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Abstract

Our mental models consist of relational knowledge. We apply this knowledge about
whether something is near to or far from something else to solve tasks. As a specific exam-
ple, when we navigate in our environment, we have global (far) location goals that we could
navigate to using local (near) landmarks. The question for the present study is whether
relational knowledge can be probabilistically and differently represented at global and local
levels. To test this, we had participants navigate a maze in which the wall structure was
hidden, but in which participants were given global and local cues. We manipulated the
reliability of the global and local cues across experimental trials and experiments. Our
results demonstrated separable effects for global and local cues. Participants made good
estimates of global and local cues’ reliability, however, their estimates of global cue re-
liability were less accurate than their estimates of local ones potentially due to inherent
differences in how global and local information is represented. Their use of local cues
roughly matched the ground truth local cues reliability whereas their use of global cues
did not match the ground truth global cue reliability. In addition, participants relied on
both local and global cues when they navigated in the mazes but with local cues dominant
possibly because of their confidence in local cue reliability estimates, preference for cues
associated with more immediate reward, and feedback proximity. Altogether, this study
characterizes the mental representations of uncertain global and local cues and suggests
that people negotiate between different probabilistic information when making decisions
in maze navigation.
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Chapter 1

Introduction

To obtain long-term rewards, humans and animals flexibly adjust their behavior accord-
ing to the environment. Under different situations, we may endure days, weeks, or even
months before attaining one reward. Evidence suggests that the brain has evolved mul-
tiple solutions to this reinforcement learning (RL) problem: maximizing rewards over a
long period time (Daw et al., 2005). We can choose how to act by evaluating actions and
reward relationships that have worked in the past, but also based on experiences that are
not obviously related (Daw et al., 2011; Kool et al., 2017); we can abstract important
features of experiences and generalize the learned rules to new situations (Eckstein et al.,
2021; Gazes et al., 2012; Lazareva and Wasserman, 2012).

Since Edward Tolman invented the idea of a cognitive map in the 1940s (Tolman, 1948),
the question of how spatial representations support flexible behavior has been a contentious
topic. As we navigate our dynamic and complex world, we act differently to reach the next
potential states (locations). While one action may lead us to a higher transition probability
of one state, another action may lead us to a lower transition probability to the same state.
Every action is associated with a cost (biological or economical), and different sequences of
actions would have different costs in total. Overall, our purpose is to achieve the goal using
the minimum cost in the long run. It is usually challenging to find the path with minimum
cost. One solution to finding the goal efficiently is to first encode sensory information into
mental representations, then build rich causal models, and at last use them as guidance
(Bottini and Doeller, 2020; Stachenfeld et al., 2017). Indeed, there is a converging body
of neuroscience research suggesting that the brain learns predictive maps of relational
knowledge from sensory information and uses them for fast and adaptable decision-making
(Brunec and Momennejad, 2022). These abstract representations can be considered as
basis sets for describing relational knowledge (Behrens et al., 2018; Bellmund et al., 2018).
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Humans build mental representations of the environment and use them to navigate
(Peer et al., 2021). For example, if we want to walk to our favorite restaurant from home,
we usually have a map already built in our mind that includes every possible detail of the
environment. We can use this map as guidance to the restaurant and we can also easily
tell our friends how to get there. However, it is impossible to construct a fully detailed
map as big as that area. In fact, the mental representations humans build do not simply
reflect every aspect of the world, but rather pick out a manageable subset of details that
are relevant to some purpose and/or store useful abstractions of them (Eichenbaum et
al., 1989; Ho et al., 2022). Although the input data are sparse, noisy, and ambiguous in
every way, we still can construct powerful mental representations (Tenenbaum et al., 2011).
The restaurant location might change, the road might be different after construction, the
traffic might push us to a never-explored alley. Nevertheless, people in most cases manage
to effectively travel from one place to another.

In order to characterize people’s behavior in this complex situation, this thesis exam-
ined what are the principles that guided the decision-making during maze navigation and
especially when there is uncertainty in maze navigation. Ultimately, this thesis hopes to
answer how does abstract knowledge like the cognitive map we mentioned above guide our
actions?

I propose that such mental representations can be factored into “local” and “global”
probabilistic components each independent of the other and are capable of influencing
human choices and behavior.

Here I define them in relation to uncertainty. Local uncertainty is the uncertainty
related to events that are physically or temporally proximate and whose feedback is imme-
diate and direct; global uncertainty is the uncertainty related to events that are associated
with general objectives requiring a sequence of actions and whose feedback is distant in
space or time.

1.1 Anatomical Justification for Distinct Representa-

tions of Local and Global Uncertainty

The anatomical data are consistent with the distinct local and global encoding of uncer-
tainty. Previous research had demonstrated an anatomical disassociation between near
and far spatial representations (Shapiro et al., 1997).

The hippocampus and its related brain areas are involved in the learning and represen-
tation of temporal statistics (O’Keefe and Nadel, 1978; Stachenfeld et al., 2017). “Place”
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cells in rodents’ posterior hippocampus restrict their activity to a myopic single location
in space and support fine-grained spatial relations (O’Keefe and Nadel, 1978; Poppenk
et al., 2013). Moving forward toward the anterior part of the rodents’ brain, “grid” cells
in the medial entorhinal cortex activate at multiple locations equally spaced on a trian-
gular grid (adjacent edges of excited triangles may also co-opt other cells to complete a
large hexagonal synchronous patterns of triangular arrays) (Hafting et al., 2005). The
relationships and distances between different spatial locations can be decoded from the
population activity of grid cells (Bush et al., 2015; Stemmler et al., 2015). It has also
been shown experimentally that entorhinal lesions impair performance on navigation tasks
and disrupt the temporal ordering of sequential activation in hippocampus while leaving
performance on location-recognition tasks intact (Hales et al., 2014). This suggests that
”grid” cells may play a more general role in spatial planning than ”place” cells. Anterior
to the medial entorhinal cortex, neurons in the rat orbitofrontal cortex (OFC) form spatial
representations persistently correlated with the goal destination (Basu et al., 2021).

The idea that the information is encoded in rodent brains at different hierarchical
levels along the dorso-ventral axis is in line with the scale increase of mnemonic networks
represented along the anterior-posterior axis of the human brain. When participants are
asked to form narratives about lifelike events the scale at which these mnemonic networks
are represented across the hippocampus differs. The most recently linked pair of events
activate posterior parts of hippocampus whereas information about multiple event pairs
activates hippocampal mid-portions. Integrated networks for all event conditions in a
narrative task were seen in the anterior hippocampus (Collin et al., 2015; Milivojevic
and Doeller, 2013). Deuker et al. found that both spatial and temporal distance had a
significant effect on pattern similarity across all hippocampal grey-matter voxels when the
other factors were regressed out, specifically objects that were close in either space or time
shared higher hippocampal pattern similarity (2016).

It has also been suggested that these predictive representations during navigation are
organized in the same multi-scale fashion, not only in hippocampas (Momennejad and
Howard, 2018; Stachenfeld et al., 2017) but also in prefrontal cortex (Christoff and Gabrieli,
2000; Koechlin and Hyafil, 2007; Momennejad and Haynes, 2013). Using functional mag-
netic resonance imaging (fMRI) and virtual reality (VR), Brunec and Momennejad found
that during virtual navigation, anterior hippocampus would display representational simi-
larity at longer predictive scales than posterior hippocampus (2022). Moreover, the anterior
PFC (antPFC) displayed representational similarity to more distant states (location) than
posterior PFC (Brunec and Momennejad, 2022). Representing cognitive spaces at different
scales allows for the generalization of specific experiences and the formation of contextual
features via more global representations. Different scales of information represented at dis-
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tinct anatomical locations of the hippocampal formation and prefrontal cortex might serve
as a general mechanism across different stimulus domains. Encoding concepts in cognitive
spaces for non-spatial abstraction, for example one’s position in a social network, might
also benefit from the combination of multiple scales of representation analog to navigable
space (Behrens et al., 2018).

Much previous human neuro-psychological research has used maze navigation to study
the mental representation of relational knowledge (Brunec and Momennejad, 2022; Deuker
et al., 2016; Ho et al., 2022). In this study, we used maze navigation too. Two key features
make our maze-navigation paradigm useful for studying the mental representation building
process. First, solving mazes is easily self-motivated: participants have a clear goal in their
mind throughout the experiment and their progress can be immediately accessible from
the visual stimulus. Second, solving mazes is complex enough such that each instance of a
maze contains decision-making points from particular compositions of individual elements
(for example, the wall, the exit location, the cue). Although those components can be
easily accessed by participants, they still need to choose which elements to integrate into
an effective mental representation.

1.2 Solving Maze Navigation Using A Successor Rep-

resentation Model

Much research highlights the computational similarities between RL and maze navigation,
which both involve a sequence of state transition and reward maximization or cost mini-
mization (Franklin and Frank, 2018; Liu and Frank, 2021; Stachenfeld et al., 2017) where
each state describes the current situation of the agent is in. For a Chess player, the state
is the positions of all the pieces on the board; for a robot dog learning to jump, the state is
the position of its four legs. Consider the maze navigation task, the state is the position of
the player, and it would change after each movement. Overall navigating the maze would
produce a sequence of state transition associated with a reward or cost. We can solve this
maze navigation problem using a well-studied model called successor representation (SR)
(Dayan, 1993). It is a fundamental model that has been used for maze navigation and
reinforcement learning (RL). Many current RL methods are built based on it because it
tackles a straightforward maze navigation question: finding an exit in the open space with
walls (Fujimoto et al., 2021; J. Zhang et al., 2017). It is believed that the SR model can
integrate spatial and temporal coding in the hippocampus (Stachenfeld et al., 2017). Thus,
the SR model provides one mechanism for how we might reconcile the effects of local and
global cues on agent’s behavior both spatially and temporally.
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In contrast to the idea of place encoding (like theorized for place cells), the SR theory
considers location as a predictive representation for future states given the current state.
Maze navigation can be cast in this framework. A maze problem can be considered as a
Markov decision process, which is a framework for modeling decision-making in situations
where agents (decision makers) will receive outcomes partially due to randomness and
partially due to actions under their control (Bellman, 1957). The problem consists of a
set of states (spatial locations), a set of actions (e.g move right, follow certain landmark),
a transition distribution P (s′|s, a) describing the probability of transitioning to next state
s′ from state s after taking action a, and a reward obtained from the function R(s) given
the state s. There could be no reward at certain state s.

In the simulation of calculating SR, the value of a current state s is defined as the
expected sum of the reward at each future state st, multiplied by an exponentially decaying
discount factor γ ∈ [0, 1] that downweights distal rewards:

V (s) = E

[
∞∑
t=0

γtR(st)|s0 = s

]
(1.1)

where st is the state visited at time t, for example at t second we visited state s. This
means when an agent is navigating in a maze that gives rewards at the exit repeatedly,
they become more likely to return to this exit. Certain locations near the exit would also
become associated with higher reward values several seconds earlier.

Therefore, in terms of state, the value function can be rewritten into an inner production
of the reward function and the predictive representation of the state:

V (s) =
∑
s′

M(s, s′)R(s′) (1.2)

Sometimes, an agent would navigate a world where there are a couple states s′ that a
current state s could lead to with different transition probabilities. A transition probability
matrix describes each pair of s and s′’s relationship in terms of their transition probability.
When the transition probability matrix is known, we can compute the SR as a discounted
sum over transition matrices raised to the exponent t.

In fact, M(s,s’) encodes the expected discounted future occupancy of states s′ along a
trajectory initiated in the state s, so we can also write it as:

M = E

[
∞∑
t=0

γtI(st = s′)|s0 = s

]
(1.3)
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Here I is the identity function, if state s at time t is s′ then we have st = s′ and I(st =
s′) = 1, otherwise, the value of the identity function will be 0.

According to this model, the states closer to the encoded location of an SR place cell
will predict a higher expected discount factor γ of visits to the encoded location and will
trigger higher firing of the encoding cell because the close the state to the encoded location
the relevant the state. The agent’s mental representation is repeatedly updated (i.e. its SR
model). An estimate of the SR can be updated step by step using a form of the temporal
difference learning algorithm:

M̂t+1(st, s
′) = M̂t(st, s

′) + η[I(st = s′) + γM̂t(st+1, s
′)− M̂(st, s

′)] (1.4)

Eventually, we would have an SR matrix M that predicts not just the next state but a
superposition of future states over a possibly infinite horizon.

1.3 Limitations of the Successor Representation Model

However, the SR model has some limitations. I want to argue that, fundamentally, previous
researchers did not consider much real-life complexity when they proposed the SR model
to solve the navigation tasks.

Firstly, in reality, the structure of the environment and its true underlying transition
probabilities from state to state might change (e.g., if turning right causes one to hit a
temporary construction wall, the next time turning right in the same location might not
lead to the wall again). However, the SR model approach focuses on the learning of a
single transition matrix over multiple trials to represent the environment. This might be
poorly suited to human experience in real life despite its mathematical elegance. In fact,
humans are more likely to assume that the environment would be different from trial to
trial.

Previous cognitive science research shows that humans have dynamic beliefs of the
environment’s latent structure or mechanisms (Guo and Yu, 2018; S. Zhang and Yu, 2013).
For example, learning in a “Bandit task” was well captured by a Bayesian ideal learning
model, the Dynamic Belief Model (DBM). In a “Bandit task“, an agent chooses one of many
slot machines. Each slot machine provides the agent with a reward randomly generated
from a probability distribution specific to that machine. The agent can choose only one
machine at a time. The agent may either explore a different slot machine from the one just
visited or may exploit the slot machine it most recently used. The agent does not know the
ground truth distribution of each slot machine but needs to maximize its reward over time.
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Researchers have found that during this task, humans assume the reward distribution of
each slot machine can change over time even though in a particular experiment they are
truly stationary (Guo and Yu, 2018). Therefore, it is highly possible that humans are
learning how to adapt to dynamic environments via means other than the classical SR
model mechanism.

Another way in which our current SR theories potentially oversimplify the human
experience is that they do not consider uncertainty as coming from multiple different
sources. When arranging dinner with a friend in our favorite restaurant the odds that we
meet our friend will be influenced by the reliability of our friend keeping appointments,
the accuracy of maps, and the vagaries of public transportation. Our success in meeting
the friend in that restaurant is more correctly captured by considering multiple sources
of uncertainty that are independent, and not simply one omnibus collapsed probability
distribution. This partitioning of uncertainty is valuable if we later plan to meet our friend
in a park for a picnic. We can transfer the reliability of our friend keeping appointments
to this new scenario, even if the navigation and city specifics change.

The same logic applies to spatial navigation such as Tolman’s cognitive maps. Uncer-
tainty might partition along local and global axes. Imagine we are traveling in a new city,
and our favorite restaurant just opened a branch in the north part of the city. It might
be hard for us to head to there using the shortest path. We might need to open the map
application on our cell phones and search the route. Although we know the likely direction
of our destination, there is an embedded uncertainty (e.g., it is probably in the north part
of the city, but we do not know whether it is a little bit north-west or north-east). We
could use local landmarks to guide us but there may still be uncertainty involved. For
example, maybe our cell phones are not correctly oriented in the environment, so the local
landmarks in front of us are actually positioned on the cell phone in the other direction.
So it is important to keep in mind that the global and local cues are not absolute, but
probabilistic.

The real-world problems we face are more dynamic than captured by previous maze
navigation tasks. For studying, such tasks are usually constrained, fixed, and only a single
source of uncertainty need be learned. Much less research has examined how humans may
fare in estimating multiple sources of uncertainty.

The aim of the current study was to explore how our mental representation may encode
uncertainties in a dynamic environment where information on different scales may align
or contradict each other. Specifically, this thesis asks two questions: How precisely can
we encode local uncertainty and global uncertainty? And are we biased to act based on
local uncertainty? To answer these questions, I designed a virtual maze navigation game
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where participants would navigate in a maze with hidden walls (the wall structures are
“masked” to render them invisible, but the walls nonetheless impede passage). Without
the information on the location of wall structures, participants need to rely on colored local
cues to know which direction they are allowed to move otherwise they would hit a wall and
stay at the original position. They could also use the global direction of the exit as a cue
to find the shortest path to the exit.

In order to test participants’ separate encoding of uncertain local events and global
events, I implemented two tasks using the maze navigation game. One was called the
Fixed Global Varied Local task in which I manipulated local uncertainty by manipulating
the reliability of certain colored local cues used to indicate the direction of the shortest
path to the exit. Another task was called the Varied Global Fixed Local in which I manip-
ulated global uncertainty by varying the exit location. The local uncertainty and global
uncertainty were changed from high to low or low to high (counter-balanced) gradually
throughout the experiment to avoid the effect produced by a sudden big drop or increase
in uncertainty. In both tasks, participants were informed about the local cues and global
cues’ reliability through receiving feedback. The feedback about how far (step-wise) they
were away from the exit was provided after each movement and the feedback about whether
they found the exit or not was provided at the end of maze navigation. Through the use
of a maze navigation game, this study demonstrated participants had distinct mental rep-
resentations of uncertain global and local cues, and they relied on both local and global
cues but local cues dominate when making decisions in maze navigation.
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Chapter 2

Materials and Methods

2.1 General Participants Information

Participants for all experiments were undergraduates at the University of Waterloo who
participated for course credit. 195 participants signed up for the experiments, and 92
completed all trials (the reasons given for dropping out early were length and monotony).
Five participants were removed because they either misunderstood the task or were not
attentive. They rated as 0% a condition that was in fact 100% on at least 14 of 15 trials.
This left us with 88 participants in total.

All participants gave informed consent before completing the experiment that had ethics
clearance from the Office of Research Ethics at the University of Waterloo (ORE #43113).

2.2 General Procedures

Maze structures were generated using custom software written in Python and implement-
ing a Growing Tree algorithm (Buck, 2015). The display of the maze and the interface
were written in HTML and JavaScript. Analyses were done using Python (Van Rossum
and Drake, 2009) and Rstudio (RStudio Team, 2020) in the R statistical analysis environ-
ment (R Core Team, 2021) with packages ggplot2 (Wickham, 2016), ggpubr (Kassambara,
2020), plotly (Inc., 2015), moments (Lukasz Komsta, 2022), dplyr (Wickham et al., 2022),
tidyverse (Wickham et al., 2019), rstatix (Kassambara, 2021), car (Fox and Weisberg,
2019), ez (Lawrence, 2016), and reshape2 (Wickham, 2007).
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Each of our three experiments took about 30 minutes to finish and followed the same
basic procedure. Following a general outline of the features common to all experimental
versions, we briefly described the distinct manipulations of each particular experiment. We
used the words local and global to indicate either the cues available for each directional
choices in the maze (local) or to indicate the exit location (global).

Participants were started at a fixed point in the maze (the start) for all mazes (see
Figure 2.1). The wall structure of the mazes was hidden from the participants by a gray
mask. Participants could only see blue and red colored circles indicating the available
directions for movement. Particular colors probabilistically provided local information as
to the shortest path to the exit (blue in this experiment). Across trials, the exit location
might change (global event). Because the maze walls were invisible to participants, they
had to rely on these local cues, their memory of the path traveled, and any ideas about
the exit location to successfully navigate the maze.

Before the experiment, participants were instructed to find the exit using as few steps
as possible and to provide estimates of local and global probabilities. Local probability
was how trustworthy the local cues were in pointing to the shortest path direction within a
maze, and the global probability was how likely the exit would be in a particular location
across all mazes. We also provided various forms of feedback (that differed for individual
experiments) to help participants know when they were on the right track.

At the beginning of the experiment, participants were given some practice to familiarize
themselves with the interface, how to move in the maze, and how to use the sliders to
report their reliability estimates. An example of the maze and the interface can be found
at: https://artsresearch.uwaterloo.ca/∼brittlab/protocols/MazeGL/Maze task cb.php.

After finishing the whole experiment, participants were invited to report strategies and
give any additional comments via a post-experiment questionnaire.

2.3 Data Screening

For participants’ behavior analysis, only participants’ first visits to each decision-making
point were considered (some participants would backtrack and face the same decision-
making point more than once). This filtration enabled data analysis to be unaffected by
participants’ behavior after receiving feedback on whether the last movement led to the
shortest path or not. Moreover, only participants’ first 30 steps in every maze navigation
were included in the behavior analysis. This was because the maximum length of the
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Figure 2.1: Overview of Maze experiment design. A: A typical maze without the gray
mask and the shortest path of it is labeled in blue. The player is the green square who
always started at the top left. The hidden walls are in black. B: A typical maze along with
colorful cues covered by the gray mask. The mask is transparent just for demonstration
purpose. C: A typical maze as participants saw it in the experiment.
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shortest path was 22 and we did not want to include trials that might reflect distraction,
misunderstanding, or fatigue.
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Chapter 3

Pilot Experiment

3.1 Participants

22 participants (Female = 16, Male = 4, Right hand-dominant= 17, Left hand-dominant
= 3) were enrolled in the pilot experiment.

3.2 Procedure

In the pilot experiment, participants volunteered for the online study and were directed to
a website to complete the informed consent. If they consented, they were forwarded to a
new web page that provided the structured practice moves. Next, they were placed at the
start of a new maze and instructed to locate the exit. They moved within the maze by
using the arrow keys on their computer and adjusted the sliders by clicking and dragging
with their mouse or equivalent (trackpad, touch screen as this was an online study, we
could not enforce a single response method but relied on whatever hardware participants
used to run their web browser. We specifically asked participants not to complete the
task using smartphones or tablets). After each selected move, the caption below the maze
would demonstrate whether they were closer or further away from the exit. This meant
that participants were given feedback about whether they were fewer or more steps away
from the exit. When they reached the exit, they were informed of their success and a new
maze would start. There were 10 mazes per participant, and 20 moves was the typical
minimum number of moves for an individual maze.
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Participants were informed that the exits were 100% located at the bottom right. In
addition, at each decision point of the maze navigation, there were colored circles indicating
possible directions to move. Specifically, blue-colored circles (local cues) might indicate the
direction that was the shortest path to the exit. There might be multiple red-colored circles
at one decision making point to indicate possible directions to move but there will always
be just one blue-colored circle (local cue). How trustworthy the local cues were at pointing
to the shortest path direction within a maze (local probability) for the first 10 trials was
60%. Participants would familiarize themselves with the practice maze. After that, they
would complete 10 trials of randomly generated mazes, each trial contained one maze with
9 * 9 cells (each cell is one position player can move to). As participants navigated the
mazes, they could read the distance from the exit to their current location (displayed at the
bottom of the frame, below the maze). By doing this they could know exactly how many
steps they were away from the exit. At the same time, they could estimate their euclidean
distance to the exit, too. In order to prevent the local cues from providing information
about the global direction to the exit we eliminated the reporting of the explicit number of
steps to the exit in the feedback of the subsequent experiments. Instead we only provided
participants feedback with general feedback ( either” You are closer to the exit.” or ”You
are further away from the exit”).

3.3 Results

The pilot experiment was done to refine the experimental instructions and to verify appro-
priate actions in the online environment. Thus, analyses are reported.
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Chapter 4

Fixed Global Varied Local
Experiment

4.1 Participants

In the Fixed Global Varied Local experiment, another 22 participants (Female = 18, Male
= 4, Right hand-dominant = 21, Left hand-dominant = 1) were analyzed.

4.2 Procedure

In the Fixed Global Varied Local experiment participants were informed that the exits were
100% located at the bottom right (see Figure 4.1). After one practice trial, participants
would go through a maximum of 50 mazes with 11 * 11 cells (each cell is one position player
can move to). This time, the distance from the exit was not displayed, but participants
were told whether they were closer or farther away (fewer steps) from the exit after each
movement. During the experiment, the local reliability of the cues transitioned between
50% to 100%; the global probability was always 100%. The transition in local probability
was counterbalanced (low to high and high to low). In the low to high local probability
condition, the probability series went from 50%, 60%, 70%, 80%, 90%, 100%, 100%, 90%,
80%, 70%, 60%, 50%. In the high to low local probability condition, the probability
series went from 100%, 90%, 80%, 70%, 60%, 50%, 50%, 60%, 70%, 80%, 90%, 100%.
12 participants finished the low to high local probability condition, and 10 participants
finished the high to Low local probability condition.
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Figure 4.1: Overview of the Fixed Global Varied Local Experiment Design. A: A typical
maze with the start point on top left and exit at bottom right. B: The progression of
the local cues reliability across the six conditions. For this experiment, the to-be-attended
local cues was the blue circle, so the proportion of each ring being blue corresponds to the
local probability for that condition.
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In addition to making navigational choices, we had participants provide their best
estimate of local probability. At the same time, they were instructed to leave the global
probability slider set at 100%. After completing each maze participants also received
feedback on their local probability estimate. This feedback informed them if the local
probability estimate deviated more than ± 5 % from the ground truth.

Participants knew before the experiment began that if they failed to estimate within
this range then the next maze’s local probability would not change, and thus the duration
of the experiment would be lengthened. In this way we tried to motivate participants to
attend and provide accurate estimates.

4.3 Results

Participant performance was measured using both subjective and objective reports. One
example of a subjective response is the records of participants’ estimates of the local proba-
bility using a provided ”slider”. An example of an objective response was the participant’s
choices for which direction to move in the maze. We used these reports to first con-
firm that participants understood the task and were generally competent, and then we
performed additional analyses comparing how subjective estimates and objective choices
tracked changing local cues and global direction reliability.

4.3.1 Participants’ Subjective Estimate of Local Probability

The analysis of participants’ subjective estimate of local cues reliability was used to ensure
participants understood the setting of the experiments and what was being asked of them.

Participants were free to adjust the slider whenever they felt the need to update their
estimate. Given the heterogeneous timing of updating events we used the average of a
participant’s local probability estimates as the principle dependent variable. That is we
took the average of participants probability estimates for each of the six ground-truth
probability bins.

We checked the sphericity for participants’ local estimates, the Mauchly’s test showed
there was no departure from sphericity (p = .474). Next, we performed the single factor
within-subjects ANOVA and demonstrated that participants’ estimates of local probability
were significantly influenced by the ground truth prior local probability (ground-truth
probability) of that trial (F(5, 105) =144.508, p < .001, η2 = 0.858).
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Boxplot: Average Participant Local Probability Estimate 

Figure 4.2: Increasing local cues reliability led to higher estimates of local probability.
Different colors represent participants’ estimates of local probability under different ground
truth prior local probability conditions. Each black dot corresponds to one participant’s
average estimates of local probability given one ground truth prior local probability. The
black line connects one participant’s estimates of local probability across all prior local
probability.

Furthermore, post-hoc paired t-tests (p values adjusted using Bonferroni correction to
prevent inflations of family-wise error) revealed that participants’ local probability esti-
mates increased as the ground truth prior local probability increased (50% (M = 51.91,
SD = 7.01, SEM = 1.49) < 60% (M = 61.57, SD = 6.88 , SEM = 1.47, p < .001) = 70%
(M = 65.91, SD = 6.15 , SEM = 1.31, p = .119) < 80% (M = 78.82, SD = 5.36 , SEM
= 1.14, p < .001) < 90% (M = 85.75, SD = 7.13 , SEM = 1.52, p = .008) < 100% (M
= 96.79, SD = 5.21 , SEM = 1.11, p < .001). The standard error of the mean (SEM)
of participants’ subjective estimates of local probability remained similar across different
ground truth prior local probability, between 1.11% and 1.52%. The SEM in condition with
ground truth prior local probability 100% was smaller due to ceiling effect. (see Figure
4.2)
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4.3.2 Objective Measures: Proportion of Choices Following of
the Shortest Path Direction

Next we considered the overall performance of participants’ maze navigation by looking at
the participants’ proportions of choices that followed the shortest path direction (i.e., the
“correct” direction).

The first analysis was on the probability of choosing the shortest path direction as a
function of ground truth prior local probability condition. Mauchly’s test showed there
was no departure from sphericity (p = .243). A single factor within-subjects ANOVA
revealed that there was a main effect of the ground truth prior local probability of that
trial on participants’ proportions of choices following of the shortest path direction (F(5,
105) =40.082, p < .001, η2 = 0.578).

Post-hoc paired t-tests (p values adjusted using Bonferroni correction to prevent infla-
tions of family-wise error) further indicted that participants’ following the shortest path
direction proportion increased as the ground truth prior local probability increases (50%
(M = 0.57, SD = 0.13, SEM = 0.03) < 60% (M = 0.67, SD = 0.13, SEM = 0.03, p =
.042) < 70% (M = 0.73, SD = 0.15, SEM = 0.03, p = .932) < 80% (M = 0.81, SD = 0.11,
SEM = 0.02, p = .207) < 90% (M = 0.90, SD = 0.08, SEM = 0.02, p = .009) < 100%
(M = 0.95, SD = 0.07, SEM = 0.02, p = .075). The standard error of the mean (SEM)
of participants’ following the shortest path direction proportion remained similar across
different ground truth prior local probability, between 0.02 and 0.03.

During the maze navigation, at each decision-making point for a player who would like
to move forward, there could be either two directions or three directions for them to choose
from. Therefore, the lower bound for participants to randomly choose the shortest path
direction was 33.33%, and the higher bound was 50%. We found out that participants
always chose the direction leading to shortest path above chance regardless of probability
condition. In general participants did not randomly choose the direction but effectively
chose the direction to move when navigating the mazes in as few steps as possible. (see
Figure 4.3).

4.3.3 Objective Measure: Proportion of Choices Following Local
Cues

To examine the influence of local probability changes on objective conduct we analyzed
ground truth prior local probability effects on participants’ willingness to follow local cues.
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Boxplot: Average Proportions of Choices Following the Shortest Path Direction

Figure 4.3: Increasing local cues reliability led to a higher proportion of choices following
the shortest path direction in the Fixed Global Varied Local Experiment. Average partici-
pants’ proportions of choices following the shortest path direction proportions were higher
than chance in all prior local probabilities. Different colors represent participants’ propor-
tions of choices following the shortest path direction under different ground truth prior
local probabilities. Each black dot corresponds to one participant’s average proportion of
choices following the shortest path direction given one ground truth prior local probability.
The black line connects one participant’s proportion of choices following the shortest path
direction across all ground truth prior local probabilities.
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If participants managed to successfully encode local cues reliability into a mental rep-
resentation of local probability, they would be expected to rely more on local cues as prior
local cues increase. A single factor within-subjects ANOVA tested was performed to ana-
lyze the proportion of choosing the direction indicated by the local cue which we considered
as participants local cues following behavior. We checked the sphericity for the proportion
of choices following local cues in different ground truth prior local probability condition,
the assumption of sphericity for single factor within-subjects ANOVA was met (p = .319).
Again, the single factor within-subjects ANOVA showed that the proportion of choices
following local cues was significantly influenced by the ground truth prior local probability
of that trial (F(5, 105) =39.126, p < .001, η2 = 0.518).

In addition, post-hoc paired t-tests (p values adjusted using Bonferroni correction to
prevent inflations of family-wise error) revealed that the proportion of participants’ follow-
ing local cues increased as the ground truth prior local probability increased. Statistical
tests were typically significant when the difference between global and local reliabilities
exceeded 20% (50% (M = 0.66, SD = 0.12, SEM = 0.03) = 70% (M = 0.77, SD = 0.13,
SEM = 0.03, p = .014), 60%(M = 0.72, SD = 0.09) < 80% (M = 0.86, SD = 0.10, SEM
= 0.02, p < .001), 70%(M = 0.77, SD = 0.13, SEM = 0.03) < 90% (M = 0.91, SD =
0.08, SEM = 0.02, p < .001) , 80% (M = 0.86, SD = 0.10, SEM = 0.02) <100% (M =
0.95, SD = 0.07, SEM = 0.02, p = .005). Standard errors of the means (SEM) of partici-
pants’ choices proportions was similar across different ground truth prior local probability
conditions (between 0.02 and 0.03; see Figure 4.4).

The impact of ground truth prior local probability on participants’ decisions was large.
However whether their subjective estimates during each specific decision point predict
their actual performance was a question of interest. A logistic regression analysis of how
subjective estimates affected objective choices was performed to address this.

The impact of ground truth prior local probability on participants’ directional move-
ment decisions was large. What was unknown was the degree to which participants es-
timates of the ground truth prior local probability impacted these directional movement
choices, or in other words, the degree to which their subjective estimates during each
specific decision point predicted their objective movement choices. A logistic regression
analysis of how subjective estimates of local probability affected objective choices was
performed to address this.

It was found that the odds of choosing the movement direction indicated by the local
cues increased by 1.82% (95% CI [1.41%, 2.21%]) for every percentage increase in the
subjective estimates of local probability (McFadden’s Pseudo R2 = 0.02). (see Figure 4.5)
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Boxplot: Average Proportion of Choices Following Local Cues

Figure 4.4: Increasing local cues reliability led to a higher proportion following local cues
at the decision-making point in the Fixed Global Varied Local Experiment. The average
proportion of choices following local cues were higher than the what they would do by
chance in all ground truth prior local probabilities. Different colors represent participants’
proportions of choices following local cues under different ground truth prior local prob-
abilities. Each black dot corresponds to one participant’s average proportion of choices
following local cues given one ground truth prior local probability. The black line connects
one participant’s proportion of choices following local cues across all ground truth prior
local probability.
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Figure 4.5: Logistic regression showed that the subjective estimates of local probability
were a good factor for predicting participants’ proportions of choices following local cues.
The black line fits the predicted proportion of participants’ choices following local cues.
The correlation coefficient between participants’ subjective estimate of local probability
and proportions of choices following local cues is essentially 1 (p < .001 ).
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4.3.4 Objective Measure: Proportion of Choices Following the
Global Direction

In the Fixed Global Varied Local experiment the exit was always located at the bottom
right of the maze. Whether participants were following the global direction was determined
from their current coordinates in the maze. At one particular decision-making point, if
participants’ current x coordinate was greater than their current y coordinate then they
were in the right part of the maze, thus the decision of moving down meant they followed
the global direction. If the participants’ current y coordinate was greater than their current
x coordinate then they were in the bottom part of the maze, thus the decision of moving
right meant they followed the global direction. If participants current x and y coordinates
were equal, then the decision of moving either right or down meant they followed the global
direction.

If the consistent global probability was encoded separately from the changing local
probability, then no main effect of ground truth prior local probability would be found.
The Mauchly’s test showed there was no departure from sphericity (p = .671). The ANOVA
analysis showed that the proportion of choices following the global direction was not sig-
nificantly influenced by the ground truth prior local probability of that trial (F(5, 105)
=2.01, p = .083, η2 = 0.072). Therefore, no logistic regression was performed. (see Figure
4.6)

4.3.5 Objective Measure: Proportion of Choices Relied More on
Local Cues

Previous results showed that participants were using local cues as guidance when the
global direction was fixed and 100% reliable. At some decision points participants had two
options, they could choose either to follow the global direction or not follow it if the local
cues pointed in a different direction. How would they make their choices when the two
indicators, local and global, where in conflict?

To see a bigger picture of participants’ behavior when local cues were not consistent
with the global direction, we compared the overall average proportions of choices still
following the global direction (P(following the global direction) | P(local cues not pointing
global direction)) and still following local cues (P(following local cues) | P(local cues not
pointing the global direction)) across all six ground truth prior local probability conditions.

Paired t-tests (p values adjusted using Bonferroni correction to prevent inflations of
family-wise error) showed that when the local cues were not pointing toward the global exit
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Boxplot: Average Proportions of Choices Following the Global Direction

Figure 4.6: The change in local cues reliability did not lead to significant differences in
participants’ proportions of choices following the global direction. Different colors represent
participants’ proportions of choices following the global direction under different ground
truth prior local probability. Each black dot is the mean of one participant’s proportions of
choices following the global direction given one ground truth prior local probability. The
black line connects one participant proportion of choices following the global directions
across all ground truth prior local probability.
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direction, the average proportion of choices following local cues did not vary (P(Following
local cues) | P(local cues not pointing the global direction)) (M = 0.43, SD = 0.07, SEM
=0.02) and was similar with the average proportion of choices following the global direction
(M = 0.49, SD = 0.07, SEM =0.01) although every participant knew the global direction
was 100% located at the bottom right, t(21) = 1.80, p = .086. Therefore, the results
suggested participants did not rely more on the global direction even though participants
knew the global direction was 100% reliable and the local cued direction were not consistent
with that direction. In other words, our analysis indicated that participants relied more
on local cues than global cues.

4.3.6 Objective Measure: Proportion of Choices Following Local
Cues and the Global Direction Across Prior Local Proba-
bility Conditions

Our analyses showed that with a fixed and reliable global exit direction participants still
report and use the local cues dominantly for maze navigation on average. Was this true
under all ground truth prior local probability conditions? Using paired t-tests, we compared
the proportion of choices following local cues and consistent with the global direction across
different ground truth prior local probability conditions.

The paired t-tests (p values adjusted using Bonferroni correction to prevent inflations
of family-wise error) showed that participants showed no preference for following local cues
when it provided no information (50% condition; p = 1), or little information (60% (p =
1); 70% (p = 1)), but showed a strong preference to local cues after ground truth prior local
probability reached 80% (p < .001), 90% (p < .001), and 100% (p < .001). Participants
only relied on the local cues when its reliability exceeded 80%. (see Figure 4.7)

4.4 Discussion

The main goal of this Fixed Global Varied Local experiment was to explore whether par-
ticipants had separate mental representation for local cues reliability and global direction
reliability when they only needed to consider changing local cues’ reliability. We found
that people’s subjective estimates and objective movements reflected the changing local
probabilities in the face of the unchanging global probability. This was consistent with
separable representations.
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Figure 4.7: Participants only relied more on the local cues in choosing their navigational
choices when local cues reliability was higher than 80%. Error bars represent one standard
error of the mean.
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Additionally, this main effect analysis of ground truth prior local probability on par-
ticipants’ average local estimates suggested that participants’ average local estimates ap-
proached the ground truth prior local probability when they navigated through the maze.
Participants had higher average estimates than ground truth when they were at low ground
truth prior local probability levels (the 50% and 60% conditions), but lower average es-
timates than ground truth when local cues reliability was high (the 70%, 80%, 90%, and
100% conditions). This was consistent with previous uncertainty estimation experiments:
people overestimate the low probability events and underestimate the high probability
event (Attneave, 1953; Khaw et al., 2021).

Across all conditions participants’ always chose the maze direction indicated by the
local cue more than chance (50%). They even relied more on the local cues than they
relied on the global direction when the ground truth prior local probability was higher
than 80%. Because the local cues were typically less than 100% reliable participants could
not know before choosing if their choices were ”correct”. They should understand that
choosing the direction indicated by the local cues might not always lead them along the
shortest path to the exit.

Given the proportion of participants’ choices favoring the local cues directions was
higher than following the global direction, we wondered if participants relied solely on local
cues. Would changing the global probability change participants’ subjective estimates of
local probability and their objective behaviors? The Varied Global Fixed Local experiment
was designed to address these questions.
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Chapter 5

Varied Global Fixed Local
Experiment

5.1 Participants

In the Varied Global Fixed Local experiment, a different population of 43 participants
(Female = 27, Male = 16, Right hand-dominant= 35, Left hand-dominant = 8) were
analyzed.

5.2 Procedure

The Varied Global Fixed Local experiment setting was similar to the Fixed Global Varied
Local experiment (see Figure 5.1). After one practice trial, participants needed to finish
three blocks of maze navigation with each block containing 15 mazes. Every maze had a
fixed local probability of 80% but different global probabilities (the proportion of the times
the exit was in a particular corner). The order of different global probability conditions
was counterbalanced across participants. In the low to high global probability condition,
the global probabilities were 60%, 73%, 80%, while in the high to low global probability
condition, the global probabilities were 80%, 73%, 60%. 23 participants finished the low
to high local probability condition, and 20 participants finished the high to low local
probability condition. Besides the difference in local and global probabilities setting, for
this experiment participants were asked to make their best subjective estimates of both
global and local probabilities. After each maze navigation, participants would also receive
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feedback about whether the global or local probability estimate deviated were more than
± 5% from the ground truth.

Figure 5.1: Overview of the Varied Global Fixed Local Experiment Design. A: A typical
maze with the start point on top left and exit at top right. B: A typical maze with start
point on top left and exit at the bottom left.

5.3 Results

5.3.1 Participants’ Subjective Estimates of Local Cues Reliabil-
ity and Global Direction Reliability

Similar to the Fixed Global Varied Local experiment participants could adjust their esti-
mates of local probability and global probability using the sliders whenever they wanted.

Firstly, we analyzed participants’ subjective local probability estimates.

The single factor within-subjects ANOVA showed that there were no influences of
ground truth prior global probability on participants’ estimates of the local probability
(F(2, 84) =1.201, p = .306, η2 = 0.007). Participants’ local probability estimates was
similar in the blocks with ground truth prior global probability 60% (M = 74.21, SD =
9.45, SEM = 1.44), 73% (M = 73.82, SD = 11.05, SEM = 1.69), and 80% (M = 72.26, SD
= 9.01, SEM = 1.37). The standard error of the mean (SEM) of participants’ subjective
estimates of local probability remained similar across different global probabilities, between
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Figure 5.2: The change in ground truth global probabilities did not impact participants’
subjective estimate of local probability. Different colors represent participants’ estimates
of global probability under different ground truth prior global probabilities. Each black dot
corresponds to one participant’s average estimate of global probability given one ground
truth prior global probability. The black line connects one participant’ estimates of local
probability across all ground truth prior local probabilities.

137.33% and 168.52% (see Figure 5.2) No correction was done to the single factor within-
subjects ANOVA, since the Mauchly’s test showed the assumption of sphericity for single
factor within-subjects ANOVA was met (p = .344).

Next, we analyzed participants’ subjective global probability estimates. The average
global probability estimates for every ground truth prior global probability condition were
considered as the dependent variable. We checked the sphericity for participants’ global
estimates, the Mauchly’s test showed there was no violation of the assumption, (p =
.344). The single factor within-subjects ANOVA showed participants’ global estimates
in the three blocks was significantly influenced by that block’s ground truth prior global
probability (F(1, 42) =5.557, p = .023, η2 = 0.117).

Post-hoc paired t-tests revealed that participants’ global probability estimates in the
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block with a ground truth prior global probability of 60% (M = 61.14, SD = 13.35, SEM
= 2.04) was significantly lower than participants’ global probability estimates in the block
with a ground truth prior global probability of 73% (M = 68.66, SD = 10.35, SEM =
1.58, p = .001) and also for 80% (M = 67.71, SD = 14.97, SEM = 2.28, p = .042). The
standard error of the mean (SEM) of participants’ subjective estimates of global probability
remained similar across different prior global probabilities, between 1.58% and 2.28%.

However, the participants’ subjective estimates of global probability in the block with
ground truth prior global probability 73% was similar to the participants’ global probability
estimates in the block with ground truth prior global probability of 80% (p = .655). This
might be due to the small difference (only 7%) between the ground truth prior global
probability of the two blocks. The results show that participants are sensitive to the global
probability. (see Figure 5.3)

5.3.2 Objective Measure: Proportion of Choices Following the
Shortest Path Direction

The influence of ground truth prior global probability on participants’ performance follow-
ing of the shortest path direction was also investigated.

The Mauchly’s test showed there was no departure from sphericity (p = .435). Par-
ticipants’ proportions of choices following of the shortest path direction was significantly
influenced by the ground truth prior global probability of that maze (F(2, 84) = 3.461, p
= .036, η2 = 0.02).

The effect of ground truth prior global probability was very marginal as post-hoc paired
t-tests demonstrated that participants’ proportions of choices following of the shortest path
direction increased as the ground truth prior global probability increased only from 60%
(M = 0.71, SD = 0.10, SEM = 0.02) to 73% conditions (M = 0.74, SD = 0.09, SEM = 0.01,
p = .009). But there is no increases in participants’ proportions of choices following of the
shortest path direction as the ground truth prior global probability increased from 60% to
80% (M = 0.71, SD = 0.10, SEM = 0.02, p = .057), and also participants’ proportions
of choices following correct direction proportion in block with ground truth prior global
probability 73% (M = 0.74, SD = 0.09, SEM = 0.01) was similar to behavior in block
with ground truth prior global probability 80% (M = 0.71, SD = 0.10, SEM = 0.02, p
= .660). The standard error of the mean (SEM) of participants’ subjective estimates of
local probability remained similar across different ground truth prior global probability
levels, between 0.02 and 0.03 (see Figure 5.4) This indicates that participants were using
the global direction as one guidance, but maybe not as much as they used local cues.
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Figure 5.3: Increasing global direction reliability led to higher subjective estimates of
global probability. Different colors represent participants’ subjective estimates of global
probability under different ground truth prior global probability conditions. Each black dot
corresponds to one participant’s average subjective estimates of global probability given
one ground truth prior global probability. The black line connects one participant’s average
subjective estimates of global probability across all ground truth prior local probabilities.
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Figure 5.4: Increasing global direction reliability led to higher participants’ proportions
of choicess following of the shortest path direction at the decision-making point. Average
participants’ proportions of choices following of the shortest path direction proportions
were higher than chance in all ground truth prior global probability blocks. Different
colors represent participants’ proportions of choices following the shortest path direction
under different ground truth prior global probability. Each black dot corresponds to one
participant’s average proportion of choices following the shortest path direction given one
ground truth prior global probability. The black line connects one participant’s propor-
tion of choices following the shortest path direction across all ground truth prior global
probabilities.
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5.3.3 Objective Measure: Proportion of Choices Following Local
Cues

The ground truth prior local probability was not changed during the whole experiment.
If participants had a separate local probability representation from the changing global
probability representation, they would be expected to rely on the local cues consistently
without too much change. The Mauchly’s test showed the sphericity assumption was met
for the proportion of choices following local cues in different ground truth prior global
probability condition (p = .046). As hypothesized, the proportion of choices following
local cues was not impacted by the ground truth prior global probability of that trial (F(2,
84) =2.043, p = .136, η2 = 0.011). Therefore no logistic regression was performed. (see
Figure 5.5)

5.3.4 Objective Measure: Proportion of Choices Following the
Global Direction

In the Varied Global Fixed Local experiment condition, the exit was either located at the
top right or bottom left of the maze. No matter which ground truth prior global probability
condition participants experienced, there were always more exits located at the bottom left
than exits located at the top right. Participants should consider bottom left as the global
direction for every trial. So at one particular decision-making point, the decision of moving
either left or down meant the participants followed the global direction.

If participants managed to successfully encode the local cues reliability into a mental
representation of local probability, they would be expected to rely more on local cues
as prior local cues increased. The Mauchly’s test showed the sphericity assumption was
not met (p = .028). We performed a single factor within-subjects ANOVA test with
Huynh-Feldt correction on the participants’ proportions of choices following the global
direction. As speculated, the single factor within-subjects ANOVA analysis showed that
the proportions of choices following the global direction was significantly influenced by the
ground truth prior global probability of that trial (F(2, 84) =0.896, p = .035, η2 = 0.055).

Post-hoc paired t-tests revealed that participants’ proportions of choices following the
global direction increased as the ground truth prior global probability increased from 60%
(M = 0.61, SD = 0.06, SEM= 0.01) to 73% (M = 0.64, SD = 0.05, SEM= 0.01, p = .006).
But there was no significantly difference between from 73% (M = 0.64, SD = 0.05, SEM=
0.01) or 80% (M = 0.63, SD = 0.06, SEM= 0.01, p = .160). The standard error of the
mean (SEM) of participants’ proportions of choices following the global direction remained
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Figure 5.5: Increasing global direction reliability did not lead to a difference in following
local cues. Still, the average proportion of choices following local cues was higher than
chance. Different colors represent participants’ proportions of choices following local cues
under different ground truth prior global probability. Each black dot corresponds to one
participant’s average proportion of choices following local cues given one ground truth prior
global probability. The black line connects one participant’s proportion of choices following
local cues across all ground truth prior global probabilities.
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Figure 5.6: Increasing global direction reliability led to a higher proportion of choices fol-
lowing the global direction. Different colors represent participants’ proportions of choices
following the global direction under different ground truth prior global probability condi-
tions. Each black dot is the mean of one participants proportion of choices following the
global direction given one ground truth prior global probability. The black line connects
one participant proportion of choices following the global directions across all ground truth
prior global probabilities.

similar across different ground truth prior global probability conditions, between 0.01 and
0.01. (see Figure 5.6)

Since participants might not get accurate estimates of prior local and global proba-
bility, whether their subjective estimates during each specific decision point predict their
performance on following the global direction was further analyzed using logistic regression.

We included both the participant’s subjective local probability and global probability
estimates in this analysis. The odds of following the global direction decreased by -0.02%
(95% CI [-0.29%, 0.26%]) for every percentage point increase in the subjective estimates of
local probability (see Figure 5.7), and the odds of following the global direction increased by
0.23% (95% CI [0.06%, 0.40%]) for every percentage increased in the subjective estimate of
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Figure 5.7: Logistic regression showed that the subjective estimates of local probability was
a good factor predicting participants’ proportions of choices following the global direction.
The black line fits the predicted proportion of participants’ choices following the global
direction. The correlation coefficient between participants’ subjective estimate of local
probability and proportions of choices following the global direction is 0.079 (p < .001 ).

the subjective estimates of global probability, (McFadden’s Pseudo R2 < .001). (see Figure
5.8) This result suggests that participants rely on both local cues and the global direction
when making their decisions, and they were more likely to follow the global direction when
their estimates of global probability were high and local probability were low.

5.3.5 Objective Measure: Proportion of Choices Relied More on
Local Cues

Next, we explored how participants dealt with conflict. Would participants choose to rely
more on the local cues or the global direction when they contradicted each other?

We compared the overall average proportions of choices still following the global direc-
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Figure 5.8: Logistic regression showed that the subjective estimates of global probability
was a good factor for predicting participants’ proportions of choices following the global
direction. The black line fits the predicted proportion of participants’ choices following
the global direction. The correlation coefficient between participants’ subjective estimates
of global probability and proportions of choices following the global direction is 0.968 (p
< .001 ).The correlation coefficient between participants’ subjective estimates of global
probability and proportions of choices following the global direction is higher than the
correlation coefficient between participants’ subjective estimates of local probability and
proportion of choices following the global direction (correlation coefficient = 0.079 ).
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tion (P(following the global direction) | P(local cues not pointing the global direction))
and still following local cues (P(following local cues) | P(local cues not pointing the global
direction)) across all three ground truth prior global probability blocks.

Paired t-tests showed that when the local cues was not pointing in the global direction,
the average proportion of choices still following local cues (M = 0.71, SD = 0.12, SEM
= 0.02) was significantly higher than the average proportion of choices still following the
global direction (M = 0.25, SD = 0.11), t(42) = -13.30, SEM = 0.02, p < .001. The result
was consistent with our observation in the Fixed Global Varied Local condition, people’s
choice are influenced more by local cues.

5.3.6 Objective Measure: Proportion of Choices Following Local
Cues and the Global Direction Across Prior Global Prob-
ability Conditions

When participants were not sure about both the local cues and the global direction, their
strategy was to rely on both the local cues and the global direction, but with the local
cues dominant. When the global direction became completely uncertain would participants
maximize their reliance on the local cues? We compared the proportions of choices following
local cues and the global direction across different ground truth prior global probability
conditions within Varied Global Fixed Local experiment.

The paired t-test showed that the participants had a strong preference for following
local cues, in conditions with ground-truth prior global probabilities, 60% (p < .001), 73%
(p < .001), and 80% (p < .001) as shown in Figure 5.9.

5.4 Discussion

Participants had very accurate and precise local probability estimates (SEM around 1.5),
and accurate, but less precise, global probability estimates (SEM around 2.0). This result
is consistent with participants’ encoding local and global probability separably.

We also successfully addressed the question of whether participants would rely solely on
local cues when the global direction was uncertain. Surprisingly, as the logistic regressions
revealed, objective choices indicate a reliance on subjective estimates of local cues reliability
and global direction consistency, not reliance on the local cues alone. This strategy might
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Figure 5.9: Participants showed a strong preference for following local cues in all three
prior global conditions (60%, 73%, 80%). Error bars represent one standard error of the
mean.
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be still beneficial. As the results showed a higher than chance probability of choosing the
shortest path across all conditions.

In the Varied Global Fixed Local task, participants always followed the local colored
cue at above chance rates. They always relied less on the global direction than the local
cues. It is reasonable to conjuncture that participants would rely more heavily on local cues
than what they would do in the Fixed Global Varied Local task since the global direction
was unreliable here. Unexpectedly, their average proportion of choice following local cues
was lower than that in the Fixed Global Varied Local task.

One reason for this pattern might be that animals including humans are intrinsically
motivated to gain information (Gottlieb et al., 2013. And they have a preference on what
kind of information they want to get. People’s preferences might be increasingly related
to the reward value, or they might ask for information when there is high uncertainty
(Gottlieb et al., 2013). Since in the Fixed Global Varied Local task, the global direction
was 100% reliable and local cues were usually uncertain, people might pay more attention
to the local cues and follow it more to collect information. However, in Varied Global Fixed
Local task, people had both unreliable local cues and the global direction, they would split
their attention into both sources and collect information, so their average proportion of
choice following local cues was lower.

Overall, these results confirm that there are different mental representations for local
probability and global probability. People weigh them differently when making choices and
those weights reflect their subjective estimates which show clear correlations to environ-
mental conditions.
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Chapter 6

General Discussion

The goal of this research was to provide insight into how the brain builds mental representa-
tions of local and global uncertainty and uses them for fast and adaptable decision-making.
Subjective estimates (slider reports) demonstrated separate encoding for local probability
and global probability. Objective behaviors (navigational choices) showed both local cues
and the global direction influenced choices. Participants relied more on local cues than the
global direction information especially when the local cues’ reliability exceeds 80%.

Mental representations during navigation are organized at both local and global scales
(Momennejad and Howard, 2018; Stachenfeld et al., 2017). Unlike the well-studied Suc-
cessor Representation Model (Dayan, 1993; Stachenfeld et al., 2017), our maze navigation
task included a dynamic component and cue uncertainty. These procedural extensions echo
real-life events frequently occurring in daily life. Just as people have to navigate multiple
environments, or the same environment under varying constraints (think navigating during
a construction boom), our task changed the maze structure every trial. Yet, people were
able to successfully navigate in this dynamic environment and learn which cues to strongly
rely on. When either the local cues reliability was fixed (and global reliability varied) or
whether the local cues reliability varied (and global reliability was fixed) my results demon-
strated that participants performed much better than chance. The average proportion of
choosing the shortest path direction was above 70% for all conditions. This is consistent
with the idea that we can build powerful mental representations of dynamic noisy inputs
and use those representations to make effective decisions. The advantage of multiple scale
mental representations, for example, local and global scales, may be understood in terms
of usage of memory. Multiple scale representations reduce interference of recalling different
memories simultaneously (O’Reilly and Rudy, 2001; Santoro et al., 2016).
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My finding of humans’ flexibility in extracting the information provided by stored
mental representations across the hippocampus and pre-frontal cortex axis is in agreement
with hippocampus research. The hippocampus has a close interaction with pre-frontal
cortex and related regions, Bostock et al. (1991) and Leutgeb et al. (2004) reported that
the same population of neurons in the hippocampus has the capacity to remap between
orthogonal representations across behavioral contexts, for example the local and global
mental representations. They worked just like the cache in a computer to help us store one
mental representation temporarily as a working memory buffer for further computations
and change to another mental representation according to the behavioral contexts. In the
Varied Global Fixed Local task, participants needed to retain a working representation of
their previously received local cues while also adjusting their estimates about global cues’
reliability across trials. With varying behavioral contexts, this dynamic remapping system
generates a multitude of stable cognitive spaces that span the decision-making hierarchy.

While I found evidence for mental model encoding at different levels, participants gen-
erally relied more on the local cues. There are multiple potential reasons for this reliance
on local cues. One reason could be that participants were more confident about their
local probability estimates, because of differences in the variances associated with their
local and global estimates. The variance of their estimates of local probability was gen-
erally lower than their variance of estimates of global probability, which could have led
to greater confidence. We measured the variance in terms of SEM which considered the
number of participants, so although we have different numbers of participants in those two
experiment conditions we could still compare their results. The SEM of local probability
estimates is around 1.5, and the SEM of global probability estimates is around 2. The SEM
of local probability is lower because participants received the feedback of local cues more
immediately than the feedback about exit location. It requires a longer term of memory
in order to calculate the global probability. Thus, it might be harder for participants to
make accurate estimates of global probability. Also, participants received on average 20
instances of feedback for local cues in one maze but only one instance of feedback concern-
ing exit location. The more exposure to local cues could potentially decrease the variance
in estimates of local probability. Previous research has demonstrated that probabilistic
information guides the computation of one’s sense of confidence (Geurts et al., 2022).

Another reason why participants may have preferred the local cues was feedback prox-
imity. The accuracy of the local cues was available at each decision-making point. The
accuracy of the global direction was only confirmed at the end of navigating a maze. If
participants treat successfully choosing the shortest path direction and finding the exit as
rewards, they would receive the local reward on average every 1338.37 milliseconds whereas
the global reward they received at each exit on average 29447.78 milliseconds. It has been
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known for decades that participants generally prefer rewards now to rewards later. In
other words, their preference is negatively related to the reward interval length (Mischel
and Metzner, 1962).

However, the difference in the level of difficulty in estimating local and global probability
could not entirely account for the pattern of results because even when participants are
100% certain about the global direction, they still relied more on uncertain local cues.
To examine those two concerns, in the future study, researchers could only provide one
feedback about how many times in total participants made correct movements to the
shortest path at the same time when informing participants of finding the exit.

The preference for proximate reward might explain why humans are better at maze
navigation tasks than most RL agents (Burda et al., 2018; Mnih et al., 2015; T. Zhang et
al., 2020). Humans are more likely to split big tasks into smaller tasks and use intermediate
rewards to refine their overall strategy. Even if the sub-tasks are not directly related to
the general goal, humans could still benefit from using a divide and conquer strategy.

Despite the impressive results using RL in single tasks, RL agents are less efficient
at multiple small tasks (Vithayathil Varghese and Mahmoud, 2020). When Key-to-Door
tasks are incorporated into maze navigation, RL performance declines significantly as the
number of keys it needs to pick up increases (T. Zhang et al., 2020).

Many RL maze navigation settings including the one that the Successor Representation
Model aimed to solve, only provide rewards if the agent successfully finds the exit and no
information was provided during the exploration, and their goal is simply to find the exit
(Chevalier-Boisvert et al., 2018; Yalnizyan-Carson and Richards, 2022; Zhai et al., 2022).
Compared to them, our task also had participants estimate the local probability and global
probability. Estimating local probability would encourage orienting to local cues, and this
sub-task might create a circumstance with more frequent reward events. Based on the
current training method of RL, we proposed that providing intermediate sub-tasks to RL
agents will increase their performance.

One limitation of these experiments is that the range of global probability assessed (63%
to 80%) was not very large. Thus, participants’ subjective estimates of global probability
may not have been sufficiently salient. Extending the range of global probability probed
(50% to 100%) should be explored in additional research. Additionally, if there were
more intervals and a larger range of global probability tested, we could make a more
direct assessment of the relative potency of local and global cues. Another direction to be
explored in future research is the dependence of our findings on maze size. We used 11*11
cells mazes to make it possible for participants to solve enough mazes in one experimental
session to allow for meaningful statistical comparisons, but humans navigate environments
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that are much larger physically and take much longer. People might integrate information
differently depending on maze geometry.

In all our experiments one cue, either local or global, was fairly reliable. I tested with
local cues that were at minimum 50% reliable, but only when the exit location was 100%
predictable. I also tested exit location reliability ranging from 63% to 80%, while the
local cues were fixed at 80% reliability. However, it remains unknown how preference for
local and global signals might vary when both cues have poor reliability. Starting with a
lower local probability (e.g below 80%) and ramping up the global direction predictability
might elucidate whether preferences are blends or whether there is a discrete switch in cue
preference after passing a cue reliability difference threshold.

The findings of this study have broad relevance. We seek probability distributions for
our environments that minimize the relative entropy (KL-divergence) representing an error
of deviation from the exact Bayes’ posterior (Jirsa and Sheheitli, 2022). However, we still
do not understand where and how these distinct local and global probability distribution
would combine to yield a single decision as required by a Bayesian Inference approach.
What are the weights we give local probability and global probability during computation?
Where neurally are such assignments made and integrated? Is this process generic for all
situations of uncertainty or are they bound to the modalities involved? Functional imaging
recordings while participants performed tasks like my maze task under varying conditions
of uncertainty and where the relevant modality of uncertainty varied could shed light on
the neural mechanisms involved. It might also be useful to consider electroencephalogram
(EEG) and event-related potential (ERP) as imaging techniques because they could help
to determine which neuron activation comes first, hippocampal or frontal.

In conclusion, we found that people are remarkably accurate at estimating and updat-
ing local probability and global probability over time in a series of dynamically changing
mazes. Especially, people tend to follow local cues more even when global cues are more
reliable. This works potentially sets the stage for a series of future studies probing mental
representations of uncertainty about events on a local to global scale as well as human
flexibility in a noisy environment.
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