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Abstract

There are over 7000 languages spoken on earth, but many of these languages suffer
from a dearth of natural language processing (NLP) tools. Multilingual pretrained language
models have been introduced to help alleviate this problem. However, the largest pretrained
multilingual models were trained on only hundreds of languages. This is a small amount
when compared to the number of spoken languages. While these models have displayed
impressive performance on several languages, including those they were not pretrained on,
there is a lot of ground to be covered.

A lot of languages are often left out because pretrained language models are assumed
to require a lot of training data, which the languages do not have. Furthermore, a major
motivation behind these models is that such lower-resource languages benefit from joint
training with higher-resource languages. In this thesis, we challenge both these assumptions
and present the first attempt at training a multilingual language model on only low-resource
languages. We show that it is possible to train competitive multilingual language models
on less than one gigabyte of text data containing a selection of African languages.

Our model, named AfriBERTa, covers 11 African languages, including the first language
model for 4 of these languages. We evaluate this model on named entity recognition and
text classification spanning 10 languages. Our evaluation results show that our model is
very competitive with larger multilingual models - multilingual BERT and XLM-RoBERTa
- on several languages. Results suggest that our “small data” approach based on similar
languages may sometimes work better than joint training on large datasets with high-
resource languages. Furthermore, we present a comprehensive discussion of the implications
of our findings.
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Chapter 1

Introduction

A lot of recent progress in natural language processing (NLP) has been achieved by the use
of neural network architectures. Recurrent neural networks (RNN) [58], long short term
memories (LSTM) [26], gated recurrent units (GRU) [14] are examples of such architec-
tures. More recently, the transformer architecture was introduced [59]. The transformer
is based on an attention mechanism and explicitly models the relationship between tokens
in a sequence. A synthesis of this architecture and self-supervised learning has birthed
pretrained language models (PLM). In this setting, a transformer-based architecture is
trained (pretrained) in a self-supervised manner on very large corpora, learning general
representations. These representations can then be used to aid downstream NLP tasks,
such as text classification, by training (finetuning) the pretrained language models on la-
belled data of such tasks. Examples of these models include BERT [18], RoBERTa [35],
XLNet [65] and T5 [50].

Despite the fact that these models have proven to be the de-facto method for a lot of
NLP tasks because of their effectiveness, it is expensive and often impractical to train a
single pretrained language models for every single language. Hence, pretrained language
models have been extended to the multilingual setting. In this setting, a single model is
pretrained on a concatenation of text corpora from several languages. Such models have
been shown to possess cross-lingual capabilities across many languages. Examples of these
models include XLM-R [15], mBERT [18] and mT5 [64].

For all their promise, these models are known to require a lot of training data [1], which
is absent for many languages. This consequently leaves out many of the over 7000 languages
on earth from these models. Languages with little to no training corpora are commonly
described as low-resource in NLP, while those with abundant corpora are described as

1



high-resource. High-resource languages usually make up a significant part of the training
data for multilingual pretrained language models, as it is hypothesized that they help boost
the performance of lower-resource languages via cross-lingual transfer. Hence, there has
been no previous attempt to investigate if it is possible to pretrain multilingual language
models solely on low-resource languages without any transfer from higher-resource lan-
guages, despite the numerous benefits that this could provide, some of which are discussed
in section 5.3.

In this thesis, we describe our work [44] which aims to cover this gap in the literature.
The goal of this work is to explore the viability of multilingual language models pretrained
from scratch on low-resource languages and to understand how to pretrain such models in
this setting. We introduce AfriBERTa, a family of transformer-based multilingual language
models trained on 11 African languages, all of which are low-resource.1 We evaluate this
model on named entity recognition (NER) and text classification downstream tasks on 10
low-resource languages. Our models outperform larger models like mBERT and XLM-R
by up to 10 F1 points on text classification, and also outperform these models on several
languages in the NER task. Across all languages, we obtain very competitive performance
to these larger models. Our results show that, for the first time, it is possible to pretrain a
multilingual language model from scratch on only low-resource languages and obtain good
performance on downstream tasks.

1.1 Contributions

In summary, our contributions are as follows:

1. We introduce the first pretrained language models for 4 African languages, improving
the representation of low-resource languages in modern NLP tools.

2. Using a case study on African languages, we show that competitive multilingual
language models can be pretrained from scratch solely on low-resource languages
without any high-resource transfer.

3. We show that it is possible to pretrain these models on less than one gigabyte of text
data from a selection of African languages, and highlight the many practical benefits
of this.

1One of the languages (Gahuza) is counted twice because it is a code-mixed language consisting of
Kinyarwanda and Kirundi.
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4. We release the corpora to the community so as to stimulate future research on African
languages.

5. Our extensive experiments highlight important factors to consider when pretraining
multilingual language models in low-resource settings. For example, we find that
increasing the vocabulary size does not always yield better results when pretraining on
smaller datasets. While a small vocabulary size performs relatively poorly, medium
sized vocabularies can sometimes outperform larger ones. This is the opposite of
what has been found for larger datasets [35].

1.2 Thesis Organization

The thesis is organized as follows:

1. In Chapter 2, we cover the related work and background knowledge required to
understand our work.

2. Chapter 3 introduces the proposed approach of our work, highlighting the workings
and model objective of AfriBERTa.

3. Chapter 4 describes our experimental setup, tasks, datasets, and languages covered
by our work. We also exhaustively discuss the implementation details of this setup.

4. Chapter 5 discusses our results. Furthermore, we provide an in-depth discussion of
the implications of those results.

5. Chapter 6 concludes the thesis by summarizing the main contributions and highlight-
ing future work.

3



Chapter 2

Background and Related Work

2.1 Distributed Representation of Words

Natural language text needs to be represented in numeric form in order for computer
systems to be able to process them. This has been an important focus area of natural
language processing (NLP) research. Traditional term-based methods such as TF-IDF do
not capture the semantic meaning of words and have several drawbacks. Subsequently,
methods based on the distributional hypothesis [23, 24] - which states that words that
often appear in the same contexts are likely to have similar meanings - were introduced.

Word2Vec [41] produces distributed word representations (real-valued vectors) by using
a shallow neural network (usually a single hidden layer) and training it via self-supervised
learning. The model can be trained via two settings: the continuous bag of words (CBOW)
method where a word is predicted based on its context (words that precede it) and the
skip-gram method where contexts are predicted based on an input word.

GloVe [46] is another method that learns word representations in an unsupervised
manner. This is achieved by combining the global corpus statitics with local window
contexts. GloVe has been shown to outperform Word2Vec on several benchmarks [46].

The methods described above learn representations for whole words; however, there is
a lot of benefit in learning representations for subwords. For example, subword models
have been shown to perform better on morphologically rich languages and rare words,
in comparison to word-level models. Fasttext [12] learns representations for subwords
(character n-grams) via CBOW and skip-gram methods described previously. To obtain
the representation of a word, a bag of character n-grams is used.
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While the models described above showed good performances on a plethora of natural
language processing tasks, they all share the major drawback of being context-independent.
Human language is very contextual, and we need to convey this to computer systems. For
example, consider the two sentences below:

1. I am eating an apple.

2. Apple just released a new phone.

As a human, one can infer that the “apple” in the first sentence refers to the fruit,
while the “apple” in the second sentence refers to the technology company. However, if
we used any of the models described above, we would get the same representation for the
word “apple”. Hence, we need a way to obtain a representation for a word, depending on
the context it is in.

ELMo [47] (Embeddings from Language Models) is an unsupervised model that pro-
duces contextual text representations. This means that polysemy of words can be ac-
counted for, and in different contexts, the same word can have different vector representa-
tions. ELMo uses a Bidirectional Long Short Term Memory (BiLSTM) model to capture
contexts in both directions. The word representations are obtained from the internal states
of the BiLSTM.

2.2 Transformer-based Contextual Encoders

2.2.1 Monolingual Models

The introduction of transformers [59] has advanced several natural language processing
tasks, including learning unsupervised text representations. Transformers consist of layers
of multiple self-attention heads which aim to capture the importance of tokens in an input
sequence. For every token in an input sequence, an attention head computes key, query
and value vectors which are used in calculating a weighted representation. The resulting
output from all the heads in a layer are combined and fed into a full-connected layer. Skip
connections and layer normalization are also used in each layer. The original transformer
is a sequence-to-sequence model, meaning it contains both an encoder and decoder, all
based on the multi-headed self-attention mechanism.

Bidirectional Encoder Representation from Transformers (BERT) [18] is a transformer-
based model which can learn contextual representations and has been shown to significantly
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Figure 2.1: BERT input embeddings: The input embeddings are the sum of the token
embeddings, the segment embeddings and the position embeddings. Adapted from Delvin
et al. [18].

outperform all previous methods discussed on tasks such as sentiment analysis, named
entity recognition and question answering. BERT is essentially a stack of transformer
encoder layers. In order to make BERT usable for several tasks, its input format is carefully
designed to be generic. A special token, [CLS], is always placed at the start of an input
sequence. There exists another special token, [SEP], which is used as a delimiter if an input
sequence contains more than one sentence, such as question answering or natural language
inference tasks. For tokenization, BERT uses a WordPiece model [63] with a vocabulary of
30,000 tokens. The WordPiece model helps divide words into smaller subwords. In order to
get a token embedding, the subword embedding is added to a positional embedding (which
helps denote order) and a segment embedding (which helps denote the input sentence the
token belongs to). Details of the input embedding are illustrated in Figure 2.1.

The pretraining task introduced in BERT is perhaps its biggest novelty. BERT is
pretrained using masked language model (MLM) and next sentence prediction (NSP) ob-
jectives. In the MLM task, 15% of the input tokens are randomly selected to be masked
with a [MASK] token and the model is tasked to predict what tokens are masked. Since
the [MASK] token is never seen during finetuning, the authors propose a variation of total
masking. In the variant used, 15% of the token positions are selected at random and 80%
of these positions are replaced with the mask token, 10% are replaced with a random token
and 10% of the tokens are left unchanged. The model is then tasked with predicting the
original token with a cross entropy loss. In the NSP task, two sentences are inputted into
the model and the model is charged with predicting whether or not they are adjascent
sentences in the pretraining corpus. 50% of the time, both sentences are adjascent to each
other, and 50% of time, they are not. This training objective helps the model learn the

6



BERT BERT
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[CLS] Tok 1  [SEP]... Tok N Tok 1 ... TokM

Question Paragraph

Start/End Span

BERT
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NERMNLI

Figure 2.2: General pretraining and finetuning procedures for BERT. The same architec-
tures are used for both pretraining and finetuning stages, save for the output layers. The
model parameters from pretraining are used to initialize the models for various downstream
tasks. During finetuning, all parameters may be finetuned. The [CLS] token is a special
token that is prepended to the front of every input sequence, and [SEP] is also a special
token that separates input sentences. Adapted from Delvin et al. [18].

relationship between sentencces and has been shown to help multi-sentence NLP tasks such
as question answering and natural language inference. BERT is pretrained on a combina-
tion of the Google BookCorpus containing about 800 million words [67] and the English
Wikipedia containing over 2 billion words.

Pretraining BERT allows it amass a lot of semantic and syntactic knowledge [52] which
can be transferred to downstream NLP tasks, such as text classification and token classifi-
cation. The knowledge from BERT can be transferred to downstream tasks by finetuning
the pretrained model by appending a task-specific layer to its final hidden layer. For token-
level tasks such as named entity recognition, the output of each token is passed into the
task-specific layers. While for sequence-level tasks, such as sequence classification, the out-
put representation of the [CLS] special token is used as the entire sequence representation
and is passed into the task-specific layers. The parameters of the addition layer and BERT
are then both finetuned to maximize the log probability of the correct label. Figure 2.2
shows the pretraining and finetuning procedures for BERT.

There have been other variants of BERT which proposed different pretraining objec-
tives, such as removing the NSP [35] and span-level corruption [27]. Furthermore, while
the original BERT was trained on only English language, there have been extensions to
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other languages with largely successful results [38, 48, 53, 17].

2.2.2 Multilingual Models

Given the several thousands of spoken languages, it is quite an ask to train a BERT
model for each and every one of these languages. Hence, several works attempted to kill
several birds with one stone by training a single BERT model for many languages. A
multilingual version of BERT (mBERT) [18] was released by its original authors, covering
104 languages.1 The languages selected were those with the largest Wikipedia data. For
each language, its entire Wikipedia dump (excluding user and talk pages) was used as the
training data. Since different languages have varying amounts of training data, it is easy
to overfit or underfit on certain languages. Hence, an exponentially smoothed weighting
method is used to undersample languages with a lot of data and oversample those with
little data. This weighting is also used for the data used in training the tokenizer. Just
like in monolingual BERT, WordPiece tokenizer [54] is used but with a larger vocabulary
size of 110k to accommodate the increased number of languages. When an input sequence
is fed into the model, there is no mark denoting the language it is from. There is also
no explicit cross-lingual supervision used during training, enabling the model to learn the
association between the languages all by itself.

XLM-RoBERTa (XLM-R) [15] improved upon mBERT by training a larger model on
more data. The authors also exposed a trade-off as the number of languages are increased
for a fixed model capacity, which they refer to as the curse of multilinguality. Their model is
trained on 100 languages with data obtained from Common Crawl [61]. They showed that
the trade-off previously described can be alleviated by increasing model and vocabulary
size. They also showed that, in general, longer training time and larger scale data benefited
their models.

A major hypothesis of both models above is that high-resourced languages can help
low-resourced via cross-lingual transfer. While this has been shown to be beneficial, it
casts an implicit assumption that low-resourced language models cannot be successfully
trained without this transfer.

2.2.3 Pretraining Contextual Encoders with Small Data

Pretrained language models have been shown to perform well when there is a lot of data
[35, 15], but some works have focused on using relatively smaller amounts of data. Camem-

1https://github.com/google-research/bert/blob/master/multilingual.md
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BERT [37] showed that it is possible to obtain state-of-the-art result with a French BERT
model pretrained on small-scale diverse data. In another work [40], the authors showed that
training a French BERT language model on 100 MB of data yields similar performance on
question answering as models pretrained on larger datasets. Furthermore, state-of-the-art
performance has been obtained with ELMo [47] language models pretrained on less than
1 GB of Wikipedia text [45]. It has also been shown that RoBERTa language models [35]
trained on 10 to 100 million tokens can encode most syntactic and semantic features in its
learned text representations [66].

A common theme among these works is their focus on monolingual language models.
While it is possible to learn monolingual language models on smaller amounts of data, it
remains to be seen if it is possible in the multilingual case. Our work is the first, to the
best of our knowledge, that focuses on pretraining a multilingual language model solely on
low-resource languages without any transfer from higher-resource languages.

2.3 Language Representation in NLP

Despite interesting progress in both monolingual and multilingual pretrained models, much
of this progress has been focused on languages with relatively large amounts of data,
commonly referred to as high-resource languages. There has especially been very little focus
on African languages, despite the over 2000 languages spoken on the continent making up
30.1% of all living languages [20]. This is further visible in NLP publications on these
languages. In all the Association for Computational Linguistics (ACL) conferences hosted
in 2019, only 0.19% author affiliations were located in Africa [13]. Other works [28] have
also noted the great disparity in the coverage of languages by NLP technologies. They note
that over 90% of the world’s 7000+ languages are under-studied by the NLP community.

There have been a few works on learning pretrained embeddings for African languages,
although many of them have been static and trained on a specific language [21, 43, 6, 19].
More recently, Azunre et al. [8] trained a BERT model on the Twi language. However,
they note that their model is biased to the religious domain because much of their data
comes from that domain.

While some African languages have been included in multilingual language models,
this coverage only scratches the surface of the number of spoken African languages. Fur-
thermore, the languages always make up a minuscule percentage of the training set. For
instance, amongst the 104 languages that mBERT was pretrained on, only 3 are African.
In XLM-R, there are only 8 African languages out of the 100 languages. In terms of
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dataset size, the story is the same. African languages make up 4.80 GB out of about 2395
GB that XLM-R was pretrained on, representing just 0.2% of the entire dataset [15]. In
mBERT, African languages make up just 0.24 GB out of the approximately 100 GB that
the model was pretrained on. All of this call for an obvious need for increased represen-
tation of African languages in modern NLP tools for the over 1.3 billion speakers on the
continent.2

2https://www.worldometers.info/world-population/africa-population/
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Chapter 3

Proposed Approach

In this chapter, we discuss our approach to learning multilingual language models for low-
resourced African languages. While our approach largely follows well-established methods
of learning multilingual masked language models as described in multilingual BERT [18]
and XLM-R [15], we elaborate more on the model mechanisms and discuss in detail some
subtle differences that makes this approach work on our small-sized dataset.

3.1 Multilingual Masked Language Model Pretrain-

ing Objective

Using a standard transformer architecture, we perform masked language modelling (MLM)
where 15% of the input tokens are randomly selected to be masked with a special mask
token and the model is tasked to predict what tokens are masked. Specifically, 15% of
the token positions are selected at random and 80% of these positions are replaced with
the mask token, 10% are replaced with a random token and 10% of the tokens are left
unchanged. We do not use the next sentence prediction task that was used in Delvin et al.
[18] nor do we use the translation language modelling task that was used in Lample and
Conneau [16]. Instead, we use only the (MLM) approach following Conneau et al. [15].
Figure 3.1 illustrates the MLM objective described.

Since we want our model to be multilingual, the batches fed into our model come from
different languages. Unlike Delvin et al. [18] where different languages can be in one batch,
we ensure that a single batch contains the same language as preliminary results showed
that this performed better in our small-data regime.
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Figure 3.1: Masked language model pretraining mechanism: The model is tasked with
predicting the masked out tokens. Figure taken from Reimers and Gurevych, 2019 [51]

3.2 Training the Tokenizer

We learn a shared vocabulary for all languages as this signficantly contributes to the
alignment of the embedding spaces across all languages. We utilize subword tokenization
on the raw text data using SentencePiece [32] trained with a unigram language model
[31]. Our models are trained on N languages. Hence, we have N monolingual corpora
{Di}i=1...N , and we denote by ni the number of sentences in Di. Given that ni varies across
all languages, we want to ensure that the tokenizer is not overfitted on the languages with
more sentences and underfitted on languages with fewer of sentences. Hence, we sample
languages according to a multinomial distribution with probabilities dependent on the
number of sentences of a language, the total number of sentences in from all languages,
and a sample parameter. We follow the distribution introduced in XLM [16] where:

qi =
pαi∑N
j=1 p

α
j

with pi =
ni∑N
k=1 nk

. (3.1)

We consider α = 0.3 following the results from preliminary results. This ensures that
tokens from languages with small number of sentences are well represented in the tokenizer.
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Chapter 4

Experimental Setup

4.1 Languages

We focus on 11 African languages, namely Afaan Oromoo (also called Oromo), Amharic,
Gahuza (a code-mixed language containing Kinyarwanda and Kirundi), Hausa, Igbo, Nige-
rian Pidgin, Somali, Swahili, Tigrinya and Yorùbá. These languages all come from three
language families: Niger-Congo, Afro Asiatic and English Creole. We select these lan-
guages because they are the languages supported by the British Broadcasting Corporation
(BBC) News, which was our main source of data. Table 4.1 provides details about the
languages used in pretraining our models. As we can see, these languages are collectively
have over 400 million speakers.

4.2 Data

4.2.1 Pretraining Data

Working with a research colleague [44], we obtained most of the data from the British
Broadcasting Corporation (BBC) News’ website.1 We also obtain some additional data
from the Common Crawl Corpus [15, 61] for languages available there, specifically Amharic,
Afaan Oromoo, Amharic, Hausa, Igbo, Somali and Swahili. We refer to the corpus as the
AfriBERTa corpus. Examples of sentences from each language in the dataset are shown in
Figure 4.1.

1https://www.bbc.co.uk/ws/languages (scraped up to January 17, 2021)
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Language Family Speakers Region Script

Afaan Oromoo Afro-Asiatic 50M East Latin
Amharic Afro-Asiatic 26M East Geez
Gahuza Niger-Congo 21M East Latin
Hausa Afro-Asiatic 63M West Latin
Igbo Niger-Congo 27M West Latin
Nigerian Pidgin English Creole 75M West Latin
Somali Afro-Asiatic 19M East Latin
Swahili Niger-Congo 98M Central/East Latin
Tigrinya Afro-Asiatic 7M East Ge‘ez
Yorùbá Niger-Congo 42M West Latin

Table 4.1: Language Information: For each language, its family, number of speakers [20],
and regions in Africa spoken.

Language XLM-R mBERT AfriBERTa

Afaan Oromoo 0.10 - 0.05
Amharic 0.80 - 0.21
Hausa 0.30 - 0.15
Somali 0.40 - 0.17
Swahili 1.60 0.04 0.19
Yorùbá - 0.06 0.03

Table 4.2: Comparing Sizes Across Models: Comparison of the dataset sizes (GB)
of languages present in XLM-R, mBERT and AfriBERTa. “-” indicates language was not
present in model’s pretraining corpus.

Size

The total size of the AfriBERTa corpus is 0.94 GB (108.8 million tokens). In comparison,
XLM-R was pretrained on about 2395 GB (164.0 billion tokens) [15], and mBERT was
trained on roughly 100 GB (12.8 billion tokens).2 Following findings from RoBERTa [35]
and XLM-R [15] that more data is always better for pretrained language modelling, our
small corpus makes our task even more challenging, and one can already see that our model
is at a disadvantage compared to XLM-R and mBERT.

For each language we pretrained on that is present in XLM-R or mBERT, we compare

2https://github.com/mayhewsw/multilingual-data-stats/tree/main/wiki

14

https://github.com/mayhewsw/multilingual-data-stats/tree/main/wiki


Language # Sent. # Tok. Size (GB)

Afaan Oromoo 410,840 6,870,959 0.051
Amharic 525,024 1,303,086 0.213
Gahuza 131,952 3,669,538 0.026
Hausa 1,282,996 27,889,299 0.150
Igbo 337,081 6,853,500 0.042
Nigerian Pidgin 161,842 8,709,498 0.048
Somali 995,043 27,332,348 0.170
Swahili 1,442,911 30,053,834 0.185
Tigrinya 12,075 280,397 0.027
Yorùbá 149,147 4,385,797 0.027

Total 5,448,911 108,800,600 0.939

Table 4.3: Dataset Size: Size of each language in the dataset covering numbers of sen-
tences, tokens and uncompressed disk size.

the size of that language in our dataset to its size in the pretraining corpora of mBERT
and XLM-R. From the comparison details in Table 4.2, we can see that XLM-R always has
more data for languages present in our pretraining corpus and theirs. In fact, on average,
we can see that the size of the language is always at least two times more in XLM-R.
For mBERT, we can see that AfriBERTa has more data for Hausa and Yorùbá, which are
present in both corpora. However, one would expect that, given that both languages are
in the Latin script, there should be enough high-resource transfer to help them outperform
our model.

Our corpus contains approximately 5.45 million sentences and 108.8 million tokens.
Table 4.3 presents more details about the dataset size for each language. It can be ob-
served that languages like Swahili, Hausa and Somali have the most amount of data, while
languages like Tigrinya have very little data, with just about 12,000 sentences.

Preprocessing

We remove lines that are empty or only contain punctuation. Given that there is significant
overlap between the African language corpora in Common Crawl and the BBC News
data that we crawled, we perform extensive deduplication for each language by removing
exact matched sentences. We also enforce a minimum length restriction by only retaining
sentences with more than 5 tokens. We observe that the quality of the dataset from
Common Crawl is very low, confirming recent findings from Kreutzer et al [30]. Hence,
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Figure 4.1: Example of sentences in the pretraining corpus of each language.

we manually clean the data as much as we can by removing texts in the wrong language,
while trying to throw out as little data as possible.

Evaluating Pretraining

We take out varying amounts of evaluation sentences from each language’s original mono-
lingual dataset, depending on the language’s size. Our total evaluation set containing
all languages consists of roughly 440,000 sentences. We evaluate the perplexity on this
dataset to measure language model performance. However, following XLM-R [15], we con-
tinue pretraining even after validation perplexity stops decreasing. Effectively, we pretrain
on around 0.94 GB of data and evaluate on around 0.08 GB of data.

4.2.2 Downstream Tasks Evaluation

We evaluate on two tasks: Named Entity Recognition (NER) which is a form of token
classification task and News Topic classification which is a form of text classification.
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Named Entity Recognition

In this task, we aim to predict the entity class of each token in a sentence. Named entity
classes can range from Persons to Locations to Dates. Tokens which are not named entities
are labelled as such. We evaluate NER using the MasakhaNER dataset [2]. The dataset
covers the following ten languages: Amharic, Hausa, Igbo, Kinyarwanda, Luganda, Luo,
Nigerian Pidgin, Swahili, Wolof and Yorùbá. The authors established strong baselines on
the dataset ranging from simpler methods like CNN-BiLSTM-CRF to pretrained language
models like mBERT and XLM-R. We use the train, validation and test splits as released
by the MasakhaNER [2] authors. Examples of sentences from each language in the dataset
are shown in Figure 4.2.

News Classification

In this task, we aim to classify an article into its corresponding news topic. We use
the news topic classification dataset from [25], which covers Hausa and Yoruba. The
Yoruba dataset has 7 categories, namely “Nigeria”, “Africa”, “World”, “Entertainment”,
“Health”, “Sport”, “Politics”. The Hausa dataset has 5 categories, which are the same as
all the Yoruba dataset categories excluding “Sport” and “Entertainment”. The authors
established strong transfer learning and distant supervision baselines. They find that both
mBERT and XLM-R outperform simpler neural network baselines in few-shot and zero-
shot settings. We use the train, validation and test splits as released by the authors [25].
Examples of sentences from each language in the dataset are shown in Table 4.4.

4.3 Implementation

4.3.1 Pretraining

We pretrain on text data containing all languages, sampling batches from different lan-
guages. We sample languages such that our model does not see the same language over
several consecutive batches. All models are trained with the Huggingface Transformers
library [62] (v4.2.1). We also compare variants of AfriBERTa models to each other in a bid
to understand how to pretrain multilingual language models in small data regimes. We ex-
plore the design space by pretraining variants from the point of view of model architecture.
Three factors are taken into consideration: (i) model depth, (ii) number of attention heads
and (iii) vocabulary size. We define performance as “good transfer to downstream task”.
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Figure 4.2: Example of named entities in different languages. PER , LOC , and DATE
are in colours purple, orange, and green respectively. The original sentence is from BBC
Pidgin: https://www.bbc.com/pidgin/tori-51702073. Adapted from Adelani et al,
2021 [2]

Because the NER dataset covers more languages, we select it as the downstream task for
comparing these variants. When exploring the design space, we pretrain each model for
60,000 steps and use a maximum sequence length of 512. We pretrain using a batch size
of 32 and accumulate the gradients for 4 steps. Optimization is done using AdamW [36]
with a learning rate of 1e-4 and 6000 linear warm-up steps. We use float16 operations to
speed up training and reduce memory usage. The final models following the design space
exploration are pretrained for 460,000 steps with 40,000 linear warm-up steps and then the
learning rate is decreased linearly. We pretrain them with a batch size of 32 on 2 Nvidia
V100 GPUs and accumulate the gradients for 8 steps.

4.3.2 Downstream Tasks

NER models are trained by adding a linear classification layer to the pretrained transformer
model and finetuning all parameters. Following the hyperparameters used in MasakhaNER
[2], we train for 50 epochs with a batch size of 16, a learning rate of 5e-5 and also optimize
with AdamW. Figure 4.3 illustrates how the NER task is performed using our BERT-based
model.

Text classification models are trained by adding a linear classification layer to the
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Language Sentences Class

Hausa
Hukumar Zaben Nigeria Ta Kara Wa’adin Yin Rajista Zuwa Karshen Wata Politics
Nijar: An Kammala Taron Tsoffin Shugabannin Afirka Africa
Gwamna Rotimi Amaechi Zai Gana Da Bill Gates Health
Matsalar Sufuri a Babban Birnin Tarayya Abuja Nigeria
Boris Johnson: Ya Zamo Sabon Shugaban Jam’iyyar Mazan Jiya World

Yorùbá

Árwá: Bákan náà ni a kò f Atiku toŕı dúk̀ıá àjni wà tó f tà Politics
Kı̀ǹıhún fa èèyàn kan ya ńı Nairobi, àdúgbò dàrú Africa

Coronavirus: Àı̀sàn ýı̀ı ti ràn dé Amrika, Thialand àti South Korea Health

Building Collapse: Ìd́ı t́ı ilé fi ń wó ǹıýı’ Nigeria
Harry and Meghan: Mı́ o ààdédé gbé ı̀gbés láti kúrò ńılé ba World
Isreal Adesanya fàgbàhàn Kelvin Gastelum ni Atlanta Sport
Amojúr tó ń nu bàtà fi wá oúnj òòjù Entertainment

Table 4.4: Examples of the news topic classification data training sentences in Hausa and
Yorùbá

pretrained transformer model and finetuning all parameters. Following random hyperpa-
rameter search on the validation data, we train for 25 epochs with a batch size of 32,
warm-up steps of 100, learning rate of 5e-5 and optimize with AdamW as well. Figure 4.4
illustrates how the text classification task is performed using our BERT-based model.
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Figure 4.3: Illustration of token classification using BERT: Each token’s final hidden state
is used for classification for that token. Adapted from Delvin et al, 2019 [18]

Figure 4.4: Illustration of text classification using BERT: The CLS token (C in diagram)
is used for the classification. Adapted from Delvin et al, 2019 [18]
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Chapter 5

Results and Analysis

5.1 Design Space Exploration Results

5.1.1 Model Depth

As is common in literature [59, 35, 18, 15, 50], transformer layers are usually in multiples
of 2, so we decide to explore the following layer depths: 4, 6, 8 and 10. For each model,
we use 4 attention heads and adjust the size of the hidden units and feed-forward layers
so that all models have approximately the same number of parameters. From preliminary
experiments, models with more than 10 layers did not yield substantially better perfor-
mance. This is expected, given the small size of the data. Because of this, coupled with
computational constraints, we do not explore settings with more than 10 layers.

As we can see from the results in Table 5.1, deeper models always outperform shallower
models. However, performance gains diminish with size. For example, the gain from
increasing the model to 6 layers from 4 layers is roughly 1 F1 point. However, the gain
from increasing from 6 layers to 10 layers is only ∼0.4. This corroborates the recent
universality overfitting findings from Kaplan et al., [1], who showed that the performance
of transformer language models improves predictably as long as data size and model depth
are scaled in tandem, otherwise there is a diminishing return.

In general, our results suggest that deeper models also work well when pretraining mul-
tilingual language models on small datasets. This follows previous works on understanding
the cross-lingual ability of multilingual language models [29], which have shown that deeper
models have better cross-lingual performance. However, gains from increasing depth are
relatively minimal because of the size of our corpus.
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Layers Params amh hau ibo kin lug luo pcm swa wol yor avg

4 74.8M 62.18 89.66 87.03 69.29 67.23 59.00 83.57 83.89 77.04 67.02 75.97
6 74.7M 61.59 90.34 85.81 72.76 66.39 61.43 86.27 84.02 76.61 68.54 76.91
8 74.6M 62.04 90.96 86.33 74.00 68.66 60.96 84.43 84.16 76.11 67.38 77.00
10 74.3M 62.14 90.69 87.36 75.74 67.87 60.59 84.79 84.70 76.17 67.51 77.27

Table 5.1: Effect of Number of Layers: NER dev F1 scores (averaged over three
different random seeds) on each language for models with different layer depth, but same
number of parameters. The sizes of the embedding and feed-foward layers are adjusted such
that feed-foward is always approximately 4 times embedding size. The highest F1-score
per language is underlined, while the highest overall average is in bold.

5.1.2 Number of Attention Heads

Again, as is common in literature [59, 35, 18, 15, 29, 39], attention heads are usually in
multiples of 2. Hence, for each layer size (4, 6, 8 and 10), we train models with three
different numbers of attention heads: 2, 4 and 6. Again, initial experiments with more
than 6 attention heads did not yield any better results, so we do not explore more than 6
heads. Results are presented in Table 5.2.

The results suggest that there is a diminishing return to the number of attention heads
when the model is deep. Shallower models need more attention heads to attain competitive
performance. However, when the model is deep enough, it is very competitive with as
few as two attention heads. This suggests that results from recent work [29, 39], which
suggest that transformers do not need a large number of attention heads, also hold true
for multilingual language models on small datasets.

5.1.3 Vocabulary Size

Previous work has suggested that on small datasets, one should employ a small vocabulary
size [56, 7]. However, it remains to be seen if this holds in the multilingual setting since
several languages will be competing for vocabulary space and XLM-R [15] have found
that increasing the vocabulary size improves multilingual performance. We evaluate our
best model size on increasing vocabulary sizes and report results in Table 5.3. As we can
see from the results, increasing the vocabulary size does not always yield good results on
smaller datasets. While a small vocabulary size performs relatively poorly, medium sized
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vocabularies can sometimes outperform larger ones. Due to computation constraints, we
selected vocabulary size of 70k for the final models below.

5.1.4 Final Model Selection

We release three AfriBERTa pretrained model sizes: small (4 layers), base (8 layers) and
large (10 layers). Each model has 6 attention heads, 768 hidden units, 3072 feed-forward
size and a maximum length of 512. Their respective parameter sizes are 97 million, 111
million and 126 million.

5.2 Downstream Task Results

5.2.1 NER Results

As we can see in Table 5.4, even the AfriBERTa small model, which is almost three
times smaller than XLM-R, obtains competitive NER results across all languages, trailing
XLM-R by less than 3 F1 points. This represents a great opportunity for deployment in
resource constrained scenarios, which is usually common for applications in low-resource
languages. Our best performing model is AfriBERTa large, which outperforms mBERT and
is very competitive with XLM-R across all languages. AfriBERTa large even outperforms
both models on several languages that all three models were pretrained on, such as Hausa,
Amharic and Swahili.

It should be noted that AfriBERTa large achieves all this with less than half of the
number of parameters of XLM-R and about 45M fewer parameters than mBERT. Fur-
thermore, Table 5.5 shows the presence of our test languages in the pretraining corpora
of the various models. Our models perform very well on languages that were not part of
our pretraining corpus, such as Luo, Wolof and Luganda. This demonstrates its strong
cross-lingual capabilities, despite smaller parameter sizes and pretraining corpus size. A
notable observation is that both mBERT and XLM-R outperform AfriBERTa on Nigerian
Pidgin, despite not being trained on the language. This is likely because of the language’s
high similarity with English. Nigerian Pidgin is an English Creole, meaning it borrows
and shares a lot of its properties (including words) with English. Since both mBERT
and XLM-R were pretrained on very large amounts of English data, it is no surprise that
they perform so well on Nigerian Pidgin. In summary, our small, base and large models’
performance are comparable to mBERT and XLM-R across all languages, despite being
pretrained on a substantially smaller corpus and having fewer model parameters.
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Layers Heads Params amh hau ibo kin lug luo pcm swa wol yor avg

4 2 60.1M 58.23 88.78 84.63 71.28 65.68 56.91 83.84 82.44 76.69 64.64 74.99
4 4 60.1M 60.09 89.34 87.08 72.95 68.25 60.10 84.08 83.17 76.29 66.73 76.44
4 6 60.1M 60.26 89.49 86.01 72.69 67.82 59.85 84.68 83.73 76.22 67.66 76.46

6 2 74.3M 60.54 89.72 87.25 72.68 70.23 59.98 84.52 83.25 76.00 67.00 76.74
6 4 74.3M 63.29 90.19 86.05 74.26 68.58 59.23 84.74 83.46 77.62 67.04 76.80
6 6 74.3M 60.38 90.86 86.70 73.12 68.54 61.68 84.59 82.80 79.02 68.48 77.31

8 2 88.5M 60.32 90.55 85.32 75.38 69.89 62.73 85.50 83.51 79.07 68.09 77.78
8 4 88.5M 61.90 90.79 86.67 74.28 68.45 61.57 85.64 83.88 78.48 70.16 77.77
8 6 88.5M 60.92 90.16 86.95 74.71 70.66 60.75 85.48 84.87 78.04 71.16 78.09

10 2 102.6M 59.87 90.78 87.10 73.73 66.29 60.03 85.04 83.47 81.12 69.06 77.40
10 4 102.6M 63.95 91.33 87.11 75.24 68.96 63.36 85.66 84.67 74.60 69.27 77.80
10 6 102.6M 63.94 90.54 87.39 75.90 69.19 61.73 85.77 84.66 75.64 69.48 77.81

Table 5.2: Effect of Number of Attention Heads: NER dev F1 scores (averaged over
three different random seeds) on each language for different models with the same number
of layers, but different number of attention heads. The highest F1-score per layer size is
underlined, while the highest overall average is in bold.

Layers Heads Vocab Params amh hau ibo kin lug luo pcm swa wol yor avg

8 6 25k 76.9M 60.56 89.96 85.84 73.23 69.67 61.86 85.11 84.34 75.40 68.35 77.09
8 6 40k 88.5M 60.92 90.16 86.95 74.71 70.66 60.75 85.48 84.87 78.04 71.16 78.09
8 6 55k 99.9M 63.65 90.17 87.28 72.47 67.47 61.49 85.59 85.09 77.56 69.06 77.35
8 6 70k 111.5M 66.17 91.25 87.74 77.44 68.29 59.91 87.00 87.05 77.49 68.82 78.33
8 6 85k 123.1M 62.35 90.42 87.44 77.01 68.20 61.98 86.46 85.87 72.84 70.14 77.82

Table 5.3: Effect of Vocabulary Size: NER dev F1 scores (averaged over three different
random seeds) on the best model size with varying vocabulary sizes. The highest overall
average F1-score is in bold.
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Language CNN-BiLSTM mBERT XLM-R AfriBERTa AfriBERTa AfriBERTa
CRF base small base large

(172M) (270M) (97M) (111M) (126M)

amh 52.89 0.0 70.96 67.90 71.80 73.82
hau 83.70 87.34 89.44 89.01 90.10 90.17
ibo 78.48 85.11 84.51 86.63 86.70 87.38
kin 64.61 70.98 73.93 69.91 73.22 73.78
lug 74.31 80.56 80.71 76.44 79.30 78.85
luo 66.42 72.65 75.14 67.31 70.63 70.23
pcm 66.43 87.78 87.39 82.92 84.87 85.70
swa 79.26 86.37 87.55 85.68 88.00 87.96
wol 60.43 66.10 64.38 60.10 61.82 61.81
yor 67.07 78.64 77.58 76.08 79.36 81.32

avg 69.36 71.55 79.16 76.20 78.60 79.10
avg (excl. amh) 71.19 79.50 80.07 77.12 79.36 79.69

Table 5.4: Comparison of NER Results: F1-scores on the test sets of each language.
XLM-R and mBERT results obtained from Adelani et al. [2]. The best score for each
language and overall best scores are in bold. We also report the model parameter size in
parentheses.

5.2.2 Text Classification

We also compare our best model (AfriBERTa large) to XLM-R base and mBERT on
text classification. As we can see from the results in Table 5.6, AfriBERTa large clearly
outperforms both XLM-R and mBERT by over 10 F1 points on Yorùbá and up to 7 F1
points on Hausa. Results show that mBERT slightly outperforms XLM-R on Yorùbá, most
likely because it was pretrained on it, while XLM-R was not. XLM-R also outperforms
mBERT on Hausa, presumably for the same reason. It should be noted that our model
was pretrained on around half as much Hausa data as XLM-R, but still outperforms it
substantially.

5.3 Discussion

In this section, we discuss some other contributions of this work and the implications of
the results observed in the previous section. At a high level, AfriBERTa presents the first
evidence that multilingual language models are viable with very little training data. This
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Language In In In
mBERTXLM-R?AfriBERTa?

amh no yes yes
hau no yes yes
ibo no no yes
kin no no yes
lug no no no
luo no no no
pcm no no yes
swa yes yes yes
wol no no no
yor yes no yes

Table 5.5: Language Presence in pretraining corpora: This shows the presence of
the downstream task test languages in the pretraining corpora of the various pretrained
language models.

Language In In In mBERT XLM-R AfriBERTa
mBERT XLM-R? AfriBERTa? base large

hau no yes yes 83.03 85.62 90.86
yor yes no yes 71.61 71.07 83.22

Table 5.6: Comparison of Text Classification Results: F1-scores on the test sets.
The best score for each language is in bold.

offers numerous benefits for the NLP community, especially for low-resource languages.

5.3.1 Opportunities for Smaller Curated Datasets

Our empirical results suggest that state-of-the-art NLP methods like multilingual language
models can be made more accessible for low-resource languages. Caswell et al. [30] recently
showed that web-crawled multilingual corpora available for many languages, especially low-
resource ones, are usually of very low quality. They found issues such as wrong-language
content, erroneous language codes and low-quality sentences. Our work opens the door
to competitive multilingual language models on smaller curated datasets for low-resource
languages.

Another possible benefit of these smaller curated datasets is that they would tend
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Model # Params Data Size (GB) # Tokens

XLM-R base 270M 2395 164.0B
mBERT 172M 100 12.8B
AfriBERTa large 126M 0.94 108.8M

Table 5.7: Comparing Sizes: Comparison of datasets and model sizes between XLM-R,
mBERT and AfriBERTa.

to contain local content as opposed to foreign content as is in the Wikipedia and other
relatively larger datasets of these languages. Models trained on such datasets with local
content could potentially be more useful to the speakers of the languages given that they
would be trained on data with local context.

5.3.2 Strength of Language Similarity

Our work challenges the commonly held belief in the NLP community that lower-resource
languages need higher-resource languages in multilingual language models. Instead, we em-
pirically demonstrate that pretraining on similar low-resource languages in a multilingual
setting may sometimes be better than pretraining using high-resource and low-resource
languages together. This approach should be considered in future work, especially since
there have been recent findings [60] that low-resource languages also experience negative
interference in multilingual models.

5.3.3 Potential Ethical Benefits

Recent works have called for more considerations of ethics and related concerns in the
development of pretrained language models [11]. These concerns have ranged from envi-
ronmental and financial [57] to societal bias [33, 10]

We believe our work offers the potential to address some of these concerns, while devel-
oping language technology for under-served languages. A comparison of model and data
sizes of common multilingual models is presented in Table 5.7. Smaller dataset sizes, like
ours, mean that these datasets can more easily be cleaned, filtered, analyzed and possibly
de-biased in comparison to the humongous data sizes of larger language models. We have
also shown that smaller-sized models can outperform larger models, despite using smaller
training resources. This represents a potential for reduced environmental impact.
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While “low-resource” is commonly used in the NLP community to describe a lack of
data resources, recent works [42, 4] have argued that “low-resource” also includes a wide
range of societal problems, including computational constraints. Thus, our work embodies
the broader spirit of “low-resource”, as we develop more efficient models on smaller data
sizes for under-served languages.

5.3.4 Improving the Representation of African Languages in Mod-
ern NLP tools

As discussed in chapter 2, there is very poor representation of African languages in mod-
ern NLP tools. Recently, there have been significant efforts towards closing this gap
[6, 43, 42, 5, 22, 8, 19, 2]. Our work follows along this path, as there is a need to build
language technologies for the over 1.3 billion people on the continent. Besides showing
that multilingual language models are viable on low-resource African languages with small
training data, we also introduce the first language models for four of these languages: Kin-
yarwanda, Kirundi, Nigerian Pidgin and Tigrinya. These are four languages with over 50
million speakers [20] who are active users of digital tools. However, these languages have
noticeably deficient support in NLP technologies. Our work represents an important step
towards improving this.
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Chapter 6

Conclusion and Future Work

In this thesis, we show that it is possible to train viable and competitive multilingual
pretrained language models on very little data. This is contrary to popular belief in natural
language processing literature. We introduced AfriBERTa, a multilingual language model
pretrained on less than one gigabyte of data from 11 African languages and show that this
model is competitive with models pretrained on larger datasets and even outperforms them
on some languages.

In chapter 3, we detail our proposed approach, which is based on the masked language
model pretraining scheme of BERT [18]. We also discuss how we train the tokenizer and
detail the critical sampling method that ensures the tokenizer can generalize well to all
pretraining languages. We perform an extensive design space exploration and detail its
setup in chapter 4 and results in chapter 5. Our results suggest that deeper models also
work well when pretraining multilingual language models on small datasets. However, gains
from increasing depth are relatively minimal because of the size of our corpus. We also find
diminishing returns in the number of attention heads. Our comprehensive experiments also
highlight important factors to consider when pretraining multilingual language models on
smaller datasets.

We evaluate our trained models on two tasks - Named Entity Recognition and text
classification. Our evaluation results in chapter 5 show that our models even sometimes
outperform larger models (mBERT [18] and XLM-R [15]) on several languages that all
three models were pretrained on. More importantly, our model performs well on languages
it was not pretrained on. All of this is achieved using tens of millions fewer parameters
and training on at least 100 times less data than both these models. We also discuss some
practical benefits of viable language models on smaller datasets. We highlight a possible
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strength of co-training similar languages and hypothesize that pretraining on similar low-
resource languages in a multilingual setting may sometimes be better than pretraining
using high-resource and low-resource languages together. Other possible benefits discussed
include potential ethical benefits and an improved representation of languages bereft of
data in modern language technology tools.

In future work, we could aim to extend this small-data pretraining approach to other
modalities such as speech, where many of these languages also have limited resource. An-
other direction is to expand this model to cover more languages, especially those that are
linguistically similar. Furthermore, our models seem to do better on text classification
than on NER. It would be interesting to investigate if there are certain tasks where larger
multilingual models like mBERT [18] and XlM-R [15] always outperform ours, and vice
versa. Finally, we would like to improve the performance of this model by incorporating
family-level or script-level syntactic features while making sure not to hurt its multilin-
guality.
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Müller, Shamsuddeen Hassan Muhammad, Nanda Muhammad, Ayanda Mnyakeni,
Jamshidbek Mirzakhalov, Tapiwanashe Matangira, Colin Leong, Nze Lawson, Sneha
Kudugunta, Yacine Jernite, Mathias Jenny, Orhan Firat, Bonaventure F. P. Dossou,
Sakhile Dlamini, Nisansa de Silva, Sakine Çabuk Ballı, Stella Biderman, Alessia Bat-
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