DProvSQL: Accuracy-Aware Privacy
Provenance Framework for
Differentially Private SQL Engine

by

Shufan Zhang

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2022

(© Shufan Zhang 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Abstract

Recent years have witnessed the adoption of differential privacy (DP) in practical
database query systems. Such systems, like PrivateSQL and FLEX, allow data analysts to
query sensitive data while providing a rigorous and provable privacy guarantee. However,
existing systems may use more privacy budgets than necessary in certain cases where dif-
ferent data analysts with different privilege levels ask a similar or even the same query. In
light of this deficiency, we propose DProvSQL, a fine-grained privacy provenance frame-
work that tracks the privacy loss to each single data analyst and we build algorithms that
make use of this framework to maximize the number of queries that could be answered. We
implement DProvSQL as a middleware between the data analysts and the existing differen-
tially private SQL query answering systems. The empirical results on the TPC-H dataset
show that our approach can answer around 4x more queries than the baseline approach on
average with marginal performance overhead.

11

Acknowledgements

I would like to thank my supervisor Prof. Xi He for all the supportive guidance and
professional comments during my entire master’s study. I am so fortunate to be advised
by her. I appreciate her invaluable feedback all the time, from which I have learnt a lot.
This master’s thesis is not the end of the journey but just a milestone. I will continue my
exploration in the research world, working with her, in the pursuit of the PhD. I also want
to thank my thesis committee members, Prof. Semih Salihoglu and Prof. Florian
Kerschbaum, for their time reading my thesis and providing great comments which help
improve this work a lot.

I would also like to express my gratitude to my collaborators during the past two years,
Prof. Sharad Mehrotra, Prof. David Woodruff, Prof. Hongyang Zhang, Prof.
Haojin Zhu, Dr. Primal Pappachan, and Dr. Runchao Jiang. Their expertise,
vision, and encouragement motivates my engagement in fun research and inspires me to
move forward to become a thinker and researcher, not just a student.

I want to thank my lab mates and DSG members for many inspiring discussions and
their support on my research, especially Christian Covington, Karl Knopf, and Shub-
hankar Mohapatra. They are amazing friends and my senior academic brothers. Lastly,
I would like to give special thanks to my personal friends, Jiayi Chen, Xiaohe Duan,
Zhuangfei Hu, Xinda Li, Yudong Luo, Yanting Miao, Peng Shi, Liqun Tan, Jiaqi
Wang, Yimu Wang, Dake Zhang, and Yangyang Zha, for their help, companion, and
support.

People have Dreams. I wish you all the best in pursuing your dreams and finding your
very own value. I hope myself would have a wonderful journey in pursuing the PhD at this
point of time, too.

v

Dedication

Dedicated to my parents.

Table of Contents

List of Figures viii
List of Tables ix
1 Introduction 1
1.1 Contributions 4
1.2 Paper Roadmap 5

2 Preliminaries 7
3 Problem Setup 11
4 System overview 15
4.1 Key Design Principles oo 15
4.2 Privacy Provenance Table 16
4.3 DProvSQL Architecture 18

5 DP Algorithm Design 21
5.1 Baseline Approach 21
5.1.1 Accuracy-Privacy Translation 21

5.1.2 Provenance Sanity Checking 24

5.1.3 Putting Components All Together 25

vi

5.2 Additive Gaussian Approacho 25

5.2.1 Additive Gaussian Mechanism 25

5.2.2 Updating Synopses 28

5.2.3 Accuracy-Privacy Translation 30

5.2.4 Provenance Sanity Checking 32

5.3 Privacy Guaranteeo 32

6 Implementation and Evaluation 34
6.1 System Implementation. oL 34
6.2 Empirical Study 35
6.2.1 Experiment Setup 35

6.2.2 Empirical Results oo 36

7 Related Work 41
7.1 Existing DP Query Systems 41
7.2 Existing Work on Highly Sensitive Queries 43
7.3 Other Related DP Frameworks 43

8 Discussion and Future Work 45
8.1 Preliminary Work on Highly Sensitive Queries 45
8.2 Future Directions L 49

9 Conclusion

References

51

52

vii

List of Figures

1.1

1.2

4.1
4.2

6.1
6.2
6.3
6.4

6.5

(a) Threat Model in Existing DP Systems (e.g., PINQ [36]) (b) Threat

Model in the Multi-analysts Motivating Scenarios. 2
The Employee and Tax Table 3
The Privacy Provenance Table: Data Structure 16
The System Architecture of DProvSQL 18
Utility v.s. the overall budget of the system: a) Take-turns; b) Random. . 37
Performance v.s. the overall budget of the system: a) Take-turns; b) Random. 37
Per query performance v.s. the overall budget of the system: Take-turns. . 38
Fairness (DCFG) v.s. the overall budget of the system: a) Take-turns; b)

Random. 39

Fairness comparison between Chorus mechanism and Chorus with the pri-
vacy provenance table: a) Take-turns; b) Random 39

viil

List of Tables

2.1 Notation Cheatsheet

6.1 The comparison between our approach and baseline approach (in terms of
the number of queries being answered, and the minimum expected error of
answers, denoted by v).o oo

X

Chapter 1

Introduction

Data collected by companies and organizations can contain sensitive information. With the
growing attention on data privacy and the development of privacy protection regulations
such as GDPR [19], companies wish to allow external and internal data analysts to make
use of the data without compromising the privacy of data contributors. To address the
privacy issues, differential privacy (DP) [14] has been considered as a promising and the
de facto standard for privacy-preserving data analysis these days. In the framework of
DP theory, privacy is parameterized by a variable € (or (€,0) in approximate-DP), called
the privacy budget, which controls the privacy protection level over the data. A smaller
privacy budget indicates larger noise and therefore better privacy protection. Furthermore,
the sensitivity of a query or a function is used to measure the changing of the results by
changing/adding/removing any individual information (i.e., a row) in the database. By
carefully injecting controllable noise (e.g., proportional to the privacy budget divided by
the sensitivity), researchers or algorithm designers can prove the output of an algorithm (or
mechanism, using DP terminology) can only reveal bounded information of any individual
in the dataset, and thus this mechanism satisfies the notion of DP.

Recent years have witnessed the adoption of DP from a pure theoretical perspective
to practical systems [10] and applications [22, 54]. A plethora of systems are proposed
and developed to enforce DP for database management and SQL queries in real-world,
including PINQ [36], FLEX [26], PrivateSQL [30], GoogleDP [1], and Chorus [25]. Despite
these significant efforts made in existing DP systems, these systems regard the data analysts
as a unified entity querying and obtaining the results from the system. Thus the privacy
analysis is stark and not personalized as per the data analyst (as shown in Figure 1.1(a)).
We argue that data analysts can have different privilege levels in practical scenarios on

Privacy Firewall Privacy Firewall

DP System DP Syste:m q.€ 'D External
%) q,€ 78 ? ' @ r :‘ Analyst
K . ‘ a€ a.¢| lq¢
’ ¢ 1"
JL * Data Analyst(s) A ! 1:7 R "D & Internal
— . Analyst

Figure 1.1: (a) Threat Model in Existing DP Systems (e.g., PINQ [36]) (b) Threat Model
in the Multi-analysts Motivating Scenarios.

accessing the query results (Figure 1.1(b)), which requires a system to enforce finer-grained
privacy tracking. We illustrate this problem using the following motivating example.

Motivating Scenario 1. We consider a protected database (Fig. 1.2) in a corporation
that records the data of its employees. This database contains sensitive information about
the employees, such as salary and age. Other attributes, like department and state, are
less sensitive and considered public information. Two queriers, A, which is an internal
application in the company, and B, who represents an external application outside the
company, ask the following aggregation query about the average salary of employees with
ages less than 30 for each department:

SELECT AVERAGE(salary) FROM employee
WHERE age < 30
GROUP BY department;

In this example, the average salary is sensitive information and the query result should
be protected with DP. The queriers, application A and application B, cannot access the raw
data in the employee table but they are able to learn some noisy answers of the aggregation
query. These two applications differ in their privilege of accessing the database and the
query results — the internal application (i.e., A) can have a higher privilege level than the
external application (i.e., B). In terms of DP, the privacy leakages to A and B through
the noisy answers are different, and the internal application A should be able to see more
accurate results.

This use case is common in practice for tech companies who need to use sensitive
data for internal applications like anomaly detection and also would like to invite external

eid ename age | state | salary | department eid | year role tax | tax_rate
1 Alice Land 24 AZ 20k Infrastructure 1 2021 HR 20k 0.15
2 Bobby Hill 28 CA 30k Infrastructure 1 2022 HR 30k 0.25
3 Carrie Sea 37 WA 40k Sales 3 | 2022 | Manager | 40k 0.4
4 Danny Des 26 CA 32k Cloud 4 12020 SDE 32k 0.3

Figure 1.2: The Employee and Tax Table

researchers to analyze their data but with more noise. However, the existing DP systems do
not provide tools to distinguish these queriers and track their perspective privacy loss. A
naive tracking and answering of each querier’s queries independent of the others can waste
privacy budgets, i.e., fewer queries can be answered accurately under a given total privacy
budget. Additionally, if we assume (all or a subset of) data analysts can communicate
with each other and collude, we would like to control the overall privacy loss. This is due
to the underlying privacy implication, where the compromised data analysts asking the
same query are able to infer a more accurate result of sensitive data, according to the
sequential composition theorem of DP [14]. Stated differently, the privacy protection level
will degrade when more independent noisy answers to the same query are obtained by the
adversary. This challenge to private data management and analytics is mainly on account
of the fact that none of the existing DP SQL systems records the individual budget limits
and the historical queries asked by the data analysts. That is, the metadata about where
the query comes from, how the query is computed, and how many times each result is
produced, which is related to the provenance information in the database research [5, (].
As one can see, without privacy provenance, the query answering process for the multi-
analyst use case is not convenient nor secure as those systems are not dedicatedly designed
for this real-world application scenario.

Motivating Scenario 2. Existing mainstream DP query answering systems, such as PINQ
[36], Chorus [25], and PrivateSQL [30], allow the user or querier to write differentially pri-
vate programs or specify the privacy budget with SQL-like queries. These systems do not
provide any (optimality) guarantees on the utility /accuracy of the queries. Thus, to obtain
the desired utility, the queriers are required to know well about differentially private mech-
anisms and how to appropriately set the privacy budget for their queries. This deficiency
motivates researchers to investigate and design accuracy-aware systems [33, 38, 3], which
allow users to specify accuracy requirements instead of privacy budget and (the system) can
automatically translate the accuracy requirements to the minimal privacy budget. How-
ever, it is not clear and trivial to see how the accuracy-aware module can be adapted to the
system supporting multiple data analysts (with different privilege levels) while answering

as many queries as possible when data analysts collude. Furthermore, while there exist
accuracy-aware DP systems proposed in very recent years (like APEx [18] and MIDE [19])
for data exploration and analytics purposes, these systems are limited to only answering
linear (counting) queries, which is insufficient for a full-fledged query answering system.
To better illustrate this problem, we consider the following join query as an example:

SELECT department, AVERAGE(tax_rate)
FROM employee JOIN tax

ON employee.eid = tax.eid

WHERE age > 28

GROUP BY department;

This query expresses “what is the average tax rate for employees older than 28 in
each department” and is a join query between the employee table and the tax table. The
global sensitivity of a join query is unbounded, because a join query can multiply input
records from different tables and therefore adding or removing one row in a table can affect
(possibly) unbounded numbers of rows in the output of the query. In the example above,
an employee can have multiple tax records recorded on the tax slip (or the tax table).
The state-of-the-art approaches [11, 26, 11] to answer join queries with differential privacy
guarantee is to consider the instance-specific sensitivity and inject noise proportional to
it, where in addition, [10, 1] show their approaches can achieve instance-optimal noise
injection. However, since all these approaches are dependent on the specific database
instance, there are no general accuracy/utility guarantees on answering a join query, which
is challenging to appropriately translate a given accuracy requirement into the minimal
privacy budget.

1.1 Contributions

To tackle with these challenges, we propose DProvSQL, a new privacy provenance frame-
work for differentially private SQL engine that fits in the multi-analysts scenario. Instead of
answering queries from each data analyst independently, DProvSQL generates DP synopses
for a set of views, so that the queries can be answered based on these synopses and these
synopses can be dynamically updated according to data analysts’ requests. Furthermore,
DProvSQL enables a privacy provenance table that enforces a fine-grained privacy prove-
nance as per each data analyst and per view. The privacy provenance table is associated
with privacy constraints so that constraint-violating queries will be rejected. Making use of

this privacy provenance framework, we build an additive Gaussian mechanism, maintaining
global (viz., as per view) and local (viz., as per analyst) DP synopses (i.e., materialized
results for views) to answer as many queries presented to the system as possible. The ongo-
ing work of this project aims at extending our system to not only answer queries where the
global sensitivity is bounded, but also the join queries over the multi-relational database.
We implement DProvSQL as a middleware between the data analysts and the existing DP
SQL query system, providing the aforementioned nice functionalities to such a system. Our
empirical results show a significant improvement over the baseline method where queries
are answered independently, in terms of the number of queries being answered and the
minimum expected error among the answers. The technical contributions of this work are
highlighted as follows.

e New DP framework with intriguing research questions. We propose the multi-
analyst DP framework where mechanisms satisfying multi-analyst DP provide dis-
crepant answers to analysts with different privilege levels. We study the privacy
analysis, budget allocation, and fair query answering problems under this setting.

e New end-to-end architecture providing fine-grained privacy tracing for DP. We
propose the privacy provenance table that can track the consumed privacy budget as
per analyst and as per view. The intrinsic privacy constraints enforced on this table
enable dynamic budget allocation and fair query answering.

e New DP mechanism that provides tight composition bound when analysts collude.
We propose global /local synopses and design the additive Gaussian mechanism that
injects correlated noise to generate local synopses from global synopses to achieve
the tight collusion bound among analysts.

e New query answering system implemented as a middleware between the multiple
data analysts and existing DP query systems. Empirical evaluation shows the efficacy
and efficiency of our system.

1.2 Paper Roadmap

The remainder of this thesis is outlined as follows. Chapter 2 introduces the necessary
notations and background knowledge on database and differential privacy. Our multi-
analysts DP query answering research problems are formulated in chapter 3 and a high-
level overview of our proposed system is briefed in chapter 4. Chapter 5 describes the

details of our design of the DP mechanisms and system modules. In chapter 6, we present
the system implementation specifics and an empirical evaluation of our system with the
baseline approaches. In chapter 7 we go through the related works and we discuss the
potential extension and directions for ongoing and future work in chapter 8. We conclude
this work in chapter 9.

Chapter 2

Preliminaries

We consider the database instance D that stores sensitive data with a set of schema/relations
R = {Ry,...,R;}. The domain of all database instances is denoted by D. Each relation
R, € R consists of a set of attributes, attr(R;) = {T1,...,T;}. We denote the domain of
an attribute 7; by Dom(7};) while |[Dom(T})| denotes the domain size of that attribute.
Additionally, we use Dom(7};, D) and |[Dom(T}, D)| to denote the active domain, which is
the actual domain of this attribute in a specific database instance D, and the size of the
active domain of the attribute 7. We introduce and summarize the related definitions of
differential privacy as follows.

Definition 1 (Neighbouring Databases). We say two databases D and D' are neighbouring
databases if D and D' differ in at most one tuple, i.e., D = D'\{r} or D = D" U {r'}.

Definition 2 (Differential Privacy (DP)). We say that a randomized algorithm M : D —
O satisfies (€, 0)-differential privacy, if for any two neighbouring databases D and D' that
differ in only 1 tuple, and all O C O, we have

PrIM(D) € O] < ¢ Pr{M(D') € O] + 4,

where the probability is taken over the randomness used by the mechanism M.

DP enjoys many useful and nice properties, for example, post-processing and sequential
composition [11].

Theorem 1 (Post Processing [11]). For any mechanism M that achieves (e,8)-DP, ap-
plying any arbitrary randomized function f over the output of M, that is, the composed
mechanism f o M, satisfies (€,8)-DP.

Table 2.1: Notation Cheatsheet

Notation | Definition

D, D | Database domain, a specific database instance
W 1 | (A set of) Privacy constraint(s)
€(,d) | The privacy budget
A, A; | (A set of) Data analyst(s)
R, R; | (A set of) Schema(s)/Relation(s)
R privs Rpuy | Set of private/public relations
Dom(T;) | Domain of the attribute 7}
|Dom(T;)| | Size of the domain of the attribute 7}
M | DP mechanism
P | The privacy provenance table
V.,V | (A set of) View(s)
Ve, V4 | Global/Local synopsis
GS(Aq), LS | Global/Local sensitivity
LS(gk) Local sensitivity of query ¢ at distance k
55,585 | (Upper bound on) The smooth sensitivity

The post-processing property of DP indicates that the execution of any function on the
output of a DP mechanism will not incur privacy loss.

Theorem 2 (Sequential Composition [11]). Given two mechanisms MiD — O and
MyD — O,, such that My satisfies (e1,61)-DP and My satisfies (e, d2)-DP. The com-
bination of the two mechanisms Mya : D — Oy x Oy, which is a mapping M, 2(D) =
(M1(D), Ma(D)), is (€1 + €,01 + 02)-DP.

The sequential composition is trying to bound the privacy loss of the sequential ex-
ecution of DP mechanisms over the database. It can naturally be generalized to the
composition of k differentially private mechanisms. The proofs of theorem 1 and theorem
2 can be seen in [11].

Definition 3 (l,-Global Sensitivity). For a function q : D — R® and all D, D' € D, the I,
global sensitivity of this function is defined as

= _ /
Ag= max [lo(D) = g(D)]s,

where d(-,-) denotes the number of tuples that D and D" differ.

8

Definition 4 (Gaussian Mechanism [11]). Let ¢ € (0,1). Given a numerical query f :
D — R4, for constant ¢ > /21n(1.25/6), the Gaussian mechanism adds the noise vector
(M2, ..., n?) to the query answer f(D), where n; are i.i.d. random variables drawn from
the Gaussian distribution N(0,0?) with ¢ > cAf/e. The Gaussian mechanism is (€, 0)-
differentially private.

The standard Gaussian mechanism [I1] has the limitation that it can only be used
in high privacy regime, where the privacy parameter e should be within the range of
(0,1). Balle and Wang [2] propose an improved mechanism, namely the analytic Gaussian
mechanism, overcoming this limitation in standard Gaussian mechanism.

Definition 5 (Analytic Gaussian Mechanism [2]). Let ¢ : D — R? be an arbitrary d-
dimensional function. The analytic Gaussian mechanism M(D) = q(D) + n where n ~
N (0,0?) is (¢,0)-DP if and only if

Aq €0 Aq €0
=1 27) e 1) <
b (20 Aq) by (20 AQ> =0

where @y denotes the cumulative density function (CDF) of Gaussian distribution.

In the DP framework, a mechanism that achieves DP adds noise to the query result,
which involves errors in the answer. We measure the data utility of the query answer using
the expected squared error, defined as follows.

Definition 6 (Data Utility). For a query ¢ : D — R? and a mechanism M : D — R?,
the data utility of mechanism M is measured as the expected squared error, v = E[q(D) —
M(D)|%. For the (analytic) Gaussian mechanism, the expected squared error equals to its

variance, that is, v = 0.

Enforcing DP on a complex database SQL query may require the analysis of a set of
aggregations. PINQ [30] proposes the concept of stable transformations, which is a useful
notion to bound the DP privacy implication through a set of transformations/operations
on the database.

Definition 7 (c-Global Stability [36]). We say a transformation T : D — D satisfies
c-global stability if, ¥V two input databases D, D’ € D,

|T(D)AT(D")| < ¢ x |DAD'|,

where A\ denotes the symmetric difference between two databases, i.e., DAD" = (D\D') U
(D\D).

For example, common SQL transformations SELECT, PROJECT, and COUNT have a
stability of 1 and GROUP BY has a stability of 2. Stability is a useful definition to bound
the differential privacy guarantee for a sequence of transformations. [30] proves that for
a e-differentially private mechanism M and a c-stable transformation 7', the composition
Mo T is (c- e)-differentially private.

10

Chapter 3

Problem Setup

We consider the multi-analysts setting, where there are multiple data analysts A =
{A1,..., A} who want to ask queries on the database D. The data curator who manages
the database wants to ensure that the sensitive data is properly and privately shared with
the data analysts Ay, ..., A,,. In our threat model, the data analysts can adaptively select
and submit arbitrary queries to the system to infer sensitive information about individuals
in the protected database. In addition, in our multi-analysts model, data analysts may
submit the same query and collude to leak more information about the sensitive data.

Differing from prior work [25, 30], these analysts have different privilege levels. We
would like to define the privacy per analyst provenance framework as a DP variant that
guarantees different levels of privacy loss to the analysts.

Definition 8 (Multi-analyst DP). We say a randomized mechanism M : D — (O4,...,0Op)
satisfies [(A1, €1,01), ...y (Ams €m, Om)] -multi-analyst-DP if for any two databases D and D’
that differ in only 1 tuple, any i € [m], and all O; C O;, we have

Pr[M(D) € O;] < e“PrIM(D’) € O;] + 6;,

where O; are the output released to the ith analyst.

The multi-analyst DP framework supports the composition across different algorithms,
as indicated by the following theorem.

Theorem 3 (Sequential Composition). Given two randomized mechanisms My and Ma,
where My : D — (Oy,...,0,,) satisfies [(A1,€1,01), ..., (Am, €m, Om)|-multi-analyst-DP,
and My : D — (O}, ...,0.) satisfies [(A1,€,01), ..., (Am, €., 0.)|-multi-analyst-DP, then

yTmY Y m

11

the mechanism g(My, Ms) gives the [(Ay, €1+ €, 01 +07), ..., (Am, €m + €L, O + 0L,)| -maulti-
analyst-DP guarantee.

Proof. As a sketch of proof, we note that by our definition of multi-analyst DP, if M; and
M, satisfies the notion of multi-analyst DP, then on each coordinate (i.e., for each data
analyst), the mechanism provides DP guarantee according to each data analyst’s privacy
budget. Applying the sequential composition theorem (Theorem 2) to each coordinate, we
can get this composition upper bound for multi-analyst DP. O

Comparison to Personalized DP [27, 16]. Some exiting works consider the person-
alized DP (PDP) framework which provides discrepant privacy protection guarantees to
different data contributors in the protected database. Our multi-analyst DP framework is
dual to theirs, where each data analyst has discrepant privacy privileges, referring to their
allowed maximum privacy budgets. Under this new multi-analyst DP framework, several
research questions are raised and thereby motivate our work. We justify them as follows.

RQ 1: worst-case privacy analysis across analysts. If the data analysts do not
collude, we can use sequential composition (Theorem 3) to track the privacy loss to each
data analyst for all queries this analyst asks. However, if all or a subset of data analysts
collude or are compromised by an adversary, how to design algorithms to account the
privacy loss to the colluded analysts?

Assuming a query is asked once by all data analysts, when all the analysts are compro-
mised by an adversary, the privacy loss to this adversary is upper bounded by (3> €;, > §;),
suggested by the sequential composition theorem, and it is lower bounded by (max €;, max 9;),
where (€;, d;) is the privacy loss to the ith analyst.

RQ 2: dynamic budget allocation across views. Prior works for DP query answering
[30, 20] often assume the availability of a representative workload that can capture the
queries which would be popular among the data analysts in the future. Given such a
representative workload, a system [30] can select a set of views Vi, V5, ..., V} such that
each query in this workload can be answered with a linear query on a single view, and then
generate a DP synopsis for each of the selected views. Given a total privacy budget, prior
work [30, 35] splits the privacy budget equally or proportional to the sensitivity of the view
to achieve an equal accuracy rate. However, some views may require higher accuracy than
others, depending on the requests of the data analysts. Therefore, it is important to design
an algorithm that can dynamically allocate privacy budgets to the given views and update
their corresponding DP synopses over time. In this work, we consider the histogram view,
which is defined as follows.

12

Definition 9 (Histogram View). For a given database instance D and an attribute of the
database relation a; € attr(R;), the histogram view of this attribute is the 1-way marginal
h(a;) € NIPom@D)l yhere each entry of the histogram h(a;)[j] is the number of elements
in the database instance D of value j € Dom(a;, D). The full-domain histogram view of
this attribute a; is the histogram view built upon the domain of a; rather than the active
domain. That is, hy(a;) € NIPom@l where hy(a;)[j] is the number of elements in the
database instance D of value j € Dom(a;).

This histogram view can be naturally extended to the view generated over multiple at-
tributes. Such a view is called a contingency table. Given a view, we consider the query
answerability and transformation as in related work [30].

Definition 10 (View and Query Answerability [30]). Given a database instance D, a
materialized view V(D) (or V') is a set of results of counting query about some specific
domain values over some attributes in the database instance. For a query q over the
database instance D, if there exists a query q' over the histogram view V such that q(D) =
q(V (D)), we say the query q is answerable over the view V.

RQ 3: fair query answering among data analysts. Under standard DP with no
distinction among analysts, a data analyst can ask any number of queries as long as the
composition of these queries does not exceed the overall system privacy budget. Letting a
data analyst with a low privilege level consume too much privacy budget is unfair to those
with higher privacy privileges. The privilege level in this context refers to the maximum
allowed privacy budget of the data analyst. We would like to build algorithms and systems
that can achieve fair query answering among data analysts. Inspired by the discounted cu-
mulative gain (DCG) in information retrieval [2, 50], we propose the following discounted
cumulative fairness gain (DCFG) metric as the fairness measurement.

Definition 11 (Discounted Cumulative Fairness Gain (DCFG)). Given n data analysts
Ay, ..., A,, where the privilege level of the i-th data analyst is denoted by p;, the fairness
scoring of the query-answering of the query engine when the overall privacy budget exhausts

1s calculated as .

i1 10g2(p%. +1)

denotes the number of queries answered to the data analyst A;.

where |Q 4,

Example 1. We illustrate the DCFG metric by considering the example where there are
three data analysts Ay, Aa, As with privilege level py = 1,py = 2,p3 = 4 (i.e., Ay has the

13

lowest privilege level while As has the highest privilege level). Supposing there are two
mechanisms M1, My and the outcomes of them are the following. My answers 10 queries
to Ay, 3 queries to As and 0 queries to As, whereas My answers 2 queries to Ay, 4 queries
to As, and 7 queries to As. The DCFG score of the first mechanism is calculated as
% + ﬁ + ﬁ = 15.13 while that of the second mechanism is % + ﬁ“% + ﬁ = 30.58.
Though both mechanisms can answer the same number of queries to the group of data

analysts, the second mechanism can achieve higher fairness scores.

The main focus of this thesis is on research questions 1 and 2. While our solution can
avoid spending more privacy budgets on data analysts with low privilege levels, we do
not incorporate fairness considerations into the algorithm design in this work. In ongoing
and future work, we will look into building a fair mechanism that provides clear fairness
guarantees.

14

Chapter 4

System overview

In this chapter, we outline the key design principles of DProvSQL and briefly describe the
modules of the system.

4.1 Key Design Principles

To support the multi-analysts use case and to answer the aforementioned research ques-
tions, we identify the following four principles for a differentially private SQL query system
and propose a system DProvSQL that follows these principles.

Principle 1: fine-grained privacy provenance. The system should be able to track
the privacy budget allocated per each data analyst and per each view in a fine-grained way.
The system should additionally enable a mechanism to compose privacy loss across data
analysts and the queries they ask.

Principle 2: view-based privacy management. The queries are answered based on
differentially private views/synopses in the system. Compared to directly answering a
query from the database D, view-based query answering can answer more differentially
private queries [30], but it assumes the accessibility of a pre-known query workload. In our
system, view is the minimum data object that we keep track of its privacy loss and the
views can be updated dynamically if higher data utility is required. The privacy budgets
spent on different views during the updating process depend on the incoming queries.

Principle 3: dual query submission mode. Besides allowing data analysts to submit
a privacy budget associated with their query, the system enables a second accuracy-aware

15

4 N\
- 'ii' i V;: 3-way marginal contingency table
" (over age, gender, education)

The Adult Dataset -
q:: SELECT count(*) FROM V; WHERE

Q1 SELECT count(*). FROM Adult WHERE V,.age > 20 AND V, .education = “MSc”
age = 20 AND education = “MSc”

q2: SELECT count(*) FROM Adult WHERE

G5 : SELECT count(*) FROM V; WHERE

education = “PhD” AND gender = “Male” L V,.education = “PhD” AND V,.gender = “Male”/
Query Transformation l l Query-View Example
! ' lo < f(er, 67) V1 V2 coo Vn
‘ | Analyst A4, {(0.1,1077),(0.2,1077)} - S,ﬁ‘ll S[le 5[‘/‘,:11 Ig < f'(€a, 8a,)
)
‘ —| Analyst 4, {(0.2,1079),(0.3,1075)} - S 55‘22 5;;2 I < f'(€, 64,
‘B—» Analyst A4 lr < f'(€a5, 8a5)
e < f'(Sy .8y) Privacy Provenance Table

Figure 4.1: The Privacy Provenance Table: Data Structure

mode. That is, with this mode, data analysts can submit the query with their desired
accuracy level in terms of the expected squared error. The dual mode system tolerates
data analysts from domain experts, who can take full advantage of their privacy budgets,
to DP novices, who only care about the accuracy bounds of the query.

Principle 4: maximum query answering. The system should be tuned to answer as
many queries as possible, without violating the privacy constraint specified by the data
curators as per data analyst and per view based on their privilege levels.

Supported Queries. DProvSQL supports linear counting query, histogram query (GROUP
BY operator), aggregation queries (i.e, SUM, AVG, MAX, and MIN), and we can extend
DProvSQL to answer join queries over multi-relational databases.

4.2 Privacy Provenance Table

To meet the first two principles, we propose a privacy provenance table for DProvSQL,
which is inspired by the access matrix model in access control literature [18], to track the
privacy loss per analyst and per view, and further bound the privacy loss. Particularly,

16

in our model, the state of the overall privacy loss of the system is defined as a triplet
(A, V, P), where A denotes the set of data analysts and V represents the list of query-
views maintained by the system. We denote by P the privacy provenance table, defined
as follows.

Definition 12 (Privacy Provenance Table). The privacy provenance table P is a matrix
that tracks the privacy loss of the database as per each data analyst in A and each query-
view in V. Fach row of P corresponds to a data analyst and each column of P corresponds
to a query-view. Each entry of the matriz P[A;, V}]. records the current cumulative privacy
loss, on view V; to analyst A;.

The system administrator can specify different levels of privacy constraints over the
privacy provenance table, defined as follows. Different data analysts may have different
privilege levels, where this difference reflects in the allowed maximum privacy budget for the

analysts. This is expressed as the row-level constraint enforced on this privacy provenance
table.

Definition 13 (Privacy Constraints). The table also includes a set of row/column/table
privacy constraints, V. A row constraint for ith row, denoted by 14,, refers to the total
privacy loss to a particular data analyst A; (according to his/her privilege level) while a
column constraint for the jth column, denoted by 1y, refers to as the allowed mazimum
privacy loss to a specific view V;. We use the table constraint over P, denoted by v¥p, to
specify the overall privacy loss that is allowed for the protected database.

The privacy constraints can be correlated. The internal restriction over these con-
straints indicates that the privacy loss in each entry cannot exceed row and column con-
straints while the row/column constraints cannot exceed the overall table constraint. We
can therefore use these constraints to enforce sanity checking to decide whether issue or
reject a query from a data analyst.

Example 2. Figure 4.1 shows an example of the privacy provenance table. We consider a
histogram view V1 is a 3-way contingency table over attributes (age, gender, and education).
The queries q1 and qo can be transformed into ¢, and §s that are answerable using this
histogram view Vi. Three data analysts Ay, Ay and As with different privilege levels are
recorded in privacy provenance table and we track every privacy budget spent over time on
the views.

To meet the fourth principle, we formulate the mazimum query answering problem
based on the privacy provenance table.

17

Data Owner Query Workload Schema

4 I I T
S g|| WHG
B Provenance Table

B A

— Mechanisms
B | Sanity | |
Checking

|| T v l‘ T |
Synopses DR

PrivacyTranslation

J

| DBMS| [DiJrovSQg —r .
3

Figure 4.2: The System Architecture of DProvSQL

Problem 1. Given a privacy provenance table (A,V, P), at each time, a data analyst
A; € A submits the query with a utility requirement (q;,v;), where the transformed ¢; €V,
how can we design a system to answer as many queries as possible without violating the
row/column/table privacy constraints in P while meeting the utility requirement per query?

4.3 DProvSQL Architecture

Figure 4.2 demonstrates the system architecture of DProvSQL. The DProvSQL system
works as a middle-ware between data analysts and existing DP DBMS systems (such
as PINQ, Chorus, and PrivateSQL) to provide intriguing and add-on functionalities in-
cluding fine-grained privacy tracking, view/synopsis management, and privacy-accuracy
translation. We briefly summarize the high-level ideas of the modules below.

Privacy Provenance Tracking. DProvSQL maintains the privacy provenance table
as introduced in Section 4.2. The privacy provenance table maintains an entry for each
registered data analyst and each generated view in the DBMS. With the aid of the privacy
provenance table, DProvS()L performs sanity checking to detect if any privacy constraint is

18

violated and thereby decide if the incoming query from a data analyst should be answered
or rejected. We further build DP mechanisms to maintain and update the DP synopses
and the privacy provenance table.

Dual Query Submission Mode. DProvSQL provides two types of query submission
modes or interfaces to data analysts. For data analysts who are DP experts with the
knowledge of optimally apportioning privacy budgets across different queries [20], the
DProvSQL enables the privacy-oriented mode. Similar to prior work in DP query
answering [30, 26, 25, 55], this mode allows the data analysts to specify a privacy budget
associated with their query for answering that query. In this mode, the goal of DProvSQL is
to find a mechanism that can optimize the data utility of the query result (i.e., minimize the
expected squared error) for the given privacy budget €,5. On the other hand, DProvSQL
enables the accuracy-oriented mode, where the data analysts can attach a utility mea-
sure (i.e., maximum expected squared error) with the submitted query. DProvSQL is
tuned to minimize the usage of the privacy budget while answering the query with the re-
quired utility. If the remaining privacy budget for this data analyst, as recorded in privacy
provenance table, is not sufficient for satisfying the utility requirement, the query will be
rejected. This type of mode is more user-friendly to DP novice data analysts, and hence,

has been gradually adopted by more recent DP query batch processing systems such as
APEx [18] and DPella [34].

Algorithm Overview. Algorithm 1 summarizes how DProvSQL uses the DP synopses to
answer incoming queries. At the system setup phase (line 1-2), the system (or data curator)
initializes the privacy provenance table by setting the privacy budget as per entry as 0 and
the row/column/table constraints W. The system initializes empty global/local synopses
for each view. The data analyst specifies a query ¢; with its desired utility requirement v;
(line 4). Once the system receives the request, it selects the suitable view and mechanism
to answer this query (line 5-6) and uses the function PRIVACYTRANSLATE() to find the
minimum privacy budget €; for V' to meet the utility requirement of ¢; (line 7). Then,
DProvSQL checks if answering ¢; with budget ¢; will violate the privacy constraints W
(Line 8). If this sanity check passes, we run the mechanism to obtain a noisy synopsis (line
9). DProvSQL uses this synopsis to answer query ¢; and returns the answer to the data
analyst (line 10). If the sanity check fails, DProvSQL rejects the query (line 12).

19

Algorithm 1: System Overview

=

Input: Analysts A = Ay,..., A,; Database instance D; Privacy provenance table
P.
Data curator sets up the privacy provenance table P with row/column/table
constraints W.
Initialize all the synopses for V €V
repeat
Receive (g;,v;) from data analyst A;
Select view V € V to answer query g¢;
Select mechanism M € M applicable to g;
€; < M.PRIVACY TRANSLATE(g;, v;, V')
if M.constraintCheck(P, A;,V,¢;, V) then
V5 «M.RUN(P, 4;,V,¢;)
Answer ¢; with Vj; and return answer r; to A;
else
‘ reject the query g¢;
end

until No more queries sent by analysts

20

Chapter 5

DP Algorithm Design

Algorithm 1 outlines the abstract interface (with key components) of our system. In this
chapter, we design concrete differentially private algorithms that can fit into this frame-
work, assuming that the system is running over a single-relation database. In particular,
we first describe a baseline DP mechanism that can instantiate the system interface but
cannot maximize the number of queries being answered. Then we propose additive Gaus-
sian mechanism that leverages the correlated noise in query answering to improve the poor
utility of the baseline mechanism. We only consider queries with global sensitivity that is
bounded in this section.

5.1 Baseline Approach

The baseline approach is based on the standard usage of the Gaussian mechanism (applied
to both the basic Gaussian mechanism [11] and the analytic Gaussian mechanism [2]).
We describe how the system modules, i.e., the privacy translation, the DP constraint
enforcement, and the privacy provenance table maintenance, are instantiated with the
baseline approach.

5.1.1 Accuracy-Privacy Translation
A key module for the accuracy-oriented mode in DProvSQL is a accuracy-privacy translator

that interprets the user-specified utility requirement into the minimum privacy budget.
The consumed privacy budget on this query will be recorded in the privacy provenance

21

Algorithm 2: Baseline Approach

1

2
3
4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24

Set ¢ in the system

Function run(P, A;, V. €;)

Generate a synopsis V' from view V

Update privacy provenance table P[A;, V] by P[A;, V] < P[A;,V] + ¢
return r; < Vi’

end
Function privacyTranslate(g;,v;, V)
candidateEps = | |
v <= CALCULATEVARIANCE(g;, v;, V)
for € < €mazs €maz/2s - - - €maz/2'°,0 do
if @y (32— &) — ey (-5~ £2) <4 then
‘ candidateEps.ADD(¢)
end
return candidateEps.MIN()
end

Function constraintCheck(P, A;, V;, €;, V)

if P.composite() + ¢; > VU.¢)p then
‘ return False

if P.composite(axis=Row) + ¢ > V.1b,, then
‘ return False

if P.composite(azis=Column) + €; > V.¢)y, then
‘ return False

return True

end

22

table and returned with the query result to the data analysts, if answering this query does
not violate the constraint specifications in the privacy provenance table. In the baseline
mechanism, we use the following analytic Gaussian translation algorithm, defined as an
optimization problem in Definition 14, which takes in the query ¢; and utility requirement
v; as input and outputs the minimum privacy budget to satisfy the utility requirement.

Definition 14 (Analytic Gaussian Translation). Given a numerical query q : D — R?
with sensitivity Aq, in order to achieve (€,9)-DP and a total expected squared error bound
v for this query, the outputting privacy budget should satisfy

Ag ev Aq ev
] — e —) <.
by (% AQ) v (2v AQ> =0

That is, given Aq, 0, v, to solve the following optimization problem to find the minimal e.

minimize € (5.1)
subject to D, (% — g—vq) — e Dy <—% — g—vq) <46 (5.2)
€ € (0, €maz)- (5.3)

We note that, given the error bound v (and Ag,0d), it is not easy to find a closed-
form solution for solving and finding the minimum e to solve the optimization problem
in Definition 14. If we regard the LHS of equation 5.2 as a function of €, this function is
known as monotonically decreasing with respect to € [2]. Therefore, we can use a binary
line search algorithm (Algorithm 2: 7-14) to find the minimal e. Specifically, we start
from the maximal € and in each iteration we halve the privacy budget and test if equation
5.2 satisfies. We thus can find an approximately minimal ¢ with the constraints. This
translation can be done offline! and we can store the (¢,v) mapping into a translation
look-up table in the system for later run-time queries. Additionally, we should note that
we cannot directly use the accuracy bound the data analyst specified over the query as the
error bound in equation 5.2. This is because, instead of adding noise to the query result, we
add noise to the view and then answer the query based on the noisy synopsis. Answering
the query over the histogram synopsis may require adding up bins which will scale up
the noise variance. Therefore, we need to look into the query and the view structure to
calculate the error bound (line 9 in Algorithm 2) and then run the search algorithm.

IThe offline pre-computing of a accuracy-privacy translation table would lose some precision in trans-
lating the accuracy requirement, because we need to fix some accuracy step size during the pre-computing.

23

5.1.2 Provenance Sanity Checking

As mentioned, the data curator can specify privacy constraints over the privacy provenance
, which consist of the per analyst constraints,
per view constraints, and the table constraint. DProvSQL uses the provenance sanity
checking method to decide to whether reject or issue a query to an analyst based on
the privacy provenance table and these constraints. The constraint checking algorithm
in the baseline mechanism is simple and intuitive. As shown in Algorithm 2: 16-23 (the
function CONSTRAINTCHECK), it checks that, if the current query was to issue, whether the
table constraint (line 20-21), the row constraint (line 22-23), and the column constraint
(line 24-25) would be violated. If any one of them is violated, DProvSQL rejects the
query; otherwise it runs the query answering process. The COMPOSITE function in this
constraint checking algorithm can refer to the basic sequential composition, or tighter
privacy composition given by Renyi-DP [37] or zCDP [15, 1], depending on the underlying
system [25].

The constraints specified on the privacy provenance table are internally correlated:
1) the privacy budget recorded in each entry cannot exceed the ones specified in the
corresponding row constraint (i.e., analyst constraint) and the column constraint (i.e.,
view constraint); 2) either the row constraint or the column constraint cannot exceed the
table constraint. These intrinsic correlations among the constraints provide nice properties
in subsuming existing privacy budget allocation mechanisms (e.g. as in PrivateSQL [30])
and solving our dynamic view budget allocation problem (RQ2) in Section 3.

First, according to the correlations, the table constraint can be set to a constant or, au-
tomatically, a function of row constraints and column constraints ¢, = min(>_, ¢4,, > ; Vy;).
To achieve the existing privacy budget allocation scheme in [30], the data curator can fol-
low the query fair allocation strategy (or other advanced static strategies) and specify the
view constraints as {¢y,|V; € V} = {\y; - E/AVJ bwv,ev, where AV is the upper bound of the
sensitivity of the view V; [30]. In correspondence to the dynamlc view budget allocation
problem, the data curator can use DProvSQL to set the table constraint to be a constant
and then the view constraints as oo (this basically means the view constraint checking will
always be bypassing). Then DProvSQL can issue or reject the query based only on the
analyst constraints and the table constraint. More privacy budget can be assigned on a
view that the corresponding queries are more frequently being asked.

We note that the privacy provenance table as a matrix can be sparse. Similar to the
conventional wisdom applied in access control, we can store the privacy provenance table
by row or column to reduce the storage consumption.

24

5.1.3 Putting Components All Together

The baseline approach is aligned with existing DP SQL query systems in the sense that we
add independent noise to the result of each query. That being said, we can easily adopt this
baseline approach as a middle-ware to existing systems to provide the privacy provenance
and accuracy-aware features, with the least amount of effort of changing existing systems.
The way this baseline method works is outlined in Algorithm 2: 2-5 (the function RUN). We
simply generate the differentially private synopsis V' using analytic Gaussian mechanism
from the view V' and update the corresponding entry P[A;, V] in the privacy provenance
table by adding up the consumed privacy loss ¢; on the query. This baseline mechanism
satisfies the following accuracy and privacy properties.

Theorem 4. Given a query q where its global sensitivity is bounded, the baseline mechanism
(Algorithm 2) returns the query result with the expected squared error at most v and satisfies
differential privacy with a minimal cost of privacyTranslate(q,v).e. The privacy guarantee
of Algorithm 2 follows that of Theorem 7.

Remark. Without loss of generality, we can assume that the data analysts do not submit
the same query with decreased accuracy requirement (as they would be only interested in a
more accurate query result). If we were to relax this assumption in the baseline approach,
we need to store all historical synopses to avoid spending additional budgets on answering
the decreasing accuracy queries. We will described how this issue could be better solved
with additive Gaussian mechanism.

5.2 Additive Gaussian Approach

DP synopses are differentially private query results of views executed on a database in-
stance. We introduce a new additive Gaussian mechanism which is used many time in our
synopses maintenance, and then describe how DProvSQL generates and updates the (local
and global) DP synopses with this algorithm design.

5.2.1 Additive Gaussian Mechanism

We first introduce a simple modification to the standard Gaussian mechanism, named
additive Gaussian mechanism (additive GM), that makes use of the nice statistical property

25

Algorithm 3: Additive Gaussian Noise Calibration
Input: Analysts A= Ay,..., A,; A query ¢; Database instance D; A set of
privacy budgets B = (e1,6), (€2,0), ..., (€n,0).

Output: A set of noisy answers r1,7r9,...,7,.

1 Function additiveGM(A, B, q, D) :

2 r < QUERYEXEC(q, D) > Obtain true query answer.
3 Agq <+ SENSCALC(q) > Sensitivity calculation.
4 | B < sorr(B,¢) > Sort B on the desc order of €’s.
5 (€,0) < POP(B) > Pop the 1st element.
6 0; < ANALYTICGM(¢;, 9, Aq) > Refer to [2]
7 | i r+n ~N(0,0?) > Add Gaussian noise.
8 while B’ # @ do

9 (€j,0) < POP(B')

10 0; < ANALYTICGM(¢;, , Aq) > Refer to [2]
11 rj < ri+n; ~N(0,07 — 07);

12 end

13 return R = {r;|i € [n]};
14 end

of the Gaussian distribution. We will later show how this mechanism is used in maintaining
the synopses.

It is well known in probability theory that the sum of i.i.d. normal random variables
is still normal distributed. We build the additive Gaussian mechanism (additive GM)
primitive by making use of this fact. The details of additive GM are outlined in Algorithm
3. This primitive takes a query ¢, a database instance D, a set of privacy budgets B
corresponding to the set of data analysts A as input, and this primitive outputs a noisy
query result to each data analyst that satisfy their corresponding privacy budget. The key
idea of this primitive is to only execute the query (to get the true answer on the database)
only once, and cumulatively inject noises to previous noisy answers, when multiple data
analysts ask the same query. In particular, we sort the privacy budget set specified by the
analysts. Starting from the largest budget, we add noise w.r.t the Gaussian variance o?
calculated from the query sensitivity Aq and this budget (¢;,0). For the rest of the budgets
in the set, we calculate the Gaussian variance 032- in the same approach but add noise w.r.t
UJ2- — 02 to the previous noisy answer. The algorithm then returns the noisy query answer
to each data analyst. The privacy guarantee of this primitive is stated as follows.

Theorem 5. Given a database D, a set of privacy budgets B = (€1,0), (€2,9), ..., (€,,0)

26

and a query q, the additive Gaussian mechanism (Algorithm 4) that returns a set of
noisy answers ri,ra,...,T, to each data analyst A; w.r.t their privacy budget satisfies
[(A1,€1,0), ..., (Ap, €n,0)]-multi-analyst-DP and (max{ey, €s, . . ., €, }, 0)-differential privacy.

Proof. For each data analyst A;, where j € [n], its corresponding privacy budget is (¢;, d)
and the additive Gaussian mechanism M s returns 7; to A;. We first prove the additive
Gaussian mechanism Mgy, satisfies multi-analyst-DP, that is, we need to show that,

PrMacum (D) = 1] < €9 Pr[Mugu(D') = rj] + 6;. (5.4)

Case 1. If €; = max{ey, €2, ...,€,}, it is not hard to see the noise generation and addition
to the query answer are the same as in the analytic Gaussian mechanism, and therefore
equation 5.4 holds.

Case 2. If ¢; # max{ey, €2,...,€,}, w.lo.g., we can assume ¢; = max{ey, €a,...,€,}. If we
use analytic Gaussian mechanism to calculate the Gaussian variance, we have,

Aq €05) Aq €,0;
() — —e“O — — <4
N(Qai AQ) ‘ N(20; AQ) -

Aq €;0;) Aq €;0;
P T2 07 _eid i _ 7 < 4.

Then for the noisy answer returned to data analyst A;, we have rj :=r; +n; = r+n; +n;,
where 7; ~ N(0,07) and n; ~ N(0,07 — 07). Since 1; and 7; are independent random
variables drawn from Gaussian distribution, we obtain 1, +n; ~ N (0,032-). Therefore,
equation 5.4 holds according to the analytic Gaussian mechanism (Definition 5).

and

Then we need to prove Mg satisfies (max{ey, €s, ..., €,},9)-DP. In the additive Gaus-
sian mechanism, we look at the true query answer (and the data) only once and add

noise drawn from N(0,0?) to it (assuming ¢; = max{ey,€g,...,€,}). According to the
post-processing theorem of DP (Theorem 1), the overall privacy guarantee is bounded by
(max{ey, €,...,€,},0)-DP. O

We note that we use the analytic Gaussian mechanism (Definition 5) to calibrate noise
in the algorithm. That is, the Gaussian variance is calculated by o = aAg/v/2¢ where a
is a parameter determined by € and § [2]. This algorithm framework can also be applied
to other Gaussian related noise adding mechanisms [5].

27

5.2.2 Updating Synopses

We first introduce the concept of global and local DP synopses and then discuss the up-
dating process in our additive Gaussian mechanism. A DP synopsis (or synopsis for short)
is a noisy answer to a (histogram) view over a database instance.

Global and Local DP Synopses. To solve the maximum query answering problem,
for each view V' € V, DProvSQL maintains a global DP synopsis with a cost of (e,0),
denoted by V(D) or V¢, where D is the database instance. For simplicity, we drop & by
considering the same value for all and D. For this veiw, DProvSQL also maintains a local
DP synopsis for each analyst A; € A, denoted by Vj;, where the local synopsis is always
generated from the global synopsis V¢ of the view V' by adding more noise. Hence, we
would like to ensure € > ¢’. This local DP synopsis Vj; will be used to answer the queries
asked by the data analyst A;.

The process of updating synopses consists of two parts. The first part is to update
the local synopses based on the global synopses. The second part is to update the global
synopses by relaxing the privacy guarantee, in order to answer a query with higher accuracy
requirement. We discuss the details as below.

Generating Local Synopses from Global Synopses. We leverage our additive Gaus-
sian Mechanism (additive GM) primitive to release a local DP synopsis Vj; from a given
global synopsis V¢, where V¢ is generated by a Gaussian mechanism. Given the privacy
guarantee € (and ¢) and the sensitivity of the view, the Gaussian mechanism can calculate
a proper variance o for adding noise and ensuring DP. The additive GM calculates o and
o’ based on € and € respectively, and then generates the local synopsis Vj; by injecting
independent noise drawn from A(0,0 — 0?) to the global synopsis V€. As the global
synopsis is hidden from all the analysts, the privacy loss to the analyst A; is ¢/. Even if
all the analysts collude, the maximum privacy loss is bounded by the budget spent on the
global synopsis.

Updating Global Synopses by Combining Views. When the global DP synopsis
V¢ is not sufficiently accurate to handle a local synopsis, DProvSQL spends additional
privacy budget Ae to update the global DP synopsis to V¢+2¢. We still consider Gaussian
mechanism, which generates an intermediate DP synopsis V2¢ with a budget Ae. Then we
combine the previous synopses with this intermediate synopsis into an updated one. The
key insight of the combination is to properly involve the fresh noisy synopses by assigning

28

each synopsis with a weight proportional to their budget [13]. That is, for the n-th release,

n—1
V/ = Z inGi + anAE,

i=1

where > w; =1 and v = Y1 wlo? + w2o? (whose closed-form solution is w; = v/o?,
le. w; o €).

Lemma 1 (Correctness of the View Combination [13]). The combined DP synopsis in the
n-th release satisfies (Z;:ll €;+Ae)-DP and the expected squared error is less than or equal
tov.

We note that the combination is not frictionless. Although the combined synopsis V¢T4¢
achieves (e + Ae¢, §)-DP, if we spend the whole privacy budget on generating a synopsis all
at once, this one-time view V* can achieve the same level of privacy but has less expected
error (i.e. higher utility) than Vt2¢. We especially remark that the problem of how to
design a frictionless updating strategy for Gaussian-related DP mechanisms is interesting
and non-trivial on its own right, but out of the scope of this paper.

Updating Local Synopses. When a local DP synopsis Vj; is not sufficiently accurate to
handle a query, but the budget ¢ is still smaller than the budget for the global synopsis,
DProvSQL generates an intermediate local synopsis VAAZ,E from the global synopsis using
additive GM. Then it combines VAAi6 with the previous local synopsis in a similar way for

the global synopses, which leads to a new local synopsis Vj;*Ae.

We use the following running example to show the synopses generation and updating
process.

Example 3. To give a concrete example of managing the global and local synopses, we take
two data analysts, Alice and Bob, asking the same counting query q; (as in Example 2)
over database D. We assume the query q; can be answered using the view V. We omit the
privacy privilege checking for simplicity in this ezample. When the system is running, Alice
first asks the query ¢, with accuracy requirement translated to privacy budget 0.5. We will
generate a global synopsis V5 from the view V with budget 0.5 and then generate a local
synopsis V32 from the global synopsis V5 for Alice. In this case we can simply copy it,
and answer Alice’s query. Next, Bob asks the query ¢, with accuracy requirement translated
to privacy budget 0.3. Since the budget 0.3 < 0.5, we can use additiveGM algorithm to
generate a local synopsis V3.3 from the global synopsis V°? for Bob and return the query
answer based on the local synopsis.

29

Assume that Bob realizes q is an important query to him after receiving the noisy
answer and he would like to see a more accurate one. Bob asks the query q, again with
accuracy requirement translated to privacy budget 0.7, which is greater than 0.5, the one
associated with the global synopsis V°°. Then we need to update the global synopsis by
generating a fresh global synopsis V2 from the view, and combine V%5 and V2 to Vo7,
We also have to update Bob’s local synopsis V3.3 by generating a fresh local synopsis V3.4
from VO and then combine V3.3 and V3.4 to V3.5 . This updated local synopsis can answer
Bob’s query.

Remark. Without loss of generality, we can assume the data utility requirements per
query requested by the same data analyst never decreases. That is, for the same query,
the data analyst is only interested in a more accurate result (with less expected squared
error). We remark that in real-world implementation and deployment there are cases
where the data analyst can ask a query with decreased utility requirement comparing to
historical queries. For example, the data analyst may forget or lose the returned results
for historical queries. DProvSQL can handle these cases by answering this query based
on the corresponding local synopsis, sampling a fresh noise and adding to the query result
that satisfies the utility requirement. This process does not consume additional privacy
budgets, suggested by the post-processing property (formally stated in Proposition 1).

Proposition 1. Given a query q; and an expected squared error v; submitted by data
analyst A;, if v; is greater than a error v; which is associated with the query g; specified by
Aj previously, answering this query using the local synopsis V' does not consume additional
privacy budget.

5.2.3 Accuracy-Privacy Translation

Differing from the accuracy-privacy translation in the baseline solution, the additive Gaus-
sian approach maintains the global DP synopses for answering queries. This leads to the
research question for DProvSQL: how to translate the utility requirements into privacy
budgets with the existence of the release of historical queries? To be more specific, the
goal of the privacy translation in the additive Gaussian approach is to find the minimum
privacy budget to update the global synopsis such that the updated synopsis can be used
to answer the incoming query constraint to the query utility requirement. As we show in
Section 5.2.2; the synopses updating and combining is not frictionless (i.e., lossless) com-
paring to simply adding the privacy budgets to the desired guarantee. To solve this issue,
we propose the accuracy-privacy translation paradigm for the additive Gaussian approach.

30

This translation paradigm works for queries where their global sensitivity is bounded
and can be calculated independent of the underlying database instance. This type of queries
includes linear counting queries, histogram queries and so on. As shown in Algorithm 4:
13, this accuracy-privacy translator module takes the query ¢;, the utility requirement v;,
the view V for answering the query, and additionally the current global synopsis V¢ (we
simplify the interface in Algorithm 1) as input, and outputs the corresponding privacy
budget ¢; (omitting the same value §).

The first observation is that the first query release for the view does not involve the
frictional updating issue. Then we separate the translation into two phases where the first
query release directly follows the analytic Gaussian translation in our baseline approach.

As for the second phase translation, recall that if we have a global DP synopsis V< at
hand (with expected error v; = 02 o 1/¢?) for a specific query-view and a new query is
submitted by a data analyst with expected error v, < v;. The translation cannot solely find
a minimum €, according to the global sensitivity and the accuracy requirement through
the above translation approaches. This is because when combining the views V¢ and VA€
where Ae = €, — ¢;, the expected error for the resulting combined view can be larger than
the error specified by data analyst. Thus, our privacy translation module should take this
accuracy loss into account. To achieve this, we include the optimization problem into the
privacy translation. That is, we first calculate the Gaussian variance of the current DP

synopsis 0. and solve the following problem given the accuracy requirement v.

maximize v = w?o? + wic? (5.5)
subject to w; +wy =1 (5.6)
w1, Wa € [O, 1] (57)

v < (5.8)

By solving this optimization algorithm, we can obtain the minimal error variance o2.
By translating this into privacy budget using the standard analytic Gaussian translation
technique (Definition 14), we can get the minimum privacy budget that achieves the re-
quired accuracy guarantee.

Theorem 6. Given a query q where its global sensitivity is bounded and the historical
released DP synopsis V¢ for answering q, the additive Gaussian approach (Algorithm 4)
returns the query result with the expected squared error at most v and satisfies differential
privacy with a minimal cost of privacyTranslate(q,v,V,V®).€.

31

5.2.4 Provenance Sanity Checking

The provenance sanity checking for additive Gaussian approach is similar to the counter-
part for the baseline approach. We would like to highlight two differences between the
two methods. First, thanks to the additive Gaussian mechanism, the composition across
analysts is bounded as tight as maxe;. Therefore, the column-level composition is sub-
stituted with the MAX function. Second, since we update the privacy budget recorded in
the privacy provenance table to ¢;, we need to subtract the historical budget in that entry
when checking the constraints.

5.3 Privacy Guarantee

The overall system privacy guarantee is given by the following theorem.

Theorem 7. Given the privacy provenance table and its constraint specifications, W =
{alAi € A} U{Yy|V; € VU {¥p}, Algorithm 1 ensures [...,(As,¥a,,9),...]-multi-
analyst-DP; it also ensures y,-DP for view V; € V and overall vp-DP if all the data
analysts collude.

As a proof sketch, this theorem will hold due to the enforcement of the privacy prove-
nance table and the correctness of the composition over the privacy provenance table,
assuming the privacy guarantee given by the additive Gaussian noise adding mechanism
(as proved in Theorem 5).

32

Algorithm 4: Additive Gaussian Approach

(S VU VI

[=2]

10
11
12
13
14

15

16

17
18
19
20
21
22
23
24
25
26
27
28
29
30

Set ¢ in the system
Function run(P, A;, Va,, €;)
if €¢; > € for global synopsis V¢ then
Ae=¢ —¢
VA€ ¢+ ADDITIVEGM ({4;, Ajvvezvgj W {Ae, €}, q, D)
Update global synopsis to V<~ with VA€
Ae=¢€—Vy,.€
Vi€ < ADDITIVEGM({4;, Ajyesvy }{A¢, e}, q, D)

€' <—e€;

Update local synopsis to V= with VAAf
Update privacy provenance table P[A;, V] + ¢;
return r; < Vj;

end

Function privacyTranslate(q,v,V,V¢)

v' +— ESTIMATEERROR(q, v, V)

w MINIMIZER(funC:—(v_w;;;), bounds=[0, 1])

(1-
vy (1(’1__1“;;’2,) > Target error bound w/ friction.
€ PRIVACYTRANSLATE(q, vy, V') > Baseline translation.
return e
end

Function constraintCheck(P, A;,V;, €;, V)

status = True

¢ = P[A;,V]

if P.composite(azis=Row, r=P.maz) + €; - € ;V.4)p then
‘ return False

if P.composite(azis=Row, r=V) + ¢; - € > V.1p,, then

‘ return False

if P.max(avis=Column, c=A;) + ¢ - € > W.ahy, then

‘ return False

return status

end

33

Chapter 6

Implementation and Evaluation

In this chapter, we describe the system implementation details and the results for empirical
evaluation.

6.1 System Implementation

We implement DProvSQL in Scala 2.12.2 and use sbt as the system dependency man-
agement tool. We use PostgreSQL as the underlying database platform and utilize the
Breeze library for noise calibration and solving the optimization problem in privacy trans-
lation (in the additive Gaussian approach). DProvSQL works as a middleware between
the data analysts and the existing DP SQL query system, and provides advanced function-
alities such as privacy provenance, query control, query answering over the cached views,
and privacy translation. DProvSQL enables additional mechanisms like additive Gaussian
mechanism to allow existing DP SQL systems to answer more queries with the same level
of overall privacy protection under the multi-analyst DP framework. To demonstrate this
as a proof-of-concept, we build DProvSQL over Chorus [25], which is an open-source DP
query answering system. That is, DProvSQL involves Chorus as a sub-module and uses
its built-in functions, such as database connection and management, query rewriting (i.e.,
we use Chorus queries to construct the histogram DP synopses), and privacy accountant
(including the basic composition and the Renyi composition). Since Chorus only supports
Laplace-related DP mechanisms, we implement the analytic Gaussian mechanism [2] in
Scala and incorporate it into the system. We build our privacy provenance table and im-
plement a query transformation module that can transform the incoming queries into the
linear queries over the DP views/synopses.

34

6.2 Empirical Study

In the empirical evaluation, we would like to evaluate the efficacy and the efficiency of
DProvSQL by comparing with baseline systems. We test the experiments on a machine
with MacOS system and with the following hardware configuration: Apple M1 chip, with
8GB memory size. The goal of the experiments is to show that in the use cases with the
presence of multiple data analysts, DProvSQL can answer much more queries (i.e., better
system utility) than baseline or existing systems, while we would like to analyze from which
modules or design choices we can get such benefits.

6.2.1 Experiment Setup

Datasets. We conduct the experiments on 2 different datasets, the Adult dataset [12] and
the TPC-H dataset [7]. The Adult dataset describes the census demographic data, which
includes 15 attributes and has 45,224 rows. The TPC-H dataset we use is a synthetic
dataset that joins 8 relations (supplier, part, customer, partsupp, orders, lineiterm, nation,
and region), describing the customer-sales relationships and the company’s sales records.
We use the TPC-H generator to generate the dataset of 1 GB data and import them into
PostgreSQL.

Metrics. We use three metrics to evaluate our system: a) Utility. Utility measures the
number of queries that can be answered by the system when the overall privacy budget
exhausts. b) Performance. We measure the query processing run time in milliseconds. c)
Fairness. We additionally measure the fairness by using the DCFG metric we propose in
Definition 11.

Baselines. We consider three baselines as compare to our additive Gaussian approach.
The first one is the plain Chorus mechanism, where we only set up the overall privacy
budget in the system. The second one is the Chorus mechanism with the privacy prove-
nance table, where we would like to see the benefit from having the privacy provenance
table. The last one is to equip Chorus with our baseline approach. That is to enable query
answering with views while enforcing individual constraints over the privacy provenance
table.

Use Cases. We consider the case where we have three data analysts. Two of them has
low privacy privilege and the other one has higher privacy privilege. When the overall
privacy budget is set to 2, we set low privilege and high privilege as 0.5 and 1, respectively.
The individual privacy privilege limit scales up proportional to the overall privacy budget
when it is set to 4, 6, and 8 in our experiments. We consider to build a single view for

35

Table 6.1: The comparison between our approach and baseline approach (in terms of the
number of queries being answered, and the minimum expected error of answers, denoted

by v).

Analyst 1 | Analyst 2 | Analyst 3
Chorus 2 (v=39) | 2 (v=39) | 5 (v=36)
Our Approach | 15 (v=26) | 15 (v=26) | 26 (v=15)

experiments on both dataset. On Adult dataset, we build a 3-way contingency table over
attributes age, gender, and education as a view. On TPC-H dataset, we build a 2-way
histogram over the p_brand and p_size attributes.

We design two ways of generating incoming queries: a) Take-turns. The data analysts
take turns to ask queries. If the same query is asked by the data analyst for a second time,
the accuracy requirement never decreases, which simulates the real-world situations where
the data analysts would like to see a more accurate results of this query. b) Random.
Given a set of queries, a set of accuracy requirements, and the set of data analysts, we
randomly choose a data analyst to ask a query with an accuracy requirement every time.

6.2.2 Empirical Results

We report the empirical results we obtain on the two datasets.

Empirical results on Adult dataset. We only consider the case where among the three
data analysts, two of which has low privilege level (row constraints ¢4, = ¢4,=1) and the
other one with high privilege level (¢4,=2). For simplicity, we assume all data analysts
ask the same query:

SELECT * FROM adult
WHERE age >= 39 AND education = ’Bachelors’;

The data analysts keep on submitting this query with higher accuracy requirement (spec-
ified by the expected squared error, starting from 40, each time decreasing by 1) over
time. We enable the row constraints over different analysts while the column constraint
is naturally enforced since we only have a single view in the preliminary experiments. We
compare our approach to Chorus mechanism, which regard each query from analysts as a
separated query and answer it independently. We measure the number of queries that the
system could support for each data analyst until no more queries can be handled without

36

DProvSQL
Baseline Approach
Chorus with Provenance

Chorus Mechanism

—— DProvSQL
Baseline Approach
—— Chorus with Provenance

—— Chorus Mechanism

€e=4 =6

€
Overall Budget

Figure 6.1: Utility v.s. the overall budget

14000

12000

10000

8000

6000

Millisecond

4000

2000

DProvSQL
Baseline Approach
Chorus with Provenance

Chorus Mechanism

=6 €=8

€
Overall Budget

of the system: a) Take-turns; b) Random.

Millisecond

5000

'S
=)
S3
S

3000

2000

1000

—— DProvSQL
Baseline Approach
—— Chorus with Provenance

—— Chorus Mechanism

€=6
Overall Budget

e=4 =6

€
Overall Budget

Figure 6.2: Performance v.s. the overall budget of the system: a) Take-turns; b) Random.

violating the privacy constraints, and the minimum expected error among all queries re-
turned to each data analyst. As shown in Table 6.1, our approach can answer 6.2x more
queries than the baseline on average meanwhile the answer from our approach is 1.5x to
2.4x more accurate. Our approach performs significantly better than the baseline, because
in the baseline, every query-answering is independent, whereas the usage and management
of global/local DP synopses in our approach enables correlated DP noise to the query re-
sults. Our mechanism can therefore avoid wasting budget and hence answer more queries

accurately.

Empirical results on TPC-H dataset.

We perform more detailed experiments on

TPC-H dataset. In particular, we consider 4 different queries that can be answered over
the 2-way histogram view. For example, one of the queries is the following.

SELECT count (p_brand)
FROM part
WHERE p_size < ‘30’ AND p_brand = ‘Brand#14’

37

—— DProvSQL
400 .
Baseline Approach
—— Chorus with Provenance
~ 300 —+— Chorus Mechanism
g
Q
2
= 200
=
100
0
€=2 €e=4 €=6 €=8

Overall Budget

Figure 6.3: Per query performance v.s. the overall budget of the system: Take-turns.

The comparison among 4 mechanisms in terms of utility is shown in Figure 6.1. It is clear
that our DProvSQL with the additive Gaussian approach achieves the best utility, with 4x
to 5x improvement over the baseline approach in the “Take-turns” use case, but the same
trend can be also observed in the “Random” use case. Furthermore, since the baseline
approach adopts the view based query answering paradigm, we can see that it works much
better than naively adopting Chorus or simply plugging in the privacy provenance table
into Chorus.

Figure 6.2 shows the comparison of system performance among the mechanisms. The
introduction of the privacy provenance table and the constraint checking to the system in-
troduces overhead, observed from the performance of Chorus and Chorus with provenance.
At first glance, DProvSQL approach has large system performance overhead comparing to
the other baselines. However, this experiments shows the overall query processing over-
head. A closer look at the per query performance (Figure 6.3) suggests that DProvSQL
and baseline approach has lower per query overhead than the Chorus and Chorus with
provenance approach. This is because if queries can be directly answered using an existing
synopsis, then we will not spend time to do the privacy translation and the provenance
checking. DProvSQL has marginal overhead over the baseline approach, which is reason-
able, because the additive Gaussian approach introduces additional optimization problem
to solve.

Lastly, we briefly discuss the fairness measurement in our system. Figure 6.4 shows the
fairness scores of each mechanism. Since the DCFG is a metric which is not normalized,

38

700{ —— DProvSQL
600l T Baseline Approach

—— DProvSQL

1000{ ——— Baseline Approach

—— Chorus with Provenance —=— Chorus with Provenance

800 500

—— Chorus Mechanism —— Chorus Mechanism

2 600 & 400
Q Q

A 300

400

200

200 ///,‘ 100

0 0

€e=2 e=4 €=6 e=38 €=2 e=4 €=6 €=8
Overall Budget Overall Budget

Figure 6.4: Fairness (DCFG) v.s. the overall budget of the system: a) Take-turns; b)
Random.

20
—— Chorus with Provenance 12/ — Chorus with Provenance
—— Chorus Mechanism —— Chorus Mechanism
15 10
2 g °
Q 10 Q
] (SIS
5 4
2
€=2 €e=4 €=6 €=38 €=2 e=4 €=6 €e=38
Overall Budget Overall Budget

Figure 6.5: Fairness comparison between Chorus mechanism and Chorus with the privacy
provenance table: a) Take-turns; b) Random

39

the mechanism that answers more queries naturally wins more scores on it. Thus, we
look into the comparison between the Chorus mechanism and the Chorus with provenance
mechanism, where those two answer the similar number of queries, if not the same. This
comparison is plotted in Figure 6.5. One can observe that, after adopting the privacy
provenance table, the fairness scoring gets increased with Chorus. This result is intuitive,
because the privacy provenance table can prevent data analysts with lower privilege level
asking too many queries so that the analysts with higher privilege can hardly submit
queries before the overall budget exhausts.

40

Chapter 7

Related Work

We discuss related works in this chapter. Such related works include prior effort on DP

systems [30, 44, 26, 30, 39, 51, 1, 18] or programming frameworks [25, 34|, variants of DP
frameworks [27, 16, 29], and the theoretical wisdom on providing tighter instance-based
bound on answering join queries with DP [11, 10, 9]. We describe and discuss these prior

works in details below.

7.1 Existing DP Query Systems

PINQ [36] and wPINQ [44] PINQ [30] may be the first-of-its-kind end-to-end interactive
data query and analysis system that enforces differential privacy. PINQ is implemented
with the C#’s LINQ language and allows the users to submit queries through a SQL-like
query interface. PINQ analyzes the bound of privacy loss in terms of tracking the stability of
the data transformation according to the query answering. Therefore, PINQ can support a
class of database transformation queries including SELECTION, PROJECTION, COUNT,
and COUNT DISTINCT. PINQ implements a special form of GROUP BY query in which
the querier must specify a list of grouping keys/elements. PINQ supports a limited class
of join queries where the data is first grouped by the join keys and then the groups are
joined by the group keys. This restriction of join queries is enforced to bound the query
sensitivity, because the global sensitivity of the standard JOIN operator is unbounded.
wPINQ [14] extends PINQ in terms of associating weights to each row of the table and
trimming the weights in the JOIN operator to obtain a sensitivity of 1. Thus, wPINQ can
support a wider class of equi-join queries than PINQ.

41

FLEX [26] Johnson et al. propose FLEX [26], a DP system that can support a large
class of general equi-join queries. FLEX adopts the natural extension of the standard DP
definition in the multi-relation database where two neighbouring databases only differ in
one row in a single relation. Since the global sensitivity of a equi-join query is unbounded,
FLEX proposes elastic sensitivity, which is a instance-dependent upper bound on the local
sensitivity [11] but computationally much more efficient than calculating local sensitivity.
FLEX develops rules to calculate stability and maximum frequency of a (key) attribute
and therefore bound the elastic sensitivity. By adding Laplace noise proportional to the
smooth upper bound on elastic sensitivity, they build FLEX mechanism and the system
to achieve (e,0)-DP guarantee.

Chorus [25] Chorus [25] is a programming framework built upon FLEX [26] and im-
plemented as a Scala library, which provides principled and scalable database querying
with differential privacy guarantee. Chorus consists of a three-module structure, i.e., the
rewriting-analysis-postprocessing structure — it takes a query as input from the data ana-
lyst, rewrites the query if a clipping bound should be applied, analyzes the sensitivity of
the query, and finally injects proper noise or combines the results. Chorus is designed to be
independent of the underlying database and supports a broad spectrum of DP mechanism
that users from DP novice to domain expert can make use of this framework. Both FLEX
and Chorus systems only track a sole global privacy budget which will be subtracted when
each incoming query is answered.

PrivateSQL [30] Differing from FLEX, PrivateSQL [30] introduces a new definition of
differential privacy for multiple relations. The new privacy notion captures the foreign
key constraints among different relation schemas, specified by privacy policies [23], and
can therefore express richer privacy semantics such as Edge-DP and Node-DP. PrivateSQL
answers queries based views and differentially private synopses. PrivateSQL calculates
the (truncated) global sensitivity for view based on rules similar to those of FLEX. The
sensitivity is truncated for join queries in order to bound the influence of the removal of
a tuple to other relations, and the truncation bound is privately learnt using the sparse
vector technique. PrivateSQL has a privacy budget allocator that splits a total global budget
to each view, but this allocation is static and only depends on some heuristics such as fair
splitting.

42

7.2 Existing Work on Highly Sensitive Queries

Residual sensitivity [11, 10] Residual sensitivity, proposed by Dong and Yi [1, 10], is
yet another instance-dependent upper bound on local sensitivity for answering join queries.
The residual sensitivity [! 1] is developed upon the residual query of a multi-way join query

and the maximum boundary of the residual query on a database instance. The maximum
value of the maximum boundary of residual queries with arbitrary changes made in the
private relations is proved to yield an upper bound of local sensitivity. Taking advantage
of this property, residual sensitivity provides a tighter upper bound on local sensitivity
of multi-way join queries than elastic sensitivity [26], and can be efficiently calculated (in
polynomial time). Their concurrent work [10] complements the results by proving the
instance-optimality on specific complex queries (i.e., the conjunctive queries).

R2T [9] Mechanisms adding noise proportional to the smooth sensitivity may lose the
foreign key constraint when handling join queries. Another line of research is based on
truncation, that is, to bound the user contribution by truncating the join table. The
truncation operation introduce bias in the query answer but can reduce the noise vari-
ance, which has been shown to be useful in answering aggregation queries [25] and join
queries with foreign key constraints [30]. The privacy guarantee is proved via leveraging the
Lipschitz extension of DP [17]. A recent work, Race-to-the-Top (R2T) [9], shows a system-
atic approach in using truncation to answering general Select-Projection-Join-Aggregation
(SPJA) queries with instance-optimality. R2T adaptively choose the truncation factor in
combination with certain DP truncation mechanisms to achieve the instance-optimal error.
By extending a LP-based mechanism, R2T can generalize to answering any SPJA query.

7.3 Other Related DP Frameworks

Personalized differential privacy [27, 16] Jorgensen et al. [27] propose personalized
differential privacy (PDP) as a variant of the DP framework. In constrast to the standard
DP, PDP considers the case that users contributing to the protected database can have
different privacy levels or requirements. [27] shows PDP can be achieved by introducing
an additional tuple-level sampling based modification to the traditional DP mechanisms.
PDP avoids neither insufficient protection for some users nor over-protection for others,
and therefore can gain benefits of improving data utility for certain scenarios. Concur-
rently, Ebadi et al. [10] propose yet another PDP framework from the formal methods
perspective that serves a similar purpose. In their framework, a privacy provenance ap-
proach is presented to track the privacy loss of each individual record in the database. This

43

provenance module is implemented and incorporated into PINQ. Both PDP frameworks
from [27] and [10] can be regarded as dual frameworks to ours, in the sense that they would
like to provide fine-grained privacy tracking for users in the dataset while we are bounding
the privacy loss on the multiple data analysts side.

One-sided differential privacy [29] Kotsogiannis et al. propose one-sided differential
privacy (OSDP) [29] as a DP variant that handles the case where the protected database
can be partitioned into sensitive data and non-sensitive data. Regarding all data as equally
sensitive, standard DP can be over-pessimistic to provide a less useful solution. OSDP is
such a framework that intends to leverage the non-sensitive data to improve the data utility
(or query accuracy) while not releasing the whole non-sensitive data since this leads to the
inference of the sensitive data. OSDP is demonstrated to be used to answer counting
queries and publishing datasets with complex data type.

DP systems with the support of accuracy specification (APEx [18] and DPella
[34]) Most DP systems require data analysts to submit a privacy budget (¢) associated
with the query that indicates the share of budgets they would like to spend on this query.
However, the budget as a privacy indicator may not be intuitive for the non-DP-expert
data analysts to obtain the analysis results they desired. Some pioneer existing work
such as APEx [18] and DPella [31] start to investigate an accuracy-aware DP system for
data analysis and exploration. In such systems, the data analysts are allowed to submit
the accuracy requirement instead of the privacy budget with their queries. The systems
utilize an accuracy translation module that can convert the accuracy requirement into an
estimated privacy budget interval automatically. The systems answer the query and tell
the privacy cost to the analysts if the total budget is not exceeded; otherwise the query
will be rejected. However, such systems are limited in terms of the supported query types.
For example, APEx only supports different counting queries such as workload queries and
iceberg queries.

DP framework involving multiple data analysts [53, 28, 45] Very recently, some
research works start to investigating DP frameworks that involve multiple data analysts
as a more realistic setting. Pujol et al. [15] study the problem of releasing data to multi-
analyst with a limited shared privacy budget, where the data release should satisfy the
desiderata of sharing incentive, non-interference, and adaptivity, and they design mecha-
nisms to achieve these goals. Other works, e.g. fitness-for-use [53], consider the per analyst
accuracy requirements and propose mechanisms to optimize the injected noise to meet the
accuracy requirement as per data analyst and minimize the total privacy loss. None of the
existing works so far consider the same problem as ours.

44

Chapter 8

Discussion and Future Work

In this chapter, we discuss the limitations of DProvSQL (in terms of the multi-analyst DP
framework and the proposed system) and the potential directions for future work.

8.1 Preliminary Work on Highly Sensitive Queries

The algorithms or mechanisms described in Section 5 can only be used to answer queries
where their global sensitivity can be bounded. For queries with the join operator over
a multi-relational database, the global sensitivity of these queries is, unfortunately, un-
bounded. This is due to the definition of global sensitivity, where, through the join op-
erator, adding or removing one row in a table can affect an arbitrary number of rows
in another table. Therefore, existing works propose instance-dependent sensitivity defini-
tions, including local sensitivity [11], elastic sensitivity [20], and residual sensitivity [11],
and inject noise proportional to the smooth upper-bound of the sensitivities [11] to achieve
differential privacy.

In this section, we design specific algorithms to handle high-sensitivity queries which
involve the join operators. First, we naturally generalize the Multi-analyst DP definition
to the multi-relational database setting. Similar to DP, the generalization of Multi-analyst
DP mainly results in the generalization of the definition of neighbouring database instances.

Given a database instance D with relations R = {Ry,..., R}, a subset of the relations
Rpriv C€ R are private and the remaining relations Rpy, := R\ R p.ir are public. Following
the generalization of DP in multi-relational DB settings [20, 11], we consider the two

database instances that are neighbouring databases if they only differ in 1 tuple (i.e. adding

45

or removing 1 tuple as we consider unbounded DP) in one of the private relations R €
Rpriv- Then the local sensitivity of a query ¢ evaluated at a database instance D is defined
as
LS,(D) = D)| — |q(D)]|.
(D)= maxla(D)] = la(D')]|
Note that the global sensitivity of query ¢ is the maximum local sensitivity, i.e., GS, =
maxp LS, (D).

The first challenge behind translating the accuracy requirement into a privacy budget
for join queries over a multi-relational database is that the instance-dependent sensitivity
may leak information about the underlying database instance. Thus, we need to privately
bound the global sensitivity of the instance-dependent local sensitivity.

We start to study the problem by considering the following two-way join-counting query
on the attribute T of private relations r1 and r2.

SELECT COUNT (*)
FROM r1 JOIN r2
ON r1.T = r2.T;

We denote the frequency of the element which has the maximum occurrence of an
attribute A in relation r in the database instance D by mf(T,r, D). In addition, for an
element e; € T, let f(e;,r, D) be the frequency of the occurrence of e; in relation r and
database instance D. Then we show the global sensitivity of the local sensitivity of the
join-counting query by proving the following lemma.

Lemma 2. The global sensitivity of local sensitivity of the join-counting query is bounded
by 1.

Proof. The global sensitivity of local sensitivity of the query can be written as

GSrs, = o |LS (D) — LS,(D")] (8.1)
— D) — q(D
b, thr(%?gl):l!q() —q(D1)|

— D" — (D! 8.2

D,pg}ggﬁ,ﬁg() — q(D1)] (8.2)

We first discuss the two-way join query (on attribute 7' of private relations r; and 79)
and then generalize to multi-way joins. If we consider unbounded DP, there are two

46

possible cases transforming from the database instance D to D’: 1) add (or remove) 1
row in 7y, 2) add (or remove) 1 row in 5. Without loss of generality, we can assume
mf(T,r1, D) > mf(T,rqy, D), or equivalently, mf(T,ry, D) > mf(T,ry, D) + 1. Then we
analyze both cases.

Case 1. If we add (or remove) 1 row in r1, to maximize the global sensitivity, the added
(or removed) row should contain the element e; in column 7', in which e; = max;{e; €
T | f(es,r1,D) = mf(T,r1,D)}. Then in database D', f(e;,r1,D") = f(e;,m1, D) £1 (+1
for adding a row and -1 for removing a row). In the case that D’ is obtained by adding
the row to D, the local sensitivity of query ¢ on database instance D’ can be calculated
as LS,(D'") = f(e;,r1, D') which is achieved by adding/removing a row containing e; in
relation ro. In the case that we remove the row to get D', LS,(D') = max{f(e;,r1,D) —
Lmf(T,ry, D)} = f(e;, 1, D)—1. Looking at the database instance D, the local sensitivity
LS,(D)=mf(T,r,D) = f(e;,r1, D) (considering adding/removing a row in r3). In both
cases of transforming D to D', the global sensitivity of the local sensitivity is bounded by
GSrs, = 1.

Case 2. Similarly, if we add (or remove) 1 row in ry, the added (or removed) row should
contain the element e; such that e; = max;{e; € T'| f(e;,r2, D) = mf(T,r2, D)}. Then in
database D', we have f(e;,r9, D') = f(e;, 72, D) £ 1. If we add a row to get D', LS,(D') =
max{ f(e;,r1, D), f(ej, 72, D’)}, considering adding or removing a row containing e; in 75 or
e; in ;. This equation can be simplified to be LS, (D") = max{f(e;,r1, D), f(ej, 2, D")} =
max{mf(T,ry, D),mf(T,ry, D) + 1} = mf(T,r,D). If we remove a row to get D’
LS,(D") = mf(T,r,D). As for the database instance D, the local sensitivity LS,(D) =
mf(T,r, D) = f(e;,r1, D) (considering adding/removing a row in ry), which is the same
as in Case 1. Since LS, (D’) = LS,(D) no matter adding or removing a row from D to
obtain D', the global sensitivity of the local sensitivity for this case is GSpg, = 0.

Combining two case analyses, the global sensitivity of the local sensitivity of the two-
way join-counting query is bounded by 1. This result can be naturally generalized to
multi-way join-counting queries. If we enrich the maximum frequency notation to allow it
to take the set of join-key attribute instead of the single attribute 7', the similar analysis
result still holds. O

Remark. Lemma 2 does not only apply to join-counting queries but can also be extended
to self-join queries such as the triangle-counting query in a graph, where the database table
records the edges (in the way that a row contains the source and destination of an edge).
We consider edge-DP as the privacy notion, where two neighbouring graph databases differ
in one edge. The global sensitivity of local sensitivity is still bounded by 1. The intuition

47

behind this is that the local sensitivity of this self-join query is equivalent to the maximum
degree of the vertices in this graph. Therefore, for any two graphs G and G’ that differ in
only 1 edge, the maximum degree can only differ in 1. In the future extension of this work,
we will develop rules to cover any general join queries.

Definition 15 (Local Sensitivity at Distance k [11]). The local sensitivity of a query q at
Hamming distance k, evaluated on a database instance D, which is denoted as LSék)(D),
is defined as
LS®(D) = LS,(D’
q () D’,dl(rll)?l})i’)gk q()7
where d(D, D") represents the Hamming distance between two databases, i.e., the number
of tuples differ in the two instances.

If we allow dummy records in database, the local sensitivity at distance k is equivalent to
LS,gk)(D) = InaXp 4(p,D")<k LSq(D,) = Inaxp’ q4(D,D"=k LSq(D/) [] That iS, for Vk 2 0,
LSék)(D) < LSékJrl)(D)7 where a special case LS\ (D) = LS,(D). Then we prove the
following theorem, showing the global sensitivity of local sensitivity of the specific query
is bounded at any distance.

Theorem 8. The global sensitivity of local sensitivity of the join-counting query at Ham-
ming distance k is bounded by 1.

Proof. This theorem can be proved by induction on the distance k. Base case: as shown
in Lemma 2, the global sensitivity of local sensitivity of the join-counting query at distance
0 is bounded by 1. Induction step: suppose the global sensitivity of local sensitivity of
the join-counting query is bounded by 1 at distance n (i.e. GS, 5 < 1), we then consider

the case that the distance d(D,D’) = n + 1. To build the connection between the case
k=n and k =n+ 1, we need to prove the greedy property of the sensitivity results when
increasing the distance between two databases. To show this, we prove the following claim.

Claim 1. LS\""V(D) < LS{(D) + 1

ProoOF oF CraiM 1. Given the same database D, at the base case where n = 0, as
shown in the proof of Lemma 2, LSéO)(D) =mf(T,ry, D). Suppose for the element e; € T,
we have f(e;,r1,D) = mf(T,r1,D). Then consider LSél)(D), which is the maximum
difference in the query results over the database instances with distance 2. Compared to
LSéO)(D), adding or removing 2 rows instead of 1 row in the database instance can cause
the result to change at most by 1, which is achieved if we first add or remove a row to
get LSéU)(D) and then add or remove a row which contains the same element in 7" to get

48

LSél)(D). Thus, we have LSél)(D) < LSéO)(D)—l—l. Extending to case n, LS;”)(D) indicates
a database instance D’ which is at distance n to D. To calculate the local sensitivity
LSénH) (D), the optimal way is to consider the database instance D” by adding or removing
a row that contains the element e; = max;{e; € T'| f(e;,r;,D") =mf(T,r;,D"),Vr; € R}.
Therefore we have LS\"™ (D) < LS{™(D) + 1.

Given the result of Claim 1, for database D and D', the claim holds simultaneously. There-
fore, if at distance n, G'S, ¢ < 1, then at distance n+ 1, GS| jm+1) = max]LSCS"H)(D) —
q q

LS{™™(D")| < 1. This proves the theorem. O

While the details of correctly translating accuracy requirement into privacy budgets for
high sensitive join queries are still under development, the intuitive ideas are to use the
theorems proved above to privately bound the local sensitivity. Since the global sensitivity
of the local sensitivity is bounded and small, we can spare some privacy budgets and use

the report noisy max [l1] mechanism to get the noisy maximum local sensitivity with
distance k. The noise calibration mechanism for answering the join queries can follow the
following mechanism [11]. We will describe more details in the later version of this work.

Lemma 3 (Gaussian Noise Calibration [11]). Let SS(q, D) be the -smooth upper bound
on the local sensitivity of a d-dimensional query q on database instance D, where f =

m. The following noise-adding mechanism satisfies (€,0)-DP:

M(D) =q(D) + Gaussian(5 ¥ 21n(2/5€) 5504, D))

8.2 Future Directions

We discuss some limitations of this work and the potential directions for future work. The
first limitation of this work results in the multi-analysts DP framework, where we consider
multiple data analysts with different privacy privilege levels in the query answering system
and we would like to bound the overall privacy loss if the data analysts all collude. We
build the additive Gaussian mechanism and propose our system to maximize the number of
queries being answered under this setting. However, this setting is rigid and can be relaxed
to be more realistic by introducing a colluding parameter ¢ among data analysts, similar
to the multi-party computation threat model [I3]. That is, while all data analysts may
not collude, a part or group of data analysts can. Accordingly, this parameter ¢ represents

49

the colluding portion of data analysts; the model we use in this paper is subsumed by
this ¢-collusion notion since when ¢t = 1, it degrades to our setting. How to make use of
this property, design algorithms, and analyze the effect of privacy loss still remain active
research questions and could be considered for future work.

Second, we have described how to extend our algorithms and system to answer high-
sensitive queries such as join queries over a multi-relational database. However, we only
have proved that the proposed methods work for a specific group of join queries by privately
bounding the global sensitivity of the local sensitivity of such queries. This method does
not naturally generalize to any upper bound of the local sensitivity (like elastic sensitivity
[20] or residual sensitivity [11]). In future work, we will develop rules to bound the global
sensitivity of the upper bound on local sensitivity and extend the applicable queries to any
join queries. Furthermore, other than adding noise to the smooth upper bound of the local
sensitivity, the truncation-based methods [9] are also useful in answering high-sensitive
differentially private queries. How to translate the accuracy requirements into a privacy
budget with truncation-based methods and fits such a module into our system framework
is another interesting research question for future work.

Third, the system performance can be optimized by a more careful design of the view
and synopses and by introducing a fine-grained way of updating the synopses. Making
use of the sparsity in the data itself [52] or using data-dependent views [32] can result in
adding less noise or a lower error rate on the query results. We will incorporate such design
methodology into the extension of this work. Lastly, the privacy provenance table in this
paper is inspired by the discretionary access control (DAC) model. It would be interesting
to see in future works a more expressive model for privacy provenance, e.g., an analyst may
be able to delegate his/her privacy privilege to other analysts temporarily. More research
questions and works may be able to spawn by a deeper intertwinement between privacy
provenance and access/leakage control [12].

20

Chapter 9

Conclusion

Our main research objective in this thesis is to show that a multi-analyst system interface
can largely increase the utility of a differentially private SQL query system. To show this,
we propose DProvSQL, a privacy provenance framework for differentially private SQL
query engines that tracks the privacy loss to each supported data analyst. DProvSQL
can avoid wasting privacy budgets on the same query asked by different data analysts
and prevent risky queries that exceed the privilege level as per data analyst. We have
designed privacy provenance table, privacy translation modules and the additive Gaussian
mechanism where we incorporate them into DProvSQL as a middleware solution that
provides privacy provenance and accuracy-aware properties to existing DP SQL query
systems. The additive Gaussian mechanism uses global and local synopses to maximize
query answering and utilizes the additive property of the Gaussian-related mechanisms to
update synopses. We implement the prototype of DProvSQL and our experimental results
show the efficacy and efficiency of our proposed approach.

ol

References

1]

2]

Kareem Amin, Jennifer Gillenwater, Matthew Joseph, Alex Kulesza, and Sergei Vas-
silvitskii. Plume: Differential privacy at scale. arXiv preprint arXiv:2201.11603, 2022.

Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential
privacy: Analytical calibration and optimal denoising. In International Conference
on Machine Learning, pages 394-403. PMLR, 2018.

Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. Differentially private
data analysis of social networks via restricted sensitivity. In Proceedings of the jth
conference on Innovations in Theoretical Computer Science, pages 87-96, 2013.

Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications,
extensions, and lower bounds. In Theory of Cryptography Conference, pages 635-658.
Springer, 2016.

Peter Buneman and Wang-Chiew Tan. Provenance in databases. In Proceedings of the
2007 ACM SIGMOD international conference on Management of data, pages 1171—
1173, 2007.

James Cheney, Laura Chiticariu, Wang-Chiew Tan, et al. Provenance in databases:
Why, how, and where. Foundations and Trends@®) in Databases, 1(4):379-474, 2009.

The Transaction Processing Performance Council. The tpc benchmark h (tpc-h).,
2008.

Zeyu Ding, Yuxin Wang, Danfeng Zhang, and Dan Kifer. Free gap information from
the differentially private sparse vector and noisy max mechanisms. Proc. VLDB FEn-
dow., 13(3):293-306, 2019.

o2

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Wei Dong, Juanru Fang, Ke Yi, Yuchao Tao, and Ashwin Machanavajjhala. R2t:
Instance-optimal truncation for differentially private query evaluation with foreign
keys. In Proc. ACM SIGMOD International Conference on Management of Data,
2022.

Wei Dong and Ke Yi. A nearly instance-optimal differentially private mechanism for
conjunctive queries. arXiv preprint arXiww:2105.05443, 2021.

Wei Dong and Ke Yi. Residual sensitivity for differentially private multi-way joins.
In Proceedings of the 2021 International Conference on Management of Data, pages
432-444, 2021.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni
Naor. Our data, ourselves: Privacy via distributed noise generation. In Annual
international conference on the theory and applications of cryptographic techniques,
pages 486-503. Springer, 2006.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Found. Trends Theor. Comput. Sci., 9(3-4):211-407, 2014.

Cynthia Dwork and Guy N Rothblum. Concentrated differential privacy. arXiv
preprint arXiv:1603.01887, 2016.

Hamid Ebadi, David Sands, and Gerardo Schneider. Differential privacy: Now it’s
getting personal. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 69-81, 2015.

Ulfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Randomized aggre-
gatable privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC
conference on computer and communications security, pages 1054-1067, 2014.

Chang Ge, Xi He, Thab F Ilyas, and Ashwin Machanavajjhala. Apex: Accuracy-
aware differentially private data exploration. In Proceedings of the 2019 International
Conference on Management of Data, pages 177-194, 2019.

Sameera Ghayyur, Dhrubajyoti Ghosh, Xi He, and Sharad Mehrotra. Mide: Accuracy
aware minimally invasive data exploration for decision support. Proceedings of the
VLDB Endowment, 15, 2022.

23

[20]

[21]

23]

[24]

[25]

Moritz Hardt and Guy N Rothblum. A multiplicative weights mechanism for privacy-
preserving data analysis. In 2010 IEEE 51st Annual Symposium on Foundations of
Computer Science, pages 61-70. IEEE, 2010.

Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the accuracy
of differentially private histograms through consistency. Proceedings of the VLDB
Endowment, 3(1), 2010.

Xi He, Graham Cormode, Ashwin Machanavajjhala, Cecilia M Procopiuc, and Divesh
Srivastava. Dpt: differentially private trajectory synthesis using hierarchical reference
systems. Proceedings of the VLDB Endowment, 8(11):1154-1165, 2015.

Xi He, Ashwin Machanavajjhala, and Bolin Ding. Blowfish privacy: Tuning privacy-
utility trade-offs using policies. In Proceedings of the 2014 ACM SIGMOD interna-
tional conference on Management of data, pages 1447-1458, 2014.

Kalervo Jarvelin and Jaana Kekaldinen. Cumulated gain-based evaluation of ir tech-
niques. ACM Transactions on Information Systems (TOILS), 20(4):422-446, 2002.

Noah Johnson, Joseph P Near, Joseph M Hellerstein, and Dawn Song. Chorus: a
programming framework for building scalable differential privacy mechanisms. In
2020 IEEE European Symposium on Security and Privacy (EuroSEP), pages 535—
551. IEEE, 2020.

Noah Johnson, Joseph P Near, and Dawn Song. Towards practical differential privacy
for sql queries. Proceedings of the VLDB Endowment, 11(5):526-539, 2018.

Zach Jorgensen, Ting Yu, and Graham Cormode. Conservative or liberal? person-
alized differential privacy. In 2015 IEEFE 315t international conference on data engi-
neering, pages 1023-1034. IEEE, 2015.

Karl Knopf. Framework for differentially private data analysis with multiple accuracy
requirements. In Proceedings of the 2021 International Conference on Management of
Data, pages 2890-2892, 2021.

Tos Kotsogiannis, Stelios Doudalis, Sam Haney, Ashwin Machanavajjhala, and Sharad
Mehrotra. One-sided differential privacy. In 2020 IEEFE 36th International Conference
on Data Engineering (ICDE), pages 493-504. IEEE, 2020.

Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin Machanavajjhala,
Michael Hay, and Gerome Miklau. Privatesql: a differentially private sql query engine.
Proceedings of the VLDB Endowment, 12(11):1371-1384, 2019.

o4

[31]

[32]

[33]

[34]

[35]

Fragkiskos Koufogiannis, Shuo Han, and George J Pappas. Gradual release of sensitive
data under differential privacy. arXiv preprint arXiv:1504.00429, 2015.

Chao Li, Michael Hay, Gerome Miklau, and Yue Wang. A data-and workload-aware
algorithm for range queries under differential privacy. arXiv preprint arXiv:1410.0265,
2014.

Katrina Ligett, Seth Neel, Aaron Roth, Bo Waggoner, and Steven Z Wu. Accuracy
first: Selecting a differential privacy level for accuracy constrained erm. Advances in
Neural Information Processing Systems, 30, 2017.

Elisabet Lobo-Vesga, Alejandro Russo, and Marco Gaboardi. A programming frame-
work for differential privacy with accuracy concentration bounds. In 2020 IEEE Sym-
posium on Security and Privacy (SP), pages 411-428. IEEE, 2020.

Miti Mazmudar, Thomas Humphries, Matthew Rafuse, and Xi He. Cache me if
you can: Accuracy-aware inference engine for differentially private data exploration.
In 2020 The ACM Conference on Computer and Communications Security (CCS)
Workshop on Theory and Practice of Differential Privacy (TPDP 2020), 2022.

Frank D McSherry. Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, pages 19-30, 2009.

[lya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foun-
dations symposium (CSF), pages 263-275. IEEE, 2017.

Prashanth Mohan, Abhradeep Thakurta, Elaine Shi, Dawn Song, and David Culler.
Gupt: privacy preserving data analysis made easy. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, pages 349-360, 2012.

Arjun Narayan and Andreas Haeberlen. {DJoin}: Differentially private join queries
over distributed databases. In 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12), pages 149-162, 2012.

Joseph P Near and Xi He. Differential privacy for databases. Foundations and
Trends(®) in Databases, 11(2):109-225, 2021.

Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sam-
pling in private data analysis. In Proceedings of the thirty-ninth annual ACM sympo-
stum on Theory of computing, pages 75-84, 2007.

95

[42]

[43]

[44]

[45]

[49]

[50]

[51]

Primal Pappachan, Shufan Zhang, Xi He, and Sharad Mehrotra. Don’t be a tattle-
tale: Preventing leakages through data dependencies on access control protected data.
Proceedings of the VLDB Endowment, 15(11), 2022.

Shangfu Peng, Yin Yang, Zhenjie Zhang, Marianne Winslett, and Yong Yu. Query
optimization for differentially private data management systems. In 2013 IEEE 29th
International Conference on Data Engineering (ICDE), pages 1093-1104. IEEE, 2013.

Davide Proserpio, Sharon Goldberg, and Frank McSherry. Calibrating data to sensitiv-
ity in private data analysis: A platform for differentially-private analysis of weighted
datasets. Proceedings of the VLDB Endowment, 7(8):637-648, 2014.

David Pujol, Yikai Wu, Brandon Fain, and Ashwin Machanavajjhala. Budget shar-
ing for multi-analyst differential privacy. Proceedings of the VLDB Endowment,
14(10):1805-1817, 2021.

Wahbeh Qardaji, Weining Yang, and Ninghui Li. Understanding hierarchical meth-
ods for differentially private histograms. Proceedings of the VLDB FEndowment,
6(14):1954-1965, 2013.

Sofya Raskhodnikova and Adam Smith. FEfficient lipschitz extensions for high-
dimensional graph statistics and node private degree distributions. arXww preprint
arXiw:1504.07912, 2015.

Pierangela Samarati and Sabrina Capitani de Vimercati. Access control: Policies,
models, and mechanisms. In International School on Foundations of Security Analysis
and Design, pages 137-196. Springer, 2000.

Paul Voigt and Axel Von dem Bussche. The EU general data protection regula-
tion (GDPR). A Practical Guide, 1st Ed., Cham: Springer International Publishing,
10:3152676, 2017.

Yining Wang, Liwei Wang, Yuanzhi Li, Di He, and Tie-Yan Liu. A theoretical analysis
of ndcg type ranking measures. In Conference on learning theory, pages 25-54. PMLR,
2013.

Royce J Wilson, Celia Yuxin Zhang, William Lam, Damien Desfontaines, Daniel
Simmons-Marengo, and Bryant Gipson. Differentially private sql with bounded user
contribution. Proceedings on privacy enhancing technologies, 2020(2):230-250, 2020.

o6

[52]

[53]

[54]

[56]

Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. Differential privacy via wavelet
transforms. IEEE Transactions on knowledge and data engineering, 23(8):1200-1214,
2010.

Yingtai Xiao, Zeyu Ding, Yuxin Wang, Danfeng Zhang, and Daniel Kifer. Optimiz-
ing fitness-for-use of differentially private linear queries. Proceedings of the VLDB
Endowment, 14(10), 2021.

Le Yu, Shufan Zhang, Lu Zhou, Yan Meng, Suguo Du, and Haojin Zhu. Thwart-
ing longitudinal location exposure attacks in advertising ecosystem via edge comput-
ing. In 2022 IEEFE }2nd International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2022.

Dan Zhang, Ryan McKenna, Ios Kotsogiannis, Michael Hay, Ashwin Machanavajjhala,
and Gerome Miklau. Ektelo: A framework for defining differentially-private computa-
tions. In Proceedings of the 2018 International Conference on Management of Data,
pages 115-130, 2018.

Shufan Zhang, Runchao Jiang, and Xi He. Dprovsql: Privacy provenance framework
for differentially private sql engine. In 2022 The Thirty-ninth International Confer-
ence on Machine Learning Workshop on Theory and Practice of Differential Privacy
(TPDP 2022), 2022.

Wanrong Zhang, Olga Ohrimenko, and Rachel Cummings. Attribute privacy: Frame-
work and mechanisms. arXiw preprint arXiw:2009.04013, 2020.

57

	List of Figures
	List of Tables
	Introduction
	Contributions
	Paper Roadmap

	Preliminaries
	Problem Setup
	System overview
	Key Design Principles
	Privacy Provenance Table
	DProvSQL Architecture

	DP Algorithm Design
	Baseline Approach
	Accuracy-Privacy Translation
	Provenance Sanity Checking
	Putting Components All Together

	Additive Gaussian Approach
	Additive Gaussian Mechanism
	Updating Synopses
	Accuracy-Privacy Translation
	Provenance Sanity Checking

	Privacy Guarantee

	Implementation and Evaluation
	System Implementation
	Empirical Study
	Experiment Setup
	Empirical Results

	Related Work
	Existing DP Query Systems
	Existing Work on Highly Sensitive Queries
	Other Related DP Frameworks

	Discussion and Future Work
	Preliminary Work on Highly Sensitive Queries
	Future Directions

	Conclusion
	References

