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Abstract

With the continuous growth of the Internet and the availability of large-scale collec-
tions, assisting users in locating the information they need becomes a necessity. Generally,
an information retrieval system will process an input query and provide a list of ranked
results. However, this process could be challenging due to the “vocabulary mismatch”
issue between input queries and passages. A well-known technique to address this issue is
called “query expansion”, which reformulates the given query by selecting and adding more
relevant terms. Relevance feedback, as a form of query expansion, collects users’ opinions
on candidate passages and expands query terms from relevant ones. Pseudo relevance feed-
back assumes that the top documents in initial retrieval are relevant and rebuilds queries
without any user interactions.

In this thesis, we will discuss two implementations of pseudo relevance feedback: decades-
old Rocchio’s Technique and more recent text classification. As the reader might notice,
both techniques are not “novel” anymore, e.g., the emergence of Rocchio can even be
dated back to the 1960s. They are both proposed and studied before the neural age, where
texts are still mostly stored as bag-of-words representations. Today, transformers have
been shown to advance information retrieval, and searching with transformer-based dense
representations outperforms traditional bag-of-words searching on many challenging and
complex ranking tasks.

This motivates us to ask the following three research questions:

• RQ1: Given strong baselines, large labelled datasets, and the emergence of transform-
ers today, does pseudo relevance feedback with Rocchio’s Technique still perform effectively
with both sparse and dense representations?

• RQ2: Given strong baselines, large labelled datasets, and the emergence of transform-
ers today, does pseudo relevance feedback via text classification still perform effectively with
both sparse and dense representations?

• RQ3: Does applying pseudo relevance feedback with text classification on top of
Rocchio’s Technique results in further improvements?

To answer RQ1, we have implemented Rocchio’s Technique with sparse representations
based on the Anserini and Pyserini toolkits. Building in a previous implementation of Roc-
chio’s Technique with dense representations in the Pyserini toolkit, we can easily evaluate
and compare the impact of Rocchio’s Technique on effectiveness with both sparse and dense
representations. By applying Rocchio’s Technique to MS MARCO Passage and Document
TREC Deep Learning topics, we can achieve about a 0.03-0.04 increase in average preci-
sion. It’s no surprise that Rocchio’s Technique outperforms the BM25 baseline, but it’s
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impressive to find that it is competitive or even superior to RM3, a more common strong
baseline, under most circumstances. Hence, we propose to switch to Rocchio’s Technique
as a more robust and general baseline in future studies.

To our knowledge, pseudo relevance feedback via text classification using both positive
and negative labels is not well-studied before our work. To answer RQ2, we have verified
the effectiveness of pseudo relevance feedback via text classification with both sparse and
dense representations. Three classifiers (LR, SVM, KNN) are trained, and all enhance
effectiveness. We also observe that pseudo relevance feedback via text classification with
dense representations yields greater improvement than sparse ones. However, when we
compare text classification to Rocchio’s Technique, we find that Rocchio’s Technique is
superior to pseudo relevance feedback via text classification under all circumstances.

In RQ3, the success of pseudo relevance feedback via text classification on BM25 + RM3
across four newswire collections in our previous paper motivates us to study the impact of
pseudo relevance feedback via text classification on top of another query expansion result,
Rocchio’s Technique. However, unlike RM3, we could not observe much difference in the
two evaluation metrics after applying pseudo relevance feedback via text classification on
top of Rocchio’s Technique.

This work aims to explore some simple yet effective techniques which might be ignored
in light of deep learning transformers. Instead of pursuing “more”, we are aiming to find out
something “less”. We demonstrate the robustness and effectiveness of some “out-of-date”
methods in the age of neural networks.

iv



Acknowledgements

First and foremost, I would like to thank my advisor, Professor Jimmy Lin, for giving
me the opportunity to work on exciting research projects and to collaborate with so many
inspiring researchers. His continuing guidance and support helped me in the writing of
this thesis and all other research. I feel really lucky and proud to be his student. Pseudo
relevance feedback via text classification is the first research project that led me into the
world of IR, and I’m so happy to extend the study on this topic and turn it into this thesis.

I would like to thank the readers of my thesis, Professor Pascal Poupart and Xi He, for
reviewing my work.

I would like to thank Xiao Han, Hang Li, Jack Lin, and Xueguang Ma for their discus-
sions and insights that contributed greatly to this thesis.

I would also like to thank my collaborators from the Data Systems Group, Chengcheng
Hu, Xinyu Zhang, and Ronak Pradeep, for the projects done outside the scope of this
thesis.

Last but not least, I would like to thank my parents for their continuous care and love
for all years.

v



Dedication

This is dedicated to my parents for their unconditional love and support.

vi



Table of Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 RQ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 RQ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 RQ3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Related Work 6

2.1 Bag-of-words and BM25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Relevance feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Rocchio’s Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Dense Retrieval with Bi-encoder . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Retrieval Architecture 12

3.1 Architecture for Rocchio’s Technique . . . . . . . . . . . . . . . . . . . . . 12

3.2 Architecture for PRF via text classification . . . . . . . . . . . . . . . . . . 13

3.3 Architecture for PRF with a combination of text classification and Rocchio’s
Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

vii



4 Experiment Setup 16

4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4 Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4.1 Rocchio’s Technique . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4.2 PRF via text classification . . . . . . . . . . . . . . . . . . . . . . . 20

5 Results and Analysis 21

5.1 Research Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.1 Rocchio’s Technique on Passage ranking . . . . . . . . . . . . . . . 21

5.1.2 Rocchio’s Technique on Document ranking . . . . . . . . . . . . . . 23

5.1.3 Negative Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Research Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.1 PRF via text classification on Passage ranking . . . . . . . . . . . . 25

5.2.2 PRF via text classification on Document ranking . . . . . . . . . . 27

5.2.3 Comparison of two PRF implementations . . . . . . . . . . . . . . . 28

5.3 Research Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Conclusion and Future Work 32

References 34

viii



List of Figures

2.1 Model illustration for Rocchio’s Technique. The Diagram is taken from
Katta et al. [21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Architecture for Rocchio’s Technique. . . . . . . . . . . . . . . . . . . . . . 13

3.2 Architecture for PRF via text classification. . . . . . . . . . . . . . . . . . 14

ix



List of Tables

2.1 Select TREC-COVID results. Explicit feedback submissions are under team
“covidex”. Note that the metrics used in round 3 are different from the other
two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1 MS MARCO Dataset Statistics . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1 Experimental results on the MS MARCO Passage collection for Rocchio’s
Technique on TREC 2019 and TREC 2020 Deep Learning Tracks. Su-
perscripts *** on the conditions indicate significant improvements over the
baseline, based on paired t-tests (p < 0.01). . . . . . . . . . . . . . . . . . . 22

5.2 Experimental results on the MS MARCO Document collection for Rocchio’s
Technique on TREC 2019 and TREC 2020 Deep Learning Tracks. Super-
scripts *** on the conditions indicate significant improvements over the
baseline, based on paired t-tests (p < 0.01). . . . . . . . . . . . . . . . . . . 23

5.3 Effectiveness of Rocchio’s Technique with/without negative feedback on col-
lections MS MARCO Passage/Document TREC 2019 Deep Learning Track
and TREC 2020 Deep Learning Track. Superscripts *** on the Rocchio’s
Technique conditions indicate significant improvements over the baseline,
based on paired t-tests (p < 0.01). . . . . . . . . . . . . . . . . . . . . . . . 25

5.4 Experimental results on the MS MARCO Passage collection for PRF via
text classification on TREC 2019 and TREC 2020 Deep Learning Tracks.
Superscripts *** on the conditions indicate significant improvements over
the baseline, based on paired t-tests (p < 0.01). . . . . . . . . . . . . . . . 26

5.5 Experimental results on the MS MARCO Document collection for PRF via
text classification on TREC 2019 and TREC 2020 Deep Learning Tracks.
Superscripts *** on the Rocchio conditions indicate significant improve-
ments over the baseline, based on paired t-tests (p < 0.01). . . . . . . . . . 27

x



5.6 Experimental results on the MS MARCO passage collection with Rocchio’s
Technique and PRF via text classification on TREC 2019 and TREC 2020
Deep Learning Tracks. Superscripts *** indicates the significant improve-
ments over the baseline, based on paired t-tests (p < 0.01). . . . . . . . . . 29

5.7 Experimental results on the MS MARCO Document collection with Roc-
chio’s Technique and PRF via text classification on TREC 2019 and TREC
2020 Deep Learning Tracks. Superscripts *** indicates significant improve-
ments over the baseline, based on paired t-tests (p < 0.01). . . . . . . . . . 30

xi



Chapter 1

Introduction

The Internet plays an essential role in our lives. The advent of the Internet has brought
not only more interactions among global users but also enormous and continuous growth
of text data. Given the availability of large-scale text data, it’s very difficult for people to
accurately and efficiently locate the information they need. In other words, people need an
intelligent information retrieval system that consumes an input query and returns relevant
passages in a timely manner.

Retrieval can be very challenging due to the well-known “vocabulary mismatch” prob-
lem [9], where search users might express concepts that differ from those in relevant pas-
sages. The problem is compounded by a combination of synonymy (multiple words have
nearly the same meaning) and polysemy (one word has different meanings). Synonymy
can cause a failure in retrieving relevant documents, and polysemy can lead to a retrieval
of non-relevant ones; both will reduce the quality of the retrieval results.

Query expansion has long been considered one of the most promising and common
approaches in information retrieval to combat the “vocabulary mismatch” issue [4, 49, 22].
It can build new queries by selecting and adding more terms to better capture the users’
intents behind the search, thus producing the desired results.

Various studies have been conducted to find the best expansion terms. The most
popular and well-studied ones are the following two ways: co-occurrence and relevance
feedback. In this thesis, we will mainly focus on the relevance feedback approach, where the
information retrieval system expands queries with terms from relevant passages indicated
by users.

Pseudo relevance feedback (PRF), also known as blind relevance feedback, assumes the
relevance of top k initial retrieval results and performs a second-round retrieval under this

1



assumption. This approach is commonly used to boost retrieval effectiveness without any
inclusion of extended user interaction. As one type of relevance feedback, it could also
effectively produce a revised query and alleviate the “vocabulary mismatch” problem in
information retrieval tasks.

As the reader notices, pseudo relevance feedback is not that novel and could even be
considered a bit “old-fashioned”. In fact, one implementation of pseudo relevance feedback,
Rocchio’s Technique, can date back to the 1960s [40] when Rocchio reported the advance
of expanding queries with relevance feedback. Instead of simply relying on the statistics of
corpus data, Rocchio took advantage of the relevance judgements of documents provided
by users in the initial retrieval process. By combining the given query and feedback, the
retrieval effectiveness of the expanded queries was generally superior to the initial ones.
Rocchio’s Technique immediately brought the attention of researcher Ide [18], and further
verified by Salton and Buckley in 1990 [42], and Harman in 1992 [13].

Pseudo relevance feedback via text classification is a more recent implementation of
pseudo relevance feedback. A thread of experiments was performed by combining the rel-
evance feedback with classification, e.g., Cormack and Mojdeh applied linear classification
on TREC 2019 topic [6], Xu and Akella introduced a Bayesian linear regression algorithm
with relevance feedback [50]. Nevertheless, to our knowledge, none of the experiments was
done with pseudo judgements. In our previous experiment [12], we presented a technique of
training document classifiers from the pseudo labels of the initial ranked lists and reported
its success across four newswire collections. In this thesis, our experiment regarding pseudo
relevance feedback via text classification can be considered an extension of our previous
work on different collections and configurations.

While both techniques were proposed and studied before the domination of neural
networks in information retrieval, all experiments were done with bag-of-words document
representations, describing the occurrence of words in the document. Without a doubt,
pseudo relevance feedback was once a common and promising technique in many informa-
tion retrieval tasks. However, what will be its role in this neural age? What has been
changed in this neural age?

Although the idea of neural networks was proposed in 1943 [31] and the first trainable
neural network was demonstrated in 1957 [41], a significant breakthrough did not appear
till the computational speeds and GPU got well-established in the 2000s. After that, trans-
formers achieved unprecedented success on multiple information retrieval tasks, and there
was a noticeable improvement in how we represent the document text. Instead of a simple
representation of the occurrence, like bag-of-words, transformer-based document represen-
tation is generated by the corresponding transformer model, e.g., BERT. Many studies
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[20, 5, 24] indicated dense retrieval with transformer-based representations is superior to
traditional bag-of-words retrieval.

From here, three research questions have been motivated.

1.1 RQ1

Given strong baselines, large labelled datasets, and the emergence of transformers today,
does pseudo relevance feedback with Rocchio’s Technique still perform effectively with both
sparse and dense representations?

1.2 RQ2

Given strong baselines, large labelled datasets, and the emergence of transformers today,
does pseudo relevance feedback via text classification still perform effectively with both
sparse and dense representations?

1.3 RQ3

Does applying pseudo relevance feedback with text classification on top of Rocchio’s Tech-
nique results in further improvements?

1.4 Contributions

The contributions of this thesis are summarized below.

• Answer “YES” to RQ1.

We implement Rocchio’s Technique with sparse representations as a second-round re-
trieval in the Anserini environment; thus, it is directly comparable with other query expan-
sion results. Results of Rocchio’s Technique significantly improve the initial BM25 on all
collections and conditions we experiment with. Besides, compared to other query expan-
sion methods like RM3, Rocchio’s Technique shows slightly better or equally competitive
results in all cases. Note that compared to the vector-prf technique proposed in Li et al.
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[25], we have made two major differences: sparse document representations and pseudo
negative labels. Instead of using transformer-based document representations based on
a deep learning retriever, we utilize sparse BM25-based document representations. With
this implementation, Rocchio’s Technique could be applied to more generalized indexes
and collections, maintaining about the same level of effectiveness enhancement as they are
applied on dense representations. Additionally, unlike the original paper, which simply
exclude the information of non-relevant documents, we include the bottom n non-relevant
documents in the query expansion step. However, we notice that negative feedback results
in a minimal improvement in most of the experiments, so the default Rocchio’s Technique
we show in this thesis are still the ones without negative feedback.

• Answer “YES” to RQ2.

We have followed the standard retrieval-and-rerank pipeline. A text classifier is trained
from top k relevant documents and tail n non-relevant documents of the initial ranked list.
The experiment is previously conducted on a range of standard newswire collections in
our work [12]. So the focus of this thesis switches to the MS MARCO Passage/Document
collections. The impressive gains on bag-of-words BM25 as well as transformer-based base-
lines on TREC 2019 and TREC 2020 topics verify the robustness and effectiveness of our
technique. Besides, it’s impressive to view that transformers serve as an aid in the selection
of query expansion terms. Classification with transformer-based document representations
generally surpass the ones with traditional BM25 document representations.

• Answer “NOT MUCH DIFFERENCE” to RQ3.

For RQ3, incorporating the two techniques doesn’t make much difference in terms of
effectiveness. The previous two experiments show that Rocchio’s Technique is more effec-
tive than pseudo relevance feedback via text classification. As pseudo relevance feedback
via text classification could be solely applied on top of any candidate list, it would be
interesting to see whether we could obtain additional gains by applying classification on
top of Rocchio’s results. Unfortunately, the combination of Rocchio’s Technique with text
classification doesn’t make much difference in effectiveness. For some of the experiments,
the inclusion of classification even ends with a negative impact.

1.5 Thesis Organization

The thesis is organized as follows:

• Chapter 2 reviews the fundamental background and existing works of BM25, relevance
feedback, query expansion, and dense retrieval in detail.
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• Chapter 3 introduces the architecture of pseudo relevance feedback implementations
built with Anserini/Pyserini toolkits for this experiment, including Rocchio’s Technique
and text classification.

• Chapter 4 introduces datasets, baselines and the evaluation metrics, then describes
the experimental setups and implementations.

• Chapter 5 presents experimental results and analysis.

• Chapter 6 concludes this thesis and discusses potential directions for future work.
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Chapter 2

Background and Related Work

2.1 Bag-of-words and BM25

The concept of the vector space model in information retrieval is not proposed till 1975
by Salton et al. [44]. In this work, Salton mentions the possibility of viewing queries
and documents as vectors in various dimensions of spaces. The vector values could be
computed by several term weighting schemes; one of the best-known schemes is tf-idf.
As these queries and documents are term-based, they are often referred to as “bag-of-
words” (BOW) representations. The documents relevance rankings could be generated by
calculating the similarity between documents and queries representations and sorting in
descending order.

The term weighting schemes play a vital role in the ranking effectiveness of vector space
models. To achieve a better term weighting scheme, many researchers perform a bunch
of experiments during the 1980s-1990s [43]. One of the most promising term weighting
schemes is OKAPI BM25 [39], where BM stands for “Best Match”. The scheme is based
on the bag-of-words representations and the assumption that every term in the document
is independent of each other. OKAPI BM25 still provides a relatively strong baseline for
ranking tasks in research and industry today. However, as it depends on exact matches
between query terms and document terms, it unavoidably suffers from the well-known
“vocabulary issue”. That is when relevance feedback comes into place.
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Team Run Type nDCG@10 P@5 AP

Round 3: 40 topics
(3a) covidex r3.t5 lr feedback 0.7740 0.8600 0.3333
(3b) BioinformaticsUA BioInfo-run1 feedback 0.7715 0.8650 0.3188
(3c) SFDC SFDC-fus12-enc23-tf3 automatic 0.6867 0.7800 0.3160
(3d) covidex r3.duot5 automatic 0.6626 0.7700 0.2676
(3e) anserini r3.fusion2 automatic 0.6100 0.7150 0.2641
(3f) anserini r3.fusion1 automatic 0.5359 0.6100 0.2293

Team Run Type nDCG@20 P@20 AP

Round 4: 45 topics
(4a) unique ptr UPrrf38rrf3-r4 feedback 0.7843 0.8211 0.4681
(4b) covidex covidex.r4.duot5.lr feedback 0.7745 0.7967 0.3846
(4c) covidex covidex.r4.d2q.duot5 automatic 0.7219 0.7267 0.3122
(4d) anserini r4.fusion2 automatic 0.6089 0.6589 0.3088
(4e) anserini r4.fusion1 automatic 0.5244 0.5611 0.2666

Round 5: 50 topics
(5a) unique ptr UPrrf93-wt-r5 feedback 0.8496 0.8760 0.4718
(5b) covidex covidex.r5.2s.lr feedback 0.8311 0.8460 0.3922
(5c) covidex covidex.r5.2s automatic 0.7457 0.7610 0.3212
(5d) anserini r5.fusion2 automatic 0.6007 0.6440 0.2734
(5e) anserini r5.fusion1 automatic 0.5313 0.5840 0.2314

Table 2.1: Select TREC-COVID results. Explicit feedback submissions are under team
“covidex”. Note that the metrics used in round 3 are different from the other two

2.2 Relevance feedback

Relevance feedback is one of the most popular techniques for information retrieval that
can extract feedback from the initial results and improve the final results. Three types
of relevance feedback are differentiated by user involvement: explicit feedback, implicit
feedback, and pseudo relevance feedback.

Explicit feedback is usually gained from the user, who manually judges the relevance
level of documents. A good example of explicit feedback could be found in the TREC
COVID challenge with COVID-19 Open Research Dataset (CORD-19) [47]. It organizes
five evaluation rounds, where each round includes all topics from earlier rounds and some
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additional new topics. After each round, the sponsor National Institute for Standards and
Technology (NIST) provides manually annotated judgments from that round, which could
be considered feedback for further model evolution.

Here the explicit relevance feedback via classification proposed by Han and Liu et al.
[11] is proved to be highly effective. More detailed results can be found in Table 1 under
the team name “covidex”. Here “feedback” type represents that the submission uses the
feedback provided by NIST while “automatic” submissions don’t. In the table, we could
see in Round 3 that explicit feedback via classification Row (3a) reports the best score over
all runs. In rounds 4 and 5, the “covidex” runs are also the second-best submissions Row
(4b, 5b). From here, we can demonstrate that explicit relevant feedback via classification
could lead to a consistent improvement even on the state-of-arts.

Implicit feedback usually comes from users’ behaviours, e.g., browsing time and scrolling
actions. This data is usually obtained without the notice of the user, so compared to the
explicit, this method consumes less human effort. Because of this advantage, implicit
feedback is widely used in real-world recommendation systems, described in [16] and [37]

In this study, we mostly focus on pseudo relevance feedback (PRF), which completely
eliminates user interactions compared to the other two feedback methods. It has been
found to boost effectiveness on many TREC ad hoc tasks. PRF automates the work of
gathering users’ opinions to improve second-round retrieval results. PRF assumes that
top k documents of the initial list returned by the initial query are relevant and tail n
documents are non-relevant. Two implementations could be applied to this feedback:
training a classifier or expanding the original query with representations of these pseudo
relevance labels. More details of these two pipelines can be found in Sections 3.1 and 3.2.

The drawbacks of PRF are also quite obvious. If the quality of the initial list is rela-
tively low, e.g., If the majority of the first k documents are not relevant to the query, the
effectiveness of PRF will be very limited. Even worse, if none of the selected top documents
are relevant at all, PRF could even reduce the effectiveness. Besides, it’s worth noting that
with reranking, we shuffle the initial list by bringing more relevant documents into a higher
rank and dragging non-relevant documents into a lower rank. Thus, if relevant documents
do not exist in the initial list, the PRF reranker won’t help at all in this case.

2.3 Rocchio’s Technique

As an implementation of relevance feedback, the Rocchio’s Technique could also be divided
into three categories: manual, automatic, and interactive. Rocchio’s Technique, a classic
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Figure 2.1: Model illustration for Rocchio’s Technique. The Diagram is taken from Katta
et al. [21]

query expansion model, is developed by Cornell University in the 1970s from the SMART
Information Retrieval System [2]. Rocchio’s Technique takes advantage of the feedback
from the initial ranking and builds a revised query based on that. So, the revised query
vectors are closer to the relevant document vectors and away from the non-relevant ones.
The Rocchio’s Technique model illustration generated by Katta [21] perfectly displays this
refinement in Figure 2.1. Since the revised query is computed by the distance to the
relevance labels, we could easily associate it with KNN classification, which also relies on
the distance features.

The algorithm for Rocchio’s Technique can be found below:

Qm = αQ0 + β
1

|Dr|
∑
dj∈Dr

dj − γ
1

|Dnr|
∑

dj∈Dnr

dj (2.1)
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Here Qm represents the new query while Q0 is the original one. α, β, γ are the weights
manually assigned to the original query Q0, positive document representations, and nega-
tive document representations. Dr is the set of relevant documents, while Dnr is the set of
the non-relevant documents. These documents are either annotated by human or assumed
by pseudo relevance feedback.

As Rocchio’s Technique largely reduces the demand for user interaction and training col-
lection size, many researchers incorporate the Rocchio’s Technique with more cutting-edge
transformers to further optimize its effectiveness. For example, Miao incorporates proxim-
ity information into Rocchio’s Technique [32]; Li et.al [26] integrates Rocchio’s Technique
directly with emergent deep language models [26].

As a simple query expansion technique, Rocchio’s Technique perfectly matches the
objective of our work: simple yet effective. Compared to the complicated parameter opti-
mization process of the neural networks, the parameters for Rocchio’s Technique are much
more explainable and easily tuned.

2.4 Dense Retrieval with Bi-encoder

Though relevance feedback is a promising approach to resolve the “vocabulary mismatch”
problem, it’s still performing an exact match between the updated query and document
representations. To fundamentally alleviate the “vocabulary mismatch” issue, dense repre-
sentations are proposed to directly capture the semantic meaning of queries and documents
with the aid of transformers. The technique of ranking relevant documents by their se-
mantic match to queries is called dense retrieval.

The idea of dense representation at first is not proposed to solve the ranking task;
instead, this concept named word embedding is used to tackle the word analogy task [33].
Many researchers extend the idea of word embedding to sentence embedding with various
encoder models. One of the most simple yet efficient classes of encoder model, Bi-encoder,
is introduced by Humeau et al. [17] for the sentences similarity task. Bi-encoder generates
one representation for each of the two inputs given, where their similarity is computed
by the inner product or cosine similarity between the two representations. On the other
hand, Cross-encoder concatenates the two inputs and sends the concatenated input to
transformers, producing a probability of similarity in the range of (0,1). Transformer-based
representation via Bi-encoder model isn’t applied to information retrieval till late 2010s
by Lee et al. [24] and Guu et al. [10]. A nice overview of the development of Bi-encoder
in ranking is offered by Lin et al. [28]. This is considered a breakthrough in information
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retrieval, and many studies are conducted to verify the superiority of Bi-encoder dense
retrieval to traditional sparse retrieval [24, 20, 5].

Pulling all the backgrounds together: given strong baselines and dense representations
provided by Bi-encoder dense retrieval, we wonder would the two implementations of PRF
still perform well on a number of modern test collections.
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Chapter 3

Retrieval Architecture

3.1 Architecture for Rocchio’s Technique

Our architecture for Rocchio’s Technique is motivated by the vector-based pseudo rele-
vance feedback architecture proposed by Li et al. [26]. In this architecture, each query
representation q is firstly aggregated with top k feedback documents from the initial ranked
list, and then used to perform a second-round retrieval to obtain the final ranked list.

Figure 3.1 depicts the detailed steps of our architecture for Rocchio’s Technique. As
shown in the first step 1 , the original query q is firstly encoded into a sparse/dense query
representation by a sparse BM25-based or dense transformer-based encoder. Besides the
dense transformer like ANCE mentioned in Li et al. [26], we also conducted query encoding
with two other stronger dense retrievers: TCT ColBERT V2 HN+ [52] and DistilBERT
KD TASB [15]. In the next stage, the query representation is sent to the corresponding
retriever for first-round retrieval 2 , generating the initial ranked list H 3 . The top k
document representations of the initial ranked list are used as pseudo relevance judgements
to update the query representation via Rocchio’s Technique 4 5 . More details about the
background, algorithm and implementation of Rocchio’s Technique are stated in Section
2.3. In our experiments with negative relevance feedback, we expand queries with both top
k document representations and bottom n document representations in steps 4 5 . In the
end, the updated query representation is sent back to the retriever again for subsequent
retrieval 6 to produce the final ranked list H ′ 7 . To investigate the improvement brought
by Rocchio’s Technique, we assess the statistical significance of metric differences between
initial ranked list H and final ranked list H ′ using a paired two-tailed t-test.
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Figure 3.1: Architecture for Rocchio’s Technique.

3.2 Architecture for PRF via text classification

In this pseudo relevance feedback implementation, we adopt the retrieval-and-rerank ar-
chitecture proposed by Nogueira and Cho [36]. The retrieval-and-rerank architecture, a
commonly used approach in information retrieval, produces an initial list and reranks it
with a more computationally-intensive method. In order to lower latency, the retrieval-
and-rerank architecture only sends promising candidates to the second reranking stage,
which could be viewed as a trade-off between efficiency and effectiveness. As long as the
candidates are of good quality, we can reduce computational costs without sacrificing much
effectiveness.

Figure 3.2 describes the detailed steps of our proposed architecture for pseudo relevance
feedback via text classification. Similar to the first retrieval round in Rocchio’s Technique,
queries are encoded into sparse/dense representations in step 1 and used to generate an
initial ranked list H for each query in step 2 , 3 . By pseudo relevance feedback, we assume
the top k hits of this ranked list are relevant while the last n hits are non-relevant. These
positive and negative pseudo document representations are then fed into the classifiers in
the next stage 4 , yielding the reranked list H ′ 5 . It’s worth noting that trained classifiers
are applied to all 1000 hits of the initial ranked list H, shuffling their ranks to build the
reranked list H ′. In the last step 6 , we rerank the base run H using new document scores
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Figure 3.2: Architecture for PRF via text classification.

and generate the final reranked list H ′′ for our final evaluation. The new document scores
here are comprised of the interpolation of the normalized scores from the initial ranked list
H and the normalized classifier scores from the reranked list H ′.

The equation for new document score could be found below:

Documentscore = (1− α) · Retrievalscore + α · Classificationscore (3.1)

3.3 Architecture for PRF with a combination of text

classification and Rocchio’s Technique

Multi-stage ranking architecture has been greatly exploited and validated in recent studies.
One application is to apply sequence-to-sequence models to a multi-stage architecture
proposed by Pradeep et al. [38], whose result is at or comparable to the state-of-art
in various TREC ranking tasks. In our experiment, we consider Rocchio’s Technique
the first-round ranking stage and pseudo relevance feedback via text classification as the
second-round ranking stage.
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While we are still following most of the steps in Figure 3.2, the query encoding and
first retrieval steps are omitted. Instead of training classifiers with the initial ranked list
produced by the base retriever, we feed the final ranked list of Rocchio’s Technique to the
classifiers. With all following steps remaining the same, the trained classifier for each topic
is applied to all documents in the base run for that topic. In this case, the base run is the
final ranked list from Rocchio’s Technique.
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Chapter 4

Experiment Setup

4.1 Data

For Rocchio’s Technique, we perform experiments on two MS MARCO collections: Passage
and Document [35]. MS MARCO Passage, a widely used training collection for IR tasks,
was released by Microsoft in 2018 to support research on passage ranking and question
answering tasks. It contains 503k queries in the training set, where each query is associated
with at least one relevant passage from the 8.8 million passages corpus.

Additionally, our experiment use two evaluation topic sets: TREC 2019 and TREC
2020 Deep Learning Track [8, 7]. The official development set contains 6980 queries, with
every single query associated with one human-annotated relevance label on average, which
is not suitable for evaluating PRF. Instead, TREC 2019 and TREC 2020 Deep Learning
Tracks have more than one positive judgment selected during the pooling and judging
process.

The goal of the MS MARCO Document task, similar to the MS MARCO Passage task,
is to rank the relevant documents from the 3.2 million document corpus. However, given
the length of documents, we apply the segmentation technique to divide each document
into several smaller chunks and treat each as a single unit in the subsequent retrieval and
reranking stages. Specifically, a sliding window strategy is applied in the segmentation,
where a 3-sentence sliding window with a 1-sentence stride is applied for each document.
The final aggregation uses the maxP technique, where each document score is decided by
the highest score of all segmented chunks for that document.

Our technique has two query/document representations: sparse BM25-based represen-
tation and dense transformer-based representation. With BM25-based representation, we
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Passage Document
Train Dev DL19 DL20 Dev DL19 DL20

# of documents 8.8 million 3.2 million
# of queries 502,939 6980 43 200 5193 43 200

Table 4.1: MS MARCO Dataset Statistics

perform both full and segmented retrieval. On the other hand, only segmented retrieval
is conducted on experiments with transformer-based representation to satisfy the length
limitations of transformer.

To answer the second research question, in previous work, we conduct PRF via text
classification on four newswire collections: Robust04, Robust05, Core17 and Core18 [11]
and confirm its outstanding performance with the sparse query/document representations.
In this study, we extend the collections to MS MARCO Passage/Document and the rep-
resentations to both BM25-based sparse and transformer-based dense ones.

4.2 Environment

All three experiments are conducted with Anserini [51], a Lucene-based information re-
trieval toolkit, and a Python toolkit Pyserini [27]. Pyserini supports retrieval for sparse
representations integrated from Anserini toolkit and dense representations integrated from
Facebook’s Faiss library [19]. All sparse/dense representations are converted into unit vec-
tors with L2 normalization before feeding into a pseudo relevance feedback implementation.

To answer RQ2, we train three classifiers with both sparse and dense representations:
linear regression (LR), support vector machines (SVM) with linear kernel, and k nearest
neighbours (KNN). All classifiers are imported from the scikit-learn package [3]. The reason
for us to explore k nearest neighbours with dense representations is to compare its results
to Rocchio’s Technique. Like the KNN classifier, Rocchio’s Technique also groups by the
distance (score) of document representations; thus, it could be considered a variant KNN.

In all experiments, the initial retrieval produces a standard top 1000 hits per topic. No
matter how the document representations are created (sparse or dense), the top k and in
some cases bottom n documents from the base run are used for further text classification/
query expansion. Even if the first initial retrieval takes advantage of the segmentation
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technique, we only apply PRF via text classification on the full document list aggregated
by the maxP technique. Given that all training labels for classifiers come from our first
retrieval, our technique does not produce any new documents other than the initially
retrieved candidates. It’s worth noting that all effectiveness improvements come from
shuffling the list alone.

4.3 Baseline

All initial base candidate lists for Rocchio’s Technique are produced by the retrieval results
of base models: BM25 or transformers. Besides, two configurations are presented for BM25
on MS MARCO Passage, BM25 with default parameters (k1=0.9, b=0.4) and BM25 w/
doc2query-T5. The following three transformers are used for encoding and retrieving in
the MS MARCO Passage ranking task: ANCE, TCT-ColBERT V2 HN+, and DistilBERT
KD TASB.

• ANCE: Approximate Nearest-neighbour Negative Contrastive Learning (ANCE) [48],
a first-stage dense retriever that takes advantage of global negative in the corpus to update
the ANN index.

• TCT-ColBERT V2 HN+: A modification of TCT-ColBERT V1 by utilizing a bi-
encoder teacher-to-student setup and efficiently adding hard negatives to knowledge dis-
tillation [29].

• DistilBERT KD TASB : An improvement on BERT with knowledge distillation model
[15] which proposes the usage of Balanced Topic Aware Sampling (TAS-Balanced) to com-
pose dense retrieval training batches.

As we are only utilizing some existing bag-of-words and transformers baselines in Py-
serini, for some models e.g., DistilBERT KD TASB, we currently don’t have that imple-
mented for MS MARCO Document ranking.

To answer RQ2, we have also employed PRF via text classification on the same base
models we utilize in RQ1. Besides, PRF via text classification is also applied to BM25 +
RM3 condition to test its robustness upon a stronger baseline. For RQ3, we perform a
cross combination between sparse/dense Rocchio’s Technique with sparse/dense PRF via
text classification. The baseline for this experiment is the final ranked list of Rocchio’s
Technique.
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4.4 Parameter Tuning

4.4.1 Rocchio’s Technique

By the algorithm of Rocchio’s Technique, we are supposed to compute its score by the
BM25 weights of the document representations. Because Anserini uses Lucene boosts for
the second-round query, which means it handles BM25 weighting internally, we end up
choosing Boolean weighting when aggregating multiple doc vectors. If one of the terms
appears in any of the doc vectors, it’s considered 1; otherwise, 0.

We also examine the number of relevant documents and terms used for query expan-
sion and the interpolation weight assigned to original query/positive judgments/negative
judgments. Empirically, including all terms in documents could reduce the accuracy as
many unimportant terms are added to the query, which can hurt the accuracy of search
keywords. Additionally, since there’s no guarantee that all chosen top documents are rele-
vant, and bottom documents are non-relevant, including too many documents might also
reduce the retrieval performance.

The number of the terms used for each document is limited to 256 in Li et al. [25]
in order to align with the length limitations of transformers. But here, we adopt a much
smaller term and document size to better compare with other query expansions technique
like RM3. Specifically, we set feedback term size to 10 and feedback document size to 10
across all experiments without further tuning.

For interpolation weight, we considered three following settings for our implementation:

• Parameters from Li et al. [25] where dense retriever is integrated with Rocchio’s
Technique. Note that negative non-relevant labels are not utilized here. (α=0.4, β=0.6,
γ=0)

• Parameters from the default RM3 reranker [23]. Note that negative non-relevant
labels are not utilized here. (α=0.5, β=0.5, γ=0)

• Parameters from the Manning et al. textbook [45] (α=1, β=0.75, γ=0.15)

We end up choosing the parameters from Manning et al. textbook [23] as our default
parameter in all following experiments. By comparing the results with negative labels
(γ=0.15) and ones without negative labels (γ=0) on the MS MARCO collection, we note
that the improvement brought by negative is minimal and not stable at all. Hence, we
only report the results without negative labels in all main MS MARCO experiments.

19



4.4.2 PRF via text classification

For pseudo relevance feedback via text classification, there are only three parameters: k,
the number of the top relevant documents used for classifier training; n, the number of
the bottom non-relevant documents used for classifier training; α, the interpolation weight
of initial BM25 scores. Note that the parameter tuning of PRF is much simpler than a
deep learning transformer like BERT, which gives an advantage to researchers who have
less experience with parameter optimization. The hyperparameter for k is set to 10 (a
common value in pseudo relevance feedback), and n is set to 100 (based on the 10:1 ratio
for negative: positive labels) to avoid overfitting. The interpolation weight for PRF via text
classification is tuned from 0.0 to 1.0 within 0.1 increment step via 10-fold cross-validation
on MS MARCO Passage development set; this ends up as α equals 0.5.
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Chapter 5

Results and Analysis

We present experimental results for research questions 1, 2, and 3 in this chapter. As a
high-level summary, we gain positive answers for both research questions 1 and 2. Both
Rocchio’s Technique and PRF via text classification technique perform well even with
transformer-derived representations. For RQ3, adding PRF via text classification on top
of Rocchio’s Technique doesn’t bring any substantial gains in terms of effectiveness.

5.1 Research Question 1

5.1.1 Rocchio’s Technique on Passage ranking

Experimental results for MS MARCO Passage ranking are shown in Table 5.1. We report
the evaluation metrics MAP and nDCG at rank cut-off 10 for both TREC topics. Row (1a)
serves as a bag-of-words BM25 baseline for further query expansion where “default” refers
to the Anserini (system-wide) default setting for MS MARCO Passage, k1=0.9, b=0.4.
We list Row (1b) as a reference for RM3 query expansion applied to the BM25 base run;
Row (1c) is the result of our proposed Rocchio’s Technique. Rows (2a–2c) are organized in
a similar manner, except that they take advantage of the doc2query-T5 expansion model
[30] with BM25 baseline. Thanks to the Pyserini “two-click” reproduction matrix, which
our work conributes to, a simple copy and paste can easily reproduce all base runs and
expansion results. 1

1https://castorini.github.io/pyserini/2cr/msmarco-v1-passage.html
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Base Model Expansion TREC 2019 TREC 2020
MAP nDCG@10 MAP nDCG@10

(1a) BM25 (default) - 0.3013 0.5058 0.2856 0.4796
(1b) BM25 (default) RM3 0.3390*** 0.5180 0.3019 0.4821
(1c) BM25 (default) Rocchio 0.3474*** 0.5275 0.3102 0.4893

(2a) BM25 (default) w/ doc2query-T5 - 0.4034 0.6417 0.4074 0.6187
(2b) BM25 (default) w/ doc2query-T5 RM3 0.4485*** 0.6548 0.4295 0.6172
(2c) BM25 (default) w/ doc2query-T5 Rocchio 0.4469*** 0.6538 0.4246 0.6102

(3a) ANCE - 0.3710 0.6452 0.4076 0.6458
(3b) ANCE Rocchio 0.4211*** 0.6539 0.4315*** 0.6471

(4a) TCT-ColBERT V2 HN+ - 0.4469 0.7204 0.4754 0.6882
(4b) TCT-ColBERT V2 HN+ Rocchio 0.4883 0.7111 0.4860 0.6804

(5a) DistillBERT KD TASB - 0.4590 0.7210 0.4698 0.6854
(5b) DistillBERT KD TASB Rocchio 0.4974 0.7231 0.4879 0.7083

Table 5.1: Experimental results on the MS MARCO Passage collection for Rocchio’s Tech-
nique on TREC 2019 and TREC 2020 Deep Learning Tracks. Superscripts *** on the
conditions indicate significant improvements over the baseline, based on paired t-tests
(p < 0.01).

Besides the BM25 base model, we also report the results for three dense retrievers:
ANCE, TCT-ColBERT V2 HN+ and DistilBERT KD TASB. The base results for the
three dense retrievers are shown on Rows (3a, 4a, 5a), while ranked results for Rocchio’s
Technique are shown on Rows (3b, 4b, 5b). In this case, we avoid displaying RM3 expansion
because RM3 isn’t mathematically reasonable for dense representations. As a typical
“sparse” PRF approach, RM3 counts the occurrence of terms in the feedback of document
representations; nevertheless, the dense representations are not countable.

Obviously, by comparing the BM25 baselines with our proposed Rocchio’s Technique
runs, we see that Rocchio’s Technique yields a substantial improvement on MAP across
both TREC topics, especially TREC 2019. Through a comparison between Rows (1b–
1c) to (2b–2c), we can describe that our Rocchio’s Technique beats the well-studied RM3
expansion on the BM25 (default) and holds competitive scores on the BM25 (default)
w/ doc2query-T5. This is quite impressive that Rocchio’s Technique, one of the oldest
expansion techniques, could still be considered robust and effective, just like other more
popular expansions technique.

When it comes to transformers, we note that transformers help Rocchio in the selection
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Base Model Expansion TREC 2019 TREC 2020
MAP nDCG@10 R@100 MAP nDCG@10 R@100

doc (segmented)

(1a) BM25 (default) - 0.2449 0.5302 0.3840 0.3586 0.5281 0.5823
(1b) BM25 (default) RM3 0.2884*** 0.5764 0.4355 0.3774 0.5179 0.6224
(1c) BM25 (default) Rocchio 0.2889*** 0.5570 0.4415 0.3830 0.5226 0.6291

(1d) ANCE - 0.2083 0.6327 0.3162 0.3853 0.6325 0.5440
(1e) ANCE Rocchio 0.2351*** 0.6592 0.3358 0.3962 0.6279 0.5619

(1f) TCT-ColBERT V2 - 0.2684 0.6593 0.3854 0.3914 0.6094 0.5964
(1g) TCT-ColBERT V2 Rocchio 0.2946*** 0.6594 0.4241 0.4292 0.6391 0.6253

doc (full)

(2a) BM25 (default) - 0.2434 0.5176 0.3949 0.3793 0.5286 0.6110
(2b) BM25 (default) RM3 0.2774*** 0.5170 0.4189 0.4014 0.5225 0.6414
(2c) BM25 (default) Rocchio 0.2811*** 0.5256 0.4261 0.4089 0.5192 0.6425

Table 5.2: Experimental results on the MS MARCO Document collection for Rocchio’s
Technique on TREC 2019 and TREC 2020 Deep Learning Tracks. Superscripts *** on
the conditions indicate significant improvements over the baseline, based on paired t-tests
(p < 0.01).

of expansion terms by producing a better ranked results. The application of Rocchio’s
Technique on the ANCE base model leads to statistically significant (p<0.01) gains on
both TREC topics. The improvements with other dense retrievers are still impressive but
not significant.

In summary, on the MS MARCO Passage TREC topics, starting from both sparse
and dense baselines, Rocchio’s Technique improves average precision by 0.03-0.05. This
means we can gain about 10% higher average precision by simply adding an expansion
technique. Even compared to RM3, Rocchio’s Technique achieves competitive or even
better effectiveness upon the BM25 baseline. In addition, Rocchio’s Technique has the
advantage of being compatible with deep learning transformers.

5.1.2 Rocchio’s Technique on Document ranking

We also conduct experiments on the MS MARCO Document collection to examine the ro-
bustness and generality of Rocchio’s Technique. Table 5.2 presents more details of results,
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where segmented and full document runs are displayed in two separate blocks. For seg-
mented runs, we retrieve the top 10,000 different segments and use the “maxP” technique
to aggregate the final 1000 hits. On the other hand, for full document runs, we straightfor-
wardly retrieve results with top 1000 hits. Rows (1a) and (2a) report the “default” BM25
baseline (k1=0.9, b=0.4) while Rows (1b–1c) and (2b–2c) display the expansion results.
For the segmented condition, as the implementation of DistillBERT KD TASB model is
missing for Document ranking, we only report the results with ANCE and TCT-ColBERT
V2 HN+ transformers on Rows (1d–1g). According to the official evaluation metrics of the
MS MARCO Document, the MAP and recall we report here are both at rank cut-off 100.

On the TREC 2019 Deep Learning Track, we can observe that the MAP of Rocchio’s
Technique is significantly better (p < 0.01) than the original baseline and is higher than
RM3 under all circumstances. With the TREC 2020 Deep Learning Track, though the
enhancements are no longer significant, it still beats RM3 in MAP and recall@100 across
all base models.

For a final comparison, examining the doc (full) and doc (segmented) conditions, it’s
hard to tell which condition exhibits higher effectiveness than the other. Interestingly, the
enhancements in effectiveness results from the query expansion technique are not affected
when changing from the full corpus to the segmented one.

To sum up, the great performance of Rocchio’s Technique in all conditions compared
with the BM25 baselines and strong RM3 expansion results confirm its robustness and
effectiveness. BM25 + RM3, one of the most stable and widely used additional base-
lines, still fails to surpass Rocchio’s Technique in MS MARCO Document ranking, a more
challenging ranking task.

5.1.3 Negative Feedback

It’s worth noting that all Rocchio’s Technique results we gain above are built by the
top 10 documents as pseudo relevance feedback. We wonder whether including negative
feedback can yield more gains; the detailed results are shown in Table 5.3. To investigate
the impact of negative feedback on Rocchio’s Technique in general, we experiment on
two different collections: MS MARCO Passage and MS MARCO Document. The boost
between Rows (1) and (2) comes solely from Rocchio’s Technique with positive feedback,
while the gap between Rows (2) and (3) is caused by the involvement of negative feedback.
In a comparison of Row (2) to Row (3), we can note that including negative feedback
reduces the effectiveness in most runs and gives minimal improvements in the rest of
the experiments. One possible explanation is that the most frequent terms in the tail n
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MSMARCO Passage MSMARCO Document
TREC2019 TREC2020 TREC2019 TREC2020

Condition AP AP AP AP

(1) BM25 0.3013 0.2856 0.2434 0.3793
(2) BM25 + Rocchio 0.3474*** 0.3102 0.2811*** 0.4089
(3) BM25 + Rocchio-neg 0.3463*** 0.3096 0.2813*** 0.4096

Table 5.3: Effectiveness of Rocchio’s Technique with/without negative feedback on collec-
tions MS MARCO Passage/Document TREC 2019 Deep Learning Track and TREC 2020
Deep Learning Track. Superscripts *** on the Rocchio’s Technique conditions indicate
significant improvements over the baseline, based on paired t-tests (p < 0.01).

documents are still associated with the query topics. Reductions in their weights could
have a bad impact on the performance of second-round retrieval. Hence, we decide to
consider Rocchio’s Technique with only positive feedback as our default setting in this
thesis.

5.2 Research Question 2

5.2.1 PRF via text classification on Passage ranking

Since we have observed the great performance of PRF via text classification on collections
like Robust04, Robust05, Core17, and Core18 in our previous work [11], the focus of this
thesis will be MS MARCO ranking tasks instead. Table 5.4 contains our main results
for PRF via text classification on MS MARCO Passage ranking. The results are split
into four sections according to their base models. Besides traditional BM25 retrievers, we
also include three strong dense retrievers to study the potential of our proposed PRF via
text classification with dense retrieval. Pyserini provides the capability to easily encode
the query text by a pre-generated deep learning encoder and access the pre-computed
document representations stored in indexes.

Rows (b–d) are the results of classifications based on Row (a), where “LR”, “SVM”
and “KNN” refers to the classifier applied to the document representations. KNN classifier
could be fairly compared to Rocchio’s Technique as they both utilize pseudo relevance
feedback over the initial ranked list and weight based on the distance of their document
representations.
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Base Model Expansion Classifier TREC 2019 TREC 2020
MAP nDCG@10 R@1k MAP nDCG@10 R@1k

(1a) BM25 - - 0.3013 0.5058 0.7501 0.2856 0.4796 0.7863
(1b) BM25 - LR 0.3135 0.5180 0.7501 0.2887 0.5023 0.7863
(1c) BM25 - SVM 0.3179 0.5244 0.7501 0.2974 0.5085 0.7863
(1d) BM25 - KNN 0.3119 0.5105 0.7501 0.2927 0.4969 0.7863

(2a) ANCE - - 0.371 0.5540 0.7554 0.4076 0.5679 0.7764
(2b) ANCE - LR 0.3841 0.5736 0.7554 0.4054 0.5831 0.7764
(2c) ANCE - SVM 0.381 0.5724 0.7554 0.4109 0.5855 0.7764
(2d) ANCE - KNN 0.3969*** 0.5746 0.7554 0.4173 0.5897 0.7764

(3a) TCT-ColBERT V2 HN+ - - 0.4469 0.6318 0.8261 0.4754 0.6206 0.8429
(3b) TCT-ColBERT V2 HN+ - LR 0.4744*** 0.6582 0.8261 0.4834 0.6349 0.8429
(3c) TCT-ColBERT V2 HN+ - SVM 0.4672*** 0.6571 0.8261 0.4755 0.6288 0.8429
(3d) TCT-ColBERT V2 HN+ - KNN 0.4681 0.6531 0.8261 0.4741 0.6179 0.8429

(4a) DistillBERT KD TASB - - 0.4590 0.6360 0.8406 0.4698 0.6346 0.8727
(4b) DistillBERT KD TASB - LR 0.4866*** 0.6672 0.8406 0.4853 0.6533 0.8727
(4c) DistillBERT KD TASB - SVM 0.4825 0.6643 0.8406 0.4795 0.6492 0.8727
(4d) DistillBERT KD TASB - KNN 0.4997*** 0.6660 0.8406 0.4825 0.6553 0.8727

Table 5.4: Experimental results on the MS MARCO Passage collection for PRF via text
classification on TREC 2019 and TREC 2020 Deep Learning Tracks. Superscripts *** on
the conditions indicate significant improvements over the baseline, based on paired t-tests
(p < 0.01).

We can observe from Rows (1a–1d) that the PRF via text classification improves MAP
under all conditions though the improvement is not considered statistically significant by
our t-tests. Meanwhile, the improvement of classification on TREC 2020 is more modest
compared to the ones on TREC 2019. Comparing BM25-derived with transformer-derived
results, we can easily find out that though dense retrievers provide a relatively high base-
line, PRF via text classification appears to exhibit stronger reranking power with them.
This conclusion matches the finding demonstrated by Naseri et al. [34] that transformers
could serve as an aid in the selection of query expansion terms and even improve the pseudo
relevance feedback model. One reasonable explanation is that as dense retrievals are su-
perior to BM25 retrieval, it could provide a better initial list to our reranking classifier.
A boost in the quality of the candidate list could largely benefit the performance of text
classification reranking.

We also explore the improvement of PRF via text classification on BM25 + RM3
baselines, which could be viewed in Rows (1a–1d) of Table 5.6. As RM3 also utilizes
PRF for query expansion, we are not surprised to observe PRF via text classification, as
a second-round PRF technique barely squeezes additional effectiveness from the reranked
list. This differs from our previous observation [11] where PRF via text classification
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Base Model Expansion Classifier TREC 2019 TREC 2020
MAP nDCG R@100 MAP nDCG R@100

(1a) BM25 - - 0.2434 0.5176 0.3949 0.3793 0.5286 0.6110
(1b) BM25 - LR 0.2809*** 0.5566 0.4315 0.4090 0.5641 0.6469
(1c) BM25 - SVM 0.2748*** 0.5285 0.4286 0.4054 0.5365 0.6391
(1d) BM25 - KNN 0.2539 0.5209 0.4018 0.3781 0.5106 0.6110

(2a) ANCE - - 0.2083 0.6327 0.3162 0.3853 0.5440 0.6325
(2b) ANCE - LR 0.2417*** 0.6405 0.3660 0.3826 0.6312 0.5771
(2c) ANCE - SVM 0.2444*** 0.6521 0.3625 0.3899 0.6193 0.5746
(2d) ANCE - KNN 0.2315 0.6266 0.3386 0.3936 0.6294 0.5719

(3a) TCT-ColBERT V2 HN+ - - 0.2684 0.6593 0.3854 0.3914 0.6094 0.5964
(3b) TCT-ColBERT V2 HN+ - LR 0.2992*** 0.6716 0.4178 0.4200 0.6184 0.6382
(3c) TCT-ColBERT V2 HN+ - SVM 0.2968*** 0.6714 0.4158 0.4212 0.6182 0.6407
(3d) TCT-ColBERT V2 HN+ - KNN 0.2817 0.6559 0.4058 0.4012 0.6106 0.6245

Table 5.5: Experimental results on the MS MARCO Document collection for PRF via text
classification on TREC 2019 and TREC 2020 Deep Learning Tracks. Superscripts *** on
the Rocchio conditions indicate significant improvements over the baseline, based on paired
t-tests (p < 0.01).

still shows consistent improvements on BM25 + RM3 baselines across all four newswire
collections. It’s unclear which individual classification model is significantly better than the
other two. Nevertheless, a further experiment could be conducted to study the performance
of ensemble models.

Overall, in this section, we confirm the success of PRF via text classification on both
sparse and dense retrieval. We state that PRF via text classification with the aid of
transformers generally performs better than the ones with the traditional BM25 retriever.
PRF via text classification tends to perform better with a more robust base model, e.g.,
DistillBERT KD TASB. The performances of the three classifications are close to each
other. Note that all improvements come directly from shuffling the ranked list, as PRF via
text classification is applied as a reranker on the candidate list.

5.2.2 PRF via text classification on Document ranking

Results for PRF via text classification on MS MARCO Document collection are presented
on Table 5.5. Similarly to Table 5.4, we report one baseline and three classification results
in each block. As the index and encoder for DistillBERT KD TASB transformer are missing
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with the MS MARCO Document collection, we choose to omit this case. Classification is
applied to the full document ranked list instead of segmented ones for simplicity. For the
three rerankers, we report recall@100 instead of recall@1000, so the reader could still view
a change on the recall@100 metric.

As expected, almost all PRF rerankers outperform the initial retrieval results, though
the improvement on MAP is only statistically significant on TREC 2019 with the “LR” and
“SVM” classifiers. We reach a similar conclusion in terms of nDCG@10 and recall@100 on
TREC 2019 and TREC 2020 topics. As the performance of ANCE and TCT-ColBERT V2
HN+ on MSMARCO Document is not substantially greater than the BM25 one, we can’t
observe an obvious advantage brought from transformers on PRF via text classification.

5.2.3 Comparison of two PRF implementations

Another interesting comparison is PRF via text classification v.s. PRF with Rocchio’s
Technique. For MS MARCO Passage ranking, we firstly compare the BM25 + text clas-
sification in Rows (1b–1d) of Table 5.4 with BM25 + Rocchio in Row (2a) of Table 5.6.
To our surprise, the best result of PRF via text classification is still inferior to Rocchio’s
Technique baseline. The same conclusion could be achieved by comparing the other three
dense retrievers with PRF via text classification to their corresponding Rocchio’s Tech-
nique in Table 5.6. Although PRF via text classification improves with both sparse and
dense retrieval, Rocchio’s Technique is still preferred.

For MS MARCO Document ranking, by comparing BM25 + classification in Rows
(1b–1d) of Table 5.5 with BM25 + Rocchio baseline in Row (2c) of Table 5.7, we can
observe that the performance of PRF via text classification and Rocchio’s Technique is
surprisingly close in terms of MAP and nDCG@10. A similar conclusion could be achieved
by comparing the results from two other dense retrievers. Though the recall@100 scores
are close for these two PRF implementations, Rocchio’s Technique should produce a higher
recall@1000 score. As it’s performing an end-to-end retrieval rather than a reranking, it
should introduce a set of new relevant documents and rule out some non-relevant ones to
the top 1000 hits.

5.3 Research Question 3

To investigate the collaboration of two PRF implementations, we perform experiments
with a cross combination between sparse/dense Rocchio’s Technique and sparse/dense
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Base Model Expansion Classifier TREC 2019 TREC 2020
MAP nDCG@10 R@1k MAP nDCG@10 R@1k

(1a) BM25 RM3 - 0.3390 0.5286 0.7998 0.3019 0.5077 0.8217
(1b) BM25 RM3 sparse LR 0.3361 0.5199 0.7998 0.2864 0.5028 0.8217
(1c) BM25 RM3 sparse SVM 0.3397 0.5263 0.7998 0.2983 0.5084 0.8217
(1d) BM25 RM3 sparse KNN 0.3353 0.5241 0.7998 0.2942 0.4980 0.8217

(2a) BM25 Rocchio - 0.3474 0.5339 0.8007 0.3102 0.5095 0.8156
(2b) BM25 Rocchio sparse LR 0.3436 0.5306 0.8007 0.2982 0.5074 0.8156
(2c) BM25 Rocchio sparse SVM 0.3488 0.5337 0.8007 0.3095 0.5129 0.8156
(2d) BM25 Rocchio sparse KNN 0.3447 0.5270 0.8007 0.3047 0.4998 0.8156

(3a) BM25 Rocchio - 0.3474 0.5339 0.8007 0.3102 0.5095 0.8156
(3b) BM25 Rocchio dense LR 0.3682 0.5627 0.8007 0.3242 0.5317 0.8156
(3c) BM25 Rocchio dense SVM 0.3600 0.5559 0.8007 0.3229 0.5321 0.8156
(3d) BM25 Rocchio dense KNN 0.3637 0.5485 0.8007 0.3282 0.5262 0.8156

(4a) ANCE Rocchio - 0.4211 0.5928 0.7825 0.4315 0.5800 0.7957
(4b) ANCE Rocchio sparse LR 0.424 0.6138 0.7825 0.4385 0.6053 0.7957
(4c) ANCE Rocchio sparse SVM 0.4362 0.6169 0.7825 0.4374 0.6113 0.7957
(4d) ANCE Rocchio sparse KNN 0.4215 0.5926 0.7825 0.4337 0.5996 0.7957

(5a) ANCE Rocchio - 0.4211 0.5928 0.7825 0.4315 0.5800 0.7957
(5b) ANCE Rocchio dense LR 0.4128 0.5976 0.7825 0.4234 0.5855 0.7957
(5c) ANCE Rocchio dense SVM 0.4222 0.6001 0.7825 0.4252 0.5871 0.7957
(5d) ANCE Rocchio dense KNN 0.4293 0.5948 0.7825 0.4372 0.5918 0.7957

(6a) TCT-ColBERT V2 HN+ Rocchio - 0.4883 0.6684 0.8694 0.486 0.6254 0.8518
(6b) TCT-ColBERT V2 HN+ Rocchio sparse LR 0.4844 0.6702 0.8694 0.4694 0.6277 0.8518
(6c) TCT-ColBERT V2 HN+ Rocchio sparse SVM 0.4943 0.6771 0.8694 0.4868 0.646 0.8518
(6d) TCT-ColBERT V2 HN+ Rocchio sparse KNN 0.4796 0.6529 0.8694 0.476 0.628 0.8518

(7a) TCT-ColBERT V2 HN+ Rocchio - 0.4883 0.6684 0.8694 0.486 0.6254 0.8518
(7b) TCT-ColBERT V2 HN+ Rocchio dense LR 0.4841 0.661 0.8694 0.4627 0.6167 0.8518
(7c) TCT-ColBERT V2 HN+ Rocchio dense SVM 0.4894 0.6712 0.8694 0.4797 0.6266 0.8518
(7d) TCT-ColBERT V2 HN+ Rocchio dense KNN 0.4749 0.6477 0.8694 0.4691 0.6125 0.8518

(8a) DistillBERT KD TASB Rocchio - 0.4974 0.6684 0.8775 0.4879 0.6470 0.8926
(8b) DistillBERT KD TASB Rocchio sparse LR 0.5007 0.6716 0.8775 0.4889 0.6644 0.8926
(8c) DistillBERT KD TASB Rocchio sparse SVM 0.5077 0.6803 0.8775 0.4961 0.6736 0.8926
(8d) DistillBERT KD TASB Rocchio sparse KNN 0.4868 0.6497 0.8775 0.4723 0.6515 0.8926

(9a) DistillBERT KD TASB Rocchio - 0.4974 0.6684 0.8775 0.4879 0.6470 0.8926
(9b) DistillBERT KD TASB Rocchio dense LR 0.5055 0.6714 0.8775 0.4898 0.6569 0.8926
(9c) DistillBERT KD TASB Rocchio dense SVM 0.5081 0.6758 0.8775 0.4909 0.6553 0.8926
(9d) DistillBERT KD TASB Rocchio dense KNN 0.4963 0.6556 0.8775 0.4831 0.6488 0.8926

Table 5.6: Experimental results on the MS MARCO passage collection with Rocchio’s
Technique and PRF via text classification on TREC 2019 and TREC 2020 Deep Learning
Tracks. Superscripts *** indicates the significant improvements over the baseline, based
on paired t-tests (p < 0.01).
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Base Model Expansion Classifier TREC 2019 TREC 2020
MAP nDCG@10 R@100 MAP nDCG@10 R@100

(1a) BM25 RM3 - 0.2774 0.5170 0.4189 0.4014 0.5225 0.6414
(1b) BM25 RM3 sparse LR 0.2800 0.5318 0.4205 0.3916 0.5342 0.6320
(1c) BM25 RM3 sparse SVM 0.2779 0.5345 0.4036 0.3932 0.5321 0.6318
(1d) BM25 RM3 sparse KNN 0.2535 0.5058 0.3921 0.3720*** 0.5215 0.5920

(2a) BM25 Rocchio - 0.2811 0.5256 0.4261 0.4089 0.5192 0.6425
(2b) BM25 Rocchio sparse LR 0.2935 0.5485 0.4327 0.3950 0.5298 0.6369
(2c) BM25 Rocchio sparse SVM 0.2836 0.5395 0.4136 0.3978 0.5272 0.6368
(2d) BM25 Rocchio sparse KNN 0.2580 0.5182 0.3869 0.3751 0.5121 0.5978

(3a) BM25 Rocchio - 0.2811 0.5256 0.4261 0.4089 0.5192 0.6425
(3b) BM25 Rocchio dense LR 0.2540*** 0.5216 0.4074 0.3625*** 0.4968 0.6250
(3c) BM25 Rocchio dense SVM 0.2143*** 0.4294 0.3737 0.3325*** 0.4695 0.5821
(3d) BM25 Rocchio dense KNN 0.2044*** 0.4617 0.3305 0.3081*** 0.4700 0.5442

(4a) ANCE Rocchio - 0.2351 0.6592 0.3358 0.3962 0.6279 0.5619
(4b) ANCE Rocchio sparse LR 0.2590*** 0.6624 0.3669 0.3900 0.6266 0.5846
(4c) ANCE Rocchio sparse SVM 0.2586*** 0.6649 0.3695 0.3922 0.6248 0.5778
(4d) ANCE Rocchio sparse KNN 0.2516 0.6544 0.3620 0.4035 0.6300 0.5720

(5a) ANCE Rocchio - 0.2351 0.6592 0.3358 0.3962 0.6279 0.5619
(5b) ANCE Rocchio dense LR 0.2030*** 0.6409 0.3152 0.3642 0.6145 0.5377
(5c) ANCE Rocchio dense SVM 0.1934*** 0.6057 0.2979 0.3163*** 0.5738 0.4962
(5d) ANCE Rocchio dense KNN 0.1614*** 0.5956 0.2620 0.2947*** 0.5474 0.4594

(6a) TCT-ColBERT V2 HN Rocchio - 0.2946 0.6594 0.4241 0.4292 0.6391 0.6253
(6b) TCT-ColBERT V2 HN Rocchio sparse LR 0.3180 0.6720 0.4553 0.4337 0.6294 0.6568
(6c) TCT-ColBERT V2 HN Rocchio sparse SVM 0.3147 0.6748 0.4471 0.4318 0.6408 0.6433
(6d) TCT-ColBERT V2 HN Rocchio sparse KNN 0.2920 0.6566 0.4292 0.4248 0.6372 0.6341

(7a) TCT-ColBERT V2 HN Rocchio - 0.2946 0.6594 0.4241 0.4292 0.6391 0.6253
(7b) TCT-ColBERT V2 HN Rocchio dense LR 0.2689*** 0.6554 0.4116 0.4078 0.6230 0.6194
(7c) TCT-ColBERT V2 HN Rocchio dense SVM 0.2363*** 0.6044 0.3782 0.3805*** 0.5843 0.5836
(7d) TCT-ColBERT V2 HN Rocchio dense KNN 0.1764*** 0.5984 0.3002 0.3067*** 0.5370 0.5047

Table 5.7: Experimental results on the MS MARCO Document collection with Rocchio’s
Technique and PRF via text classification on TREC 2019 and TREC 2020 Deep Learning
Tracks. Superscripts *** indicates significant improvements over the baseline, based on
paired t-tests (p < 0.01).
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PRF via text classifications. To distinguish the document representations we utilized for
training classifiers, we introduce two new configurations on the “Classifier” column: “dense
classifier” and “sparse classifier”. The results for MS MARCO Passage Ranking are shown
on Table 5.6 while the MS MARCO Document Ranking ones are shown on Table 5.7.

When comparing the results of sparse classifiers to the dense classifiers in Table 5.6,
we can note that “hybrid models” generally perform better than the models with only
sparse representations or dense representations. Here, the “hybrid model” represents
two different configurations: Rocchio’s Technique (BM25-derived) + text classification
(transformer-derived) or Rocchio’s Technique (transformer-derived) + text classification
(BM25-derived).

Except for “hybrid models”, we observe that PRF via text classification either hurts
MAP or marginally improves it for both TREC 2019 and TREC 2020 Deep Learning
Tracks. Besides, by comparing the three classifiers, we can observe that the “SVM” clas-
sifiers generate more stable and effective results than the other two in general.

Now we shift our focus to MS MARCO Document ranking on Table 5.7. We can see
that the sparse classifiers are superior to the dense classifiers under all circumstances.
Another interesting observation is that KNN seems to perform the worst in almost all
conditions. We can explain it from two perspectives. Firstly, due to the similarity of KNN
and Rocchio’s Technique we discussed above, KNN can barely learn additional ranking
features beyond what has already been learned by Rocchio’s Technique. Besides, as the
default KNN only has five neighbours, the model is too simple to resolve complicated MS
MARCO Document ranking tasks.

Overall, on MS MARCO Passage ranking, the combination of Rocchio’s Technique
with PRF via text classification doesn’t make much difference in effectiveness. In the more
challenging MS MARCO Document ranking, applying PRF via text classification on top
of Rocchio’s Technique even decreases the performance in the majority of cases.
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Chapter 6

Conclusion and Future Work

Over the last three decades, deep learning transformers have been successfully applied to
many information retrieval tasks, while the number of publications regarding deep learning
is growing yearly. On the other hand, to pursue an improvement in effectiveness, researchers
choose to build more and more complicated neural networks with fancier loss functions
and deeper architectures. However, more recent papers start to question the necessity of
complex networks and the reliability of empirical gains. [46, 1, 14]. In this spirit, we wonder
whether some simple and old-fashioned techniques are still valuable for further exploration
in this neural age?

Motivated by this thought, we tackle the decades-old pseudo relevance feedback prob-
lem and raise the following three research questions. In RQ1, we questioned whether Roc-
chio’s Technique still performs well with both sparse and dense representations in modern
information retrieval tasks. If so, how well is it compared to other query expansion ap-
proaches? While in the RQ2, we shifted our focus to the performance of another more
recent technique, PRF via text classification. After we confirm the success of both two
implementations of pseudo relevance feedback, we work on a combination of them.

To answer RQ1, we conducted experiments by applying Rocchio’s Technique on top
of both BM25, and BM25 w/ doc2query-T5 base runs. It turns out that with Rocchio’s
Technique, we can achieve up to a 0.05 increase across all TREC 2019 and TREC 2020
topics. Due to its competitive score compared to RM3 expansion and its capability of
integrating PRF judgments with deep learning transformers, we propose switching RM3
into Rocchio’s Technique as a stronger baseline.

The answer to the RQ2 is also yes. We observe large gains in effectiveness across
all conditions by reranking the initial candidate list using classifiers trained with sparse
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and dense document representations. Note that this is a lightweight reranking technique
that could be easily applied to any candidate list without the usage of topic and corpus
information.

Our experiments for RQ3 demonstrate the PRF via text classification doesn’t make
much difference on top of Rocchio’s Technique baseline. That could be explained as Roc-
chio’s Technique perform so well, and PRF via text classification fail to capture additional
ranking information.

All in all, these answers verify the robustness and effectiveness of two “old-fashioned”
techniques in the neural age. Doubtless, neural networks manage to capture complicated
features and patterns much better than traditional techniques; nevertheless, some “out-of-
date” techniques should not be ignored or forgotten.

Due to the limited time and resources, there are a few potential directions we hope to
explore in future works. A first possible direction is to expand Rocchio’s Technique and
PRF via text classification with more collections, baselines, and different configurations,
e.g., different transformers and different PRF depth. Additionally, as we apply PRF via
classification on top of Rocchio’s Technique to answer RQ3, we wonder what if we change
the order of these two techniques? It would be interesting to explore whether the conclusion
still holds if we apply Rocchio’s Technique on top of PRF via classification instead.
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