
Generative Adversarial Networks for
ECG generation, translation,
imputation and denoising

by

Alaina Mahalanabis

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2022

© Alaina Mahalanabis 2022



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Artificial Intelligence is increasingly being used in medical applications. One challenge
present in AI in medicine is not having high quality datasets available for training machine
learning models. In this work, I explore two different methods of generating high quality
medical data. In the first approach, I used a cycleGANs as novel method for ECG trans-
lation, imputation and denoising. In the second method, I present a novel algorithm for
generating high quality ECG data that uses a machine learning framework called Gener-
ative Adversarial Networks and explanation AI systems. Through empirical evaluation, I
show that both methods improve over state-of-the-art methods in their respective appli-
cations. This thesis demonstrates that machine learning methods can be used to address
the data scarcity problem in the medical setting.
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Chapter 1

Introduction

Artificial intelligence has the potential to transform the field of medicine. Multiple different
applications of AI are being explored in the medical field including AI for medical image
interpretation, AI in drug discovery, personalized medicine, natural language processing
applications to prepare clinical reports and many more applications [17].

There are many different types of medical data including imaging data such as magnetic
resonance imaging and x-rays, time series data including biomedical signals such as elec-
trocardiograms (ECG), electroencephalography (EEG) and sensor data, multimodal data
sets such as electronic health records (EHR) and big data sources such as genomics and
other “omics” data. Each type of dataset poses unique challenges. Medical images can con-
tain billions of pixels too large to fit neural networks without preprocessing. Multimodal
datasets are difficult to work with for xAI systems that typically work with continuous data.
Time series data require machine learning models to learn the temporal relationships in
the data.

One of the major technical challenges facing medical AI is the scarcity of high-quality
training sets. Supervised learning techniques require large, labeled, high-quality datasets
that are difficult to obtain. The accuracy of the model depends directly on the amount
of training data available. The scarcity of medical data exists for several reasons: privacy
and the sensitive nature of medical data make data sharing difficult, the shortage of rare
medical datasets, the cost of obtaining datasets, and low quality data.

There are two mechanism that allow for medical data sharing: informed consent or
data anonymization. Both mechanisms present challenges. If informed consent was only
obtained for a specific context, the data cannot be used in another context. There is also
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bias when getting informed consent where there are important differences between consen-
ters and non-consenters. Alternatively, data can be anonymized but current anonymization
techniques are inadequate to protect the privacy of people [6].

The cost of obtaining some types of medical data is another barrier to getting access to
medical datasets. MRI scanners cost millions of dollars and are also expensive to maintain.
Advanced EEG methods that are relatively inexpensive can be several thousand dollars.

In the case of rare diseases, any researcher will not have access to sufficient data on
the rare disease. To address this issue, several open science initiatives have been founded.
However, challenges still remain and getting access to rare disease data is hard.

Fractional amounts of low quality data can negatively impact outcomes. Imaging data
may be of poor quality. Time-series data often have missing values due to distortions and
faults with the instrumentation. Biomedical signals can have noise.

1.1 Related Work

Several recent works have explored the use of GANs for the generation of ECG [8, 5].
The first approach explored several CNN and LSTM architectures for generated ECGs.
This paper highlights some of the challenges with ECG generation, including instability
in training and no consensus on how to evaluate the quality of synthetic time series data.
The second approach used a CNN architecture and evaluated the quality of the synthetic
data by using the synthetic data to augment a heartbeat classifier. In our work, we address
the challenges highlighted in the papers.

In Chapter 4, we incorporate explanation AI output into our GAN architecture. This
idea was initially proposed by [14] and we have extended it to the time series domain. The
main idea behind this approach is to improve the feedback from the discriminator to the
generator. The discriminator loss is used to compute the gradients to update the generator.
The xAI output indicates which input features were important for the discriminator’s
classification. We multiplied the xAI output with the gradient to give more weight to the
important features.

One of the most widely used GAN based imputation methods is called GAIN, Genera-
tive Adversarial Imputation Net [24]. In this model, the discriminator outputs a value for
each feature that indicates whether the value is real or imputed. Normally, in a GAN, the
discriminator would output a single value for an input, but in GAIN, the discriminator
output length is equal to the number of features. The discriminator is also given a ”hint”
matrix which provides it with additional information about the missingness of the input.
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Machine learning models have been successfully applied to the problem of ECG signal
denoising. Specifically, RNN models and autoencoders have been used for ECG desnoising
and outperformed traditional filtering methods for denoising [19]. In Chapter 3 of this
thesis, we apply the cyclegan architecture to the problem of ECG denoising.

Problem Statement: In this thesis, I address the following question Is it possible to
use Machine Learning for the generation, imputation, denoising and translation of ECG
data?

1.2 Contributions

The main contributions of this thesis are the following:

1. A novel method for ECG translation, imputation and denoising: We address
the problem of low quality ECG signals due to missing data and noisy data. We also
address the problem of imbalanced data and not having enough data from one class.
We combine a cycleGAN architecture with a LSTM generator and discrminator and
use Wasserstein loss for the adversarial loss. We show that this model can be used to
transform an ECG signal from one class to another. We demonstrate the effectiveness
of this model as an imputation tool and for denoising a ECG signal that has noise
added. We evaluate the imputation and denoising result against state-of-the-start
methods

2. A novel algorithm for ECG Generation: We develop a novel algorithm for
ECG generation that leverages GANs, explanation AI systems, and Wasserstein Loss
function. We evaluate the results of our experiments using multiple metrics including
dynamic time warping, Pearson’s correleation coefficient, qualitative analysis and
augmenting a state-of-the-art classifier with synthetic examples.

1.3 Thesis Organization

The rest of this thesis is organized as follows:

1. Chapter two covers background information necessary to understand the rest of the
material covered. In particular, we describe the morphology and important features
of an ECG signal. We then provide information on Generative Adversarial Networks
(GANs), improvements to GANs, explanation AI systems and cycleGAN.
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2. Chapter three covers a novel application of cycleGAN for the translation, imputa-
tion and denoising of ECG data. We use a LSTM generator and discriminator and
use wasserstein loss as the adversarial loss. In this chapter, we present a detailed
overview of the cycleGAN architecture. We show the results after increasing the
percent of missing data from 10% missing data to 50%. We evaluate the perfor-
mance of cycleGAN against several other imputations methods by comparing the
root mean squared error, mean absolute percent error and by comparing AUC scores
after augmenting a classifier using imputed data from both of these approaches. We
compared cycleGAN as a denoising tool against several state-of-the-art approaches
and evaluated the results using multiple metrics. We also use cycleGAN to translate
normal class ECGs to arrythmias and evaluate cycleGAN as a translation tool.

3. Chapter four covers generating high quality ECGs by using explanation AI systems
feedback and Wasserstein GAN with an interpolation method of imposing gradient
penalty. In this chapter, I test a CNN and LSTM architecture augmented by 4
different explanation AI systems. I explore multiple evluation metrics. I report on
experiments where the explanation augmented GAN outperforms standard GAN. I
discuss how the xAI feedback can be used to generate high quality medical datasets
especially when data is scarce.

4. Finally, chapter 5 concludes the thesis summarizing the contributions of this work. I
also identify future research in the area of using GANs to generate medical data.
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Chapter 2

Background

2.1 ECG

An Electrocardiogram (ECG) is an electrical recording of the heart that shows the de-
polarization and repolarization of cardiac muscle cells during cardiac cycles. ECGs are a
common diagnostic and monitoring tool for arrhythmias and cardiac abnormalities. The
ECG is the summed electrical signal from many cells.

An ECG cardiac cycle shown in Figure 2.1 has the following features: The P wave
corresponds to depolarization of the atria which starts the mechanical contraction of the
atria. The QRS complex corresponds to ventricular depolarization and the T wave corre-
sponds to ventricular repolarization. Typically, the morphology of the ECG signal is used
to diagnose abnormalities [21], and in this thesis, qualitative evaluation is an important
evaluation tool.
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Figure 2.1: Classic Labeled ECG

2.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) consist of two neural networks, a generator and a
discriminator. The goal of the generator is to learn a dataset’s probability distribution and
produce data that are identical to that distribution. A discriminator is a binary classifier
that outputs whether an input is from the training set or an output from the generator.
The generator and discriminator are trained together. The generator and discriminator
play a minimax game where the discriminator tries to maximize this objective function
while the generator tries to minimize it [1].

min
G

max
D

V (D,G) =IEx∼Pdata(x)
[logD(x)] + IEz∼pz(z) [log(1−D(G(z)))]

2.3 Wasserstein GAN

One of the main problems of GAN training is that careful balance must be maintained
between discriminator and generator training. If the discriminator is significantly better
than the generator, the output of the discriminator will always be close to 0 or 1 and will
not provide meaningful feedback to the generator. The loss function will output a value
close to 0 and result in a 0 gradient where the generator will not learn. Conversely, if the
generator is more powerful than the discriminator and learns how to fool the discriminator,
the generator can fail to learn the entire data distribution and only produces a small subset
of the training sample. This is known as mode collapse.
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In a Wasserstein GAN (WGAN) architecture, the Wasserstein distance is used to cal-
culate the difference between the generator data distribution and the real data distribution
[2]. The Wasserstein loss function gives smoother gradients and allows greater stability of
GAN training. The discriminator wants to maximize this expression and the generator
wants to minimize the expression. The Wasserstein loss is given below.

W(IPr, IPθ) = sup
f≤1

IEx∼IPr [D(x)] - IEx∼IPθ
[D(x)]

In a WGAN architecture, the discriminator is replaced by a critic. The critic does not
use a sigmoid function at the end which does not limit the output to be between 0 and 1.
A constraint is placed on the critic to be Lipschitz continuous. This imposes the restriction
that the norm of the gradient of the critic should be less than or equal to 1. In the WGAN
paper, the authors use gradient weight clipping to enforce the Lipschitz constraint. After
each gradient update, the weights are clamped to a fixed box. For example, the weights
would be between [-0.01, 0.01].

2.4 Improved Wasserstein GAN Training

In the original Wasserstein GAN paper, the authors state that weight clipping is a terrible
way to enforce the Lipschitz constraint. If the weight clipping parameter is too large, it
takes a long time to train the GAN and makes training to optimality hard. If the weight
clipping parameter is too small, this can lead to vanishing gradients when the number of
layers is large or in cases where batch normalization is not used such as in RNNs and
LSTMs. In the paper titled ”Improved Training of Wasserstein GANs”, Gulrajani et al.
show that a better way to enforce the Lipschitz constraint is by inputting an interpolated
image to the critic and taking the norm of the gradient of the interpolated image [9].

2.5 Explanation AI (xAI) Systems

Neural network classifiers are often treated as a black box where the user does not know
which input features were important for a classifier’s output. Explanation AI systems
attempt to show the user which elements of an input feature were the most important
to the classifier in making its decision. In this thesis, we explore several xAI systems as
outlined below.

1. Adversarial Explanations for AI systems (AXAI) An adversarial attack occurs
when a small change in the input causes a DNN to misclassify the image. In AXAI,
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the projected gradient descent method (PGD) is used to find an adversarial example.
Pixels that have not been changed much are filtered out. The Quickshift method is
used to segment the input. The segments with the highest altered inputs are used.

2. Integrated Gradients Integrated gradients compute the integral of the gradient of
the discriminator’s output to its input features along the path from a baseline to the
input.

3. Saliency Saliency returns the gradient of the discriminator output with respect to
the input. Saliency takes a first-order Taylor expansion of the network for a given
input. The gradients are the coefficients of each feature in the linear representation
of the model. These coefficients represent the importance of the feature.

2.6 CycleGAN

CycleGAN is another class of GANs that was originally developed for image-to-image
translations [26]. The cycleGAN architecture consists of two generators G1 and G2 and
two discriminators D1 and D2. G1 learns the mapping function G1 : X → Y where X and
Y are two different domains, like paintings and photographs. G2 simultaneously learns the
reverse mapping functions G2 : Y → X. Instead of inputting a random noise vector into
the generator, an image is input and the generator transforms the image from one domain
into another. CycleGAN has 3 loss functions, the adversarial loss from the discriminator,
the cycle consistency loss, and an identity loss. The cycle consistency loss imposes the
constraint that G2(G1(x)) ∼ x and G1(G2(y)) ∼ y and the identity loss G1(y) ∼ y and
G2(x) ∼ x.

The cycleGAN architecture and forward and backward cycle-consistency loss are shown
in Figure 2.2. The cycleGAN architecture works on unpaired images where no information
is provided on which xi matches which yi.
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Figure 2.2: cycleGAN architecure and image translation example
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Chapter 3

cycleGAN for time series medical
data translations, imputation and
denoising

3.1 Introduction

There have been several applications of cycleGAN in the medical domain, including image
translations from CT to MRI [12], image denoising and enhancement [25], and image data
imputation [20]. The architecture used in the original cycleGAN [26] paper consisted of
several convolutions and residual blocks. We used this model to translate CT images to
MRI and vice versa to illustrate the function of cycleGAN and to visually examine its
feasibility in the translation of medical image data. The visual results of this experiment
are shown in 3.1.

In the medical setting, one class of data may be more abundant than another. In the
ECG setting, normal heartbeats are more abundant than arrhythmias. For the MIT-BIH
database described below, the normal (N) class heartbeats has 90632 samples compared
to a type of arryhmias called the fusion (F) class of heartbeats that has only 803 samples.

In practice, ECG datasets often have missing values due to faults and distortions [23].
ECG data are equispaced data, meaning that the time increments between successive data
points are equal. |t1 − t2| = |t2 − t3| = |tn − tn−1|. Although the ECG data are periodic,
we are considering one heartbeat at a time and in this case the signal is not considered
periodic. Many imputation techniques rely on inter-attribute correlations, which makes
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univariate time-series data more challenging than multivariate. In the univariate case, we
cannot look at the relationship among variables to do imputation.

There are three main types of missing values: data that is missing completely at random
(MCAR), missing at random (MAR), and not missing at random (NMAR). In MCAR,
missing data points occur completely at random. This means that the probability of a
certain observation being missing is independent of the point of time of the observation. In
the case of MAR, the probability that an observation is missing is dependent on the point
of time in the observation of the series. One example of MAR is sensor data where the
sensor malfunctions for a period of time resulting in missing data points spanning several
time steps. In NMAR, the probability of an observation being missing depends on the
value of the observation [13].

Imputation methods for univariate time series data fall into three broad categories:
univariate algorithms, univariate time series algorithms, multivariate algorithms on lagged
data [13]. Examples of univariate algorithms are mean, median, and mode. These do not
consider the temporal relationship of the data. Univariate time series algorithms like last
observation carried forward (locf) and linear inteprolation take into account the time series
characteristic of the data. Multivariate algorithms consider time to be an implicit variable
in the data and add time information as covariates.

Noise in an ECG signal can come from multiple sources, with the most common causes
being baseline wander, power-line interference and muscle artefacts [3]. Baseline wander
are low-frequency disturbances that come from poor contact of the electrode with the skin,
body movements, or respiration. Power line interference is high-frequency noise caused by
the circuity. Typically a high-pass filter is used to remove baseline wander and a low-pass
filter is used to remove power line interference. Muscle artefacts are caused by electrical
activity in the muscles.

There are several ECG denoising techniques that fall into five main categories: empir-
ical mode decomposition (EMD), deep learning based autoencoder models, wavelet based
methods, adaptive filtering and bayesian filtering.
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Figure 3.1: CT (top) to MRI (bottom) Image translation using original model architecture

3.1.1 Contributions

1. CycleGAN for univariate time series data translation Integration of a Cycle-
GAN architecture with a LSTM generator and discriminator and Wasserstein Loss
to translate univariate time series data from one class to another

2. CycleGAN for time series data imputation We show that cycleGAN is an
effective method for imputation of univariate time series data

3. CycleGAN as a denoising method for ECG Use cycleGAN as a novel method
to denoise ECG

3.2 Experimental Setup and Evaluation Metrics

The imputation and translation experiments were performed on ECG data from the MIT-
BIH arrhythmia database. This is considered to be the gold standard for ECG classification
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tasks [8]. The database contains 48 half-hour ECG recordings from 47 individuals. The
sampling frequency is 360 Hz. There are 5 classes of heartbeats: Normal beats (N),
supraventricular ectopic beats (S), ventricular ectopic beats (V), fusion beats (F), and
unknown beats (Q). For this project, we have omitted the unknown beats. The number of
samples for each heartbeat class is shown in table 3.1. Each heartbeat is represented as a
vector of 1x216 where each element is a millivolt at a time step.

For the denoising experiments, we use the physionet QT database which has 105 ECG
signals. To add real baseline noise to the ECGs from this dataset, we follow the procedure
used by [19]. The MIT-BIH Noise Stress Test Database (NSTDB) has noise-containing
recordings. The ECG recordings from the QT database are contaminated with noise from
the NSTDB. To compare against other methods, for the denoising experiments, we used
an ECG that has 516 time steps.

We used the same cycleGAN architecture for the time series translation and imputation
experiments. The generators are a 2 layer bi-directional LSTM network with 50 hidden
dimensions followed by a final linear layer. The two-layer LSTM has a dropout value of 0.2.
The discriminators consist of a 2-layer bi-directional LSTM network with dropout = 0.2
followed by a linear layer and sigmoid activation function. We used the Adam optimizer
with a learning rate of 1e-3 for both generators and discriminators. For the denoising
experiments, we changed the LSTM input dimension to 516 and used a hidden dimension
of 100. We used the Adam optimizer with a learning rate of 1e-3, batch size 64 and ran
for 50 epochs.

We gave the adversarial loss, forward and backward cycle consistency loss an equal
weight of 1 and multiplied the identity loss by 10. For the adversarial loss, we used the
wasserstein loss function. For the identity loss and cycle consistency loss, we used L1 loss.
The interpolation method of gradient penalty was used and we multiplied the gradient
penalty by a factor of 10 and summed it with the wasserstein loss.

Heartbeat class N S V F total

Total Set 90632 2779 7235 803 101449
Train Set 45868 942 3787 415 51020
Test Set 44258 1837 3221 388 49711

Table 3.1: Partition of the MIT-BIH dataset
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3.2.1 Imputation Experiments

For the imputation experiments on the ECG dataset, we used the ’V’ class heartbeats
because there were over 7000 examples of this type which allowed us to have a sufficiently
large train and test set. We changed the missing data rate from 10% to 50% increasing
in increments of 10. We tested our cycleGAN approach against 4 other imputation tech-
niques: Last observation carried forward (locf), moving window, kNN, and cubic spline
interpolation. We used the impyute package and the scipy interpolation function. To
simulate MCAR, we randomly set data points to zero. To simulate MAR, we selected a
point at random and set the next several consecutive points to 0. We started by randomly
selecting an index and setting the next 22 indices, representing 10% of one ECG signal, to
0. We repeated this process up to 50% of the signal.

To evaluate the performance of cycleGAN for imputation, we looked at root mean
squared error (RMSE), mean absolute percent error (MAPE) and AUC scores. RMSE
is the root of the squared difference between the original signal and denoised signal or
between the original signal and imputed signal. MAPE is the absolute difference between
the original and denoised signal expressed as a percent of the original signal. We use a
deep residual convolutional neural network for ECG classification. The network was first
proposed by [11] and also used by [8]. The classifier uses the RMSProp optimizer with a
learning rate of 1e-3 and cross entropy loss function. For each experiment, we trained the
classifier for 10 epochs using batch size of 64. The AUC scores were calculated by training
the classifier on the real dataset and testing on the imputed signal.

3.2.2 Denoising Experiments

To evaluate the denoising results, we used three metrics, sum of the square of distances
(SSD), maximum absolute difference (MAD), percentage root-mean-square difference (PRD).

The metrics for imputation and denoising are defined below:

1. RMSE (s1, s2) =
1
N

∑N
n=1

√
(s2(n)− s1(n))2

2. MAPE (s1, s2) =
|s1(n)−s2(n)|

s1
* 100

3. SSD(s1, s2) =
∑N

n=1(s2(n)− s1(n))
2

4. MAD(s1, s2) = max|s1(n)− s2(n)|

5. PRD(s1, s2) =

√∑N
n=1(s2(n)−s1(n))2∑N
n=1(s2(n)−s̄1)2
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3.2.3 Translation Experiments

We tested the transformation from the N class heartbeats to F, S, and V. We evaluated
the results qualitatively and measured the increase in classification accuracy after adding
synthetic examples from cyclegan to the training set.

The method we use for the experiments is described by algorithm 1.

Algorithm 1 CycleGAN pseudocode for translation, imputation and denoising

Require: The gradient penalty coefficient λ, the number of critic iterations per generator
iteration, ncritic, the batch size m, Adam hyperparameters α, β1, β2

Require: initial critic parameters w0, initial generator parameters θ0
1: while θ has not converged do do
2: for t = 1, . . . , ncritic do
3: for i = 1, . . . ,m do
4: Sample from domain X, sample from domain Y, a random number ϵU [0, 1].
5: x̃← Gy→x(y)
6: ỹ ← Gx→y(x)
7: x̂← ϵx+ (1− ϵ)x̃
8: ŷ ← ϵy + (1− ϵ)ỹ
9: L1 ← Dx(x̃)−Dx(x) + λ(||∇(̂x)Dx(x̂||2 − 1)2

10: L2 ← Dy(ỹ)−Dy(y) + λ(||∇(̂y)Dy(ŷ||2 − 1)2

11: end for
12: Update the discriminators
13: w ← Adam(∇w

1
m

∑m
i=1 L1,

1
m

∑m
i=1 L2, w, α, β1, β2)

14: end for
15: Compute the Adversarial Loss
16: LA = 1

m

∑m
i=1(Dx(Gy→x(y

i)) +
∑m

i=1(Dy(Gx→y(x
i))

17: Compute the Cycle Consistency Loss
18: LC = 1

m

∑m
i=1(x

i −Gy→x(Gx→y(x
i)))2) + 1

m

∑m
i=1(y

i −Gx→y(Gy→x(y
i)))2)

19: Compute Identity Loss
20: LI = 1

m

∑m
i=1(x

i −Gy→x(x) +
1
m

∑m
i=1(y

i −Gx→y(y))
21: update the generators
22: w ← Adam(LA, LC , LI , α, β1, β2)
23: end while
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3.3 Results on ECG imputation

MCAR MAR
% AUC RMSE MAPE AUC RMSE MAPE

LOCF 10 0.9518 0.0036 1.67 0.943 0.0296 11.11
20 0.9452 0.0077 3.66 0.9212 0.0966 29.6
30 0.9403 0.0133 6.21 0.9019 0.1913 54.04
40 0.9342 0.0201 9.54 0.8768 0.2878 75.16
50 0.9258 0.0296 13.83 0.8413 0.3981 103.91

Moving Window 10 0.9818 0.0017 0.72 0.954 0.0284 10.01
20 0.9797 0.004 1.73 0.9367 0.0962 31.83
30 0.9564 0.0076 3.34 0.9257 0.1875 54.39
40 0.9517 0.0128 5.777 0.8974 0.2863 75.61
50 0.9476 0.021 9.489 0.8622 0.3972 103.72

kNN 10 0.6205 0.0164 4.97 0.9462 0.0365 10.06
20 0.5248 0.0428 12.95 0.9305 0.0917 24.33
30 0.5402 0.1256 36.76 0.9175 0.1477 38.34
40 0.4057 0.126 35.72 0.8983 0.2053 53.88
50 0.4531 0.1823 52.6 N/A N/A N/A

Interpolation 10 0.5916 0.0362 11.169 0.4034 0.6164 98.7
20 0.5838 0.0731 20.87 0.4089 0.6175 98.99
30 0.4292 0.186 29.93 0.4151 0.6174 98.93
40 0.4201 0.2462 38.28 0.4067 0.6177 99
50 0.391 0.3089 46.89 0.4073 0.6167 98.96

CycleGAN 10 0.8958 0.0101 3.36 0.9592 0.0141 8.21
20 0.9021 0.0234 7.68 0.9596 0.0261 12.21
30 0.9264 0.0384 12.19 0.9564 0.0509 23.47
40 0.9404 0.055 16.67 0.9126 0.0872 43.48
50 0.9696 0.0824 26.75 0.9068 0.1104 48.55

Table 3.2: Imputation Results
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(a) Original Heartbeat (b) Missing Data (c) Imputation result

Figure 3.2: Imputation Results MCAR 10 to 50 %
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(a) Original Heartbeat (b) Missing Data (c) Imputation Result

Figure 3.3: Imputation Results MAR 10 to 50 %
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3.4 Results on ECG denoising

(a) Original Heartbeat (b) Gaussian Noise Added (c) Denoising Result

Figure 3.4: ECG denoising gaussian noise using cycleGAN

Method/Model SSD MAD PRD
FIR filter 44.97 0.69 65.77
IIR Filter 35.63 0.62 61.62
DRNN 5.85 0.44 49.91
FCN-DAE 6.79 0.48 62.18
Vanilla L 13.565 0.54 88.47
Vanilla NL 6.9 0.41 63.55
Multibranch NL 5.362 0.39 55.59
cycleGAN 5.1391 0.2394 51.1849

Table 3.3: Quantitative Denoising Results
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(a) Original Heartbeat (b) Noise from NSTDB (c) Denoising Result

Figure 3.5: Denoising noise from NSTDB using cycleGAN

3.5 Results on ECG translation from normal class to

arrythmias
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(a) N → V transformation (b) N → F transformation (c) N → S transformation

Dataset class Original Dataset cycleGAN examples added
N 99.3% 88%
S 38% 88.4%
V 77% 87.4%
F 23% 81.7%

Table 3.4: Accuracy Results after adding cycleGAN results

3.6 Analysis of Results

Table 3.2 shows the AUC scores, rmse and mape results after imputation with various
techniques. We show the results for imputation after missing values being added at random
and the results for imputation with extended gaps. In the case of adding MCAR gaps,
locf and moving window outperformed cycleGAN. In the case of MAR, cycleGAN far
outperformed all existing methods in all metrics.

In Figure 3.2, the left column is the original heartbeat, the middle column shows the
heartbeat with the missing data ranging from 10% to 50% and the right column shows the
results after imputation with cycleGAN. Figure 3.3 shows the results when longer gaps are
introduced in the data. In this figure, the middle column shows the longer gaps. Visually,
we see that in both cases, cycleGAN is an effective imputation tool and can reconstruct
the ECGs in cases of missing data. The results show that the optimal imputation tool
depends on the distribution of the missing data. When indices are drawn from a normal
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distribution and set to NULL, moving window is the best choice for imputation. When
there are longer gaps present in the data, cycleGAN is the most effective imputation
tool. Our experimental results show that cycleGAN can generate high quality ECGs and
outperforms existing methods as an imputation tool.

Figure 3.5 shows that cycleGAN is an effective denoising tool that can remove base-
line wander noise. The quantitative results shown in 3.3 demonstrates that cycleGAN
outperforms state-of-the-art methods.

For both the imputation and denoising experiments, cycleGAN learned how to impute
and denoise the data but did not learn the reverse function of removing data and adding
noise. For these 2 experiments, cycleGAN gave the best results when we gave more weight
to the identity loss compared to the cycle consistency loss. This is in contrast to the original
image translation experiments where more weight was given to the cycle consistency loss.

Our results show that cycleGAN can be used to translate ECGs from the normal
class to the different arrythmia classes. As shown in Table 3.4, we significantly improved
the clssification accuracy of the F and S class heartbeats by adding synthetic examples
produced by cycleGAN. The qualitative results show that cycleGAN produced smooth F
class and S class heartbeats without mode collapse. We note that for the N to V translation,
some of the signals are noisy and the P wave and the T wave are not visible in some signals.

3.7 Future Work

ECG denoising is a critical preprocessing step in many applications and affects further
downstream analysis. In this work, we used cycleGANs as a novel method to do ECG
denoising. Our experimental approach was to add baseline wander noise to the ECGs from
the QT database. In future work, we want to simulate other sources of noise and test our
method as a denoising method for other kinds of noise.

One future direction is to combine the approach from a state-of-the-start multivariate
imputation tool called GAIN: Generative Adversarial Imputation Nets [24]. In this ap-
proach, the discriminator outputs a value for each time step indicating whether the value
is real or fake. This is in contrast to the current approach where the discriminator outputs
a single value indicating whether the heartbeat is real or fake. By giving us a value for each
time step, this gives us more feedback from the discriminator and might improve generator
learning.
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Chapter 4

GAN based generation of univariate
time series medical data

4.1 Introduction

Generative Adversarial Networks (GANs) have been used extensively in the field of image
generation. The use of GANs for time series data is a more recent development. Previous
methods that use GANs for ECG generation note that GAN training is highly unstable
and lacks suitable evaluation measures.

In this chapter, we propose a new method of ECG generation described in Algorithm
2 that we call xai-wgan. We used the wassertsein loss function and imposed the Lipschitz
constraint by using the interpolation method of gradient penalty. We trained the GAN
for 50 epochs and during the last 10 epochs of training, we added the xAI feedback by
multiplying the xAI output with the generator gradient.

4.1.1 Contributions

1. ECG generation using Wasserstein GAN with gradient penalty and xAI
Feedback A novel way of generating ECGs that combines Wasserstein GAN with
gradient penalty, xAI feedback

2. Explanation AI with univariate time series medical data A key contribution
of this chapter is the incorporation of xAI systems with time series data. Several
different types of xAI are used to explain the discriminator’s prediction.
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3. Evaluation Methods We evaluated synthetic ECGs using multiple metrics, includ-
ing time series similarity, Pearson’s’s correlation coefficient, data utility, qualitative
analysis and timing.

4.2 Method

Algorithm 2 WGAN with gradient penalty and xAI Feedback. We use default values λ
= 10, ncritic = 5, α = 0.001, β1 = 0, β2 = 0.9

Require: The gradient penalty coefficient λ, the number of critic iterations per generator
iteration, ncritic, the batch sizem, Adam hyperparameters α, β1, β2, explanation matrix
M , weight of XAI system δ

Require: initial critic parameters w0, initial generator parameters θ0
1: while θ has not converged do do
2: for t = 1, . . . , ncritic do
3: for i = 1, . . . ,m do
4: Sample real data x IPr, latent variable z p(z), a random number ϵU [0, 1].
5: x̃← Gθ(z)
6: x̂← ϵx+ (1− ϵ)x̃
7: L(i) ← Dw(x̃)−Dw(x) + λ(||∇(̂x)Dw(x̂||2 − 1)2

8: end for
9: w ← Adam(∇w

1
m

∑m
i=1 L

(i), w, α, β1, β2)
10: end for
11: Sample a batch of latent variables
12: w ← SGD(∇w

1
m

∑m
i=1 L

(i), w, α, β1, β2,∇w ∗M ∗ δ)
13: end while

4.2.1 Experimental Setup

For our experiments, we try to generate F class heartbeats because of the low availability of
this class of heartbeat. Some examples of F class heartbeats from the MIT-BIH database
are shown in 4.1.
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Figure 4.1: F class heartbeats from MIT-BIH Heartbeats

In this setting, a learning rate of 1e-3 gave optimal results. In order to get better
results using xAI systems, we used the SGD optimizer. The Adam optimizer makes its
own changes to the gradients and we found was suppressing the effects of the xAI system.

We used the same classifier used in Section 3 to test our ECG generation method. We
measured accuracy scores for the F class beats after adding 1000, 3000, 10000 and 150000
synthetic examples. The results are shown in 4.1.

Following the results of Vineel et al.’s paper, we used the Saliency xAI system as it was
found to have the best performance. We also tested integrated gradients due to ease of
implementation. The final xAI system that we tried is adversary AI. This is a completely
new approach to xAI and we wanted to test it in the time series domain. Figure 4.2 and
4.3 visually shows the results of the xAI systems.

We ran all the experiments for 50 epochs. We incorporated xAI feedback into the
generator training in the last 10 epochs. This allowed the discriminator to be well trained
so that the xAI feedback was meaningful.

All our experiments were run on Compute Canada.
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4.3 Experimental Results

4.3.1 Evaluation Criteria

Based on a thorough literature survey of metrics [7] for the time series domain, we use the
following criteria to evaluate the quality of time series data generated.

1. Dynamic Time Warping (DTW): DTW is a common metric for evaluating time
series data. DTW optimally aligns two time series along the temporal axis to measure
the distance. DTW can be viewed as the minimum cost to align two time series data.
A lower DTW value indicates higher similarity between two time series datasets.

2. Pearson’s’s Correlation Coefficient: The Pearson’s’s Correlation coefficient ranges
from +1 to -1 where +1 indicates that two time series are perfectly correlated while
-1 signifies that they are inversely correlated.

3. Augment classifer using synthetic data: We augment training data for a ECG
classifier by adding the synthetic ECGs and measure accuracy scores.

4. Qualitative Analysis: We visually inspect the results after each epoch and report
the results at the end of the training phase. ECGs are visual tool where the mor-
phology of the signal is used to make a diagnosis. The visual quality of the ECG
signal is an important evaluation metric.

5. Timing Analysis Timing data for all experiments is provided. We want to measure
the additional time taken for the Wassertein architecture and the cost of the xAI
systems.
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4.3.2 Visualization of xAI outputs

Figure 4.2: Saliency xAI output CNN
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Figure 4.3: Integrated gradient xAI output LSTM

Figure 4.2 and 4.3 allows us to visualize the xAI outputs. The top row of each figure
shows the original heartbeat, xAI output and the product of the original time series by the
xAI output. The bottom row shows the original gradient and the product of the gradient
by the xAI output. This is the modification we’re making to the gradient as a way to
augment feedback to the generator. These figures show that each xAI system gives weight
to different timesteps and there is signifcant variability in the xAI outputs. Based on these
results, we would expect that the choice of xAI system has a significant effect on GAN
performance.
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4.3.3 Qualitative Results

(a) CNN Architecture (b) CNN wgan

Figure 4.4: F class heartbeats CNN

(a) CNN with adversary xAI (b) CNN with Ig xAI (c) CNN with Salinecy xAI

Figure 4.5: CNN Architecture with different xAI Systems
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Figure 4.4 visualizes the output of CNN with wgan and 4.5 shows the output of CNN
with different xAI systems. Upon visual inspection, we can see that adding xAI systems
allows the GAN to learn a greater distribution of the data. Using xAI systems, the GAN
produces ECG with an inverted QRS complex.

Figure 4.10 shows the output of a standard LSTM GAN and LSTM with wasserstein
loss. Figure 4.11 shows the outputs of LSTM with xAI systems.

4.3.4 DTW and Pearson’s Coefficient

Figure 4.6: DTW LSTM Architecture

30



Figure 4.7: Pearson’s Correlation LSTM Architecture

Figure 4.8: DTW CNN Architecture
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Figure 4.9: Pearson’s Correlation CNN Architecture

Figure 4.8 and 4.9 shows the DTW and Pearson’s Correlation Coefficient for the CNN
architecture respectively and 4.6 and 4.7 shows the DTW and Pearson’s Correlation Co-
efficient for the LSTM architecture. On the x axis is the number of epochs and on the y
axis are the unitless DTW and Pearson’s values. In all cases, we observe that xai-wgan
reaches the final value faster.

4.3.5 Accuracy Scores

CNN LSTM
No wgan wgan Saliency Ig adversary No wgan wgan Ig Adversary

No synthetic examples 21.90% 21.90% 21.90% 21.90% 21.90% 21.90% 21.90% 21.90% 21.90%
1000 examples added 33.00% 95.10% 93.30% 93.60% 91.00% 5.80% 30.20% 64.90% 74.40%
3000 examples added 96.60% 95.40% 95.30% 97.70% 96.90% 20.10% 73.70% 85.60% 85.60%
10,000 examples added 98.00% 99.20% 98.50% 99.20% 97.90% 41.10% 91.80% 96.40% 90.20%
15,000 examples added 98.00% 99.20% 97.90% 99.50% 98.50% 32.00% 90.20% 95.60% 93.60%

Table 4.1: F class accuracy Scores
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(a) LSTM Architecture (b) LSTM wgan

Figure 4.10: F class heartbeats LSTM architecture
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(a) LSTM wgan Integrated Gradient (b) LSTM wgan Adversary xAI

Figure 4.11: F class heartbeats LSTM with xAI feedback

4.3.6 Timing Analysis

Figure 4.12: Timing
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The timing bar graph on figure 4.12 shows the run time using different approaches in
seconds. Wasserstein GAN significantly increases the run time compared to standard
run time because the discriminator must be run and weights updated for 5 iterations for
each iteration of generator training. Adding xAI systems doesn’t increase the run time
significantly compared to wasserstein GAN because we only use xAI feedback during the
last 10 epochs of training.

4.4 Analysis of Results

In this setting, DTW and Pearson’s’s correlation coefficient do not always agree with
the qualitative results. Standard GAN and xai-wgan have similar values for DTW and
Pearson’s’s correlation coefficient, but Figure 4.11 shows that wgan greatly improves the
quality of the produced ECGs. The P wave and T wave are not distinguishable in the
LSTM alone and the signal is very noisy. Xai-wgan is able to produce higher quality ECGs
where we can see the P wave, QRS complex, and T wave. Table 4.1 also shows that
augmenting the training set with synthetic examples from xai-wgan gives higher accuracy
scores than augmenting the training set with synthetic data from the LSTM alone.

The xAI systems that we used with the LSTM discriminator all gave high values to
the QRS complex. Using the CNN architecture, the xAI systems gave higher values to the
P wave and the T wave. The difference in output between these two architectures may
explain why xAI feedback led to more variability in the CNN output.

Although the CNN was better able to learn the shape of the ECG and produce smoother
signals, the CNN network failed to learn the scale of the data. The CNN generated signals
fell between the range of +10 to -10 and we used numpy’s interpolation function to correct
the scale.

4.5 Conclusions and Future Work

We developed a novel method for ECG generation, xai-wgan, and demonstrated that it
outperformed standard GAN using several evaluation metrics. There is no consensus on
how best to evaluate the quality of the data produced by a GAN [7]. For this project,
we used multiple metrics to evaluate GAN performance including DTW to measure the
similarity between the real and generated time series, Pearson’s’s correlation coefficient
to measure how correlated the two time series are, the utility of the generated data to
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augment a downstream classifier and improve its accuracy, qualitative analysis and timing
analysis.

The results of our experiments show that xAI systems can be further developed and im-
proved upon to work on time series data. The xAI systems that we used in our experiments
were originally developed for the image domain.

We want to measure the variance among the generated data and measure if there is
mode collapse.

For future work, we want to test our method on multivariate time series data including
multi-lead ECG data and EEG data. Multivariate time series data will also allow us to
test other xAI systems.
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Chapter 5

Conclusion

High quality medical data is required for training neural networks that are becoming in-
creasingly widespread in the medical domain.

In this thesis, we have presented two approaches for generating high quality ECGs. In
the first, we focus on the generation of ECGs using GANs. In the second, we look at the
translating ECGs from the normal class to arrythmias. We also look at using machine
learning tools for imputation and denoising of ECGs. The experimental results show that
our methods outperform existing state-of-the-art methods.

We have shown the efficacy of these methods in a specific setting, the generation of
ECGs. However, there are many time series medical datasets and the applications of our
methods to other areas in medicine are vast.

5.1 Future Work

This thesis focused on ECG data, but these methods can be easily applied to other uni-
variate time series data such as sensor data or EEGs from a single lead. The methods
described in this thesis can be further extended to multivariate time series data like multi
lead EEGs and ECGs.

One future direction of research would be to extend the imputation approach described
in Chapter 3 to work on Electronic Health Record (EHR) data. EHR data is challenging
to generate because different columns can have mixed data types where one column has
categorical data while another column has numeric data. EHR data also has non-gaussian
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distributions and highly imbalanced categorical columns. Several approaches have been
attempted to generate tabular data. MedGAN [4] uses an autoencoder to transform cat-
egorical variables to a latent continuous representation. In TableGAN [15], categorical
values are transformed into continuous values and then minimax scaled. TGAN [22] is
another approach to generating tabular data where a Gaussian Mixture Model is applied
to each column individually. Our imputation method can be applied to EHR data by
combing our cycleGAN architecture with one of these methods. Instead of learning the
translation from missing data to complete data, cycleGAN will learn the transformation
from one column to another. In our architecture, G1 will learn the transformation from a
column that has categorical data to a column that has continuous data and G2 will learn
the reverse the reverse transformation. This can be achieved by using an approach similar
to TGAN where each column is preprocessed. Another approach is to add an autoencoder
to the architecture. This could work as an imputation technique in a setting where there is
missing data in one column but complete data in another column. The proposed cycleGAN
has learned the transformation between two columns and could work as an imputation tool.

Another area to explore is to incorporate more xAI feedback into the generator. In
this thesis, we used local xAI systems that make predictions sample by sample. Global
methods produce one output for the whole batch. An example is shapelets. One future
direction is to combine local and global output to enhance the feedback to the generator.

In Chapter 4, we explored several evaluation metrics to assess the quality of the syn-
thetic data generated. One future direction is to do an empirical measure of privacy.
Membership inference attack (MIA) is a well-known empirical evaluation of privacy that is
typically used to test classifiers. The membership inference attack test asks the following:
Given a machine learning model and a record, can we determine whether this record was
used as part of the model’s training dataset or not?

Using a classifier, MIA aims to infer whether specific data were included in the training
dataset by exploiting the confidence vectors returned from the target model. To apply
this to a GAN setting, we look at the discriminator’s confidence values. The confidence
tends to be slightly higher for training data even after GAN training is complete. For
membership inference attack in this setting, the attacker does not have access to the GAN
discriminator. The attack gets synthetic examples from the GAN and uses these synthetic
examples to train a new GAN. The attacker can look at the discriminator confidence of
this new GAN to determine if a record was used to train the original GAN.

As the applications of AI in medicine continue to grow, there will be a need to generate
more high-quality synthetic data to train better models. This thesis explored different
approaches that can be used to create ECGs.
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