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Abstract

We show results in areas related to extremal problems in directed graphs. The
first concerns a rainbow generalization of the Caccetta-Häggkvist conjecture, made by
Aharoni. The Caccetta-Häggkvist conjecture states that if G is a simple digraph on n
vertices with minimum out-degree at least k, then there exists a directed cycle in G of
length at most ⌈n/k⌉. Aharoni proposed a generalization of this well-known conjecture,
namely that if G is a simple edge-colored graph (not necessarily properly colored) on
n vertices with n color classes each of size at least k, then there exists a rainbow cycle
in G of length at most ⌈n/k⌉.

In this thesis, we first prove that if G is an edge-colored graph on n vertices with
n color classes each of size at least Ω(k log k), then G has a rainbow cycle of length
at most ⌈n/k⌉. Then, we develop more techniques to prove the stronger result that if
there are n color classes, each of size at least Ω(k), then there is a rainbow cycle of
length at most ⌈n/k⌉. Finally, we improve upon existing bounds for the triangle case,
showing that if there are n color classes of size at least 0.3988n, then there exists a
rainbow triangle, and also if there are 1.1077n color classes of size at least n/3, then
there is a rainbow triangle.

Let χ(G) denote the chromatic number of a graph G and let ω(G) denote the clique
number. Similarly, let χ⃗(D) denote the dichromatic number of a digraph D and let
ω(D) denote the clique number of the underlying undirected graph of D. In the second
part of this thesis, we consider questions of χ-boundedness and χ⃗-boundedness. In the
undirected setting, the question of χ-boundedness concerns, for a class C of graphs,
for what functions f (if any) is it true that χ(G) ≤ f(ω(G)) for all graphs G ∈ C. In
a similar way, the notion of χ⃗-boundedness refers to, given a class C of digraphs, for
what functions f (if any) is it true that χ⃗(D) ≤ f(ω(D)) for all digraphs D ∈ C. It was
a well-known conjecture, sometimes attributed to Esperet, that for all k, r ∈ N there
exists n such that in every graph with G with χ(G) ≥ n and ω(G) ≤ k, there exists an
induced subgraph H of G with χ(H) ≥ r and ω(H) = 2. We disprove this conjecture.
Then, we examine the class of k-chordal digraphs, which are digraphs such that all
induced directed cycles have length equal to k. We show that for k ≥ 3, the class of
k-chordal digraphs is not χ⃗-bounded, generalizing a result of Aboulker, Bousquet, and
de Verclos in [1] for k = 3. Then we give a hardness result for determining whether a
digraph is k-chordal, and finally we show a result in the positive direction, namely that
the class of digraphs which are k-chordal and also do not contain an induced directed
path on k vertices is χ⃗-bounded.

We discuss the work of others stemming from and related to our results in both
areas, and outline directions for further work.
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Chapter 1

Basic definitions and background

1.1 General background and motivation

In this section, we provide some general background and motivation for the contents
of this thesis. In the following section, we will give some basic definitions for, among
other things, the terms used here. The thesis is split roughly into two topics, which are
contained in Chapters 2 and 3, respectively. In each chapter, further background and
relevant results are given in the first section, as well as an outline of the main results
of the chapter. Then, in the final section of each chapter, areas for potential further
work for that topic are detailed.

The motivation for the contents of this thesis originally arise from the field of graph
theory, a rich area of mathematics which emerged in the 20th century. Let a graph be
planar if it can be drawn in the plane with no crossings. One notable result that helped
motivate the development of the subfield of structural graph theory was the Four Color
Theorem, namely that every planar graph has chromatic number at most 4. This result
was shown in 1976 by Appel and Haken [6], and motivates studying how the structure
of a graph (in this case, planarity) affects its chromatic number. Another area of
graph theory that emerged is termed broadly as extremal graph theory. A fundamental
example from this field is Turán’s Theorem from 1941 [41], which characterizes the
minimum number of edges on a graph on n vertices to guarantee the existence of a Kt

subgraph, where Kt is the complete graph on t ≤ n vertices.

Generally speaking, the results of this paper are pertaining to digraphs, which are a
natural generalization of graphs. Chapter 2 is motivated by a famous extremal problem
in digraphs known as the Caccetta-Häggkvist conjecture, and Chapter 3 is motivated by
the notion of χ-boundedness for graphs, and an attempt to extend this to the digraph
setting. Here, we discuss these motivations at a broad level, giving some historical
context.

As mentioned above, extremal graph theory studies, generally speaking, when the
existence of certain local substructures can be guaranteed by global conditions. For
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example, one can ask in the undirected setting, what is the minimum number of edges
needed to guarantee the existence of a cycle of length at most k? When k = 3, this
is simply given by Turán’s Theorem, but for k ≥ 4 it is a different problem. This
was asymptotically resolved by Erdős and Stone in [18], where they establish a more
general result known as the Erdős-Stone Theorem.

In the directed setting, things are significantly more nuanced. A transitive tour-
nament (an acyclic digraph with its underlying undirected graph being the complete
graph) shows that having a large number of edges does not necessarily guarantee the
existence of a short directed cycle. It turns out that a condition on the minimum
out-degree (or, equivalently, the minimum in-degree) is what seems appropriate for
this question in the digraph setting. The following tantalizing conjecture was made by
Caccetta and Häggkvist in 1978 [11]:

Conjecture 1.1.1 (Caccetta-Häggkvist [11]) Suppose n, k are positive integers, and
let G be a simple digraph on n vertices with δ+(v) ≥ k for all v ∈ V (G); then G contains
a directed cycle of length at most ⌈n/k⌉.

We consider this conjecture to be quite elegant, and, while some partial results
are known, it has proven to be notoriously difficult over the years. This conjecture
serves as the basis for motivating the results given in Chapter 2, where we consider
a generalization of this conjecture due to Aharoni [4]. Aharoni’s conjecture is again
related to finding certain short cycles in undirected graphs.

On the other hand, in structural graph theory, a natural question that arises is,
broadly speaking, what causes a graph to have large chromatic number? Certainly, if
a graph G contains Kt as a subgraph, then we have χ(G) ≥ t. However, what if G
has, say, no triangles? Are there more subtle ways in which the chromatic number of
a graph must be large?

It turns out there are, and this is the motivation for the study of what is known
as the χ-boundedness problem, which was first studied systematically by Gyárfás in
[23]. We let a class C of graphs be χ-bounded if there exists a function f such that
χ(G) ≤ f(ω(G)) for all G ∈ C. There is a fundamental conjecture in this branch of
structural graph theory known as the Gyárfás-Sumner conjecture:

Conjecture 1.1.2 (Gyárfás [22], Sumner [39]) For any forest F , the class of graphs
not containing F as an induced subgraph is χ-bounded.

Similar to the Caccetta-Häggkvist conjecture, despite much study and some partial
results (see the survey by Scott and Seymour [35]) the Gyárfás-Sumner conjecture
remains largely open, and the field of χ-boundedness is still not that well-understood.
In this thesis, we disprove the following well-known conjecture attributed to Esperet
related to χ-boundedness:
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Conjecture 1.1.3 (Esperet (see Scott, Seymour [35])) For all k, r ∈ N there is
an n ∈ N such that for every graph G with χ(G) ≥ n and ω(G) ≤ k, there is an induced
subgraph H of G with χ(H) ≥ r and ω(H) = 2.

We also consider what happens when we translate these notions over to the context
of digraphs. For this, we use the notion of a coloring of a digraph defined in the previous
section, but we now give some justification for this perhaps unintuitive definition.

Indeed, at first glance it is not entirely clear how to define a coloring for a directed
graph. The notion of a coloring for digraphs that we use in this thesis, namely a par-
titioning of the vertex set into induced acyclic subdigraphs, is motivated in part by
the setting of tournaments. A tournament is a digraph D such that the underlying
undirected graph of D is a complete graph. In tournaments, a transitive tournament
(acyclic tournament) in many ways plays the role of a stable set, and defining a col-
oring of a tournament as a partitioning of the vertex set into transitive tournaments
is therefore tempting. Furthermore, a beautiful characterization is given by Berger,
Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour, and Thomassé in [7] of the set
of heroes for tournaments, where a tournament H is a hero if the set of tournaments
which do not contain H as a subtournament have bounded chromatic number. This
provides further motivation for these definitions, as we are in some sense searching for
a way to generalize that hero result to the non-tournament digraph setting.

Therefore, we consider the following notion. For a class C of digraphs, we say
that C is χ⃗-bounded if there exists a function f such that χ⃗(D) ≤ f(ω(D)) for all
D ∈ C. Aboulker, Charbit, and Naserasr proposed the following intriguing digraph
generalization of the Gyárfás-Sumner conjecture in [2]:

Conjecture 1.1.4 (Aboulker, Charbit, Naserasr [2]) For any oriented forest F ,
the class of digraphs not containing F as an induced subdigraph is χ⃗-bounded.

Investigating this relatively new domain of χ⃗-boundedness is the basis of motivation
for Chapter 3.

1.2 Basic definitions

In this thesis, we explore areas related to extremal problems in directed graphs. This
field of study is broadly contained in what is known as graph theory, which is the study
of objects known as graphs. In this section, we introduce some standard notions in
graph theory, see for example the text by Diestel [15]. A graph G = (V,E) is specified
by a vertex set V = V (G) and an edge set E = E(G), which is a collection of sets of
pairs of vertices in V (G). Often times, some basic assumptions are made on the graphs
that we work with. A simple graph is a graph with no loops or parallel edges; that is, for
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every e ∈ E, the two vertices contained in e are distinct, and also for every two distinct
edges e, f ∈ E, e and f do not contain the same pair of vertices. A fundamental concept
in graph theory is that of a coloring, or more specifically a vertex-coloring. A vertex-
coloring of a simple graph G with k colors is a map f : V (G) → [k] = {1, 2, · · · , k}
such that for all edges e = (uv) ∈ E(G), f(u) ̸= f(v). In this thesis, a coloring of a
graph G refers to a vertex-coloring. We let χ(G) denote the chromatic number of a
graph G, which is the minimum positive integer k such that there exists a k-coloring
of G.

Another fundamental concept in graph theory is that of a clique. A clique in a
simple graph G is a subset C ⊆ V (G) such that for every pair of vertices u, v ∈ C, we
have (uv) ∈ E(G). We let ω(G) denote the clique number of G, which is the size of
the largest clique in G. It is immediate that χ(G) ≥ ω(G).

Next, we introduce the concept of a cycle. A cycle of length t in a simple graph G
is a sequence of vertices {v1, v2, · · · , vt, vt+1 = v1} such that for all 1 ≤ i ≤ t, we have
(vivi+1) ∈ E(G).

Finally, we define the concepts of a subgraph and an induced subgraph. A subgraph
of G = (V,E) is a graph G′ = (V ′, E ′) such that V ′ ⊆ V and E ′ ⊆ E. An induced
subgraph of G = (V,E) is a subgraph G′ = (V ′, E ′) of G such that for every pair of
vertices u, v ∈ V ′, if (uv) ∈ E then (uv) ∈ E ′. Informally, an induced subgraph is
obtained by taking all possible edges within a subset of the vertices of G.

Now, we move on to basic definitions for digraphs, which are a natural generalization
of graphs and are the main subject of this thesis. A digraph D = (V,E) is a set
V = V (D) of vertices and a set E = E(D) of edges which are ordered pairs of vertices
in V (G). Informally, a digraph arises from taking a graph and assigning each of its
edges a direction. Given a digraph D, we define its underlying undirected graph G to
be that graph with V (G) = V (D) and in which u, v ∈ V (G) are adjacent if D contains
an edge from u to v or from v to u. Informally, the underlying undirected graph of D
is obtained by ignoring the directions on the edges.

We let a digraph D be simple if the underlying undirected graph of D is sim-
ple. We let a directed cycle of length t in a digraph D be a sequence of vertices
{v1, v2, · · · , vt, vt+1 = v1} such that for all 1 ≤ i ≤ t we have (vivi+1) ∈ E(D).

A subdigraph of a digraph D = (V,E) is a digraph D′ = (V ′, E ′) such that V ′ ⊆ V
and E ′ ⊆ E. An induced subdigraph of D = (V,E) is a subdigraph D′ = (V ′, E ′) of D
such that for every pair of vertices u, v ∈ V ′, if (uv) ∈ E then (uv) ∈ E ′. Informally,
an induced subdigraph is obtained by taking all possible edges within a subset of the
vertices of D.

Now, we define the notion of a vertex-coloring of a digraph D, which was introduced
in [17, 32] by Erdős and Neumann-Lara, respectively. We say that a k-coloring of a
digraph D is a map from V (D) to f : V (D) → [k] = {1, 2, · · · , k} such that for
each 1 ≤ i ≤ k, the subdigraph induced by the vertex set f−1(i) does not contain any
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directed cycles. Informally, a coloring of a digraph is an assignment of colors to vertices
such that there is no monochromatic directed cycle. We let χ⃗(D) denote the minimum
positive integer k such that there exists a k-coloring of D.

Lastly, the clique number of a digraph D is simply the clique number of the under-
lying undirected graph of D.
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Chapter 2

Aharoni’s rainbow conjecture

We note that many of the words in this chapter appear verbatim from the set of papers
listed in the Statement of Contributions section at the beginning of this thesis. These
words were written by the author of this thesis.

2.1 Background, preliminaries, and main results

2.1.1 Background and preliminaries

Now, a graph or digraph is simple if there are no loops or parallel edges. For a simple
digraph G and a vertex v ∈ V (G), let δ+(v) denote the number of out-neighbors of
v in G. A famous conjecture in graph theory is the following, due to Caccetta and
Häggkvist [11]:

Conjecture 2.1.1 (Caccetta-Häggkvist, 1978) Suppose n, k are positive integers,
and let G be a simple digraph on n vertices with δ+(v) ≥ k for all v ∈ V (G); then G
contains a directed cycle of length at most ⌈n/k⌉.

Despite a substantial amount of work and results on the conjecture, it remains as
a whole open and out of reach. Recently, Razborov’s method of flag algebras [33] has
been applied by Hladký, Král, and Norin to get the best known approximate results for
the triangle case of the Caccetta-Häggkvist conjecture [24], and indeed the conjecture
provided some of the motivation for the development of flag algebras. Showing the
exact result for the triangle case, however, appears to still be quite difficult.

One issue that has presented itself is finding a natural generalization of the Caccetta-
Häggkvist conjecture. One may hope to find a nice formulation for the case with non-
uniform out-degrees, but this has proved difficult. There are existing results shown by
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Aharoni, Berger, Chudnovsky, and Zerbib in [3] concerning the case of non-uniform
out-degrees, but this particular formulation will not generalize the Caccetta-Häggkvist
conjecture itself, as demonstrated by an example in the undergraduate thesis of this
author [25]. In this chapter, we consider a rather nice conjectured generalization of the
Caccetta-Häggkvist conjecture made by Aharoni, concerning short rainbow cycles in
edge-colored graphs. The conjecture appears to be harder than the Caccetta-Häggkvist
conjecture, but is nice because it involves arbitrary graphs (the Caccetta-Häggkvist
conjecture concerns digraphs with large minimum out-degree), and in addition it in-
troduces a new degree of freedom, namely in the number of color classes. It also is
nice because it has a natural generalization to matroids, which is explored by DeVos,
Drescher, Funk, de la Maza, Guo, Huynh, Mohar, and Montejano in [16].

In the remainder of this section, we will first describe Aharoni’s conjecture and
existing results on it. Then, we will outline the results that we will show in the ensuing
sections. Finally, we list a number of results of others that we will use in the proofs of
this chapter.

Now, for a graph G and a function c : E(G) → {1, . . . , |V (G)|}, a rainbow cycle
(with respect to c) is a cycle C in G such that for all e, f ∈ E(C) with e ̸= f , we have
c(e) ̸= c(f). We will refer to c as a coloring of the edges of G.∗ We say that c has color
classes of size at least k for k ∈ N if |c−1(i)| ≥ k for all i ∈ {1, . . . , |V (G)|}.

In [4], Aharoni proposes a generalization of Conjecture 2.1.1:

Conjecture 2.1.2 (Aharoni [4]) Let n, k be positive integers, and let G be a simple
graph on n vertices. Let c : E(G) → {1, . . . , n} be a coloring of the edges of G with
color classes of size at least k; then G has a rainbow cycle of length at most ⌈n/k⌉.

In the original paper [4], Aharoni, DeVos, and Holzman focus on the triangle case
of the conjecture, and establish some results related to the conjecture. We let (α, β)
be triangular if every simple edge-colored graph on n vertices with at least αn color
classes, each with at least βn edges, contains a rainbow triangle. In [4], the following
partial results in this direction are shown:

Theorem 2.1.3 (Aharoni, DeVos, Holzman [4]) (9/8, 1/3) is triangular; (1, 2/5)
is triangular.

In a paper that followed, DeVos, Drescher, Funk, de la Maza, Guo, Huynh, Mohar,
and Montejano [16] proved that Conjecture 2.1.2 is true for k = 2:

Theorem 2.1.4 (DeVos, Drescher, Funk, de la Maza, Guo et al. [16]) Let G
be a simple graph on n vertices, and let c be a coloring of the edges of G with color
classes of size at least 2; then there exists a rainbow cycle of length at most ⌈n/2⌉.

∗Note that c is not required to be a proper edge-coloring.
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This result is generalized in [3], where Aharoni, Berger, Chudnovsky, and Zerbib
show the following:

Theorem 2.1.5 (Aharoni, Berger, Chudnovsky, Zerbib [3]) Let F1, F2, · · · , Fn

be sets of edges in a simple graph G each of size at most two; then there exists a
rainbow cycle of length at most ⌈

∑
1≤i≤n

1
|Fi|⌉.

Unfortunately, this formulation is not true in general, due to the counterexample
given by this author in their undergraduate thesis [25]. However, it may be true up to
a constant factor, namely that:

Conjecture 2.1.6 There is a constant c such that if F1, F2, · · · , Fn are sets of edges
in a simple graph G on n vertices, then there is a rainbow cycle of length at most
c · ⌈

∑
1≤i≤n

1
|Fi|⌉.

This would be in a sense a common generalization of a result of Theorem 2.1.10
(see below) and the following result of [3]:

Theorem 2.1.7 (Aharoni, Berger, Chudnovsky, Zerbib [3]) If D is a simple di-
graph, then there exists a directed cycle of length less than 2 ·

∑
v∈V (D)

1
δ+(v)

.

Finally, Aharoni and Guo [5] consider the case where each color class forms a
matching, which is in some sense the opposite of the case where each color class forms
a star (the Caccetta-Häggkvist conjecture is a case where all color classes form stars
by a reduction due to Aharoni, DeVos, and Holzman [4]). Here, they are able to show
much stronger results than are given by Aharoni’s conjecture (which in this case would
give ⌈n/2⌉):

Theorem 2.1.8 (Aharoni, Guo [5]) Let F1, F2, · · · , Fn be sets of edges in a simple
graph G on n vertices, such that each Fi forms a matching of size at least two. Then
there exists a rainbow cycle of size at most 2 log n.

2.1.2 Main results

Now, we outline our contributions to this developing body of literature. We begin by
showing the following approximate result for Aharoni’s conjecture.

Theorem 2.1.9 (Hompe, Pelikánová, Pokorná, Spirkl [26]) Let k > 1 be an in-
teger, and let G be a simple graph on n vertices. Suppose that we have a coloring of the
edges of G with n color classes of size at least 301k log k. Then G has rainbow girth at
most ⌈n/k⌉.
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Then, we develop additional techniques to prove the following stronger result, which
shows that Aharoni’s conjecture is true up to a constant factor.

Theorem 2.1.10 (Hompe, Spirkl [28]) Let k ≥ 1 be an integer, and let G be a
simple graph on n vertices. Suppose we have a coloring of the edges of G with n color
classes of size at least ck, where c = 1011. Then G has rainbow girth at most n/k.

Finally, we consider the triangle case of Aharoni’s conjecture. We improve upon
the results of Aharoni, DeVos, and Holzman from [4], showing the following:

Theorem 2.1.11 (Hompe, Qu, Spirkl [27]) (1.1077, 1/3) is triangular; (1.3481, 1/4)
is triangular.

Theorem 2.1.12 (Hompe, Qu, Spirkl [27]) (1, 0.3988) is triangular.

An outline of the chapter is as follows. In Section 2.2, we show our initial result
that Aharoni’s conjecture is true if the color classes have size Ω(k log k). In Section
2.3, we prove a number of results on the case where the number of colors is n+ ck for
some constant c. Then, in Section 2.4, we build upon the techniques of section 1.1 to
prove that Aharoni’s conjecture is true up to a constant factor.

Afterwards, we move to considering the triangle case in particular. In Section 2.5,
we consider the case of (1+ δ)n colors for δ > 0, showing Theorem 2.1.11, and in fact a
more general result. Then, in Section 2.6, we consider the case of n color classes each
of size at least tn, and show Theorem 2.1.12. In the final section of the chapter, we
make some concluding remarks, and suggest areas of further work.

2.1.3 Other required results

We finish this section by listing a number of results of others that we will make use
of in the proofs of this chapter. We make use of the following results due to Bollobás
and Szemerédi [9] and Shen [38], respectively. The first deals with the girth of a simple
graph, while the second is an approximate result for Conjecture 2.1.1. In this thesis,
log denotes the logarithm with base 2.

Theorem 2.1.13 (Bollobás, Szemerédi [9]) For all n ≥ 4 and k ≥ 2, if G is a
simple graph on n vertices with n+ k edges, then G contains a cycle of length at most

2(n+ k)

3k
(log k + log log k + 4).

Theorem 2.1.14 (Shen [38]) Let G be a simple digraph with δ+(v) ≥ k for all v ∈
V (G). Then G contains a directed cycle of length at most ⌈n/k⌉+ 73.
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We will use the following immediate corollary of Theorem 2.1.13, as well:

Corollary 2.1.15 For all n ≥ 4 and k ≥ 2, if G is a simple graph on n vertices with
n+ k edges, then G contains a cycle of length at most

14(n+ k) log k

3k
.

Proof. By Theorem 2.1.13, we have that the girth is at most:

2(n+ k)

3k
(log k + log log k + 4) ≤ 14(n+ k) log k

3k

since that is equivalent to:
log log k + 4 ≤ 6 log k.

To see that this is true, let f(k) = 6 log k − log log k − 4. Then f(2) = 6− 4 = 2 ≥ 0,
and for all k ≥ 2 we have:

f ′(k) =
6

k ln 2
− 1

log k ln 2

1

k ln 2
≥ 4

k ln 2
≥ 0.

It follows that f(k) ≥ 0 for all k ≥ 2, as desired. This proves Corollary 2.1.15.

We also make use of a set of Chernoff bounds and Chebyshev’s Inequality:

Theorem 2.1.16 (Mitzenmacher, Upfal [31]) Let {Xi}mi=1 be independent indica-
tor random variables, and let X =

∑m
i=1Xi. Then for any ϵ > 0, we have:

P(X ≤ (1− ϵ)E[X]) ≤ exp

(
−ϵ2

2
E[X]

)
;

P(X ≥ (1 + ϵ)E[X]) ≤ exp

(
− ϵ2

2 + ϵ
E[X]

)
.

Theorem 2.1.17 (Chebyshev’s Inequality) Let X be a random variable with finite
expected value µ and finite non-zero variance σ2. Then for any real number k > 0 we
have:

P(|X − µ| ≥ kσ) ≤ 1

k2
.

When considering the triangle case in particular, we make use of the following result
(which we will also modify to obtain a stronger bound under certain conditions), due
to Goodman, which was used by Aharoni, DeVos, and Holzman in [4] for the proof of
Theorem 2.1.3 as well.
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Theorem 2.1.18 (Goodman [21]) Suppose G is a simple graph with n vertices and
m edges, and let t(G) denote the number of triangles in G; then we have:

t(G) ≥ 4m

3n

(
m− n2

4

)

Finally, we will use the following state-of-the-art approximate result on the Caccetta-
Häggkvist conjecture:

Theorem 2.1.19 (Hladký, Král, Norin [24]) Let D be a simple digraph on n ver-
tices with minimum out-degree 0.3465n; then D contains a directed triangle.

We note that improvements to the approximation in Theorem 2.1.19 would result
in improvements to Theorem 2.1.12.

2.2 n colors each with ck log k edges

Our main result in this section is the following. The proof proceeds by either reduc-
ing the problem to an approximate version of the Caccetta-Häggkvist conjecture, or
otherwise finding an induced subgraph which has significantly more colors appearing
than its number of vertices. This will allow us to use existing results on the girth of
undirected graphs.

Theorem 2.2.1 Let k > 1 be an integer, and let G be a graph. Let c be a coloring of
the edges of G with color classes of size at least 301k log k. Then G contains a rainbow
cycle of length at most ⌈n/k⌉.

In the proof, we will need the following definitions. For v ∈ V (G) and i ∈ {1, . . . , n},
we say that i is dominant at v if v is incident with at least 7f(k) edges e such that
c(e) = i. We call a vertex v ∈ V (G) color-dominating if there exists i ∈ {1, . . . , n}
such that i is dominant at v. We call a color i ∈ {1, . . . , n} vertex-dominating if there
exists a vertex v ∈ V (G) such that i is dominant at v. Let us say that H ⊆ V (G) is
nice if

• for every vertex-dominating color i ∈ {1, . . . , n}, there is a vertex v ∈ V (G) \H
such that i is dominant at v; and

• there are at most |H| colors i ∈ {1, . . . , n} such that i is not vertex-dominating
and for all e ∈ c−1(i), at least one end of e is in H.

11



Proof. We proceed by induction on the number of vertices. Let f(k) = 7k log k,
and let G be a graph on n vertices. Let c be a coloring of the edges of G with color
classes of size at least 43f(k). Suppose for a contradiction that there is no rainbow
cycle of length at most ⌈n/k⌉. Note that G has at least 43f(k)n edges, and therefore,
n > 43f(k).

Claim 2.2.2 If there is a nice set H ⊆ V (G) with 6f(k) ≤ |H| < n, then there is a
nice set H ′ ⊆ V (G) with |H ′| = ⌈6f(k)⌉.

Proof. We remove vertices from H one-by-one such that the remaining set is nice.
Suppose that we have removed j ≥ 0 vertices from H, leaving a nice set Hj with
|Hj| > ⌈6f(k)⌉. Let Cj be the set of colors i ∈ {1, . . . , n} which are not vertex-
dominating and also do not have an edge e with c(e) = i such that both ends of e are
in V (G) \Hj. From the definition of a nice set, we know |Cj| ≤ |Hj|. If |Cj| < |Hj|,
then removing any vertex from Hj gives a smaller nice set. So, we may assume that
|Cj| = |Hj|. If there is a color i in Cj and an edge e = uv ∈ c−1(i) with v ∈ Hj and
u ∈ G\Hj, then Hj \{v} is nice. If there is no such i ∈ Cj, then for every color i ∈ Cj,
all edges in c−1(i) have both their ends in Hj. Now applying induction to the subgraph
of G with vertex set Hj and edge set c−1(Cj) gives a rainbow cycle of length at most
⌈n/k⌉ in G, a contradiction. This proves Claim 2.2.2.

Claim 2.2.3 There is a nice set H ′ ⊆ V (G) with |H ′| = ⌈6f(k)⌉.

Proof. For each vertex-dominating color i, we pick a vertex vi such that i is dominant
at vi, and let S be the set of these vertices vi. Let H = V (G) \S. Note that H is nice;
thus by Claim 2.2.2, we may assume that either |H| < 6f(k) or |H| = n.

We first consider the case when |H| = n. Since 43f(k) ≥ 2, Theorem 2.1.4 guar-
antees the existence of a rainbow cycle K of length at most n/2 + 1 in G. Let
H ′ = V (G) \ V (K). Then H ′ is nice, and n > |H ′| ≥ n/2 − 1 ≥ 6f(k); so by
Claim 2.2.2, G contains a nice set of size ⌈6f(k)⌉.

Now we may assume that |H| < 6f(k). We construct a digraph G′ with V (G′) = S,
and for all i, j with vi, vj ∈ S, there is an arc vi → vj if vivj ∈ E(G) and c(vivj) = i.
Every vertex vi is incident with at least 7f(k) edges e with c(e) = i, and since |H| <
6f(k), there are at least f(k) edges e = viu with c(e) = i and u ∈ S. Therefore,
δ+(G′) ≥ f(k).

Now, we claim n/f(k) + 74 ≤ n/k, which is equivalent to 74kf(k) ≤ n(f(k) − k).
Since k ≥ 2, we have log(k) ≥ 117/301, and thus 74kf(k) ≤ 43f(k)(f(k) − k) ≤
n(f(k)− k), as claimed.

Then, by applying Theorem 2.1.14 to G′ we obtain a directed cycle K of length
at most ⌈n/f(k)⌉ + 73 ≤ ⌈n/k⌉ in G′. The edges of G that correspond to arcs of K
form a rainbow cycle of length at most ⌈n/k⌉ in G, a contradiction. This proves Claim
2.2.3.
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Claim 2.2.4 Let H ⊆ V (G) be a nice set with |H| = ⌈6f(k)⌉. Then there exists
H ′ ⊆ H such that |H ′| ≥ ⌈2f(k)⌉ and such that for at least n− ⌈f(k)⌉+ 1 colors i, at
least one edge e ∈ c−1(i) has both ends in V (G) \H ′.

Proof. Let C be the set of colors i which are not vertex-dominating and for which
no edge of c−1(i) has both ends in V (G) \ H. Since H is nice, it follows that |C| ≤
|H| = ⌈6f(k)⌉. Let D ⊆ C be the set of colors i ∈ C such that there is a vertex v ∈ H
which is incident with all edges in c−1(i) that have one end in H and the other in
V (G) \H. We claim that |D| ≤ ⌈f(k)⌉ − 1. Indeed, for each color i ∈ D, there are at
least ⌈36f(k)⌉ edges in c−1(i) with both ends in H since i is not vertex-dominating. If
|D| > ⌈f(k)⌉ − 1, then we obtain more than (f(k)− 1)(36f(k)) edges with both ends
in H. Now, since k ≥ 2, we have f(k) ≥ 72/23, and it follows that:

(f(k)− 1)(36f(k)) ≥ 49f(k)2

2
≥ (6f(k) + 1)2

2
≥ |H|2

2

which gives a contradiction. Thus, |D| ≤ ⌈f(k)⌉ − 1.

Next, we claim there exists H ′ ⊆ H such that |H ′| = ⌈2f(k)⌉ and such that for
all i ∈ {1, . . . , n} \ D, there is an edge e ∈ c−1(i) with both ends in V (G) \ H ′. To
see this, we construct a graph J with vertex set H and the following set of edges. For
each i ∈ C \D, we choose two vertices vi1, v

i
2 ∈ H, each incident with an edge in c−1(i)

whose other end is in V (G)\H; we know from the definition of D that this is possible.
Now, the graph J has |H| vertices and at most |H| edges, and so J has a stable set
H ′ ⊆ V (J) of size at least |V (J)|/3 ≥ 2f(k); and so |H ′| ≥ ⌈2f(k)⌉.

Now, for every color i ∈ C \ D, V (G) \ H ′ contains at least one of vi1, v
i
2, and

therefore, there is an edge in c−1(i) with both ends in V (G) \H ′. Moreover, for every
i ∈ {1, . . . , n} \ C, either i dominates a vertex v in V (G) \ H ⊆ V (G) \ H ′ (and so,
since |H ′| < 7f(k), there is an edge in c−1(i) incident with v whose other end is not in
H ′); or there is an edge in c−1(i) with both ends in V (G) \H ⊆ V (G) \H ′. Thus, for
at least n− |D| ≥ n− ⌈f(k)⌉+ 1 colors i, at least one edge in c−1(i) has both ends in
V (G) \H ′. This proves Claim 2.2.4.

By combining Claim 2.2.3 and Claim 2.2.4, we conclude that there existsH ′ ⊆ V (G)
with |H ′| ≥ ⌈2f(k)⌉, and such that for at least n − ⌈f(k)⌉ + 1 colors i, at least one
edge in c−1(i) has both ends in V (G) \H ′. Let H ′′ be a subgraph of G with vertex set
V (G)\H ′, obtained by taking exactly one edge in c−1(i) with both ends in V (G)\H ′ for
all i ∈ {1, . . . , n} which have such an edge. It follows that |E(H ′′)| ≥ |V (H ′′)|+⌈f(k)⌉.

Now, we claim that 2(n+f(k))
3(f(k))

(log log(f(k))+log(f(k))+4) ≤ n
k
. Using f(k) < n/43,

it suffices to show:

88(log log(f(k)) + log(f(k)) + 4)

129
≤ 7 log(k)
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Let g(k) = 7 log(k) − 88
129

(log log(f(k)) + log(f(k)) + 4). We have that g(2) > 0,
and for k ≥ 2 we have:

f(k)g′(k) ln(2) = 49 log(k)− 88

129
f ′(k)

(
1

log(f(k)) ln(2)
+ 1

)
> 0

since for k ≥ 2 we have:

f ′(k)

(
1

log(f(k)) ln(2)
+ 1

)
< (7 + 7 log(k))(3) ≤ 49 log(k)

So g′(k) > 0 for k ≥ 2, and it follows that g(k) ≥ 0 for k ≥ 2, as desired.

Then, Theorem 2.1.13 gives a rainbow cycle of length at most 2(n+f(k))
3(f(k))

(log log(f(k))+

log(f(k)) + 4) ≤ ⌈n
k
⌉, a contradiction. This proves Theorem 2.2.1.

We have an immediate corollary which gives us a result for the case of Ω(n log n)
color classes each of size k:

Corollary 2.2.5 Let k be a positive integer and let G be a simple graph on n vertices.
Let c : E(G) → {1, . . . , t} with t ≥ 303n log n, and with |c−1(i)| ≥ k for all i ∈
{1, . . . , t}. Then G contains a rainbow cycle in G of length at most ⌈n/k⌉.

Proof. Note that t ≥ 303n log n ≥ 303n log k. Since 303n log k ≥ n⌈301 log k⌉, there
exists a partition of {1, . . . , t} into n parts, each of size at least ⌈301 log k⌉; that is,
there is a function f : {1, . . . , t} → {1, . . . , n} such that |f−1(i)| ≥ ⌈301 log k⌉ for all
i ∈ {1, . . . , n}. By Theorem 2.2.1, applied to G and f ◦ c, we obtain a rainbow cycle
of length at most ⌈n/k⌉ in G with respect to f ◦ c, which is also rainbow with respect
to c. This proves Corollary 2.2.5.

2.3 n + c1k colors each with c2k edges

We now consider a relaxation of Conjecture 2.1.2 where we have n + c1k color classes
each of size at least c2k, for constants c1, c2 which we will specify. In this case, we
obtain upper bounds for the rainbow girth that are stronger than ⌈n/k⌉ to a surprising
degree. For this reason, these results are interesting in their own right. They are also
used in the proof in the next section.

Our first result is the following. The argument uses probabilistic methods to obtain
a rainbow subgraph with a large number of edges which is the disjoint union of stars,
and then uses an argument which contracts the stars to finish the proof.
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Theorem 2.3.1 Let k > 1 be an integer, and let G be a simple graph on n vertices.
Suppose we have a coloring of the edges of G with n + k color classes of size at least
ck, where c = 0.99 · 109. Then G has rainbow girth at most 6 or G has rainbow girth
at most:

n(log k)2

10k3/2
+ 14 log k.

Proof. Since the graph is simple, we have that n2 ≥ |E(G)| ≥ cnk and thus we
may assume that n ≥ ck. Now, we claim there exists a set of vertices S with |S| ≤
n log k/(140

√
k) such that every color class has at least one edge incident to a vertex

in S. To see this, we let s = ⌊2 log k⌋ and t = ⌊n/(560
√
k)⌋. We will iteratively

construct s sets of vertices S1, · · · , Ss, each of size at most t, as follows. Suppose we
have constructed S1, · · · , Si so far. Let Ti = ∪i

j=1Sj, and let Ci denote the set of colors
whose color class has no edge incident to a vertex in Ti. Let H be a random set of t
vertices chosen uniformly with repetition. For any color class a, note that the number
of vertices which are incident to an edge of color a is at least

√
ck, since if there are at

most
√
ck vertices incident to edges of color a, the number of edges of color a will be

at most ck/2. Also, we have that t ≥ n/(560
√
k)− 1 ≥ n/(1120

√
k) since n ≥ 1120

√
k

which is implied by n ≥ ck. Using these two observations, we have that the expected
number of colors in Ci whose color class has no edges incident to the vertices of H is
at most: (

1−
√
ck

n

)t

|Ci| ≤

(
1−

√
ck

n

)n/(1120
√
k)

|Ci| ≤ e−
√
c/1120|Ci|.

Now, let Si+1 be such that |Ci+1| ≤ e−
√
c/1120|Ci|, and iterate. When we finish, we

have a collection of sets {S1, S2, · · · , Ss} such that:

|Cs| ≤ e−
√
cs/1120(n+ k) ≤ e−

√
c(2 log k−1)/1120(n+ k)

≤ 2ne−
√
c(log k)/1120

≤ n log k

280
√
k

where that last inequality is true for k ≥ 2 since:

2nk−
√
c/(1120 ln 2) ≤ n log k

280
√
k

⇐⇒ 560 ≤ k
√
c/(1120 ln 2)−1/2 log k

which is true for k = 2 and thus for all k ≥ 2. Now, we have that Ts is a set of vertices
with |Ts| ≤ n log k

280
√
k
such that at most n log k

280
√
k
colors a have no edge of their color class

adjacent to any of the vertices in Ts. It follows that, by adding at most n log k

280
√
k
vertices,

there exists a set of vertices of size at most n log k

140
√
k
which is incident to at least one edge

of every color class, as desired.
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Now, let S be a set of at most n log k

140
√
k
vertices such that S is incident to at least

one edge of every color. For each color a, choose one edge ec of color a such that ec is
incident to at least one vertex in S. Let E be the set of these chosen edges ec. Then
|E| = n+k and E contains exactly one edge of each color. Now, let H be the subgraph
with V (H) =

⋃
(uv)∈E{u, v} and E(H) = E, and let S = {v1, v2, · · · , vp}, where

p = |S|. Partition V (H) \ S into X1, · · · , Xp such that Xi ⊆ NH(vi) for all 1 ≤ i ≤ p.
Now, contract each Hi = Xi ∪ {vi} to a single vertex (by contracting each edge of Hi

iteratively), and let the resulting graph be H ′. We have that |V (H ′)| = |S| ≤ n log k

140
√
k

and |E(H ′)| = |S| + k. Note that a rainbow cycle C in H ′ corresponds to a rainbow
cycle in G with length at most 3|C|, by replacing each contracted vertex by at most a
two-edge path. We may assume that H ′ is simple, since otherwise we obtain a rainbow
cycle of length at most 6 in G. Then applying Corollary 2.1.15 to H ′ gives a rainbow
cycle in G of length at most:

14
(

n log k

140
√
k
+ k
)
log k

k
=

n(log k)2

10k3/2
+ 14 log k

as desired. This proves Theorem 2.3.1.

We immediately obtain the following interesting corollary:

Corollary 2.3.2 Let k > 1 be an integer, and let G be a simple graph on n vertices.
Suppose that we have a coloring of the edges of G with n + k color classes of size at
least ck, where c = 0.99 · 109, and suppose also that 140k3/2

log k
≤ n. Then G has rainbow

girth at most n(log k)2

5k3/2
.

Proof. The condition on the size of n is equivalent to:

14 log k ≤ n(log k)2

10k3/2
.

We have that G has rainbow girth at least 7 since n(log k)2

5k3/2
≥ 7 is implied by the

condition. Then Corollary 2.3.2 gives that G has rainbow girth at most:

n(log k)2

10k3/2
+ 14 log k ≤ n(log k)2

5k3/2

as desired. This proves Corollary 2.3.2.

If we would like rainbow girth to be at most roughly n/k3/2 (as promised by Corol-
lary 2.3.2), it is necessary that k3/2 < n, since a simple graph cannot have rainbow
girth less than three. Corollary 2.3.2 can be interpreted as saying that, for the region
where it makes sense (where k3/2 < n, roughly), when we relax the number of colors
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slightly from n to n + k, we obtain a much shorter rainbow cycle of length at most
approximately n/k3/2, in comparison to the tight bound of n/k for the case of n colors.

Next, we present a result of a similar flavor for the case where k is large relative to
n. The argument uses a different method to obtain a large rainbow subgraph which
is the disjoint union of stars, and then applies the same contraction method as for
Theorem 2.3.1.

Theorem 2.3.3 Let k > 1 be an integer, and let G be a simple graph on n vertices.
Suppose we have a coloring of the edges of G with n + k color classes of size at least
ck, where c = 0.99 · 109, and also that 140k10/9 ≥ n. Then G has rainbow girth at most
6.

In the proof, we will need the following definitions. Let a colorful star be a subgraph
H ofG such thatH is a star with at least ck2

4n
edges such that no color appears more than

c2/3k2/3 times in E(H). Let a collection of colorful stars be a set C = {H1, H2, · · · , Hm}
of colorful stars such that every color appears in at most one of the E(Hi).

Proof. We may assume that n ≥ ck since otherwise we have at least nck > n2 edges
which is a contradiction since G is simple. For a collection C of colorful stars, for
1 ≤ i ≤ m, let vi be the center of the star Hi, and let V (C) = {v1, · · · , vp} and
E(C) = ∪p

i=1E(Hi) be the set of all star centers and the set of all edges, respectively.

Now, let C be a collection of colorful stars in G, chosen to be maximal with respect
to the number of stars. We first prove the following claim, which says that the number
of colors appearing in E(C) is large.

Claim 2.3.4 At most k/2 colors do not appear in E(C).

Proof. We proceed by a proof by contradiction. Suppose that more than k/2 colors
do not appear in E(C). Let S be the set of colors which do not appear in any of the
E(vi). Note that |S| > k/2. For each color s ∈ S, for v ∈ V (G) let ds(v) be the number
of edges incident to v of color s, and set d′s(v) = ds(v) if ds(v) ≤ c2/3k2/3, and otherwise
set d′s(v) = 0. Now, let H be the set of vertices v ∈ V (G) with ds(v) > c2/3k2/3. Note
that |H| < 2ck/(c2/3k2/3) = 2c1/3k1/3. Then the number of edges of color s with both
ends in H is at most 4c2/3k2/3, so it follows that:∑

v∈V (G)

d′s(v) ≥ ck − 4c2/3k2/3 ≥ ck

2

since the last inequality is equivalent to k ≥ 83/c which is true for k > 1 since c =
0.99 · 109. Then, on average, a vertex v has:∑

s∈S

d′s(v) >
ck2

4n
.
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Now, let v be a vertex for which
∑
s∈S

d′s(v) > ck2

4n
, and construct a colorful star with

center v and d′s(v) edges of color s incident with v for all s ∈ S. Then we add v to C
and obtain a larger collection of colorful stars, which contradicts the maximality of C.
It follows that there are at most k/2 colors which do not appear in E(C), as desired.
This proves Claim 2.3.4.

We now prove a second claim, which says the number of colorful stars in C is small.

Claim 2.3.5 |C| < n1/5

12
.

Proof. We proceed by a proof by contradiction. Suppose that |C| ≥ n1/5

12
. It suffices

to show a contradiction for the case where t = |C| = ⌈n1/5

12
⌉, so that n1/5

12
≤ t <

n1/5

12
+ 1 ≤ n1/5

6
since n ≥ ck ≥ 109k ≥ 125. Now, for a colorful star Hi with center

vi, let M(Hi) = V (Hi) \ {vi}. We claim that for any two colorful stars Hi, Hj ∈ C
with centers vi and vj, if Hij = M(Hi) ∩M(Hj), then either v1 has all its edges in H1

to Hij in the same color class, or v2 has all its edges in H2 to Hij in the same color
class. Suppose not. Then without loss of generality there are two edges e1 = (vi, w1)
and e2 = (vi, w2) for w1, w2 ∈ Hij such that e1 and e2 have colors a1 and a2 with
a1 ̸= a2. Let a3 be the color of (vj, w1). Then clearly a3 is also the color of (vj, w2),
since otherwise we obtain a rainbow cycle of length 4. Now, consider an arbitrary edge
(vj, w3) to a vertex w3 ∈ Hij with w3 /∈ {w1, w2}. We claim that (vj, w3) has color a3.
Indeed, if (vi, w3) does not have color a1 then the 4-cycle (vi, w1, vj, w3) implies that
(vj, w3) has color a3, and if (vi, w3) does not have color a2 then the 4-cycle (vi, w2, vj, w3)
implies that (vj, w3) has color a3. Since (vi, w3) cannot have both color a1 and color
a2 it follows that (vj, w3) has color a3 for all w3 ∈ Hij, as desired.

This implies that for all vi, vj ∈ V (C) we have |M(vi)∩M(vj)| ≤ c2/3k2/3. Then it
follows that every colorful star Hi has at least:

ck2

4n
− tc2/3k2/3

vertices in M(Hi) which are not in ∪j ̸=iM(Hj). The condition 140k10/9 ≥ n implies

k ≥ n9/10

1409/10
, and we have that:

tck2

8n
≥ tc

n9/5

8n1409/5
≥ 109n

96 · 1409/5
> n.

We also have that:
tck2

8n
> t2c2/3k2/3

since the inequality is equivalent to c1/3k4/3 > 8nt, which is true since (using k10/9 ≥
n/140 and t ≤ n1/5/6 from above):

c1/3k4/3 >
8 · 1406/5k4/3

6
≥ 8n6/5

6
≥ 8nt.
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Then we have that: ∣∣∣∣∣ ⋃
Hi∈C

V (Hi)

∣∣∣∣∣ ≥ t

(
ck2

4n
− tc2/3k2/3

)
=

tck2

8n
+

tck2

8n
− t2c2/3k2/3

> n+ t2c2/3k2/3 − t2c2/3k2/3

> n

which gives a contradiction. This proves Claim 2.3.5.

Now, for each color class with at least one edge in E(C), we choose exactly one such
edge. Let the resulting set of edges be F ; from Claim 2.3.4, we know that |F | ≥ n+ k

2
.

Now, let H be the subgraph with V (H) =
⋃

(uv)∈F{u, v} and E(H) = F , and let

S = {v1, v2, · · · , vp}, where p = |S|. Partition V (H) \ S into X1, · · · , Xp such that
Xi ⊆ NH(vi) for all 1 ≤ i ≤ p. Now, contract each Hi = Xi ∪ {vi} to a single vertex,

and let the resulting graph be H ′. By Claim 2.3.5, we have that |V (H ′)| < n1/5

12
, and,

since k10/9 ≥ n/140 and n ≥ c = 0.99 · 109, we obtain:

|E(H ′)| = |V (H ′)|+ k

2
≥ k

2
≥ n9/10

2 · 1409/10
>

n2/5

144
> |V (H ′)|2.

Thus we obtain a rainbow cycle of length at most 2 in H ′, which gives a rainbow cycle
of length at most 6 in H, as desired. This proves Theorem 2.3.3.

We conclude this section with an immediate corollary of the above results which
will be used in the proof of the next section:

Corollary 2.3.6 Let k > 1 be an integer, and let G be a simple graph on n vertices.
Suppose we have a coloring of the edges of G with n + k color classes of size at least
ck, where c = 0.99 · 109. Then G has rainbow girth at most n/k.

Proof. If 28k log k ≤ n, then by Theorem 2.3.1 we have rainbow girth at most:

n(log k)2

10k3/2
+ 14 log k ≤ n

2k
+

n

2k
=

n

k

since (log k)2 ≤ 5
√
k holds for k ≥ 2. To see this, note that it is equivalent to

log k ≤
√
5k1/4. Let f(k) =

√
5k1/4 − log k. We compute:

f ′(k) =

√
5

4k3/4
− 1

k ln 2
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and it follows that f(k) achieves its minimum for k0 ≥ 2, k ∈ R at the point k0 =(
4√
5 ln 2

)4
. We verify that f(k0) ≥ 0, so it follows that f(k) ≥ 0 for all k ≥ 2, as

desired.

If 28k log k > n, we claim that 140k10/9 ≥ n. Indeed, 140k10/9 > 28k log k is
equivalent to 5k1/9 > log k which is true for k ≥ 2. To see this, by taking derivatives as
before it suffices to verify that the inequality is true for k0 such that k

1/9
0 = 9/(5 ln 2),

which is true. Then, Theorem 2.3.3 gives that G has rainbow girth at most 6. Since
n2 ≥ |E(G)| ≥ cnk, we have that n/k ≥ c ≥ 6, so it follows that G has rainbow girth
at most n/k, as desired. This proves Corollary 2.3.6.

2.4 n colors each with ck edges

Now we are ready to prove Theorem 2.1.10, which we restate. The argument uses a
similar structure to the proof of Theorem 2.2.1, but with some more refined probabilistic
arguments. That is, we either apply existing approximate results for the Caccetta-
Häggkist conjecture, or we reduce the problem to the case of Corollary 2.3.6.

Theorem 2.4.1 Let k ≥ 1 be an integer, and let G be a simple graph on n vertices.
Suppose we have a coloring of the edges of G with n color classes of size at least ck,
where c = 1011. Then G has rainbow girth at most n/k.

In the proof, we will use the following definition. We say that a color a dominates
a vertex v ∈ V (G) if there are at least t

100
+8k edges incident to v with color a. Call a

vertex v color-dominated if there exists a color a which dominates v, and call a color
a vertex-dominating if there exists a vertex v which is dominated by a. The definition
is motivated by a desire to reduce to the case of the Caccetta-Häggkvist conjecture
where each color class is a star centered at a different vertex, as was done by Aharoni,
DeVos, and Holzman in [4]. A color being vertex-dominating means that its edges
form a large star, which will be useful in applying existing approximate results for the
Caccetta-Häggkvist conjecture.

Proof. If k = 1, then taking one edge of each color gives a rainbow cycle of length at
most n. So we may assume k > 1. Also, since G is simple, we have that the number
of edges |E(G)| satisfies n2 ≥ |E(G)| ≥ nck, and thus we may assume that n ≥ ck.
Now, let t = ck. By removing edges if necessary, we may assume that every color
class has exactly t edges. Now, for each vertex-dominating color a, pick one vertex va
dominated by a (not necessarily unique), and let the resulting set of vertices be S. Let
H = V (G) \ S.

Suppose first that |H| ≤ t
100

. Let b be the coloring of the edges. We construct a
digraph G′ with V (G′) = S, and for all i, j with vi, vj ∈ S, there is an arc vi → vj if
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vivj ∈ E(G) and b(vivj) = i. Every vertex vi is incident with at least t
100

+ 8k edges
e with b(e) = i, and since |H| ≤ t

100
, there are at least 8k edges e = viu with b(e) = i

and u ∈ S. Therefore, δ+(G′) ≥ 8k.

Now, we claim n/(8k) + 74 ≤ n/k, which is equivalent to n ≥ 592k
7

which is true
since n ≥ ck = 1011k.

Then, by applying Theorem 2.1.14 to G′ we obtain a directed cycle K of length at
most ⌈n/(8k)⌉+ 73 ≤ n/k in G′. The edges of G that correspond to arcs of K form a
rainbow cycle of length at most n/k in G.

So we may assume that |H| > t
100

. Let r = |H|, so we have t
100

< r ≤ n. Let T ⊆ H
be a random set of vertices in H where each vertex in H is included in T independently
with probability 4k

r
.

Now consider a color a which does not dominate a vertex in S (and thus does not
dominate any vertex). Let s = 0.99t = 0.99 · 1011k. We will show that the probability
that a has at least s/100 edges with both ends in G \ T is at least 1 − k

2r
. We claim

that we may assume that at least s of the edges of a have both ends in H. Indeed, if
this is not the case, perform the following iterative process while there is still an edge
e of color a not contained in H.

If e has both ends in G \ H, then remove e. Now, note that at most 200 vertices
are incident to at least t/100 edges of color a. Since |H| > t

100
= 29k, there exists a

pair of vertices v1, v2 ∈ H such that there is no edge of color a between v1 and v2 and
v1, v2 are both incident to less than t/100 edges of color a. Then add an edge of color
a between v1 and v2. If instead e has one end in H, say the vertex w, then remove e
and if there is a vertex v ∈ H such that there is not already an edge between v and w
of color a and both v and w are incident to less than t/100 edges of color a, then add
an edge of color a from w to any vertex v ∈ H. Repeat this process until we obtain a
graph G′ where all the edges of a have both ends in H.

We claim that when this process terminates at a graph G′, we have that each color
class has at least s edges in G′. Indeed, note that for each vertex w ∈ H there are at
most 8k+200 ≤ 208k edges incident with w that are removed from the graph without
being replaced. Also, the number of such problematic vertices is at most:

2t
t

100
− 200

≤ 2 · 1011

109 − 200

Then we have that the total number of edges of color a which are deleted without
replacement is at most:

416 · 1011

109 − 200
k < 0.01 · 1011k

since 416 < 0.01(109 − 200). It follows that each color has at least s edges in G′.
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Then, if we show that for G′ the probability that a has at least s/100 edges in G′\T
is at least 1− k

2r
, then it clearly follows that the probability that a has at least s/100

edges in G \ T is also at least 1− k
2r
. Thus, we may assume without loss of generality

that at least s edges of a have both ends in H, as claimed.

Now, let the edges of a with both ends in H be {e1, · · · , es}. Let the random
variable Ei have value 1 if ei ∈ G \ T and have value 0 otherwise. Let E =

∑s
i=1Ei,

and for a random variable R let Var(R) denote the variance of R. Since a is not
vertex-dominating, we have that each edge ei shares an end with at most t

50
+ 16k

edges of the same color. It follows that each Ei is dependent on at most t
50
+16k of the

variables {E1, E2, · · · , Es}. Let x = r−4k
r

, and note that the probability that an edge
ei is in G \ T is simply x2, so for all 1 ≤ i ≤ t we have that Ei is a Bernoulli random
variable with probability equal to x2. Then it follows that Var(Ei) = x2(1 − x2) and
furthermore, if ei and ej share an end, we obtain:

Cov(Ei, Ej) = E(EiEj)− E(Ei)E(Ej)

= x3 − x4

and thus we have:

Var(E) =
s∑

i=1

Var(Ei) +
∑

1≤i ̸=j≤s

Cov(Ei, Ej)

≤ f(x) := sx2(1− x2) +
( s

0.99 · 50
+ 16k

)
s(x3 − x4).

Claim 2.4.2 Let α = 1− 400
c
. For all α ≤ y < 1 we have:

f(y) ≤ s2
(
y2 − 1

100

)2
k

2r
.

Proof. Since s/100 < t/100 < r, we have that 100
c

> k
r
> 0 and thus α = 1 − 400

c
<

y < 1. Define g(y) as follows:

g(y) = s2
(
y2 − 1

100

)2
1− y

8
.

We claim that f(y) ≤ g(y) for all α ≤ y < 1. To see this, let h(y) = g(y)− f(y). Then
h(y) ≥ 0 is equivalent to:

h1(y) =
h(y)

s(1− y)
=

s
(
y2 − 1

100

)2
8

− y2 −
( s

49.5
+ 16k + 1

)
y3 ≥ 0.

We claim that h1(α) ≥ 0 and h′
1(y) ≥ 0 for all α ≤ y < 1. For the first claim, since

s = 0.99 · 1011k and α = 1− 400
c
, we have that:

s
(
α2 − 1

100

)2
8

≥ s

32
≥ s

49.5
+ 16k + 2 ≥ α2 +

( s

49.5
+ 16k + 1

)
α3.
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To show h′
1(y) ≥ 0 for all α ≤ y < 1, we compute:

h′
1(y) =

s

2

(
y2 − 1

100

)
y − 2y − 3

( s

49.5
+ 16k + 1

)
y2.

Since y > 0, h′
1(y) ≥ 0 is equivalent to h2(y) ≥ 0, where:

h2(y) =
s

2

(
y2 − 1

100

)
− 2− 3

( s

49.5
+ 16k + 1

)
y.

Now, we claim that h2(α) ≥ 0 and h′
2(y) ≥ 0 for α ≤ y < 1. The first claim follows

from the facts s = 0.99 · 1011k and α = 1− 400
c
:

s
(
α2 − 1

100

)
2

≥ s

4
≥ 2 + 3

( s

49.5
+ 16k + 1

)
≥ 2 + 3

( s

49.5
+ 16k + 1

)
α.

To show h′
2(y) ≥ 0 for all α ≤ y < 1, we compute:

h′
2(y) = sy − 3

( s

49.5
+ 16k + 1

)
.

Now, sα − 3
(

s
49.5

+ 16k + 1
)
≥ 0 for all k ≥ 1, so it follows that h′

2(y) ≥ h′
2(α) ≥ 0

for all α ≤ y < 1. This implies that h1(y) ≥ 0 for all α ≤ y < 1, which in turn gives
h(y) ≥ 0 for all α ≤ y < 1. Thus f(y) ≤ g(y) for all α ≤ y < 1, and we obtain:

f(y) ≤ g(y) ≤ s2
(
y2 − 1

100

)2
k

2r
.

as desired. This completes the proof of Claim 2.4.2.

Now, Claim 2.4.2 gives:

Var(E) ≤ f(x) ≤ s2
(
x2 − 1

100

)2
k

2r
.

Let λ = s
(
x2 − 1

100

)
. Then we have shown that Var(E) ≤ λ2 k

2r
. Let q be the probability

that the color a has at least s/100 of its edges in G \ T . Note that E(E) = sx2, so:

1− q = P (E ≤ s/100) = P(E(E)− E ≥ λ).

Then by Theorem 2.1.17 (Chebyshev’s Inequality), we have:

1− q ≤ P(|E − E(E)| ≥ λ) ≤ Var(E)

λ2
≤ k

2r
.

We say that a color a is bad if a is not vertex-dominating and a has less than s/100 of
its edges in G \ T . Let B be the set of bad colors, and let Y = |B|. Since 1− q ≤ k

2r
,
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we have that E(Y ) ≤ k/2. It follows from Markov’s Inequality that P(Y ≥ k) ≤ 1/2.
Recall that T was formed by choosing each vertex in H independently with probability
4k/r. Then E(|T |) = 4k. Applying Theorem 2.1.16 yields that for all k ≥ 2:

P(|T | ≥ 8k) + P(|T | ≤ 2k) ≤ exp(−4k/3) + exp(−k/2) < 1/2.

Since k > 1 is an integer, it follows that with positive probability we have both 2k <
|T | < 8k and Y < k, so there exists a set T ⊂ G \ S with |T | ≤ 8k and such that
|T | − Y ≥ k. If G′ = G \ T , then since |T | ≤ 8k it follows that for every vertex-
dominating color class at least s/100 of its edges are in G′. Then we have that at least
|V (G′)| + k colors a have at least s/100 edges in G′. Applying Corollary 2.3.6 to G′

gives that G′ has rainbow girth at most |V (G′)|/k and thus G has rainbow girth at
most n/k, as desired. This completes the proof.

2.5 Triangle case: (1 + δ)n colors

In this section, we consider the case where we have at least (1+δ)n color classes each of
size at least tn and we want to find a rainbow triangle. We show the following general
result. At a high-level, the proof either reduces to existing results on the Caccetta-
Häggkvist conjecture, uses the fact that not that many color classes form a large star
to improve a bound in a triangle counting argument made by Aharoni, DeVos, and
Holzman in [4], or uses the existence of two color classes with large stars centered at
the same vertex to find improvements to the same triangle counting argument.

Theorem 2.5.1 Let t, δ be positive real numbers. Suppose G is a simple edge-colored
graph with at least (1+δ)n color classes of size at least tn. Then there exists a rainbow
triangle if there exists 0 < ϵ < 1/2 such that all of the following conditions hold:

(1 + δ − ϵδ)t

2
<

4

3
(1 + δ)

(
(t(1 + δ)− 1

4

)
8

3t

(
t(1 + δ)− 1

4

)
(1 + δ) +

t

12

(√
1− 2ϵ+ 1

) (
4(1− ϵ)−

(
1−

√
1− 2ϵ

)2)
> 1 + δ

16

3
(1 + δ) >

2

3t
+ 1

Proof. It suffices to show the claim when each color class has size equal to ⌈tn⌉ and
when the number of colors is equal to ⌈(1+δ)n⌉, so we assume both of those conditions.
Let δ1, t1 be real numbers such that (1+δ1)n = ⌈(1+δ)n⌉ and t1n = ⌈tn⌉. We proceed
by a proof by contradiction. Suppose that there are no rainbow triangles. Now, we say
that a color class c is good if there are at least (1− ϵ)n

2

2
t21 triangles in G with at least

two of the three edges having color c. Now, we first show the following claim.
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Claim 2.5.2 More than n of the colors are good.

Proof. We proceed by a proof by contradiction. Suppose that at most n of the colors
are good. We have that at least δ1n of the colors are not good, namely that at least
δ1n of the colors have at most (1− ϵ)n

2

2
t21 triangles with at least two of the three edges

having color c. For every triangle T in G, at least two of the edges in T have the same
color. It follows that:

t(G) ≤ n(1 + δ1)

(
t1n

2

)
− nϵδ1

t21n
2

2

≤ n(1 + δ1)
t21n

2

2
− nϵδ1

t21n
2

2

= n3(1 + δ1 − ϵδ1)
t21
2

By Theorem 2.1.18, since m = (1 + δ1)t1n
2, we have that:

t(G) ≥ 4m

3n

(
m− n2

4

)
= n34(1 + δ1)t1

3

(
(1 + δ1)t1 −

1

4

)
We know by assumption that the following holds:

4

3
(1 + δ)

(
t(1 + δ)− 1

4

)
− (1 + δ − ϵδ)t

2
> 0

We claim that for all t1 ≥ t and δ1 ≥ δ, we have:

4

3
(1 + δ1)

(
t1(1 + δ1)−

1

4

)
− (1 + δ1 − ϵδ1)t1

2
> 0

To show this, it suffices to show that the derivative of the above expression is positive at
all points (t1, δ1) with t1 ≥ t and δ1 ≥ δ. Indeed, the derivative of the above expression
with respect to t at the point (t1, δ1) is:

4(1 + δ1)
2

3
− 1 + δ1 − ϵδ1

2
>

4

3
(1 + δ1)

2 − 1

2
(1 + δ1) > 0

since 1 + δ1 >
3
8
.

Now, by assumption we have that:

16

3
(1 + δ1) ≥

16

3
(1 + δ)

>
2

3t
+ 1

≥ 2

3t1
+ 1

>
2

3t1
+ (1− ϵ)
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Taking the derivative with respect to δ at the point (t1, δ1) then gives:

8t1(1 + δ1)− 1

3
− (1− ϵ)t1

2
> 0

and therefore we have:

(1 + δ1 − ϵδ1)t1
2

<
4

3
(1 + δ1)

(
t1(1 + δ1)−

1

4

)
Thus, we obtain a contradiction.

So, by Claim 2.5.2 we have that more than n colors are good. Next, we show the
following.

Claim 2.5.3 Suppose that color c is good. Then there exists a vertex in G incident to
at least αn edges of c, where α = t1

2
(
√
1− 2ϵ+ 1).

Proof. We proceed by a proof by contradiction. Suppose that color c is good and each
vertex of G is incident to less than αn edges of c. Observe that the maximum number
of two-edge paths which have both edges of color c will be obtained when the edges of
color c form two stars, such that there is an edge of color c between the centers of the
stars. It follows that the number of two-edge paths which have both edges of color c is
at most: (

αn

2

)
+

(
(t1 − α)n

2

)
+ (t1 − α)n

Since c is good, we have that the number of two edge monochromatic paths of color c

is at least (1− ϵ)
n2t21
2
, so we get that:

(1− ϵ)
n2t21
2

≤
(
αn

2

)
+

(
(t1 − α)n

2

)
+ (t1 − α)n

=
(αn)2 − αn

2
+

(t1n− αn)2 − (t1n− αn)

2
+ (t1 − α)n

=
α2n2

2
+

(t1 − α)2n2

2
+

(
t1
2
− α

)
n

<
α2n2

2
+

(t1 − α)2n2

2
.

since α = t1
2
(
√
1− 2ϵ+ 1) > t1

2
. Cancelling a factor of n2

2
immediately gives:

(1− ϵ)t21 < α2 + (t1 − α)2.
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Now, α = t1
2
(
√
1− 2ϵ+ 1) implies that:

α2 + (t1 − α)2 =

(
t1
2

(
1 +

√
1− 2ϵ

))2

+

(
t1
2

(
1−

√
1− 2ϵ

))2

=
t21
4
(2 + 2(1− 2ϵ))

= (1− ϵ)t21
< α2 + (t1 − α)2

which is a contradiction, as desired. This completes the proof.

Now, since more than n colors are good, Claim 2.5.3 implies that there exists a
vertex v ∈ V (G) such that there exist two colors c1 and c2 which both have at least
αn edges of their color incident to v, where α = t1

2
(
√
1− 2ϵ + 1). Let S1 be the set

of vertices which v has an edge of color c1 to, so that |S1| ≥ ⌈αn⌉, and let S2 be the
vertices which v has an edge of color c2 to, so that |S2| ≥ ⌈αn⌉. Then since c1 is good,
by counting good triangles, it follows that the number of edges with both ends in S1

is at least:

(1− ϵ)
n2t21
2

−
(
t1n− |S1|

2

)
− (t1n− |S1|) = (1− ϵ)

n2t21
2

− (t1n− |S1|)2

2
− t1n− |S1|

2

≥ (1− ϵ)
n2t21
2

− (t1n− ⌈αn⌉)2

2
− t1n− ⌈αn⌉

2
,

and since c2 is good, an identical argument gives that the same is true for S2.

Now, if there is no rainbow triangle in G, then the only edges between S1 and S2

will have color c1 or c2, and it follows that there are at most 2t1n − |S1| − |S2| edges
between S1 and S2. Now, let H be the graph on three vertices with exactly one edge.
For each edge with both ends in S1, if neither of its ends have an edge to S2 then we get
at least ⌈αn⌉ induced copies of H in G (each containing that edge and a vertex from
S2), and likewise the same is true for each edge in S2. Let h(G) denote the number
of induced copeis of H in G. Each edge with one end in S1 and one end in S2 will be
incident to at most |S1| + |S2| edges contained in either S1 or S2, and it follows that
h(G) is at least:

2⌈αn⌉
(
(1− ϵ)

t21n
2

2
− (t1n− ⌈αn⌉)2

2
− t1n− ⌈αn⌉

2

)
− (2t1n− |S1| − |S2|) (|S1|+ |S2|)

which, using the fact that |S1| ≥ αn > t1n
2

and likewise for |S2|, is at least:

2⌈αn⌉
(
(1− ϵ)

t21n
2

2
− (t1n− ⌈αn⌉)2

2

)
− ⌈αn⌉(t1n− ⌈αn⌉)− 2⌈αn⌉ (2t1n− 2⌈αn⌉)
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which equals:

2⌈αn⌉
(
(1− ϵ)

t21n
2

2
− (t1n− ⌈αn⌉)2

2

)
− 5⌈αn⌉(t1n− ⌈αn⌉)

Observing again that α > t1/2, we obtain that:

h(G) ≥ 2αn

(
(1− ϵ)

t21n
2

2
− (t1n− αn)2

2

)
− 5(t1n− αn)(αn)

Now, we will use this fact about the number of induced copies of H to improve the
lower bound on the number of triangles in Theorem 2.1.18, in the following:

Claim 2.5.4 Let G be a simple graph on n vertices with m edges, and let h(G) denote
the total number of induced copies of H in G. Then the number of triangles in G is at
least:

h(G)

3
+

4m

3n

(
m− n2

4

)
Proof. Note that for each edge e = (uv) ∈ E(G), we have that the number of triangles
it is contained in is at least δ(u)+ δ(v)−n+he, where he denotes the number of copies
of H in G containing e. Let t(G) denote the number of triangles in G. Summing this
over all edges e ∈ E(G), and noting that we count each triangle at most three times,
we obtain:

t(G) ≥ 1

3

∑
e=(uv)∈E(G)

(δ(u) + δ(v)− n+ he)

=
h(G)

3
− mn

3
+

1

3

∑
v∈V (G)

δ(v)2.

and by the Cauchy-Schwarz inequality, we obtain that this is at least:

h(G)

3
− mn

3
+

4m2

3n
=

h(G)

3
+

4m

3n

(
m− n2

4

)
,

as desired. This completes the proof.

So, in our case, since m = (1+δ)t1n
2, Claim 2.5.4 gives that the number of triangles

in G is at least:

1

3

(
2αn

(
(1− ϵ)

t21n
2

2
− (t1n− αn)2

2

))
− 5

3
(t1n− αn)(αn) + n34(1 + δ1)t1

3

(
(1 + δ1)t1 −

1

4

)
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Now, if there is no rainbow triangle, then each triangle contains at least two edges of
the same color, and it follows that the number of triangles is at most:

(1 + δ1)n

(
t1n

2

)
= (1 + δ1)n

t1n(t1n− 1)

2

We claim that the following is true, which will give an immediate contradiction:

1

3

(
2αn

(
(1− ϵ)

t21n
2

2
− (t1 − α)2n2

2

))
− 5

3
α(t1 − α)n2 + n34(1 + δ1)t1

3

(
(1 + δ1)t1 −

1

4

)

> (1 + δ1)n
t1n(t1n− 1)

2
(2.1)

Note that we may assume that 5t1ϵ < 1 because ϵ ≤ 1/2 and t1 < 2/5 since otherwise
we are done by Theorem 2.1.3. Then the assumption that 5t1ϵ < 1 implies that:

5

3
α(t1 − α) < 5α(t1 − α)

=
5t21
4
(1 +

√
1− 2ϵ)(1−

√
1− 2ϵ)

=
5t21ϵ

2

<
t1
2

<
t1(1 + δ1)

2

since 5ϵt1 < 1. It follows that (2.1) is implied by:

1

3

(
2αn

(
(1− ϵ)

t21n
2

2
− (t1 − α)2n2

2

))
+ n34(1 + δ1)t1

3

(
(1 + δ1)t1 −

1

4

)
> (1 + δ1)n

t21n
2

2

which, after plugging in α = t1
2
(1 +

√
1− 2ϵ) and cancelling t1n3

2
from both sides, is

equivalent to:

8

3

(
t1(1 + δ1)−

1

4

)
(1 + δ1) +

t21
12

(
√
1− 2ϵ+ 1)

(
4(1− ϵ)−

(
1−

√
1− 2ϵ

)2)− (1 + δ1)t1 > 0

Now, we claim that the derivative of the above expression with respect to t1 and
with respect to δ1 is positive for all (t1, δ1) with t1 ≥ t and δ1 ≥ δ. Indeed, the
derivative with respect to t1 is equal to:

8

3
(1 + δ1)

2 +
t1
6

(√
1− 2ϵ+ 1

) (
4(1− ϵ)−

(
1−

√
1− 2ϵ

)2)− (1 + δ1) >
8

3
(1 + δ1)

2 − (1 + δ1)

> 0
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since ϵ < 1/2 and 1 + δ1 >
3
8
. Now, the derivative with respect to δ1 is equal to:

16

3
t1(1 + δ1)−

2

3
− t1 > 0

since by assumption we have:

16

3
(1 + δ1) ≥

16

3
(1 + δ) >

2

3t
+ 1 ≥ 2

3t1
+ 1

Therefore, we get that the condition with δ1 and t1 is implied by:

8

3t

(
t(1 + δ)− 1

4

)
(1+ δ)+

t

12
(
√
1− 2ϵ+1)

(
4(1− ϵ)−

(
1−

√
1− 2ϵ

)2)− (1+ δ) > 0

which was assumed to be true. This gives the desired contradiction, and completes the
proof.

This immediately gives Theorem 2.1.11, which we restate here:

Theorem 2.5.5 (1.1077, 1/3) is triangular; (1.3481, 1/4) is triangular.

Proof. One can verify that t = 1/3, δ = 0.1077, and ϵ = 0.4746 satisfy the above
inequalities, and also that t = 1/4, δ = 0.3481, and ϵ = 0.2774 also satisfy the above
inequalities. This completes the proof.

In general, for a value of t we determine the minimum value of δ that this result
gives by using the following tool, which we link here:
https://www.desmos.com/calculator/1x06qadpqp.

2.6 Triangle case: n colors of size at least tn

In this section, we show Theorem 2.1.12 by first showing the following more general
statement. The proof at a high-level proceeds by either reducing to existing approx-
imate results for the Caccetta-Häggkvist conjecture or using the fact that not that
many color classes form large stars to improve the triangle counting argument made
by Aharoni, DeVos, and Holzman in [4]. Since the case where there are two large stars
centered at the same vertex is not a tight case here, it is actually simpler than the
proof of the last section (and less effective).

Theorem 2.6.1 For real 0 < ϵ < 1/2, 0 < δ ≤ 1, t > 0, suppose that the following
conditions hold:

(1− ϵ)t− δ

1− δ
≥ 0.3465
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t >
1

2
− (1− ϵ)2t2

8

3

(
t− 1

4

)
> (1− δ(2ϵ− 2ϵ2))t

1 + 2δϵ2 > 4ϵδ

Then if G is a simple edge-colored graph with n colors classes of size at least tn, there
exists a rainbow triangle in G.

Proof. Let t1 be a real number such that t1n = ⌈tn⌉. Now, let us call a color c
concentrated if there exists a vertex which is incident to at least (1 − ϵ)|C| edges of
color c, where C is the set of edges of color c. We proceed by a proof by contradiction.
Suppose that there is no rainbow triangle, and suppose first that at least δn colors are
not concentrated. Since there is no rainbow triangle, then the number of triangles is
at most the number of monochromatic paths of length 2. Observe that for a color c
which is not concentrated, the maximum number of paths of two-edges of color c is
obtained when ⌊(1− ϵ)|C|⌋ edges form a star and ⌈ϵ|C|⌉ edges form another star, and
there is an edge of color c between the centers of the two stars, where C is the set of
edges of color c. It follows that, since there are no rainbow triangles, the number of
triangles is at most:

(1− δ(1− ϵ2 − (1− ϵ)2))
t1n

2(t1n− 1)

2
+ δϵt1n

2 ≤ (1− δ(2ϵ− 2ϵ2))
t21n

3

2

since:
1− δ(1− ϵ2 − (1− ϵ)2)

2
> δϵ

is equivalent to:
1 + 2δϵ2 > 4ϵδ

which is true by assumption. Then by Theorem 2.1.18, we have the number of triangles
is at least:

4m

3n

(
m− n2

4

)
≥ 4t1n

3

(
t1n

2 − n2

4

)
and since we have by assumption that:

8

3

(
t− 1

4

)
> (1− δ(2ϵ− 2ϵ2))t

this implies that:
8

3

(
t1 −

1

4

)
> (1− δ(2ϵ− 2ϵ2))t1

and we obtain a contradiction. Thus, we may assume that at least (1 − δ)n of the
colors are concentrated. Now, there are two cases. Suppose first that for each vertex
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v ∈ V (G), there is at most one color concentrated at v. Here, we proceed with a
method inspired by the reduction of Conjecture 2.1.1 to Conjecture 2.1.2 made by
Aharoni, DeVos, and Holzman in [4]. Let T ⊂ V (G) be the set of vertices v for which
there exists a color cv concentrated at v. Form a digraph D with vertex set equal to T ,
and for each vertex v and edge e = (vu) of color cv which is incident to v, add an arc
from v to u. It follows that D has minimum out-degree at least (1− ϵ)t1 − (n− |T |),
and therefore since |T | ≥ (1− δ)n, we have that:

δ+(D)

|D|
≥ (1− ϵ)t1n− (n− |T |)

|T |
≥ (1− ϵ)t1 − δ

1− δ

By assumption we have that:

(1− ϵ)t1 − δ

1− δ
≥ (1− ϵ)t− δ

1− δ
≥ 0.3465

so it follows from Theorem 2.1.19 that there exists a directed triangle T in D. Looking
at the underlying edges in G corresponding to the directed edges of T , we obtain a
rainbow triangle in G.

So, we may assume that there is some vertex v at which two colors c1 and c2 are
concentrated. Let S1 be the set of vertices u such that (vu) is an edge of color c1 and
let S2 be the set of vertices u such that (vu) is an edge of color c2. Then, since there
are no rainbow triangles, it follows that the only edges with one end in S1 and one end
in S2 have color either c1 or c2. Therefore, we get at least (1−ϵ)2t21n

2−2ϵt1n non-edges
in G, and thus the number of edges is at most:

n(n− 1)

2
− (1− ϵ)2t21n

2 + 2ϵt1n ≤ n2

2
− (1− ϵ)2t21n

2

since 2ϵt1 < 1/2 because ϵ < 1/2 and t1 < 0.4 (otherwise we are done by Theorem
2.1.3). However, we know that there are at least t1n

2 edges in G, and by assumption
we have:

t >
1

2
− (1− ϵ)2t2

which implies that:

t1 >
1

2
− (1− ϵ)2t21

and thus we obtain a contradiction. Therefore, G contains a rainbow triangle, as
desired. This completes the proof.

Now, we immediately obtain Theorem 2.1.12, which we restate here:

Theorem 2.6.2 (1, 0.3988) is triangular.

Proof. We verify that ϵ = 0.03846, δ = 0.0681, and t = 0.3988 satisfy all the conditions
of Theorem 2.6.1. Since the edges of G are colored with n colors each of size at least
tn = 0.3988n, it follows that there exists a rainbow triangle, as desired. This completes
the proof.
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2.7 Conclusions and further work

In this chapter, we showed a number of results concerning Aharoni’s rainbow gener-
alization of the Caccetta-Häggkvist conjecture. There are many directions in which
further research can go; indeed, one can look at the Caccetta-Häggkvist conjecture
literature for inspiration for some of these.

First, one could try to strengthen the constant c in Theorem 2.1.10. We made no
attempt to optimize it, but it seems that new methods would have to be introduced to
have it be significantly small. Another direction would be to prove Conjecture 2.1.6,
which would generalize our result (up to a constant). This is interesting because, while
some of our methods seem useful in the setting of non-uniform sizes of color classes,
we think that some new ideas are needed.

Another interesting question is whether there exist extremal examples for Conjec-
ture 2.1.2 which are not inherited from Conjecture 2.1.1, namely that do not have the
property that for each vertex v ∈ V (G) there exists a color a whose color class is the
edge set of a star centered at v. Now, a related problem which we did not consider is
a relaxation of Conjecture 2.1.2, which is the following:

Conjecture 2.7.1 (Aharoni, Devos, Holzman [4]) Let n, k be positive integers,
and let G be a simple graph on n vertices. Let b be a coloring of the edges of G with n
color classes of size at least k; then G has a cycle C of length at most ⌈n/k⌉ such that
no two incident edges of C are the same color.

This conjecture is interesting because it still implies Conjecture 2.1.1, but seems
like it might be substantially easier than Conjecture 2.1.2, as it deals with a local
condition rather than a global condition. However, we suspect it may require different
methods than those used in this paper. Perhaps some of the existing methods from
the Caccetta-Häggkvist conjecture literature would translate over better to Conjecture
2.7.1 than Conjecture 2.1.2.

We also note that nowhere in this chapter did we use induction, while a number
of the results for Conjecture 2.1.1 utilize induction. Is there a way to use inductive
arguments in this context?

On the subject of the triangle case, our methods proved far more effective for the
case of (1 + δ)n colors than for the case of n colors. Further work could improve upon
either of the results, but we find the prospect of introducing a new method to make
significant progress on the case of n colors to be interesting. For those familiar with
flag algebras, it would be interesting to see whether they can be leveraged to make
progress on the case of n colors.

Finally, we make the following conjecture concerning the bipartite case, which is
inspired by the tight results for a bipartite version of the Caccetta-Häggkvist conjecture
given by Seymour and Spirkl in [37].
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Conjecture 2.7.2 Let G = (A,B) be a simple bipartite graph such that |A| = |B| = n,
and suppose that E(G) is colored with 2n color classes each with size more than n

k+1
;

then there exists a rainbow cycle of length at most 2k.

For the same reason that Aharoni’s conjecture is a generalization of the Caccetta-
Häggkvist conjecture, we have that this is a generalization of the following conjecture
of Seymour and Spirkl [37]:

Conjecture 2.7.3 (Seymour, Spirkl [37]) Let D = (A,B) be a bipartite digraph
such that |A| = |B| = n and the minimum out-degree is more than n

k+1
; then there

exists a directed cycle of length at most 2k.

Since Seymour and Spirkl [37] are able to make substantially more progress on
the bipartite version of the Caccetta-Häggkvist conjecture than has been made on the
general Caccetta-Häggkvist conjecture, we wonder whether significant progress can be
made towards Conjecture 2.7.2.
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Chapter 3

χ-boundedness and χ⃗-boundedness

We note that many of the words in this chapter appear verbatim from the set of papers
listed in the Statement of Contributions section at the beginning of this thesis. These
words were written by the author of this thesis.

3.1 Background and main results

Now, a fundamental question in graph theory is what substructures must a graph with
large chromatic number contain? Certainly, containing a large clique implies that a
graph has large chromatic number, but if a graph with bounded clique number has
large chromatic number, what substructures must we find? A famous conjecture along
these lines is the Gyárfás-Sumner conjecture:

Conjecture 3.1.1 (Gyárfás [22], Sumner [39]) For any forest F , the class of graphs
not containing F as an induced subgraph is χ-bounded.

Now, in Section 2.2, we disprove the following fundamental conjecture, which would
have implied that to show a class C is χ-bounded, one would only need to show this
for the triangle-free graphs in the class (its origin appears somewhat unclear; it is
attributed to Louis Esperet by Scott and Seymour in [35], while Thomassé, Trotignon,
and Vušković state that “we could not find a reference” in [40]):

Conjecture 3.1.2 (Esperet (see Scott, Seymour [35])) For all k, r ∈ N there is
an n ∈ N such that for every graph G with χ(G) ≥ n and ω(G) ≤ k, there is an induced
subgraph H of G with χ(H) ≥ r and ω(H) = 2.

Here, χ(G) denotes the chromatic number of a graph G and ω(G) denotes the clique
number. This conjecture is the induced-subgraph analogue of the following theorem:
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Theorem 3.1.3 (Rödl [34]) For every r ∈ N there is an n ∈ N such that for every
graph G with χ(G) ≥ n, there is a (not necessarily induced) subgraph H of G with
χ(H) ≥ r and ω(H) = 2.

We will show:

Theorem 3.1.4 (Carbonero, Hompe, Moore, Spirkl [12]) For every n ∈ N, there
is a graph G with χ(G) ≥ n and ω(G) ≤ 3 such that every induced subgraph H of G
with ω(H) ≤ 2 satisfies χ(H) ≤ 4.

This is almost best possible, because of the following:

Theorem 3.1.5 (Scott, Seymour [36]) There is a function f : N → N such that for
every graph G with no induced cycle of odd length at least 5, we have χ(G) ≤ f(ω(G)).

Letting f as in Theorem 3.1.5, it follows that every graph G with χ(G) > f(ω(G))
contains an induced cycle of odd length at least 5, and therefore contains an induced
subgraph H with ω(H) = 2 and χ(H) = 3.

Our construction is based on a construction of Kierstead and Trotter [30] and
produces a digraph with large dichromatic number, which we define below. Throughout
this chapter, we only consider simple digraphs D, that is, for every two distinct vertices
u and v, the digraph D contains either an edge from u to v, or an edge from v to
u, or neither; but not both. For a digraph, we write uv for an edge from u to v.
Given a digraph D, we define its underlying undirected graph G to be that graph with
V (G) = V (D) and in which u, v ∈ V (G) are adjacent if D contains an edge from u
to v or from v to u. The clique number ω(D) of a digraph D is defined as the clique
number of the underlying undirected graph of D.

An analogue of chromatic number for directed graphs was introduced in [17, 32] by
Erdős and Neumann-Lara, respectively. A digraph is acyclic if it contains no directed
cycle. For k ∈ N, a k-dicoloring of a digraph D is a function f : V (D) → {1, . . . , k}
such that for every i ∈ {1, . . . , k}, the induced subdigraph of D with vertex set {v ∈
V (D) : f(v) = i} is acyclic. The dichromatic number χ⃗(D) is the smallest integer k
such that D has a k-dicoloring.

We show that the digraph analogue of Theorem 3.1.5 does not hold:

Theorem 3.1.6 (Carbonero, Hompe, Moore, Spirkl [12]) For every n, there is
a digraph D with χ⃗(D) ≥ n, ω(D) ≤ 3 and with no induced directed cycle of odd length
at least 5.

In the paper containing those results, since we were interested in the dichromatic
number we posed various open problems. In particular, we asked if the class of digraphs
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where every induced directed cycle has length t, for a fixed integer t ≥ 3, is χ⃗-bounded.
We will refer to a digraph in which all induced directed cycles have length t as t-chordal.

In [1], Aboulker, Bousquet, and de Verclos answered our question in the negative
for t = 3. In Section 2.3, we extend this negative answer to all t ≥ 3:

Theorem 3.1.7 (Carbonero, Hompe, Moore, Spirkl [13]) For t ≥ 3, and every
N ∈ N, there exists a t-chordal digraph D with ω(D) ≤ 3 and χ⃗(D) ≥ N , and if t > 3,
then ω(D) ≤ 2.

Then we give a positive result, which in some sense demonstrates that Theorem
3.1.7 is tight, by proving χ⃗-boundedness for a subclass of t-chordal digraphs:

Theorem 3.1.8 (Carbonero, Hompe, Moore, Spirkl [13]) For every integer t,
there is a function ft : N → N such that for every digraph D which is t-chordal and
has no induced directed path with exactly t vertices, we have χ⃗(D) ≤ ft(ω(D)).

Since cycles of length more than t contain a directed path on t vertices, Theorem
3.1.8 is equivalent to saying that for every t, digraphs with no induced t-vertex path
and no induced cycle on strictly less than t vertices are χ⃗-bounded.

This is a partial result towards the directed path case of the following digraph
generalization of Conjecture 3.1.1:

Conjecture 3.1.9 (Aboulker, Charbit, Naserasr [2]) For any oriented forest F ,
the class of digraphs not containing F as an induced subdigraph is χ⃗-bounded.

Despite not being χ⃗-bounded, one could hope that t-chordal digraphs still have
a “nice” structural description. We show that any clean structural description of t-
chordal digraphs is unlikely, as deciding if a digraph is t-chordal is coNP-complete:

Theorem 3.1.10 (Carbonero, Hompe, Moore, Spirkl [13]) Fix an integer t ≥
2. Deciding if a given digraph is t-chordal digraph is coNP-complete.

An outline of the chapter is as follows. In Section 3.2, we present the construction
which disproves Conjecture 3.1.2, and which also shows Theorem 3.1.6. Then, in
Section 3.3, we present a construction showing that t-chordal digraphs are not χ⃗-
bounded, and show Theorem 3.1.8. In Section 3.4, we present the hardness result
which is Theorem 3.1.10. Finally, in Section 3.5, we discuss future directions for work
in this area.
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3.2 Disproving Esperet’s conjecture

At a high-level, our construction is inspired by the construction of Kierstead and Trotter
[30], which in turn utilizes Zykov’s construction from [42]. It differs in the way that
additional edges are added to the digraph, and then the underlying undirected graph
is what will actually give us the counterexample for Esperet’s conjecture.

We construct a sequence of digraphs {Dn} as follows. Let D1 be the digraph with
a single vertex. For n ≥ 2, we take n − 1 disjoint copies of the digraph Dn−1 and
call them D1

n−1, . . . , D
n−1
n−1. Let T be the set of all sequences T = (x1, . . . , xn−1) with

xi ∈ V (Di
n−1) for all i ∈ {1, . . . , n − 1}. Now, for every T = (x1, . . . , xn−1) ∈ T we

create a vertex vT and for every i ∈ {1, . . . , n− 1}, we add an edge from xi to vT . The
resulting digraph with vertex set

V (D1
n−1) ∪ · · · ∪ V (Dn−1

n−1) ∪ {vT : T ∈ T }

and edge set

E(D1
n−1) ∪ · · · ∪ E(Dn−1

n−1) ∪ {xivT : i ∈ {1, . . . , n− 1}, T = (x1, . . . , xn−1) ∈ T }

is called Dn.

We note that the graph Dn is the graph of red edges in the proof of Theorem 3 of
[30] by Kierstead and Trotter, where the following was proved:

Lemma 3.2.1 (Kierstead and Trotter [30]) For all n ∈ N, we have:

• Dn is acyclic;

• for every two vertices u, v ∈ V (Dn) there is at most one directed path from u to
v in Dn.

Proof. We include a proof for completeness. For n ≥ 1, let us define a partition of
V (Dn) into sets T n

1 , . . . , T
n
n as follows: For n = 1, let T 1

1 = V (D1). For n > 1 and
i ∈ {1, . . . , n − 1}, let T n

i be the union of the sets T n−1
i in D1

n−1, . . . , D
n−1
n−1, and let

T n
n be the set of remaining vertices (and thus T n

n is the set of vertices vT added when
constructing Dn).

By construction we have that for all i ∈ {1, . . . , n}, the set T n
i is a stable set and

the only edges between T n
i and T n

1 ∪ · · · ∪ T n
i−1 are edges from T n

1 ∪ · · · ∪ T n
i−1 to T n

i . It
follows that Dn is acyclic, as desired.

For the second bullet, note that every edge is from T n
i to T n

j for some i < j.
Now, suppose we have vertices u, v such that there exists a directed path P from u
to v. Then it follows that u ∈ T n

i and v ∈ T n
j for i < j, and the vertex set of P is

contained in T n
i ∪ · · · ∪ T n

j . Let H be the copy of Dj−1 that u is contained in from
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the construction of Dj. By construction, every edge of Dn with one end in H and one
end x in V (Dn) \ V (H) satisfies x ∈ T n

k for some k ≥ j. Since v is the only vertex
of P in T n

j ∪ T n
j+1 ∪ · · · ∪ T n

n , it follows that all vertices of P \ v are contained in H.
Note that v has exactly one in-neighbor in H; let that in-neighbor be w. It follows
that any directed path from u to v must go through w. By induction on n (since P \ v
is contained in a copy of Dj−1 with j ≤ n), we have that there is at most one directed
path from u to w, so it follows that there is at most one directed path from u to v, as
desired. This completes the proof.

We define the length of a (directed) path as its number of edges. Now, we construct
a sequence of digraphs {D′

n} as follows. We take a copy of Dn, and create a new graph
D′

n with V (D′
n) = V (Dn), and the following edges. For every two vertices u, v where

there exists a directed path in Dn from u to v,

• we add an edge from u to v if that path has length equal to 1 modulo 3; and

• we add an edge from v to u if that path has length equal to 2 modulo 3.

From Lemma 3.2.1, it follows that D′
n is well-defined and a simple digraph. In our

analysis, it will be useful to consider a partition of the edges of D′
n into two sets,

positive and negative, which we call the sign of an edge. Let us call an edge positive
if it was added as a result of the first bullet above, and negative if it was added as a
result of the second bullet. Clearly, this is a partition of the edges of D′

n. Note that
in particular, if uv ∈ E(Dn), then the edge uv is added to D′

n according to the first
bullet, and hence Dn is a (non-induced) subdigraph of the positive edges of D′

n.

Lemma 3.2.2 Let u, v, w ∈ V (D′
n). If uv and vw are edges of D′

n of the same sign,
then wu is an edge of D′

n of the opposite sign.

Proof. Suppose first that uv and vw are positive edges. Then by definition there
exists a path P1 from u to v in Dn with length equal to 1 modulo 3, and a path P2

from v to w in Dn with length equal to 1 modulo 3. Then clearly P3 = P2 ∪ P1 is a
directed walk from u to w, and since Dn is acyclic by Lemma 3.2.1, it follows that P3

is the unique directed path from u to w. Then P3 has length equal to 2 modulo 3, so
it follows that wu is a negative edge, as desired.

Suppose instead that uv and vw are negative edges. Then there exists a path P1

from v to u and a path P2 from w to v such that P1 and P2 both have length equal to
2 modulo 3. Then clearly P3 = P2 ∪ P1 is a directed walk from w to u, and since Dn

is acyclic by Lemma 3.2.1, it follows that P3 is the unique path from w to u. Then P3

has length equal to 1 modulo 3 and it follows that wu is a positive edge, as desired.
This completes the proof.
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Lemma 3.2.3 Let u, v, w ∈ V (D′
n). Then not all of uv, vw, uw are edges of D′

n.

Proof. We only consider the case when uw is positive; the case when uw is negative is
analogous. It follows that there is a directed path P1 from u to w of length congruent
to 1 modulo 3. By Lemma 3.2.2, we may assume that uv and vw do not have the same
sign. We consider two cases.

If uv is negative, then vw is positive. It follows that there is a directed path P2

from v to u of length congruent to 2 modulo 3. Now P3 = P2 ∪ P1 is a directed walk
and since Dn is acyclic by Lemma 3.2.1, a directed path, from v to w. But P3 has
length congruent to 0 modulo 3, and so from the construction of D′

n, it follows that v
and w are not adjacent in either direction, a contradiction.

Now uv is positive, and vw is negative. It follows that there is a directed path P2

from w to v of length congruent to 2 modulo 3. Now P3 = P1 ∪ P2 is a directed walk
and since Dn is acyclic by Lemma 3.2.1, a directed path from u to v. But P3 has length
congruent to 0 modulo 3, and so from the construction of D′

n, it follows that v and u
are not adjacent in either direction, a contradiction.

Now, we present our main theorem.

Theorem 3.2.4 For every n, there is a graph G with χ(G) ≥ n and ω(G) ≤ 3 such
that every induced subgraph H of G with ω(H) ≤ 2 satisfies χ(H) ≤ 4.

Proof. Let {Gn} be the sequence of graphs such that Gn is the underlying undirected
graph of D′

n. Then we claim that taking G = Gn will show the desired result.

Indeed, we first show that χ(Gn) ≥ n. Since Dn is a subgraph of D′
n, it suffices

to show, by induction, that the underlying undirected graph Hn of Dn has chromatic
number at least n (which was also shown in [30] by Kierstead and Trotter, and follows
from the fact that the n-th Zykov graph [42] is a subgraph of Hn; here we give the
short proof for completeness). The base case is trivial. By induction, we know that
the underlying undirected graphs Hn−1 of the n− 1 copies of Dn−1 that were used to
build Dn all have chromatic number at least n − 1. So, if we take a coloring of Hn

with colors {1, . . . , n − 1}, it follows that for every i ∈ {1, . . . , n − 1}, there exists
a vertex xi ∈ V (Di

n−1) which receives color i. Then, letting T = (x1, . . . , xn−1), the
corresponding vertex vT must receive a color not in {1, . . . , n− 1}, and it follows that
the coloring uses at least n colors. Thus, χ(Hn) ≥ n for all n ≥ 1, as claimed.

Next, we claim that ω(Gn) ≤ 3. Suppose not; then Gn contains a clique K of size
4. Let u ∈ K with at least two outneighbors in the digraph induced by K in D′

n (which
is possible, since the average outdegree in this four-vertex digraph is 1.5), and let v, w
be two outneighbours of u in K. By symmetry, we may assume that vw is an edge of
D′

n. But now uv, vw, uw are all edges of D′
n, contrary to Lemma 3.2.3.
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Now, suppose that we have an induced subgraph H of Gn with ω(H) ≤ 2. If we
look at the corresponding induced subdigraph H ′ of D′

n, it follows by Lemma 3.2.2
that H ′ does not contain a directed 2-edge path with both edges of the same sign as
a subdigraph. Thus we can partition the vertices into two sets A,B such that every
vertex in A is not the head of a positive edge and every vertex in B is not the tail
of a positive edge. Then note that there can be no positive edges between any two
vertices in A, and also there are no positive edges between any two vertices in B.
Likewise, we can find a similar partition V (H ′) = A′ ∪B′ for the negative edges. Now
(A∩A′, A∩B′, B ∩A′, B ∩B′) is a partition of the vertices of H into four stable sets,
and thus χ(H) ≤ 4, as claimed. This completes the proof.

The collection of digraphs {D′
n} also gives the following result on χ⃗-boundedness.

Theorem 3.2.5 For every n, there is a digraph D with χ⃗(D) ≥ n and ω(D) ≤ 3 and
with no induced directed cycle of odd length at least 5.

Proof. We claim that taking D = D′
4n gives the desired result. Indeed, we know from

the previous proof that ω(D) ≤ 3. Furthermore, suppose that D contains an induced
odd directed cycle of length at least 5. Then it follows that there exist two consecutive
edges in that cycle of the same sign; but now Lemma 3.2.2 gives a third edge which
contradicts the fact that the cycle is induced.

It remains to show that χ⃗(D) = χ⃗(D′
4n) ≥ n. Indeed, note that any acyclic induced

subdigraph H ′ of D has no directed path on two edges of the same sign, because then
H ′ would contain a directed triangle, by Lemma 3.2.2, contrary to the assumption that
H ′ is acyclic. Now, letH be the underlying undirected graph ofH ′. Then the argument
from the previous proof shows that χ(H) ≤ 4. Since χ(G4n) ≥ 4n it follows that if
V (D) is partitioned into t sets which induce acyclic subdigraphs, then χ(G4n) ≤ 4t;
therefore, we must have t ≥ n. Thus, χ⃗(D) ≥ n, as claimed. This completes the proof.

3.3 t-chordal digraphs are not χ⃗-bounded

Our construction uses a key idea similar to and inspired by the construction of Aboulker,
Bousquet, and de Verclos in [1], making sure that in every k-dicoloring, certain inde-
pendent sets miss a color, and arranging this for one independent set at a time. This is
accomplished through the following lemma, from which Theorem 3.1.7 will be derived.

Lemma 3.3.1 For t ≥ 3, suppose that D is a t-chordal digraph with ω(D) ≤ 3 and
χ⃗(D) = k. If C = {I1, . . . , Ip} is a collection of independent sets in D, then there exists
a t-chordal digraph D′ with the following properties:
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• ω(D′) ≤ 3, and if ω(D) ≤ 2 and t > 3, then ω(D′) ≤ 2; and

• for every k-coloring of D′, there exists a copy of D as an induced subgraph of D′

such that for each 1 ≤ i ≤ p, the copy of Ii contained in that copy of D is colored
with at most k − 1 colors.

Proof. We will prove the lemma by induction on the chromatic number of an auxiliary
graph that we define now. For a digraph D and a collection C of independent sets, let
GD,C be the graph with V (GD,C) = {1, 2, . . . , p}, and where ij ∈ E(G) if and only if
|Ii ∩ Ij| ≠ ∅; in other words, GD,C is the intersection graph of C.

The base case is when χ(GD,C) = 0, (and thus, C = ∅) where the statement is
trivially true. Now, for s ≥ 0, suppose that the statement is true for all digraphs D
paired with a collection of independent sets C such that the corresponding graph GD,C
has χ(GD,C) ≤ s, and suppose that χ(GD,C) = s+ 1. Take an (s+ 1)-coloring of GD,C,
say f . Let X0 = {j1, . . . , jq} be a color class of f , and let S0 = {Ij1 , . . . , Ijq}. It follows
that χ(GD,C\S0) = s, and that the sets Ij1 , . . . , Ijq are pairwise disjoint.

We define a sequence D0, . . . , Dq with the following properties:

• D0 = D;

• for all i ∈ {0, . . . , q}, Di is a digraph with clique number at most 3 (at most 2 if
ω(D) ≤ 2 and t > 3);

• Di contains pairwise disjoint copies G1
i , . . . , G

ti

i of D;

• in every k-dicoloring of Di, there is a t∗ ∈ {1, . . . , ti} such that for every r ∈
{1, . . . , i}, the independent set corresponding to Ijr in the copy Gt∗

i ofD is colored
with at most k − 1 colors; and

• for every r ∈ {i + 1, . . . , q}, the union of the independent sets corresponding to
Ijr in G1

i , . . . , G
ti

i is an independent set in Di.

Clearly, D0 satisfies the properties above for i = 0. Suppose that we have defined
Di for some i ∈ {0, . . . , q − 1}. Let I be the union of the sets corresponding to Iji+1

in G1
i , . . . , G

ti

i . From the properties of Di, it follows that I is an independent set.
We create a new digraph Di+1 as follows. Let D1

i , . . . , D
t
i be t copies of Di, and let

V (Di+1) =
⋃t

j=1 V (Dj
i ). In addition to the edges corresponding to each copy Dj

i of

Di, we add the following edges. For j ∈ {1, . . . , t}, let Ij denote the copy of I in Dj
i .

Then, for each vertex v ∈ Ij and u ∈ Ij+1, we add the edge vu (where indices are taken
modulo t, so I t+1 means I1).

Observe that the clique number of Di+1 is at most 3, and at most 2 if t > 3 and
ω(D) ≤ 2. This follows since a clique in Di+1 either has all its vertices in Dj

i for some j,
or it has at most one vertex contained in each copy of Dj

i . Similarly, Di+1 is t-chordal,
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as every induced cycle either uses precisely one vertex from each Dj
i , or it is contained

completely in a copy Dj
i for some j.

Since Di+1 contains t copies of Di, each copy of D in Di gives rise to t copies of D
in Di+1, for t · ti = ti+1 copies overall. Let us label them as G1

i+1, . . . , G
ti+1

i+1 arbitrarily.
It follows that the last bullet holds for Di+1, since it holds for Di, and since the only
edges between copies of Di in Di+1 are between vertices that are in a set corresponding
to Iji+1

in a copy of D, and Iji+2
, . . . , Ijq are disjoint from Iji+1

from the choice of S0.

Now, let c be a k-dicoloring of Di+1 (if one exists). Then, not all k colors occur
in each of I1, . . . , I t, for otherwise there would be a monochromatic t-vertex cycle. It
follows that there is a j ∈ {1, . . . , t} such that the copy of I in Dj

i is colored with at
most k − 1 colors. Consequently, for each of the copies of G1

i , . . . , G
ti

i of D in Dj
i , the

copy of Iji in this copy of D is colored with at most k − 1 colors. Together with the
fact that the third bullet holds for Di, by applying it to Dj

i , it follows that it holds for
Di+1.

This completes the definition of D0, . . . , Dq. Note that Dq has the property that
in every k-dicoloring of Dq, there is a copy of D in Dq such that each of Ij1 , . . . , Ijq is
colored with at most k − 1 colors.

Now we construct a collection of independent sets C ′. For every independent set
I ∈ C \ S0, and for every t∗ ∈ {1, . . . , tq}, we add the copy of I in Gt∗

q to C ′. Note
that we can s-color GDq ,C′ by fixing an s-coloring of GD,C\S0 , and assigning to each
independent set in a copy of D the color of the independent set in D it corresponds
to. This, by construction, is an s-coloring, since two sets which are assigned the same
color are either copies of disjoint sets, or disjoint copies of the same set.

It follows that we can apply the inductive hypothesis to Dq and C ′; and so there
is a digraph D∗ with ω(D∗) ≤ 3 (and if ω(D) ≤ 2 and t > 3 then ω(D∗) ≤ 2), and
for every k-coloring of D∗, there is a copy D′

q of Dq in D∗ such that for every I ∈ C ′,
the copy of I in D′

q is colored with at most k − 1 colors. It follows that in D′
q, there

are copies G1
q, . . . , G

tq

q of D, and for every I ∈ C \ S0, every copy of I in every one of
G1

q, . . . , G
tq

q receives at most k − 1 colors. But also, from the properties of Dq, there is
a t∗ ∈ {1, . . . , tq} such that for Gt∗

q in D′
q, for each I ∈ S0, the copy of I in Gt∗

q receives
at most k− 1 colors. This shows that in this copy Gt∗

q in D′
q of D, the second bullet of

the lemma holds. This concludes the proof.

Now, we present our main result, which is proved in the same way as the main result
of Aboulker, Bousquet, and de Verclos in [1] (in which the main theorem is derived
from their Lemma 3 exactly like we derive ours from Lemma 3.3.1 above):

Theorem 3.3.2 For all t ≥ 3, there exists a sequence of t-chordal digraphs {Dn} such
that for all n ≥ 1, we have ω(Dn) ≤ 3 (and ω(Dn) ≤ 2 if t > 3) and χ⃗(Dn) ≥ n.

Proof. Let D1 be the digraph with one vertex and no edges, and define the sequence
of digraphs inductively as follows. For k ≥ 1, take χ⃗(Dk) disjoint copies of Dk, forming
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a digraph D′
k, and construct a collection C of independent sets of D′

k as follows: for
each set of χ⃗(Dk) vertices, one in each copy of Dk in D′

k, place this set in C. Then by
Lemma 3.3.1, we have that there exists a t-chordal digraph Dk+1 with ω(Dk+1) ≤ 3
(and ω(Dn) ≤ 2 if t > 3) such that for any χ⃗(Dk)-dicoloring of Dk+1 there exists a
copy of D′

k such that each independent set in C uses at most χ⃗(Dk) − 1 colors. Now,
for a χ⃗(Dk)-coloring of D′

k, it follows that in each of the χ⃗(Dk) copies of Dk in D′
k

there is a vertex of each color, so there exists an independent set in C with exactly one
vertex of each color, which is a contradiction. It follows that there does not exist a
χ⃗(Dk)-coloring of Dk+1 and thus χ⃗(Dk+1) ≥ χ⃗(Dk) + 1, and therefore χ⃗(Dk) ≥ k for
all k ≥ 1, as desired. This completes the inductive step and completes the proof.

We now show the following positive result which shows that the above construction
is in some sense tight:

Theorem 3.3.3 For every l, there is a function fl : N → N such that for every digraph
D with no induced directed cycle of length less than l and no induced directed path with
exactly l vertices, we have χ⃗(D) ≤ fl(ω(D)).

Proof. Let us denote by Cl the class of digraphs with no induced directed cycle of
length less than l and no induced directed path with exactly l vertices.

We will show that fl(ω) = (l+1)ω gives the desired result. We proceed by induction
on k = ω(D). For k = 1, the statement is true, since in that case χ⃗(D) = 1 ≤ l + 1 =
(l + 1)ω.

Now, suppose that the statement is true for k = n, namely that for all digraphs
D′ ∈ Cl with ω(D′) = n, we have χ⃗(D′) ≤ (l + 1)n. Now, consider a digraph D ∈ Cl
with ω(D) = n + 1. We will show that χ⃗(D) ≤ (l + 1)n+1. Suppose for the sake of a
contradiction that χ⃗(D) > (l+1)n+1. First, note that we may assume thatD is strongly
connected, since the dichromatic number of a digraph is equal to the maximum of the
dichromatic numbers of its strongly connected components. Let v1 ∈ D be an arbitrary
vertex, and let C1, . . . , Ct be the strongly connected components of D \ ({v1}∪N(v1)),
where N(v1) denotes the set of vertices which have an in-edge or an out-edge to v1.
We claim that there exists a component Ci with χ⃗(Ci) > (l+1)n+1 − (l+1)n. Indeed,
since ω(N(v1)) ≤ n, we have by induction that χ⃗(N(v1)) ≤ (l + 1)n. So if χ⃗(Ci) ≤
(l + 1)n+1 − (l + 1)n for all 1 ≤ i ≤ t, we can color each component Ci with the same
set of (l+1)n+1 − (l+1)n colors, color N(v1) with a disjoint set of (l+1)n colors, and
reuse one of the colors from the Ci to color v1. Clearly, this is a coloring of D with at
most (l + 1)n+1 colors, which is a contradiction. Thus we may assume without loss of
generality that χ⃗(C1) > (l + 1)n+1 − (l + 1)n.

Now, since D is strongly connected, there exists a directed path from v1 to a vertex
in C1. Let P

′ be the shortest such path, and let the second-to-last vertex in P ′ be v2.
Now, we let P be the portion of the path P ′ from v1 to v2. First, we note that P is
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forward-induced, meaning that there are no edges in the direction of the path other
than those in P . Furthermore, since P ′ was the shortest directed path from v1 to C1,
it follows that v2 is the only vertex in P which has an out-edge to a vertex in C1.

Let D1 = D. We define a sequence of digraphs as follows. Let D2 = {v2} ∪ C1,
and note that since C1 is strongly connected and v2 has an out-edge to C1, it follows
that there exists a directed path from v2 to every vertex in D2. Then we iterate this
argument, letting C2 be a strongly connected component of D2 \ ({v2} ∪ N(v2)) with
χ⃗(C ′

1) > (l + 1)n+1 − 2(l + 1)n, taking a shortest directed path Q from v2 to C2, and
adding to our path P the subpath of Q from v2 to the second-to-last vertex of Q, which
we call v3. Since (l + 1)n+1 − (l + 1)(l + 1)n ≥ 0, we can iterate this argument l + 1
times and obtain a forward-induced path P with a subset of the vertices of P specified
as v1, . . . , vl+2. In particular, the l vertices v3, . . . , vl+2 are not in {v1} ∪ N(v1), since
all vertices of P after v2 are in C1, and thus not in {v1} ∪N(v1).

Now, let w be the last vertex in P which is in N(v1). Then it follows from the
properties of P that there exists a forward-induced path P ′ with l vertices starting at
w such that w is the only vertex in P ′ which is in {v1} ∪N(v1). Since P

′ is a forward-
induced path on l vertices and there is no induced directed path on l vertices and no
induced directed cycle of length less than l, it follows that P ′ is an induced directed
cycle of length l. Let the vertices of P ′ be (w1, . . . , wl) such that w1 = w. Now, if w1

is an out-neighbor of v1, then we have that (v1w1w2, . . . , wl−1) is an induced directed
path on l vertices, which is a contradiction. Suppose instead that w1 is an in-neighbor
of v1. Then we have that (w3w4, . . . , wlw1v1) is an induced directed path on l vertices,
which is a contradiction as well. Hence, χ⃗(D) ≤ (l + 1)n. This finishes the proof by
induction and shows that χ⃗(D) ≤ (l + 1)ω(D) for all digraphs D ∈ Cl, as desired.

3.4 Deciding if a graph is t-chordal is coNP-complete

In this section, we prove Theorem 3.1.10. The construction is very similar to construc-
tions of Kawarabayashi and Kobayashi [29] and Bienstock [8], where it was shown that
finding certain induced paths and cycles in graphs and digraphs is NP-hard. Note that
Theorem 3.4.1 can be modified in a straightforward way to show that the problem of
determining if a non-simple digraph (where both uv and vu are allowed to be present
at the same time) is 2-chordal is coNP-complete as well, whereas we can decide in
polynomial time if a simple digraph is 2-chordal by checking if it is acyclic.

Theorem 3.4.1 For t ≥ 3, the problem of determining whether a digraph D is t-
chordal is coNP-complete.

Proof. Observe the problem is in coNP. To see this, given any digraph D, a certificate
that it is not t-chordal is an induced directed cycle C which has length not equal to t.
Further, such a certificate can be checked in polynomial time.
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For the rest of the proof, let t ≥ 2 be a fixed integer. We will give a reduction
from 3-SAT, a well-known NP-complete problem. Let ϕ be an instance of 3-SAT, with
variables x1, . . . , xn and clauses C1, . . . , Cm. We will construct a digraph D such that
D is t-chordal if and only if ϕ is a NO-instance of 3-SAT, which suffices to prove the
result.

We build D in stages. First, for each variable xi i ∈ {1, . . . , n}, we create a variable
gadget, Dxi

, which is a digraph with two vertices vi1, v
i
2 and two directed paths P i

1,
P i
2, both directed from vi1 to vi2, which are vertex-disjoint aside from the vertices vij,

j ∈ {1, 2} and both contain exactly t edges. For each j ∈ {1, 2}, let zij be the vertex
in P i

j adjacent from vi1 and qij the vertex adjacent to vi2 in P i
j .

Second, for each clause Ci, i ∈ {1, . . . ,m}, we create a clause gadget, DCi
which

has two vertices ui
1, u

i
2, and for each literal y contained in Ci, we add a directed path

ui
1, w

y, ui
2.

Now we create a digraph D whose vertex set is

{V (Dxi
) : i ∈ {1, . . . , n}} ∪ {V (DCi

) : i ∈ {1, . . . ,m}}.

For the edges, for i ∈ {1, . . . , n− 1}, we add the edge vi2v
i+1
1 , as well as the edge vn2u

1
1.

For j ∈ {1, . . . ,m− 1} we add the edges ui
2u

i+1
1 , as well as the edge um

2 v
1
1. For a clause

Ci, if the non-negated variable xi appears in the clause, then we add edges wxizi2 and
qi2w

xi . For a clause Ci if the negated variable xi appears in the clause, then we add
edges wxizi1 and qi2w

xi .

Now we claim that D is t-chordal if and only if the 3-SAT instance has no solution.
Suppose there is an induced directed cycle C of length other than t. Suppose first that
C uses an edge of the form wxizij or qijw

xi for some j ∈ {1, 2}. If C uses wxizij, then,
since zij has a unique out-neighbor, it follows that C contains the path P i

j \ vi2. In
particular, C contains qij; and since C contains wxi , and C is induced, it follows that C
contains qijw

xi , and so C has length t. If qijw
xi , then, since qij has a unique in-neighbor,

it follows similarly that C has length t. Now, by construction, it follows C has non
empty-intersection with every variable gadget and every clause gadget.

For each variable xi, if C takes the path P i
1, we set xi to true, and otherwise we set

xi to false. We claim this gives a satisfying assignment to the 3-SAT instance. If not,
then some clause evaluates to false, say C1 without loss of generality. We may assume
up to symmetry that C ∩DC1 is the path associated to the variable xi. If this variable
is not negated in C then this implies that C must use the P i

2 path to set xi to false,
however in this case there are edges from vertices in P i

2 to wxi which are not apart of
C, contradicting that C is induced. An analogous argument holds when xi is negated
in C1.

Similarly for the converse, if an assignment to x1, . . . , xm satisfies the formula, we
construct the induced directed cycle by adding either P i

1 if xi is true, or P i
2 if xi is

false, taking any path from each clause gadget which corresponds to a true literal in
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that clause, and adding the edges between clause gadgets and variable gadgets in the
natural way. It is easy to check that this cycle is an induced directed cycle of length
not equal to t, completing the proof.

3.5 Conclusions and further work

Here we discuss some results that have been published relating to the work of this
chapter, and areas of future work.

We let a hereditary class C of graphs be polynomially χ-bounded if there exists a
polynomial f such that for all graphs G ∈ C we have χ(G) ≤ f(ω(G)). Shortly after
our preprint showing Theorem 3.1.4 was published on the ArXiv, Briański, Davies, and
Walczak [10] built upon the ideas of our paper to disprove the following conjecture of
Esperet.

Conjecture 3.5.1 (Esperet [19]) If a hereditary class C of graphs is χ-bounded then
it is polynomially χ-bounded.

In fact, they showed the stronger result that for any function f , there exists a
hereditary class of graphs which is χ-bounded but does not have f as a χ-bounding
function.

Shortly after that paper, Girão, Illingworth, Powierski, Savery, Scott, Tamitegama,
and Tan [20] published a paper showing the following, generalizing both Theorem 3.1.4
and the results of Briański, Davies, and Walczak [10]:

Theorem 3.5.2 ([20]) For every graph F with at least one edge, there is a constant
cF such that there are graphs of arbitrarily large chromatic number and the same clique
number as F in which every F -free induced subgraph has chromatic number at most
cF .

One direction of further work would be building upon these works (there are a
number of open problems in the paper of Girão, Illingworth, Powierski, Savery, Scott,
Tamitegama, and Tan [20]). In a somewhat different direction, Conjecture 3.1.9 re-
mains very open, even for the case of directed paths. Showing this case, or disproving
the conjecture, would both be quite interesting.

In general, it seems that the digraph analogues of χ-boundedness are much less
true, as the development of counterexamples has shown some very fruitful results so
far. So one can further explore constructions, such as the one we showed for t-chordal
graphs, or one could instead make strides towards positive results in this setting, which
likely require the development of new techniques which would be interesting.
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alization of the Caccetta-Häggkvist conjecture,” Electronic Journal of Combina-
torics, 29(1), 2022.

[29] K. Kawarabayashi and Y. Kobayashi, “The induced disjoint paths problem,” In-
ternational Conference on Integer Programming and Combinatorial Optimization,
47-61, 2008.

[30] H.A. Kierstead, and W.T. Trotter, “Colorful induced subgraphs,” Discrete Math-
ematics, 101(1-3):165-169, 1992.

[31] M. Mitzenmacher, E. Upfal, “Probability and Computing: Randomization and
Probabilistic Techniques in Algorithms and Data Analysis,” Cambridge University
Press, 2017.

[32] V. Neumann-Lara, “The dichromatic number of a digraph,” Journal of Combina-
torial Theory, Series B, 33(3):265-270, 1982.

[33] A.A. Razborov, “Flag algebras,” J. Symbolic Logic, 72(4):1239-1282, 2007.
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