
Systematically Detecting Access
Control Flaws in the Android

Framework

by

Zeinab El-Rewini

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2022

© Zeinab El-Rewini 2022

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

This thesis is based on two papers that I co-authored. Chapter 4 and portions of Chapter
3 are taken from [44], which was co-authored by my supervisor, Professor Yousra Aafer,
and accepted for publication in ACM CCS 2021 [26].

Chapter 5 and portions of Chapter 3 are taken from a submitted paper that is co-authored
by Professor Yousra Aafer and Zhuo Zhang, a Ph.D. student at Purdue University.

iii

Abstract

Android’s permission model is used to regulate access to the Application Program Inter-
faces (APIs) within the Android system services, which provide access to sensitive system
resources, such as the camera and microphone. To successfully invoke sensitive APIs, a
caller must hold one or more Android permissions.

Like all access control systems, the Android permission model is vulnerable to anomalies
in security policy enforcement, including inconsistent access control enforcement. These
inconsistencies occur when there are multiple paths to a sensitive resource, some with
stronger access control enforcement than others. Attackers can exploit an inconsistency to
improperly access a sensitive resource by taking the path with the weakest access control
checks.

Many access control anomalies are a natural byproduct of the fragmented Android
ecosystem, in which various vendors and carriers customize the baseline Android Open
Source Project (AOSP) code base for their unique business needs. One consequence of this
customization is software bloat, which is known to expand the attack surface. Though the
security impacts of customization in the Android ecosystem have been studied extensively,
the literature is missing a study on customization-induced code bloat and its effect on
Android access control flaws.

Additionally, though a significant body of research has been dedicated to Android
access control inconsistency detection, the existing state-of-the-art tools experience high
false positive rates, as they precisely link access control checks to resources. That is, if is a
sensitive resource is shown to be control-dependent on an access control check, the existing
tools consider that check required for that resource with full confidence. In practice,
this assumption is faulty as an access control check may not target all control-dependent
resources.

In this thesis, we make two significant contributions to address both gaps in the lit-
erature. First, we conduct the first large-scale longitudinal study analyzing the security
impact of Residual APIs, which are unused custom APIs that have been forgotten over
the course of a customized AOSP code base’s evolution. We find that Residuals are preva-
lent in the code bases of all major Original Equipment Manufacturers (OEMs) and that
they result in security-critical vulnerabilities, including cases of inconsistent access control
enforcement.

Second, we introduce a novel probabilistic inconsistency detection approach that in-
troduces a measure of uncertainty to the linkage between resources and access control
checks. Our approach uncovers implicit relations between framework-level resources and

iv

protections and leverages probabilistic inference techniques to generate recommendations
that link resources to protections with a degree of uncertainty. We find that our approach
improves existing tools by reducing false positives.

v

Acknowledgements

I would like to thank my supervisor, Professor Yousra Aafer, for her support and
guidance throughout my master’s studies. Thank you also to my thesis readers, Professors
N. Asokan and Urs Hengartner, for their invaluable feedback.

I greatly appreciate Parjanya Vyas’s helpful presence in the early days of our static
analysis exploration. Additionally, I am thankful for Zhuo Zhang’s generosity in sharing
his probabilistic inference knowledge.

In particular, I would like to thank my parents, Hesham El-Rewini and Sherine Talaat,
and my siblings, Bassel and Yassmine, for their love and patience.

vi

Dedication

To Baba, Mama, Bassel, and Muni, my best friends.

vii

Table of Contents

List of Figures xii

List of Tables xiii

1 Introduction 1

1.1 Our Contributions . 3

1.2 Organization . 4

2 Background 5

2.1 Ecosystem . 5

2.2 Software Stack . 6

2.3 Access Control Mechanisms . 7

3 Related Work 10

3.1 Vendor Customization . 10

3.2 Access Control Flaw Detection . 11

4 ReM 14

4.1 Introduction . 14

4.2 Organization . 15

4.3 Residual APIs . 16

4.4 Problem . 18

viii

4.4.1 Unsound Security Features . 18

4.4.2 Obsolete Access Control Enforcement 20

4.5 Our Solution . 21

4.6 Overview . 23

4.7 Automated Detection of Residuals in Custom
ROMs . 24

4.7.1 Identifying Likely Residuals in a ROM 25

4.7.2 Characterizing and Confirming Residuals 26

4.8 Automated Security Evaluation of Custom Residuals 28

4.8.1 Evaluation Scope . 28

4.8.2 Unsound Security Features . 28

4.8.3 References to Deprecated Security Features 31

4.8.4 Obsolete Access Control Enforcement 31

4.9 Large-Scale Measurement Study . 32

4.9.1 Study Setup . 32

4.9.2 Data Collection and Processing . 32

4.9.3 Analysis Complexity . 34

4.9.4 Residuals Landscape . 35

4.9.5 Residual Lifespans . 37

4.9.6 New versus Inherited Residuals . 37

4.10 Residuals Security Landscape . 38

4.10.1 Unsound Security Features . 39

4.10.2 Obsolete Access Control Enforcement 39

4.10.3 Comparison with Non-Residual APIs 40

4.11 Exploiting Residuals . 41

4.11.1 End-to-end POCs . 41

4.11.2 Other Impacts . 44

ix

5 Poirot 46

5.1 Introduction . 46

5.2 Organization . 47

5.3 Limitations of Existing Inconsistency Detection Tools 48

5.3.1 Inaccurate Identification of Access Control Targets 48

5.3.2 Failure to Identify Implicit Access Control Inconsistencies 50

5.3.3 Inferring Implicit Inconsistencies 52

5.4 Approach . 53

5.4.1 Basic Facts Collection . 54

5.4.2 Access Control Constraint Detection 54

5.4.3 Implication Constraint Detection 55

5.5 Access Control Constraints . 55

5.5.1 Definitions . 55

5.5.2 Basic Access Control Facts . 56

5.5.3 Access Control Constraints . 57

5.6 Implication Constraints . 58

5.6.1 Structural Constraints . 58

5.6.2 Semantic Hints . 64

5.6.3 Data-Flow Hints . 65

5.6.4 Access Control Aggregation. 67

5.7 Poirot in Action . 67

5.8 Evaluation . 68

5.8.1 (RQ1) Evaluating Poirot’s Protection Recommendations 69

5.8.2 (RQ2) Impact of Cut-off Criteria 70

5.8.3 (RQ3) Impact of Prior Probability Values 71

5.8.4 (RQ4) Impact of Probabilistic Constraints 71

5.8.5 (RQ5) Runtime and Memory Overhead 72

5.8.6 (RQ6 & RQ7) Detecting Inconsistencies 73

5.8.7 (RQ8) Suppressing False Positives of Other Tools 74

5.9 Case Study . 75

x

6 Conclusion 78

References 79

xi

List of Figures

2.1 The Android Ecosystem . 6

2.2 The Android Software Stack . 7

2.3 Checking a Caller’s Uid . 8

2.4 Demonstrating an Inconsistent Access Control Enforcement 8

4.1 Configuration Checks in a Custom LG API 17

4.2 Usage of Undefined Permissions in Residual APIs 19

4.3 Access Control Evolution of Two LG APIs 21

4.4 Multiple framework entry points leading to the custom API IUrspMan-

ager.setUrspBlackListUidRule(...) . 22

4.5 Distribution of the # of Entry Points per vendor 35

4.6 Residuals Breakdown . 36

4.7 Violin Distribution of the Active and Residual Life Spans 37

4.8 Inherited vs Introduced Residuals . 38

4.9 Flaws Breakdown in Residual and Active APIs 40

4.10 Average API Access Control Updates . 41

5.1 False Positive Due to Inaccurate Identification of Targets 49

5.2 Probabilistic inference of Access Control Checks and Implicit Inconsistencies 51

5.3 A Simple Language for Android Functions 56

5.4 Defining the Random Variables . 60

5.5 Breakdown of Probabilistic Constraints in AOSP 72

xii

List of Tables

4.1 Collected ROMs . 33

4.2 Unsound Security Features Use . 39

4.3 Confirmed Exploitable Residuals . 42

4.4 Impacts of 250 Randomly-Selected Residuals 45

5.1 Fact and Observation Definition . 59

5.2 Probabilistic Inference Rules . 62

5.3 Evaluation of APIs with High Confidence Access Control Recommendations 70

5.4 Impact of Cut-off criteria. 71

5.5 Accuracy (%) of Poirot under different prior probabilities for two constraints. 71

5.6 Average Overhead Measurement . 72

5.7 Inconsistency Detection Results of Poirot 73

5.8 False Positives of AceDroid and Kratos+. 75

5.9 Summary of Discovered Protection Inconsistencies that can lead to Security
Issues . 76

xiii

Chapter 1

Introduction

In the latter 2000s, the mobile operating system (OS) scene witnessed the emergence of
Android, a new open-source mobile operating system touted as the first “truly open and
comprehensive platform for mobile devices” [28]. Android was introduced by the Open
Handset Alliance, a consortium of technology firms that imagined the OS as an innovative
and cost-effective alternative to existing proprietary operating systems [27]. Despite an
inauspicious start with the release of the HTC Dream/T-Mobile G1, which received mixed
reviews [38], Android quickly overtook iOS to become the most popular mobile operating
system in the world. As of May 2022, it held a worldwide market share of 71.45% for
mobile operating systems [74].

Unfortunately, Android’s rise in popularity has made it an attractive target for threat
actors. In recent years, a number of very serious vulnerabilities in the Android OS have
been discovered. Several Android system service APIs were found to be vulnerable to
privilege escalation and information disclosure attacks [17, 14, 16, 15]. The Stagefright
vulnerabilities [43] allowed attackers to remotely execute malicious code on Android de-
vices. Similarly, the BlueFrag [68] vulnerability enabled zero-click remote code execution
attacks to be conducted using Bluetooth. More recently, security researchers have discov-
ered Android’s susceptibility to spyware installed at the direction of nation-state actors.
This includes the NSO Group’s Pegasus spyware for Android (known as Chrysaor) [63] as
well as Cytrox’s Predator spyware [61].

To address these grave security challenges, researchers have been working to systemat-
ically detect vulnerabilities at all levels of the Android software stack, from the top-most
application layer [55, 85, 59] to the underlying Linux kernel [72, 39, 66]. In particular,
the Android framework layer has received significant research attention [29, 46, 31, 22, 41,

1

70, 21, 50] since this layer relies on the Android permission model to regulate access to
sensitive system resources, such as the microphone and camera.

Researchers have also been working to understand how Android security vulnerabilities
arise. Several studies [94, 25, 56] have demonstrated that the extensive customization of
the Android Open Source Project (AOSP) plays a major role. Before making its way into
consumer devices, AOSP is passed through a lengthy customization pipeline. Hardware
manufacturers, device manufacturers and mobile carriers all customize the code base ac-
cording to their company-specific priorities [24]. This customization has resulted in an
extremely fragmented Android ecosystem that is conducive to the proliferation of security
flaws. One class of such flaws is the hanging attribute reference[24], which is a reference to
an undefined attribute, such as a package name. Attackers can re-define such an attribute
to bypass security checks. Other customization-induced security flaws include vulnerable
pre-loaded applications [81] and patch delay [54].

One of the consequences of customization is code bloat, which has both performance and
security implications. Although the security impacts of Android customization have been
extensively studied, no prior studies have examined the effects of customization-induced
software bloat in the context of Android security.

To address this gap, we investigate the security impact of API bloat in custom Android
ROMs. We develop ReM, a suite of static analysis techniques to detect custom private
APIs that are defined but not used. We refer to these bloated APIs as Residuals. We
perform the first large-scale, cross-version study of Residual APIs and find that they have
a prominent presence in customized AOSP, comprising up to 42% of private APIs in some
models. We also find that 23% of Residuals lead to serious access control flaws including
deprecated security attributes, which attackers can re-define to their advantage, and access
control inconsistencies that expose sensitive resources.

One such flaw is inconsistent security policy enforcement, which occurs when one path
to an API has stronger access control requirements than another. These flaws are common
in customized AOSP, as access control enforced within vanilla AOSP may be watered down
or completely missing after customization. Prior work [21, 70] has shown that inconsistent
permission enforcement allows attackers to perform a range of attacks, including denial-of-
service, privilege escalation and battery drainage attacks.

To reduce the prevalence of access control inconsistencies, researchers have proposed
a number of techniques that involve systematically analyzing both vanilla and custom
AOSP. These include permission mapping approaches [29, 46, 31, 22, 41], which deduce
the required access control enforcement for framework resources, and access control in-
consistency detection approaches [70, 21, 50], which identify cases of inconsistent access

2

control enforcement.

In our analysis of inconsistent access control enforcement within Residual APIs, we
observed inherent limitations in the existing inconsistency detection approaches. First and
foremost, the existing approaches consider an access control check p to be required for
an API a if a is control-dependent on p. However, we discover that existing approaches
neglect to consider other implicit relations beyond control dependence. Additionally, the
existing tools treat the API-to-access control linkage as precise when, in reality, this linkage
is always associated with some degree of uncertainty.

To address these limitations, we introduce a novel probabilistic approach that can be
used to recommend access control enforcement for framework-level resources, which include
APIs, field accesses and internal methods. This approach considers the linkage between a
resource and an access control enforcement to be inherently uncertain and thus reduces the
false positives seen in previous inconsistency detection works. Additionally, we consider
a wide range of implicit relations that help probabilistically deduce that a resource and
protection should be linked.

1.1 Our Contributions

We make the following contributions:

• We present ReM, a set of new analysis techniques that detect and evaluate the risks
associated with Residuals, custom APIs that are no longer used but continue to be
defined in a code base. Our techniques are specially tailored to detect evolution-
induced access control vulnerabilities. Using ReM, we conduct the first systematic
large-scale study of Residuals. Our study unveils the extent and prevalence of Resid-
uals and, more importantly, demonstrates that Residuals do indeed open the door to
various attack vectors. We were able to exploit eight different Residuals to develop
keyloggers, perform data injection attacks and even launch activities with system
privilege.

• We introduce Poirot, a tool that generates probabilistic protection recommendations
for Android framework resources. Poirot relies on both probabilistic inference and
static program analysis to account for the uncertainties pertaining to access control
implementations. The tool supplements the traditional reachability analysis with
seven semantic, structural and data-flow relations that provide insight into the rela-
tionships between framework resources and protections. We discuss our evaluation

3

of Poirot, which sheds light on the advantages of a probabilistic approach in reducing
false positives. We also present a number of Poirot-identified inconsistencies that we
were able to exploit, including one inconsistency that allowed us to crash and reboot
the system.

1.2 Organization

In Chapter 2, we provide a general background on the Android ecosystem, software stack
and access control mechanisms. In Chapter 3, we discuss related work on vendor cus-
tomization and the detection of access control flaws in Android. In Chapter 4, we move to
present ReM and our large-scale study of bloated Residual APIs in custom Android ROMs.
Chapter 5 discusses our next-generation inconsistency detection tool, Poirot. Finally, we
provide concluding remarks in Chapter 6.

4

Chapter 2

Background

In this chapter, we provide a general background on Android. We begin by discussing the
Android ecosystem in Section 2.1 before moving to an overview of the Android software
stack in Section 2.2. Finally, Section 2.3 discusses Android access control mechanisms and
presents an example of inconsistent access control enforcement.

2.1 Ecosystem

Before reaching consumers, the Android operating system undergoes an extensive cus-
tomization process. A typical upgrade operation includes customization at multiple points
along the supply chain. In [58], Jones et al. describe this process in detail for security
updates and operating system updates. The general pattern is that changes are first made
by Google and chipset vendors. Then Original Equipment Manufacturers (OEMs), such
as Samsung or Lenovo, make customizations in conjunction with mobile carriers, such as
Bell or T-Mobile. Both OEMs and carriers are responsible for providing the end prod-
uct to consumers. Figure 2.1 illustrates the diverse Android ecosystem and indicates that
even a single OEM may implement different customizations based on the device model and
version, adding further fragmentation.

To address the fragmentation problem, Google has deployed a number of initiatives,
including Android One, Project Treble and Project Mainline [58]. Android One is a pro-
gram where certain device models run a barely-customized version of Android in exchange
for some years worth of OS upgrades and security updates. Project Treble separates ven-
dor implementations from the stock AOSP, while Project Mainline allows end users to

5

Vendors

Carriers

Android Open
Source Project (AOSP)

Customization

Customization

End User
Android Version

10 11 12

Device Model

Figure 2.1: The Android Ecosystem

update system components through Google Play without going through the OEMs. De-
spite these initiatives, AOSP customization is still under-regulated and regularly results in
access control flaws.

2.2 Software Stack

Figure 2.2 presents an overview of the Android software stack. The top-most layer is the
Android application layer, which consists of both system and third-party applications [2].
Below the application layer is the Android middleware, which contains native C/C++ li-
braries, the Android Runtime and the Android framework [31]. The Android framework
contains a collection of Java-based libraries and services that implement the Android ap-
plication program interfaces (APIs) [29]. Each service within the framework allows the
application access to a specific system resource [31].

Binder, Android’s primary inter-process communication mechanism, can be used to
communicate with the framework services [31]. An interface must first be defined in An-
droid Interface Definition Language (AIDL). An AIDL compiler can then be used to gen-
erate Proxy and Stub classes. During a remote procedure call, a Proxy, which is located
at the client-side, can transform the parameters into primitive objects that can then be
marshalled across process boundaries [32]. A Stub can then unmarshall the data and call

6

Original Equipment Manufacturer (OEM) Private APIs

Dissecting Residual APIs in Custom Android ROMs PAGE 3

Application Layer

Manager

Framework Layer

OEM-private APIs

Linux Kernel Layer
…

Service

Manager

SDK

Manager

Service

Driver DriverDriverDriver

OEM-private API OEM-private API APIAPI

Service

Figure 2.2: The Android Software Stack

the target method.

Instead of using a Proxy to communicate with a system service, a developer could use
a Manager provided within the Android Software Development Kit (SDK). Each Manager

simply wraps around a Proxy [31]. Ultimately, developers do not have to use either the
Manager or the Proxy classes. Instead, they can access system services directly using
Binder transaction IDs. For more information on communication through transaction Ids,
see Section 4.1 in [23].

2.3 Access Control Mechanisms

The Android system services contain sensitive APIs meant to be invoked only by privi-
leged callers. To regulate access to these APIs, Android relies on a high-level permission
model. Calling sensitive framework service APIs requires the caller to hold a specific set
of permissions, which are strings tied to a caller’s UID. In Android, most permissions are
categorized as either granted at install-time or run-time [1]. Install-time permissions can be
further categorized as either normal permissions or signature permissions [77]. Normal per-
missions protect access to low-sensitivity operations and data, while signature permissions
allow access to an application’s private data. Only applications signed with a matching
certificate to the application that defined the signature permission would be granted access.
Run-time permissions consist of dangerous permissions, which protect sensitive data and
resources, such as the camera and microphone [1].

To check whether a caller holds the proper permission(s), a call to a variation of
checkPermission() may be used. Alternatively, the caller’s UID can be checked using

7

1
2 pr i va t e void en f o r c eAc c e s sRe s t r i c t i on s () {
3 in t uid = Binder . ge tCa l l ingUid () ;
4 i f (uid == Process .SYSTEM UID | | uid == Process .myUid () | | uid == Process .PHONE UID) {
5 return ;
6 }
7 St r ing defaultDialerPackageName = getContext () . getSystemServ ice (TelecomManager . c l a s s)
8 . getDefau l tDia l e rPackage () ;
9 i f (TextUt i l s . isEmpty (defaultDialerPackageName)) {

10 throw new Secur i tyExcept ion (”Access to c a l l composer l o c a t i o n s i s only al lowed f o r the ”
11 + ” de f au l t d i a l e r , but the d e f au l t d i a l e r i s unset ”) ;
12 }

Figure 2.3: Checking a Caller’s Uid

getCallingUid(). For instance, Figure 2.3, which is taken from AOSP’s CallCompos-

erLocationProvider class, presents a method that returns without issue if the caller’s
UID matches a system UID, the UID of the current process or the UID used by telephony
processes. Otherwise, it throws a SecurityException. Similarly, the calling PID (process
Id) can also be checked using getCallingPid(). Since Android allows the creation of mul-
tiple user profiles, another commonly used restrictive check is getUserId(), which returns
a value indicating which profile the call originated from. AppOps permissions allow more
fine-grained control of operations on a per-app basis. Users can mark certain operations as
“granted” or “restricted” and the AppOpsService determines at run-time whether a given
operation is permitted [33].

1
2
3

public void removeNetworkInterface(String iface, int netId) {
this.mNetdService.networkRemoveInterface(netId, iface);

}

1
2
public void networkRemoveInterface(int netId, String iface) {

…

Sensitive Internal Method

1
2
3
4
5
6
7

public voidmodifyInterfaceInNetwork(Boolean add, int netId, String iface) {
enforceCallingOrSelfPermission(Manifest.permission.NETWORK_STACK);
…
if (!add) {
this.mNetdService.networkRemoveInterface(netId, iface);

}
}

Internal Method

1
2
3

public void removeInterfaceFromNetwork(String iface, int netId) {
modifyInterfaceInNetwork(false, netId, iface);

}

API 1 API 2 (Custom)check for system-level caller no access control

Figure 2.4: Demonstrating an Inconsistent Access Control Enforcement

The access control enforcement mechanisms described thus far are all used at or above
the framework layer. However, Android also includes lower-level access control [53]. The
kernel layer incorporates Discretionary Access Control (DAC), Mandatory Access Control

8

(MAC) and Linux capabilities. Android’s DAC is realized through the use of UIDs and
GIDs, with dynamically installed third-party applications each receiving a unique UID.
Like Linux, Android allows highly privileged processes to carry capabilities with a subset
of the root user’s privileges. The MAC policy is specified through the use of SEAndroid,
which is an Android extension of SELinux.

Now that we have discussed the various access control mechanisms leveraged by An-
droid, we provide a simple example to demonstrate what exactly we mean by an access
control inconsistency. Figure 2.4 depicts two paths taken from two APIs to a sensitive
internal method, mNetdService.networkRemoveInterface(). The path starting from
NetworkManagementService.removeInterfaceFromNetwork() requires the caller to hold
the system-level permission CONNECTIVITY_INTERNAL. On the other hand, the path starting
from the fictional CustomNetworkManagementService.removeNetworkInterface() does
not require any permission enforcement. Consequently, if attackers wish to invoke the con-
vergence point mNetdService.networkRemoveInterface(), they can simply invoke the
lesser protected API within the CustomNetworkManagementService. We note that, in
practice, the weaker path may enforce a subset of the access control required by the most
highly-protected path.

9

Chapter 3

Related Work

We split the Related Work chapter into two sections. In Section 3.1, we discuss research on
the impact of vendor customization. In Section 3.2, we present details of diverse approaches
to the detection of access control flaws.

3.1 Vendor Customization

Vendors extensively customize device drivers, system applications and system services [56].
Since this customization is unregulated, it often introduces new security risks. A number
of works have examined the security impacts of this customization. At the top-level layers
of the Android software stack, Gallo et al. [48] analyze five custom Android distributions
and identify that customization results in an expanded attack surface and poor permission
usage. They go as far as to suggest that security-conscious consumers should avoid heavily-
customized Android distributions. In [24], Aafer et al. detect hanging attribute references,
which can occur when customization results in references to nonexistent attributes that
can then be defined by a malicious party. They discover tens of thousands of these hanging
attribute references in a study of almost 100 ROMs. Zhang et al. introduce InVetter [89],
a tool that identifies weakened input validation checks within customized system services.
They are able to identify twenty serious system service vulnerabilities. Iannillo et al. test
custom framework services through their tool, Chizpurfle [40], a greybox fuzzer used to
uncover vulnerabilities in customized framework services.

Other works target the deeper layers of the Android software stack. Possemato et al.
[67] analyze thousands of Android ROMs to determine the effects of customization on

10

compliance with Google’s guidelines and general Android security. After their analysis of
the ROMs’ binary customization, init policies, SELinux scripts and kernel security, they
conclude that existing efforts by Google to reduce fragmentation do not go far enough.
At the Linux-layer, Zhou et al. [94] evaluate problematic vendor modifications to Linux
device drivers. They rely on dynamic analysis to identify which Linux files are accessed by
device operations. They then investigate whether customized Linux device drivers result
in under-protected files and find many flaws related to the driver customization. Hay [52]
analyzes the security of customized Android bootloaders. Specifically, Hay examines the
fastboot interface implemented by the Android Applications Bootloader (ABOOT). Hay
finds that, in customized bootloaders, it is possible to tamper with the archive containing
the init process, which is the first user space process. Zhang et al. [88] explore the
impact of customization on the ION unified memory management interface used in ARM-
based Android devices. Using a combination of static and dynamic analysis, they find that
the customization of ION can open the door to memory dumping and denial-of-service
attacks. Yu et al. [87] examine the effects of customization on SEAndroid policies and find
that unregulated, customized SEAndroid policies are prevalent. They propose SEPAL, a
tool that relies on Natural Language Processing (NLP) techniques to determine whether a
custom policy is unregulated.

Though software bloat is one consequence of the fragmented Android ecosystem, work
on software debloating from a security angle is noticeably limited in the Android context.
One previous tool, RedDroid [57], debloats Android applications. However, the correspond-
ing study does not delve deeply into the unique access control flaws caused by bloatware
in Android. To our knowledge, no prior Android-specific studies specifically examine the
access control impact of customization-induced software bloat. In fact, the majority of
works exploring the security benefits of software debloating are focused on web applica-
tions. Azad et al. [30] explore the server-side, using dynamic profiling to identify code that
should not be removed during the debloating process. On the other hand, Schwarz et al.
[69] and Snyder et al. [71] focus on client-side browser security. Others, such as Mururu
et al. [65] present binary debloating approaches, while Brown and Pande [35] [36] propose
a new tool and metrics to assess the security impact of debloating. Our work on ReM is
the first to examine the impact of Residual APIs on Android security.

3.2 Access Control Flaw Detection

Permission mapping and inconsistency detection are two major areas of interest to re-
searchers concerned with detecting access control flaws. Permission mapping tools attempt

11

to deduce the set of required permissions for framework APIs to prevent permission under-
privilege as well as permission over-privilege. On the other hand, inconsistency-detection
tools identify resources with inconsistent access control enforcement. In this section, we
begin by discussing the existing work in both areas. We then move to a discussion on
probabilistic inference techniques, which can be used to improve the state-of-the art tools
used to detect access control flaws.

Permission maps compensate for Android’s non-existent permission specification. They
provide linkages between an API and that API’s required access control enforcement. One
of the earliest permission mapping tools is Felt et al.’s Stowaway [46], which uses a dynamic,
feedback-directed testing approach to determine the maximum set of permissions that an
Android application requires. To build upon the efforts of Stowaway, Au et al. [29] develop
Permission Scout (PScout), a version-independent permission mapping tool that relies on
static analysis techniques. PScout uses a reachability analysis and is thus able to cover
more of the Android framework than Stowaway. Like Stowaway, the tool is conservative,
assuming that a union of all possible permission sets is required. Backes et al.’s Axplorer
[31] creates a static model of the Android framework that attempts to approximate the
behavior of the threading mechanisms relied upon by framework services.

Axplorer, Stowaway, and PScout all over-approximate the number of permissions re-
quired for a given API. Aafer et al.’s Arcade [22] tool addresses these limitations by gen-
erating a path-sensitive permission map that can be used to deduce an API’s minimum
required permissions. Dynamo [41], the latest permission mapping tool, relies on a grey-
box fuzzing technique and run-time instrumentation to detect permission checks and gain
coverage information.

In addition to associating resources with protections, significant research effort has
been dedicated to pinpointing security policy inconsistencies in the Android framework.
Shao et al.’s Kratos [70] is among the first Android-specific security policy inconsistency
detection tools. Kratos over-approximates access-control inconsistencies, as it relies on a
path-insensitive analysis and handles only four specific types of security checks. AceDroid
[21] models a more diverse array of security checks and incorporates a novel normaliza-
tion mechanism to avoid detecting inconsistencies arising from syntax differences. The
Authorization Check Miner (ACMiner) tool [50] provides a semi-automated approach that
identifies security checks through the intuition that the existence of a path from a frame-
work entry point to a SecurityException implies the existence of another path along
which access to a protected resource is granted.

Two recent works extend their scope beyond the Android framework. FReD [18] iden-
tifies inconsistencies in API access control requirements by analyzing Linux-layer permis-

12

sions, while IAceFinder [93] detects cross-context inconsistencies in the Java and Native
layers.

While this body of literature has proven to be quite beneficial, we note that the existing
works suffer from shortcomings. Cross-layer inconsistency-based solutions are limited in
scope, as they can only detect vulnerabilities in APIs with specific implementations (i.e,
APIs accessing files as in FReD [18] or APIs reaching a JNI interface as in IAceFinder [93]).
Though in-framework inconsistency detection approaches leverage a richer learning ground
for access control owing to the substantial amount of reachable resources in the framework-
layer, we note that their underlying detection methodology is highly-simplistic, often lead-
ing to inaccurate output unless substantial heuristics are adopted. Specifically, the tools
are founded on the assumption that two APIs converging on an instruction (i.e., field up-
date, method invocation) are related and thus require similar protections. However, we
note that the convergence point may be auxiliary to the general promised functionality
and hence irrelevant to the enforced access control. Failing to discern the relevance of the
convergence point leads to significant false positives.

Our tool, Poirot, is the first to re-conceptualize the inconsistency detection problem
by using probabilistic inference to account for uncertainty. We are inspired by the wide
applications of probabilistic inference techniques. Probabilistic type inference [83] has been
proposed for dynamic programming languages such as Python. Probabilistic model check-
ing [42, 60, 47] enhances the existing deterministic techniques by encoding probabilities
into the transition among states. With largely extended scalability, probabilistic symbolic
execution [49, 34] predicts the likelihood of reaching a certain program point. Researchers
also adapt inference and distribution analysis techniques in binary analysis [90, 64] to pro-
vide a systematic approach to model the inherent uncertainty caused by information loss
during compilation. Other applications include fuzzing [91], network trace analysis [86],
race/leak detection [37, 51] and runtime event analysis for program understanding [92, 76].

Probabilistic inference has also been adopted for vulnerability detection and security
invariant validation. Engler et al. [45] devise a static checker to infer bugs in real systems
such as Linux and OpenBSD. AutoISES [75] automatically infers high-level security spec-
ification and detects violation afterwards. Srivastava et al. [73] adapt a precise, flow- and
context-sensitive security policy inference technique to analyze relationships between secu-
rity checks and security-sensitive events. Vaughan et al. [78] devise a security-expressive
language to describe security policy where inference of expressive is introduced to help re-
duce the number of annotations. JIGSAW [79] infers programmer expectations to achieve
better access control. Yamaguchi et al. [84] leverage inference techniques to search taint-
style vulnerabilities in C code. Our tool, Poirot, adopts rule inference techniques to rec-
ommend Android access control.

13

Chapter 4

ReM

4.1 Introduction

Evolution-related vulnerabilities are introduced when OEMs cannot respect well-established
security requirements while keeping up with the fast pace of Android version updates and
the sophistication of new functional requirements. For each new Android version and de-
vice model, OEM developers adapt the existing custom codebases to the new requirements
by adding or removing custom functionalities – eventually introducing new OEM-specific
private APIs and removing unused ones. From a security standpoint, removing unused pri-
vate APIs, which we name Residuals, is highly important. Unused functionality not only
increases code complexity but also broadens the attack surface. Many serious software
vulnerabilities in commodity software and platforms are rooted in features that are never
used [3].

Several research efforts [62, 82] have been proposed to investigate the phenomena of
unneeded API removal from Android codebases, including deprecation practices, developer
reactions and compatibility aftermath. However, to the best of our knowledge, no effort
has looked into the security implications of failing to remove them. In this section, we
bridge the gap by performing a large-scale security investigation of Residual APIs. Our
study aims to answer whether Android Residuals do unnecessarily open the door to security
flaws as in other software and platforms.

To conduct the study, we put forward a solution that detects Residuals and evaluates
their access control enforcement within custom ROMs. Our tool entails extensive program
analysis of a large corpus of custom APIs (26,883), defined over our collection of 628 ROMs.

14

Intuitively, a Residual API can be defined as any private API that is not used on a particular
device but is used in earlier versions and/or in other models. This definition oversimplifies
the nature of Residuals in Android. A seemingly unused API may be indirectly called
through complex call chains and reachable through multiple framework entry points. To
ensure accurate Residual detection, our analysis attempts to recover framework entry points
through a specialized backward search over the framework classes.

The above definition further implies that the mere occurrence of unused APIs in a few
isolated, random ROMs – without accounting for the APIs’ historical and model-specific
use patterns – may not accurately signal a Residual’s presence. Our approach addresses
this issue by building a usage history of custom APIs over our curated ROM samples.
Specifically, Historical Residuals are detected by observing gradually or abruptly retiring
APIs over time, while Model Residuals are identified by looking for specific use within
clusters of devices from the same model or series.

To understand the security risks a Residual may pose, we perform a thorough security
analysis. Our proposed analysis focuses on evaluating access control enforcement adopted
by Residuals. The evaluation is guided by the intuition that, through various releases,
Android APIs naturally evolve to add, fix and modify existing access control to patch
vulnerabilities or add additional security requirements. Any failure to keep up with access
control evolution will inevitably introduce anomalies and potential vulnerabilities. On the
one hand, failing to adapt to the unstable device-specific implications of Android security
features (e.g., permissions) will inevitably introduce security flaws. On the other hand,
failing to keep up with the ever-evolving Android access control mechanism will lead to
the adoption of obsolete security enforcement – thus unnecessarily re-opening the door to
older vulnerabilities and invalidating current security requirements. Our proposed solution
evaluates Residuals by inspecting implemented access control enforcement and verifying
that it adopts sound security features and reflects up-to-date security requirements.

4.2 Organization

In Section 4.3, we provide a brief background on Residual APIs and the tactics used to
safeguard them. We then move to investigating the dangers posed by Residuals in Section
4.4. Sections 4.5 - 4.7 introduce our approach to Residual detection. In Section 4.8, we
evaluate the security properties of identified Residuals. Subsequently, Section 4.9 presents
the results of our large-scale measurement study of Residuals in the Android ecosystem.
We move to a discussion on the security landscape of Android Residuals in Section 4.10.
Finally, in Section 4.11 we discuss our exploitation of vulnerabilities in Residual APIs.

15

4.3 Residual APIs

OEMs aggressively customize the AOSP baselines. For each new Android version and
device model, OEM developers adapt their codebases to new functional requirements by
adding, altering and removing APIs. This extensive API retrofitting process usually spans
Android SDK APIs as well as OEM-specific private APIs. When retrofitting SDK APIs,
OEMs must abide by Google’s regulations to meet compatibility requirements. That is,
APIs designated for use, deprecation and removal by Google should be similarly designated
by OEMs.

However, when it comes to OEM private APIs, the process is less regulated. Private
APIs, provided to support internal framework and preloaded app developers, are added
and removed frequently (∼880 and 92 times, respectively, as reported in our dataset).
This under-regulation coupled with OEMs’ efforts to provide a one-size-fits-all framework
implementation contributes to the production of bloated custom codebases. OEM devices
tend to include a substantial number of private APIs [70, 21] (reaching up to ∼3,500 in
Samsung versions 7.0.1 and 8.1), some of which do not even fit with the devices’ functional
requirements. We refer to such unused APIs as Residuals.

Residuals not only increase code complexity but also induce compatibility issues. For
instance, invoking an unsupported API on a particular device will lead to app or system
crashes. Even worse, when Residuals provide sensitive operations and are not properly
protected, they unnecessarily induce security issues. This is particularly inevitable when
OEMs fail to adapt up-to-date and compatible security checks to safeguard a Residual’s
functionality.

To deal with compatibility issues and to properly protect a Residual’s functionality,
OEM developers implement safeguards. At a high level, the guards attempt to reduce the
pool of devices on which a Residual may be activated or restrict the callers to a set of
verified entities (the expected users of the Residual). Specifically, the safeguards fall into
the following two categories:

(1) Configuration Checks: These guards are adopted to ensure that an API’s provided
functionality is compatible with the current release and/or is supported on the running
platform. For example, for legacy APIs targeting obsolete functionalities, the guards make
sure that the functionality cannot be triggered in newer releases. Similarly, for APIs sup-
porting specific capabilities, the configuration guards ensure that the running platform
embeds the corresponding hardware. Figure 4.1 depicts a few configuration checks imple-
mented by LG within a custom API assisting AT&T tethering. Lines 2-3 ensure that the
API can only be triggered on devices with mobile data capabilities; that is, if the device

16

1 boolean startATTEnt i t l e forTether ing (. . .) {
2 i f (SystemPropert ies . get (” ro . bu i ld . c h a r a c t e r i s t i c s ”) . equa l s (” t ab l e t ”)){
3 i f (! telephonyManager . hasIccCard ()){
4 Log . d(”Wi f iSe rv i c e ” , ” t ab l e t has no sim card ”) ;
5 return f a l s e ;
6 }
7 i f (SystemPropert ies . get (” ro . bu i ld . t a rg e t count ry ”) . equa l s (”US”)
8 && SystemPropert ies . get (” ro . bu i ld . t a r g e t op e r a t o r ”) . equa l s (”ATT”))
9 i f (getAppName(Binder . ge tCa l l ingUid ()) . equa l s (”com . smartcom”))

10 // perform actua l f u n c t i o n a l i t y

Figure 4.1: Configuration Checks in a Custom LG API

is a tablet, it should embed a SIM card. Other checks at lines 7 and 8 verify that the
functionality can only be triggered in devices operated by the US-based carrier AT&T.
Even if the API is introduced on devices not conforming to these checks, its functionality
is safeguarded.

(2) Access-Control Checks: These checks reflect traditional Android access control
enforcement. In this scenario, they restrict access based on unforgeable properties (e.g.,
UID) or acquired permissions. The calling entities reflect system processes or preloaded
apps that exist on the devices where the Residuals are active.

While certain access control checks are intrinsically sufficient to properly protect a
Residual, we observe that other checks implicitly rely on a co-located configuration check
for validity. Without this secondary configuration check, the access control may be totally
flawed. Consider the check performed at line 9 of Figure 4.1, which verifies that the calling
app matches the name ”com.smartcom.” Observe that this check is unsound by itself since
a package name can be squatted. Unless the package exists on the device, any third-party
app can claim to be ”com.smartcom” and trigger the privileged functionality. In this case,
we found that ”com.smartcom” comes preloaded on AT&T models, implying that the
package check is actually sufficient under AT&T builds. Hence, the configuration check at
line 8 validates the soundness of the package check.

Given these intrinsic complex properties, coupled with the prevalence of Residuals and
the fast-paced Android updates, we argue that ensuring proper and valid safeguards is
challenging and error prone. Access control vulnerabilities may be unnecessarily introduced
because of Residuals.

17

4.4 Problem

Since Residuals are deemed unnecessary and, at times, not intended for deployment on
a particular device, framework developers may naturally overlook their implementation
during integration and version upgrades. Evolution-induced access control errors are par-
ticularly dangerous in Residuals. On the one hand, a failure to account for the unstable
device-specific implications of security features will inevitably introduce security flaws.
On the other hand, a failure to keep up with the ever-evolving Android access control
mechanism will lead to the adoption of obsolete security enforcement – thus unnecessarily
re-opening the door to older vulnerabilities and invalidating current security requirements.
Our study reveals a plethora of vulnerabilities resulting from these failures, including en-
abling third-party apps to exploit a Residual to access sensitive resources (such as the
input driver).

4.4.1 Unsound Security Features

The correctness of access control enforcement heavily relies on the soundness of adopted
security features (e.g., permission, calling uid, package name). While some security features
are persistently sound (e.g., relying on the calling UID to verify that the caller is SYSTEM),
others may imply different protections depending on the running device and model. Hence,
if OEM developers do not account for these changes, a Residual API may use incompatible
and unsound features that imply protections only available in other devices where the
Residual is active.

Motivating Example

Consider the case depicted in Figure 4.2. As listed at the top, Samsung introduces a custom
API InputManager.monitorInput(...) in a few device models. The API creates an input
channel that receives input events from the input dispatcher. It can thus be used to inter-
cept and monitor input events such as screen tap coordinates and key presses. Given the
sensitivity of the operation, Samsung enforces high-privilege requirements. The caller must
belong to the system process (enforced through the check getCallingUID() = 1000) or
hold Samsung’s custom permission com.samsung.android.permission.MONITOR INPUT.
Thus, a third-party app cannot invoke this API unless it can somehow obtain the permis-
sion.

18

Figure 4.2: Usage of Undefined Permissions in Residual APIs

The lower parts of Figure 4.2 depict the API’s related security definitions and usage
history in Samsung Note Series and A/J Core Series. As illustrated, in the Note Series,
the API is used in versions 6.0.1 to 7.0 (from Oct’15 to Oct’16) by two preloaded apps:
Pentastic and Air Reading Glass. Starting from versions 8.1 to 9 (from Dec’17 to Sep’19),
the API is used by Pentastic and another preloaded app System UI. Observe that the
devices define the API’s required permission MONITOR INPUT and designate it a signature
level protection, which cannot be acquired by third-party apps.

In contrast, consider the usage history of the API in the Samsung A/J Core Series,
illustrated at the bottom. As shown, the API is introduced in the first release of the
devices (version 8.1, Dec’17) and has been consistently defined up to version 9 (Aug’18)
in J2 Core (note that A2 Core was discontinued). However, no active usage site has ever

19

been identified throughout the versions – thus making the API a Residual in A/J models.
Though the API seemingly enforces access control checks, it is actually vulnerable. Since
the API is deemed nonfunctional, the framework developers have overlooked defining the
required permission (i.e., MONITOR INPUT).

Since the permission is undefined, any entity that defines it can acquire it and subse-
quently trigger the Residual’s privileged operation. In this particular case, we were able to
exploit the Residual to develop a keylogger without any permission requirements. Observe
that the vulnerability has been dormant since its introduction in Dec. 2017, in part because
the API has never been used since then. The issue has been acknowledged and fixed by
Samsung. We note that undefined security features may also occur in non-Residual APIs.
However, as uncovered by our study, they are substantially more prevalent in Residuals
(refer to Section 4.10.3).

4.4.2 Obsolete Access Control Enforcement

Android has expanded beyond the traditional smartphone to support other device types
and use scenarios. Along with the expansion, new security features and requirements
are incrementally added with each update. A failure to keep Residuals up-to-date and
compliant with the new requirements can cause anomalies.

Motivating Example

Figure 4.3 depicts the access control evolution of two APIs: AOSP’s getDeviceId() and
LG’s getDeviceIdForVZW(), both allowing the caller to read the device’s ID (e.g., IMEI).
We note that LG’s API is defined in different models (versions 5-8), but is only used in
VZW-specific models. Thus, it is a Residual in all other models.

As shown, AOSP’s access control has evolved from enforcing a single dangerous per-
mission READ PHONE STATE in versions 5.0-5.1.1 to requiring two different protections in
versions 6.0 to 8.1 – either the permission READ PRIVILEGED PHONE STATE or the permis-
sion READ PHONE STATE as well as explicit user approval indicated by an AppOps operation
check. In contrast, LG’s Residual has not seen a similar update, instead still adopting
the obsolete single permission requirement. Under this anomaly, a malicious app could
exploit the weakly protected Residual to read the device’s IMEI. We have confirmed the
vulnerability and reported it to LG. 1

1The issue has been acknowledged by LG.

20

It is worth mentioning that starting from Android 10, Google prohibits third-party apps
from accessing non-resettable identifiers such as the IMEI. AOSP’s getDeviceId returns
NULL in devices running 28 and older. Yet LG’s Residual still returns a valid id.

Figure 4.3: Access Control Evolution of Two LG APIs

4.5 Our Solution

Our proposed investigation proceeds as follows. First, through program analysis of frame-
work and preloaded apps, we recognize and pinpoint potential Residual instances in a
ROM. We then build and investigate their usage patterns over a set of curated ROM sam-
ples. Confirmed Residuals (e.g., those following declining, retiring usage trends) are then
fed to our proposed security analysis. We statically analyze the confirmed instances to
identify the presence of unsound security features and obsolete access control checks.

The overall accuracy of the system relies heavily on the correct identification of Residual
APIs. In light of custom call chains and API use patterns, detecting APIs that are defined
but not used is not straightforward. Specifically, the detection entails the following two
challenges:

Challenge 1: Identifying Entry Points Leading to a Target API

We identify through our analysis that custom APIs are often not directly invoked by other
preloaded apps and framework services (hereafter referred to as components). Rather,

21

they are usually wrapped in Manager APIs that are transitively wrapped around frame-
work methods from both OEMs and Android; hence forming a long call chain from the
components to custom APIs.

Consider the Samsung custom API IUrspManager.setUrspBlackListUidRule(...)

shown in Figure 4.4.

Figure 4.4: Multiple framework entry points leading to the custom API
IUrspManager.setUrspBlackListUidRule(...)

The API is introduced in most SM-G38xxx models. As shown, it is wrapped in a
custom Manager API UrspManager.setUrspBlackListUidRule(), which is transitively
called by four other methods. The call chain is depicted by the dashed arrows. First,
it is invoked directly by disableMdo(), a custom method added by Samsung to AOSP’s
ConnectivityManager class. The disableMdo() method is in turn called by three other
methods within the same class. All together, the call chain introduces five valid framework
entry points to the target IUrspManager.setUrspBlackListUidRule(...). Apps can
call any of them to trigger the target. To correctly detect Residuals, our analysis recovers
all entry points for each API instance through a specialized backward search over the
framework classes. More details are in Section 4.7.1.

22

This technique guarantees that we do not miss a target’s active usage points within the
device. It also avoids wrongly flagging certain APIs as Residuals even if we cannot identify
an active site. Specifically, observe in the above example that ConnectivityManager.re-
questNetwork(...) is a public Android SDK API, implying that the private API IUrsp-
Manager.setUrspBlackListUidRule(...) is designated by Samsung to be indirectly
reachable to third-party apps. Obviously, even if our analysis does not spot a usage point,
the API could still be invoked via the public SDK API by other third-party apps to be
installed later. We leverage this observation to rule out inspecting custom APIs reachable
through public SDK APIs from our analysis. Specifically, after recovering framework entry
points for a target API, our analysis proceeds to identify its usage points only if it is not
transitively reachable via a public SDK entry point. Thus, IUrspManager.setUrspBlack-
ListUidRule(...) will be skipped.

Challenge 2: Recognizing Residual Patterns over Time/Models

Studying one Residual instance within the whole population may not reveal interesting
properties. As such, we must clearly define our investigation scope to infer meaningful
Residual access control properties. To this end, we formally group Residuals into two
categories based on their usage patterns: (1) Historical Residuals denote APIs that were
active in older models but have ceased being used in successor and new models while
(2) Model Residuals reflect APIs that are exclusively active on select device models from
various versions. We detect Historical Residuals by observing the usage history of the
APIs and recognizing the ones retiring (gradually or abruptly) over time. In contrast, to
detect Model Residuals, we cluster similar devices (at the series or model level) and identify
model-specific usages regardless of the version.

In the next section, we describe our solution in detail and elaborate on how we solve
the above challenges.

4.6 Overview

To investigate Residuals at large scale, we design and implement ReM2, a set of new analysis
techniques that detect and evaluate the risks of custom Residuals. In this section, we first
present our high-level idea and then describe the details of the proposed techniques.

2ReM: Short for REMNANT

23

Architecture

ReM is composed of three components: a ROM Analyzer, Usage-Pattern Extractor and
Risk Identifier. Given a set of custom APIs in a device, the ROM Analyzer identifies
Likely Residuals through a synergy between framework and preloaded app analysis. At
the framework layer, ReM exhaustively collects public entry points that transitively lead
to the invocation of the custom APIs. Through preloaded app analysis, ReM identifies live
usage sites leading to a custom API either directly by calling the API’s Remote Procedure
Call (RPC) point or indirectly by calling the identified entry points. Unused APIs are
flagged as Likely Residuals.

The Usage-Pattern Extractor confirms Actual Residuals through a large-scale cross-
ROM analysis. Specifically, the module identifies Historical Residuals by running the
above analysis repeatedly over a pool of curated ROMs for a target vendor, ordered by
release date. It similarly recognizes Model Residuals by running the analysis over a cluster
of ROMs from the same model/series. It subsequently builds a usage history for each
Likely Residual in an attempt to identify the ones conforming to Actual Residual patterns
characterized by an abrupt or a gradual retirement over time, or reflecting a consistent
model-specific use.

Finally, Residuals are handed over to the Risk Identifier, which performs specialized
program analysis on the Residual implementations to uncover two potential flaws: (1)
Unsound security feature use and (2) obsolete access control. To detect the former, it
leverages a set of patterns indicating unsound feature use and looks statically for their
presence. Examples of these patterns include the use of package checks without co-located
configuration checks and the use of an undefined permission. To detect the latter, the
Risk Identifier performs a highly-optimized inconsistency detection and accordingly infers
anomalous obsolete access control enforcement. It finally reports vulnerable Residuals.

4.7 Automated Detection of Residuals in Custom

ROMs

Given the sheer number of analysis targets (framework and system app classes) and the
large number of ROMs required for the historical analysis, ReM’s analysis must be scalable
and efficient.

24

4.7.1 Identifying Likely Residuals in a ROM

ReM conducts program analysis of the framework and preloaded apps to detect unused
custom APIs. It first identifies framework-level entry points leading to the custom APIs and
then statically looks for usage sites leading to the invocation of the APIs or corresponding
entry points.

As mentioned earlier, identifying framework entry points is important since OEM pri-
vate APIs are often available to framework and system app developers through custom
Manager APIs (e.g., UrspManager.setUrspBlackListUidRule in Figure 4.4). TheseMan-
ager APIs may be transitively invoked by other internal framework and SDK methods,
forming indirect call chains from the components to the custom APIs.

Collecting Framework Entry Points

We first use the static bytecode analyzer WALA to process the framework libraries and
extract defined classes and methods. Now, performing a forward search on each method
to extract reachable APIs may sound compelling. However, it is likely that it will en-
counter and analyze many irrelevant methods and code fragments, unarguably affecting
the scalability of the overall detection. To tackle the issue, we propose a more focused
approach. We start with our set of target custom APIs, and perform backward expansion
to iteratively discover public calling methods. Specifically, we use WALA to perform a
class hierarchy analysis of the extracted classes and methods. Then for each method, we
perform a depth-first reachability analysis on its call graph and locate the occurrence of a
target custom API. If the latter is located, the calling method is added to the set of the
target API’s callers and is transitively fed back to the analysis loop to locate its potential
public callers. The backward exploration constructs a mapping between each custom API
and its calling methods and stops once no public callers can be encountered. Since the call
chains are inherently deep, we optimize the exploration by:

• Caching discovered caller-callee mappings. The exploration consults the cache before
moving on to look for other callers in order to avoid duplicate path exploration.

• The exploration stops preemptively if a public SDK method is encountered. That is,
if a caller matches the name of a public API (which we have compiled for each Android
release), the target API is ruled out from further analysis since it can be invoked by
third-party apps. We further rule out the public API’s direct and transitive callees
from subsequent analysis, essentially considering the whole call chain accessible to
third-party apps.

25

Collecting Usage Points in Apps

In this task, we statically analyze the apps and internal framework classes to collect usage
points of a target API. Specifically, for each app, we perform standard forward reachability
analysis starting from the app’s public entry points (Android component life cycle methods
and callback methods) and search for invocations to the targets. The analysis looks for
invocations to the API’s exposed Binder method and to its extracted framework entry
points. To optimize the exploration, the search prioritizes entry points at the top level
of the recovered caller-callee mappings chain and skips looking for a callee if a caller has
already been encountered. Our analysis further handles calls to the APIs through Java
reflection. During the reachability analysis, we treat reflection call methods as potential
sinks if the arguments match the API’s recovered framework entries or the RPC method
itself. Specifically, for each Java reflection call that allows method invocation, we perform
string analysis to extract the value of the call parameters (class names and method names).
We use constant propagation within an analyzed app’s inter-procedural CFG to resolve the
method name in a reflective call (e.g., method.invoke(object)) and the class name that the
method belongs to. A string variable from external input is modeled by a special value
that denotes any string. We note that we are not interested in resolving the type/values
of the arguments passed. This is sufficient for most of the cases we encountered.

Collecting Usage Points in System Services

We further look for call sites to the target APIs in the system services classes. We note that
triggering the system service functionality may be initiated by the system server itself (e.g.,
in init methods, inner methods not exposed through IPC, etc.) through non-traditional
channels (e.g., from the native layer). Thus, we mark any API that is triggered on the
server side as a used API. Observe that this approach is conservative and is likely to
overestimate the usage sites of APIs since a recovered site might not be necessarily invoked
(i.e., it might occur in a dead code area).

At this stage, identifying Likely Residuals is straightforward; unused custom APIs are
flagged as Likely Residuals.

4.7.2 Characterizing and Confirming Residuals

As stated earlier, we categorize Residuals based on their usage patterns, as follows:

26

1. A likely Residual is a Historical Residual if it gradually or abruptly retires over time.
That is, the API’s usage pattern decreases over time, until it is no longer in use in
new successor devices.

2. A likely Residual is a Model Residual if it is consistently used in specific device series
and models but not in others.

Observe that the two categories are inherently overlapping, since Model Residuals may
also become unused over time.

ROM Collection and Curation

To detect Historical and Model Residuals, we perform a broad analysis of 628 custom
ROMs released over the last ∼10 years (from Oct 2011 to May 2021). These ROMs are
representative of major mobile vendors. More details on the sample ROMs can be found
in Section 4.9.

We curate the samples for our analysis by carefully considering the following three
properties of a ROM: (1) vendor, (2) model and (3) release date. We construct a usage
history for a given API by analyzing chronologically ordered ROMs produced by the same
vendor. We similarly build model-specific usage by grouping ROMs from similar series and
models.

To identify the properties, we process a ROM’s build.prop file (containing device prop-
erties) and extract the values of ro.product.brand, ro.product.model and ro.build.v-

ersion.release. Note that a few vendors customize these attributes so we had to treat
them on a case-by-case basis.

Scope of Analysis

ReM builds the usage patterns of the likely Residuals by running a per-ROM analysis
over our curated pools of samples. In total, our analysis involved inspecting 48,000 unique
preloaded apps (more than 250,000 all together) and led to identifying 6,349 custom APIs
that exhibit actual Residuals patterns. More details can be found in Section 4.9.3.

In the next section, we describe how we evaluate the detected Residuals’ security prop-
erties.

27

4.8 Automated Security Evaluation of Custom Resid-

uals

In this section, we evaluate Residual access control enforcement. Our focus is on evolution-
induced access control vulnerabilities that arise when framework developers do not safe-
guard Residuals. We classify these vulnerabilities as either unsound security features or
obsolete access control enforcement. Unsound security features include undefined and
device-incompatible features. Obsolete access control occurs when Residuals are not main-
tained and their access control enforcement is not updated and strengthened along with
non-Residual APIs.

4.8.1 Evaluation Scope

We note that both classes of evolution-induced access control vulnerabilities examined
in our security evaluation result from the presence of unused functionality. We focus
on these particular vulnerabilities since, intuitively: (1) unused functionality is likely to
be overlooked during updates and model customization and (2) in many cases, unused
functionality is not even intended for use on a target device. Other types of vulnerabilities
– particularly those that are equally likely to occur in used APIs, such as improper input
validations, are out of scope for our evaluation.

Next, we describe how ReM detects the two classes of evolution-induced access control
vulnerabilities.

4.8.2 Unsound Security Features

As stated earlier, the correctness of access control enforcement heavily relies on the sound-
ness of adopted security features. Certain features may imply different protections depend-
ing on the running device version and build characteristics. Thus, a sound feature on a
device where an API is used might not be sound on other devices where the API is not
used.

Undefined Custom Permissions and Broadcasts

Custom permissions and protected broadcasts are introduced by customization stakehold-
ers to protect custom resources. They are added, removed and renamed frequently. Re-
moving a custom permission is performed when the defining stakeholder is not involved in

28

a particular customization or when the permission is not needed. Other custom permis-
sions are introduced by vendors and are tightly related to hardware. They are debloated
when the corresponding resource is considered nonfunctional. For example, Samsung may
remove permissions required to access its Pen functionality if the device does not embed a
physical pen hardware. Protected broadcast definitions are removed for similar reasons.

Removing custom permissions and protected broadcast definitions is largely fine when
all APIs referencing them are simultaneously removed. However, in the case of unmain-
tained Residuals, the occurrence of such references is highly problematic. Using an un-
defined security feature is unsound. As reported by the study [24], any app that defines
removed features can silently gain the privilege to access the components referencing them.
(Refer to Section 4.4 for an example.) To detect this pattern, ReM performs the following
analysis:

• For each reported Residual, ReM statically extracts its implemented access control
enforcement and identifies used security features. Specifically, it first builds the Resid-
ual’s inter-procedural Control Flow Graph (CFG) and traverses it to extract invoca-
tions to security-relevant APIs (e.g., checkPermission, enforceCallingPermission).
It then traces back from the APIs and keeps track of the permission string constants
passed as arguments. ReM similarly processes registration sites of framework-defined
broadcast receivers to extract corresponding actions.

• For each ROM with Residual instances, ReM collects the definitions of security fea-
tures by running an XML parser over the framework and preloaded apps’ manifest
files.

• Last, ReM conducts a differential analysis to pinpoint Residuals that use undefined
security features.

Package Name Checks without a Co-Located Check

Using package names for access control enforcement is not always sound. Since the names
are forgeable identifiers, any party can squat the property and pretend to be the caller.
In the Residuals scenario, since the expected calling package does not exist, the property
is forgeable. Nonetheless, the property may become sound if used in conjunction with
other checks. As stated earlier, configuration checks can validate a package name check.
Traditional checks such as signature checks and other persistently sound checks (e.g., UID
checks) naturally strengthen package name checks.

29

To detect the use of unsound package name checks, ReM traverses a target Residual’s
interprocedural CFG to collect invocations to the following: (1) APIs that retrieve the pack-
age name of the caller (e.g., PackageManager.getNameforUid and PackageManager.get-

PackagesForUid), (2) signature checks (e.g., PackageManager.checkSignature) and other
checks for extracting the caller’s unforgeable identifiers and (3) configuration checks. ReM
then inspects the collections and marks sole invocations to package name checks as poten-
tially unsound. Last, ReM verifies whether the target ROM does not include the specified
package name to confirm unsoundness.

Resolving Strings

We observe through our analysis that package names returned from the PackageManager

APIs (e.g., getNameForUid) are sometimes compared with dynamically constructed strings;
i.e., by concatenating substrings, including constants, parameters and return values of other
methods. We employ def-use analysis and examine if the package name returned from the
target PackageManagerAPIs is compared with a string. We then use inter-procedural back-
ward slicing and forward constant propagation to transitively resolve the strings. String
arguments to other package check APIs (e.g., PackageManager.getPackageUid) may also
be dynamically constructed and we resolve them similarly. We model strings that cannot
be statically resolved (e.g., read from a framework resource file) with a placeholder that de-
notes any string. Our analysis conservatively considers a package name string that cannot
be fully resolved to be sound.

Collecting Custom Configuration Checks

Besides using common AOSP APIs (e.g., SystemProperties.get() and global static fields
(e.g., OS.Build), we observe through our analysis that vendors use a variety of custom
methods for device configuration checks. Our inspection shows that these methods are often
wrappers around AOSP APIs and usually involve multiple call chains. While performing
inter-procedural CFG traversal will ultimately discover the underlying AOSP checks, it
will encounter many irrelevant methods and affect the overall extraction performance. We
tackle the issue by performing a one-time per vendor backward propagation (similar to the
approach discussed in Section 4.7.1). The backward exploration builds a mapping between
AOSP configuration check APIs and their calling methods, which we manually inspect to
filter out custom configuration checks.

For each vendor, the automated backward propagation yielded 42 to 74 candidate
configuration check methods. Our manual filtering yielded 19 to 24 actual configuration

30

methods per vendor. We note that the manual filtering process is a small scale, one time
effort.

4.8.3 References to Deprecated Security Features

For graceful removal of a security feature, framework developers may first flag it as depre-
cated, through the Java @Deprecated annotation. The deprecation subsequently pressures
the developers to refactor their code and migrate to other alternative features. Eventually,
after a few releases, the deprecated features are removed.

While the use of a deprecated security feature is not a vulnerability per se, we argue
that it may eventually lead to one. Since Residuals are not used, they may not be properly
maintained throughout version upgrades, leading to the persistence of deprecated security
feature usage, even after the feature removal.

To detect this pattern, we use WALA to extract the Java annotations associated
with the definition points of permissions and protected broadcasts (defined in the class
Manifest$permission) and flag those annotated with java.lang.Deprecated.

4.8.4 Obsolete Access Control Enforcement

Android APIs are continuously evolving to add, fix and modify enforced access control.
The evolution addresses new security requirements (e.g., migrating from a single-user to
a multi-user device) and fixes reported flaws. A failure to keep up with the fast-paced
evolution could induce obsolete access control enforcement, which may reflect weaker or
absent access control enforcement.

Recognizing obsolete access control enforcement is not straightforward. Residuals im-
plement custom functionality, with no publicly-available security specifications. As such,
it is challenging to infer whether enforced access control is up-to-date. A popular approxi-
mate solution is to perform consistency analysis – essentially, comparing the access control
enforced across multiple paths to the same resource and reporting inconsistencies; i.e., one
path includes access control while the other does not. Various work exists in the area,
ranging from approximate solutions [29, 31, 70] to more precise ones [21]. ReM follows an
adapted version of the former approach since conducting a path-sensitive analysis will not
scale to tackle the sheer number of APIs in our studied ROMs.

ReM conducts a largely-localized convergence analysis to identify other framework APIs
that converge in functionality with the reported Residuals. It then extracts access control

31

enforcement along the new APIs and compares them to those enforced by the Residu-
als. Observe that performing a framework-wide convergence analysis would not scale as
some ROMs are extensively customized (e.g., more than 2000 custom APIs). To speed
up the analysis, we limit our convergence analysis to (1) APIs defined within the same
system service and (2) APIs defined in system services providing similar functionality. We
leverage similar naming patterns to infer whether two system services provide overlapping
functionality (e.g., SemClipboard and Clipboard services, ISmsEx and ISMS services).

To infer whether a Residual reflects updated access control, ReM further conducts a
cross-ROM inconsistency analysis similar to [21]. Specifically, ReM compares the access
control enforced by an API across multiple ROMs with different use scenarios; i.e., cases
where the API is used in one but the Residual in the other.

We applied ReM to evaluate the access control enforcement of the Residuals identified
in our ROM samples (i.e., 6,349 Residuals). ReM uncovered 1,453 violations. Details
about the Residuals landscape and pertaining security properties are discussed next.

4.9 Large-Scale Measurement Study

To measure the pervasiveness of Residuals in the fragmented Android ecosystem and to
understand the scope and magnitude of access-control anomalies they may pose, we perform
a large-scale study of 628 ROMs.

4.9.1 Study Setup

The study has been conducted using 4 server machines equipped with 1/4 TB RAM, 16
cores, 64 Gbps net, 4 NVIDIA K10 GPU cards, each containing 2 GK104 GPUs.

4.9.2 Data Collection and Processing

Factory ROMs Collection

We collected 628 custom ROMs released over the last ∼10 years (from Oct 2011 to May
2021). The ROMs cover 7 major releases (from 4.0 to 10) and are customized by 7 vendors
and cover 105 device models. We developed a crawler that automatically downloads vendor
ROMs from public repositories. The crawler tries to cover as many distinct models and
versions as possible to identify Historical and Model Residuals.

32

Table 4.1 lists the detailed statistics of our collected dataset. As shown, the ROMs
are representative of big and medium players in the mobile market. We note that unlike
Samsung and Blu ROMs, for which many dedicated public repositories are available, some
vendor ROMs are more difficult to obtain and thus constitute smaller sample sizes in the
dataset.

Table 4.1: Collected ROMs

EOM Statistics

API Level / Version Numbers
19 21-22 23 24-25 26-27 28 29

4.4 - 5.0 - 6.0 – 7.0 - 8.0 - 9 10
(#) 4.4.4 5.1.1 6.0.1 7.1.2 8.1

S
a
m

su
n
g ROMs 16 23 61 48 52 116 49

Models 13 22 29 33 15 32 17
APIs 3482 2462 4273 3588 3454 2282 2386
Apps 168 257 308 310 315 335 345

B
lu

ROMs 16 14 31 14 3 2 2
Models 12 11 26 11 3 2 1
APIs 403 516 582 562 636 476 794
Apps 107 108 99 109 97 122 101

L
G

ROMs 6 7 5 4 3 4 4
Models 3 3 4 3 2 3 3
APIs 1352 1017 875 1422 1101 902 896
Apps 140 151 104 159 214 202 237

X
ia
o
m

i ROMs 3 2 4 2 2 5 3
Models 3 2 4 2 2 4 3
APIs 773 962 1033 714 771 589 539
Apps 133 154 181 182 182 207 197

H
u
a
w
e
i ROMs 17 1 2 2 2 3 7

Models 13 1 2 2 2 1 1
APIs 1233 157 963 576 725 461 286
Apps 109 115 119 89 97 93 143

L
e
n
o
v
o ROMs 38 11 6 2 2 4 1

Models 31 8 4 2 2 3 1
APIs 1651 1375 990 820 556 373 199
Apps 121 131 135 113 156 143 111

A
su

s

ROMs 3 3 2 5 2 2 2
Models 2 2 1 3 2 2 2
APIs 1064 773 948 892 599 364 89
Apps 147 167 131 161 179 176 156

33

Framework, Preloaded Apps and Configuration File Extraction

We preprocess the ROMs to extract framework classes and preloaded apps. To do this, we
first locate the system partition, which contains the relevant classes.

For Android versions 4 through 9, we search for the system partition within system.img

or system.img.ext4 files. For LG images, the firmware is often packaged in a kdz file.
To extract the system partition from kdz files, a modified version of the SALT tool [10] is
used to generate dz files and to extract the embedded system partition (system.image).
Once the system partition has been located, imjtool[7] is used to extract the image file,
which is then mounted. When working with Android 10 ROMs, the system partition iden-
tification process differs slightly. Android 10 introduces the dynamic partitioning system,
which allows partitions to be resized, created and removed during over-the-air updates
[6]. As a dynamic partition, the system partition is housed within a larger super partition
(super.img). To unpack the super partition, the sparse image is first converted to a raw
image using simg2img [11]. Then we unpack the raw image using the lpunpack[8] tool,
obtain a system.img file and proceed to mount the system partition.

We then extract each mounted image’s build properties, specified in build.prop files.
We then extract any framework or app odex, vdex, and apk files and use the vdexextractor
[12], baksmali[5], smali[5], apktool[4], and oat2dex[9] tools to generate dex and manifest
files.

4.9.3 Analysis Complexity

Codebases

Our analysis investigated 26,883 distinct private APIs and 48,000 preloaded apps. Table 4.1
presents the detailed statistics. The third row of each OEM entry lists the average number
of private APIs recovered by ReM (not including AOSP’s exposed APIs). As shown,
vendors introduce 880 APIs, and the extent of customization differs between OEMs – with
Samsung and LG exhibiting significantly more private APIs. As further illustrated in the
fourth row of each vendor, the number of preloaded apps increases between major releases:
it is larger in the latest releases. Observe that the results are reported as averages; some
vendor-specific models include less preloaded apps than others (e.g., Samsung A/J Core
models include ∼30% less apps compared to ZFlip models).

34

Recovered Entry Points

As discussed in Section 4.7, ReM collects framework entry points leading to custom APIs
to accurately detect Residuals. Figure 4.5 reports the distribution of the recovered entry
points, per OEM. For all OEMs, 50% of the APIs have 1 to 2 entry points; 25% have
no entry points (meaning that the API is solely invoked via its RPC entry); and 25%
exhibit a significantly larger number reaching up to 31 for Xiaomi. We investigated a few
randomly selected samples that fall in the last category and found they often corresponded
to methods for accessing custom information, e.g., custom profile information, whitelists
for different services and keyguard information. Clearly, performing a simpler analysis that
relies only on the RPC entry points and direct managers is likely to generate inaccurate
Residual estimations.

samsung asus blu lenovo lg huawei xiaomi

Vendor

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

N
u
m
b
er

of
E
n
tr
y
P
oi
n
ts

Figure 4.5: Distribution of the # of Entry Points per vendor

4.9.4 Residuals Landscape

Among all the 26,883 extracted private APIs, ReM discovered 6,349 instances that are
Residuals in specific models/series or at specific release versions. We reiterate that as per
our Model and Historical Residual detection, a used API is only flagged as a Residual if it
exhibits certain trends (refer to Section 4.5).

Figure 4.6 depicts a breakdown of the reported Residuals per OEM. As shown, Residuals
are prevalent among all vendors, reaching up to 42% in LG and Huawei (major releases
8.0 and 9, respectively). Blu ROMs exhibit the lowest number of Residuals since they are

35

the least customized (i.e., smaller number of private APIs). We further note that Lenovo
records 2% Residuals in version 10 because it was the least customized out of all the Lenovo
samples.

0%

10%

20%

30%

40%

50%

0%

10%

20%

30%

40%

50%

0%

10%

20%

30%

40%

50%

4 5 6 7 8 9 10

0%

10%

20%

30%

40%

50%

4 5 6 7 8 9 10

0%

10%

20%

30%

40%

50%

4 5 6 7 8 9 10

0%

10%

20%

30%

40%

50%

4 5 6 7 8 9 10

0%

10%

20%

30%

40%

50%

100%
huawei

100%
lg

100%
xiaomi

100%
asus

100%
blu

100%
lenovo

100%
samsung

Major Release

Pe
rc

en
ta

ge
of

C
us

to
m

A
PI

s
(%

)

Historical
Overlap
Model
Non-Residual

Figure 4.6: Residuals Breakdown

Observe that the number of Historical Residuals is lower in version 4, since the analysis
cannot pick up the usage trend yet, as no data is available for earlier releases. The analysis
only reflects the number of Residuals that are persistently unused on all releases.

Analysis Accuracy

From all the reported Residuals, we randomly sampled 50 and manually analyzed their
usage in the corresponding ROMs (7 ROMs). We employed a simple word lookup to
identify references to the Residuals (using the grep utility) in the preloaded apps and
further investigated the references to verify if they were actively used (i.e., not included in
dead code). We note that this analysis is simplistic since it is difficult to verify if a code
region is dead, especially in the case of long call chains and obfuscated apps. Out of 50
instances, only 4(8%) were found to be false Residuals; that is, falsely reported to be not
used while they were actually used in preloaded apps. Looking into these positives, we
found that they occurred in obfuscated apps.

To estimate missed Residuals, we have similarly sampled 70 reported non-Residuals and
manually analyzed their usage in the corresponding ROMs (11 ROMs). In all 70 samples, 5
(7.14%) were missed by ReM; i.e., Residuals considered to be used. We investigated these
cases and found that they are caused by ReM’s reflection handling (see Section 4.7.1).
Since we do not resolve the type/values of the arguments passed in Java reflective calls,
ReM cannot distinguish overloaded methods. Other cases were, due to infeasible code
paths, conservatively treated by ReM as feasible.

36

4.9.5 Residual Lifespans

Figure 4.7 displays violin plots representing the distributions of the active and Residual
lifespans for each OEM’s Residuals. The active lifespan is the total number of versions
a Residual is being actively used by some framework service or preloaded app, while the
Residual lifespan is the total number of versions from a Residual API’s introduction to
its complete disappearance. Problems arise when an active lifespan is shorter than its
corresponding Residual lifespan, as is the case for most vendors depicted in Figure 4.7.

The density of each violin plot corresponds to the frequency that a given lifespan is
present in the larger population of active lifespans or Residual lifespans. We can see that,
consistently, in overlapping regions between Residual and active lifespan distributions, the
density is much higher for the Residual lifespan distributions.

0

2

4

6

8

Model Residuals

huawei lg xiaomi asus blu lenovo samsung
0

2

4

6

8

Historical Residuals

Vendor

Li
fe

sp
an

(Y
ea

rs
)

Residual Lifespan
Active Lifespan
Median
Mean

Figure 4.7: Violin Distribution of the Active and Residual Life Spans

For both Model and Historical Residuals, we can further spot that the mean active
lifespan is almost always lower than the mean Residual lifespan. Note that a mean lifespan
of zero implies that our analysis, spanning versions 4-10, did not identify any ROM instance
actively using the Residual.

4.9.6 New versus Inherited Residuals

As shown in Figure 4.6, the percentage of Residuals is higher in versions 7-8 and starts
a downward trend in versions 9 and 10. Although this signals that vendors are debloating

37

Residual APIs more notably in newer versions, the issue of Residuals is still prevalent
among new versions. As shown in the Figure, Residuals exist in significant proportions
in the latest versions; for example, LG, Huawei and Asus record between 23 and 28%
Residuals in version 10.

To further demonstrate the importance of the Residuals issue in recent ROMs, we
report the percentage of newly-introduced versus inherited Residuals throughout each new
release. Figure 4.8 depicts the results; note that the results are aggregated for all vendors
(per version).

100.0%

4

59.0%

41.0%

5

47.0% 53.0%

6

35.0%

65.0%

7

80.0%

20.0%

8

18.0%

82.0%

9

27.0%

73.0%

10

Introduced Residuals
Inherited Residuals

Figure 4.8: Inherited vs Introduced Residuals

As shown, 27% of Residuals are newly-introduced; i.e., they were active in version 9.
This experiment clearly demonstrates that Residuals are not an issue of the past. This
observation has yet to come to the vendors’ full attention.

4.10 Residuals Security Landscape

In this section, we answer the following research questions:

• RQ1: Do vendor developers adopt sound, compatible security features while enforcing
access control checks in Residuals?

• RQ2: Do vendor developers propagate up-to-date, consistent access control enforce-
ment in Residuals throughout version upgrades?

38

Table 4.2: Unsound Security Features Use

Vendor

Undefined Deprecated Unsound Package Obsolete
Permissions Permission Checks Access Control

Residual Used Residual Used Residual Used Residual Used
APIs APIs APIs APIs APIs APIs APIs APIs

Samsung 273 19 229 90 339 188 402 113
Blu 2 0 0 0 23 6 14 9
LG 6 0 2 1 29 13 102 37
Xiaomi 0 0 0 0 26 10 48 25
Asus 8 0 0 0 18 7 31 16
Lenovo 12 5 0 0 4 7 33 21
Huawei 0 0 0 4 7 11 21 15

4.10.1 Unsound Security Features

Among all OEM Residual instances, ReM identified 978 flaws caused by the use of un-
sound security features. Observe that some of these flaws can be attributed to the same
property (e.g., an OEM may use an undefined permission in three distinct Residuals, thus
introducing three flaws). We also note that, although less common, multiple flaws may
occur within the same API (<∼ 3%).

Columns 2-7 in Table 4.2 depict a breakdown of unsound security features use per
OEM. As listed, the number of flaws varies between vendors, with deprecated permissions
being the least common in most vendors except for Samsung.

Undefined permissions are pervasive among Samsung samples. Examples include com
.samsung.accessory.manager permission.AUTHENTICATION CONTROL, USE LINK TO-

WINDOWS REMOTE APP MODE and com.samsung.android.knox.permission.KNOX EBILL-

ING NOMDM, which ReM identified as causing more than 40 flaws in versions 9 and 10.
All vendors used an unsound package check at the Residuals implementation. Examples
include com.sprint.*, com.verizon* and *.docomo.*, which are left over from carrier-specific
models. Lenovo and Huawei have the least flaws.

We note that the majority of our findings are spotted in Samsung largely because of
its sample size (our collection includes more than 49 Samsung models as opposed to an
average of 4 in other vendors).

4.10.2 Obsolete Access Control Enforcement

Columns 8-9 in Table 4.2 report the results of our conducted inconsistency analysis. As
depicted, OEM Residuals do induce anomalies. ReM reported 14 to 442 inconsistency

39

instances (505 all together), caused by the Residual leveraging a different security check
to protect its underlying resources. We have inspected the results and confirmed that a
significant proportion (∼ 67%) exist due to OEMs overlooking the integration of User and
AppOps checks. For example, LG adds 8 Historical Residuals in its custom ISms service
which allows the handling of SMS functionalities without enforcing AppOps operation
checks.

4.10.3 Comparison with Non-Residual APIs

Prevalence of Flaws among Non-Residuals

Evolution-induced anomalies may also occur in non-Residual APIs. Nonetheless, in con-
trast to Residuals, active APIs are better maintained and often undergo extensive security
testing. To demonstrate that evolution induced flaws are less common in non-Residuals, we
evaluate them using ReM. In Table 4.2, columns 3, 5 and 7 report the prevalence of unsound
access control features and column 9 reports the number of detected inconsistencies. With
the sole exception of Huawei’s use of deprecated permissions in four non-Residual APIs,
the flaws are significantly more prevalent in Residuals. Figure 4.9 depicts a breakdown of
the flaws. As shown, Residuals are responsible for most of the reported vulnerabilities.

0 100 200 300 400 500 600 700 800 900 1000

Undefined Permissions

Deprecated Permissions

Unsound Checks

Obsolete Access Control

Residuals
Non-Residuals

Figure 4.9: Flaws Breakdown in Residual and Active APIs

Comparison of Access Control Updates

To demonstrate that vendors may overlook updating Residuals in comparison to active
APIs, we perform another experiment. For each custom API, we approximate its received
access-control related updates as follows: we build a history of its adopted access control
enforcement over time and report the number of observed distinct checks. We then compare
the estimated numbers for Residual and non-Residual instances. Figure 4.10 reports the

40

results. Both Historical and Model Residuals tend to receive less updates than Active
APIs.

samsung blu lg xiaomi asus lenovo huawei

Vendor

0:00

0:05

0:10

0:15

0:20

0:25

0:30

0:35

0:40

0:45

0:50

Historical
Model
Used

Figure 4.10: Average API Access Control Updates

4.11 Exploiting Residuals

We note that not every Residual is exploitable. Clearly, just like any other Android API,
a Residual is exploitable depending on its provided functionality (e.g., a Residual that
provides less sensitive operations may not be exploitable). Nonetheless, a privileged Resid-
ual API can open the door for exploits. While the ideal fix for a Residual is through
its removal, it can be protected by a strong access control requirement or by a persistent
non-configurable device property. However, if the proper protections are not in place, a
Residual can be exploited to achieve security damages.

4.11.1 End-to-end POCs

To understand the security issues Residuals may pose, we analyzed a small subset of
the reported weakly protected instances (93 cases). Our selection of the targets was based
on the following three criteria: (1) comprehensibility of the Residual code, i.e., we avoided
instances referring to proprietary functionalities with no public description; (2) availability
of physical devices (specifically, LG and Samsung) and (3) sensitivity of operations – we
prioritized sensitive APIs. Our manual analysis confirmed 8 exploitable Residuals. A

41

summary of the findings is presented in Table 4.3. Note that, though the exploits span
different devices as reported by ReM, we are conservatively listing here only the devices
on which the attacks were manually confirmed. We have reported our findings to LG and
Samsung. 7/8 have been acknowledged and fixed. One instance was marked as duplicate.
Next, we describe a few instances.

Table 4.3: Confirmed Exploitable Residuals

Vendor Model Residual Location Impact Vendor Reaction CVE NIST Ranking*

Samsung S9 InputMethodManager Corrupt Service Manager Confirmed, Fixed CVE-2018-21088** High (7.5)
Device Shutdown

Samsung S10 SPENGesture Keylogger Confirmed, Fixed CVE-2019-20597 Critical (9.1)

Samsung S9 PersonaManager Alter OEM Lock configurations Confirmed, Fixed CVE-2020-25055 Critical (9.8)
Disable Keyguard Features
Alter Profile Restrictions

LG LG Q6 WindowManager Keylogger Confirmed, Fixed CVE-2020-12754 High (7.8)

LG LG Q6 Isms Insert data into system providers Confirmed, Fixed CVE-2021-30162 High (7.1)

Samsung J2/ A2 Core InputManager Keylogger Confirmed, Fixed To be issued –

Samsung S6 Note PersonaManager Launch activities through the system Confirmed, Duplicate – –

LG LG Q Stylo 4 IPhoneSubInfo Read phone IMEI Confirmed, Not Fixing – –

*The severity metric is reported based on CVSS 3.x.
**We note that we re-discovered CVE-2018-21088 using our tool. The issue
was initially discovered by us manually.

Injecting Data into Privileged Content Providers

Our historical analysis of the LG samples reveals another major vulnerable Residual. The
victim API ISms.insertDBForLGMessage(...) is defined in all LG devices running 4.4.4
up to version 10 3 but is only used up to version 8.0 – thus becoming a Residual in versions
9 and 10. The Security analysis module reveals that it enforces obsolete access control
– it requires the permission android.permission.RECEIVE SMS while another path en-
forces a System check. A further dive into the Residual’s implementation reveals that it
allows inserting data to any Telephony-accessible content providers, while solely enforcing
the aforementioned permission. Specifically, the Residual takes as arguments a Uniform
Resource Identifier (URI) along with content values and then inserts the supplied values
into the URI. Since the defining service ISms runs within the content of the Telephony
process, the Residual can be exploited to insert data to any privileged provider that the
process has access to – e.g., Settings.Secure and Settings.System providers, which
maintain secure/system preferences that apps can read but not write. We confirmed the

3The API may have been introduced before version 4.4.4.

42

vulnerability through a PoC that targets Settings.Secure content provider to automati-
cally replace the default IME with our specified IME (e.g., containing malicious keylogging
functionality). LG has acknowledged and fixed the vulnerability. It is worth noting that,
as confirmed by LG, the fix for Android R entails removing the API.

Keylogger on LG

We have identified another Residual IWindowManager.setInputFilter(.). on LG Q6
that exhibits a similar pattern to the previous example. The Residual is defined on
a few LG ROMs from versions 4.4.4 to 10 but is only used up to version 8.0. The
Residual allows intercepting and controlling all input events before they are dispatched
to the system or apps by registering an input filter. Alarmingly, our security mod-
ule flagged the case as using an unsound security feature. Specifically, the API veri-
fies if the calling package matches one of the two names: "com.lge.systemserver" or
"com.lge.onehandcontroller", and accordingly allows access to the filter registration.
However, the API does not include any other checks – i.e., no configuration or signa-
ture checks. The historical analysis revealed that the above package names were indeed
preloaded on the older devices and corresponded to the users of the API. However, in
later versions, "com.lge.onehandcontroller" was removed, leaving the first path open
to exploit. Observe that the other package, "com.lge.remserver," persisted in the later
version but did not invoke the target API. We have confirmed that the Residual can be
exploited to build a keylogger by simply squatting the removed package name. LG ac-
knowledged and fixed this issue.

Keylogger on Samsung

We discovered through our historical analysis that Samsung has introduces an API ISpen
GestureService.getCurrentInputContext(...) in 27 ROMs starting from version 7.0
through version 8.1. Our cross-model analysis revealed though that the API is used
only by 8 ROMs; all from SM-N95x and SM-T82x series (corresponding to SNote and
STab devices). Consequently, the API was flagged as a Residual in the rest of the 19
ROMs. We have manually investigated this case and found that the API can obtain an
instance to an IInputContext object, maintained by the defining system service (i.e.,
SpenGestureService). IInputContext abstracts the input method to an app and allows
reading, editing and controlling user inputs such as taps and hard key presses. Given these
privileged operations, obtaining this object is restricted to the system and input method
managers in other framework call sites. Our security analysis module revealed the Residual

43

has no security checks at all, allowing any third-party app to get the IInputContext object
with no permissions. We have confirmed that the Residual can be exploited to intercept
all user input including lock screen passwords, payment data and app credentials. We have
further confirmed that it can be exploited to inject and compromise the integrity of user
inputs. Samsung confirmed and fixed the vulnerability. NIST ranked the vulnerability as
critical.

Launching Activities with System Privilege

Our historical analysis discovered the presence of a Residual instance in the majority of our
collected Samsung samples (versions 8.0 through 10). The API ISemPersonaManager.sta-
rtActivityThroughPersona(..) was introduced and exclusively used in earlier Sam-
sung devices running version 7.0. Our security analysis flagged the case as potentially
vulnerable since it enforced obsolete access control. We inspected the Residual and sur-
prisingly found that it allows starting any Android activity within the highly-privileged
context of the defining system service (named Persona). Specifically, it takes as an ar-
gument any arbitrary intent describing the activity to be launched and invokes Android’s
Context.startActivity() to trigger the specified intent. This is clearly alarming since
it can be exploited to trigger system activities without a privilege requirement.

We have built an end-to-end PoC for version 8.0 to demonstrate possible damages. For
instance, we supplied an intent with action "android.intent.action.ACTION REQUEST

SHUTDOWN" to trigger a system shutdown. In another instance, we crafted an intent to call
emergency phone numbers (with an explicit destination to the package "com.android
.phone" with data "tel:911"); all by exploiting the unnecessary Residual functionality.

Samsung marked this vulnerability as duplicate. The issue was previously reported and
fixed.

4.11.2 Other Impacts

The impacts of Residuals are significant. Besides the end-to-end PoCs we built (Sec-
tion 4.11.1), we randomly selected 250 reported weakly-protected Residuals and manually
investigated potential consequences that could happen once they were exploited. We note
that the instances here are randomly selected. We do not necessarily have a correspond-
ing physical device, and the Residual implementation may correspond to undocumented
proprietary functionalities. As such, all we could do is to statically inspect the code and

44

estimate possible consequences once a Residual is invoked. Such an analysis may not be
accurate, but it is still important for evaluating the impacts of weakly-protected Residuals
that have never been investigated before. The results of our analysis are shown in Table
4.4. We group the possible impacts by category (first column) and give a few examples for
each category (third column).

Table 4.4: Impacts of 250 Randomly-Selected Residuals

Impact Count Examples Cause Vendor(s)

Data leakage 23 Infer location OAC Samsung
Get Mac address OAC Asus, Lenovo

Read network variables USF Lenovo
Infer running apps USF Huawei

Data pollution 18 Delete files under dir USF Xiaomi
Delete cache files OAC Xiaomi

Insert text message to ICC OAC Blu

DoS 29 Change subscription state OAC Xiaomi
Deny SMS receipt USF Samsung

Remount file system OAC Blu

Global setting 34 Change Wlan configuration OAC Xiaomi, Blu
manipulation Change keyguard configuration USF Samsung

Change audio output path OAC Xiaomi
Change SMS parameters USF Blu, LG

Unclear – 79 Set Drx Mode USF Samsung
Undocumented features Change cycle time USF Samsung

Process AT Command USF Blu
Infer ENDIP sample OAC LG

No Risk 67 – – –

OAC: Obsolete Access Control; USF: Undefined Security Feature

As shown in the table, 23 instances of Residuals can be exploited to expose (sensitive)
user data. Particularly, we identified one instance that could be invoked to register a
listener, allowing an attacker to receive notifications of location updates. Other analyzed
Residuals (18) allow manipulating data, including deleting cached files and other files under
a specific directory. Our analysis further reveals 29 instances that can cause DoS attacks.
One identified instance causes the device to deny and drop received SMS text messages.
Another instance can be used to deny access to the external directory. We further identified
other Residuals instances (34) that can be used to manipulate global settings, including
Wlan configurations and SMS parameters. We could not predict the effect of 79 Residuals
since they corresponded to undocumented proprietary features, while 67 other instances
did not seem to lead to a clear security impact. As mentioned earlier, just like other
APIs, weakly protected Residuals are not exploitable unless they implement a privileged
functionality.

45

Chapter 5

Poirot

5.1 Introduction

During our analysis of access control flaws in Residual APIs, we noticed many access control
inconsistencies, which occur when one path to a sensitive resource requires stricter access
control enforcement than another. Malicious third-party application developers can take
advantage of such inconsistencies to access sensitive resources through the least-protected
path.

As we explored existing existing access control inconsistency detection solutions, we
found that the state-of-the-art inconsistency detection tools suffer from two main limi-
tations. First, their underlying detection methodology is highly-simplistic, often leading
to inaccurate output unless substantial heuristics are adopted. Specifically, the tools are
founded on the assumption that two APIs converging on an instruction (i.e., field update,
method invocation) are related and thus require similar protections. However, we note
that the convergence point may be auxiliary to the general functionality and hence likely
irrelevant to the enforced access control. Failing to discern the relevance of the convergence
point leads to significant false positives.

Second, the tools rely only on a reachability analysis to link an API and its accessible
resources to derive their access control. We observe though that Android resources are of-
ten connected via implicit relations that can be structural, semantic and data-flow related.
For example, a data-flow between two resources may imply that they require similar pro-
tections. Similarly, a naming similarity between a protected API and a reachable resource
could help us infer that the resource is likely to require the API’s protection. Modeling
these implicit relations can help uncover new inconsistencies.

46

We present a new approach that reconceptualizes the inconsistency detection problem
to account for uncertainty. Instead of assuming precise associations between resources and
access control (i.e., resource r requires p), our tool assumes probabilistic ones (i.e., resource
r may require p with confidence c).

Specifically, our solution works as follows: we begin by statically analyzing each Android
API to collect basic access control facts through path-sensitive analysis. The facts correlate
a resource r in the API to a protection p, which is a set of conjoint security constraints
based on detected control dependencies. Each unique correlation is then assigned prior
probabilities, values indicating our degree of belief in the access control implication.

Finally, the probabilistic inference engine aggregates the statically-collected basic facts,
observations and constraints to project a high confidence protection recommendation for
a resource. Depending on the type and number of facts and observations, the inference
sharpens the initial probabilities and suppresses uncertainties. The generated probabilis-
tic protection recommendations can then naturally be leveraged to detect access control
inconsistencies.

We have integrated our proposed static analysis and probabilistic inference into an
analysis pipeline, which we name Poirot. Our evaluation of Poirot shows that it is effec-
tive in generating protection recommendations for resources exhibiting sufficient facts and
observations. Poirot can successfully predict normalized protections equivalent to AOSP
implemented protections with an accuracy up to 84%. Our evaluation further reveals that
our approach is effective in detecting inconsistencies. We run Poirot to analyze three cus-
tom images from Amazon, Xiaomi and LG, and discovered 26 true inconsistencies. While
some of these inconsistencies may be detected via existing approaches, we note that 10
were uniquely discovered by Poirot.

5.2 Organization

We begin by providing a discussion on the shortcomings of existing inconsistency detection
tools in Section 5.3. From Sections 5.4 to 5.7, we discuss the inner workings of Poirot in
detail. Finally, we present our evaluation of Poirot in Section 5.8 and a case study of an
inconsistency detected by Poirot in Section 5.9.

47

5.3 Limitations of Existing Inconsistency Detection

Tools

While existing inconsistency detection tools have helped identify and correct significant
access control anomalies, they suffer from two major limitations:

1. Inaccurate Identification of Access Control Targets. Since they may not
accurately identify the targets of a given access control check, the existing tools
generate an overwhelming number of false positives.

2. Failure to Identify Implicit Access Control Inconsistencies. As they can only
detect explicit reachability-based inconsistencies, they may miss a significant number
of implicit inconsistencies.

In the following subsections, we provide examples to illustrate both shortcomings.

5.3.1 Inaccurate Identification of Access Control Targets

Existing inconsistency detection tools consider two APIs to overlap in functionality if
they converge on a similar instruction – for instance, if they invoke the same method or
update the same variable. We refer to the similar instruction as the convergence point.
If such a convergence exists, the tools examine and compare the enforced access control
along the two paths from each API’s entry to the convergence point and check if they are
consistent. Essentially, the tools assume that the operation indicated by the convergence
point should require all security checks found along with the most stringent access control
path. However, this assumption is fundamentally inaccurate: the convergence point may
not be the target of the access control check along the two paths. In fact, APIs commonly
converge on instructions that are irrelevant to the enforced access control check.

Let us consider the code snippets (A) and (B) in Figure 5.1, extracted from AOSP
(version 12). The highly simplified snippets depict the implementation of two APIs in the
PackageManagerService (hereafter abbreviated as PMS) that perform two different func-
tionalities: (A) PMS.flushPackageRestrictionsAsUser(..) flushes a specified package’s
restrictions for a given user to disk, while (B) PMS.installExistingPackageAsUser(..)
installs an existing package for a specified user. Given the varying sensitivity of the op-
erations, the two APIs enforce different access control checks. (A) performs a user own-
ership/ privilege check (shown in green), while (B) enforces a signature permission check

48

Figure 5.1: False Positive Due to Inaccurate Identification of Targets

(INSTALL_PACKAGES or INSTALL_EXISTING_PACKAGES, shown in red) in addition to the user
ownership/ privilege checks. As further depicted, despite their dissimilar functionalities,
the two APIs converge on an internal method invocation mSettings.writePackageRestr-

ictionsLPr, prompting existing inconsistency detection tools to treat the APIs as related.
The existing tools would proceed to wrongly flag the least protected path leading to the con-
vergence point (in this case, the path starting from the entry of flushPackageRestrictio-
nsAsUser) as a potential inconsistency since it does not enforce the checks depicted in red
in (B).

This shortcoming in existing tools is due to the inability of simplistic inconsistency anal-
ysis to accurately pinpoint the target(s) of enforced access control checks. To demonstrate
this point, we assess the likely target of the checks implemented by the two APIs:

• The user checks (in the green box) implemented in PMS.flushPackageRestrictions-
AsUser likely target all operations shown in the yellow box, including the convergence
point writePackageRestrictionsLPr since they are all related to flushing and writ-
ing restrictions based on the user parameter – as inferred from their name and pa-
rameter values. Observe that we are uncertain about the relevance of the operation
mHandler.removeMessages to the user check.

• The permission checks INSTALL_PACKAGES and INSTALL_EXISTING_PACKAGES and
the user restriction check DISALLOW_INSTALL_APPS (in red) in PMS.installExistin-

49

gPackage are likely targeting the methods PkgSettings.setInstalled and PkgS-

ettings.setInstallReason since their names indicate that they pertain to package
installation.

• The user checks in PMS.installExistingPackage in the green box are likely tar-
geting all operations in the yellow boxes as well as writePackageRestrictionsLPr
since they all perform operations based on the user parameter.

Based on this analysis, we deduce that the convergence point writePackageRestricti-
onsLPr is highly unlikely related to the permission checks required for package installation
and to the user restriction check (DISALLOW_INSTALL_APPS). Hence, the detected inconsis-
tency is a false positive. In practice, we have observed that this approximation results in
a large number of false positives that overshadow true inconsistencies. We provide more
details on the prevalence of false positives in Section 5.8.7).

5.3.2 Failure to Identify Implicit Access Control Inconsistencies

The previous work associates target resources with access control based on the notion of
reachability, or whether a resource is reachable from a protected API. For example, in Fig-
ure 5.1(A), the resources mSettings.write PackageRestrictionsLPr, mDirtyUsers.re-
move and mHandler.removeMessages are all reachable from the API flushPackageRest-
rictionsAsUser and thus are assumed to require its protection – more specifically, the user
checks in the green box. Note that control dependencies may be extracted to determine the
right protection (as performed by AceDroid [21]). Reachability-based inconsistencies are
then naturally detected if a resource is reachable from different paths exhibiting different
protections. While reachability analysis can approximately associate a large number of re-
sources with access control, we observe that resources may also be linked to protections via
other types of implicit relations, including semantic, data-flow, and structural associations.

More importantly, we note that Android resources are usually transitively connected
via more than a single relation. As reachability and convergence analyses cannot detect
inconsistencies implied by such implicit and complex relations, they can overlook important
inconsistencies.

To illustrate this, consider the motivating examples shown in Figure 5.2, extracted
from LG V405E (version 10). Snippets (A) and (B) correspond to highly simplified im-
plementations of two custom LG APIs defined in its MDMService. Snippet (C) depicts
an excerpt from the AOSP API PMS.grantRuntimePermission. Linking access control

50

Figure 5.2: Probabilistic inference of Access Control Checks and Implicit Inconsistencies

information pertaining to the resources in the three APIs reveals a (serious) implicit incon-
sistency in LG’s setActiveAdmin. The inconsistency in (B) allows a third-party app to
manipulate the content of mAdminMaps, a local resource used as a trigger condition in (B)
setRuntimePermissionGrantState (highlighted in the purple box). Having full control of
this important field allows the third-party app to subsequently trigger the underlying priv-
ileged operations (highlighted in yellow), including granting itself runtime permissions (via
(C) grantRuntimePermission). Observe that this case would go undetected by existing
inconsistency approaches since there is no clear reachability-based access control violation.

We are motivated by these types of implicit inconsistencies that require reasoning about
various relations (e.g., structural, semantic, data flows) between resources and aggregating
the pertaining access control information. We note that this reasoning entails a degree
of uncertainty; we cannot be fully sure that an observed relation always implies a certain
protection.

Returning to our example in Figure 5.2, we can infer the implicit inconsistency in
API (B) by following the ordered steps: (1) statically analyzing snippet (C) shows that
grantRuntimePermission requires the permission ADJUST_RUNTIME_PERMISSION. In (2),
we propagate this information to the API’s call site in setRuntimePermi ssionGrantState.
This indicates that the latter should enforce a permission with a minimum protection level
equivalent to ADJUST_ RUNTIME_PERMISSION. In (3), we observe that the API setRuntime-
PermissionGrantState does not implement a permission check along the path leading to

51

grantRuntimePermission; rather, it uses the trigger condition check pertaining to a read
of the field mAdminMaps to control access. We refer to such a construct as a trigger-condition
hint, indicating that the trigger likely provides a protection required by the reachable re-
source (i.e., grantRuntime Permission). Intuitively, this implies that the trigger should
not be altered by a third-party app – unless it holds a permission equivalent to (or stronger
than) ADJUST_RUNTIME_PERMISSION. In (4), we propagate the implied access control in-
formation to the write site of the field mAdminMaps.put in API (B). In (5), we detect a
violation of this implication due to the flawed check in the red box.

By analyzing API (A), we can discern another hint that can help us reason about access
control requirements. The boxes linked with a blue arrow indicate mutually exclusive oper-
ations that are preceded by a common trigger condition1. As such, we can infer that both
operations are likely to require similar access control. This hint is particularly important
when propagating the access control requirement extracted from grantRuntimePermission

to LG’s custom method permissionControllerManager.setRunTime..., as shown in (6).
The mutually exclusive relation is effective in helping us derive the access control require-
ment for the custom resource and subsequently detect potential inconsistencies.

5.3.3 Inferring Implicit Inconsistencies

We are motivated by these types of subtle inconsistencies that require reasoning about
various implicit relations between resources and aggregating the pertaining access control
information. We note that this reasoning entails a degree of uncertainty; we cannot be
fully sure that an observed relation always implies a certain protection.

Returning to our example in Figure 5.2, we can infer the implicit inconsistency in API
(B) by following the ordered steps. In ❷, statically analyzing snippet (C) shows that the
API grantRuntimePermission requires the permission ADJUST_RUNTIME_PERMISSION. In
❸, we propagate this information to the API’s call site in setRuntimePermissionGrantSt-

ate. This indicates that the latter should enforce a permission with a minimum protection
level equivalent to ADJUST_RUNTIME_PERMISSION. In ❹, we observe that setRuntimePermi-
ssionGrantState does not implement a permission check along the path leading to grant-
Runtime; rather, it uses the trigger condition check pertaining to a read of the mAdminMaps
field to control access. We refer to such a construct as a a trigger-condition relation, indi-
cating that the trigger likely provides a protection required by the reachable resource (i.e.
grantRuntimePermission). Intuitively, this implies that the trigger should not be altered

1Note that we do not consider input validations to be triggering conditions since they can be manipu-
lated.

52

by a 3rd-party application unless it holds a permission equivalent to (or stronger than)
ADJUST_RUNTIME_PERMISSION. In ❺, we propagate the implied access control information
to the write site of the field mAdminMaps.put in API (B). In ❻, we detect a violation of
this implication due to the flawed check in the red box.

By analyzing API (A), we discern another implicit relation that can help us reason
about access control requirements. The boxes linked with a blue arrow indicate mutually
exclusive operations that are preceded by a common trigger condition2. As such, we can
infer that both operations are likely to require similar access control. This inference is
particularly important when propagating the access control requirement extracted from
grantRuntimePermission to LG’s custom method permissionControllerManager.set-

RuntimePermissionGrantStateByDeviceAdmin, as shown in ❻. The mutually exclusive
relation is effective in helping us derive the access control requirement for the custom
resource and subsequently detect potential inconsistencies.

Due to the inherent uncertainties in linking resources and protections, we observe that
it is challenging to formulate general patterns that can precisely associate resources with
access control. Statically extracted associations are imprecise for two main reasons. First,
it is difficult to precisely pinpoint the resource(s) targeted by an observed access control
check. Second, inferring an access control implication from an implicit observed association
entails a degree of uncertainty. Consequently, it is difficult to accurately detect access
control anomalies.

To meet these challenges, we propose a new solution centered around computing prob-
abilistic protection recommendations for Android resources and leveraging those recom-
mendations to derive potential inconsistencies. Our approach is based on the insight that
the Android framework is rich with various structural, semantic and data-flow hints that
link resources to protections and resources to other resources. These hints can be naturally
consolidated into a protection recommendation using probabilistic inference. The proba-
bilistic analysis will aggregate these hints and their frequencies to suppress uncertainties
and infer protection recommendations.

5.4 Approach

Given an Android ROM, Poirot preprocesses the framework and system classes to identify
system services and their APIs. It then statically analyzes the APIs to identify reach-

2Note that we do not consider input validations to be triggering conditions since they can be manipu-
lated.

53

able resources and preceding access control checks in a path-sensitive fashion. Since the
number of identified resources can prohibitively affect the probabilistic inference, Poirot
statically preprocesses the APIs to eliminate irrelevant code blocks and reduce the number
of resources to be further analyzed.

5.4.1 Basic Facts Collection

Poirot begins by collecting basic access control facts. Using an inter-procedural, path-
sensitive analysis, the tool identifies possible paths leading to each resource in the reduced
set. For each path, the tool extracts all enforced access control checks and considers them a
conjoint set. It then introduces a random variable denoting the probability of the resource
found at the end of the path to require the the conjoint set of access control checks. Observe
that new random variables are added if the resource is found to require a new protection
at other call sites.

5.4.2 Access Control Constraint Detection

For each resource, Poirot generates access control constraints, which assign prior probabil-
ities to the random variables by analyzing access control properties – i.e., control depen-
dency properties between resources and access control checks (regarded as basic facts). A
prior probability is a value between 0 and 1 representing our degree of belief in a basic
fact’s access control implication. Particularly, a one-to-one control dependency between
an access control check and a single resource is a strong indication that the resource is the
target of the access control check. On the other hand, a one-to-many control dependency
between an access control check and a set of resources implies that one or more items in
the set is the likely target. As a result, one-to-one hints are more certain than one-to-many
hints. Hence, we associate one-to-one hints with a 0.95 prior probability value while we as-
sociate one-to-many hints with a 0.60 prior probability value (More information on Poirot’s
prior probability values can be found in Section 5.8.3). Observe that the generated access
control constraints may only assign initial protections to a subset of the sinks reachable
from the API since not all will be linked to enforced access control via the collected basic
facts.

Note that uncertain protection assignments will be suppressed as more observations are
collected and more constraints are established during inference.

54

5.4.3 Implication Constraint Detection

Poirot propagates the initial probabilistic access control information to other resources
through implication constraints. These types of constraints encode observed structural,
semantic and data-flow relations that connect one resource to another resource with some
degree of confidence. In such a way, basic access control facts can be propagated from
resource to resource. We have identified seven types of implication constraint categories:
Reachability, Triggering Condition, Mutual Exclusivity, Name Similarity, Getter-to-Setter,
Data-Flow, and Parameter Flow constraints. An implication constraint relates two predi-
cates as follows: pred1

pr−→ pred2 where pr denotes our confidence in pred1 implying pred2
to be true. Similar to the previous step, Poirot relies on static program analysis to extract
the relations and to construct the pertaining implication constraints.

Inference We pass the collected probabilistic constraints into a probabilistic inference
engine, which outputs final protection recommendations for framework APIs. Framework
developers can then compare each generated recommendation with the corresponding API
implementation to detect access control inconsistencies.

5.5 Access Control Constraints

Before collecting access control constraints from an API, we first perform a resource
reduction using program analysis. We eliminate all resources within the API that are
commonly used for sanitization checks, logging and metrics collection.

5.5.1 Definitions

To facilitate discussion, we introduce a few Android-specific definitions in Figure 5.3. We
use func to denote a Function, which could be either an API (an exposed Android binder
interface entry point) or an internal method (an unexposed method used internally by the
system). An Expression e denotes a construct made up of variables, operators and method
invocations that evaluates to a single value. An Expressionmay be related to a Resource r
(e.g, motionEvent.X=300) or to a Protection p (e.g, Binder.getCallingUid() == 1000)
or to others. We use s to denote a Statement, which represents a complete unit of exe-
cution. It corresponds to either to a sequence of statements or to code blocks along the
true/false branches in conditional constructs.

55

Our analysis considers three types of resources: (1) a FieldAccess, denoted by f , (2)
an InternalMethod, denoted by m and (3) an API, denoted by a. f is categorized based
on the access type (read or write), while m and a are categorized as setters, getters or
standard methods. We rely on a few static rules and naming conventions to perform this
categorization.

Along each unique execution path from an API a, a resource r may be protected by
a set of security checks. Protection p represents the conjunction of these security checks
(e.g., UserHandle.id= Owner ∧ permission="Location"). Note that we approximately
model the Protection p required to invoke a by taking a union of all security checks along
the protection path.

⟨Function⟩ func ::= <signature> { s }
⟨Expression⟩ e ::= E(r) | E(p) | E(others)
⟨Statement⟩ s ::= s1; s2 | e | if (e) { st }

| if (e) { st } else { sf }
⟨Protection⟩ p ::= c1 ∧ c2 ∧ · · · ∧ cn
⟨Resource⟩ r ::= f | m | a
⟨FieldAccess⟩ f ::= f read | fwrite

⟨InternalMethod⟩ m ::= mgetter | msetter | mothers

⟨APICall⟩ a ::= agetter | asetter | aothers

⟨SecurityConstraint⟩ c

Figure 5.3: A Simple Language for Android Functions

5.5.2 Basic Access Control Facts

As mentioned earlier, we rely on program analysis to collect basic access control facts from
the reduced set of resources within an API. From the basic facts, we generate access control
constraints, which assign an initial protection p to a resource r with some confidence c.
To collect the basic facts, Poirot conducts a path-sensitive analysis since resources may
be protected with disjunctive or conjunctive checks within an API. First, we perform a
forward control-flow analysis on the API’s interprocedural control flow graph (ICFG) and
identify the conditional branches on which a target resource is control dependent. We
then process the branches to infer access control patterns (for example, one operand in
the predicate evaluating to an invocation of Binder.getCallingUid()) and extract other
pertaining constraints using DefUse chains (e.g., operator, variables used in the operands).
If multiple constraints are found along the same ICFG path leading to the target resource,
the analysis merges them using a logical AND (implying conjoint checks). Conversely, if

56

multiple ICFG paths are found to lead to the target resource, the analysis merges the in-
path constraints for each ICFG path using a logical OR (implying disjoint checks). Observe
that the latter scenario indicates that the target resource is reachable from different paths.

For each unique access control path leading to the target, Poirot introduces a new
random variable denoting the probability that the target requires the union of constraints
along the path.

5.5.3 Access Control Constraints

Once the initial access control facts are collected, Poirot generates access control con-
straints, which can take the form of either one-to-one or one-to-many control-dependency
constraints.

1-to-1 Control-Dependency Constraints

One-to-one constraints connect a protection to a single resource. They are detected when
an access control path is found to lead to one single resource. For example, Listing 5.1
shows that the permission check MOUNT UNMOUNT FILESYSTEMS precedes a single call to
MoveCallbacks.unregister(..). As such, we can intuitively link the permission to the
invoke statement with high confidence.

1 public void unregisterMoveCallback(IPackageMoveObserver callback) {

2 if(checkCallingPermission(permission.MOUNT_UNMOUNT_FILESYSTEMS == GRANTED)

3 this.mMoveCallbacks.unregister(callback);

Listing 5.1: unregisterMoveCallback

To gather one-to-one constraints, Poirot performs a depth-first traversal of an API’s
ICFG and identifies the unique resources that are control-dependent on an identified pro-
tection. For each discovered one-to-one relationship between a resource r and a protec-
tion p, Poirot formulates an access control constraint, depicted by Rule R1 in Table 5.2:
AccessControl(p, r, SELF) = true (0.95) with the random variable AccessControl(p, r, SELF)
asserting that p is derived from a one-to-one control dependency. Figure 5.4 describes
the meaning of AccessControl. Note that the third parameter denotes the propagation
direction, which we will discuss shortly.

57

1-to-n Control-Dependency Constraints

These constraints are detected when an access control path leads to more than one resource
along a unique ICFG path. They reflect the less certain scenario where it is challenging to
pinpoint the exact protection target(s) without additional clues. (Refer to the motivating
examples in Figures 5.1(A) and (B) for illustration.) Poirot formulates this access control
constraint (depicted by R2 in Table 5.2) for each pair of protection p and its control-
dependent resources r ∈ R , as follows:

AccessControl(p, r, SELF) = true (0.60), with random variable AccessControl(p, r, SELF)
asserting that the protection p is derived from a 1-to-n control dependency.

5.6 Implication Constraints

Implication constraints do not directly link a resource with a protection. Instead, they link
resources to one another by leveraging observed structural and semantic relations statically
connecting the resources. As such, these constraints propagate protection recommenda-
tions across resources. Note that a propagated protection could be directly assigned by
a access control constraint or iteratively deduced during probabilistic inference. More
formally, implication constraints are presented as an implication from a prior-probability
predicate to a posterior predicate or from one posterior predicate to another posterior
predicate. Table 5.1 lists the observations (O1 to O7) that Poirot relies on to establish the
implication constraints. Below, we discuss in detail each observation and corresponding
implication constraint. We note that our tool is extensible so new constraints can always
be added to refine the analysis.

5.6.1 Structural Constraints

These constraints are identified by considering the program structure. They allow us to
encode the most commonly used structures that we have observed.

Reachability

Reachability forms the most basic structural constraint that can connect two resources. A
resource r1 is reachable from r2 if r2 is the direct caller of r1. We establish reachability hints
exclusively between an API rcaller and its reachable resources. In other words, we do not

58

Table 5.1: Fact and Observation Definition

ID Facts and Observations (derived from static program analysis)

F1
ControlDependency(p,R={r1, r2, ..., rn}): a set of resources (R) are

control-dependent on protection p.

O1
Reachability(func, R={r1, r2, ..., rn}): a set of resources (R) are reachable

from the entrypoint of function func.

O2 SameBlock(e1, e2): expressions e1 and e2 are within the same basic block.

O3 Contains(s, e): the expression e is a part of the statement s.

O4 Dataflow(e1, e2): there is a direct data-flow from the expression e1 to e2.

O5 Argument(func, e): the expression e is an argument of the function func.

O6 NameCorrelation(r1, r2): the resources r1 and r2 have name correlation.

O7 InPath(p, a, r): protection p is located in the path from API a to resource r.

consider internal method reachability hints since our analysis is interprocedural. To collect
reachability hints, Poirot builds a call graph for each API and performs an inspection to
identify direct ⟨API-rcallee⟩ relations. Transitive reachability constraints will be encoded
during probabilistic inference.

An observed reachability between API and rcallee implies that we can propagate API’s
inferred protections to its reachable callees. However, we note that some of the inferred
protections may already be encoded through control-dependency constraints. Consider
Listing 5.2:

1 public void removeUser(int userId) {

2 if(checkPermission(MANAGE_USERS) == GRANTED || ...)

3 removeUserUnchecked(userId);

Listing 5.2: removeUser

The forward reachability hint between caller removeUser and callee removeUserUnche-
cked should not propagate the caller’s in-API protection requirements to the callee. As
such, our implication constraints are tailored to account for the direction of the inferred
protection. As we show in Figure 5.4, Poirot considers five directions. A SELF direction
denotes the cases where the protection is derived from a basic fact within the API’s im-
plementation. A FORWARD direction denotes the cases where the protection is inferred from
the API’s call site.

For example, the call site of removeUserUnchecked enforces a protection. A BACKWARD

direction denotes the opposite: a callee’s protection is propagated back to its calling API.

59

AccessControl(p, r, d): the resource r is protected by the protection p,
which is inferred along with the direction d.

d ∈ {FORWARD, BACKWARD, SELF, AGGREGATED}.
SELF: directly derived from facts
FORWARD: forward propagation, i.e., following the program’s control flow
BACKWARD: backward propagation, i.e., reversing the program’s control flow
-: direction-free propagation
AGGREGATED: the aggregated result from the three aforementioned directions.

Figure 5.4: Defining the Random Variables

In this case, removeUser’s protection is propagated back to some other invoking API.
A - direction denotes a direction-free propagation (we discuss this case in greater detail
later on). Finally, an AGGREGATED protection represents the cases where a protection is an
aggregated result of different protection directions.

Intuitively, a reachability implication constraint is bidirectional in the FORWARD and
BACKWARD directions and its confidence is subject to the same 1-1 and 1-n control depen-
dency constraints. However, we note subtle properties regarding the propagation direction
that should be accounted for. Let us use Listing 5.3 to understand the properties.

1 public void reportFailedPasswordAttempt(int userHandle) {

2 if(checkPermission(BIND_DEVICE_ADMIN) == GRANTED){

3 Binder.clearCallingIdentity ();

4 policy.mFailedPasswordAttempts ++;

5 if(policy.mFailedPasswordAttempts >= max))

6 if (userHandle == UserHandle.USER_OWNER) {

7 wipeDataLocked(wipeExtRequested , reason);

8 } else {

9 am.switchUser(UserHandle.USER_OWNER);

10 mUserManager.removeUser(UserHandle)

Listing 5.3: reportFailedPasswordAttempt

Below, we explain each step Poirot takes to generate observations and constraints from
Listings 5.2 and 5.3:

1. The API resources Recovery.reboot, am.switchUser, and mUserManager.remove-

User are reachable from the API resource reportFailedPasswordAttempt (O1).

2. The InternalMethod resource removeUserUnchecked is reachable from API mUser-
Manager.removeUser (O1).

3. The API mUserManager.removeUser is associated with permission BIND_DEVICE_AD-
MIN through a 1-n control dependency (R2).

60

4. The InternalMethod resource removeUserUnchecked is associated with the permis-
sion MANAGE_USERS through a 1-1 control dependency (R1).

From (2) and (3), Poirot establishes a forward reachability constraint (R3) to propagate
the following:

5. AccessControl(BIND DEVICE ADMIN, mUserManager.removeUser, FORWARD)
0.95−−→ Access-

Control(BIND_DEVICE_ADMIN, removeUserUnchecked, FORWARD).

From (2) and (4), Poirot generates the following backward reachability constraint:

6. AccessControl(MANAGE_USERS, removeUserUnchecked, BACKWARD)
0.95−−→ AccessControl(MANAGE_USERS, UM.removeUser, BACKWARD).

Similarly, from (1) and (6), Poirot derives the following backward reachability con-
straints:

7. AccessControl(p, UM.removeUser, BACKWARD)
0.6−→ AccessControl(p, report.PasswordAttempt, BACKWARD).

At this stage, the backward derived permission MANAGE_USERS for
reportFailedPasswordAttempt from UM.removeUser can be further propagated in
forward fashion to other reachable resources based on (1). However, we note that the
propagation would likely cause incorrect protection inference. We address this potential
inaccuracy by limiting this propagation to resources in the same block. Rule R6 enforces
this constraint with 0.6 confidence to model this inherent uncertainty.

Triggering Conditions

Here we rely on the conditional control flow construct if Trigger Predicate then r to
correlate resources. This construct is common in Android APIs that deliver a promised
functionality only when certain triggering conditions are satisfied. For example, an API
that allows the caller to send an SMS message may only invoke the actual sending func-
tionality when the mobile data is active. The triggers often reflect global system properties
such as hardware features, running device state or local properties defined in the resource’s
scope (e.g., policy contains a value).

61

Table 5.2: Probabilistic Inference Rules

ID Conditions∗ Probabilistic Constraints

R1 ControlDependency(p, {r}) AccessControl(p, r, SELF) = true (0.95)

R2
ControlDependency(p,R) ∧ |R| > 1 ∧

AccessControl(p, r, SELF) = true (0.60)
r ∈ R

R3

Reachability(a, {r}) ∧ AccessControl(p, a, d)

d ∈ {FORWARD, SELF, -}} 0.95−−−→ AccessControl(p, r, FORWARD)

R4

Reachability(a,R) ∧ |R| > 1 ∧ AccessControl(p, a, d)

d ∈ {FORWARD, SELF, -} ∧ r ∈ R
0.60−−−→ AccessControl(p, r, FORWARD)

R5

Reachability(a,R) ∧ r ∈ R ∧ AccessControl(p, r, d)

d ∈ {BACKWARD, SELF, -} 0.60−−−→ AccessControl(p, a, BACKWARD)

R6 SameBlock(E(r1), E(r2))
AccessControl(p, r1, BACKWARD)

0.6−−→ AccessControl(p, r2, FORWARD)

R7

NameCorrelation(a, r) ∧ Reachability(a, {r}) ∧ AccessControl(p, a, d)

d ∈ {FORWARD, SELF, -} 0.70−−−→ AccessControl(p, r, FORWARD)

R8

NameCorrelation(a, r) ∧ Reachability(a, {r}) ∧ AccessControl(p, a, BACKWARD)

InPath(p, a, r)
0.70−−−→ AccessControl(p, r, FORWARD)

R9

NameCorrelation(a, r) ∧ Reachability(a, {r}) ∧ AccessControl(p, r, d)

d ∈ {BACKWARD, SELF, -} 0.70−−−→ AccessControl(p, a, BACKWARD)

R10

(
∃s, s.t. s ≡ if (E(rread2)) {st}

)
∧ AccessControl(p, r1, d)

Contains(st, r1) ∧ d ̸ AGGREGATED 0.85−−−→ AccessControl(p, rwrite
2 , -)

R11

(
∃s, s.t. s ≡ if (e) {st} else {sf}

)
∧ (AccessControl(p, r1, d)

(e≡E(INPUT CHK) ∨ e≡E(SYS PROPERTY)) ∧ 0.90−−−→ AccessControl(p, r2, -))∧
Contains(st, E(r1)) ∧ Contains(sf , E(r2)) ∧ (AccessControl(p, r2, d)

d ̸AGGREGATED ∧NameCorrelation(r1, r2)
0.90−−−→ AccessControl(p, r1, -))

R12 d ̸ AGGREGATED
AccessControl(p,mgetter, d)

0.80−−−→ AccessControl(p,msetter, -)

R13 d ̸ AGGREGATED
AccessControl(p, agetter, d)

0.80−−−→ AccessControl(p, asetter, -)

R14 Data-flow(E(r1), E(r2))) ∧ d ̸ AGGREGATED

(AccessControl(p, r1, d)
0.80−−−→ AccessControl(p, r2, -))∧

(AccessControl(p, r2, d)
0.80−−−→ AccessControl(p, r1, -))

R15

DataFlow(e, E(r)) ∧Argument(a, e) ∧ AccessControl(p, a, d)

Reachability(a, r) ∧ d ∈ {FORWARD, SELF, -} 0.70−−−→ AccessControl(p, r, FORWARD)

R16

DataFlow(e, E(r)) ∧Argument(a, e) ∧ AccessControl(p, a, BACKWARD)

Reachability(a, r) ∧ InPath(p, a, r)
0.70−−−→ AccessControl(p, r, FORWARD)

R17 d ̸ AGGREGATED AccessControl(p, r, d)
1.00−−−→

AccessControl(p,msetter, AGGREGATED)

∗Each fact/observation is encoded with a unique ID. As such, the more facts/observations (of
the same type) that Poirot derives, the higher the confidence assigned to the corresponding

constraint. We elide the details in the table for simplicity.

62

We observe that altering the triggers is usually a protected operation that requires at
least the same privilege as that of the invoked resource. Intuitively, this is essential to
prevent triggering the sinks adversely in unsupported situations.

Poirot generates the following implication constraints to encode this observation, de-
picted in Rule R10 in Table 5.2. If a resource r1 is control-dependent on an expression
pertaining to a read of resource r2 – i.e., rread2 , Poirot adds a unidirectional trigger impli-
cation constraint between the two predicates:

AccessControl(p, r1, d
3)

0.85−−→ AccessControl(p, rwrite2 , -)

Here, we adopt a relatively low confidence given the uncertainty of this observation.
Note that this implication is not related to reachability and hence is a direction-free prop-
agation.

Mutual Exclusivity

Here we rely on control flow constructs in the forms (1) if Predicate then r1 else r2
and (2) if Predicate1 then r1 elseif Predicate2 then r2 to correlate r1 and r2. These
constructs are commonly used in APIs that provide varied implementations for the same
functionality depending on the running device properties. For instance, a sendSMS API may
check if the device is a CDMA or GSM model to select the relevant SMS dispatcher method
(e.g., dispatchCDMA vs dispatchGSM). Note that the triggered methods are mutually
exclusive and provide semantically similar functionality. We rely on this observation to
speculate that two mutually exclusive operations may require similar protections.

To detect this pattern, Poirot focuses on the structure of the control flow branch. The
triggering predicate(s) should be related to system properties or to input checks and the
individually triggered paths should be semantically related. We leverage a simple naming
similarity analysis to determine equivalence (akin to the similarity measure followed in
Section 5.6.2). Note that the analysis avoids flagging error and validation checks, which
commonly follow similar constructs.

Once two mutually exclusive operations r1 and r2 are detected, Poirot adds a bidirec-
tional implication constraint as depicted by Rule R11 in Table 5.2:(

AccessControl(p, r1, d)
0.90−−→ AccessControl(p, r2, -)

)
∧(

AccessControl(p, r1, d)
0.90−−→ AccessControl(p, r2, -)

)
3We omit direction details for simplicity. More details can be found in Table 5.2.

63

5.6.2 Semantic Hints

Semantic hints capture dependencies that exist between resources based on naming infor-
mation or operation semantics.

Name Correlation

Here, we rely on the observation that Android framework code contains a considerable
amount of semantic information to support comprehensibility and development. APIs,
internal methods, fields and other program elements often possess meaningful names. More
importantly, related elements are often named similarly. That is, the names may share a
root or substrings. We leverage this knowledge to link resources together and refine their
protection probabilities. Specifically, given a set of resources R reachable from a protected
API, Poirot identifies the subset of resources whose names are similar to the API and
accordingly creates a naming correlation implication constraint. This constraint implies
that the API’s protections are likely to be required for any resource bearing a similar name.

Back to Listing 5.3, we can spot a naming similarity between API reportFailedPassw-
ordAttempt and the field resource policy.mFailedPasswordAttempt. Hence, we can ac-
cordingly increase our confidence in the field access policy.mFailedPasswordAttempt to
require BIND DEVICE ADMIN, which was initially assigned through a 1-n control-dependency
constraint.

To calculate the naming similarity score between two resources a and r, Poirot relies
on the DICE coefficient score [80]. It then establishes a naming correlation implication
constraint between a and r if the dice coefficient is substantially high.

Poirot The constraint is depicted in Rule R7:

AccessControl(p, a, d)
0.70−−→ AccessControl(p, r, FORWARD)

where direction d ∈ {FORWARD, SELF}. We note that when the learning direction is SELF
(i.e., p is derived within a’s implementation via a basic fact), we enforce an additional
condition: r should be control dependent on p to exclude protections that may be targeting
different resources in different branches.

As the naming similarity constraint is bi-directional, we can backward propagate pro-
tections inferred for r to a as shown in Rule R8, where direction d ∈ {BACKWARD, SELF, -}:

AccessControl(p, r, d)
0.70−−→ AccessControl(p, a, BACKWARD)

64

Getter-to-Setter

Here, we rely on operation semantics to correlate resources. We focus on linking getter and
setter resources (for both APIs and internal methods) to transfer their protections. This
constraint is founded on the general observation that a mutate/set operation is likely to
be at least as restrictive as a get operation. We note that this observation may not hold
in all cases. For instance, consider the case where appending to a shared buffer is allowed,
but reading is not. However, the inherent uncertainty in this constraint can be suppressed
during probabilistic inference.

To collect ⟨rgetter, rsetter⟩ pairs, Poirot constructs the ICFG of each API and detects
all return statements. It then resolves the object returned as follows. First, if the object
resolves to a global field, Poirot inspects other APIs to identify corresponding setters.
Second, if the object resolves to a return value of other methods, Poirot transitively analyzes
them following the same procedure to resolve the actual object returned. The tool similarly
looks for corresponding setters. We note that we rely on a few rules to identify field get
and field set operations. Details are elided due to space constraints.

For each identified pair, we construct the following implication constraint (depicted by
rules R12 and R13), which propagates the getter’s protections to the setter. Note that this
constraint is unidirectional.

AccessControl(p,mgetter, d)
0.80−−→ AccessControl(p,msetter, -)

AccessControl(p, agetter, d)
0.80−−→ AccessControl(p, asetter, -)

5.6.3 Data-Flow Hints

Data-flow constraints denote define-use associations across resources. They are particularly
helpful when deriving protection requirements for a resource that has not been associated
with any particular protection but is linked to other resources via define-use relations.
Consider the highly simplified snippets from two APIs spotted in FireOS in Listing 5.4.

As shown, there is no high-confidence access control constraint that assigns a protection
to the global resource moveId. However, we can infer its protection via the data-flow
constraint in line 11, which connects the resource to APM.readMoveData() , which turns
out to require a signature protection. Note that this can help us transitively infer a new
protection for info.moveId (line 5) through another data-flow constraint.

65

1 String moveId;

2 public MigrationInfo getMoveData () {

3 if (checkPermissio("READ_MOUNT_DATA") == 0){

4 MigrationInfo info = new MigrationInfo ();

5 info.moveId = moveId;

6 info.moveStatus = moveStatus;

7 return info;

8 public void moveData () {

9 moveId = readMoveData ();

Listing 5.4: getMoveData

Poirot collects data-flow constraints as follows. First, for each r1 update operation (e.g.,
a direct assignment statement, an add operation on a Java class implementing Collection
interface, etc.), the tool leverages (interprocedural) def-use chains to transitively resolve
the resource r2 flowing to r1.

If a data flow is observed between r1 and r2, Poirot adds the following bi-directional
implication constraint (depicted in Rule R14):(

AccessControl(p, r1, d)
0.80−−→ AccessControl(p, r2, -)

)
∧(

AccessControl(p, r2, d)
0.80−−→ AccessControl(p, r1, -)

)
Parameter Flow

We observe a special type of data flow constraint that can help us refine the less certain
1-n reachability constraints. A parameter flow from an API resource r1 to a reachable
resource r2 often hints that r2 is highly related to r1. We employ this observation to refine
the protection probabilities of reachable resources.

The confidence is calculated as a function of the number of parameters that flow to a
target resource. If a high-confidence parameter flow is observed between an API resource
r1 and a reachable resource r2, Poirot adds the following implication constraint (depicted
in Rules R15 and R16):

AccessControl(p, a, d)
0.70−−→ AccessControl(p, r, FORWARD)

AccessControl(p, a, BACKWARD)
0.70−−→ AccessControl(p, r, FORWARD)

66

5.6.4 Access Control Aggregation.

At this stage, Poirot has gathered a set of access control and implication constraints, each
denoting our confidence that a resource r requires a protection p. We note that these
confidences are obtained via different directions (e.g., FORWARD, SELF, etc.). We enable the
inference engine to aggregate the confidence into a final confidence via RuleR17 in Table 5.2.
Specifically, given a propagation direction d where d is not AGGREGATED, the confidence
of AccessControl(p, r, d) is faithfully propagated to AccessControl(p, r, AGGREGATED). If a
protection recommendation is derived from different directions, the aggregated confidence
will subsequently increase. The aggregated confidence also increases as new facts and
observations of the same type are recovered at multiple program points.

5.7 Poirot in Action

We implement a prototype for Poirot consisting of two components: (1) a static analysis
component and (2) a probabilistic inference engine. The static analysis component is
built on top of WALA [20] and relies on Akka Typed [13] to parallelize the analysis.
The probabilistic inference engine is built on ProbLog [19], a state-of-the-art probabilistic
inference engine. As the underpinning solving technique is beyond the scope of this paper,
we omit the details.

The static analyzer processes the Android framework, extracts basic facts and accord-
ingly generates access control constraints. The analyzer implements a number of Observa-
tion Extraction modules, each responsible for identifying structural, semantic or data-flow
observations. The analyzer further generates corresponding implication constraints in the
form of Probabilistic Logic Program rules – i.e., C ∧ x1

p−→ x2.

The constraint solver associates each Resource r with one or more Recommendations.
Each Recommendation consists of a Protection rp and a Confidence c, where c is a value
between 0 and 1. The tool outputs a ranked list of recommendations, from which we pick
the top three results (Refer to Section 5.8.2). We normalize the recommendations following
[21] to allow comparison and effective inconsistency detection.

Example. We use the AOSP API getSyncStatusAsUser(...) defined in the ContentSer-
vice to illustrate Poirot’s output. The tool generates three protections recommendations
with the following probabilities:

1. android.permission.INTERACT ACROSS USERS ∧ android.permission.READ -

SYNC SETTINGS with probability 0.91.

67

2. android.permission.INTERACT ACROSS USERS FULL ∧
android.permission.READ SYNC SETTINGS with probability 0.91.

3. android.permission.INTERACT ACROSS USERS FULL ∧
android.permission.READ SYNC STATS with probability 0.91.

Observe that the above recommendations are disjunctive, meaning that just one is
sufficient for proper access control enforcement. To detect inconsistencies, Poirot compares
the recommended access control enforcement with the implemented access control after
normalization. Since the API implements the third recommendation, the case is considered
consistent.

5.8 Evaluation

We design several experiments that assess Poirot’s effectiveness and performance. Specifi-
cally, our evaluation aims to answer the following research questions:

• RQ1: Can Poirot accurately infer protection recommendations for Android re-
sources?

• RQ2: Can different cut-off criteria configurations affect Poirot’s accuracy?

• RQ3: Can variations in the probability values affect Poirot’s accuracy?

• RQ4: What is the impact of each probabilistic rule on the analysis results?

• RQ5: What is Poirot’s runtime and memory overhead?

• RQ6: Can Poirot accurately detect access control inconsistencies?

• RQ7: Can Poirot detect a greater number of access control inconsistencies than
state-of-the-art tools?

• RQ8: Can Poirot suppress the false alarms associated with state-of-the art inconsis-
tency detection tools?

All experiments were conducted on an IBM Power LC922 server machine equipped with a
22 core CPU (2.6 GHz POWER9 processor) and 256G main memory.

68

5.8.1 (RQ1) Evaluating Poirot’s Protection Recommendations

In this experiment, we evaluate the accuracy of Poirot’s protection recommendations for
framework APIs.

Computation of Accuracy

Before describing our experiment setup, we explain how we estimate the accuracy of
Poirot’s generated protection recommendations. For each API, Poirot outputs a ranked
list of protection recommendations with probabilities. Intuitively, when the calculated
probability of a recommendation is sufficiently high, we can conclude that the API does in-
deed require the recommended protection. We introduce a configurable parameter CUTOFF
and only report the protection recommendations with probabilities higher than CUTOFF.
Note that more than one recommendation may correctly satisfy the latter condition due
to the disjoint nature of Android access control. Thus, we introduce another configurable
threshold TOPn to limit the number of reported recommendations. TOPn denotes the op-
timum number of protections that Poirot should report. We consider a recommendation
for an API to be accurate if at least one recommended access control in the TOPn recom-
mendations is as strong as the enforced access control found within the implementation
of the API in AOSP, which we rely on as ground truth. Unless otherwise specified, we
report the accuracy based on the configurations CUTOFF=90% and TOPn=3. (Refer to
Section 5.8.2 for more details on the selection criteria.)

Experiment Setup

For each AOSP system service, we begin by gathering all service APIs. We randomly
select 10% of these APIs, which we term the testing set. Our goal is to generate accurate,
high-confidence recommendations for the testing set APIs using basic facts generated from
the other 90% of APIs, which we term the training set. We repeat this process ten times
so that all service APIs are part of the testing set at least once.

Each round, we gather basic facts only from the training APIs. We supplement the basic
facts with implication constraints from APIs in either set. Then, we pass all basic facts and
constraints into the inference engine and attempt to output high-confidence recommenda-
tions for the testing set APIs. Finally, we compare all high-confidence recommendations
with the corresponding AOSP API implementations to assess the recommendation accu-
racy.

69

We rely on two additional setups to assess the impact of increasing the pool of APIs
used to derive the training and testing sets. The first additional setup considers APIs from
two similar-in-name services at one time. The second additional setup considers three
similar-in-name services at one time.

Table 5.3: Evaluation of APIs with High Confidence Access Control Recommendations

No Unlinked Resources Unlinked Resources >=1

Set Avg. APIs Analyzed APIs (#) Total Satisfaction Partial Satisfaction APIs (#) Total Satisfaction Partial Satisfaction Correct Recommendations

1-system 78 59 56 1 19 3 1 77%
2-system 131 101 101 0 30 3 7 82%
3-system 175 136 129 3 39 6 10 84%

Results

Table 5.3 reports the results. Column 1 lists the evaluation sets that we used for training
and Column 2 reports the average number of APIs for which Poirot was able to generate
a high confidence protection recommendation. As expected, the number of APIs for which
Poirot produces a recommendation increases as we include more services in the analysis.

Our analysis distinguishes between APIs with linked resources and those with unlinked
resources. A linked resource is a sink within a testing API that is associated with a high-
confidence recommendation. Recommendations for a linked resource can be propagated
back up to the testing API. On the other hand, an API with unlinked resources contains
sinks with no corresponding high-confidence recommendations. As a result, an inaccurate
recommendation in a testing API with an unlinked resource could be attributed to the fact
we did not extract basic facts from some related APIs also in the testing set.

Columns 3-8 report the number of APIs for which Poirot generated a high confidence
recommendation. Overall, Poirot achieves an accuracy of 77%, 82%, and 84%, in 1-system,
2-system, and 3-system service sets. As expected, the accuracy improves as more services
are included in the analysis, leading Poirot to uncover new cross-service observations and
thus sharpen in-service probabilities.

5.8.2 (RQ2) Impact of Cut-off Criteria

This experiment evaluates the impact of the CUTOFF and TOPn criteria. Columns 3-6
in Table 5.4 report Poirot’s accuracy using four TOPn settings (namely, 1, 2, 3, and 4) and
under three CUTOFF configurations (0.85, 0.9, and 0.95). The last column reports the

70

coverage achieved. Note that the impact of TOPn on the coverage is negligible; hence, we
report the coverage based on the CUTOFF criteria only. As shown, Poirot achieves the
highest accuracy at CUTOFF = 0.95 and at TOPn = 3 or TOPn 4 – there is no significant
improvement at top 4 for all CUTOFF configurations. Observe that CUTOFF impacts
the coverage in the other direction. This experimentation demonstrates that CUTOFF =
0.9 and TOPn = 3 leads to an optimal trade-off between accuracy and coverage.

Table 5.4: Impact of Cut-off criteria.

Accuracy (%)
Coverage (%)

TOP 1 TOP 2 TOP 3 TOP 4

CUTOFF
0.85 74.3 74.6 75.2 75.3 60.2
0.9 76.6 76.7 77.4 77.4 59.4
0.95 78.9 81.4 82.7 82.7 55.6

5.8.3 (RQ3) Impact of Prior Probability Values

We examine the sensitivity of Poirot’s accuracy to variations in the constraints’ prior
probability values. We run the analysis under multiple configurations for two representative
constraints: (1) the Getter-to-Setter constraint with confidence varying from 0.8 to 0.9 and
(2) the Reachability constraint with confidence varying from 0.50 to 0.60. As shown in
Table 5.5, the exploration demonstrates that parameter variation does not significantly
affect the results as the accuracy varies within a limited range of less than 2%. Note that
variations in other constraints, which we omit due to space limits, reveal similar trends.
This experiment shows that Poirot is robust against prior probability variations.

Table 5.5: Accuracy (%) of Poirot under different prior probabilities for two constraints.

Getter-to-Setter Constraint
p = 0.8 p = 0.85 p = 0.9

Reachability
p = 0.5 77.61 77.72 77.88
p = 0.55 78.57 77.46 76.99

Constraint p = 0.6 77.98 78.1 77.31

5.8.4 (RQ4) Impact of Probabilistic Constraints

In this experiment, we estimate the impact of Poirot’s collected constraints on the proba-
bilistic inference. Each constraint’s impact can be understood by examining its frequency,

71

One-to-One
235

One-to-N
2568

Access Control Constraints

Reachability

2697

Name Correlation

749 Data-flow

208 Getter-to-Setter

142 Triggering Condition
67 Mutual Exclusivity60

Implication Constraints

Figure 5.5: Breakdown of Probabilistic Constraints in AOSP

as the number of collected constraints plays a major role in the inference. To conduct
this experiment, we rely on a similar setup to Experiment 5.8.3 on AOSP. We count and
report the number of each constraint type found and present them in Figure 5.5. In to-
tal, Poirot collects 2803 access control constraints and 3923 implication constraints from
AOSP. Though all constraints contribute to the inference, reachability and 1-n constraints
are particularly prevalent.

5.8.5 (RQ5) Runtime and Memory Overhead

Table 9 shows the execution time and memory consumption of Poirot on the analyzed
ROMs. The results are broken down per analysis phase. Poirot’s main bottleneck is the
basic facts extraction process, which relies on a path-sensitive, inter-procedural analysis.
The execution time varies for different ROMs. For highly customized images, such as the
Amazon Fire HD, the analysis takes more time.

Table 5.6: Average Overhead Measurement

ROM Basic Fact Extraction Implication Constraint Generation Probabilistic Inference Inconsistency Analysis
Time (min) Memory (mB) Time (min) Memory (mB) Time (min) Memory (mB) Time (min) Memory (mB)

AOSP 50.05 332.29 22.80 302.08 23.50 367.49 2.70 365.44
Xiaomi Poco C3 53.31 373.06 33.35 280.83 30.30 361.48 4.05 366.27
Amazon Fire HD 56.00 301.89 32.42 309.26 30.98 320.25 4.47 382.29
LG LM-V405 54.13 327.10 31.35 300.85 28.02 338.24 3.34 367.42

72

5.8.6 (RQ6 & RQ7) Detecting Inconsistencies

This experiment evaluates Poirot’s ability to detect access control inconsistencies. We
analyze four ROMs from AOSP, Amazon, Xiaomi, and LG. Detailed information about
the ROMs is listed in Columns 1 and 2 in Table 5.7.

Experiment Setup

Unlike Experiment 5.8.1, we extract basic facts from all APIs since a diverse set of basic
facts is necessary to accurately detect access control inconsistencies. We pass these basic
facts and all generated implication constraints to Poirot’s inference engine in order to
generate high-confidence recommendations that can be used to detect inconsistencies. An
inconsistency is reported when Poirot’s high-confidence protection recommendation for an
API is stronger than the API’s enforced access control.

Table 5.7: Inconsistency Detection Results of Poirot

Rom Version Analyzed Inconsistencies With >= 1
APIs (TP) implication constraint

AOSP 10 2739 8 (5) 1

Xiaomi Poco C3 10 3335 19 (14) 4

Amazon Fire HD 10 2779 18 (12) 4

LG LM-V405 10 1585 15 (10) 4*

*one case exposes and impacts 118 APIs

Results

Table 5.7 presents the reported inconsistencies. As shown, Poirot detects high-confidence
true positive (TP) inconsistencies in all analyzed ROMs, ranging from 5 in AOSP to 14 in
Xiaomi – in total, 26 unique inconsistencies. It is worthy to note that one instance in LG 4

exposes 118 APIs, each leading to a different security impact including obtaining runtime
permissions, starting apps with system privilege, and even enforcing a password recovery.
Notwithstanding the high-severity level and tremendous amount of the exposed APIs, we
consider the 118 cases as a single inconsistency.

4This case was illustrated in Figure 5.2.

73

Inconsistencies Uniquely Discovered by Poirot

Column 5 in Table 5.7 lists the number of inconsistencies that were detected using at least
one non-reachability implication constraint. As shown, 10 inconsistencies were detected
uniquely by Poirot. This means that our tool was able to uniquely detect 38% of all
detected inconsistencies. We have manually analyzed the implementation of each reported
inconsistency to estimate this number.

Poirot’s False Positives

Due to the lack of ground truth security specifications for custom vendor APIs, we es-
timate the false positive (FP) inconsistencies through manual investigation. We report
the number of FPs in column 4. As shown, out of all reported inconsistencies, 32.7%
are false alarms. We identified two main reasons for the false positives. First, certain
high-confidence recommendations were derived from substantially frequent occurrences of
low-confidence constraints. In such cases, the higher number of constraints improves the
initially assigned low protection probabilities. Second, our tool failed to recognize some
custom access control checks uniquely introduced by vendors.

5.8.7 (RQ8) Suppressing False Positives of Other Tools

This experiment assesses whether Poirot successfully suppresses the high false positives
seen in Kratos [70] and AceDroid [21], two state-of-the-art access-control inconsistency
detection tools. Both tool operate in a largely similar fashion with subtle differences. To
detect inconsistencies, Kratos performs a simplistic convergence analysis, while AceDroid
relies on access control modeling and normalization to detect exploitable inconsistencies
only.

We obtained access to AceDroid and applied it to analyze the collected ROMs. Since
Kratos is not publicly available, we developed a simulated version, which we refer to as
Kratos+. Kratos relies on a number of unknown heuristics to reduce the number sinks
used to find converging APIs. To ensure a faithful comparison with Poirot, we incorporate
Poirot’s sink reduction strategy into Kratos.

Experiment Setup

We applied AceDroid and Kratos+ to identify inconsistencies. We estimate FPs using the
notion of likely protection targets, which we explain next. A protection target is a sink

74

within an API that is the target of some access control enforcement. A likely protection
target is a sink that we believe has strong potential to be a protection target because Poirot
identified it as linked to the calling API through some implicit relation, such as a naming
correlation or a parameter flow. Intuitively, if AceDroid or Kratos+ detect an inconsistency
for two APIs that converge upon an unlikely protection target, then that inconsistency is
probably an FP.

Table 5.8: False Positives of AceDroid and Kratos+.

ROM
AceDroid Kratos+

Inc# FP# (%) FP (%) ↓ by Poirot Inc# FP# (%) FP (%) ↓ by Poirot

AOSP 27 22 (81.4) 54.5 51 46 (90.1) 58.9
Xiaomi Poco C3 44 34 (77.2) 66.3 88 78 (88.6) 70.6
Amazon Fire HD 34 26 (76.4) 56.8 86 79 (91.8) 64
LG LM-V405 39 28 (71.9) 54.1 73 64 (87.6) 62.3

Results

Table 5.8 reports the results. As shown, both AceDroid and Kratos+ generate substantial
FPs ranging from 71% to 81% in AceDroid, and from 85% to 91% in Kratos+. We note that
both estimations are higher than the FPs reported by AceDroid and Kratos. We believe
this is likely due to the fact that we are not including the heuristics and manual filtering
followed by AceDroid and Kratos to reduce the number of sinks. Although our results are
an over-estimation of the existing work’s FPs, we note that they reflect pure-convergence
inconsistency detection results.

False Positive Suppression by Poirot

As shown in Columns 4 and 7 in Table 5.8, Poirot substantially improves the results of
Kratos and AceDroid thanks to its ability to pinpoint likely protection targets in APIs. It
can reduce the false positives up to 66% and 70% in AceDroid and Kratos, respectively.

5.9 Case Study

We would like to note that not all inconsistencies are exploitable. The reasons are twofold.
First, triggering an inconsistency may require certain conditions unrelated to access control

75

to be met. These are not picked up by our tool. Second, an API’s functionality might not
necessarily reflect a security sensitive operation.

Table 5.9 reports the cases for which we have successfully built a PoC. Next, we select
one compelling case for discussion. We intentionally picked a vulnerability that is hard to
detect using existent inconsistency detection tools.

Table 5.9: Summary of Discovered Protection Inconsistencies that can lead to Security
Issues

OS Image System Service:API Enforced Access Control Recommended Access Control Constraint(s) Potential Security Implication Report Status

LG LM-V405 LGMDM.setActiveAdmin UserCheck AND UserCheck AND Trigger Condition Replace device admin with own package Ack / Fixed
(E —— MANAGE DEVICE ADMINS) (SYSTEM PERMISSION) Reachability Expose 118 APIs in MDM service

LG LM-V405 LGMDM. UserCheck UserCheck AND Data Flow Exfiltrate running packages details Ack / Fixed
getRunningPackagesFromPid (REAL GET TASKS) Reachability

Fire HD 10 AmazonInput.setInputFilter E SYSTEM PERMISSION Reachability Key Logger Ack
Naming Correlation Planned patch

Fire HD 10 MigrationService.migrate Normal Permission MOVE PACKAGE Setter-getter Local System crash Ack
Naming Correlation Reboot Planned patch
Forward Reachability

Fire HD 10 MigrationService.getMigrateData Normal Permission MOVE PACKAGE Data Flow Obtain migration meta data Under Analysis

Fire HD 10 AmazonPMS.setAmazonFlags E SYSTEM PERMISSION Trigger Condition Change Amazon-Specific Package Settings Under Analysis

Fire HD 10 AmazonPMS.removeAmazonFlags E SYSTEM PERMISSION Trigger Condition Change Amazon-Specific Package Settings Reported

Xiaomi Poco C3 IPerfShielder. E UserCheck AND Reachability Exfiltrate running processes Info Ack*
getAllRunningProcessMemInfos (REAL GET TASKS)

*Xiaomi has acknowledged the issue but mentioned it was reported by a different party before us.

Crashing and Rebooting the System

Poirot reported two inconsistencies in Amazon Fire HD’s MigrationService, located in two
custom APIs. While both APIs do enforce a Normal permission, our tool recommended
a higher privilege check: a permission equivalent to the system-level permission MOVE -

PACKAGE. We manually investigated the reports and found that Poirot generated a few
high confidence recommendations for different resources within the two APIs based on
a combination of data-flow, backward reachability and naming correlation hints. The
detection entailed a cascading effect that propagated a protection from a single occurrence
of a basic access control fact to two privileged resources. Specifically:

• Poirot identified a data-flow hint that assigned a global field the return value of a
privileged getter API with assigned protection MOVE PACKAGE.

• Poirot relied on the data-flow hint to propagate protection MOVE PACKAGE to the global
field; implying that any corresponding read operation should require this protection.

• Poirot identified an API getMoveData that reads and returns global field; as such, the
MOVE PACKAGE recommendation was issued for the getMoveData API. The case was

76

flagged as an inconsistency since getMoveData’s enforced access control was weaker
than MOVE PACKAGE.

• In a different API, Poirot identified a getter-to-setter hint, where the global field was
being written. Hence, Poirot concluded that the new site requires MOVE PACKAGE.

• The recommendation was further consolidated by naming correlation and backward
reachability hints pertaining to another resource. Details are elided for simplicity.
The API migrate was subsequently flagged as an inconsistency due to a weaker
protection enforcement.

We have tested the reported vulnerability and found that the two APIs indeed lack
protections. Concerningly, triggering migrate with specific parameters (i.e., supplying
private data folder to be migrated) crashes the system server.

77

Chapter 6

Conclusion

This thesis presents two novel approaches to detect access control flaws in the Android
framework.

We introduce ReM, a bloated custom Residual API detector, and perform the first
large-scale, longitudinal study on the security impacts of customization-induced code bloat
in the Android framework. We find that all major Original Equipment Manufacturer
(OEM) code bases contain these unused remnant APIs. Using ReM’s suite of static analysis
techniques to detect Residuals and analyze their security flaws, we discover that Residuals
open the door to serious security vulnerabilities, including access control inconsistencies
and undefined security attributes.

We also present our tool Poirot, which advances the state-of-the-art inconsistency detec-
tion approaches by considering the inherent imprecision of the linkage between a resource
and a protection. The tool goes beyond a simplistic reachability analysis to also incor-
porate insights from structural, semantic and data-flow relations between resources and
protections. Poirot relies on static analysis techniques to extract implicit relations be-
tween resources and protections. The tool then leverages probabilistic inference to make
sense of those relations and output final recommendations. Our evaluation of Poirot finds
that its probabilistic approach does indeed reduce the false positives experienced by exist-
ing inconsistency detection tools. Furthermore, Poirot detects new implicit inconsistencies
overlooked by existing inconsistency detection approaches.

78

References

[1] Permissions on Android. https://developer.android.com/guide/topics/

permissions/overview, 11 2020.

[2] Platform Architecture. https://developer.android.com/guide/platform, 5 2020.

[3] The Heartbleed Bug. https://heartbleed.com, 2020.

[4] apktool. https://ibotpeaches.github.io/, 2021.

[5] baksmali. https://github.com/JesusFreke/smali, 2021.

[6] Dynamic partitions. https://source.android.com/devices/tech/ota/dynamic_

partition, 2021.

[7] imjtool. http://newandroidbook.com/tools/imjtool.html, 2021.

[8] lpunpack. https://github.com/LonelyFool/lpunpack_and_lpmake, 2021.

[9] oat2dex. https://github.com/testwhat/SmaliEx, 2021.

[10] Salt. https://github.com/steadfasterX/SALT, 2021.

[11] simg2img. https://github.com/anestisb/android-simg2img, 2021.

[12] vdexexctractor. https://github.com/anestisb/vdexExtractor, 2021.

[13] Akka: Build powerful reactive, concurrent, and distributed applications more easily.
https://akka.io/, 2022.

[14] Ccve-2022-20204. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2022-20204, 2022.

79

https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/platform
https://heartbleed.com
https://ibotpeaches.github.io/
https://github.com/JesusFreke/smali
https://source.android.com/devices/tech/ota/dynamic_partition
https://source.android.com/devices/tech/ota/dynamic_partition
http://newandroidbook.com/tools/imjtool.html
https://github.com/LonelyFool/lpunpack_and_lpmake
https://github.com/testwhat/SmaliEx
https://github.com/steadfasterX/SALT
https://github.com/anestisb/android-simg2img
https://github.com/anestisb/vdexExtractor
https://akka.io/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-20204
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-20204

[15] Cve-2022-20126. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2022-20126, 2022.

[16] Cve-2022-20192. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2022-20192, 2022.

[17] Cve-2022-20206. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2022-20206, 2022.

[18] FReD: Identifying file Re-Delegation in android system services. In 31st USENIX
Security Symposium (USENIX Security 22), Boston, MA, August 2022. USENIX As-
sociation.

[19] Problog. https://dtai.cs.kuleuven.be/problog/, 2022.

[20] Wala. https://github.com/wala/WALA, 2022.

[21] Yousra Aafer, Jianjun Huang, Yi Sun, Xiangyu Zhang, Ninghui Li, and Chen Tian.
AceDroid: Normalizing Diverse Android Access Control Checks for Inconsistency De-
tection. Internet Society, 2 2018.

[22] Yousra Aafer, Guanhong Tao, Jianjun Huang, Xiangyu Zhang, and Ninghui Li. Precise
android API protection mapping derivation and reasoning. In Proceedings of the ACM
Conference on Computer and Communications Security, pages 1151–1164. Association
for Computing Machinery, 10 2018.

[23] Yousra Aafer, Wei You, Yi Sun, Yu Shi, Xiangyu Zhang, and Heng Yin. Android
SmartTVs vulnerability discovery via Log-Guided fuzzing. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2759–2776. USENIX Association, August
2021.

[24] Yousra Aafer, Nan Zhang, Zhongwen Zhang, Xiao Zhang, Kai Chen, XiaoFeng Wang,
Xiaoyong Zhou, Wenliang Du, and Michael Grace. Hare hunting in the wild android:
A study on the threat of hanging attribute references. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, CCS ’15, page
1248–1259, New York, NY, USA, 2015. Association for Computing Machinery.

[25] Yousra Aafer, Xiao Zhang, and Wenliang Du. Harvesting inconsistent security con-
figurations in custom android ROMs via differential analysis. In 25th USENIX Secu-
rity Symposium (USENIX Security 16), pages 1153–1168, Austin, TX, August 2016.
USENIX Association.

80

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-20126
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-20126
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-20192
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-20192
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-20206
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-20206
https://dtai.cs.kuleuven.be/problog/
https://github.com/wala/WALA

[26] ACM. Acm ccs 2021. https://www.sigsac.org/ccs/CCS2021/, 2021.

[27] Open Handset Alliance. Faq. https://www.openhandsetalliance.com/oha_faq.

html, 2007.

[28] Open Handset Alliance. Industry leaders announce open platform for mobile
devices. https://www.openhandsetalliance.com/press_110507.html#:~:

text=MOUNTAIN%20VIEW%2C%20Calif.%3B%20BONN,comprehensive%20platform%

20for%20mobile%20devices, 2007.

[29] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. PScout: Analyzing
the Android Permission Specification. In CCS, page 1070, 2012.

[30] Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. Less is more: Quantify-
ing the security benefits of debloating web applications. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1697–1714, Santa Clara, CA, August 2019.
USENIX Association.

[31] Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel, Damien Octeau, and
Sebastian Weisgerber. On Demystifying the Android Application Framework: Re-
Visiting Android Permission Specification Analysis. In Proceedings of the 25th
USENIX Security Symposium, page 48. USENIX Association, 2016.

[32] Michael Backes, Sven Bugiel, and Sebastian Gerling. Scippa: System-centric IPC
provenance on android. In ACM International Conference Proceeding Series, volume
2014-December, pages 36–45. Association for Computing Machinery, 12 2014.

[33] Michael Backes, Sven Bugiel, Sebastian Gerling, and Philipp von Styp-Rekowsky.
Android security framework: Extensible multi-layered access control on android. In
Proceedings of the 30th Annual Computer Security Applications Conference, ACSAC
’14, page 46–55, New York, NY, USA, 2014. Association for Computing Machinery.

[34] Mateus Borges, Antonio Filieri, Marcelo d’Amorim, and Corina S. Pasareanu. Iterative
distribution-aware sampling for probabilistic symbolic execution. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
Bergamo, Italy, August 30 - September 4, 2015, pages 866–877, 2015.

[35] Michael D. Brown and Santosh Pande. Carve: Practical security-focused software de-
bloating using simple feature set mappings. In Proceedings of the 3rd ACM Workshop
on Forming an Ecosystem Around Software Transformation, FEAST’19, page 1–7,
New York, NY, USA, 2019. Association for Computing Machinery.

81

https://www.sigsac.org/ccs/CCS2021/
https://www.openhandsetalliance.com/oha_faq.html
https://www.openhandsetalliance.com/oha_faq.html
https://www.openhandsetalliance.com/press_110507.html#:~:text=MOUNTAIN%20VIEW%2C%20Calif.%3B%20BONN,comprehensive%20platform%20for%20mobile%20devices
https://www.openhandsetalliance.com/press_110507.html#:~:text=MOUNTAIN%20VIEW%2C%20Calif.%3B%20BONN,comprehensive%20platform%20for%20mobile%20devices
https://www.openhandsetalliance.com/press_110507.html#:~:text=MOUNTAIN%20VIEW%2C%20Calif.%3B%20BONN,comprehensive%20platform%20for%20mobile%20devices

[36] Michael D. Brown and Santosh Pande. Is less really more? towards better metrics
for measuring security improvements realized through software debloating. In 12th
USENIX Workshop on Cyber Security Experimentation and Test (CSET 19), Santa
Clara, CA, August 2019. USENIX Association.

[37] Yan Cai, Jian Zhang, Lingwei Cao, and Jian Liu. A deployable sampling strategy
for data race detection. In Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA,
November 13-18, 2016, pages 810–821, 2016.

[38] Bonnie Cha and Nicole Lee. Review: Google’s htc dream phone – that’s it? http:

//www.cnn.com/2008/TECH/ptech/10/27/cnet.tmobile.g1/index.html, 2009.

[39] Yue Chen, Yulong Zhang, Zhi Wang, Liangzhao Xia, Chenfu Bao, and Tao Wei.
Adaptive android kernel live patching. In 26th USENIX Security Symposium (USENIX
Security 17), pages 1253–1270, Vancouver, BC, August 2017. USENIX Association.

[40] Domenico Cotroneo, Antonio Ken Iannillo, and Roberto Natella. Evolutionary fuzzing
of android OS vendor system services. CoRR, abs/1906.00621, 2019.

[41] Abdallah Dawoud and Sven Bugiel. Bringing balance to the force: Dynamic analysis of
the android application framework. Bringing Balance to the Force: Dynamic Analysis
of the Android Application Framework, 2021.

[42] Alastair F. Donaldson, Alice Miller, and David Parker. Language-level symmetry re-
duction for probabilistic model checking. In QEST 2009, Sixth International Confer-
ence on the Quantitative Evaluation of Systems, Budapest, Hungary, 13-16 September
2009, pages 289–298, 2009.

[43] Joshua Drake. Stagefright: Scary code in the heart of android, 2015.

[44] Zeinab El-Rewini and Yousra Aafer. Dissecting Residual APIs in Custom Android
ROMs. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’21, page 1598–1611, New York, NY, USA, 2021. Associ-
ation for Computing Machinery.

[45] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. Bugs
as deviant behavior: A general approach to inferring errors in systems code. ACM
SIGOPS Operating Systems Review, 35(5):57–72, 2001.

82

http://www.cnn.com/2008/TECH/ptech/10/27/cnet.tmobile.g1/index.html
http://www.cnn.com/2008/TECH/ptech/10/27/cnet.tmobile.g1/index.html

[46] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
Android Permissions Demystified. page 726. ACM, 2011.

[47] Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. Run-time efficient proba-
bilistic model checking. In Proceedings of the 33rd International Conference on Soft-
ware Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, pages
341–350, 2011.

[48] Roberto Gallo, Patricia Hongo, Ricardo Dahab, Luiz C. Navarro, Henrique Kawakami,
Kaio Galvão, Glauber Junqueira, and Luander Ribeiro. Security and system architec-
ture: Comparison of android customizations. WiSec ’15, New York, NY, USA, 2015.
Association for Computing Machinery.

[49] Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. Probabilistic symbolic
execution. In International Symposium on Software Testing and Analysis, ISSTA
2012, Minneapolis, MN, USA, July 15-20, 2012, pages 166–176, 2012.

[50] Sigmund Albert Gorski, Benjamin Andow, Adwait Nadkarni, Sunil Manandhar,
William Enck, Eric Bodden, and Alexandre Bartel. ACMiner: Extraction and Anal-
ysis of Authorization Checks in Android’s Middleware. 1 2019.

[51] Matthias Hauswirth and Trishul M. Chilimbi. Low-overhead memory leak detection
using adaptive statistical profiling. In Proceedings of the 11th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2004, Boston, MA, USA, October 7-13, 2004, pages 156–164, 2004.

[52] Roee Hay. fastboot oem vuln: Android bootloader vulnerabilities in vendor customiza-
tions. In 11th USENIX Workshop on Offensive Technologies (WOOT 17), Vancouver,
BC, August 2017. USENIX Association.

[53] Grant Hernandez, Swarnim Yadav, Byron J Williams, Kevin RB Butler, Dave Tian,
Anurag Swarnim Yadav, and Kevin R B Butler. BigMAC: Fine-Grained Policy
Analysis of Android Firmware BIGMAC: Fine-Grained Policy Analysis of Android
Firmware. In Proceedings of the 29th UNSENIX Security Symposium, 2020.

[54] Qinsheng Hou, Wenrui Diao1, Yanhao Wang, Xiaofeng Liu, Song Liu, Lingyun Ying,
Shanqing Guol, Yuanzhi Li, Meining Nie, and Haixin Duan.

[55] Jianjun Huang, Zhichun Li, Xusheng Xiao, Zhenyu Wu, Kangjie Lu, Xiangyu Zhang,
and Guofei Jiang. SUPOR: Precise and scalable sensitive user input detection for

83

android apps. In 24th USENIX Security Symposium (USENIX Security 15), pages
977–992, Washington, D.C., August 2015. USENIX Association.

[56] Antonio Ken Iannillo, Roberto Natella, Domenico Cotroneo, and Cristina Nita-
Rotaru. Chizpurfle: A gray-box android fuzzer for vendor service customizations.
In 2017 IEEE 28th International Symposium on Software Reliability Engineering (IS-
SRE), pages 1–11, 2017.

[57] Yufei Jiang, Qinkun Bao, Shuai Wang, Xiao Liu, and Dinghao Wu. Reddroid: Android
application redundancy customization based on static analysis. In 2018 IEEE 29th
International Symposium on Software Reliability Engineering (ISSRE), pages 189–199,
2018.

[58] Kailani R. Jones, Ting-Fang Yen, Sathya Chandran Sundaramurthy, and Alexan-
dru G. Bardas. Deploying Android Security Updates: An Extensive Study Involving
Manufacturers, Carriers, and End Users, page 551–567. Association for Computing
Machinery, New York, NY, USA, 2020.

[59] Renuka Kumar, Sreesh Kishore, Hao Lu, and Atul Prakash. Security analysis of unified
payments interface and payment apps in india. In 29th USENIX Security Symposium
(USENIX Security 20), pages 1499–1516. USENIX Association, August 2020.

[60] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of
probabilistic real-time systems. In Computer Aided Verification - 23rd International
Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, pages
585–591, 2011.

[61] Clement Lecigne and Christian Resell. Protecting android users from 0-day attacks,
2022.

[62] Li Li, Jun Gao, Tegawendé F. Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. Charac-
terising deprecated android apis. In Proceedings of the 15th International Conference
on Mining Software Repositories, MSR ’18, page 254–264, New York, NY, USA, 2018.
Association for Computing Machinery.

[63] Lookout. Pegasus for android technical analysis and findings of chrysaor, 2017.

[64] Kenneth A. Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang, Xiangyu Zhang, and
Zhiqiang Lin. Probabilistic disassembly. In Joanne M. Atlee, Tevfik Bultan, and
Jon Whittle, editors, Proceedings of the 41st International Conference on Software

84

Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, pages 1187–1198.
IEEE / ACM, 2019.

[65] Girish Mururu, Chris Porter, Prithayan Barua, and Santosh Pande. Binary debloating
for security via demand driven loading, 2019.

[66] Andrea Possemato, Simone Aonzo, Davide Balzarotti, and Yanick Fratantonio. Trust,
but verify: A longitudinal analysis of android oem compliance and customization. In
2021 IEEE Symposium on Security and Privacy (SP), pages 87–102, 2021.

[67] Andrea Possemato, Simone Aonzo, Davide Balzarotti, and Yanick Fratantonio. Trust,
but verify: A longitudinal analysis of android oem compliance and customization. In
IEEE, editor, S&P 2021, 42nd IEEE Symposium on Security and Privacy, 23-27
May 2021, Virtual Conference, 2021.

[68] Jan Ruge. Cve-2020-0022 an android 8.0-9.0 bluetooth zero-click rce – bluefrag, 2020.

[69] Michael Schwarz, Moritz Lipp, and Daniel Gruss. Javascript zero: Real javascript and
zero side-channel attacks. In 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018. The
Internet Society, 2018.

[70] Yuru Shao, Jason Ott, Qi Alfred Chen, Zhiyun Qian, and Z. Morley Mao. Kratos:
Discovering Inconsistent Security Policy Enforcement in the Android Framework. In-
ternet Society, 5 2017.

[71] Peter Snyder, Cynthia Taylor, and Chris Kanich. Most websites don’t need to vibrate:
A cost-benefit approach to improving browser security, 2017.

[72] Chengyu Song, Byoungyoung Lee, Kangjie Lu, William Harris, Taesoo Kim, and
Wenke Lee. Enforcing kernel security invariants with data flow integrity. In 23rd
Annual Network and Distributed System Security Symposium, NDSS 2016, San Diego,
California, USA, February 21-24, 2016. The Internet Society, 2016.

[73] Varun Srivastava, Michael D Bond, Kathryn S McKinley, and Vitaly Shmatikov. A
security policy oracle: Detecting security holes using multiple api implementations.
ACM SIGPLAN Notices, 46(6):343–354, 2011.

[74] StatCounter. Mobile operating system market share worldwide. https://gs.

statcounter.com/os-market-share/mobile/worldwide, 2022.

85

https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide

[75] Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and Yuanyuan Zhou. Autoises:
Automatically inferring security specification and detecting violations. In USENIX
Security Symposium, pages 379–394, 2008.

[76] Neil Toronto, Jay McCarthy, and David Van Horn. Running probabilistic programs
backwards. In Programming Languages and Systems - 24th European Symposium on
Programming, ESOP 2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,
pages 53–79, 2015.

[77] Guliz Seray Tuncay, Soteris Demetriou, Karan Ganju, and Carl A. Gunter. Resolving
the Predicament of Android Custom Permissions. Internet Society, 2 2018.

[78] Jeffrey A Vaughan and Stephen Chong. Inference of expressive declassification policies.
In 2011 IEEE Symposium on Security and Privacy, pages 180–195. IEEE, 2011.

[79] Hayawardh Vijayakumar, Xinyang Ge, Mathias Payer, and Trent Jaeger. {JIGSAW}:
Protecting resource access by inferring programmer expectations. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 973–988, 2014.

[80] Wikipedia contributors. Sørensen–dice coefficient — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=z%C3%B8rensen%E2%80%

93Dice_coefficient&oldid=1083624728, 2022. [Online; accessed 14-June-2022].

[81] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. The impact of
vendor customizations on android security. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer Communications Security, CCS ’13, page 623–634, New
York, NY, USA, 2013. Association for Computing Machinery.

[82] Hao Xia, Yuan Zhang, Yingtian Zhou, Xiaoting Chen, Yang Wang, Xiangyu Zhang,
Shuaishuai Cui, Geng Hong, Xiaohan Zhang, Min Yang, and Zhemin Yang. How
android developers handle evolution-induced api compatibility issues: A large-scale
study. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, ICSE ’20, page 886–898, New York, NY, USA, 2020. Association for
Computing Machinery.

[83] Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. Python proba-
bilistic type inference with natural language support. In Proceedings of the 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2016, Seattle, WA, USA, November 13-18, 2016, pages 607–618, 2016.

86

https://en.wikipedia.org/w/index.php?title=z%C3%B8rensen%E2%80%93Dice_coefficient&oldid=1083624728
https://en.wikipedia.org/w/index.php?title=z%C3%B8rensen%E2%80%93Dice_coefficient&oldid=1083624728

[84] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and Konrad Rieck. Automatic infer-
ence of search patterns for taint-style vulnerabilities. In 2015 IEEE Symposium on
Security and Privacy, pages 797–812. IEEE, 2015.

[85] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Hui Liu, Qing Wang, Yueheng Zhang, and
Dawu Gu. Show me the money! finding flawed implementations of third-party in-app
payment in android apps. In NDSS. The Internet Society, 2017.

[86] Yapeng Ye, Zhuo Zhang, Fei Wang, Xiangyu Zhang, and Dongyan Xu. Netplier:
Probabilistic network protocol reverse engineering from message traces. In 28th Annual
Network and Distributed System Security Symposium, NDSS 2021, virtually, February
21-25, 2021. The Internet Society, 2021.

[87] Dongsong Yu, Guangliang Yang, Guozhu Meng, Xiaorui Gong, Xiu Zhang, Xiaobo
Xiang, Xiaoyu Wang, Yue Jiang, Kai Chen, Wei Zou, Wenke Lee, and Wenchang Shi.
Sepal: Towards a large-scale analysis of seandroid policy customization. In Proceedings
of the Web Conference 2021, WWW ’21, page 2733–2744, New York, NY, USA, 2021.
Association for Computing Machinery.

[88] Hang Zhang, Dongdong She, and Zhiyun Qian. Android ion hazard: The curse of
customizable memory management system. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, page 1663–1674,
New York, NY, USA, 2016. Association for Computing Machinery.

[89] Lei Zhang, Zhemin Yang, Yuyu He, Zhenyu Zhang, Zhiyun Qian, Geng Hong, Yuan
Zhang, and Min Yang. Invetter: Locating insecure input validations in android ser-
vices. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1165–1178, 2018.

[90] Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-Chuan Lee, Yonghwi Kwon,
Yousra Aafer, and Xiangyu Zhang. OSPREY: recovery of variable and data structure
via probabilistic analysis for stripped binary. In 42nd IEEE Symposium on Security
and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021, pages 813–832.
IEEE, 2021.

[91] Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. Send hardest problems my way:
Probabilistic path prioritization for hybrid fuzzing. In NDSS, 2019.

[92] Yutao Zhong and Wentao Chang. Sampling-based program locality approximation.
In Proceedings of the 7th International Symposium on Memory Management, ISMM
2008, Tucson, AZ, USA, June 7-8, 2008, pages 91–100, 2008.

87

[93] Hao Zhou, Haoyu Wang, Xiapu Luo, Ting Chen, Yajin Zhou, and Ting Wang. Un-
covering cross-context inconsistent access control enforcement in android.

[94] Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed, and XiaoFeng Wang.
The peril of fragmentation: Security hazards in android device driver customizations.
In 2014 IEEE Symposium on Security and Privacy, pages 409–423, 2014.

88

	List of Figures
	List of Tables
	Introduction
	Our Contributions
	Organization

	Background
	Ecosystem
	Software Stack
	Access Control Mechanisms

	Related Work
	Vendor Customization
	Access Control Flaw Detection

	ReM
	Introduction
	Organization
	Residual APIs
	Problem
	Unsound Security Features
	Obsolete Access Control Enforcement

	Our Solution
	Overview
	Automated Detection of Residuals in Custom ROMs
	Identifying Likely Residuals in a ROM
	Characterizing and Confirming Residuals

	Automated Security Evaluation of Custom Residuals
	Evaluation Scope
	Unsound Security Features
	References to Deprecated Security Features
	Obsolete Access Control Enforcement

	Large-Scale Measurement Study
	Study Setup
	Data Collection and Processing
	Analysis Complexity
	Residuals Landscape
	Residual Lifespans
	New versus Inherited Residuals

	Residuals Security Landscape
	Unsound Security Features
	Obsolete Access Control Enforcement
	Comparison with Non-Residual APIs

	Exploiting Residuals
	End-to-end POCs
	Other Impacts

	Poirot
	Introduction
	Organization
	Limitations of Existing Inconsistency Detection Tools
	Inaccurate Identification of Access Control Targets
	Failure to Identify Implicit Access Control Inconsistencies
	Inferring Implicit Inconsistencies

	Approach
	Basic Facts Collection
	Access Control Constraint Detection
	Implication Constraint Detection

	Access Control Constraints
	Definitions
	Basic Access Control Facts
	Access Control Constraints

	Implication Constraints
	Structural Constraints
	Semantic Hints
	Data-Flow Hints
	Access Control Aggregation.

	Poirot in Action
	Evaluation
	(RQ1) Evaluating Poirot's Protection Recommendations
	(RQ2) Impact of Cut-off Criteria
	(RQ3) Impact of Prior Probability Values
	(RQ4) Impact of Probabilistic Constraints
	(RQ5) Runtime and Memory Overhead
	(RQ6 & RQ7) Detecting Inconsistencies
	(RQ8) Suppressing False Positives of Other Tools

	Case Study

	Conclusion
	References

