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Abstract

Data transfer between devices has increased rapidly with improvements in technology and
the internet. To protect data from hackers, data is encrypted using methods of cryptog-
raphy. To make the process of encryption faster, these circuits are often implemented in
hardware. A bug in these circuits compromise the security of these systems. Cryptography
circuits are becoming large and complex due to the increase in the importance of security
and computation power available to the hacker. Hence verification of these circuits is of
utmost importance. Time and resources taken by conventional methods increase exponen-
tially with the size and complexity of circuits. Formal verification has the potential to
improve the verification process by providing better than exponential complexity for some
systems.

Conventional formal verification methods do not perform well on cryptography circuits
as they are “xor” rich circuits. Cryptography circuits often consist of Galois field circuits.
Galois field circuits are also widely used in various fields like communication, security
and signal processing. There are two main operations in Galois field namely addition
and multiplication. Addition is simply bitwise “xor” of operands. Multiplication is more
complicated. Mastrovito, Montgomery and Karatsuba multipliers are optimized algorithms
for multiplication. In this thesis, we developed novel methods for the formal verification
of Galois field multipliers.

Equivalence verification of Galois field circuits becomes challenging as the size of inputs
increases because the asymptotic worst-case complexity is exponential. The previous best-
known method reduces the time and memory to some extent by using parallelism. In
this thesis, a novel formal verification method is developed which provides a range of 4×–
256× speedup when compared to the previously best-known method. We developed novel
data structures and algorithms based on using the algebraic normal form as a canonical
graph-based representation of Boolean functions. We have developed various normalization
methods for our data structures. Experiments were performed on bit-level synthesized
Mastrovito, Montgomery and Karatsuba multipliers.

KeyWords: cryptography, Galois field, formal verification, equivalence verification,
algebraic normal form.
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Chapter 1

Introduction

Digital circuits are found in products that we use every day. Following Moore’s law [9],
digital circuits are becoming more complex day by day. Verification of such complex digital
circuits is very challenging. Even a small bug in the design of digital circuits can incur a
huge extra cost. For example, a bug in the Intel Pentium floating point divide cost around
500 million USD (now in billions) in 1994 [1]. Signal processing, communication and
security-related hardware systems involve cryptography circuits. Cryptography circuits
are becoming large and complex due to the increase in the importance of security and high
computation power available to the hacker. A bug in cryptography circuits [3], can result
in leakage of security key which comprises the security of these systems. Hence to protect
sensitive data from hackers, verification of cryptography circuits is of utmost importance.

Chip fabrication has different stages. It starts with a specification which is manually
developed into Register Transfer Level (RTL) using hardware description languages like
VHDL and Verilog. Synthesis tools process RTL to produce an optimized netlist and map
to physical gates. The process in synthesis tools has many stages. As a design flows
through different stages, we need to verify the design at each stage. Design can be verified
by simulation-based methods or formal verification. Time and computing resources taken
by simulation-based verification techniques will increase exponentially with an increase in
the complexity of the design. Alternatively, Formal verification has the potential to improve
the verification process by providing better than exponential complexity for some systems.
Formal verification can be of two types. They are property checking and equivalence
checking.

Property checking verifies whether the design satisfies a collection of properties, where
each property describes part of the desired behaviour of system. Equivalence checking ver-
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ifies whether two designs, namely the specification and implementation, are functionally
equivalent. The implementation model is an optimized version of the specification model.
Two prominent techniques, namely Boolean satisfiability (SAT) and binary decision dia-
grams (BDD) can be used for equivalence verification. BDDs are canonical diagrams that
can be formed from the truth table of Boolean functions. If two functions have the same
BDD then they are equivalent. SAT solvers try to find an input for which two functions
are not equivalent. If no such input exists, then the two functions are equivalent.

Conventional formal verification does not perform well on cryptography circuits. Cryp-
tography circuits handle sensitive data and to protect this data, cryptography circuits are
designed to scramble the data in a way that makes it difficult for hackers to steal data.
This feature of cryptography circuits makes them complex and “xor” rich when compared
to normal arithmetic circuits. Verification of “xor” rich circuits is challenging for con-
ventional formal verification tools when compared to circuits containing “and” and “or”
gates.

Cryptography circuits often consist of Galois field circuits. Galois field circuits is also
found in error checking [17] and signal coding [22]. There are two main operations in Galois
field. They are addition and multiplication. Addition is simply bitwise “xor” of operands.
Multiplication is more complicated. Karatsuba, Montgomery and Mastrovito multipliers
are optimized algorithms for multiplication. The current state-of-the-art method for formal
verification of Galois field multipliers was proposed by Yu [25] and uses parallel extraction
to reduce the time and memory to some extent.

Novel methods for the formal verification of Galois field multipliers are developed in
this thesis. Our method involves the building of a graph from the netlist, obtaining an
expression for the output bit by traversing the graph. Our methods provide a range of
4×–256× speedup when compared to Yu’s [25] method. Any Boolean function can be
represented by algebraic normal form. If two Boolean functions have the same algebraic
normal form, then they are equivalent. In this thesis, we have developed novel algorithms
and data structures for algebraic normal form, so two Boolean functions are equivalent if
they have the same data structure.

1.1 Contributions

In this thesis, we have developed novel methods for the formal verification of Galois field
multipliers. Our methods take the netlist of the specification and implementation as input
and outputs whether the two models are equivalent. If the models are not equivalent, our
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method gives the output bits which are not equivalent. A graph structure is developed
which is built from the netlist and traversed in a depth-first manner to obtain the algebraic
normal form expression of the output bit. We first developed a string-based approach in
which expressions are represented as a list of cubes and a cube is represented as a string.
Conventionally, integers are used to represent signals and list of integers represents a cube.
But we are using strings over integers because strings can be easily used as a key in a
hash map, whereas it is difficult to hash list of integers. Since strings are used to represent
expressions, the same sub-expression may exist many times in different expressions. This
results in consuming a lot of memory and increases the time to compute expressions. To
overcome the drawbacks of the string-based approach we have developed a graph-based
approach. In a graph-based approach, we developed novel data structures and algorithms
based on using the algebraic normal form as a canonical graph-based representation of
Boolean functions. We have developed various normalization methods for the our data
structures. The current state-of-art method for formally verifying Galois field multipliers
was proposed by Yu [25] which uses function extraction methods in a parallel fashion from
outputs to primary inputs. In Yu’s [25] methods, nodes which are common to output
nodes are visited multiple times. In our methods, during traversal, all of the nodes are
traversed only once which reduces time when compared to Yu’s [25] method. The efficiency
of the our methods is illustrated through experiments on bit-level synthesized Mastrovito,
Montgomery and Karatsuba multipliers. The developed methods achieves a range of 4 –
256× speedup when compared to Yu’s [25] method.

1.2 Thesis Organisation

The remainder of the thesis is organized as follows. Chapter 2 provides background infor-
mation on various formal verification techniques and previous work related to the verifi-
cation of finite field multipliers. Chapter 3 describes our string-based approach. Chapter
4 describes our graph-based approach. Chapter 5 presents the results of our algorithms
and comparison to Yu’s [25] method. Chapter 6 concludes the thesis and presents ideas
for future work.
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Chapter 2

Background and Related Work

This chapter gives an introduction to various topics which are useful to understand this
thesis. The background section will give a brief overview of a finite field, finite field
multipliers and formal verification methods. The related work section explores past work
regarding formal verification methods for finite field multipliers. The significance of the
common nodes section presents the motivation for this thesis.

2.1 Background

2.1.1 Finite Field Multipliers

The finite field with p elements (0, 1, 2, ..., p − 1) is denoted by GF (p) where p is a prime
number. Finite fields are also called Galois fields in honor of the founder of finite field
theory, Évariste Galois. The arithmetic operation (addition, subtraction, multiplication)
in the Galois field uses the usual operation on integers, followed by reduction modulo p.
An extended Galois field of GF (p) which is denoted by GF (pn) has pn elements where p
is a prime number. Elements in GF (pn) are polynomials of degree strictly less than n and
coefficients of these polynomials are taken from the GF (p) field. To construct and define
properties of the extended field, the concept of the irreducible polynomial is required.

Definition 1 A polynomial, P (x), is irreducible over a field F if it cannot be expressed as
the product of two or more polynomials whose coefficients are in F .
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The irreducible polynomial will be of degree n to reduce the polynomial to a degree less
than n. There exist many irreducible polynomials in a field but finding one is not a trivial
task.

Examples for valid irreducible polynomials in GF (24)

1. x4 + x+ 1

2. x4 + x3 + 1

Examples for invalid irreducible polynomial in GF (24)

1. x4 + x2 + 1 : because it can be written as (x2 + x+ 1)(x2 + x+ 1)

2. x4 + x3 + x2: because it can be written as x2(x2 + x+ 1)

In GF (pn), if p = 2, then it is called a binary extension field and coefficients of the
terms in the polynomial are either 0 or 1. For example, an element in GF (24) is represented
as follows

B(x) = a3x
3 + a2x

2 + a1x
1 + a0, ai ∈ GF (2) (2.1)

B(x) can also be represented as a bit vector as (a3, a2, a1, a0).

Addition in extended Galois field is bitwise “xor” of operands. It can be defined as

Definition 2 Let A(x), B(x) ∈ GF (2n). The addition of the two elements A(x) and
B(x) is computed as

C(x) = A(x) +B(x), ci = ai + bi mod 2 (2.2)

Multiplication in GF (2n) is a costly operation as it involves polynomial multiplication
which is of O(n2) where n is the degree of the polynomial and followed by reduction using
irreducible polynomial.

Definition 3 Let A(x), B(x) ∈ GF (2n) and let P (x) ∈ GF (2n) be an irreducible poly-
nomial. Multiplication of the two elements A(x) and B(x) is computed as

C(x) = A(x) ·B(x) mod P (x) (2.3)
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Example 2.1

Let A(x), B(x) ∈ GF (23) and A(x) = x2+x, B(x) = x2+1. Let the irreducible polynomial
in GF (23) be P (x) = x3 + x+ 1. Find C(x) = A(x) ·B(x) mod (P (x))

C(x) = A(x) ·B(x) mod (P (x))

= (x2 + x)(x2 + 1) mod (P (x))

= (x4 + x3 + x2 + x) mod (P (x))

(2.4)

x + 1

x3 + x+ 1
)

x4 + x3 + x2 + x
− x4 − x2 − x

x3

− x3 − x− 1

− x− 1

The remainder is x+ 1 because −1 mod 2 = 1 and therefore C(x) = x+ 1

Multiplication in a finite field involves two steps, namely polynomial multiplication and
reduction using an irreducible polynomial. After polynomial multiplication, the resultant
polynomial is of degree at most 2n − 2 in the field of GF (2n). The time taken for the
modulo operation depends on the irreducible polynomial. For example, sparse irreducible
polynomial takes less time than dense. Karatsuba, Montgomery and Mastrovito are opti-
mized algorithms for multiplication in GF (2n). In this thesis, a new method for the formal
verification of these algorithms is developed.

Classic Multiplier

The classic multiplier computes the output in two steps: multiplication and reduction.

Multiplication

Let D(x) be the product of two polynomials A(x) and B(x), where A(x) =
∑n−1

i=0 aix
i and

B(x) =
∑n−1

i=0 bix
i then

D(x) = A(x) ·B(x) (2.5)
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Then D(x) is a polynomial of degree 2n−2, which can be written in the form of a matrix as


d0
d1
.
.
.

d2n−2

 =



a0 0 0 . . . 0
a1 a0 0 . . . 0
. . . . . . .
. . . . . . .

an−1 an−2 . . . . a0
0 an−1 . . . . a1
. . . . . . .
. . . . . . .
0 0 . . . . an−1





b0
b1
.
.
.

bn−2

bn−1


(2.6)

D(x) can be represented as:

dk =

{∑k
i=0 aibk−i where k = 0, ..., n− 1∑2n−2
i=k ak−i+(n−1)bi−(n−1) where k = n, ....., 2n− 2

From the above expression we can observe that to compute D(x) requires n2 “and”
gates and (n− 1)2 “xor” gates.

Reduction

Let C(x) be the reduced polynomial for D(x) then

C(x) = D(x) mod (P (x)) (2.7)

Let R be a reduction matrix of size (n, n− 1), then C(x) can be written as:


c0
c1
.
.
.

cn−1

 =


1 0 0 . r0,0 . r0,n−2

0 1 0 . r1,0 . r1,n−2

. . . . . . .

. . . . . . .
0 . 1 . rn−1,0 . rn−1,n−2





d0
d1
.
.
.

d2n−3

d2n−2


(2.8)

Elements of the reduction matrix can be computed from P (x) as:
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rj,i =

{
pj where i = 0, j = 0, ..., n− 1

rj−1,i−1 + rn−1,i−1rj,0 where j = 0, ., n− 1, i = 1, ....., n− 2
(2.9)

Algorithm 1 is the algorithm for the classic multiplier

Algorithm 1 Classic multiplier

Input: A(x), B(x) are two polynomials in GF (2n) and P (x) is an irreducible polynomial
Output: return C(x) which is product of A(x) and B(x)
1: D = poly multiplication(A,B)
2: R = reduction matrix(P)
3: for j in 0 to n-1 do
4: c(j) = d(j)
5: end for
6: for j in 0 to n-1 do
7: for i in 0 to n-2 do
8: c(j) = xor(c(j), and(R(j,i),d(n+i)))
9: end for
10: end for
11: return c

The functions poly multiplication and reduction matrix return D(x) and R respectively

Example 2.2

Taking the same parameters as in example 2.1, D(x) can be calculated from equation 2.6:

D(x) =


d0
d1
d2
d3
d4

 =


0 0 0
1 0 0
1 1 0
0 1 1
0 0 1


10
1

 (2.10)

R can be calculated from equation 2.9:

R =


1 1 1
1 0 1
0 1 1
1 1 0

 (2.11)
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Karatsuba Multiplier

Karatsuba multiplier is a recursive method to efficiently compute the multiplication of two
finite field polynomials. It is known that to multiply two polynomials of degree n − 1
requires n2 multiplications and (n−1)2 additions. But Karatsuba multiplier requires fewer
multiplication and additions for n = 2t where t is an integer.

Let A(x), B(x) be two polynomials of degree n−1 in GF (2n). They can be represented
as:

A(x) = xn/2(xn/2−1an−1 + ....+ an/2) + (xn/2−1an/2−1 + ....+ a0)

= xn/2AH + AL

B(x) = xn/2BH +BL

(2.12)

where
AH = xn/2−1an−1 + ....+ an/2,
AL = xn/2−1an/2−1 + ....+ a0,
BH = xn/2−1bn−1 + ....+ bn/2,
BL = xn/2−1bn/2−1 + ....+ b0

Now D(x) can be represented as:

D(x) = A(x).B(x)

= xnAHBH + xn/2(AHBL + ALBH) + ALBL

(2.13)

Let

M0(x) = AL(x)BL(x)

M1(x) = (AL(x) + AH(x))(BL(x) +BH(x))

M2(x) = AH(x)BH(x)

(2.14)

Now D(x) can be written in terms of M0(x), M1(x) and M2(x):

D(x) = xnM2(x) + xn/2(M1(x) +M0(x) +M2(x)) +M0(x) (2.15)
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This algorithm is recursively applied to compute M0(x), M1(x) and M2(x) and it
takes log n steps to compute D(x). After obtaining D(x) we can use the reduction matrix
of a classic multiplier to obtain C(x). We can observe from equation 2.13, we need 4
multiplications to compute D(x), but equation 2.13 can be reduced to equation 2.15 and it
requires only 3 multiplications of polynomials of size n/2. This reduces the total number
of multiplications required to nlog32 ≈ n1.585 [23] when compared to n2 multiplications in a
classic multiplier.

Montgomery Multiplier

Montgomery multiplication was first proposed for integers but later extended to the finite
field. Let A(x) and B(x) be two polynomials and let P (x) be an irreducible polynomial in
GF (2n). Instead of computing 2.16, Montgomery multiplier computes 2.17 where R(x) is
a polynomial such that gcd(R(x), P (x)) = 1.

C(x) = A(x) ·B(x) mod (P (x)) (2.16)

C(x) = A(x) ·B(x) ·R−1(x) mod (P (x)) (2.17)

C(x) can be computed in the following ways

Method 1:

If A(x) and B(x) are inputs, we can transform them into Montgomery form AR and BR
which can be computed using a classic multiplier, then their Montgomery product will be
ABR. Now again compute Montgomery product taking ABR, 1 as inputs, then the result
will be AB which is required.
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AR(x) = A(x) ·R(x)

BR(x) = B(x) ·R(x)

ABR(x) = montg (AR(x), BR(x))

= AR(x) ·BR(x) ·R−1(x)

= A(x) ·R(x) ·B(x) ·R(x) ·R−1(x)

= A(x) ·B(x) ·R(x)

AB(x) = montg (ABR(x), 1)

= A(x) ·B(x) ·R(x) ·R−1(x)

= A(x) ·B(x)

(2.18)

Method 1 is used to compute expressions that contain many multiplications. The inputs are
converted into the Montgomery form, then multiplications are done with the Montgomery
algorithm and the final result is converted back into the conventional representation.

Method 2:

First obtain the Montgomery product of A, B which is ABR−1. Now transform into
the conventional representation by using a classic multiplier with inputs ABR−1 and R.
Because we need to verify against a specification of a conventional finite field multiplication,
we will be using this method in the thesis for experiments.

Following is the bit-level algorithm for the Montgomery product when R(x) = xn

Algorithm 2 Montgomery multiplier

Input: A(x), B(x) are two polynomials in GF (2n) and P (x) is an irreducible polynomial
Output: return C(x) = A(x) ·B(x)x−n mod (P (x))
1: C(x) = 0
2: for j in 0 to n-1 do
3: C(x) = C(x) + aib(x)
4: C(x) = C(x) + c0p(x)
5: C(x) = C(x)/x
6: end for
7: return C
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Mastrovito Multiplier

Multiplication of two finite field polynomials can be computed in two steps like classic
multiplier but it can also be computed in a single step using the Mastrovito product
matrix. Equation 2.16 can be modified as 2.19 where Z is the Mastrovito product matrix
of size (n, n).

C(x) = Z ·B(x) (2.19)

Z can be computed as:

zj,i =

{
ai where j = 0, i = 0...n− 1

u(i− j)ai−j +
∑j−1

t=0 qj−1−t,ian−1−t where j, i = 0, ..n− 1, j ̸= 0

where u(x) is a step function that is 1 when x > 0 and 0 when x < 0. The Q matrix is
required for computation of the Z matrix and the Q matrix can be computed from P as:

qi,j =

{
qi−1,n−1 where i = 1..n− 2 , j = 0

qi−1,j−1 + qi−1,n−1q0,j where j = 1, ....n− 1, i = 0, ..n− 2

where q0,j = pj. We can observe that the Q matrix is very similar to the reduction matrix
in a classic multiplier. In fact R = QT . The Mastrovito multiplier reduces the number of
gates required when compared to the classic multiplier by combining the multiplication and
reduction steps into one step. The Mastrovito multiplier of n bit inputs with an irreducible
polynomial of the form xn + xm + 1 takes n2 “and” gates and n2 − 1 “xor” gates [20].

2.1.2 Algebraic Normal Form

Every Boolean function can be represented in terms of the sum of products in the following
way

f(x1, x2, ...xn) = a0⊕
a1x1 ⊕ a2x2 ⊕ ......⊕ anxn⊕
a1,2x1x2 ⊕ .......⊕ an−1,nxn−1xn⊕
.....⊕
a1,2,3,...nx1...xn

(2.20)
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where a0, a1, ......a1,2,....n ∈ {0, 1} are constant coefficients and
x1, ...xn are Boolean variables.

This representation of f is called an algebraic normal form. Algebraic normal form
expressions do not contain inverters and “or” gates. They only contain “xor” and “and”
gates. The algebraic normal form is canonical and so if two functions have the same
algebraic normal form, then they are equivalent.

Examples of algebraic normal form

1. x⊕ y ⊕ xy

2. 1⊕ y ⊕ xyz

Examples which are not algebraic normal form

1. x⊕ x⊕ xy : is not in algebraic normal form because it simplifies to xy

2. x⊙ (y⊕ z) : is not in algebraic normal form because it is not in the sum of products
form.

Converting into algebraic normal form

Inverter and “or” gates can be converted into “and” and “xor” using the following
equations

¬a = 1⊕ a

a ∨ b = a⊕ b⊕ ab
(2.21)

Example

Following are examples for converting Boolean expression into algebraic normal form
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1. This is an example of a Boolean expression containing “or” gate and an inverter.

f = x ∨ (y ⊙ ¬z)
= x ∨ (y(1⊕ z))

= x ∨ (y ⊕ yz)

= x⊕ y ⊕ yz ⊕ x(y ⊕ yz)

= x⊕ y ⊕ yz ⊕ xy ⊕ xyz

(2.22)

2. This is an example of a Boolean expression containing an inverter.

f = ¬(1⊕ x⊕ y)

= 1⊕ 1⊕ x⊕ y

= x⊕ y

(2.23)

3. “and” can be represented as an operation over Boolean expressions and as a product
of two expressions in algebraic normal form. Following is the example.

f = (1⊕ x)⊙ (1⊕ x⊕ y)

= 1(1⊕ x⊕ y)⊕ x(1⊕ x⊕ y)

= 1⊕ x⊕ y ⊕ x⊕ x⊕ xy

= 1⊕ x⊕ y ⊕ xy

(2.24)

2.1.3 Canonical Diagrams

BDD (Binary Decision Diagrams) which are canonical Directed Acyclic Graph (DAG)
representations of Boolean functions were first proposed in [4]. A BDD can be obtained in
the following way. From the truth table of a Boolean function, we can form a binary decision
tree. From a binary decision tree we can form a binary decision diagram by combining
equivalent nodes. From a binary decision diagram, we can form an ordered BDD by
enforcing some order of Boolean variables. From an ordered BDD, we can form a reduced
ordered BDD (ROBDD), which is commonly called BDD, by merging equivalent leaves
and isomorphic nodes. A BDD is a canonical diagram and hence if two Boolean functions
have the same BDD, then they are equivalent. Figure 2.1 is the BDD for f = (a + b)⊙ c
and figure 2.2 is the ROBDD for f .
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b

c

b

c c c

0 0 0 1 0 1 0 1

Figure 2.1: BDD for f = (a+ b)⊙ c

a

b c

0 1

Figure 2.2: ROBDD for f = (a+ b) ∗ c

BDDs are extensively used in logic synthesis and verification of small circuits but their
application to very large arithmetic circuits is limited as they suffer from high memory
consumption.

In the graph-based approach which will be introduced in chapter 4, we have developed
a data structure that represents algebraic normal form. It is a binary tree and canonical. If
two functions point to the same root node of a tree, then they are equivalent. The ordering
concept from BDD was taken and applied to our data structure. In the our data structure,
let a, b be n bit primary inputs, the following order is considered a1 <a2 <..... <an <b1
<.... <bn.
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2.1.4 SAT Solvers

The Boolean satisfiability problem, which is abbreviated as SAT, is the problem of deter-
mining if there exists a situation for a given Boolean formula that evaluates to true. SAT
is an NP-complete problem and many heuristics were proposed to solve this. Most of the
heuristics were based on the Davis, Putnam, Logemann, Loveland ( DPLL) [5] algorithm.

Verification of two arithmetic circuits can be modeled as a decision problem and thus
SAT solvers can be used. Some of the SAT solvers are ABC [6] and Minisat [21]. SMT
solvers are an extension to SAT solvers which can handle integer variables instead of
Boolean variables and inequalities. Some SMT solvers which can be used for verification
are Boolector [15], Z3 [14], CVC [7]. However, SAT and SMT solvers do not perform well
for verification of large finite field arithmetic circuits, as demonstrated in [24], [11].

2.2 Related Work

V. Bakoev et al have investigated techniques for computing the algebraic normal forms
of a set of Boolean functions with up to 24 variables [2, 16]. Their work is focused on
batch processing a large number of functions with a small number of variables (e.g. 3800
functions with 24 variables to 3.9 million functions with 14 variables). In contrast, our
work is aimed at computing the algebraic normal form of one or two functions with a large
number of variables (up to 1142 in the current experiments).

Computer algebra-based methods were previously proposed for the verification of finite
field arithmetic circuits. Lv et.al [11] first proposed computer algebra-based methods for
formal verification of finite field multipliers. Let B be the set of polynomials for the
implementation and let the specification polynomial be F . The implementation model
satisfies the specification if F is reduced to zero by the Gröbner basis of B. The methods
proposed in [11] are feasible up to 163-bit multipliers before time and memory limits are
exceeded. The authors in [8] use Gaussian elimination instead of polynomial division to
speed up the process.

Gröbner basis reduction has been successful in verification of large integer multipliers,
previously proposed techniques suffer from exponential blow-up of polynomials. Sayed-
Ahmed et. al in [18] identified reasons for this problem and proposed a new method
that uses structural information of circuits to remove terms that evaluate to zero before
their blow-up. This approach works up to 128-bit multipliers. Mahzoon et al. in [12]
identified that the exponential blow-up of polynomials is due to redundant monomials,
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also known as vanishing monomials. They proposed a new method, called SCA-verifier
PolyCleaner, which presents a new theory of the origin of vanishing monomials and how
they can be handled to prevent explosion during backward rewriting. In [13], Mahzoon
et al. presented further optimizations which identifies atomic blocks of arithmetic circuits
using reverse engineering techniques and use these atomic blocks to identify all sources of
vanishing monomials. This method works up to 1024-bit multipliers.

The recently proposed method by Yu [25] uses the function extraction method proposed
in [24]. Yu’s method exploits the inherent parallel structure of Galois field circuits and
computes the expression for output bit in terms of primary inputs by backward rewriting
(i.e. from outputs to primary inputs) in a parallel fashion using threads. The output
bits are distributed between the threads equally. Backward rewriting involves substitution
and elimination of terms. But in this process, nodes that are common to two or more
output bits are computed multiple times. In the thesis, we developed a novel algorithm to
overcome these issues and compared our results to Yu’s [25] method.

2.3 Significance of Common Nodes

Let the path from output node n1 to primary inputs be p1 and let the path for n2 be
p2. The nodes which are present in both paths p1 and p2 are called common nodes. An
optimized circuit consists of large number of common nodes as a synthesis tool tries to
reduce the number of gates. In finite field multipliers like Karatsuba, there are a large
number of common nodes as it uses the same unit blocks to compute multiple outputs.
We can observe from Figures 2.3a and 2.3b, the percentage of internal nodes that drive
only one output is a small fraction of the total number of nodes. In Yu’s [25] method,
the expression for each output bit is computed by traversing from the output bits to the
primary inputs in a parallel fashion using threads. When traversing in a parallel fashion,
the expression for common nodes is computed multiple times. In our work, the traversal
of graphs is designed such that each of the nodes is visited only once, which significantly
reduces time.
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(a) Karatsuba multiplier of 64 bit size (b) Karatsuba multiplier of 128 bit size

Figure 2.3: Common nodes VS shared output nodes
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Chapter 3

String Based Approach

In this chapter, we will introduce our first algorithm for the formal verification of Galois
field multipliers. There are three main steps involved in the algorithm namely building
a graph from the netlist, rewriting and verification. Our algorithm takes netlists of spec-
ification and implementation and builds a graph from it. To compute algebraic normal
form expressions for output bits, the graph is traversed from outputs to primary inputs
in depth-first traversal. We will introduce a data structure for expressions and various
methods for normalizing expressions. We will also introduce two verification methods for
the computed expressions. At last, we will identify drawbacks of the algorithm.

3.1 Graph

The graph formed from the netlist is a DAG (Directed Acyclic Graph) because the netlist
of finite multiplier consists of combinational circuits only. The graph which is formed
represents the circuit in the following way. Nodes in the circuit represent gates in the
netlist and edges represent a signal. Since the node represents the gate in the circuit it
should contain information about fanin (i.e. sources) and type of gate and fanout of gate
which are destinations of the gate.

The graph can be built from the netlist in the following way. For every gate in netlist
make a node. Edges between two nodes are formed when the output signal of a node
matches with an input signal of another node. To identify this, store the output signal and
node in a map. When making a new node check for the input signal in the map, if it is
present, append the current node to the destinations of the node in the map. There may
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be a situation where inputs are not currently defined but are defined later in the netlist.
To handle this situation, store the input and node in another map, say an input map, when
building a new node check if the output of the current node is present in the input map
and if yes, form an edge between the current node and node in input map.

Figure 3.1 is an example graph that can be formed from the netlist. While building a
graph, one can identify nodes whose outputs are primary output bits and these nodes can
be used as source nodes while traversing the graph in depth-first manner.

z0

+ +

z1

b1

a1 a2

b2

1

3

2

Figure 3.1: Graph

3.2 Expression

Rewriting uses normalization to convert circuit into expressions at every node in the graph.
Expressions are used to represent the algebraic normal form. In the developed algorithm,
expression is represented as list of strings. The expression data structure is constructed in
the following way. A signal is represented by string and a cube which is product of two or
more signals is represented by concatenating signals by ‘∗’. Signals in each cube which are
strings are sorted in ascending order. Let a, b be n bit primary inputs, following order is
considered a1 <a2 <..... <an <b1 <.... <bn.

Conventionally, integers are used to represent a signal, list of integers represent a cube
and list of list of integers represent a expression. But using strings have a advantage as it
is easier to hash strings than list of integers.
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Examples of valid expressions

1. [“a1 ∗ b1”, “a2”, “a3 ∗ b1”].

2. [“a2 ∗ b2”, “b2 ∗ b3”].

Examples of invalid expressions

1. [“a1 ∗ a1”, “a2”] : not valid because it can be simplified to [“a1”, “a2”].

2. [“a2”, “a2”, “b2”]: not valid because the equivalent expression is a2 ⊕ a2 ⊕ b2 and it
can be simplified to b2.

3. [“b1 ∗ a1 ∗ b2”, “b3”]: not valid because in cube “b1 ∗ a1 ∗ b2” signal “a1” should come
before signal “b1” as signals in a cube are sorted in ascending order.

3.3 Normalization

Rewriting uses normalization at every node to compute symbolic expression. The objective
of rewriting is to traverse the graph to compute expression at every node. We traverse from
output nodes to input nodes in a depth-first manner to compute an expression for output
bits in terms of primary inputs. In this algorithm, we take output nodes as source nodes
and recursively traverse nodes that are input to the current node and normalize them.
To prevent nodes from visiting multiple times in depth-first traversal, after normalizing a
node, its normalized expression is stored in a map. During recursion, if a node is present in
the map, normalized expression is returned otherwise recursion continues. The following
is the algorithm
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Algorithm 3 Depth-first rewriting

Input: Gate-level netlist of GF (2m)
Output: Output bit expression
1: Build the graph from netlist.
2: Extracting global expression of output nodes
3: for each output node do
4: for each source node do
5: inputs = depth-first-recursive(source node)
6: end for
7: Compute the normalized expression using normalization
8: end for
9: Depth-first recursive(node)
10: if node is in the map then
11: Return the normalized expression which is already computed
12: else
13: for each source node do
14: Inputs = depth-first-recursive(source node)
15: end for
16: Compute the normalized expression for using normalization
17: Store node and normalized expression in map
18: Return normalized node
19: end if

Example: In figure 3.2, signals in square box are inputs and
⊙

are node whose gate type
is “and” and

⊕
are nodes whose gate type is “xor” and output signals are denoted by

rhombus box. Figure 3.3 show steps in algorithm and nodes colored green are normalized.
Table 3.1 explains operations that occur during recursion of depth-first rewriting algorithm.
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Figure 3.2: Graph
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(c)

Figure 3.3: Depth first traversal steps
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Table 3.1: Rewriting using Depth-first algorithm

Nodes on recursion stack Operation
1 In figure 3.2, we can observe that one of sources of node

1 i.e node 3 is not normalized. So make a recursion call
to node 3.

1,3 In figure 3.3a, we can observe sources of node 3 are
primary inputs and so normalize node 3 and store nor-
malized expression in a map and return normalized ex-
pression. We can observe node 3 is colored green 3.3a
as it is normalized.

1 Now compute normalized expression for node 1 and
node 1 is colored green in 3.3b and push node 2 on
recursion stack.

2 In figure 3.3b, to compute normalized expression for
node 2, make a recursion call to sources nodes. As one
of input is primary node, make a recursion call to node
3.

2,3 In figure 3.3b, we can observe that node 3 is already
normalized and return normalized expression stored in
the map.

2 Now compute normalized expression for node 2 and
node 2 is colored green in 3.3c as it is normalized now.

Normalization is a step in which symbolic expression for a node is computed. Normal-
ization methods depend on the type of gate. Graph has “and” , “xor” gates only because
“or” and inverter gates are converted into “and” and “xor” gates using formula stated
in chapter 2 while forming the node in graph. Subsequent sections will discuss various
methods for normalization in detail.

3.3.1 XOR

The inputs to “xor” normalization are two sources which are a list of cubes. The output
will be a list of cubes that is the union of the two sources, except that any cube that
appears in both sources is removed. The objective of normalizing the “xor” gate is to
remove cubes that are present in both the inputs of “xor” gate. This can be achieved in
the following ways depending on how sources to “xor” is constructed. Different scenarios
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of sources are individual cubes in sources are not sorted, cubes are sorted individually and
cubes are present in a hash map instead of a list. Following are the algorithms in these
scenarios

Approach 1

In this approach, it is assumed that cubes in both input lists are not sorted. Since cubes
are not sorted, we can’t use string equivalence checking to identify equal cubes. We can
sort individual cubes and append them into a single list and sort the single list. Now, we
can sort the single list and remove identical cubes since they appear together in the sorted
list. Following is the algorithm

Algorithm 4

Input: Two inputs which are list of cubes
Output: Normalized “xor” output of two inputs
1: Append one input to other and form a single list of cubes namely flist
2: Sort each cube in flist and sort the entire flist
3: for cube in flist do
4: Remove subsequent cubes which are equal from flist
5: end for
6: return flist

The time complexity for above algorithm can be analysed in following way. Let length
of inputs list be n and m and length of largest cube be p. Step 1 takes O(n) where n
is size smallest list. In step 2, sorting each cube takes O(plogp) and for sorting entire
p(n + m)log(n + m). For loop in line 3 takes (n + m). Overall time complexity for
entire algorithm is O(n + plogp + p(n + m)log(n + m) + (n + m)) which simplifies to
O(p(n+m)log(n+m)). The space complexity of this approach is O(n+m).

Example:

input1 = [“a1 ∗ b2 ∗ a3 ∗ a4”,
“a1 ∗ b1”]

input2 = [“a4 ∗ b2 ∗ a1 ∗ a3”,
“a1 ∗ b2”]

flist = [“a1 ∗ b2 ∗ a3 ∗ a4”,
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“a1 ∗ b1”,
“a4 ∗ b2 ∗ a1 ∗ a3”,
“a1 ∗ b2”]

Sort individual cubes flist = [“a1 ∗ b1”,
“a1 ∗ b2”,
“a1 ∗ a3 ∗ a4 ∗ b2”,
“a1 ∗ a3 ∗ a4 ∗ b2”]

Remove cubes which are identical = [“a1 ∗ b1”, “a1 ∗ b2”]

Approach 2

In this approach, it is assumed that cubes in both inputs are sorted individually. Since
cubes are sorted, we can use a hash map that has constant time access to identify equal
cubes and form a resultant list of cubes. Following is the algorithm

Algorithm 5

Input: Two inputs which are list of cubes
Output: Normalized “xor” output of two inputs
1: Initialize a hash map
2: for cube in input1 do
3: insert into hash map
4: end for
5: for cube in input2 do
6: if cube in hash map then
7: remove cube from hash map
8: else
9: insert cube in hash map
10: end if
11: end for
12: return keys of hash map

The time complexity for the above algorithm can be analyzed in the following way. Let
the length of the inputs list be n and m and the length of the largest cube be p. For loop
in line 2 takes O(n) and for loop in line 5 takes O(m) and insert and deletion operations of
the hash map take O(1). The overall time complexity for the entire algorithm is O(m+n).
The space complexity of this approach is O(n+m).
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Example:

input1 = [“a1 ∗ b1”,
“a1 ∗ a3 ∗ a4 ∗ b2”]

input2 = [“a1 ∗ b2”,
“a1 ∗ a3 ∗ a4 ∗ b2”]

Remove cubes which are identical using hash map and keys of hash map will be (“a1 ∗
b1”, “a1 ∗ b2”)

Approach 3

In this approach, it is assumed that cubes are sorted and in hash map instead of list. Since
cubes are sorted and present in hash map, we can traverse keys of one input hash map and
check key is present in another hash map or not. If it is present remove it else insert key
into hash map. This approach takes O(n+m) where n,m are lengths of input hash maps.

Example:

Let input1 = hash map with keys (“a1 ∗ b1”,
“a1 ∗ a3 ∗ a4 ∗ b2”)

input2 = hash map with keys (“a1 ∗ b2”,
“a1 ∗ a3 ∗ a4 ∗ b2”)

Keys of resultant hash map will be (“a1 ∗ b1”, “a1 ∗ b2”)

Analysis

Among all these approaches, approach 2 works faster then remaining. Approach 3 also has
same time complexity as approach 3 but in practice approach 2 is faster then approach 3.

3.3.2 AND

Let inputs to “and” gate are input1 and input2. The output will be a list of cubes which
can be obtained by multiplying each cube in input1 by the other in input2 and append to
the list. Now, simplify each cube by removing the same elements in each cube and retaining
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one of them, and sorting each cube. Sorting of the cube is required as cubes are used as
a key in the hash map to identify equal cubes which are similar to “xor” normalization.
Now, remove identical cubes using the hash map, and the keys of the hash map will be
output. Bottleneck while performing above is multiplying two cubes. This can be achieved
by following approaches

Approach 1

In this approach, first, obtain signals from each cube and append them to a list. Signals
from each cube can be obtained by splitting the cube by delimiter ∗. Now sort the list and
remove signals which are equal by traversing the list and obtaining only one copy of the
signal. The final output will be concatenating signals in the list by ∗.

Example:

Let cube1: “a2 ∗ b3 ∗ a4 ∗ a5” cube2: “b3 ∗ a5 ∗ b6 ∗ a6”
Obtain signals from cube 1. let be list 1: [“a2”, “b3”, “a4”, “a5”]
Obtain signals from cube 2. let be list 2: [“b3”, “a5”, “b6”, “a6”]
Concatenate list 1, list 2 to form list: [“a2”, “b3”, “a4”, “a5”, “b3”, “a5”, “b6”, “a6”]
Sort list: [“a2”, “a4”, “a5”, “a5”, “a6”, “b3”, “b3”, “b6”]
Remove signals which are equal and retain one of them: [“a2”, “a4”, “a5”, “a6”, “b3”, “b6”]
Form the cube by concatenating signals by ∗: [“a2 ∗ a4 ∗ a5 ∗ a6 ∗ b3 ∗ b6”]

Approach 2

In this approach, same as the previous obtain signals from each cube and insert them into
a hash map instead of a list. While inserting to the hash map, check if the signal is already
present in the hash map or not. If it is present, do not insert it, else insert it into the hash
map. Now, the output will be keys of the hash map in a sorted manner. Sorting is required
because cubes are used as keys in the hash map in the approach of “xor” normalization.

Example:

Let cube1: “a2 ∗ b3 ∗ a4 ∗ a5” cube2: “b3 ∗ a5 ∗ b6 ∗ a6”
Obtain signals from cube1. let be list1: [“a2”, “b3”, “a4”, “a5”]
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Obtain signals from cube2. let be list2: [“b3”, “a5”, “b6”, “a6”]
Insert signals into hash map and keys will be m: [“a2”, “b3”, “a4”, “a5”, “b6”, “a6”]
Sort m: [“a2”, “a4”, “a5”, “a6”, “b3”, “b6”]
Form the cube by concatenating signals by ∗: [“a2 ∗ a4 ∗ a5 ∗ a6 ∗ b3 ∗ b6”]

Analysis

Among the above 2 approaches, approach 2 works faster than approach 1 because it involves
sorting the whole list of signals from two cubes and traversing the list on the other side
approach 2 takes advantage of the hash map to simplify and only uses sorting for keys of
the hash map which will be lesser than the original list of signals which approach 1 uses.
Following is the example for “and” normalization.

Example

Let input1: [“a1 ∗ a4”, “a2 ∗ b1”] input2: [“a1 ∗ a2”, “a4 ∗ b1”]
List of cubes obtained by multiplying each cube by other is
list = [“a1 ∗ a2 ∗ a4”, “a1 ∗ a4 ∗ b1”, “a1 ∗ a2 ∗ b1”, “a1 ∗ a4 ∗ b1”]
Remove identical cubes using hash map. Hash map keys will be
Output = [“a1 ∗ a2 ∗ a4”, “a1 ∗ a2 ∗ b1”]

3.4 Verification

After rewriting is completed, a map containing the output bit expression is computed.
The equivalence of output bit expression in terms of primary inputs of two models can be
verified using the following approaches.

3.4.1 String based

Since the expression is a list of cubes that are strings, one can verify the equivalence of
two expressions by comparing individual cubes. Since cubes are sorted, two expressions
are equivalent if cubes one expression are present in another expression using a hash map
and their expression lengths are equal.
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The normalization algorithm produces algebraic normal form expressions and checking
equality of developed data structure is equivalent to SAT verification.

Example
Let us demonstrate if two cubes point to same data structure developed, then there are
equivalent. Let the cube1 be “a1∗a1∗b1∗b2” and cube2 be “a1∗b1∗b1∗b2”. After applying
“and” normalization method for cube1, it normalizes to “a1∗b1∗b2” and cube2 normalizes
to “a1 ∗ b1 ∗ b2”. We can observe that cube1 and cube2 normalizes to same and therefore
cube1, cube2 are equivalent. Therefore developed data structure is truly algebraic normal
form for cubes. Now consider a following two expressions.

Expression 1 = [“a1 ∗ b1”,
“a2 ∗ b3”,
“a2 ∗ b2 ∗ b2”,
“a2 ∗ a2 ∗ b2”]

Expression 2 = [“a2 ∗ b3”,
“a1 ∗ b1”,
“a2 ∗ b3 ∗ b3”,
“a2 ∗ a2 ∗ b3”]

We can observe that both expressions can be normalized to [“a2∗b3”, “a1∗b1”]. Therefore
developed data structure is truly algebraic normal form for expressions also.

3.4.2 SAT Solver based

For SAT solver based equivalence verification, we can use Z3 [14] sat solver and form a
equivalent Z3 [14] command out of expression and check its equivalence with other.

Example : Expression 1 z1 = [“a1”, “a2”]
Expression 2 z2 = [“a2”, “a1”]

Following are the Z3 commands to check equivalence of z1, z2

SetLogic( QF_UF())

DeclareConst(SSymbol(‘‘a1’’), Sort(Identifier(SSymbol(‘‘Bool’’) )))

DeclareConst(SSymbol(‘‘a2’’), Sort(Identifier(SSymbol(‘‘Bool’’) )))

DefineFun(FunDef(SSymbol(‘‘z1’’),List(), Sort(Identifier(SSymbol(‘‘Bool’’))),
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FunctionApplication(QualifiedIdentifier(Identifier(SSymbol(‘‘xor’’))),

Seq(QualifiedIdentifier(Identifier(SSymbol(‘‘a1’’))),

QualifiedIdentifier(Identifier(SSymbol(‘‘a2’’)))))))

DefineFun(FunDef(SSymbol(‘‘z2’’),List(), Sort(Identifier(SSymbol(‘‘Bool’’))),

FunctionApplication(QualifiedIdentifier(Identifier(SSymbol(‘‘xor’’))),

Seq(QualifiedIdentifier(Identifier(SSymbol(‘‘a2’’))),

QualifiedIdentifier(Identifier(SSymbol(‘‘a1’’)))))))

Assert(FunctionApplication(QualifiedIdentifier(Identifier(SSymbol(‘‘not’’))),

Seq(FunctionApplication(QualifiedIdentifier(Identifier(SSymbol(‘‘=’’))),

Seq(QualifiedIdentifier(Identifier(SSymbol(‘‘z1’’))),

QualifiedIdentifier(Identifier(SSymbol(‘‘z2’’))))))))

CheckSat()

Exit()

3.4.3 Analysis

From experiments, we observed that string based approach take less time than SAT solver.
The results of experiments are presented in chapter 5.

3.5 Summary

There are various drawback for algorithm developed in this chapter. One of the drawback
is, using list of strings data structure for expression. Since strings are used to represent
expression, same sub-expression may exist many times in different expressions. This results
in consuming a lot of memory and increases time to compute expressions as we are com-
paring two expressions multiple times during normalization. Another drawback is common
nodes between two models are traversed twice.

In this chapter, we have introduced graph representation of netlist and depth-first
rewriting algorithm. We have introduced a data structure for expressions that represents
algebraic normal form. We have introduced various approaches for “and”, “xor” nor-
malization and equivalence verification of output bit expressions obtained from rewriting.
The results of the developed algorithm are presented in chapter 5. We have identified the
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drawbacks of our algorithm. We will further develop an alternative algorithm in chapter 4
overcoming these drawbacks.
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Chapter 4

Graph Based Approach

In this chapter, we will introduce an alternative method for the verification of GF multipli-
ers. In the previous chapter, symbolic expressions are represented as a list of strings. With
a string-based approach for expression, we can’t identify a common substructure between
two expressions and the same sub-expression can be present in multiple expressions. To
overcome these issues, an alternative data structure based on graph is introduced for sym-
bolic expression in this chapter and an alternative graph data structure which represents
a circuit and an algorithm to extract symbolic expression for output bit is introduced.
Alternative normalization and verification methods are developed as the underlying data
structure for symbolic expression is changed.

4.1 Graph

The netlist can be transformed into a graph. One can traverse this graph and can compute
a symbolic expression for output bits. The developed graph data structure consists of four
data structures namely gate, node, and two hash tables. Every gate in netlist represents
gate data structure in the following way. Gate has information about sources and type of
circuit gate. There are different types of gates namely gates with two inputs, input gates
for primary inputs, and constant gates to represent true or false. The node data structure
contains a number that is assigned to each unique gate, the destinations of the gate and
gate. Two nodes are equal if they have the same node number. Similarly, node 1 is less
than node 2 if the node number of node 1 is less than node 2. Sources in the gate are
represented in form of nodes and source 0 is always less than source 1. Node number is
generated through a counter.
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Graph also consist of two hash tables namely gateToNode and signalToNode. gateToN-
ode is required to prevent duplication of gates in the graph. The node which the gate
represents can be found using gateToNode where the gate is key and node is the value.
This hashing of gates guarantees that identical gates in the circuit are all represented by
the same node in the graph. There may be different signals which represent the same gate,
and to prevent duplication of the same gate, since the node is unique to every gate, without
creating a new gate, we can store signal information in signalToNode data structure where
a signal is key and node is value.

Consider construction of graphs in 4.1 consecutively. Tables 4.2, 4.3 show gateToNode,
signalToNode tables respectively after building graphs.

a2

+n5

n4

a1 b1n1 n2

n3

e

d

a1 b1

f

a3

+n7

n6

a1 b1n1 n2

h

g

n1 n2

Figure 4.1: Graph

Table 4.1: Hashtables

Table 4.2: GateToNode

gate node number destinations
Input a1 1 [3]
Input b1 2 [3]
AND(1,2) 3 [5, 7]
Input a2 4 [5]
XOR(4,3) 5 [ ]
Input a3 6 [7]
XOR(6,3) 7 [ ]

Table 4.3: SignalTonode

signal node
a1 1
b1 2
d 3
a2 4
e 5
f 3
a3 6
h 3
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When constructing graph for middle figure in 4.1, we will first check whether a gate
with sources 1, 2 and gate type “and” is present in gateToNode table or not. Since it is
already present, no new entry is inserted to gateToNode table and new signal f is mapped
to node 3 in signalToNode table.

4.2 Algebraic Normal Form

Expression computed at every node in the graph is represented in normal form. The normal
form is a binary tree. The left child is termed source 0 and the right child is termed source
1. The left child of node in binary tree is always a leaf or a cube. Leaf nodes are always
primary inputs or constants. Therefore binary tree is always extended on right. All leaf
nodes are sorted in ascending order from top to bottom. All the above features of binary
tree makes it unique. The root node is either “xor“ or “and”.

Figure 4.2 shows valid normal forms
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Figure 4.2: Valid Normal forms

Nodes in green are valid nodes and nodes in red are invalid nodes. Figure 4.3 shows
invalid normal forms
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Figure 4.3: Invalid Normal forms
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Following are the reasons for invalid normal forms

• 4.3a is invalid normal form because it has “xor” as root node and cube n6 as the
source node for two root nodes and n2, n6 cubes are not sorted as n2 should come
before n6.

• 4.3b is invalid normal form because it has “and” as the root node and leaf node n1

is source node for two root nodes.

• 4.3c is invalid normal form because, at node 4, its leaves are not sorted.

• 4.3d is invalid because source 0 of the root node which is “xor” is the “xor” node.

• 4.3e is invalid because the root node is “and” and its sources nodes are “xor”.

The normal form has the following principles

• If the root node is “xor”, its source 0 can be “and” or leaves, and the root node of
source 1 is “xor” or “and” or leaf.

• If the root node is “and”, its source 0 is leaves and source 1 is either “and” or leaves.

• If the root node is “xor”, there can’t exist two identical cubes in the normal form.

• If the root node is “and”, there can’t exist two identical leaves in the normal form.

• All the cubes from the root are sorted in ascending order.

• Since all cubes are sorted, the normal form is unique for a given symbolic expression.

It is assumed that a, b are n bit primary bits. Primary inputs are formed before any
other nodes in order a1, .... an,b1,...bn and therefore a1 <a2 <..... <an <b1 <.... <bn.

4.3 Normalization

A graph is built for the specification, implementation and output nodes are identified.
Symbolic expression for output bit is extracted by traversing graph in a depth-first man-
ner. Graph traversal starts from output nodes and explored as far as possible recursively
until traversal reaches the input nodes. When traversal reaches the input nodes, global
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expression is computed and recursion call returns. To prevent traversing common nodes
multiple times, whenever a node is normalized it is stored in a map from the current node
to the normalized node and so while recursion, it is verified that the current node is present
in the map or not. If it is present, the normalized node is returned else recursion continues.
Hence all nodes are normalized only once.

z0

+ +

z1

b1

a1 a2

b2

z'0

+ +

z1'

a1 a2

+

+
+

+1

1 b1

1

1 b2

(a)
(b)

n3

n3

Figure 4.4: Specification and Implementation Graphs

In figure 4.4, sub-figure (a) is graph for specification and sub-figure (b) is graph for
implementation model. Let z0, z1 are output bits for the specification model and z

′
0,z

′
1 be

output bits for the implementation model. We can observe that n3 is common to both
models and common to output bits. There will be only one copy of n3 and it is normalized
only once during depth-first traversal.

Sections 4.3.1, 4.3.2 presents normalization methods for “xor” and “and” respectively.

4.3.1 XOR

The input argument to normalization function for an “xor” is a node where both sources
are normalized. The result of function is the union of cubes except that any cube that
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appears in both sources is removed. We will present 4 approaches for normalizing “xor”
gate and each approach improves upon its predecessor.

Let input argument be figure 4.5. The number adjacent to leaves or cubes is the node
number. The node in green color is normalized and the node in red is not normalized.
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Figure 4.5: Input node for “xor” normalisation
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Figure 4.6: Output of “xor” normalisation

Approach 1: Sorting

In this approach, obtain cubes from two sources in a list and concatenate them into a
single list. Now, sort the cubes and remove cubes that are identical by iterating over the
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list with the head and tail of the list. Now, build the resultant normal form with a list of
cubes.

Example

Let cubes in source 0 be list1 = [n2, n4, n5]
Let cubes in source1 list2 = [n1, n3, n4, n5]
Concatenate two list and sort them flist = [n1, n2, n3, n4, n4, n5, n5]
Remove cubes which are equal flist = [n1, n2, n3]
Build normal form with flist which result in figure 4.6

Approach 2: Merging

In above approach, instead of concatenating two list of cubes, since list of cubes are already
sorted, use merge step of merge sort to remove cubes which are identical.

Approach 3: Recursive

In this approach, instead of traversing a tree to get the cubes and then sorting the cubes,
we can recursively traverse the trees and remove identical cubes since cubes are sorted.
While traversing, we can construct the resultant normal form. Following are the different
scenarios that may occur during recursion. Let ‘a’, ‘b’ are two leaves and x, y are two
cubes and it is assumed that ‘a’ is less than ‘b’. Let simpXor be a recursive function.

Table 4.4: Recursive merge sort conditions and output

source0 source1 output
1 a a false
2 a b a XOR b
3 a (b XOR y) a XOR (b XOR y)
4 a (a XOR y) y
5 (a XOR x) a x
6 (a XOR x) b a XOR (simpXor x b)
7 (a XOR x) (b XOR y) a XOR (simpXor x (b XOR y))
8 (a XOR x) (a XOR y) simpXor( x, y )
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Example

Let input be figure 4.5
Following are the recursion steps

• In figure 4.7, the root node of source 0 which is n7 is in form of a2 ⊕ x and the root
node of source 1 which is n9 is in form of a1 ⊕ y. So it will fall under condition 7 of
the table and output is a1 ⊕ ( simpxor(7, 8)) where 7, 8 are root nodes of subtrees
of x, y.

• Now for simpXor(7,8), with reference to figure 4.8, the root node 7 is in form of
a2 ⊕ 6, and 8 is in form of b1 ⊕ 6 where 6 is a subtree of 7,8 nodes. So it will fall
under condition 7 and output is a2 ⊕ simpXor(6, 8).

• Now for simXor(6, 8), with reference to figure 4.9, the root node 6 is in form of
b2 ⊕ 5 and 8 is in form of b1 ⊕ 6. So it will fall under condition 7 and output is
b1 ⊕ simpXor(6, 6).

• Now for simpXor(6, 6) , with reference to figure 4.10, both root nodes are the same
so it will fall under condition 1 and output is false.

• Final result is ((a1 ⊕ a2)⊕ b1) whose normal form is figure 4.6.
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Figure 4.7: Step 1 of “xor” recursion
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Figure 4.8: Step 2 of “xor” recursion
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Figure 4.9: Step 3 of “xor” recursion
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Figure 4.10: Step 4 of “xor” recursion

Approach 4: Pseudo recursive

In approach 3, instead of recursion, one can traverse the trees in iterative manner, output
at each step of recursion can be stored in a list and the resultant normal form can be
formed from the list.

Example

Let input be 4.5
Following are the steps and list at each step

• Output in step 1 of recursion in approach 3 is a1 list = [a1]

• Output in step 2 of recursion in approach 3 is a2 list = [a1, a2]

• Output in step 3 of recursion in approach 3 is b1 list = [a1, a2, b1]

• Now build normal form with the list which is figure 4.6
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Analysis

Among all approaches, approach 4 takes less time than the remaining. In approaches 1
and 2, we need to traverse the sources to get cubes and rebuilt the normal form with the
resultant cubes. Approach 3 builds the resultant normal form while traversing sources
which saves time converting the normal form back and forth. But in approach 3, the
recursion stack may run out of memory because the height of sources may be very high.
Approach 4 mimics the recursion stack using the list and builds the resultant normal form
with the list. Approach 4 saves time while traversing sources in an iterative manner and
computing resultant cubes simultaneously.

4.3.2 AND

The input argument to normalization function for an “and” is a node where both sources
are normalized and gate of root node is of type “and”. Let children of root node be source
0 and source 1. The output is a union of cubes obtained from pairwise multiplying cubes
from source 0 and source 1 in normal form. First, get the cubes from children and multiply
every pair of cubes, and store them in a list. Now, build a normal form after getting “xor”
normalization of the list of cubes by applying approach 1 of “xor” normalization. The
bottleneck while performing the above operation is multiplying two cubes. Multiplying
cubes take two cubes as inputs and output is a cube which is “and” of two input cubes.
To compute this take union of two cubes and sort the signals. Let cube 1 be 4.11 and
cube 2 be 4.12 and the output of multiplying cube 1 and cube 2 is 4.13. It is assumed that
‘a’ is less than ‘b’. We will present three approaches for multiplying two cubes and each
approach improves upon its predecessor.
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Figure 4.13: “and” of cube 1 and cube 2

Approach 1: Merging

Union of two cubes can be computing by doing a merge sort of two cubes to remove
duplicates. The leaves in individual cubes can obtained by traversing the cube in a list and
do merge step of merge sort to remove duplicates and build a normal form with resultant
list of cubes obtained after merge sort. Following is the algorithm

Example

Let leaves of cube1 (figure 4.11) list1 = [n1, n2, n3]
Let leaves of cube2 (figure 4.12) list2 = [n1, n3, n4]
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After applying above algorithm flist = [n1, n2, n3, n4]
Normal form which is built from flist will be figure 4.13

Approach 2: Set

Alternatively in approach 1, one can use set to find union of two list of leaves and build a
normal form after sorting elements in a set.

Example

Let leaves of cube1 (figure 4.11) list1 = [n1, n2, n3]
Let leaves of cube2 (figure 4.12) list2 = [n1, n3, n4]
After applying above algorithm set = {n1, n4, n3, n2}
Normal form which is built from set after sorting will be figure 4.13

Approach 3: Recursive

Merge sort over cubes can be performed by traversing two cube 1, cube 2 recursively.
Following table explain different conditions that may occur during recursion. let a, b are
two leaves and x, y are two cubes and it is assumed that ‘a’ is less than ‘b’. Let mulcubes
be the recursive function which computes “and” of two cubes.

Let us discuss various situations for mulcubes function. We know that a ⊙ a = a,
therefore mulcubes(a, a) = a. For mulcubes(a, b), since leaves are different, result will
be a⊙b.

Table 4.5: Recursive mergesort conditions “and” output

cube 1 cube 2 output
1 a a a
2 a b a AND b
3 a (a AND x) (a AND x)
4 a (b AND x) (a AND (b AND x))
5 (a AND x) a (a AND x)
6 (a AND x) b (a AND mulcubes(b, x))
7 (a AND x) (a AND y) (a AND mulcubes(x, y))
8 (a AND x) (b AND y) (a AND mulcubes(x, (b AND y)))
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For mulcubes(a, a ⊙ x), since a appears in both cubes, only one a will be present in
result and result will be a⊙x. For mulcubes(a, b⊙ x) since a, b are different, both appears
in result and result will be a⊙ b⊙ x. For mulcubes(a⊙ x, b), since a is less than b, a will
be included in result and there will be recursive call mulcubes(x, b). The final result will
be a ⊙ mulcubes(b, x). For mulcubes(a ⊙ x, a ⊙ y), since a is present in both cubes, it
will appear only once in result and since x, y are different, there will be recursive call. The
final result will be a ⊙ mulcubes(x, y). For mulcubes(a ⊙ x, b ⊙ y), since a is less than
b, a appears before b in the result and there will be recursive call. The final result will be
a⊙mulcubes(x, (b⊙ y)).

Example

Consider multiplication of cube 1 (refer figure 4.11) and cube 2 (refer figure 4.12). Following
are the recursion steps

• The root node of cube 1 which is n6 is in form of a1 ⊙ n5 and the root node of cube
2 which is n7 is form of a1 ⊙ n8 and so it will fall under condition 7 and output is
a1 ⊙ mulcubes(n5, n8). We can observe this in 4.14 where two pointers pointing to
root nodes 6,7.

• Now in mulcubes(n5, n8), n5 is in form of n2 ⊙ n3 and n8 is in form of n3 ⊙ n4 and
so it falls under condition 8 and output is n2 ⊙ mulcubes(n3, n8). We can observe
this in 4.15 where pointers are pointing to nodes 5, 8.

• Now in mulcubes(n3, n8), n3 is leaf and n8 is in form of n3 ⊙ n4 and so it falls under
condition 3 and output is n8. we can observe this in 4.16 where pointers pointing to
nodes 3, 8

• Final output will be figure 4.13

48



a1

a2 a3

a1

a3 b1

n1

n2 n3

n6

n5 n1

n3 n4

n7

n8

Figure 4.14: Step 1 of “and” recursion
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Figure 4.15: Step 2 of “and” recursion
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Figure 4.16: Step 3 of “and” recursion

Analysis

Among the above approaches, approach 3 takes less time than the remaining. In approaches
1 and 2, we need to traverse sources to get leaves and rebuilt the normal form with resultant
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leaves. But approach 3 builds resultant normal form while traversing sources recursively
which saves time converting into normal form back and forth. Unlike approach 4 in “xor”
normalization, approach 3 doesn’t suffer from recursion stack memory error since the height
of cubes is small enough for the recursion stack.

4.4 Verification

We can verify equivalence of output bit expression in two ways namely node based and SAT
solver based. Node based approach only depends on node to which expression is normalized.
On other hand, SAT solver based approach uses SAT solver to verify equivalence of two
expressions.

4.4.1 Node based

Since the normal form is unique i.e given an expression there exists only one normal form
representation. Consider two output bits namely z0, z1 point to the same node, then the
sources of the gate are the same. Let sources be n1 and n2 and by definition of normal
form, n1 is cube and n2 may be a cube or sub-tree. So both output bit expressions contain
n1 cube and if n2 is a cube then both the expression contain it else sources of n2 and so
on. Likewise, both expressions contain the same cubes and therefore they are equivalent.
Therefore we can say that two expressions are semantically equal iff they are normalized to
same node. Hence in this approach we just verify whether two expressions are normalized
to same node or not.

The classic multiplier is used as specification and it is normalized by using algorithm
developed. The normalized expression for each output bit is saved in a file and used as
specification to verify implementation. we save time by not performing rewriting step for
specification.

4.4.2 SAT Solver based

One can compute symbolic expression by traversing the normal form of the output node
and feed two expressions into a SAT solver and SAT solver can tell whether they are
equivalent or not.
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4.4.3 Analysis

From experiments, we observed that the node-based approach takes less time than SAT
solver based approach.

4.5 Summary

In this chapter, we have introduced alternative graph data structure and alternative alge-
braic normal form for expressions. These alternative data structure overcome the draw-
backs of the string-based algorithm developed in chapter 3. We have also introduced
alternative normalization methods and verification methods for developed data structures.
Results of the developed algorithm are presented in chapter 5.
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Chapter 5

Results

In this chapter, we present the results of our string-based approach and graph-based ap-
proach in comparison with Yu’s [25] methods. Our graph based approach provide a range
of 4×–256× speedup when compared to Yu’s [25] method. We will present timing anal-
ysis for the verification for each multiplier. We will compare time required for various
verification methods.

5.1 Experiment Setup

We synthesised netlist for classic, Mastrovito, Montgomery and Karatsuba from Synopsys
Design Compiler version P-2019.03 and we have restricted the target ASIC library to use
“and”, “xor”, “or”, “not” gates only.

We have implemented the algorithms stated in chapter 3 and chapter 4 in the scala
programming language and experimented on the netlist of Mastrovito [20] and Montgomery
[10], Karatsuba [23] multipliers of sizes 64, 128, 163, 233, 283, 571. Results are compared
to that of the current state-of-art Yu’s [25] algorithm. We ran our experiments on the
computer whose configuration is Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz which is of
32GB RAM and cache size of 8192KB whereas Yu’s [25] machine is of Intel(R) Xeon CPU
E5-2420 v2 2.20 GHz × 12 with 32 GB memory. It’s difficult to precisely compare the
performance of our computer vs Yu’s computer because ours has higher single-threaded
performance (higher clock speed and newer architecture) and Yu’s has more cores (24
threads for Yu vs 8 threads for us). But, the performance improvements of our algorithm
vs Yu’s range from 4× to 256×, which is much greater than any possible difference in raw
computing power.
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5.2 Comparison to Previous Work

Tables 5.1, 5.2 presents comparison of Mastrovito [20], Montgomery [10] multipliers be-
tween Yu’s [25] work and graph based algorithm introduced in chapter 4. Table 5.3 present
results of graph based algorithm for Karatsuba [23] multiplier. Yu’s [25] didn’t mention
about Karatsuba [23] multiplier, so can’t be compared. From figure 5.1, we can observe
that our algorithm outperforms Yu’s [25] algorithm with 30 threads for both multipliers.
For the Mastrovito [20] multiplier of 283-bit, our algorithm gives 4× speedup for 30 threads
and 14× speedup for one thread when compared to Yu’s [25] algorithm. Yu’s [25] algorithm
can’t verify 571-bit Mastrovito [20] multiplier due to memory issues but our graph-based
algorithm can verify it. For Montgomery multiplier [10] of size 283, our algorithm gives
256× speedup for 30 threads, 556× speedup for one thread when compared to Yu’s [25] al-
gorithm. Yu [25] didn’t mention about 571-bit Montgomery multiplier [10], but our graph
based algorithm is able to verify it.

Table 5.1: Mastrovito Multiplier

MO stands for out-of-memory. T is the number of threads
Mastrovito Yu [25] (s) This work (s)
size T=1 T=5 T=10 T=20 T=30 Runtime (s)
64 19 11 8 7 7 2.87
128 153 91 63 55 57 13.17
163 336 192 137 121 113 26.09
233 499 294 212 180 171 63.14
283 1580 890 606 550 530 112.64
571 13176 7980 5038 MO MO 1488.31

Table 5.2: Montgomery Multiplier

N/A stands for not available. T is the number of threads
Montgomery Yu [25] (s) This work (s)
size T=1 T=5 T=10 T=20 T=30 Runtime
64 80 45 31 28 27 2.25
128 335 209 121 151 110 6.65
163 2505 1616 1172 1095 1008 13.7
233 1240 722 565 457 480 24.87
283 32180 19745 17640 15300 14820 57.87
571 N/A N/A N/A N/A N/A 14022.72
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Table 5.3: Karatsuba Multiplier

Size Runtime (s)
64 1.69
128 3.98
163 5.92
233 5.24
283 9.84
571 44.73
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arch,method = karatsuba,this work
arch,method = mastrovito,this work
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arch,method = montgomery,this work
arch,method = montgomery,yu T=30

Figure 5.1: Yu vs this work

From tables 5.1, 5.2, we can observe that upto 283-bit Mastrovito takes more time than
Montgomery but for 571-bit Montgomery takes 10× more time than Mastrovito. From ta-
ble 5.3, we can observe that Karatsuba multiplier takes lesser time than Mastrovito and
Montgomery multipliers. Tables 5.4, 5.5, 5.7 present time taken by graph-based algorithm
in graph building which includes parsing normalized netlist of classic and implementation
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model, rewriting and verification for Mastrovito, Montgomery, Karatsuba multipliers re-
spectively. For all three multipliers, we can observe that when input size changes from
64 bit to 128 bit, time taken for graph building and rewriting is doubled but when input
changes from 128 to 256 bit, time taken for graph building and rewriting became 10×.
Again when input changes from 256 to 512 bit, time taken for graph building and rewrit-
ing is doubled. We can observe that with change in input size from 64 to 512 bit, time
taken for verification for all three multipliers increases by 50%.

Table 5.4: Timing analysis for verification of Mastrovito multiplier

Size Graph building (s) Rewriting (s) Verification (s)
64 1.26 0.23 0.019
128 4.02 1.1 0.019
256 47 25.51 0.025
512 109.41 154.74 0.028

Table 5.5: Timing analysis for verification of Montgomery multiplier

Size Graph building (s) Rewriting (s) Verification (s)
64 1.02 0.32 0.024
128 3.03 1.68 0.022
256 26.27 21.59 0.028
512 69.09 44.13 0.030

Table 5.6: Timing analysis for verification of Karatsuba multiplier

Size Graph building (s) Rewriting (s) Verification (s)
64 0.98 0.18 0.02
128 2.61 0.65 0.019
256 23.82 6.38 0.024
512 57.21 24.03 0.030
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Figure 5.2: Timing analysis for verification of Mastrovito multiplier
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Figure 5.3: Timing analysis for verification of Montgomery multiplier

56



64 128 256 512
size

0

10

20

30

40

50

60

70

80
tim

e(
s)

Graph building
Rewriting
Verification

Figure 5.4: Timing analysis for verification of Karatsuba multiplier

5.3 String vs Graph

We have presented experiments results from string-based algorithm in chapter 3 and graph-
based approach in chapter 4 in table 5.7 and plotted result in graph in 5.5. From the plot
and tables, we can observe that the graph-based approach outperforms the string-based
approach for all multipliers.

Table 5.7: String vs graph

size Mastrovito (s) Montgomery (s) Karatsuba (s)
string graph string graph string graph

16 0.82 0.62 0.99 0.63 0.79 0.6
32 2.52 1.31 1.29 0.98 1.21 0.91
64 10.31 2.87 3.46 2.25 2.71 1.69
128 12.98 13.17 32.47 6.65 7.59 3.98

57



16 32 64 128
size

1.0

2.0

4.0
5.0

10.0

20.0

30.0
40.0
50.0

tim
e

time vs size
arch,method = karatsuba,graph
arch,method = karatsuba,string
arch,method = mastrovito,graph
arch,method = mastrovito,string
arch,method = montgomery,graph
arch,method = montgomery,string

Figure 5.5: String vs Graph

5.4 Verification

In the string-based approach, the equivalence of output bit expressions can be verified in
two ways namely string-based and SAT solver-based. Time taken by both approaches is
presented in table 5.8. From the table 5.8, we can observe that the string-based approach
is much faster then SAT solver based approach. We can observe that with an increase in
size from 64 to 128, the time taken by the string-based approach is doubled but the time
taken by SAT solver is three times for Mastrovito multiplier and 5 times for Montgomery
multiplier.
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Table 5.8: Verification based on string vs sat solver

size Mastrovito (ms) Montgomery (ms)
string SAT solver string SAT solver

32 6 1060 6 1071
64 7 1147 9 1186
128 12 3878 10 5109

5.5 Analysis

Our graph-based approach outperforms Yu’s [25] parallel algorithm with 30 threads because
the common nodes within the model and between models are visited only once. Graph
based approach outperforms the string-based algorithm although in string-based algorithm
common nodes within the model are visited only once but it can’t identify common sub-
structure between two expressions.

Following key ideas in our algorithm. While traversing the graph, visit each node in the
graph only once. The normal form which is developed in chapter 4 resembles the algebraic
normal form. The normal form is a binary tree that extends only on the right side. Cubes
in normal form are sorted from top to bottom. Two signals are semantically equivalent if
their normal form is the same. Hash tables developed in chapter 4 prevent duplication of
nodes in the graph and help to identify common nodes between two models. Equivalence
verification of two expressions can be done by comparing node number which significantly
takes less time than comparing two strings.

Following are the lessons learnt from our experiments. Recursion depth may exceeds
limit when input is very large. So use custom stack which represents recursion stack in
that case. In a string-based algorithm, we can’t identify a common substructure between
two expressions.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Verification of hardware implementation of finite field multipliers is important as they
are involved in many security systems. Various methods were developed for the formal
verification of finite field multipliers previously. But these methods have a limitation on
the size of multipliers that they can process. The current state of art was developed by
Yu [25] which involves parallel rewriting but common nodes in the model are computed
multiple times.

We have developed two graph-based approaches for the formal verification of finite field
multipliers. In these approaches, a graph is formed by parsing the netlist and symbolic
expression for output bit is obtained by traversing the graph from output to inputs in a
depth-first manner visiting every node only once. New data structures are developed for
expressions which represents algebraic normal form. Various normalization methods are
developed for the data structures. Various verification methods are developed to verify the
symbolic expressions.

We have developed a string-based algorithm in chapter 3 in which expressions are stored
as a list of strings. For Mastrovito multiplier of size 128, this approach achieves a speedup
of 12× when compared to Yu’s [25] algorithm of one thread and 4× in comparison to
Yu’s [25] with thirty threads. For Montgomery multiplier of size 128, this approach achieves
a speedup of 10× when compared to Yu’s [25] algorithm of one thread and 3× in comparison
to Yu’s [25] with thirty threads. This approach outperforms Yu’s [25] method because the
common nodes are computed only once. In this approach, since list of strings are used
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to represent expressions, same sub-expressions may be repeated in many expressions. So
when comparing two expressions, same sub-expression is traversed multiple times which
takes time.

To overcome the drawbacks of a string-based algorithm, we have developed a graph-
based approach which is introduced in chapter 4. In this approach, two hash tables are
developed to prevent duplication of nodes in the graph. Normal form, a new representation
for expression which represents algebraic normal form is developed. In this approach, the
graph is built for both models together and the expression for output bits for both models is
computed together by executing the rewriting step only once. For the Mastrovito multiplier
of 283-bit size, this approach achieves 4× speedup for 30 threads and 14× speedup for one
thread. For Montgomery multiplier of size 283, this approach achieves 256× speedup for
30 threads and 556× speedup for one thread. Yu’s [25] algorithm is not able to verify
Mastrovito and Montgomery multipliers of 571 bit with 30 threads but this approach
is able to verify them. This approach outperforms both the string-based algorithm and
Yu’s [25] algorithm.

6.2 Future Work

The 571-bit Montgomery took longer time to verify than expected. One part of our future
work is to explore impact of multiplier architecture and irreducible polynomial on time
to normalize graph. Graph building algorithms for large circuits can be explored further
in future. Since the developed algorithm runs in a single thread but implicitly running
parallel as all the cores of computer are used, our future work includes extending our
algorithm for explicit multi-threading on a machine with more cores. Currently, we have
applied algorithm to only finite field multipliers, in future we want to extend to other
combinational circuits. For multipliers, each cube in the final expression of output bit
contains maximum of 2 inputs. But other combinational circuits may contain more and
normalization could become expensive. Normalization is a critical step while obtaining an
expression for an output bit. One doesn’t know whether to do normalization at the current
step or not. So, machine learning can be leveraged to make decisions.
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