows what conditions are
required to preserve independence of two actions when additional actions are joined

to one of them.

Corollary 5.2 Assume actions a;.a;. and a; € A. and A° C A\ {ai.aj.ar}. If
a;(I, | A%ax and ap(I, | AY)(ai.a;) . then ai(I, | A®)(a;. ar) iff ai(L, | A%)a;.

Proof: Similar to Theorem 5.5.

The relation between inferdependence with a set and with one of its subsets

follows from the theorem for independence.

Corollary 5.3 Let S.5° C A.SNS =0 and A° C A\ (SUS'). Assume that
S| and S, partition S'. Then S and S| are interdependent given A° iff S and S’

are interdependent given A° prouvided that
Si(I, | A%)S, and S,(I, | A%){S; U S}
Proof: The proof is immediate from Theorem 5.5.0

In summary, unless more conditions hold, interdependence (independence) of one
set with another does not imply interdependence (independence) of the set with
any proper subset, and vice versa.

Note that dependence within a set of actions does not imply the dependence

within any of its proper subsets. For instance. for three actions it is possible that
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there is no interdependence within pairs of actions. yet dependence does exist when
three actions are selected. Figure 5.2 shows three different situations which may

arise in dependence of three actions and below is a numerical example illustrating

Figure 5.2.

\ng

(I). A, j)#0, A(i k)=#0, 2). Al k=0
P

r
A K)=0
P

(3). Combination of (1) and (2)

Figure 5.1: Kinds of Interdependence among Three Actions.

Example 5.2 Assume cp(t) = cp(j) = cp(k) = 2.
(1) If cp(2,7) = 5. cpli. k) = 3, cp(j, k) = 6 and cp(i. 7, k) = 8, then

Ap(a,-,a,-) = 1. A,,(ai,ak) = —1.A,,(a_,-,ak) =2, and A,,(a,-,aj,ak) =0

which corresponds to case (1) in Figure .
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(2) If cpl2.j) = cplt. k) = (4, k) =4 and c,(z.7, k) = 8. then
Ap(a", aj) = Ap(a,-,ak) = A,,(aj,ak) =0 and A,,(a,-,a,-,a;c) =2

which corresponds to case (2) in Figure 2.

(3) Finally, if ¢(2,7) = 5. ¢cp(i, k) = 3. ¢u(j, k) = 6 and cp(2.j. k) = 7, then
Ap(ai,aj) = 1. A,,(ai.ak) = —l.Ap(aj.ak) = 2. and Ap(a;,aj.ak) = -1
which corresponds to case (3) in figure 5.2.

Another consequence of Theorem 5.5 is a corollary that provides an alternative

way to assess independence or interdependence.

Corollary 5.4 Sets S and S’ are independent given A° C A\ (SUS') if S’ can be

partitioned into two subsets. S| and S,. such that

S(I, | A®)S,. Si(I,| A%)S, .and Sy(I, | A°){SUS }. (5.28)

According to Corollary 5.4. to demonstrate the independence of two sets, S and S’.
it is sufficient to find a partition of S’ into two subsets such that (5.28) holds. On
the other hand, according to Corollary 5.3, S and S’ are interdependent if any part
of (5.28) fails.

The following example demonstrates a possible use of Theorem 5.5 and its corol-

laries. In particular, it shows how Theorem 5.5 can help to find the amount of

dependence within all pairs of actions with partial information on dependence of

some pairs of actions.
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Example 5.3 Assume S = {a;,a:}, S" = {a3,a4,a5}, A°=0, and S(I, | AY)S".
Let Ay(as,a3) = Ay(as.as) = 2, Ap(as,as) = 0. and suppose that dependences
among more than two actions are all negligible (i.e. O, = 2). Find the dependence

within all pairs of actions.

According to Theorem 5.5 and Corollary 5.3. since S I, S’, one can partition S’

into S} = {a3} and S, = {a4.as5} such that
{a1.a:} I, {as}: {as} I, {as.as}; and  {a4.as5} I, {a;.as.as}.

Using the definition of set interdependence. and the assumption that dependence

of more than two actions is zero, we have
¢p({a1. a2} {as}}) = 0 = A,({a1.a3}) + Ap({az. as}) = 0. (5.29)

do({as}. {a4.a5}) = 0 = Ap({as, a4} + Ap({as.as} = 0. (5.30)

¢p({(L4, a5}. {al, as. (13}) =0 =
Ap({ar.ast) + Bp({es. as}) + Ap({as. as})
+AP( {Gl, a5}) + AP({a37 a5}) + AP({aﬂe (15}) = 0. (531)

Using (5.29), (5.30), and (5.31),

Ap({ay.a3}) = ~2. Ap({as,aq}) =0.
Ap({ar.as}) + Ap({a2, a4}) + Ap({ar.as}) = ~2.

Using the same procedure and partitioning S’ into {a3.as} and {as}. one can
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find that Ap({a1.as}) = =2 and Ap({a1,as}) = —Ap({az,as}).

5.4.2 Case 2: Unicity of Sign of Synergy on a Criterion

In real-world problems. criteria often have the property that actions, or sets of
actions, are either independent or always have synergy of the same sign. These
are called positive synergy or negative synergy criteria. Moreover, when there exist
both positive and negative synergies on a criterion. one can often decompose the
criterion into positive and negative sub-criteria: then evaluation of actions can be

carried out using each sub-criterion.

Building the set of criteria in such a way that all criteria are either positive
or negative makes it casier to derive useful connections between action and set
interdependence. Hence. utilization of the multiple criteria structure eliminates
some of the difficulties of evaluating a set of interdependent actions. This, in
turn, helps in implementing some efficient procedures to estimate the amount of
mterdependence. It is noteworthy that. in general. unicity of sign cannot be used
with utility or aggregated value functions. Throughout this section, we assume that
a criterion is either positive or negative. The following theorem shows that in the
case of unicity, independence of two sets implies independence of all their subsets;

in other words, in this case independence is hereditary.

Theorem 5.6 Assume that p € P is positive or negative. Let S C A,S' C A,
S#0,S #0and SNS =0. Then S I, S implies S; I, S; ¥V S; C S,
vS,CS.

Proof: Without loss of generality assume that p € P is a positive criterion. Assume
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that 3S; C S and 3 S, C S". such that ¢,(S;,S2) > 0. According to (5.20)

$p(S.S) = ¢p(S1.S2)+ Y >, Ap(TiUTy)
0£T1CS\S1  p#T,CS’
+ > > Ay(TL U To).

0#£T1CS  9£T.CS'\Sa

or

85(S-5) = $5(S1.52) + 6,(S\ 51.5) +4,(S.5'\ So). (5.32)

a b
Since S I, S, ¢,(S.S") = 0. Thus, for vanishing the right hand side of (5.32). at
least one of the terms a or b should be negative. But. this is against the assumption
that p is a positive criterion. Hence. S; and S, must be independent on criterion
p- O
According to Theorem 5.6 under umnicity of synergy. if two sets are independent.

then all their subsets must be independent.

[t follows from Thcorem 5.6 that for every S; C A and S, C A such that

SI N SZ = 01
~[S1I,S:) =~[S;I,S,] ¥S;2S;, and VS, 2 S,. (5.33)

In other words, interdependence of two sets implies interdependence of their super-

sets. The next corollary is an immediate consequence of Theorem 5.6.

Corollary 5.5 Let a; € A and S C A\ {a;}. Then a; L, S implies that a; I, S’
vS' CS.

In many decision problems, one wants to examine the independence of two sets

when the relations among some of their subsets are known. Let S denote the
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collection of all subsets of S with cardinality k. The following theorem indicates
necessary and sufficient conditions for independence of two sets to be implied by

independence of their proper subsets. under the unicity of the synergy condition.

Theorem 5.7 Let m.n > 0 and iz S € A,y and T € A, such that SNT = 0.
Then SI, T iff Ay(SUT) =0 and ¥S; € Sn—;). T1 € T(m-1).51 I, Ty.

Proof: The condition is necessary according to Theorem 5.6. which states that
S Ip T — S)_ Ip Tl \7’51 € S[ﬂ_lj and VTl € T(m-—l)-

To prove that it is sufficient. we must show that ¢,(S. T) = 0. According to (5.19).

q()p(ST) = AP(SI U Tl)
0#S,CS  0£T,CT

Because S; I, T, VS, € S(,_;yand T, € T(,—;). Theorem 5.6 implies
S.I, T, VSa€S;). T2 € Ty,

where ¢ <n — 1.5 < m — 1. Therefore. ¢,(S;,T;) =0 whenever S; CS.|S; |<
n—-1T; CT.|T, |<m— 1. But, because of the unicity of sign of synergy,

(fl)p(SLT[) =0= Ap(sl U TI) = (.
for any such S, and T';. Hence, (5.19) reduces to:

$5(S.T) = A,(SUT).
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But. by assumption. A,(SUT) = 0. Hence. ¢,(S.T)=0and SI, T. O

In summary. Theorem 5.7 shows that. in order to prove independence of two sets
Sand T, | S |= n. | T |= m, one has to examine n x m independence relations
among the n subsets of S(,_;) and the m subsets of T(,_1), and also show that
A,(SUT) = 0. For instance. to use this method to show the independence of
S = {ai.a1.a3.a4}. and T = {as. ag. ar}. twelve independence relations have to be
proven. as well as A,(SUT) = 0. The following corollary is the immediate result
of Theorem 5.7.

Corollary 5.6 Let a; = A and S C A\ a;. Then a; I, S if and only if a; I, S;
"\7,51 < S(n-l)- and AD({tl{} U S) = 0.

For instance. to show the independence of a; and S = {a..a3.as}. the following

relations must be proven:

a Ip {(13.(13}. a Ip {03.04}. a Ip {(13.04}.

Ap({ai.as.a;3.a4}) = 0.

Recall from (3.2) that the order of dependence on criterion p. Op, is the cardi-
nality of the largest subset T C A such that Ap(T) # 0. As explained previously.,
in some cases it is more convenient to restrict the order of dependence of a set.
The following theorem is useful for proving independence of two sets according to

independence of their proper subsets under a restriction on the order of dependence.

Theorem 5.8 Assume that the order of dependence on a positive or negative cri-

terionp € P is Op = k. LetS; CA. S; #0.i=1.---.n. and T; C A. T; # 0.
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j=1,---.m, and S; NT; = 0. Moreover, let | S; U T; |> k. Then the following

statements are equivalent:
(1), (Ui S:) 1, (U; T5)

(2). S: I, T;. Yi.j.

Proof: (1) implies (2) because, according to Theorem 5.6. if two sets are indepen-

dent then any pair of their subsets is also independcnt.

To show that (2) implies (1). assume that S; I, T;. Vi.j. Let § = (;S; and
T = U; T;. We have to show that ¢,(S.T) = 0. According to (5.19)

6p(S.T)= 3 Y. Au(S:UTy).

0£5,CS 0#T,CT

To demonstrate that this expression vanishes. we can show that all the inter-
dependent terms Ap(.) are zero. Since S; I, T;. Yi.j. then according to Theorem
5.6 under the assumption of unicity of sign Sy I, T, for any Sy C S; and any

T, C T;. Therefore.

3 S AMSsUT,)=0; Vij.
Q;—‘S‘lgsu' 0#’1‘):(_:’1‘,

On the other hand. the order of interdependence is k, and | S; UT; |> k. Hence
AP(S,‘ U TJ) =0 when ] S;u TJ' [> k.

Thus, all interdependence terms in (5-7) are zero and hence (U; S:) I, (U; T;). LY
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The following theorem is a useful way of recognizing independence or interde-
pendence of two sets. Recall that for any set S C A, the collection of subset.
#°(S) = {Si,....S;.....Sn}. is a cover of S iff |J;S; = S. Let ©(S) denote the

class of all covers of set S. and 6°(S) represent an element of O(S).

Theorem 5.9 Assumec that order of dependence on a positive or negative criterion.
peEP,isOp=k. Let SCA. TCA. andSNT =0. Then S I, T iff 36; € O(S),
and 35;- € O(T), such that for every S; € 8;, T; € H;-. |S;UT; |2k, and S; I, T;.

Proof: Immediate from Theorem 5.8. O

In summary. to show the independence of two sets it is sufficient to find two covers

for each set such that all pairs of sets. one from each cover. are independent.
Note that Theorem 5.9 implies that when O, = 2. then two sets are independent

iff all pairs of actions. one from each set. are independent. The following example

shows a simple application of Theorems 5.8 and 5.9.

Example 5.4 Let S = {a;.a3,a3.a4} and T = {as,a6.a7}. Suppose that the
following information is available concerning the relations among different subsets

of S and T:

(1) {a2.as. a4} I, {ar} and {a1.a4} I, {az},
(2) {ai.a2} Ip {as} and {as,as} I, {as}.
(3) {ai.as} I, {as,as} and {as, a2} I, {as}-

Suppose that O, = 3. Then according to Theorem 5.8. (1), (2), and (3) are,

respectively, equivalent to

(4) {ai.a2.a3,a4} I, {az}.
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(5) {01702303,04} Ip {Gs},
(6) {al.ag,aa, aq} Ip {ag}.

But (4),(5), and (6) imply that
{ala a3,0Q3, 04} Ip {Gs, ag. a?}-

Hence, when O, = 3. ¢,(SU T) = ¢,(S) + ¢,(T).

5.5 Additivity of an Interdependent Set

In this section. properties of a set of actions are explored to show how the con-
sequence of a set of interdependent actions can be represented in terms of the
consequences of its proper subsets. Here, the main objective is to propose an alter-
native approach for evaluating the consequence of a set of actions. Specifically. we
show how to decompose a set so that the consequence of the set can be evaluated
additively, as the sum of the consequences of the subsets in the partition, or such
that the number of interdependence terms is minimized. Recall from Section 5.2
that in general the consequence of a set of interdependent actions can be evaluated

using the following expression:

(S) =D i)+ D AT). (5.34)
i€S TCs
ITi>2

As pointed out in previous sections, estimating A,(.) is the difficult part of
evaluating the consequence of a set. Here we introduce alternative ways to represent

an interdependent set and to evaluate its consequence in a way that avoids the need
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to estimate all interdependencies in that set.

For sake of simplicity in discussion. we assume throughout this section the

following, unless explicitly stated, otherwise.

1. Actions are either independent or have simple interdependence. Recall that

two actions a; and a; are simply interdependent if A° = 0.

2. The sign of interdependence of actions on each criterion is either positive or

negative. i.e. the unicity of sign of interdependence holds for every criterion.

Later. we will show that these assumptions can be relaxed. with some modifications.

5.5.1 Additivity of An Interdependent Set: Definitions and

Concepts

As explained before. once of the basic assumptions in the conventional subset selec-
tion problem is that the consequence of a set of actions can be represented as the
sum of the consequences of individual actions. In other words, it is assumed that

for any set S = {a;..... a;.....am} C A,

(S) = Z cp(ai). (5.35)

a;ES

Usually, a set that satisfies (5.35) is said to be additive. In Section 5.2 we observed
that this assumption is not true for a set of actions with interdependence; one has
to use (5.34) to find the consequence of the set. In this section, we introduce new

definitions and techniques that generalize the notion of additivity of a set of actions.

We call a set of actions. S, additive if its consequence equals the sum of the

consequences of the subset in the partition of S. Recall that ¢ = {Sy,....S5;,....S,}
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is a partition of S iff §; # 0 Vj, Ny S; = @ and Ujey S; = S. Let ¥(S) be the
class of all partitions of set S. Then, the notion of additivity of a set S is defined

as follows:

Definition 5.1 Let® # S C A. Then S is additive on p with respect to i € ¥(S),

o(S) =D c(S;). (5.36)

When S is additive in respect to partition 3, then the cardinality of the largest
subset in 1 is called the degree of additivity of S with respect to 1. and is denoted
by Do(S | ). More spccifically,

Definition 5.2 Let 0 # S C A, and ¢ = {S,..... Sj.....5;} be a partition of
S such that (5.36) holds. Then the degree of additivity of S with respect to i on
criterion p s

Dy(S | ¢) = max |S;]. (5.37)
j=l,-q

Note that D,(S | ¢) is a property of a specific partition of S, 3. Hence, set S
may have different degrees of additivity for various choices of ¥ satisfying (5.36).
Moreover, additivity of a set S is defined according to a specific criterion p; the

degree of additivity of a set may be different for various criteria.

Clearly, when the consequence of S can be represented as the sum of conse-
quences of individual actions in S, then ¥ = {a;....,a;,....a,} satisfies (5.36),
and therefore, the degree of additivity of S on p in respect to % is one and vice versa.

In other words, D,(S | %) = 1 implies conventional additivity of S. on criterion p.

The following theorcm shows the necessary and sufficient conditions for a set of

actions to be additive in respect to a partition:
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Theorem 5.10 Let 0 #S C A, ¢ € ¥(S), ¥ = {S1,.-..55,....5,}. Then S is
additive with respect to ¥ iff

S,‘ISJ' for S,;#S;,'E?[J.

Proof: The condition is necessary according to the definition of additivity of set

S. Hence,

S;i L, Sy for j#37 €4 = Sis additive with respect to .

To show that it is also sufficient. note that if S is additive with respect to

then

= Z:CP(SJ)

Now assume that for some St and S; in ¥. Sk and S; are not independent. Then.
cp(Sk U St) # ¢5(Sk) + ¢p(S1).

It follows that because of unicity of sign

e(S) = ¢ (U Sjuskusl) > e S5) + el S;.)+cp(51)#}q:cp(5j).,

F\kd Akt j=1

which contradicts the assumption. Thus,
S is additive with respect to ¢ = §; I, Sy for j#j €%.0
According to Theorem 5.10, to represent the consequence of a set of actions as

sum of the conmsequences of its disjoint subsets, one has to find a partition with

independent elements. In the previous sections, we showed the required conditions
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for independence of two sets of actions based on independence of their proper
subsets. Here we assume that the sign of interdependence on each criterion is
the same and there is only simple interdependence among actions, enabling us to
examine the independence of two sets. using Theorems 5.7 and 5.8. It is noteworthy
that with these theorems one can determine the independence of two sets in more

general cases.

Clearly, there may be several partitions that satisfy the conditions in Theorem
5.10. Let llAE',,(S) C ¥(S) be the set of all partitions with respect to which S is
additive on criterion p. We want to find a partition in \IJP(S) that has the maximum
number of elements. In other words. we seck a partition in ‘ilp(S) such that the
cardinalities of its elements is minimized. Our interest stems from the fact that
most often it is easier to measure the consequences of smaller subsets of actions.
This is even more important in multiple criteria situations. when there are several
consequences on different criteria to be evaluated. Let ¥:3(S) € &,(S) be a partition
of S that satisfies (5.36) and has the mmaximum number of elements. We call 1,[)2(8)

the mazimal partition of set S on criterion p.

Later, we will show that for every set of actions there is one and only one
maximal partition on cach criterion. The cardinality of that maximal partition.
gbg(S), determines how much set S can be decomposed without violating (5.36).
Hence, it is called the degree of separability of S on criterion p. Since the degree
of additivity and the degree of separability have inverse properties, we denote the

degree of separability by D,(S). Hence,

Dp(S) = max [3].
$E¥,(S)

Clearly, a set may have different degrees of separability on different criteria.
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The following corollary is the immediate result of Theorem 5.10 and the definition

of degree of separability.

Corollary 5.7 Let @ # S C A. Then the degree of separability of S is the largest

integer k such that actions in S can be partitioned into k independent sets.

Recall that we have defined the degree of additivity of a set on a partition. .
as the cardinality of the largest subset in ¥. The overall degree of additivity of a
set . S. on criterion p is defined in respect to its maximal partition. and is denoted

by Dy(S).

Definition 5.3 The oucrall degree of additivity of a set on a criterion p, Dy{S), is
the cardinality of the largest subset of its mazimal partition. ¥°. In other words. if

P°(S) = {S87.....57..... 8} is the mazimal partition of S. then

2

(5.38)
Definition 5.3 indicates that D,(S) is the smallest degree of additivity on all

partitions of S satisfying (5.36). Hence.

Dy(S) = min Dy(S | ). (5.39)
ve¥,(S)

Note that the degree of additivity. D,(S), is different from the order of depen-
dence, O,(S), that was defined in Section 5.2. The former is the property of the
maximal partition of S on criterion p and is defined as the cardinality of the largest
subset in the maximal partition. The latter is the largest cardinality of any T C S

with non-zero amount of simple dependence. Nevertheless. it is clear that when
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Op(S) = 1, then Dy(S) = 1. Also. it can be shown that for any nonempty set of
actions D,(S) > O4(S).

As pointed out. the degree of separability and degree of additivity have inverse
properties. When [7,,( S) increases, D,(S) decreases and vice versa. Two special
cases require more explanation. When D,(S) = |S|. then D,(S) = 1. In this case.
according to Theorem 5.10 all actions in S are independent and the consequence of
S can be written as the sum of the consequences of its individual actions. On the
other hand, D,(S) = 1 or D,(S) =| S | implies that the maximal partition of S has
only one element. which is the set S itself. In this case. set S is called a completely
interdependent set. The concept of a completely interdependent set is an important

notion that we will use later in this section.

Definition 5.4 Let S € A.| S |> 2. Then. S is completely interdependent if S

cannot be partitioned into two subsets such that (5.96) holds.

We now propose the following theorem the proof of which follows directly from

the above definition and result of Theorem 5.9.

Theorem 5.11 Let S T A.| S |> 2. and O,(S) = k. Then S is completely
interdependent on p iff for every two disjoint subsets of S, Sy and S, such that
S51US>=8.35, CS and 35S, C S,. and |S;U S, < k. ~[S; L, S3].

The following corollary is the special case of Theorem 5.11 when, O,(S) = 2.

Corollary 5.8 Let S C A.| S |> 2, and O,(S) = 2. Then S is completely interde-
pendent iff for every two nonempty disjoint subsets. S and Sa, that cover S, there

ertst two interdependent actions, one in Sy and one in S,.
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The foliowing example summarizes the above discussion:

Example 5.5 Let set S = {a;,....as}, and O,(S) = 2. and suppose the set of

interdependent pairs of actions on criterion p is
{(a1.@a2), (as. as), (a4.as5). (as. ag)}-

Consider an arbitrary partition of S as follows:

7r/’l = {{Cl1. ag}. {(14, as5.dg, A3. (lg}. {07}}.

All elements of partition ¥, are independent. because there are no interdepen-
dent pairs of actions. from different subsets in the partition. Hence, according to

Theorem 5.10, S is additive with respect to .

The degree of additivity of S in respect to 4, is calculated as follows:

Dp(S | ¢n) = Maz{| {a1,ax} |.| {as. a5, a5. as. as} |.| {as} |} = 5.

However, %, is not the maximal partition of S because its second element (i.e
{as. as. ag, a3, ag}) can be decomposed into {a4, as. ag} and {as, ag} without violat-
ing the additivity of S. Moreover, this element is not completely interdependent.

The maximal partition of S is

7»[’;3 = {{al,az}, {04-05, Ge}a {03-08}7 {(17}}-
Therefore, Dy(S) =| 4" |= 4 and D,(S) = 3.

Even though O,(S) = 2 in the above example. the degree of additivity of S
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equals 3. In most cases. evaluating the consequence of a set of actions through
its maximal partition is easiest, because this partition decomposes the set into its
smallest possible subsets such that (5.36) holds, and evaluating smaller subsets is
easier. The following theorem shows that a partition is maximal when it satisfies

(5.36), and all of its elements are completely interdependent.

Theorem 5.12 Let 0 # S C A. Then 9J(S) is the mazimal partition of S on

criterion p iff ¥3(S) € ‘i',, and all elements of ¥3(S) are completely interdependent.

Proof: We first prove that if ¥J(S) is maximal. then all elements of ¥J(S) are

completely interdependent.

Assume that drg(S) is maximal. Suppose that 35, € d)g(S) such that S. is not
completely interdependent. Then according to Definition 5.4 and Theorem 5.11. S,

can be partitioned into two subsets. S., and S., such that

cp(Se) = ¢p(Se;) + cp(Ser )

Hence.

olS) = T el Si) + col Se)-
Jj#e

= Z CP(SJ) + CP(Sex ) + cp(Se-_')
ife
Hence, the additivity of S is maintained. implying that 3(S) is not maximal, which
contradicts the initial assumption.
Now, we prove that if all elements of ¥2(S) are completely interdependent then

d»g(S) is maximal. When every element of ¢g(S) is completely interdependent.

then according to Definition 5.4, none of them can be partitioned into any two
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independent subsets. Hence. 5(S) is the largest partition that satisfies (5.36).

Therefore, $2(S) is maximal, completing the proof. O

Note that in Example 5.5 all the elements of z/zg are completely interdependent.
Hence, this partition is maximal. On the other hand, in this example, the second
element of partition ; is not completely interdependent and can be partitioned into
two independent subsets. Therefore. this partition is not maximal. Obviously, there
may exist several completely interdependent subsets for a set of actions. However.
we are interested in finding the biggest completely interdependent subset of a set of
interdependent actions. because, according to Theorem 5.12. the cardinality of the
biggest completely intcrdependent subset indicates the overall degree of additivity
of a set. The following theorem shows that for cvery set of actions. there is only

one maximal partition on each criterion.

Theorem 5.13 Let® # S C A. Then there is one and only one mazimal partition

of set S on each criterion.

Proof: Let ¢ be the maximal partition of S. Assume that z/;g is not unique and
there exists another partition 1/;2 that satisfy (5.36) and | 12)3 [=] ¥3 |. We prove
that 1,2)3 and wg are identical by showing that all elements of these two partitions

are identical.

Consider a subset 5° € 4. We show that if ¥ and 1[)2 both satisfy (5.36) and
| 1[13 |=| 11;2 |, then there exists a subset S° € 1,[!3, identical to S°.

According to the necessary condition of Theorem 5.12, if ¢g is maximal, all the
elements of z,lrg should be completely interdependent. On the other hand, if Izl;g | =
5], then all the elements of xﬁg must be completely interdependent. Because,

otherwise, if one element of 1[12 is not completely interdependent, then according to
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the sufficient condition of Theorem 5.12 this element can be partitioned into two

subsets without violating {5.36), and hence,
| 4 1>1 %5 |,

which contradicts the assumption. Hence, all the elements in ¢2 and 1&3 are com-

pletely interdependent.

Moreover, since 7, and J»g must satisfy (5.36). according to Theorem 5.10, all
the elements in 1/:2 and all the elements in zz’g are independent of each other. Note
that because of the unicity of sign. the independence of two sets S; and S» indicates
that

Aa; €85 Baj €5y such that ~ (a;Ia;j).

Now. we show that for every S € ¥ there exists S, € 1,213 identical to S;. For
this purpose, we show that all the elements of S, and S, are the same. Consider
a; € S, find aset in z[r;,’ that contains a,. Call this set S,. Because. S} is completely
interdependent, there is another action a; in S; that is interdependent with a,.
Action a; should also be in S; because according to the above discussion, all the
elements of ¥° should be independent of each other. In the same way, one can show
that every action that is included in S; should also be in set S,. Hence, S; and S,

are identical.

Similarly, it can be proven that for any set in ¥ there is an identical set in z[;g.

Hence, 4° and 1,!30 are identical and the proof is complete. O

According to Theorem 5.13, the maximal partition of every nonempty set of
actions is unique. For any real number z, let |z| denote the greatest integer which

is less than or equal to z. The following theorem establishes a lower bound for the
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overall degree of additivity of a set.

Theorem 5.14 Let @ # S C A and ¥ be the mazimal partition. Then,

Proof: Let ¢ = {5,..... Sienen, S.}- Since Dp(S) is the largest cardinality of all

sets in partition ¥°. then:

31 551< Dy(S)- 143 .
J

| S I< Du(S)- | 4 |-

S|
DP(S)Z[|¢3]J'D

The following algorithm determines a maximal partition of a set of interdependent

actions. In this algorithm Fi. .k =1..... q denotes the set of actions interdependent

with &. For instance. in the Example 5.5, F5 = {as.a¢}.

Begin Procedure
Find the maximal partition of S = {a1,...,8ai,....an}
j:=1%;:=0,D:=8
WHILE: <! D |
CONSTRUCT F; for q; € D
LET ¢; = K
FoRA=i¢+1to|D]|
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IF ¥; N Fi. = 0 then end
ELSE
LET ¥ =y U Fi U a; U ag
END For
IF ¢; = F;, then ¢; = a; U F;
LETj=75+1.D:=D — ¢;
END

The collection of 4, is the maximal partition of S.

End Procedure

5.5.2 Additivity of a Set and Graph Theory

In this section, we shed some light on the relationships between concepts intro-
duced in this section and similar concepts in the theory of graphs. The concept of
additivity of a set of actions is similar to the notion of a connected graph and stable
set (independent set ) in graph theory. For a graph G(V. E). where V' denotes the
set of vertices and E the set of edges. a connected subgraph is a set of vertices such
that there is a path between any pair of vertices. and a stable set of vertices is a
subset W of V' such that no two elements of W are connected.! A set W with
maximum number of elements is called the mazimum stable set and the cardinality
of the maximum stable set is called the order of stability of graph G. A standard
problem in graph theory and combinatorics is to find the maximal stable set of

vertices for a given graph. In general. this problem is difficult to solve [16].

A set of actions with binary interdependence. i.e. with O, = 2, can be repre-

L For a detailed description of graph theory concepts, refer to [16].
*Recall that when the order of dependence is two. Ay(S) =0 for [S| > 3.
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sented as a graph in which nodes represent the actions and existence of edges be-
tween nodes represents the binary interdependence relation between actions. Hence.
for every set of interdependent actions there exists a corresponding graph. Finding
the maximal partition of a set is equivalent to partitioning the nodes of a corre-
sponding graph such that no edge joins two different elements of the partition. and
every node in each element of that partition is connected to at least one other
node. Moreover. every completely interdependent subset of a set corresponds to a
connected subgraph of the corresponding graph and vice versa. For example Figure

5.2 shows the corresponding graph of set S in Example 5.5.

© ( (o)
@ | (2

O

Figure 5.2: Graph Corresponding to Example 5.5

The concept of hyper-graph ? can be employed to represent a set of actions
with higher order of dependence. For instance. if in Example 5.5 actions in sets
{@s.a3.as} and actions in set {a4.as.as} are interdependent with order of depen-

dence 3. then the corresponding graph is shown in 5.3.

The following theorem establishes a relation between order of separability of a

set of actions and order of stability of its corresponding graph.

3For a set S = {a;..... dm} and a famiy E = {Ey..... . E;..... E.} of subsets of S. H =
(S.E) s a hyper-graph if £, £ @ for j=1...., eand|J; E, =S.
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Figure 5.3: Hypergraph Corresponding to Example 5.5

Theorem 5.15 Let 0 # S C A. O,(S) = 2, and suppose the interdependence
relation on actions in S is transitive. Then the order of separability of S equals the

order of stability of the corresponding graph of S.

Proof:

Let D,(S) and «(S) denote the degrec of separability of S and order of stability of
its corresponding graph. respectively. Recall that according to the definition «(S)
is the maximum number of nodes (actions) such that no two of them are connected
(interdependent). On the other hand. D,(S) is the cardinality of the maximal

partition of S.

Since, all the elements in the maximal partition, ¢g(S), must be completely
interdependent, and since according to the assumption all interdependence relations
in S are transitive, from each element of 1{)3(8), only one node can be selected for
inclusion in the corresponding a(S). On the other hand, since all the elements of
P3(S) are independent. from every element of ¥o(S) one node can be selected in
a(S). Therefore, because a(S) is the maximum stable set, for every element of
¥9(S) there is one and only one node in the corresponding stable set. Therefore.

|D,(S)| = a(S). completing the proof. O
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Note that in general when interdependence is not transitive, the above theorem

does not necessarily hold. For instance, in Figure 5.2, «(S) =5, and | #3(S) [= 4.

5.6 Summary and Conclusions

This chapter addressed general procedures to evaluate the consequence of an in-
terdependent set of actions. Different approaches were introduced to measure the
interdependence of two sets of actions according to the amount of interdependence
of their proper subsets. The order of dependence of a set of actions was formally
defined and a practical method was presented to determine the order of dependence
of a set of interdependent action. Furthermore, several different approaches were
proposed to determine whether actions. or sets of actions. are independent. Ac-
cordingly, various techniques were proposed to evaluate the sets of interdependent

actions.

Throughout this chapter. useful relationships between independence of sets and
independence of actions are developed. Using the concept of additivity of a set,
an approach was introduced to evaluate the consequence of a set according to its

independent partitions.

The theory of interdependence introduced in this chapter, and the preceding,
can be used in subset selection problems for MADM, when there are small number
of actions, as well as in MOMP, when there are a large number of actions. In the
next chapter we propose a general approach in the MOMP framework to solve a

multiple criteria subset sclection problem under interdependence of actions.



Chapter 6

Formulation and Solution

Methodologies

6.1 Introduction

In the previous chapters. several techniques were proposed to evaluate the conse-
quence of a set of interdependent actions. This chapter is mainly concerned with
the formulation of a subset selection problem under interdependence of actions and
solution methods for this problem. Throughout this chapter. we assume that one
can examine and estimate the interdependence of actions on each criterion, using

the techniques presented in Chapter 5.

The organization of this chapter is as follows. Section 6.2 deals with the state-
ment and formulation of the problem of selecting a subset of actions from a large
discrete set of actions. Section 6.3 discusses existing approaches to solve this prob-
lem and explains the main advantages and disadvantages of each approach. Then,

Section 6.4 discusses the problem of dominated solutions in Goal Programming

138
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(GP) models. Subsequently, two solution methodologies are proposed in Sections
6.5 and 6.6 to overcomc some of the shortcomings of current GP approaches. Fi-

nally, appropriate conclusions are drawn in Section 6.7.

6.2 Problem Formulation

Recall that A is the set of actions, P is the set of criteria. and ¢}, is the consequence

of action a; according to criterion p. Define the binary variable z; by

{ 1 if q; is sclected:
r; =

0 if a; is not sclected.

Without loss of gencrality. assume that all criteria are to be maximized. A

multiple criteria subset selection problem is expressed as follows:

|P}
Maximize f,(z) = Z cpTi YpeP.
p=1

Subject to :
z € X,
:::;G{O,l}, £=1|A|.

where X denotes the feasible decision set. For example, in the m-best action prob-

lem addressed in Chapter 3.

Now, let L:f denote the set of subsets of actions with order of dependence %
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according to criterion p.! For instance. in the WDL example in Chapter 4, we have

LY =0 Vk=1.2.3:

Lg = {{0.4, (15}, {al‘.a'-’}}; Lg = {{a4’ (15}}; and
k
L,=0YpeP for k>3.

According to our definition of interdependence. a general subset selection prob-
lem under interdependence of actions with resource constraints. when O, = K. is

formulated as a Multiple Criteria Zero-One (MCZO) problem as follows:

(A
(Q1l) Maximize f,(z) = Zc:,z; + Z AL(S)- (H x;)

i=1 SeL} a;eS

+ D AL8)- (H :c,-)

SeLj a.€S

+ ...

+ 3 AL8)- (H :z:,-), Vp e P,
SeLk a,ES

Subject to:
r € X,
.'Z:;E{O.l}. ‘i=1,2,...,lA|,

where ¢, is the consequence of action i according to criterion p, and Ap(S), defined
according to (5.3}, denotes the amount of simple dependence within set §. Problem
Q1 is a general mathematical form in which if all actions in S are selected, then

[Ma;eszi = 1 and A,(S) will be added to the overall consequence of criterion p,

 For definition of order of dependence refer to Section 5.2.
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fp(z). Program Q1 can be rewritten as,

[A] K
(Q2) Maximize f,(z)= Zc;;c; + Z Z Ay (S) - (H :ci) : VpeP

i=1 k=2 SeL} CHN)
Subject to :

z € X,
1:;6{0,1} t=1.2,....|Al

For example. when O, = 3. the objective functions of (Q2) can be stated as

lA]
Maximize f,(z) = > cizit+ Y.  Ap(i.flzzi+ Y. Api.j. k)z;ze: Vp € P.
i=1 {a.‘vaj}ELg {a..aj,ak}EL;",
(6.1)
where Apy(z,7) and A,(:.j. k) is the amount of simple dependence within a;.a;.
and within a;, a;. and ai. respectively. Thus. a multiple criteria subset selection
problem under interdependence of actions is formulated as an MCZO problem with

some nonlinear terms. Nonlinearities in (Q2) may cause some difficulties. The next

subsection deals with removing the polynomial terms in (Q2).

6.2.1 Removing Nonlinearity

Most theory and procedures of integer programming have been developed for the
case of linear objectives and constraints. Hence, it is useful to find an equivalent
linear problem for (Q2). Since all z; in (Q2)are restricted to be zero or one, the

nonlinear terms can be removed easily.

For each S = {a;,..... Qij,..., 8} € L§ for any & and p. define

Ys =z .20y o2y - 24 (6.2)
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and add the two following constraints:

oy Freetzy et ~Ys < k=1, (6.3)

—I; — —e—zy +EYs <0, (6.4)

1 - Ty

i

where Ys € {0.1}. These two constraints ensure that Ys takes the value of one iff all
actions in S are selected. Hence, to convert (Q2) to a linear zero-one problem, one
new binary variable and two constraints must be added for each interdependence
term.

Glover and Woolsey [38] proposed to substitute polynomial cross-product terms
by a continuous variables rather than by integer variables. They show that these

continuous variables automatically take zero or one values.

Similarly, we can change the variable Ys to a continuous variable by replacing

(6.4) with the following set of constraints®:
Ti; >Ys. V¥V a;; € S. (6.5)
where Ys > 0. To demoustrate this idea, consider the following example:

Example 6.1 Suppose that a subset selection problem is given as follows:

Al
Maximize fl(li) = ZC‘IIZI' + Al(l,Z)le'_) + A1(2, 3,4)223324,
i=1
Al
Maximize falz) = Z chTi + Aa(2,3)z0z3 + As(2.3.4)z2z3z4,
i=1

Subject to :

*Note that Glover and Woolsey's [38] procedure is independent of the number of objectives.
Hence, their procedure can be applied to a multiple objective case.
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reX,
z; € {0,1}, ¢=1,2,....|A|

This problem can be converted into a linear integer program as follows:

[Al
Maximize fl(Z) = ZC‘131+A1(1.2) YLZ +A1(2.34) Y_)g_.;.
T2 L£2T3 T4
Al
Maximize fa(z) = ) chzi+ As(2.3) Yoz +A5(2.3.4) Yass.
=1 ~ S~
a3 Taz3zy

Subject to:

le.?-. },2.3.4 Z 0-,
r € X,
z; € {0,1}, Va:€A.
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In general, a subset selection problem in MCDM under interdependence of actions
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can be formulated as a linear mixed integer program,

(Q3)

Subject to:

Maximize fp(z) =

Al K
Sz +3 3 AL(S)-Ys; VpeP

=1 t=2 SeLk

Yozi-Ys<|S| - 1. VS € LE vp. k.
a;ES

1‘:‘62 Ys., Yz; € 5. VS € L:j, Vp. k.

z e X,

z; £ {0.1}. Ya; € A.

Ys >0. VSeLivp.k
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where Ys is defined according to (6.2). The following sections review some of the

solution approaches available to solve (Q3) and explain their main advantages and

shortcomings. Subsequently. two solution methodologies are proposed.

6.3 Solution Approaches

One could choose. for instance. one of the following three general approaches to

solve Problem Q3 (see also Chapter 2 for a review of solution techniques):

l. Assess the utility function of the DM to aggregate all objectives into one;

then solve the single objective problem.

2. Solve a vector optimization problem to find the set of efficient solutions.

3. Use a GP approach.
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Each of the above approaches has its own strengths and weaknesses. Assessing
the DM’s value function is quite difficult and may involve a great deal of subjectivity.
this is especiaaly critical when the number of criteria is large. In vector optimization
there are two main difficulties. First. the set of efficient solutions is usually large
so. after using this method. the DM still faces a difficult problem of selecting the
best solution. For example. Ruhe [107] shows that for a particular class of bi-
criteria transshipment problem, there are 2" supported efficient solutions, where n
is the number of nodes. Second. due to the non-convexity of the decision space
in (Q3). the set of unsupported efficient solutions in a MCZO problem may be
quite difficult to obtain (see Chapter 2). Even for class P of the combinatorial
problems such as assignment problem in which the unimodularity property holds
and the integer solutions can be found by solving linear programming problem.
the Geoffrion’s theorem cannot find all efficient solutions. In fact, most MCZO
mcthods are applicable only to small problems [127]. Moreover, as pointed out in
Chapter 3, when one wishes to select a subset of actions, the individually dominated
actions should not be removed first. since there is a substantial possibility that.
under some value functions. a subset including some dominated actions may be
the best alternative (subset of actions). In the presence of interdependence. this
kind of occurrence becomes even more likely. leading to a large number of decision

variables in the MCZO problem.

GP is the most popular method in MOMP because of its combination of validity
and acceptance by decision makers. It has been used widely in many different areas
of application. White [134] surveyed multiple criteria optimization publications and
found that 280 out of 400 papers involve variations on GP techniques. The main

strengths of GP were described in Chapter 2.
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Hence, GP can be considered as a suitable approach to solve (Q3). However,
conventional GP is not without difficulties. GP is often used to select the best alter-
native according to the aspiration levels and priority of objectives specified by the
DM. However, in many situations the DM wants only to find some good solutions
to choose among, possibly using qualitative criteria [86]. Moreover, the optimal
solution of a GP problem may be dominated. The following section describes this

i more detail.

6.4 Dominated Solutions in GP Problems

In spite of the popularity and the many recognized advantages of GP. this method-
ology has been criticized by researchers from several aspects. As explained in
Chapter 2, one of the difficulties in GP is that the resulting optimal solution may
be dominated. In what follows, we discuss the issue of non-dominated solutions
in GP. in more detail. First. we present alternative GP formulations. Suppose
that P = {p;,....pj-.... pipi} is the set of criteria. For sake of simplicity in nota-
tion. assume that the importance of the criteria decreases according to the order of

their subscripts. Then the multiple objective problem Q3 can be formulated as a

lexicographic GP problem as follows:

(Q4) Lex. Minimize d=(d;.....d;,....d))

Subject to :
Al K
ZC;,:L',' +Z Z AP(S)Ys+d; —d:—‘:GP; Vpe P,
i=1 k=2 SeLs
Sz ~Ys <|S| -1, VS € L}, Vp, k,
a,ES

z; > Ys. Vz; € S. VS eL;, ¥p.k,
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T e JY-
z; € {0.1}, Ys > 0.

where d; and df are negative and positive deviations of solutions from the goal on
criterion p, Gp, and the rest of the notation is the same as in Q3. Similarly, the
Archemedian GP model of (Q3) is given by.
iP|
(Q5) Minimize prd; .
p=1
subject to the same set of constraints as in (Q4). In this problem. w, is the weight

of negative deviation from G,. Similarly, the associated Chebyshev GP formulation
of (Q3) is.

(Q6) Minimize (ma:z:{wldl‘._ ceewpdy ,1u|p|d|‘p|}) .

subject to the same set of constraints as in (Q4). Now. we define the concept of

GP-efficient solution as follows:

Definition 6.1 Let S he any solution to a GP problem formulated as (Q4), (Q5).
or (Q6), and let d; (S) be its associated negative deviation from the goal on criterion
p. Then S is a GP-efficient solution if there does not ezist another feasible solution,
S°. such that

d, (5°) < d; (S). Vp€ P,

with at least one of the inequalities strict.

Clearly, when a solution is GP-efficient, decreasing its deviation from goal on one

criterion leads to an increase in the deviation from goal on at least one other
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criterion. The following theorem shows that the optimal solution of a GP problem

i1s GP-efficient.

Theorem 6.1 Let S° be an optimal solution to GP problem Q4 or Q5. Then S~
is a GP-efficient solution. Moreover. let H be the set of optimal solutions to (Q6).
Then there ezists a solution S™ € H such that S is GP-efficient.

Proof:

We first prove that if S° is an optimal solution of (Q4), then 5= is GP-efficient. Let
5" be an optimal solution of (Q4) and let S* be any feasible solution to the vector
maximization Problem Q3. Suppose that the negative deviations of solutions S*
and §' from the aspiration levels are (di.....dp.....dp,) and (afl,...,d;,,...,dipl).

respectively. For simplicity in notation. assume that the criteria are listed in de-

creasing order of importance in the lexicographic GP problem.

In lexicographic GP. first the deviation from the most important criterion is
minimized; if there arc multiple optimal solutions. then in the second stage the
deviation on the second most important criterion is minimized (without increasing
the first deviation), and so on. Hence. dj is the minimum deviation from the most
important goal which is obtained by solving the corresponding single objective
problem. Therefore, d] < d,. If d; < d;, then S' cannot dominate $=. Thus, S~
is GP-efficient. If dj = d;, we move to the second level of priority. Since dj is the
minimum deviation from the goal without worsening the first priority, thus dj < d,.
Similar to the first step. if d5 < dj, the proof is complete. Otherwise, we move to

the third priority. The rest of proof is similar to the first and second steps.

Note that if there are no optimal solutions at one stage, p, then the values of

the remaining deviations. dp;.1, dpy2, . . .. djp can be fixed and the proof for this case
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is complete. Hence, an optimal solution to (Q4) is GP-efficient.?

Now suppose that S* is an optimal solution of Problem Q5 and let its negative
deviations from the aspiration levels be (dj,....d;,... +djp)- Suppose S* is not
GP-efficient. Since the set of feasible solutions is finite, there exists a solution for

(Q3) . S', with negative deviation (d;..... d,,....d ) such that,

d,<d;. VpeP. (6.6)

with at least one inequality being strict. Since in (Q5). w, > 0. (6.6) implies that

{P| [P]

Z wp([; > Z wpd;,.
p=1 p=1

contradicting the assumption that S~ is optimal. Hence. the optimal solution of
(Q5) is GP-efficient.*

Finally suppose that H is the set of optimal solutions of (Q6). We show that
there exists a solution in H. called S*. which is GP-efficient. Let A~ be the value

of the optimal solution of (Q6), i.e..

h™ = min (ma:z:{wldl ..... Wpdp. . . .. w|p{d|p|}) . (6.7)

Suppose that there docs not exist any optimal solution in H, which is GP-efficient.
Let § € H be an optimal solution of (Q6) that is not dominated by another solution
in H.

Since the feasible space is finite, the set of GP-efficient solution is not empty.

Hence, if 5 is not GP-efficient, then there exists a GP-efficient solution. § ¢ H

3 This part of proof is similar to the proof of theorem 1 in [58].
*This part of proof is similar to the proof of generating efficient solutions in weighted approach.
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whose negative deviations are {di,.... dp, - .-+ djp} such that

d, < d, ¥p€P. (6.8)

with at least one inequality strict. But, because A" is optimal value of (Q6), (6.8)
implies that S is an optimal solution of (Q6) (i.e. § & H), contradicting the
assumption. Hence. there exists an optimal solution of (Q6) that is GP-efficient.®

O

Therefore. the optimal solutions of (Q4) and (Q5) are GP-efficient and at least
one of the optimal solutions of (Q6) is GP-efficient. However. a GP-efficient solution
1s not necessarily an efficient solution of the original multiple objective Problem Q3.
Nevertheless. it is useful to examine the conditions for which a GP-efficient solution

1s an efficient solution of the original problem.

Let f;(z) denote the optimal solution of multiple objective problem (Q3) on
criterion p and let 5™ be the optimal solution of corresponding GP problem with 4~
and d as negative and positive deviations on criterion p. Clearly. when all negative
deviations of the GP-efficient solution are nonzero (ie. when d;~ >0 Vp € P).
then the GP-efficient solution is also an efficient solution of (Q3), because, in this

case, the specified aspiration levels are not attainable and fi(z) < Gp. Therefore.
filz) =Gp—d;", Vp e P, (6.9)

which indicates that thc optimal solution of the GP problem. S*, is an efficient
solution of (Q3). Otherwise. if d;* = 0 for some p. then f;(z) > Gp ~d;" + d7”

or f;(z) > Gp +df~. implying that 5* may be dominated.

% This part of proof is similar to the proof of Theorem 14.15 in [118].
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Hence, a GP-efficient solution of (Q4), (Q5) or (Q6) is an efficient solution of
the original problem. (Q3). if the optimal solution of the following problem is zero.

|P|
(Q7) Maximize q= Y4,
p=1

Subject to:

Al K
Z_;c;;z:,- +3 > AS)- (H 1:,-) — & =G, —d;" +d”.

k=2 SeLg a,&S
YpeP.

3, > 0.

with the rest of constraints as in (Q3). If the optimal solution of the above program

is positive, then there exists one criterion p such that

A K

Zc;zi + Z > AL(S)- H 13{) >Gp—d," +d;".
=1 k=2 SeL; a;ES

indicating that objective function p can make its current solution on criterion p

better without worsening any other criteria. On the other hand, if the optimal

solution of (Q7) is zero. then the GP solution is non-dominated because. f;(z) =

Gp,—d, YpeP.

In the next two sections. two variations of zero-one GP method suitable for prob-
lems with interdependence of actions are proposed to overcome the aforementioned
difficulties of GP. The next section presents a method combining lexicographic
GP and vector optimization that generates a subset of non-dominated alternatives
(subsets of actions). Then. Section 6.6 presents a modified GP method based on a

combination of Archemedian and Chebyshev GP techniques.
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6.5 A Modified Lexicographic GP Method

As described in Chapter 2 one type of GP is lexicographic (preemptive) GP in
which the criteria are in priority order. In lexicographic GP, satisfying the first
priority goal is considered to be much more important than satisfying the second
one., and so on. This section proposes a modified GP method that generates a
subset of efficient solutions. In the proposed method. first a lexicographic GP is
solved. and then its solutions are used in a vector optimization problem to find a

subset of efficient solutions.

In general, the solution of a lexicographic GP Problem may require as many
as |P| stages. in which one goal is tried at each stage. Hence. the most important
criterion is minimized first: if it has multiple optimal solutions, the second step
is started in which d, will be minimized without worsening achievement on the
first goal. and so forth. The sequential solution is complete as soon as the optimal
solution of any stage is unique. Therefore. in lexicographic GP it is possible that

some lower priority goals will never be taken into account.

One of the advantages of the lexicographic zero-one approach is that the problem
can be solved using a sequence of zero-one GP problems. This allows one to use any
zero-one programming routine so that models of the same size as single objective

zero-one problems can be solved (see [57] and [59] for details).

Solving (Q4) often leads to a unique solution that depends on the aspiration
levels and goal priorities. This solution may be dominated [140]. As explained
earlier, when a DM faces a complex problem such as subset selection under interde-
pendence of actions, she or he may be willing to consider more than one attractive
solution in order to rcexamine and select among them. This way other criteria

that are difficult to state as mathematical functions can be included. enabling the
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DM to select the best alternative according to both qualitative and quantitative
measures [92]. On the other hand, presenting all efficient alternatives to the DM
through vector optimization may not be useful. In fact, due to the huge number of
non-dominated solutions in practical problems, only those techniques that generate
a small and representative portion of non-dominated solutions can be considered

successful [59, 144].

A lexicographic GP technique can be modified to obtain some efficient solutions
that in some sense represent the set of all efficient solutions. We present the pro-
posed method for two cases: 1) when the optimal solution of (Q7). ¢". is zero. and

2) when ¢~ > 0.

6.5.1 Casel: ¢" =0

As described in the previous section. when the optimal solution of (Q7), is zero.
the GP-efficient solution is non-dominated. Thus. if ¢* = 0, we need only to find

some other representative efficient solutions.

To obtain other efficient solutions. when ¢* = 0. the DM is asked first to change
the levels of goals on all or some of the criteria. Suppose the DM decomposes the
set of criteria into two disjoint subsets P;, and P,. The subset P; is the set of
criteria that can be degraded or acceptable as they are, subject to improvement on
one or more criteria in P,. ¢ Moreover. suppose that 9p: 0 < gp S 1, is the level of
degradation on criterion p € Py, and let g5, 0 < g, < 1, be the level of improvement

on criterion p € P, which have been specified by the DM. Consider Problem Q'4

®Nate that since the solution is already efficient, it is impossible to improve all the criteria.
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below.

(Q'4) Lex. Minimize d=(d].....d],....d;

Subject to :

(A
Zcz,+ZEAP(S ) Ys+dy —df =Gy(l- Vpe P,
k-"SeL"
Al
Zczz+ZZA )-Ys +d; —df = Gp(1l+5): Vp € P,
')SeLk

with the rest of constraints similar to (Q3). Recall that in the above program.
Gp is the goal on the pth criterion for the initial lexicographic problem. Q4. As

discussed in the previons section, solving (Q'4) gives an efficient solution when

Gp(l —gp) > f,(2) Vp € Py, and
Goll+75) > f3(2) vp € P,.

But the optimal solution of (Q4) is efficient. Thus. G, > f;(z) Vp € P, which
implies that G,(1 + 75) > f;(z) ¥Yp € Pa. Therefore. to ensure that the optimal
solution of (Q'4) is efficient. it is required that Gpgp < Gp— f5(z), 0or gp < -PT?L
Vp € Py, where d;~ is the negative deviation of optimal solution of Problem Q4
on criterion p. Hence. in the second step, the DM sets the .changes on the goals in

order to find another efficient solutions.

Since the efficient solutions obtained from solving (Q4) and (Q'4) are based on
the order of importance of criteria and the aspirations levels, one of these solutions
is either optimal or necar-optimal based on the DM’s value function. Therefore,
other efficient solutions close to these two efficient solutions can be considered as

an attractive subset of efficient solutions, which most likely includes the optimal
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solution.

In what follows we show a simple procedure for finding some attractive efficient
solutions close to the optimal solutions of (Q4) and (Q'4), according to a given

distance metric. These are called adjacent efficient solutions.

According to Geoffrion’s Theorem [35], every optimal solution to the following
program for different value of A\, A, € A = {A € RIFl[}, > 0. Zg:'l Ap = 1} is

efficient:
Maximize Y A, fp(z). (6.10)
peEP
subject to the same sct of constraints as in (Q3). Let z' = {z]..... Zyeo oo Zjp}
and 2° = {z}.....22. ... zfp(} be the criterion vector of optimal solutions of (Q4)

and (Q'4), respectively. Among all cfficient solutions of program Q3. one would
like to find some adjacent efficient solutions to z!. For this purpose. one could use

the following program:

(Q"4)  Maximize Y A, fu(z).
pEeP
Subject to :

I

|P]

S (7o |22 = ful@)])” <. (6.11)

p=1

with the rest of constraints as in (Q3). Constraint 6.11 ensures that every efficient
solution obtained is in the neighborhood of the first generated efficient solution, z*.
according to an L, distance metric. In this constraint, n, is a factor for equalization

of ranges on different criteria and is calculated by:

1 [Bg )T
Trp-—Elip;?R:] .
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where Rp, = ,z; - zgl . There is no specific rule to determine the amount of distance

parameter, 3. One suggestion is the following:

2~

[ELPJI (”pRp)a]
h

B = a€{l.2....,} U {=}, (6.12)

where R, and 7, are defined as above. and h is an arbitrary number that indicates
the largeness of the neighborhood 7. Increasing the value of h decreases the num-
ber of adjacent efficient solutions to be generated. and decreasing it enlarges the

neighborhood definitions and allows more solutions to be generated.

One may add the following two sets of constraints to Problem Q"4 to shrink the
feasible space and thercby facilitate solving the problem. These constraints specify
that the values of the new efficient solutions on each criterion, p. are bounded by

1 2
z,. and z.

folz) > mjn{z;,zf,} Vp € P.

folz) < max{z,. 23} Vp € P.
Setting a = 1 (i.e. for the L; norm), the constraint (1) in (Q"4) becomes

S|z — fol2)| < 8. (6.13)

peP

Now define u, — u, = z! — f,(z) Vp € P. Then (6.13) can be replaced with the

P p

following set of constraints:

Z Ty (up - u;,) <48,

pEP

“Steuer [118], in his forward filtering approach, suggests a similar distance parameter for ini-
tialization of his screening approach. He sets h = 4 as a good starting point.
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2~ folz) —up+u,=0. VYpeP.
Hence, for the L) norm. (Q"4) becomes

Maximize Y A,fp(z),
pEP
Subject to:

> (u,, - u;) < 8.

pEP
z;—f,,(:c)—up-i-u;zﬂ. YpeP.

where 3 = %Zf_'__'l 7pR,. A € A. and the rest of constraints are as in (Q3}. Similarly.

for L. constraint 6.11 in (Q"4) changes to the following:

o (up~u,) <B.  WpEP
311, — folz) —up + u; =0. VpeP.
1

where 8 = } [ZL‘;‘I(W,,Rp)"} = = wh&& ‘Hence. using either the L; or L., distance
metric makes (Q”4) a linear integer problem. Other L, metrics correspond to
nonlinear, and hence more difficult, problems, but an L;, or L., approximation, or
a combination of these two. may find a subset of efficient solutions close to z, for
any Lo, when the number of criteria is small. Notc that as the number of criteria
increases. depending on the shape of the non-dominated solutions z, may be very

different from the convex combination of z; and z..
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6.5.2 Case 2: ¢* >0

Now, suppose that in (Q7). ¢* > 0. Hence, the optimal solution of (Q4) is not
efficient. In this case. one way to find a subset of efficient solutions, is to use Han-
nan’s formulation [46]. In the context of linear GP. he proves that for a dominated
solution, either an alternative optimal solution that is not dominated can be found.
or at least one of the objective functions is unbounded. If all goals are bounded.

then the following vector maximization program provides a set of non-dominated

solutions:
(Q8}) Maximize fy(z). p=1..... | P |.
Subject to:
Al K
Zc;;r:,- +Z ZAP(S)-YSEGP—CI;'-{-dg'. Yp € P.
i=1 k=2 Se[,:

(6.14)

subject to the same set of constraints as in (Q3). Note that because of constraints
(6.14). Problem Q8 is casier to solve than the original vector optimization (Q3).
In this formulation. d;* and d;~ are the optimal solutions to (Q4) for specified
aspiration levels, and Ys is the binary variable substituted for ([,,cszi). Note
that if the DM aspires to a difficult-to-achieve target. there may be no new solution
for the above problem: the only optimal solution to (Q8) would be the efficient
solution of (Q4).

Problem Q8 is a vector optimization problem in which the objectives are the
original objective functions in (Q3) plus additional constraints to ensure that the
objective functions are not less than G, —d;* +df". It is noteworthy that in linear

GP. it is not necessary to include d/~ for the constraints in (Q8), because for an
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Table 6.1: The Consequence of Five Actions in WDL example

Criteria Actions
a a2 [ a3 as f as
mn T 045|045 | 1 |0.55]0.84
p2 T 0.8 | 0.7 |0.75 ] 0.83 |0.83
ps d 06 |0.87 ] 05 |0.75| 0.6

optimal solution of a linear GP problem. df* = 0. for any maximization criterion.

The following simple example illustrates the above discussion:

Example 6.2 Consider Table 6.1 which shows the normalized consequences of five
actions according to three criteria. Arrows show the direction of preference for each
criterion. Suppose that a pair of actions are to be selected. The interdependent

actions and their corresponding dependence values are.

Ll; = @ 7k. Lg = {(al.ag). (a4.a5)}.and L;‘; = ((14.(15)}.
Ax(1.2) =0.3.  As(4.5) = —0.25. As(4.5) = ~0.2.

Assume that (1.0.1.5.1.3) are the aspiration levels for the first, second and third
criteria. respectively with the priority of (d5.df.d7). The lexicographic GP for

this problem is

Lex Minimize d = (dy,d}.d])
Subject to:
A5z + 45xs + 23 + .55z, + .84z5 + df — df = 1.0,
8zy + Tzy + 7523 + .83z4 + .83z5 + 3Y1, — .25Yis +d; —df =15

.61?1 -+ .871,'2 + .533 + .75224 + -6585 - 0-2Y:1.5 + dg - E;- = 1.3,
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iz =2,
z1+z2~Y12< 1,
ry+z5 — Y5 < 1, f (6.15)
1 2 Y12, T2 2 Y12, 24 2 Yi5, 25 > Vi35,

z: € {0.1}, Y12 > 0, Yi5 > 0.

/

The optimal solution of this program using a sequential zero-one approach is (z3, z4)
with (1.55. 1.58.1.25) for the first, second. and third criteria. respectively. This solu-

tion is dominated. Now. we construct the associated vector maximization problem:

Maximize (fi(z). fa(z), fa(z))
Subject to:
45z + 49z2 + 3 + 5024 + .84z5 > 1.0 — 0 + .55.
.8z + .Tzy + .T5z3 + .83z4 + .83z5 + 0.3Y; 4, ~ 0.25Y,5 > 1.5 — 0 + .08.
.6z, + .87z, + .5z3 + .75z4 + .625 — 0.2Y; 5 < 1.3 — .05+ 0.

the set of constraints (6.15).

Solving this problem using the convex combination of the criteria for different values
of A € A (see Geoffrion’s Theorem in Chapter 2) gives several GP-efficient solutions
as follows:

(z1.25), (T3.25), (Z1.22).

Note that (z3,z5) dominates (z3,z4). Now suppose that the DM specifies (2.2.1)

1 = (1:1,2:-_)) with

as the goals. In this case the solution of the GP problem is 2
deviations of (1.1,.2..47) from goals. This solution is efficient. Hence, we seek

other efficient solutions using the DM's preference information.
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Suppose that the DM specifies (2.5,1.5,1.3) as new goals. Note that the goal
for the first criterion has been improved while the second and third ones have been
degraded. Solving the lexicographic GP for these goals give z* = (z3,zs) as another
efficient solution. Now we search for other efficient solutions in the neighborhood

of 21.

Let the L; metric be chosen as distance function. Hence,

519

R]_ = 094 Rg = (0.28. Rg = 0.48.71'[ = .158.71’2 = .576. Ty = 31. and /3 = T

If h = 1 is chosen for the distance parameter. the following program finds some

other efficient solutions close to z!:

Maximize f(z) = A\ (.45z; + 4525 + z3 + .55z + .84z5) +
A2 (8zy + T2y + 7523 + .83z + .83z5 + 0.3Y7 5 — 0.25}/4.5) -
/\3 (.62:1 + .87222 + .5113 + .7524 + -61,‘5 - 02}/45) .

Subject to :

45z, + .45z + £3 + .50z4 + 8425 > .9,

45Ty + .45z, + 3 + .55z4 + .84z5 < 1.84.

8zy + .Tzy + .752x3 + .83z4 + .83z5 + 0.3Y; ., — 0.25Y, 5 > 1.58, (6.16)
8z; + .Tzy + .T523 + .83z4 + .83z5 + 0.3Y;, — 0.25Y;5 < 1.8,
.6zy + .87z2 + .Dz3 + .Toz4 + .6z — 0.2Y, 5 > .99,
.bzy + .87z2 + 5253 4+ .75z4 + .6z5 — 0.2Y, 5 < 1.47, )

184 (uy — uy) < 516.

456 (ug — u,) < 516,
1.36 (us — ug) < 516.

451‘1 + 45.’82 + T3+ .55134 + .84:25 - .9+ uny — 'll.ll = 0.
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8z1 + Tz + . 7525 + .83z4 + .83z5 + 0.3Y; 5 — 0.25Y,5 — 1.8 + up —u, = 0,
6Ty + .87z5 + .55 + 7524 + .6z5 — 0.2Y3 5 — 1.47 + ug — uy = 0,

the set of constraints (6.15).

Solving the above problem by selecting A; = 0.1, X, = 0.8, X3 = 0.1 gives (z;, z5)
as an another efficient solution in the neighborhood of z!'. The optional set of

constraints (6.16) ensures that the criterion values of the solutions of the above

1

problem on each criterion. p, are bounded by z,

and z). Removing this set of

constraints may lead to producing more non-dominated solutions.

Note that if more than one DM is involved in the process of decision making,
cach DM can assign lis or her own aspiration levels and the above model can
be used to identify desirable alternatives for each DM. In this way, a compromise
solution involving all DMs may be obtained. The next section discusses another

GP approach to solve Problem Q3.

6.6 Combined Chebyshev-Archemedian Goal Pro-

gramming

As explained in Chapter 2. Chebyshev and Archemedian GP are two widely used
techniques to solve multiple criteria problems. Despite the many advantages, and
many successful applications. they have been criticized by some researchers, often
after thorough experiments {120]. In this section, we propose a new GP technique
that removes some of the shortcomings discussed in the previous chapter, while

maintaining the original GP structure.
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Some difficulties that have been mentioned in the literature in regard to Arche-

median GP are as follows:

o Archemedian GP may generate solutions which are far from some criterion
goals. In other words, even though the weighted sum of the deviations is
minimized, the solution may be far from the goal on some criterion. For
example, consider Figure 6.1 in which Z is the feasible criterion space. and
G is the goal specified by the DM. Both criteria are to be maximized. The
Archemedian GP solution is located at point (a). This solution has zero
deviation from the goal on first criterion and a relatively large deviation on

the second criterion.

@ In most practical MCDM problems, large deviations from a specified goal are
more likely to be of importance than small deviations. But Archemedian GP
does not take this issue into account. because, the unit cost for deviations
of any distance is constant. Stewart [120] suggests that using the L. norm.
instead of Archemedian GP, may alleviate this difficulty. However, the prob-
lem is more difficult to solve using the L, norm. Moreover. there is no special
justification for using this norm to reflect the DM’s behavior, rather than

other distance functions.

In Chebyshev GP the most critical criterion always receives the most attention,
the solution is not so sensitive to the choice of weights, and aggregation of deviations
is avoided. However. Chebyshev GP may produce a solution with a high weighted
sum of deviations. It has also been shown that Chebyshev GP solutions may reject
some reasonable solutions in favor of others that are more balanced [59]. In Figure

6.1 the point (b) is the solution of the Chebyshev GP problem.
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)

Contour of
Ll' Norm

Contour of

j;(X)

Figure 6.1: The Chebyshev and Archemedian GP Solutions

Both Chebyshev and Archemedian GP are designed to obtain one solution.
However, in some cases DMs prefer more than one good solution. In what fol-
lows we propose a new GP approach which may overcome the above-mentioned

shortcomings of Chebyshev and Archemedian GP techniques.

Consider Problems Q5 and Q6 presented in the previous section. We construct

the following two-objective problem:

IP|
(Q9) Minimize ) wyd,
p=1

Minimize (maz{wld{ ..... wpd . ... .,w|p|d|}[}) ’

subject to the same set of constraints as in (Q5) or (Q6). We call (Q9) a multiple
objective GP problem in which both the weighted sum of deviations and the maxi-
mum deviations from goals are to be minimized simultaneously. Now we define the

concept of combined GP-efficient solution as follows:
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Definition 6.2 Let S be a solution to (Q9) and d;(S) be its corresponding devi-
ation from goal on criterion p. Without loss of generality, assume that all criteria
are to be mazimized. Then S ts a combined GP-efficient solution if there is no other

solution S° such that

P IP|
prd;(S') > prd;(so),
p=l1 p=1

max (w,d;(S)) > max (w,d;(5%).

1<p<|P| P 1<p<|P|

with at least one of the inequalities sirict.

We now propose the following theorem. the proof of which follows directly from

Definition 6.2.
Theorem 6.2 Every solution to (Q9) is a combined GP-efficient solution.

Definition 6.2 is indeed a description of the efficient solutions of (Q9). Solving
(Q9) usually gives several combined GP-efficient solutions which are more balanced
than solutions of (Q5) and (Q6). Clearly. the two solutions to (Q9) are the optimal
solutions of (Q5) and (Q6). because they yield the best values on the first and

second criteria. respectively.

One can use any of the multi-criteria integer programming techniques, presented
in Chapter 2, to solve Problem Q9. However, given the difficulty of finding un-
supported efficient solutions in multi-criteria integer problems and the fact that
only some representative combined GP-efficient solutions are needed, we use the
weighted approach (Geoffrion’s Theorem) to find a portion of the efficient solutions
of {Q9). Hence, a convex combination of the first and second criteria is suggested

to solve (Q9) as follows:
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P
(Q10) Minimize |(1-X)) w,d; + A max (wpdy)

= 1<p<IP|

subject to the same set of constraints as in (Q4). where 0 < A < 1. and w, and
d; are defined as before. According to Theorem 2.2 every solution to {Q10) is an
efficient solution to (Q9). However. because of the non-convexity of the decision
space. (Q9) may have efficient solutions that cannot be found by solving (Q10).
namely unsupported efficient solutions that are convex dominated by some other
efficient solutions. In extreme cases. when A = 0. the optimal solution of (Q10) is

the Archemedian GP solution. and when A = 1. it is the Chebyshev GP solution.

Clearly. if (Q5) and (Q6) have an identical optimal solution. then (Q10) has
one solution identical to the optimal solutions of (Q5) and (Q6) for all A. This
solution is also the ideal solution of (Q10) 8.

The objective function of (Q10) can be viewed as a hybrid of the L, and L.
norms. which can be denoted as L; .. A similar norm can be found in the context of
locational decision problems. where it is important to consider both the total cost of
serving customers as well as the service for those customers who are located far away
from a facility [17]. Halpern [44. 45] considers a convex combination of p-median
and p-center problems to locate a facility on an undirected network. Motivated by
the fact that neither the minisum nor the minimax criterion can capture the aim of
most locational problems. Burkard et. al[17] propose a two-criterion (minisum and
minimax) zero-one problem and explore the properties of the efficient and optimal

solutions of this problem.

Note that when there are only two criteria and all constraints are linear. then

8 For definition of ideal solution refer to Chapter 2.
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the combined Chebyshev-Archemedian GP is similar to the concept of compromise
set discussed in Chapter 2. In fact, when the solutions of the L; and L., problem,

lie on the same edge of the feasible region, the solution sets of these two problems
are identical.
As shown in Figure 6.1, the contours of Archemedian and Chebyshev GP for

a 2-criterion problem are diamond and rectangular. respectively. It is useful to

observe the contour of combined Chebyshev-Archemedian GP.

Let (G1,G2) be the goals specified for criterion fi(z) and fi(z). respectively.

The convex combination of L; and L. can be written as follows:

Ll,x = (1 - ’\)LI + /\Loo
= (1= A)(wi|fi(z) — Gi| + wa|fo(z) — Ga) +
A (max{w,|fi(z) — G1],ws| fo(z) — Gal})-

For simplicity, assume that the axes in criterion space are shifted such that

G, = 0 and G, = 0. Hence,

Liw = (1=2)(wlfi(z)| 'i' ws| fo(z)) +A (max{wi | fi(z)(, w2l f2(2)(}) ,

7

= (1-2) (maz{wdfl(l')Lwz[fz(-'ﬂ)l}i‘ min{wi|fi(z)], w2l fo(z)|})

+A (max{w | fi(z)[, wa| f2(z)(}) ,
= max{w;|fi(z)], ws|fo(z)|} + (1 ~ A) min{w1|f1(1:)|,w2|f2(z)l}.

Hence, the contour of L; o, for constant C is,

max{w;|fi(z)}. w2l fo(z)[} + (1 — A) min{w; | fi(2)], waf2(2)]} = C,
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L f;“i Slope % _(1-A)
. Wy

=\\

Figure 6.2: Combined Chebyshev-Archemedian Contour for a Two-Criterion Prob-
lem

which can be represented as

wi|fi(z)] + w21l = A)lfa(z)|=C if wilfi(z)] > wa|fa(z)l:
wi|fo(z)| +wi(l = M) fi(z)[=C if walfo(z)| > wilfi(z)].

Both cases together produce the octagon shown in Figure 6.2.

Solving (Q10) for different values of A gives different combined GP-efficient
solutions for the DM to choose among. Since the objective function in (Q10) is
not smooth, we transform it into the following equivalent GP problem:

[P

Minimize (1 —A) D wyd; + e

p=1

(Q11) Subject to:
Awpdy < a: Vp e P.



CHAPTER 6. FORMULATION AND SOLUTION METHODOLOGIES 169

Al K
Zc;,:z:; +Z Z A,,(S)Ys-i-d;—d;':Gp, Vpe P
=1 k=2 seLk

Z.’l:;—YsSISl—].. VSGL:';,V‘D,A:,

a;€ES

zi > Vs, Vz, € S, VS € Ly, Vp. k.

:EEX, 2;6{0,1}, YsZO

Problem Q11 can be solved by any single-objective integer programming tech-
nique for different values of A. Moreover. (Q11) does not destroy the GP structure

and can be solved as efficiently as any weighted or Chebyshev integer GP problem.

Example 6.3 Counsider the following multiple objective linear problem whose cor-

responding feasible set in decision space and criterion space is shown in Figure

6.3:

Maximize:  fi(z) = 2z, + Za.
Maximize : fo(z) = —2y + 2z5.
Subject to:

—~z; + 3z, < 21,

z) + 3z2 < 27,

4z, + 3z, < 45,

3z, + z, < 30.

Suppose that the DM specifies G; = 40, and G, = 20 as goals, with equal
weight. The optimal solution of the Archemedian GP problem is z; = 3,z; = 8
with di = 26,d; = 7. The optimal solution of Chebyshev GP problem is z; =
8.07.z, = 4.23 with di = 19.6,d; = 19.6. Note that the solution of Archemedian
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fix)
3K 1 (7.14) 2*°(40,20)
o (14.13)
n.n
(19.8)
(X.07.4.23)
) Z
(20.4,39)
i (10.0)
Decision Space f, (x)
Criterion Space  (20.-10)

(a) (b)

Figure 6.3: The Set of Feasible Actions in (a)Decision Space. (b)Criterion Space
(Example 6.3)

GP problem has a relatively large deviation from the first criterion. and solution of

Chebyshev GP problem has a large weighted average deviation.

Using the hybrid Chebyshev-Archemedian GP technique. one can find another
solution z; = 6.z, = 7 with negative deviations as df = 21.d; = 12. Hence. this

program has three supported combined GP-efficient solutions,
(3,8),(8.07,4.23), (6. 7).

The DM can select among these three GP-efficient solutions, perhaps using quali-

tative criteria.

The above discussion demonstrated that a multiple objective GP approach in
which both weighted deviations and maximum deviation from goals are simultane-
ously minimized. overcomes some of the difficulties of Archemedian or Chebyshev

GP techniques that mentioned earlier. Nevertheless. this approach is not guaran-
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teed to find efficient solutions.

Example 6.4 Example 2.2 showed that the solutions of the Archemedian and
Chebyshev GP can be dominated. It can be shown that the solution of the combined

Archemedian-ChebyshevGP is ©; = 5.z, = 1 which is also dominated.

The method presented in Section 6.5 can be used to improve on a dominated
solution of the combined Archemedian-Chebyshev GP until it is efficient. An al-
ternative way to provide efficient solutions in GP is to change the conventional

structure of GP. as explained below.

Section 6.4 shows that when a goal is attainable. then the optimum solution
of the GP problem may be dominated. The structure of GP problem is such that
only negative deviations. d . are penalized for a maximization criterion p, and only
positive deviations. d}. are penalized for a minimization criterion. Without loss of
generality, assume that all criteria are to be maximized. Since the only aim of this
GP methodology is to minimize the ncgative deviations. if the goals are attainable.

then all optimal solutions are equivalent. provided that d; = 0 for all p.

An analogy concept to GP can be found in Enforcement of Environmental Laws
and Regulations. Often a firm that does not meet the standards specified by envi-
ronmental agency pays a penalty. Hence, if the firm complies, there is no penalty
but if the firm violates. a penalty will be imposed. On the other hand, some laws
also offer economic incentives to firms that exceed the standards. These laws re-
ward firms for over-achievement on environmental standards {54]. They give the

firm an incentive to exceed the standard.

The same idea can be used in GP problem. The GP structure can be changed

such that the DM is allowed to assign both a penalty for under-achievement and
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reward for over-achieveimnent. Clearly. the absolute rate of penalty and reward need
not be necessarily the same. Furthermore, if the DM does not specify any reward
for exceeding the goal. in other words, if he or she assigns the value of zero for
over-achievement, then there is no benefit for exceeding the goals in DM’s point of
view. Moreover, in some cases the DM may believe that over-achieving a goal may
degrade some other intangible and qualitative goals. In these cases. a dominated
solution generated by GP is called an acceptable dominated solution because it is
in accordance to the DM'’s values. It can be shown that the new GP structure does
not generate dominatcd solutions: under it. the procedure seeks better solutions

when the goals are attainable.

6.7 Summary and Conclusions

In this chapter. the problem of multiple criteria subset selection was formulated
as a non-linear MCZO programming model. Techniques were presented to remove
the non-linearity in the model. The main difficulties of available approaches to
solve the model were discussed and two modified GP solution methodologies were
proposed to overcome these problems. The first approach used the lexicographic
GP and vector optimization, in sequence, to obtain a subset of non-dominated
solutions. The second approach was based on a two-criterion GP problem in which
a combination of Archemedian and Chebyshev GP was employed. It was shown
that the combined Chebyshev-Archemedian GP generates a subset of balanced
solutions. The next chapter employs these solution methodologies in an on-going
water supply planning project. In the GP models discussed in this chapter, a

“priori” prefrence is assumed. One could use these models as interactive methods.



Chapter 7

Case Study: Waterloo Water

Supply Planning

7.1 Introduction

In this chapter. the solution methodologies that proposed in the previous chapter
arc applied to a long-term water supply planning problem in the Regional Mu-
nicipality of Waterloo. Ontario. Canada. to select the best combination of water
supply actions. Decisions about water resources have been widely recognized as
being multiple objective in nature. In fact. many theories and concepts of MCDM
have been inspired by water resources planning problems (see. for example, [120]).
Usually, water supply planning has diverse economic, social, environmental, and
political objectives. During the past two decades. many MCDM techniques have
been developed for use in water resources planning problems (see, for example.

[21. 22. 41, 43. 49. 93. 95]. and [122]).

As an example of the use of MCDM in water resources planning. consider the

173
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work of Roy et al. [106]. which uses ELECTRE III to program a water supply
system in Poland by setting up a priority order of water users based on socio-
economic criteria and then selecting the best water supply sources. Abu-Taleb and
Mareschal (2] employ PROMETHEE V to select a set of technical, managerial,
pricing, and regulatory water resources options for Jordan. First. all options are
evaluated according to an aggregated criterion. Then, a zero-one programming
approach with budget. geographic dispersion, and compatibility constraints, is used

to select the best combination of options.

Stewart and Scott {121} develop a scenario-based procedure to select a subset of
water policies in South Africa. They use a statistical experimental design technique
to generate a set of scenarios called the background set. The reference point method
is then used to select scenarios from the background set to form the foreground
set. The weights for the “scalarizing function™ are generated randomly and those
scenarios that most frequeutly minimize this function are selected for the foreground
set. A foreground sct is generated for every group of DMs. Then the procedure

searches for consensus among parties.

Netto et al. [83] cmploy a two-stage procedure for evaluating long-term water
supply systems in Southern France. In the first stage. ELECTRE III is used to
reduce the number of feasible alternatives. Subsequently, in the second stage. an
extension of ELECTRE III is employed to carry out multi-actor, multi-criteria

selection among the remaining alternatives.

In many water resources planning problems. the definition and generation of
actions is crucial to effective decision making [66]. Yet little research effort has
been devoted to this step. Moreover. the optimal choice of a subset of (discrete)
water supply actions has not received much attention in the literature. Even though

interdependence of water supply strategies occurs commonly in real-world problems.
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multiple objective methods have assumed strict independence of individual actions.

The main objective of this chapter is to implement the proposed models and as-
sociated analytical techniques to select, within a multiple objective framework, the
best combination of long-term water supply strategies for the Regional Municipality
of Waterloo, Ontario, Canada. The problem is formulated as a multiple criteria in-
teger program with interdependent actions. Different types of interdependencies in
the problem are shown to be essential features. Due to the large number of potential
actions and the non-convexity of the decision space. it is quite difficult to identify
the non-dominated alternatives. Instead. the combined Chebyshev-Archemedian
GP and the modified lexicographic GP techniques are suggested to obtain a sub-
set of non-dominated combinations of actions. The experience gained and lessons
learned in applying the proposed approach to the Waterloo water supply strategy.

are discussed.

The organization of this chapter is as follows. Section 7.2 briefly describes the
background and characteristics of the Waterloo Water Supply Planning Problem
(WWSPP). Then. Section 7.3 explains different kinds of interdependencies that ex-
ist in the WWSPP. The general mathematical model and the combined Chebyshev-
Archemedian model of WWSPP are presented Sections 7.4 and 7.5. Subsequently.
Section 7.5 presents a solution methodology to solve the model. Next Section 7.6
discusses the input data. Subsequently. Sections 7.7 and 7.8 present a brief discus-

sion of the solutions. Finally, a range of conclusions are drawn in Section 7.9.
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7.2 Problem Definition

7.2.1 Background

The Regional Municipality of Waterloo is located in the southwestern part of On-
tario, Canada and comprises the three cities of Kitchener, Waterloo and Cambridge,
as well as several rural areas. Figure 7.1 shows where Waterloo is located within the
Great Lake Drainage Basin situated in the center of North America and Canada
and overlapping parts of Canada and the United States. In fact. the Canadian
province of Ontario is an Indian word which means sparkling water. Figure 7.2
displays the Grand river basin within which the Regional Municipality of Waterloo
is located. The Waterloo region has an area of almost 1350 km? and is one of the
most prosperous and industrialized arcas in Canada. with population of almost 0.5
million people. At present. the Waterloo region is one of the largest communities
in North America to rely almost entirely on ground water. More than 90% of Wa-
terloo’s potable water is provided by some 126 wells: the remainder is drawn from
the Grand River which flows through the region. Due to increases in residential.
industrial, and commercial demand. and decreases in the reliability of ground wa-
ter sources, the Regional Government is currently developing a Long Term Water

Strategy to the year 2041 (Associated Engineering [4]).

7.2.2 Problem Characteristics

Most water resources planning problems share features such as conflicting objec-
tives, concerned parties with different points of view, and uncertainty over demand
and availability of resources. In the WWSPP, conventional multiple objective pro-

cedures are especially difficult to apply for the following reasons:
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Figure 7.2: The Grand River Basin Located in Southern Ontario. Canada.
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¢® Available actions have never been stated precisely in a form suitable for com-
parison. Most multiple criteria decision procedures begin with a predefined
set of actions. However, in the WWSPP, the relationships among actions
require careful study, especially for reconsidering those actions that had been
screened out earlier. The problem of generating and defining actions in water
resources problems was recently addressed by Stewart and Scott [121]. and

Keeney et al. [66].

e Most MCDM mecthods assume strict independence of actions. However. it
is evident that there are significant positive and negative synergies among

actions. Section 7.3 addresses this issue in detail.

e Both tangible and intangible criteria must be taken into account. Moreover.
subjectivities underlie some of the tangible criteria. making the evaluation
of actions more complicated. For instance, the costs of projects are affected
by various funding details, such as who will pay and what assistance will be

received from higher levels of government.

o Objectives are not clearly defined. Objectives introduced by various DMs and
discussed in technical documents. are interdependent and correlated. Hence.
before modeling the problem, the criteria must be refined. The next subsec-

tion addresses the main criteria for the WWSPP.

¢® As in many water resources problems, each criterion reflects the primary inter-
est of one group of DMs. Different parties are involved in WWSPP including
among others: Chambers of Commerce, environmental groups, homebuilders
associations, service clubs, academia, and agriculture groups [4]. Trade-offs
among criteria can therefore be difficult. However, the main DM is the Re-

gional Municipality of Waterloo which is in charge of regional water develop-
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ment. It is noteworthy that some DMs have conflicting interpretations of their
interests. For example, public perception of water quality differs especially

between urban and rural areas.

o Three strategies have been promoted by different parties and are referred to
as tradition, security. and displacement. Each strategy is based on a specific

philosophy as follows:

— Tradition means to not expand sources of water until demand exceeds
supply. This strategy runs a high risk of shortages due to unexpected
events. The Waterloo region has occasionally experienced contamination
of some wells. leading to short-term water shortages. For example, the
wells supplying the town of Elmira were closed down due to pollution
of the underground aquifer. Elmira now receives its water via a pipeline

from the city of Waterloo.

~ According to the security strategy, additional capacity should be devel-
oped to secure the region from any potential loss of water resources.
This strategy increases confidence that water demand will be met, but

also increases investment and operating costs.

— The displacement strategy emphasizes the replacement of current sources
of water. This would have several advantages. For instance, water from
alternative sources such as one of the Great Lakes would not require

domestic softening, and supplies would become more reliable and secure.

It is clear that each strategy implies a specific volume of water for the region.
Hence, the best subset of water supply actions may be different for each

strategy.
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e Demand varies continuously and implementation of each project creates a
step-size increase in water supply. Intuitively. a water strategy that has a low

gap between demand and implementation is preferred.

7.2.3 Criterion Identification

The overall purpose of WWSPP is to design and implement the best water re-
sources plan to satisfy long-term demand. In light of this purpose, more specific
objectives such as low cost. good water quality. few infrastructure impacts, mini-
mum enwronmental impacts. high security and reliability in order to have low risk.
and sufficient supply capability have been proposed for measuring the effectiveness

of possible actions. Below is a brief description of each criterion.

o Cost - This criterion measures the cost of water to the year 2041. including
investment cost. operations and maintenance costs. cost of purchasing water

from other regions if required. and cost of standard treatment.

o Water quality - The Ontario Water Resources Act. implemented in 1972. is
the main legislative instrument of the Ministry of Environment and Energy
(MOEE) for regulating water quality in the province. The Ontario Clean
Water Agency (OCWA ) mentioned at the start of the Ontario Water Resource
Act is part of the MOEE and its mission is to oversee the development of
municipal water and wastewater infrastructure. All water sources must meet
the Ontario Water Standards for now and the future. The level of treatment
depends on the water supply action. This criterion also reflects public opinion
on the aesthetic aspects of water quality. For some actions. it is difficult to
judge water quality. For instance. the physical. chemical. and bacteriological

characteristics of ground water from different fields may vary considerably.
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o Infrastructure Impacts - Each action requires certain modifications to the
existing water supply system, such as expansion of water mains, and con-
struction of reservoirs, pumping stations. The main part of this criterion is

quantitative, but some intangible effects must also be taken into account.

e Environmental Impacts - This criterion refers to the long-term and short-term
environmental impacts of actions on environment. Effects of implementing
each action on agriculture and farm well, fisheries. wetlands. recreation. and
surface water are considered in this criterion. These impacts are more im-
portant for actious involving new construction such as. pipelines. Extensive
monitoring is required for ground water sources: its cost can be considered as

a tangible portion of the environmental impacts.

e Risk - Maximizing the security and reliability that adequate supplies of high
quality water are provided. is a major concern for all DMs. Supplementary
water resources that can be used in emergencies decrease these risks. Selecting
actions that increase the flexibility of water supply leads to a low risk plan. A
project is flexible if it 1s multi-purpose. quick to implement. easy to expand.

and easy to modify in the case of unpredicted changes.

o Supply Capability - Most water resources planning research considers supply
capability to be a set of constraints to be satisfied. However, in WWSPP
different strategies (i.e. traditional, security. and displacement) may lead to
various policies for satisfying water demand. Therefore, supply capability is
included as an objective that should be maximized in the model. According
to this objective those actions that provide large supply capability in future
are preferred. Clearly. larger supply capability imposes more cost. Note that,

meeting minimum demand based on traditional strategy in each region is
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considered as a hard constraints in the model.

7.2.4 Available Actions

The definition and generation of actions is an important step in the process of
multi-objective water resources planning, but one to which little research effort has
been devoted. Characteristically, water resources planning problems present a wide
variety of possible actions. Most often. actions are not predefined clearly; in some

cases. it is hard to determine when actions are feasible [66].

Usually. the number of actions is reduced to a manageable size using screening
procedures (see. for example. [55]) or intuitive techniques. However. most of these
procedures are ad-hoc: using them may eliminate some potentially good alterna-
tives. This problem is often serious for situations in which a subset of actions is to
be selected. because as is discussed in Chapter 3. the best subset of actions may
contain dominated actions [91]. Figure 7.3 categorizes the set of main actions and
their sub-actions for the WWSPP. (Capacities are measured in Million Imperial
Gallons per Day. or MIGD.)

In the following, each main actions is briefly described.

1. Ground water (GW) - Currently. almost all water of the region is provided
by ground water from wells in different fields. This main action is concerned

with more development of ground water supplies.

[3%]

Aquifer Recharge (AQ) - This set of actions is based on the storage of treated
drinking water in a suitable aquifer during periods of water surplus for using
in seasonal peaks. emergency water demand. or for subsequent years as short-

term and long-term water supply.
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Figure 7.3: Main Actions and Sub-actions for the Waterloo Water Supply Planning
Problem and Their Supply Capacities.
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3. Grand River (GR) - Currently, a small portion of the region’s water is provided
by the Grand River. This action suggests higher abstraction from this river.

4. Grand River low flow augmentation (LF) - To provide the opportunity for
additional summer abstraction. one set of proposed actions is augmentation
of the Grand River in low flow periods by using some reservoirs or pipelines

from one of the Great Lakes.

5. Pipeline from Great Lakes (PL) - This set of actions includes constructing

pipelines from ounc of the Great Lakes through different routes.

In addition to the above actions. there are many suggested managerial (such
as incentive policies for recycling water), pricing, and regulatory policies that can
be implemented along with any solution to the Waterloo water supply problem.
Even though choice of these policies may affect the selection of the best subset. we
do not include these policies in the subset selection problem, for several reasons.
Firstly, including all these policies makes the problem very large and unmanageable.
and secondly, these policies in some cases can be implemented independently from
selection of water actions. Moreover. the effects of some policies can be examined

by considering different scenarios.

7.3 Interdependence of Actions

Most systematic approaches to water resources planning have assumed indepen-
dence of actions, even though actions are clearly interdependent in many real-
world water resources problems. Interdependence of actions is more common in the
multiple objective context since the combinations of actions may be interdepen-

dent according to different objectives. There has been little research exploring the
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concepts and characteristics of interdependence of actions in the water resources

planning problem.

In the WWSPP, there are different kinds of interdependencies among actions
that cannot be overlooked. Table 7.1 describes some groups of interdependent
actions and the criteria under which they are interdependent, categorizes the inter-
dependencies, and indicates whether the interdependence is positive (+) or negative
(-). Note that in addition to those given in Table 7.1, there are some conventional
interdependencies that affect the implementation of actions. For example. two op-

tions of aquifer Recharge cannot be implemented simultancously.

As described in Chapter 4. actions can be interdependent either conditionally or
unconditionally. Recall that when two actions affect each other (on a criterion) no
matter what other actions are selected. they are unconditionally interdependent.
but if the connection holds only when specific other action(s) are selected, they
are conditionally interdependent. As an example of conditional interdependence,
suppose that @; and a3 are two independent wells. However, if well a, is close to
both a; and a3, then when a, is selected the amount of water extraction from either
ay or aj affects the amount that can be extracted from the other. Hence. a; and a3

are conditionally interdependent.

7.4 Model Building

This section explains the main elements of the mathematical model developed to
select the best combination of actions for the WWSPP. The problem is formulated
as a multiple-objective mixed-integer programming problem with some non-linear

terms that arise due to the interdependence of actions.



e e

CHAPTER 7. CASE STUDY: WATERLOO WATER SUPPLY PLANNING 187

Table 7.1: Examples of Interdependence of Actions in the Waterloo Water Supply

Planning Problem

ground water

Groups of | Criterion Type Description
Actions
Different ground | Supply Direct (-) | Water extraction from one field
water fields capability decreases the water extraction
from other fields.
Wells in one | Supply Direct and | Water extraction from one well
subregion capability indirect (-) | affects other wells.
Aquifer Cost Direct (+) | Aquifer Recharge and low flow
Recharge augmentation could not be ac-
and Grand River complished without a new treat-
low-flow ment facility and/or a reservoir.
augmentation
Ground water Water quality Direct and | The cost of monitoring each well
indirect (-) | decreases when more wells are
selected.
Ground water Environmental | Direct (+) | Additional wells aggravate the ef-
impacts fects on agriculture, farm wells.
and wetlands.
Grand River and | Risk Direct (+) | Risk increases with the selection
ground water of these actions.
Grand River and | Risk Direct (+) | Risk increases with the selection
low-flow of these actions.
augmentation
Pipeline and | Infrastructure Direct (4) | The infrastructure increases due
ground water Cost to the major differences between
these two actions.
Pipeline and | Risk Direct (-) | Because they rely on two com-

pletely different water sources.
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7.4.1 Notation

The notation used for formulating a model for the WWSPP is as follows:

T = number of planning periods = horizon. The planning horizon

(1996-2041) has been divided into five periods.

t = index corrcsponding to planning period: ¢t =1..... T.
R = the set of subregions, R = {ry,---.7.--- .1m;}-
r = index corresponding to subregion: Kitchener-Waterloo=1. Cambridge=2.

and rural arcas=3.
A = the set of actions. A = {a;..... ai,....qaj}-
A = Agw UA,ioUAgrUALrU Apr.indicating the union of sets of actions
in ground water. Aquifer Recharge, Grand River. low flow augmentation.
and pipeline.
¢t = index corresponding to a proposed action.

zt = the fraction of water from action ¢ assigned to subregion r in period ¢.

Z! = binary variable corresponding to action i at time t such that
7t 1 if action ¢ is used in time ¢,
T 0 otherwise.
C; = the supply capability of ith action. Hence, C;z!, is the amount of

water of ith action assigned to region r in period ¢.
j = index corresponding to the actions in use in 1996.
A = the set of actions in use in 1996.

D] = the demand in period t for subregion r according to traditional

supply strategy.
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t
Yir

the fraction of water from initial action j to be used in subregion

r in period ¢.

the supply capability of the jth action currently being used. Hence,

c J'-yf, is amount of water from the jth old action assigned to region r

in period t.

the set of criteria: {cost. infrastructure impacts. water

quality. environmental impacts. risk. supply capability}

index corresponding to the set of criteria, p=1.....[ P |.

the fixed score of the zth action according to criterion p.

the variable score of the action ¢ for period ¢ according to criterion p.
collection of all sets of interdependent actions according to criterion p.
collection of interdependencies among A actions on criterion p. For example.
Lf, is the sect of all pairs of interdependent actions on criterion p.

the amount of simple dependence within actions in set S on criterion p.
For example. A,(%.7) is the amount of simple dependence within actions
a; and a; according to criterion p, and Ay(t, j. k) the amount of

dependence among actions a;,a;, and a according to criterion p.

7.4.2 Problem Formulation

In this section, the objective functions and the main constraints of the WWSPP are

explained. The solutions of the presented model address the following questions:

1. Which actions are to be implemented?
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o

What level of capacity from each action is to be selected?
3. At which time should these actions be implemented?
4. What percentage of each selected actions should be assigned to each subre-

ion?
gion?

- Objective functions

For each criterion p: p = 1..... | P | the following functions are to be maximized

or minimized:

A Al T IR| Al T IR|
Max(Min) Z,=  S(FS)&i+S SUVSEL S ot + 3 SUVS)E, S ot

::1 =] t=1 r=1 P iit—_:l r=1 .

@ b e
(Al
+ 3N ALS) 8 for p=1..... [P |
k=2 Se[,; a;€S
4

In the above set of objective functions., the term a considers the sum of fixed
scores of all selected actions. For instance, when p = 1. it shows the investment
cost of the selected actions. Term b is the sum of variable scores! of selected actions
on each criterion over the planning horizon. Term ¢ indicates the sum of variable
scores of actions in use. The last term of the objective function, term (d), represents

the amount of interdependence of actions. For instance, when actions a; and a; are

! Implementation of an action involves both fired and variable scores. For example, the fized
cost of an action is mainly the construction cost which is fired regardless of the number of periods
that this action is to be used. while the variable cost is mainly maintenance and operation, which
depend on the number of periods the action is used and the amount of water ezxtracted from it.
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interdependent on criterion p the quadratic term (A, (2, 7)d:4;) appears in objective

function p. The binary variable, §; in the set of objective functions is defined as

follows:
T
> ZF - M6 <0; for a; € A. (7.1)
t=1
T
> 2t > 6 for a; € A. (7.2)
t=1

where M, is a sufficiently large number. Expressions 7.1 and 7.2 ensure that ¢;
takes the value 1 if and only if action a; is used at least once during the time
horizon. Introducing variables d;. significantly decreases the number of non-linear

terms arising from interdependent actions.

- Constraints
e Demand:

In accordance to the traditional supply strategy, one must satisfy the average de-
mand for each subregion in each period. This set of constraints ensures that for all

region and all periods. enough water supply is assigned.

1A 1A'}

S Cizl, +>.CLyf > Dl for t=1.2,.... T.andr=1,---,|R|. (7.3)
i=1 j=1

o® Budget

The set of constraints in Expression 7.4 specifies that the total investment, main-

tenance and operating costs (first criterion) should not exceed available funds for

each period.
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1A 1A IR| 1A} IR
Z(Fs)tli(;i + Z(Vs)ii Z i + Z(Vs)ij Z !/;'r
i=1 i=1 r=1 j=1 r=1
|A|
+ ZZAI(S)°(H51)SBh fO'f'tzl,"',T, (7'4)
k=2 SELf a;ES

e Technological constraints:

Constraints 7.5 and 7.6 force variable Z; to take the value 1. if and only if action
a; is used at least once in a subregion. Also, (7.7) and (7.8) ensure that the total

usage of each new and old actions do not exceed their capacities.

IR|

>zl < M, 2 i=1.---.|A|, t=1,---.T. (7.5)
r=1
IR|
MYzl > ZE. i=1.---.|A| t=1.---.T. (7.6)
r=1
R
Yozh <1 i=1,-- A t=1 T, (7.7)
r=1
IR| ,
DovR <L j=Ll-- A"}, t=1---.T (7.8)
r=1

where M, and Mj; are sufficiently large numbers. For some main actions, only one

sub-action can be selected. For example,

> Zt<1.,  for t=1.....T, (7.9)
a;SAqy
> Zt<1. fort=1.....T (7.10)

ai€Ap
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The set of constraints in (7.9) and (7.10) ensure that at most one action from each

of the variables of low flow augmentation and pipeline actions can be selected.

@ Variable types:

i 20,95, 20 foralla;e A, r=1---.|R| and t=1,---T.

Zt.6:€{0.1}:  for all ;€A t=1.-+T. (7.11)

7.5 Solution Methodology

The WWSPP, which is formulated in the previous section. is a nonlinear multiple
criteria mixed integer programming. Since most of the theories of integer pro-
gramming are developed in the framework of linear cases®. it is more convenient
to convert the above nonlinear program to a linear one. This can be accomplished
by using the techniques presented in Chapter 6. For each S = {i1.42,....4t} € L:j

(given k and p). define Qs = d;,.0;, == d;, and add the two following constraints:

8y +0, 4+ -+, ~Qs < k-1, (7.12)

—5;1 —(5{2 —----—(5,;,: +EkQs < 0. ) (713)

In this way, a multiple objective subset selection problem under interdependence

of actions can be formulated as a linear multiple objective mixed integer problem.
The difficulty of solving a mixed integer problem is highly dependent upon the

number of integer variables. Hence, following Glover and Woolsey (1974}, one can

2 Most integer programming approaches are based on solving a sequence of linear problems.
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change each cross-product variable (Qs) to a continuous variable by replacing (7.13)

with the following set of inequalities:

§,>Qs Vj€S. (7.14)

For detailed discussion refer to Section 6.2.1 in the previous chapter. Let df
and d; denote positive and negative deviations from goal on criterion p. Then, the
WWSPP can be reformulated based on a hybrid L, ., norm described in previous

chapter as follows:

Minimize <{((1-X)>_ wy(dy + d)] +AMaz, (wp(df +d7))
|

N — -
-

e

Subject to:
IA] Al T R 'l T IR|

2 (FSYdi + 33 (VSN 2 ol + 32D (VSN 2 vk

=1 i=1 ¢t=1 r=1 ij=1¢=1 r=1

+ §ZA (HJ)Td‘ ¥ = G,.

k=25€L1’; a;eES
for p=1.....|P]|. (7.15)

The Set of Constraints 7.1 to 7.11.

In the above formulation. the term shown by e is the Archemedian part of the goal
programming problem and f is Chebyshev part. Also, G, is the aspiration level
assigned for criterion p. w, is the amount of penalty for unit deviation of objective
function p from the specified goal, and A is the coefficient of tendency towards

Chebyshev or weighted average norm. The above model can be reformulated as



CHAPTER 7. CASE STUDY: WATERLOO WATER SUPPLY PLANNING 195

follows:

Minimize {(1 —A) (Z wp(d} + d;)) + Aﬁ} .
Subject to: ’
wy(dy +dy) < B Vp (7.16)
Constraints 7.1 to 7.11 and (7.15). (7.17)

The next section provides some numerical information for the WWSPP.

7.6 Input Data

Population growth is the main cause of increase in water demand in the Waterloo
region. Table 7.2 shows the predicted water demand for each subregion. in terms

of MIGD to the year 2041.

Table 7.2: Water Demand in Three Main Areas to the Year 2041

[ Regions 1996 [ 2001 | 2006 | 2011 | 2016 | 2021 | 2026 | 2031 | 2036 | 2041 ||
Kit/Wat ][ 30.1] 31.8] 33.9] 36] 382] 40] 416 [ 43.3 ] 44.7] 46
Cambridge || 151 16| 17| 181] 19.2] 20[ 20.8[ 216 [ 223 23
Rural 4| 47 53] 61] 69| 74| 81| 85| 89| 9.3

Note that for some of the WWSPP actions, there exist different variations with
different capacities and various specifications. To reduce the number of discrete
variables, in this model. we do not take into account those actions that have been

removed from the set of available actions in the screening process addressed by
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Associate Engineers [4] or those actions that are very similar and cannot be selected

together. Actions that are considered in the mathematical modeling include:

o Ground water, option 1. (GW1)- Developing additional ground water sources

in the vicinity of Kitchener-Waterloo.

e Ground water, option 2, (GW2) - Developing more ground water sources
in new fields. The new sources of ground water are located in the South

Woolwich Area. the Reseville Area. and St. Agatha Area.

¢ Aquifer Recharge. option 1. (AQ1) - Constructing dual purpose Recharge and
recover wells in Mannheim site with capacity of 10 MIGD.

e Aquifer Recharge. option 2, (AQ2) - Constructing dual purpose Recharge and

recover wells in Mannheim site with capacity of 20 MIGD.

o Grand River. (GR) - water extraction from Grand River during times of peak

demand.

® Grand River Low Flow Augmentation (LF1)- Augmentation of Grand River

water flow by implementing West Montrose Dam.

e Grand River Low Flow Augmentation (LF2)- Augmentation of Grand River

water flow by constructing a pipeline from Georgian Bay.

e Grand River Low Flow Augmentation (LF3) - Augmentation of Grand River

water flow by using a pipeline from Lake Huron.

o Pipeline (PL1) - Transporting water to the region via a high pressure pipeline

from Lake Ontario.
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e Pipeline (PL2) - Transporting water to the region via a high pressure pipeline

from Lake Erie using Manticoke water treatment facility.

¢ Pipeline (PL3) - Transporting water to the region via a high pressure pipeline

from Lake Huron in Goderich connection.

o Pipeline (PL4) - Transporting water to the region via a high pressure pipeline

from Georgian Bay in Thornbury location.

Tables 7.3 provides the actual values of the water actions according to the main
criteria. The scores for water quality. environmental impacts and risk criteria are
estimated according to the preliminary evaluation obtained by Associated Engi-
neering [4]. Arrows show the direction of preference for each criterion where an
upward arrow means that a higher value is more preferred and downward arrow
indicates a lower valuc is more preferred. Here. it is assumed that the preference

of the DM is monotonically increasing or decreasing on each criterion.

Table 7.4 presents the set of all suggested interdependencies and the estimated
values of synergy between each pair of actions in WWSPP. Note that synergy be-
tween two actions is defined according to (4.7). For sake of simplicity. only binary
interdependencies are considered. here. Furthermore. since interdependence is a
symmetric relation. only one side of the interdependence between two actions are

shown in this table.

Since, there is no explicit information on the DMs’ goal for each criterion. the
ideal point of the problem is used as the initial target of the problem. Recall that
the ideal point is a solution which is best according to all criteria. In other words.
we solve the model separately for each criterion to find the optimal solution for that

criterion. The collection of these optimum solutions for all criteria constitute the
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Table 7.3: Scores of Actions According to Criteria

Actions || Inves. | Oper. Water Inf. Env. | Risk | Supply

Cost | | Cost | | quality T | Impact | | Impact | Capability 1
GW1 $100 $4 a0 30 60 80 29
GW2 $61 $2.4 a0 30 60 80 20
AQ! $8.6 $5.9 70 40 45 50 40
AQ2 917 $8.8 70 50 45 a0 40
GR $5 $2 30 30 40 80 )
LF1 $112 $6.2 60 60 50 60 50
LF2 $123.6 $6.6 60 60 40 70 unlimited
LF3 $111.25 $6.7 60 60 90 70 unlimited
PL1 $120.4 $4.2 70 60 80 30 unlimited
PL2 $126 $3.4 70 65 30 30 unlimited
PL3 $181 $2.3 80 60 80 30 unlimited
PL{ $222 $2.5 70 60 80 30 unlimited

Table 7.4: Interdependent Actions and Their Estimated Values in WWSPP

[ Actions || Ground Water | Low Flow | Grand River | Aquifer Recharge ||

Ground ~ - - -
Water - - - -
Low Flow - - - -
Grand Risk (+0.2) Risk (+0.2) ~ -
River Water Quality (-0.1) | Infra.(-0.1) - -
Aquifer Risk (-0.1) Cost (+0.2) | Risk (-0.1) -
Recharge Infra. (+0.15) Risk (+0.15) | Infra. (4+0.2) -

Pipeline Risk (-0.1) Risk (+0.1) | Risk (-0.1) Env. (+0.1)

Infra (+0.2) Env. (4+0.1) | Infra. (+0.2) Risk (+0.2)
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ideal point of the WWSPP problem. Solving the overall goal programming problem
with the ideal point as the target provides some initial solutions to the DM. If the
DM is not satisfied by this set of solutions, or if he or she wants to examine the

robustness of the solutions, the second step is started.

In the second step. the DM specifies the percentage of the ideal point for each
criterion that can be downgraded without penalty. Then, the model is solved for this
new target. The decision process is terminated when the DM is satisfied with the

solution. The model is built such that the DM can easily enter these percentages.

The importance of each criterion is reflected as the rate of penalty for unit
deviation from the goal of each criterion in the model. These rates are estimated
according to the preliminary study by Associated Engineering [4] and interviews

with personnel in the Regional Municipality of Waterloo and are given as follows:

Weogt = 0.3. Wygter quality = 0.1. Win frast. impacts = 01

Wenviron. impacts = 0.1, wriar = 0.2, Wyupply capability = 0.2.

7.7 Discussion of Results

The WWSPP is modeled using GAMS (General Algebraic Modeling System) and
solved with LAMPS (Linear and Mixed-Integer Programming). Different logical
constraints and spectal ordered sets are added to the set of constraints to reduce
the computational time. Also, the planning horizon is divided into 5. rather than
10 periods to reduce the number of integer variables. The combined Chebyshev-

Archemedian model is then employed to solve the model.

As pointed out, the main objective of studying WWSPP is to select a set of
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promising subsets of water supply actions. Moreover, in this section it is demon-

strated that:

1. Interdependence of actions is important and should not be ignored. In other
words, it is shown that solutions of the model with and without interdepen-

dence are quite different.

[AV]

The convex combination of weighted and Chebyshev GP produces different
GP-nondominated solutions. Hence. the DM has the opportunity to compare
these different solutions by perhaps considering the criteria that could not be

stated as a mathcmatical formula.

To achieve the above mentioned objectives. several versions of the WWSPP

were solved:

1. Different values of 0 < A <1,
2. With and without interdependence,
3. Weighted and unweighted Chebyshev norms.

4. Combinations of the above.

Solving the model for different values of A provides some combined-GP non-
dominated solutions to the problem (see Chapter 6). All these solutions are poten-
tially good decisions that the DM can choose among them according to his or her

preferred GP objective function.

Even though the model presented in this chapter is inspired by a real-world

water resources problem. the following simplifications are considered in the model:
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-No ezplicit uncertainty - Some of the elements of the WWSPP involve uncertainty
and inaccuracy. For example, actual water demand may not be as accurate as its
forecast, the estimated capacities and reliability of some of the proposed actions are
not accurate, and the cost of implementing actions are not precise. In this model
we do not consider any explicit uncertainty for the above mentioned parameters.
Nonetheless, one can use sensitivity analyses on different uncertain parameters to

assess the effect of uncertainty on problem solutions (see for example. [79]).

-Longer time period - To reduce the discrete variables and hence to decrease the
computational requirement. we divide the planning horizon into five periods with 10

years length. Clearly. using shorter time periods provide more accurate solutions.

Table 7.5 shows the set of selected actions in the case of weighted Chebyshev .
for different values of A as well as the deviations of the solutions from goals for
two different cases: when interdependence of actions is taken into account and in
the case of ignorance of interdependence. The third and sixth column of this table
shows the deviation of the solutions from goals for cost. water quality, infrastructure
impacts, environmental impacts, risk and supply capability criteria, respectively.

Also. Figure 7.4 depicts the information in Table 7.5 in a schematic form.

As Table 7.5 and Figure 7.4 show. the sets of selected actions are different for the
two cases of considering and ignoring the interdependence of actions. When 0.4 <
A < 0.8 the best solution for the case of interdependence is AQ2 and GW1, and for
the case of no interdependence is AQ2 and PL2. The reason is that the desirable
synergetic effects of AQ2 and GW1 is more than desirable synergies between AQ2
and PL2. As Table 7.4 indicates AQ2 and GW1 hold a desirable synergy on risk
criterion. But, PL2 and AQ2 have undesirable synergy on both environmental
effects impacts and risk criterion. Hence, when interdependence of actions is taken

into account, the combination of AQ2 and GW1 is better than combination of AQ2
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Table 7.5: WWSPP: Scts of Actions Selected and Deviations from Goal (Weighted

Chebyshev)
A With Deviations Without Deviations
Interdependence Interdependence | from goals
00<A<04 AQ2, PL2 (248,33,111, AQ2, PL2 (241,33,100,
110,60,5) 120,50,5)
04<X1<038 AQ2, GW1 (236, 47,75, AQ2, PL2 (241,33,100,
70,65,60) 120,50,5)
08<X<0.95 402, GWL (236, 47,75, AQ2, GW1 (236, 47,65,
70,65,60) 70,65,60)
A=1 GW1, AQ1, (234,96,105, GW1, AQ1, (234,87,105,
GR1 130,101,170) GR1 140,90,170)
g “j?"?~
k5 AQ2,GW1 AQ1
A=0 ; L + : ' ’ : A=l
3 :
3 GW1
2

Figure 7.4: Weighted Case, the Selected Actions for Different Values of A
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and PL2.

Note that even though AQ2 is selected for both cases, the usage of this action is
quite different. For the case of interdependence 17 and 41.5 percent of AQ2 capacity
is used by rural area. in forth and fifth periods, respectively. However, in case of
no interdependence the same amount of water in the same periods is utilized by

Kitchener and Waterloo.

Moreover. Table 7.5 shows that Combined Archemedian - Chebyshev model
produces several different GP non-dominated solutions with different properties.
Aquifer Recharge is the only action which is recommended in all of the cases. The
main reason for selecting Aquifer Recharge is that the investment cost of this action
in comparison with other actions is quite low (see Table 7.3); implementation of
this action and using a portion of its capacity is justifiable. An important practical
observation of the solution is that if the planning horizon is extended. then other

actions may be selected instead of Aquifer Recharge.

Note that as the value of A increases and hence the objective function of GP
model approaches a Chebyshev norm. the maximum deviation from the goals over
all criteria is minimized. However, at the same time the sum of weighted deviations
is increased substantially. The cost criterion has the maximum deviation in all of
the situations. Table 7.5 also shows that moving from a pure weighted GP to a
pure Chebyshev GP does not make substantial change in the maximum weighted

deviations.

Table 7.6 and Figure 7.5 show the same information as in Table 7.5 and Figure
7.4 when an unweighted Chebyshev is used in the objective function. The solutions
of the model when 0.15 < A < 0.6 are different for the cases of interdependence

and no interdependence.
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Table 7.6: WWSPP: Sets of Actions Selected and Deviations from Goal. (Un-
weighted Chebyshev)

A With Deviations Without Deviations
Interdependence Interdependence
0.0<X<0.15 AQ2, PL2 (248,33,111, AQ2, PL2 (241,33,100,
110,60,5) 120, 50, 5)
0.15< A <0.6 AQ2, GW1 (236, 47,65, AQ2, PL2 (241,33,100,
70,65,60 ) 120,50,5 )
0.6 <A<0.95 AQ2, GW1 (236, 47,65, AQ2, GW1 (236, 47,65,
80,65,60) 80,65,60)
A=1 GWI1, AQ1L, (234,96,105, GWI1, AQ1, (234,87,105,
GR1 130,101,170) GR1 140,90,170)
-'§ e
5 W
3 AQ2, GW1 Ko
£ et
A=0 ; = + : - ¢ + 4 A=1
E GW1 %
._<= woA

Figure 7.5: Unweighted case, the Selected Actions for Different Values of A



CHAPTER 7. CASE STUDY: WATERLOO WATER SUPPLY PLANNING 205

Table 7.7 shows the percentages of water utilization of each selected action by
each subregion, when A = .5. interdependence is taking into account, and a weighted
Chebyshev norm is used in the objective function. For this situation, new ground
water sources have to be implemented from the early stage of planning. At the
beginning, only a small portion of the capacity of this resource is used (12.5%),
and gradually the usage is increased such that in the fourth and fifth period all
the capacity of this action (10 MIGD) will be used. On the other hand, another
selected action, AQ2. is only needed in the last two periods, and only 41% of its
capacity will be utilized at the end of the planning horizon. As pointed out earlier.
AQ2 is selected becausc of its low investment cost. cven though the operating cost
of this action is relatively high. Additionally, in this case, the analysis recommends
that the whole capacity of old ground water and Grand River should be utilized:
replacing them with new water sources is not justifiable. This is mainly because

cost criterion has the highest priority over other criteria.

Table 7.8 shows information similar to that in Table 7.7 except that interde-
pendence of actions is ignored. As it is shown in this table. the solution is quite
different in comparison with the case in which interdependencies are taken into
account. For this situation. a second pipeline option (PL2) is chosen instead of
ground water. In the first period, only 12% of its capacity is utilized and gradually
the usage is increased. In the fourth period, the entire capacity of action PL2 is
used for Kitchener/Waterloo while in the fifth period it is assigned to Cambridge.
Again, AQ is used partially for only the last two periods. Additionally, current
water supply actions (ground water and Grand River) are completely being used,
in all periods. Therefore. if the interdependence of actions is ignored, the solution

changes dramatically.

Table 7.9 shows the solution of WWSPP, when the GP objective function is
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Table 7.7: Optimal Water Supply Assignment for each Subregion (Interdependence
Case. (A = .5))

Selected Actions
Periods Regions AQ2 | GW1 | OGW | OGR
| KW 0.693 | 0.217
1996-2001 | Cambridge 0.125 | 0.307
Rural 0.783
KW 0.51 | 0.586
2002-2011 | Cambridge 0.411
Rural 0.002 1
KW 0.773
2012-2021 | Cambridge 0.87 | 0.059
Rural 0.168
KW 0.848 1
2022-2031 | Cambridge 1 0.036
Rural 0.17 0.116
KW 0.909 1
2031-2041 | Cambridge 1 0.068
Rural 0.415 0.023
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Table 7.8: Optimal Water Supply Assignment for each Subregion (No Interdepen-
dence Case, (A = .5))

Selected Actions
Periods regions AQ2 | PL2 | OGW | OGR
KW 0.693 | 0.127
1996-2001 | Cambridge 0.125 | 0.307
Rural 0.783
KW 0.818
2002-2011 | Cambridge 0.505 | 0.182
Rural 0.005 1
KW 0.87 | 0.377 1
2012-2021 | Cambridge 0.455
Rural 0.168
KW 0.17 1 0.316 1
2022-2031 | Cambridge 0.491
Rural 0.193
KW 0.415 0.726 1
2032-2041 | Cambridge 1 0.068
Rural 0.211
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Table 7.9: Optimal Water Supply Assignment for each Subregion (Interdependence
Case, (A = 1))

Selected Actions
Periods regions GW1 | AQ1 [ GR1 [ OGW [ OGR

KW 0.586 1
1996-2001 | Cambridge 0.364

Rural 0.125 0.05

Kw 0.51 0.586
2002-2011 | Cambridge 0.275 1

Rural 0.139

KW 0.773 1
2012-2021 | Cambridge || 0.87 0.059

Rural 0.168

KwW 0.848 1
2022-2031 | Cambridge 1 0.036

Rural 0.68 | 0.139

KW 0.51 0.909 1
2032-2041 | Cambridge 1 0.068

Rural 0.33 1 0.023

purely a Chebyshev norm (i.e. A = 1) and interdependence of actions is considered.
In this case, three new actions are selected for the region. GW1, AQ1, and GR1.
These new actions along with OGW and OGR provide a solution such that its
maximum deviation from the target over all criteria is less than any other feasible
solutions, even though the deviations from other criterion goals increase. Note that
for this situation, GR1 is utilized only in last two periods and AQ1 is only needed

partially in the last period.

Moreover, the GP solution is equivalent to the optimal solution of the single

objective problem when minimizing cost is the only objective.
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Table 7.10: Optimal Water Supply Assignment for each Subregion (No Interdepen-
dence Case, (A = 1))

Selected Actions
Periods regions GWI1 [AQI|GRI | OGW | OGR
KW 0.125 0.636 | 0.127
1996-2001 | Cambridge 0.364
Rural 0.783
KW 0.818
2002-2011 | Cambridge || 0.505 0.182
Rural 0.0055 1
KW 0.773 1
2012-2021 | Cambridge 0.5 0.227
Rural 0.37
KW 1 0.68 | 0.316 1
2022-2031 | Cambridge 0.491
Rural 0.193
KW 1 0.33 1 0.266 1
2032-2041 | Cambridge 0.523
Rural 0.211
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7.8 Applying the Modified Lexicographic GP to
WWSPP

In this section we briefly explain the main results of applying the modified lex-
icographic approach to WWSPP. The priority and the level of goals for crite-
ria are specified in the first and second steps as shown in Table 7.11. Given
this information. we apply a sequential integer program to WWSPP and obtain
(GW1.AQ1.GR1) as the best solution. This solution is efficient. Hence, according
to the modified lexicographic approach. we must find another efficient solution by

trading-off on the level of goals for different criteria.

Suppose the revised level of goals are as shown in row 5 in Table 7.11. Solving
the problem using the new goals with the same priority on criteria gives (AQ2.PL3)
as another efficient solution. Now. we must find other efficient solutions close to
(GW1.,AQ1.GR1) according to a distance metric. Assume that L; has been selected

as an appropriate distance metric for measuring closeness. Hence,

14.5
m = 05, Ty = 03 Ty = 55. Mg = 08. Mg = 043 Tg = 015. and B = —-}1—3

Now the following program is solved for different value of A to find some other

efficient solutions:

|P| |A| Al T R Al T (R}
Maximize Y X, [ D (FS)hd:i+ D D (V)LD zh + > > (VS Y vt
p=1 i=1 i=] t=1 r=1 j=1lt=1 r=1
[A| /
+3 £ o (I «x-) ,
k=2 SeL,’; a;€S

Subject to:
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IR Al T IR|

2SN+ 3 3 (VSN D =i + 3 3 (VS),; 3o,

i=] t=1

j=1t=1 r=1

jA|
‘*‘Z Z Ap(5) - (H 5{) —Zf,+up—u;,=0,

=2 SeLk

14.53

a;€S

for p=1,...,|P],

<""—~,

g
Tp (1 — vp) <
= pip P h

The Set of Constraints 7.1 to 7.11.

In the above program zj is the criterion value of the first solution and u, and

u; are the auxiliary variables that defined in Chapter 6. Solving the above problem
for h =1 gives (AQ1. PL3) and (AQL. PL2) as new supported efficient solutions.

Table 7.11: Main Steps of Applying the Modified Lexicographic GP to WWSPP
(Interdependence Case. L, Norm)

ﬂ Steps I[ Tasks

Results

B

1 Priority of Criteria Inves. Cost. Oper. Cost, Risk, Water Quality.
Inf. Impact, Env. Impact, Supply Capability
2 Initial Aspiration levels (300. 40, 30, 40.30,40)
The Solution of the Modified
Lexicographic GP (GW1, AQ1, GR1)
4 Type of Solution Efficient
5 The revised Aspiration levels (400, 100, 100, 40, 20, 20)
6 The Efficient solution with
the Revised Aspiration Levels (AQ2, PL3)
7 The New Solutions of the (AQ1, PL3)
Vector Optimization Problem (AQ1, PL2)

When one selects L., as distance metrics, the only efficient solution generated

by solving the vector optimization problem is (GW1, AQ2, GR1). This solution is
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similar to (GW1. AQ1. GR1) which is generated in the second step.

Moreover, Table 7.12 shows the same information as in Table 7.11 when inter-

dependence of actions is ignored.

Table 7.12: Main Steps of Applying the Modified Lexicographic GP to WWSPP
(No Interdependence. L; Norm)

[ Steps || Tasks Results
1 Priority of Criteria Inves. Cost. Oper. Cost. Risk. Water Quality.
Inf. Impact. Env. Impact. Supply Capability
2 Initial Aspiration levels (300. 40. 30, 40.30.40)
3 The Solution of the Modified
Lexicographic GP (GW1. AQ1L. GR1)
4 Type of Solution Efficient
5 The revised Aspiration levels (400. 100. 100. 40. 20. 20)
6 The Efficient solution with
the Revised Aspiration Levels (AQ1, GR1, PL3)
7 The New Solutions of the (AQ1L. PL3): (AQ2.PL2)
Vector Optimization Problem (AQ2, PL3)

7.9 Conclusions

In this chapter. a real-world water supply planning problem was modeled as a

multiple objective mixed integer programming problem. The main features of the

problem, especially interdependence of actions, were discussed. It was shown that

due to this characteristics conventional multiple criteria procedures would be diffi-

cult to apply. This case study showed the importance of interdependence of actions,

even under moderate amount of interdependence. It was also demonstrated that the

combined Chebyshev-Archemedian GP and the modified lexicographic approaches
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are useful to generate different attractive solutions. Finally, the solutions of the

model in different cases were discussed and it was shown that the interdependence

of actions should not be ignored.



Chapter 8

Contributions and Future

Research

8.1 Main Contributions of the Thesis

The main contribution of this thesis is the development of novel definitions and
characterizations of interdependence of actions in multiple criteria subset selection
problems. Interdependence of actions was generalized to any number of actions and
extended into set-interdependence. In fact, most conventional interdependence for-
mulations can be defined as special cases of our definition. Furthermore, the subset
selection problem under interdependence of actions was formulated as a multiple
criteria zero-one problem. and two modified GP methodologies were proposed to
find a representative subset of solutions. Motivated by the fact that most multiple
criteria integer problems are difficult to solve, an approach was proposed to screen
out those actions that cannot possibly be in the best set of actions. An application

to the choice of future sources of municipal water supply for the Regional Munici-

214
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pality of Waterloo, Canada. shows the effectiveness of the proposed methodologies

and associated analytical techniques. In summary. the main contributions of this

thesis are as follow:

1.

(R

A new screening approach was developed for multiple criteria subset selection
problems. Specifically. techniques were proposed to find and remove those
individually dominated actions that cannot possibly be in the best set of ac-
tions. The techniques were utilized for both m-best actions and j-constraints

problems.

Novel definitions and characterizations of interdependence of actions in mul-
tiple criteria subset selection problems were introduced. The interdependence
was identified as conditional and unconditional. and the main differences of
conditional and unconditional interdependence in comparison with conven-

tional approaches were discussed.

The concept of interdependence of actions was generalized to interdependence
of sets of actions and useful relationships between set-interdependence and

action-interdependence were established.

Using relationships between interdependence of sets and interdependence of
their subsets, several different approaches were proposed for evaluating the

amount of interdependence among actions.

The concept of order of dependence was defined and a technique to distinguish
the order of dependence of a set of interdependent actions was proposed.
Moreover, the importance of identifying the order of dependence of a set of
actions to establish useful relationships between independence of two sets and

independence of their proper subsets were shown.
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6.

:'\l

8.

The concept of additivity of a set was introduced and it was shown that how
to decompose a set such that the its consequence can be evaluated as an
additive function of the consequences of the subsets in the partition, or such
that the number of interdependence terms is minimized. Moreover, the main
relationships between the notion of additivity of a set and independence of

its subsets were explored.

A general procedure was introduced to formulate a subset selection problem
under interdependence of actions. Subsequently, the difficulties of obtaining
the non-dominated solutions of the formulated problem were put forward
and the following two modified GP methodologies were developed to find an

attractive subset of efficient solutions:

¢ Modified lexicographic GP - The lexicographic GP and vector optimiza-
tion approaches were employed in sequence to find a portion of efficient
solutions that most likely include the best solution according to the DM's

value function.

o Hybrid Chebyshev-Archemedian GP - Difficulties of Archemedian and
Chebyshev GP were discussed and a GP approach according to the
convex combination of Archemedian and Chebyshev GP was proposed.
It was shown that this approach overcomes some of the shortcomings of

the conventional GP.

The proposed concepts and methodologies were applied to a real-world water
supply planning problem. The problem was formulated as a mixed integer
programming model. The solutions of the problem demonstrated the impor-
tance of considering interdependence of actions in subset selection problem

under moderate amount of interdependence. Moreover, the effectiveness of



CHAPTER 8. CONTRIBUTIONS AND FUTURE RESEARCH 217

the combined Chebyshev-Archemedian GP and the modified lexicographic
GP approaches in generating different GP-efficient solutions for the WWSPP

were demonstrated.

8.2 Suggestions for Future Research

The research contained in this thesis opens up a range of new avenues for future

productive research. The following are some suggested areas of research:

L.

o

To expand the scrcening approach for subset selection problems under in-
terdependence of actions. The screening approach presented in Chapter 3
was restricted to the case when all actions are independent. The theory and
methodology of screening actions in subset selection problems can be ap-
propriately developed for handling decision situations for which there exist

interdependencics among actions.

To modify and utilize other screening approaches for subset selection prob-
lems. In this thesis. we analyzed the dominance method for screening actions.
One can adapt other screening approaches which were originally designed for
multiple criteria single action selection, such as successive elimination and
bounding the performance for subset choice problems. This should be ac-
complished for both m-best actions and j-constraints problems. Due to the
inherent difficulty of combinatorial problems. it is quite useful to find meth-
ods for screening actions and removing those that cannot be included in the

best or efficient subsets of actions.

To apply the screening approaches to other MCZO problems. In this thesis we

restricted the implementation of our screening approach to a multidimensional
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knapsack problem. The proposed concepts and techniques can be applied to

other types of MCZO problems.

4. To investigate the computational complexity of the screening approach. The
screening approach presented in chapter 3 is considered as a pre-processing
stage In solving a multiple criteria subset selection problem. Hence, it is useful
to discuss the complexity of the screening approach to justify its utilization

as a pre-processing stage.

5. To integrate the screening approach with some well-known MCDM inter-
active approach. In an MCDM interactive approach. the DM’s preference
information is uscd to remove actions that cannot be optimal. This is usually
referred to as dominance in the reduced decision space. because the decision
space is made smaller using the DM’s preference information. Most of these
approaches are suitable for single action selection. The methods of Koksalan
et al. [71] and Korhenon et al. [74] are among interactive MCDM approaches.
that can be integrated into the concept of screening presented in Chapter 3.
More specifically. the cone of inferior solutions (71, 74| can be built such that

every action in the cone cannot possibly be in the best subset of actions.

6. To explore further the notion of interdependence in MCDM subset selection.
Establishing more useful relationships between interdependence of sets and
interdependence of their proper subsets can be quite useful to evaluate inter-

dependent sets.

7. To investigate the notion of interdependence of actions for ordinal preference
information. The theory of interdependence introduced in this thesis is con-

fined to the situations where there exists cardinal information on consequence
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10.

11.

and amount of interdependence of actions. However, in many real-world prob-
lems only ordinal information on interdependence is available. The definition
and characterization of interdependence can be expanded to take into account
ordinal and qualitative information, as well as a combination of qualitative

and quantitative preferences.

To explore possible domain of applications of the theory of interdependence

in real-world decision making problems.

To employ more concepts of graph theory for exhibiting other properties of
interdependence of actions. In Chapter 5. some elementary concepts of graph
theory were used to explore features of interdependence of actions. More
concepts from the theory of graph can be used to capture its other proper-
ties. For example. the hypergraph notion can be utilized to characterize the

interdependence of the order of three or more.

To modify the conventional GP methodology so that in addition to entering a
penalty for under-achievement. one can input rewards for over-achievement of
the solution. This eliminates some of the difficulties in GP such as generation

of dominated solutions.

To integrate screening approaches with the interdependence notion within
the framework of the GP methodology. In other words, screening actions
can be accomplished in reference to aspiration levels and in the presence of

interdependence of actions.

To construct a more detailed model for WWSPP such that other technical
information along with the stochastic nature of the problem, can be incorpo-

rated into the model.
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13.

14.

15.

To implement other techniques presented in this thesis into WWSPP problem.
In Chapter 7 we showed the results of implementation of the elementary
concept of interdependence, the combined Chebyshev-Archemedian method
and the modified lexicographic method into the WWSPP problem. It is
useful to apply other proposed concepts and techniques in this thesis, such as

screening approach into WWSPP problem.

To extend WWSPP problem such that both qualitative and quantitative in-
formation can be taken into account. Like other real-world multiple criteria
problems. WWSPP contains both qualitative and quantitative information.
Developing a model for WWSPP so that both kinds of information can be
handled would be very useful.

To implement a comprehensive sensitivity analysis for WWSPP problem. A
comprehensive sensitivity analysis is required to investigate how the solutions
of WWSPP are influenced due to changes in model parameter. Designing a
systematic sensitivity analysis is especially important in WWSPP model. be-
cause in this research we have considered only a deterministic model. More-
over, due to the subjectivities involved in assigning weights and aspiration
levels in GP. it is quite important to find sensitivity of a solution when the

GP parameters arc changed.
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Appendix A

Proofs of Theorems

A.1 Proof of Theorem 4.1

1)Proof that
A(I|A%DA, = A (I|A%Y)A,

Since A;(I| A°)A,, we have

(A UAY) — cp(A%) = (AL UAU A,) — (AU A,). (A.1)
But A,(I | A%)B implies that

(A1 UAY UB) — (A” UB) = g,(A; UAY) — ¢(A%). (A.2)
However. A% UB = AY. because B = A%\ A”. Thus A.2 is equivalent to

cp(A1 U A®) ~ ¢(A°) = cp(A, UAY) — c,(A%). (A.3)

221
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On the other hand, A,(I| AY)B gives
cp(Az UAY) — (A”) = (A, UA” U B) — ¢,(A” UB),

or

cp(A2UA®) = cp(A; UAY) = cp(A”) + ,(A°).

In addition. (A; U A,)(I] A%)B implies that

(A1 UA, UAY) - ¢,(AY) = c,(A; UA, UAY UB) — c,(A” UB),

or

(AL UA,UA"Y) = (A UA,UA"Y) — ¢, (A”) 4+ ¢, (A).
Substituting the right hand sides of (A.2). (A.3).(A.5). into (A.1).

cp(ALUAY) - cp(A”) = (A1 U A2 UAY) — ,(AY)
o(A%) = (A2 UAY) + ¢p(AY) — c,(A°).

Simplifying and rewriting A.8 gives,
(AL UAY) ~ ¢, (AY) = ¢, (AL UA, UAY) — ¢ (A, U AY),

or

A (I]AY)A,.

2)Proof that
A(T|AY)A, = A, (I| A%)A,.

222
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The proof is similar to the necessary condition and can be obtained by rearranging

(A.3),(A.5), (A.7), and substituting into (A.9). O

A.2 Proof of Theorem 4.2:

1)Proof that
Al(I I @)(Ag U A.g) =4 A]_(I | Az)A_:;.

Since A{(I|@)(A,U Aj). we have
(A1 U AU As) = (A1) + (A2 U As). (A.10)

Since AI(I i Q)Ag,
p(Ay) = (AL U As) — p(As). (A.11)

Substituting (A.11) into (A.10) and rearranging,
cp(ALUAsUA3) — (AU As) = (A UA,) — c(As). (A.12)

Hence,

A(I]|Aj)As.

2) Proof of sufficient condition is similar to the necessary condition. O
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A.3 Proof of Theorem 4.3:
Since A.]_(I | A.z U Aa oY Aﬂ...I)A.n,

Cp(A]_ U Ag U ---An—-l) - Cp(Ag U ---An—l) =
Cp(A-l U Ag U. ..Aﬂ_l U An) - Cp(Ag U.. -A-n-l U A.n) (A.13)

Define
Y = (’I’(Al UAg U ...An~1) ‘—'CP(AQ U ...An_1).

Since A;(I|A2UA;...UA,,2)A,._,.
Y = (A1 UA2U.. A ) — (AU .. Anly).
Similarly, becuase A (I | A UA;...UA_3)A. s,
Y = (A1 UAU.. A 3) — (AU L Apn;).
With successive substitution in the same fashion.
Y = (A1 U Az) — cp(Az),

and finally since A,(I|0)A,,
Y = cp(Ay).

Substituting Y into the left hand side of (A.13),

cp(A1) = (A1 UAsU... Any UAL) ~co(A2 U .. A,  UA,).
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Hence,

A(IID)A,UA3...UA,_UA,.O

A.4 Proof of Theorem 5.1

We prove the theorem by induction. We first show that Expression 5.8 is true for
0,(S) < 2.

According to (5.7). when O, = 2. we have

p(S) =D @)+ Y, ANT). (A.14)
i€S TCs
[TI=2

Finding the value of A,(T) from (5.4) and substituting it into (A.14) gives:

&(S) = Lel+ X (cp(T)—ch(-i)),

i€ES TCS a;eT
| T|=2
= Y@+ Y o(T)—(IS]-1) Y &),
i€S TCs a;ES
| Tl=2
= X cp(T)—(ISI—2)Zscp(i).
TCS a;€

ITI=2

Hence, the theorem is true for 0,(S) = 2. Now we show that if the theorem is true
for k, it is also true for & + 1. For this purpose, first we replace all £ in Expression
5.8 by k£ + 1, and then we prove that the resulting expression is true. Replacing &

by k + 1 in (5.8) gives.
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w(S) = Y T)=(IS|=(k+1) > c(T)
I T'I|'=§k5+ 1 ::'lg:k
1
+ (F)USI-k+ US| -B] T o)+
ITT:QI:S—I
£ ((k_ll)!)[(ISI—(k+1))(ISI—k)---(ISI—3)] S e(T)
i
1 .
£ (S)0SI-k+1)IST-R)-(S1-21 5 6.  k<IS].
) a;ES
(A.15)
On the other hand according to (5.7), if Op(S) =k + 1. then
o(S) = D)+ D AT
i€S Tcs
ITICk+1
= Yocli)+ >, AfT)+ D AHT). (A.16)
i€S TCs TCS
ITICk+1 ITl=k+1

But, according to (5.3). the last term in right hand side of (A.16) can be written

as follows:
Yo ANT) = Y. |eM- Y T+ Y. o(T)

ITI=k+1 |Tl= k41 {Tl=k |TI= k-1
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+ot (-1 YD eld)

a; €S
The above expression can be rewritten as,

> A(T)= 3 &(T)=(S|-k) Y o(T)

TCS TCS TCS
I Ti=k+1 IT|=k+1 [Til=&
| S| —(k—1) | S| ~(k-2)
+ 2 wlT)- 2 (T
2 TCs 3 TCS
ITl= k~1 IT=k=2
S|-1
+...+(_1)k(! | )Zcp(i). (A.17)
k=1 a;€S
Now, substituting the amount of 3 rcs Dp(T) from (A.17), and amount of
[Tl=k+1
Y 1 Ap(T) from (5.8) into (A.16). and rearranging produces,
ITISk
o(S) = Y (T)=(S|-k+1) Y ¢T)
TCS TCS
IT|=k ITI= &
S|—(k-1
+ [—|S|+k+ IS1=(k-1) Y (T)
2 TCS
|TI=k~-1
S| —(k-2) 1
- (( 5 +o(IST=R)(ST-(k-1)) . (T +...
TCS

ITl=k -2
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S|i-1
= ((ISI—k)(lSI*(/»'—l))---(lSI—2)+(|kI ))Zcp(i)-(A-ls)

ai€S

By simplifying the coefficient in (A.18), one can show that (A.18) and (A.15) are

equivalent and this complete the proof. O

A.5 Proof of Expression 5.18
According to (4.2). when A° =0

bo(a:.Sk) = cp(a: USkoe USe) — cp(i) — cp(Skc USe). (A.19)
But. using (5.6) gives.

(@ USkt US) = (i) + Y. (i) + D cp(m) +

JESk_e meESe
Yo AT+ D Ap(Te)

Ti1 € Skt T2 € S¢

ITI>2 I T2122
+ Y A({aluTih+ Y Ap({a}uTs)

0#T CSk—¢ 0#£T2CS:
+ 3 S A{aluT,UTH+ Y Y AT UT.}).
0#T 1 CSk_¢ 0#£T2CS, 0#T1CSe—. 0#T2CS,

(A.20)

and

(Sk-e US:) = Y i)+ Y, clm) + Y. ALTY)

JE€ESk—e meS, Ty C Sact
ITIz2
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+ Y AT+ Y Y. AT UTy). (A.21)
T2 CS: 0£T, C_:Sk—: 0+#Ta QS:
ITI>?

Substituting (A.20) and (A.21) into (A.19),

$p(ai,Sk) = Y. A({a}UTH+ Y. Ap({a:}UT,)

0£T CSk—e 0£T2CSe
+ 3 S A ({a:}UTUT,}),

0#TCSi~¢ OFT2CS:

or

qbp(a;. SL) = (i)p(ai. Sk..g} + Z Z Ap({a,-} U T1 U Tg).D

T1CSk—e O#£T2CSe

(Note that the summation includes a T; = @ term.)

A.6 Proof of Theorem 5.4
According to (4.2) when A° =0

$5(51US2) = colS1 US2) — 6(S1) — 6(S2)- (A.22)

Similar to Appendix A.5, we have

B(S1US) = X i)+ L 6()+ L AT+ X Ap(Ty)

€5 JES2 T, Cs, T;CSa
[Ty (22 [Tal22

+ Y T AT UTY). (A.23)
0#T1CS 0#£T2CS2
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Substituting (A.23). ¢,(S;) and ¢,(S;) into (A.22) gives

b(S1S) =3 T AT, UT,)O (A.24)
0£TCS:, 0#T,CS
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