
q-deformed LQG in three
dimensional space-time

by

Qiaoyin Pan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Applied Mathematics

Waterloo, Ontario, Canada, 2022

© Qiaoyin Pan 2022



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Eugenio Bianchi
Associate Professor, Dept. of Physics
Pennsylvania State University

Supervisors: Mäıté Dupuis
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Abstract

Loop quantum gravity (LQG) is a canonical, background-independent and non-perturbative
approach to quantum gravity. This thesis is devoted to studying three-dimensional (3D)
quantum gravity with a non-vanishing cosmological constant Λ in the LQG approach. In
particular, we focus on the case of Λ negative in the Euclidean signature where the isome-
try group is SL(2,C). We construct the q-deformed LQG model with the real deformation
parameter q encoding the value of |Λ|. In this model, the kinematical and physical Hilbert
spaces of gravity exhibit the quantum group symmetries consistent with other approaches
to 3D quantum gravity. The LQG model with Λ = 0 is recovered at q → 1. This quantum
gravity model is derived from the classical theory using the standard canonical quantiza-
tion program à la Dirac and the mathematical connection between quantum groups and
Lie bialgebras. We establish this model first in terms of the holonomy-flux algebra and
then in terms of spinors, which are purely geometrical objects. We write the quantum
Hamiltonian constraint with spinors and recover the Turaev-Viro amplitudes defined in
the spinfoam model, which is a covariant approach to quantum gravity written in a dis-
crete path integral formalism. We also use spinors to reconstruct the spinfoam model in
a way that the local building blocks to construct global 3D geometry are conformal. This
is done for the Λ = 0 case as a first step. The q-deformed LQG model is topological and
describes the curved geometries in 3D as well as on 2D spatial surfaces. It is expected to
serve as a better starting point to connect LQG with other quantum gravity approaches
and generalize to 4D LQG with a non-vanishing Λ.
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Chapter 0

Introduction

In search of Quantum Gravity

The development of quantum mechanics and quantum field theories conveys a message
that nature is fundamentally quantum. Within the framework of these quantum theories,
electromagnetism, weak interactions and strong interactions can be described consistently.
Moreover, the quantum theories of these three interactions are successful in describing
the standard model of elementary particle physics, which is proven in experiments with
high accuracy. In the spirit of unification, gravity, as the fourth interaction, ought to be
described within the quantum framework hence by a quantum gravity theory.

The search for quantum gravity is not only to fulfill the unification dream but also
necessary to understand some of the most challenging problems in physics. Some concrete
yet far-from-complete arguments that motivate the necessity of searching for quantum
gravity are listed in the following. Interested readers can refer to e.g. [202, 134, 138] for
other motivations and e.g. [181] for a historical review on the search of quantum gravity.

• Incompleteness within general relativity

Gravity is a field theory of spacetime metrics. According to Lovelock’s theorem [146],
in three and four dimensions, the only possible equation of motion from a second-
order Lagrangian of metrics is the Einstein equation. This picks out general relativity
to be the classical theory of gravity at least in three and four dimensions. General
relativity itself is an incomplete theory due to the existence of singularities, where
curvature blows up. Examples include the Big Bang, which is believed to be the
origin of the universe, and the singularity inside black holes. Non-negligible quantum
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fluctuations and gravitational effects are expected to occur in these spacetime regions.
It is believed that a valid quantum gravity theory can explain the physics within the
Planckian regime, where quantum effects are comparable to gravitational effects.

In recent years, the searching for quantum gravity effects is not only on short distances
and the UV regime but also on long distances and the IR regime [94, 32]. For instance,
the programs of celestial holography [176] and the infrared triangle program for low-
energy gravity relating the asymptotic symmetries, gravitational memory effect and
soft theorem developed in recent years [195] could predict low-energy quantum gravity
signatures.

• Failure to apply perturbative quantum field theory on flat spacetime

On the other hand, in quantum field theory, divergencies appear when one does per-
turbation theory. Renormalization methods can address this problem, which absorbs
the infinities by redefining a few measurable quantities. These methods work for
all the operators relevant to the standard model of particle physics. However, when
one attempts to construct a field theory for gravity perturbatively in the same way,
i.e. treating the metric as a perturbation of the Minkowski metric, the correlation
functions turn out to be nonrenormalizable [197, 198, 64]. This means one needs to
determine infinitely many parameters to define quantum gravity perturbatively.

Secondly, general relativity is a geometric theory of spacetime. However, the con-
ventional quantum field theories inevitably rely on a background spacetime which is
taken classically. Following this idea, quantizing gravity means quantizing the back-
ground itself which is difficult to interpret physically, hence a background-dependent
quantization seems to be a blind alley. Thirdly, the symmetry of gravity is diffeomor-
phism invariance. This means observables can be non-local, which are not defined in
local field theories like the quantum field theories. Last but not least, in the frame-
work of quantum field theory, the evolution of a field is governed by the Hamiltonian.
However, the naturally defined Hamiltonian of gravity is zero on-shell, making the
evolution of a gravitational system ill-defined conventionally. These problems suggest
that a more indirect way of quantizing gravity is needed.

• Black hole issues

It was proven in the 70s that a black hole solution to the Einstein-Maxwell equation
in general relativity can be completely characterized by its mass, angular momentum
and charge, and all other information is hidden behind the horizon. This is the
well-known No-hair Theorem [154]. This implies that information would disappear
by being swallowed by a black hole, which violates the inference from the unitarity
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postulate that information carried by wave functions should be conserved quantum
mechanically. It was later discovered that black holes can have “soft hair” containing
an infinite number of conserved charges [131, 130]. However, the information paradox
is still unsolved. This puzzle suggests that a resolution should come from a theory
combining quantum theory and general relativity. In this sense, black holes can serve
as a testing ground to test quantum gravity theory candidates.

The recent experimental results on detecting gravitational waves and imaging black
holes [1, 4, 5] encourage that testing quantum gravity experimentally is not far from being
possible. It brings excitement to the research of quantum gravity in the current era.

Due to the fact that general relativity and quantum theory are in conflict with each
other at the fundamental level, it is necessary to place both theories in the same framework,
with the recovery of either theory in some limits. Different approaches have been proposed
to reach this goal, e.g. string theory [31, 171, 172], Anti-de Sitter/conformal field theory
(AdS/CFT) [211, 65, 156], loop quantum gravity (LQG) [200, 182, 16], spinfoam models
[21, 168, 138], non-commutative geometry [57, 56], causal dynamical triangulations [9, 145],
causal sets [196, 70], asymptotic safty [208, 157] etc. Reviewing all of these approaches
is out of the scope of this thesis. See e.g. [164, 11] for reviews and talks from experts in
different fields.

Loop quantum gravity and spinfoam models

The focus of this thesis is mainly on the LQG approach and we will also discuss a particular
application of the spinfoam model. In fact, these two approaches are highly entangled and
some literature views spinfoam models as part of the LQG framework. LQG and spinfoam
merge the principles of quantum theory and general relativity harmonically, taking the
principles of both theories to be fundamental and building quantum gravity theories on top
of it. By considering gravity as being dynamical, they attempt to quantize the spacetime
geometry and describe spacetime dynamics quantum mechanically. They preserve the main
feature of general relativity — background independence, and they are non-perturbative
approaches. The main difference between these two approaches is that LQG follows the
canonical description of quantum mechanics while spinfoam models follow the path integral
description and hence are covariant formalisms. Canonical means we take a space-time
splitting and first construct the kinematical structure on the spatial surface then analyze
its dynamics along time.

The main merit of LQG is that it provides a mathematically well-defined and rigorous
framework to build up the Hilbert space and states of quantum geometry. It leads to the
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prediction that spacetime geometries are intrinsically distinct at the Planck scale. The
method of LQG has been applied to cosmology (called loop quantum cosmology or LQC),
one inviting result of which is the avoidance of curvature singularity at the origin of the
universe, replaced by a “bounce”. (See [36, 18] for reviews.) However, LQG is still far
from complete. There are many important pieces to be given, for instance, the precise
form of the quantum hamiltonian, a proper (semi-)classical limit recovering the low energy
physics, and practical measurable observables. For reviews, see e.g. [201, 17]. Many of the
unsolved questions are due to the complexity of 4D spacetime. It is then natural to work
on a simpler system that captures the important features of 4D gravity while reducing the
computational difficulties. The hope is that studying such a simple gravitational system
could help us understand the conceptual problems and teach us new techniques to analyze
the real physical system. 3D gravity with 2 dimensions in space and 1 dimension in time
is such a candidate.

3D gravity and 3D LQG

As a topological theory, 3D gravity is simple enough to allow us to do exact computations.
The main drawback is that the dynamics of 3D gravity is authentically different from that of
4D gravity since there are no local degrees of freedom, or gravitational waves, in 3D gravity.
On the other hand, it still carries many of the fundamental issues of quantum gravity
e.g. the problem of time, the construction of quantum states and observables, inclusion
of a cosmological constant and relations between different quantization approaches. 3D
gravity has been proving instructive insights for the development of LQG and the spinfoam
models.

The vast interest to study 3D gravity was first brought by the seminal work [63, 62]
of Deser, Jackiw and ’t Hooft, where they studied particles coupling with gravity and
particle interactions in the gravitational field with and without a cosmological constant.
It was later discovered by Achúcarro and Townsend [2] then elaborated by Witten [209]
that 3D gravity can be written as a Chern-Simons action. Quantizing 3D gravity can then
refer to the quantization techniques of Chern-Simons theory developed in mathematics and
condensed matter.

On the other hand, 3D gravity in the absence of a cosmological constant Λ, up to
the second-order derivative of metric and boundary terms, can also be formulated as a
BF action [133, 35, 34], which also describes a topological invariant theory. The BF
formulation of 3D gravity is the starting point of 3D LQG and spinfoam models. The
isometry group of 3D gravity with Λ = 0 in Lorentzian signature is ISO(2, 1). However, the
non-compactness of ISO(2, 1) makes it complicated to construct a quantum representation
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theory. It is then common to work in the Euclidean signature instead, which is to treat the
spacial and temporal dimensions equally. This turns the isometry group to ISO(3) which
is isomorphic to SO(3)⋉R3. Furthermore, in building the quantum theory, one makes use
of the irreducible representations of the compact subgroup SO(3), which are integer spin
representations j = 0, 1, 2, · · · . In order for fermions to couple with the framework, one
also considers the double cover SU(2) of SO(3) so that the irreducible representation runs
over all half integers. This is a common treatment in physics and is also what we will apply
in this thesis. Therefore, for the case of Λ = 0 in the Euclidean signature, we deal with
the Poincaré group ISU(2).

In the LQG framework, a Hilbert space of a graph i.e. collections of 0D nodes, 1D
links and 2D faces embedded on a 2D spacial surface is constructed at the kinematical
level. This Hilbert space is spanned by the so-called spin network states which are labelled
by spins associated to all the links of the graph. In the past two decades, many works
e.g. [104, 105, 97, 162, 161, 152, 189] have been done to understand the kinematical and
dynamical aspects of 3D LQG with Λ = 0, its geometrical interpretation and its relation
to spinfoam models.

Inclusion of a non-vanishing cosmological constant

However, the appearance of the cosmological constant Λ which is taken as a coupling
constant in both LQG and spinfoam models, adds a volume term in the BF action. It
complexifies the structure and brings obstacles to quantization. Nevertheless, it is essential
to include a Λ ̸= 0 in a quantum gravity model in order to give an instructive guide for
applying it to the cosmological model. This is because observations have established that
our universe is acceleratedly expanding. This result is under the framework of the ΛCDM
model with a positive Λ. Moreover, since 3D LQG provides a clear mathematical framework
for constructing dynamics of quantum gravity and it can be extended to 4D, it is important
to understand how a non-zero Λ is incorporated in the 3D LQG framework.

Before we dig into the LQG construction, one can take lessons from other approaches of
3D quantum gravity with Λ ̸= 0 and gain insights from them. The most successful way to
quantize 3D gravity is based on the Chern-Simons formalism, which is so powerful that it
provides a uniform formulation for Euclidean and Lorentzian signatures and different signs
of cosmological constants. The quantization has been performed through the path integral
method [210, 177] or the combinatorial quantization method [7, 8]. Both results have
revealed that quantum group [149, 58] structures show up when Λ ̸= 0 as the deformation
of group symmetries in the Λ = 0 theory and Λ is encoded in the deformation parameter.
This is consistent with the results from the first-ever spinfoam model for 3D Euclidean
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gravity with a Λ ̸= 0 — the Turaev-Viro model [204], which is a deformed version of the
Ponzano-Regge model [174] for Λ = 0. These results provide some guidances for the LQG
model we are looking for.

Inspired by this prospect, it was proposed in [158, 159] to define non-commutative
quantum operators in constructing the quantum dynamics within the LQG framework,
which does lead to desired quantum group feature. However, it appears as regularization
and it is not clear from what principles one should introduce such a deformation. A
few years later, a revisit of the kinematical (discrete) phase space in the work of [40]
conveyed the idea that one can study the “classical limit” of some quantum groups — Lie
bialgebra and reformulate the classical theory in this new mathematical framework. This
successfully reproduces the quantum group symmetry in the Turaev-Viro model upon a
natural quantization process [39]. It was recently realized [72] that one can even start from
the action principle and go through the steps in the LQG scheme to obtain the known
quantum group structures. The theme of this thesis is to further develop this approach
and understand both the classical and quantum structures of this framework. We call this
framework the q-deformed LQG, where q is a deformation parameter encoding the value
of the cosmological constant.

Spin and spinor representations of LQG

Returning to the case of Λ = 0, the quantum theory of the original LQG relies on the SU(2)
irreducible representations — spins. These spins give the eigenvalues of link operators. In
the geometrical picture, the building blocks of global geometry are the Planck-scale links.
This can be extended to the Λ ̸= 0 case which is the perspective taken in the work of
[40, 39]. In this formalism, the basic variables are holonomies on links and their conjugated
momentum — fluxes.

Alternatively, one can describe the same quantum geometries for Λ = 0 in terms of a
pair of harmonic oscillators which defines (quantum) spinors [118, 142, 143]. The spinors
here are purely geometrical objects and should not be confused with the spinors used in
describing particles. To emphasize this point, we refer to this reformulation of LQG as
the spinorial, or spinor, representation. Contrary to spins, the use of spinors allows us to
shift the view to building up global geometry with Plank-scale 3D blocks. This viewpoint
has been established in the U(n) formalism of LQG [98, 99, 50]. These spinors are also
useful tools to define the so-called SU(2) coherent states, which have shown advantages
in constructing the spinfoam model and studying the semi-classical limit [82, 96, 141].
In addition, the fact that spinors are associated to nodes instead of links brings benefits
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in constructing local observables which form a closed algebra [98, 144, 120]. These local
observables have been used to formulate the dynamics of LQG [44].

Keeping these upsides of spinor representation in mind, we would like to extend them
to the Λ ̸= 0 case that is compatible with the framework of [40, 39]. This has been
initiated in the work of [79], which focused on the classical aspect. The quantum spinors
and observables constructed with them have nevertheless been considered in some previous
works [80, 81]. The derivation of them from the classical spinors is one of the key results
of this thesis. Studying these spinors could potentially provide a route to relate LQG with
other approaches when Λ ̸= 0 and deepen our understanding of the quantum nature of
geometries.

Plan of this thesis

This thesis is organized into seven chapters as follows.

Chapter 1-3 describe the classical aspects. In Chapter 1, we briefly review general
relativity with a cosmological constant included. We focus on the first-order formalism —
BF action of 3D gravity and perform the canonical analysis on this action. We also concisely
review the Chern-Simons formalism of 3D gravity as a prelude to some analysis in later
chapters. Chapter 2 describes the classical structure of the q-deformed LQG framework.
We start by reviewing the derivation from the first-order action, then focus on illustrating
the discrete phase space structure of the classical model in terms of the deformed fluxes and
holonomies. We also build an exact link to the classical phase space in the combinatorial
quantization approach in an explicit setup. This is based on [77]. In Chapter 3, we
revisit the classical phase space of the q-deformed LQG in the spinor representation. We
introduce the deformed spinors and use them to construct (kinematical) local observables.
This chapter is mainly based on [41].

Chapter 4-6 describe the quantum theory of the q-deformed LQG. In Chapter 4, we first
summarize the definitions and necessary mathematical properties of the quantum groups
relevant to this model. We then apply the natural quantization on the classical deformed
fluxes and holonomies described in Chapter 2 and construct the kinematical Hilbert space.
In parallel with this, Chapter 5 is on the quantization of the classical structure in Chapter 3.
Apart from constructing the quantum deformed spinors and building quantum observables
out of them, we extract the geometrical interpretation of the R-matrix, which is an inbuilt
mathematical structure for some quantum group, within the spinorial representation of the
q-deformed LQG. This is a new discovery at least to the LQG community. Chapter 4 and
5 are mainly based on [41]. Chapter 6 focuses on the dynamics of the q-deformed LQG. We
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specify the quantum Hamiltonian constraint in terms of the spinor representation. We then
solve the constraint for the physical states in the physical Hilbert space. We examine these
states by showing their invariance under the Pachner moves, which is a discrete version of
diffeomorphism. This chapter is based on [42].

Finally, Chapter 7 is about an application of quantum spinors in the spinfoam model.
The goal is to construct the spinfoam model purely with spinors. In this chapter, we con-
sider the Λ = 0 case which has not been established in the literature yet. As the spinfoam
model was not described in detail before this chapter, we start with a short review of the
Ponzano-Regge model which is formulated as a state-sum in terms of spin representations of
SU(2). It is followed by the introduction of the coherent states defined with (non-deformed)
spinors. We end up with a state-integral reformulation of the Ponzano-Regge model where
spins are all eliminated and only spinors are involved. We prove the topological invariance
of this formalism and study its geometrical interpretation. This chapter is based on [137].

This thesis is supplied with two appendix chapters. Appendix A contains the concise
summaries of the mathematical frameworks for the classical phase space and the quantum
Hilbert space of the q-deformed LQG model. Appendix B collects some lengthy calculation
details and a toy model example of the q-deformed LQG phase space.
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Chapter 1

3D gravity with a cosmological
constant

General relativity is a highly nonlinear theory, which brings obstacles to quantization
compared to other systems e.g. electrodynamics. Therefore, it is natural to consider a
computation-wise simpler system that allows us to tackle conceptual questions relevant to
quantum gravity such as the problem of time, unitarity, causality, topology change and
to study the relation between different quantization approaches. Three-dimensional (3D)
gravity, as a topological field theory, is such a system.

3D gravity can be written, at the first (derivative) order of the metric, as a BF theory
[133, 34, 35]. BF theory is a class of topological field theory that has been extensively
studied, especially for gravity, since it provides an arena for different quantization ap-
proaches of gravity such as LQG (see e.g. books [200, 182] and a recent review [15]),
spinfoam models (see e.g. [21, 168, 138] for review) and the group field theory approach
(see e.g. [165, 87, 166]).

In this section, we review classical gravity theory with a non-vanishing cosmological
constant. We start from the Einstein-Hilbert action in Section 1.1, then define its first-
order formulation in the 3D case in Section 1.2. In Section 1.3, we apply the Hamiltonian
analysis to the first-order system and extract the constraint algebra in the standard man-
ner (compared to the treatment in Chapter 2). We close this chapter, with Section 1.4,
rewriting 3D gravity into the Chern-Simons formulation, which builds the classical con-
nection between the LQG formalism and the combinatorial quantization [85, 7, 8] of 3D
quantum gravity.
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1.1 General relativity with a cosmological constant

We start from the Einstein-Hilbert action for aD-dimensional manifoldM (without matter
or boundaries). For unification purposes, we write the action for both Lorentzian (s = −)
and Euclidean (s = +) signatures.

SEH[gµν ] =
1

16πG

∫
M

dDx
√
sg(R− 2Λ) , (1.1)

where G is the gravitational constant (for D-dimensional gravitational system), R is the
Ricci scalar and Λ is the cosmological constant.

Consider a boundary ∂M of the manifoldM. Denote the induced metric on ∂M by
hµν and its determinant by h. A boundary term

S∂M =

∫
∂M

dD−1x
√
shL∂M

should be added to the action (1.1), whose form reveals the choice of boundary condi-
tion. A common choice is to keep the variation of the metric vanishing on the boundary,
i.e. δgµν |∂M = 0, which corresponds to the Gibbons-Hawking-York (GHY) boundary ac-
tion [115, 212]:

S∂M[hµν ] =
1

8πG

∫
∂M

dD−1x
√
shK , (1.2)

where K is the extrinsic curvature. On the other hand, when considering the physical
theory i.e. D = 4, s = −1 with some matter field Ψ , the action for the matter field
Sm[Ψ ] =

∫
d4x
√
−gLm[Ψ ] should also be taken into account.

In the general relativity framework, one sets the torsion tensor to be zero and thus
describes the geometry of the space-time manifold through probing the Riemann tensor,
also called the curvature tensor, Rµνργ, which is fully characterized by the metric and its
derivatives. The equations of motion given by the variation of the metric, δgµν , of the
action (1.1), is the Einstein equation

Rµν −
1

2
(R− 2Λ)gµν = 8πGTµν , (1.3)

where Rµν is the Ricci tensor and Tµν is the energy-momentum tensor determined by the
matter field.

In this thesis, we mainly focus on the case of a manifold with no boundaries and pure
gravity, i.e. Tµν = 0 identically.
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Solving the Einstein equation Rµν − 1
2
(R − 2Λ)gµν = 0, one gets the vacuum metrics.

The maximally symmetric solutions are called the de Sitter (dS) spacetime if Λ > 0 and
the Anti-de Sitter (AdS) spacetime if Λ < 0 respectively. Define a so-called dS/AdS length

scale l by Λ = σ (D−1)(D−2)
2l2

where σ = sign(Λ) denotes the sign of Λ. The dS/AdS metric
can be jointly written as

ds2 = s

(
1− σr

2

l2

)
dt2 +

1(
1− σ r2

l2

)dr2 + r2dΩ2
D−1 , (1.4)

where ΩD−1 is the angular coordinate of the (D − 1)-dimensional sphere. For instance,
dΩ2

2 = dθ2 + sin2 θdϕ2 (with θ = [0, π], ϕ = [0, 2π)) covers the 2-sphere for the 3D gravity
case. Indeed, l2 → +∞ is equivalent to Λ → 0. AdS spacetime has been enormously
studied since the inspiring work [51] by Brown and Henneaux, where they discovered that
the asymptotic symmetry of the AdS3 spacetime is captured by two commuting copies of
Virasoro algebras, which is the symmetry algebra of 2D conformal field theory (CFT). This
work turned out to be the precursor of the field holographic duality.

Taking the trace of the (1.3) (and considering Tµν = 0), the Ricci scalar is determined
by the cosmological constant as R = 2DΛ

D−2 hence the Ricci tensor is proportional to the

metric: Rµν =
2Λ
D−2gµν . The curvature tensor can be separated into a traceless part Wµνργ

called the Weyl tensor and a part described by the Ricci tensor and Ricci scalar:

Rµνργ

= Wµνργ+
1

D − 2
(gµρRνγ+gνγRµρ−gµγRνρ−gνρRµγ)−

1

(D − 1)(D − 2)
(gµγgνρ−gµρgνγ)R .

(1.5)

The Riemann tensor is antisymmetric on the exchange of the first two components as well
as on the exchange of the last two components and it satisfies the Bianchi identity, which

restricts Rµνργ to have D2(D2−1)
12

independent components. On the other hand, the Ricci

tensor Rµν is symmetric on the exchange of the two components thus it has D(D+1)
2

indepen-
dent components. Therefore, it is apparent that when the manifold is three-dimensional,
the Riemann tensor (1.5) can be completely determined by the Ricci tensor hence the Weyl
tensor vanishes.

On the other hand, one can count the physical (local) degrees of freedom of gravity by
taking the space-time decomposition M = Σ × R of the manifold and considering it as
an initial value problem. The Arnowitt-Deser-Misner (ADM) formalism [12, 155] is such
a formalism. It describes the canonical structure of the gravitational phase space and the
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evolution of the spatial geometries given by its Hamiltonian. Indeed, in D-dimensions, the
gravitational phase space is described by the spatial metric hµν , which contains D(D−1)

2

components, and its conjugate momentum, which contains another D(D−1)
2

components.
Among them, there are D constraints on the initial conditions and another D unphysical
degrees of freedom for the choice of coordinates. Therefore, there are D(D − 3) physical
degrees of freedom left. [55]. In the case of 3D gravity, there are no local, but only
global degrees of freedom depending on the topology ofM. In this sense, 3D gravity is a
topological theory.

Despite its simplicity in terms of physical degrees of freedom, the Einstein-Hilbert action
(1.1) is nonlinear since the curvature tensor contains a second derivative of the metric. The
nonlinear nature of the Einstein-Hilbert action brings difficulties in quantizing gravity. We
will adopt another formulation — the BF formulation, which is the first-order formalism
of 3D gravity.

1.2 First-order formalism — the BF theory

In this section, we review and study the first-order formalism of 3D gravity with a cosmo-
logical constant Λ, which is the starting point of the LQG program. We first briefly define
the BF theory in D dimensions, then rewrite the Einstein-Hilbert action (1.1) in a form
of the 3D BF action by “relaxing” some constraints. A side note is that the GHY action
(1.2) can also be written in the first-order formalism which turns out to be the same one
as in the Chern-Simons formalism we derive later. Finally, we analyze the symmetries and
constraints in the BF formalism of 3D gravity.

The BF theory, first discovered by Horowitz [133] and named by Blau and Thompson
[35, 34], is a topological field theory defined on the principal G-bundle1 on a D-dimensional
manifoldM. Here, B is a (D − 2)-form in value of the Lie algebra g of the group G and
F is a curvature two-form of some connection one-form ω in g, i.e. F = dω+ [ω ∧ω]. The
BF action is

S[B,ω] =

∫
M

Tr(B ∧ F [ω]) , (1.6)

where the trace is taken as the invariant non-degenerate bilinear form over g. Since (1.6)
is written in a form independent of the metric on M, it is a natural topological theory.

1We remind the readers of the notation difference between G - the gravitational constant - and G - the
group - used in this thesis.
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Due to its simplicity, the BF theory is also a good testing ground to explore and compare
different quantization schemes.

For purpose of compactness, we denote su(+) := su(2) while su(−) := su(1, 1) ∼=
sl(2,R)2. Denote the basis of su(s) by τa (a = 1, 2, 3) with commutation relations [τa, τ b] =
ϵabcτ

c where we fix ϵ123 = s and ϵ123 = 1 3. General relativity in 2+1 dimensions can
be written as a BF action with B given by the triad field e = eaτa = eaµτadx

µ — a one-
form in su(s) — and the connection one-form given by the spin connection ω̃ = ω̃aτa =
1
2
ϵabcω̃µcbτadx

µ4 as we now describe.

The triad or frame field satisfies

gµν = ηsabe
a
µe
b
ν , ηabs = gµνeaµe

b
ν , (1.7)

where the internal metric ηs = ηs = diag(+,+, s). We use the latin letters a, b, c, etc to
denote the local frame coordinate, or the internal indices, and the Greek letters µ, ν, ρ, etc
to denote the spacetime indices. Just like that the Levi-Civita connection Γρµν is used to
describe the covariant derivative of a vector with spacetime index, the spin connection is
used to describe the gauge-covariant derivative of a vector with internal index. For a given
vector vaν , its total covariant derivative is

Dµv
a
ν = ∂µv

a
ν − Γρµνv

a
ρ + ω̃aµbv

b
ν = ∇µv

a
ν + ω̃aµbv

b
ν . (1.8)

In the first-order formalism, ea and ωa are treated as independent variables. The curvature
two-form F̃ a = 1

2
ϵabcF̃µνcbdx

µ ∧ dxν is given in terms of the spin connection by

F̃ab = dω̃ab + ω̃ c
a ∧ ω̃cb , or F̃a = dω̃a −

s

2
[ω̃ ∧ ω̃]a , (1.9)

where the commutator acts on the su(s) generators, that is, [ω̃ ∧ ω̃] = ω̃b ∧ ω̃c[τb , τc]. To
have a curvature 2-form independent of the signature, we will instead work on the rescaled
connection ω and the curvature F defined by

F = −sF̃ , ω = −sω̃ =⇒ Fa = dωa +
1

2
[ω ∧ ω]a . (1.10)

2∼= denotes “isomorphic to”. Note the difference from ≃ used in other context in this thesis.
3The generators of su(2) and sl(2,R) can both represented in terms of the Pauli matrices σx =(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. For the Euclidean signature, τ1 = σx

2i , τ
2 =

σy

2i , τ
3 = σz

2i ,

while for the Lorentzian signature, τ1 = σz

2 , τ2 = σx

2 , τ3 =
σy

2i . The commutation relations defining
the su(2) and sl2,R) Lie algebra are explicitly [τ1, τ2] = τ3 = sτ3 = s[τ1, τ2] , [τ

2, τ3] = τ1 = τ1 =
[τ2, τ3] , [τ

3, τ1] = τ2 = τ2 = [τ3, τ1]. We therefore have ϵabcϵafg = s(δbfδ
c
g − δbgδ

c
f ).

4Conversely, ω̃bc = sϵabcω̃
a.
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Its relation to the Riemann curvature tensor is obtained by first solving the spin connection
in terms of the triads by demanding Dµe

a
ν = 0, that is

∇µe
a
ν = sωaµbe

b
ν hence ωaµ = −s

2
ϵa cb e

ν
c∇µe

b
ν . (1.11)

By examining the commutator R σ
µνρ vσ = [Dµ,Dν ](e

a
σva), one gets R σ

µνρ = −seaρeσbFµνab.
We assume that the triad field is non-degenerate5, then one can rewrite the Ricci scalar as

R = Rµνg
µν = −seµaeνbF ab

µν = −eµaeνb ϵabcFµνc . (1.12)

Furthermore, the volume form
√
sgd3x = det(eaµ)d

3x = 1
3!
Tr(e ∧ [e ∧ e])6 with the trace

acting on the su(s) generators. Putting these ingredients together, one can prove the
equivalence of the Einstein-Hilbert action and the BF action

1

16πG

∫
M

d3x
√
sg(R− 2Λ) = − s

8πG

∫
M

ea ∧ Fa + s
Λ

6
ϵabce

a ∧ eb ∧ ec

= − s

8πG

∫
M

Tr

(
(e ∧ (F + s

Λ

3
E)

)
,

(1.13)

where we denote E = 1
2
[e∧e] = 1

2
ϵabce

b∧ecτa to be the area flux two-form. Clearly, when
the cosmological constant is vanishing, (1.13) takes the form of the BF action (1.6).

Let us take s
8πG

= 1 for simplicity in the rest of the thesis unless specified, then the
first-order action of 3D gravity with a cosmological constant, denoted as SΛBF, is

SΛBF[e, ω] = −
∫
M

Tr

(
(e ∧ (F [ω] + s

Λ

3
E[e])

)
. (1.14)

The field variation of the action then gives7

δSΛBF[e, ω] = −
∫
M

Tr (δe ∧ (F + sΛE) + δω ∧ dωe)−
∫
∂M

Tr (e ∧ δω) , (1.15)

where dω· ≡ d · +[ω, ·] is the gauge covariant derivative. Therefore, the variations of the
e field and the ω field give respectively the equations of motion in terms of the curvature
and the torsion

δSΛBF

δe
=⇒ C = F + sΛE ≃ 0 ,

δSΛBF

δω
=⇒ T = dωe ≃ 0 ,

(1.16)

6Tr is the normalized trace thus Tr(τaτb) = δab.
6We require e to be non-degenerate because in the derivation to get the second equation of (1.12), one

uses the inverse of det(eaµ). It cancels out the determinant in the volume form written in terms of the
triads thus the integrand of (1.13) includes simply a trace term. See also [95].

7We have used the fact that 1
3δTr(e∧E) = 1

6ϵabcδTr(e
a∧eb∧ec) = 1

2ϵabcTr(δe
a∧eb∧ec) = Tr(δe∧E)

due to the antisymmetry of the wedge operations.
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where ≃ denotes the on-shell condition. Solving the torsion-free equation of motion T = 0,
one gets the spin connection ω in terms of e, i.e. (1.11).

Notice that when the manifoldM has a boundary ∂M, the boundary term
∫
∂MTr (e ∧ δω)

does not vanish. In fact, when taking the boundary condition to be a fixed metric hence
δe|∂M = 0, such a boundary term is given by the symplectic potential Θ = δ

∫
∂MTr(e∧ω).

This is nothing but the variation of the first-order formalism of the GHY boundary term
at D = 3, which we now show.

Let us impose the torsion-free condition of the connection (1.11). We choose a gauge
for the triad e3µ = nµ on the boundary ∂M, where n⃗ is the vector normal to ∂M, which
links the metric gµν and the induced metric hµν on the boundary by

gµν = hµν + nµnν . (1.17)

The torsion-free connection on the boundary can thus be written as ωaµ = −sϵab0nν∇µe
b
ν −

sϵa0ceνc∇µnν = 2sϵabeνb∇µnν . Therefore, the boundary term
∫
∂MTr(e∧ω) reads explicitly∫

∂M
d2x ϵµνρeaµωνan̂ρ = 2s

∫
∂M

d2x ϵµνρϵabeµae
λ
b n̂ρ∇νnλ

= 2

∫
∂M

det(eaµ)∇µn
µ = 2

∫
∂M

d2x
√
shK ,

(1.18)

which recovers the GHY boundary term (1.2). ⃗̂n is a dimensionless normal direction

vector to ∂M that is proportional to n⃗, say n⃗ = N⃗̂n 8. On the other hand, the variation
of the symplecitc potential gives the boundary term of (1.15) upon the Dirichlet boundary
condition δeaµ|∂M = 0, which is consistent with the boundary condition δgµν |∂M = 0 of
the action Einstein-Hilbert action (1.1) when considering the GHY boundary term (1.2)
[115, 212].

There are two types of gauge symmetries of the action (1.13), namely the local Lorentz
transformation δLα, infinitesimally parametrized by a scalar field α = αaτa, and the local
translation transformation δtϕ, infinitesimally parametrized by a scalar field ϕ = ϕaτa,

δLαe = [e, α] , δLαω = dωα , δtϕe = dωϕ , δtϕω = sΛ[e, ϕ] . (1.19)

One can also consider the finite Lorentz transformation performed by an SU(s) element g
which is the exponential of a Lie algebra su(s), and the finite translation performed by a

8It is important to note the difference between nµ and n̂µ. As the metric carries square of length
dimensions, nµ is with dimension of length according to (1.17) while n̂µ is dimensionless, the dimension of
the boundary action (1.18) is correct.
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scalar field Φ. Then the finite Lorentz transformation and translation laws read∣∣∣∣∣ e 7→ geg−1

ω 7→ gωg−1 + g dg−1
,

∣∣∣∣∣ e 7→ e+ dωΦ

ω 7→ ω + sΛ[e, Φ]
. (1.20)

The equations of motion are indeed invariant under these gauge transformations:

δαT = [T , α] ≃ 0 , δαC = [C, α] ≃ 0 , δϕT = [C, ϕ] ≃ 0 , δϕC = sΛ[T , ϕ] ≃ 0 . (1.21)

As an example, the first transformation is calculated as

δαT = δα(de+ [ω ∧ e]) = d[e, α] + [dωα, e] + [ω ∧ [e, α]]

= d[e, α] + d[α, e]− [α, de] + [[ω, α] ∧ e]− [α, [ω ∧ e]] + [e ∧ [α, ω]] = [dωe, α] ,

(1.22)

where the Jacobi identity [ω ∧ [e, α]] + [α, [ω ∧ e]]− [e ∧ [α, ω]] = 0 was used9. The rest of
gauge transformations in (1.22) follow with similar calculations.

In fact, there is another symmetry — diffeomorphism invariance — in the action (1.13).
The diffeomorphism transformation δdξ is described by the Lie derivative Lξ along a vector
field ξ = ξµdx

µ. It, however, can be written on-shell in terms of the field-dependent
translation and field-dependent gauge transformation. For the triad and the connection10,

δdξ e = Lξe = d(ιξe) + ιξde = dω(ιξe)− [ω, ιξe] + ιξ(dωe)− ιξ[ω ∧ e]

= dω(ιξe) + [e, ιξω] + ιξ(dωe)

= δtιξee+ δLιξωe+ ιξT ,
(1.23a)

δdξω = Lξω = d(ιξω) + ιξdω = dω(ιξω)− [ω, ιξω] + ιξF +
1

2
ιξ[ω ∧ ω]

= dω(ιξω) + sΛ[e, ιξe] + ιξ(F + sΛE)

= δLιξωω + δtιξeω + ιξC .

(1.23b)

9In general, for A,B,C which are m,n, p-forms respectively, the Jacobi identity is

[A ∧ [B ∧ C]] + (−1)m(n+p)[B ∧ [C ∧A]] + (−1)p(m+n)[C ∧ [A ∧B]] = 0 .

Also note that [A ∧B] = −(−1)mn[B ∧A] and d[A ∧B] = [dA ∧B] + (−1)m[A ∧ dB].
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As LQG is a canonical quantization approach, the next step of the program is to apply
the Hamiltonian analysis based on a space-time splitting, that is to formulate the time
evolution of the spatial geometries.

1.3 Hamiltonian analysis

We now perform the Hamiltonian analysis of the action (1.13) using the covariant phase
space formalism. Consider the space-time foliation M = Σ × [ti, tf ]

11 where Σ is a two-
dimensional space surface with boundary S = ∂Σ and is future oriented, as shown in
fig.1.1. The symplectic form is defined as ΩΣ =

∫
Σ
δΘ, that is

ΩΣ = −
∫
Σ

Tr (δω ⋏ δe) . (1.24)

SiΣi

SfΣf

M

Figure 1.1: The space-time decomposition of a 3D manifoldM into Σ× [ti, tf ]. The initial
(resp. final) spatial surface at ti (resp. tf ) is Σi (resp. Σf ) (in grey) with the boundary Si
(resp. Sf ) (thick loops).

10We have used the Cartan formula in (1.23)

LXθ = d(ιXθ) + ιXdθ .

where X is a vector field and θ is a p-form.
11When considering inifite time,M = Σ × R.
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Here, ⋏ is the extension of the wedge product to variational forms hence Tr (δω ⋏ δe) =
Tr (δe⋏ δω)12. The gauge transformation of the symplectic form generates the boundary
symmetry charges. In particular, when the coefficients α and ϕ are field independent,

ιδLαΩΣ = −
∫
Σ

Tr
(
δLαω ∧ δe− δω ∧ δLαe

)
= −

∫
Σ

(
dωαa ∧ δea − ϵabcδωa ∧ ebαc

)
= −

∫
Σ

(
dαa ∧ δea + ϵabcωaα

b ∧ δec − ϵabcδωa ∧ ebαc
)

= −δd
∫
Σ

αae
a + δ

∫
Σ

(
αade

a + ϵabcω
a ∧ ebαc

)
= −δ

(
−
∫
Σ

αadωe
a +

∫
S

αae
a

)
= −δJα .

(1.25)

and

ιδtϕΩΣ = −
∫
Σ

Tr
(
δtϕω ∧ δe− δω ∧ δtϕe

)
= −

∫
Σ

(
sΛϵabce

aϕb ∧ δec − δωa ∧ dωϕ
a
)

=

∫
Σ

(
sΛϵabce

a ∧ δebϕc + δωa ∧ dϕa + ϵabcδa ∧ ωbϕc
)

= −δd
∫
Σ

ϕaωa + δ

∫
Σ

ϕa(dωa +
1

2
ϵabcωb ∧ ωc +

s

2
Λϵabce

b ∧ ec)

= −δ
(
−
∫
Σ

ϕa (Fa + sΛEa) +

∫
S

ϕaωa

)
= −δPϕ .

(1.26)

Therefore, the boundary charges are given by

Jα = −
∫
Σ

αadωe
a +

∫
S

αae
a ≃

∫
S

αae
a , (1.27)

Pϕ = −
∫
Σ

ϕa (Fa + sΛEa) +

∫
S

ϕaωa ≃
∫
S

ϕaωa . (1.28)

12For n-form α and m-form β, we have

α⋏ β = α ∧ β , α⋏ δβ = α ∧ δβ , δα⋏ δβ = −(−1)mnδβ ⋏ δα .
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The Hamiltonian Hξ of gravity is defined, in the covariant phase space formalism, as
the diffeomorphism charge, generated by the diffeomorphism transformation δdξ . Then one
can straightforwardly compute that

ιδdξΩΣ = −
∫
Σ

Tr
(
δdξω ∧ δe− δω ∧ δdξ e

)
= −δJιξω − δPιξe −

∫
Σ

((ιξC)aδea + (ιξT )aδωa)

≃
∫
S

Tr (ιξω δe+ ιξe δωa)

= −δ
∫
S

Tr (ιξω e) + ιξ

∫
Σ

Tr(δω ∧ e) = −δQξ + ιξΘ ≡ −δHξ ,

(1.29)

where Qξ is the diffeomorphism Noether charge [128].

The symplectic form (1.24) generates the Poisson brackets (i, j ∈ {1, 2} denotes the
spacetime indices tangent to Σ and x, y are points on Σ.)

{ωia(x), ebj(y)} = ϵ ji η
a
bδ

2(x− y) , {ωia(x), ω
j
b(y)} = {e

a
i (x), e

b
j(y)} = 0 . (1.30)

One can thus compute the boundary symmetry algebra

{Jα, Jβ} = J[α,β] , {Pϕ, Pψ} = sΛJ[ϕ,ψ] , {Jα, Pϕ} = P[α,ϕ] +

∫
S

ϕadαa . (1.31)

One the other hand, (1.27) and (1.28) mean that the generators Jα and Pϕ generate canon-
ical transformation

δLα · = {Jα, ·} , δtϕ· = {Pϕ, ·} , (1.32)

which can also be used to compute (1.31).

As an explicit example, we consider the manifold as a solid cylinder and parametrize
the coordinate as (t, r, θ) where t ∈ [ti, tf ] , r ∈ [0, R] and θ ∈ [0, 2π]. The boundary S is
then located at t = t0, r = R. The symmetry current are given by (j(θ), p(θ)) = (ωθ, eθ).
(1.31) can be written as the Poisson brackets of the currents13:

{ja(θ), jb(θ′)} = ϵabcδ(θ − θ′)jc(θ) , (1.33a)

{ja(θ), pb(θ′)} = ϵa cb δ(θ − θ′)pc(θ)− δab∂θδ(θ − θ′) , (1.33b)

{pa(θ), pb(θ)} = sΛϵabcδ(θ − θ′)jc(θ) . (1.33c)
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We define their Fourier transformation

Jan ≈
∫
S

e−inθja(θ)dθ , P a
m ≈

∫
S

e−inθpa(θ)dθ , (1.34)

with the normalized measure on the circle
∫
S
dθ = 1. Then the Poisson brackets of the

Fourier modes are

{Jan, J bm} = ϵabcJ
c
n+m , {P a

n , P
b
m} = sΛϵabcJ

c
n+m , {Jan, P b

m} = ϵabcP
c
m+n − inδabδn+m,0 .

(1.35)

When Λ = 0, (1.31) is the Poincaré loop algebra L(isu(2)) with central extension, with
the BMS group as the subgroup. Understanding how the Poincaré loop algebra can be
discretized is an open question. In [92], the authors proposed a limit starting from the
discrete picture to recover this loop algebra, when Λ = 0. The generalization to the Λ ̸= 0
case is under investigation.

1.4 Chern-Simons formalism

Another formulation often used to study 3D gravity is Chern-Simons formulation [60]. It
is a 3D topological field theory intensively studied in mathematics and condensed matter
physics (e.g. knots invariants [210], (extended) topological quantum field theory [86], frac-
tional quantum hall effects [213]). The Chern-Simon action on a 3D manifold M for a
gauge group G, whose Lie algebra is denoted as g, is defined as

SCS[A] =
k

4π

∫
M

Tr(A ∧ dA+
1

3
A ∧ [A ∧A]) , (1.36)

13Here we give the calculation of the Poisson bracket (1.33b). The other two in (1.33) can be obtained in a

similar way. We parametrize the boundary charges as Jα ≈
∫ 2π

0
αa(θ)j

a(θ)dθ and Pϕ ≈
∫ 2π

0
ϕa(θ)pa(θ)dθ.

Then the last Poisson bracket in (1.31), as an example, can be written as

{Jα, Pϕ} =
∫ 2π

0

∫ 2π

0

αa(θ)ϕ
b(θ′){ja(θ), pb(θ′)}dθdθ′ =

∫ 2π

0

ϵa c
b αa(θ)ϕ

b(θ)pc(θ)dθ +

∫ 2π

0

ϕa(θ)∂θαa(θ)dθ

=

∫ 2π

0

∫ 2π

0

αa(θ)ϕ
b(θ′)ϵa c

b δ(θ − θ′)pc(θ)dθdθ
′ +

∫ 2π

0

∫ 2π

0

∂θαb(θ)ϕ
a(θ′)δab δ(θ − θ′)dθdθ′

=

∫ 2π

0

∫ 2π

0

αa(θ)ϕ
b(θ′)ϵa c

b

(
ϵa c

b δ(θ − θ′)pc(θ)− δab ∂θδ(θ − θ′)dθdθ′
)
,

which gives {ja(θ), pb(θ′)} = ϵa c
b δ(θ − θ′)pc(θ)− δab ∂θδ(θ − δ′) as given in (1.33b).
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where A is a g-valued one-form, k is the level of energy and Tr is the Ad-invariant invariant
bilinear form on g. The equation of motion of the Chern-Simons action is the flatness
condition

dA+
1

2
[A ∧A] = 0 . (1.37)

It was first discovered by Achúcarro and Townsend [2] then elaborated by Witten in
his seminal paper [209] that 3D gravity can be written as a Chern-Simons action with the
gauge group given by the isometry group of gravity which depends on the signature under
study and the sign of the cosmological constant. Consider g to be a 6-dimensional Lie
algebra with generators Ja, Pa , a = 1, 2, 3 satisfying the commutator

[Ja, J b] = ϵabcJ
c , [Ja, Pb] = ϵa cb Pc , [Pa, Pb] = ϵabcsΛJ

c . (1.38)

Note that we are using the same convention ϵa cb = s as is in Section 1.2. The Ad-invariant
bilinear form for the generators is defined as

Tr(JaJ b) = 0 , Tr(PaPb) = 0 , Tr(PaJ
b) = ηs b

a . (1.39)

First, let us analyze this gauge group for different cases - Euclidean/Lorentzian signature
and Λ = 0 , Λ > 0 , Λ < 0. The first commutator in (1.38) implies that Ja’s are generators
of SU(s). When Λ = 0, the commutators of Pa’s vanish thus Pa are generators of R3. That
the second commutator gives only Pc on the right hand side means that there is only action
of Ja’s on Pa’s but not the other way around, which translates into a semi-direct product
structure in constructing G. When Λ ̸= 0, we consider sΛ < 0 and sΛ > 0 separately.
When sΛ < 0, one takes Pa = i

√
|Λ|Ja then the second and third commutators in (1.38)

follow from the first one, which implies that G is the complexification of SU(s). In the case
of sΛ > 0, on the other hand, one can take Pa =

√
|Λ|Ja to realize these commutators

hence g is the double copy of SU(s). The isometry group associated to (1.38) is summarized
in Table 1.1.

G s = + s = −
Λ = 0 SU(2)⋉ R3 SL(2,R)⋉ R3

Λ < 0 SL(2,C) SL(2,R)× SL(2,R)

Λ > 0 SU(2)× SU(2) SL(2,C)

Table 1.1: The isometry group of 3D gravity for Euclidean (s = +) and Lorentzian (s = −)
signatures and for different signs of the cosmological constant.
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Let the gauge group element A take value in the triads and the spin connections in the
way of

A = eaPa + ωaJ
a , (1.40)

and take k = 1
4G

14, then the Chern-Simons action can be equivalently written as

SCS[e, ω] =

∫
M

Tr

(
e ∧ (dω +

1

2
[ω ∧ ω] + s

Λ

3
[e ∧ e])

)
+

∫
∂M

Tr (e ∧ ω) , (1.41)

which is identical to (1.14) up to a boundary term which is the first-order formulation of
the GHY action. The equation of motion (1.37) can also be separated, using (1.40), into
the torsion-free and curvature-free equations of motion (1.16).

The Chern-Simons formulation is a powerful tool to construct, in a unified way, 3D
gravity in different signatures, with or without a cosmological constant and even for in-
troducing particles (e.g. [61]).The vast amount of study and results on the Chern-Simons
theory makes this formulation of 3D gravity an inviting starting point for quantizing grav-
ity as the concepts and methods in gauge theories and quantum topological theories can be
naturally applied (e.g. [209, 19, 7, 8, 27]). Despite the benefits of using the Chern-Simons
formulation of gravity mentioned above, its use to generalize to 4D gravity and hence 4D
quantum gravity is limited since 4D gravity can not be formulated into a Chern-Simons
action (see however [125, 126] for recent works relating SL(2,C) Chern-Simons theory to
4D quantum gravity in the path integral approach).

3D gravity action written in terms of the triads and connections can also be generalized
to the most general form that is diffeomorphism and Lorentz invariant, called the Mielke-
Baekler action [153, 20]. See a recent work [113] of the analysis of this action. On the
other hand, adding a boundary term to gravity, as we did in this chapter for general
consideration, turns the gauge symmetries in the bulk into physical symmetries possessing
non-vanishing charges on the boundaries. The boundary symmetry algebra depends on the
location of the boundaries, the type of boundaries and the boundary conditions imposed.
(See [124, 123] for works on the most general boundary condition in 3D gravity.) Over the
years, massive works have been done to unfold the boundary symmetry algebras of gravity
and possible physical applications. (See e.g. recent works [101, 88, 89, 90, 107, 106] and
references therein.) One of the most important applications is in the context of black
holes, for instance, to define the black hole states and compute the black hole entropy (see

14When taking the dimension of G, which is the dimension of the plank length ℓp, into account, k =
ℓp
4G .

One can assign a dimension of length to e and make ω hence F dimensionless. In this way, (1.40) would
become A = ℓ−1

p eaPa + ωaJa.
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e.g. [14, 25, 54, 83, 114]). This requires understanding the quantum gravity theory in the
presence of boundaries. We leave the discussion on the quantum theory to the second half
of the thesis.

In the context of LQG, the starting point to quantize the 3D gravity is the BF formu-
lation. Our goal for the next chapter is to construct the phase space by carefully choosing
the basic variables which form dual pairs well-fitted in the Poisson-Lie group language.
Such a representation is powerful in constructing the kinematical and dynamical phase
space as well as quantizing the theory.
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Chapter 2

Deformed loop gravity

To quantize 3D gravity from the BF formalism (1.14), one needs to regularize the degrees of
freedom in order to obtain a Poisson bracket forming an algebra which is not distributional.
Indeed, the basic variables (ωjν(x⃗), e

i
µ(x⃗)) are functions of the spatial position x⃗ ∈ Σ.

Therefore, the direct quantization of their Poisson brackets into commutators would lead
to operator-valued distribution which is singular and does not form a closed algebra. One
natural way, stemming from quantizing the Yang-Mills theory [151, 111, 66, 112], is to
work on path-dependent states or, more precisely, loop-dependent states. This motivates
the use of holonomies - G-valued variables - provided that the connection values in g, the
Lie algebra of G. The holonomy can be viewed as a smeared1 function of the connection
along a path over the spatial sub-manifold. Such a smearing process can also be performed
for its conjugate variables, the densitized triad, and can be generalized to 4D gravity.

To start with, one needs to decide which (pair of) group-valued basic variables to take
to define the kinematical phase space. Let us first consider the Λ = 0 case. The smeared
function along some path of ωjν(x⃗) gives rise to an SU(2) holonomy and the smeared function
of eiµ(x⃗)) leads to an R3 flux which is the conjugate momentum of the holonomy. They
form the so-called loop gravity phase space with Poisson structure emerging from (1.30)
[200, 182]. We will review this phase space in Section 2.5. The holonomy and flux variables
are turned into operators in the quantization process, which capture nicely the quantum

1For a field ϕ(x⃗) valued at point x⃗ in a manifold D-dimensionalM, a smeared field with a smooth and
compactly supported function f(x⃗) is defined as

ϕ[f ] =

∫
M

dDxf(x⃗)ϕ(x⃗) .
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flat geometries. This establishes that (ωjν(x⃗), e
i
µ(x⃗)) is a good pair of basic variables to

start with. When Λ ̸= 0, we want to address the same question. The most natural choice
of basic variables would be still (ωjν(x⃗), e

i
µ(x⃗)), identical to the Λ = 0 case. Then one

only needs to smear the Poisson algebra and constraints described in Chapter 1. Such a
choice was the first one used in the literature but leads to an anomaly when considering
the (regularized) curvature constraint [169].

A useful guide comes from the existing quantum theories of 3D gravity. It was first
discovered in the Chern-Simons formalism of gravity by Witten in [210] that the topological
invariant quantum observable is described by some quantum group. Shortly later, this
topological invariance was constructed mathematically rigorously using quantum group
theory by Reshetikhin and Turaev [177], and soon re-discovered in the so-called Turaev-
Viro model [204]. This is known as a spinfoam model for 3D quantum gravity with a non-
vanishing cosmological constant in the Euclidean signature. One lesson from this model is
that the cosmological constant deforms the symmetry group of the flat (Λ = 0) case into
a quantum group. Last but not least, also based on the Chern-Simons formulation, the
combinatorial quantization approach [7, 8] points out that the gauge symmetry is deformed
when Λ ̸= 0.

Inspired by this idea, it was later proposed to use new connections A± = ω ±
√
Λe (in

the case of Λ > 0) which are quantized to non-commutative holonomy operators [158, 159].
In this approach (and other approaches that we will mention in the quantum part of the
thesis), the triads are kept unchanged thus the Gauss constraint expressed solely in terms
of the triads is the same as the Λ = 0 case. From the geometrical perspective, this
amounts to taking 2D flat geometries as the building blocks in constructing the global
3D geometry [43]. In this way, the quantum group features come as the regularization in
the quantization process and are put by hand. It is, therefore, unnatural to extract the
physical (or geometrical) meaning of such a non-commutativity within these frameworks.

Another way is to perform the deformation at the kinematical level. This means one
considers a different definition of triads which stores curved geometry information. This
was first realized at the discrete and quantum level [40, 39]. The spirit is to first realize that
the quantum symmetry can be described by the Drinfeld double, which is not apparent
in the flat case (see however the early works on the Ponzano-Regge model [104, 105, 160,
152] with a discussion on the Drinfeld double), and secondly that the Drinfeld double
is mathematically linked to the Poisson-Lie group and Poisson-Lie algebra [135] at the
classical level. It was only recently that such symmetries were derived in the continuous
theory [72]. From the geometrical point of view, such an approach is also in accordance
with the claim that, in the case of Λ ̸= 0, taking the discrete curved geometry instead
of the flat ones as the building blocks to build the global geometry could simplify the
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quantization process and better approximate the continuous (diffeomorphism) symmetry
[67, 23, 24].

In this chapter, we start reviewing the work of [72] in Section 2.1. We define a new
pair of triad and connection which form a dual pair in the sense of a Poisson-Lie alge-
bra. It follows with a discretization process to truncate the degrees of freedom, which we
summarize in Section 2.2 following [72]. It leads to the notion of q-deformed loop gravity
phase space2 after the standard discretization process, which we describe in Section 2.3.
Already at this level, we are able to connect the LQG approach with another quantum
gravity approach - the combinatorial quantization [7, 8]. We will describe in Section 2.4
how we can rebuild the q-deformed loop gravity phase space from that discovered by Fock
and Rosly [85]. To analyze the relation explicitly, we focus on an example when Σ is a
torus. The q-deformed loop gravity phase space for this toy model is given in Appendix
B.2. These results were published in [78]. Finally, in Section 2.5, we take the Λ→ 0 limit
of the q-deformed loop gravity model and rewrite the standard loop gravity phase space in
the different mathematical framework.

2.1 Change of variables

We first realize that, as in the Turaev-Viro model, the quantum group structure can be
seen as the deformation of some group structure with a deformation parameter depending
on the value of Λ. Classically, the geometry, solution of the constraints, is curved in the
presence of a non-vanishing cosmological constant. However, the torsion constraint, which
encodes the gauge symmetries does not depend on the cosmological constant. To have a
deformed symmetry realization at the quantum level means that some ad hoc treatment
needs to be done in the quantization process.

It is therefore natural to look for a different formulation of the theory such that the
torsion constraint encoding the gauge symmetry is depending on the cosmological constant,
already at the classical level.

We want to identify at the classical level a new pair of variables leading to a new set of
constraints all depending on Λ, from which the quantum group structure will eventually
emerge naturally.

2In fact, as we will see in Section 2.3, the deformation parameter we use in the classical theory is κ. q
encodes both κ and reduced Planck constant ℏ and is used in the quantum theory. The term “q-deformed”
is used here to be consistent with the quantum theory.
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This can be done by implementing a canonical transformation generated by a boundary
term to the action. Such an added boundary term keeps the equations of motion unchanged
but deforms the notion of torsion. The deformation parameter was actually proposed [72]
after the construction of the discrete theory [40] and the quantum theory [39]. We will see
in Section 2.5 then Chapter 4 that the desired quantum group symmetries show up after
the standard quantization process due to precisely our particular choice of new variables.

2.1.1 The new action

We now review the canonical transformation introduced in [72]. We introduce a constant
vector n = naτa whose norm is constrained to be given by the cosmological constant
i.e. n2 = −Λ. We also demand that dn = 0 and that n is constant under the variations
i.e. δn = 0. We add a boundary term to the action (1.14) as follows.

S ′ΛBF[e, ω] = −
∫
M

ea ∧
(
Fa + s

Λ

3
Ea

)
−
∫
∂M

d2xEan
a

= −
∫
M

Tr

(
e ∧ (F + s

Λ

3
E)

)
+ d (E · n)) .

(2.1)

Consider the foliationM = Σ × R, the variation of the new action

δS ′ΛBF = −
∫
M

Tr (δe ∧ (F + sΛE) + δω ∧ dωe)−
∫
Σ

Θ′ ,

Θ′ = (δωa ∧ ea + [δe ∧ e]an
a) =

(
δ(ωa − ϵabcebnc) ∧ ea

)
(2.2)

leads to a new symplectic potential which reads

Θ′ = Tr (δA ∧ e) , A[ω, e] ≡ ω − [e,n] , (2.3)

where A is the new connection. The change of variables (ω, e)→ (A, e) can be viewed as
a canonical transformation, which is generated by the boundary term

∫
∂MTr(E ·n). Note

that we still demand the boundary condition δe|Σ = 0 in the new variable analysis. One
can thus re-express the curvature F [ω] in terms of the new connection,

F [ω] =d(A+ [e,n]) +
1

2
[(A+ [e,n]) ∧ (A+ [e,n])]

= F [A] + d[e,n] + [A ∧ [e,n]] +
1

2
[[e,n] ∧ [e,n]]

= F [A] + dA[e,n] +
1

2
[[e,n] ∧ [e,n]] .

(2.4)
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Let us denote F [A] by F ′ for short. Then the new action (2.1) can be re-expressed in terms
of the new pair of variables (e, A) as

S ′ΛBF[e, A] = −
∫
M

Tr

(
e ∧ F ′ + e ∧ dA[e,n] +

1

2
e ∧ [[e,n] ∧ [e,n]]

+ s
Λ

6
e ∧ [e ∧ e] +

1

2
d ([e ∧ e]n)

)
. (2.5)

This expression can be dramatically simplified. Firstly, the third and fourth terms cancel
according to the identities

Tr (e ∧ [[e,n] ∧ [e,n]]) = ϵabcϵ
b
lmϵ

c
pqe

a ∧ el ∧ epnmnq

= sϵblme
a ∧ el ∧ (eanmnb − ebnmna)

= sTr(e ∧ e)Tr(e ∧ [n,n])− 1

3
sTr(nn)Tr(e ∧ [e ∧ e])

= −sΛ
3
Tr(e ∧ [e ∧ e]) .

(2.6)

The second and last terms combine to give3

Tr

(
e ∧ d[e,n] + e ∧ [A ∧ [e,n]] +

1

2
d([e ∧ e]n)

)
= −Tr (E ∧ dAn) (2.7)

Therefore, when using the new connection, the action takes a simple form

S ′ΛBF[e, A] = −
∫
M

Tr (e ∧ F ′ − E ∧ dAn) . (2.8)

We now take e and A to be independent variables. The variation of (2.8) gives the equations
of motion

δS′
ΛBF

δe
=⇒ C ′ = F ′ − [e ∧ dAn] ≃ 0 ,

δS′
ΛBF

δA
=⇒ T ′ = dAe+ [E,n] ≃ 0 .

(2.9)

The symplectic form can be written as

ΩΣ = −
∫
Σ

Tr (δA ∧ δe) . (2.10)

3To show that the second and last terms in (2.5) combine to give (2.7), we apply the cyclic symmetry
for the expression Tr(A ∧ [B ∧ C]) = (−1)m(n+p)Tr(B ∧ [C ∧ A]) = (−1)p(m+n)Tr(C ∧ [A ∧ B]) where A
is an m-form, B is an n-form and C is a p-form. Also note that n is a 0-form so we dropped the ∧ to
simplify the expression.
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With this new symplectic form at hand, one can study the algebra of symmetries by
performing the same analysis as we did in Chapter 1. We describe this analysis in a
concise manner in the next subsection.

2.1.2 The new symmetry algebra and the Manin pair

Let us now study the local Lorentz transformation δ
′L
α and local translation δ

′t
ϕ of the

new pair of variables, compared to (1.19). Note that since n is taken to be kinematical,
δ
′L
α n = δ

′t
ϕn = 0.

δ
′L
α e = [e, α] , δ

′L
α A = dAα + [e, [n, α]] , δ

′t
ϕ e = dAϕ+ [[e, ϕ],n] , δ

′t
ϕA = [ϕ, dAn] .

(2.11)
Only the Lorentz transformation of the triad is unchanged and the other transformations
have different shapes. Therefore, we expect a new Poisson structure of the boundary
charges (J ′α, P

′
ϕ).

We first apply the contraction for the symplectic form with the transformation vectors
to get the boundary charges

ιδ′Lα ΩΣ = −δJ ′α =⇒ J ′α = −
∫
Σ
αa (dAe+ [E,n]) +

∫
S
αae

a ≃
∫
S
αae

a ,

ιδ′tϕ
ΩΣ = −δP ′ϕ =⇒ P ′ϕ = −

∫
Σ
ϕa (F ′a − [e ∧ dAn]a) +

∫
S
ϕaAa ≃

∫
S
ϕaAa .

(2.12)

Indeed, the symplectic form generates the new Poisson brackets

{Aia(x), ebj(y)} = ϵ ji δ
a
bδ

2(x− y) , {Aia(x), A
j
b(y)} = {e

a
i (x), e

b
j(y)} = 0 , (2.13)

from which the Poisson algebra of the symmetry charges read

{J ′α, J ′β} = J ′[α,β] (2.14a)

{P ′ϕ, P ′ψ} = P ′[[ϕ,ψ],n] +

∫
S

Tr ([ϕ, ψ]dn) , (2.14b)

{J ′α, P ′ϕ} = P ′[α,ϕ] + J ′[ϕ,[α,n]] +

∫
S

Tr (ϕdα) . (2.14c)

Let us now compare this Poisson algebra and (1.31). Firstly, the subalgebra (2.14a) of
{J ′α} is the same as that of {Jα}. Recall that we imposed dn = 0. We also assume that
dα|S = 0 so that the central charges in (2.14) vanish. In this way, the charges {P ′ϕ} form
a closed algebra (depending on the vector n), which is the major difference from the case
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of the algebra for {Pϕ}. Finally, the mixed Poisson bracket (2.14c) is expressed in terms
of both charges J ′α and P ′ϕ with a structure related to the notion of a Manin pair, in the
language of Lie bialgebra [135]. We refer readers to [72] for more details. A brief review of
the Lie bialgebra for a general Lie group is given in Appendix A.1.

Since the algebra of {P ′ϕ} depends on n, it is convenient to choose a specific direction
for n. We denote the sign of Λ by σ. For the Euclidean signature with a positive Λ, we
choose na = (0, 0, i

√
|Λ|) and the metric η = (+,+,+), while for other cases, we take

na = (0, 0,−σs
√
|Λ|) and the metric η = (+,−σs,−σ) [72]. They all give nana = −Λ.

Specifically, when Λ = 0, n = 0 or n is null (resp. Grasmannian) in the Lorentzian
(resp. Euclidean) case.

We notice that the on-shell version of the symmetry charges (2.12) are

J ′α ≃
∫
S

Tr(αe) = Jα , P ′ϕ ≃
∫
S

Tr(ϕA) =

∫
S

Tr(ϕ(ω + [n, e])) , (2.15)

which can be quantized to be the generators

J ′αa
→ Ja ≡ τa , P ′ϕa → Pa + ϵabcn

bJ c =: ρa , (2.16)

where Ja, P a satisfy the commutation relations (1.38). (To be consistent with literatures
[41, 42], we will use τa and ρa to denote the generators and also denote κ =

√
|Λ|.) They

satisfy the Lie brackets

[τa, τ b] = αabc τ
c

[ρa, ρb] = βcabρc

[τa, ρb] = βabcτ
c − αcab ρc

, where

∣∣∣∣∣ αabc = ϵabc

βcab = s(nbδ
c
a − naδ

c
b)

. (2.17)

We recognize the Lie algebra structure of the classical double4 ds = su(s) ▷◁ an(2). In
other words, su(s) and an(2) form a Manin pair. Another important structure of a Manin
pair is a bilinear dual map ⟨ , ⟩ : su(2)⊗ an(2)→ C such that

⟨τa, ρb⟩ = ⟨ρb, τa⟩ = δab , ⟨τa, τ b⟩ = ⟨ρa, ρb⟩ = 0 . (2.18)

The simplest case among the four cases is the Euclidean signature with a negative
cosmological constant, i.e. (s = +, σ = −), as τa’s are generators of SU(2) which is a

3The reason that we need to single out the parametrization for the case of (s = +, Λ > 0) is that the
isometry group so(4) does not possess an Iwasawa decomposition.
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compact group and sl(2,C) ∼= su(2) ▷◁ an(2) admits an Iwasawa decomposition. We will
focus on this specific case in the rest of this thesis.

Therefore, by performing the canonical transformation, the new connection A is still
su(2)valued while the triad e now takes value in an(2). Since the torsion constraint T ′ (2.9)
is written in terms of the triads and n, this implies that the gauge symmetries are deformed
by the cosmological constant. We will see this will result in the deformed kinematical phase
space in loop gravity upon a proper discretization process which we now briefly describe.
More details can be found in [72].

2.2 Discretization of variables

In this section, we briefly summarize the discretization procedure from the new continuous
variables (A(x⃗), e(x⃗)) on Σ we just obtained to discrete variables living on graphs, which
was detailly described in [72]. (The Λ = 0 case was illustrated in more details in [91, 189]).
It leads to the basic discrete variables for the q-deformed loop gravity phase space. The
discretization process can be separated into two steps. The first step is to consider a
triangulation5 of the manifold Σ, from which one can construct a graph dual to it. The
second step is to truncate the infinite number of degrees of freedom on Σ to a finite number
of degrees of freedom on the graph by solving the constraints within each triangle.

Let us now fix the terminology and notation as follows. In the triangulation picture, a
2-simplex, or 2-skeleton, is a triangle, denoted as △; a 1-simplex is an edge, denoted as ē;
and a 0-simplex is a vertex, denoted as v̄. The boundary of a △, composed of three edges,
is denoted by ∂△. We will also consider the oriented dual 2-complex of the triangulation
embedded in Σ, which we call the graph and is denoted as Γ . Γ is composed with faces
f ’s, links e’s and nodes v’s. Indeed, such a graph is 3-valent, meaning that each node is
attached to three links. When e is incident to v, we denote e ∈ v. When e is on the
boundary of f , we denote e ∈ ∂f . One face f is dual to one vertex v̄; one oriented link e is
dual to one edge ē; and one node v is dual to one triangle△. By Γ being oriented, we mean
that f ’s are oriented to the orientation of Σ and that each e is given an orientation. In this
way, we can also fix the orientation of all the edges ē’s in the triangulation by demanding
that the orientations of ei, ēi and Σ satisfy the right-hand rule, where ei is dual to ēi. An
example is illustrated in fig.2.1.

4The symbol “▷◁” means there is mutual action between the two subalgebras su(s) and an(2). See the
explicit action e.g. in [72].

5More generally, one can consider the cell decomposition of Σ, where each 2-cell is isomorphic to a
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ē1

ē2

ē3

ē5 ē6

ē4
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e1

e4

e6e5

e3

Figure 2.1: Trianglulation (in black solid) for Σ composed of three tiangles and its oriented
dual graph Γ (in red dashed). Each link ei is dual to the edge ēi. The orientation of Σ
is pointing out of the paper. Then the orientations of ei, ēi and Σ satisfy the right-hand
rule.

The triangulation described above is the first step of the distretization process. The next
step is to truncate the degrees of freedom to edges and vertices. This is done by solving the
equations of motion (2.9) within each triangle. The solution gives A△ = A△+e△ ∈ sl(2,C)
associated to each ∂△, or equivalently Av = Av + ev associated to the node v dual to △
in the graph picture. The solution Av is parametrized by an SL(2,C) element Gv, which
can be written, by the Iwasawa decomposition, into the product of an AN(2)6 element xv
and SU(2) element hv, i.e. Gv = xvhv [72]. Explicitly,7

Av = G−1v dGv = (xvhv)
−1d(xvhv) =⇒

∣∣∣∣ Av = h−1v dhv + (h−1v (x−1v dxv)hv)su(2)
ev = (h−1v (xvdxv)hv)an(2)

,

(2.19)
where the subscript su(2) means taking the su(2) part of the sl(2, C)-value variable h−1v (x−1v dxv)hv.
Likewise for the subscript an(2). As we have solved the constraints at any point, say p ∈ Σ,

polygon. For each n-gon, one can add n − 3 edges connecting a randomly selected vertex and all other
vertices to decompose it into n− 2 triangles, each of which has at least one side coming from the original
n-gon. Thus triangulation can be viewed as the most elementary cell decomposition.

6In some literature, AN(2) is also denoted as SB(2,C) standing for the special Borel group. We will
describe more details on this group in Section 2.3.

7Consider the gauge transformation by Gv of the connection A0
v,

A0
v → Av = G−1

v A0
vGv +G−1

v dGv .

Since A0
v = 0 is a solution to the flatness F [Av] = 0. One can gauge fix A0

v to 0 then the expression of
Av = G−1

v dGv is the gauge transformation of the connection at 0 which preserves the constraint
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within △, the solution Av in general can be written as a function Av(p) = (G−1v dGv)(p) of
the point p. When p is v, we gauge fix Gv(v) to be I, then it is natural to view Gv(p) ≡ Gvp

as the holonomy along a path from v to p. We also take the convention that Gpv = G−1vp .
The symplectic form (2.10) on Σ can thus be written as the the sum of that on each trian-
gle △ (or its dual v), each of which can be shown to be equal to the sum of the symplectic
form on the boundary edges ē ∈ ∂△ [72], that is

ΩΣ =
∑
v

Ωv =
∑
v

∑
ē∈∂△

Ω ē
v = −

1

2

∑
v

∫
v

Tr(δAv ∧ δAv) . (2.20)

ē

v̄

v̄′

ev• v′•
Gvv̄ Gv̄v′

Gvv̄′ Gv̄′v′

(a)

ē

v̄

v̄′

ev• v′ •ℓ ℓ̃

ũ

u

(b)

Figure 2.2: (a) Two adjacent triangles △ (left, dual to node v) and △′ (it right, dual to
node v′) sharing one edge ē whose source and target vertices are s(ē) = v̄ and t(ē) = v̄′

respectively. The SL(2,C) holonomies Gvv̄, Gv̄v′ , Gvv̄′ , Gv̄′v′ (in dotted blue) are constrainted
by the relation Gvv̄Gv̄v′ = Gvv̄′Gv̄′v′ . (b)Taking the Iwasawa decomposition of the SL(2,C)
holonomies given in (a), the relation Gvv̄Gv̄v′ = Gvv̄′Gv̄′v′ can be rewitten as ℓu = ũℓ̃ where
these elements are defined in (2.24).

Now we consider two triangles △ - dual to node v - and△′ - dual to node v′ - who share
one edge ē as illustrated in fig.2.2. For sake of continuity, we demand that A(p) defined in
the frames △ and △′ share the same value on ē, that is

Av(p) = Av′(p) ⇐⇒ GpvdGvp = Gpv′dGv′p , ∀p ∈ ē . (2.21)

Let Gpv′ = GpvGvv′ . Pluging in the right equation of (2.21), one arrives at Gvv′ being a
constant. This implies that

Gvv̄Gv̄v′ = Gvv̄′Gv̄′v′ . (2.22)
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This is illustrated in fig.2.2a. Taking the Iwasawa decomposition Gvp = xvphvp while
Gpv = hpvxpv (like wise for Gv′p and Gpv′), (2.22) is equivalent to

xvv̄hvv̄hv̄v′vv̄v′ = xvv̄′hvv̄′hv̄′v′xv̄′v′ ⇐⇒ xv̄′vxvv̄hvv̄hv̄v′ = hvv̄′hv̄′v′xv̄′v′vv′v̄ . (2.23)

If we define the group valued variables

(ℓ, ℓ̃) := (xv̄′vxvv̄, xv̄′v′xv′v̄) ∈ AN(2) , (u, ũ) := (hvv̄hv̄v′ , hvv̄′hv̄′v′) ∈ SU(2) , (2.24)

then (2.22) is equivalent to the constraint

ℓu = ũℓ̃ , (2.25)

as illustrated in fig.2.2b. The variables ℓ, ℓ̃, u, ũ are used to contruct the q-deformed loop
gravity phase space which we will describe in Section 2.3, and (2.25) is essential to define
the so-called “ribbon structure” therein. A key question is whether such a phase space
can be deduced from the symplectic from (2.10). It was shown in [72] that it is indeed the
case. In particular, it was proven in [72] that the symplectic form for the shared edge ē of
two triangles △,△′ (whose dual nodes are v and v′ respectively) gains contribution from
both triangles and takes the form of 8

Ω ē = Ω′ēv −Ω ē
v′ = −

1

2

∫
Tr
(
δũũ−1 ∧ δℓℓ−1 + u−1δu ∧ ℓ̃−1δℓ̃

)
. (2.26)

On the other hand, the Poisson bracket between the variables ℓ, ℓ̃, u, ũ can be obtained
in the covariant phase space formalism using the new symplectic form (2.20) as we did in
Chapter 1. A systematic but lengthy calculation gives rise to the Poisson brackets neatly
written in the Poisson-Lie group language which we describe in the next subsection (see
(2.35) and (2.36)). We refer to [72] for more details. See also a similar discretization
process for the flat case in [91, 189, 188].

At the end of the day, the truncation of degrees of freedom leads us from a phase space
on Σ to a phase space on Γ , which contains a finite number of degrees of freedom at the
kinematical level. Note that SU(2) and AN(2), as subgroups of SL(2,C), are of the same
footing, hence one can decide at this point which subgroup we choose as the configuration
space then the other subgroup would describe the conjugate momentum space. This is
called the choice of polarization [71]. To emphasize the notion of deformed loop gravity, we
choose SU(2) to describe the configuration space, which is the same as in loop gravity. Then
the momentum space is given by the AN(2) group, which can be seen as a deformation of
R3, the momentum space of loop gravity with Λ = 0.

8The minus sign before Ω′ē
v′ is due to the fact that the edge ē is oriented oppositely relative to the

triangles △ and △′, as shown in fig.2.2a.
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2.3 q-deformed loop gravity phase space

In this section, we construct the phase space of the q-deformed loop gravity for the case
of Euclidean signature with Λ < 0 in terms of the SU(2) and AN(2) discrete variables we
obtain in the discretization procedure. It was first introduced in [40] and later developed
in a series of works by Bonzom, Dupuis, Girelli, Livine and the author [39, 73, 77, 42]. The
discrete variables we work with are different from those defined in [158, 159]. We will see
that our discrete variables are elements of a pair of groups forming a Heisenberg double,
which possesses a symplectic structure by definition and hence can be used to describe a
phase space. A toy model for a simple graph embedded on the torus is summarized in
Appendix B.2, which was illustrated in more detail in our published work [77].

2.3.1 Ribbon for one link

We first consider a single graph link, whose phase space is described by SL(2,C) as a group.
The relevant mathematical frameworks are the classical double (at the Lie algebra level)
and the Heisenberg double (at the group level), which we review in Appendix A.1. Provided
the symplectic structure, SL(2,C) is equivalent to a Heisenberg double D(SU(2)) of SU(2)
with the dual group SU(2)∗ = AN(2), the group of 2 × 2 lower triangular matrices with
positive real diagonal entries and determinant 1. We parametrize an AN(2) element ℓ as

ℓ =

(
λ 0
z λ−1

)
, λ ∈ R+ , z ∈ C . (2.27)

We write D(SU(2)) ∼= SU(2) ▷◁ AN(2) with ▷◁ inheriting from the Lie algebra mutual
action. Their duality and the Poisson structure are also built from the Lie algebra level.

Since we fixed the signature and the sign of Λ, we can now write out explicitly the
SU(2) and AN(2) generators

τa =
σa

2i
∈ su(2) , ρa = iκ(τa − i[τ 3, τa]) ∈ an(2)

=⇒
τ 1 = 1

2

(
0 −i
−i 0

)
, τ 2 = 1

2

(
0 −1
1 0

)
, τ 3 = 1

2

(
−i 0
0 i

)
ρ1 = iκτ− = κ

(
0 0
1 0

)
, ρ2 = −κτ− = κ

(
0 0
i 0

)
, ρ3 = iκτ 3 = κ

2

(
1 0
0 −1

)
.

(2.28)
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Mathematically, the Lie algebra structure of an(2) is determined by a cocycle δ, which is
a map δ : su(2) → su(2) ⊗ su(2). This defines a Lie bialgebra (su(2), δ). On the other
hand, adding a cocycle δ∗ : an(2) → an(2) ⊗ an(2) to an(2) Lie algebra that determines
the Lie algebra structure of su(2) defines the Lie bialgebra (an(2), δ∗). These cocycles act
explicitly on the generators as

δ(τ c) = κ(δcaδ
3
b −δ3aδcb)τa⊗τ b , δ∗(ρc) = ϵabcρa⊗ρb −→

∣∣∣∣∣ [τa, τ b] = ϵabcτ
c

[ρa, ρb] = κ(δcaδ
3
b − δ3aδcb)ρc

,

(2.29)
where the Lie algebra (2.17) of su(2) and an(2) introduced before with the chosen parametriza-
tion n = (0, 0, κ) is recovered. The bilinear form dualizing su(2) and an(2) is

⟨M,N⟩ := − 1

2κ
Im(Tr(MN)) , M,N ∈ sl(2,C) , (2.30)

thus ⟨ρa, τ b⟩ = δba , ⟨ρa, ρb⟩ = ⟨τa, τ b⟩ = 0 as desired. Given the representation of the
generators, one can also compute

[τa, ρb] = κ(δab δ
c
3 − δ3b δca)τ c + ϵa cb ρc , (2.31)

which is consistent with (2.17). Together with (2.29), they are precisely the Lie bialgebra
structure of the classical double (d(su(2)), δd) which is a quasitriangular Lie bialgebra with
the Lie algebra d(su(2)) = su(2) ▷◁ an(2) and the cocycle δd (See (A.13) for its action on
the Lie algebra objects). It is called quasitriangular in the sense that the cocycle δd is a
coboundary δd = ∂r of some cochain such that satisfies a so-called classical Yang-Baxter
equation. Such a cochain r ∈ d ⊗ d is also called the classical r-matrix, or r-matrix for
short.9 We denote r ≡ r12 =

∑
r[1]⊗r[2], r21 :=

∑
r[2]⊗r[1]. More generally, rij means that

r[1] is in the i-th vector space, r[2] is in the j-th vector space and all other vector spaces
are identity. Using this notation, the classical Yang-Baxter equation is expressed as

[r12, r13] + [r12, r23] + [r13, r23] = 0 . (2.32)

In the fundamental representation, an r-matrix for d(su(2)) giving rise to the commutators
(2.29) and (2.31) can be written as a 4× 4 matrix

r = −
∑
a

τa ⊗ ρa =
iκ

4


1 0 0 0
0 −1 4 0
0 0 −1 0
0 0 0 1

 ∈ su(2)⊗ an(2) ⊂ d⊗ d . (2.33)

9See Definition A.1.2 for an alternative but equivalent way to define a quasitriangular Lie bialgebra
that is the classical version of the definition A.2.1 of a quasitriangular Hope algebra.
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Exponentiating the Lie subalgebras su(2) and an(2) of d(su(2)), one obtains the Heisenberg
double (D(SU(2)), πH), whose Poisson structure πH is fully determined by the r-matrix
inheriting from d(su(2)). Explicitly, the Poisson bracket is given by

{d1, d2} = −r21d1d2 + d1d2r = rd1d2 − d1d2r21 , ∀d ∈ SL(2,C) , (2.34)

where we have used the standard notation d1 = d ⊗ I, d2 = I ⊗ d. The last equality in
(2.34) is guaranteed by the fact that the symmetric part rs =

1
2
(r+ r21) of the r-matrix is

a Casimir hence [rs, d1d2] = 0

On the other hand, since the two subgroups SU(2) and AN(2) are of the same footing,
one can equivalently write the phase space as the Heisenberg double D(AN(2)) of AN(2)
with a different r-matrix r̃ ∈ an(2)⊗su(2) exchanging the generators on the two subspaces
from (2.33) in the fundamental representation, i.e. r̃ = r21, r̃21 = r. The two different
ways of viewing the phase space SL(2,C) correspond to the only two possible Iwasawa
decompositions of a given SL(2,C) element d. We refer the decomposition d = ℓu with
ℓ ∈ AN(2), u ∈ SU(2) to be the left Iwasawa decomposition and d = ũℓ̃ with ℓ̃ ∈ AN(2), ũ ∈
SU(2) to be the right Iwasawa decomposition. Then from (2.34), we can deduce the Poisson
brackets between ℓ and u [40]:

{ℓ1, ℓ2} = −[r21, ℓ1ℓ2] , {ℓ1, u2} = −ℓ1r21u2 , {u1, ℓ2} = ℓ2ru1 , {u1, u2} = −[r, u1u2] ,
(2.35)

and the Poisson brackets between ℓ̃ and ũ:

{ℓ̃1, ℓ̃2} = [r21, ℓ̃1ℓ̃2] , {ℓ̃1, ũ2} = −ũ2r21ℓ̃1 , {ũ1, ℓ̃2} = ũ1rℓ̃2 , {ũ1, ũ2} = [r, ũ1ũ2] .
(2.36)

It is easy to check that the equivalence of the left and right Iwasawa decomposition forms
a second class constraint (meaning that they do not close under Poisson brackets), which
we call the “ribbon constraint”

C = ℓuℓ̃−1ũ−1 . (2.37)

The name “ribbon” will become clear when we represent graphically these two equal Iwa-
sawa decompositions. Concretely, a link e is thickened into a ribbon R(e) with

• long links, parallel to e, carrying SU(2) elements u, ũ called holonomies

• short links carrying AN(2) elements ℓ, ℓ̃ and called fluxes [40].

This is represented in fig.2.3 together with a choice of orientations (detailed below). We
have fixed the orientation of the long ribbon links decorated with u and ũ to be opposite
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e
ℓ ℓ̃

ũ

u

Figure 2.3: The ribbon graph associated to the ribbon constraint. The ribbon carries
two pairs of variables (ℓ, u) and (ℓ̃, ũ). The ribbon constraint associated to a ribbon is
represented as the trivialization of the ribbon loop ℓuℓ̃−1ũ−1.

to that of the link, which automatically fixes the orientation of the two short links of a
ribbon to have the ribbon constraint (2.37) satisfied.

By solving the ribbon constraint, we obtain the Poisson brackets between (ℓ̃, ũ) and
(ℓ, u):

{ℓ1, ũ2} = −r21ℓ1ũ2 , {ℓ̃1, u2} = −ℓ̃1u2r21 , {u1, ℓ̃2} = ℓ̃2u1r, , {ũ1, ℓ2} = rũ1ℓ2 ,

{ℓ̃1, ℓ2} = 0 , {ũ1, u2} = 0 .
(2.38)

Consider the fundamental represenation of SU(2) and AN(2) variables, each of the Poisson
brackets written in the form of (2.35), (2.36) and (2.38) is a 4 × 4 matrix of Poisson
brackets. Writing out the matrix elements of ℓ, u, ℓ̃ and ũ, one can write out the explicit
Poisson brackets of these matrix elements. We collect these Poisson brackets in Appendix
B.1. The dimension of the phase space for a ribbon is 12−6 = 6 upon imposing the ribbon
constraint, thus consistent with the dimension of SL(2,C).

It is important to notice that there is another version of the ribbon constraint available.
Indeed, in the definition, we used the lower triangular matrices. But instead, we could use
the upper triangular matrices. The equivalence between the two formulations can be seen
by using the composition of the adjoint and inverse on the ribbon constraint,

C = ℓuℓ̃−1ũ−1 → C−1† = ℓ−1†uℓ̃†ũ−1, (2.39)

which amounts to replacing ℓ and ℓ̃ with respectively ℓ−1† and ℓ̃−1† (and similarly with
u, ũ but obviously u−1† = u for any u ∈ SU(2)). Therefore, only the short link structure is
changed, as in fig.2.4. The associated transformation preserving the Lie algebra an(2) is
given by ρi → −(ρi)†. As a consequence, one switches the r-matrix by r → −r† = r21. All
Poisson brackets are given in Appendix B.1.

Deformed flux vectors. Combing the two parametrizations together, we construct
the Hermitian matrices ℓℓ† =: X = κX0I − κX⃗ · σ⃗ and ℓ†ℓ =: Xop = κXop

0 I − κX⃗op · σ⃗
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e
ℓ†−1 ℓ̃†−1

ũ

u

Figure 2.4: The conjugate ribbon structure defined in terms of upper triangular matrices.

where the traceless parts give components of vectors X⃗ and X⃗op. Written in terms of the
parametrization (2.27), they read explicitly

X = ℓℓ† =

(
λ2 λz̄
λz λ−2 + |z|2

)
,

∣∣∣∣∣ X0 =
1
2κ
Tr(ℓℓ†) = 1

2κ
(λ2 + λ−2 + |z|2)

X⃗ = − 1
2κ
Tr(ℓℓ†σ⃗)

,

Xop = ℓ†ℓ =

(
λ2 + |z|2 λ−1z̄
λ−1z λ−2

)
,

∣∣∣∣∣ X
op
0 = X0

X⃗op = − 1
2κ
Tr(ℓ†ℓσ⃗)

,

(2.40)

where the 4-vector Xµ(µ = 0, 1, 2, 3) lives on the space-like 3-hyperboloid in the 3+1

Minkowski space, XµXµ = X2
0 − X⃗2 = κ−2. The deformation parameter κ clearly plays

the role of the curvature. The 3D component of Xµ defines the flux vector X at the ribbon
source.

Similarly, X̃ and X̃op can be written in terms of the tilde spinors in the same way.
They are stable under the adjoint action of SU(2),

X̃ = ũ−1Xũ , u−1Xopu = X̃op , (2.41)

which is the same transformation of the flux vectors in the flat case as we will see in Section
2.5. They capture the deformed geometry of the discretization of Σ, which possesses the
hyperbolic nature [40]. In particular, the Gauss constraint for a three-valent node describes
the closure of a hyperbolic triangle, whose side lengths are given by the vector X’s or Xop’s
for the corresponding side (see [40]).

SU(2) transformations. Write w = I+ i⃗ϵ·σ⃗ an infinitesimal SU(2) group element. Then,
the variation of a phase space function h under a left infinitesimal SU(2) transformation is
given by [40]:

δϵh = −λ−2κ−1{TrWX,h} = −λ−2κ−1{2ϵzλ2 + ϵ−λz + ϵ+λz̄, h} , (2.42)

where W = ϵz(I + σz) + ϵ−σ+ + ϵ+σ− and X is the flux vector defined in (2.40).
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Change of edge orientations. The way we associate variables to the sides of a ribbon
has been described above, as in fig.2.3. Changing the orientation of an edge is an involution
m which has the following effects on the variables,

m : u 7→ ũ−1 , m : ℓ 7→ ℓ̃−1 (2.43)

and since it is an involution, m(ũ) = u−1 and m(ℓ̃) = ℓ−1.

2.3.2 Ribbon graph and the first-class constraints

Considering now a full graph Γ embedded in Σ, we thicken it into a ribbon graph Γr by
thickening every link into a ribbon in the same way as in fig.2.3, where all ribbons are
embedded in Σ. An example is given in fig.2.5.

e1

e2 e3

e4 e5

e6

• •

•

u1

ũ2 ũ3

ℓ1

ℓ2

u4

ũ4
ℓ4

ℓ̃4

ℓ̃3

ℓ̃1 ũ5

u5

ℓ̃5

ℓ5

ℓ3ℓ̃2

ũ6u6

ℓ6

ℓ̃6

ũ1

u2 u3

R(v1) R(v2)

R(v3)

f

Figure 2.5: A graph Γ (on the left) and its correspondent ribbon graph Γr(on the right).

As such, a ribbon graph contains three types of simple faces (with no links inside):

i. faces within the ribbon R(e)’s for which the ribbon constraints are imposed - these are
the faces in grey in fig.2.5;

ii. faces surrounded by the short links of the ribbons decorated with fluxes only - these
are fat nodes - we call them ribbon nodes. If v is a node of Γ , then let R(v) be the the
corresponding ribbon node in Γr. In fig.2.5, these are faces R(v1), R(v2) and R(v3).
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iii. faces surrounded by the long links of the ribbons - these are the faces from the original
graph. There is one such face - f in fig.2.5.

Within each ribbon R(e), the holonomies and fluxes satisfy the Poisson brackets (2.35),
(2.36) and (2.38), while variables from different ribbons commute. Apart from the ribbon
constraints, we also have two sets of first-class constraints, namely the Gauss constraints
which are associated to nodes and the flatness constraints10 which are associated to faces.

The Gauss constraints and the kinematical phase space. For an n-valent node v,
the Gauss constraint imposes that the ordered product of the fluxes along the short links
of R(v) is trivial. Explicitly, the Gauss constraint reads

Gv =
−→∏

n
i ℓei,v , ℓei,v =

{
ℓi if oi = 1

ℓ̃−1i if oi = −1
, (2.44)

where oi = 1 corresponds to an outgoing link and oi = −1 corresponds to an incoming
link. For instance, the Gauss constraint for R(v3) in fig.2.5 is Gv3 = ℓ̃−12 ℓ6ℓ3 ≃ I.

The Gauss constraint generates SU(2) transformations. A phase space function h trans-
forms under the infinitesimal rotation parametrized by a infinitesimal vector ϵ⃗ as [40]

δϵh = −κ−1
n∏
i=1

Λ−2i {Tr(WGvG†v), h} , with W =

(
2ϵz ϵ−
ϵ+ 0

)
, (2.45)

where Λi is the first diagonal element of the matrix (2.27) of the i-th flux, ℓei,v, in Gv, that
is λi or λ̃

−1
i .

Alternatively, one can use the parametrization with ℓ† and ℓ̃† for the fluxes as in fig.2.4.
Then the Gauss constraint is transformed accordingly

Gv → G†−1v , (2.46)

and we have the same action in terms of the symmetry if we consider

δϵh = −1

κ

n∏
i=1

Λ−2i {Tr(W̃
(
GvG†v

)−1
), h} , with W̃ =

(
0 −ϵ−
−ϵ+ 2ϵz

)
, (2.47)

10We call them the flatness constraints to match the notion in loop gravity, but they do not impose
the zero curvature but a constant curvature. In other words, curvature excitation is defined on top of the
constant curvature given by the cosmological constant.
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where Λi is still λi or λ̃
−1
i according to the orientation of the link ei.

In fact, such a parametrization is not only an alternative one but a necessary piece for
constructing the complete kinematical phase space as ℓ and ℓ̃ only contain z and z̃ in their
matrix elements, while one also needs access to their complex conjugate counterparts z̄ and
¯̃z which are stored in ℓ−1 † and ℓ̃† respectively. We will see in Chapter 4 that both z and z̄
(as well as z̃ and ¯̃z) are needed to construct the Uq(su(2)) generators upon quantization.

Gauss constraints generate local SU(2) transformations through the Poisson brackets
[40, 41]. As usual in symplectic geometry, first-class constraints are not only imposed but
one also needs to quotient out the phase space by the orbits they generate. This is called
the symplectic quotient. Here, one obtains Pkin = SL(2,C)E//SU(2)V which is called the
kinematical phase space, where E and V denotes the number of links and nodes in Γ .

It was shown in [40] that the Gauss constraint for a trivalent node geometrically rep-
resents the hyperbolic cosine law, implying that the kinematical phase space describes
hyperbolic discrete geometries (more particularly hyperbolic triangles in that case).

The flatness constraints and the physical phase space. For a face surrounded by
m long links, the flatness constraint imposes that the ordered product of the holonomies
along the long links of ribbons is trivial. It is expressed in a similar way as the Gauss
constraint,

Ff =
−→∏

m
i uei,f , uei,f =

{
ui if oi = 1

ũ−1i if oi = −1
, (2.48)

where the orientation is relative to the orientation of f , which is naturally generated by the
orientation of Σ. Flatness constraints generate (deformed) translations [40]. The physical
phase space is then obtained via the symplectic quotient of the kinematical phase space by
the flatness constraints, Pphys = Pkin//AN(2)

F with F the number of the faces in Γ .

We also give an explicit example of the phase space for a simple group embedded on a
torus in Appendix B.2 and construct with the holonomies and fluxes of the ribbon graph
the physical observables which form the Goldman brackets [122]. This will be compared to
the Fock-Rosly phase space structure which we will describe in the next section. We also
refer to [77] for more details.

Up to now, we have developed the q-deformed loop gravity phase space in terms of the
holonomy and flux variables. The use of the r-matrix is reminiscent of the phase space
constructed by Fock and Rosly [85], which became well-known after it was used by Alekeev,
Grosse and Schomerus to define the combinatorial quantization of the Chern-Simons theory
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[7, 8]. This hints that there may be an explicit relation between our deformed phase space
and the Fock-Rosly one. This is indeed the case as shown in [77], which we describe in the
next section.

2.4 Relation with the Fock-Rosly construction

As illustrated in Chapter 1, 3D Euclidean gravity with Λ < 0 can be reformulated as
an SL(2,C) Chern-Simons theory. The symplectic structure of the moduli space of flat
SL(2,C) graph connections up to SL(2,C) gauge transformations can be described by the
so-called Fock-Rosly brackets. Quantizing this bracket and promoting it to commutators
of operators leads to the combinatorial quantization of Chern-Simons theory [7, 8, 53].
The question we want to explore is whether the 3D q-deformed loop gravity framework
could be reconciled with the Fock-Rosly phase space. This can be seen as a first step to
understanding the relation between the LQG approach and the quantum Chern-Simons
theory. To be explicit, we work on a toy model when Σ is a torus. This is the simplest
compact 2D manifold with a non-trivial topology, which allows us to construct non-trivial
global observables.

2.4.1 Fock-Rosly construction

Let us first briefly review the Fock-Rosly construction introduced in [85]. It is built on
a compact, oriented Riemann surface. We consider a cell decomposition of that surface
and focus on the graph defined by its 1-skeleton. We consider a Riemann surface with no
boundaries for simplicity11. We define a graph connection, as in lattice gauge theory, by
assigning an SL(2,C) group element, or holonomy, to each oriented link of the graph. The
Fock-Rosly construction provides the space of flat graph connections with a symplectic
structure compatible with gauge transformations. More precisely, we impose the flatness
of the SL(2,C) connection around every face of the graph and consider equivalence classes
under SL(2,C) gauge transformations at every node of the graph.

For this purpose, we introduce another combinatorial structure to the graph, a linear
order, denoted as ≺, of the links around each node. This is visually realized by adding a
cilium at each node, separating the links of the lowest and highest order. For each link α,
we denote as α(s) the half-link incident to the source and α(t) the opposite half-link incident
to the target. When two links α and β are incident to a same node v, i.e. α, β ∈ v, α ≺ β

11Fock-Rosly phase space is also defined for Riemann surfaces with boundaries [85].
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e1 e2

e3

•

Figure 2.6: One node with three incident links e1, e2, e3. The thick short strand represents
the cilium sitting at the node. The linear order of three links reads e1 ≺ e2 ≺ e3.

(or equivalent β ≻ α) represents that link β is of higher order than α relative to the node
v. (When the orientation is specified, say α(s), β(t) ∈ v, it is clearer to say α(s) ≺ β(t).) It
means when one sweeps the cilium sitting on v in the direction induced by the orientation
of Σ, the cilium meets with α before β. An example is shown in fig.2.6. A graph with a
linear order on each node is called a ciliated graph. On a ciliated graph, we further assign
an r-matrix r(v) to each node v. Each r-matrix is decomposed as r(v) = rs+ra(v) in terms
of its symmetric part rs =

1
2
(r(v)+r21(v)) and its antisymmetric part ra =

1
2
(r(v)−r21(v)).

As the notation suggests, we require that the symmetric parts rs of the r-matrices are all
the same and do not depend on the nodes, while their antisymmetric parts ra(v) are left
free. This allows us to define a Poisson structure on the space of graph connections by the
following bivector [85]:

πFR =
∑
v

( ∑
α,β∈v;α≺β

rij(v)Xα
i ∧X

β
j +

1

2

∑
α∈v

rij(v)Xα
i ∧Xα

j

)
, (2.49)

where Xα
i = Lαi + Rα

i is the sum of the right-invariant vector Rα
i and the left-invariant

vector Lαi associated to the SL(2,C) group element on link α and the basis ti ∈ sl(2,C).
They act on functions F ∈ C∞(SL(2,C)E) as

Lαi f(gα, · · · ) =
d

dν

∣∣∣∣
ν=0

f(e−νtigα, · · · ) , Rα
i f(gα, · · · ) =

d

dν

∣∣∣∣
ν=0

f(gα e
νti , · · · ) . (2.50)

The bivector πFR defines the Poisson brackets for all configurations. It would be clearer to
write the Poisson brackets for different cases out. Let us call Ge ∈ SL(2,C) the holonomy
along the link e. We call s(e) and t(e) respectively the source and target nodes of the
link e. Then the Fock-Rosly bracket {Ge

1, G
e′
2 }FR between the holonomies along the two

links e and e′ is defined by distinguishing the various configurations (the list below is not
exhaustive but representative):
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• For a single link e with distinct source and target, i.e. s(e) ̸= t(e):

{Ge
1, G

e
2}FR = ra(s(e))G

e
1G

e
2 +Ge

1G
e
2ra(t(e)) . (2.51a)

• For a single closed curve e oriented counterclockwise, i.e. s(e) = t(e) and e(s) ≺ e(t):

{Ge
1, G

e
2}FR = raG

e
1G

e
2 +Ge

2G
e
1ra +Ge

2r21G
e
1 −Ge

1rG
e
2 . (2.51b)

• For a single closed curve e oriented counterclockwise, i.e. s(e) = t(e) and e(t) ≺ e(s):

{Ge
1, G

e
2}FR = raG

e
1G

e
2 +Ge

2G
e
1ra +Ge

1r21G
e
2 −Ge

2rG
e
1 . (2.51c)

• For two links e, e′ with the same source but different targets distinct from the source,
i.e. s(e) = s(e′) but s(e), t(e), t(e′) all three distinct, and e(s) ≺ e′(s):

{Ge
1, G

e′

2 }FR = rGe
1G

e′

2 . (2.51d)

• For two closed loops e, e′ intersecting at a single node, i.e. s(e) = s(e′) = t(e) = t(e′),
with the order e(s) ≺ e′(s) ≺ e(t) ≺ e′(t):

{Ge
1, G

e′

2 }FR = rGe
1G

e′

2 +Ge
1G

e′

2 r +Ge′

2 r21G
e
1 −Ge

1rG
e′

2 . (2.51e)

All the Poisson brackets between two non-intersecting links vanish. Then the gauge trans-
formations at nodes, Ge 7→ Hs(e)G

eH−1t(e) for Hv ∈ SL(2,C), is a Poisson map leaving the

Fock-Rosly bracket invariant [85]. This confirms that the Fock-Rosly brackets provide the
moduli space of flat graph connection up to gauge transformations with a symplectic struc-
ture. One can further show that the definition of the Fock-Rosly bracket is stable under
contraction and deletion of links and leads to the so-called Goldman bracket [85].

If we compare the Fock-Rosly Poisson brackets (2.51) and those of the q-deformed loop
gravity ((2.35), (2.36) and (2.38)) on the same ribbon graph Γr, they look very different.
Apparently, in the q-deformed loop gravity phase space, variables from different ribbons
Poisson commute even though they are assigned on two ribbon links intersecting to the
same node in Γr. This is not the case in the Fock-Rosly phase space. In fact, we will
explain below that one needs to go one step further and introduce a “fat graph” Γfat and
that the q-deformed loop gravity on Γr turns out to result from the Fock-Rosly structure
on Γfat by a partial gauge-fixing.
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2.4.2 Gauge fixing of Fock-Rosly on the torus

In this subsection, we show that the loop gravity phase space for a given graph can be
obtained from the Fock-Rosly phase space through a particular gauge fixing. We will start
from the Fock-Rosly setup on a fat graph Γfat fattened from a ribbon graph Γr with special
assignments of r-matrices and cilia on nodes. Then we apply some particular gauge-fixing
to the holonomies on links by acting with some gauge transformations on the nodes one
after the other one. The gauge fixing process can change the values of the holonomies to
our preference but does not change the Poisson brackets. It allows us to fix the holonomies
on the auxiliary links to be the identity, which means one can shrink these auxiliary links
and change Γfat to Γr. In this way, we get a ribbon graph with the loop gravity phase space
structure from a bigger graph with the Fock-Rosly phase space structure.

e1
e2

v

ũ ũ

u u

v ṽ

v ṽ

ℓ ℓ̃
m

m̃

•
R(v)

f

R(e1)

R(e2)

Figure 2.7: (left) Basic graph for the 2-torus, with two links e1, e2 wrapping around the
torus meeting at a single node v and surrounding a single face f . (right) The corresponding
ribbon graph on the torus, parametrized by ℓ, ℓ̃,m, m̃ ∈ AN(2) and u, ũ, v, ṽ ∈ SU(2). The
ribbons, shaded in grey, are the thickened graph links.

To be explicit, we consider the ribbon graph as shown in fig.2.7, which is analyzed in
more detail in Appendix B.2. What we do here is to unfold the four 4-valent nodes of
the ribbon graph fig.2.7 into pairs of 3-valent nodes by adding an intermediate link. This
leads to a graph with twelve links, each decorated with SL(2,C) holonomies. This is the
fat graph on which we apply the Fock-Rosly structure. We note L,U, L̃, Ũ ,M, V, M̃, Ṽ the
eight group elements along the ribbon links, and P,Q, S, T the four group elements on the
new intermediate links. To simplify the notations, we refer to the link through the SL(2,C)
group element it carries.

In order to recover the loop gravity Poisson structure, we assign the r-matrix r21 to
the source nodes of the intermediate links s(P ), s(Q), s(S) and s(T ), while we assign the
r-matrix r to their target nodes t(P ), t(Q), t(S) and t(T ). We further choose all the cilia
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V Ṽ
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PQ
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f1

f2
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Figure 2.8: A fat graph on the torus. Nodes s(P ), s(Q), s(S) and s(T ) (in red) are assigned
the r-matrix r21, while nodes t(P ), t(Q), t(S) and t(T ) (in blue) are assigned r. On each
node, a cilium is introduced to fix the linear order of the links around this node. The cilia
are chosen to all look into the face f1.

looking inwards to the face f1 to fix the convention. A different choice of cilia would still
lead to the loop gravity phase space.

The Fock-Rosly brackets can be read directly from their definition (2.51a)-(2.51d) ap-
plied to the fat graph shown in fig.2.8. All the non-vanishing Fock-Rosly brackets related
to P are

{P1, L2}FR = L2rP1 , {L1, P2}FR = −L1r21P2 , {P1, U2}FR = −rP1U2 ,
{U1, P2}FR = r21U1P2 , {P1,M2}FR = P1rM2 , {M1, P2}FR = −P2r21M1 ,

{P1, Ṽ2}FR = P1rṼ2 , {Ṽ1, P2}FR = −P2r21Ṽ1 , {P1, P2}FR = [r21, P1P2] .
(2.52)

The Fock-Rosly phase space is defined on top of the Poisson brackets given above by
imposing the flatness of the SL(2,C) connection around the four faces of the fatter graph:

Cf1 = TLPMQL̃−1SM̃−1 , (2.53a)

Cf2 = UQ−1V S−1Ũ−1T−1Ṽ −1P−1 , (2.53b)

Cf3 = LUL̃−1Ũ−1 , (2.53c)

Cf4 =MV M̃−1Ṽ −1 , (2.53d)

and quotienting the SL(2,C) group action at the eight nodes of the graph.
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If we look at the Fock-Rosly brackets for the eight group elements L,U, L̃, Ũ ,M, V, M̃, Ṽ ,
they are the same Poisson brackets as for the loop gravity phase space parametrized by
the group elements ℓ, u, ℓ̃, ũ,m, v, m̃, ṽ. The only difference is that the Fock-Rosly brackets
involve SL(2,C) group elements, while the loop gravity group elements live alternatively in
the subgroups SU(2) and AN(2). Thus, in order to recover the loop gravity phase space,
we perform a partial gauge fixing of these SL(2,C) group elements. We start at the node
t(T ) = s(L) = s(Ũ) and will go around the face f1. We use the SL(2,C) gauge invariance
at that node to fix T = I. Then moving to the following node t(L) = s(U) = s(P ), we use
the Iwasawa decompositions L = ℓuL and U = ℓUu and perform a gauge transformation:

uLℓU = ℓ′u′ , G = (ℓ′)−1uL ,

∣∣∣∣∣∣∣
L 7→ LG−1 = ℓℓ′ ∈ AN(2) ,

U 7→ GU = u′u ∈ SU(2) ,

P 7→ GP = (ℓ′)−1uLP ,

(2.54)

thus gauge fixing L to live in AN(2) and U to live in SU(2).

Next, at the following node, t(P ) = s(M) = s(Ṽ ), we perform an SL(2,C) gauge
transformation to gauge fix to P = I. Then we repeat this pair of gauge fixings all around
the central face f1. So at the node t(M) = s(V ) = s(Q), we gauge fix to M ∈ AN(2)
and V ∈ SU(2). At the node t(Q) = t(U) = t(L̃) we gauge fix to Q = I. At the
node s(S) = s(L̃) = t(Ũ), we gauge fix to L̃ ∈ AN(2) and Ũ ∈ SU(2). At the node
t(S) = t(V ) = t(M̃), we gauge fix to S = I.

Finally at the last node s(T ) = s(M̃) = t(Ṽ ), we do not do anything. The flatness
condition around the face f1 automatically implies that the group element M̃ lives in
AN(2) while the flatness condition around the face f2 automatically implies that the group
element Ṽ lives in the SU(2) subgroup. Since we do not gauge-fix the group action at the
last node of the graph, we are left with a single SL(2,C) gauge invariance of our partially
gauge-fixed group variables.

This reproduces exactly the setting of the q-deformed loop gravity variables on the
ribbon graph, with the group elements ℓ, ℓ̃,m, m̃ ∈ AN(2) and u, ũ, v, ṽ ∈ SU(2) satisfying
the flatness constraints around the 4 faces of the graph:

Cf1 = uvũ−1ṽ−1 , Cf2 = ℓmℓ̃−1m̃−1 , Cf3 = ℓuℓ̃−1ũ−1 , Cf4 = mvm̃−1ṽ−1 . (2.55)

Since the SL(2,C) group action at the nodes is a Poisson map for the Fock-Rosly symplectic
structure [85], it is straightforward to check that the Fock-Rosly brackets on the original
SL(2,C) group elements L,U, L̃, Ũ ,M, V, M̃, Ṽ directly descend to Poisson brackets on the
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gauge-fixed group variables ℓ, u, ℓ̃, ũ,m, v, m̃, ṽ:

{ℓ1, ℓ2}FR = −[r21, ℓ1ℓ2] , {u1, u2}FR = −[r, u1u2] , {ℓ̃1, ℓ̃2}FR = [r21, ℓ̃1ℓ̃2] ,
{ũ1, ũ2}FR = [r, ũ1ũ2] , {m1,m2}FR = −[r21,m1m2] , {v1, v2}FR = −[r, v1v2] ,
{m̃1, m̃2}FR = [r21, m̃1m̃2] , {ṽ1, ṽ2}FR = [r, ṽ1ṽ2] , {ℓ1, u2}FR = −ℓ1r21u2 ,
{ℓ̃1, ũ2}FR = −ũ2r21ℓ̃1 , {m1, v2}FR = −m1r21v2 , {m̃1, ṽ2}FR = −ṽ2r21m̃1 .

(2.56)
These are precisely the (flat or q-deformed) loop gravity Poisson brackets. Cf1 and Cf2
are still first class constraints generating respectively the gauge invariance under AN(2)
translation and SU(2) rotations, while Cf3 and Cf4 are second class constraints directly
hardcoded in the Poisson brackets. This explicitly shows that the loop gravity phase space
can be reconstructed from the Fock-Rosly description by a specific gauge fixing.

Let us stress that the partial gauge fixing introduced here mapping the Fock-Rosly
phase space to the q-deformed loop gravity phase space is very different from the gauge
fixing usually done in the Fock-Rosly approach to go from a refined graph to a coarse-
grained graph (subgraph of the original graph) by simply setting all the extra SL(2,C)
group elements to the identity. These different gauge fixings produce different intermediate
Poisson brackets, which nevertheless all lead to the same Goldman brackets on the SL(2,C)
gauge-invariant variables. See [77] for more discussion. These analysis and results can be
generalized to graphs on a general 2D manifold with no boundaries. For a given graph,
one merely needs to start from a corresponding fat graph with the Fock-Rosly Poisson
structure and apply the same gauge fixing procedure to obtain the ribbon graph with the
Poisson structure of the deformed loop gravity. For manifolds with boundaries, we need
to specify the ribbon configurations on the boundaries for the ribbon graph depending
on the boundary conditions and be careful on the gauge fixing procedure located at the
boundaries for the corresponding fat graph. We leave it for future investigation.

With such an explicit relation, it follows that the observable algebra constructed in the
Fock-Rosly phase space and the loop gravity phase space coincide. This relation builds
a bridge between the LQG quantization approach and the combinatorial quantization ap-
proach at the classical level, while the complete relation at the quantum level remains to
be explored.

2.5 The Λ = 0 case: loop gravity

Finally, we end this chapter by considering the Λ→ 0 limit of the q-deformed loop gravity
model developed above. To deserve the name of “q-deformation”, one needs to recover
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the standard 3D loop gravity structure. To this end, we first review the Λ = 0 case of 3D
gravity in the standard description in Subsection 2.5.1. It turns out that it can be rewritten
in the Heisenberg double framework (Subsection 2.5.2) as we did in the q-deformed loop
gravity but defined with a different r-matrix and a different group. This gives a unified
construction of the discrete phase space for gravity with or without cosmological constant,
and the q-deformed phase space is then really a deformed version of the standard loop
gravity phase space. Conversely, one can also directly take the Λ→ 0 limit of the variables
in the q-deformed loop gravity model to recover those in the flat case. We perform this
analysis in Subsection 2.5.3. This can be seen as a consistency check to further confirm
the notion of deformation. It will also be useful as a reference when we build the spinorial
phase space in the next chapter.

2.5.1 The standard phase space for 3D loop gravity

The phase space for canonical 3D loop gravity encodes the basic geometrical degrees of
freedom of a discretized 2D surface (see [71, 91] for a thorough and careful discretization).
Considering an oriented graph Γ , the basic building block is a T ∗SU(2) ∼= ISU(2) phase
space associated to each link e ∈ Γ . For each oriented link, we define a group element
ge ∈ SU(2) along the link and a vector x⃗e ∈ R3 thought of as living on the source node
s(e) of the link e, as illustrated on fig.2.9. We identify this vector with an su(2)-Lie
algebra valued element xe := xaeσ

a. The group element ge gives the holonomy of the SU(2)
connection along the link while the vector xe is the discretized geometric flux transverse
to that link, defined as the integrated triad along the edge of a 2D triangulation dual to
the graph.

e

(a) Oriented graph Γ .

g−1e•
xe

•
x̃e = ge ▷ xe

(ge, xe) ∈ SU(2)× su(2)

(b) T ∗SU(2) phase space on the
link e.

•v

Gv =
∑

e|v=s(e) xe −
∑

e|v=t(e) x̃e

(c) Gauss constraint at a
node v.

Figure 2.9: Holonomy-flux phase space for 3D loop gravity on a graph Γ .

Decomposing the flux vector on the Pauli matrix basis for Hermitian matrices, xe =
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xaeσ
a (a = 1, 2, 3), the T ∗SU(2) symplectic structure is explicitly given by the Poisson

brackets:

{xae , ge} =
i

2
σage , {xae , xbe} = ϵabcxce , {ge, ge} = 0 . (2.57)

We also define the flux vector at the target node t(e) by parallel transporting xe by the
SU(2) holonomy ge, x̃e = ge▷xe = g−1e xege, satisfying flipped su(2) algebra Poisson brackets:

{xae , x̃be} = 0 , {x̃ae , ge} =
i

2
geσ

a , {x̃ae , x̃be} = −ϵabcx̃ce . (2.58)

We now consider the graph Γ with E links. The loop gravity phase space on Γ is
defined by considering the collection of the independent T ∗SU(2) phase spaces living on
each link e ∈ Γ and coupling them at the graph nodes by a Gauss constraint. At each
node v ∈ Γ ,

Gav =
∑

e|v=s(e)

xae −
∑

e|v=t(e)

x̃ae ≃ 0 . (2.59)

Imposing G⃗v = 0⃗ amounts to requiring that the incoming flux at the node v equals the
outgoing flux. This Gauss constraint generates the gauge invariance under SU(2) transfor-
mations around the node:

{Ga,Gb} = ϵabcGc ,
∀e | v = s(e) , {Ga, xbe} = ϵabcxce ,

∀e | v = t(e) , {Ga, x̃be} = ϵabcx̃ce .
(2.60)

The symplectic quotient of the product of the link phase spaces T ∗SU(2)E by the
Gauss constraint defines the kinematical phase space of 3D loop gravity on the graph
Γ . In the context of loop gravity in 3+1 dimensions, this holonomy-flux phase space is
interpreted as discrete three-dimensional twisted geometries [108] (see also [78, 109, 100]).
Here, in 3D space-time dimensions, these are meant to represent 2D discrete geometries.
This becomes explicit once we impose the Hamiltonian constraints for 3D loop quantum
gravity, implemented as flatness constraints for the SU(2) holonomies around loops of the
graph, which implies that we can reconstruct a 2D geometric triangulation dual to the
graph (see e.g. [43, 44, 38]).

2.5.2 Poincaré group as a Heisenberg double

In fact, the Poincaré group as a phase space can also be written as a Heisenberg double,
which was not realized until the work of [40] (see also [77]). This allows us to view the
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loop gravity phase space as the Λ→ 0 limit of that of the q-deformed loop gravity in the
same framework. Indeed, when κ = 0, the Lie brackets (2.29) for ρa vanish hence the Lie
algebra for the fluxes becomes R3 and the group of the phase space becomes the Poincaré
group ISU(2) = SU(2) ⋉ R3. In this subsection, we will see that considering the Poincaré
group as a Heisenberg double, the Poisson structure of ISU(2) is encoded in the r-matrix
given as the tensor product of the generators of SU(2) and R3 (see e.g. [3, 135]).

We start by representing Poincaré group elements (g, x) ∈ SU(2) × R3 in terms of 4×
4 matrices written as 2×2 block matrices12:

(g, x) =

(
g ixg
0 g

)
, (2.61)

where g ∈ SU(2) is represented in its fundamental representation as a 2×2 unitary matrix
and x = x⃗ · σ⃗ ∈ su(2) is represented as a 2×2 traceless Hermitian matrix. For x ̸= 0, the
expression xg is the polar decomposition of an arbitrary 2×2 invertible complex matrix.
These provide a representation of the Poincaré group multiplication:

(g1, x1)(g2, x2) =

(
g1 ix1g1
0 g1

)(
g2 ix2g2
0 g2

)
=

(
g1g2 i(x1 + g1x2g

−1
1 )g1g2

0 g1g2

)
= (g1g2, x1 + g1x2g

−1
1 ) . (2.63)

Each Poincaré group element admits a unique decomposition as the product of a translation
and a rotation:

(g, x) =

(
g ixg
0 g

)
=

(
I ix
0 I

)(
g 0
0 g

)
= (I, x)(g, 0) = ℓu

with ℓ = (I, x) and u = (g, 0) . (2.64)

12Another parametrization of Poincaré group elements was used in [40], the spin-1 representation for the
SU(2) group elements instead of the spin- 12 used here. It still led to 4×4 matrices, but the SU(2) group
elements were encoded in a 3×3 block while the su(2) vectors were written as 3-vectors:

(g, x) =

(
D1(g) x⃗

0 1

)
, (2.62)

with D1(g) the 3×3 Wigner matrix representing the SU(2) group element as a 3D rotation acting on
3-vectors.
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The generators of the Poincaré Lie algebra are the Ja’s for the SU(2) subgroup and Ea for
the su(2) subgroup :

Ja =
1

2

(
σa 0
0 σa

)
, u = eiv

aJa

=

(
g 0
0 g

)
with g = e

i
2
vaσa

, (2.65)

Ea =

(
0 σa

0 0

)
, EaEb = 0 , ∀a, b , ℓ = eix

aEa

= I+ixaEa =

(
I ix
0 I

)
, (2.66)

which satisfies the Poincaré algebra commutators:

[Ja, J b] = iϵabcJ c , [Ja, Eb] = iϵabcEc , [Ea, Eb] = 0 . (2.67)

Provided with the bilinear form on the Lie algebra isu(2) spanned by the Ea and Ja,

B(M,N) := Tr

[
MN

(
0 I
I 0

)]
, ∀M,N ∈ isu(2) , (2.68)

which defines a pairing between the rotation and translation generators, B(Ea, J b) = δab,
B(Ea, Eb) = B(Ja, J b) = 0, the Heisenberg double structure defines a r-matrix:

r =
∑
a

Ja ⊗ Ea , r21 =
∑
a

Ea ⊗ Ja , (2.69)

which naturally satisfies the classical Yang-Baxter equation [77].

Moreover, this r-matrix defines a Poisson bracket on the Poincaré group ISU(2) endow-
ing it with a phase space structure:

{ℓ1, ℓ2} = −[r21, ℓ1ℓ2] , {u1, u2} = −[r, u1u2] , {ℓ1, u2} = −ℓ1r21u2 , {u1, ℓ2} = ℓ2ru1 ,
(2.70)

which takes exactly the same form as (2.35). It can also be directly written in a compact
form as a Poisson bracket for an arbitrary Poincaré group element :

d ≡ (g, x) = ℓu , {d1, d2} = rd1d2 − d1d2r21 , (2.71)

which reproduces the form of (2.34). Explicitly computing the Poisson brackets between
ℓ and u leads back to the T ∗SU(2) brackets of the 3D loop gravity phase space structure
for the variables on a link:

{g, g} = 0 , {xa, g} = i

2
σag , {xa, xb} = ϵabcxc (2.72)
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as was given in (2.57). In particular, it is interesting that the Poisson bracket {u1, u2}
vanishes because u ⊗ u commutes with r for u ∈ SU(2). We have seen that this Poisson
bracket becomes non-trivial in the deformed case accounting for a non-vanishing cosmo-
logical constant.

We now want to get the Poisson bracket for the target flux x̃. We assume that the par-
allel transport equation along the link amounts to switching the decomposition as follows.

d = (g, x) = (I, x)(g, 0) = (g, 0)(I, x̃) . (2.73)

Then decomposing the Poincaré group element d = ũℓ̃ with actually ũ = u ≡ (g, 0) gives
similar Poisson brackets:

{ℓ̃1, ℓ̃2} = [r21, ℓ̃1ℓ̃2] , {ℓ̃1, ũ2} = −ũ2r21ℓ̃1 , {ũ1, ℓ̃2} = ũ1rℓ̃2 , {ũ1, ũ2} = [r, ũ1ũ2] ,
(2.74)

which leads to the switched T ∗SU(2) brackets for g̃ = g and x̃:

{g, g} = 0 , {x̃a, g} = i

2
gσa , {x̃a, x̃b} = −ϵabcx̃c , (2.75)

where we recognize (2.36). (2.73) can be graphically represented flatnss constraint for a
ribbon as shown in fig.2.10.

ℓ = (I, x) ℓ̃ = (I, x̃)

u = (g, 0)

ũ = (g, 0)

Figure 2.10: The ribbon graph for loop gravity with ℓ, ℓ̃ ∈ su(2) and u = ut ∈ SU(2). The
ribbon constraint can be written as ℓuℓ̃−1ũ−1, hence in the same form of the q-deformed
case.

This allows us to reformulate the Poisson bracket for the ISU(2) holonomy d = (g, x)
going along the ribbon in terms of the r-matrix for the Poincaré group seen as a Heisenberg
double hence establishing that the q-deformed loop gravity structure is really a q-deformed
loop gravity.
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2.5.3 κ→ 0 limit of the deformed flux vectors

One can also take the κ → 0 limit of the q-deformed variables X⃗ defined in (2.40) and

likewise for ⃗̃X, which would recover the flat flux vectors x⃗ and ⃗̃x and the Poisson brackets
(2.35) and (2.36) would recover (2.57) and (2.58). We now establish these.

Recall that∣∣∣∣∣∣∣∣∣∣
X0 = 1

2κ
(λ2 + λ−2 + |z|2)

X1 = − 1
2κ
λ(z + z̄)

X2 = − i
2κ
λ(z̄ − z)

X3 = − 1
2κ
(λ2 − λ−2 − |z|2)

,

∣∣∣∣∣∣∣∣∣∣
X̃0 = 1

2κ
(λ̃2 + λ̃−2 + |z̃|2)

X̃1 = − 1
2κ
λ̃(z̃ + ¯̃z)

X̃2 = − i
2κ
λ̃(¯̃z − z̃)

X̃3 = − 1
2κ
(λ̃2 − λ̃−2 − |z̃|2)

. (2.76)

We first write the Poisson brackets (2.35), (2.36) and (2.38) explicitly in terms of the
deformed flux vectors Xµ and X̃µ:∣∣∣∣∣∣∣∣∣∣

{Xa, Xb} = ϵabcκ(X
0 −X3)Xc ,

{X1, ũ} = i
2
κ(X0 −X3)σ1ũ ,

{X2, ũ} = i
2
κ(X0 −X3)σ2ũ ,

{X3 +X0, ũ} = i
2
κ(X0 −X3)σ3ũ ,

∣∣∣∣∣∣∣∣∣∣∣

{X̃a, X̃b} = −ϵabcκ(X̃0 − X̃3)X̃c ,

{X̃1, ũ} = i
2
κ(X̃0 − X̃3)ũσ1 ,

{X̃2, ũ} = i
2
κ(X̃0 − X̃3)ũσ2 ,

{X̃3 + X̃0, ũ} = i
2
κ(X̃0 − X̃3)ũσ3 ,

{X0, Xa} = {X̃0, X̃a} = {Xa, X̃b} = 0 .

(2.77)

The difference with the standard flat holonomy-flux brackets of the T ∗SU(2) phase space,
given in (2.57) and (2.58), are the rescaling factors λ2 = κ(X0−X3) and λ̃2 = κ(X̃0−X̃3).
The flat limit κ → 0 is an inhomogeneous scaling of the flux 4-vector. As κ is sent to
0, the hyperboloid X2

0 − X⃗2 = κ−2 becomes the flat R3 space, with the inhomogeneous
limit κX0 → 1, with X0 ∼ κ−1 sent to +∞, while the 3D flux vector Xa remains finite.
This actually sends the SL(2,C) Poisson brackets written above to the T ∗SU(2) Poisson
brackets of the standard “flat” loop gravity, given in (2.57) and (2.58).

To avoid the subtleties of the inhomogeneous re-scaling limit, we can take the Euler
parametrization of the AN(2) fluxes in terms of the AN(2) generators [40, 77]:

ℓ = e−j
3ρ3e−j

1ρ1e−j
2ρ2 , λ = e−

κ
2
j3 , z = −κe

κ
2
j3(j1+ij2) = −e

κ
2
j3κj+ , z̄ = −e

κ
2
j3κj− ,
(2.78)

where ja ∈ R3 is an arbitrary 3-vector. The flat limit κ→ 0 is taken keeping the 3-vector
ja finite: ∣∣∣∣∣ κX0 = coshκj3 + κ2

2
eκj

3
j+j−

κ→0−−→ 1 ,

X3 = sinhκj3

κ
− κ

2
eκj

3
j+j−

κ→0−−→ j3 ,

∣∣∣∣ X1 = j1 ,

X2 = j2 .
(2.79)
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Similarly defining the 3-vector j̃a for the target flux ℓ̃, we recover the T ∗SU(2) Poisson
brackets (2.57) and (2.58) of flat loop gravity in the limit κ→ 0:

{ja, jb} → ϵabcj
c , {ja, ũ} → i

2
σaũ , {ũ, ũ} → 0 ,

{j̃a, j̃b} → −ϵabcj̃c , {j̃a, ũ} → i
2
ũσa , {ja, j̃b} = 0 .

(2.80)

Reciprocally, the SL(2,C) Poisson brackets (2.77) define the curved deformation of the
T ∗SU(2) Poisson brackets extending them to take into account a non-vanishing cosmolog-
ical constant. This establishes that the q-deformed loop gravity phase space variables and
the Poisson structures are the deformations of the Poincaré phase space counterpart, with
the deformation parameter determined by the value of the cosmological constant.

To summarize, we have reviewed in this section the loop gravity phase space with Λ = 0
in terms of the holonomy and flux vectors. As we will start introducing the notion of spinors
in the next chapter from the flat case, the holonomy-flux algebra described here serves as
a reference to justify the construction of spinors. We have also related the loop gravity
phase space to the q-deformed phase space illustrated in Section 2.3 in two ways - firstly
by reformulating the loop gravity phase space in the Heisenberg double framework and
secondly by taking the κ → 0 limit of the phase space variables in the q-deformed phase
space to recover the holonomy and flux vectors in the loop gravity phase space. A unified
description of the phase space for Λ = 0 and Λ ̸= 0 cases could be useful for building the
relation to the Chern-Simons quantization in a more systematic manner, which is left for
future investigation. This construction can also be generalized to 4D gravity. This has
been initiated in recent works [121, 117], where the Drinfeld double was generalized to the
notion of 2-Drinfeld double in terms of 2-groups.
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Chapter 3

Spinorial representation for loop
gravity

We described in the previous chapter the loop gravity phase space using the holonomy-flux
variables in the flat (Λ = 0) case and the q-deformed case with the corresponding deformed
variables. These phase spaces can be equivalently represented by the (deformed) SU(2)-
covariant spinors. A spinor is a pair of complex variables transforming covariantly under
SU(2). They live on the half-links of the lattice and thus will make it easier to construct
local, gauge-invariant quantities, i.e. observables. Note that these spinors do not encode
matter degrees of freedom, they are just a different parametrization of the phase-space.
There were initially introduced in the LQG formalism as a different parametrization of the
T ∗SU(2) phase space [118, 98, 99, 142, 44, 75, 74]. The benefits of using spinors will be
fully revealed at the quantum level, which we will explore in Chapter 7.

In this chapter, we intend to construct the deformed spinors which provide an alter-
native parametrization of the deformed holonomy-flux phase space, which will allow us to
construct the (deformed) notion of observables for this setup. We start by introducing
spinors in the flat case in Section 3.1, which reproduce the holonomy-flux phase space for
Λ = 0. We then perform a κ-deformation on these spinors, which is helpful to recover the
AN(2) parametrization, e.g. z, λ in (2.27). However, these deformed versions of spinors
are not covariant under SU(2). We are then led to further deform them to be the SU(2)-
covariant ones. These SU(2)-covariant spinors are the key objects we will use to construct
the quantum theory. Their definitions are in fact highly hinted by the quantum spinors
[33, 148] which will be clear when we introduce them in Chapter 5.
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3.1 Spinors as geometrical objects

In this section, we review the definition of spinors and use it to construct the spinorial phase
space of loop gravity, which is isomorphic to the holonomy-flux phase space described in
Section 2.5.

Let us introduce the spinor components ζA ∈ C (A = ±1
2
) and their complex conjugate

ζ̄A where the subscripts are denoted as ± for short. (The same subscript notation will be
used for the deformed spinors and their quantizations.) Then a spinor is defined as

|ζ⟩ :=
(
ζ−
ζ+

)
, ⟨ζ| :=

(
ζ̄−, ζ̄+

)
. (3.1)

We also introduce the dual spinor by a dual map ς

|ζ] ≡ |ςζ⟩ :=
(

0 −1
1 0

)
|ζ̄⟩ =

(
−ζ̄+
ζ̄−

)
, [ζ| ≡ ⟨ςζ| := ⟨ζ̄|

(
0 1
−1 0

)
=
(
−ζ+, ζ−

)
.

(3.2)
A spinor and its corresponding dual spinor share the same norm, which we denote as
N = ⟨ζ|ζ⟩ = [ζ|ζ] = N− +N+ ≡ ζ−ζ̄− + ζ+ζ̄+. A spinor transforms covariantly under the
SU(2) action |ζ⟩ → g|ζ⟩ (g ∈ SU(2)) in the fundamental representation of SU(2). Thus
the SU(2)-, hence SL(2,C)- by complexification, invariant objects can be naturally formed
by the inner product of two spinors, say |ζ⟩ (or |ζ]) and |γ⟩ (or |γ])

⟨γ|ζ⟩ = [ζ|γ] =
∑

A=±1/2

γ̄AζA , [γ|ζ⟩ = −γ+ζ− + γ−ζ+ , ⟨γ|ζ] = −γ̄−ζ̄+ + γ̄+ζ̄− . (3.3)

|ζ] is dual to |ζ⟩ in the sense that they are orthogonal via the inner product, i.e. [ζ|ζ⟩ ≡ 0.

Now we want to use some copies of these spinors to reconstruct the loop gravity phase
space structure for one link. Consider a pair of spinors {|ζ⟩, |ζ̃⟩}, whose components are
provided with the Poisson brackets

{ζA, ζ̄B} = {ζ̃A, ¯̃ζB} = −iδAB , A,B = ±1/2 , (3.4)

and all the non-tilde spinors commute with the tilde spinors. As for the non-tilde spinors,

we denote the norm ζ̃A
¯̃ζA of ζ̃A as ÑA and Ñ = Ñ− + Ñ+ = ⟨ζ̃|ζ̃⟩ = [ζ̃|ζ̃]. We assign this

pair of spinors on a link as in fig.3.1.
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g−1e ∈ SU(2)

e|ζe⟩ |ζ̃e]

Figure 3.1: The spinors associated to a link e and related by parallel transport by an SU(2)
group element g−1e . The non-tilde spinor |ζe⟩ is assigned to the source of the link and the
tilde spinor |ζ̃] is assigned to the target of the link.

This pair of spinors reproduce the holonomy and flux (g, x⃗) ∈ SU(2)⋉R3 (or equivalently
(g, ⃗̃x) ∈ SU(2) ⋉ R3) in the flat case as follows. We introduce the Hermitian matrices
x := |ζ⟩⟨ζ| and x̃ := |ζ̃⟩⟨ζ̃|, then project them onto the identity and the Pauli matrices

|ζ⟩⟨ζ| = x0 I− x⃗ · σ⃗ with x0 ≡ |x⃗| ≡ 1
2
⟨ζ|ζ⟩ , x⃗ ≡ 1

2
⟨ζ|σ⃗|ζ⟩ ∈ R3 ,

|ζ̃][ζ̃| = x̃0 I− ⃗̃x · σ⃗ with x̃0 ≡ |⃗̃x| ≡ 1
2
[ζ̃|ζ̃] , ⃗̃x ≡ 1

2
[ζ̃|σ⃗|ζ̃] ∈ R3 ,

(3.5)

where |x⃗| (resp. |⃗̃x|) is the norm of the vector x⃗ (resp. ⃗̃x). The vectors x⃗ and ⃗̃x are the
flux vectors we introduced in the holonomy-flux representation.

We now relate the non-tilde spinor variables and the tilde spinor variables by an SU(2)
action

g−1|ζ⟩ = |ζ̃] , g−1|ζ] = −|ζ̃⟩ , g ∈ SU(2) . (3.6)

The first relation is illustrated in fig.3.1. Then one can deduce that the matrices x and
x̃ are related by an SU(2) adjoint action: x̃ = g−1xg. (3.6) determines the SU(2) group
element g uniquely to be1

g =
|ζ⟩[ζ̃| − |ζ]⟨ζ̃|√
⟨ζ|ζ⟩⟨ζ̃|ζ̃⟩

, (3.7)

which is the reconstruction of the holonomy in the loop gravity phase space. (3.7) also
implies that the spinors |ζ⟩ and |ζ̃⟩ satisfy a norm matching constraint

N := ⟨ζ|ζ⟩ − ⟨ζ̃|ζ̃⟩ , (3.8)

which generates a U(1) transformation on spinors {N , |ζ⟩} = i|ζ⟩, {N , |ζ̃⟩} = −i|ζ̃⟩. The
finite gauge transformation reads

|ζ⟩ U(1)−−→ eiθ|ζ⟩ , |ζ̃⟩ U(1)−−→ e−iθ |ζ̃⟩ , ⟨ζ| U(1)−−→ e−iθ⟨ζ| , ⟨ζ̃| U(1)−−→ eiθ⟨ζ̃| . (3.9)

1Note that ⟨ζ|ζ⟩ ≡ [ζ|ζ] and ⟨ζ̃|ζ̃⟩ ≡ [ζ̃|ζ̃].
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One can not only reproduce the holonomy and flux variables, but also the Poisson
brackets between them. Using (3.4), the variables (x⃗, g) (or equivalently (⃗̃x, g)) defined in
(3.5) and (3.7) indeed satisfy

{xa, g} = i
2
σag , {xa, xb} = ϵabcxc , {g, g} N=0≃ 0 ,

{x̃a, g} = i
2
gσa , {x̃a, x̃b} = −ϵabcx̃c , {xa, x̃b} = 0 ,

(3.10)

which are the Poisson structure of the loop gravity phase space with Λ = 0, i.e. the
T ∗SU(2) phase space described in Section 2.5. Note that (x, g) are invariant under the U(1)
transformation (3.9), thus the loop gravity phase space can be reconstructed completely
as a symplectic reduction of the spinor phase space C2 × C2:

T ∗SU(2)\{|x⃗| = 0} = C2 × C2\{⟨ζ|ζ⟩ = 0, ⟨ζ̃|ζ̃⟩ = 0}//U(1) . (3.11)

Let us now consider an oriented graph Γ with E links and V nodes. For each link e, we
assign a non-tilde spinors |ζe⟩ to its source node s(e) and a tilde spinors |ζ̃e] to its target
node t(e). They are related by an SU(2) action thus satisfy the norm matching constraint

g−1e |ζe⟩ = |ζ̃e] , ⟨ζe|ζe⟩ = [ζ̃e|ζ̃e] . (3.12)

ge’s can be viewed as an assignment to the links. The kinematical phase space of Γ is
defined as the collection of (ζe, ζ̃e) ∈ C2×C2 for each link imposing the closure constraints

C⃗v for each node:
C⃗v =

∑
e|v=s(e)

⟨ζe|σ⃗|ζe⟩ −
∑

e|v=t(e)

[ζ̃e|σ⃗|ζ̃e] . (3.13)

The phase space defined with spinors allows us to have a U(n) reformulation of LQG
after quantization [98, 99, 50]. The essential idea, from the geometrical point of view, is
to change the building blocks from degrees of freedom on links (which are holonomies or
fluxes) to those on nodes (which are spinors). For each (n-valent) node v, we define an
n × n symmetric matrix E and two n × n asymmetric matrices F and G with complex
entries representing the correlation of spinors associated to different half-links incident to
the same node. (we will use the Latin indices i, j, k, l in the subscript to label the legs of
the node):

Eij = ⟨ζi|ζj⟩ , Eji = Eij ,

Fij = [ζi|ζj⟩ , Fji = −Fij ,
Gij = F ij ≡ ⟨ζj|ζi] , Gji = −Gij ,

(3.14)
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where the bar denotes the complex conjugate. These SU(2) observables form a closed
algebra. With no loss of generality, consider that all the links incident to the node v are
outgoing, then the Poisson brackets of the components read

{Eij, Ekl} = i(δilEkj − δjkEil) , {Eij, Fkl} = i(δilFjk − δikFjl) ,
{Eij, Gkl} = i(δjlGik − δjkGil) , {Fij, Fkl} = 0 , {Gij, Gkl} = 0 ,

{Fij, Gkl} = i(δikElj − δilEkj + δjlEki − δjkEli) .
(3.15)

It can be seen from the first Poisson bracket that the components of the matrix E form
a u(n) Poisson algebra and the components of E,F,G together form a so∗(2n) Poisson
algebra [120]. We will use the spinors defined in this subsection to define a spinfoam
model for 3D quantum gravity with Λ = 0 in Chapter 7 whose building blocks capture the
conformal geometries, different from the standard spinfoam model. On the other hand, to
recover the q-deformed loop gravity phase space, one needs to deform the spinors and their
Poisson brackets (3.4). We will describe below how this deformation is performed, which
also lead to the deformation of the algebras (3.15).

3.2 q-deformed spinors

We aim to find the spinors that transform covariantly under the SU(2) gauge transfor-
mation (2.45) (or (2.47)) in the q-deformed phase space. To this end, one needs to start
from the correct spinor variables. Indeed, the spinor variables ζA and ζ̃A capture only the
flat geometries as they reproduce the loop gravity phase space and no Λ information is
encoded. We will perform a deformation of these spinor variables in two consecutive steps
to arrive at the SU(2)-covariant spinors in the q-deformed picture. Graphically, spinors
are assigned to the half links of each link. After the deformation, each SU(2)-covariant
spinor is associated to the two half ribbon links meeting at the same node of a ribbon.
The deformation process can be summarized as in fig.3.2, with the spinors therein defined
in the main text. Some of the initial results have been given in [73], and the main part of
the rest of this chapter is from the work in [41] by the author and collaborators.

61



g ∈ SU(2)

|ζ⟩ |ζ̃]
κ g′ /∈ SU(2)

|ζκ⟩ |ζ̃κ]
ℓ ℓ̃

ũ

u
•

|τ⟩
•
|t̃]

•
|τ̃ ]

•
|t⟩

Figure 3.2: Two consecutive deformations of the spinors in the flat case to arrive at the
SU(2)-covariant spinors in the ribbon picture.

3.2.1 Basic variables

We can now define the κ-deformed spinor |ζκ⟩ from |ζ⟩, with its dual ⟨ζκ| and norm ⟨ζκ|ζκ⟩
[73] (Recall that κ =

√
|Λ|):

ζκA := ζA

√
sinh(κ

2
NA)

κ
2
NA

, ζ̄κA ≡ ζκA , with NA = ζ̄AζA , (3.16)

⟨ζκ|ζκ⟩ =
∑
A

ζ̄κAζ
κ
A =

∑
A

2

κ
sinh(

κNA

2
) =

1

κ

∑
A

(
e

κNA
2 − e

−κNA
2

)
≥ 0 , (3.17)

These κ-deformed spinors satisfy the following Poisson brackets

{ζκA, ζ̄κB} = −i δAB cosh(
κNA

2
), {NA, ζ

κ
B} = i δAB ζ

κ
A, {NA, ζ̄

κ
B} = −i δAB ζ̄κA . (3.18)

It is easy to check that we recover the undeformed Poisson brackets (3.4) when κ→ 0.
The deformed variable |ζ̃κ⟩ is defined from |ζ̃⟩ by (3.16) and (3.17) where all ζA are replaced
by ζ̃A.

Change of link orientations. Since there are no differences between |ζκ⟩ and |ζ̃κ⟩, and
since changing the orientation of a link exchanges the two sectors, it is natural to lift the
involution m to the spinor space as follows,

m(ζκA) = ζ̃κA, m(ζ̃κA) = ζκA , for A = ±1/2 . (3.19)

Reconstructing the fluxes. We will use ζκ± to reconstruct ℓ and ζ̃κ± to reconstruct ℓ̃.

Since the spinors in the tilde and non-tilde sectors are identical whereas m(ℓ) ̸= ℓ̃, ℓ can
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not be the same function of ζκ± as ℓ̃ is of ζ̃κ±. We use

λ ≡ exp(κ
4
(N+ −N−)) , z ≡ −κζ̄κ−ζκ+ ,

λ̃ ≡ exp(κ
4
(Ñ− − Ñ+)) , z̃ ≡ κ ¯̃ζκ−ζ̃

κ
+ .

(3.20)

By applying m to (3.20), we recover as expected that m(λ) = λ̃−1 and m(z) = −z̃. The
AN(2) matrices ℓ and ℓ̃ become functions of the spinors,

ℓ(ζκ±, ζ̄
κ
±) =

(
λ 0
z λ−1

)
, ℓ̃(ζ̃κ±,

¯̃ζκ±) =

(
λ̃ 0

z̃ λ̃−1

)
, (3.21)

and m(ℓ) = ℓ̃−1. It is easy to check that these AN(2) matrix elements do satisfy the
expected explicit Poisson brackets (B.4). Let us point out that z, z̄, λ all commute with
N = N− +N+, {N, z̄} = {N, λ} = {N, z} = 0.

While the deformed variables |ζκ⟩ and |ζ̃κ⟩ are important in parametrizing the AN(2)
elements and generating the (infinitesimal) rotation transformations [40], they are not yet
the spinors we will use to reconstruct the holonomy-flux phase space, because they do not
transform covariantly under the SU(2) action.

3.2.2 Covariant Spinors

Let us now define the variables which transform covariantly as spin 1/2 under SU(2),
i.e. either (2.45) or (2.47), depending on if we consider the ribbon variable ℓ or ℓ−1†. We
consider the first case, where we deal with ℓ. We recall that X = ℓℓ† with ℓ an AN(2)
element now parametrized as in (3.21) whose entries are defined in terms of the spinor
variables given in (3.20).

Covariant spinor. An SU(2)-covariant spinor (henceforth spinor) |T ⟩ is defined by the
transformation law

δϵ|T ⟩ ≡ (w − I)|T ⟩ = i

(
ϵz ϵ−
ϵ+ −ϵz

)
|T ⟩ . (3.22)

As shown in [79], the only two independent solutions (up to normalization) to equating
the RHS of (3.22) with the RHS of (2.42) are |t⟩ and its dual |t] defined as

|t⟩ =
(
t−
t+

)
=

(
e

κN+
4 ζκ−

e−
κN−

4 ζκ+

)
, |t] =

(
0 −1
1 0

)
|t⟩ =

(
−t̄+
t̄−

)
=

(
−e−

κN−
4 ζ̄κ+

e
κN+

4 ζ̄κ−

)
,

(3.23)
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The norm is a function of the non-deformed norm N ,

⟨t|t⟩ = [t|t] = 2

κ
sinh

(κ
2
N
)
.

The Poisson brackets of the components are

{t−, t+} = iκ
2
t− t+ ,

{t̄−, t̄+} = − iκ
2
t̄− t̄+ ,

{t−, t̄−} = iκ
2

(
t− t̄− − 2

κ
e

κ
2
N
)
,

{t+, t̄+} = − iκ
2

(
t+ t̄+ + 2

κ
e−

κ
2
N
)
,

{t−, t̄+} = 0 ,
{t+, t̄−} = 0 .

(3.24)

Braided covariant spinor. The spinor |t⟩ can be “parallell transported” by ℓ−1, which
produces another spinor, whose transformation law under SU(2) is called braided. Explic-
itly, using (3.20), we have

ℓ−1 |t⟩ =
(
λ−1 0
−z λ

) (
e

κN+
4 ζκ−

e−
κN−

4 ζκ+

)
= e

κN
4

(
e−

κN+
4 ζκ−

e
κN−

4 ζκ+

)
, (3.25)

which prompts the definition of the following spinor2,

|τ⟩ ≡ e−
κN
4 ℓ−1 |t⟩. (3.26)

The dual of |τ⟩ is

|τ ] =
(

0 −1
1 0

)
|τ̄⟩ =

(
−τ̄+
τ̄−

)
=

(
−e

κN−
4 ζ̄κ+

e−
κN+

4 ζ̄κ−

)
= e

κ
4
Nℓ−1|t] .

On the other hand, as the ribbon structure can be equivalently represented by either ℓ or
ℓ−1 † as shown in (2.39), one expects that |τ⟩ can also be defined by parallelly transporting
|t⟩ with ℓ†. This is indeed the case,

|τ⟩ = e
κN
4 ℓ†|t⟩ , |τ ] = e−

κN
4 ℓ†|t] . (3.27)

Hence whether we use ℓ or ℓ−1† we get essentially the same object.

The Poisson brackets of the components of |τ⟩ are the same as those of |t⟩ and |t] with
τA replacing t−A and τ̄A replacing t̄−A, i.e.

{τ−, τ+} = − iκ
2
τ−τ+ ,

{τ̄−, τ̄+} = iκ
2
τ̄−τ̄+ ,

{τ−, τ̄−} = − iκ
2
(τ−τ̄− + 2

κ
e−κN) ,

{τ+, τ̄+} = iκ
2
(τ+τ̄+ − 2

κ
eκN) ,

{τ−, τ̄+} = 0 ,
{τ̄−, τ+} = 0 .

(3.28)

2It differs from the spinor |τ⟩ of [79] by its normalization.
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|τ⟩ defines what we call a braided spinor. Indeed, it transforms as a spinor under
the SU(2) transformations generated by (2.42), but with a group element w′ related to w
through ℓ. Since triangular matrices are not stable under conjugation by SU(2) group ele-
ments, we need to introduce another SU(2) group element to stabilize the transformation.
Let (w)ℓ ∈ AN(2) and w′ ∈ SU(2) be defined by the Iwasawa decomposition

wℓ =(w) ℓw′ . (3.29)

Then we say that ℓ transforms as

ℓ
w∈SU(2)−−−−−→ (w)ℓ = wℓw′−1 ∈ AN(2) . (3.30)

Going at the infinitesimal level [40],

w ∼ I + i⃗ϵ · σ⃗ = I + i

(
ϵz ϵ−
ϵ+ −ϵz

)
, w′ ∼ I + iϵ⃗′ · σ⃗ = I + i

(
ϵ′z ϵ′−
ϵ′+ −ϵ′z

)
, (3.31)

the relation between ϵ⃗ and ϵ⃗′ is given by

ϵ′± = λ−2ϵ± , ϵ′z = ϵz + 1/2(λ−1zϵ− + λ−1z̄ϵ+) . (3.32)

One can then check that, remarkably, the transformation generated by (2.42) is a rotation
by (the infinitesimal version of) w′

δϵ|τ⟩ = −λ−2κ−1{TrWX, |τ⟩} = i

(
ϵ′zτ− + ϵ′−τ+
ϵ′+τ− − ϵ′zτ+

)
∼ (w′ − I)|τ⟩ , (3.33)

|τ ] is also a braided covariant spinor. The transformation (3.33) can also be written as a
non-braided one, but generated with Xop := ℓ†ℓ instead of X,

δϵ|τ⟩ = λ2κ−1{TrW ′(Xop)−1, |τ⟩} = λ2κ−1{2ϵ′zλ−2 − ϵ′−λ−1z − ϵ′+λ−1z̄, |τ⟩} = (w′ − I)|τ⟩ ,
(3.34)

with W ′ = ϵ′z(I + σz) + ϵ′−σ+ + ϵ′+σ−.

3.2.3 The tilde spinors

Covariant spinors and braided covariant spinors for the tilde sector, the “tilde covariant
spinors”, are defined in a similar way as the non-tilde ones. We have

|t̃⟩ = m(|t⟩) =
(
t̃−
t̃+

)
=

(
e

κÑ+
4 ζ̃κ−

e−
κÑ−

4 ζ̃κ+

)
, |t̃] =

(
−¯̃t+
¯̃t−

)
=

(
−e−

κÑ−
4

¯̃ζκ+

e
κÑ+

4
¯̃ζκ−

)
, (3.35)
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|τ̃⟩ = m(|τ⟩) =
(
τ̃−
τ̃+

)
=

(
e−

κÑ+
4 ζ̃κ−

e
κÑ−

4 ζ̃κ+

)
, |τ̃ ] =

(
−¯̃τ+
¯̃τ−

)
=

(
−e

κÑ−
4

¯̃ζκ+

e−
κÑ+

4
¯̃ζκ−

)
, (3.36)

whose norms are given by

⟨t̃|t̃⟩ = [t̃|t̃] = ⟨τ̃ |τ̃⟩ = [τ̃ |τ̃ ] = 2

κ
sinh

(κ
2
Ñ
)
. (3.37)

They are independent of the non-tilde spinors, i.e. all the components Poisson commute
with those of the non-tilde spinors. The Poisson brackets of the tilde spinor components
are the same as the non-tilde ones:

{t̃−, t̃+} = iκ
2
t̃−t̃+ ,

{¯̃t−, ¯̃t+} = − iκ
2
¯̃t−
¯̃t+ ,

{t̃−, ¯̃t−} = iκ
2

(
t̃−

¯̃t− − 2
κ
e

κ
2
N
)
,

{t̃+, ¯̃t+} = − iκ
2

(
t̃+

¯̃t+ + 2
κ
e−

κ
2
N
)
,

{t̃−, ¯̃t+} = 0 ,

{¯̃t−, t̃+} = 0 ,
(3.38)

{τ̃−, τ̃+} = − iκ
2
τ̃− τ̃+ ,

{¯̃τ−, ¯̃τ+} = iκ
2
¯̃τ− ¯̃τ+ ,

{τ̃−, ¯̃τ−} = − iκ
2

(
τ̃− ¯̃τ− + 2

κ
e−

κ
2
Ñ
)
,

{τ̃+, ¯̃τ+} = iκ
2

(
τ̃+ ¯̃τ+ − 2

κ
e

κ
2
Ñ
)
,

{τ̃−, ¯̃τ+} = 0 ,
{¯̃τ−, τ̃+} = 0 .

(3.39)

Note however that ℓ̃ is not the same function of ζ̃κ± as ℓ is of ζκ±, see (3.20), (3.21). In

fact , we have m(ℓ) = ℓ̃−1 where we recall that m defined in (3.19) is an operator which
adds tildes to ζκ± and their complex conjugates. As a consequence, the relation between

|t̃⟩ and |τ̃⟩ is not obtained by adding tildes to |τ⟩ = e−
κN
4 ℓ−1|t⟩ = e

κN
4 ℓ†|t⟩. Instead we act

with m to get

|τ̃⟩ = e−
κÑ
4 ℓ̃|t̃⟩ = e

κÑ
4 ℓ̃−1†|t̃⟩. (3.40)

Since the Poisson brackets of the tilde spinors are the same (with tildes) as the non-tilde
ones, the generator of SU(2) transformations for the tilde spinors is given by

m
(
−λ−2κ−1Tr(WX)

)
= −λ̃2κ−1TrW (X̃op)−1 , (3.41)

where X̃op = ℓ̃†ℓ̃. This is consistent with the Gauss constraint (2.44), which is a product
of ℓ and ℓ̃−1 depending on the orientations of the ribbons. Explicitly, we can expand
TrW (X̃op)−1 as

TrW (X̃op)−1 = 2ϵzλ̃
−2 − ϵ−λ̃−1z̃ − ϵ+λ̃−1 ¯̃z . (3.42)
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It is then straightforward using the Poisson brackets from Appendix B.1 to show that the
tilde spinors (3.36) satisfy the following equations

δϵ|t̃⟩ = −λ̃2κ−1{Tr(W (X̃op)−1), |t̃⟩} = (w − I)|t̃⟩ , (3.43a)

δϵ|t̃] = −λ̃2κ−1{Tr(W (X̃op)−1), |t̃]} = (w − I)|t̃] , (3.43b)

δϵ|τ̃⟩ = −λ̃2κ−1{Tr(W (X̃op)−1), |τ̃⟩} = (w′′ − I)|τ̃⟩ , (3.43c)

δϵ|τ̃ ] = −λ̃2κ−1{Tr(W (X̃op)−1), |τ̃ ]} = (w′′ − I)|τ̃ ] , (3.43d)

where the infinitesimal SU(2) elements w = I + i⃗ϵ · σ⃗ and w′′ = I + iϵ⃗′′ · σ⃗ are related by
the right SU(2) transformation of ℓ̃, i.e.

ℓ̃
w∈SU(2)−−−−−→ ℓ̃(w) = w′′−1ℓ̃w ∈ AN(2) ,

∣∣∣∣∣∣∣∣
w ∼ I + i⃗ϵ · σ⃗ = I + i

(
ϵz ϵ−
ϵ+ −ϵz

)
w′′ ∼ I + iϵ⃗′′ · σ⃗ = I + i

(
ϵ′′z ϵ′′−
ϵ′′+ −ϵ′′z

) . (3.44)

Thus the two infinitesimal parameters ϵ⃗ and ϵ⃗′′ are related by

ϵ′′± = λ̃2ϵ± , ϵ′′z = ϵz − 1/2(λ̃zϵ− + λ¯̃zϵ+) . (3.45)

Just like there are two ways to write the transformations of |τ⟩ and |τ ], there are also two
for |τ̃⟩ and |τ̃ ]. While we have seen above the equivalent of (3.33), the equivalent of (3.34)
is

δϵ|τ̃⟩ = m
(
λ2κ−1){Tr(W ′′m(Xop−1)) , |τ̃⟩} = λ̃−2κ−1{Tr(W ′′X̃), |τ̃⟩} , (3.46a)

δϵ|τ̃ ] = λ̃−2κ−1{Tr(W ′′X̃), |τ̃ ]} , (3.46b)

and it is clear that |τ̃⟩ and |τ̃ ] are braided spinors in the same sense as |τ⟩, |τ ].
There is a nice geometric interpretation of the relations (3.26) and (3.40) which define

the braided covariant spinors. If we consider |t⟩ to sit at a node of Γr which is the target of

the short link carrying ℓ, then |τ⟩ = e−
κN
4 ℓ−1 |t⟩ sits on the node of Γr at the source of the

short link carrying ℓ. In other words, |τ⟩ results from parallelly transporting |t⟩ by ℓ−1.
Similarly |τ̃⟩ is the result of parallelly transporting |t̃⟩ by ℓ̃. This is represented in fig.3.2.

3.3 Recovering the q-deformed holonomy-flux variables

Now that we have defined the two pairs of spinors (|t⟩, |τ⟩) and (|τ̃ ], |t̃]), each pair of which
are related by the flux ℓ or ℓ̃, it is natural to assign them to the corners (that is the nodes
on a ribbon) of the ribbon link as in fig.3.3.
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ℓ ℓ̃

ũ

u
•

|τ⟩
•
|t̃]

•
|τ̃ ]

•
|t⟩

Figure 3.3: Ribbon graph for a link with one spinor on each corner.

We assume the norm matching condition N = Ñ so that the tilde spinors and their
corresponding non-tilde spinors have the same norm:

⟨t|t⟩ = [τ̃ |τ̃ ] = 2

κ
sinh

κN

2
. (3.47)

The holonomies u, ũ ∈ SU(2) can be parametrized in terms of these spinors

u =
|τ⟩[t̃| − |τ ]⟨t̃|√
⟨τ |τ⟩⟨t̃|t̃⟩

, ũ =
|t⟩[τ̃ | − |t]⟨τ̃ |√
⟨t|t⟩⟨τ̃ |τ̃⟩

, with N = Ñ , (3.48)

so that the following parallel transport relations are satisfied,

u|t̃] = |τ⟩ , u|t̃⟩ = −|τ ] , u−1|τ⟩ = |t̃] , u−1|τ ] = −|t̃⟩ ,
ũ|τ̃⟩ = −|t] , ũ|τ̃ ] = |t⟩ , ũ−1|t] = −|τ̃⟩ , ũ−1|t⟩ = |τ̃ ] .

(3.49)

Therefore, the ribbon graph fig.3.2 illustrates the full transport relations of the four spinors.
Finally, they solve the ribbon constraint:{

ℓu|t̃] = ℓ|τ⟩ = e−
κN
4 |t⟩

ũℓ̃|t̃] = e−
κN
4 ũ|τ̃ ] = e−

κN
4 |t⟩

=⇒ C ≡ ℓuℓ̃−1ũ−1 = I , (3.50)

and the same can be done with the equivalent ribbon constraint ℓ−1†uℓ̃†ũ−1 = I. These
spinors thus live on the constraint surface generated by the ribbon constraint C. The
matrix components defined in (3.48) also satisfy the desired Poisson brackets (see (B.4)).

Deformed flux variables in terms of the deformed spinors. We furthermore write
the flux vectors ℓℓ† = X ≡ κX0I − κX⃗ · σ⃗ and ℓ†ℓ ≡ Xop = κXop

0 I − κX⃗op · σ⃗ defined in
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(2.40) in terms of the spinors. Their components can be represented in term of the spinors
|t⟩ and |τ⟩,

X0 =
1

κ

√
1 +

κ2

4
⟨t|t⟩2 = Xop

0 =
1

κ

√
1 +

κ2

4
⟨τ |τ⟩2, X⃗ =

1

2
⟨t|σ⃗|t⟩, X⃗op =

1

2
⟨τ |σ⃗|τ⟩.

(3.51)

Similarly, ℓ̃ℓ̃† ≡ X̃ = κX̃0I−κ ⃗̃X · σ⃗ and ℓ̃†ℓ̃ ≡ X̃op = κX̃op
0 I−κ ⃗̃Xop · σ⃗ can be written with

the tilde spinors but the dual sectors. Explicitly,

X̃0 =
1

κ

√
1 +

κ2

4
[τ̃ |τ̃ ]2 = X̃op

0 =
1

κ

√
1 +

κ2

4
[t̃|t̃]2 , ⃗̃X =

1

2
[τ̃ |σ⃗|τ̃ ] , ⃗̃Xop =

1

2
[t̃|σ⃗|t̃] .

(3.52)
These objects transform as vectors under the SU(2) transformation as X̃ = ũ−1Xũ and
u−1Xopu = X̃op, consistently with (3.49), and as such can be seen as the deformation of
the flat flux vectors (see (3.5)).

When κ → 0, |t⟩, |t̃] is identical to |τ⟩, |τ̃ ] respectively, as it can be directly seen from
their definition (3.23), (3.26) and (3.36). We recover then the flat case where there is only

one pair of spinors associated to each link. The flux vectors X⃗ and ⃗̃X become the standard
flat flux vectors which we denote x⃗ and ⃗̃x respectively. As a consistency check, one can
take the κ → 0 limit for X (3.51) and X̃ (3.52) defined in terms of the spinors, or more
explicitly in terms of the κ-deformed spinor variables as in (3.20). Let us rewrite

X =

(
λ2 λz̄
λz λ−2 + |z|2

)
=

(
e

κ(N+−N−)

2 −κe
κ(N+−N−)

4 ζκ−ζ̄
κ
+

−κe
κ(N+−N−)

4 ζκ+ζ̄
κ
− e

κ(N−−N+)

2 + 4 sinh κN+

2
sinh κN−

2

)
κ→0−−→

(
1 + κ(N+−N−)

2
−κζ−ζ̄+

−κζ+ζ̄− 1 + κ(N−−N+)
2

)
= (1 + κN

2
)I− κx⃗ · σ⃗ ,

X̃ =

(
λ̃2 λ̃¯̃z

λ̃z̃ λ̃−2 + |z̃|2

)
=

(
e

κ(Ñ−−Ñ+)

2 κe
κ(Ñ−−Ñ+)

4 ζ̃κ−
¯̃ζκ+

κe
κ(Ñ−−Ñ+)

4 ζ̃κ+
¯̃ζκ− e

κ(Ñ+−Ñ−)

2 + 4 sinh κÑ+

2
sinh κÑ−

2

)
κ→0−−→

(
1 + κ(Ñ−−Ñ+)

2
κζ̃−

¯̃ζ+

κζ̃+
¯̃ζ− 1 + κ(Ñ+−Ñ−)

2

)
= (1 + κÑ

2
)I− κ⃗̃x · σ⃗ ,

(3.53)

where x⃗ and ⃗̃x are defined in (3.5). Therefore, the κ → 0 limit of the flux vectors X⃗ and
⃗̃X (2.40) recover the flat fluxes

X⃗ = − 1

2κ
Tr(Xσ⃗)

κ→0−−→ x⃗ , ⃗̃X = − 1

2κ
Tr(X̃σ⃗)

κ→0−−→ ⃗̃x . (3.54)
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The same limit can be achieved for X⃗op and ⃗̃Xop as |t⟩ κ→0←−→ |τ⟩ and |t̃] κ→0←−→ |τ̃ ].

As shown in [73], the phase space SL(2,C) with the Poisson structure (2.34) for one
ribbon is equivalent to Sκ × S̃κ//M, with Sκ = {|t⟩ ∈ C2\{⟨t|t⟩ = 0}} the spinor phase
space with the Poisson structure (3.24), S̃κ = {|t̃⟩ ∈ C2\{⟨t̃|t̃⟩ = 0}} the phase space with
the Poisson structure (3.38), and M := N − Ñ the norm matching constraint. It is a
simple check that the dimension of such a phase space is 8− 2 = 6, matching that of the
holonomy-flux phase space constructed in Section 2.3.

3.4 Spinorial observables

3.4.1 The spinorial phase space

For a given graph, we take the Cartesian product of the spinor phase space over all links
of Γ . A link e carries variables spinors |te⟩, |τe⟩, |t̃e⟩, |τ̃e⟩ and their duals. We have already
seen in Section 3.3 that those variables reconstruct the holonomy-flux variables in a way
which automatically solves the ribbon constraint in each ribbon. We are thus left with
imposing the Gauss constraint at each node of Γ .

Let us consider an n-valent node v of Γ . We then pick an arbitrary link incident to
it, which we denote by e1, and then going counterclockwise starting from e1, we label the
other incident links by e2, · · · , en and identify en+1 ≡ e1. In the ribbon graph Γr, v gives
rise to an n-gon R(v) and each link ei to a ribbon R(ei). Each of them shares a node with
its two neighbor ribbons, one clockwise and one counter-clockwise.

It is convenient to unify the notation for spinors as follows,

t− = |t⟩ t+ = |t] τ− = |τ⟩ τ+ = |τ ]
t̃− = |t̃⟩ t̃+ = |t̃] τ̃− = |τ̃⟩ τ̃+ = |τ̃ ] , (3.55)

or component-wise

t−A = tA , t+A = (−1) 1
2
−At̄−A , τ−A = τA , τ+A = (−1) 1

2
−Aτ̄−A ,

t̃−A = t̃A , t̃+A = (−1) 1
2
−A¯̃t−A , τ̃−A = τ̃A , τ̃+A = (−1) 1

2
−A ¯̃τ−A , A = ±1

2
.

(3.56)

We use the same notation as in (2.48) to denote the fluxes on the boundary links of R(v)
as ℓei,v. Denote the spinor sitting at the source node of ℓei,v to be tϵeiv and that sitting at
its target is τ ϵeiv. Referring to fig.3.2, they are explicitly∣∣∣∣ tϵeiv = tϵi

τ ϵeiv = τ ϵi
if oi = + ,

∣∣∣∣ tϵeiv = t̃ϵi
τ ϵeiv = τ̃ ϵi

if oi = − . (3.57)
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Indeed, each node in Γr is assigned two spinors from two different ribbons. For instance,
the spinors τ ϵei+1v

and tϵeiv sit at the node where ℓei,v and ℓei+1,v intersect. The following
proposition shows that these two spinors, except tϵen sitting at the base node, are all braided-
covariant under the SU(2) transformation generated by the Gauss constraint.

Proposition 3.4.1. The spinors τ
ϵi+1
ei+1,v and tϵiei,v (i = 1, · · · , n) on the node of Γr are

braided-covariant under the SU(2) transformation defined in (2.45) by the same braided

infinitesimal SU(2) parameter denoted by w(i) = I + i

(
ϵ
(i)
z ϵ

(i)
−

ϵ
(i)
+ ϵ

(i)
z

)
. Parametrize ℓei,v =(

Λi 0
zi Λ−1i

)
, then the transformation reads

δϵt
ϵ
eiv

= −κ−1
(

n∏
k=1

Λ−2k

)
{TrWGG†, tϵeiv} = (w(i+1) − I)tϵeiv , (3.58a)

δϵτ
ϵ
eiv

= −κ−1
(

n∏
k=1

Λ−2k

)
{TrWGG†, τ ϵeiv} = (w(i) − I)τ ϵeiv , (3.58b)

where parameters in w(i) are defined by induction as∣∣∣∣∣∣
ϵ
(i)
± = Λ−2i ϵ

(i+1)
±

ϵ
(i)
z = ϵ

(i+1)
z + 1

2

(
Λ−1i ziϵ

(i+1)
− +Λ−1i z̄iϵ

(i+1)
+

) , and

∣∣∣∣∣ ϵ
(n+1)
± ≡ ϵ±

ϵ
(n+1)
z ≡ ϵz

, .i = 1, · · · , n .

(3.59)

The proof is given in Proof B.3.1.

3.4.2 Scalar products of spinors

We will build local invariant quantities by taking scalar products between spinors from
different links which meet at the same node of Γ . Due to the ribbon structure, they might
meet at the same node in Γr or at different nodes in Γr. In the latter case, parallel transport
around the ribbon node is required to evaluate the scalar product at a common node in
Γr. An example of the situation is given for a 3-valent node in fig.3.4. One can form
(quadratic) scalar products of spinors from two adjacent links ei and ei+1. The symmetry
transformation is induced at the node where the ribbons meet and if they sit at the same
node, this ensures that the scalar product is invariant. One can also define observables for
spinors not sitting at the same node. But in this case, it is necessary to parallel transport
one spinor to the other in order to ensure invariance.
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Invariants from spinors sitting at the same node in Γr. The spinors tϵieiv and
τ
ϵi+1
ei+1v sit at the same node in Γr. One can build directly the quadratic observables denoted
E
ϵi,ϵi+1

i,i+1 with these two spinors by forming their scalar products

E
ϵi,ϵi+1

i,i+1 = ϵi
∑

A=±1/2

(−1)
1
2
+Atϵieiv,−Aτ

ϵi+1

ei+1v,A

=



ϵi
∑

A=±1/2(−1)
1
2
+Atϵii,−Aτ

ϵi+1

i+1,A , for oi = oi+1 = 1

ϵi
∑

A=±1/2(−1)
1
2
+Atϵii,−Aτ̃

ϵi+1

i+1,A , for oi = −oi+1 = 1

ϵi
∑

A=±1/2(−1)
1
2
+At̃ϵii,−Aτ

ϵi+1

i+1,A , for − oi = oi+1 = 1

ϵi
∑

A=±1/2(−1)
1
2
+At̃ϵii,−Aτ̃

ϵi+1

i+1,A , for oi = oi+1 = −1

.

(3.60)

Consider for instance oi = oi+1 = 1, E
ϵi,ϵi+1

i,i+1 encodes four possible options of scalar products
depending on the signs of ϵi = ± and ϵi+1 = ±.

ϵi
∑

A=±1/2

(−1)
1
2
+Atϵii,−Aτ

ϵi+1

i+1,A =


[tϵi |τ ϵi+1⟩ for ϵi = ϵi+1 = −
[tϵi |τ ϵi+1 ] for ϵi = −, ϵi+1 = +

⟨tϵi |τ ϵi+1⟩ for ϵi = +, ϵi+1 = −
⟨tϵi |τ ϵi+1 ] for ϵi = ϵi+1 = +

. (3.61)

They are by definition invariant under the SU(2) transformation acting on the node of Γr

where the two spinors meet. Indeed, under an SU(2) transformation with g ∈ SU(2), [tϵi| →
[tϵi |g−1 , ⟨tϵi | → ⟨tϵi |g−1 , |τ ϵi+1⟩ → g|τ ϵi+1⟩ , |τ ϵi+1 ] → g|τ ϵi+1 ] and so clearly all E

ϵi,ϵi+1

i,i+1

defined in (3.61) are invariant under SU(2) transformations. Since those transformations
are generated by the Gauss constraint as shown in Proposition 3.4.1, we find directly the
following corollary.

Corollary 3.4.2. The scalar product E
ϵi,ϵi+1

i,i+1 defined in (3.60) is invariant under the in-
finitesimal gauge transformation δϵ generated by the Gauss constraint defined in (2.45),
i.e.

δϵE
ϵi,ϵi+1

i,i+1 = 0 . (3.62)

Invariants from spinors sitting at different nodes in Γr. We now explain how to
build invariants for an arbitrary pair of links i, j = 1, . . . , n incident to an n-valent node.
As before, we can work with the ribbon decorated with ℓ, ℓ̃ or ℓ−1†, ℓ̃−1†. We choose to
explicit the case where we use ℓ, ℓ̃, and the other case is obtained in a similar way.
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Figure 3.4: A node with three incident links e1, e2, e3 (in gray) and the correspondent
ribbon graph. The four possible orientations for e1 and e2 with a fix orientation o3 = −1
for e3 are illustrated separately. The spinors defining the scalar product Eϵ1,ϵ2

12 can be read
at the common corner (in red) of the ribbons associated to e1 and e2.

Consider first j = i + 1 so that the links share a node in Γr. Then we know of the
invariant E

ϵi,ϵi+1

i,i+1 . We can also try to define an observable in terms of τi and τi+1. We have
showed that the scalar product of ti and τi+1 is an observable. On the other hand, we know
that ti is the result of transporting τi by ℓeiv, see (3.26), (3.40) (ℓeiv is defined in (2.44)).
Therefore we can in fact transport τi+1 by ℓeiv so that it sits at the same node as τi in Γr.
Obviously one gets the same invariant as in (3.60). To be explicit, we focus on the scalar
product Eϵ1,ϵ2

12 with no loss of generality.
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Proposition 3.4.3. Up to a coefficient e±
κN1
4 , we have that

Eϵ1,ϵ2
12

=



ϵ1
∑

A=± 1
2

(−1) 1
2
+Aτ ϵ11,−A

(
ℓ−11 τ ϵ22

)
A
∼ ϵ1

∑
A=± 1

2

(−1) 1
2
+Aτ ϵ11,−A

(
ℓ†1τ

ϵ2
2

)
A
, if o1 = o2 = 1

ϵ1
∑

A=± 1
2

(−1) 1
2
+Aτ ϵ11,−A

(
ℓ−11 τ̃ ϵ22

)
A
∼ ϵ1

∑
A=± 1

2

(−1) 1
2
+Aτ ϵ11,−A

(
ℓ†1τ̃

ϵ2
2

)
A
, if o1 = −o2 = 1

ϵ1
∑

A=± 1
2

(−1) 1
2
+Aτ̃ ϵ11,−A

(
ℓ̃1τ

ϵ2
2

)
A
∼ ϵ1

∑
A=± 1

2

(−1) 1
2
+Aτ̃ ϵ11,−A

(
ℓ̃−1 †1 τ ϵ22

)
A
, if − o1 = o2 = 1

ϵ1
∑

A=± 1
2

(−1) 1
2
+Aτ̃ ϵ11,−A

(
ℓ̃1τ̃

ϵ2
2

)
A
∼ ϵ1

∑
A=± 1

2

(−1) 1
2
+Aτ̃ ϵ11,−A

(
ℓ̃−1 †1 τ̃ ϵ22

)
A
, if o1 = o2 = −1 .

(3.63)

Proof. Consider the definition (3.60) and focus on the first case, with o1 = o2 = 1. Then,

we apply (3.26), (ℓ1τ
ϵ1
1 )A ∝ tϵ11,A and that

(
ℓ−1 †1 τ ϵ11

)
A
∝ tϵ11,A up to coefficients e±

κN1
4 . We

further have (
ℓ−1
)
AB

= (−1)B−Aℓ−B−A ,
(
ℓ†
)
AB

= (−1)B−A
(
ℓ−1 †

)
−B−A . (3.64)

Putting these equalities together, we get the proposition.

In the quantization scheme, since we need to order the Hilbert spaces, and build the
spinor operators using some braided permutation to the following Hilbert space we will
need to set up a reference point. We will see that the notion of braided permutation is
nothing else than the quantum version of the parallel transport we are discussing. As a
consequence, the notion of quantum observable based on the braiding will be associated
to the formulation (3.63) instead of (3.60).

We generalize this construction to links ei, ej incident to the same node in Γ but with
j ̸= i+ 1. To simplify the notations of (3.57), we denote τ ϵii ≡ τ ϵieiv and similarly for other
spinors. Up to parallel transport by ℓeiv, ℓejv, we can always build our observables from the
spinors τ ϵii , τ

ϵj
j . The recipe is to parallel transport τ

ϵj
j around the ribbon node to meet τ ϵii

at the same node in Γr. This is done by introducing Lij (resp. L−1†ij ), the AN(2) holonomy

consisting of the product of ℓ−1 and ℓ̃ (resp. ℓ† and ℓ̃−1†) clockwise around R(v) from j to
i,
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Proposition 3.4.4. The quantity

E
ϵi,ϵj
ij =



∑
A=± 1

2

(−1) 1
2
+Aτ ϵii,−A

(
Lijτ

ϵj
j

)
A
∼

∑
A=± 1

2

(−1) 1
2
+Aτ ϵii,−A

(
L−1 †ij τ

ϵj
j

)
A
, if oi = oj = 1∑

A=± 1
2

(−1) 1
2
+Aτ ϵii,−A

(
Lij τ̃

ϵj
j

)
A
∼

∑
A=± 1

2

(−1) 1
2
+Aτ ϵii,−A

(
L−1 †ij τ̃

ϵj
j

)
A
, if oi = −oj = 1∑

A=± 1
2

(−1) 1
2
+Aτ̃ ϵii,−A

(
Lijτ

ϵj
j

)
A
∼

∑
A=± 1

2

(−1) 1
2
+Aτ̃ ϵii,−A

(
L−1 †ij τ

ϵj
j

)
A
, if − oi = oj = 1∑

A=± 1
2

(−1) 1
2
+Aτ̃ ϵii,−A

(
Lij τ̃

ϵj
j

)
A
∼

∑
A=± 1

2

(−1) 1
2
+Aτ̃ ϵii,−A

(
L−1 †ij τ̃

ϵj
j

)
A
, if oi = oj = −1

(3.65)

is an observable, i.e. δϵE
ϵi,ϵj
eiej = 0.

As in the case of the adjacent links, we can have different expressions of the same
observable, depending on where we set the reference node in the ribbon. (For instance,
referring to fig.3.4, one can take the node in red or the node in blue as the reference node
on the ribbon of e1.)

Now that we have defined observables we could discuss the algebra they form. Unlike
the previous works [73], the definition of the observables seems to depend on the orientation
of the links. Given some choice of orientation, we can determine the algebra the observables
satisfy. Instead of doing so, we will first look at the quantization of this algebra in Chapter
5. We will see that each case of orientation is actually quantized in the same way, so that
there is a unique quantum observable for the different orientations. Said otherwise, the
natural quantum observables do not depend on the orientation, hence we can recover a
unique deformed quantum algebra. This means in particular that the apparent different
formulations (in terms of the spinors/orientation of the links) of the observables just give
different representations of the same Poisson algebra.
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Chapter 4

Quantization: q-deformed LQG

Having constructed the classical phase space, the Poisson algebra and the constraint alge-
bra, we are now ready to quantize the classical structure to construct the Hilbert space,
following the Dirac quantization programme. The quantum theory in the following few
chapters is the core of this thesis and contains most of the original work of the author.
This chapter is based on [41]. Before we describe the quantization process, let us emphasize
the physical and mathematical guidelines.

As has been mentioned a few times above, we take it as hints that the quantum theory
of 3D gravity with a Λ ̸= 0 captures quantum group [58, 148] symmetries. This has
been shown to be the case in the quantization based on the Chern-Simons formulation
of 3D gravity either through the path integral method [210, 177] or the combinatorial
quantization approach [7, 8] as well as the spinfoam approach [204]. The quantum groups
describing the quantum gravity theories in these existing models are all formulated as
deformations of some Lie groups that describe the classical features with deformation
parameters determined by Λ. Our goal is to re-produce these quantum group symmetries in
the LQG framework starting from the classical theory defined in terms of the Lie bialgebra
as described in chapter 2. This relies on the deep mathematical correspondence between
Lie bialgebras and Hopf algebras, which are the general notion of quantum groups.

Mathematically, there are (at least) two ways to understand the quantization process if
one considers the relation between classical mechanics and quantum mechanics. One way
is to replace the Poisson algebra of functions on group, say {A,B}, in classical mechanics

into a (non-commutative) quantum algebra [Â, B̂] = iℏ{̂A,B} where Â and B̂ are (non-
commutative) operators. Another way is to introduce an auxiliary parameter, say t (which
can contain the information of ℏ), and use it to parametrize a deformation, which deforms
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the classical Poisson algebra into a non-commutative one. We require that the t→ 0 limit
recovers the classical Poisson algebra at the first t-order [148]. Mathematically, this is
how a Lie bialgebra can be recovered as the infinitesimal notion of a Hopf algebra, in an
analogous way that a Lie algebra is an infinitesimal notion of a Lie group. In fact, this is
the reason why we construct in Chapter 4 the classical continuous and discrete theory in
the language of Lie bialgebra. The deformation parameter κ introduced in Chapter 2 and
also used in Chapter 3 can be promoted by exponentiation to a deformation parameter
q ≡ eκℏ which combines the value of the cosmological constant and quantum parameter ℏ.

We now mention the mathematical ingredients we need for quantizing the classical
kinematical phase space of a ribbon graph into a Hilbert space. The Hilbert space structure
is based on two dual pairs of Hopf algebras (Uq(su(2)), SUq(2)) and (Uq−1(su(2)), SUq−1(2))
with q real. They are dual pairs in the sense of Hopf algebra duality [148]. Uq(su(2)) (resp.
Uq−1(su(2))) is isomorphic to q-deformed function Fq(AN(2)) (resp. Fq−1(AN(2))) and gives
the quantization of fluxes while SUq(2) (resp. SUq−1(2)) describes the q-deformation of the
holonomies. More precisely, in the ribbon picture, the two fluxes on a ribbon are quantized
to a Uq(su(2)) element and a Uq−1(su(2)) element respectively, while the two holonomies
are respectively quantized to an SUq(2) element and an SUq−1(2) element. The Poisson
structure of the classical phase space, as we will see, is precisely the first order in ℏ of
the defining commutation relations of the above two Hopf algebras. The main concepts
used in this section are the quasitriangular Hopf algebra and the dual quasitriangular Hopf
algebra which are different Hopf algebras with the same quantum R-matrix [148]1. The
mathematical construction of the (dual) quasitriangular Hopf algebra for a general Hopf
algebra is concisely reviewed in Appendix A.2.

In this chapter, we first summarize in Section 4.1 the definitions and properties of the
Hopf algebra Uq(su(2)) and SUq(2). With this mathematical knowledge, we give a complete
quantization of the kinematical phase space in Section 4.2. It was first introduced in [39] but
the Uq−1(su(2)) part of the structure was not realized therein. We completed this structure
in [41]. We also realize, in the LQG framework, that one can extract the geometrical
meaning of the quantum R-matrix, which was understood as a mathematical “structure
constant” in Hopf algebra. Finally in Section 4.3, we quantize the Gauss constraint and
solve for the intertwiners as the states invariant under the quantum Gauss constraint.

1We remind the reader that, despite their similar names, the quasitriangular Hopf algebra and the dual
quasitriangular Hopf algebra are two distinct mathematical concepts (see Appendix A.2), following [148].
They are named as such because the two Hopf algebras therein form a dual pair. The correspondent clas-
sical objects are the quasitriangular Lie bialgebra and the dual quasitriangular Lie bialgebra as described
in Appendix A.1, see also [148].
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4.1 Uq(su(2)) and SUq(2)

Introduce a real deformation parameter q = eκℏ which includes the quantum parameter ℏ
and the cosmological constant information encoded in κ. The key point is to realize that
the classical dual pair (SU(2)∗ ≡ AN(2), SU(2)) whose Lie bialgebra structures are given by
the classical r-matrix can be q-deformed into the pair formed by the quasitriangular Hopf
algebra (Uq(su(2)),R) and by the dual quasitriangular Hopf algebra (SUq(2),R). Let us
first recall the mathematical facts of these two Hopf algebras. We refer to quantum group
textbooks e.g. [148, 58] for more details on these two Hopf algebras.

Definition 4.1.1 ((Uq(su(2)),R)). The quasitriangular Hopf algebra (Uq(su(2)),R) is gen-
erated by the identity and J±, K = q

Jz
2 with the relations

KJ±K
−1 = q±

1
2J± , [J+, J−] = [2Jz] , with [n] ≡ q

n
2 − q−n

2

q
1
2 − q− 1

2

. (4.1)

This form a Hopf algebra with the coproduct △ : Uq(su(2)) → Uq(su(2)) ⊗ Uq(su(2)), an-
tipode S : Uq(su(2))→ Uq(su(2)) and counit ϵ : Uq(su(2))→ C which act on the generators
as

△(J±) := J± ⊗K +K−1 ⊗ J± ,
△(K) := K ⊗K ,

S(J±) := −q±
1
2J± ,

S(K) := K−1 ,

ϵ(K) = 1 ,

ϵ(J±) = 0 .
(4.2)

This Hopf algebra is quasitriangular with an R-matrix R ∈ Uq(su(2))⊗ Uq(su(2)):

R = qJz⊗Jz
∞∑
n=0

(1− q−1)n

[n]!
q

n(n−1)
4

(
q

Jz
2 J+

)n
⊗
(
q−

Jz
2 J−

)n
. (4.3)

A number [n] defined as in (4.1) is called the q-number. The R-matrix is the quantum
version of the classical r-matrix and it satisfies the quantum Yang-Baxter equation (QYBE)

R12R13R23 = R23R13R12 , (4.4)

where we have used the standard notation R12 =
∑
R(1) ⊗ R(2) ⊗ I ,R23 = I ⊗ R(1) ⊗

R(2) ,R13 = R(1) ⊗ I ⊗R(2). In the fundamental representation (j = 1/2), the generators
are represented as 2× 2 matrices

J−|j=1/2 =

(
0 0
1 0

)
, J+|j=1/2 =

(
0 1
0 0

)
, K|j=1/2 =

(
q

1
4 0

0 q−
1
4

)
. (4.5)
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We denote the R-matrix (4.3) in the fundamental representation by R, which is a 4 × 4
matrix that takes the form

R =


q

1
4 0 0 0

0 q−
1
4 q−

1
4 (q

1
2 − q− 1

2 ) 0

0 0 q−
1
4 0

0 0 0 q
1
4

 ≡ R|j=1/2 . (4.6)

Clearly, the first ℏ-order of R recovers the classical r-matrix (2.33) in the fundamental
representation, i.e.

R = I⊗ I + iℏr +O(ℏ2) . (4.7)

We are particularly interested in the 2×2 matrix operators, denoted as Q±, whose elements
(q±)ij(i, j = ±) are given by the Uq(su(2)) elements [148]. They are defined as

Q+ =

(
K 0

q−
1
4 (q

1
2 − q− 1

2 )J+ K−1

)
, Q− =

(
K−1 −q 1

4 (q
1
2 − q− 1

2 )J−
0 K

)
. (4.8)

The coproduct and counit of Q± are given by

△(Q±) = Q± ⊗Q± , ϵ(Q±) = I , i.e. △((q±)ij) =
∑
k

(q±)ik ⊗ (q±)kj , ϵ((q±))i = δij .

(4.9)
They satisfy

Q±1 Q
±
2 R = RQ±2 Q

±
1 , Q−1 Q

+
2 R = RQ+

2 Q
−
1 , (4.10)

with Q±1 = Q± ⊗ I and Q±2 = I⊗Q±.

Uq−1(su(2)) is generated by the same generators as Uq(su(2)) with the same commu-
tation relations (4.1) but possessing a different coproduct denoted as △ and a different
antipode denoted as S. They act on the generators as

△(J±) := J±⊗K−1 +K ⊗ J± , △(K) := K ⊗K , S(J±) := −q∓
1
2J± , S(K) := K−1 .

(4.11)
The two coproducts and two antipodes are related by

△ = σ ◦ △ , S = S−1 ,

where σ is the permutation operator acting on the tensor space as σ(a⊗ b) = b⊗ a.
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Definition 4.1.2 ((SUq(2),R)). The dual quasitriangular Hopf algebra (SUq(2),R) is gen-

erated by identity and the coordinate functions T =

(
t−− t−+
t+− t++

)
on the space of 2 × 2

matrices satisfying
RT1T2 = T2T1R , (4.12)

where R is defined in (4.6), and quotient with the q-determinant detq T := t−−t++ −
q−

1
2 t−+t+− = I. The antipode, coproduct and counit are given by

S(T ) =

(
t++ −q 1

2 t−+
−q− 1

2 t+− t−−

)
△(T ) = T ⊗ T , ϵ(T ) = I ,

i.e. △(tij) =
∑
k=±

tik ⊗ tkj , ϵ(tij) = δij , i, j = ± .
(4.13)

This Hopf algebra is dual quasitriangular with the R-matrix defined in (4.3) which is viewed
as a map R : SUq(2)⊗ SUq(2)→ C.

The commutation relation (4.12) is equivalent to the following relations.

t−−t−+ = q−
1
2 t−+t−− , t−−t+− = q−

1
2 t+−t−− , t−+t++ = q−

1
2 t++t−+ ,

t+−t++ = q−
1
2 t++t+− , t−+t+− = t+−t−+ , [t−−, t++] = −(q

1
2 − q−

1
2 )t−+t+− .

(4.14)

The duality between Uq(su(2)) and SUq(2) can be represented by the bilinear map
between the operator matrices Q± and T as follows [148]. (See e.g. [58] for a more detailed
proof of the duality relation)

⟨T1, Q+
2 ⟩ = R , ⟨T1, Q−2 ⟩ = R−121 , i.e. ⟨tij, (q+)kl⟩ = Ri k

j l , ⟨tij, (q−)kl⟩ = (R−1)i kj l ,
(4.15)

where R21 = σ ◦R =
∑
R(2) ⊗R(1).

4.2 From phase space to Hopf algebras

We are interested in the quantization of the Poisson brackets (2.35) and (2.36) for a single
ribbon. To this aim, we construct the operators associated to the classical variables (the
holonomy-flux algebra) and introduce the Hilbert space structure on which we represent
these operators.
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4.2.1 Poisson bracket quantization

As a first step, we introduce the deformation parameter, q = eℏκ. Then the classical r-
matrix is quantized as r → R according to the relation (4.7). Note that one obtains the
inverse matrix R−1 if one replaces q by q−1. We quantize the holonomies and fluxes to be
matrices of operators ℓ → L , u → U , ℓ̃ → L̃ , ũ → Ũ . The quantization of the Poisson
brackets (2.35) and (2.36) gives the following commutation relations for the matrices of
operators [194, 6]

R21U1U2 = U2U1R21 , RL1L2 = L2L1R , L1R
−1
21 U2 = U2L1 , L2R

−1U1 = U1L2 ,

R−121 Ũ1Ũ2 = Ũ2Ũ1R
−1
21 , R−1L̃1L̃2 = L̃2L̃1R

−1 , Ũ2R21L̃1 = L̃1Ũ2 , Ũ1RL̃2 = L̃2Ũ1 ,

L̃1U2R
−1
21 = U2L̃1 , RŨ1L2 = L2Ũ1 , R−121 L1Ũ2 = Ũ2L1 , U1L̃2R = L̃2U1 ,

(4.16)
The Poisson brackets (2.35), (2.36) and (2.38) are recovered at the first order through

the map [Â, B̂] = iℏ{̂A,B}. Note that R−1 appears because of the minus sign difference
between the classical Poisson structures respectively defined in (2.35) and in (2.36).

The classical Casimir r+ r21 can be quantized as R21R and requesting this operator to
be a Casimir implies that

[R21R,L1L2] = [R21R,U2U1] = [R21R, L̃2L̃1] = [R21R, Ũ1Ũ2] = 0 . (4.17)

Using this in (4.16) leads to the following equivalent commutation relations

R21U1U2 = U2U1R21 ⇐⇒ R−1U1U2 = U2U1R
−1 ,

R−121 Ũ1Ũ2 = Ũ2Ũ1R
−1
21 ⇐⇒ RŨ1Ũ2 = Ũ2Ũ1R .

(4.18)

Note that the R-matrix for Uq−1(su(2)) is simply the inverse of the R-matrix for Uq(su(2)).
Comparing to the defining commutation relations (4.10) and (4.12) for Uq(su(2)) and
SUq(2) respectively, one realizes that the commutation relations (4.18) of the quantum
holonomies with themselves and those of the quantum fluxes with themselves included in
(4.16) imply that the holonomies and fluxes can be quantized as∣∣∣∣∣∣∣∣

ℓ ∈ AN(2) → L ∈ Funq−1(AN(2)) ∼= Uq−1(su(2))
u ∈ SU(2) → U ∈ SUq−1(2)

ℓ̃ ∈ AN(2) → L̃ ∈ Funq(AN(2)) ∼= Uq(su(2))
ũ ∈ SU(2) → Ũ ∈ SUq(2)

. (4.19)

We have in particular

L =

(
K−1 0

−q 1
4 (q

1
2 − q− 1

2 )J+ K

)
, L̃ =

(
K̃ 0

q−
1
4 (q

1
2 − q− 1

2 )J̃+ K̃−1

)
, (4.20)
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where (J̃±, K̃) are another copy of the Uq(su(2)) generators commuting with the non-tilde
pieces. The antipodes S(L) and S(L̃) are given by acting the correspondent antipodes on
all the matrix elements. That is

S(L) =

(
S(K−1) 0

−q 1
4 (q

1
2 − q− 1

2 )S(J+) S(K)

)
=

(
K 0

q−
1
4 (q

1
2 − q− 1

2 )J+ K−1

)
, (4.21)

S(L̃) =

(
S(K̃) 0

q−
1
4 (q

1
2 − q− 1

2 )S(J̃+) S(K̃−1)

)
=

(
K̃−1 0

−q 1
4 (q

1
2 − q− 1

2 )J̃+ K̃

)
. (4.22)

Neither of these antipodes is an involution. However, they are the inverse of each other:
S ◦ S = S ◦ S = I. Also notice that the antipode acting on the quantum holonomies and
quantum fluxes plays the role of exchanging q ↔ q−1. That is, S(U) ∈ SUq(2) , S(Ũ) ∈
SUq−1(2) , S(L) ∈ Uq(su(2)) , S(L̃) ∈ Uq−1(su(2)). Thus when the antipode acts twice on
the same quantum holonomy/flux, both S and S need to be used which leads to the original
object.

We note that the left Iwasawa decomposition leads to elements in the Hopf algebras,
Uq−1(su(2)) and SUq−1(2) while the right decomposition leads to elements in the Hopf
algebras, Uq(su(2)) and SUq(2). At the classical level, this is reflected in the presence of
the minus sign difference between (2.35), (2.36), the Poisson structures respectively for
the elements u, ℓ of the left Iwasawa decomposition and for the elements ũ, ℓ̃ of the right
Iwasawa decomposition.

One can also quantize the phase space element d = ℓu ∈ SL(2,C) into an operator
matrix. At first glance, it would lead to SLq(2,C)2. However, since the Heisenberg double
is not a Poisson-Lie group, its quantization does not lead to a Hopf algebra either3.
Nevertheless, one can form the objects LU and Ũ L̃ whose commutation relation would give
the quantization of the Poisson bracket (2.34). They are not necessarily equal as the q-
determinant is not preserved under matrix multiplication, i.e. detq(Ũ L̃) ̸= detq(Ũ) detq(L̃)
and detq−1(LU) ̸= detq−1 L detq−1 U . To fix the coefficient, we define

D = cL(q)LU = cR(q)Ũ L̃ (4.23)

such that detqD = I, where cL(q) and cR(q) are q-dependent constants whose q → 1 limit
are both one. This will guarantee that the classical limit gives back (2.34). These constants

2SLq(2,C) is defined in the same way as in Definition 4.1.2 but with q complex.
3On the other hand, the Drinfeld double (SL(2,C), πD) as a Poisson-Lie group is expected to be quan-

tized to the Hopf algebra SLq(2,C) and describes quantum symmetries of the system. We leave this for
future investigation. See [170] for the Iwasawa decomposition of a SLq(2,C) into SUq(2) and ANq(2),
in which the commutation relations of the two quantum subgroups are the quantization of the Drinfeld
double Poisson structure (A.17).
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will not affect the commutation relations. We then can write the quantum version of the
ribbon constraint as

LU =
cL(q)

cR(q)
Ũ L̃ . (4.24)

Coupling the commutation relations in (4.16), one finds that the quantization of the Poisson
bracket (2.34) gives the following equivalent commutation relations.

RD1D2 = D2D1R21 ⇐⇒ R−121 D1D2 = D2D1R
−1 . (4.25)

The equivalence of these two equations can be shown by using the Casimir property (4.17)

of R21R. Corresponding to the matrix elements of D =

(
â b̂

ĉ d̂

)
, (4.25) is equivalent to

the following relations:

âb̂ = q
1
2 b̂â , ĉd̂ = q

1
2 d̂ĉ , âĉ = q−

1
2 ĉâ , b̂d̂ = q−

1
2 d̂b̂ ,

âd̂ = d̂â , b̂ĉ− ĉb̂ = −(q
1
2 − q−

1
2 )âd̂ .

(4.26)

This shows clearly that D /∈ SLq(2,C).

Lastly, the matrix R also captures completely the duality in the sense of Hopf algebra
between the quantum holonomies and quantum fluxes according to (4.15). Denote the

matrices U =

(
U−− U−+
U+− U++

)
, Ũ =

(
Ũ−− Ũ−+
Ũ+− Ũ++

)
and use the parametrization (4.20) of

L, L̃. Then the dualities between L, U and between L̃, Ũ mean

⟨U−−, K±⟩ = q±
1
4 , ⟨U−+, J+⟩ = ⟨U−+, J−⟩ = 1 , ⟨U++, K

±⟩ = q∓
1
4 ,

⟨Ũ−−, K̃±⟩ = q±
1
4 , ⟨Ũ−+, J̃+⟩ = ⟨Ũ−+, J̃−⟩ = 1 , ⟨Ũ++, K̃

±⟩ = q∓
1
4 ,

(4.27)

and other bilinear maps vanish.

In this section, we have fully quantized the Poisson brackets (2.34), (2.35) and (2.36)
and extend the duality between the classical fluxes and holonomies in the sense of Lie
bialgebra to the duality between the quantum fluxes and quantum holonomies in the sense
of Hopf algebra. We have found that the quantum symmetry of 3D gravity with a (negative)
cosmological constant is captured by the quantum groups Uq(su(2)) and SUq(2) (if taking
Uq−1(su(2)) and SUq−1(2) as the isomorphism of Uq(su(2)) and SUq(2) respectively). This
is consistent with the results in the literature from other approaches [204, 53, 185]. The
advantage here is that we derive these results starting from first principle and following
the loop quantization program. It is thus encouraging to apply the flux and holonomy we
defined in this model for future developments of the quantum theory and to generalize to
higher dimensions.
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4.2.2 The R-matrix contains the information about fluxes and
holonomies

Let us add some additional comments on the defining relations

L1L2R
−1 = R−1L2L1 , R−1U1U2 = U2U1R

−1 , L̃1L̃2R = RL̃2L̃1 , RŨ1Ũ2 = Ũ2Ũ1R
(4.28)

for the quantum fluxes and quantum holonomies. It is well-known [184] that they can be
obtained from the (QYBE) (4.4), which in components is written as∑

k1,k2,k3

Ri1 i2
k1 k2

R′k1 i3
j1 k3
R′′k2 k3

j2 j3
=

∑
k1,k2,k3

R′′i2 i3
k2 k3

R′i1 k3
k1 j3

Rk1 k2
j1 j2

. (4.29)

Here, R,R′,R′′ are different copies of the R-matrix. The first two indices (i, j) of Ri k
j l

are the indices for R(1) and the last two indices (k, l) are the indices for R(2) given the
decomposition R =

∑
R(1) ⊗R(2).

Let us fix the representation of R(2),R′(2) and R′′ to be the fundamental represen-

tation of Uq(su(2)), then the indices (i2, i3), (j2, j3), (k2, k3) ∈ {−1
2
, 1
2
} in (4.29). In this

representation, we then have
(L̃kl)

α
β = Rα k

β l (4.30)

where the indices k, l = ±1
2
are the indices labelling the matrix elements of L̃, while α, β

are the indices of the Uq(su(2)) generators in any representation. The QYBE (4.29) thus
can be written as L̃1L̃2R = RL̃2L̃1, which is the third relation of (4.28).

On the other hand, fixing the representation of R,R′(1) and R′′(1) to be the fundamental
representation and using that

(Ũ i
j)
α
β = Ri α

j β (4.31)

when i, j ∈ {−1
2
, 1
2
}, the QYBE can be written as RŨ1Ũ2 = Ũ2Ũ1R, which reproduce the

last relation in (4.28).

In the same spirit, the first two equations in (4.28) are the QYBE for the R-matrix of
Uq−1(su(2)) (which is the inverse of the R-matrix of Uq(su(2))) in a given representation.
Therefore, the R-matrix captures the quantum holonomy and quantum flux information in
its two sub-spaces. This gives a more geometrical interpretation to the R-matrix in terms
of quantum “holonomies” either in some deformation of AN(2) or SU(2)4.

4Although we stick to the terminology that ℓ and ℓ̃ are called fluxes, they are AN(2) holonomies in the
ribbon picture as each is assigned to a side of the ribbon.
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The construction of tensor operators (such as spinor and vector operators) usually re-
quires some braiding defined in terms of theR-matrix to transform appropriately [179, 175].
We will show in Chapter 5 how this braiding can be re-interpreted in a more geometrical
setting, i.e. in terms of parallel transport. Last but not least, as the R-matrix has been
intensively used and studied in the integrable lattice model (see e.g. [147, 84] and a recent
lecture note [178] and reference therein), we expect that the methodology and analysis
therein can offer lessons on understanding the quantum structure of LQG. We leave this
for future investigation.

4.3 Kinematical Hilbert space intertwiners

Let us consider a node v with n (n ≥ 3) incident links. A quantum state on this node
lives in the tensor product of the n vector spaces or dual vector spaces for the incident
links depending on their orientations. The quantized Gauss constraint, as an operator on
such a space, is provided by the coproduct of Uq(su(2)) and Uq−1(su(2)). In this section,
we construct the quantized Gauss constraint and solve it. The solutions are the so-called
intertwiner states. It was first given in [39], in which different definitions of the quantum
fluxes were used.

ℓ1
· · ·

ℓi

ℓ̃i+1
· · ·

ℓ̃n

u1

ũ1
ℓ̃1

un

ũn
ℓn

ui

ũi

ℓ̃i

ũi+1

ui+1
ℓi+1

e1ei

ei+1 en

•
v

Figure 4.1: An n-valent node v (in gray) with incident links e1, e2, · · · , en attached on v in
a cyclic order and its corresponding ribbon graph.

Denote the incident links by e1, e2, · · · , en in a cyclic order in the counterclockwise
orientation as shown in fig.4.1. We rewrite the classical Gauss constraint on v (in an
inverse way compared to (2.44)) as Gv = L1L2 · · · Ln with Li = ℓ̃i if oi = −1 and Li = ℓ−1

if oi = 1.
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Upon quantization, ℓ̃ is quantized to L̃ and ℓ−1 is quantized to L−1 := S(L). The change
of orientation for a link leads to the exchange of L̃ and L in the quantized Gauss constraint
thus the exchange of Uq(su(2)) and Uq−1(su(2)) operators. Moreover, the change of orien-
tation results in the exchange between the representation on the vector space and the dual
representation5 on the dual vector space. We can thus define the associated quantum state
for an incoming link in the representation space of Uq(su(2)) and the associated state for
an outgoing link in the dual representation space of Uq−1(su(2)). Combining these ideas,

we consider the representation Π(L̃) = L̃ of Uq(su(2)) in the quantized Gauss constraint
for an incoming link, while for an outgoing link we need to consider the dual representation
Π∗(S(L)) ≡ S ◦ S(L) = L of Uq(su(2)). The quantized Gauss constraint on v is thus

Ĝv = △(n−1)(L̂) , with △(n−1) = (△⊗ I) ◦ △(n−2) , △(L̂ij) =
∑
k=±

L̂1,ik ⊗ L̂2,kj , i, j = ± .

(4.32)
On the right hand side of the last equation, L̂α = L̃ if oα = −1 and L̂α = L if oα = 1 with
α = 1, 2 denoting the incident links.

4.3.1 Kinematical Hilbert space

Let us now construct the Hilbert space, more particularly the kinematical Hilbert space,
denoted as Hkin, of the q-deformed LQG model. A Hilbert space is mathematically defined
as a squared integrable space with a measure defining the inner product of states - elements
in the Hilbert space. And the kinematical Hilbert space is spanned by the state invariant
under the quantum Gauss constraint. These states are called the spin network states.

Let us first take a step back and consider the case Λ = 0. It is well-known that the
kinematical Hilbert space for one link in 3D LQG is L2(SU(2), dg) with dg being the Haar
measure of SU(2)6. According to the Peter-Weyl theorem, this Hilbert space can be written
as the direct sum of the tensor products of all the irreducible (denoted by a half-integer,
called spin j) vector spaces Vj and the irreducible dual vector spaces V∗ j, which is formally

5Given a representation (Π,V ) of a Hopf algebra H, the dual representation of H is a pair (Π∗, V ∗)
consisting of a dual vector space V ∗ = Hom(V,C) and a homomorphism Π∗ : H → End(V ∗) such that

⟨Π∗(h)ϕ, v⟩ = ⟨ϕ,Π(S(h))v⟩ ,∀h ∈ H,ϕ ∈ V ∗ , v ∈ V .

6A Haar measure of SU(2) is a measure invariant under the left and right SU(2) transformation,
i.e. dg = d(hg) = d(gh),∀h ∈ SU(2).
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written as
He = L2(SU(2), dg) =

⊕
j=N/2

Vj ⊗ V∗ j. (4.33)

Before imposing any constraint, the Hilbert space for a graph Γ composed of E links is
the E-times tensor product of the Hilbert space for a single link. Graphically, one can
understand that Vje for a link e is the vector space associated to the half-link incident to
the target node t(e) and V∗ j is the dual vector space associated to the half-link incident
to the source node s(e). It is common that instead of studying the whole Hilbert space,
one specifies on certain irreducible7 representations. In this spirit, we assign a spin je to
each oriented link e, implying that we are picking the representation space Vje ⊗ V∗ je for
this link. Then a spin network state for an n-valent node v is a state invariant under
the SU(2) transformation imposed on v. Such an SU(2)-invariant space is denoted as

Inv
(⊗

e|t(e)=v Vje ⊗
⊗

e|s(e)=v V∗ je
)
. The basis of the kinematical Hilbert space Hkin is given

by the intertwiners, which by definition are states invariant under SU(2) transformations.

We now want to generalize the spin network states and hence the kinematical Hilbert
space from the flat case to the q-deformed case by considering the irreducible representa-
tions of SUq(2) (or of Uq(su(2)) which are identical). The generalization is rather direct
and we collect some ingredients needed for future illustration here [33]. To simplify the
notation, we still denote the vector space and dual vector space of the spin j representation
for SUq(2) by Vj and V∗ j in the rest of this section unless it brings confusion.

For the spin j representation space, we introduce an orthonormal basis called the mag-
netic state basis denoted as |j,m⟩ ∈ Vj by a spin j and a magnetic number m which can
take 2j + 1 different values: −j, · · · , j. Dualizing it, we get the corresponding magnetic
state basis ⟨j,m| ∈ V∗ j for the dual representation space. It is an orthonormal basis in the
sense that their inner product gives

⟨k, n|j,m⟩ = δjkδmn . (4.34)

They form a complete basis for the vector space Vj ⊗ V∗ j, that is∑
m

|j,m⟩⟨j,m| = IVj⊗V∗ j . (4.35)

We now use these formulas to construct the Uq(su(2))-invariant states in the kinematical
Hilbert space of q-deformed LQG for a single node. Note that the flat case, which is more
well-known, can be recovered at q = 1 for all these results.

7On physical ground, the representation should be irreducible because otherwise, we have closed sub-
spaces which give superselection sectors [200].
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4.3.2 Intertwiners for three-valent nodes

We are particularly interested in the case of n = 3 which corresponds to triangulation
of Σ. We specify the quantum Gauss constraints for the different orientations in this
case. Firstly, consider a node with three links e1, e2, e3 incoming, as given in fig.3.4d. The
quantum Gauss constraint reads

Ĝ = △(2)L̃ =

 K̃ ⊗ K̃ ⊗ K̃ 0

q−
1
4 (q

1
2 − q− 1

2 )(K̃−1 ⊗ K̃−1 ⊗ J̃+
+K̃−1 ⊗ J̃+ ⊗ K̃ + J̃+ ⊗ K̃ ⊗ K̃)

K̃−1 ⊗ K̃−1 ⊗ K̃−1

 . (4.36)

An intertwiner ij1j2j3 ∈ Inv(Vj1 ⊗Vj2 ⊗Vj3) is defined as a state on a node invariant under

the quantum Gauss constraint, that is the eigenstate for Ĝij1j2j3 = ij1j2j3 . Note that the
generators act on the magnetic basis state |j,m⟩ as

J±|j,m⟩ =
√
[j ±m+ 1][j ∓m]|j,m± 1⟩ , K|j,m⟩ = q

m
2 |j,m⟩ , (4.37)

and J̃±, K̃ act in the same way. Using the recurrence relation of the q-Wigner-Clebsch–Gordan
(WCG) coefficient qC

j1 j2 j3
m1m2m3

[33]:

q
m2
2

√
[j1 ±m1][j1 ∓m1 + 1] qC

j1 j2 j3
m1∓1m2m3

+ q−
m1
2

√
[j2 ±m2][j2 ∓m2 + 1] qC

j1 j2 j3
m1m2∓1m3

−
√

[j3 ∓m3][j3 ±m3 + 1] qC
j1 j2 j3
m1m2m3±1 = 0 , (4.38)

we can solve the Gauss constraint, Ĝij1j2j3 = ij1j2j3 , and get the Uq(su(2)) intertwiner
defined as

ij1j2j3 =
∑
mi

(−1)j3+m3√
[dj3 ]

q−
m3
2 qC

j1 j2 j3
m1m2−m3

|j1,m1⟩ ⊗ |j2,m2⟩ ⊗ |j3,m3⟩ . (4.39)

When changing the orientation of any link, the correspondent intertwiner can be ob-
tained by turning the representation, say j, associated to the orientation-changed link to
the dual representation j∗. To do this, we make use of the Uq(su(2))-invariant bilinear form,
Bq : Vj⊗Vj → C, which is defined with the q-WCG coefficient projected on the trivial rep-
resentation [33]. Explicitly, for two given vectors w =

∑
mwm|j,m⟩, r =

∑
n rn|j, n⟩ ∈ Vj,

Bq(w, r) =
∑
m

qC
j j 0
−mm 0w−mrm =

∑
m

(−1)j+mq−
m
2 w−mrm . (4.40)
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One can thus define the dual vector w∗ of w as

w∗ ≡
∑
m

⟨j,m|w∗m :=
∑
m

⟨j,m|q−
m
2 (−1)j+mw−m =⇒ w∗m = q−

m
2 (−1)j+mw−m . (4.41)

Apparently, this dual operation is not involution. One can also define the dual vector with
the Uq−1(su(2))-invariant bilinear form Bq−1 , that is to replace q with q−1 in (4.41).

When link e2 is outgoing and e1, e3 incoming, as given in fig.3.4c, one needs to dualize
the vector on e2, that is to change qC

j1 j2 j3
m1m2−m3

|j2,m2⟩ → qC
j1 j2 j3
m1−m2−m3

⟨j2,m2| and add

(−1)j2+m2q−
m2
2 according to (4.41). Thus the correspondent intertwiner is

ij1j∗2 j3 =
∑
mi

(−1)j3+m3√
[dj3 ]

q−
m3+m2

2 (−1)j2+m2
qC

j1 j2 j3
m1−m2−m3

|j1,m1⟩⊗ ⟨j2,m2|⊗ |j3,m3⟩ , (4.42)

which can be checked to be the eigenstate for the quantum Gauss constraint

Ĝ = L̃⊗ L⊗ L̃ =


K̃ ⊗K−1 ⊗ K̃ 0

q−
1
4 (q

1
2 − q− 1

2 )(K̃−1 ⊗K ⊗ J̃+
−q 1

2 K̃−1 ⊗ J+ ⊗ K̃ + J̃+ ⊗K−1 ⊗ K̃)
K̃−1 ⊗K ⊗ K̃−1

 .

(4.43)
When link e1 is outgoing and e2, e3 incoming, as given in fig.3.4b, the intertwiner is obtained
using the same dualization as in (4.42) but for j1 and m1. The last case for keeping e3
unchanged is to switch both e1 and e2 to be outgoing, as given in fig.3.4a, then the same
dualization should be applied to both (j1,m1) and (j2,m2).

What needs special care is when one switches the orientation of e3, i.e. when e3 is out-
going and e1, e2 incoming. In this case, one needs to dualize the vector on e3 with a different
rule. This is because the q-WCG coefficient qC

j1 j2 j3
m1m2m3

= ⟨j1,m1; j2,m2|(j1j2)j3,m3⟩ can
be viewed as the coefficient wm1 (resp. wm2) of a vector in Vj1 (resp. Vj2) or the coefficient
w∗m3

of a dual vector in Vj3 ∗ in the sense of the decomposition (4.41).

Note that the factor (−1)j3+m3q−
m3
2 in ij1j2j3 is the transformation factor from the

coefficient wm of a vector w to the coefficient w∗m of a dual vector v∗ as shown in (4.41), thus
one needs to change (−1)j3+m3q−

m3
2 qC

j1 j2 j3
m1m2−m3

|j3,m3⟩ → (−1)j3−m3q
m3
2 qC

j1 j2 j3
m1m2 m3

⟨j3,m3|
and add (−1)j3−m3q−

m3
2 which is the factor of the inverse transformation of w∗. This leads

to the intertwiner

ij1j2j∗3 =
∑
mi

1√
[dj3 ]

qC
j1 j2 j3
m1m2m3

|j1,m1⟩ ⊗ |j2,m2⟩ ⊗ ⟨j3,m3| , (4.44)
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which is exactly the eigenstate for the quantum Gauss constraint

Ĝ = L̃⊗ L̃⊗ L =

 K̃ ⊗ K̃ ⊗K−1 0

q−
1
4 (q

1
2 − q− 1

2 )(−q− 1
2 K̃−1 ⊗ K̃−1 ⊗ J+

+K̃−1 ⊗ J̃+ ⊗K−1 + J̃+ ⊗ K̃ ⊗K−1)
K̃−1 ⊗ K̃−1 ⊗K

 .

(4.45)
(4.44) can also be used to define the q-WCG coefficient

qC
j1 j2 j3
m1m2m3

:= ⟨j1,m1| ⊗ ⟨j2,m2|ij1j2j∗3 |j3,m3⟩ . (4.46)

Indeed, when we change the orientation of e3 again, we recovers the original intertwiner
ij1j2j3 by adding the regular factor (−1)j3+m3q−

m3
2 as in obtaining ij1j∗2 j3 from ij1j2j3 .

As the last example, we consider the case of three links outgoing, the correspondent
intertwiner is

ij∗1 j∗2 j∗3 =
∑
mi

(−1)j3−m3√
[dj3 ]

q
m3
2 q−

m1+m2+m3
2 (−1)j1+m1(−1)j2+m2(−1)j3−m3

qC
j1 j2 j3
−m1−m2m3

⟨j1,m1| ⊗ ⟨j2,m2| ⊗ ⟨j3,m3|

=
∑
mi

1√
[dj3 ]

q
m3
2 (−1)j1+m1(−1)j2+m2

qC
j1 j2 j3
−m1−m2m3

⟨j1,m1| ⊗ ⟨j2,m2| ⊗ ⟨j3,m3| .

(4.47)

To summarize, we have clarified the quantization of the holonomy-flux algebra for one
ribbon and the Gauss constraint for a three-valent node with incident links of any orienta-
tion and the corresponding intertwiner. These serve as the hints to quantize the deformed
spinors that we will describe in Chapter 5 and the yardstick to measure the consistency of
the results. Recall that the quantum fluxes defined in (4.20) can be defined from the R-
matrix of Uq(su(2)) and Uq−1(su(2)) and form neat dualities with the quantum holonomies
in terms of the R-matrix, as given in (4.27). We thus believe that the intertwiners built
from the quantized Gauss constraint with such quantum fluxes are more useful in con-
structing the kinematical Hilbert space and are more promising to link to the Turaev-Viro
model. This is left for future investigation.
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Chapter 5

Quantum spinorial representation of
q-deformed LQG

The canonical quantization we did for holonomy and fluxes can also be performed on the
classical deformed spinors we introduced in Chapter 3 and promote them to operators.
These quantum deformed spinor operators, or quantum spinors for short, can recover the
q-deformed LQG structure described in Chapter 4.

The use of quantum spinor in LQG was first introduced for the flat case (q = 1)
[118, 98, 99, 142, 44, 75, 74]. One of the most appealing results is that the quantum
spinors can be used as a tool to define the SU(2) coherent states, which build the U(N)
formulation of LQG (see e.g. [98, 99, 50]). In this formalism, the focus of building quantum
states is turned from the spin networks on links to the coherent intertwiners on nodes as, for
a given graph, spins live on links while spinors live on nodes. The application of quantum
spinors in the spinfoam model has also been much explored (e.g. [82, 96, 141]) See Chapter
7 for more discussion on the this topic.

The spinor operators that meet at an n-valent node can then define gauge invariant
operators. Moreover, the latter form a u(n) algebra of operators at each n-valent node.
Later on [120], the larger algebra so∗(2n) was identified as the full algebra of observables
associated to n-valent nodes. These observables are the most fundamental ones since any
other observable in the holonomy and flux variables, such as Wilson loops, can be rewritten
as a function of those fundamental observables [144]. In other words, they parametrize the
invariant subspace of the phase space.

The generalization to the quantum group case SUq(2) was not fully understood until
now and this is what we intend to achieve in this chapter (with q real). Here we quantize
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the spinors directly, which gives rise to spinor operators. Those objects have already
been developed quite extensively using the full algebraic apparatus of quantum groups
[179, 175], such as the notion of braiding, induced by the quantum R-matrix. Those
algebraic considerations thus provide the guide lines to actually build local observables
directly at the quantum level [80, 81]. However, since we are working on a graph, it is
also natural to use the geometric picture to construct the observables in terms of quantum
parallel transport. Note that in the non-deformed case, no parallel transport is involved
in these local observables. However, in the deformed case, AN(2) elements play the role
of holonomies to transport spinors around the ribbon structure of nodes. It was already
noticed in [39] that one can find quantum invariants without using the braiding provided
by the R-matrix. In this chapter, we clarify this aspect and show that these two different
approaches, algebra versus geometry, actually coincide beautifully. Indeed, the notion of
braided permutation used to construct the tensor operators can be understood as a specific
parallel transport along the ribbons. This interpretation in the context of loop quantum
gravity is new to the best of our knowledge.

Quantizing the spinors leads to the quantization of the local observables which are
built with them. The algebra of those observables around a node of valence n is shown to
be a q-deformation of so∗(2n) from [120], with a Uq(u(n)) subalgebra. This is proved by
reproducing the Serre-Chevalley relations from our quantized observables.

This chapter contains one of the key results of this thesis and it is based on [41] by
the author and collaborators. In Section 5.1, we introduce the quantum spinor formalism.
We provide the quantization rule to have the quantum deformed spinors. We then show in
Section 5.2 that the quantum holonomy-flux algebra can be fully recovered by the quantum
spinors in a geometrically clear way. In Section 5.4, we show that the action of the R-
matrix can be interpreted as parallel transport. This section contains the main original
results of this chapter. Finally, in Section 5.5, Finally, we obtain the quantization of the
local observables and prove that they form a deformation of so∗(2n) in terms of the Serre-
Chevalley relations. These observables will be used intensively in the next chapter for
constructing the Hamiltonian constraint.

5.1 Quantizing the spinors

In this section, we quantize the deformed spinors tϵ, τ ϵ, t̃ϵ, τ̃ ϵ defined in Section 3.2. We will
describe their properties as quantum spinors. Let us first work on the non-tilde variables,
then the tilde variables follow the same quantization law but give rise to an independent
copy of operators.
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The quantization of the deformed variables ζκA, ζ̄
κ
A, NA will give rise to the q-deformation

of the Jordan map for su(2). Indeed these variables can be quantized as q-boson operators:
the variables ζκA are quantized as q-boson annihilation operators, the variables ζ̄κA as q-boson
creation operators and the variables NA as number operators. Explicitly,

(ζκ−, ζ
κ
+)→ (a, b) , (ζ̄κ−, ζ̄

κ
+)→ (a†, b†) , (N−, N+)→ (Na, Nb) ,

(ζ̃κ−, ζ̃
κ
+)→ (ã, b̃) , (¯̃ζκ−,

¯̃ζκ+)→ (ã†, b̃†) , (Ñ−, Ñ+)→ (Ña, Ñb) .
(5.1)

These q-harmonic oscillators obey the following commutation rules

aa† − q∓
1
2a†a = q±

Na
2 , a†a− q±

1
2aa† = −q±

Na+1
2 , [Na, a

†] = a† , [Na, a] = −a , (5.2)

from which one can deduce

qNa/2a† = q1/2a†qNa/2, qNa/2a = q−1/2aqNa/2 , a†a = [Na] ≡
qNa/2 − q−Na/2

q
1
2 − q− 1

2

, aa† = [Na + 1] .

(5.3)
Similar relations hold for the operators (b, b†, Nb) and the tilde variables. The different
sets of q-boson operators (a, a†, Na) (b, b

†, Nb), (ã, ã
†, Ña) and (b̃, b̃†, Ñb) all commute with

each other.

States can be labeled by their occupation numbers, |na⟩ = a†na |0⟩/
√

[na] and |nb⟩ =
b†nb|0⟩/

√
[nb], and

|na, nb⟩HO = |na⟩ ⊗ |nb⟩. (5.4)

The q-deformed Jordan map is [33],

J+ = a†b , J− = ab† , K = q
Jz
2 = q

Na−Nb
4 , J̃+ = ã†b̃ , J̃− = ãb̃† , K̃ = q

J̃z
2 = q

Ña−Ñb
4 .

(5.5)
Indeed, with the quantization map (5.1), we recover the classical generators z, z̄, λ and
z̃, ¯̃z, λ̃ at the linear ℏ-order of the quantum fluxes (4.20) by taking q = eκℏ = 1+κℏ+O(ℏ2),∣∣∣∣∣ −q

1
4 (q

1
2 − q− 1

2 )J+ → z = −κζ̄κ−ζκ+
K−1 → λ = exp(κ

4
(N+ −N−))

,

∣∣∣∣∣ q
1
4 (q

1
2 − q− 1

2 )J̃+ → z̃ = κ ¯̃ζκ−ζ̃
κ
+

K̃ → λ̃ = exp(κ
4
(Ñ− − Ñ+))

.

(5.6)

We define the right adjoint action1, denoted as ▶ (resp. ▶ ), of Uq(su(2)) (resp.
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Uq−1(su(2))) on some operator O:

J± ▶ O = S(J±)OK + S(K−1)OJ±
= −q±

1
2J±OK +KOJ±

,
K ▶ O = S(K)OK

= K−1OK
, (5.7a)

J±▶O = S(J±)OK−1 + S(K)OJ±
= −q∓

1
2J±OK−1 +K−1OJ±

,
K ▶O = S(K)OK

= K−1OK
. (5.7b)

Let Vj be the irreducible representation of Uq(su(2)) of dimension 2j +1. The basis state
|j,m⟩ ∈ Vj of fixed magnetic number m is the Fock state |na, nb⟩HO,

|j,m⟩ = |j +m, j −m⟩HO ≡
(
a†
)j+m (

b†
)j−m√

[j +m]![j −m]!
|0, 0⟩HO , (5.8)

i.e. j = 1
2
(na + nb) and m = 1

2
(na − nb). The q-bosons act on those states as

a†|j,m⟩ =
√

[j +m+ 1] |j + 1
2
,m+ 1

2
⟩ , a|j,m⟩ =

√
[j +m] |j − 1

2
,m− 1

2
⟩ ,

b†|j,m⟩ =
√

[j −m+ 1] |j + 1
2
,m− 1

2
⟩ , b|j,m⟩ =

√
[j −m] |j − 1

2
,m+ 1

2
⟩ ,

Na|j,m⟩ = (j +m) |j,m⟩ , Nb|j,m⟩ = (j −m) |j,m⟩ .
(5.9)

e1

L̃

L

•• •
t̃ϵ τ̃

ϵ

τϵ tϵ

Figure 5.1: The reference ribbon. The spinor operators tϵ and t̃ϵ are Uq(su(2)) quantum
spinors, while τϵ and τ̃

ϵ
are Uq−1(su(2)) quantum spinors.

With the quantization map given above, we are now ready to define the Uq(su(2)) and
Uq−1(su(2)) quantum spinors, which decorate the ribbon as in fig.5.1. A Uq(su(2)) (resp.

1Given a generator x of a Hopf algebra H with coproduct △(x) =
∑

x(1) ⊗ x(2), there are two kinds
of adjoint actions on operators O’s of H namely the left adjoint action x ▷O :=

∑
x(1)OS(x(2)) and the

right adjoint action x ▶ O :=
∑

S(x(1))Ox(2).
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Uq−1(su(2))) quantum spinor, denoted as T =

(
T−
T+

)
, by definition should transform

under the Uq(su(2)) (resp. Uq−1(su(2))) adjoint action as a spinor, i.e.

J± •T± = 0 , J± •T∓ = T∓ , K •T± = q∓
1
4T± , (5.10)

where • is the right adjoint action (which can be either ▶ or ▶ ).

Remark 5.1.1. According to Biedenharn’s terminology [33], the relations (5.10) define
what he calls conjugate spinors. This is what we will call the right adjoint quantum spinors
in this article. A left adjoint quantum spinor, or a quantum spinor according to Bieden-
harn’s terminology, is defined by the Uq(su(2)) or Uq−1(su(2)) left adjoint action. Denote
uniformly the Uq(su(2)) or Uq−1(su(2)) left adjoint action by ◦, then the left adjoint action
of the generators on a left adjoint quantum spinor, say T′, is

J± ◦T′± = 0 , J± ◦T′∓ = T′∓ , K ◦T′± = q±
1
4T′± .

Note the different behavior under the action of K compared to (5.10). A Uq(su(2)) right
adjoint quantum spinor qT can be obtained via a Uq−1(su(2)) left adjoint quantum spinor

q−1T′ with the relation qTA = (−1) 1
2
−Aq

A
2 q−1T′A, while a Uq−1(su(2)) right adjoint quantum

spinor q−1T can be obtained via an Uq(su(2)) left adjoint quantum spinor qT
′ with the

relation q−1TA = (−1) 1
2
−Aq−

A
2 qT

′
A.

A spinor operator is a special example of a tensor operator Tj= 1
2 . A tensor operator

Tj associated with the representation j transforms under the adjoint action as an element
of the representation j. The Wigner-Eckart theorem provides the matrix elements of any
tensor operator Tj.

Theorem 5.1.2 (Wigner-Eckart Theorem for Uq(su(2)) [33] ). The matrix element of a
tensor operator Tj of rank j with j an irreducible representation of Uq(su(2)) is proportional
to the q-WCG coefficient:

⟨j1,m1|Tj
m|j2,m2⟩ = N j

j1j2 q
C j1 j j2
m1mm2

, (5.11)

where Tj
m is the m-th component of Tj, qC

j1 j j2
m1mm2

is the q-WCG coefficient for coupling j1
and j to get j2 and N j

j1j2
is a constant independent of m,m1,m2.

95



The quantization map (5.1) leads to the quantum spinors defined as

|t⟩ =

(
e

κN+
4 ζκ−

e−
κN−

4 ζκ+

)
→ t− =

(
t−−
t−+

)
=

(
q

Nb
4 a

q−
Na
4 b

)
, (5.12a)

|t] =

(
−e−

κN−
4 ζ̄κ+

e
κN+

4 ζ̄κ−

)
→ t+ =

(
t+−
t++

)
=

(
−b†q−Na+1

4

a†q
Nb+1

4

)
, (5.12b)

|τ⟩ =

(
e−

κN+
4 ζκ−

e
κN−

4 ζκ+

)
→ τ− =

(
τ−−
τ−+

)
=

(
q−

Nb
4 a

q
Na
4 b

)
, (5.12c)

|τ ] =

(
−e

κN−
4 ζ̄κ+

e−
κN+

4 ζ̄κ−

)
→ τ+ =

(
τ+
−

τ+
+

)
=

(
−b†qNa+1

4

a†q−
Nb+1

4

)
, (5.12d)

|t̃⟩ =

(
e

κÑ+
4 ζ̃κ−

e−
κÑ−

4 ζ̃κ+

)
→ t̃− =

(
t̃−−
t̃−+

)
=

(
q

Ñb
4 ã

q−
Ña
4 b̃

)
, (5.12e)

|t̃] =

(
−e−

κÑ−
4

¯̃ζκ+

e
κÑ+

4
¯̃ζκ−

)
→ t̃+ =

(
t̃+−
t̃++

)
=

(
−b̃†q− Ña+1

4

ã†q
Ñb+1

4

)
, (5.12f)

|τ̃⟩ =

(
e−

κÑ+
4 ζ̃κ−

e
κÑ−

4 ζ̃κ+

)
→ τ̃

−
=

(
τ̃
−
−

τ̃
−
+

)
=

(
q−

Ñb
4 ã

q
Ña
4 b̃

)
, (5.12g)

|τ̃ ] =

(
−e

κÑ−
4

¯̃ζκ+

e−
κÑ+

4
¯̃ζκ−

)
→ τ̃

+
=

(
τ̃
+
−

τ̃
+
+

)
=

(
−b̃†q Ña+1

4

ã†q−
Ñb+1

4

)
. (5.12h)

The spinors tϵ and t̃ϵ are quantized as Uq(su(2)) spinor operators while the (braided)
spinors τ ϵ and τ̃ ϵ are quantized as Uq−1(su(2)) spinor operators. Indeed, under the right
adjoint action, these quantum spinors transform as desired:

J± ▶ tϵ± = 0, J± ▶ tϵ∓ = tϵ±, K ▶ tϵ± = q∓
1
4 tϵ± ,

J± ▶ t̃ϵ± = 0, J± ▶ t̃ϵ∓ = t̃ϵ±, K ▶ t̃ϵ± = q∓
1
4 t̃ϵ± ,

J±▶τϵ± = 0, J±▶τϵ∓ = τϵ±, K ▶τϵ± = q∓
1
4τϵ± ,

J±▶ τ̃
ϵ
± = 0, J±▶ τ̃

ϵ
∓ = τ̃±, K ▶ τ̃

ϵ
± = q∓

1
4 τ̃

ϵ
± .

(5.13)

96



As a consequence, the Wigner-Eckart theorem tells us that

⟨j1,m1|tϵm|j2,m2⟩ = δj1,j2+ϵ/2

√
[dj1 ] qC

j1
1
2

j2
m1−mm2

, (5.14a)

⟨j1,m1|τϵm|j2,m2⟩ = δj1,j2+ϵ/2

√
[dj1 ] q−1C

j1
1
2

j2
m1−mm2

, (5.14b)

⟨j1,m1|t̃ϵm|j2,m2⟩ = δj1,j2+ϵ/2

√
[dj1 ] qC

j1
1
2

j2
m1−mm2

, (5.14c)

⟨j1,m1|τ̃ϵm|j2,m2⟩ = δj1,j2+ϵ/2

√
[dj1 ] q−1C

j1
1
2

j2
m1−mm2

. (5.14d)

Therefore, as in the quantum fluxes, we again see both the Uq(su(2)) and Uq−1(su(2)) struc-
tures appearing upon quantization. We decorate the ribbon with spinor operators as in
fig.5.1. tϵ and t̃ϵ are the Uq(su(2)) quantum spinors, while τϵ and τ̃

ϵ
are the Uq−1(su(2))

quantum spinors both in the sense of the right adjoint action. The quantum spinor com-
ponents satisfy the commutation relations

tϵ−t
ϵ
+ = q−

1
2 tϵ+t

ϵ
− , τϵ−τ

ϵ
+ = q

1
2τϵ+τ

ϵ
− , t̃ϵ−t̃

ϵ
+ = q−

1
2 t̃ϵ+t̃

ϵ
− , τ̃

ϵ
−τ̃

ϵ
+ = q

1
2 τ̃

ϵ
+τ̃

ϵ
− , ϵ = ± .

(5.15)

We define the inner products of the spinors with a bilinear form Bq determined by

the q-WCG coefficient ±
√

[2] qC
1
2

1
2
0

m n 0 = ±δm,−n(−1)1/2−mqm/2 with q compatible with the
spinor nature. Bq thus defines a (non-symmetric) metric on the spinors. We denote the
inner products as spinor brackets in the following way

⟨t|t⟩ := Bq(t+, t−) = −
√
[2] qC

1
2

1
2

0

m −m 0 t
+
−mt

−
m = [N ] ,

⟨τ|τ⟩ := Bq−1(τ+,τ−) = −
√

[2] q−1C
1
2

1
2

0

m −m 0 τ
+
−mτ

−
m = [N ] ,

⟨t̃|t̃⟩ := Bq(t̃+, t̃−) = −
√
[2] qC

1
2

1
2

0

m −m 0 t̃
+
−mt̃

−
m = [Ñ ] ,

⟨τ̃|τ̃⟩ := Bq−1(τ̃
+
, τ̃
−
) = −

√
[2] q−1C

1
2

1
2

0

m −m 0 τ̃
+
−mτ̃

−
m = [Ñ ] ,

(5.16)

as well as

[t|t] := Bq(t−, t+) =
√

[2] qC
1
2

1
2

0

m −m 0 t
−
−mt

+
m = [N + 2] ,

[τ|τ] := Bq−1(τ−,τ+) =
√
[2] q−1C

1
2

1
2

0

m −m 0 τ
−
−mτ

+
m = [N + 2] ,

[t̃|t̃] := Bq(t̃−, t̃+) =
√

[2] qC
1
2

1
2

0

m −m 0 t̃
−
−mt̃

+
m = [Ñ + 2] ,

[τ̃|τ̃] := Bq−1(τ̃
−
, τ̃

+
) =

√
[2] q−1C

1
2

1
2

0

m −m 0 τ̃
−
−mτ̃

+
m = [Ñ + 2] .

(5.17)
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while it can be checked directly that the remaining vanish,

[t|t⟩ : = Bq(t−, t−) = 0 = Bq(t+, t+) =: ⟨t|t] ,
[τ|τ⟩ := Bq−1(τ−,τ−) = 0 = Bq−1(τ+,τ+) =: ⟨τ|τ] ,
[t̃|t̃⟩ := Bq(t̃−, t̃−) = 0 = Bq(t̃+, t̃+) =: ⟨t̃|t̃] ,
[τ̃|τ̃⟩ := Bq−1(τ̃

−
, τ̃
−
) = 0 = Bq−1(τ̃

+
, τ̃

+
) =: ⟨τ̃|τ̃] .

(5.18)

Unlike in the classical case, the norms of the spinors and their duals are not equal, ⟨·|·⟩ ≠
[·|·], due to the non-commutativity (5.15) of the spinor components. Furthermore, one can
get [N + 1] or [Ñ + 1] by the following inner products,

[N + 1] = q−
1
4 (t−−t

+
+ − t+−t

−
+) = q

1
4 (t++t

−
− − t−+t

+
−)

= q−
1
4 (τ+

+τ
−
− − τ−+τ

+
−) = q

1
4 (τ−−τ

+
+ − τ+

−τ
−
+) ,

(5.19)

[Ñ + 1] = q−
1
4 (t̃−−t̃

+
+ − t̃+−t̃

−
+) = q

1
4 (t̃++t̃

−
− − t̃−+t̃

+
−)

= q−
1
4 (τ̃

+
+τ̃
−
− − τ̃

−
+τ̃

+
−) = q

1
4 (τ̃
−
−τ̃

+
+ − τ̃

+
−τ̃
−
+) .

(5.20)

They are actually those we will use to reconstruct the quantum holonomies, which we will
describe in the next section.

5.2 Recovering the quantum holonomy-flux algebra

Both the quantum fluxes and quantum holonomies can be built from the quantum spinors
in a neat way as their classical counterparts (3.48).

Holonomies. We start with the following proposition.

Proposition 5.2.1. Impose the norm matching constraint N = Ñ . Then the operator

matrix U =

(
U−− U−+
U+− U++

)
whose matrix elements are given by

UAB = (−1)
1
2
−Bq

B
2

∑
ϵ=±

τϵAt̃
ϵ
−B

1

[N + 1]
(5.21)

is an SUq−1(2) quantum matrix. The operator matrix Ũ =

(
Ũ−− Ũ−+
Ũ+− Ũ++

)
whose matrix

elements are given by

ŨAB =
1

[Ñ + 1]
(−1)

1
2
+Bq−

B
2

∑
ϵ=±

tϵAτ̃
ϵ
−B (5.22)
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is an SUq(2) quantum matrix.

In addition, together with the fluxes L and L̃ (4.20) defined in terms of the Uq(su(2))
generators given by the Jordan map (5.5), the holonomies defined this way satisfy the
commutation relations (4.16).

Proof. By repeatedly applying (5.15) – (5.20) and the commutation relation of the spinor
components and the norm factor

1

[N + 1]
Tϵ
m = Tϵ

m

1

[N + 1 + ϵ]
,

1

[Ñ + 1]
T̃ϵ
m = T̃ϵ

m

1

[Ñ + 1 + ϵ]
, T = t ,τ , T̃ = t̃ , τ̃ ,

(5.23)
one can compute that

U−−U−+ = q
1
2U−+U−− , U−−U+− = q

1
2U+−U−− , U−+U++ = q

1
2U++U−+ ,

U+−U++ = q
1
2U++U+− , [U−−, U++] = −(q

1
2 − q−

1
2 )U−+U+− , [U−+, U+−] = 0 ,

detq−1U ≡ U−−U++ − q
1
2U−+U+− = I ,

Ũ−−Ũ−+ = q−
1
2 Ũ−+Ũ−− , Ũ−−Ũ+− = q−

1
2 Ũ+−Ũ−− , Ũ−+Ũ++ = q−

1
2 Ũ++Ũ−+ ,

Ũ+−Ũ++ = q−
1
2 Ũ++Ũ+− , [Ũ−−, Ũ++] = (q

1
2 − q−

1
2 )Ũ−+Ũ+− , [Ũ−+, Ũ+−] = 0 ,

detqŨ ≡ Ũ−−Ũ++ − q−
1
2 Ũ−+Ũ+− = I .

Referring to Definition 4.1.2, we conclude that U is an SUq−1(2) quantum matrix and Ũ is
an SUq(2) quantum matrix.

Using the Jordan map (5.5), the commutation relations between the Uq(su(2)) genera-
tors and the quantum spinors

tϵ±K = q∓
1
4Ktϵ± , τϵ±K = q∓

1
4Kτϵ± , t̃ϵ±K̃ = q∓

1
4 K̃ t̃ϵ± , τ̃

ϵ
±K̃ = q∓

1
4 K̃τ̃

ϵ
± ,

tϵ∓J± − q±
1
4J±t

ϵ
∓ = K−1tϵ± , t∓J∓ = q±

1
4J∓t

ϵ
∓ ,

τϵ∓J± − q∓
1
4J±τ

ϵ
∓ = Kτϵ± , τϵ∓J∓ = q∓

1
4J∓τ

ϵ
∓ ,

t̃ϵ∓J̃± − q±
1
4 J̃±t̃

ϵ
∓ = K̃−1t̃ϵ± , t̃∓J̃∓ = q±

1
4 J̃∓t̃

ϵ
∓ ,

τ̃
ϵ
∓J̃± − q∓

1
4 J̃±τ̃

ϵ
∓ = K̃τ̃

ϵ
± , τ̃

ϵ
∓J̃∓ = q∓

1
4 J̃∓τ̃

ϵ
∓ ,

(5.24)

one can show that the commutation relations in (4.16) are satisfied given the definition of
the quantum holonomies (5.21), (5.22) and the quantum fluxes (4.20).
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Flux vectors. We can also reconstruct the quantization of the vectors X and Xop from
(2.40) in terms of the quantum spinors. They become Uq(su(2)) and Uq−1(su(2)) vector
operators respectively, i.e. spin 1 tensor operators. The Uq(su(2)) quantum vectors can be
built from the Uq(su(2)) spinors tϵ and t̃ϵ and the Uq−1(su(2)) vectors can be built from
the Uq−1(su(2)) spinors τϵ and τ̃

ϵ
.

According to the q-WCG coupling, one can define the Uq(su(2)) right adjoint vectors
as

XA =
∑

m,n=± 1
2

m+n=A

qC
1
2

1
2

1

−m−n−At
+
mt
−
n , A = 0,±1 . (5.25)

In components they read

X0 =q C
1
2

1
2
1

1
2
− 1

2
0
t+−t

−
+ + qC

1
2

1
2
1

− 1
2

1
2
0
t++t

−
− =

1√
[2]

(
q

1
2J+J− − q−

1
2J−J+

)
,

X−1 = qC
1
2

1
2
1

1
2

1
2
1
t+−t

−
− = −J−K−1 , X1 = qC

1
2

1
2

1

− 1
2
− 1

2
−1 t

+
+t
−
+ = J+K

−1 .

It is easy to check that they behave as a vector under the action of Uq(su(2))

J± ▶ XA =
√
[1∓ A][1± A+ 1]XA±1 , K ▶ XA = q−

A
2 XA , (5.26)

so that the Wigner-Eckart theorem applies and gives the matrix elements of XA in the
irreducible representation Vj,

⟨j, n|XA|j,m⟩ = Nj qC
j 1 j
n−Am , with Nj =

√
[2j][2j + 2]

[2]
. (5.27)

Similarly, one defines the Uq−1(su(2)) vector as

Xop
A =

∑
m,n=± 1

2
m+n=A

q−1C
1
2

1
2

1

−m−n−Aτ
+
mτ
−
n , A = 0,±1 , (5.28)

whose components are

Xop
0 =q−1 C

1
2

1
2
1

1
2
− 1

2
0
τ+
−τ
−
+ +q−1 C

1
2

1
2
1

− 1
2

1
2
0
τ+
+τ
−
− =

1√
[2]

(
q−

1
2J+J− − q

1
2J−J+

)
,

Xop
−1 =q−1 C

1
2

1
2
1

1
2

1
2
1
τ+
−τ
−
− = −J−K , Xop

1 =q−1 C
1
2

1
2

1

− 1
2
− 1

2
−1 τ

+
+τ
−
+ = J+K .
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They are indeed Uq−1(su(2)) vectors since

J±▶Xop
A =

√
[1∓ A][1± A+ 1]XA±1 , K ▶Xop

A = q−
A
2 Xop

A , (5.29)

and from the Wigner-Eckart theorem,

⟨j, n|Xop
A |j,m⟩ = Nj q−1C j 1 j

n−Am , with Nj =

√
[2j][2j + 2]

[2]
. (5.30)

One can see that X and Xop are the natural quantization the classical deformed vectors
X⃗ and X⃗op as defined in (2.40). The tilde sector of vectors X̃ and X̃op can also be built
in the same way from t̃ϵ and τ̃

ϵ
respectively. In addition, higher spin quantum vectors

of Uq(su(2)) and Uq−1(su(2)) types can be built with the q-WCG coefficient in a similar
method.

5.3 Flipping the ribbon

In the following, we will omit the index ϵ on the spinor operators as it is not relevant for the
present discussion. We introduce the operator M associated to changing the orientation
of a link of Γ , which is a quantum version of m defined in (3.19).

e

L̃

L

U Ũ

•• •
t̃ τ̃

τ t

(a) The reference ribbon.

e

L

L̃

Ũ U

•• •
t τ

τ̃ t̃

(b) The flipped ribbon.

Figure 5.2: Flipping the reference ribbon due to the change of orientation of the link e is
equivalent to the spinor flip τ̃→ τ, t̃→ t.

When changing the orientation of a link as shown in 5.2, we have the following involutive
transformation on the spinor operators

τ̃→ τ, t̃→ t. (5.31)
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Since the tilde and non-tilde spinors are classically the same, and since the quantization
map is the same for both (5.12), we can define

M(t) = t̃, M(t̃) = t, M(τ) = τ̃, M(τ̃) = τ, (5.32)

and just like we did classically, we can lift M to the q-bosons by setting

M(a) = ã, M(a†) = ã†, M(b) = b̃, M(b†) = b̃†, (5.33)

and requiring that M is an involution. By applying M to (5.5), one finds

M(J±) = J̃±, M(J̃±) = J±, M(K) = K̃, M(K̃) = K. (5.34)

It is then possible to find M(L) in terms of L̃,

M(L) =

(
K̃−1 0

−q 1
4 (q

1
2 − q− 1

2 )J̃+ K̃

)
= S(L̃) (5.35)

where S is the antipode of Uq(su(2)). Similarly, one finds I(L̃) = S(L) with S being the
antipode of Uq−1(su(2)). Indeed, S(S(L)) ≡ L and S(S(L̃)) ≡ L̃, consistently with the fact
that I is an involution.

The same can be applied to U . Parametrize the matrix elements of U and Ũ as well as
their antipode to be (See Definition 4.1.2 for definition of the Hopf algebra SUq(2).)

U =

(
U−− U−+
U+− U++

)
∈ SUq−1(2) , S(U) =

(
U++ −q− 1

2U−+
−q 1

2U+− U−−

)
, (5.36)

Ũ =

(
Ũ−− Ũ−+
Ũ+− Ũ++

)
∈ SUq(2) , S(Ũ) =

(
Ũ++ −q 1

2 Ũ−+
−q− 1

2 Ũ+− Ũ−−

)
, (5.37)

where we have used S to denote the antipode for SUq−1(2). We define the operator M

acting on the generators U−−, U−+, U+−, U++ of U and generators Ũ−−, Ũ−+, Ũ+−, Ũ++ of
Ũ as

M(U−−) = Ũ++ , M(U−+) = −q
1
2 Ũ−+ , M(U+−) = −q−

1
2 Ũ+− , M(U++) = Ũ−− ,

M(Ũ−−) = U++ , M(Ũ−+) = −q−
1
2U−+ , M(Ũ+−) = −q

1
2U+− , M(Ũ++) = U−− ,

(5.38)
where M is indeed an involution. We then have

M(U) = S(Ũ) , M(Ũ) = S(U) . (5.39)
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Recall that one can reconstruct these quantum holonomies in terms of the quantum spinors
in the way as in (5.21) and (5.22) which copy here.

UAB = (−1)
1
2
−Bq

B
2

∑
ϵ=±

τϵAt̃
ϵ
−B

1

[N + 1]
∈ SUq−1(2) ,

ŨAB =
1

[Ñ + 1]
(−1)

1
2
+Bq−

B
2

∑
ϵ=±

tϵAτ̃
ϵ
−B ∈ SUq(2) .

The matrix element of the antipodes of U and Ũ defined in (5.37) can be equivalently
written as

(S(U))AB = (−1)B−Aq
A−B

2 U−B−A =
1

[N + 1]
(−1)

1
2
+Bq−

B
2

∑
ϵ

t̃ϵAτ
ϵ
−B , (5.40)

(S(Ũ))AB = (−1)A−Bq
B−A

2 Ũ−B−A = (−1)
1
2
−Bq

B
2

∑
ϵ

τ̃
ϵ
At

ϵ
−B

1

[Ñ + 1]
. (5.41)

Then (5.39) can be deduced from (5.32).

Therefore, we have a complete map for quantum objects in terms of flipping the ribbons.
We can now focus only on one orientation for a ribbon and use the involution map M to
deduce the results after the change of orientation.

5.4 The R-matrix as parallel transport

In the classical construction, the different spinors are related through parallel transport by
the AN(2) holonomies. We will see that their quantum counterparts, the spinor operators,
are related by ANq(2) holonomies. We expect to have two possible cases, either lower
triangular or upper triangular.

Parallel transport within a ribbon. The covariant and braided-covariant, classical,
spinors of a single ribbon are related to one another by AN(2) parallel transport in (3.26)

103



and the first equation of (3.40).

Lτϵ =

(
K−1τϵ−

−(q 3
4 − q− 1

4 )J+τ
ϵ
− +Kτϵ+

)
= q

1+ϵ
4 qϵ

N
4 tϵ , (5.42a)

L̃t̃ϵ =

(
K̃ t̃ϵ−

(q
1
4 − q− 3

4 )J̃+t̃
ϵ
− + K̃−1t̃ϵ+

)
= q−ϵ

Ñ
4 q−

1+ϵ
4 τ̃

ϵ
, (5.42b)

S(L)tϵ =

(
Ktϵ−

(q
1
4 − q− 3

4 )J+t
ϵ
− +K−1tϵ+

)
= q−

1+ϵ
4 q−ϵ

N
4 τϵ , (5.42c)

S(L̃)τ̃
ϵ
=

(
K̃−1τ̃

ϵ
−

−(q 3
4 − q− 1

4 )J̃+τ̃
ϵ
− + K̃τ̃

ϵ
+

)
= qϵ

Ñ
4 q

1+ϵ
4 t̃ϵ . (5.42d)

One can take the complex conjugate of these relations and get equivalently,

(−1)
1
2
−Aq

A
2 tϵ−A = qϵ

N
4 q

ϵ−2
4 (−1)

1
2
−Bq−

B
2 τϵ−B

(
L†
)
B
A , (5.43a)

(−1)
1
2
−Aq−

A
2 τϵ−A = q−ϵ

N
4 q

2−ϵ
4 (−1)

1
2
−Bq

B
2 tϵ−B

(
S(L)†

)
B
A , (5.43b)

(−1)
1
2
−Aq−

A
2 τ̃

ϵ
−A = q−ϵ

Ñ
4 q

2−ϵ
4 (−1)

1
2
−Bq

B
2 t̃ϵ−B

(
L̃†
)
B

A , (5.43c)

(−1)
1
2
−Aq

A
2 t̃ϵ−A = qϵ

Ñ
4 q

ϵ−2
4 (−1)

1
2
−Bq−

B
2 τ̃

ϵ
−B

(
S(L̃)†

)
B

A . (5.43d)

To get (5.43) from (5.42a) and (5.42d), we have used the formulas for taking the complex
conjugating of spinor components

(tϵA)
† = ϵ(−1) 1

2
−Aq

A
2 t−ϵ−A , (τϵA)

† = ϵ(−1) 1
2
−Aq−

A
2 τ−ϵ−A ,(

t̃ϵA
)†

= ϵ(−1) 1
2
−Aq

A
2 t̃−ϵ−A , (τ̃

ϵ
A)
†
= ϵ(−1) 1

2
−Aq−

A
2 τ̃
−ϵ
−A ,

(5.44)

and the commutation relation of the factor qϵ
N
4 or qϵ

Ñ
4 with the spinor components

qϵ
N
4 tϵ

′

A = q
ϵϵ′
4 tϵ

′

Aq
ϵN

4 , qϵ
N
4 τϵ

′

A = q
ϵϵ′
4 τϵ

′

Aq
ϵN

4 , qϵ
Ñ
4 t̃ϵ

′

A = q
ϵϵ′
4 t̃ϵ

′

Aq
ϵ Ñ

4 , qϵ
Ñ
4 τ̃

ϵ′

A = q
ϵϵ′
4 τ̃

ϵ′

Aq
ϵ Ñ

4 .
(5.45)

This quantum version of the parallel transport works within a single ribbon, see fig.5.2a.
Let us now consider what happens when dealing with more ribbons.

Spinors for many ribbons. We are interested in defining spinor operators when dealing
with many ribbons. We focus on a ribbon graph Γrib where the graph Γ is an Nv-valent
node v with Nv links ordered and labeled as e1 and eN going counterclockwise. The
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ribbon graph Γrib is an Nv-gon R(v) surrounded by Nv ribbons R(en), n ∈ {1, · · · , Nv}.
Once more, we do not consider the index ϵ which does not bring anything to the present
discussion. For the ribbon R(en), we introduce

τ̃n = I⊗ · · · ⊗ τ̃⊗ · · · ⊗ I, t̃n = I⊗ · · · ⊗ t̃⊗ · · · ⊗ I. (5.46)

These objects, τ̃n or t̃n, are built using permutations, starting respectively from τ̃1 or t̃1.
However, the permutation is not consistent with the coproduct if it is non-co-commutative.
Consequently, due to the non-co-commutativity of the coproducts of Uq(su(2)) and Uq−1(su(2)),
these objects are not spinor operators, except τ̃1 and t̃1.

We now want to define spinor operators, that is objects transforming covariantly under
the Uq(su(2)) and Uq−1(su(2)) adjoint actions. To make the distinction between the objects
living on the nth leg, τ̃n or t̃n, and the spinor operators, we will denote (n)τ̃ and (n)t̃, the
objects transforming respectively as a Uq−1(su(2)) and Uq(su(2)) spinor operators. The
construction of the spinor operators on different Hilbert spaces is usually done using the
braiding induced by the R-matrix [179].

As a consequence the usual construction of spinor operators (or any tensor operators) is
in terms of the R-matrix. There are two ways to define such a spinor operator. Explicitly,
we use R−1ij or Rji to define the Uq−1(su(2)) tensor operator (n)τ̃.

(n)τ̃A = R−1n−1,nR−1n−2,n · · ·R−12nR−11n (τ̃n)AR1nR2n · · ·Rn−2,nRn−1,n ⊗ I⊗ · · ·(5.47a)
or (n)τ̃A = Rn,n−1Rn,n−2 · · ·Rn2Rn1(τ̃n)AR−1n1R−1n2 · · ·R−1n,n−2R−1n,n−1 ⊗ I⊗ · · · .(5.47b)

The two formulas of (5.47) are proportional to each other with the proportionality co-
efficient being a function of the norms N1, · · · , Nn which commutes with the Uq(su(2))
(or Uq−1(su(2))) generators. Similarly, we use Rij or R−1ji to define the Uq(su(2)) tensor

operator (n)t̃

(n)t̃A = Rn−1,nRn−2,n · · ·R2nR1n(t̃n)AR−11nR−12n · · ·R−1n−2,nR−1n−1,n ⊗ I⊗ · · ·(5.48a)
or (n)t̃A = R−1n,n−1R−1n,n−2 · · ·R−1n2R−1n1 (t̃n)ARn1Rn2 · · ·Rn,n−2Rn,n−1 ⊗ I⊗ · · · .(5.48b)

We now show that these Uq−1(su(2)) spinors (resp. Uq(su(2)) spinors) can be equiv-

alently obtained by using the quantum parallel transport induced by L̃ (resp. S(L̃)) or
S(L̃)† (resp. L̃†).
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Braiding as parallel transport. Let us focus first on the case with all ribbons R(en)
oriented in the same way corresponding to incoming links in the associated graph. We
focus on the Nv-gon R(v).

Proposition 5.4.1. The braiding induced by the R-matrix can be seen as a parallel trans-
port.

(n)τ̃A = R−1n−1,nR−1n−2,n · · ·R−12nR−11n (τ̃n)AR1nR2n · · ·Rn−2,nRn−1,n ⊗ I⊗ · · ·
= (L̃⊗ · · · ⊗ L̃⊗ τ̃n)A ⊗ I⊗ · · ·
= L̃A

A2 ⊗ L̃A2

A3 ⊗ · · · ⊗ τ̃An−1 ⊗ I⊗ · · · ,
(5.49)

or

(n)τ̃A = Rn,n−1Rn,n−2 · · ·Rn2Rn1(τ̃n)AR−1n1R−1n2 · · ·R−1n,n−2R−1n,n−1 ⊗ I⊗ · · ·
= (S(L̃)† ⊗ · · · ⊗ S(L̃)† ⊗ τ̃n)A ⊗ I⊗ · · ·
= (S(L̃)†)A

A2 ⊗ (S(L̃)†)A2

A3 ⊗ · · · ⊗ τ̃An−1 ⊗ I⊗ · · · ,
(5.50)

(n)t̃A = Rn−1,nRn−2,n · · ·R2nR1n(t̃n)AR−11nR−12n · · ·R−1n−2,nR−1n−1,n ⊗ I⊗ · · ·
= (S(L̃)⊗ · · · ⊗ S(L̃)⊗ t̃n)A ⊗ I⊗ · · ·
= S(L̃)A

A2 ⊗ S(L̃)A2

A3 ⊗ · · · ⊗ t̃An−1 ⊗ I⊗ · · · .
(5.51)

or

(n)t̃A = R−1n,n−1R−1n,n−2 · · ·R−1n2R−1n1 (t̃n)ARn1Rn2 · · ·Rn,n−2Rn,n−1 ⊗ I⊗ · · ·
= (L̃† ⊗ · · · ⊗ L̃† ⊗ t̃n)A ⊗ I⊗ · · ·
= (L̃†)A

A2 ⊗ (L̃†)A2

A3 ⊗ · · · ⊗ t̃An−1 ⊗ I⊗ · · · .
(5.52)

The proof is lengthy and we give it in Proof B.3.2.

Geometric interpretation. We have just shown that the braiding induced by the R-
matrix can be explicitly written as a parallel transport along the ribbons using ANq(2) or
ANq−1(2) holonomies2. Indeed, equations (5.49) – (5.52) tell us that the algebraic definition
of a tensor operator written in terms of the R-matrix can be replaced by a definition which
has a very natural geometrical interpretation when working with ribbons.

Let’s illustrate the geometrical definition of the tensor operator (n)τ̃ given in (5.49) in
terms of parallel transports by L̃’s. We put consecutively the ribbons, so that they share a
node. Let us deal again with the case where all the links are incoming. The construction
is illustrated in fig.5.3.

2Recall the matrix elements of ANq(2) and ANq−1(2) are given by the generators of Uq(su(2)).
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e1

e2

L̃

L̃

L

L

•
τ̃1•

τ̃2

(a)

e1

e2

L̃

L̃

L

L

• •
t̃1

t̃2

(b)

Figure 5.3: The choice of cilium is given by the red bullet. In 5.3a, the orientation is
anti-clockwise, while in 5.3b, the orientation is clock-wise. This choice matters since we
usually order the tensor product from left to right.

The first step consists in identifying a reference point. This corresponds to choosing
a base corner. We naturally choose the reference point to sit on the ribbon R(e1). The
construction of the spinor operators will depend on the orientation chosen for the ordering
of the ribbons: counterclockwise or clockwise starting from R(e1). Indeed, the source point
can be the left- or right-end point. (Left- or right-end point is specified by sitting at the
node in Γ and looking towards the outgoing direction of the relevant link.) Let us choose
first the right end point to be our base corner as in fig.5.3a (the node in red). This means
that (1)τ̃ is the reference spinor. We choose to order the ribbons counter-clockwise which
is the orientation consistent with the definition of the spinors given in Proposition 5.4.1.

Indeed, the parallel transport by L̃ indicates that we take τ̃2 – which sits at the left-
end point of R(e1) since the right-end point of R(e2) is identified with the left-end point
of R(e1) – and transport it to the reference point.

We proceed recursively with other ribbons. The object τ̃3 sitting at the right-end point
of R(e3) which is identified with the left end point of R(e2). We can transport τ̃3 using L̃
to (2)τ̃, and so on and so forth.

Therefore, the geometrical construction of the spinor operator (n)τ̃ is obtained by par-
allel transporting τ̃n, which sits at the right-end point of ribbon R(en), along the ribbon
short sides using the L̃’s to go from the right-end point to the left-end point of each ribbon
until reaching the reference point (the right-end point of R(e1)).
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If instead, we choose the base corner to be at the left-end point of ribbon 1, this means
we use as a reference t̃. This means that we order/add ribbons now in a clockwise manner.
This is illustrated in the fig.5.3b.

Now let us discuss the case when the links do not have the same orientations.

e1

e2

L̃

L̃

L

L

•
τ̃1•

τ̃2

(a) We transport τ̃2 using L̃ to the base cor-
ner (in red) to define a spinor (2)τ̃.

e1

e2

L

L̃

L̃

L

•
τ1•

τ̃2

(b) We transport τ̃2 using S(L) = L̃ to the
base corner (in red) to recover a spinor (2)τ̃.

e1

e2

L̃

L

L

L̃

•
τ̃1•

τ2

(c) We transport τ2 using L̃ to the base cor-
ner (in red) to recover spinor (2)τ.

e1

e2

L

L

L̃

L̃

•
τ1•

τ2

(d) We transport τ2 using S(L) = L̃ to the
base corner (in red) to define a spinor (2)τ.

Figure 5.4: The choice of base corner, the right-end point of ribbon 1, is given by the red
bullet. In each case, we transport the relevant spinor living on right-end point of ribbon
2 using the holonomy in ribbon 1. We recover the same spinor in each case as in the
un-flipped case.
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Flipping ribbons, again. We again drop the ϵ spinor decoration since it does not bring
anything to the present discussion. As discussed in section 5.3, when we flip the orientation
of the ribbon, the exchange of variables is performed by I such that

I(t) = t̃, I(τ) = τ̃, I(L) = S(L̃), I(L̃) = S(L). (5.53)

When flipping the orientation of a link in Proposition 5.4.1, it is thus enough to apply the
operator I, but only to the factor of the tensor product which corresponds to this link.

For instance, consider n = 2 and reverse the orientation of the link 2 only (not 1). Then
applying I on ribbon 2 (which we henceforth denote I2) to the last line of (5.49) gives

(2)τA = I2(L̃A
B ⊗ τ̃B) = L̃A

B ⊗ I(τ̃B) = L̃A
B ⊗ τB (5.54)

and to the last line of (5.51),
(2)tA = S(L̃)A

B ⊗ tB. (5.55)

The geometric picture is as follows. The first relation (5.54) consists in the case where
the base corner is at the right-end point. Because ribbon 2 is flipped, we have τ2 that
stands at the right-end point of ribbon 2 which is identified with the left-end point of
ribbon 1. We then parallel transport τ2 using L̃ on the sector 1 (See Figure 5.4c). The
same applies for (2)tA, when the base corner is taken as the left-end point.

Consider now the case where it is ribbon 1 which is flipped (outgoing) but ribbon 2
is not (it is incoming), see Figure 5.4b. We thus apply I to the first factor of the tensor
product in the last lines of (5.49) and (5.51),

(2)τ̃A = I1(L̃A
B ⊗ τ̃B) = S(L)A

B ⊗ τ̃B,
(2)t̃A = S(I(L̃))A

B ⊗ t̃B = LA
B ⊗ t̃B. (5.56)

In the first case, we take the base corner to be the right-end point of ribbon 1, which is
decorated by the spinor τ1. On the right-end point of ribbon 2, identified with the left-end
point of ribbon 1, we have τ̃2. We can define a spinor operator by transporting τ̃2 to the
base corner through S(L), that is (S(L))A

B ⊗ τ̃B.

When both ribbon 1 and ribbon 2 are flipped, see figure 5.4d, we use the map I12 which
flips the sectors 1 and 2. As we just discussed, we can define the spinor

(2)τA = I12(L̃A
B⊗τ̃B) = S(L)A

B⊗τB, (2)tA = I12(S((L̃))A
B⊗t̃B) = LA

B⊗tB. (5.57)

We still take the right-end point of ribbon 1 as the reference point, we have now τ1 sitting
at the base corner. At the right-end point of the ribbon 2, coinciding with the left-end
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point of ribbon 1, we have τ2. We can define a spinor operator by transporting τ2 to the
base corner through S(L), that is (S(L))A

B ⊗ τB.

To summarize, the definition of the spinor operator on different ribbons does not depend
on the orientation of the links, since for example L̃ and S(L) are the same operators and
so are τ̃ and τ. So (5.57) is the same as (5.54) and (5.55).

5.5 Scalar observables

We will now proceed to the quantization of the observables defined in Section 3.4. The
first part of this section has already appeared in [80, 81, 39]. The spinors are promoted
to spinor operators as we have discussed previously. The scalar product is obtained by
contracting with Clebsch-Gordan coefficients projecting the tensor product of two spin 1/2
representations to the trivial representation.

Proposition 5.5.1. The quantization of the general observable (3.65) living on the links
ei and ej with i ≤ j is given by, up to some overall normalization constant,

Eϵi,ϵj
eiej

=



∑
A(−1)

1
2
+Aq−

A
2

(i)τ̃
ϵi
−A

(j)τ̃
ϵj
A for oi = oj = −1∑

A(−1)
1
2
−Aq−

A
2

(i)τ−ϵi−A
(j)τ̃

ϵj
A for oi = −oj = −1∑

A(−1)
1
2
+Aq

A
2

(i)τ̃
ϵi
−A

(j)τ
−ϵj
A for oi = −oj = 1∑

A(−1)
1
2
−Aq

A
2

(i)τ−ϵi−A
(j)τ

−ϵj
A for oi = oj = 1

. (5.58)

Since the quantum operators τϵ and τ̃
ϵ
have the same matrix element, or as we discussed

in section 5.3 the spinors are invariant under the flip of the ribbon, the observables for the
different orientations in Proposition 5.5.1 are actually the same3. A natural question to
enquire is the algebra that they satisfy, if they satisfy one. One can indeed check that if
we were to build observables from the fluxes, the algebra of observables would not close
(even with no quantum deformation [118]). The great advantage of using spinor variables
is that they provide a closed algebra of observables [118, 98, 120]. In the non-deformed
case, the algebra of observables is given in terms of the so∗(2n) Lie algebra [120] where n
here stands for the number of links meeting at the node of Γ .

3We remind the readers that the observable defined in (5.58) is not the same as in [42] for different
orientations. Here the Eij ’s are defined in the same way for different orientations of ei and ej , while they
are defined differently in [42] for a uniform action on the intertwiners for different orientation cases.
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If we denote the generators of so∗(2n) by eij, fij, f̃ij , i, j = 1, · · · , n, their commutation
relations are

[eij, ekl] = δjkeil − δilekj , [eij, fkl] = δilfjk − δikfjl , [eij, gkl] = δjkgil − δjlgik ,
[fij, gkl] = δjleki + δikelj − δjkeli − δilekj , [fij, fkl] = [gij, gkl] = 0 .

(5.59)

We can identify u(n) as a sub-Lie algebra of so∗(2n) which is generated by {eij}.

We want to show now that a similar statement holds in the deformed case, i.e. we have
a deformation of the so∗(2n) algebra which contains a deformation of the u(n) algebra.
The deformation of the u(n) algebra was already identified in [81] using the R-matrix
formalism. We extend here the construction to have the full deformation of so∗(2n). We
are first going to recover the deformed substructure Uq(u(n)) then the full deformed algebra
Uq(so∗(2n)).

Given a semi-simple Lie algebra, its deformation is given in terms of the Serre-Chevalley
relations [58]. The (Cartan-Weyl) generators are constructed by induction.

We have constructed a set of observables using the spinor parametrization. As we
discussed, we can obtain different parametrizations because we can use different types
of parallel transport, either L or S(L)†. Hence in terms of the spinor parameterization,
we also have some arbitrariness in terms of the explicit expression of the observables. We
know that at the classical level these observables form the algebra so∗(2n). Hence we could
apply the Serre-Chevalley induction for the deformed case. The goal is then to relate this
construction to the parameterization in terms of the spinors. We are going to show that
the Serre-Chevalley construction picks exclusively the parallel transport induced by S(L)†.
Let us recall more details on the Serre-Chevalley induction process to fix the notations.

The definition of the Uq(u(n)) from the Cartan-Weyl generators Eij is as follows [33].
We first specify the Chevalley set of generators containing n − 1 raising, n − 1 lowering
and n − 1 diagonal generators, denoted respectively as Ei,i+1, Ei,i−1, and Ei, which satisfy
the following commutation relations

[Ei, Ej] = 0 , [Ei, Ej,j+1] = (δij − δi,j+1)Ej,j+1 , [Ei, Ej+1,j] = (δi,j+1 − δij)Ej+1,j ,

[Ei,i+1, Ej+1,j] = δij[Ei − Ei+1] .
(5.60)

The remaining Cartan-Weyl generators Eij and Eji with j > i + 1 are defined recursively
as follows.

Eij := q
Nj−1

2

(
Ei,j−1Ej−1,j − q

1
2Ej−1,jEi,j−1

)
, (5.61a)

Eji := q−
Nj−1

2

(
Ej,j−1Ej−1,i − q−

1
2Ej−1,iEj,j−1

)
. (5.61b)
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By the Jordan map, the Chevalley set can be defined in terms of the q-bosons (ai, a
†
i , bi, b

†
i ):∣∣∣∣∣∣ Ei,i+1 = a†iai+1q

Nbi
−Nbi+1
4 + b†ibi+1q

−Nai+Nai+1
4 ,

Ei+1,i = aia
†
i+1q

Nbi
−Nbi+1
4 + bib

†
i+1q

−Nai+Nai+1
4 ,

Ei = Ni + 1 , (5.62)

and other generators in terms of the q-bosons can be deduced from (5.61). We can then
identify directly the relations between the Uq(u(n)) Chevalley set of generators and the
quadratic operators constructed from the deformed quantum spinors. They simply are

E+,−
i,i+1 = Ei,i+1 , E−,+i,i+1 = Ei+1,i , E+,−

i,i = [Ei − 1] , E−,+i,i = [Ei + 1] . (5.63)

For the remaining Cartan-Weyl generators in terms of the quantum spinors, one can make
use of the quantum fluxes to connect the spinors from distanced sites. The result is given
in the following proposition.

Proposition 5.5.2. The Cartan-Weyl generators Ei,i+p and Ei+p,i of Uq(u(n)) for any
p ∈ N+ can be expressed with the quantum spinors at sites i and i + p and the quantum
fluxes for ribbon links connecting them. Explicitly, they can be written as

Ei,i+p = q

∑p−1
k=1

Ni+k
4

∑
Ai,Ai+1,
··· ,Ai+p

(−1)
1
2
+Aiq

Ai
2 t̃+i,−Ai

p−1∏
k=1

(S(L̃i+k)
†)Ai+k−1

Ai+k τ̃
−
i+p,Ai+p−1

, (5.64)

Ei+p,i = q−
∑p−1

k=1
Ni+k

4

∑
Ai,Ai+1,
··· ,Ai+p

(−1)
1
2
−Aiq

Ai
2 t̃−i,−Ai

p−1∏
k=1

(S(L̃i+k)
†)Ai+k−1

Ai+k τ̃
+
i+p,Ai+p−1

. (5.65)

Proof. Notice that the following relations are satisfied.

τ̃
−
i,At̃

+
i,B − q

1
2 t̃+i,Bτ̃

−
i,A = q−

Ni
4 (−1)

1
2
−Bq

B
2

(
S(L̃i)

†
)
A

−B ≡ q−
Ni
4 (−1)

1
2
+Aq−

A
2

(
L̃†i

)
B

−A ,

(5.66a)

t̃−i,Aτ̃
+
i,B − q−

1
2 τ̃

+
i,B t̃

−
i,A = q

Ni
4 (−1)

1
2
+Aq

A
2

(
S(L̃i)

†
)
B

−A = q
Ni
4 (−1)

1
2
−Bq−

B
2

(
L̃†i

)
A

−B .

(5.66b)

Using the scalar operator of two spinors at the same corner to define the Uq(u(n)) generator

Ei,i+1 =
∑

Ai=± 1
2

(−1)
1
2
+Aiq

Ai
2 t̃+i,−Ai

τ̃
−
i+1,Ai

, Ei+1,i =
∑

Ai=± 1
2

(−1)
1
2
−Aiq

Ai
2 t̃−i,−Ai

τ̃
+
i+1,Ai

, (5.67)

and the induction, one can show the validity of (5.64) and (5.65).
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We extend the construction to include all the different types of observables and verify
that the observables E

ϵi,ϵj
ij are the generators of Uq(so∗(2n)), which is the q-deformation of

the algebra so∗(2n) [120]. Denote for different sectors ϵi and ϵj for the quadratic operator
E
ϵi,ϵj
ij as

Ei,i ≡ Ei := Ni + 1 , Ei,i+p := E+,−
i,i+p , Ei+p,i := E−,+i,i+p ,

Fi,i+p := E−,−i,i+p , Fi+p,i := −Fi,i+p , Gi,i+p := −E+,+
i,i+p , Gi+p,i := −Gi,i+p .

(5.68)

Proposition 5.5.3. The operators Fi,i+p and Gi,i+p with p > 1 defined in (5.68) satisfy
the recursion relations in terms of Eij as follows.

Fi,i+p = q
Ni+p−1

2

(
Fi,i+p−1Ei+p−1,i+p − q

1
2Ei+p−1,i+pFi,i+p−1

)
=
(
Fi+1,i+pEi+1,i − q−

1
2Ei+1,iFi+1,i+p

)
,

(5.69a)

Gi,i+p = q−
Ni+p−1

2

(
Ei+p,i+p−1Gi,i+p−1 − q−

1
2Gi,i+p−1Ei+p,i+p−1

)
=
(
Ei,i+1Gi+1,i+p − q

1
2Gi+1,i+pEi,i+1

)
.

(5.69b)

The operators Ei,i+1, Fi,i+1 and Gi,i+1 defined in (5.68) form the generators of Uq(so∗(2n))
which is a closed algebra. These generators satisfy (5.60) and the following commutation
relations.

Ei,i+1Fj,j+1 − q−
1
2Fj,j+1Ei,i+1 = δi,j+1q

−Ei
2 Fi+1,i−1 ,

q−
1
2Ei+1,iFj,j+1 −Fj,j+1Ei+1,i = −δi,j−1Fi,i+2 ,

Ei,i+1Gj,j+1 − q
1
2Gj,j+1Ei,i+1 = δi,j−1Gi,i+2 ,

q
1
2Ei+1,iGj,j+1 − Gj,j+1Ei+1,i = −δi,j+1q

Ei
2 Gi+1,i−1 , (5.70)

[Ei,Fj,j+1] = −(δij + δi,j+1)Fj,j+1 , [Ei,Gj,j+1] = (δij + δi,j+1)Gj,j+1 ,

[Fi,i+1,Gj,j+1] = δij ([Ei + Ei+1])− δi,j−1Ei+2,i − δi,j+1Ei−1,i+1 ,

[Fi,i+1,Fj,j+1] = [Gi,i+1,Gj,j+1] = 0 .

The first two lines can be seen directly from (5.69). The rest of the commutation
relations can be calculated with the definition (5.68) of the generators and the relation
between the spinors and the flux as shown in (5.66). The commutation relations (5.70) are
consistent with (5.59) when q → 1, and it is in this sense that we view the operators Ei,i+1,
Fi,i+1 and Gi,i+1 as the generators of Uq(so∗(2n)).
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In this chapter, we have revisited the q-deformed LQG in terms of the quantum spinors.
We have extended the spinor formalism whose classical setup was initiated in [79] and the
quantum aspect was touched in [81]. We have shown how all the regular variables of LQG,
namely the flux and the holonomy are defined in the deformed case and can be expressed
in terms of the spinor operators which are the fundamental building blocks to build the
observables. We were able to recover the fundamental observables, defined in terms of
the spinor operators which are local objects, associated with a node of the graph. This
algebra is a deformation of the so∗(2n) algebra where n is the number of links at the node
of interest.

This framework was instrumental to study the dynamical aspects in the context of 3D
gravity with a cosmological constant, which we will illustrate in the next chapter. See also
the work [42] by the author and collaborators. In particular, it allows us to connect the
canonical approach (LQG) to the spinfoam models using recursion relations.

Another important aspect we recovered is the interpretation of braiding in terms of
parallel transport. In a way, this is not so surprising as the ribbon structure shares a
lot of similarities with integrable systems where the L operators (or T operators in the
standard notation of integrable systems) and the R-matrix have appeared [184]. This
geometric interpretation provides a more intuitive framework than using the R-matrix to
do calculations. It was extensively used for example in [42] as it rendered the calculations
much more amenable.
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Chapter 6

Hamiltonian constraint in spinor
representation

Having described the kinematics of the q-deformed LQG in terms of spinors, we now study
the dynamics and physical states that solve the Hamiltonian constraint. Since 3D gravity
is a topological theory, the physical states ought to be topological invariant.

On the other hand, knowing the physical states helps connecting LQG with other
quantum gravity approaches. For instance, in the case of Λ = 0, it has been shown by Noui
and Perez in [162] that the scalar products of physical spin network states defined in LQG
are given by the Ponzano-Regge amplitudes from the spinfoam model [173, 22, 21, 164, 138].

It has been shown in [43, 44] that the Hamiltonian constraint translates in the spin net-
work basis as difference equations on the coefficients of the physical states. These difference
equations should really be seen as Wheeler-DeWitt equations for 3D LQG. In particular,
they are solved by spin network evaluations, which is consistent with the Ponzano-Regge
model.

Therefore, it is natural to expect that the spinfoam amplitude for Λ ̸= 0 can be repro-
duced by solving the Hamiltonian constraint in the LQG model with a non-vanishing Λ.
Such a spinfoam model is the Turaev-Viro model [204]. It is known to provide the partition
function of 3D gravity in Euclidean signature with a positive cosmological constant [10].
It is expressed as a sum of states in SUq(2) representation, with q a root of unity encoding
the cosmological constant. It is thus a q-deformation of the Ponzano-Regge model, fur-
ther providing a regularization through a natural cut-off on representations when replacing
SU(2) with SUq(2). The large spin limit of the q-6j symbol matches the Regge calculus for
curved tetrahedra [199]. The Turaev-Viro model thus provides an example of the interplay
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between the cosmological constant, curved geometries and the quantum group deformation
of Lie groups.

On the LQG side, the Hamiltonian takes a more complicated form when the cosmolog-
ical constant is non-zero, so much so that even how to discretize it has been unclear and it
seems to evade traditional LQG methods. It has nevertheless been conjectured for a long
time that the quantum theory ought to be described by quantum groups, as expected from
the spin foam model [192, 190, 49, 150, 191]. One (indirect) way to relate 3D LQG with
a λ ̸= 0 to the Turaev-Viro model is to take the Chern-Simons formulation of 3D gravity
and consider the Witten-Reshetikhin-Turaev path integral ZWRT (M) on a 3-manifoldM
with the Chern-Simons actions with opposite levels, say k and −k. It has been well-known
that the Turaev-Viro state sum matches such path integral as ZTV (M) = |ZWRT (M)|2
[207, 205].

A more direct way to bridge the two quantum gravity approaches — LQG and spinfoam
models — is to consider the q-deformed LQG model. In fact, this model provides a natural
starting point to construct the Hamiltonian constraint that describes 3D homogeneously
curved geometries built from 2D curved building blocks. This is because in this model,
the kinematical phase space, hence the kinematical Hilbert space, is solved by the Gauss
constraint that encodes the cosmological constant [80].

In [39], the dynamics of the kinematical states has been investigated, using the same
techniques as in [43], i.e. by building a Hamiltonian constraint out of the flatness con-
straints. It can be classically interpreted as generating displacements of the vertices of the
triangulation [38]. At the quantum level, the Hamiltonian constraints give rise to difference
equations, which can therefore be considered as Wheeler-DeWitt equations in the spin net-
work basis. [39] considers the (simple) case of the boundary of the tetrahedron, and showed
that the solution to those difference equations is the q-6j symbol, which is consistent with
the amplitude in the Turaev-Viro model (when the parameter q is extended to be real).
This result thus gives a new connection between the LQG and the spinfoam approaches
for Λ ̸= 0 case.

Here we are interested in using the spinorial formalism introduced in Chapter 3 and
Chapter 5 instead of holonomies and fluxes, and further extracting all building blocks for
the transition amplitudes, i.e. going beyond the case of the tetrahedron from [39]. In
Chapter 4 and 5 (which are based on [41]), we have revisited all kinematical aspects of
the q-deformed LQG model in detail, and in the spinor representation. In particular, the
quantization of the deformed spinors are performed in terms of q-bosons. We have also
used those q-bosons to define the invariant operators. These operators will be needed for
quantizing the Hamiltonian constraint in spinor variables.
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This chapter is based on the work in [42] by the author and collaborators. In Section
6.1, we construct the spinorial representation of the flatness constraints in terms of the
deformed spinors, following [41], and construct the classical Hamiltonian constraints. We
then perform the quantization in Section 6.2. This is where in particular we find the
difference equations encoding the Wheeler-DeWitt equations in the spin network basis.
Then in Section 6.3, we study how solutions to the difference equations are related under
Pachner moves, thereby providing the building blocks for the transition amplitudes à la
Turaev-Viro. We collect some of the lengthy proofs in Appendix B.4.

6.1 Classical Hamiltonian constraint

Defining the kinematical phase space (resp. kinematical Hilbert space), we did impose
the Gauss constraint. Gravity has another set of constraints, the flatness constraints.
The flatness constraints generate (deformed) translations. We need to impose the flatness
constraint to define the physical phase space (resp. physical Hilbert space). In this section,
we express these flatness constraints in terms of the deformed spinors. This allows us to
define scalar constraints in terms of the scalar products of the deformed spinors, whose
quantization has been analyzed in the last chapter.

Consider a face f surrounded by d links. Choose a random link of reference and
denote it e1, then e2, . . . , ed are the links encountered counter-clockwise around f . For
all possible orientations of the links e1, . . . , ed on the boundary of f , the SU(2) matrices
ueiv are all counter-clockwise, where v denotes the target node of ei when ei is oriented
counter-clockwisely, pictured in fig.6.1. The flatness constraint on f reads

uedv1 · · ·ue2v3ue1v2 = I , (6.1)

as pictured in fig.6.1.

Let us rewrite the holonomies for one ribbon in terms of the deformed spinors which is
graphically illustrated in fig.3.3.

u =
|τ⟩[t̃| − |τ ]⟨t̃|√
⟨τ |τ⟩⟨t̃|t̃⟩

, ũ =
|t⟩[τ̃ | − |t]⟨τ̃ |√
⟨t|t⟩⟨τ̃ |τ̃⟩

, (6.2)

with N0 +N1 = Ñ0 + Ñ1.
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Figure 6.1: When considering ribbon links and ribbon nodes, the face on the left bounded
by links e1, · · · , e6 becomes bounded by long links on the right. All matrices ueivi+1

, i =
1, · · · , 6 are oriented counter-clockwise around the face.

In order to write the holonomies in a uniform way, we introduce the notations that is
different from those in Chapter 3 as follows.

t−A := (−1)
1
2
+AtA,

t+A := t̄−A,
and

t̃−A := (−1)
1
2
+At̃A ,

t̃+A := ¯̃t−A .
(6.3)

for A = ±1/2. Similar but exchanged notations are used for τ and τ̃ ,

τ−A := τA ,

τ+A := (−1)
1
2
−Aτ̄−A ,

and
τ̃−A := τ̃A ,

τ̃+A := (−1)
1
2
−A ¯̃τ−A .

(6.4)

For reference, we explicitly write the spinors and dual spinors with those notations in a
footnote1. The norms read

⟨t|t⟩ = 1
2

∑
ϵ=±

∑
A=± 1

2
ϵ(−1) 1

2
+A tϵAt

−ϵ
−A , ⟨t̃|t̃⟩ = 1

2

∑
ϵ=±

∑
A=± 1

2
ϵ(−1) 1

2
+A t̃ϵAt̃

−ϵ
−A ,

⟨τ |τ⟩ = 1
2

∑
ϵ=±

∑
A=± 1

2
ϵ(−1) 1

2
+A τ ϵAτ

−ϵ
−A , ⟨τ̃ |τ̃⟩ = 1

2

∑
ϵ=±

∑
A=± 1

2
ϵ(−1) 1

2
+A τ̃ ϵAτ̃

−ϵ
−A .

1

|t⟩ =
(

t−−
−t−+

)
, |t] =

(
−t+−
t++

)
, |t̃⟩ =

(
t̃−−
−t̃−+

)
, |t̃] =

(
−t̃+−
t̃++

)
,

⟨t| =
(
t++, t+−

)
, [t| =

(
t−+, t−−

)
, ⟨t̃| =

(
t̃++, t̃+−

)
, [t̃| =

(
t̃−+, t̃−−

)
,

|τ⟩ =
(

τ−−
τ−+

)
, |τ ] =

(
τ+−
τ++

)
, |τ̃⟩ =

(
τ̃−−
τ̃−+

)
, |τ̃ ] =

(
τ̃+−
τ̃++

)
,

⟨τ | =
(
τ++ , −τ+−

)
, [τ | =

(
−τ−+ , τ−−

)
, ⟨τ̃ | =

(
τ̃++ , −τ̃+−

)
, [τ̃ | =

(
−τ̃−+ , τ̃−−

)
,

(6.5)

where the subscripts A = ± 1
2 have been notated as A = ± for simplicity.
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and the holonomies

uAB = − 1√
⟨τ |τ⟩⟨t̃|t̃⟩

∑
ϵ=±

ϵτ ϵAt̃
ϵ
−B ũ−1AB =

1√
⟨τ̃ |τ̃⟩⟨t|t⟩

∑
ϵ=±

ϵ τ̃ ϵAt
ϵ
−B (6.6)

Using the notations (6.3) and (6.4), we can give a uniform expression for the four possible
scalar products at fixed orientations. For example, when both links are outgoing,

Eϵ2,ϵ1
e2e1

:=
∑

A=±1/2

τ ϵ22,−At
ϵ1
1,A =


⟨t2|τ1] for ϵ1 = +, ϵ2 = +

⟨t2|τ1⟩ for ϵ1 = −, ϵ2 = +

[t2|τ1] for ϵ1 = +, ϵ2 = −
[t2|τ1⟩ for ϵ1 = −, ϵ2 = −

. (6.7)

The other orientations are obtained by changing τ1 to τ̃1 and/or t2 to t̃2 as described in
Section 3.4. The invariant is still denoted Eϵ2,ϵ1

e2,e1
.

It will be convenient to encode all orientations and have a fully uniform way of writing
the invariant. We orient the wedge (containing the two links e1 and e2 and the node they
incident to, shown in red in the left panel of fig.6.1) between e1 and e2 to be counter-
clockwise. We say that the orientation oi of ei for i = 1, 2 is positive if it matches that of
the wedge, and negative otherwise2. We denote the spinors meeting there as te1v and te2v
according to

te1v
o1 = 1 τ̃1
o1 = −1 τ1

te2v
o2 = 1 t2
o2 = −1 t̃2

(6.8)

so that

Eϵ2,ϵ1
e2e1

=


⟨te2v|te1v] for ϵ1 = +, ϵ2 = +

⟨te2v|te1v⟩ for ϵ1 = −, ϵ2 = +

[te2v|te1v] for ϵ1 = +, ϵ2 = −
[te2v|te1v⟩ for ϵ1 = −, ϵ2 = −

(6.9)

By plugging u and ũ from (6.2) into the flatness constraint (6.1), one obtains a spinorial
expression of the constraint. Then by taking the matrix elements of the constraints between
different spinors, we get some scalar constraints which we call Hamiltonian constraints.
They are the κ-deformed versions of [44].

2The convention for the orientation oi is indeed different from that used in constructing the scalar
products, see e.g. (3.60), since we are now referring to the orientation of a face instead of that of a ribbon
node.
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We first write the Hamiltonian constraints generally, i.e. on faces of arbitrary lengths,
then specialize them to the case of faces of length 3.

The Hamiltonian on a face of arbitrary degree

Let f be a face of length d. We will introduce a constraint, derived from the flatness
constraint, for every pair of links (e, e′) around f . Label the links counter-clockwise around
f as e1, . . . , ed. Without loss of generality, we set the pair (e, e′) which labels our function
to (e1, ek) for k ∈ {2, . . . , d}. Label the nodes around f as v1, . . . , vd counter-clockwise,
such that ei is incident to vi and vi+1, for i = 1, . . . , d mod d, as shown in fig.6.2. We
assume that f visits each node and link exactly once (as when Γ is dual to a simplicial
complex), so that all ei’s and vi’s are distinct. By convention, we denote the orientation

e1

e2

· · ·

ei−1

ei

ei+1

· · ·

ed

e′1

e′2e′3

e′i−1

e′i

e′i+1 e′i+2

e′d

v1

v2v3
vi−1

vi
vi+1 vi+2

vd

f

Figure 6.2: A sunny graph with links e1, · · · , ed counterclockwise oriented around the face
f . Each triple of links (ei, ei−1, e

′
i) are incident to a node vi.

oi = 1 if ei is counter-clockwise and oi = −1 elsewise (this is the relative orientation of
the link with respect to the counter-clockwise orientation of f). With the notation uev
introduced earlier, the flatness constraint reads uedv1 · · ·ue2v3ue1v2 = I in SU(2). In order
to simplify the notations a bit, we will use

ueif := ueivi+1
=

{
ũ−1ei , if o1 = 1 ,

uei , if o1 = −1 .
(6.10)
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Furthermore we denote as teivi the spinor along the long side of R(ei) which is incident to
both f and vi. It is determined by the orientation of ei,

oi = 1 ⇒ teivi = tei and teivi+1
= τ̃ei ,

oi = −1 ⇒ teivi = t̃ei and teivi+1
= τei .

(6.11)

Notice that we can combine the parallel transport relations (3.49) with the notations (6.3),
(6.4) to relate the spinors which are on both ends of the long side of ei incident to f ,

tϵieivi,−A = −oi
∑

B=±1/2

t−ϵieivi+1,−B(−1)
1
2
+B ueif,BA , tϵieivi+1,A

= oi
∑

B=±1/2

ueif,AB (−1)
1
2
+Bt−ϵieivi,B

.

(6.12)

The flatness constraint on f is thus uedf · · ·ue1f = I. Assume momentarily that all links
are counter-clockwise. Then, ũ−1ed · · · ũ

−1
e1

= I implies for all k

[tek |ũ−1ek−1
· · · ũ−1e2 |τ̃e1⟩ = [tek |ũek ũek+1

· · · ũedũe1|τ̃e1⟩ = ⟨τ̃ek |ũek+1
· · · ũed |te1 ] . (6.13)

In the first equality, we have used the constraint itself, while in the second equality we have
used the parallel transport relations on the links e1 and ek. By then rewriting ũ11 , . . . , ũed
with (6.2), one obtains the following result: a constraint written as a sum of products of
scalar invariants living on the nodes around the face. Obviously, one can change [tek | to
⟨tek | and |τ̃e1⟩ to |τ̃e1 ] without changing that result (qualitatively). Similarly, one should be
able to write this function for arbitrarily chosen link orientations. The notations we have
introduced will help us write it in the most generic way.

Going back to arbitrary link orientations around f , we consider

Eϵ1,ϵk
e1→ek =

∑
A,B=±1/2

tϵkekvk,−A
(
uek−1f · · ·ue2f

)
AB

tϵ1e1v2,B (6.14)

as the generalization of the left hand side of (6.13). Using the parallel transport relations
(6.12), it reads

Eϵ1,ϵk
e1→ek = −o1ok

∑
C,D=±1/2

t−ϵkekvk+1,−C(−1)
1
2
−C(uekfuek−1f · · ·ue2fue1f

)
CD

(−1)
1
2
−Dt−ϵ1e1v1,D

.

(6.15)
If the flatness constraint holds, the holonomy going counter-clockwise from e1 to ek can
then be replaced with the holonomy the other way around f , i.e. clockwise. We thus define

Eϵ1,ϵk
e1←ek =

∑
A,B=±1/2

t−ϵ1e1v1,−A
(
uedf · · ·uek+1f

)
AB
t−ϵkekvk+1,B

. (6.16)
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So if the flatness constraint holds, then

Eϵ1,ϵk
e1→ek + o1okE

ϵ1,ϵk
e1←ek = 0. (6.17)

Indeed, using the flatness constraint in (6.15) we get

Eϵ1,ϵk
e1→ek = −o1ok

∑
C,D=±1/2

t−ϵkekvk+1,−C(−1)
1
2
−C(uedf · · ·uek+1f

)−1
CD

(−1)
1
2
−Dt−ϵ1e1v1,D

. (6.18)

For any matrix g ∈ SU(2), the matrix elements of the inverse can be written g−1CD =

(−1) 1
2
−Dg−D−C(−1)

1
2
−C . This can be used to transform the above expression into o1okE

ϵ1,ϵk
e1←ek .

The last step to define our Hamiltonian constraints is to rewrite Eϵ1,ϵk
e1→ek and E

ϵ1,ϵk
e1←ek in terms

of scalars like (6.9). The matrix elements of the holonomies are indeed

ueif,Ai+1Ai
= oi

1

Nei

∑
ϵi=±

ϵi t
ϵi
eivi+1,Ai+1

tϵieivi,−Ai
, (6.19)

with Nei =
1

2

√ ∑
ϵi,ϵ′i=±

∑
A,B=±1/2

ϵϵ′(−1) 1
2
+A(−1) 1

2
+B tϵiei,vi+1,A

t−ϵieivi+1,−A t
ϵ′i
ei,vi,B

t
−ϵ′i
eivi,−B ,

(6.20)

so that one can re-organize the products over the nodes instead of links,

Eϵ1,ϵk
e1→ek =

∑
ϵ2,...,ϵk−1=±
A2,...,Ak=±1/2

(k−1∏
i=2

oiϵi
Nei

)( k∏
i=2

tϵieivi,−Ai
t
ϵi−1

ei−1vi,Ai

)
, (6.21)

Eϵ1,ϵk
e1←ek = (−1)d−k

∑
ϵk+1,...,ϵd=±

Ak+1,...,Ad+1=±1/2

( d∏
i=k+1

oiϵi
Nei

)( d+1∏
i=k+1

t−ϵieivi,−Ai
t
−ϵi−1

ei−1vi,Ai

)
. (6.22)

We can now use the scalar products, which are quadratic invariants, defined in (6.9),
which encodes all four scalar products of the two spinors meeting at vi, i.e.

Eϵi,ϵi−1
eiei−1

=
∑

A=±1/2

tϵieivi,−At
ϵi−1

ei−1vi,A
=


⟨teivi |tei−1vi ] for ϵi = +, ϵi−1 = +

⟨teivi |tei−1vi⟩ for ϵi = +, ϵi−1 = −
[teivi |tei−1vi ] for ϵi = −, ϵi−1 = +

[teivi |tei−1vi⟩ for ϵi = −, ϵi−1 = −,

(6.23)

where the spinors teivi and tei−1vi−1
are given by the rule (6.11) according to the orientations.

This leads us to the following definition of the Hamiltonian constraints.
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Definition 6.1.1. Let f be a face of degree d, with links labeled by e1, . . . , ed counter-
clockwise around f . A Hamiltonian is associated to f and a pair of links along f with
a sign attached to each of them. Without loss of generality, the pair can be chosen to be
(e1, ek) with signs (ϵ1, ϵk) ∈ {+,−}2, for k ∈ {2, . . . , d}, and the Hamiltonian is

hϵ1,ϵkf,e1,ek
=

∑
ϵ2,...,ϵk−1=±

( k∏
i=2

oiϵi
Nei

Eϵi,ϵi−1
eiei−1

)
+ (−1)d−kϵ1ϵk

Ne1

Nek

∑
ϵk+1,...,ϵd=±

( d+1∏
i=k+1

oiϵi
Nei

E−ϵi,−ϵi−1
eiei−1

)
.

(6.24)

The Hamiltonian constraint (6.24) captures the flatness constraint completely with all
choices of pairs (e1, ek) and of signs (ϵ1, ϵk). The proof is the same as in the vector case at
κ = 0, see [43].

Application to faces of degree three

e2

e6e1

e3 e4

e5

ℓ̃2

u2

ℓ2

ũ2ℓ̃1

ũ1

ℓ1

u1

ℓ̃6

ũ6

ℓ6
u6

ℓ̃3 ℓ̃4

ℓ5

Figure 6.3: On the left, a triangular face with its adjacent links. On the right, we have
shown the ribbon graph it gives rise to.

Let us discuss more explicitly the case of triangular faces. We use the notations and
orientations of fig.6.3 as an example. In particular o1 = o6 = −1 and o2 = 1. Here there
are three choices of pairs of links (which label the Hamiltonians (6.24)), which correspond
to the three nodes of the face.

On a node, say between the links e2 and e6, there are four invariant quantities quadratic
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in the spinors, ⟨t2|τ6⟩, ⟨t2|τ6], [t2|τ6⟩, [t2|τ6] which are encoded in the scalar product (6.9),

Eϵ2,ϵ6
26 =

∑
A=±1/2

tϵ22,−Aτ
ϵ6
6,A =


⟨t2|t6] for ϵ2 = ϵ6 = +,

⟨t2|t6⟩ for ϵ2 = −ϵ6 = +,

[t2|t6] for ϵ2 = −ϵ6 = −,
[t2|t6⟩ for ϵ2 = ϵ6 = − .

(6.25)

Similarly at the nodes between e1, e2 and e6, e1,

Eϵ1,ϵ2
12 =

∑
A=±1/2

t̃ϵ11,−Aτ̃
ϵ2
2,A, Eϵ6,ϵ1

61 =
∑

A=±1/2

t̃ϵ66,−Aτ
ϵ1
1,A . (6.26)

The flatness constraint ũ2u
−1
1 u−16 = I implies that if |τ6⟩ and |τ6] are transported around

the face via ũ2u
−1
1 u−16 , the above quadratic quantities are left unchanged, that is

⟨t2|ũ2u−11 u−16 |τ6⟩ = ⟨t2|τ6⟩ , ⟨t2|ũ2u−11 u−16 |τ6] = ⟨t2|τ6] ,
[t2|ũ2u−11 u−16 |τ6⟩ = [t2|τ6⟩ , [t2|ũ2u−11 u−16 |τ6] = [t2|τ6] .

(6.27)

Similarly at the nodes where e1, e2 and e6, e1 meet respectively,

⟨t̃1|u−11 u−16 ũ2|τ̃2⟩ = ⟨t̃1|τ̃2⟩ , ⟨t̃6|u−16 ũ2u
−1
1 |τ1⟩ = ⟨t̃6|τ1⟩ ,

⟨t̃1|u−11 u−16 ũ2|τ̃2] = ⟨t̃1|τ̃2] , ⟨t̃6|u−16 ũ2u
−1
1 |τ1] = ⟨t̃6|τ1] ,

[t̃1|u−11 u−16 ũ2|τ̃2⟩ = [t̃1|τ̃2⟩ , [t̃6|u−16 ũ2u
−1
1 |τ1⟩ = [t̃6|τ1⟩ ,

[t̃1|u−11 u−16 ũ2|τ̃2] = [t̃1|τ̃2] , [t̃6|u−16 ũ2u
−1
1 |τ1] = [t̃6|τ1] .

(6.28)

In fact, this set of constraints can be seen as projecting the constraint ũ2u
−1
1 u−16 = I onto

a basis. Therefore, as long as those vectors are generic (hence linearly independent), this
whole set is equivalent to ũ2u

−1
1 u−16 = I.

Let us consider the constraint ⟨t2|ũ2u−11 u−16 |τ6]−⟨t2|τ6] and rewrite it like in (6.24). Use
the parallel transport relations u−16 |τ6] = −|t̃6⟩ and ⟨t2|ũ2 = [τ̃2| which gives ⟨t2|ũ2u−11 u−16 |τ6] =
−[τ̃2|u−11 |t̃6⟩ = [t̃6|u1|τ̃2⟩. Then use u1 = 1

Ne1
(|τ1⟩[t̃1| − |τ1]⟨t̃1|) so that the constraint be-

comes

⟨t2|ũ2u−11 u−16 |τ6]− ⟨t2|τ6] =
1

Ne1

(
[t̃6|τ1⟩[t̃1|τ̃2⟩ − [t̃6|τ1]⟨t̃1|τ̃2⟩

)
− ⟨t2|τ6]

= − 1

Ne1

∑
ϵ=±

ϵE−,ϵ61 E
ϵ,−
12 − E

+,+
26

(6.29)
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which is exactly the specialization of (6.24) to d = 3, k = 2, o1 = o6 = −o2 = −1 and
ϵ2 = ϵ6 = +,

hϵ2,ϵ6e2e6
= Eϵ2,ϵ6

26 +
1

Ne1

∑
ϵ1=±

ϵ1E
ϵ1,−ϵ2
12 E−ϵ6,ϵ161 . (6.30)

where we recall that Ne1 =
√
⟨τ1|τ1⟩⟨t̃1|t̃1⟩.

This way, the Hamiltonian constraint does not involve holonomy variables anymore like
in (6.27), but only the scalar products of spinors.

6.2 Quantum Hamiltonian constraint

We now proceed to the quantization of the system. The aim is to quantize the Hamiltonian
constraints (6.24) and solve them at the quantum level. This requires quantizing the
quadratic invariant E

ϵi,ϵi−1
eiei−1 . Recall that, before enforcing the Gauss constraints, space of

states is
⊕
{je}
⊗

e Vje ⊗ V∗je , where Vje is associated to the target end of e and V∗je to its
source. At each node v, the Gauss constraint enforces a projection of the tensor product of
the vectors meeting at v onto the trivial representation. If the links meeting at v are denoted
e1, . . . , en, the space of intertwiners, which we uniformly denote as Inv(je1v ⊗ · · · ⊗ jenv), is
the invariant subspace of the tensor product Vje1 ⊗ · · · ⊗ Vjen if all ei’s are incoming at v,
and we dualize to V∗jei if ei is outgoing at v. In the case of trivalent nodes, the invariant

space Inv(je1v ⊗ je2v ⊗ je3v) is one-dimensional. Therefore, the kinematical Hilbert space
is given by the invariant

Hkin =
⊕

{je∈N/2}

⊗
v

Inv(je1v ⊗ · · · ⊗ jenv) . (6.31)

Recall that a basis of Hkin is formed by the spin network state

|{je, iv}⟩ =
⊗
v

ije1v ···jenv (6.32)

where ije1v ···jen(v)v
∈ Inv(je1v ⊗ · · · ⊗ jenv) is an intertwiner. A kinematical state |ψ⟩ thus

can be written as the expansion under such a basis,

|ψ⟩ =
∑
{je}

∑
{iv}

ψ({je, iv}) |{je, iv}⟩. (6.33)

with
|{je, iv}⟩ =

⊗
v

ije1v ···jenv (6.34)
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The scalar observable and its action on the intertwiner. The quantization of
the quadratic invariant (6.9), Eϵ2,ϵ1

e2e1
has been introduced in (5.58). We are particularly

interested in its action on the intertwiner for a three-valent graph. While Eϵ2,ϵ1
e2e1

would be
independent of orientations, the vector space on which it acts does depend on orientations
(V∗j versus Vj). Therefore the action on an intertwiner would in fact depend explicitly
on the orientations. Instead, we decide to perform the quantization so that its action
on intertwiners is independent of orientations. Therefore, we will not use (5.58) directly
here, but instead a more complicated definition of Eϵ2,ϵ1

e2e1
whose expression depends on the

orientation of e1 and e2.

The way we define such an operator is to change the spinor operator to its q−1 version
when flipping the orientation. Obviously, this exchanges the t’s with the τ’s. However,
we prefer to keep the same letter for the spinor operator because we think exchanging t’s
with τ’s could be confusing in the ribbon picture. We therefore define tϵ := τϵ and same
with the tildes, and eventually

Eϵ2,ϵ1
e2e1

= −o1
√

[2](−1)
1−o1

2
1+ϵ1

2 (−1)
1−o2

2
1+ϵ2

2

∑
A=± 1

2

qo1C
1
2

1
2
0

A−A 0T
o1ϵ1
e1v,A

⊗T−o2ϵ2e2v,−A

=



∑
A=± 1

2
(−1) 1

2
−Aq

A
2 ϵ2 t̃

ϵ1
A ⊗ τ̃

ϵ2
−A for − o1 = o2 = −1∑

A=± 1
2
(−1) 1

2
+Aq

A
2 t̃ϵ1A ⊗ τ−ϵ2−A for o1 = o2 = 1∑

A=± 1
2
(−1) 1

2
−Aq−

A
2 ϵ1ϵ2 t

−ϵ1
A ⊗ τ̃

ϵ2
−A for − o1 = −o2 = 1∑

A=± 1
2
(−1) 1

2
+Aq−

A
2 ϵ1 t

−ϵ1
A ⊗ τ−ϵ2−A for − o1 = o2 = 1

, (6.35)

where T−o2ϵ2e2v,A
= tϵ2e2v,A if o2 = −1 while T−o2ϵ2e2v,A

= t−ϵ2e2v,A
if o2 = 1, and similarly for To1ϵ1

e1v,A
.

We then extend this definition to the space Inv(je1v ⊗ · · · ⊗ jenv) of invariant vectors at v
by tensoring with the identity as necessary. It comes

Eϵ2,ϵ1
e2e1

ij1j2j3 =
√
[dj1 ][dj2 ][dl1 ][dl2 ]δl1,j1+ ϵ1

2
δl2,j2+ ϵ2

2

{
l1 j1

1
2

j2 l2 j3

}
q

(−1)l1+l2+j3il1l2j3 , (6.36)

It thus maps the interwtiner space Inv(j1 ⊗ j2 ⊗ j3) to Inv(l1 ⊗ l2 ⊗ j3).
This definition also works for two links ei, ei+1 sharing a node in Inv(je1v ⊗ · · · ⊗ jenv),

for i = 1, . . . , n − 1. In the trivalent case, this gives Eϵ3,ϵ2
e3e2

ij1j2j3 exactly as in (6.36) with
e1 → e2, e2 → e3, e3 → e1

Eϵ3,ϵ2
e3e2

ij1j2j3 =
√

[dj2 ][dj3 ][dl2 ][dl3 ]δl2,j2+ ϵ2
2
δl3,j3+ ϵ3

2

{
l2 j2

1
2

j3 l3 j1

}
q

(−1)l2+l3+j1ij1l2l3 . (6.37)
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For the case i = n, i.e. Eϵ1,ϵn
e1en

, the definition has to be amended to obtain an invariant
operator [41] and eventually one finds the same expression for Eϵ1,ϵ3

e1e3
ij1j2j3 as (6.36) with

the appropriate permutation of the indices, i.e.

Eϵ1,ϵ3
e1e3

ij1j2j3 =
√

[dj3 ][dj1 ][dl3 ][dl1 ]δl3,j3+ ϵ3
2
δl1,j1+ ϵ1

2

{
l3 j3

1
2

j1 l1 j2

}
q

(−1)l3+l1+j2il1j2l3 . (6.38)

Quantize the Hamiltonian constraint. We now need to quantize the classical Hamil-
tonian (6.24) as a well-defined operator on Hkin (defined in (6.31)). The first step is obvi-
ously to use the quantization map described in the previous section turning the observables
E
ϵi,ϵi−1
eiei−1 into operators E

ϵi,ϵi−1
eiei−1 as in (6.35). The second step is concerned with quantization

ambiguities. Indeed, factors Nei appear in (6.24) and they are expected to be diagonal on
the spin network basis, as a function of jei only in fact. Notice however that the operators
Eϵ2,ϵ1
e2e1

change the spins of the links e1, e2 by ϵ1/2 and ϵ2/2. There are therefore ordering
ambiguities, the result differing according to whether Nei is before or after some opera-
tors E which changes jei . We found an ordering, see below, which ultimately leads to a
topological model, which would presumably not be true for other orderings.

Let us introduce

h
ϵ1,ϵp
f,e1,ep

=
1

Ne1v2

 ∑
ϵ2,...,
ϵp−1=±

p∏
i=2

Eϵi,ϵi−1
eiei−1

oiϵi
Neivi

+
(−1)d−pϵ1ϵp
Nepvp+1

 ∑
ϵp+1,...,
ϵd=±

d+1∏
i=p+1

E−ϵi,−ϵi−1
eiei−1

oiϵi
Neivi

 ,

(6.39)

where Neivi is diagonal on Vjei (or its dual), Neivi |jei ,mei⟩ = [djei ]|jei ,mei⟩. We include the
node vi in the notation because hereNeivi only acts on the space of intertwiners at vi, where
ei and ei−1 meet. As already discussed, the ordering is important because [Neivi ,E

ϵi−1,ϵi
ei−1ei ] ̸=

0. However [Neivi ,E
ϵi,ϵi+1
eiei+1 ] = 0 by definition, so that the operators E

ϵi,ϵi−1
eiei−1

oiϵi
Neivi

which act

on the space of intertwiners at vi commute with one another. Here Neivi is placed to the
right of E

ϵi,ϵi−1
eiei−1 , which is also the case if one reconstructs the quantum holonomies from

the quantum spinors [41].

However, the operator h
ϵ1,ϵp
f,e1,ep

as such is not defined on Hkin. Indeed, a state in Hkin

is a superposition of spin network states which assigns a spin to each link along with the
space Vj to the target end and V ∗j to the source end. Say the link e1 gets the spin j1.
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Then the first term of the above operator acts on e1 with Eϵ2,ϵ1
e2e1

which shifts the spin j1 to
j1+ ϵ1/2, on the intertwiner which sits at the node where e1 and e2 meet. It thus maps Vj1
to Vj1+ϵ1/2, or V∗j1 to V

∗
j1+ϵ1/2

depending on orientations, but not both, i.e. it does not shift
j1 at the node where ed and e1 meet. Therefore the operator brings the state out of Hkin.

Similarly, the second term of h
ϵ1,ϵp
f,e1,ep

acts on e1 through E−ϵ1,−ϵde1ed
. This shifts j1 to

j1 − ϵ1/2 at the node where ed, e1 meet. If Eϵ2,ϵ1
e2e1

in the first term acted on Vj1 , then this
operator acts on V ∗j1 (or the other way around).

We thus turn h
ϵ1,ϵp
f,e1,ep

into a well-defined operator on Hkin by multiplying it by a product

of operators E
ϵi,ϵi−1
eiei−1 so that the intertwiners of both ends of the same link have the same

spin. Notice that the first term in (6.39) only contains the shift operators for i = 2, · · · , p,
one can add E

ϵi,ϵi−1
eiei−1 for all the remaining nodes, i.e. i = p+ 1, · · · , d+ 1, so that the spin

changes for both ends of each link are the same. For the second term in (6.39), adding
these shift operators also shift all the spins ji − ϵi/2 to ji thus drags the state back in
Hkin. This is the method which was already used in [44] for constructing the quantum
Hamiltonian in the spinor representation in the flat case.

Definition 6.2.1. We define the quantum Hamiltonian on the face f , labeled by the pair
of links (e1, ep), to be

H
ϵ1,ϵp,ϵp+1,...,ϵd
f,e1,ep

=

[ d+1∏
i=p+1

Eϵi,ϵi−1
eiei−1

]
h
ϵ1,ϵp
f,e1,ep

. (6.40)

Compared to the operator (6.39), the quantum Hamiltonian defined as such not only
depends on ϵ1 and ϵp, but also ϵp+1, · · · , ϵd+1. The physical Hilbert space is spanned by
the physical states which are the solutions to the quantum Hamiltonian. In the spin rep-
resentation, the coefficients of these physical spin network states satisfy a set of difference
equations, which is stated in the following theorem.

Theorem 6.2.2. The constraint

∀ke ⟨{ke}| H
ϵ1,ϵp,ϵp+1,...,ϵd
f,e1,ep

|ψ⟩ = 0, (6.41)

is equivalent to the following set of difference equations on the spin network coefficients
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ψ(k1, k2, · · · , kd, {ke}e/∈∂f ) of |ψ⟩,

∑
ϵ̃2,...,ϵ̃p−1=±

( p∏
i=2

Aϵ̃i,ϵ̃i−1
oi

(ki, ki−1, li)

)
ψ(k1 −

ϵ1
2
, k2 −

ϵ̃2
2
, . . . , kp−1 −

ϵ̃p−1
2
, kp −

ϵp
2
, . . . , kd −

ϵd
2
, {ke}e ̸∈∂f )

+ (−1)d−pαϵ1,ϵp(k1, kp)
∑

ϵ̃p+1,...,ϵ̃d=±

( d+1∏
i=p+1

B ϵ̃i,ϵ̃i−1
oi

(ki −
ϵi
2
, ki−1 −

ϵi−1
2
, li)

)
ψ(k1, . . . , kp, kp+1 −

ϵp+1

2
+
ϵ̃p+1

2
, . . . , kd −

ϵd
2
+
ϵ̃d
2
, {ke}e ̸∈∂f ) = 0. (6.42)

Here

• l1, . . . , ld are the spins carried by the links e′1, . . . , e
′
d incident to f , see fig.6.2.

• By definition, ϵ̃1 = ϵ1, ϵ̃p = ϵp, while ϵp+1, . . . , ϵd are fixed.

• The coefficients are

Aϵ̃i,ϵ̃i−1
oi

(ki, ki−1, li) = oiϵ̃i[dki ](−1)ki+ki−1+li

{
ki ki − ϵ̃i

2
1
2

ki−1 − ϵ̃i−1

2
ki−1 li

}
q

, (6.43)

B ϵ̃i,ϵ̃i−1
oi

(ki, ki−1, li) = oiϵ̃i[dki ](−1)ki+ki−1+li

{
ki ki +

ϵ̃i
2

1
2

ki−1 +
ϵ̃i−1

2
ki−1 li

}
q

, (6.44)

αϵ1,ϵp(k1, kp) = ϵ1ϵp
[dkp ]

[dk1− ϵ1
2
]
. (6.45)

Before we prove this theorem, we first discuss some properties of the constraint (6.42).
Those constraints are recursions on the physical states. They generalize the one found in
[44] for a triangular face. Improving on [43], the differences are shifts of the spins by 1/2
instead of 1. Moreover, link orientations are kept arbitrary.

Those constraints have two types of contributions: the A-terms and the B-terms.
Notice that h

ϵ1,ϵp
f,e1,ep

contains all the operators E
ϵ̃i,ϵ̃i−1
eiei−1 exactly once, for i = 1, . . . , d. Whether

an operator E
ϵ̃i,ϵ̃i−1
eiei−1 gives rise to an A-term or a B-term depends on the choice of the

reference links e1 and ep around f . It is important that the coefficients A
ϵ̃i,ϵ̃i−1
oi (ki, ki−1, li)

and B
ϵ̃i,ϵ̃i−1
oi (ki, ki−1, li) are local : they only depend on the spins incident to the node. As
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A-terms
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Figure 6.4: The schematic representation of the quantum constraint (6.42) with its A-
terms and B-terms associated to the nodes around the face.

a consequence, for example, if one considers another constraint on the same face with eq,

q < p, chosing e1 as reference link, then the coefficients A
ϵ̃i,ϵ̃i−1
oi (ki, ki−1, li) for i = 1, . . . , q

would be the same as those appearing above, and similarly for the B-terms. The structure
of the constraint is schematically pictured in fig.6.4.

By exchanging the role of e1 with ep, the A-terms become the B-terms and vice versa.
The constraint obtained this way is equivalent to (6.42), as we now show. First, evaluate
(6.42) on k1 + ϵ1/2, . . . , kd + ϵd/2, and then flip the signs of all the ϵi and ϵ̃i. That gives
the constraint

∑
ϵ̃2,...,ϵ̃p−1=±

( p∏
i=2

A−ϵ̃i,−ϵ̃i−1
oi

(ki −
ϵi
2
, ki−1 −

ϵi−1
2
, li)

)
ψ
(
k1, k2 −

ϵ2
2
+
ϵ̃2
2
, . . . , kp−1 −

ϵp−1
2

+
ϵ̃p−1
2
, kp, . . . , kd, {ke}e ̸∈∂f

)
+ (−1)d−pαϵ1,ϵp(k1 −

ϵ1
2
, kp −

ϵp
2
)

∑
ϵ̃p+1,...,ϵ̃d=±

( d+1∏
i=p+1

B−ϵ̃i,−ϵ̃i−1
oi

(ki, ki−1, li)

)
ψ
(
k1 −

ϵ1
2
, . . . , kp −

ϵp
2
, kp+1 −

ϵ̃p+1

2
, . . . , kd −

ϵ̃d
2
, {ke}e ̸∈∂f

)
= 0 . (6.46)

We then use the key relation between the coefficients A and B,

B ϵ̃i,ϵ̃i−1
oi

(ki, ki−1, li) = −A−ϵ̃i,−ϵ̃i−1
oi

(ki, ki−1, li) (6.47)
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to get

(−1)p
∑

ϵ̃2,...,ϵ̃p−1=±

( p∏
i=2

B ϵ̃i,ϵ̃i−1
oi

(ki −
ϵi
2
, ki−1 −

ϵi−1
2
, li)

)
ψ
(
k1, k2 −

ϵ2
2
+
ϵ̃2
2
, . . . , kp−1 −

ϵp−1
2

+
ϵ̃p−1
2
, kp, . . . , kd, {ke}e ̸∈∂f

)
+ αϵ1,ϵp(k1 −

ϵ1
2
, kp −

ϵp
2
)

∑
ϵ̃p+1,...,ϵ̃d=±

( d+1∏
i=p+1

Aϵ̃i,ϵ̃i−1
oi

(ki, ki−1, li)

)
ψ
(
k1 −

ϵ1
2
, . . . , kp −

ϵp
2
, kp+1 −

ϵ̃p+1

2
, . . . , kd −

ϵ̃d
2
, {ke}e̸∈∂f

)
= 0, (6.48)

where we recognize the matrix element ⟨{ke}|Hϵ1,ϵ2,...,ϵp
f,ep,e1

|ψ⟩ and have shown the equivalence

⟨{ke}|H
ϵp,ϵ1,ϵ2,...,ϵp−1

f,ep,e1
|ψ⟩ = 0 ⇔ ⟨{ke}| H

ϵ1,ϵp,ϵp+1,...,ϵd
f,e1,ep

|ψ⟩ = 0. (6.49)

The proof of Theorem 6.2.2 is given in Proof B.4.1.

The dependence of ψ on the orientations is given by the following lemma.

Lemma 6.2.3. If |ψ⟩, with spin network coefficients ψ({je}), satisfies all the constraints
(6.42) for given link orientations {oe}, then (−1)2j∗ψ({je}) satisfies all the constraints on
the same graph with reversed orientation −oe∗ on the link e∗.

Proof. Consider the constraint (6.42) on the fixed face f . If e∗ ̸∈ ∂f , multiplication
by (−1)2j∗ does not change anything. If e∗ ≡ es ∈ {e2, . . . , ep−1}, then the coefficient
Aϵ̃s,ϵ̃s−1
os (ks, ks−1, ls) changes sign. Moreover, it is the only one that depends on os. The

state coefficient on the first line of (6.42) changes from ψ(k1 − ϵ1, . . . , kep − ϵ̃p, . . . ) to
(−1)2ks+1ψ(k1 − ϵ1, . . . , kp − ϵ̃p, . . . ) since (−1)ϵ̃s = −1. Moreover, the coefficients B’s
are independent of the orientation os and the state coefficient on the second line changes
from ψ(k1, . . . , kp, . . . ) to (−1)2ksψ(k1, . . . , kp, . . . ). Factorizing (−1)2ks from the equation
reveals that only the first line is modified, by −os × (−1) = os. The constraint therefore
still holds. If e∗ ≡ es ∈ {ep+1, · · · , ed+1}, the coefficient B ϵ̃s,ϵ̃s−1

os (ks − ϵs
2
, ks−1 − ϵs−1

2
, ls)

changes sign while the coefficients A’s remain unchanged. The same analysis leads to the
same conclusion.

The argument is the same for all links in the boundary of f , since the orientation of
any of those links appears in a single coefficient of the equation.

Having defined the quantum Hamiltonian, the next task is to find the solutions to
this constraint, which are the physical states. In fact, one can justify a physical state by
showing (the discrete version of) the diffeomorphism invariance of the state. This is done
by performing Pachner moves which we describe in the next section.
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6.3 Pachner moves

Pachner moves [167] are the change of triangulation of a manifold by keeping the boundary
triangulation fixed. In the graph picture, that is equivalent to keeping the xlinks piercing
the boundary fixed. Sequences of Pachner moves are then the combinatorial equivalent
of manifold diffeomorphism. In this section, we show show how to relate physical states
on triangulations which are related by Pachner moves. This is an extension of [162] to
q real (using Hamiltonian constraints instead of projection on flat connections). In two
dimensions, there are two types of Pachner moves, the 3 − 1 moves and the 2 − 2 moves
(as well as their inverses). We state the relations of the spin network coefficients in the
theorems below and leave the proofs in Appendix B.4

2-2 Pachner move. The 2-2 Pachner move changes a portion of the graph into another
one as follows,

e1

e4

e2

e3

e5
e1 e2

e4 e3

e0 (6.50)

We denote the initial graph which contains the left-hand side as Γi, and the final graph
which contains the right-hand side as Γf . The orientation of all links are left arbitrary.

Theorem 6.3.1. Let |ψf⟩ on Γf be defined in the spin network basis by

ψf (j1, j2, j3, j4, j0, . . . )

= (−1)j1+j2+j3+j4 [dj0 ]
∑
j5

(−1)(1−o5)j5+(1−o0)j0
{
j1 j2 j0
j3 j4 j5

}
q

ψi(j1, j2, j3, j4, j5, . . . ) .

(6.51)

where the ellipses denote spins which are the same on both sides (for links which are not
affected by the move). Then |ψi⟩ is a state which satisfies all the constraints on Γi if and
only if |ψf⟩ satisfies all the constraints on Γf .

Since the 2-2 move is its own inverse, there is a symmetry between both sides of the
move. This must translate into a symmetry which exchanges the role of |ψi⟩ and |ψf⟩ in
(6.51). This is indeed true thanks to the orthonormality of the q-6j symbols,∑

j5

[dj5 ][dj0 ]

{
j1 j2 j0
j3 j4 j5

}
q

{
j1 j2 j′0
j3 j4 j5

}
q

= δj0,j′0 , (6.52)
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which transforms (6.51) into

ψi(j1, j2, j3, j4, j5, . . . )

= (−1)j1+j2+j3+j4 [dj5 ]
∑
j′0

(−1)(1−o5)j5+(1−o0)j′0

{
j1 j2 j′0
j3 j4 j5

}
q

ψf (j1, j2, j3, j4, j
′
0, . . . ) .

(6.53)

The proof of Theorem 6.3.1 is given in Proof B.4.2.

Removing a link. Consider two adjacent faces F and f , separated by a link e0.
We consider the move which consists in removing e0 (as well as its two end nodes). By
performing a series of 2-2 Pachner moves (6.50), we can always assume that f is triangular,

e2

e1

e0

e3

e4

fF

e2

e1

F ∪ f (6.54)

If |ψi⟩ is a state which satisfies all the constraints before the link removal, we want to
describe how it transforms through the move.

Theorem 6.3.2. |ψf⟩ with spin network coefficients

ψf (j1, j2, . . . ) = (−1)(1+o1)j1+(1+o2)j2

√
[dj1 ] [dj2 ]ψi(0, j1, j2, j2, j1, . . . ) (6.55)

is a solution of the constraints on the graph after the link removal. Here o1, o2 are the orien-
tations of the links e1, e2 with respect to f (counter-clockwise oriented) and ψ(j0, j1, j2, j3, j4, . . . )
is the spin network coefficient of |ψi⟩.

In other words, |ψi⟩ gives rise to a solution of the constraints on Γf , obtained by keeping
only its j0 = 0 components. We will use this relation to study the 3-1 Pachner move. The
proof of Theorem 6.3.2 is given in Proof. B.4.3.

133



3-1 Pachner move. The 3-1 Pachner move removes a triangular face from the graph
and replaces it with a node. The links incident to the face become incident to the node,

e2

e6e1

e3 e4

e5

e3 e4

e5

(6.56)

The orientation of all the links are left arbitrary.

Theorem 6.3.3. If |ψi⟩ is a state on the initial graph Γi which satisfy all the constraints,
then its spin network coefficients can be written

ψi(j1, j2, j3, j4, j5, j6, . . . )

= (−1)(1+o1)j1+(1+o2)j2+(1+o6)j6(−1)j3+j4+j5
{
j1 j2 j3
j4 j5 j6

}
q

ψf (j3, j4, j5, . . . ) . (6.57)

where ψf (j3, j4, j5, . . . ) are the spin network coefficients of a state |ψf⟩ which satisfies all
the constraints on the final graph Γf .

We recognize that (6.57) is consistent with the result in [162] when q = 1. The proof
of Theorem 6.3.3 is given in Proof B.4.4.

In this chapter, we have built up the Hamiltonian constraint for the q-deformed LQG
model, obtained from the flatness constraints (6.1). We have written them with the de-
formed spinors and performed the quantization following the method introduced in the
last chapter, or in more detail in [41]. The result is a direct generalization of the quantum
Hamiltonian constraints derived in [44] for flat space. By studying the way the solutions
to the quantum constraints change under Pachner moves, we provide a generalization of
the Noui-Perez transition amplitudes [162] to q ̸= 1 real: the transition amplitudes are
the coefficients relating the physical states in the spin network basis under Pachner moves.
Here, they clearly lead to a Turaev-Viro model for q real. It is a topological model (with
the same finiteness issues as the q = 1 version, the Ponzano-Regge model).

Our method is radically different from [162] however and maybe more in the spirit
of LQG. On its way to linking the q-deformed LQG to spin foams, our method derives
Wheeler-DeWitt equations as difference equations on the spin network coefficients of the
states, see Equation (6.42). In the flat case, the Hamiltonian constraint can be interpreted
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as displacements of the nodes of the triangulation [38]. Our difference equations (6.42) are
quantum implementations of those symmetries.

Although our constraints are in fact derived from the flatness constraints, we believe
that this approach is promising to study both how to incorporate the cosmological constant
in 4D and how to write interesting dynamics for curved 4D geometries. A first step in the
continuous theory has been initiated in [119].
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Chapter 7

Spinors in the spinfoam model

The spinors and their quantization defined in Chapter 3 and 5 can not only be used in
the LQG framework but also in other quantum gravity theories. Finally in this chapter,
we use the quantum spinors to revisit another quantum gravity model - the spinfoam
model (see e.g. [21, 168, 138] for review), which is also a background-independent and
non-perturbative approach to quantum gravity. We focus on the Λ = 0 case in this chapter.

Unlike the LQG, the spinfoam model is a covariant formalism that can be understood
as a discrete version of gravity path integral. In 3D (in Euclidean signature), the spinfoam
model is called the Ponzano-Regge model [174] for Λ = 0 and the Turaev-Viro model [204]
for Λ > 0, where the latter is a q-deformation of the former with q root of unity. For Λ < 0,
one can extend the result from the Turaev-Viro model to q real.

Such a path-integral formalism, which can be viewed as describing all possible histories
of 2D spatial geometries along “time”, can be separated into local geometrical amplitudes
associated to individual simplicies of the triangulated spacetime manifold. The original
Ponzano-Regge model is formulated in terms of the SU(2) irreducible representations.
When considering the recoupling theory, the triangular inequalities for the representations
bring computational difficulties. As an example, the vertex amplitude of the Ponzano-
Regge model, associated to a tetrahedron (whose 3D dual is a vertex), is given by the
so-called “6j-symbols” from the recoupling theory of SU(2). The exact formula of the
6j-symbols consists of nonlinear iterations and sums spin labels, thus are hard to compute.
The problem is often circumvented by looking at the semi-classical limit, which is more
controllable but we are then led far from the microscopic scale.

Alternatively, one can use the spinorial representation. Roughly speaking, it is to
replace the 6j-symbols with some “spinor symbols” reflecting the local quantum geometries,
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which naturally turn the amplitude expression from an infinite sum into an integral function
of the spinor fields. In this way, understanding the behaviour of the amplitude turns
into function(al) analysis. It is expected to be a better route to approach the quantum
regime. The use of spinors in spinfoam models is not new. They were used to define
the SU(2) coherent states, which were applied to construct the EPRL-FK spinfoam model
[82, 96, 141]. However, the role of spinors was not yet unravelled therein.

The coherent states were then recasted with spinors in the U(n) formulation of LQG
(see e.g. [98, 99, 50]), Further development of coherent intertwiners [75] makes it possible to
eliminate spins and only spinors are left in the description. It has been used to construct
the spinfoam model in a holomorphic fashion [74, 76], and the invariance of the path
integral under Pachner moves was also well-understood [26, 59]. The drawbacks of this
holomorphic spinfoam model lie in, on one hand, that the locality of amplitudes is not
restored as in the original spinfoam using 6j-symbols, and, on the other hand, that SU(2)
holonomies and/or spins are still explicit in the expression, which makes it hard to extract
the true geometrical information carried by the spinors.

The goal of this chapter is to further construct a spinfoam model purely in terms of
spinors, which also admits the locality of amplitudes. In other words, the desired path
integral is able to be decoupled into products of local amplitudes, as functions of spinors
only, associated to local geometry which possesses an analogous structure as in the original
Ponzano-Regge amplitude. This would allow us to identify the geometrical interpretation
of the local amplitudes and the gluing process.

A natural spinorial substitute of the 6j-symbol is the generating function of the 6j-
symbols [45]. As a generating function, it brings the benefit that the analysis can be
transferred from discrete series to continuous functions (possibly with poles). Different
generating functions are distinct by different weights. A careful choice of weights allows us
to write a generating function in closed form and thus is well-controlled. Such a generating
function does exist. It is called the Schwinger’s generating function (SGF) of the 6j-
symbols, and it was found early in the 60s by Schwinger [187] and then reconstructed by
Bargmann [28] using a Gaussian integral. The SGF is in the form of a rational function
and carries a large family of symmetries as it involves only the loop structure. It came
into notice in the spinorial reconstruction of LQG [93, 44, 45, 37], in which it is identified
as a new spin network state spanning the loop Hilbert space. Bearing in mind the link
between LQG and the spinfoam approach, this construction manifestly opens a route to
a new spinfoam model [93, 132]. It is expected that the computational complexity of the
vertex amplitudes would be diminished compared to the 6j-symbols.

The geometrical interpretation of the SGF was discovered by the stationary analysis
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at the large scale limit [46], which shows that only the conformal geometry information
is stored in the SGF while the scale information is washed out. This provides a new way
of seeing the spinfoam amplitude as gluing scale-invariant blocks and it is potentially a
better starting point for studying the coarse-graining behaviour of quantum gravity in
the spinfoam approach. Coarse-graining, or renormalization, of different spinfoam models
has been considered both theoretically and numerically (see e.g. a recent review [193]).
It is a useful tool to bridge the microscopic theory to the observational scale and prove
its viability, and also one of the standard ways to approach the boundary structure and
understand the bulk/boundary holography from the point of view of quantum gravity. (See
[139] for a discussion on the relation of coarse-graining and holography in LQG.) Moreover,
the striking duality of the SGF and the 2D Ising model [37] provides a brand new route to
analyze the spinfoam properties using tools from the Ising model, whose coarse-graining
behaviour is better understood. On the other hand, a change in vertex amplitude draws
our attention to the boundary dependence of the spinfoam path integral as the local vertex
amplitude is the quantum counterpart of the discrete boundary action. We will investigate
the boundary action consistent with the new vertex amplitude.

This chapter is based on [137] by the author and E. Livine. In Section 7.1, we review
the original Ponzano-Regge state-sum model. We start from the classical theory with a
boundary term. The state-sum result can be derived in different ways. In one way, one
defines the spinfoam vertex amplitude as the trivial evaluation of the boundary projected
spin network state, which reveals the relation between the spinfoam model and LQG. In
Section 7.2, we briefly review the SGF as the evaluation of the spin network defined by glu-
ing coherent intertwiners associated to each node. We then construct a new spinfoam path
integral with the SGF as the new vertex amplitude and prove that the result of the original
spinfoam can be recovered by deforming the edge and face amplitudes. The topological
invariance can be proven by writing the SGF, or more generally the newly defined spin net-
work state for a general three-valent graph, into a Gaussian integral. This section contains
the main results of this chapter. In Section 7.3, we analyze the geometrical interpretation
of the newly developed state-integral model. We first look into the symmetries and the
geometrical interpretation of the SGF, which describes the local geometry of each unit 3D
block, and then the geometrical interpretation of the edge amplitude, which exposes the
gluing process of neighbouring blocks in building the global geometry. We compare the
new spinfoam model with the original one from their geometrical interpretation and their
classical correspondence.
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7.1 The Ponzano-Regge state-sum for 3D quantum

gravity

In this section, we review the Ponzano-Regge model [174], which is written as a state-sum
formula. At this stage, it is important to take the boundary terms into account.

Let us consider the first-order action with a boundary term

S[e, ω] =

∫
M

Tr(e ∧ F (ω)) +
∫
∂M

Tr(e ∧ ω) . (7.1)

This boundary term is the first-order version of the GHY term as shown in (1.18) (we take
s = + in this chapter). The path integral is an integration over the gauge equivalent class
of the bulk configuration subject to an admissible boundary condition ∂,

Z[M, ∂] =

∫
DωB

∫
DeB exp (iS[e, ω]) = C[∂M, ∂]

∫
DωB δ(F (ωB)) , (7.2)

where C[∂M, ∂] is a term that depends on the boundary condition and the subscript “B”
denotes the configuration in the bulk.

The quantization program proceeds firstly with the triangulation of the spacetime,
then with the discretization of variables so that they are concentrated on the simplices of a
particular dimension, similar to what we did in the canonical framework. What is different
here is that, in the spinfoam model, we consider the triangulation of a 3D manifold.

For consistency purpose, we apply the terminology and notation introduced in Section
2.2 for 0,1,2-simplices and their 2D duals. We now also fix the terminology and notation
for 3-simplices and their 3D dual as follows. Upon the 3D triangulation, denoted as T, of
M, a 3-simplex is a tetrahedron, denoted as T . Again, a triangle is denoted as △; an edge
is denoted as ē; a vertex is denoted as v̄. What we call a “spinfoam” is the oriented dual
2-complex of T and we denote it as T∗. In the dual picture, a dual plaquette f ∗ is dual
to one edge ē, an oriented dual edge e∗ is dual to one triangle △, and a dual vertex v∗

is dual to one tetrahedron T . The boundary ∂T of T contains 4 triangles, 6 edges and 4
vertices and it is topologically isomorphic to a two-sphere. When e∗ is on the boundary of
f ∗, we denote e∗ ∈ ∂f ∗ The same notation and terminology will be used for the spinfoam
dual to a general cellular decomposition C whenever in need, in which case a triangle is
generalized to a plaquette denoted as f̄ .

Moreover, we will intensively make use of oriented graphs on ∂M whenM is topolog-
ically isomorphic to a 3-ball and is triangulated to a tetrahedron T . We are particularly
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ē2

dual

•

•

•

•

e1

e5

e6e3
e4

e2

(a)

ē1
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ē5 ē6
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Figure 7.1: (a) From the tetrahedron T to the boundary dual graph Γ ≡ (∂T )*: each
triangle △ ⊂ T is replaced by a node v ⊂ Γ and each edge ēi ⊂ T by a link ei ⊂ Γ . The
graph Γ also has the combinatorics of a tetrahedron. (b) Combination of ∂T (in black),
which is the top view projection of the left panel, and its dual graph Γ (in red).

interested in the graph Γ ≡ (∂T )∗ dual to ∂T , which has the combinatorics of a tetrahe-
dron. It is illustrated in fig.7.1.

In the following, we will introduce the logic of the spinfoam model in Subsection 7.1.1
starting from the path integral (7.2) and the triangularization ofM, after which we spe-
cialize in the Ponzano-Regge model in Subsection 7.1.2, which is based on the irreducible
representation of SU(2). We will derive the Ponzano-Regge state-sum expression in two
ways, first from the discretized path integral expression and then from the local amplitude
ansatz. The former method is more standard, but the latter is what we will follow when
using spinors to re-formulate the Ponzano-Regge model. The Ponzano-Regge model is
topological invariant, as it can be checked by performing the Pachner moves.

7.1.1 Spinfoam model as a product of local amplitudes

The idea of spinfoam is to write the path integral (7.2), which reduces to the flatness
condition in the bulk, in a discrete fashion that encodes the local geometrical information.
As (7.2) integrates out the triads and reduces to a function of the connection in the bulk, it
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is natural to define the discrete variables related to the connection. With the triangulation
ofM and its dual skeleton at hand, we assign an SU(2) group element ge∗ called holonomy
to each dual edge e∗, which encodes the discrete information of the connection. The reverse
of the dual edge orientation maps ge∗ to its inverse g−1e∗ . Inspired by lattice gauge theory,
the curvature is naturally defined by the path-ordered product of holonomies for a dual
plaquette with a randomly selected starting dual vertex. For the e∂ field on the boundary,
applying the same technique as in LQG, it is discretized to be the flux variable Xē, which
is an su(2) Lie algebra object, assigned to each edge ē ∈ ∂M on the discretized boundary.
This leads to the discrete version of (7.2),

ZT[M, ∂M] = CT[∂M, ∂]

∫
SU(2)

∏
e∗ /∈(∂M)∗

dge∗
∏
f∗

δ(
−→∏

e∗∈∂f∗ge∗) , (7.3)

where the measure dg is the Haar measure of SU(2), and the delta distribution on the SU(2)
group imposes the group element in the argument to be identity. The discrete flatness
is thus understood as the trivial holonomy associated to each dual plaquette. ZT[∂M, ∂]
depends on the discrete boundary condition. Upon quantization, these boundary condition
becomes boundary states, thus the quantization of (7.2) will depend on the boundary states
ψΓ on the graph Γ , which is the dual of the boundary triangulation.

The spinfoam machinery to achieve localization consist in expressing the delta distri-
bution in (7.3) as a plane wave of SU(2) in a certain representation, which is then decom-
posed into a product of plane waves localized in different cells. In other words, it consists
in constructing the spinfoam path integral, also understood as the total amplitude, with
a product of local amplitudes associated to dual vertices, dual edges and dual plaquettes,
capturing the (admissible) local representations and local intertwiners, and then sum over
all possible local configurations. It is called the local spinfoam ansatz, which postulates
that one can formally decompose the total amplitude into

ZT[M, ψρ
Γ ] =

∑
ρB,ιB

∏
f∗

Af∗
∏
e∗

Ae∗
∏
v∗

Av∗ , (7.4)

where ρ and ι denote the representation and the intertwiner respectively, and the sum of
representations is only over those associated to the bulk (denoted with the subscript “B”)1.
The boundary state ψρ

Γ encodes the representation ρ associated to the boundary graph Γ ,
which is left in the expression of the total amplitude. The summation symbol was used as
we assumed the representations ρ are discrete, which will no longer be the case when we

1The total amplitude expression (7.4) can be directly generalized to a general cell decomposition.
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consider the spinfoam model with spinor representation in Section 7.2. In the latter case,
the summation symbol is changed to the integration symbol.

The edge amplitude Ae∗ and the face amplitude2 Af∗ are both kinematical. The former
describes the gluing of adjacent 3-simplices, while the latter is there in order to compensate
the factors to recover the delta distribution in (7.3), whose contribution dominates only
in the quantum regime. In contrast, the vertex amplitude Av∗ contains the dynamical
information of the spinfoam, thus deserves a deeper investigation.

7.1.2 The Ponzano-Regge amplitudes

The Ponzano-Regge model [174] is a realization of (7.4) based on the triangulation of
the manifold, where ρ is given by the SU(2) irreducible representation labelled by spin
j ∈ N/2. j is interpreted into the edge length suggested by the (flat) LQG framework
[182]. The vertex amplitude of the Ponzano-Regge state-sum geometrically describes the
3D geometry of the tetrahedron it is associated to, and an edge amplitude describes how
two neighbouring tetrahedra are glued together.

We start from the discrete path integral (7.3) and work on the dual picture. δ(gf∗) can
be decomposed over the SU(2) spin representations using the Peter-Weyl theorem,

δ(gf∗) =
∑
jf∗

djf∗ χ
jf∗ (gf∗) , (7.5)

where dj ≡ 2j + 1 is the dimension of the spin j representation space Vj and χj(g) =
TrDj(g) the character of g in the spin j representation, formulated as the trace of the
Wigner matrix Dj(g) of g in the j representation. Thus equivalently in the triangulation
picture, each edge ē is dressed with a spin jē. When decomposing δ(gf∗) into spin repre-
sentations, one has an SU(2) group integration for each dual edge e∗, which is dual to a
triangle, of 3 copies of the Wigner matrix Dji(g) (i = 1 · · ·n). This is the projector, also
called intertwiner IH = |I⟩⟨I|, of the kinematical Hilbert space onto the SU(2)-invariant
Hilbert space InvSU(2) (Vj1 ⊗ Vj2 ⊗ Vj3)

⊗
InvSU(2) (V∗j1 ⊗ V∗j2 ⊗ V∗j3). One of the bene-

fits of working on a triangulation over a general cell decomposition is that the intertwiners
for 3-valent nodes are one-dimensional3, which simplify greatly the formulas. In particular,
the integration of ge∗ for the three Wigner matrices appearing in the discrete path integral

2Although we use the terminology that an f∗ is a dual plaquette, we denote Af∗ as a face amplitude
to be consistent with the literature.
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simply becomes∫
SU(2)

dge∗ D
j1
m1n1

(ge∗)D
j2
m2n2

(ge∗)D
j3
m3n3

(ge∗) =

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
n1 n2 n3

)
, (7.6)

which is the product of two normalized Clebsh-Gordan coefficients, or equivalently the
3jm-symbols. A combinatorial choice of re-coupling of the 3jm-symbols gives 6j-symbol,
which is associated to a tetrahedron T , or equivalently a dual vertex v∗. For a tetrahedron
with the notation in fig.7.1 and each edge ēi dressed with a spin ji, the 6j-symbol is given
by{

j1 j2 j3
j4 j5 j6

}
=
∑
mi

(−1)
∑6

i=1(ji−mi)

(
j1 j2 j3
m1 m2 −m3

)(
j1 j5 j6
−m1 m5 m6

)(
j4 j2 j6
−m4 −m2 −m6

)(
j4 j5 j3
m4 −m5 m3

)
.

(7.7)

It ends up with a state-sum formulation of the discrete partition function (7.3), i.e. the
Ponzano-Regge state-sum model,

ZT[M, ψjΓ ] =
∑
{jf∗}

∏
f∗

(−1)2jf∗djf∗
∏
e∗

(−1)
∑3

i=1 ji
∏
v∗

{
j1 j2 j3
j4 j5 j6

}
v∗
. (7.8)

It easily reads that the vertex amplitude Av∗ is the 6j-symbol associated to the tetrahedron
dual to v∗, and the edge amplitudeAe∗ is a sign given by the spins on the sides of the triangle
dual to e∗, and the face amplitude Af∗ is the dimension djf∗ of the spin representation
space associated to the plaquette f ∗. See e.g. [30] for detailed explanation of the sign
factors. When there’s no boundary, the edge amplitude term can be absorbed in the
vertex amplitude [30], then the state-sum can be written as

ZT[M] =
∑
{jf∗}

∏
f∗

(−1)2jf∗djf∗
∏
v∗

(−1)
∑6

i=1 ji

{
j1 j2 j3
j4 j5 j6

}
v∗
. (7.9)

Geometrically, the vertex amplitude describes a tetrahedron with edge lengths specified
by the spins in the 6j-symbol. The edge amplitude determines that the gluing of two
adjacent tetrahedra is performed by matching the side lengths of the triangles, thus the
full 2D geometrical information of the triangles. This trivial way of gluing can be viewed
as resulting from the flatness of the manifold, imposed by δ(gē) for all the edges of the
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triangulation. The face amplitude is simply a weight factor, which is important only in
the quantum regime.

A locally-holographic amplitude. Instead of splitting a delta distribution into local
amplitudes as above, one can start from the local amplitude ansatz (7.4) and construct
first the vertex amplitudes and then recover total amplitude (7.3) by choosing the edge
and face amplitudes. This is feasible because a vertex amplitude Av∗ can also be realized
by the evaluation of the spin network state as discussed in the following.

Consider a triangulation ofM whose boundary is a union of 2-simplices. We construct
an oriented graph Γ dual to this boundary made up with E links e’s, V nodes v’s and F
faces f ’s. On Γ , we associate a spin je to each oriented link e and an intertwiner ιv to each
node v as we did in normal LQG.

An intertwiner can be viewed as an SU(2)-invariant map from the Cartesian product
of the spin representation spaces (or the dual spin representation space), associated to the
links incident to the same node, to the trivial space:

ιv(je) :

 ⊗
e|s(e)=v

Vje
⊗

 ⊗
e|t(e)=v

Vje∗
→ 0 , (7.10)

where s(e) and t(e) respectively denote the source and target node of the link e. Or
equivalently, the basis of the intertwiner can be written as the tensor product of the
magnetic basis followed by a group averaging

ιv(je)(me)|0⟩ =
∫
SU(2)

dhv

 ⊗
e|t(e)=v

⟨je, ne|h−1v

⊗
 ⊗
e|s(e)=v

hv |je,me⟩

 , (7.11)

which is indeed SU(2)-invariant. Finally, the spin network state s
(je,ιv)
Γ on Γ is simply

defined as the tensor product of the intertwiners. Conventionally the spin network state is
evaluated on the group elements {ge} ∈ SU(2)E associated to the links, thus

s
{je,ιv}
Γ (ge) =

∑
me,ne

∏
e

⟨je,me|ge|je, ne⟩
∏
v

⟨⊗e|t(e)=v je, ne|ιv(je)| ⊗e|s(e)=v je,me⟩ . (7.12)

3For a general cell decomposition, an edge is dual to an n-gon, where n ≥ 3. When n > 3, we need
to consider intertwiners that are higher dimensional. Then one can decompose the intertwiner into a
particular a basis and write IH =

∑
a |Ia⟩⟨Ia|. See e.g. [137] for a discussion.

144



Its evaluation on the identity s
(je,ιv)
Γ (I) plays the role of the vertex amplitude Av∗(je, ιv) of

the spinfoam partition function (7.4) and it describes the 2D boundary quantum geometry
of an elementary 3-simplex, which is a tetrahedron.

In short, the spinfoam can be viewed as a gluing, under certain gluing conditions, of
“bubbles” which are homogeneously two-spheres dressed with spin network evaluation.
When working on the spin network states, the gluing condition is to identify the shape
and size of the glued boundaries, i.e. they have the same spins on the glued links. The
spinfoam can thus be written as

ZC[M, ψjΓ⊂∂M] =
∑
{jf∗}

∏
f∗

(−1)2jf∗djf∗
∏
e∗

Sign(ιe∗)
∏
v∗

s
{je,ιv}
v∗ (I) , (7.13)

where s
{je,ιv}
v∗ (I) is the spin network evaluation on each bubble, and the edge amplitude

Sign(ιe∗) is a sign depending on the spins of the intertwiner on (the node dual to) the
shared plaquette dual to the edge e∗. The exact value of this sign depends on the choice
of basis of the intertwiner.

For a triangulation, each boundary is made up of a triangle and thus Γ is identically
three-valent, in which case the intertwiner is one-dimensional and thus uniquely defined
under a chosen basis. In this case, the spin network evaluation is simply a 3nj-symbol.
The smallest three-valent graph embedded on a two-sphere is indeed a tetrahedron graph
Γ = (∂T )∗, as illustrated in fig.7.1. The spin network state trivially evaluated on a
tetrahedron graph gives a 6j-symbol4,

s
{je}
tet (I) =

{
j1 j2 j3
j4 j5 j6

}
, (7.14)

which is exactly the vertex amplitude we obtained through decomposing the delta dis-
tribution on SU(2). This is the Ponzano-Regge state-sum for the simplest triangulation
of a 3-ball (with no summation at all), describing the boundary quantum geometry of a
tetrahedron. In the semi-classical limit, seen from scaling j to λj and taking λ→∞, the
6j-symbol is given by the Hartle-Sorkin action [129] in Regge calculus for a tetrahedron in
terms of the edge lengths and dihedral angles:{

λj1 λj2 λj3
λj4 λj5 λj6

}
λ→∞−−−→ 1√

12πV
cos

(
SHS({λje +

1

2
}) + π

4

)
,

with SHS({ℓe}) =
6∑
e=1

ℓeΘe , (7.15)

4We have ignored the notation ιv for the intertwiners on the left-hand side for simplicity. The inter-
twiners are implicit in the definition of the 6j-symbol.
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where Θe is the dihedral angle around the edge ē (dual to link e) and V is the volume of the
tetrahedron with edge length ℓe = λje +

1
2
, e = 1, · · · , 6. This asymptotic was postulated

by Ponzano and Regge [174] and proven in different methods [180, 186, 102, 29]. The
Hartle-Sorkin action (7.15) is the discrete version the GHY boundary term [129]:∫

∂M
d2
√
hK

discretize−−−−−→
∑
e∈∂M

ℓeΘe . (7.16)

For general 3nj-symbols, the semi-classical limit also encodes the geometry of the boundary
2-cell it describes [69]. The reproduction of the vertex amplitude with the boundary states
exposes the fact that the vertex amplitude is a local-holographic amplitude, encoding only
the boundary data of the 3-cell it is associated to. The gluing process for two adjacent
3-cells can be understood as smearing the data on the shared boundaries. In this way, the
degrees of freedom on the shared boundaries become gauge through gluing, and the only
physical degrees of freedom are on the union of the un-glued boundaries, i.e. the cellular
decomposition of ∂M. This is exactly why the bulk part of the amplitude is independent
of the cellular decomposition.limit.

Topological invariance of the Ponzano-Regge model from Pachner moves. The
Ponzano-Regge state-sum formula

ZT[M, ψjΓ ] = CT[∂M]

∫
SU(2)

∏
e∗ /∈(∂M)∗

dge∗
∏
f∗

δ(
−→∏

e∗∈∂f∗ge∗) (7.17)

=
∑
{jf∗}

∏
f∗

(−1)2jf∗djf∗
∏
e∗

(−1)
∑3

i=1 ji
∏
v∗

{
j1 j2 j3
j4 j5 j6

}
v∗

(7.18)

is invariant under the Pachner moves in the bulk [163], which is evidence that the amplitude
is independent of the bulk configuration and only depends on the boundary states. In 3D,
there are two types of Pachner moves, namely the 2 − 3 moves and the 1 − 4 moves
as shown in fig.7.2. To prove the topological invariance, one can either start from the
group formulation (7.17) and apply the change of variable method or start from the spin
formulation (7.18) and apply the recursion relation of 6j-symbols [105]. It deserves to
be mentioned here that adding a vertex inside a tetrahedron in the 1 − 4 Pachner move
(fig.7.2b) leads to a divergent amplitude. The divergence comes from

∑
J d

2
J = δSU(2)(I)

whose degree depends on the topology only (see [30, 47, 48] for discussion.) Regularization
was originally performed by introducing a cut-off on spin J [174]. It was then realized that
the divergence corresponds to the su(2) gauge that generates the translational symmetry
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Figure 7.2: (a) 2-3 Pachner move: adding an internal edge. (b) 1-4 Pachner move: adding
an internal vertex.

of the internal vertex thus the regularization can be performed by a partial gauge fixing
procedure [103, 104].

In the Ponzano-Regge state-sum (7.18), the boundary data are the lengths of the one-
skeleton encoded in the 6j-symbols. Therefore, the path integral constructed as such
depends on the boundary metric and thus the length scale. The scale invariance of the
bulk is merely obtained by the summation of the spin labels.

In the next section, we will study a scale-invariant path integral even with boundary
configurations. To this end, it is natural to choose a scale-invariant boundary state, then
one can define a scale-invariant vertex amplitude as the evaluation of this new quantum
state on the boundary of an elementary 3-cell. These states should encode the conformal
geometry, i.e. angles, of the triangulation of the boundary surface. Technically, to define
such a conformal boundary quantum state means to find an “alternative” representation
of SU(2) that can be geometrically interpreted as angles. Given a different formulation of
the partition function from (7.18), the recursion relation of 6j-symbols would be replaced
by other identities in order to reproduce the topological invariance, which will be the case
illustrated in Subsection 7.2.5.
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7.2 A new coherent state-integral

The “alternative” representation we are going to apply is the spinor representation of SU(2)
[143], developed from the U(n) formulation of LQG [75, 99, 50]. The quantum states under
this representation are called the coherent spin network states (see below) [44]. After a
concise review of its general construction, we will specialize in the coherent spin network
state of a tetrahedron graph, whose evaluation on identity after changing the weight gives
the SGF [187, 28]. We will construct the Ponzano-Regge model in a new formalism with
spinor variables, where the SGF serves as the vertex amplitude. Similar to the original one,
it can also be seen as built with local amplitudes associated to the elementary bubbles.

7.2.1 Scaleless spin network states and generating function

Let us introduce the SU(2) spin coherent state (or the SU(2) coherent state for short) à la

Perelomov, denoted as |j, ζ⟩ with a fixed spin j ∈ N/2 and a spinor |ζ⟩ :=
(
ζ−

ζ+

)
∈ C2

introduced in Chapter 3.

To this end, one needs to quantize the classical spinor components ζA, ζ̄A. Upon quan-
tization, the spinors become the annihilation operators ζA → aA and the creation operator
ζ̄A → aA† such that satisfies the commutator

[aA, aB†] = δAB , [aA, aB] = [aA†, aB†] = 0 . (7.19)

This being said, the phase space for an n-valent node is quantized to be a set of 2n harmonic
oscillators. The commutators naturally inherit from the Poisson brackets (3.15). Indeed,
(7.19) is the q = 1 version of the deformed commutation relation (5.2). It is natural
to obtain the Fock states |n−, n+⟩HO which diagonalize the occupation number operator
NA := aA†aA

NA|n−, n+⟩HO = nA|n−, n+⟩HO . (7.20)

This basis is equivalent to the magnetic number basis |j,m⟩ ∈ Vj with the relation between
the eigenvalue as

j =
1

2
(n− + n+) , m =

1

2
(n− − n+) . (7.21)

The action of (aA, aB†) on the magnetic number basis allows the jumping between different
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spin representations. Explicitly,

aA|j,m⟩ =
√
j + (−1)Am |j − 1

2
,m− 1

2
+ A⟩ , (7.22a)

aA†|j,m⟩ =
√
j + (−1)Am+ 1 |j + 1

2
,m+

1

2
− A⟩ , (7.22b)

which is the q = 1 version of (5.9).

The state |j, ζ⟩ is a superposition state of a pair of harmonic oscillators |n0, n1⟩HO,
identified with a magnetic number basis |j,m⟩ ∈ Vj by the relation (7.21) and reads

|j, ζ⟩ := (ζAaA†)2j√
(2j)!

|0⟩ ≡
j∑

m=−j

√
(2j)!

(j +m)!(j −m)!
(ζ−)j+m(ζ+)j−m|j,m⟩ , (7.23)

where aA† is the creation operator acting on the oscillator nA, A = ±. This is the state that
admits the generalized minimal uncertainty given by the dispersion of the SU(2) Casimir
[140]. The norm is easily computed ⟨j, ζ|j, ζ⟩ = ⟨ζ|ζ⟩2j. For a fixed spin j, |j, ζ⟩ serves as
an alternative orthonormal basis spanning the representation space Vj. We refer to [143]
for more details.

By the definition of the coherent state basis through the magnetic number basis (7.23),
it is easy to find that aA acts on |j, ζ⟩ as a multiplication operator while aA† acts as a
derivative operator on |j, ζ⟩, i.e.

aA|j, ζ⟩ =
√
2j ζA |j − 1

2
, ζ⟩ , aA†|j, ζ⟩ = 1√

2j + 1

∂

∂ζA
|j + 1

2
, ζ⟩ , (7.24)

thus aA decreases the spin by 1/2 as well as multiplying the state by ζA, while aA† increases
the spin by 1/2 and derives the state by ζA.

We also introduce a dual SU(2) coherent state [j, ζ| ≡ ⟨j, ςζ| in terms of a dual spinor
[ζ| = ⟨ςζ| :=

(
−ζ+, ζ−

)
, which is also holomorphic ζA, living in the dual representation

space Vj∗ (see (3.2)). aA acts on [j, ζ| as the creation operator while aA† acts as the
annihilation operator,

[j, ζ| aA = −ϵAB 1√
2j + 1

∂

∂ζB
[j +

1

2
, ζ| , [j, ζ| aA† = −ϵAB

√
2j ζB [j − 1

2
, ζ| . (7.25)

Consider an oriented graph Γ with E oriented links e’s, V nodes v’s and F faces f ’s.
We dress each link e with a spin je, and associate a spinor |ζe⟩ to the source s(e) of e
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and another spinor |ζ̃e] to the target t(e). For an n-valent node v, we can construct an

intertwiner living in the tensor space
(⊗

e|s(e)=v Vje
)
⊗
(⊗

e|t(e)=v Vj
∗
e

)
by SU(2)-group

averaging the tensor product of the SU(2) holomorphic coherent states, i.e.

ιv(je)(ζe) |0⟩ :=
∫
SU(2)

dgv

 ⊗
e|t(e)=v

[je, ζ̃e| g−1v

⊗
 ⊗
e|s(e)=v

gv |je, ζe⟩

 . (7.26)

This is called the Livine-Speziale (LS) coherent intertwiner, first introduced in [140] (see
also [99]) and used to define the EPRL-FK spinfoam models [82, 141]. It is also closely
related to the U(n) coherent states which are by definition covariant under the U(n) action
[99].

(7.11) and (7.26) are simply projections of a general SU(2) intertwiner on different
bases, the former on the magnetic number basis while the latter on the coherent state basis.
Equipped with the intertwiners (7.26), one can define a spin network state evaluated on
SU(2) group elements {ge} as a holomorphic function of the spinors:

s
{je,ζe,ζ̃e}
Γ (ge) =

∫
SU(2)V

∏
v

dhv
∏
e

[je, ζ̃e|h−1t(e) ge hs(e) |je, ζe⟩ . (7.27)

It is also possible to eliminate the spins and define an intertwiner associated to a node
v with only spinor labels, which can be viewed as a generating function of the LS coherent
intertwiners (7.26) with a chosen series of weight [45]. The simplest weight is 1∏

e∈v

√
(2je)!

,

which defines the coherent intertwiner5,

ιv(ζe) =
∑
{je}

1∏
e∈v

√
(2je)!

ιv(je)(ζe) . (7.28)

It is indeed an SU(2) invariant state in
⊕
{je}

(⊗
e|s(e)=v Vje

)
⊗
(⊗

e|t(e)=v Vj
∗
e

)
. We asso-

ciate a coherent intertwiner to each node and glue them along links associated with SU(2)
holonomies. The gluing is performed in the standard way, i.e. taking ⟨k, n|j,m⟩ = δjkδmn.
The result defines the coherent spin network state [45]

scoheΓ (ge) =
∑
{je}

∫
SU(2)V

∏
v

dhv
∏
e

1

(2je)!
[je, ζ̃e|h−1t(e) ge hs(e) |je, ζe⟩

=

∫
SU(2)V

∏
v

dhv
∏
e

e[ζ̃e|h
−1
t(e)

ge hs(e)|ζe⟩ .

(7.29)
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A slightly different choice of weight6, which we will focus on in this chapter is (Jv+1)!∏
e∈v

√
(2je)!

,

where Jv ≡
∑

e∈v je is the sum of spins on the links incident to v. It defines the scale-
less intertwiner (as we will see in the next subsection that it encodes the scale-invariant
geometry of a 3-cell boundary):

ιslv (ζe) =
∑
{je}

(Jv + 1)!∏
e∈v

√
(2je)!

ιv(je)(ζe) . (7.30)

Again, we associate a scaleless intertwiner to each node and glue them in the same way as
the coherent intertwiner. We define it as the scaleless spin network state :

sslΓ (ge) =
∑
{je}

∏
v

(Jv + 1)!∏
e∈v(2je)!

∫
SU(2)V

∏
v

dhv
∏
e

[je, ζ̃e|h−1t(e) ge hs(e) |je, ζe⟩ . (7.31)

It can be viewed as a generating function of the spin network state (7.12). The use of spinors
shifts the view of building blocks of quantum geometries from the links to the nodes, which
is also the spirit behind the construction of the U(n) coherent states [99, 50, 75].

The LQG kinematical Hilbert space L2(SU(2), dg)
E//SU(2)V , where the symplectic

reduction is due to the Gauss constraints performed on the nodes, is usually understood
as spanned by the spin network states labelled by spins. The quantization of the spinorial
phase space allows us to span the same Hilbert space by the coherent or scaleless spin
network states labelled by spinors. To this end, we also need to introduce a Haar measure.
It is given by the Haar measure dµ(ζ) of the Bargmann space F2 = Lhol

2 (C2, dµ), the space
of holomorphic squared integrable functions, over the spinor variables [143]:

dµ(ζ) :=
1

π2
e−⟨ζ|ζ⟩dζ−dζ+ . (7.32)

It is a measure which is invariant under the SU(2) transformation dµ(gζ) = dµ(ζ), ∀ g ∈
SU(2). The space F2 can be decomposed into the direct sum of dj-dimensional subspace:
F2 = ⊕j∈N/2Vj, with the orthonormal basis of each spin j subspace given by

ejm(ζ) :=
(ζ−)j+m(ζ+)j−m√
(j +m)!(j −m)!

|j,m⟩ . (7.33)

5The term “coherent intertwiner” was used to denote the LS coherent intertwiner (7.26) for short in
some literature. We remind the readers that these two terms have distinct definitions in this article,
following [45].

6Other choices of weight lead to different generating functions, which would be useful for different
interests. See e.g. [45] for a discussion and the application of other generating functions with alternative
weights.
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The Hilbert space of one link is thus equivalently given by He = F2×F2//U(1), with U(1)
given by the norm matching constraint (3.8) which is first class. One can find more details
for the Bargmann space reconstruction of the Hilbert space in [143]. By taking the closure
constraint for nodes into consideration, we conclude that the Hilbert space spanned by the
coherent or scaleless spin network states can be represented as Lhol

2 (C2, dµ)2E//(SU(2)V ×
U(1)E).

Above we have defined the coherent intertwiners, coherent spin network states, scaleless
intertwiners and scaleless spin network states for a general graph. The goal is to use these
notions to define a new vertex amplitude in terms of spinors in the Ponzano-Regge model.
To this end, we will work on a three-valent graph in the next subsection. More specifically,
we will study the tetrahedron graph as shown in fig.7.1 and study the evaluation of the
scaleless spin network state on this simple graph.

7.2.2 The holomorphic {12ζ×2} symbol

In this subsection and the next, we will fix the cellular decomposition of M to be a
triangulation unless specified and intensively work on the tetrahedron graph Γ = (∂T )∗

that is a 2D dual graph of the boundary two-skeleton of a tetrahedron T . The simplicity
it brings helps to quantify the scaleless intertwiners (7.30) and the scaleless spin network
functions (7.31). On the other hand, it turns out that the scaleless spin network state
for a tetrahedron graph, when evaluated on the identity, possesses a closed form, which is
known as the SGF.

For a three-valent graph, the intertwiner (7.26) for each node is one-dimensional, thus
it must be proportional to the 3jm-symbol. The exact relation is well-known [206], with
the proportionality coefficient given by a holomorphic polynomial of degree Jv. Consider
three outgoing links (e1, e2, e3) meeting at the node v, we denote the total spin as J123 =
j1 + j2 + j3. Then one gets

ιvj1j2j3(ζ1, ζ2, ζ3) = Pj1j2j3(ζ1, ζ2, ζ3) ι
v
j1j2j3

, (7.34)

with

Pj1j2j3(ζ1, ζ2, ζ3) =
△(j1j2j3)

(J123 + 1)!

(
3∏
e=1

√
(2je)!

)
[ζ1|ζ2⟩J123−2j3 [ζ2|ζ3⟩J123−2j1 [ζ3|ζ1⟩J123−2j2 ,

(7.35)
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where △(j1j2j3) is the quantum triangle coefficient defined as

△(j1j2j3) =

√
(J123 + 1)!

(j1 + j2 − j3)!(j1 + j3 − j2)!(j2 + j3 − j1)!
. (7.36)

The scaleless intertwiner (7.30) for the node with incident links (e1, e2, e3) outgoing reads

ιslv (ζ1, ζ2, ζ3) =
∑
j1,j2,j3

(J123 + 1)!∏3
e=1

√
(2je)!

ιvj1j2j3(ζ1, ζ2, ζ3) , (7.37)

which is an invariant vector on ⊗3
e=1(⊕jeVje), and is also a generating function of the

3jm-symbol.

The proportionality coefficient (7.35) remains unchanged when some links are incoming
(except that in this case, we denote the spinor on an incoming link with a tilde). For
instance, for a node with links e1, e2 incoming and link e3 outgoing, the relation reads

ιvj∗1 j∗2 j3(ζ̃1, ζ̃2, ζ3) = Pj1j2j3(ζ̃1, ζ̃2, ζ3) ι
v
j∗1 j

∗
2 j3
. (7.38)

The scaleless spin network state for the tetrahedron graph naturally follows except that
there is a sign ambiguity as the graph is odd-valent. The reason is that the sign of the
intertwiner (7.34) would be changed under exchanging any pair of spinors in the argument,
thus it is necessary to fix the ordering of links incident to a node in order to specify (the
sign of) the definition of the scaleless spin network function. In practice, it is enough to fix
a cyclic order ≺ for each node. We apply the same notation as in fig.2.6 for the ordering
of links incident to the same node. For an ordering (e ≺ e′, e′ ≺, e′′, e′′ ≺ e), we fix an
ordered holomorphic polynomial P≺jeje′je′′ (ζe, ζe′ , ζe′′) to be

P≺jeje′je′′ (ζe, ζe′ , ζe′′) =
△(jeje′je′′)

(Jv + 1)!

(∏
e∈v

√
(2je)!

)
[ζe|ζe′⟩Jv−2je′′ [ζe′|ζe′′⟩Jv−2je [ζe′′ |ζe⟩Jv−2je′ .

(7.39)
We have ignored the tilde of spinors for incoming links for simplicity and unification.
Consider again a tetrahedron graph as in fig.7.1, it can be naturally embedded in a 2-
sphere, which generates the cyclic order for all the nodes at once. The scaleless spin
network function is then uniquely defined as

S{ζe,ζ̃e}tet (ge) =
∑
j1,··· ,j6

∏4
v=1(Jv + 1)!∏6
e=1(2je)!

s
{je,ζe,ζ̃e}
tet (ge) , (7.40)

153



with

s
{je,ζe,ζ̃e}
tet (ge) =

∫
SU(2)4

4∏
v=1

dhv

6∏
e=1

[je, ζ̃e|h−1t(e) ge hs(e) |je, ζe⟩

= P≺j1j2j3(ζ1, ζ2, ζ3)P
≺
j1j5j6

(ζ̃1, ζ̃5, ζ6)P
≺
j3j4j5

(ζ̃3, ζ̃4, ζ5)P
≺
j2j4j6

(ζ̃2, ζ̃6, ζ4) s
{je,ιv}
tet (ge)

(7.41)

being the special case of (7.27) for a tetrahedron graph, which can be factorized, as shown
in the second line of (7.41), into the standard spin network function independent of the
spinors, and a holomorphic polynomial independent of the arguments {ge}. In particular,
its evaluation on identity gives a holomorphic “{12ζ×2} symbol”, known as Schwinger’s
generating function of the 6j-symbols (SGF), which is a function of 12 spinors thus 24
complex variables,

Ssl
tet({ζe, ζ̃e}) = S

{ζe,ζ̃e}
tet (I)

=
∑
j1···j6

[
4∏
v=1

√
(Jv + 1)!∏

e∈v(Jv − 2je)!

]{
j1 j2 j3
j4 j5 j6

} 4∏
v=1

∏
e, e′, e′′ ∈ v,

e ≺ e′

[ζe|ζe′⟩Jv−2je′′ . (7.42)

It was first found to be of the closed form by Schwinger [187, 28, 44]. (See also [37] for the
deduction from the duality between the 2D Ising model and the Ponzano-Regge model).
It is in a form of a scaleless function:

S({ζe, ζ̃e}) ≡ Ssl
tet({ζe, ζ̃e}) = G({ζe, ζ̃e})−2 ,

G({ζe, ζ̃e}) = 1 +
∑
L

∏
v⊂L , e≺e′

[ζe|ζe′⟩ = 1 +
4∑
△∗

∏
v ⊂ △∗

e ≺ e′

[ζe|ζe′⟩+
3∑
□∗

∏
v ⊂ □∗

e ≺ e′

[ζe|ζe′⟩ , (7.43)

where L’s denote the loops in the tetrahedron graph, including three-cycles △∗’s and four-
cycles □∗’s. The scaleless spin network states can be used to describe the kinematical
information in the Hilbert space of quantum geometry. By the continuous nature of the
spinor arguments in a scaleless spin network state, the dynamics given by the Wheeler
de-Witt equation would be translated into a differential equation of the SGF [44], rather
than a recursion relation as for the 6j-symbols when we consider the spin network states
[43].
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Symmetries of the SGF. The loop structure (7.43) of the SGF brings a large number
of degrees of symmetry. Compared to a 6j-symbol which has only 6 real variables, the
SGF has 12 independent spinors, thus 24 complex or 48 real variables, in its argument.
The symmetries would allow us to work on a smaller set of variables. Firstly, the SGF
(7.42) is explicitly written only in terms of the inner product [ζe|ζe′⟩ of spinors, which is
by definition invariant under the SL(2,C) action that acts covariantly on the spinors

gv ▷ |ζ ′e⟩ = gv|ζ ′e⟩ , gv ▷ [ζe| = [ζe|g−1v , e, e′ ∈ v , gv ∈ SL(2,C) . (7.44)

Thus the spinors form a set with 12 complex or 24 real variables. Secondly, notice that
the exact evaluation (7.43) takes the form as cycles, a (complex) rescaling of the spinor
ζe → αζe (α ∈ C\{0}) on one end of each link and an “anti-rescaling” of the spinor
ζ̃e → 1

α
ζ̃e on the other end leaves the SGF unchanged. Therefore, the symmetries of the

SGF can be expressed as

S({ζve , ζ̃v
′

e }) = S({gv ζve , gv′ ζ̃v
′

e }) = S({αe ζve , α−1e ζ̃v
′

e }) , ∀ gv ∈ SL(2,C) ,∀αe ∈ C\{0} .
(7.45)

In words, the SGF is invariant under the SL(2,C) gauge transformation, one for each node
hence a total of 12 complex degrees of freedom, and anti-scale transformation, one for
each link hence a total of 6 complex degrees of freedom. These symmetries form the full
redundant degrees of freedom in the 12 spinors, leaving 6 complex degrees of freedom in the
SGF. The same redundancy appears when we use the spinor representation to describe the
scaleless spin network states for a general graph. It is thus possible to change the argument
variables of the SGF to a smaller set. We will see in Subsection 7.3.1 that a change of
variables will make it clear to see the geometrical information given by this scaleless spin
network state.

7.2.3 The Ponzano-Regge model in terms of coherent blocks

We now turn our attention back to the Ponzano-Regge model. We aim to decompose the
discrete path integral

ZT[M, ∂M] = CT[∂M]

∫
SU(2)

∏
e∗ /∈∂M

dge∗
∏
f∗

δ(
−→∏

e∗∈∂f∗ge∗)

into the product of vertex, edge and face amplitudes encoding local quantum geometries
through the spinor representation labels, so that the global quantum geometry can be
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understood as gluing elementary blocks with local geometry information stored in these
spinor variables. The total amplitude should be written alternatively in the form as

AT[M, ψcohe
Γ ] =

∫
[dµ(ζ)]

∏
f∗

Af∗ [ζf∗ ]
∏
e∗

Ae∗ [ζe∗ ]
∏
v∗

Av∗ [ζv∗ ] , (7.46)

where ψcohe
Γ is the boundary coherent spin network state and dµ(ζ) := 1

π2 e
−⟨ζ|ζ⟩dζ−dζ+ is

the Haar measure of spinors. With the use of spinors, therefore, the amplitude would be
written as a “state-integral” instead of state-sum.

Let us first introduce the notations we will use in the state-integral formulas both
in Proposition 7.2.1 and 7.2.2. For the vertex amplitude, we denote the spinors (or dual
spinors) on the source s(e) and target t(e) of a link e as ζe and ζ̃e respectively. For the edge
amplitude of a dual edge e∗, we consider the node v in a triangle shared by two adjacent
tetrahedra. Therefore, spinors on v have two independent copies, one from the tetrahedron
dual to s(e∗) and the other from the tetrahedron dual to t(e∗). For a link e ∈ v, we denote
the two spinors from the two tetrahedra respectively as ζ

s(e∗)
e and ζ

t(e∗)
e . For the face

amplitude, we consider a dual face f ∗ whose boundary loop connects n(≥ 3) tetrahedra.
One needs to choose randomly a node on the boundary of one of these tetrahedra, say T1.
We denote the spinor on this node that will contribute to this face amplitude as ζf

∗,T1 . See
an illustration in fig.7.3.

Proposition 7.2.1. The spinfoam model can be expressed as an integral in terms of co-
herent blocks

AT[M, ψcohe
Γ ] =

∫
[dµ(ζ)]

∏
f∗

Af∗ [ζf∗ ]
∏
e∗

Ae∗ [ζe∗ ]
∏
v∗

Av∗ [ζv∗ ]

with the vertex, edge and face amplitude written as

Av∗ = scohetet (I) =
∫
SU(2)4

4∏
v=1

dhv e
∑6

e=1[ζ̃e|h
−1
t(e)

hs(e)|ζe⟩ , (7.47)

Ae∗ = e
∑

e∈v⟨ζ
s(e∗)
e |ζt(e

∗)
e ] , (7.48)

Af∗ = ⟨ζf
∗,T1|ζf∗,T1⟩ − 1 . (7.49)

For sake of simplicity of the main text, we leave the proof B.5.1 in Appendix B.5.
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e∗1

e∗2
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e∗i−1
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e∗n
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•

T2

T3T4

Ti−1

Ti

Ti+1 Tn

T1

ē

Figure 7.3: A dual face (in red) dual to the edge ē surrounded by a loop (e∗1e
∗
2 · · · e∗ne∗1),

with e∗i dual to triangle △i. Two adjacent tetrahedra Ti and Ti+1 (identifying Tn+1 ≡ T1)
are glued along the triangle △i.

A similar state-integral model for 4D BF theory was explicitly constructed in [74].
The vertex amplitude constructed above no longer depends on the spins, thus it is ex-
pected to be irrelevant to the size of the tetrahedron it is associated to. The drawback
of this construction is that the SU(2) group elements are still included in the formula
other than spinors, making it hard to single out the geometrical information stored in the
spinors themselves. Thus in the next subsection, we promote the integral expression of the
Ponzano-Regge amplitude in terms of different blocks so that only spinors are left in the
integral expression.

7.2.4 A new Ponzano-Regge state-integral formula

To get rid of the SU(2) group integral in the vertex amplitude, we replace the vertex
amplitude by the SGF. We apply the idea that the vertex amplitude can be provided by
the spin network state evaluation on the boundary of a tetrahedron. Therefore, the SGF,
as the scaleless spin network evaluation, is a natural replacement of the 6j-symbol. Notice
that the SGF can be expressed as a group integral similar to (7.29)[44]

S({ζe, ζ̃e}) =
∑
j1···j6

(
4∏
v=1

(Jv + 1)!

∫
SU(2)

dhv

)
6∏
e=1

1

(2je)!
[je, ζ̃e|h−1t(e)hs(e)|je, ζe⟩ . (7.50)

The difference is the factor (Jv+1)! for each node. This can be cancelled out by modifying
the edge amplitude, and the result is given in the following proposition. The notations are
the same as in Proposition 7.2.1.

157



Proposition 7.2.2. The spinfoam model can be expressed as a state-integral

AT[M, ψsl
Γ ] =

∫
[dµ(ζ)]

∏
f∗

Af∗ [ζf∗ ]
∏
e∗

Ae∗ [ζe∗ ]
∏
v∗

Av∗ [ζv∗ ]

with the vertex, edge and face amplitude written as

Av∗ = Ssl
v∗({ζe, ζ̃e}) =

1

(1 +
∑
L
∏

v⊂L , e≺e′ [ζe|ζe′⟩)2
(7.51)

Ae∗ =
∞∑
k=0

1

(k + 1)!2(2k)!

(∑
e∈v

⟨ζs(e∗)e |ξt(e∗)e ]

)2k

= 0F3(; 2, 2,
1

2
;

(∑
e∈v⟨ζ

s(e∗)
e |ξt(e

∗)
e ]

)2
4

)

(7.52)

Af∗ = ⟨ζf
∗,T1|ζf∗,T1⟩ − 1 . (7.53)

ψsl
Γ is the boundary scaleless spin network state.

The proof of this proposition is rather technical and is given in Proof B.5.2.

To summarize, Proposition 7.2.2 is a re-grouped version of Proposition 7.2.1. In order to
have a simple vertex amplitude with a nice geometrical interpretation, the edge amplitude
becomes more complicated. However, we will see in Subsection 7.3.2 that this new edge
amplitude also possesses a nice geometrical interpretation that is compatible with that of
the new vertex amplitude (7.51).

7.2.5 Topological invariance of the Ponzano-Regge state-integral
model

The topological invariance of the new Ponzano-Regge state-integral formula can be proven
by performing the 2− 3 and 1− 4 Pachner moves. To do this, one can either express the
vertex amplitude (7.51) into the explicit form as the generating function of the 6j-symbols
(7.42) then use the recursion relation of the 6j-symbols [206], or work on the spinors
variables to prove the invariance of total amplitude under Pachner moves. The former
approach is rather straightforward hence here we only illustrate the latter approach.

We consider in this section the gluing of general 3-cells through triangles and show that
the resulting total amplitude after gluing is given by the boundary scaleless spin network
state on the union boundary, which means that the state-integral model is topological
invariant.
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We will show it through three different types of gluing which serve as the elementary
steps to glue disjoint 3-cells. The first type is to glue two 3-cells through one triangle
with no extra internal edge produced (Proposition 7.2.4). The second type is to glue two
adjacent triangles sharing one edge on the boundary of one 3-cell and produce one extra
internal edge (Proposition 7.2.5). The third type is to glue two adjacent triangles sharing
two edges on the boundary of one 3-cell and produce two internal edges and one internal
vertex (Proposition 7.2.6). The topological invariance of the Ponzano-Regge state-integral
model, which can be directly derived by analyzing the total amplitude under a combination
of these three types of gluing without changing the topological nature of the 3-cell, is a
natural conclusion (Corollary 7.2.7).

The scaleless spin network state for a three-valent graph can be expressed into a Gaus-

sian integral [28, 37]. Let us introduce an auxiliary spinor |γve⟩ =

(
γ−ve
γ+ve

)
∈ C2 at-

tached to each half link e attached to node v with the same spinor measure dµ(γev) =
1
π2dγ

−
vedγ̄

−
vedγ

+
vedγ̄

+
vee
−⟨γev |γev⟩. The dual auxiliary spinor is defined in the same way as z’s,

i.e. |γev] =
(
−γ̄+ev
γ̄−ev

)
. To unify the notation, we denote the new spinors at the source s(e)

and target t(e) of a link e as γe and γ̃e. Consider a general 3-cell C whose boundary ∂C
is made up by jointed triangles whose dual graph (∂C)∗ is a (closed) three-valent graph.
The correspondent scaleless spin network state is [37]

Ssl
∂C({ζe, ζ̃e}) =

∫ (∏
e

dµ(γe)dµ(γ̃e)

)
e
∑

e⟨γe|γ̃e]+
∑

α[ζs(α)|ζt(α)⟩[γs(α)|γt(α)⟩ , (7.54)

where α is the angle formed by two links s(α) and t(α) incident to a same node with the
cyclic order s(α) ≺ t(α). We denote α ∈ v if s(α), t(α) ∈ v. Clearly (7.54) contains a
link-term e

∑
e⟨γe|γ̃e] and an angle-term e

∑
α[ζs(α)|ζt(α)⟩[γs(α)|γt(α)⟩.

Lemma 7.2.3. Arbitrary gluing of 3-cells through triangles can be separated into a sequence
of the following three types of gluing:

• Type I: identifying three edges of two disjoint triangles, each on the boundary of
one 3-cell (fig.7.4a), whose result is one 3-cell with no extra internal edges produced
(fig.7.4b);

• Type II: identifying the two remaining edges of two adjacent triangles sharing one
edge on the boundary of one 3-cell (fig7.5a), whose result is one 3-cell with one extra
internal edge produced (fig.7.5b);
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• Type III: identifying the remaining edge of two adjacent triangles sharing two edges
on the boundary of one 3-cell (fig.7.6a), whose result is one 3-cell with two extra
internal edges and one internal vertex produced (fig.7.6b).

We consider separately these three types of gluing and analyze the total amplitude after
gluing. The formulas given are formal but notations are consistent with the corresponding
figures and the proofs, which we leave in Appendix B.5.

Proposition 7.2.4. For gluing of Type I, the scaleless spin network states Ssl
∂C1

,Ssl
∂C2

on

the boundaries ∂C1, ∂C2 of two 3-cells C1,C2 glued with an edge amplitude A∂C1∩∂C2
e∗ in

the form of (7.52) produces a scaleless spin network state Ssl
∂(C1∪C2)

on the union boundary

∂(C1 ∪ C2) after gluing. The gluing process is symbolically expressed as (referring to the
spinor notation in fig.7.4)

Ssl
∂(C1∪C2)

=

∫ ( ∏
e,c∈∂C1∩∂C2

dµ(ζe)dµ(ξ̃c)

)
Ssl
∂C1

({ζe, ζ̃e})A∂C1∩∂C2
e∗ Ssl

∂C2
({ξc, ξ̃c}) . (7.55)

The proof is given in Proof B.5.3.

Proposition 7.2.5. For gluing of Type II, the scaleless spin network state Ssl
∂C on the

boundary ∂C of a 3-cell C glued with an edge amplitude A△1∩△2=ē
e∗ of the form (7.52), which

is for two adjacent triangles △1,△2 ∈ ∂C sharing one edge ē, and one face amplitude Aēf∗,
which is for the shared edge ē, produces a scaleless spin network state Ssl

∂C′ on the resulting
3-cell boundary ∂C′. It is symbolically expressed as

Ssl
∂C′ =

∫ ( ∏
e∈△1∪△2

dµ(ζe)

)
Ssl
∂CA

△1∩△2=ē
e∗ Aēf∗ . (7.56)

The proof is given in Proof B.5.4.

Define a function of the face amplitude, which is defined with the spinor ζ sitting on
the base node, as

G(Af∗(ζ)) := e−(1+Af∗ (ζ)) = e−⟨ζ|ζ⟩ . (7.57)

We then have the following proposition.

Proposition 7.2.6. For gluing of Type III, the scaleless spin network state Ssl
∂C on the

boundary ∂C of a 3-cell C glued with an edge amplitude A△1∩△2={ē1,ē2}
e∗ in the form of

(7.52), which is for two adjacent triangles △1,△2 ∈ ∂C sharing two edges ē1, ē2, a face
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(a)
(b)

Figure 7.4: (a) Before gluing of two 3-cells C1 and C2 (visualized as 2-spheres) through
identifying the left and right triangles (in thick, each visualized as a circle embedding in
the corresponding 2-sphere with three vertices on it). The links (in red), each dual to one
side of a triangle is assigned spinor information. Fix the orientation of the links e1,2,3 on
the left triangle to be outgoing, the sources are assigned the spinors ζ1,2,3 and the auxiliary
spinors γ1,2,3 (not shown in the figure for clear visualization) and the targets are assigned
the spinors ζ̃1,2,3 and the auxiliary spinors γ̃1,2,3; also fix the orientation of the links c1,2,3 on
the right triangle to be ingoing, the sources are assigned the spinors ξ1,2,3 and the auxiliary
spinors η1,2,3 and the targets are assigned the spinors ξ̃1,2,3 and the auxiliary spinors η̃1,2,3
(not shown in the figure for clear visualization). (b) After gluing two 3-cells C1 and C2

(visualized as a double bubble) . The spinor information in the bulk is integrated out and
only the spinors on the union boundary ∂(C1 ∪C2) are left.

amplitude Aē1f∗ in the form of (7.53), which is for one of the shared edge ē1, and the function

G(Aē2f∗) of the face amplitude for the other shared edge ē2 in the form of (7.57), produces

a scaleless spin network state Ssl
∂C′ on the resulting 3-cell boundary ∂C′. It is symbolically

expressed as

Ssl
∂C′ =

∫  ∏
e∈̃△1∪△2

dµ(ζe)

Ssl
∂CA

△1∩△2={ē1,ē2}
e∗ Aē1f∗ G(A

ē2
f∗) , (7.58)

where the e∈̃△1 ∪△2 denotes that the integral is for all the spinors on (the dual node of)
the two triangles △1 and △2 except the one defining the face amplitude Aē2f∗.

The proof is given in Proof B.5.5.
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(a) (b)

Figure 7.5: Gluing two adjacent triangles (in thick, each visualized as a semicircle and one
edge connecting the two ends) sharing one edge ē on one continuous boundary (visualized
as the boundary of a 3-ball removing a lemon slice). (a) Before gluing: The left triangle
is dual to a node with three links e1,2,3 outgoing, while the right triangle is dual to the
other node with three links e1,4,5 incoming. For e1, the source is assigned ζ1, γ1 and the
target is assigned ξ̃1, η̃1. For links e2,3, the sources are assigned ζ2,3, γ2,3 and the targets
are assigned ζ̃2,3, γ̃2,3. For links e4,5, the source are assigned ξ2,3, η2,3 and the targets are
assigned ξ̃2,3, η̃2,3. (Only part of the spinors are shown for clear visualization). (b) After
gluing: The shared edge ē becomes internal and the other two edges from different triangles
collapse (in thick). Spinor information in the bulk is integrated out and only the spinors
on the resulting boundary (as shown) are left.

Note that (7.58) is a finite equation because we did not perform the integration over ζ2.
The dependence of the final result on z2 is removed simply by δ(g). If one replaces G(Aē2f∗)
by Aē2f∗(ζ2) and further integrate ζ2 on the right hand side, one gets a delta distribution of
SU(2) group evaluated on the identity on the left hand side, i.e.

Ssl
∂C′ δSU(2)(I) =

∫ ( ∏
e∈△1∪△2

dµ(ζe)

)
Ssl
∂C · A

△1∩△2={ē1,ē2}
e∗ · Aē1f∗ · A

ē2
f∗ , (7.59)

which diverges and the divergence corresponds to the translational symmetry of the extra
internal vertex produced after gluing as in the original Ponzano-Regge state-sum model
[103, 104]. In the state-sum model, this divergence can be eliminated by fixing the spin
(thus edge length, say ℓē,) of one internal edge incident to this internal vertex. In a similar
spirit, (7.58) can be viewed as the gauge-fixing version of (7.59) which fixes one spinor ζ2
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(a) (b)

Figure 7.6: Gluing of the two adjacent triangles (in thick, each visualized as a semicircle
and two edges incident to the origin of the 3-ball) sharing two edges on one continuous
boundary (visualized as the boundary of a 3-ball removing a solid cone). (a) Before gluing:
The left triangle is dual to one node with three links e1,2,3 outgoing, while the right triangle
is dual to the other node with three links e1,2,4 ingoing. s(e1) (resp. t(e1)) is assigned
ζ1, γ1 (resp. ξ̃1, η̃1), s(e2) (resp. t(e2)) is assigned ζ2, γ2 (resp. ξ̃2, η̃2), s(e3) (resp. t(e3))
is assigned ζ3, γ3 (resp. ζ̃3, γ̃3), and s(e4) (resp. t(e4)) is assigned ξ3, η3 (resp. ξ̃3, η̃3).
(only part of the spinors are shown for clear visualization). (b) After gluing: The shared
edges become internal and one extra internal vertex (the origin of the 3-ball) is created.
The remaining edge from different triangles collapses and lives on the resulting boundary.
Spinor information in the bulk is integrated out and only the spinors on the resulting
boundary, i.e. ζ̃3, γ̃3 and ξ3, η3, are left.

in the bulk. Another way of gauge fixing is to gauge fix (the norm of) the inner product
|[ζ1|ζ2⟩| of the two spinors ζ1, ζ2 used to define the face amplitude Aē1f∗ and Aē2f∗ , which
encodes the angle information of the triangle dual to the node that ζ1, ζ2 lives on (see
Section 7.3.1 below). This can be seen by rewriting δSU(2)(I) in terms of |[ζ1|ζ2⟩| as

δSU(2)(I) =
∫
SU(2)

dg

∫
dµ(ζ1)dµ(ζ2) (⟨ζ1|ζ1⟩ − 1)(⟨ζ2|ζ2⟩ − 1)e⟨ζ1|g|ζ1⟩e⟨ζ2|g|ζ2⟩

=

∫
dµ(ζ1)dµ(ζ2) (⟨ζ1|ζ1⟩ − 1)(⟨ζ2|ζ2⟩ − 1)e|[ζ1|ζ2⟩|

2

.

(7.60)

One can straightforwardly conclude from Lemma 7.2.3 and Proposition 7.2.4, 7.2.5, 7.2.6
the following corollary.
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Corollary 7.2.7. The Ponzano-Regge state-integral formula given in Proposition 7.2.2 is
topological invariant. This means the total amplitude is independent of the bulk configura-
tion and is equal to the boundary scaleless spin network state upon gauge fixings, one for
each internal vertex.

In particular, in the 2− 3 Pachner move, the gluing of two tetrahedra is of Type I; the
gluing of three tetrahedra includes three steps, two of which are of Type I and the other
is of Type II. In the 1− 4 Pachner move, the gluing of four tetrahedra includes six steps,
three of which are of Type I, two of which are of Type II and the remaining one is of Type
III.

7.3 Geometric interpretation of the state-integral

Spins are geometrically interpreted as lengths thus the geometrical meaning of the original
Ponzano-Regge state-sum is rather simple as reviewed above. In contrast, the geometrical
interpretation of spinors, or the inner product of spinors which are used in the new Ponzano-
Regge state-integral described in Proposition 7.2.2, is not as apparent. To understand how
the new model describes the geometry, we analyze in this section separately the geometrical
information of the tetrahedron described by the new vertex amplitude, and that of the
gluing process described by the new edge amplitude.

7.3.1 Poles of the {12ζ×2} symbol

In this subsection, we come back to the tetrahedron graph and look into the geometrical
interpretation of the SGF. To this end, we rewrite the SGF in terms of the new variables,
namely the angle couplings and the link couplings. They are both invariant under the
SL(2,C) gauge transformation of spinors and the latter is further invariant under the anti-
scale transformation (see (7.45)) thus forming a minimum set of variables.

At the first glance, since the SGF encodes the summation of spins, which geometrically
represent lengths of the one-skeleton of a tetrahedron, the length information is expected
to be washed out and it leaves the rest of the geometrical information, thus angles. Angle
information of a tetrahedron includes internal angles of triangles (called internal angles
for short) on the boundary of the tetrahedron and the dihedral angles between each pair
of triangles. By taking the large j limit of the 6j-symbols, we will find that these angle
information are exactly stored in the norms and phases of the 6 independent link couplings.
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We will first regroup the scalar products of spinors in the expression of the SGF (7.43)
into an expression in terms of the link couplings. Through a stationary analysis of the
new SGF expression, we acknowledge that the link couplings capture the internal angles
of triangles in their real part and the dihedral angles between triangles in their imaginary
part. This establishes our expectation that the SGF describes the quantum conformal
geometry of a tetrahedron.

From angle couplings to link couplings. Each pair of links incident to the same
node form an angle. We define the angle coupling Xee′ by the (holomorphic) inner product
of the spinors associated to the pair of links (e, e′) with the order e ≺ e′ as

Xee′ ≡ Xe′e := [ζe|ζe′⟩ = |Xee′|eiΦee′ , e ≺ e′ , e, e′ ∈ v , Φee′ ∈ [0, π) . (7.61)

We have separated the norm |Xee′| and the phase Φee′ of the angle coupling. These angle
couplings can be grouped to form the link couplings Ye’s [37] such that∏

v∈Γ

∏
e,e′,e′′∈v

X
Jv−2je′′
ee′ =

∏
e∈Γ

Y 2je
e . (7.62)

Consider two three-valent nodes connected with an oriented link e, where e1, e2 are the
other two links incident to the source s(e) of the link e, and ẽ1, ẽ2 are the two other links
incident to the target t(e), as shown in fig.7.7. The link coupling Ye is expressed in terms
of the angle couplings as

Ye ≡ |Ye|eiΨe =

√
[ζe|ζe1⟩[ζe2 |ζe⟩

[ζe1|ζe2⟩
[ζ̃e|ζẽ1⟩[ζẽ2|ζ̃e⟩

[ζẽ1|ζẽ2⟩
=

√
Xee1Xee2

Xe1e2

Xeẽ1Xeẽ2

Xẽ1ẽ2

, Ψe ∈ [0, π) .

(7.63)
The norm |Ye| and the phase Ψe of the link coupling read explicitly

|Ye| =

√
|Xee1||Xee2|
|Xe1e2|

|Xeẽ1||Xeẽ2|
|Xẽ1ẽ2|

,

Ψe = mod

(
1

2
(Φee1 + Φee2 − Φe1e2 + Φeẽ1 + Φeẽ2 − Φẽ1ẽ2), π

)
. (7.64)

It will be convenient to introduce the “shared” spins for angles on the same node as

kee′ := Jv − 2je′′ , ke′e′′ := Jv − 2je , ke′′e := Jv − 2je′ ,

where Jv = je + je′ + je′′ and e, e′, e′′ ∈ v . (7.65)
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eζe ζ̃e

s(e) t(e)

e1

e2

ẽ2

ẽ1

• •

Figure 7.7: Two three-valent nodes s(e) and t(e) connected by an oriented link e. links
e, e1, e2 are incident to s(e), and links e, ẽ1, ẽ2 are incident to t(e).

kee′′

kee′

ke′e′′

2j
e 2j

e
′

2je′′

2Jv

Figure 7.8: Thicken the links e, e′, e′′ incident to the node v into threads. Each thread
carries a spin 1

2
and the number of threads for each link is twice of the spin value it is

dressed with. The shared spins kee′ can be viewed as the number of threads shared by the
links e and e′. Similarly for kee′′ and ke′e′′ .

kee′ can be understood as the number of threads (equal to twice of the spin value) shared
by the links e and e′, as illustrated in fig.7.8.

These shared spins are not independent. Referring to the relative position of the edges
e, e1, e2, ẽ1, ẽ2 shown in fig.7.7, the constraint for kee′ ’s is

kee1 + kee2 = keẽ1 + keẽ2 = 2je , ∀e . (7.66)

Therefore, we have six constraints for 12 shared spins kee′ ’s, which results in 6 independent
shared spins as expected.

Let us recall the SGF (7.42) written with the angle and link couplings,

S({Xee′}) =
∑
j1···j6

[
4∏
v=1

√
(Jv + 1)!∏
e,e′∈v kee′ !

]{
j1 j2 j3
j4 j5 j6

} 4∏
v=1

( ∏
e,e′∈v

X
kee′
ee′

)
, (7.67)

or

S({Ye}) =
∑
j1···j6

[
4∏
v=1

√
(Jv + 1)!∏
e,e′∈v kee′ !

]{
j1 j2 j3
j4 j5 j6

} 6∏
e=1

Y 2je
e . (7.68)
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For any loop L, the following equality holds∏
v∈L

Xv
ee′ =

∏
e∈L

Ye , (7.69)

thus (7.43) can also be written in two ways

S({ζe, ζ̃e}) = G({ζe, ζ̃e})−2 , G({ζe, ζ̃e}) = 1 +
∑
L

∏
e,e′∈v⊂L

Xee′ = 1 +
∑
L

∏
e⊂L

Ye . (7.70)

Link couplings at the stationary point. Now that we have the expression of the SGF
in terms of the link couplings, we would like to apply the stationary analysis at the large
j limit of the SGF to look into the poles. We first take the Stirling approximation of the
factorials:

n! ∼
√
2πn

(n
e

)n
= en lnn+O(n) . (7.71)

When V 2 > 0 , the 6j-symbol represents a tetrahedron embedded in the 3D Euclidean
space. It reads [174] {

j1 j2 j3
j4 j5 j6

}
∼ 1√

12πV
cos

(
6∑
e=1

ℓeΘe +
π

4

)
, (7.72)

where ℓe = je+
1
2
is the edge length of the edge ē, V the volume of the tetrahedron with edge

lengths {ℓe} calculated by the Cayley-Menger determinant, and Θe the external dihedral
angle about the edge ē, i.e. the angle between the outward normals to the faces sharing
the edge ē 7. The large j limit of the SGF (7.68) is thus [46]

Ssl({Ye}) =
∑
j1···j6

[
4∏
v=1

√
(Jv + 1)!∏
e,e′∈v kee′ !

]{
j1 j2 j3
j4 j5 j6

} 6∏
e=1

Y 2je
e

∼
∑
{je}

e
∑4

v=1
1
2(Jv ln Jv−

∑
e,e′∈v kee′ ln kee′)e

∑6
e=1 2je(ln |Ye|+iΨe)

1

2
√
12πV

∑
ϵ=±

eiϵ(
∑6

e=1 ℓeΘe+
π
4 )

=
∑
ϵ=±

∑
{je}

1

2
√
12πV

eSϵ({Ye,je}) .

(7.73)

7Note that the edges of the tetrahedron T are denoted as ē’s and the links of the tetrahedron graph
Γ = (∂T )∗ dual to the boundary of T are denoted as e’s. It is on the links of Γ where we associate spin
labels {je}, but they represent the lengths of the edges ē’s on T which are dual to e’s. We denote the
length ℓe and dihedral angle Θe with subscript e instead of ē to avoid a mixture of notation in the same
equation as much as possible in the main text.
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In the second line, we have used cos
(∑6

e=1 ℓeΘe +
π
4

)
= 1

2

∑
ϵ=± e

iϵ(
∑6

e=1 ℓeΘe+
π
4 ).

As the volume V grows polynomially with the spins, its derivative of spin will contribute
to the sub-leading correction of the stationary point. Therefore, to the leading order, one
simply needs to consider the stationary point of the exponent term Sϵ({Ye, je}) of the SGF.

The real and imaginary part of Sϵ can be rewritten as

Re[Sϵ({Ye, je})] =
4∑
v=1

1

2

[
Jv ln Jv −

∑
e,e′∈v

kee′ ln kee′

]
+

6∑
e=1

je ln |Ye|2 , (7.74)

Im[Sϵ({Ye, je})] =
6∑
e=1

[
je(2Ψe + ϵΘe) +

1

2
ϵΘe

]
+ ϵ

π

4
. (7.75)

Thanks to the Schläfli identity,
∑6

e je
∂Θe

∂je
= 0, the phase term has a simple derivative

expression
∂
∑

e jeΘe

∂je
= Θe. The saddle point

∂Sϵ
∂je

can be separated into the real part and the

imaginary part. Using some trigonometry relations, the result reads (neglecting sub-leading
contributions)[37, 46]

∂Re[Sϵ]
∂je

= 0 → |Ye|2 ∼

√
kee1kee2
ke1e2Js(e)

√
keẽ1keẽ2
kẽ1ẽ2Jt(e)

≡ tan
ϕs(e)
2

tan
ϕt(e)
2

, (7.76)

∂Im[Sϵ]
∂je

= 0 → Ψe = −
ϵ

2
Θe . (7.77)

we have identified the length of edge ē with the spin values je as je ≫ 1
2
. ϕs(e) is the

internal angle opposite to the edge ē in the triangle dual to the source node s(e) of the link
e, similarly for ϕt(e), as shown in fig.7.9. The saddle point corresponds to the pole of the
SGF, which is also the Fisher zero for the Ising partition function on a tetrahedron graph
[46]. It clearly expresses the conformal geometry of the (classical limit of) the tetrahedron:
The norm of the link coupling |Ye| corresponds to the pair of internal angles

(
ϕs(e), ϕt(e)

)
opposite to the edge ē in the two triangles meeting at ē, while the phase Ψe corresponds to
half of the external dihedral angle about the edge ē.

According to the relation (7.64) between (the norms of) the angle and link couplings
and (7.76), one can also write , at the saddle point ∂Sϵ/∂je = 0, that

|Xee′||Xee′′ |
|Xe′e′′ |

∼ tan
ϕe′e′′

2
,
|Xe′e||Xe′e′′ |
|Xee′′ |

∼ tan
ϕee′′

2
,
|Xe′′e||Xe′′e′ |
|Xee′|

∼ tan
ϕee′

2
, (7.78)

where ϕee′′ , ϕee′′ , ϕee′ are the angles of a triangle as shown in fig.7.10. To determine the
shape of a tetrahedron, one merely needs the norm of the couplings or the phase of the
couplings. For sake of simplicity, we will make use of the norms only.
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ē

es(e) t(e)
• •ϕs(e) ϕt(e)

Θe + π

Figure 7.9: Two (unplanar) triangles sharing one edge ē and its 2D oriented dual graph
(in red). The node s(e) is dual to the left triangle and t(e) dual to the right one. ϕs(e)
and ϕt(e) are the internal angle opposite to the edge ē within the left and right triangle
respectively. Their relation with the norm of the link coupling at the saddle point is given
in (7.76). Θe is the external dihedral angle about the edge ē. Its relation with the phase
of the link coupling at the saddle point is given in (7.77).

ē

ē′
ē′′

e′e′′

e

ϕee′′ ϕee′

ϕe′e′′

•

Figure 7.10: Three links (in red) e, e′, e′′ meeting at one node. The triangle (in black) dual
to the node is bounded by edges ē, ē′, ē′′. (In fact, there is no one-to-one map from the link
couplings to angle couplings. We have chosen a “geometric gauge” for the angle couplings
which has the most local sense. See [137] for details.) The length of the edge ē is given
by the spin je, similarly for ē′ and ē′′. The angle formed by links ē, ē′ is ϕee′ . Similarly for
ϕe′e′′ and ϕee′′ .

7.3.2 Propagator and geometric gluing

We have shown that the SGF describes the local conformal geometry of each elementary
3D block in the Ponzano-Regge state-integral. Since the scales of the building blocks are
not fixed, the gluing process becomes non-trivial compared to the original Ponzano-Regge
state-sum model, where the gluing is performed by matching the full boundary geometry
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— both the shape and size of the glued triangles — of the blocks. This new way of gluing
is described by this new edge amplitude

Ae∗ = 0F3(; 2, 2,
1

2
;

(∑
e∈v⟨ζ

s(e∗)
e |ξt(e

∗)
e ]

)2
4

)

To gain a global picture of the state-integral model, we here analyze the geometrical mean-
ing of the edge amplitude.

The edge amplitude is also called the propagator and it describes how two neighbouring
tetrahedra are glued. Note that the measure of the spinors dµ(ζ) ≡ d4ζ e−⟨ζ|ζ⟩ includes a
Gaussian weight, it is necessary to take it into account so that the norm |P ({ζe}, {ξe})| of
the propagator remains finite (we have assumed that {ζe} are from the tetrahedron dual
to s(e∗) and {ξe} are from that dual to t(e∗) and omit the superscript for simplicity). We
rewrite the propagator as

P ({ζe}, {ξe}) = 0F3(; 2, 2,
1

2
;
z2

4
)e−r

2

, z =
∑
e∈v

⟨ζe|ξe] , r2 :=
∑
e∈v

(⟨ζe|ζe⟩+ ⟨ξe|ξe⟩) .

(7.79)
Similar to the vertex amplitude, we are interested in the stationary points of the prop-
agator (7.79). It turns out that the stationary point(s) for the propagator (7.79) forces
the two triangles to be glued to have the same shape. This is guaranteed by the following
proposition.

Proposition 7.3.1. The vanishing derivative by {ξ̄e} of P ({ζe}, {ξe}) defined in (7.79)
demands that

|[ζe|ζe′⟩| = |[ξe|ξe′⟩| , |[ζe′ |ζe′′⟩| = |[ξe′|ξe′′⟩| , |[ζe′′ |ζe⟩| = |[ξe′′ |ξe⟩| . (7.80)

where ζe and ξe are spinors associated to the links dual to edges to be glued. Likewise for
ζe′ and ξe′ as well as ζe′′ and ξe′′.

(7.80) means that the angle couplings Xee′ , Xe′e′′ , Xe′′e from both triangles have the
same norm. According to the stationary analysis for the angle coupling norms (7.78), we
conclude that the gluing is picked when the shapes of the triangle to be glued are the same.
The proof of Proposition 7.3.1 is given in Proof B.5.6.

In summary, the Ponzano-Regge state-integral model as constructed above encodes only
the conformal geometry of the triangulation blocks either in the vertex amplitudes or the
edge amplitudes. A vertex amplitude Av∗ describes the shape of the tetrahedron dual to
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v∗; an edge amplitude Ae∗ describes that two adjacent tetrahedra can be glued together by
identifying the shape of two triangles, each from one of the tetrahedra. When there exists
a boundary ∂M of the manifold, the total amplitude built in this way encodes also the
conformal geometry on the triangulation of ∂M since the boundary structure is described
by the scaleless spin network state ψsl

γ .

7.3.3 Ponzano-Regge state-integral versus state-sum model

Let us recall the original spinfoam state-sum and the new spinfoam state-integral expres-
sion,

AT[M, ψΓ ] =
∑
{jf∗}

∏
f∗

djf∗
∏
e∗

(−1)
∑3

i=1 ji
∏
v∗

{
j1 j2 j3
j4 j5 j6

}
v∗

=

∫
[dµ(ζ)]

∏
f∗

(
⟨ζf∗|ζf∗⟩ − 1

) ∏
e∗

0F3(; 2, 2,
1

2
;

(∑
e∈v⟨ζ

s(e∗)
e |ξt(e

∗)
e ]

)2
4

)
∏
v∗

Ssl
v∗({ζv

∗

e , ζ̃
v∗

e }) .

(7.81)

In the state-sum expression, when no boundary is present, the edge amplitude can be
absorbed into the vertex amplitude, while the edge amplitude is always explicit in the
state-integral expression. This leads to two different ways to understand spinfoam. In the
former model, after choosing a triangulation T ofM, we first associate the representation
data (spins) on the one-skeleton of T then construct the vertex and face amplitudes with
these representation data. In the latter model, in contrast, we first isolate all the elemen-
tary blocks, i.e. tetrahedra, after the triangulation then associate the representation data
(spinors) to the boundary of each isolated block, followed by constructing vertex amplitude
for each isolated block, edge amplitude through gluing these elementary blocks and finally
face amplitude for each edge after gluing.

One may also absorb the edge amplitude into the vertex amplitude for the state-integral
by integrating out, with no loss of generality, the spinors {ξt(e

∗)
e } from the target tetrahe-

dron in each gluing. We have not found a close form for this expression, unfortunately.
Furthermore, since the vertex amplitude is no longer trivial, it would be changed after this
absorption, which potentially changes the geometrical interpretation.

On the other hand, leaving the edge amplitude un-absorbed allows us to separate the
data from different blocks so that the saddle point analysis can be done for each vertex
amplitude independently. Moreover, the saddle point analysis on the vertex amplitudes is
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compatible with that on the edge amplitudes. The saddle point of each vertex amplitude
(7.76) relates the spinor configuration to spins within a single block, while the saddle point
of the edge amplitudes (7.80) relates the spinors from different blocks. These saddle points
can be obtained simultaneously and the result effectively relates the (ratios of) spins from
different blocks (with spinors as the mediums).

Geometrically, the gluing condition in the state-integral model is looser compared to
that in the state-sum model, since the former only requires that the triangles to be glued
have the same shape while the latter restricts that the triangles should be of the same shape
and size. At the first glance, it seems the state-integral allows more configurations and
should produce a different total amplitude. However, the size un-matched configurations
can not survive under the spinor integration, thus the total amplitude comes only from the
size-wise and shape-wise matched configurations, same as the case of the state-sum model.
We have used the same property of the spinor integration in constructing the state-integral
to move the contour integral from the vertex amplitude (7.47) to the edge amplitude (7.52).

Another difference between the state-sum and state-integral models is the source of
the divergence in the expressions. In the state-sum model, the vertex amplitude damps
as j−3/2. The divergence comes from the infinite sum of the spin labels and the total
amplitude diverges as

√
j. In the state-integral model, in contrast, the integration does

not lead to divergence thanks to the Gaussian weight while the vertex amplitudes give
divergence since there are poles in the vertex amplitudes. This is because the vertex
amplitude, as a generating function of the 6j-symbols, contains the summation of spins,
thus the divergence can be viewed as from the large spin contribution. To see that it is
the case, we Taylor expand the vertex amplitude and look at the pole,

Av∗ =
1

(1 + x)2
=
∑
j∈N/2

(2j + 1)(−x)2j x=−1−−−→
∑
j∈N/2

(2j + 1) ,

where x denotes the cycle-sums as given in (7.43). This illustrates that the divergence
of the vertex amplitude in the state-integral model is also given by large spins, which is
consistent with the state-sum model.

In this chapter, we have introduced a new framework of the spinfoam model for 3D quan-
tum gravity based on the spinor representation of SU(2). The continuum nature of spinor
variables allows us to represent the spinfoam as a state-integral, rather than a state-sum in
the original Ponzano-Regge model where the spin representation of SU(2) is used. The in-
tegral expression would probably make the computation of e.g. correlations and transition
amplitudes more controllable. More importantly, the state-integral framework inherits the
scale-invariant nature of pure gravity in 3D. It describes a quantum gravity model with
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scale-invariant boundary quantum geometry, which can be seen as an integration over the
conformal classes of boundary geometry. We expect that this framework would serve as
a better starting point to study the coarse-graining or renormalization behaviour of 3D
quantum gravity, and would be useful to investigate the quasi-local CFT/gravity duality.

This can be seen as the first step toward applying (the quantization of) the deformed
spinors introduced in Chapter 3 to the 3D spinfoam model with a non-vanishing Λ. It
would be interesting to see if the deformed spinors can be used to construct the spinfoam
that recovers the Turaev-Viro model [204], whose building blocks are the q-deformed 6j-
symbols. Along the line of the construction in this chapter, one of the first things to do can
be to construct the “q-deformed scaleless spin network state” on the hyperbolic geometry.
We expect that the spinorial framework of LQG and the spinfoam model can be generalized
to a q-deformed version with the use of a quantum group in the mathematical construction
and describe a quantum gravity with a non-vanishing cosmological constant.
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Chapter 8

Summary and outlooks

Summary of results

Let us now summarize what we have done in this thesis. The inclusion of a cosmologi-
cal constant Λ has not been well-understood in the LQG framework. In this thesis, we
tackle the question in a simplified setting — three space-time dimension in the Euclidean
signature. This allows us to do exact computations and provide guidance to discover new
principles and mathematical structures for four-dimensional LQG.

We formulated the q-deformed LQG model for Λ < 0 in a mathematically rigorous
way. In the classical model, the q-deformed loop gravity phase space structure in terms
of the holonomies and fluxes is described by the Heisenberg double of SU(2) or AN(2) in
the language of Lie bialgebra. The quantization process follows the Dirac quantization
programme and the intrinsic mathematical relations between some quantum groups and
Lie bialgebras. That is, a Lie bialgebra can be seen as the infinitesimal notion of some
quantum group. The deformation parameter q encodes the value of the cosmological con-
stant and it allows us to recover the 3D LQG model with Λ = 0 straightforwardly at the
q → 1 limit. Thanks to the work [72] on the continuous theory and the discretization pro-
cess, the q-deformed LQG model is well-defined unambiguously from first principle. This
suggests a new mathematical framework to construct LQG and provides an invitation for
generalization to the 4D case.

We also reformulated the q-deformed LQG in terms of deformed spinors that live on
nodes of a (ribbon) graph. Using these variables, we recover perfectly the classical and
quantum structures given by the holonomies and fluxes. These spinors are good candidates
for constructing local observables. We showed that this is indeed the case and provided a
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geometrical way to construct these observables consistent with the q-deformed LQG model.
We discovered, for the first time at least in the LQG community to our knowledge, that
the quantum R-matrix — in general understood as a mathematical structure of a quantum
group — encodes geometrical information. It opens a window to introduce techniques and
methodologies from other fields e.g. integrable lattice models [147, 84, 178] to improve our
understanding of the quantum structure of LQG.

The local observables constructed from the deformed spinors were further used to con-
struct the quantum Hamiltonian constraint of the q-deformed LQG, which is a q-deformed
version of the Hamiltonian constraint for the LQG with Λ = 0 [44] in a straightforward way.
This allows us to find the physical states easily. We justified the solutions through their
invariance under Pachner moves. This analysis of the dynamical aspect of the q-deformed
LQG completes the program neatly.

Finally, as another application of spinors, we used spinors to rewrite the 3D spinfoam
model in a conformal way. That is the building blocks of local amplitudes only capture
the local conformal geometries. As a first step, we work on the Λ = 0 case where the
spinfoam model is the Ponzano-Regge model. We were able to reformulate the Ponzano-
Regge amplitude as a state-integral instead of a state-sum in the standard formula. We
analyzed the geometrical interpretation of different amplitudes in detail and systematically
gave the construction of a global amplitude from local ones. It would be fascinating to see
how this can be generalized to spinfoam models with Λ ̸= 0 using the deformed spinors
introduced in the q-deformed LQG framework.

Future explorations

This thesis has only focused on a specific case of LQG — 3D Euclidean signature with
Λ < 0. Despite the completeness of the model in this situation, there is indeed a lot to
explore. We list a few of them below.

• Generalize the construction to Λ > 0 case and the Lorentzian signature.
According to the equivalence of the first-order 3D gravity and the Chern-Simons
theory, it has been well-known that quantization of 3D gravity with a positive cos-
mological constant in the Euclidean signature would lead to Uq(su(2)) with q root of
unity. This is also the symmetry of the Turaev-Viro model. When q is taken to be a
root of unity, Uq(su(2)) is a quasi-Hopf algebra and its mathematical structures are
not the same as those of Uq(su(2)) with q real. Taking the infinitesimal limit, one
should deal with a quasi-bialgebra structure [203, 127]. It would be interesting to
investigate how it can lead to the spherical geometry and its similarity and difference
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from the structure we have described in this thesis. Moreover, the quantum group
relevant to Lorentzian 3D gravity with a non-vanishing Λ is U(sl(2,R)) with q real
or root of unity depending on the sign of the cosmological constant. Exploring the
quantum structure of these cases can help us to understand better the BTZ black
hole especially the calculation of its entropy from the LQG point of view [110].

• Relate the q-deformed LQG to other quantum gravity approaches. For
the case of Λ = 0, different 3D quantum gravity approaches namely LQG, spinfoam
models and combinatorial quantization have been shown to be consistent [105, 162,
152]. It is not clear if the consistency can be extended to the Λ ̸= 0. The q-deformed
LQG model provides a way to connect LQG and the combinatorial quantization.
Our work has shown explicitly this connection at the classical level. To complete the
bridge, one needs to analyze the quantum theory as well.

On the other hand, the Turaev-Viro model only possesses a spin representation ex-
pression. This impedes us to interpret the spinfoam as a discrete path integral of
gravity as in the Λ = 0 case. The q-deformed LQG framework we constructed in this
thesis has a classical discrete theory consistent with the continuous action in terms of
a change of variables. This seems to be able to lead us to a path-integral expression
of the Turaev-Viro model. If such an expression can be found (see [116] for a recent
work on it), it would allow us to study the quantum field theory aspect of spinfoam
and extend it to one with particle insertion as it was done in the Λ = 0 case [97].

• Relate the q-deformed LQG to quantum statistical models. It was found in
[68] that 3D quantum gravity with Λ = 0 in the spinfoam framework can be mapped
to some quantum statistical models e.g. the six-vertex model (or ice-type model)
and the loop models. For instance, to map to the six-vertex, one works on a spin
network state with each link carrying a 1/2 representation. The six-vertex model has
a (rather hidden) Uq(su(2)) symmetry which can be seen in the form of the R-matrix
[183]. The deformation parameter q is related to the anisotropy in the Hamiltonian
of the XXZ spin chain model, which is deeply related to the six-vertex model. (See
e.g. [136] and references therein for details on the six-vertex model and the XXZ
model.) The transfer matrices in the six-vertex model play the same role as the
quantum holonomies we define in Chapter 4. Using this correspondence, one could
give a gravitational interpretation to the six-vertex model. It would be interesting
to investigate how the geometrical interpretation of the R-matrix we present in this
thesis can play a role in this correspondence and possible correspondences with other
quantum statistical models.

• Include point particles in q-deformed LQG. 3D gravity coupling to point
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particles can be done in its metric formalism [52, 62] or the Chern-Simons formalism
[61]. Adding particles to the system would change the topological nature. As there
are no gravitational waves in 3D, the particles only change the geometries localized
at their positions. It is well-known that the masses of particles give rise to curvature
and the spins give rise to torsion of the geometry. It seems natural to interpret
the inclusion of particles in the q-deform loop gravity model by relaxing the Gauss
constraint and the flatness constraint at the location of particles. A systematic
analysis starting from the continuous action is needed to justify this intuition. To
build the Hilbert space of the quantum theory coupling to particles, a well-studied
way in LQG with Λ = 0 is to consider the same representation for particle degrees of
freedom as that of the quantum geometry [161]. It is interesting to see if the same
method can be applied to our framework or if new treatments need to be introduced.
The coupling with particles would allow us to construct Dirac observables, e.g.
distance between particles, hence relate to physical processes.

• Extend to 4D LQG with Λ ̸= 0. The ribbon framework also opens a new
way to consider LQG with Λ ̸= 0 in 4D, which might unravel how (if it does) the
cosmological constant is encoded in the quantum group structure in the real physical
situation. One possible way to generalize the ribbon in 4D is to consider 2-groups.
This was recently introduced [13, 121, 117], where the Drinfeld double was generalized
to the notion of 2-Drinfeld double in terms of 2-groups. Along with this storyline, the
spinor should be generalized to some notion of “2-spinor”. It would be interesting to
investigate how to build such objects and construct local observables out of them. It
remains an unsolved problem whether quantum group symmetries would appear in
4D quantum gravity. It is also possible that the quantum group symmetries emerging
in the 3D case is only due to the topological nature of 3D gravity. Nevertheless, one
can still start from a topological setting in 4D then impose constraint to describe
gravity as done in the spinfoam models [21, 168, 138, 82, 96, 141]. Quantum group
structure would still be expected to appear in the topological setting. Then the
question is whether imposing the quantum constraint would change or break the
quantum group structure.
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Appendix A

Mathematical frameworks

In this appendix chapter, we summarize the construction of the Heisenberg double and
its quantization, which serve as the mathematical framework for building the LQG phase
space and the Hilbert space. We only give the definition of concepts and their properties
used in the current article. Proofs and more detailed illustrations can be found in the
textbooks of Lie bialgebra and Hopf algebra e.g. [135, 148, 58]. The notations in this
chapter mainly follow [148].

A.1 Heisenberg double and Drinfeld double

Definition A.1.1 (Lie bialgebra). A Lie bialgebra is a pair (g, δ) over field K consisting of
a Lie algebra g whose structure is given by a Lie bracket [ , ]g : g⊗ g→ g, and a 1-cocycle
δ : g→ g⊗g on g which defines the Lie bracket [ , ]g∗ : g

∗⊗g∗ → g∗ of the dual Lie algebra
g∗ such that

⟨[ξ, η]g∗ , x⟩ = ⟨ξ ⊗ η, δ(x)⟩ , ∀x ∈ g , ξ, η ∈ g∗ , (A.1)

where ⟨ , ⟩ : g∗ ⊗ g→ K is the dual map.

Thus a Lie bialgebra contains the information of the Lie algebra therein and its dual.
We consider here the case where g is finite-dimensional, then so is g∗. Accordingly, one can
also define the dual (g∗, δ∗) of the Lie bialgebra (g, δ) with the cocycle δ∗ : g

∗ → g∗ ⊗ g∗

defined as
⟨ξ, [x, y]g⟩ = ⟨δ∗(ξ), x⊗ y⟩ , ∀x, y ∈ g , ξ ∈ g∗ . (A.2)
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When (A.1) and (A.2) are satisfied, we say that the Lie algebras g and g∗ form a dual pair
whose duality is defined through a given dual map ⟨ , ⟩ : g∗ ⊗ g→ K.

Given the generators ei ∈ g , f i ∈ g∗, the dual map is given by the bilinear map
⟨ei, f j⟩ = δji . [ , ]g and δ∗ give the structure constants αkij of g while δ and [ , ]g∗ give the

structure constant βijk of g∗ as follows.

[ei, ej] = αkijek , δ(ek) = βijk ej ⊗ ek , [f i, f j] = βijk f
k , δ∗(f

k) = αkijf
j ⊗ fk . (A.3)

When δ can be written as the coboundary δ = ∂r of some 1-cochain r ∈ g⊗ g, the Lie
bialgebra is called a coboundary Lie bialgebra, denoted as (g, r). We have only considered
this case in the main text. Use the notation r ≡ r12 =

∑
r[1] ⊗ r[2]. Then the transpose of

r is r21 :=
∑
r[2]⊗r[1]. More generally, rij =

∑
I⊗· · ·⊗ I⊗r[1]⊗ I⊗· · ·⊗ I⊗r[2]⊗ I⊗· · ·⊗ I

(i ̸= j) with r[1] in the i-th vector space and r[2] in the j-th vector space. Then ∂δ = r
means

δ(x) =
∑

[x, r[1]]⊗ r[2] + r[1] ⊗ [x, r[2]] . (A.4)

Definition A.1.2 (quasitriangular Lie bialgebra). A Lie bialgebra (g, δ) is called quasitri-
angular if the r-matrix r ∈ g⊗ g such that δ = ∂r satisfies the following conditions:

1. The symmetric part rs =
1
2
(r + r21) of r is g-invariant and

2. r satisfies
(I⊗ δ)r = [r13, r12] , (δ ⊗ I)r = [r13, r23] . (A.5)

Either of the conditions in (A.5) implies that r satisfies the classical Yang-Baxter equa-
tion (CYBE), i.e.

[r12, r13] + [r12, r23] + [r13, r23] = 0 . (A.6)

Additionally, if the symmetric part rs of r is non-degenerate, the Lie bialgebra is said to
be factorizable.

The r-matrix defining the coboundary Lie bialgebra can be viewed as a map r : K →
g⊗ g. Due to the duality map, r can also be seen as a map r : g∗ ⊗ g∗ → K. This leads to
the definition of the dual quasitriangular Lie bialgebra.

Definition A.1.3 (dual quasitriangular Lie bialgebra). A dual quasitriangular Lie bial-
gebra is a pair (h, δ) consisting of a Lie algebra h and a 1-cocycle δ = ∂r which is the
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coboundary of a map r : h⊗ h→ K satisfying the following conditions

[ξ, η] =
∑

ξ[1]r(ξ[2] ⊗ η) + η[1]r(ξ ⊗ η[2]) , (A.7)

r(ξ ⊗ [η, ζ]) =
∑

r(ξ[1] ⊗ ζ)r(ξ[2] ⊗ ζ) , (A.8)

r([ξ, η]⊗ ζ) =
∑

r(ξ ⊗ ζ[1])r(η ⊗ ζ[2]) , ∀ξ, η, ζ ∈ h , (A.9)

where δ(ξ) =
∑
ξ[1] ⊗ ξ[2], and the symmetric part of r is h-invariant.

It is straightforward to check that r satisfies the condition∑
r(ξ ⊗ η[1])r(η[2] ⊗ ζ) + r(ξ[1] ⊗ η)r(ξ[2] ⊗ ζ) + r(ξ ⊗ ζ[1])r(η ⊗ ζ[2]) = 0 . (A.10)

The duality between a quasitriangular Lie bialgebra and a dual quasitriangular Lie bial-
gebra is in the sense of the same r-matrix and that (A.7) is the dual of (A.4), (A.8) and
(A.9) are the dual of (A.5). Accordingly, (A.10) is the dual of the CYBE (A.6).

We do not need the concept of the dual quasitriangular Lie bialgebra in the main text
except for its quantum deformation which will be given below.

On the vector space g ⊕ g∗, one can build another Lie bialgebra with g and g∗ as the
subalgebras. The adjoint actions adx ∈ End(g) and adξ ∈ End(g∗) on the subalgebras are
defined by adxy = [x, y]g , adξη = [ξ, η]g∗ ,∀x, y ∈ g , ξ, η ∈ g∗. In addition, we can define
ad∗x ∈ End(g∗) and ad∗ξ ∈ End(g) through the duality of g and g∗ as

⟨ξ, adxy⟩ = −⟨ad∗xξ, y⟩ , ⟨adξη, x⟩ = −⟨η, ad∗ξx⟩ , ∀x, y ∈ g , ξ, η ∈ g∗ . (A.11)

Definition A.1.4 (classical double). A classical double (d(g), δd) of g is a quasitriangular
Lie bialgebra with the Lie algebra d = g ▷◁ g∗ on the vector space g⊕ g∗ whose structure is
given by [ , ]d : d⊗ d→ d which acts on the Lie algebra elements as

[x, y]d = [x, y]g , [ξ, η]d = [ξ, η]g∗ , [x, ξ]d = ad∗xξ − ad∗ξx , ∀x, y ∈ g , ξ, η ∈ g∗ , (A.12)

and the cocycle structure is given by

δd(X) = [X ⊗X, r] , X ∈ d , r ∈ g⊗ g∗ ⊂ d(g)⊗ d(g) , ∂r = δd . (A.13)

The dimensions of g and g∗ are necessarily the same. Given the basis ei ∈ g and f j ∈ g∗,
the r-matrix and the Poisson structure in (A.12) can be written explicitly as

r =
∑
i

ei ⊗ f i , [ei, ej] = αkijek , [f i, f j] = βijk f
k , [ei, f

j] = βjki ek − α
j
ikf

k . (A.14)
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We will denote the double as d(g), or simply d, and omit the cocycle. The double of
quasitriangular Lie bialgebra can be exponentiated to form a double of Lie group, which
leads to the following definition.

Definition A.1.5 (Heisenberg double). Exponentiating the double d(g), we get a Lie group
D(G) ∼ G ▷◁ G∗. A Heisenberg double is a pair (D(G), πH) consisting of the Lie group
D(G) generated by the double d(g) and a Poisson bivector πH : D → D ⊗D which defines
the Poisson brackets of D as

πH(d) ≡ {d1, d2} = −r21d1d2 + d1d2r , ∀d ∈ D , (A.15)

where d1 = d⊗ I, d2 = I⊗ d and the r-matrix r inherits from d(g).

The fact that the symmetric part rs of the r-matrix is the Casimir, i.e. [rs, d1d2] = 0
implies that the Poisson bracket (A.15) can be equivalently written as

{d1, d2} = rd1d2 − d1d2r21 . (A.16)

Exchanging the role of g and g∗, the double d can be viewed as the double of g∗ with
the r-matrix r̃ = r21 =

∑
i f

i ⊗ ei ∈ g∗ ⊗ g and r̃21 = r, so as the Heisenberg double
D(G∗) ∼ G∗ ▷◁ G. Another similar and relevant notion is the Drinfeld double (D(G), πD)
which is defined with the same Lie group D(G) but a different Poisson bivector

πD(d) = [r, d1d2] . (A.17)

One of the most essential differences lies in the fact that the Drinfeld double is a Poisson-
Lie group while the Heisenberg double is not, and the Heisenberg double is a symplectic
space while the Drinfeld double is not.

A.2 Quasi-triangular Hopf algebra

Definition A.2.1 (quasitriangular Hopf algebra). A quasitriangular Hopf algebra is a pair
(H,R) consisting of a Hopf algebra H and an invertible quantum R-matrix R ∈ H ⊗ H
satisfying the following properties

(△⊗ I)R = R13R23 , (A.18)

(I⊗△)R = R13R12 , (A.19)

σ ◦ △h = R(△h)R−1 , ∀h ∈ H , (A.20)

where △ is the coproduct of H and σ is the permutation operator which acts on elements
in tensor space as σ(a⊗ b) = b⊗ a.
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The inverse of the R-matrix can be obtained by

R−1 = (S ⊗ I)R , (A.21)

where S is the antipode of H. One can show from (A.19) and (A.20) that R satisfies the
QYBE

R12R13R23 = R23R13R12 . (A.22)

We denote the result of the coproduct acting on a Hopf algebra element as△(h) =
∑
h(1)⊗

h(2) , h ∈ H.

Definition A.2.2 (dual quasitriangular Hopf algebra). A dual quasitriangular Hopf alge-
bra is a pair (A,R) consisting of a Hopf algebra A and an invertible map R : A⊗ A→ K
such that

R(ab⊗ c) =
∑
R(a⊗ c(1))R(b⊗ c(2)) , (A.23)

R(a⊗ bc) =
∑
R(a(1) ⊗ c)R(a(2) ⊗ b) , (A.24)∑

b(1)a(1)R(a(2) ⊗ b(2)) =
∑
R(a(1) ⊗ b(1))a(2)b(2) , ∀a, b, c ∈ A . (A.25)

(H,R) and (A,R) are dual in the sense of the same R-matrix and that (A.23) is the
dual of (A.18), (A.24) is the dual of (A.19) and (A.25) is the dual of (A.20).

Two Hopf algebras H,A are said to form a dual pair if there is a bilinear map ⟨ , ⟩ :
A⊗H → K satisfying the conditions

⟨ab, h⟩ = ⟨a⊗ b,△(h)⟩ , ⟨△(a), h⊗ g⟩ = ⟨a, hg⟩ , ⟨I, h⟩ = ϵ(h) , ⟨a, I⟩ = ϵ(a) ,

∀a, b ∈ A , h, g ∈ H , (A.26)

where ϵ is the counit.

We are particularly interested in a dual quasitriangular type of bialgebra which is
generated by identity and the coordinate functions T = {tij} on the space of n×n matrices
Mn. The coproduct and counit are then given by

△(T ) = T ⊗ T , ϵ(T ) = I , i.e. △(tij) =
∑
k

tik ⊗ tkj , ϵ(tij) = δij . (A.27)

Given a Hopf algebra A of this type and an invertible R-matrix R, a matrix R ∈Mn⊗Mn

defined as
R = R(T ⊗ T ) , i.e. Ri k

j l = R(t
i
j ⊗ tkl) (A.28)
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is invertible and satisfies the QYBE (A.22). The following relation also holds in A.

RT1T2 = T2T1R , (A.29)

where T1 = T ⊗ I , T2 = I ⊗ T . Reversely, one can define a Hopf algebra A(R) generated
by identity and T satisfying (A.27) with R satisfying (A.29). This is called the associ-
ated matrix Hopf algebra, and (A(R),R) with R obtained by inverting (A.28) is a dual
quasitriangular Hopf algebra.

Given a dual quasitriangular Hopf algebra (A(R),R), we want to build a quasitriangular
Hopf algebra (H,R) where H is dual paired with A(R) via the bilinear map

⟨T ⊗ T,R⟩ = R . (A.30)

With this bilinear map, elements Q± = {(q±)ij} defined by

Q+ := (I⊗ T )(R) ≡
∑
R(1)⟨T,R(2)⟩ , Q− = (T ⊗ I)(R−1) ≡

∑
R(2)⟨T,R(1)⟩ (A.31)

belong to H, where we have used the notation R =
∑
R(1) ⊗ R(2). The coproduct and

counit are given by

△(Q±) = Q± ⊗Q± , ϵ(Q±) = I , i.e. △((q±)ij) =
∑
k

(q±)ik ⊗ (q±)kj , ϵ((q±))i = δij .

(A.32)
Applying the definition (A.31) and properties of a quasitriangular Hopf algebra (A.18) and
(A.19), one can show that the following relations hold in H.

Q±1 Q
±
2 R = RQ±2 Q

±
1 , Q−1 Q

+
2 R = RQ+

2 Q
−
1 , (A.33)

where Q±1 = Q± ⊗ I , Q±2 = I⊗Q±. The pairing can be characterized by the bilinear form
between T and Q± as

⟨T1, Q+
2 ⟩ = R , ⟨T1, Q−2 ⟩ = R−121 , i.e. ⟨tij, (q+)kl⟩ = Ri k

j l , ⟨tij, (q−)kl⟩ = (R−1)i kj l .
(A.34)

The classical theory described in the previous subsection is the first order limit of the
quantum theory. Explicitly, the relation between the quantum R-matrix and the classical
r-matrix, and the relation between the quantum coproduct △ and classical cocycle δ are
given by

R = I⊗ I + iℏr +O(ℏ2) , △− σ ◦ △ = iℏδ +O(ℏ2) . (A.35)
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Then the (dual) quasitriangular Lie bialgebra is the linear ℏ order of the (dual) quasitri-
angular Hopf algebra, which can be seen from e.g. the following relations of the conditions
in their definitions.

(△⊗ I)R = R13R23 −→ (δ ⊗ I)r = [r13, r23]
(I⊗△)R = R13R12 −→ (I⊗ δ)r = [r13, r12]
σ ◦ △ = R△R−1 −→ δ = ∂r

. (A.36)

The kind of (dual) quasitriangular Hopf algebra used in the main text is the deformation
Uq(g) of a universal enveloping algebra U(g), where q = eκℏ(κ ∈ R) is the deformation
parameter and the classical limit is given by ℏ→ 0 thus q → 1.

202



Appendix B

Examples and calculation details

In this appendix chapter, we collect some calculation details for the results in the main
text and illustration of a toy model for the loop gravity model.

B.1 Explicit Poisson brackets for Heisenberg double

SL(2,C)

In this section, we give the Poisson brackets for the SU(2) holonomies (u, ũ) and the AN(2)
fluxes (ℓ, ℓ̃) of the phase space described in Subsection 2.3.1. The Poisson brackets read

{ℓ1, ℓ2} = −[r21, ℓ1ℓ2] , {ℓ1, u2} = −ℓ1r21u2 , {u1, ℓ2} = ℓ2ru1 , {u1, u2} = −[r, u1u2] ,

{ℓ̃1, ℓ̃2} = [r21, ℓ̃1ℓ̃2] , {ℓ̃1, ũ2} = −ũ2r21ℓ̃1 , {ũ1, ℓ̃2} = ũ1rℓ̃2 , {ũ1, ũ2} = [r, ũ1ũ2] ,

{ℓ1, ũ2} = −r21ℓ1ũ2 , {ℓ̃1, u2} = −ℓ̃1u2r21 , {u1, ℓ̃2} = ℓ̃2u1r , {ũ1, ℓ2} = rũ1ℓ2 ,

{ℓ̃1, ℓ2} = 0 , {ũ1, u2} = 0 .
(B.1)

It is important to note that (B.1) is not enough to describe the full Poisson structure.
Notice that the an(2) Lie algebra is preserved under ℓ → (ℓ†)−1 , ρi → −(ρi)†, one can
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switch r → −r† = r21 in (B.1) and write the Poisson brackets∣∣∣∣ {ℓ†1, ℓ2} = −ℓ†1rℓ2 + ℓ2rℓ
†
1 ,

{ℓ1, ℓ†2} = −ℓ1r21ℓ
†
2 + ℓ†2r21ℓ1 ,

∣∣∣∣ {ℓ†1, ℓ†2} = [r21, ℓ
†
1ℓ
†
2] ,

{ℓ†1, ℓ̃2} = 0 ,

∣∣∣∣ {ℓ†1, u2} = −rℓ†1u2 ,{u1, ℓ†2} = r21u1ℓ
†
2 ,∣∣∣∣ {ℓ†1, ũ2} = −ℓ†1rũ2 ,{ũ1, ℓ†2} = ℓ†2r21ũ1 ,

∣∣∣∣ {ℓ̃†, ℓ̃2} = ℓ̃†1rℓ̃2 − ℓ̃2rℓ̃
†
1 ,

{ℓ̃1, ℓ̃†2} = ℓ̃1r21ℓ̃
†
2 − ℓ̃

†
2r21ℓ̃1 ,

∣∣∣∣ {ℓ̃†1, ℓ2} = 0 ,

{ℓ̃†1, ℓ̃
†
2} = −[r21, ℓ̃

†
1ℓ̃
†
2] ,∣∣∣∣ {ℓ̃†1, u2} = −u2rℓ̃†1 ,{u1, ℓ̃†2} = u1r21ℓ̃

†
2 ,

∣∣∣∣ {ℓ̃†1, ũ2} = −ℓ̃†1ũ2r ,{ũ1, ℓ̃†2} = ũ1ℓ̃
†
2r21 .

(B.2)

We parametrize them into 2× 2 matrices

ℓ =

(
λ 0
z λ−1

)
, ℓ̃ =

(
λ̃ 0

z̃ λ̃−1

)
, u =

(
α −β̄
β ᾱ

)
, ũ =

(
α̃ − ¯̃β

β̃ ¯̃α

)
, (B.3)

where λ, λ̃ ∈ R+ and other parameters are complex. With this parametrization, the Poisson
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brackets in (B.1) and (B.2) are explicitly

{λ, z} = iκ
2
λz , {λ, z̄} = − iκ

2
λz̄ , {z, z̄} = iκ(λ2 − λ−2) ,

{α, β} = − iκ
2
αβ , {α, β̄} = − iκ

2
αβ̄ , {α, ᾱ} = iκββ̄ ,

{ᾱ, β} = iκ
2
ᾱβ , {ᾱ, β̄} = iκ

2
ᾱβ̄ , {β, β̄} = 0 ,

{λ, α} = − iκ
4
λα, , {λ, ᾱ} = iκ

4
λᾱ , {λ, β} = iκ

4
λβ ,

{λ, β̄} = − iκ
4
λβ̄ , {z, β} = iκ

4
zβ , {z, ᾱ} = iκ

4
zᾱ ,

{z, α} = − iκ
4
(zα+ 4λ−1β) , {z, β̄} = − iκ

4

(
zβ̄ − 4λ−1ᾱ

)
, {z̄, α} = − iκ

4
z̄α ,

{z̄, β̄} = − iκ
4
z̄β̄ , {z̄, ᾱ} = iκ

4
(z̄ᾱ + 4λ−1β̄) , {z̄, β} = iκ

4
(z̄β − 4λ−1α) ,

{λ̃, z̃} = − iκ
2
λ̃z̃ , {λ̃, ¯̃z} = iκ

2
λ̃¯̃z , {z̃, ¯̃z} = −iκ(λ̃2 − λ̃−2) ,

{α̃, β̃} = iκ
2
α̃β̃ , {α̃, ¯̃β} = iκ

2
α̃ ¯̃β , {α̃, ¯̃α} = −iκβ̃ ¯̃β ,

{ ¯̃α, β̃} = − iκ
2
¯̃αβ̃ , { ¯̃α, ¯̃β} = − iκ

2
¯̃α ¯̃β , {β̃, ¯̃β} = 0 ,

{λ̃, α̃} = − iκ
4
λ̃α̃ , {λ̃, ¯̃α} = iκ

4
λ̃ ¯̃α , {λ̃, β̃} = − iκ

4
λ̃β̃ ,

{λ̃, ¯̃β} = iκ
4
λ̃ ¯̃β , {z̃, α̃} = iκ

4
z̃α̃ , {z̃, β̃} = iκ

4
z̃β̃ ,

{z̃, ¯̃α} = − iκ
4
(z̃ ¯̃α + 4λ̃β̃) , {z̃, ¯̃β} = − iκ

4
(z̃ ¯̃β − 4λ̃α̃) , {¯̃z, ¯̃α} = − iκ

4
¯̃z ¯̃α ,

{¯̃z, ¯̃β} = − iκ
4
¯̃z ¯̃β , {¯̃z, α̃} = iκ

4
(¯̃zα̃ + 4λ̃ ¯̃β) , {¯̃z, β̃} = iκ

4
(¯̃zβ̃ − 4λ ¯̃α) ,

{λ, α̃} = − iκ
4
λα̃ , {λ, ¯̃α} = iκ

4
λ ¯̃α , {λ, β̃} = iκ

4
λβ̃ ,

{λ, ¯̃β} = − iκ
4
λ ¯̃β , {z, ¯̃α} = − iκ

4
z ¯̃α , {z, β̃} = − iκ

4
zβ̃ ,

{z, α̃} = iκ
4
(zα̃− 4λβ̃) , {z, ¯̃β} = iκ

4
(z ¯̃β + 4λ ¯̃α) , {z̄, α̃} = iκ

4
z̄α̃ ,

{z̄, ¯̃β} = iκ
4
z̄ ¯̃β , {z̄, β̃} = − iκ

4
(z̄β̃ + 4λα̃) , {z̄, ¯̃α} = − iκ

4
(z̄ ¯̃α− 4λ ¯̃β) ,

{λ̃, α} = − iκ
4
λ̃α , {λ̃, ᾱ} = iκ

4
λ̃ᾱ , {λ̃, β} − iκ

4
λ̃β ,

{λ̃, β̄} = iκ
4
λ̃β̄ , {z̃, α} = − iκ

4
z̃α , {z̃, β} = − iκ

4
z̃β ,

{z̃, ᾱ} = iκ
4
(z̃ᾱ− 4λ̃−1β) , {z̃, β̄} = iκ

4
(z̃β̄ + 4λ̃−1α) , {¯̃z, β̄} = iκ

4
¯̃zβ̄ ,

{¯̃z, ᾱ} = iκ
4
¯̃zᾱ , {¯̃z, β} = − iκ

4
(¯̃zβ + 4λ̃−1ᾱ) , {¯̃z, α} = − iκ

4
(¯̃zα− 4λ̃−1β̄) ,

(B.4)
and others vanish. These explicit Poisson brackets are used to check the validity of the
spinor parametrization in Chapter 3.
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B.2 An example: q-deformed loop gravity on a torus

In this section, we apply the q-deformed loop gravity framework described in Section 2.3,
with the deformed holonomy-flux phase space provided with the SL(2,C) Poisson brackets,
to the simple case of the torus. A torus is a genus-2 2D manifold thus a graph on the torus
can have at most two independent non-contractable loops. We will see that those loops can
be assigned the physical observables that form a Goldman bracket. The phase space can
also be obtained by a gauge fixing from a fat graph following the recipe given in Section
2.4. We are not repeating the process but refer interested readers to [77].

Ribbon graph on the torus: We draw a basic graph for the 2-torus, with two
links wrapping around the torus meeting at a single node and surrounding a single face
as illustrated on the left panel of fig.B.1. The corresponding ribbon graph is depicted on
the right panel of fig.B.1, dressed with AN(2) fluxes and SU(2) holonomies. The ribbon

e1
e2

v

ũ ũ

u u

v ṽ

v ṽ

ℓ ℓ̃
m

m̃

•
R(v)

f

R(e1)

R(e2)

Figure B.1: The same graph as in fig.2.7 The ribbon constraints for the ribbons R(e1) and
R(e2) give the relations between the AN(2) fluxes at the source and target of the ribbons:
R(ℓ) = ℓuℓ̃−1ũ−1 = I and R(m) = mvm̃−1ṽ−1 = I. The Gauss constraint G = mℓm̃−1ℓ̃−1 = I
is a AN(2) flatness around the ribbon node R(v) while the holonomy flatness constraint
F = ũ−1vuṽ−1 = I is the SU(2) flatness around the face f .

graph defines four faces, noted R(e1), R(e2), R(v) and f . The face R(v) is a ribbon node,
the face f is the face defined by the graph, while the two shaded faces, R(e1) and R(e2),
are the two ribbons. The horizontal ribbon is decorated by the variables u, ũ ∈ SU(2)
along the long links and ℓ, ℓ̃ ∈ AN(2) on the short links. The vertical ribbon is decorated
by the variables v, ṽ ∈ SU(2) along the long links and m, : w ∈ AN(2) on the short links.
The variables associated to the two ribbons, (ℓ, u, ℓ̃, ũ) and (m, v, m̃, ṽ), Poisson-commute
with each other. And each set of ribbon variables is provided with the Poisson brackets,
(2.35), (2.36) and (2.38), defined above from the symplectic structure on SL(2,C) as the
Heisenberg double SU(2) ▷◁ AN(2).
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The ribbon constraints on the two ribbons are

R(ℓ) = ℓuℓ̃−1ũ−1 = I , R(m) = mvm̃−1ṽ−1 = I . (B.5)

The constraint algebra: The two loops around the faces R(v) and f define the Gauss
constraint and the SU(2) flatness constraint, which we both root at the same corner around
the central node of the graph, as drawn on the right panel of fig.B.1:

G = mℓm̃−1ℓ̃−1 = I , F = ũ−1vuṽ−1 = I . (B.6)

Imposing the ribbon constraints, the Gauss and the SU(2) flatness constraints, amounts to
imposing the SL(2,C) flatness around the four faces of the ribbon graph. As a consequence,
the ordered oriented product of SU(2) and AN(2) group elements along any path on the
ribbon graph does not depend on the path itself but simply on where it starts and ends,
as for a flat connection theory.

The Poisson brackets of the closure and flatness constraints form a closed algebra and
therefore define a system of first class constraints:

{F1,G2} = G2rF1 −F1rG2 , {G1,G2} = −[r21,G1G2] , {F1,F2} = −[r,F1F2] . (B.7)

As described above, G generates the SU(2) gauge transformations and F generates the
translational gauge transformations. We now identify Dirac observables, that Poisson-
commute with both the Gauss and flatness constraints.

SL(2,C) Holonomies and physical observables: From the structure of the ribbon
graph, it is clear that the SL(2,C) group elements running along the ribbons, and used to
define the symplectic structure, D = ℓu and D′ = mv do not start and end at the same
point. It seems more natural to introduce SL(2,C) holonomies that wrap around the cycles
of the torus and come back to their initial point. We introduce SL(2,C) holonomies rooted
at a corner1 around the graph node, as drawn on fig.B.2:

A = ℓ̃−1ṽ , B = m−1ũ−1 , A,B ∈ SL(2,C) . (B.8)

First, A and B contain all the information about the holonomy-flux variables around
the ribbons (once we assume the ribbon flatness constraints). They are not the SL(2,C)

1We could consider the SL(2,C) holonomies rooted at any corner. This would not change anything, as
long as the two SL(2,C) holonomies are rooted at the point.
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O

A = ℓṽ

B = m̃ũ−1
ũ ũ

u u

v ṽ

v ṽ

ℓ ℓ̃
m

m̃

Figure B.2: SL(2,C) holonomies rooted at the node O. Having chosen the root node
around the central polygon and the face for both SU(2) and AN(2) gauge transformations,
these two sets of gauge transformations are combined into a single set of SL(2,C) gauge
transformations. Then SL(2,C) holonomies going around loops starting and ending at that
root node simply transform under the SL(2,C) action by conjugation and allow to define
simple Wilson loop observables.

group elements, D = ℓu and D′ = mv, around the ribbons but mix the AN(2) fluxes and
SU(2) holonomies of the different ribbons.

Second, their Poisson brackets form a closed algebra expressed in terms of the r-matrix:

{A1, A2} = [r21, A1A2] , {B1, B2} = −[r21, B1B2] , {A1, B2} = A1r21B2 +B2rA1 .
(B.9)

Third, the AN(2) Gauss constraint G and the SU(2) flatness constraint F can be repack-
aged in a single SL(2,C) flatness constraint, implying that the two SL(2,C) holonomies A
and B commute:

G = F = I ⇐⇒ C := ABA−1B−1 = I . (B.10)

This is exactly the SL(2,C) constraint for a flat SL(2,C) connection on the torus, as arising
in the Chern-Simons phase space and its combinatorial quantization [7, 8]. However, due
to the non-trivial braiding between AN(2) and SU(2) group elements which is reflected in
the non-trivial commutator between the constraints G and F , the Poisson brackets of the
SL(2,C) constraint C have a more complicated form than the closed algebra (B.7) formed
by G and F :

{C1, C2} = [r21, C1C2] + A2B2[r, C1]A−12 B−12 − A1B1[r21, C2]A−11 B−11 ∼ 0 . (B.11)

Finally, the two holonomies A and B are rooted at the same node. Their gauge trans-
formations are straightforward. Under both the SU(2) gauge transformations and the
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AN(2) gauge transformations for their components [77], the SL(2,C) holonomies A and B
transform under the action by conjugation:

A,B
g∈SU(2)7−−−−→ gAg−1, gBg−1 , A,B

b∈AN(2)7−−−−−→ bAb−1, bBb−1 . (B.12)

Moreover, one can check that the SL(2,C) flatness constraint ABA−1B−1 = I, together
with the Poisson brackets (B.9), generates these gauge transformations. This means that
Dirac observables, invariant under both rotation and translation gauge transformations,
are simply the components of A and B invariant under conjugation by SL(2,C). This
leaves us with the two complex Dirac observables given by the two Wilson loops, TrA and
TrB. We can compute their Poisson bracket using the bracket {A1, B2} :

{TrA,TrB} = Tr (A1B2(r + r21)) = −2iκ(TrAτa) (TrBτa)

= iκ

(
Tr(AB)− 1

2
TrATrB

)
, (B.13)

We recognize the Goldman bracket for gauge-invariant functions on the moduli space
Hom(π, SL(2,C))/SL(2,C), π being the fundamental group of the surface, with the bilinear
map identified with (2.30) up to a constant: B(M,N) = κ Im(Tr(MN)) forM,N ∈ sl(2,C)
[122]. This is the desired result since upon imposing constraints on all the faces A and B
indeed live on the space of flat connections, thus the Wilson loops TrA and TrB are the
projection on the corresponding moduli space.

Therefore, we have shown that the q-deformed loop gravity phase space, provided with
non-abelian AN(2) Gauss constraints and SU(2) flatness constraints, can be reformulated
as a phase space of discrete SL(2,C) connections with a simple Poisson bracket (B.9) and
SL(2,C) flatness constraints (B.10). The physical phase space is then the moduli space of
flat SL(2,C) connection with the expected Goldman bracket.

B.3 Proofs on the deformed spinors in Chapter 3 and

Chapter 5

In this appendix, we collect some lengthy proofs of propositions on the classical and quan-
tum deformed spinors in Chapter 3 and Chapter 5.

Proof B.3.1 (Proof of Proposition 3.4.1).
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We prove this proposition using the following induction result of the SU(2) transfor-
mation for any function f from [40]2.

− κ−1
(

n∏
k=1

Λ−2k

)
{TrWGG†, f} ≡ −κ−1

n∑
k=1

Λ−2k TrW (k+1){ℓek,vℓ†ek,v, f} ,

with

∣∣∣∣∣∣
W (k) = −Λ−2k ℓ†ek,vW

(k+1)ℓek,v

W (n+1) ≡ W =

(
2ϵz ϵ−
ϵ+ 0

)
, (B.14)

and the Poisson brackets

{Λ2
i , t

ϵ
eiv,A
} = (−1) 1

2
−A iκ

2
Λ2
i t
ϵ
eiv,A

,

∣∣∣∣∣∣∣∣
{Λizi, t

ϵ
eiv,−} = −iκΛ

2
i t
ϵ
eiv,+

,
{Λizi, t

ϵ
eiv,+
} = 0 ,

{Λiz̄i, t
ϵ
eiv,−} = 0

{Λiz̄i, t
ϵ
eiv,+
} = −iκΛ2

i t
ϵ
eiv,− ,

{Λ2
i , τ

ϵ
eiv,A
} = (−1) 1

2
−A iκ

2
Λ2
i τ

ϵ
eiv,A

,

∣∣∣∣∣∣∣∣
{Λizi, τ

ϵ
eiv,−} = −

iκ
2
Λiziτ

ϵ
eiv,− − iκτ

ϵ
+ ,

{Λizi, τ
ϵ
eiv,+
} = iκ

2
Λiziτ

ϵ
eiv,+

,
{Λiz̄i, τ

ϵ
eiv,−} = −

iκ
2
Λiz̄iτ

ϵ
eiv,− ,

{Λiz̄i, τ
ϵ
eiv,+
} = iκ

2
Λiz̄iτ

ϵ
eiv,+
− iκτ ϵeiv,− .

(B.15)

The braided matrix W (k) reads explicitly

W (k) =

(
2ϵ

(k)
z ϵ

(k)
−

ϵ
(k)
+ 0

)
(B.16)

where the vector components of ϵ⃗(k) are defined inductively in (3.59) or explicitly

ϵ
(k)
± =

(
n∏
i=k

Λ−2i

)
ϵ± , ϵ(k)z = ϵz +

1

2

n∑
i=k

(
n∏
j=i

Λ−2j

)
(ϵ−Λizi + ϵ+Λiz̄i) . (B.17)

2We use different convention from [40] thus the expressions look different.
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Expanding the right-hand side of (B.14), the SU(2) transformation for tϵeiv,A is

δϵt
ϵ
eiv

= −κ−1Λ−2i
(
2ϵ(i−1)z {Λ2

i , t
ϵ
eiv
}+ ϵ

(i+1)
− {Λizi, t

ϵ
eiv
}+ ϵ

(i+1)
+ {Λiz̄i, t

ϵ
eiv
}
)

=

(
ϵ
(i+1)
z ϵ

(i+1)
−

ϵ
(i+1)
+ −ϵ(i+1)

z

)
tϵeiv ,

(B.18)

δϵτ
ϵ
eiv

= −κ−1Λ−2i
(
2ϵ(i+1)
z {Λ2

i , τ
ϵ
eiv
}+ ϵ

(i+1)
− {Λizi, τ

ϵ
eiv
}+ ϵ

(i+1)
+ {Λiz̄i, τ

ϵ
eiv
}
)

=

(
ϵ
(i)
z ϵ

(i)
−

ϵ
(i)
+ −ϵ(i)z

)
τ ϵeiv ,

(B.19)

where the right-hand sides of both equations above are calculated via (3.59) and (B.15).
We have therefore proved (3.58).

Proof B.3.2 (Proof of Proposition 5.4.1).

For notational convenience, we remove the tildes of the generators of Uq(su(2)) in the
tilde sector. We consider (5.49) at n = 2. Then from the last line,

(2)τ̃ =

(
K ⊗ τ̃−

q−
1
4 (q

1
2 − q− 1

2 )J+ ⊗ τ̃− +K−1 ⊗ τ̃+

)
. (B.20)

We will show that the first line, i.e. R−112 (I⊗ τ̃)R12 gives the same object. By using (5.5)
and (5.12) to express the generators of Uq(su(2)) and the spinors in terms of the q-harmonic
oscillators, we find

Jzτ̃+ = τ̃+

(
Jz +

1

2

)
, J+τ̃+ = q−

1
4 τ̃+J+, J−τ̃+ = q−

1
4

(
τ̃+J− −Kτ̃−) (B.21)

and

Jzτ̃− = τ̃−
(
Jz −

1

2

)
, J−τ̃− = q

1
4 τ̃−J−, J+τ̃− = q

1
4

(
τ̃−J+ −Kτ̃+). (B.22)

It leads to the commutation relations

[KJ±, τ̃∓] = −q±
1
4K2τ̃±, [KJ±, τ̃±] = 0. (B.23)

Consider the first line of (5.49) for A = −, then
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Let us apply these commutation relations to (5.49) for instance. Consider first n = 2.
Use the definition (4.3) of the R-matrix, then we can compute R−112 (I⊗ τ̃−) directly.

R−112 (I⊗ τ̃−)

=q−Jz⊗Jz
∞∑
n=0

(1− q)n

[n]!
q−

n(n−1)
4

(
K−1J+

)n ⊗ (KJ−)
n
τ̃−

=q−Jz⊗Jz
∞∑
n=0

(1− q)n

[n]!
q−

n(n−1)
4

(
K−1J+

)n ⊗ τ̃− (KJ−)
n

=q−Jz⊗Jz(I⊗ τ̃−)
∞∑
n=0

(1− q)n

[n]!
q−

n(n−1)
4

(
K−1J+

)n ⊗ (KJ−)
n

=(I⊗ τ̃−)q
−Jz⊗(Jz− 1

2
)

∞∑
n=0

(1− q)n

[n]!
q−

n(n−1)
4

(
K−1J+

)n ⊗ (KJ−)
n

=(K ⊗ τ̃−)R−112 ≡ (L̃⊗ τ̃)−R−112 ,

(B.24)

as desired. Computing R−112 (I ⊗ τ̃+) takes more work as KJ− and τ̃+ do not commute.

Indeed, each time we put KJ− to the right of τ̃+, we get an extra term −q 1
2K2τ̃−. This

gives

(KJ−)
nτ̃+ = τ̃+(KJ−)

n − q−
1
4

n−1∑
k=0

K2τ̃−q
k(KJ−)

n−1

= τ̃+(KJ−)
n − q−

1
4
1− qn

1− q
K2τ̃−(KJ−)

n−1

(B.25)
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by using Jk−K
2 = qkK2Jk−. We can thus write

R−112 (I⊗ τ̃+)

=q−Jz⊗Jz (I⊗ τ̃+)
∞∑
n=0

(1− q)n

[n]!
q−

n(n−1)
4

(
K−1J+

)n ⊗ (KJ−)
n − q−

1
4 q−Jz⊗Jz

(
K−1J+ ⊗K2τ̃−

)
∞∑
n=0

(1− q)n−1

[n− 1]!
q−

(n−1)(n−2)
4

(1− q)
[n]

q−
(n−1)

2
1− qn

1− q
(
(K−1J+)

n−1 ⊗ (KJ−)
n−1)

=(I⊗ τ̃+) q
−Jz⊗(Jz+ 1

2
)

∞∑
n=0

(1− q)n

[n]!
q−

n(n−1)
4

(
K−1J+

)n ⊗ (KJ−)
n

+ (q
3
4 − q−

1
4 )
(
K−1J+ ⊗K2τ̃−

)
q−(Jz+1)⊗(Jz− 1

2
)

∞∑
n=1

(1− q)n−1

[n− 1]!
q−

(n−1)(n−2)
4

(
(K−1J+)

n−1 ⊗ (KJ−)
n−1)

=(K−1 ⊗ τ̃+)R−112 + q
1
2 (q

3
4 − q−

1
4 )
(
K−1J+K ⊗K2τ̃−K

−2)R−112

=
(
K−1 ⊗ τ̃+ + (q

1
4 − q−

3
4 )J+ ⊗ τ̃−

)
R−112 ≡ (L̃⊗ τ̃)+R−112 .

(B.26)

The generalization to any n is straightforward as

(n)τ̃A = R−1n−1,nR−1n−2,n · · ·R−12nR
−1
1n (τ̃n)AR1nR2n · · ·Rn−2,nRn−1,n

= (L̃A
A2 ⊗ I⊗ · · · )R−1n−1,nR−1n−2,n · · ·R−12n (τ̃n)A2R2n · · ·Rn−2,nRn−1,n

= (L̃A
A2 ⊗ L̃A2

A3 ⊗ I⊗ · · · )R−1n−1,nR−1n−2,n · · ·R−13n (τ̃n)A3R3n · · ·Rn−2,nRn−1,n

= · · · = L̃A
A2 ⊗ L̃A2

A3 ⊗ · · · ⊗ τ̃An−1 ⊗ I⊗ · · · .
(B.27)

Therefore, we have proved (5.49). Equations (5.50)-(5.52) can be proven using the same
method. Useful commutation relations are as follows.

Jnz J± = J±(Jz ± 1)n ,

∣∣∣∣∣∣∣∣
[K̃−1J̃±, t̃

ϵ
∓] = −q∓

1
4 K̃−2t̃ϵ±

[K̃−1J̃±, t̃
ϵ
±] = 0

K̃2t̃ϵ∓ = q∓
1
2 t̃ϵ∓K̃

2

J̃nz t̃
ϵ
∓ = t̃ϵ∓(J̃z ∓ 1

2
)n

,

∣∣∣∣∣∣∣∣
[K̃J̃±, τ̃

ϵ
∓] = −q±

1
4 K̃2τ̃

ϵ
±

[K̃J̃±, τ̃
ϵ
±] = 0

K̃2τ̃
ϵ
∓ = q∓

1
2 τ̃

ϵ
∓K̃

2

J̃nz τ̃
ϵ
∓ = τ̃

ϵ
∓(J̃z ∓ 1

2
)n

.
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B.4 Proofs of theorems in Chapter 6

Proof B.4.1 (Proof of Theorem 6.2.2.).

There are two types of terms in (6.40), whose action on spin network states is now
presented. First,

d+1∏
i=p+1

Eϵi,ϵi−1
eiei−1

1

Ne1v2

(
p∏
i=2

Eϵi,ϵi−1
eiei−1

oiϵi
Neivi

)
|{je}⟩ =

1

[dk1 ]

p∏
i=2

oiϵi
[dji ]

d+1∏
i=2

δki,ji+ ϵi
2
[dki ][dji ](−1)ki+ki−1+li

{
ki ki − ϵi

2
1
2

ki−1 − ϵi−1

2
ki−1 li

}
q

|{ki}i=1,...,d, {je}e̸∈∂f⟩ , (B.28)

where we have applied the action (6.36) of E
ϵi,ϵi−1
eiei−1 on the intertwiner iji−1jili at the node

where ei−1 , ei and e
′
i meet for all i = 1, · · · , d. Each operator 1/Neivi acts before the shift

operator E
ϵi,ϵi−1
eiei−1 thus the result picks up a factor 1/[dji ]. For i = 1, . . . , d, the spin ji is

shifted to ji +
ϵi
2
after the action of E

ϵi,ϵi−1
eiei−1 . The spins of of links not on the boundary of

the face f remain unchanged. In addition, 1
Ne1v2

acts after Eϵ2,ϵ1
e2e1

thus the result picks up

the factor 1/[dk1 ]. As each link is incident to two nodes, the assigned spin shows up in two
intertwiners thus the term

√
[dki ][dji ] appears twice in the result, which gives the factor

[dki ][dji ]. The q-6j symbols and the sign factors naturally follows from (6.36).

Secondly,

d+1∏
i=p+1

Eϵi,ϵi−1
eiei−1

1

Nepvp+1

(
d+1∏
i=p+1

E−ϵ̃i,−ϵ̃i−1
eiei−1

oiϵi
Neivi

)
|{je}⟩

=
1

[d
jp−

ϵ̃p
2

]

d+1∏
i=p+1

oiϵi
[dji ]

δ
ki,ji−

ϵ̃i
2
+

ϵi
2

(−1)ki−
ϵi
2
+ki−1−

ϵi−1
2

+li(−1)ki+ki−1+li [d
ji−

ϵ̃i
2

][d
ji−1−

ϵ̃i−1
2

]

√
[dji ][dki ][dji−1

][dki−1
]

{
ki − ϵi

2
ji

1
2

ji−1 ki−1 − ϵi−1

2
li

}
q

{
ki − ϵi

2
ki

1
2

ki−1 ki−1 − ϵi−1

2
li

}
q

|{ji}i=1,...,p, {ki}i=p+1,...,d, {je}e ̸∈∂f⟩

=
[dkp ]

[dk1 ][dk1− ϵ1
2
]

d+1∏
i=p+1

oiϵiδki,ji− ϵ̃i
2
+

ϵi
2

(−1)ki−
ϵi
2
+ki−1−

ϵi−1
2

+li(−1)ki+ki−1+li [dki− ϵi
2
]2[dki ]{

ki − ϵi
2

ji
1
2

ji−1 ki−1 − ϵi−1

2
li

}
q

{
ki − ϵi

2
ki

1
2

ki−1 ki−1 − ϵi−1

2
li

}
q

|{ji}i=1,...,p, {ki}i=p+1,...,d, {je}e̸∈∂f⟩ .

(B.29)
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Here, two shift operators act on each site for i = p + 1, · · · , d + 1 and we denote ki =
ji− ϵ̃i

2
+ ϵi

2
. The first shift operator E

−ϵ̃i,−ϵ̃i−1
eiei−1 (in the bracket) acts on the spin network state

and shifts ji and ji−1 to ji − ϵ̃i/2 and ji−1 − ϵ̃i−1/2 respectively. It also gives the first q-6j

symbol in the third line and the term (−1)ki−
ϵi
2
+ki−1−

ϵi−1
2

+li
√

[dji ][dji−1
][d

ji−
ϵ̃i
2

][d
ji−1−

ϵ̃i−1
2

].

The result picks up a factor 1/[dji ] by the action of 1/Neivi before the shift operator. In

addition, 1/Nepvp+1 acts on the spin network state after E
−ϵ̃p+1,−ϵ̃p
ep+1ep and thus brings a factor

1/[d
jp−

ϵ̃p
2

]. The action of the second shift operator E
ϵi,ϵi−1
eiei−1 shifts the spins ji − ϵ̃i/2 and

ji−1− ϵ̃i−1/2 to ki and ki−1 respectively and brings the second q-6j symbol in the third line

as well as the term (−1)ki+ki−1+li
√
[dki ][dki−1

][dki− ϵi
2
][dki−1−

ϵi−1
2
]. Note that the spin j1 = k1

and jp = kp are kept unchanged in the result as ϵ1 = ϵ̃1 and ϵp = ϵ̃p. The last equality is
the rearrangement of the result.

Putting them together, using the orthogonality of the spin network states, ⟨{ke}|{je}⟩ ∝∏
e δke,je and eliminating the common terms

1

[dk1 ]

d+1∏
i=p+1

[dki− ϵi
2
][dki ](−1)ki+ki−1+li

{
ki ki − ϵi

2
1
2

ki−1 − ϵi−1

2
ki−1 li

}
q

leads to the expected difference equations.

Proof B.4.2 (Proof of Theorem 6.3.1).

There are four faces involved in the move on each side. Clearly, |ψi⟩ and |ψf⟩ satisfy
the same constraints associated to faces which are not among those four. Therefore, we
can focus on the four faces involved in the move, and for symmetry reasons, we can simply
look at the constraints on two faces: the face f12 which has e1, e2 in its boundary, and the
face f14 which has e1, e4 in its boundary.

Face f12. It has a different boundary on Γf and Γi, due to the disappearance of e5. On Γi,
there are constraints where Eϵ5,ϵ1

e5e1
and Eϵ2,ϵ5

e2e5
are both among the A-terms of the constraint

(6.42). Let us denote the two reference edges (e1 and ek in (6.42)) e and e′, which may be
e1 and/or e2. Then the difference equations (6.42) read∑
{ϵ̃}

(
∏
e→
c.c.
e′

A)
∑
ϵ̃5=±

Aϵ̃5,ϵ̃1o5
(k5, k1, k4)A

ϵ̃2,ϵ̃5
o2

(k2, k5, k3)ψi

(
k1 −

ϵ̃1
2
, k2 −

ϵ̃2
2
, k3, k4, k5 −

ϵ̃5
2
, . . .

)
+ (−1)d12,i−dee′αϵe,ϵe′ (ke, ke′)

∑
{ϵ̃}

(
∏
e′→

c.c.
e

B)ψi(k1, k2, k3, k4, k5, . . . ) = 0, (B.30)
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e e′

e1 e2

e5

B-terms

A-terms

e e′

e1 e2

e0

B-terms

A-terms

Figure B.3: A graphical representation of (B.30) on the LHS and (B.31) on the RHS.

where d12,i denotes the number of boundary edges of f12 in Γi and dee′ the number of
edges from e to e′ counter-clockwise. Notice that ϵ̃1 (respectively ϵ̃2) is fixed if e = e1
(respectively if e′ = e2) and summed over otherwise. We have indicated in ψi only the
spins which are involved in the move.

We have written
∑
{ϵ̃}(
∏

e→
c.c.
e′ A) and

∑
{ϵ̃}(
∏

e′→
c.c.
eB) schematically the coefficients of

the equation which are associated to corners not involved in the move. Here
∑
{ϵ̃}(
∏

e→
c.c.
e′ A)

is the product of the A-terms over the corners from e to e′ going counter-clockwise, except
for the two corners with e5, whose A-terms are distinguished. Then

∑
{ϵ̃}(
∏

e′→
c.c.
eB) is the

product of the B-terms over the corners from e′ to e counter-clockwise. This is depicted
in the Fig.B.3.

On the other hand, a state on Γf must also satisfy a constraint along the face f12 with
the two reference edges e and e′. It reads

⟨{ke}Γf
|Hf12,e,e′ |ψf⟩ ∝

∑
{ϵ̃}

(
∏
e→
c.c.
e′

A)Aϵ2,ϵ1o2
(k2, k1, k0)ψf

(
k1 −

ϵ̃1
2
, k2 −

ϵ̃2
2
, k3, k4, k0, . . .

)
+ (−1)d12,i−dee′+1αϵe,ϵe′ (ke, ke′)

∑
{ϵ̃}

(
∏
e′→

c.c.
e

B)ψf (k1, k2, k3, k4, k0, . . . ). (B.31)

There is also a constraint where Eϵ̃1,ϵ̃2
e1e2

gives rise to a B-term, but as we have shown this is
equivalent to the above constraint. Here it is important that the products of the A-terms
and B-terms over all corners except the one where e1 and e2 meet are the same as in (B.30).
The reason is obviously that those terms are local and the 2-2 move does not involve their
corners. As in (B.30), ϵ̃1 and ϵ̃2 may be fixed or summed over.
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We now plug (6.51) into (B.31) to check that it vanishes, provided the constraint (B.30)
holds. First compute, with j1,2 := k1,2 − ϵ̃1,2

2
,

Aϵ̃2,ϵ̃1o2
(k2, k1, k0)ψf (j1, j2, k3, k4, k0, . . . )

= o2ϵ̃2[dk2 ][dk0 ]
∑
j5

(−1)(1−o5)j5+(1−o0)k0(−1)j1+j2+k3+k4(−1)k0+k1+k2{
k1 j1

1
2

j2 k2 k0

}
q

{
j1 j2 k0
k3 k4 j5

}
q

ψi(j1, j2, k3, k4, j5, . . . ) . (B.32)

The Biedenharn-Elliott identity on q-6j symbols gives precisely

(−1)j1+j2+k3+k4(−1)k0+k1+k2
{
k1 j1

1
2

j2 k2 k0

}
q

{
j1 j2 k0
k3 k4 j5

}
q

=
∑
k5

[dk5 ](−1)k5+j5+
1
2

{
k1 k2 k0
k3 k4 k5

}
q

{
k1 j1

1
2

j5 k5 k4

}
q

{
k5 j5

1
2

j2 k2 k3

}
q

. (B.33)

Setting j5 = k5 − ϵ̃5
2
to change the summation over j5 to one over ϵ̃5 (there are no other

values of j5 allowed by the triangular inequalities on the q-6j symbol), we get

Aϵ2,ϵ1o2
(k2, k1, k0)ψf (j1, j2, k3, k4, k0, . . . ) = o2ϵ2[dk2 ][dk0 ]

∑
k5,ϵ̃5

(−1)(1−o5)j5+(1−o0)k0(−1)k5+j5+
1
2

[dk5 ]

{
k1 k2 k0
k3 k4 k5

}
q

{
k1 j1

1
2

j5 k5 k4

}
q

{
k5 j5

1
2

j2 k2 k3

}
q

ψi(j1, j2, k3, k4, j5, . . . ) . (B.34)

Using ϵ5 = (−1) 1
2
+j5−k5 , we find (−1)k5+j5+ 1

2 = ϵ5(−1)2k5 . We also use (−1)(1−o5)j5 =
o5(−1)(1−o5)k5 and notice that a q-6j symbol can be factored. Thus,

⟨{ke}Γf
|Hf12,e,e′ |ψf⟩ ∝

∑
k5,ϵ̃5

(−1)(1−o5)k5+(1−o0)k0(−1)k1+k2+k3+k4
{
k1 k2 k0
k3 k4 k5

}
q

[dk0 ](∑
{ϵ̃}

(
∏
e→
c.c.
e′

A)o5ϵ5[dk5 ](−1)2k5(−1)k1+k2+k3+k4o2ϵ2[dk2 ]
{
k1 j1

1
2

j5 k5 k4

}
q

{
k5 j5

1
2

j2 k2 k3

}
q

ψi(j1, j2, k3, k4, j5, . . . ) + (−1)d12,i−dee′αϵe,ϵe′ (ke, ke′)
∑
{ϵ̃}

(
∏
e′→

c.c.
e

B)ψi(k1, k2, k3, k4, k5, . . . )

)
.

(B.35)
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We now recognize the coefficients in (B.30),

⟨{ke}Γf
|Hf12,e,e′ |ψf⟩ ∝

∑
k5

(−1)(1−o5)k5+(1−o0)k0(−1)k1+k2+k3+k4
{
k1 k2 k0
k3 k4 k5

}
q

[dk0 ](∑
{ϵ̃}

(
∏
e→
c.c.
e′

A)
∑
ϵ̃5=±

Aϵ̃5,ϵ̃1o5
(k5, k1, k4)A

ϵ̃2,ϵ̃5
o2

(k2, k5, k3)ψi(j1, j2, k3, k4, j5, . . . )

+ (−1)d12,i−dee′αϵe,ϵe′ (ke, ke′)
∑
{ϵ̃}

(
∏
e′→

c.c.
e

B)ψi(k1, k2, k3, k4, k5, . . . )

)
, (B.36)

and conclude that (B.31) vanished provided (B.30) and (6.51).

Face f14. We now perform the same analysis on the constraints which act on the face
f14. We use the same notation as for the face f12, i.e. let e and e′ be two reference edges
around f14 and consider the Hamiltonian constraints associated to them on Γi and Γf . On
Γi, the Hamiltonians contain the operator Eϵ1,ϵ4

e1e4
, which without loss of generality can be

considered to give rise to an A-term. The constraints on the spin network coefficients of
|ψi⟩ read∑
{ϵ̃}

(
∏
e→
c.c.
e′

A)Aϵ̃1,ϵ̃4o1
(k1, k4, k5)ψi(j1, k2, k3, j4, k5, . . . )

+ (−1)d14,i−dee′αϵe,ϵe′ (ke, ke′)
∑
{ϵ̃}

(
∏
e′→

c.c.
e

B)ψi(k1, k2, k3, k4, k5, . . . ) = 0, (B.37)

with j1 = k1 − ϵ̃1/2, j4 = k4 − ϵ̃4/2. The sign ϵ̃1 (respectively ϵ̃4) is fixed if e = e1
(respectively if e′ = e4) and summed over otherwise. Here,

∏
e→
c.c.
e′ A is the product of the

A-terms from e to e′ counter-clockwise, except for the one on the corner of e1, e4 which has
been singled out. As for

∏
e′→

c.c.
eB, it is the product of the B-terms going counter-clockwise

from e′ to e.

On Γf , we need to look at two types of constraints. Either the operators Eϵ̃0,ϵ̃4
e0e4

and
Eϵ̃1,ϵ̃0
e1e0

which enter Hf14,e,e′ on Γf both contribute to A-terms of the constraint (or both
to B-terms but this is the same), or one gives rise to an A-term and the other one to a
B-term.
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In case they both give rise to A-terms, we are in the same situation as in our previous
analysis on the face f12, with the role of Γi and Γf exchanged. Since the relation (6.51)
between |ψf⟩ and |ψi⟩ can be inverted with the same form, we have nothing to prove.

If Eϵ̃0,ϵ̃4
e0e4

contributes to a B-term, and Eϵ̃1,ϵ̃0
e1e0

contributes to an A-term, this means that
e0 = e is a reference edge chosen for the constraint. The Hamiltonians of this type on Γf
are H

ϵ0,ϵe′ ,...,ϵ4
f14,e0,e′

and they are labeled by signs for all the edges from e′ to e0 counter-clockwise.
The matrix elements read

⟨{ke}Γf
|Hϵ0,ϵe′ ,...,ϵ4

f14,e0,e′
|ψf⟩ ∝

∑
{ϵ̃}

(
∏
e1→

c.c.
e′

A)Aϵ̃1,ϵ0o1
(k1, k0, k2)ψf (j1, k2, k3, j4, j0, . . . )

+ (−1)d14,f−de0e′αϵ0,ϵe′ (k0, ke′)
∑
{ϵ̃}

(
∏
e′→

c.c.
e4

B)Bϵ0,ϵ̃4
o0

(j0, j4, k3)ψf (k1, k2, k3, l4, k0, . . . ) , (B.38)

where ϵ0 is fixed (but ϵ̃4 only is if e′ = e4) and j0,4 = k0,4 − ϵ0,4/2, and l4 = j4 + ϵ̃4/2.

We now plug (6.51) into the above matrix elements. We first look at the A-term,

Aϵ1,ϵ0o1
(k1, k0, k2)ψf (j1, k2, k3, j4, j0, . . . ) = [dj0 ]

∑
k5

o1ϵ1[dk1 ](−1)(1−o5)k5+(1−o0)j0

(−1)k0+k1+k2(−1)j1+k2+k3+j4
{
j1 k2 j0
k3 j4 k5

}
q

{
k1 j1

1
2

j0 k0 k2

}
q

ψi(j1, k2, k3, j4, k5, . . . ). (B.39)

The relevant Biedenharn-Elliott identity is

(−1)k0+k1+k2+j0+j1+k3+k5
{
j1 k2 j0
k3 j4 k5

}
q

{
k1 j1

1
2

j0 k0 k2

}
q

=
∑
l4

[dl4 ](−1)j4+l4+
1
2

{
j4 l4

1
2

k1 j1 k5

}
q

{
j4 l4

1
2

k0 j0 k3

}
q

{
k1 k2 k0
k3 l4 k5

}
q

. (B.40)

As for the B-term,∑
l4

Bϵ0,ϵ̃4
o0

(j0, j4, k3)ψf (k1, k2, k3, l4, k0, . . . ) =
∑
k5,l4

o0ϵ0[dj0 ][dk0 ](−1)j0+k3+j4

(−1)(1−o5)k5+(1−o0)k0(−1)k1+k2+k3+l4
{
j4 l4

1
2

k0 j0 k3

}
q

{
k1 k2 k0
k3 l4 k5

}
q

ψi(k1, k2, k3, l4, k5, . . . ).

(B.41)
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We recognize the two same q-6j symbols as in the Biendenharn-Elliott identity above. We
can thus factor them out, so that the matrix elements of the Hamiltonian are proportional
to

⟨{ke}Γf
|Hϵ0,ϵe′ ,...,ϵ4

f14,e0,e′
|ψf⟩ ∝

∑
k5,l4

(−1)j0+k3+j4(−1)(1−o5)k5+(1−o0)k0
{
j4 l4

1
2

k0 j0 k3

}
q

(−1)k1+k2+k3+l4
{
k1 k2 k0
k3 l4 k5

}
q

[dj0 ]

(∑
{ϵ̃}

(
∏
e1→

c.c.
e′

A)o0o1ϵ1[dk1 ][dl4 ](−1)k2+j4−j0−k5

(−1)j4+l4+
1
2 (−1)j0+k3+j4(−1)k1+k2+k3+l4

{
j4 l4

1
2

k1 j1 k5

}
q

× ψi(j1, k2, k3, j4, k5, . . . )

+ (−1)d14,f−de0e′αϵ0,ϵe′ (k0, ke′)
∑
{ϵ̃}

(
∏
e′→

c.c.
e4

B)o0ϵ0[dk0 ]ψi(k1, k2, k3, l4, k5, . . . )

)
(B.42)

It now suffices to show that the expression into brackets vanishes thanks to (B.37). Let us
take care of the signs:

(−1)k2+j4−j0−k5(−1)j4+l4+
1
2 (−1)j0+k3+j4(−1)k1+k2+k3+l4

= (−1)2(k2−k5+k3)(−1)4j4(−1)
1+ϵ̃4

2 (−1)k1+l4+k5 = −ϵ̃4(−1)k1+l4+k5 .

Replace the sign factor in the bracket, we get

−
∑
{ϵ̃}

(
∏
e1→

c.c.
e′

A)o0o1ϵ1[dk1 ][dl4 ](−1)j1−k1+j4−l4(−1)j1+l4+k5+
1
2

{
j4 l4

1
2

k1 j1 k5

}
q

ψi(j1, k2, k3, j4, k5, . . . ) + (−1)d14,f−de0e′αϵ0,ϵe′ (k0, ke′)
∑
{ϵ̃}

(
∏
e′→

c.c.
e4

B)o0ϵ0[dk0 ]

ψi(k1, k2, k3, l4, k5, . . . ) = −o0ϵ̃4[dl4 ]
(∑
{ϵ̃}

(
∏
e1→

c.c.
e′

A)Aϵ1,ϵ̃4o1
(k1, l4, k5)ψi(j1, k2, k3, j4, k5, . . . )

+ (−1)d14,i−de4e′αϵ̃4,ϵe′ (l4, ke′)
∑
{ϵ̃}

(
∏
e′→

c.c.
e4

B)ψi(k1, k2, k3, l4, k5, . . . )
)
. (B.43)

The expression into brackets on the RHS is exactly the constraint (B.37) on Γi with the
choice e = e4 of reference edge and arbitrary ϵ̃4 fixed.
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Proof B.4.3 (Proof of Theorem 6.3.2).

Consider two reference edges e, e′ in F ∪ f , and the associated constraint such that
Eϵ̃1,ϵ̃2
e1e2

is an A-term (without loss of generality since A- and B-terms can be exchanged).
Its matrix elements ⟨{ke}|HF∪f,e,e′ |ψf⟩ read

⟨{ke}|HF∪f,e,e′|ψf⟩ ∝
∑
{ϵ̃}

(
∏
e→
c.c.
e′

A)Aϵ̃2,ϵ̃1o2
(k2, k1, l2)ψf (j1, j2, . . . )

+ (−1)df−dee′αϵe,ϵe′ (ke, ke′)
∑
{ϵ̃}

(
∏
e′→

c.c.
e

B)ψf (k1, k2, . . . ), (B.44)

with j1,2 = k1,2− ϵ̃1,2/2, and df denotes the number of boundary edges surrounding F ∪ f .
Here,

∏
e→
c.c.
e′ A is the product of the A-terms from e to e′ counter-clockwise, except for the

one on the corner of e1, e2 which has been singled out. We will show those matrix elements
vanish as soon as the constraints on f and on F are both satisfied on |ψi⟩, given (6.55).

On f , we have the constraint, for fixed ϵ1, ϵ2, and j1,2 = k1,2 − ϵ1,2/2,

B−ϵ2,−ϵ1o2
(k2, k1, l2)ψi(k0, j1, j2, k3, k4, . . . )

= αϵ1,ϵ2(k1, k2)
∑
ϵ0=±

Aϵ0,−ϵ2o0,f
(k0, j2, k3)A

−ϵ1,ϵ0
o1

(j1, k0, k4)ψi(k0 −
ϵ0
2
, k1, k2, k3, k4, . . . ), (B.45)

where o0,f is the orientation of e0 relative to f . On F there is a constraint similar to (B.44),
from the Hamiltonians HF,e,e′ with the same signs ϵs. It reads,

∑
{ϵ̃}

(
∏
e→
c.c.
e′

A)
∑
ϵ̃0=±

Aϵ̃0,ϵ̃4o0,F
(k0, k4 +

ϵ̃4
2
, k1)A

ϵ̃3,ϵ̃0
o3

(k3 +
ϵ̃3
2
, k0, k2)

ψi(k0 −
ϵ̃0
2
, k1, k2, k3 −

ϵ̃3
2
, k4 −

ϵ̃4
2
, . . . )

+ (−1)df−dee′αϵe,ϵe′ (ke, ke′)
∑
{ϵ̃}

(
∏
e′→

c.c.
e

B)ψi(k0, k1, k2, k3, k4, . . . ) = 0 , (B.46)

where o0,F is the orientation of e0 as the boundary of F , which is opposite to o0,f . Here ϵ̃4
(respectively ϵ̃3) is fixed if e = e4 (respectively if e′ = e3) and summed over otherwise.

We now specialise (B.45) and (B.46) to k0 = 0, where they simplify a lot. First, that
enforces ϵ0 = − in (B.45) and ϵ̃0 = − in (B.46), so that those sums reduce to a single term.
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In (B.46) we further take k3 = k2 and k4 = k1. All q-6j-symbols with a spin equal to 0 can

be evaluated as { j1 k1
1
2

1
2

0 k4
}q = δj1,k4(−1)j1+k1+

1
2/
√

[2][dj1 ].

As a consequence, (B.45) gives

B−ϵ2,−ϵ1o2
(k2, k1, l2)ψi(0, j1, j2, j2, j1, . . . )

= −αϵ1,ϵ2(k1, k2)o0,fo1ϵ2
[dj1 ]

[2]
√

[dj1 ][dj2 ]
ψi(

1

2
, k1, k2, j2, j1, . . . ), (B.47)

where k3 = j2 and k4 = j1 on the last term is enforced by the special evaluations of the
q-6j-symbols with a spin 0. (B.46) gives∑
{ϵ̃}

(
∏
e→
c.c.
e′

A)o0,fo3ϵ1
[dk2 ]

[2]
√
[dk1 ][dk2 ]

ψi(
1

2
, k1, k2, j2, j1, . . . )

+ (−1)df−dee′αϵe,ϵe′ (ke, ke′)
∑
{ϵ̃}

(
∏
e′→

c.c.
e

B)ψi(0, k1, k2, k2, k1, . . . ) = 0 . (B.48)

The term ψi(
1
2
, k1, k2, j2, j1, . . . ) can be eliminated using (B.47). Moreover we turn the B-

coefficient of this equation into anA-coefficient using−Aϵ2,ϵ1o2
(k2, k1, l2) = B−ϵ2,−ϵ1o2

(k2, k1, l2).
It is then enough to recognize ψf as given in (6.55) to obtain that (B.44) vanishes.

Proof B.4.4 (Proof of Theorem 6.3.3).

Let us write the constraints on the triangular face. There is one constraint for each
pair of edges of the boundary. For the pair (e2, e6), for instance, one gets∑

ϵ1=±

Aϵ1,ϵ2o1
(k1, k2, k3)A

ϵ6,ϵ1
o6

(k6, k1, k5)ψi(j1, j2, k3, k4, k5, j6, . . . )

+ αϵ2,ϵ6(k2, k6)B
ϵ2,ϵ6
o2

(j2, j6, k4)ψi(k1, k2, k3, k4, k5, k6, . . . ) = 0 . (B.49)

Here ji = ki − ϵi/2, for i = 1, 2, 6. The coefficients are

Aϵ1,ϵ2o1
(k1, k2, k3) = o1ϵ1[dk1 ](−1)k1+k2+k3

{
k1 j1

1
2

j2 k2 k3

}
q

,

Aϵ6,ϵ1o6
(k6, k1, k5) = o6ϵ6[dk6 ](−1)k1+k5+k6

{
k6 j6

1
2

j1 k1 k5

}
q

,

Bϵ2,ϵ6
o2

(j2, j6, k4) = o2ϵ2[dj2 ](−1)j2+k4+j6
{
k6 j6

1
2

j2 k2 k4

}
q

.

(B.50)
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We thus have the recursion∑
ϵ1=±

o1o2o6[dk1 ](−1)2k1+k2+k3+k5+k6+
1−ϵ1

2
+

ϵ2
2
+

ϵ6
2

{
k1 j1

1
2

j2 k2 k3

}
q

{
k6 j6

1
2

j1 k1 k5

}
q

ψi(j1, j2, k3, k4, k5, j6, . . . ) + (−1)k2+k4+k6
{
k6 j6

1
2

j2 k2 k4

}
q

ψi(k1, k2, k3, k4, k5, k6, . . . ) = 0,

(B.51)

and similarly for the pairs (e1, e2), (e6, e1). A similar result for the flat case was found in
[44], where q is set to 1. Those recursions determine the dependence of ψi on j1, j2, j6 up
to a single initial condition. As the recursion involve three terms, it may seem like several
initial conditions are required. However, at k1 = 0, only two terms are left in the recursion,
as shown in (B.47). This means that from the initial condition ψi(0, k3, k3, k4, k5, k5), one
gets ψi(

1
2
, k3 − ϵ2/2, k3, k4, k5, k5 − ϵ6/2). Then this determines ψi for arbitrary k1, k2, k6.

The result is known to be

ψi(k1, k2, k3, k4, k5, k6, . . . ) =

{
k1 k2 k3
k4 k5 k6

}
q

ϕ(k3, k4, k5, . . . ), (B.52)

where ϕ(k3, k4, k5, . . . ) is independent of k1, k2, k6. To determine ϕ, we set k1 = 0,

ϕ(k3, k4, k5, . . . ) =

{
0 k3 k3
k4 k5 k5

}−1
q

ψi(0, k3, k3, k4, k5, k5, . . . )

= (−1)k3+k4+k5
√

[dk3 ][dk5 ]ψi(0, k3, k3, k4, k5, k5, . . . ). (B.53)

We conclude with Theorem 6.3.2.

B.5 Proofs of propositions in Chapter 7

Proof B.5.1 (Proof of Proposition 7.2.1).

Recall that the coherent spin network state for a tetrahedron graph is

∑
{je}

scohetet (ge) =

∫
SU(2)4

4∏
v=1

dhv e
∑6

e=1[ζ̃e|h
−1
t(e)

gehs(e)|ζe⟩ . (B.54)
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The evaluation on identity gives the vertex amplitude (7.47). To glue the vertex amplitudes
associated to adjacent tetrahedra, we make use of the identity in the representation space
Vj ⊗ V∗j spanned by the coherent states [143]

IVj⊗V∗j =
1

(2j)!

∫
dµ(ζ)|j, ζ⟩⟨j, ζ| = 1

(2j)!

∫
dµ(ζ)|j, ζ][j, ζ| . (B.55)

To do the gluing, we will use the following identity,∫
dµ(ξ1)

∫
dµ(ξ2) e

[ζ|g|ξ1⟩+⟨ξ1|ξ2]+[ξ2|h|ζ′⟩

=
∑

j,k,l∈N/2

1

(2j)!(2k)!(2l)!

∫
dµ(ξ1)

∫
dµ(ξ2) [j, ζ|g|j, ξ1⟩⟨k, ξ1|k, ξ2][l, ξ2|h|l, ζ ′⟩

=
∑
j∈N/2

1

(2j)!
[j, ζ|gh|j, ζ ′⟩ = e[ζ|gh|ζ

′⟩ .

We have used (B.55) to obtained the third line. This product rule can be applied to
contract terms between adjacent tetrahedra, say T1 and T2, connected with the triangle
whose 2D dual is a node v, while 3D dual is an oriented dual edge e∗. Say the source dual
vertex s(e∗) is dual to T1 and the target t(e∗) is dual to T2. Consider the graphs (∂T1)

∗ and
(∂T2)

∗ both including the node v. To identify the triangles from T1 and T2 is to identify the
three links e, e′, e′′ ∈ v from the two graphs. However, the spinors associated to links from
different graphs are different. For instance, consider a link e ∈ v, the spinor ζT1e (or ζ

s(e∗)
e

with the dual language) on (∂T1)
∗ is not the same as ζT2e (or ζ

t(e∗)
e ) on (∂T2)

∗. Integrating
over the relevant terms from vertex amplitudes of s(e∗) and t(e∗), and the edge amplitude
of e∗, one gets (we write only integration for one link e for short)∫

dµ(ζs(e
∗)

e )

∫
dµ(ζt(e

∗)
e ) e[ζ

v1 |(hT1v1 )
−1
h
T1
v |ζ

s(e∗)
e ⟩ e⟨ζ

s(e∗)
e |ζt(e

∗)
e ] e[ζ

t(e∗)|(hT2v )
−1
h
T2
v2
|ζv2 ⟩

=e[ζ
v1 |(hT1v1 )

−1
h
T1
v (hT2v )

−1
h
T2
v2
|ζv2 ⟩ = e[ζ

v1 |(hT1v1 )
−1
hvh

T2
v2
|ζv2 ⟩ ,

(B.56)

with hv ≡ hT1v
(
hT2v
)−1

.

The contraction (B.56) can be repeatedly performed along a closed chain (e∗1e
∗
2...e

∗
ne
∗
1) ∈

T* (or equivalently (△1△2 · · ·△n△1 ∈ T ) surrounding an edge ē shared by n tetrahedra,
as illustrated in fig.7.3. The edge amplitude can be absorbed into the vertex amplitudes.
As a result, one simply flips of the spinors [ζ

t(e∗)
e | associated to the target t(e∗) of e∗ to
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their dual ⟨ζt(e
∗)

e | and identify the spinors for the same link from different tetrahedra. In
this way, then the gluing of a close chain of tetrahedra reads∫ n∏

i=1

dµ(ζvi)e⟨ζ
v1 |(hT1v1 )

−1
h
T1
v2
|ζv2 ⟩+⟨ζv2 |(hT2v2 )

−1
h
T2
v3
|ζv3 ⟩+···+⟨ζvn |(hTnvn )

−1
hTnv1 |ζ

v1 ⟩

=

∫
dµ(ζv1)e⟨ζ

v1 |Gē|ζv1 ⟩ (B.57)

with Gē ≡
(
hT1v1
)−1

hv2hv3 · · ·hvnhTnv1 . Different from the magnetic number basis, each dual
plaquette is weighted by a factor ⟨ζv1|Gē|ζv1⟩ depending on the the spinor attached to the
(randomly chosen) base node v1 and the Wilson loop around the dual plaquette, or a factor
(⟨ζv1|ζv1⟩− 1) (or (⟨ζf∗,T1|ζf∗,T1⟩− 1) depending only on the spinor attached to the v1 [74].
At the end of the day, one gets the partition function expressed as

ZT[M, ∂M] =

∫
SU(2)

(∏
v∈Γ

dhv

) ∏
f∗∈T∗

∫
dµ(ζv1)(1 + ⟨ζv1|Gē|ζv1⟩)e⟨ζ

v1 |Gē|ζv1 ⟩

=

∫
SU(2)

(∏
v∈Γ

dhv

) ∏
f∗∈T∗

∫
dµ(ζv1)(⟨ζv1|ζv1⟩ − 1⟩)e⟨ζv1 |Gē|ζv1 ⟩

=

(∫
SU(2)

∏
△∈T

dh△

)∏
ē∈T

δ(Gē) =

(∫
SU(2)

∏
e∗

dge∗

)∏
f∗

δ(
−→∏

e∗∈∂f∗ge∗) ,

(B.58)

where an integration by part is used to get the second line. This matches the results by
using the spin network basis as shown in Subsection 7.1.2.

Proof B.5.2 (Proof of Proposition 7.2.2).

This is a re-arrangement of the vertex amplitude and edge amplitude compared to
(7.47)-(7.49). The difference between (7.47) and (7.51) is a factorial factor. We first apply
the identity

1

(n− 1)!
=

1

2πi

∮
|s|=r0

ds
es

sn
(B.59)

to rewrite the vertex amplitude (7.47) so that it is related to the SGF (7.50):

scohetet (I) =
∑
j1···j6

(
4∏
v=1

1

2πi

∮
dsv

esv

sJv+2
v

(Jv + 1)!

∫
SU(2)

dhv

)
6∏
e=1

1

(2je)!
[je, ζe|h−1t(e)hs(e)|je, ζ̃e⟩ .

(B.60)
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Then we expand the exponential of the edge amplitude (7.48)

e
∑

e∈v⟨ζ
s(e∗)
e |ζt(e

∗)
e ] =

∑
k1···k3∈N/2

∏
e∈v

⟨ke, ζs(e
∗)

e |ke, ζt(e
∗)

e ]

(2ke)!
. (B.61)

The spinor integration in the total amplitude expression will select ke ≡ je , ∀e from (B.60)
and (B.61), thus we are safe to redefine Jv =

∑
e∈v ke. This moves the contour integral

from the vertex amplitude to the edge amplitude, leaving the vertex amplitude purely
given by the SGF. As such, each edge amplitude absorbs two contour integrals, one from
the tetrahedron s(e∗) and the other from t(e∗), and is written as

Ae∗({ζe}, {we}) =
1

(2πi)2

∮
ds

∮
dt

es+t

(st)2

∑
k1···k3∈N/2

∏
e∈v

1

(st)ke
⟨ke, ζs(e

∗)
e |ke, ζt(e

∗)
e ]

(2ke)!

=
1

(2πi)2

∮
ds

∮
dt

1

(st)2
e
s+t+ 1√

st

∑
e∈v⟨ζ

s(e∗)
e |ξt(e

∗)
e ]

=
1

(2πi)2

∮
ds

∮
dt

∑
k,m,n∈N

1

k!m!n!
sk−2−

n
2 tm−2−

n
2

(∑
e∈v

⟨ζs(e∗)e |ξt(e∗)e ]

)k

=
∞∑
k=0

1

(k + 1)!2(2k)!

(∑
e∈v

⟨ζs(e∗)e |ξt(e∗)e ]

)2k

= 0F3(; 2, 2,
1

2
;

(∑
e∈v⟨ζ

s(e∗)
e |ξt(e

∗)
e ]

)2
4

)

(B.62)

thus (7.52). We have used the identity ⟨ke, ζs(e
∗)

e |ke, ζt(e
∗)] ≡ ⟨ζs(e

∗)
e |ξt(e

∗)
e ]2ke to get the

second line. To arrived at the fourth line, we have identified n with 2k − 2 and m with
k followed with a change of variable k → k + 1 since 1

2πi

∮
dt tn = 1 for n = −1 and zero

otherwise.

Proof B.5.3 (Proof of Proposition 7.2.4).

Let us write explicitly, using the definition of the scaleless spin network state (7.54), the
relevant part of the right-hand side of (7.55) in terms of the spinors on the two triangles
to be glued (see fig.7.4a). Denote the links on (the dual of) the boundary ∂C1 of the left
3-cell as e’s. For each link e, the source s(e) (resp. target t(e)) is assigned a spinor ζe
(resp. ζ̃e) and an auxiliary spinor γe (resp. γ̃e). Also, denote the links on (the dual of)
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the boundary ∂C2 of the right 3-cell as c’s. For each link c, the source s(c) (resp. target
t(c)) is assigned a spinor ξc (resp. ξ̃c) and an auxiliary spinor ηc (resp. η̃c). With no loss
of generality, we can fix the orientation of the relevant links. We fix that the links e1, e2, e3
on the left triangle are outgoing from the node dual to the left triangle and c1, c2, c3 are
incoming towards the node dual to the right triangle. Let C1 to be the source of the dual
edge dual to the glued triangle and C2 the target, then the edge amplitude for the gluing
is

A∂C1∩∂C2
e∗ = 0F3(; 2, 2,

1

2
;

(∑3
e=1⟨ζe|ξ̃e]

)2
4

) =
∞∑
k=0

1

(k + 1)!2(2k)!

(
3∑
e=1

⟨ζe|ξ̃e]

)2k

.

The right hand side of (7.55) reads

∫ (∏
e′

dµ(γe′)dµ(γ̃e′)
∏
c′

dµ(ηc′)dµ(η̃c′)

)

exp

[∑
e′

⟨γe′ |γ̃e′ ] +
∑
c′

⟨ηc′ |η̃c′ ] +
∑
α′

[ζs(α′)|ζt(α′)⟩[γs(α′)|γt(α′)⟩+
∑
β′

[ξs(β′)|ξt(β′)⟩[ηs(β′)|ηt(β′)⟩

]
∫ ( 3∏

e=1

dµ(γe)dµ(η̃e)

)
e
∑3

e=1(⟨γe|γ̃e]+⟨ηe|η̃e])
∫ ( 3∏

e=1

dµ(ζe)dµ(ξ̃e)

)

exp

 ∑
e,e′=1,2,3
e≺e′

[ζe|ζe′⟩[γe|γe′⟩+ [ξ̃e|ξ̃e′⟩[η̃e|η̃e′⟩


∑

l∈N

1

(l + 1)!2(2l)!

(
3∑
e=1

⟨ζe|ξ̃e]

)2l
 . (B.63)

We have denoted the irrelevant part with primes in the first line. The second line till the
first term in the fourth line is the part of Ssl

∂C1
({ζe, ζ̃e}) and Ssl

∂C2
({ξc, ξ̃c}) relevant to the

triangles to be glued. The last term in the fourth line is the edge amplitude gluing C1 and
C2. We first perform the spinor integration for ζ1,2,3 and ξ̃1,2,3.

Let us introduce the complex triples, following Bargmann’s trick [28],

a = (ζ−1 , ζ
−
2 , ζ

−
3 ) , b = (ζ+1 , ζ

+
2 , ζ

+
3 ) , c = (ξ̃−1 , ξ̃

−
2 , ξ̃

−
3 ) , d = (ξ̃+1 , ξ̃

+
2 , ξ̃

+
3 ) ,

α = (γ−1 , γ
−
2 , γ

−
3 ) , β = (γ+1 , γ

+
2 , γ

+
3 ) , σ = (η̃−1 , η̃

−
2 , η̃

−
3 ) , ρ = (η̃+1 , η̃

+
2 , η̃

+
3 ) .

(B.64)

ā = (ā1, ā2, ā3)
T is the conjugate of a, and we denote the measure for the a as dµ3(a) =

1
π3da1dā1da2dā2da3dā3. Likewise for b, c, d, α, β, σ, ρ. For simplicity, we also denote Ξ =
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α× β = ([ξ2|ξ3⟩, [γ3|γ1⟩, [γ1|γ2⟩) and Ψ = σ× ρ = ([η̃2|η̃3⟩, [η̃3|η̃1⟩, [η̃1|η̃2⟩. We then arrange
them in the matrices

A =

 Ξ1 Ξ2 Ξ3

a1 a2 a3
b1 b2 b3

 , B =

 Ψ1 Ψ2 Ψ3

c1 c2 c3
d1 d2 d3

 , Γ =

 0 0 0
0 0 −1
0 1 0

 . (B.65)

One can thus rewrite the integral of ζ1,2,3 and ξ̃1,2,3 in the second and third lines of
(B.63) in a compact way:

1

(2πi)2

∮
dt

∮
ds

es+t

(st)2

∫ ( 3∏
e=1

dµ(ζe)dµ(ξ̃e)

)
e
detA+detB+ 1√

st
Tr(A†ΓB̄)

=
1

(2πi)2

∮
dt

∮
ds

es+t

(st)2

∫
dµ3(a)dµ3(b)dµ3(c)dµ3(d)

e−ā·a−b̄·b−c̄·c−d̄·de(Ξ×b)·a+(Ψ×d)·ce
1√
st
(b̄·c̄−ā·d̄)

,

(B.66)

where we have used the contour integral expression for the inverse Gamma function 1
(l+1)!

=
1

2πi

∮
dt et

tl+2 . One can calculate this Gaussian integral for a, b, c, d one by one. Note that
for a complex n-ple bfv and a complex n × n matrix A whose Hermitian part is positive
definite, one has the Gaussian integral∫

dµn(v)e
−v̄·Av+u·v+u′·v̄ = detA−1eu·A

−1u′
, (B.67)

where u and u′ are independent n-ples.

After integrating out a, b, c, one can use (B.67) to perform the remaining integral for d:∫
dµ3(d) e

−d̄·d e
1
st
(Ψ×d̄)·(Ξ×d) =

∫
dµ3(d) e

d̄·(I−M
st

)d =
1

det(I− M
st
)
=

1

(1− Ψ ·Ξ
st

)2
, (B.68)

where the matrix M has entries

Mij = (Ψ · Ξ)δij − ΨiΞj , i, j = 1, 2, 3 (B.69)

so that d̄ ·Md = (Ψ · Ξ)(d̄ · d) − (Ψ · d)(Ξ · d̄) = (Ψ × d̄) · (Ξ × d). The explicit form of
Ψ · Ξ is

Ψ · Ξ =(α× β) · (σ × ρ) = (α · σ)(β · ρ)− (α · ρ)(β · σ)

=[γ1|γ2⟩[η̃1|η̃2⟩+ [γ2|γ3⟩[η̃2|η̃3⟩+ [γ3|γ1⟩[η̃3|η̃1⟩ .
(B.70)
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Now we perform the counter integral to complete the integration in (B.66):

1

(2πi)2

∮
dt

∮
ds

es+t

(st)2
1

(1− Ψ ·Ξ
st

)2

=
1

(2πi)2

∮
dt

∮
ds

∞∑
m,n,k=0

k + 1

m!n!

smtn

s2t2

(
Ψ · Ξ
st

)k
=
∞∑
k=0

1

k!(k + 1)!
(Ψ · Ξ)k

=C1(Ψ · Ξ) ,

(B.71)

where C1(z) is the Bessel-Clifford function of order one. A Bessel-Clifford function of order

n expands as Cn(x) :=
∑∞

k=0
xk

k!(k+n)!
. The explicit form (B.70) of Ψ ·Ξ allows us to express

C1(Ψ · Ξ) into an SU(2) integral by the following beautiful identity [37]∫
SU(2)

dg e
∑

i[ζi|g|ζ̃i⟩ =
∞∑
k=0

1

k!(k + 1)!

(∑
i<j

[ζi|ζj⟩[ζ̃i|ζ̃j⟩

)k

, ∀ζi, ζ̃i ∈ C2 . (B.72)

Therefore,

C1(Ψ · Ξ) =

∫
SU(2)

dg e
∑3

e=1[γe|g|η̃e⟩ . (B.73)

We next combine this result with the integral of the auxiliary spinors in the second line
of (B.63). It is straightforward to calculate that∫

SU(2)

dg

∫ ( 3∏
e=1

dµ(γe)dµ(η̃e)

)
e
∑3

e=1(⟨ηe|η̃e]+[η̃e|g|γe⟩+⟨γe|γ̃e])

=

∫
SU(2)

dg e
∑3

e=1⟨ηe|g|γ̃e]

(B.74)

Finally, one performs the SU(2) transformation with g on all the auxiliary spinors (γe, γ̃e)→
(gγe , gγ̃e) from C1, which preserves the inner products ⟨γe′|γ̃e′ ] and [γs(α′)|γt(α′)⟩ of the
irrelevant auxiliary spinors (see the first line of (B.63)). Thanks to the SU(2)-invariant

property of the spinor Haar measure, one can rewrite (B.74) into
∫
SU(2)

dg e
∑3

e=1⟨ηe|γ̃e] =

e
∑3

e=1⟨ηe|γ̃e], which is exactly the link term for a general scaleless spin network state (see
(7.54) and fig.7.4b). Combining this result with the irrelevant part in the first line of (B.63),
one arrives at a scaleless spin network state Ssl

∂(C1∪C2)
on the union boundary C1∪C2 after

gluing.
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Proof B.5.4 (Proof of Proposition 7.2.5).

Before gluing, the 3-cell boundary ∂C and the dual graph is as shown in fig.7.5a. The
right-hand side of (7.56) reads (we again denote the irrelevant part with primes.)

∫ (∏
e′

dµ(γe′)
∏
e′

dµ(γ̃e′)

)
e
∑

e′ ⟨γe′ |γ̃e′ ]+
∑

α′ [ζs(α′)|ζt(α′)⟩[γs(α′)|γt(α′)⟩

∫ ( 3∏
e=1

dµ(γe)dµ(η̃e)

)
e⟨γ1|η̃1]+

∑2
e=1(⟨γe|γ̃e]+⟨ηe|η̃e])

∫ ( 3∏
e=1

dµ(ζe)dµ(ξ̃e)

)
exp

 ∑
e,e′=1,2,3
e≺e′

[ζe|ζe′⟩[γe|γe′⟩+ [ξ̃e|ξ̃e′⟩[η̃e|η̃e′⟩


∑

l∈N

1

(l + 1)!2(2l)!

(
3∑
e=1

⟨ζe|ξ̃e]

)2l
 (⟨ζ1|ζ1⟩ − 1) . (B.75)

With no loss of generality, we have fixed the half links incident to the left node to be
outgoing and denote the spinors and auxiliary spinors on these half links to be ζ1,2,3 and
γ1,2,3 respectively, and fixed the half links incident to the right node to be incoming and
denote the spinors and auxiliary spinors on these half links to be ξ̃1,2,3 and η̃1,2,3 respectively.
The difference of the relevant integral in (B.75) (the last three lines) from that in (B.63)
are the terms e⟨γ1|η̃1], since the two auxiliary spinors ξ1 and η̃1 are from the same link e1,
and (⟨ζ1|ζ1⟩ − 1) which is the face amplitude on edge ē given that the left node is chosen
to be the base node.

We now claim that the face amplitude (⟨ζ1|ζ1⟩ − 1) can be replaced by (⟨γ1|γ1⟩ − 1)
without changing the amplitude. To prove that, we first rewrite e⟨γ1|η̃1] by introducing two
intermediate spinor integrals,

e⟨γ1|η̃1] =

∫
dµ(γ̃1)dµ(η1)e

⟨γ1|γ̃1]+⟨η1|η̃1] e[γ̃1|η1⟩ (B.76)

so that the second line in (B.75) can be expressed in a symmetric way:∫
dµ(γ̃1)dµ(η1)e

[γ̃1|η1⟩
∫ ( 3∏

e=1

dµ(γe)dµ(η̃e)

)
e
∑3

e=1(⟨γe|γ̃e]+⟨ηe|η̃e]) . (B.77)
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We next notice for the edge amplitude that each term of the summation is a homogenous
holomorphic polynomial of spinors ζ1,2,3 and ξ̃1,2,3 of order 2l. Each term of order 2l can
survive under the spinor integration only by matching with a homogenous anti-holomorphic
polynomial of spinors ζ1,2,3 and ξ̃1,2,3 of order 2l. This means we can safely move the term∑

l∈N
1

(l+1)!2
from the last line of (B.75) to the third line, then the last two lines become

∫ ( 3∏
e=1

dµ(ζe)dµ(ξ̃e)

)∑
k∈N

1

k!

 ∑
e,e′=1,2,3
e≺e′

[ζe|ζe′⟩[γe|γe′⟩+ [ξ̃e|ξ̃e′⟩[η̃e|η̃e′⟩


k

δk,2l

∑
l∈N

1

(l + 1)!2(2l)!

(
3∑
e=1

⟨ζe|ξ̃e]

)2l
 (⟨ζ1|ζ1⟩ − 1)

=

∫ ( 3∏
e=1

dµ(ζe)dµ(ξ̃e)

)∑
l∈N

1

(l + 1)!2(2l)!

 ∑
e,e′=1,2,3
e≺e′

[ζe|ζe′⟩[γe|γe′⟩+ [ξ̃e|ξ̃e′⟩[η̃e|η̃e′⟩


2l

e
∑3

e=1⟨ζe|ξ̃e](⟨ζ1|ζ1⟩ − 1) .

(B.78)

Now the third line in (B.78) is a summation of homogenous holomorphic polynomial of the
auxiliary spinors ξ1,2,3 and η̃1,2,3, each of order 2l. For the same reason, one can further
move the term

∑
l∈N

1
(l+1)!2

to the second line of (B.75). We also separate zetae and ξ̃e in

the last line of (B.78) by adding six intermediate spinor integral over ζ̃1,2,3 and ξ1,2,3. As a
result, the last three lines of (B.75) can be rewritten as

∫
dµ(γ̃1)dµ(η1)e

[γ̃1|η1⟩
∫ ( 3∏

e=1

dµ(γe)dµ(η̃e)

)∑
l∈N

1

(l + 1)!2(2l)!

(
3∑
e=1

(⟨γe|γ̃e] + ⟨ηe|η̃e])

)2l

∫ ( 3∏
e=1

dµ(ζe)dµ(ξ̃e)

)
exp

 ∑
e,e′=1,2,3
e≺e′

[ζe|ζe′⟩[γe|γe′⟩+ [ξ̃e|ξ̃e′⟩[η̃e|η̃e′⟩


∫ ( 3∏

e=1

dµ(ζ̃e)dµ(we)

)
e
∑3

e=1[ζ̃e|ξe⟩ e
∑3

e=1⟨ζe|ζ̃e]+⟨ξ3|ξ̃e](⟨ζ1|ζ1⟩ − 1) . (B.79)
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We now realize from comparing (B.79) and the last three lines of (B.75) that ξ1,2,3 and z1,2,3
take the exchanged expressions. This means one can simply replace the face amplitude
(⟨z1|z1⟩− 1) in (B.75) with (⟨ξ1|ξ1⟩− 1) without changing the total amplitude. This allows
us to use the same Bargmann’s trick as in (B.64)-(B.71) as well as the identity (B.73) so
that the last three lines of (B.75) arrives at∫

dµ(γ̃1)dµ(η1)dµ(γ1)e
[γ̃1|η1⟩

∫
SU(2)

dg e⟨γ1|γ̃1]+⟨η1|g|γ1⟩ e⟨η2|g|γ̃2]+⟨η3|g|γ̃3](⟨γ1|γ1⟩ − 1)

=

∫
SU(2)

dg

∫
dµ(γ1)(⟨γ1|γ1⟩ − 1)e⟨γ1|g|γ1⟩e⟨η2|g|γ̃2]+⟨η3|g|γ̃3]

=

∫
SU(2)

dg δ(g) e⟨η2|g|γ̃2]+⟨η3|g|γ̃3] = e⟨η2|γ̃2]+⟨η3|γ̃3] ,

(B.80)

which is the link-term for a general scaleless spin network state. To arrive at the third line
of (B.80), we have used the identity for delta distribution on SU(2)

δ(g) =

∫
dµ(ζ)(⟨ζ|ζ⟩ − 1)e⟨ζ|g|ζ⟩ . (B.81)

Combining the result of (B.80) and the irrelevant part in the first line of (B.75), one arrives
at a scaleless spin network state Ssl

∂C′ on the 3-cell boundary ∂C′ after gluing.

Proof B.5.5 (Proof of Proposition 7.2.6).

This gluing can be visualized as collapsing a cone into a triangle bounded with two
edges connecting the apex and two points on the base circle, as shown in fig.7.6a. With no
loss of generality, we again consider half links associated to one of the nodes (the left one
in fig.7.6a) are outgoing and are assigned the spinors ζ1,2,3 and half-links associated to the
other node are incoming and are assigned spinors ξ̃1,2,3. With this setting, it is not hard to
get a similar expression for the relevant part of the right-hand side of (7.58) as in (B.80)
after integrating out ζ1,2,3, ξ̃1,2,3 and other auxiliary spinors, which takes the form (we use
here the spinors zeta1,2 instead of the auxiliary spinors γ1,2 as in (B.80) which does not
change the final result.)∫

SU(2)

dg

∫
dµ(z1)(⟨z1|z1⟩ − 1) e⟨z1|g|z1⟩ e⟨z2|g|z2⟩−⟨z2|z2⟩e⟨η4|g|ξ̃3]

=

∫
SU(2)

dg δ(g)e⟨z2|g|z2⟩−⟨z2|z2⟩e⟨η4|ξ̃3]

=e⟨η4|ξ̃3] .

(B.82)
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The result is again the link-term for the general scaleless spin network state. Together with
the irrelevant part of the right-hand side of (7.58), we arrive at the scaleless spin network
state for the 3-cell boundary after gluing, thus the left-hand side of (7.58).

Proof B.5.6 (Proof of Proposition 7.3.1).

We consider we,e′,e′′ with e, e′, e′′ ∈ v to be the configurations of the propagator and
obtain the stationary points by the vanishing derivative of w̄e,e′,e′′ . For instance, the deriva-
tives of w̄0,1

e give

∂P ({ζe}, {ξe})
∂ξ̄0e

= ζ̄1e

∞∑
k=0

2k

(k + 1)!2(2k)!
z2k−1e−r

2 − ξ0e 0F3(; 2, 2,
1

2
;
z2

4
)e−r

2

= ζ̄1e 0F3(; 3, 3,
3

2
;
z2

4
) z e−r

2 − ξ0e 0F3(; 2, 2,
1

2
;
z2

4
)e−r

2

= 0 ,

∂P ({ζe}, {ξe})
∂ξ̄1e

= −ζ̄0e
∞∑
k=0

2k

(k + 1)!2(2k)!
z2k−1e−r

2 − ξ1e 0F3(; 2, 2,
1

2
;
z2

4
)e−r

2

= −ζ̄0e 0F3(; 3, 3,
3

2
;
z2

4
) z e−r

2 − ξ1e 0F3(; 2, 2,
1

2
;
z2

4
)e−r

2

= 0 .

This saddle point formula is valid for the spinors ξe, ξe′ , ξe′′ associated to three links incident
to the same node, thus there are totally six such formulas, which can be summarized as
follows. Denote A := 0F3(; 3, 3,

3
2
; z

2

4
) z e−r

2
and B := 0F3(; 2, 2,

1
2
; z

2

4
)e−r

2
, then∣∣∣∣∣∣∣

A|ζe] + B|ξe⟩ = 0

A|ζe′ ] + B|ξe′⟩ = 0

A|ζe′′ ] + B|ξe′′⟩ = 0

−→

∣∣∣∣∣∣∣
B2[ξe|ξe′⟩ = A2⟨ζe|ζe′ ]
B2[ξe′ |ξe′′⟩ = A2⟨ζe′|ζe′′ ]
B2[ξe′′ |ξe⟩ = A2⟨ζe′′ |ζe]

. (B.83)

The corresponding angle coupling from different tetrahedra have the same ratio A2/B2.
Recall the stationary analysis for the angle coupling norms in (7.78). According to the
trigonometric identity

tan
ϕee′

2
tan

ϕe′e′′

2
+ tan

ϕe′e′′

2
tan

ϕe′′e
2

+ tan
ϕe′′e
2

tan
ϕee′

2
= 1 , (B.84)

the angle coupling norms satisfy the closure constraint |Xee′ |2+ |Xe′e′′ |2+ |Xee′′ |2 = 1, thus

|B|4 = |B|4
(
|[ξe|ξe′⟩|2 + |[ξe′ |ξe′′⟩|2 + |[ξe′′ |ξe⟩|2

)
= |A|4

(
|⟨ζe|ζe′ ]|2 + |⟨ζe′|ζe′′ ]|2 + |⟨ζe′′ |ζe]|2

)
= |A|4 .

(B.85)

Taking the norm of the right equations in (B.83), we arrive at (7.80).
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