
Toward High-Performance
Blockchains

by

Liuyang Ren

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2022

© Liuyang Ren 2022

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Hans-Arno Jacobsen
Professor
Dept. of Electrical and Computer Engineering
University of Toronto

Supervisor(s): Paul Ward
Associate Professor
Dept. of Electrical and Computer Engineering
University of Waterloo

Internal Member: Guang Gong
Professor
Dept. of Electrical and Computer Engineering
University of Waterloo

Internal Member: Sagar Naik
Professor
Dept. of Electrical and Computer Engineering
University of Waterloo

Internal-External Member: Bernard Wong
Associate Professor
David R. Cheriton School of Computer Science
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

This dissertation includes first-authored and peer-reviewed materials that appear in con-
ference proceedings and a book published by the Association for Computing Machinery
(ACM), the Institute of Electrical and Electronics Engineers (IEEE), and the CRC Press.

ACM’s policy on the reuse of published materials in a dissertation is as follows:

“Authors can include partial or complete papers of their own (and no fee is
expected) in a dissertation as long as citations and DOI pointers to the Versions
of Record in the ACM Digital Library are included.”

The following list serves as a declaration of the Versions of Record for works included in
this dissertation:

Portions of Chapter 1, 2, 4, and 3:
Liuyang Ren, Wei-Ting Chen, and Paul A. S. Ward. SnapshotSave: Fast and Low Stor-
age Demand Blockchain Bootstrapping. In Proceedings of the 36th Annual ACM Sym-
posium on Applied Computing (SAC’21). https://dl.acm.org/doi/10.1145/3412841.
3441912.

Portions of Chapter 1, 2, 5, and 3:
Liuyang Ren, Paul A. S. Ward, and Bernard Wong. Improving the Performance of
Blockchain Sharding Protocols with Collaborative Transaction Verification. In Proceed-
ings of the 2021 IEEE International Conference on Blockchain (Blockchain 2021). https:
//ieeexplore.ieee.org/document/9680599.

Portions of Chapter 1, 2, 6, and 3:
Liuyang Ren, and Paul A. S. Ward, and Bernard Wong. Toward Reducing Cross-Shard
Transaction Overhead in Sharded Blockchains. In Proceedings of the 16th ACM Inter-
national Conference on Distributed and Event-Based Systems (DEBS’22, Best Student
Paper) https://dl.acm.org/doi/abs/10.1145/3524860.3539641.

Liuyang Ren, and Paul A. S. Ward. Understanding the Transaction Placement Problemin
Blockchain Sharding Protocols. In Proceedings of the 2021 IEEE 12th Annual Information
Technology, Electronics and Mobile Communication Conference (IEMCON 2021). https:
//ieeexplore.ieee.org/document/9623200.

Portions of Chapter 2:
Liuyang Ren, and Paul A. S. Ward. Distributed consensus and fault tolerance mechanisms.
In Book Essentials of Blockchain Technology, Chapman and Hall/CRC, 2019. https:

//www.taylorfrancis.com/chapters/edit/10.1201/9780429674457-1

iv

https://dl.acm.org/doi/10.1145/3412841.3441912
https://dl.acm.org/doi/10.1145/3412841.3441912
https://ieeexplore.ieee.org/document/9680599
https://ieeexplore.ieee.org/document/9680599
https://dl.acm.org/doi/abs/10.1145/3524860.3539641
https://ieeexplore.ieee.org/document/9623200
https://ieeexplore.ieee.org/document/9623200
https://www.taylorfrancis.com/chapters/edit/10.1201/9780429674457-1
https://www.taylorfrancis.com/chapters/edit/10.1201/9780429674457-1

Abstract

The decentralized nature of blockchains has attracted many applications to build atop
them, such as cryptocurrencies, smart contracts, and non-fungible tokens. The health and
performance of the underlying blockchain systems considerably influence these applications.
Bootstrapping new nodes by replaying all transactions on the ledger is not sustainable
for ever-growing blockchains. In addition, poor performance impedes the adoption of
blockchains in large-scale applications with high transaction rates.

First, in order to address the bootstrapping problem of already-deployed UTXO-based
blockchains, this thesis proposes a snapshot synchronization approach. This approach
allows new nodes to synchronize themselves with the rest of the network by downloading
a snapshot of the system state, thereby avoiding verifying transactions since the genesis
block. In addition, snapshots are stored efficiently on disk by taking advantage of the
system state database.

Second, although sharding improves the performance of blockchains by distributing the
workload among shards, it leaves the duplicated efforts within a shard unhandled. Specif-
ically, every node has to verify all transactions on the ledger of its shard, thus limiting
shard performance to the processing power of individual nodes. Aiming to improve the
performance of individual shards, this thesis proposes Collaborative Transaction Verifica-
tion, which enables nodes to share transaction verification results and thus reduces the
per-node workload. Dependency graphs are employed to ensure that nodes reach the same
system state despite different transaction verification and execution orders.

Finally, cross-shard transactions rely on expensive atomic commit protocols to ensure
inter-shard state consistency, thus impairing the performance of sharded blockchains. This
thesis explores ways of lessening the impact of cross-shard transactions. On the one hand,
a dependency-aware transaction placement algorithm is proposed to reduce cross-shard
transactions. On the other hand, the processing cost of the remaining cross-shard trans-
actions is reduced by optimizing the atomic commit protocol and parallelizing dependent
transaction verification with the atomic commit protocol.

The above techniques are devoted to addressing the bootstrapping and performance
problems of blockchains. Our evaluation shows that the first technique can significantly
expedite the initial synchronization of new nodes, and the other techniques can greatly
boost the performance of sharded blockchains.

v

Acknowledgements

I would like to thank my supervisor, Paul A. S. Ward, for his guidance, support, and
patience throughout my Ph.D. studies. His constant encouragement made this thesis possi-
ble. My grateful thanks also go to professor Bernard Wong, who provided the experimental
platform for me, reviewed my paper drafts, and gave feedback on my research.

I would like to extend my thanks to my thesis examining committee for reviewing this
thesis, attending my defense, and providing suggestions for revision.

In addition, I would like to thank my colleagues and friends Xinan Yan, Linguan Yang,
and Hua Fan for discussing research problems, methodologies, and experimental design
with me. I would also like to thank W.T. Chen especially for helping me with my academic
writing skills.

I would also like to thank my mother for her confidence in me throughout my post-
graduate education.

Finally, I want to thank my past self who struggled to find research problems and ideas.
It is her perseverance that supports me proceeding to the end.

vi

Table of Contents

List of Figures xi

List of Tables xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Approach . 3

1.4 Contributions . 5

1.5 Organization . 5

2 Background 6

2.1 Blockchain Architecture . 6

2.1.1 Block and Blockchain . 6

2.1.2 Unspent Transaction Output (UTXO) Model 7

2.1.3 Proof-of-Work (PoW) . 8

2.1.4 Peer-to-Peer Network and Fork . 9

2.1.5 Tradeoff between Consensus and Performance 11

2.2 Blockchain Sharding . 12

2.2.1 Node Partitioning . 12

2.2.2 Intra-Shard Transaction Processing 14

vii

2.2.3 Cross-Shard Transaction Processing 16

2.3 Chapter Summary . 18

3 Related Work 20

3.1 Fast Bootstrapping . 20

3.2 Transaction Verification Result Sharing . 22

3.3 Cross-shard Transaction Reduction . 22

4 Fast and Low-Storage-Demand Bootstrapping 25

4.1 Design Overview . 25

4.2 Architecture and Protocol . 26

4.2.1 Snapshot Structure . 26

4.2.2 Snapshot Storage . 27

4.2.3 Snapshot Creation . 29

4.2.4 Snapshot Synchronization . 29

4.2.5 Fork Tolerance of Optimistic SnapshotSave 31

4.2.6 Backward Compatibility . 32

4.3 Security . 33

4.4 Evaluation . 37

4.4.1 Testbed and Experiment Design . 37

4.4.2 SnapshotSave vs. Bitcoin Core . 38

4.4.3 SnapshotSave vs. CoinPrune . 41

4.5 Chapter Summary . 45

5 Collaborative Transaction Verification 46

5.1 Assumptions . 47

5.2 Overview of CTV . 48

5.3 Algorithms . 53

viii

5.3.1 Verification Committee Formation 54

5.3.2 Pending Parent Transaction Detection 54

5.3.3 A Concrete Example . 55

5.3.4 Sequential Processing Algorithm . 57

5.3.5 Revisiting Algorithms . 59

5.4 Correctness of Slow-Path-Free CTV . 62

5.5 Evaluation . 63

5.5.1 Importance of Transaction Dependency Awareness 64

5.5.2 Fault-Free Performance . 65

5.5.3 Performance Under Faults . 68

5.6 Chapter Summary . 69

6 Smart Transaction Placement 70

6.1 Transaction Characteristics . 70

6.1.1 Transaction Dependencies . 71

6.1.2 Cost of Cross-Shard Transactions 72

6.2 Rooted Graph Placement (RGP) . 74

6.2.1 Cross-Shard Transaction Reduction 75

6.2.2 Load Balancing . 78

6.2.3 Impacts of Parameters . 80

6.2.4 Partitioning Quality Comparison 82

6.3 Efficient Cross-Shard Transaction Processing 85

6.3.1 Dependent Transaction Pre-verification 85

6.3.2 Atomic Commit Protocol Consolidation 87

6.4 Evaluation . 90

6.4.1 Testbed . 90

6.4.2 Performance Under Light-Dependency Workload 91

6.4.3 Performance Under Heavy-Dependency Workload 93

ix

6.4.4 Performance Under Various Network Configurations 95

6.5 Discussion . 97

6.5.1 Advantage of RGP . 97

6.5.2 Generalization . 97

6.5.3 Incentive for Clients . 98

6.6 Chapter Summary . 99

7 Conclusions 100

7.1 Concluding Remarks . 100

7.2 Future Research Directions . 101

References 103

x

List of Figures

2.1 Block and blockchain . 7

2.2 Transaction execution in the UTXO model 8

2.3 Blockchain fork . 10

2.4 The architecture of sharded blockchain systems 13

2.5 PBFT . 15

2.6 An example of OmniLedger’s Atomix protocol 17

3.1 Principle of OptChainV2. fij is the fitness score between transaction i and
the j-th shard. The fitness-score array of transaction x is an element-wise
weighted sum of the fitness-score arrays of x’s parents (i.e., transaction d
and f). The weights (e.g., wd) depend on what fraction of input UTXOs
are from the parent transactions as shown in (b). 23

4.1 The blocks database size versus the chainstate database size 26

4.2 A snapshot hash is calculated based on the UTXO Merkle tree root and the
essential chain information hash. 27

4.3 The set intersection of the latest snapshot and the chainstate database is the
set of UTXOs never spent since the snapshot creation. The latest snapshot
is used to bootstrap new peers, and the chainstate database is used to verify
transactions and create new snapshots. 28

4.4 UTXO structure . 28

4.5 A new peer requests snapshot metadata, chunks, and tail blocks from an old
peer. 30

xi

4.6 An optimistic peer cannot differentiate the above two cases. SnB, TaB, and
TwB represent a snapshot block, a tail block, and a twig block respectively. 32

4.7 Upgrade through a soft fork. Hatched blocks are mined by upgraded peers,
and other blocks are mined by non-upgraded peers. 33

4.8 A fork occurs at the first descendant block of the snapshot block (SnB)
which an optimistic peer bootstrapped itself with. The upper branch is the
forking branch. 36

4.9 A fork occurs at an ancestor block of the snapshot block (SnB) where an
optimistic peer bootstrapped itself. The start time of snapshot synchroniza-
tion cuts a branch into a twig part and a trunk part. 37

4.10 Synchronization time. SnapshotSave (P) and SnapshotSave (O) represent
pessimistic SnapshotSave and optimistic SnapshotSave, respectively. 39

4.10 Bytes received by the new peer . 40

4.11 Bytes sent by the new peer . 40

4.12 Synchronization time . 41

4.13 The breakdown of synchronization time 42

4.14 Number of Chunks . 42

4.15 Number of UTXOs at different block heights 43

4.16 Snapshot storage demands . 43

4.17 Variations in Sunspent size and Sspent size for the snapshot created at the
600k block height . 44

5.1 Transaction verification versus execution time 46

5.2 Verification results sharing boosts performance. 49

5.3 Transaction life cycles. PPTs stand for Pending Parent Transactions. . . . 51

5.4 A concrete example of transaction processing under CTV 56

5.5 Removing txm triggers the removal of txn, txp and txq. Dotted transactions
in (b) are dequeued. 61

5.6 Comparison of throughput between ITV, sharded verification, and CTV . . 65

5.7 Performance under various configurations 66

xii

5.8 Dependency graph size . 67

5.9 Performance under faults. CTV(t) represents CTV with Tslow = t. 68

6.1 Distribution of parent transaction counts 71

6.2 The percentage of transactions with one parent 72

6.3 Request processing time (2 shards) . 73

6.4 An output UTXO of a dependent transaction and an output UTXO of an
ancestor transaction are consumed together. 75

6.5 An example of RGP2. Underlined transactions are vertices of the rooted
graph. 76

6.6 Transaction f is a partially spent ancestor of transaction x, and transaction
d is a totally spent ancestor of transaction x. 77

6.7 Influence of RGP parameters (16 shards) 81

6.8 Cross-shard transactions . 83

6.9 Dynamic shard loads (4 shards) . 84

6.10 DPV parallelizes the Atomix lock phase with dependent transaction signa-
ture verification. 86

6.11 Consolidation of Atomix . 88

6.12 The vast majority of cross-shard transactions are assigned to one of their
input shards under RGP2, and over 80% of cross-shard transactions have
2∼4 input shards (dataset D1). 89

6.13 Scalability . 92

6.14 Performance with light-dependency transactions (16 shards). The transac-
tion rate is 5k tps in the last two subfigures. 93

6.15 Performance with heavy-dependency transactions (16 shards). The trans-
action rate is 3k tps in the last two subfigures. 94

6.16 DPV saves more time for heavy-dependency workloads. 95

6.17 Performance under various network conditions (16 shards, 3k-tps transaction
rate) . 96

xiii

List of Tables

2.1 Blockchain sharding protocols . 18

5.1 The default setting . 64

6.1 Four transaction datasets . 82

6.2 Bitcoin transactions consuming UTXOs produced by their predecessors . . 85

xiv

Chapter 1

Introduction

1.1 Motivation

The past 14 years have witnessed the emergence and evolution of blockchains. Blockchain
applications have expanded from cryptocurrencies to smart contracts and Non-Fungible
Tokens (NFTs) [103], but blockchain technology has not reached its full maturity and
demands improvement in various aspects.

Compared with conventional banking systems, the core advantage of blockchains is
decentralization, which enables trust authority absence and censorship resistance [44]. The
cornerstone of maintaining decentralization is a large number of participants, so blockchains
should encourage new nodes to join the networks. However, the current bootstrapping
process of many blockchains requires new nodes to download all blocks and replay all
transactions since the genesis block [78], which takes days or even weeks, depending on the
hardware capacity and the network bandwidth [41][38][86].

In addition to slow bootstrapping, blockchains also suffer from low performance due
to their need for every node in the chain to verify and execute all transactions. For
example, the maximum throughput of Bitcoin [78] is 7 transactions per second [29][68],
and the number of Ethereum [105] is not substantially better—only 15 transactions per
second [7]. To improve the performance, various designs have been proposed—e.g., short-
ening block intervals [29][93], incorporating off-chain blocks [67] [68], allowing one miner
to consecutively propose multiple blocks [39], journaling aggregated transaction effects to
blockchains [32] [85], sampling nodes to participate in the consensus protocol [46], sharding
[71] [62] [107] [30], etc. Among these techniques, sharding is a very promising approach. It

1

has been widely used in distributed databases [26][24], extensively explored by blockchain
researchers[71] [62] [107] [30][2], and adopted by Ethereum 2.0 [35]. The high-level idea
of sharding is to partition a system into independent shards that concurrently process
disjoint subsets of the total workload, so that system performance can scale with the num-
ber of nodes. However, some existing designs prevent sharded blockchains from fulfilling
their full potential. First, within a shard, nodes unnecessarily repeat transaction verifica-
tion. Second, the common transaction placement algorithm creates too many cross-shard
transactions, which are more expensive to process than their single-shard counterparts.

1.2 Problem Statement

This thesis explores solutions to the bootstrapping and performance problems. Since shard-
ing is one of the most promising approaches to scalable blockchains, we seek performance
improvement over sharded blockchains.

The first problem addressed in this thesis is to facilitate the joining of new peers by
developing an efficient bootstrapping protocol. Although the current block synchroniza-
tion approach allows new peers to independently reproduce the up-to-date system state
without trusting other peers, it is particularly slow and unsustainable for two reasons:
1) a new peer has to verify every transaction, which is computationally intensive, and
2) blockchains grow longer when new transactions are appended to it, which means the
bootstrapping time increases over time. The challenges of designing a new bootstrapping
protocol for existing blockchains include security, backward compatibility, and storage over-
head minimization. Ethereum fast synchronization [48] and CoinPrune [73] both shorten
bootstrapping time through snapshot synchronization, but the former does not apply to
already-deployed blockchains and incurs high storage overhead, whereas the latter neither
detects corrupted data efficiently nor minimizes storage usage. The protocol proposed in
this thesis overcomes all the challenges.

The second problem addressed in this thesis is to improve the performance of individual
shards. Although sharding removes the duplication of work between shards, it does not
eliminate the unnecessary duplication of work within individual shards. Nodes in the same
shard run a consensus protocol to agree on the order of the blocks, and as long as the
nodes process the blocks in the agreed order, they will end up with the same system state,
effectively performing state machine replication (SMR) [90][52]. When processing a block,
a peer verifies and executes every enclosed transaction. Verifying transactions is two orders
of magnitude more expensive than executing transactions due to the involvement of digital
signatures. With various previous approaches to optimizing consensus [61][30][46][84][89]

2

and block dissemination [107][70], transaction verification becomes a newly exposed bottle-
neck [95][72]. Sharded verification of Red Belly Blockchain [28] and signature verification
sharding of Mir-BFT [95] both improves individual shard performance by sharing verifi-
cation results, but the work in this thesis is the first attempt to incorporate transaction
dependencies, which is also the main challenge of this work.

The last problem addressed in this thesis is to reduce cross-shard transaction overhead
in sharded blockchains. Because each shard usually stores a disjoint subset of the system
state [62] [107] [30] [2] [55], transactions modifying more than one subset inevitably incur
cross-shard communication. Moreover, since blockchains operate in trustless environments,
expensive digital signatures must be employed to ensure the authenticity and integrity of
cross-shard messages. The communication and signature overheads make a cross-shard
transaction consume more network and CPU resources than a single-shard transaction.
Nonetheless, as the most common transaction placement algorithm [71][62][107][30], hash-
ing placement creates a huge number of cross-shard transactions, e.g., 95% of Bitcoin
transactions become cross-shard in a 16-shard system. With so many cross-shard trans-
actions, sharded blockchains can hardly approach their full potential. The challenges of
designing a transaction placement algorithm are twofold. First, the algorithm must be
able to reduce cross-shard transactions to a very low level without causing load imbalance.
Second, the algorithm should not introduce extra trust entities. Previous work on reducing
cross-shard transactions either relies on additional trust points or applies only to account-
balance blockchains. Thus this thesis proposes a novel transaction placement algorithm
that is fully decentralized and applies to UTXO-based blockchains.

1.3 Approach

Bootstrapping

We noticed that blockchains share some similarities with Write-Ahead Logs (WAL) in
database management systems (DBMS) [77] [97]. They both record changes to the system
state sequentially and are replayed during either initial synchronization or recovery. How-
ever, many popular DBMS (such as Postgres, MySQL, and Oracle) deploy checkpointing
to shorten the recovery time [91][19][3], but blockchains like Bitcoin are still missing this
feature and are confronted with costly bootstrapping.

In this thesis, SnapshotSave, a snapshot synchronization mechanism, is introduced for
the fast bootstrapping purpose. The data structures used in SnapshotSave enable old
peers to efficiently create snapshots of their states and deliver snapshots to new peers. The

3

bootstrapping protocol is carefully designed to ensure snapshot integrity. SnapshotSave
also minimizes snapshot storage overhead by making use of the system state database.
Specifically, it only stores a part of the snapshot that has been changed since the creation
of the last snapshot. I have implemented and evaluated a prototype of SnapshotSave. The
results show that, in our experimental setting, SnapshotSave reduces the synchronization
time from 7.97 hours to 2.59 minutes and saves 40% of storage space. Although we describe
SnapshotSave in the context of Bitcoin, it also applies to other UTXO-based blockchains.

Individual Shard Performance

To implement SMR within a shard, nodes only need to execute transactions in the same
order. Verifying transactions is not necessary. In fact, the sole purpose of verifying a
transaction is to determiner whether the transaction should be executed or disregarded.
Therefore, this thesis proposes Collaborative Transaction Verification (CTV), which en-
ables each peer to verify fewer transactions without compromising fault tolerance. CTV
improves performance by delegating transaction verification of a block to a verification
committee, which is a subset of peers in the shard. Peers in different verification com-
mittees verify transactions in parallel, so we are faced with the challenge of respecting
transaction dependencies to ensure all peers reach the same system state despite different
transaction verification orders. To overcome this challenge, we utilize a dependency graph
of pending transactions. Another challenge is fault tolerance, i.e., faulty peers may refuse
to share verification results and cause other peers to wait indefinitely. To tackle this issue,
we employ independent transaction verification as a slow path and limit how long a peer
waits for verification results. Evaluation results with real-world workload show that CTV
can boost individual shard performance by 2.6x.

Cross-Shard Performance

We observed that transactions with (transitive) dependencies between them are more likely
to be referenced together by future transactions than unrelated transactions. This is be-
cause a (transitive) transaction dependency reflects the connection between users involved
in the transactions, and users with connections are more likely to be collaborate in the
future than users without connections, especially considering that a user may control mul-
tiple identities and transfer cryptocurrencies between them. Based on this observation, we
propose Rooted Graph Placement (RGP). RGP tends to place a transaction to the shard
that includes most of its ancestor transactions so that its future descendant transactions
will have a better chance of executing within a single shard.

4

RGP can reduce cross-shard transactions but not eliminate them, so we also devise
two techniques for efficiently processing the remaining cross-shard transactions. The first
technique is Dependent Transaction Pre-verification, which parallelizes the atomic com-
mit protocol of cross-shard transactions with the signature verification of their dependent
transactions. This design shortens the execution latency of the dependent transactions.
The second technique utilizes the fact that RGP places most cross-shard transactions to
one of their input shards. For such shards, the request for locking input UTXO(s) and the
request for generating output UTXO(s) can be merged into one message, which reduces
signatures and messages involved in cross-shard transaction processing.

1.4 Contributions

This thesis makes three main contributions:

1. It presents a snapshot synchronization approach that significantly shortens the boot-
strapping time of new joining peers. Snapshots are stored efficiently by making use
of the system state database.

2. This thesis proposes a transaction verification result sharing mechanism that can
boost the performance of individual shards in sharded blockchains. It is the first
work that considers transaction dependencies while allowing nodes in the same shard
to verify transactions in parallel.

3. This thesis presents a novel transaction placement algorithm that can significantly
reduce cross-shard transactions without introducing extra trust points. Furthermore,
the cost of the remaining cross-shard transactions are lowered by two techniques de-
veloped in this thesis. These designs greatly lessen the impact of cross-shard trans-
actions on the performance of sharded blockchains.

1.5 Organization

The rest of this thesis is organized as follows: Chapter 2 provides background to our
research. Chapter 3 compares and contrasts our work with related studies. Next, Chapters
4, 5, and 6 describe the design and evaluation results of the above contributions in detail,
respectively. Finally, Chapter 7 concludes this thesis and gives future research directions.

5

Chapter 2

Background

In this chapter, we will first describe conventional blockchain architectures, Proof-of-Work,
and the tradeoff between consensus and performance. Then we will introduce blockchain
sharding, which lays the basis for our work in Chapters 5 and 6.

2.1 Blockchain Architecture

2.1.1 Block and Blockchain

A block consists of a header and a body, which is a list of transactions. A block header
contains metadata about this block, particularly the previous block header hash, so that the
blocks can be ordered and form a blockchain. Figure 2.1a illustrates the block structure of
Bitcoin. Transactions are hashed into a Merkle tree, whose root is part of the block header.
A block header hash refers to the double SHA256 hash of the block header. Assuming
SHA256 is collision-resistant[40], this block structure ensures that any tampering with a
header field or a transaction always results in a different block header hash.

A blockchain is a singly linked list of blocks whose previous block header hash fields
point to their parent blocks as shown in Figure 2.1b. The height of a block refers to the
distance between this block and the genesis block, whose block height is zero. A blockchain
without block bodies is called a header chain.

6

Body

version

previous block header hash

 Merkle root

timestamp

nBits

nonce

coinbase tx{extraNonce, output coins}
tx1{input coins, output coins}
tx2{input coins, output coins}
...

M
er

kl
e

tre
e

this block header hash

SH
A

256 2

Header

(a) Block structure

...

block body

0

this hash

...

block body

prev hash

this hash

...

block body

prev hash

this hash

...

block body

prev hash

this hash

...

Height 0 Height 1 Height 2 Height 3

(b) Blockchain structure

Figure 2.1: Block and blockchain

2.1.2 Unspent Transaction Output (UTXO) Model

As block bodies are made up of transactions, a blockchain is essentially a ledger recording
transaction history. Every node in the network executes the transactions in their apprear-
ance order on the ledger and ends with the same system state. Unlike conventional banking
systems, cryptocurrencies like Bitcoin use a UTXO model to express their system states
instead of the account-balance model. Accordingly, a transaction spends input UTXOs
and generates output UTXOs. Figure 2.2 demonstrates the execution of a Bitcoin trans-
action. Bob sends 1.5 BTC to Alice by creating a transaction that spends his 2-BTC
UTXO and generates a 1.5-BTC UTXO for Alice as well as a 0.5-BTC UTXO for himself.

7

Once the transaction is executed, the 2-BTC UTXO (i.e., UTXO B in Figure 2.2) does
not exist anymore. Every transaction consumes some input UTXO(s), except for coinbase
transactions, which spend nothing and credit output UTXOs to nodes creating blocks.

old system state new system state

UTXO A: value = 1 BTC
 owner = Alice
UTXO B: value = 2 BTC
 owner = Bob

UTXO A: value = 1 BTC
 owner = Alice
UTXO C: value = 0.5 BTC
 owner = Bob
UTXO D: value = 1.5 BTC
 owner = Alice

Transaction
Input:
UTXO B

Output:
UTXO C (0.5 BTC, Bob)
UTXO D (1.5 BTC, Alice)

Figure 2.2: Transaction execution in the UTXO model

2.1.3 Proof-of-Work (PoW)

To prevent Sybil attacks [33], Proof-of-Work (PoW) has been invented[78]. It guarantees
that the number of blocks a node can find is proportional to the computing power under
its control, so forging identities does not increase the block reward received by a node.
Specifically, a block is valid only if its header hash is lower than a target value:

SHA2562(version||Hprev||Merkle root||timestamp||nBits||nonce) < T (2.1)

where SHA2562(·) stands for performing the SHA256 hash calculation twice; “||” represents
the concatenation operation; Hprev is the previous block header hash; the other fields
correspond to the block header structure in Figure 2.1a. The target value T is stored in
the nBits field, a 32-bit scientific-notation-like representation of a 256-bit unsigned integer.
For example, the current Bitcoin target value starts with 76 bits of zeros1, so, on average,

1The nBits (labeled as Bits in [13]) value of Block 732770 (mined on April 20, 2022) is 386,529,497,
which translates to a 256-bit hash value with 76 leading zeros.

8

one out of 276 hash values satisfies Equation 2.1. Because hashing is irreversible, nodes
have to adjust some fields and calculate the block header hash repetitively to find a valid
block header hash. The three adjustable fields in a block are the nonce and timestamp
in its header and the extraNonce in its coinbase transaction. An extraNonce is, in fact, a
signature script. Its value can vary because a coinbase transaction does not need a valid
script to redeem previous transaction output [10].

The process of appending blocks to the blockchain is referred to as mining, and nodes
that dedicate themselves to appending blocks are called miners. Mining is extremely com-
putationally intensive due to PoW [104]. Statistically speaking, the more computational
resource a miner can control, the more blocks it will find. Details about the statistical
analysis can be found in our previous work [88]. Miners are incentivized to mine blocks be-
cause they can put themselves as the receivers of the coinbase transactions’ output UTXOs.
Each block contains only one coinbase transaction, i.e., the first transaction in the block
body, as shown in Figure 2.1a.

Proof-of-Stake (PoS)

One problem with PoW is that it wastes electricity and computing resources on useless
hash calculations. Researchers are searching for energy-efficient alternatives [18]. Proof-of-
Stake (PoS) is a possible substitute. PoS selects block proposers based on the stakes that
miners hold in the system [5] [58]. While PoW is secure under the assumption that not
sufficient computing power holders will collude in an attack, PoS assumes that not sufficient
stakeholders wish to collude in an attack. The latter is sensible because an attack devalues
the cryptocurrency and thus reduces the wealth of stakeholders, especially those with a
large number of stakes. If this assumption is subverted, then there is no need for the
cryptocurrency to exist because it is controlled and mostly owned by attackers. One issue
with PoS is initial mining, i.e., how to mine the first block while nobody holds any stakes.
PPCoin solves this issue using PoW [60]. In addition, PoS is known to be vulnerable to the
nothing-at-stake problem [106], which may lead to double-spending [25] whenever there is
a fork in the blockchain.

2.1.4 Peer-to-Peer Network and Fork

Each node connects to a few other nodes referred to as the peers of this node. After a miner
solves the PoW puzzle, it gossips the block to all of its peers, which in turn forward the
block to their peers. Malicious nodes may tamper with the block (i.e., put themselves as

9

the output UTXO receiver in the coinbase transaction), but this will invalidate the PoW,
causing others to detect the tampering. Once a node receives a valid block, it appends the
block to its local copy of the blockchain.

A
B

CN

accept B3a

accept B3b

B3a
B1 B2

B3a
B3b

B1 B2
B3a
B3b

M
B1 B2

B3a
B3b

B1 B2
B3b
B3a

B1 B2
B3b
B3a

B3b

Figure 2.3: Blockchain fork

However, due to the probabilistic nature of PoW and network delay [31], there might
be more than one miner finding valid blocks of the same height. Figure 2.3 illustrates such
a scenario. Suppose miner M mines block B3a, and at roughly the same time, miner N
mines block B3b. Because of the network delay, neither of the two blocks reaches all nodes
before the other: block B3a reaches node A and node B earlier, but block B3b arrives at
node C earlier. After the two blocks arrive at all nodes, each node receives two blocks of
the same height. From the perspective of an individual node, the blockchain forks off. In
such cases, A node temporarily accepts the first received block. Future blocks may extend
either of the two branches. If some nodes execute transactions on one of the branches while
the other nodes execute those on the other branch, the states of nodes will diverge. The
longest-chain rule eliminates this risk by requiring nodes to accept blocks on the longest
branch. In the above example, as long as one of the two branches outgrows the other,
every node will deem it the blockchain, hence a consensus.

10

Other reasons for blockchain forks include malicious attacks and software upgrades.
An adversary can intentionally fork the blockchain to switch the longest chain to a branch
benefiting himself. A software upgrade may also introduce a fork if upgraded peers reject
blocks from non-upgraded peers, or vice versa. If all peers eventually agree on the same
branch, the fork is called a soft fork [69]. Otherwise, it is called a hard fork.

2.1.5 Tradeoff between Consensus and Performance

In Bitcoin, the PoW target value is automatically adjusted so that, on average, one block
appears per 10 minutes. Because the block size is limited to 1MB, and an average trans-
action takes 250 bytes, Bitcoin can achieve at most 7 transactions per second. However,
the 1MB block size and the 10-minute block interval are chosen with consensus and se-
curity in consideration. We explain the tradeoff in this section and show that improving
performance by adjusting the block size and the block interval has an upper bound far
from satisfactory.

The two most straightforward approaches to improve throughput are 1) increasing block
size and 2) reducing block interval. The former has already been taken by BitcoinCash,
which increases the block size to 8MB [8]. However, if a node has not learned all blocks on
the longest chain by the time it finds a valid block, it could extend an alternative branch or
even create a new fork. Consequently, larger block size and faster block creation increase
fork rate and attackers’ chance to sabotage the blockchain under the longest-chain rule
because more honest nodes waste their computational power on forking branches. In other
words, increases in the block size or decreases in the block interval do not translate to linear
increases in throughput as fork rate also increases, and transactions enclosed by off-chain
blocks are not considered to be in the ledger.

Decker et al. established a model for the Bitcoin fork rate and proved that network
propagation delay is the primary cause for blockchain forks [31]. They also verified that
connecting one node to all the other nodes in the network can reduce the fork rate by
53.41%. Based on this research, Croman et al. [29] observed that there is a throughput
limit of scaling blockchain systems by tuning the blockchain parameters—the block size
and interval must satisfy the following inequality:

block size

X% effective throughput
< block interval (2.2)

where the metric “X% effective throughput” is defined as (block size)/(time taken for X%
of the nodes to receive a full block) [29]. In 2016, 90% effective throughput of Bitcoin

11

corresponds to merely 55 Kbps (27.5 tx/sec). The number is subject to network size and
connectivity. X% effective throughput drops if new nodes join the network but connect to
only a few peers. Therefore, it is a widely held view that significant throughput improve-
ment demands changes in the fundamental consensus mechanism.

2.2 Blockchain Sharding

Figure 2.4 illustrates the architecture of sharded blockchains. The key idea of sharding is to
partition nodes into shards and distribute transaction processing work among shards. Thus
each shard maintains a blockchain recording its subset of transactions. Since the per-node
workload drops, the throughput of the system increases. Usually, the system state is also
partitioned to reduce storage pressure. A blockchain sharding protocol mainly comprises
three key components: 1) a secure node partitioning algorithm, 2) an intra-shard consensus
protocol, and 3) an atomic commit protocol for cross-shard transaction processing. These
components will be elaborated in sections 2.2.1, 2.2.2, and 2.2.3.

2.2.1 Node Partitioning

There are two challenges regarding node partitioning: establishing node identities in a
trustless environment, and dispatching nodes to shards in a bias-resistant way (i.e., nodes
should not be able to select shards depending on their preferences). The rest of this section
describes the node partitioning methods used in various blockchain sharding protocols.

Elastico [71] is the first sharding protocol for blockchains. In Elastico, nodes first
establish their identities in a Sybil-attack-resistant way, and then form shards based on
randomness. In addition, shard membership is reconfigured periodically (i.e., at the start
of every epoch) so that slowly-adaptive attackers do not have enough time to corrupt a
whole shard [83]. Specifically, a node locally chooses its identity (IP, PK), which is an IP-
address-public-key pair for authenticated communication. Since there is no PKI to trust,
a node must prove to other nodes that its identity is not a Sybil in other approaches, one
of which is to show that the identity is backed by some computational power (i.e., PoW).
Elastico takes the PoW approach and requires each node to search for a nonce that satisfys
the following PoW puzzle:

H(epochRandomness||IP||PK||nonce) ≤ target (2.3)

where H(·) stands for hashing, and epochRandomness is a random string generated at the
end of the previous epoch to prevent nonce from being precomputed.

12

UTXO

tx1 tx2 tx3 tx4 tx5 tx6 ...

node1 node2 node3 node4 node5 node6 node7 node8

(a) Before sharding

UTXO1

tx2 tx3 tx6

UTXO2

tx1... tx4 tx5

shard2

...

node1 node3 node6 node7 node2 node4 node5 node8

shard1

(b) After sharding

Figure 2.4: The architecture of sharded blockchain systems

Once identities are established, nodes locally determine shard membership based on
the matching between shard IDs and the last few bits of the hash values in Equation 2.3.
Because of the diffusion property of hash functions, a node belongs to different shards
in different epochs with high probability, so attackers cannot predict shard membership.
Proof-of-Stake and Proof-of-Space [4][34] can serve as alternatives to PoW in identity
establishment.

OmniLedger [62] is a later blockchain sharding protocol and addresses several challenges
that Elastico leaves unsolved. One of such challenges is that Elastico’s shard formation is
not strongly bias-resistant, because nodes can selectively discard valid nonces in Equation
2.3 in order to search for a hash value that will map them to desired shards. To ad-

13

dress this issue, OmniLedger employs a distributed-randomness generation protocol called
RandHound [98]. A random number produced by RandHound guarantees to include the
contribution of at least one honest participant, so the random number is unbiasable. The
output of RandHound is used for mapping nodes to shards, hence unbiasable node-to-shard
assignment, which ensures that the ratio between malicious and honest nodes in any given
shard approximates to the ratio across all nodes with high probability.

RapidChain [107] appears after OmniLedger. It adopts the paradigm of PoW-based
identity establishment and distributed-randomness-based node-to-shard assignment. How-
ever, to reduce the communication overhead, RapidChain samples some nodes to partici-
pate in the distributed randomness generation protocol.

AHL extends sharding to permissioned blockchains. Unlike permissionless blockchains
(e.g., Bitcoin [78] and Ethereum [105]), permissioned blockchains (e.g., IBM HyperLeder
[20]) can control who participate in the system—nodes typically have established identities
when joining the system. Thus establishing node identities is irrelevant to permissioned
blockchains, but mapping nodes to shards is still a challenge. AHL leverages Trusted Exe-
cution Environments (TEEs) (e.g., Intel SGX [74]) to generate unbiased random numbers.
One property of TEE is that it provides verifiable execution results for code that it protects,
so nodes’ behaviour cannot deviate from the protected code without being detected.

2.2.2 Intra-Shard Transaction Processing

Once shard membership is established, each shard receives and processes transactions is-
sued by clients. All nodes in the same shard as supposed to maintain the same blockchain
locally and be in the same system state, so they are essentially replicas of each other. Since
a shard may contain malicious nodes that fail arbitrarily (e.g., unresponsive or equivocal), a
Byzantine-fault-tolerant (BFT) consensus protocol is indispensable for a consensus among
honest nodes about the blockchain content. Although PoW is able to tolerate Byzantine
failures, it is not energy-efficient. More importantly, PoW does not allow blocks of different
heights to be mined in parallel because the PoW puzzle of a block is only available after
the previous block is mined. This serialized approach impairs the blockchain growth speed
and subsequently the throughput of individual shards. On the other hand, conventional
BFT protocols cannot tolerate Sybil attacks, but the node identity establishment mecha-
nism in section 2.2.1 has already ruled out Sybil attacks, so conventional BFT protocols
are applicable within shards. Most blockchain sharding protocols employ the Practical
Byzantine Fault Tolerance (PBFT) [22] protocol for intra-shard consensus, so we describe
PBFT followed by various optimizations for scaling it in the rest of this section.

14

Proposed in 1999, PBFT is the first efficient solution to the Byzantine fault tolerance in
a weakly synchronous environment, e.g., the Internet. To tolerate up to f malicious nodes,
PBFT requires 3f + 1 nodes. Thus blockchain sharding protocols usually assume that
the malicious node ratio in a shard is less than or equal to ⌊ f

3f+1
⌋. In PBFT, one node is

distinguished as the primary, and the others are backups. The primary collects transactions
from clients, batch them into blocks, and starts a three-phase (i.e., pre-prepare phase,
prepare phase, and commit phase) PBFT instance for each block. Figure 2.5 illustrates
the PBFT protocol in a 4-node environment (i.e., f = 1) where the last backup fails. Note
that all messages are signed to ensure message integrity.

primary

client

backup

backup

backup

pre-prepare prepare commit

x

request reply

Figure 2.5: PBFT

In the pre-prepare phase, the primary multicasts a PRE-PREPARE message (possibly car-
rying a block) to backups to inform them about a proposal that binds a block to a specific
height. Then in the prepare phase, backups multicast the information they received to
the other nodes so that every node can detect how many other nodes have received the
same information. Both the primary and the backups may equivocate, so a node must re-
ceive sufficient consistent PREPARE messages from distinct nodes before proceeding further.
Specifically, a node keeps collecting PREPARE messages until the messages can compose a
prepared certificate, which comprises one PRE-PREPARE message and 2f matching PREPARE

messages (i.e., PREPARE messages must include the same proposal as in the PRE-PREPARE

message). A prepared certificate is proof that 2f +1 nodes (one primary plus 2f backups)
have learned about the proposal. Two conflicting proposals that bind two different blocks
to the same height cannot both have prepared certificates because that requires at least
(2f + 1) + (2f + 1) − (3f + 1) = f + 1 nodes to equivocate, which violates the assump-
tion that at most f nodes are malicious. Once a node holds the prepared certificate of a
proposal, the node proceeds to the commit phase of the proposal.

The goal of the commit phase is to make sure that 2f + 1 nodes hold the prepared
certificates of a proposal, which is a crucial condition for the proposal to survive primary

15

node changes. To achieve the goal, every node multicasts a COMMIT message to inform
other nodes that it has a prepared certificate for the proposal. Once a node has collected
2f + 1 COMMIT messages, it deems the proposal as committed, which means the block is
permanently bound to the block height. In other words, the block’s order in the blockchain
has been determined, and future blocks will not be ordered to the same height. It is worth
mentioning that the PBFT instances of proposals with different block heights may proceed
in parallel.

By binding blocks to distinct heights, PBFT establishes a linear order of blocks. Each
node can execute transactions in the linear order and reach the same system states as
other nodes. After executing a transaction, a node sends the execution results to the
corresponding clients, as shown in the reply phase in Figure 2.5. Since malicious node
may reply dishonestly, a client must waits for f + 1 consistent replies before trusting the
execution results. The number f + 1 ensures that at least one honest node has executed
the transaction and generated the result.

Due to the all-to-all multicast in the commit phase, the message complexity of PBFT
is O(n2), where n is the number of nodes. Thus PBFT is very expensive in large consensus
groups [102]. Instead of applying PBFT directly like Elastico [71], other sharding protocols
have proposed various optimizations to reduce the overhead of PBFT. AHL [30] utilizes
TEEs to simplify PBFT. TEEs prevent nodes from equivocating, so PBFT can tolerate f
malicious nodes with only 2f+1 nodes instead of 3f+1 nodes, hence a lower communication
cost. Byzcoin [61] employs collective signing [99] and communication trees [21][101] to
reduce both the signature verification overhead and communication overhead of PBFT.

2.2.3 Cross-Shard Transaction Processing

State partitioning incurs cross-shard transactions, which modifies the state of two or more
shards. A shard storing at least one input UTXO of a cross-shard transaction is called an
input shard of the transaction. Similarly, the shard processing the transaction and storing
the output UTXOs is called the output shard of the transaction. A cross-shard transaction
has only one output shard because the output UTXOs are likely to be consumed together
in the future and thus should be stored in the same shard.

To ensure state consistency between shards, cross-shard transactions rely on atomic
commit protocols to be either unanimously committed or unanimously aborted. The prob-
lem of guaranteeing transaction atomicity dates back to the late 1970s [64][51]. Among
various protocols, the two-phase commit (2PC) protocol [64] is the most widely used
[53][92]. OmniLedger [62] adopts the “two-phase” concept and invents Atomix for sharded

16

blockchains. In trustless environments, it is challenging to find an atomic commit protocol
coordinator, whose misbehavior may lead to forever-locked UTXOs. OmniLedger utilizes
clients as the coordinators of their own transactions so that coordinators are incentivized
to conform to the protocol.

Cross-shard transaction tx

Input:
UTXO1 (Shard1)
UTXO2 (Shard2)

Output:
UTXO3 (Shard3)

(a) A cross-shard transaction

Client

Shard1 Shard2 Shard3

LOCK <tx>

LO
C

K
 <

tx
>

Client

Shard1 Shard2 Shard3

LOCK-O
K

<sig
s 1>

LO
C

K
-O

K
<s

ig
s 2

>
Client

Shard1 Shard2 Shard3

COMMIT

<tx, sigs1 , sigs2 >

UTXO1 UTXO2 UTXO1 UTXO2 UTXO3

(b) Atomix (successful scenario)

Figure 2.6: An example of OmniLedger’s Atomix protocol

The basic idea of Atomix is illustrated in Figure 2.6. A client requests the input shards
to lock the input UTXOs (i.e., mark the UTXOs as spent), and the input shards respond
with signed lock results. If all input shards have successfully locked their respective input
UTXOs, the client sends the output shard a COMMIT request along with signatures from
the input shards as proof of successful locking. Upon receiving the COMMIT request, the
output shard creates the output UTXO(s) in its system state, provided that all signatures
of the input shards are valid. If any input shard fails to lock an input UTXO, the client
requests the other input shards to unlock their respective input UTXOs with the signed
response from the fail shard as proof of unsuccessful execution.

Other blockchain sharding protocols proposed various atomic commit protocols but gen-
erally follow the “two-phase” paradigm. RapidChain [107] processes a cross-shard transac-
tion by splitting it into multiple sub-transactions, each of which spends UTXOs that reside
in one shard (i.e., every sub-transaction has only one input shard). These sub-transactions

17

first move the input UTXOs to the output shard and then complete the original trans-
action in the output shard. AHL [30] incorporate 2PC and leverage an entire Byzantine
fault-tolerant committee as the coordinator. SharPer [2] claims that AHL cannot process
cross-shard transactions in parallel due to the single coordinator committee, so it utilizes
individual nodes as coordinators instead. Specifically, every node serves as its own coordi-
nator by exchanging messages with the other nodes in all involved shards and deriving the
commit decisions locally. Such decentralized approaches have also been explored by Cer-
berus [54] (a series of cross-shard transaction processing protocols) and Byshard [55] (a
framework for the study of sharded resilient systems). However, decentralized coordination
usually incurs high message complexity. Elastico [71] is fundamentally different from other
sharding protocols in that it does not partition the system state, i.e., every Elastico peer
still maintains the whole system state. As a result, there are no cross-shard transactions
in Elastico. Table 2.1 summarizes the above sharding protocols.

Table 2.1: Blockchain sharding protocols

Protocol Intra-shard Consensus Atomic commit protocol Coordinator

Elastico PBFT N/A N/A
OmniLedger PBFT Atomix Client
RapidChain Synchronous BFT Transaction splitting Output shard leader1

AHL PBFT 2PC Dedicated committee
SharPer2 PBFT Decentralized flattened protocol Individual nodes

1 The PBFT primary node in the output shard of the cross-shard transaction.
2 SharPer supports networks consisting of either crash-only or Byzantine nodes. Here we consider
SharPer only in Byzantine-faulty networks, since all other sharding protocols operate under such
environments.

2.3 Chapter Summary

In this chapter, we have described the architectures of conventional blockchains and sharded
blockchains, both of which are crucial in understanding the rest of this thesis. The core of
conventional blockchains are consensus protocols such as PoW, but they also pose a limit
for performance improvement. Sharded blockchains are proposed to overcome this limit.
Generally, nodes establish identities using PoW or other Sybil-attack-resistant approaches,
and partition themselves based on unbiased randomness. Within a shard, nodes run a
Byzantine-fault-tolerant consensus protocol such as PBFT to order transactions. To ensure

18

state consistency between shards, various atomic commit protocols were proposed, but they
are mostly derived from 2PC.

19

Chapter 3

Related Work

Related work on new peer bootstrapping, transaction verification result sharing, and trans-
action placement will be described in this chapter. The key differences between the related
work and our work will be summarized.

3.1 Fast Bootstrapping

Ethereum[105], CoinPrune[73], OmniLedger [62], and Vault [66] employ snapshots to re-
duce the bootstrapping overhead, and so does our work. However, our design still involves
different features.

Ethereum fast synchronization [48] allows new nodes to synchronize with the Ethereum
network fast by downloading a recent snapshot of the system state. Vitalik Buterin foresaw
the need of fast synchronization while designing Ethereum, so a Ethereum block header
includes a state root field which is the root hash of amerkle-patricia-tries that stores the en-
tire state of the system [42]. Therefore, new nodes can verify the integrity of a downloaded
snapshot using the corresponding state root. However, early deployed blockchains such as
Bitcoin, Litecoin [49], and Dogecoin [47] do not include a state root field in their block
header structures. Our work SnapshotSave can equip such blockchains with fast bootstrap-
ping without resorting to hard forks because we carefully place snapshot hashes in coinbase
transactions, which includes a field that can hold arbitrary data. The second difference is
that Ethereum creates a snapshot for every block, whereas we creates one snapshot per
snapshot period (e.g., every 1000 blocks), hence less computational overhead. Last but
not least, Ethereum stores multiple recent snapshots (i.e., snapshots corresponding to the

20

latest 128 blocks [42][17]), though unchanged data are referenced instead of copied. On
the other hand, our approach stores only the latest snapshot and takes advantage of the
system state database to reduce storage consumption.

Our work shares the most similarities with CoinPrune [73], but CoinPrune stores the
full recent snapshot, whereas we make use of the existent system state database and pro-
pose a “copy-on-write” snapshot storage strategy to avoid wasting resources on duplicated
data. Furthermore, SnapshotSave downloads less data if a new peer’s neighbors collectively
offer a corrupted snapshot. Because CoinPrune downloads the whole snapshot before the
header chain, the new peer cannot determine that a snapshot does not match the snap-
shot hash stored on the header chain until it downloads the whole snapshot. In contrast,
SnapshotSave downloads the header chain first and checks the chunk hashes against the
on-chain snapshot hash. By the time the peer started downloading chunks, it is guaran-
teed to have the correct chunk hashes. If a corrupted chunk is received, the new peer can
detect it immediately and re-download only the problematic chunk. Lastly, in CoinPrune,
after a snapshot block (referred to as pulse block in CoinPrune) is created, subsequent
blocks within a time window have to reconfirm the snapshot to prevent adversaries from
submitting invalid snapshots to the blockchain. On the other hand, SnapshotSave exploits
blockchains’ intrinsic tie-breaking rules (i.e., longest-chain rule) to secure snapshots.

OmniLedger [62] is a sharding protocol aiming at improving blockchain performance.
In the bootstrapping part, it also employs snapshots. However, OmniLedger commits all
UTXOs to the blockchain when creating a snapshot, whereas SnapshotSave commits only
a snapshot hash. Like CoinPrune, OmniLedger does not utilize the system state database
to avoid storing duplicate data either. Moreover, because OmniLedger is incompatible
with existing blockchains, the authors did not consider backward compatibility when de-
signing the bootstrapping strategy. Besides, the PBFT-based consensus [23][61] protects
OmniLedger from the forking issue, whereas SnapshotSave is compatible with existing
blockchains and incorporates fork-tolerant mechanisms.

Vault [65] [66] minimizes the bootstrapping cost for nodes in Algorand [46], which is a
permissionless account-balance blockchain system. To achieve scalability, Algorand selects
a committee from the total set of nodes to participate in the consensus protocol instance
of a block. However, this design makes bootstrapping new nodes particularly challenging.
Before trusting the system state information inside the latest block, a new node must be
convinced that the peers whose signatures appear in the block’s certificate are indeed the
committee members chosen by cryptographic sortition. Checking committee membership
of a block requires a seed from the previous block, and the seed is valid if and only if the
previous block is valid. Consequently, a new node must verify the committee membership
and committee signatures of all blocks before downloading the latest system state. Vault

21

changes the seeding mechanism such that a new node only needs to very a subset of blocks.
This approach is quite specific to Algorand, thus inapplicable to many other blockchains.

3.2 Transaction Verification Result Sharing

Both sharded verification from Red Belly Blockchain [28] and signature verification sharding
(SVS) from Mir-BFT [95] have the same high-level idea as our Collaborative Transaction
Verification (CTV)—a transaction only needs to be verified by f + 1 peers in the fault-
free scenario. Sharded verification maps each transaction to f + 1 primary verifiers and f
secondary verifiers. Secondary verifiers only verify the transaction when primary verifiers
cannot get a unanimous verification result. In their experiments, transaction dependencies
are handled on the client-side, i.e., clients wait for a parent transaction to execute before
they send a child transaction. This experimental setting ensures that peers never receive
a transaction whose parent transactions are pending. Therefore, sharded verification does
not include a transaction dependency-tracking feature. Mir-BFT does not track transaction
dependencies either.

The main contribution of both Red Belly Blockchain and Mir-BFT is on designing
scalable BFT protocols, with sharded verification or SVS as an optimization. While
scalable-BFT-based blockchains may be more secure than sharded blockchains, the for-
mer cannot achieve linear performance growth as peers increase. Also, compared with a
whole blockchain network, individual shards are significantly smaller, so the network over-
head from exchanging verification results is much more manageable. Therefore, we choose
to improve sharded blockchains.

Dividing a shard further into multiple smaller sub-shards can also boost system perfor-
mance, but at the cost of jeopardizing fault tolerance, especially when the original shard
is already small. In contrast, CTV does not compromise fault tolerance—peers will rely
on the slow path if the fast path fails due to faulty peers, which will be detailed in Section
5.2.

3.3 Cross-shard Transaction Reduction

Cross-shard transaction reduction is respectively achieved through transaction placement in
UTXO-based blockchains, and through account placement in account-balance blockchains.
In this section, we review the previous works in both scenarios.

22

Transaction Placement in UTXO-Based Blockchains

The hashing placement algorithm places transactions to shards based on prefix matching
between transaction IDs and shard IDs. Because transaction IDs are hash values (e.g.,
SHA256 outputs in Bitcoin [78]), which uniformly distribute over the output range of the
corresponding hash function [96], hashing placement is equivalent to placing transactions
randomly. In contrast, our Rooted Graph Placement (RGP) algorithm takes transaction
dependencies into account.

b

c d

fe

[fa1, fa2]

x

[fb1, fb2]

[fc1, fc2] [fd1, fd2]

[fe1, fe2]

[fx1 = wd fd1 + wf ff1,
fx2 = wd fd2 + wf ff2]

a

[ff1, ff2]

(a) Transaction graph

Transaction f

output
UTXO4
UTXO5
UTXO6

input
UTXO1
UTXO2

Transaction d

output
UTXO2
UTXO3

input
UTXO0

Transaction x

output
UTXO7

input
UTXO3
UTXO4
UTXO5

wd = 1/2

wf = 2/3

(b) Weights of parent transactions

Figure 3.1: Principle of OptChainV2. fij is the fitness score between transaction i and the
j-th shard. The fitness-score array of transaction x is an element-wise weighted sum of the
fitness-score arrays of x’s parents (i.e., transaction d and f). The weights (e.g., wd) depend
on what fraction of input UTXOs are from the parent transactions as shown in (b).

OptChainV21 [80] is a client-side transaction placement algorithm for UTXO-based
sharded blockchains. To reduce cross-shard transactions, OptChainV2 builds a graph with
transactions as vertices and transaction dependencies as edges. OptChainV2 associates
every transaction with a fitness-score array, each element of which reflects the fitness be-
tween the transaction and the corresponding shard. Based on PageRank [82], OptChainV2
computes a child transaction’s fitness-score array as an element-wise weighted sum of
its parents’ fitness-score arrays, as shown in Figure 3.1. To account for load balance,
OptChainV2 divides fitness scores by the corresponding transaction partition sizes and re-
quires clients to frequently sample shards for communication latency and transaction queue

1The original algorithm is called OptChain [79]. We have identified a shortcoming of it, leading to
the authors updating their paper accordingly. We have summarized the difference between OptChain and
OptChainV2 in [87].

23

length. There are three main differences between OptChainV2 and our RGP algorithm.
First, OptChainV2 utilizes the information of all ancestor transactions since fitness scores
are calculated in a top-down approach. By contrast, RGP only uses the recent ancestors
but can also reduce cross-shard transaction effectively as we will see in Section 6.2.4. Sec-
ond, RGP intentionally avoids shard sampling because peers are byzantine faulty and may
not respond honestly. Third, OptChainV2 requires clients to honestly share the fitness
score arrays of their transactions, which introduces additional trust points.

Account Placement in Account-Balance Blockchains

Hashing placement also applies to account-balance blockchains and creates many cross-
shard transactions [37][59]. Generally, in an account-balance blockchain, cross-shard trans-
actions are reduced by placing accounts that frequently transact with each other in the same
shard [43][76]. To identify such accounts, Fynn et al. [43] model Ethereum transactions as
a graph with accounts as vertices and transactions as edges, and evaluated multiple graph
partitioning algorithms against the graph, including METIS [57] (a well-regarded offline
graph partitioning algorithm) and its variants. Since account behaviour may change over
time, some of the algorithms re-partition the graph periodically. Fynn et al. concludes that
METIS produces the fewest cross-shard transactions but the worst load balance, whereas
hashing placement is at the other extreme. Consequently, neither METIS nor hashing
placement helps the system achieve the best performance. This conclusion agrees with the
OptChainV2 paper, which employs METIS and hashing placement for comparison.

24

Chapter 4

Fast and Low-Storage-Demand
Bootstrapping

In this chapter, we present SnapshotSave, a snapshot-based blockchain bootstrapping pro-
tocol that allows peers to only store a partial snapshot on the disk.

4.1 Design Overview

The high-level idea of SnapshotSave is letting a new peer download a verifiable consistent
snapshot of the system state from other peers to massively reduce the number of blocks
that the new peer has to replay during bootstrapping.

This idea is also inspired by the observation that the system state database of Bitcoin
has a far smaller size than the ledger database. Bitcoin stores its blocks (i.e., the ledger)
and the current system state (i.e., all UTXOs) in the folders named blocks and chainstate
respectively, and performs data queries with the help of LevelDB [45]. The blocks folder is
constantly more than one order of magnitude larger than the chainstate folder as shown
in Figure 4.1, so synchronizing the system state instead of the ledger should result in
significantly less data transferred. For example, at the latest block when this research is
conducted (i.e., the 600k block height), the blocks folder is 289GB, whereas the chainstate
folder is only 6.2GB. Moreover, the snapshot synchronization averts expensive ECDSA
signature verifications [56], which mandates the original block synchronization to be usually
a CPU-bound process.

25

0 100k 200k 300k 400k 500k 600k

Block height

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

S
iz

e
 (

M
B

)

blocks

chainstate

Figure 4.1: The blocks database size versus the chainstate database size

4.2 Architecture and Protocol

4.2.1 Snapshot Structure

To enable a new peer to rebuild the system state at a block height, all UTXOs existing at the
block height must be transferred to the new peer. In addition, essential information about
the chain state at the same height (e.g., the block header, total number of transactions up to
the block height, timestamps of the last ten blocks, etc.) must also be transferred, otherwise
the new peer would not be able to link future blocks to the chain. These UTXOs together
with the essential chain information constitute a snapshot. In addition, a snapshot must
be verifiable, otherwise a malicious old peer can fool a new peer by sending a corrupted
snapshot to the new peer. Although placing the whole system state on the blockchain
produces verifiable snapshots, this approach could easily blow up the blockchain, not to
mention exceeding the block size limit in some existing blockchains. In our design, a Merkle
tree[75] is built with the hash of 50k concatenated UTXOs (i.e., a chunk) as a leaf node,
and the Merkle tree root is concatenated with the essential chain information hash before
being hashed into the snapshot hash, which is committed to the blockchain. Therefore,
any tampering with the snapshot always results in a different snapshot hash. Figure 4.2
illustrates the structure.

SnapshotSave sorts UTXOs before assembling chunks so that a new peer can request
different chunks from different old peers without worrying that honest old peers may send
inconsistent chunks. The chunk size is set to 50k UTXOs, yielding a message size of approx-
imately 3.5 MB, which is well below the 4MB message size limit imposed by the Bitcoin
Core [50]. In other words, a chunk can be transferred within one message. Moreover, using
chunks instead of single UTXOs as Merkle tree leaves also reduces the leaf number, hence

26

Header

Body

Blockchain ...

Hash1 Hash2 Hash3 Hash4

Hash12 Hash34

Hash1234

Chunk1 Chunk2 Chunk3 Chunk4

Header

Body
Snapshot hash

Header

Body

Header

Body
Snapshot hash

Header

Body

Snapshot period

...

Hashchain_info

Hash1 Hash2 Hash3 Hash4

Hash12 Hash34

Hash1234

Chunk1 Chunk2 Chunk3 Chunk4

Hashchain_info

Figure 4.2: A snapshot hash is calculated based on the UTXO Merkle tree root and the
essential chain information hash.

faster Merkle tree construction.

4.2.2 Snapshot Storage

Every peer in the blockchain network maintains a copy of the latest snapshot. However,
SnapshotSave makes use of the chainstate database to avoid unnecessary storage con-
sumption. The high-level idea is that both the UTXOs in a snapshot and the chainstate
database can be abstracted as sets of UTXOs, and the intersection of the two sets are
UTXOs that are never spent since the snapshot creation, as shown in Figure 4.3. Based on
this observation, UTXOs are divided into three sets: Sspent (UTXOs existing in the latest
snapshot but spent by later transactions), Sunspent (UTXOs existing in the latest snapshot
and not spent yet), and Sadded (UTXOs created by later transactions and hence not in
the latest snapshot). The UTXOs in Sunspent already have their information stored in the
chainstate database, so SnapshotSave does not bother to store them again for a snapshot.
On the other hand, UTXOs in Sspent require extra storage because they have been deleted
from the chainstate database.

In Bitcoin, a UTXO is identified by a (txid, n) pair in the way that the UTXO is
the n-th output of transaction txid. This pair constitutes an Outpoint object in Bitcoin
Core. The chainstate database is a key-value database with Outpoint objects as the keys
and Coin objects as the values. A Coin object consists of a coinbase flag, a block height,

27

 Latest snapshot

Chainstate

Spent UTXOs Unspent UTXOs Added UTXOs

Bootstrap new peers Verify transactions
Create new snapshots

Figure 4.3: The set intersection of the latest snapshot and the chainstate database is the
set of UTXOs never spent since the snapshot creation. The latest snapshot is used to
bootstrap new peers, and the chainstate database is used to verify transactions and create
new snapshots.

a value, and a script recording the owner (e.g., scriptPubKey). Therefore, a UTXO is
comprised of a pair of Outpoint and Coin as shown in Figure 4.4.

To reconstruct a snapshot, three pieces of data are necessary and should be stored: the
Outpoint components of UTXOs in Sunspent, the full UTXOs in Sspent, and the essential
chain information. The Outpoint parts of the UTXOs in Sunspent have to be stored because
they serve as keys when fetching the Coin components from the chainstate database.
Compared with storing the whole snapshot, this storage mechanism arguably demands
less storage space.

UTXO
key value

Outpoint
txid: transaction hash
n: index in output list

Coin
fCoinbase: coinbase flag
nHeight: block height
nValue: coin value
scriptPubKey: owner info

Figure 4.4: UTXO structure

Peers in the network discard old snapshots as soon as a new one matures (i.e., buried
deep enough on the blockchain such that a forking is not likely to overwrite it), because
bootstrapping new peers from the latest snapshot is always faster than from a previous
snapshot. Fork tolerance will be discussed in Sections 4.2.5 and 4.3. Some new peers might

28

fail to download residual chunks of the second latest snapshot due to the emergence of the
next snapshot, but they can always restart synchronization by downloading the new latest
snapshot provided that the interval between two snapshots is long enough for snapshot
downloading.

4.2.3 Snapshot Creation

Snapshots are created periodically, and the creation is triggered by block heights. We
denote the snapshot period by Nperiod (e.g., Nperiod = 1000 blocks), as shown in Figure 4.2,
and refer to the blocks whose heights are multiples of Nperiod as snapshot blocks. When
the next block is a snapshot block, miners create a snapshot of the system state and put
the snapshot hash in the block before solving the PoW puzzle. To create a snapshot, a
miner sorts all the UTXOs in the chainstate database, cuts them into 50k-UTXO chunks,
and builds the Merkle tree. Other peers verify the snapshot hash by calculating a local
snapshot hash with their local system states and comparing the local snapshot hash with
the one in the received block. If the two snapshot hashes are equal, the peers append the
received block to their local copies of the blockchain. Otherwise, the peers reject the block.

When a snapshot is created, Sspent and Sadded are initialized as empty sets, whereas
Sunspent is initialized as all the UTXOs in the chainstate database. During transaction ex-
ecution before the next snapshot block, Sspent, Sunspent, and Sadded are constantly updated.
Output UTXOs are inserted into Sadded; input UTXOs are moved from Sunspent to Sspent

or just removed from Sadded, depending on whether they exist in Sunspent or Sadded.

4.2.4 Snapshot Synchronization

From a related work [73], we borrow the definition of tail blocks—the blocks subsequent to
the latest snapshot block. Transactions in tail blocks must be replayed in order to reach the
latest system state. Thus bootstrapping with SnapshotSave consists of four steps: snapshot
hash retrieval, chunk hash and essential chain information download, chunk download, and
tail block download.

A new peer can retrieve a snapshot hash either pessimistically or optimistically. In the
pessimistic approach, the new peer does not believe that the old peers that it connects
to would collectively provide the correct latest snapshot hash, so it downloads the entire
header chain and requests the latest snapshot block body, which contains the snapshot
hash. This way, the new peer can check whether a snapshot hash is indeed on the best
chain, thus avoiding being cheated by malicious peers. The new peer can identify the latest

29

snapshot block because of the pre-defined Nperiod. In the optimistic approach, the new peer
queries several old peers for the latest snapshot hash as well as the current chain length,
which enables the peer to tolerate forks (see details in Section 4.2.5). As long as a majority
replies consistently, the peer believes the values and continues to the next step.

In the second step, the new peer requests the snapshot metadata (i.e., chunk hashes
and the essential chain information) by sending a GetMetadata message to one old peer.
Once receiving the GetMetadata message, the old peer replies with a Metadata message
enclosing the snapshot metadata. The new peer checks whether the metadata produces a
hash value matching the snapshot hash in the first step. If so, the new peer continues to
request all chunks in parallel with GetChunk messages. Otherwise, the new peer notices
that the old peer has lied about the metadata and repeats step two but with a different
old peer. For optimistic new peers, the first two steps can be achieved with one message
by asking the old peer to piggyback the snapshot hash and the current chain length on the
Metadata message.

New peer

Old peer

time

G
et

M
et

ad
at

a

M
et

ad
at

a

G
et

Ch
un

k<
ch

un
kI

D>

Ch
un

k

G
et

He
ad

er
s

He
ad

er
s

...

G
et

Da
ta

Bl
oc

ks ...

Figure 4.5: A new peer requests snapshot metadata, chunks, and tail blocks from an old
peer.

Old peers respond to a GetChunkmessage with a Chunkmessage enclosing the requested
chunk specified by the chunkID argument in the GetChunk message. To efficiently assemble
the chunk given a chunkID, an old peer keeps a sorted array of Outpoints in the latest
snapshot, but this array is a memory-only data structure since it can be easily reconstructed
from the Sspent and Sunspent sets. For every UTXO in the chunk, the old peer fetches the

30

Coin component from the chainstate database if the UTXO is in Sunspent or from the
snapshot storage otherwise. The new peer may request chunks from multiple old peers
to expedite the synchronization process. The advantage of obtaining chunk hashes before
downloading chunks is that the new peer can detect corrupted chunks and only re-download
the problematic chunks instead of all chunks. The new peer applies a correct chunk by
adding the enclosed UTXOs to its chainstate database. By the time all chunks are applied,
the new peer becomes ready to connect tail blocks.

A new peer must download and replay all the transactions in tail blocks so that it
can have the up-to-date system state to verify future transactions. This can be achieved
by performing a block synchronization starting at the snapshot block, i.e., through the
GetHeaders, Headers, GetData, and Block messages of the Bitcoin protocol. Figure 4.5
summarizes the message exchanges between a new peer and an old peer from step two to
step four.

4.2.5 Fork Tolerance of Optimistic SnapshotSave

Figure 4.6 illustrates a scenario where an optimistic peer lacks the information to determine
whether another branch has become the new longest chain. The peer bootstrapped itself
with snapshot block on the lower branch, but later received blocks belonging to the upper
branch. Because it misses the dotted headers and arrows, it cannot determine at which
height the fork occurs, and whether the upper branch is longer than the lower branch.

To solve this problem, an optimistic peer keeps all blocks received since the beginning
of its bootstrap, both the on-chain and off-chain blocks. Some off-chain blocks may have
links between them and form a partial branch with an unknown forking point. We refer
to this kind of partial branch as twigs. The twig of the original longest branch consists
of all the blocks after the last tail block, as illustrated in Figure 4.6. Note that the peer
is certain about the last tail block height because it is given the chain length at the first
bootstrapping step. If a twig grows longer than the twig of the original longest branch,
the peer has to download the entire header chain to assess the lengths of both branches.
It is worth mentioning that this twig-length monitoring mechanism may raise false alarms.
For example, the case shown in Figure 4.6a triggers header chain downloading since the
upper twig outgrows the lower one by two blocks, but the lower branch remains the longest.
However, this mechanism guarantees that the optimistic peer never misses a true longest-
chain switch. The proof will be given in Section 4.3. In addition, the mechanism incurs no
overhead because the current Bitcoin peers also keep the off-chain blocks and link them if
possible. Otherwise, peers would not be aware of the lengths of other branches.

31

SnB TaB TaB TwB

TwB TwB

TwB

TwBTwB

Twig

Twig

(a) a fork not altering the longest chain

SnB TaB TaB TwB

TwB TwB

TwB

TwBTwB

Twig

Twig
(b) a fork altering the longest chain

Figure 4.6: An optimistic peer cannot differentiate the above two cases. SnB, TaB, and
TwB represent a snapshot block, a tail block, and a twig block respectively.

4.2.6 Backward Compatibility

Software upgrades in permissionless blockchains are challenging, because non-upgraded and
upgraded nodes may fail to reach consensus on a global longest chain, in which case the
upgrade would introduce an undesirable hard fork. To avoid such a situation, SnapshotSave
stores snapshot hashes in the extraNonce fields of snapshot blocks’ coinbase transactions.
This field can hold up to 96 bytes of arbitrary data because the coinbase transactions
have no input UTXOs and hence no need to include a valid script redeeming any previous
transaction outputs [11].

Figure 4.7 illustrates why SnapshotSave will not cause a hard fork in Bitcoin as long as
upgraded peers hold more than 50% of the global hash power. When it comes to snapshot
blocks, upgraded peers will reject blocks from non-upgraded peers due to the lack of valid
snapshot hashes. However, non-upgraded peers will accept blocks from upgraded peers
because they do not care about the values of extraNonce fields, where snapshot hashes
exist. Therefore, as long as the branch containing snapshot hashes (the lower branch in

32

...

SnB

Upgrade	occurs

Figure 4.7: Upgrade through a soft fork. Hatched blocks are mined by upgraded peers,
and other blocks are mined by non-upgraded peers.

Figure 4.7) stays longer than any other branch (the upper branch in Figure 4.7), both the
upgraded and non-upgraded peers will accept it as the longest chain. In the worst case,
all non-upgraded peers extend the branch without snapshot hashes, so the upgraded peers
must collectively control more hash power than their non-upgraded counterparts in order
to ensure that the branch containing snapshot hashes is longer, hence the 50% threshold.
Once the non-upgraded peers accept the branch containing snapshot hashes, they also
extend this branch, so the lower branch in Figure 4.7 includes blocks from non-upgraded
peers as well.

4.3 Security

In this section, we prove that SnapshotSave is secure. Specifically, pessimistic SnapshotSave
can tolerate malicious peers offering tampered chunks and blockchain forks. We make the
following assumptions when deducing the security properties:

1. Hash functions are collision-resistant[40], i.e., different plaintexts always yield differ-
ent ciphertexts.

2. PoW guarantees the integrity of the header chain.

3. Parent blocks reach every peer before the child blocks.

We justify the second assumption as follows. Suppose a malicious peer pm changes a block
header H to Hm and tries to mislead peer p into accepting Hm instead of H as part of
the header chain. The successor of H on the header chain is denoted as Hs. According to
Assumption (1), the header hash of Hm must be different than H. Given the recent PoW

33

difficulty [13], Hm has no more than a 1/276 probability to meet the PoW requirement. As
a result, pm has to adjust the nonce field of block header Hm. On average, this process
takes 276 double SHA256 calculation. Even if pm makes Hm PoW-valid, the header hash
of Hm must be different than H according to Assumption (1), so there is no link between
Hm and Hs. Peer pm can change the prev hash field of Hs to rebuild the link, but this
destroys Hs’s PoW validity with high probability. Therefore, replacing a block header
requires solving the PoW puzzles for all its descendants. The huge computational demand
prevents a peer from tampering with the header chain.

Property 1. If a pessimistic peer Pp accepts a snapshot Snp, then Snp is the authentic
latest snapshot.

Proof. We prove this property by contradiction. Suppose Pp accepts Snp, and Snp is not
the authentic latest snapshot. We denote the authentic snapshot as Snpa.

Because Pp has downloaded the header chain before downloading Snp, and the header
chain is not corrupted according to Assumption (2), Pp is aware of the latest snapshot block
height and the correct block header. The correct block header ensures that the snapshot
block body used by Pp is correct, so the block body contains the snapshot hash of Snpa.
Since Pp accepts Snp, the snapshot hash of Snp equals the snapshot hash of Snpa.

Since Snp is not Snpa, there are one or more differences in their UTXOs, essential
chain information, or both. If their UTXOs are different, their Merkle tree leaves in Figure
4.2 would be different according to Assumption (1). The difference of leaves propagates
through the Merkle tree to the root also according to Assumption (1), so the Merkle
tree roots of Snp and Snpa are different. Regardless of whether Snp and Snpa have the
same essential chain information hash, the snapshot hash of Snp is different than that of
Snpa according to Assumption (1). Similarly, if Snp and Snpa differ in essential chain
information, their essential chain information hash (Hashchain info in Figure 4.2) would be
different again according to Assumption (1). Thus, no matter whether the UTXO Merkle
tree root of Snp is the same as that of Snpa, the snapshot hash of Snp and Snpa are
different according to Assumption (1). As a result, the snapshot hash of Snp does not
equal the snapshot hash of Snpa in spite of how Snp differs from Snpa.

However, previously we deduced that the snapshot hash of Snp equals the snapshot
hash of Snpa. Thus the snapshot hash of Snp both equals and does not equal the snapshot
hash of Snpa, a contradiction.

Property 2. If an optimistic peer Po obtains the correct snapshot hash from its
neighbors, Property 1 is also true for Po.

34

Proof. We prove this property by contradiction. Suppose Po obtains the correct snapshot
hash Hashc and accepts a snapshot Snp, and Snp is not the authentic latest snapshot.
We denote the authentic snapshot as Snpa.

Since Hashc is correct, Hashc equals the snapshot hash of Snpa. Since Po accepts
Snp, the snapshot hash of Snp equals Hashc. Thus, the snapshot hash of Snp equals the
snapshot hash of Snpa.

Since Snp is not Snpa, we have the snapshot hash of Snp not equal to the snapshot
hash of Snpa based on the proof of Property 1. Thus, the snapshot hash of Snp both
equals and does not equal the snapshot hash of Snpa, a contradiction.

Property 3. If a peer P (either pessimistic or optimistic) bootstraps itself with a
snapshot block Bsnp, and a fork occurs at Bsnp or a descendant block Bdes of Bsnp, then
P is able to tell whether the forking branch grows longer than the originally longest branch,
and, if so, change its system state to the tip of the forking branch.

Proof. Since Bdes or Bsnp is the forking point, the blocks on both branches are descendants
of Bsnp. According to Assumption (3), these blocks reach P after Bsnp. Because P (no
matter pessimistic or optimistic) keeps all blocks received since the beginning of the boot-
strapping process, P has all blocks on both branches. By following links between these
blocks starting from the tip blocks, P constructs the two branches as shown in Figure
4.8. Thus P can tell whether the forking branch is longer by counting the blocks on both
branches.

Suppose the forking branch does become longer as Figure 4.8 illustrates, P has two
options for updating its system state to the tip of the forking branch: 1) undo the trans-
actions in the blocks on the original longest branch, and then execute the transactions in
the blocks on the forking branch, or 2) wait for a mature snapshot block to appear on the
forking branch and run the SnapshotSave protocol again.

Property 4. If a pessimistic peer Pp bootstraps itself with a snapshot block Bsnp,
and a fork occurs at an ancestor block Banc of Bsnp, then Pp can tell whether the forking
branch grows longer than the originally longest branch, and, if so, change its system state
to the tip of the forking branch.

Proof. Since Banc is the forking point, some blocks on the forking branch may exist before
Pp bootstrapped itself. Because Pp obtains the entire header chain during bootstrapping,
it has the headers of these blocks. Because Pp keeps all the blocks received since the

35

SnB...

Undo

Execute

Figure 4.8: A fork occurs at the first descendant block of the snapshot block (SnB) which
an optimistic peer bootstrapped itself with. The upper branch is the forking branch.

beginning of the bootstrapping process, Pp has full blocks for the remaining part of the
forking branch. Thus, Pp has the block headers of all the blocks on the forking branch.
Similarly, Pp has the block headers of all the blocks on the original longest branch. By
following the links between these block headers starting from the tip block headers, P
constructs the two header branches. Thus, P can tell whether the forking branch is longer
by counting the block headers on both branches.

Suppose the forking branch does become longer, the peer has only one option to update
its system state to the tip of the forking branch—wait for a mature snapshot block to appear
on the forking branch, and run the SnapshotSave protocol again. The transaction-undo
option in the proof of Property 3 is not available, because Pp lacks the information about
the input UTXOs of transactions in blocks between Banc and Bsnp. Note that downloading
the block bodies won’t help because transactions only specify the Outpoint parts of input
UTXOs, but to restore these input UTXOs, the Coin parts are also necessary.

Property 5. If (1) an optimistic peer Po bootstraps itself with a snapshot block Bsnp,
and (2) a fork occurs at an ancestor block Banc of Bsnp, and (3) Po obtains the correct
snapshot hash and longest chain length, and (4) the forking branch grows longer than the
originally longest branch, then Po can detect that the forking branch is longer and change
its system state to the tip of the forking branch.

Proof. Because of the fork-tolerant mechanism depicted in Section 4.2.5, a branch can be
split into the twig and the trunk as illustrated in Figure 4.9. The two parts are separated by
the moment when the peers initiate synchronization. Without loss of generality, suppose
two branches br1 and br2 exist at the moment peer Po initiates synchronization, and Po

36

SnB TaB TaB TwB

TwB TwB

TwB

TwBTwB

Twig

Twig

synchronization	
startsTrunk

Trunk

Figure 4.9: A fork occurs at an ancestor block of the snapshot block (SnB) where an
optimistic peer bootstrapped itself. The start time of snapshot synchronization cuts a
branch into a twig part and a trunk part.

obtains the latest snapshot hash and the length of br1. Because of the third hypothesis, br1
must be no shorter than br2 at that moment. In other words, len(tr1) ≥ len(tr2), where
tr1 and tr2 are the trunk parts of br1 and br2 respectively, and len(·) represents the length
of a branch or a partial branch. The fourth hypothesis means len(br1) < len(br2), i.e.,
len(tr1) + len(tw1) < len(tr2) + len(tw2), where tw1 and tw2 are the twig parts of br1 and
br2, respectively. Consequently, there must be len(tw1) < len(tw2). Thus, header chain
downloading is triggered due to the fork-tolerant mechanism described in Section 4.2.5.
Then, Po can judge the branch lengths and update its system state as a pessimistic peer
does in the proof of Property 4.

4.4 Evaluation

A prototype of SnapshotSave is implemented based on the source code of the Bitcoin Core.
We compared SnapshotSave with both Bitcoin Core’s block synchronization and a related
work CoinPrune[73], which is also a snapshot-based bootstrapping protocol.

4.4.1 Testbed and Experiment Design

The testing environment is created on a local cluster with Intel Xeon E5-2620v3 CPUs.
We observed that the block synchronization of Bitcoin Core is a rather CPU-intensive
process for a new peer. If the new peer is equipped with only one CPU, synchronizing
600k blocks would take several days. Thus, we created two 8-CPU, 32GB-memory VMs

37

on different physical machines—one as the old peer and the other as the new peer. The
network bandwidth between the two VMs is 1 Gbps.

We used the original Bitcoin Core code to download the blocks from the public P2P
network. To avoid copying hundreds of gigabytes repeatedly, the old peer ran directly on
the directory where the downloaded blocks were stored. During tests, neither the old nor
the new peer connected to the public P2P network. They connected only to each other to
ensure all resources were dedicated to our tests. For the Bitcoin Core’s block synchroniza-
tion test, both the old peer and the new peer write performance measurement data into
the log file at the desired block heights, allowing us to collect the data from 10k to 600k
block heights uninterruptedly. In contrast, for the SnapshotSave and CoinPrune tests, 10k
blocks were first downloaded from the public network, and the old peer ran on the same
directory to create a snapshot. We set the tail block count to 10 because the performance
difference between SnapshotSave and CoinPrune would be concealed if the tail block pro-
cessing dominates the synchronization time. Thus, the snapshot should be created at the
9990th block. The old peer achieved this by temporarily invalidating the 9991st block.
The system state then reverts to the historic state where transactions in block 9990 have
been executed. Next, the old peer creates a snapshot followed by re-considering the 9991st
block. Finally, the new peer connects to the old peer and performs the synchronization.
We repeats this block-downloading, snapshot-creating, and test-running process for other
block heights sequentially.

4.4.2 SnapshotSave vs. Bitcoin Core

Figure 4.10 shows that pessimistic SnapshotSave is more than two orders of magnitude
faster than Bitcoin Core. It significantly shortens the initial synchronization time, espe-
cially at high block heights, e.g., from 7.97 hours to 2.59 minutes (99.46% less) at the 600k
block height. Furthermore, the synchronization time of SnapshotSave grows slower than
that of Bitcoin Core as the block height increases. This matches the trends of database sizes
displayed in Figure 4.1. Optimistic SnapshotSave achieves extremely low synchronization
time at low block height because many early-stage Bitcoin blocks enclose few transactions
[79], resulting in a few UTXOs. Consequently, the header chain downloading dominates
the synchronization time of pessimistic SnapshotSave. On the other hand, optimistic Snap-
shotSave involves no header chain downloading and thus saves most synchronization time
of pessimistic SnapshotSave. Nonetheless, optimistic SnapshotSave has fewer advantages
at high block heights, where the header chain downloading time becomes insignificant com-
pared with chunk downloading time and state updating time. More analysis regarding the
breakdown of the synchronization time will be provided in Section 4.4.3.

38

0 100k 200k 300k 400k 500k 600k

Block height

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

S
y
n
c
h
ro

n
iz

a
ti

o
n
 t

im
e
 (

s
)

Bitcoin Core

SnapshotSave (P)

SnapshotSave (O)

Figure 4.10: Synchronization time. SnapshotSave (P) and SnapshotSave (O) represent
pessimistic SnapshotSave and optimistic SnapshotSave, respectively.

As expected, SnapshotSave also transferred significantly fewer bytes between the old
and the new peers. Bytes received by the new peer are comparable in size to the blocks
database during the Bitcoin Core synchronization, and to the chainstate database during
the SnapshotSave synchronization. As well, the bytes received by the new peer during the
SnapshotSave synchronization increase more slowly than those during the Bitcoin Core
synchronization with the growth of the block height. The contrast becomes more over-
whelming in Figure 4.10b, where the y-axis is on a linear scale.

0 100k 200k 300k 400k 500k 600k

Block height

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

B
y
te

s
 r

e
c
e
iv

e
d

b
y
 t

h
e
 n

e
w

 p
e
e
r

(M
B

)

Bitcoin Core

SnapshotSave (P)

SnapshotSave (O)

(a) Logarithmic scale

39

0 100k 200k 300k 400k 500k 600k

Block height

0

50000

100000

150000

200000

250000

300000
B

y
te

s
 r

e
c
e
iv

e
d

b
y
 t

h
e
 n

e
w

 p
e
e
r

(M
B

)
Bitcoin Core

SnapshotSave (P)

SnapshotSave (O)

(b) Linear scale

Figure 4.10: Bytes received by the new peer

0 100k 200k 300k 400k 500k 600k

Block height

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

B
y
te

s
 s

e
n
t

b
y
 t

h
e
 n

e
w

 p
e
e
r

(M
B

)

Bitcoin Core

SnapshotSave (P)

SnapshotSave (O)

Figure 4.11: Bytes sent by the new peer

SnapshotSave also massively reduces bytes sent by the new peer. Optimistic Snapshot-
Save even manages to reduce the number by three orders of magnitude, as shown in Figure
4.11. This is because Bitcoin Core requires the new peer to send one GetHeaders message
to fetch up to 2000 block headers and one GetData message to request one block. Though
SnapshotSave also requires the new peer to send a GetChunk message for every chunk, the
snapshot is far smaller than the full blockchain, and the old peer responds with a roughly

40

3.5MB chunk as opposed to a 1MB block in Bitcoin Core. The large chunk size further
reduces round trips between the old peers and the new peer.

4.4.3 SnapshotSave vs. CoinPrune

CoinPrune is the closest related work to our SnapshotSave because it also employs snap-
shot synchronization and targets UTXO-based blockchains, as mentioned in Section 3.1.
Therefore, in this section, we compare the performance and storage usage of SnapshotSave
with those of CoinPrune.

Performance

Figure 4.12 shows that pessimistic SnapshotSave is constantly faster than CoinPrune, and
slightly slower than optimistic SnapshotSave. At block height 500k, pessimistic Snapshot-
Save and optimistic SnapshotSave takes on average 10.1% and 16.8% less time compared
with CoinPrune. These percentages rise to 17.2% and 21.4% at the block height of 600k.

100k 200k 300k 400k 500k 600k

Block height

0

50

100

150

200

S
y
n
c
h
ro

n
iz

a
ti

o
n
 t

im
e
 (

s
)

CoinPrune

SnapshotSave (P)

SnapshotSave (O)

Figure 4.12: Synchronization time

Figure 4.13 gives a breakdown of the synchronization time at block height 600k. The
discrepancy between CoinPrune and pessimistic SnapshotSave results from the difference
in snapshot downloading time. CoinPrune caps the chunk size to 1 MB, whereas a Snap-
shotSave chunk contains up to 50k UTXOs (roughly 3.5 MB) as mentioned in Section
4.2.1. Unsurprisingly, the larger chunk size in SnapshotSave yields fewer chunks (Figure

41

header
chain

snapshot
download

snapshot
apply

tail
block

Task

0

20

40

60

80

100

120

140

T
im

e
 (

s
)

CoinPrune

SnapshotSave (P)

SnapshotSave (O)

Figure 4.13: The breakdown of synchronization time

4.14) and faster snapshot downloading. On the other hand, the reason why optimistic
SnapshotSave is even faster is that it skips the header chain downloading. We observed
that the snapshot-applying process (i.e., adding all UTXOs in the snapshot to the new
peer’s chainstate database) becomes dominant since the block height of 300k, where the
number of UTXOs starts increasing rapidly as shown in Figure 4.15.

100k 200k 300k 400k 500k 600k

Block height

0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
u
m

b
e
r

o
f

C
h
u
n
k
s

CoinPrune

SnapshotSave

Figure 4.14: Number of Chunks

Storage Saving

Figure 4.16 demonstrates that SnapshotSave requires approximately 43% less storage space
than CoinPrune. This means an old peer can dedicate less disk space for bootstrapping

42

0 100k 200k 300k 400k 500k 600k

Block height

0

1

2

3

4

5

6

7

N
u
m

b
e
r

o
f

U
T
X
O

s

1e7

Figure 4.15: Number of UTXOs at different block heights

new peers. Because old peers store the Outpoint components of UTXOs in Sunspent and
the full UTXOs in Sspent, the storage space size will grow when UTXOs are moved from
Sunspent to Sspent during transaction execution. Thus we also evaluate the increase rate of
the storage space size.

100k 200k 300k 400k 500k 600k

Block height

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

S
n
a
p
s
h
o
t

s
iz

e
 o

n
 d

is
k
(G

B
)

CoinPrune

SnapshotSave

Figure 4.16: Snapshot storage demands

For the snapshot created at the 600k-th block, Figure 4.17 illustrates the variations in
the storage space size, the number of UTXOs in Sunspent, and the number of UTXOs in
Sspent. At the snapshot creation, all the 63.39 million UTXOs are in Sunspent. Transactions
in the first 1k subsequent blocks consume 1.8% (1.14 million) of those UTXOs. Since these
UTXOs are moved to Sspent, UTXO counts in the two sets always add up to 63.39 million.

43

It is worth mentioning that the transactions in the 1k blocks probably spend more than
1.14 million UTXOs, but some UTXOs are generated between block height 600k and 601k,
and thus simply removed from Sadded. As described in Section 4.2.2, UTXOs in Sadded

do not affect snapshot storage. Surprisingly, Sspent grows quite slowly. Transactions in
the subsequent 10k blocks (from 600k to 610k) consume only 10% of the UTXOs in the
snapshot. As a result, the snapshot storage size increased by a mere 7.6% over the 10k
blocks. In addition, the increase rate of the storage size drops as the block height increases,
which suggests that transactions tend to spend recently created UTXOs.

60
0k

60
1k

60
2k

60
3k

60
4k

60
5k

60
6k

60
7k

60
8k

60
9k

61
0k

Block height

0

1

2

3

4

5

6

7

8

9

U
T
X
O

 c
o
u
n
t

1e7

Spent

Unspent

2.25

2.30

2.35

2.40

2.45

2.50

2.55

2.60

S
n
a
p
s
h
o
t

s
iz

e
 o

n
 d

is
k
(G

B
)

Figure 4.17: Variations in Sunspent size and Sspent size for the snapshot created at the 600k
block height

Intuitively, the shorter the snapshot period, the more storage space our design can
save, because the storage space size increases between two snapshot blocks. For instance,
if the snapshot period Nperiod is extremely long, all UTXOs in Sunspent would eventually
be moved to Sspent, in which case our design stores the entire snapshot and saves no stor-
age space. However, SnapshotSave could save considerable storage space with reasonable
Nperiod values. Based on the experimental results for the snapshot created at height 600k,
we speculate that SnapshotSave will save approximately 42% space if one snapshot is cre-
ated per week (i.e., Nperiod = 1008) in Bitcoin, and about 40% space if one snapshot is
created per month (i.e., Nperiod = 4320).

44

4.5 Chapter Summary

Bootstrapping new peers by replaying all transactions on the blockchain is time-consuming
and will be more so in the future. In this chapter, a snapshot synchronization approach is
introduced for the fast bootstrapping purpose. It takes advantage of the existing system
state storage to reduce the snapshot storage overhead. The evaluation results of our proto-
type has demonstrated that SnapshotSave can save more than 99% of the time compared
to the block synchronization approach, and requires about 40% less space than storing the
entire latest snapshot. The bootstrapping protocol is carefully designed to ensure security
and backward compatibility. The relatively slow increase in UTXOs as opposed to blocks
indicates that SnapshotSave can potentially benefit blockchains more in the future.

45

Chapter 5

Collaborative Transaction
Verification

Blockchain sharding protocols (e.g., OmniLedger [62], RapidChain [107], and AHL[30])
usually require peers to independently verify every transaction in its shard. Therefore, the
performance of a shard is bounded by the computational capacity of individual peers.

6
0

0
9

8
1

6
0

0
9

8
2

6
0

0
9

8
3

6
0

0
9

8
4

6
0

0
9

8
5

6
0

0
9

8
6

6
0

0
9

8
7

6
0

0
9

8
8

6
0

0
9

8
9

6
0

0
9

9
0

6
0

0
9

9
1

6
0

0
9

9
2

6
0

0
9

9
3

6
0

0
9

9
4

6
0

0
9

9
5

6
0

0
9

9
6

6
0

0
9

9
7

6
0

0
9

9
8

6
0

0
9

9
9

6
0

1
0

0
0

Block height

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

T
im

e
(m

s)

Transaction verification time

Transaction execution time

Figure 5.1: Transaction verification versus execution time

46

The high cost of transaction verification has been mentioned in [95][72], but no specific
figures are provided to quantify the cost. We ran a Bitcoin Core node and quantitatively
analyzed the processing time of 20 fairly recent Bitcoin blocks (42,582 transactions in to-
tal). Figure 5.1 shows the results. The ratio of transaction verification time to transaction
execution time ranges from 64.5 to 380.6 with an average value of 150.9. In other words,
transaction verification is, on average, two orders of magnitude more expensive than trans-
action execution. This suggests that reducing the per-peer transaction verification work
will effectively lower the block processing cost. Collaborative Transaction Verification
(CTV) is designed to fulfill this task and will be presented in this chapter.

5.1 Assumptions

Assumption 1. Peers verify transactions right before executing them, rather than before
voting for committing or aborting the enclosing blocks. In other words, transaction verifi-
cation occurs after block ordering. This model allows us to completely decouple transaction
verification from the consensus protocol, and ensures that honest peers will produce the
same verification result for the same transaction. On the other hand, verifying transactions
in the middle of the consensus protocol, such as letting peers only multicast PBFT PREPARE

messages if all transactions in the block are valid, may cause honest peers to disagree on
the validity of the block due to dependent transactions. This is because the goal of the
consensus protocol is only to produce a global order of blocks across all honest peers, but
peers execute transactions at their own pace. It is possible that some honest peers have
executed all parent transactions of a block and deem the block valid, while other honest
peers haven’t executed the parent transactions and deem the block invalid.

It is worth mentioning that, although the blockchain may include invalid transactions in
the above model, peers can still reach the same state because they can all detect and discard
invalid transactions during transaction verification. We believe that invalid transactions
from normal clients are rare. In case malicious clients launch Denial-of-Service (DoS)
attacks, the PBFT leader switches to a verify-then-propose mode when it finds a large
number of invalid transactions in recent blocks.

Assumption 2. Byzantine-Fault-Tolerant (BFT) protocols, e.g., PBFT [23], HQ
Replication [27], Zyzzyva [63], BFT-SMART [6], generally tolerate up to f faulty replicas
(f ≥ 1) with 3f+1 replicas. Therefore, in blockchain sharding protocols that employ BFT
for intra-shard consensus, it is a common assumption that the number of faulty peers in
the shard is less than or equal to ⌊n−1

3
⌋, where n is the shard size (i.e., the number of peers

in the shard).

47

5.2 Overview of CTV

CTV makes use of the second assumption to optimize transaction verification. Specifically,
the assumption guarantees that if f + 1 peers produce consistent verification results for
a transaction, the results must be reliable, because at least one honest has verified the
transaction. This is also the reason why the client in Figure 2.5 waits for only f + 1
consistent execution results before trusting the results. Note that the word “consistent”
implies that the client may collect more than f + 1 results in total because inconsistent
results from faulty peers are not counted.

Based on the above reasoning, we design CTV as follows. For each block, CTV opti-
mistically selects f + 1 peers as the verification committee (VC) that are responsible for
verifying all transactions in the block. Once a peer in the VC finishes verifying the transac-
tions, it informs peers not in the VC about the verification results so that those peers can
determine which transactions to execute without local verification. For simplicity, we refer
to verifying all transactions in a block as verifying the block. In the fault-free scenario,
a peer is expected to verify f+1

3f+1
of the blocks. We will discuss the scenario where VCs

include faulty peers in the last two paragraphs of this section.

Figure 5.2 illustrates the high-level idea of CTV with an example of a four-peer shard.
Blocks have been already ordered linearly by the blockchain, and every peer maintains
a copy of the blockchain locally. The VC of block Bi is denoted by V C(Bi). In Figure
5.2a, block Bi is highlighted at peers that are members of V C(Bi). For instance, V C(B1)
consists of peers P1 and P4, and P1 is in both V C(B1) and V C(B3). While peers
P1 and P4 verify block B1, P2 and P3 verify B2 simultaneously. Once a peer finishes
verifying a block, it sends the results to peers outside the VC . For example, P1 sends the
verification result of B1 to P2 and P3 (see Figure 5.2b). VC membership is calculated
using the mechanism that will be described in Section 5.3.1. As a result, every peer
verifies only two blocks but obtains sufficient information to execute transactions in all four
blocks, so peers complete the same number of transactions faster than under independent
transaction verification (ITV), as demonstrated in Figure 5.2c. Although the message
exchange seems expensive, we batch verification results of transactions in a block into one
message. Compared with verifying hundreds or thousands of ECDSA signatures, sending
and receiving f + 1 messages are arguably cheaper. Moreover, message propagation is
off the critical path since it happens asynchronously in parallel with the processing of
subsequent blocks.

However, transaction dependencies hinder parallel transaction verification. In the ex-
ample in Fig. 5.2, if a transaction tx2 in B2 consumes a UTXO produced by a transaction

48

tx1 in B1 or conflicts with tx1 (i.e., tx1 and tx2 claim common UTXO(s)), then V C(B2)
cannot verify tx2 until V C(B1) sends over the verification result of tx1. In both cases, tx1

is a parent transaction of tx2. A transaction can only be executed if both the following two
conditions are met: 1) it is locally verified as valid, or f +1 peers have deemed it valid; 2)
none of its parent transactions is pending. We observed that a blockchain establishes a total
order of transactions, but transaction dependencies exhibit only a partial order. Therefore,
peers can verify and execute transactions in distinct dependency-respecting orders and still
produce the same verification results and ultimately the same system state.

peer P1

peer P2

peer P3

peer P4

B1 B2 B3 B4

B1 B2 B3 B4

B1 B2 B3 B4

B1 B2 B3 B4

(a) Peers maintain the same blockchain but are
in the VCs of different blocks (highlighted).

P1
P4

P2
P3

VC (B1)
P2
P3

P1
P4

VC (B2)

P1
P3

P2
P4

VC (B3)
P2
P4

P1
P3

VC (B4)

(b) Peers in the V C(Bi) send the verification
result to peers outside V C(Bi).

ITV
time saved

CTV

time

time

block verification time

block execution time

(c) A peer processes blocks faster under CTV.

Figure 5.2: Verification results sharing boosts performance.

Based on the above observations, we design the high-level CTV algorithm as shown in
Algorithm 1 to allow dependencies-aware verification result sharing. For better readability,
“transaction” is abbreviated to “txn” in figures and algorithms in the rest of this chapter.
A peer processes transactions in the order they appear on the blockchain and maintains
a dependency graph to buffer temporarily unexecutable transactions. Specifically, when
encountering a transaction whose VC includes the peer, the peer attempts to verify the
transaction independently. However, if the transactions have pending parent transactions
(PPTs), the peer has to set the transaction aside by adding it to the dependency graph.
This may happen when one parent transaction is being verified by another VC. On the other
hand, when encountering a transaction whose VC excludes the peer, the peer attempts to

49

utilize the verification results from other peers to execute or discard the transaction directly.
Nevertheless, two circumstances render the transaction temporarily unexecutable: 1) it has
not accumulated enough verification results from other peers, or 2) it has PPTs. Under
either of these two circumstances, the transaction will be added to the dependency graph
for later revisiting. We refer to transactions whose processing is blocked by dependencies
(i.e., blocked by PPTs) as pending-d transactions, and transactions whose processing is
blocked by other peers (i.e., missing verification results) as pending-p transactions.

Algorithm 1: High-level CTV Algorithm

Input: a stream of ordered blocks
1 while true do
2 if the next block B is available then
3 sequentially process txns in B. If pending-p or pending-d txns are met, add

them to the dependency graph // Algorithm 2

4 revisit pending-p txns that have accumulated enough verification results and
their pending-d descendants // Algorithm 3

5 revisit timeout pending-p txns and their pending-d descendants // Algorithm 4

6 send verification results to corresponding peers

A pending-p transaction is revisited when enough verification results have arrived. If
the transaction becomes eligible for execution (i.e., valid and without PPTs), it is removed
from the dependency graph. The removal of a transaction will trigger the removal of
its child transaction if the transaction is the last PPT of the child, so the descendant
transactions are revisited as well. A pending-p transaction is also revisited when the peer
times out waiting for the verification results. In other words, the pending-p transaction
has been in the dependency graph for a long time. This might occur if the VC of the
transaction contains faulty peers.

To assist readers to understand Algorithm 1, we provide transaction life cycles in Figure
5.3, which depicts the algorithm from the perspective of a transaction, denoted by x. In
both life cycles, transaction x starts with a waiting state as peers process transactions
sequentially. V C(B) is also denoted by V C(x) if block B encloses transaction x. From
the perspective of x, peers can be divided into two categories: {P | P ∈ V C(x)} and
{P | P /∈ V C(x)}. At a peer in the first category, x follows the life cycle in Figure 5.3a,
where x is checked for PPTs before being verified and will enter the pending-d state to
wait for being revisited later if it is temporarily unexecutable due to PPTs. Details about
PPT detection will be given in Section 5.3.2.

50

w
ai

tin
g

ch
ec

ke
d

 fo
r P

PT
th

is
 tx

n'
s t

ur
n

pe
nd

in
g-

d
(b

lo
ck

ed
 b

y
de

pe
nd

en
cy

)

in
de

pe
nd

en
tly

ve

rif
ie

d
ex

ec
ut

ed
en

d
w

ith
ou

t P
PT

s
po

si
tiv

e
ve

rif
ic

at
io

n
re

su
lt

with PPTs

all
PPTs

have re
ach

ed
end

 sta
te

ne
ga

tiv
e

ve

rif
ic

at
io

n
re

su
lt

(a
)
T
h
e
li
fe

cy
cl
e
o
f
a
tr
a
n
sa
ct
io
n
a
t
p
ee
rs

in
it
s
V
C

w
ai

tin
g

ch
ec

ke
d

fo
r

ve
rif

ic
at

io
n

re
su

lts
fr

om
 o

th
er

 p
ee

rs

th
is

 tx
n'

s t
ur

n

pe
nd

in
g-

p
(b

lo
ck

ed
 b

y
ot

he
r p

ee
rs

)

ex
ec

ut
ed

en
d

w
ith

 f+
1

co
ns

is
te

nt
 re

su
lts

ne
ga

tiv
e

ve

rif
ic

at
io

n
re

su
lts

without f+
1

consist
ent re

sults

f+1 co
nsist

ent

verif
ica

tion

res
ults

arri
ve

ch
ec

ke
d

 fo
r P

PT
s

pe
nd

in
g-

d
(b

lo
ck

ed
 b

y
de

pe
nd

en
cy

)

 w
ith

ou
t P

PT
s

with PPTs

all PPTs have

reached end state

in
de

pe
nd

en
tly

ve

rif
ie

d

tim
eo

ut

positive verification result

negative

verification result

 v
er

ifi
ed

 b
y

ot
he

r p
ee

rs

 p
os

iti
ve

ve

rif
ic

at
io

n

re
su

lts

fa
st

 p
at

h

sl
ow

 p
at

h

bo
th

(b
)
T
h
e
li
fe

cy
cl
e
o
f
a
tr
a
n
sa
ct
io
n
a
t
p
ee
rs

o
u
ts
id
e
it
s
V
C

F
ig
u
re

5.
3:

T
ra
n
sa
ct
io
n
li
fe

cy
cl
es
.
P
P
T
s
st
an

d
fo
r
P
en
d
in
g
P
ar
en
t
T
ra
n
sa
ct
io
n
s.

51

In contrast, at a peer outside of V C(x), transaction x follows the life cycle in Figure
5.3b, where it is checked for not only PPTs but also f + 1 consistent verification results.
Verification results are checked first because there is no need to perform PPT checking if
the verification results show that x is invalid. This design has two merits: 1) peers do
not waste computation resources on checking PPTs for invalid transactions, and 2) the
parent transactions of x have more time to be executed, so x has a lower chance to enter
the pending-d state. The definitions of the fast path and the slow path are as follows:
fast path—a series of state transitions that leads a transaction to the end state based on
verification results from other peers; slow path—a series of state transitions that leads a
transaction to the end state based on independent verification. If x falls into the pending-p
state, it waits for more verification results to arrive for the next Tslow seconds. If enough
results have arrived before Tslow seconds elapse, x exits the pending-p state and is still on
the fast path. Otherwise, x takes the slow path to move toward the end state. Note that
the fast path and the slow path only exist in the life cycle in Figure 5.3b.

It is worth mentioning that the slow path does not involve PPT checking but still
respects transaction dependencies. This is because the pending-p state fulfills “first in,
first expire”. For example, suppose transaction w is ordered before x on the blockchain,
and w also falls into the pending-p state. Because the peer processes w before x, w enters
the pending-p state earlier than x. Since both w and x are given a time window of Tslow to
wait for verification results, w must expire earlier than x. Therefore, by the time x expires,
no transaction ordered before x is in the pending-p state. Section 5.3.5 will elaborate on
why no transaction ordered before x can be in the pending-d state either. Consequently,
when x expires, all transactions ordered before it must have reached the end state, so x is
guaranteed to be free of PPTs.

Now that the algorithm is described from both a peer’s perspective and a transaction’s
perspective, we summarize the key logic of CTV:

1. Every peer attempts to process transactions sequentially. Transactions without
blocking factors (e.g., PPTs) reach the end state of their life cycles when they are se-
quential processed; whereas the other transactions are “tossed” into the dependency
graph of pending transactions. A peer removes a transaction from the dependency
graph and resumes processing it when the blocking conditions no longer hold.

2. A transaction can remain in the pending-p state for at most Tslow seconds. This time
window allows the peer to be flexible about the verification result arrival time so that
the success of the fast path is not hampered by, for example, different transaction
verification orders, slow peers, or network latency. The threshold Tslow prevents the
peer from waiting indefinitely.

52

3. In the fault-free scenario, if the value of Tslow is sufficiently high, the slow path will
never be invoked. In other words, a transaction is verified only by f + 1 peers in the
fault-free scenario. The proof will be given in Section 5.4.

Lastly, we describe a design that optimizes the performance under faults. In line 6 of
Algorithm 1, all independent verification results, including those for transactions taking
the slow path, are sent to other peers, although the peer is outside the VC of those slow-
path-taking transactions. This enables the transaction to still take the fast path at some
peers. For example, suppose the VC of a transaction x includes one faulty peer and thus
can only provide f consistent results to peers outside V C(x). Then the first timing-out
peer verifies x and sends the results to the remaining 2f −1 peers. Thus each of the 2f −1
peers receives f + 1 verification results and avoids verifying x independently. Generally,
when a VC can only provide r consistent verification results in time, the first f + 1 − r
timing-out peers act as substitutes for the f +1− r problematic peers to share verification
results. The other peers still receive f +1 results as if the VC consists of non-faulty peers.
Since r is in the range of [1, f + 1], the number of timing-out peers is in the range of [0, f]
provided that no two peers time out simultaneously. Thus even in the worst case where a
VC comprises f faulty peers, CTV is still expected to have better performance than ITV
because the verification work is duplicated 2f+1 times under CTV but 3f+1 times under
ITV.

We’d like to emphasize that, as long as Assumption 2 holds, the number of faulty peers
in a VC does not affect security but only the duplication factor of the transaction verifica-
tion work, so an attacker cannot trick the shard into executing an invalid transaction. If
Assumption 2 is violated (i.e., the shard contains more than f peers), the BFT protocol
will break down, so guaranteeing the security of CTV in this scenario is meaningless. Al-
gorithm 2 in Section 5.3.4 will detail Line 3 of Algorithm 1; Algorithms 3 and 4 in Section
5.3.5 will detail Lines 4 and 5 of Algorithm 1, respectively.

5.3 Algorithms

This section provides detailed algorithms to complete the high-level algorithm (i.e., Al-
gorithm 1). First, a verification committee formation algorithm and a PPT detection
mechanism are introduced as the building blocks of the detailed algorithms. Then we give
a concrete example to illustrate the workflow of CTV at the transaction level. Lastly, the
detailed algorithms are presented with the help of the concrete example.

53

5.3.1 Verification Committee Formation

Shard membership is determined by the sharding protocol with all peers agreeing on it,
as described in Section 2.2.1. The shard membership reconfiguration is done in a Sybil-
attack-proof way (e.g., PoW-based [62] or TEE-based [30]) and does not occur frequently.
With known shard members, CTV forms the VC of a block in the following approach:

1. for each peer ID, concatenate it with the block hash, then calculate the hash of the
concatenated value.

2. sort the hash values.

3. peers with the lowest f + 1 hash values consist of the VC of the block.

The above approach has three merits. First, because hash values are uniformly distributed
over the output range of the hash function[96], this approach is equivalent to randomly
selecting f + 1 peers out of 3f + 1 peers for each block. Thus the overall verification work
is evenly distributed among peers. Second, given a block, every node derives the same
VC membership since the approach is deterministic. This ensures that every node can
independently determine which blocks it should verify and which peers it should share the
results with. Third, the VC membership of a block is not revealed until the block becomes
available, so attackers cannot predict the VC members and target their attacks at peers in
the VC to slow down the verification of the block.

5.3.2 Pending Parent Transaction Detection

There are two types of parent transactions (i.e., producing or consuming the input UTXO(s)
of child transactions), so we design two PPT detection mechanisms to cover both of them.
A peer uses both the two mechanisms to detect all the PPTs of a transaction.

For the first type of parent transactions, identifying PPTs requires two steps: (1) identi-
fying parent transactions and (2) determining which parent transactions are pending. The
first step can be achieved by examining child transactions’ input UTXO IDs, each of which
is a pair of (txid, j) that points to the (j+1)-th output UTXO of the transaction whose ID
is txid. The first elements of the input UTXO IDs identify the parent transactions. Next,
we searching the dependency graph for the parent transactions to determine whether they
are pending or not. As the graph consists of pending transactions, a parent transaction
is pending if and only if it exists in the graph. Although the searching seems expensive,

54

a binary search tree (BST) can be utilized to lower the time complexity to O(n′log(n)),
where n′ is the parent transaction count, and n is the pending transaction count. We
expect low a n′ for the vast majority of transactions because 93% of Bitcoin transactions
have less than 3 parents [79].

For the second type of parent transactions, we compare the input UTXO IDs of the
given transaction to those of the pending transactions. Pending transactions that share
common input UTXO(s) with the transaction are also PPTs.

Our detection mechanism prevents dummy transactions, which consume nonexistent
UTXO(s), from lingering in the dependency graph. Suppose there is a dummy transaction
txd. A peer in V C(txd) judges that txd is free of PPTs since txd’s parent transaction does
not exist in the dependency graph, so the peer verifies txd immediately. The verification
result must be negative because the UTXO database does not contain txd’s input UTXO.
As a result, at peers in V C(txd), txd does not even manage to join the dependency graph.
At a peer outside V C(txd), txd may temporarily exist in the dependency graph, but will
be removed as soon as the peer receives f +1 verification results invalidating txd or verifies
txd locally in the slow path.

5.3.3 A Concrete Example

For better clarity, we provide a concrete example to demonstrate how CTV works be-
fore describing the detailed algorithms. In this example, a shard is given two ordered
blocks, each of which comprises two transactions, as shown in Figure 5.4a. Transaction
dependencies are illustrated in Figure 5.4b, where the directions of edges are from parent
transactions to child transactions. We use one peer to represent one VC in this example:
peer P1 for the V C(B1) and peer P2 for V C(B2). This allows a peer to be sure about
the validity of a transaction once it receives the corresponding verification result from the
other peer, hence a clear communication pattern. We denote the dependency graphs of
pending transactions at P1 and P2 by G1 and G2 respectively. Messages are labeled with
circled letters for easy reference.

Figure 5.4c demonstrates one possible transaction processing sequence of P1 and P2.
For better readability, we break Figure 5.4c into four parts. Part 1 and Part 2 show
how the peers sequentially process transactions in the two blocks. Whenever a peer adds
a transaction to its local dependency graph, the updated graph state is given next to
modifying step. Part 3 and Part 4 depict how the peers revisit transactions in their local
dependency graph and drive the transactions to the end states in Figure 5.3.

55

tx1
tx2

B1

tx3
tx4

B2

(a) Blocks and transactions

tx1

tx3

tx4

tx2

tx1

(b) Transactions dependencies

 tx3: valid

tx4: valid

 tx1: valid, tx2: valid

peer P1
(in the VC of B1)

peer P2
(in the VC of B2)

execute tx3
add tx4 to graph (pending-p txn)

verify and execute
tx1, tx2

add tx1, tx2 to graph (pending-p txn)

remove tx4 from graph

execute tx4

remove tx2 from graph

remove tx4 from graph

tx4

tx1 tx2

tx1 tx2

tx4

tx2

tx4

verify and execute
tx3

add tx4 to graph (pending-d txn)

execute tx1
remove tx1 from graph

execute tx2

verify and execute
tx4

P1's dependency
graph (G1)

P2's dependency
graph (G2)

time time

aa
b

c

Part 4

Part 2
Part 1

Part 3

(c) A possible transaction processing sequence under CTV. Red “execute”s are execution without local
verification.

Figure 5.4: A concrete example of transaction processing under CTV

56

In Part 1, peer P1 starts with verifying the two transactions in block B1. After sending
message b○ to inform peer P2 about the verification results, P1 executes tx3 directly
because message a○ states that tx3 is valid. Since P1 is not responsible for verifying B2,
and there is no message indicating whether tx4 is valid or not, P1 pushes tx4 into G1. At
the end of Part 1, P1 has sequentially processed all four transactions: three of them have
reached the end state, whereas tx4 has paused in the pending-p state. P1 intentionally
suspends the processing of tx4 in the hope that tx4’s verification result will arrive soon so
that it can avoid verifying tx4 by itself.

In Part 2, P2 adds tx1 and tx2 into G2 as two pending-p transactions and then starts to
process B2. Without any parent transactions, tx3 can be verified immediately. However,
tx4 has two parent transactions, namely tx2 and tx3. By searching G2, P2 detects that
tx2 is still pending, so it must postpone verifying tx4 to after tx2 finishes. Therefore, tx4
as well as an edge from tx2 to tx4 is added to G2. At the end of Part 2, P2 has sequentially
processed all transactions, although only tx3 has reached the end state. tx1 and tx2 have
paused in the pending-p state, and tx2 causes tx4 to pause in the pending-d state.

In Part 3, message b○ triggers the execution of tx1 and tx2 at P2. Removing tx2 from
G2 eliminates the only PPT of tx4, so P2 subsequently verifies and executes tx4. In Part
4, P1 idles while waiting for the verification result of tx4 since there are no more blocks to
process. As soon as message c○ arrives, P1 executes tx4.

So far, both P1 and P2 have executed all transactions but in different orders: tx1 →
tx2 → tx3 → tx4 for P1, and tx3 → tx1 → tx2 → tx4 for P2. However, both orders re-
spect the dependencies given by Figure 5.4b and result in the same system state. Although
P1 idles for a while in Part 4 in this simple example, peers will process subsequent blocks
instead of idling in practice.

5.3.4 Sequential Processing Algorithm

With the above example, this section elaborates on Algorithm 2, and the next section will
elaborate on Algorithm 3 and 4. Each of these algorithms fulfills a specific task in Algorithm
1. Algorithm 2 sequentially processes transactions in a block. As some transactions fall
into the pending-p or pending-d state, the dependency graph gradually expands during
the sequentially processing. Transactions are processed according to either the first life
cycle (Line 2∼8) or the second life cycle (Line 10∼20) depending on whether the peer is
a member of the VC of the block. To help Algorithm 4 detect long-pending transactions,
blocks with pending transactions are added to a set (Line 22).

57

Algorithm 2: Sequential Transaction Processing

Input: a dependency graph of pending txns G, a block B, a set of txns deemed
valid by f + 1 distinct peers SCTV valid txn, a set of txns deemed invalid by
f + 1 distinct peers SCTV invalid txn, a set of blocks that include pending
txns Spblock

1 if this peer is in V C(B) then
2 for tx ∈ B do
3 if tx has pending parent txns then
4 add tx to G as a pending-d txn

5 else
6 isV alid← verify tx
7 if isV alid then
8 execute tx

9 else
10 for tx ∈ B do
11 if tx ∈ SCTV valid txn then
12 if tx has pending parent txns then
13 add tx to G as a pending-d txn

14 else
15 execute tx

16 delete tx in SCTV valid txn

17 else if tx ∈ SCTV invalid txn then
18 delete tx in SCTV invalid txn

19 else
20 add tx to G as a pending-p txn

21 if at least one txn of B is in G then
22 add B to Spblock with a timestamp

When being pushed into the dependency graph, pending-p and pending-d transactions
are treated differently. A pending-d transaction’ dependencies on other pending transac-
tions are added as its incoming edges, whereas a pending-p transaction’ dependencies are
ignored. For instance, in the concrete example, when tx2 is added to G2 as a pending-
p transaction, its dependency on tx1 is not added to the graph. Therefore, although

58

pending-p transactions may become parents of future transactions, they are never child
transactions. This design not only reduces the number of edges in the dependency graph
but also saves some computational work. Suppose an edge from tx1 to tx2 was added to
G2, and b○ did not include the “tx2: valid” part. Then when tx1 is removed, the peer
would follow the edge and decrement tx2’s PPT counter. However, this operation would
be meaningless because tx2’s validity remains unresolved and thus could not be executed
regardless of its PPT count. With our design, dependency graphs at all the peers have the
following property:
Property 1. Source vertices are pending-p transactions, and other vertices are
pending-d transactions.

5.3.5 Revisiting Algorithms

Algorithms 3 and 4 revisit pending transactions in the dependency graph and evict el-
igible ones. Algorithm 3 revisits pending-p transactions that have accumulated enough
verification results as well as their descendant transactions. As these transactions progress
toward the end state, they may get removed from the dependency graph, so the graph
gradually shrinks during the revisiting. All the revisited pending-p transactions take the
fast path after exiting the pending-p state. However, pending-p transactions may fall into
the pending-d state at PPT checking, in which case they are “upgraded” to pending-d
transactions: edges connecting them with their PPTs are added to the graph (Line 3).
Line 1∼3 of Algorithm 3 and Line 11∼13 of Algorithm 2 jointly provide the dependency
graph at a peer with the following property:
Property 2. Child transactions whose VCs exclude the peer must be valid
because they are in the pending-d state of the second life cycle.

On the other hand, PPT-free valid pending-p transactions are executed immediately
at Line 5. This execution may render some descendant transactions free of PPTs, so the
function remove descendants is invoked to examine the descendant transactions (Line 6).
The function takes a transaction as the argument and performs breadth-first search (BFS)
to traverse the subgraph rooted at the transaction. Whenever a free-of-PPT transaction is
encountered, the peer processes and removes the transaction from the graph. Because such
descendant transactions are pending-d transactions as per Property 1, the peer resumes
processing them from the pending-d states in the two life cycles. Specifically, descendant
transactions whose VCs include the peer are verified; descendant transactions whose VCs
exclude the peer are executed directly due to Property 2.

Suppose the dependency graph contains six transactions as shown in Fig. 5.5a, and
txm is passed to the remove descendants function as root. The function first follows the

59

Algorithm 3: Revisiting Pending-p Txns with Enough Verification Results

Input: G, SCTV valid txn, and SCTV invalid txn as in the input list of Algorithm 2
1 for tx ∈ SCTV valid txn ∩G do
2 if tx has pending parent txns then
3 upgrade tx to a pending-d txn

4 else
5 execute tx
6 remove descendants(tx)

7 delete tx in SCTV valid txn

8 for tx ∈ SCTV invalid txn ∩G do
9 remove descendants(tx)

10 delete tx in SCTV invalid txn

/* traverse the subgraph rooted at root with BFS */

11 Function remove descendants(root):
12 Q← an empty queue
13 for txc ∈ the child transactions of root do
14 if txc has no other pending parent txn then
15 enqueue txc to Q

16 delete root in G
17 while Q is not empty do
18 curTx← dequeue the first element of Q
19 B ← the block enclosing curTx
20 if this peer is in V C(B) then
21 isV alid← verify curTx
22 if isV alid then
23 execute curTx

24 else
25 execute curTx

26 for txc ∈ the child transactions of curTx do
27 if txc has no other pending parent txn then
28 enqueue txc to Q

29 delete curTx in G

60

outgoing edges of txm and finds three children, namely txn, txp, and txq, but enqueues
only the first two children because the last one has another parent txo. Figure 5.5b reflects
the state of the BFS queue with each row corresponding to one iteration. In each of the
subsequent iterations, one transaction is popped out of the queue, and its free-of-PPT
children are pushed in. The popped-out transaction resumes following its life cycle to the
end state and are removed from the graph. In the second iteration, txn is popped out, but
its only child txr is not pushed in because the other parent of txr is still pending. In the
next iteration, txp is popped out, and txr is finally enqueued. Eventually, all grey vertices
and dotted edges in Figure 5.5a are removed.

txn

txo

txf

txp txq

txm

txr

(a) dependency graph

 iter. 2

 iter. 3

 iter. 4

 iter. 1 txn txp

txp

txr

txn

txp

txr

(b) BFS queue states

Figure 5.5: Removing txm triggers the removal of txn, txp and txq. Dotted transactions in
(b) are dequeued.

Algorithm 4 also revisits pending transactions and reduces the dependency graph size
but only deals with long-standing pending-p transactions as well as their descendant trans-
actions. All pending-p transactions processed by this algorithm take the slow path. To
detect long-pending transactions, the peer relies on the set of blocks containing pending
transactions (i.e., Spblock), which is gradually built by Algorithm 2. Because blocks are
processed in order, the lowest-height block in Spblock must contain the longest-pending
transactions. Therefore, if Tslow time has elapsed since this block is added to Spblock, all
pending transactions in the block are verified in order at Line 3∼7. PPT checking is not
needed because there are no pending transactions in previous blocks. For this very reason,
the first pending transaction in the block must be in the pending-p state. Algorithm 4 also
calls the remove descendants function to examine descendant transactions (Line 7).

61

Algorithm 4: Revisiting Timeout Pending-p Txns

Input: G and Spblock as in the input list of Algorithm 2, slow path triggering
timeout Tslow

1 B1st ← the lowest-height block in Spblock

2 if B1st has been in Spblock for at least Tslow time then
3 for tx ∈ B1st ∩G do
4 isV alid← verify tx
5 if isV alid then
6 execute tx

7 remove descendants(tx)

8 remove B1st from Spblock

5.4 Correctness of Slow-Path-Free CTV

The slow path is a countermeasure against faulty peers and unreliable networks. In the
fault-free scenario, even without the slow path, CTV is still able to complete all trans-
actions. We formalize this property of CTV as the theorem below, which facilitates the
proof.
Theorem: Given a certain number of ordered blocks, if (1) all peers in the
shard are honest, (2) messages are eventually delivered, and (3) the slow path
is disabled, CTV can still complete all transactions, i.e., no transaction is left
forever in a local dependency graph.

Proof. We prove this theorem by contradiction. Suppose some transactions remain forever
in the local dependency graphs at some peers. We denote peer i’s local dependency graph
at time t = ∞ by Gi = (Vi, Ei), where Vi is the set of pending transactions and Ei is
the set of directed edges. By combining all the local vertex sets, one can build the global
vertex set V = ∪3f+1

i=1 Vi. Undoubtedly, V comprises all transactions that linger in at least
one local graph. The ordered blocks establish a total order of the transactions in V : x < y
if transaction x is in a block ordered before the block that includes y, or x and y are in
the same block and x is ordered before y. Consequently, there must be a minimal element
xmin in V such that ∀x∈V (xmin ≤ x). We will first prove that peers in V C(xmin) cannot
have xmin in their local dependency graphs and then prove that the existence of xmin leads
to a contradiction.

Back when peer i where i ∈ V C(xmin) checked xmin for PPTs, its local dependency

62

graph consisted of only transactions ordered before xmin. We denote the graph at that
moment as G′

i = (V ′
i , E

′
i). Then there exists ∀x′∈V ′

i
(x′ < xmin). If xmin did not depend on

any transactions in V ′
i , it could not be added to the dependency graph and thus cannot

exist in Vi. On the other hand, if xmin depended on some transaction(s) in V ′
i , it would be

added to the graph but removed later. This is because from ∀x∈V (xmin ≤ x) and Vi ⊆ V ,
we can derive that ∀x∈Vi

(xmin ≤ x), so there must be V ′
i ∩ Vi = ∅. In other words, V ′

i and
Vi share no common transactions because the former comprises transactions ordered before
xmin but the latter comprises transactions ordered after xmin and possibly xmin itself. The
empty intersection means Vi includes no parent transactions of xmin, so xmin must have
been removed together with its last parent transaction in the graph. Consequently, in
either case, there exists ∀i∈V C(xmin)(xmin /∈ Vi).

From xmin ∈ V and ∀i∈V C(xmin)(xmin /∈ Vi), we can derive that ∃i/∈V C(xmin)(xmin ∈ Vi).
We denote one of such peers, whose local dependency graph includes xmin, by k. According
to hypothesis (1), the f + 1 peers that are members of V C(xmin) must have produced
consistent verification results for xmin and sent the results to k. Because of hypothesis (2),
k must have received the results. Since xmin remains in Vk, the results must have confirmed
that xmin is valid, and xmin has fallen into the pending-d state as shown in the fast path of
the second life cycle. The pending-d state means a parent transaction of xmin must exist
in Vk.

However, as a valid transaction, xmin only consumes UTXO(s) produced by transactions
ordered before it. Since ∀x∈V (xmin ≤ x) and Vk ⊆ V , we have ∀x∈Vk

(xmin ≤ x). In other
words, no transaction in Vk is ordered before xmin, so Vk cannot include a parent transaction
of xmin. Previously we have deduced that a parent transaction of xmin exists in Vk, so Vk

both includes and does not include a parent transaction of xmin, a contradiction.

5.5 Evaluation

We implemented CTV as well as an OmniLedger-like sharding protocol based on Bitcoin
Core [50]. Inspired by [100] and [70], we also implemented chain replication of blocks to
overcome the bandwidth bottleneck of PBFT leaders. Since CTV is targeted at improving
the performance of individual shards, we evaluated it with a single shard. Experiments are
done on a local cluster. Peers run on the machines with dual Xeon E5-2620 at 2.1 GHz
(12 cores) and 64GB RAM, and one client runs on a machine with dual Xeon E5-2630 at
2.6 GHz (12 cores, 2 hyperthreads per core) and 256GB RAM. The client reads historical
transactions from the Bitcoin blockchain and sends them to the leader node at a rate of
10k tps. The transactions in 500 recent Bitcoin blocks (block height 601000 to 601499)

63

Table 5.1: The default setting

Round-trip delay between peers 40 ms
Network bandwidth 200 Mbps

Block size 500 txns
Number of peers 16

Slow path triggering timeout (Tslow) 100 s

are replayed, totaling 1,120,294 transactions. Each experiment is repeated five times. To
emulate a geo-distributed environment, network delays are injected between peers using
Linux NetEm. If unspecified, default parameter values listed in Table 5.1 are used. The
impacts of these parameters will be evaluated in Section 5.5.2.

5.5.1 Importance of Transaction Dependency Awareness

Sharded verification from the Red Belly Blockchain [28] also lets peers share transaction
verification results to reduce the per-peer computational workload. As their experiments
are designed such that clients never send transactions consuming UTXOs of pending trans-
actions, sharded verification does not incorporate dependency tracking. However, it is not
uncommon for transactions to consume UTXOs of pending transactions. For example, 299
out of the 2399 transactions in Bitcoin block 601500 depend on some preceding transac-
tion(s) in the same block. Therefore, we do not adjust the transaction-sending order in
our experiments.

Figure 5.6 compares CTV with sharded verification and ITV. The throughput of sharded
verification drops to 0 tps quickly after the client finishes sending transactions at 110s. As
a result, it completes merely 34% of the transactions. By not accounting for transaction
dependencies, peers verify some child transactions before parent transactions and thus
mistakenly determined that the child transactions are invalid. Then, all the descendant
transactions of such mistakenly invalidated transactions become invalid due to missing
input UTXOs. Some readers might think that sharded verification should be able to com-
plete more transactions because most Bitcoin users seem to transact infrequently. However,
we find that 84% of transactions in blocks of height [601000, 601500) consume UTXO(s)
produced in the same block height range. In other words, with this workload, shard verifi-
cation only guarantees to complete 16% of the transactions; the other 84% are vulnerable
to dependency violation. By contrast, CTV and ITV complete all the transactions, with
CTV 2.2x faster. The red line representing CTV in Figure 5.6 stops at around 210s because
CTV completes processing all the transactions.

64

0 100 200 300 400 500

Time (s)

0

20000

40000

60000

80000

Tr
a
n
s
a
c
ti

o
n
s
 p

e
r

1
0
 s

e
c
o
n
d

ITV

Sharded verification

CTV

Figure 5.6: Comparison of throughput between ITV, sharded verification, and CTV

The plummeting throughput of the ITV at 150s results from transactions with unusual
input UTXO counts. These transactions map to Bitcoin blocks 601145 to 601147. For
example, starting from the 102nd transaction in block 601147, each of the 34 subsequent
transactions spends 200 UTXOs [16]. These transactions also cause the low throughput of
CTV at around the 70s.

5.5.2 Fault-Free Performance

As we saw in the last section, sharded verification cannot complete all the transactions
due to transaction dependency violation, so it is meaningless to measure its performance
in the absence of correctness. Thus in this section, we only compare the performance of
our approach with that of independent transaction verification.

With the default setting, CTV achieves 2.6x higher throughput than ITV. This through-
put gain is approaching the ideal value for a 16-node shard, which is 3f+1

f+1
|f=5 = 2.7x. To

evaluate the performance of CTV under various configurations, we varied the parameters
in Table 5.1 and summarized the results in Figure 5.7. Since we sacrifice some level of
network usage in exchange for a lighter computational load, we first evaluate how network
condition affects CTV. Equal network delays are injected between each pair of peers. Fig-
ure 5.7a demonstrates that long network delays negatively influence the performance of

65

0 50 100 150 200 250 300

Round-trip delay (ms)

0

2000

4000

6000

8000

T
h
ro

u
g
h
p
u
t

(t
p
s
)

ITV

CTV

(a) Throughput v.s. network delay

0 100 200 300 400 500

Bandwidth (Mbits/s)

0

2000

4000

6000

8000

T
h
ro

u
g
h
p
u
t

(t
p
s
)

ITV

CTV

(b) Throughput v.s. bandwidth

0 500 1000 1500 2000

Block size (transactions)

0

2000

4000

6000

8000

T
h
ro

u
g
h
p
u
t

(t
p
s
)

ITV

CTV

(c) Throughput v.s. block size

0 5 10 15 20 25 30 35

Number of peers

0

2000

4000

6000

8000

T
h
ro

u
g
h
p
u
t

(t
p
s
)

ITV

CTV

Ideal

(d) Throughput v.s. shard size

0 50 100 150 200

Slow path trigger timeout (s)

0

2000

4000

6000

8000

T
h
ro

u
g
h
p
u
t

(t
p
s
)

0

250

500

750

1000

1250

T
x
n
s
 v

e
ri

fi
e
d
 i
n
 s

lo
w

 p
a
th

Throughput

Txn count

(e) Throughput v.s. Tslow

0 100 200 300 400

Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

0.5

0.99

ITV

CTV

(f) Execution Latency

Figure 5.7: Performance under various configurations

66

CTV. This is because each pending-p transaction remains in the dependency graph for a
longer time and tends to hamper more transactions. However, even under the extremely
long delay of 300ms (higher than the latency between any two of the 14 AWS regions
measured by [28] except for São Paulo), CTV still yields 84% throughput improvement. In
addition, Figure 5.7b shows that CTV can reach its full capacity when peers are connected
by a network with minimally 100 Mbps bandwidth. When bandwidth is lower than 100
Mbps, blocks are not disseminated as fast as peers can process them. At 20 Mbps, even
the performance of ITV is slightly attenuated.

0 50 100 150 200 250 300

Time (s)

0

50000

100000

150000

200000

250000

N
u
m

b
e
r

o
f

tr
a
n
s
a
c
ti

o
n
s pending-p (peer 1)

pending-p (peer 2)

pending-p (peer 3)

pending-d (peer 1)

pending-d (peer 2)

pending-d (peer 3)

Figure 5.8: Dependency graph size

Large block sizes diminish the performance of CTV as illustrated in Figure 5.7c. This
arises out of the design decision that CTV only checks newly received verification results
in between the processing of two blocks (see Algorithm 1). Small block sizes allow peers to
perform the checking frequently and evict transactions from the dependency graph timely,
but excessively small block sizes incur high consensus overhead and should be avoided since
one consensus instance is invoked per block. Next, we varied the number of peers in the
shard. From Figure 5.7d, one can see that CTV consistently attain over 92% of the ideal
throughput values, which equal the throughput of ITV multiplied by 3f+1

f+1
. Lastly, we tried

different Tslow values. With low Tslow, peers are “impatient” about waiting for verification
results from others, so they verify more transactions in the slow path, shown by the lower
curve in Figure 5.7e. Unsurprisingly, the extra verification work impairs the performance.
On the other hand, when Tslow ≥ 150s, no transaction takes the slow path, which reinforces

67

our correctness analysis in section 5.4. In addition to throughput improvement, CTV also
reduces execution latency by 2/3 due to the overall per-peer workload drop. The 100-
second-scale latency comes from the 10k-tps sending rate, which stresses the system since
it is higher than the transaction processing speeds and thus causes a long server-side
transaction queuing delay. For the same reason, the default Tslow value is set to 100s
instead of some lower value.

Figure 5.8 shows how the dependency graph sizes change over time at three sampled
peers. Although the number of pending transactions varies from peer to peer, like in the
concrete example, pending-p transactions are significantly more than pending-d transac-
tions across all peers, which suggests that avoiding establishing edges for pending-p trans-
actions effectively reduces the cost of maintaining the graph. Another observation is that
there are no forever-pending transactions, which agrees with the correctness analysis.

5.5.3 Performance Under Faults

0 1 2 3 4 5

Number of faulty peers

0

2000

4000

6000

8000

T
h
ro

u
g
h
p
u
t

(t
p
s
) ITV

CTV (100s)

CTV (10s)

(a) Throughput under faults

0 100 200 300 400

Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

0.5

0.99

ITV

CTV (100s)

CTV (10s)

(b) Latency under five faulty peers

Figure 5.9: Performance under faults. CTV(t) represents CTV with Tslow = t.

In our experiments, faulty peers do not process transactions but still participate in
block dissemination. Even when 5 out of 16 peers are faulty, CTV still outperforms ITV
as shown in Figure 5.9a. In addition, lower Tslow values help improve the performance of
CTV under faults, because peers stop waiting for faulty peers to share verification results
earlier. When the number of fault peers equals f , the probability of forming a fault-free

68

VC is
(
2f+1
f+1

)
/
(
3f+1
f+1

)
, which equals only 0.058 in a 16-peer shard. Therefore, in Figure 5.9b,

few transactions have less-than-100s latency when Tslow = 100s, although this value hardly
affects the latency in the fault-free scenario due to the rare usage of the slow path. However,
the latency can be significantly improved by using a short timeout such as 10s. Because
peers also share verification results obtained in the slow path, initially timing-out peers
essentially substitute for faulty peers to fulfill verification result sharing. Thus, each peer
still verifies fewer transactions than under ITV, so the two CTV curves in Figure 5.9b rise
faster than the ITV curve.

5.6 Chapter Summary

As various works optimize consensus and block dissemination, computationally intensive
transaction verification has become the newly exposed bottleneck of BFT-based blockchains,
including sharded ones. CTV helps accelerate transaction processing by allowing shard
members to concurrently verify transactions and exchange the results with each other.
Dependency awareness ensures that CTV preserves the state machine replication model
despite the fact that peers verify transactions in different orders. Our evaluation results
show that CTV can produce 2.6x throughput improvement without compromising fault
tolerance or degrading the performance under faults.

CTV can be adapted to account-balance blockchains by changing the parent detection
mechanism to an approach based on accessed account analysis. CTV also applies to BFT-
based unsharded blockchains with a moderate number of peers. Permissioned blockchains
are likely to fall within this category.

69

Chapter 6

Smart Transaction Placement

Transaction placement in a UTXO-based sharded blockchain means to determine the out-
put shards of transactions. Cross-shard transaction processing must involve communication
between the participant shards to ensure consistent states across shards, hence a high pro-
cessing cost. In this chapter, I will first describe two transaction characteristics to show
that reducing cross-shard transactions through transaction placement is feasible and can
benefit the performance of sharded blockchains. Then, I will present Rooted Graph Place-
ment, which leverages transaction dependencies to greatly reduce cross-shard transactions,
followed by two techniques for speeding up the processing of cross-shard transactions and
their dependent transactions.

6.1 Transaction Characteristics

Understanding transaction characteristics allows us to determine whether carefully placing
transactions to shards can achieve substantial performance improvement. We are particu-
larly interested in two characteristics: 1) how many transactions can be easily turned into
single-shard transactions, and 2) how expensive a cross-shard transaction can be when
compared with a single-shard transaction. A transaction placement algorithm can only
improve the system performance if cross-shard transactions cost a lot more than their
single-shard counterparts and can be greatly reduced by the placement algorithm.

70

6.1.1 Transaction Dependencies

If transaction tx2 spends the UTXO(s) produced by transaction tx1, then tx1 is referred to
as the parent transaction and tx2 as the child transaction. Given a transaction, the number
of its parent transactions directly affects its probability of being single-shard. For example,
a transaction with only one parent can be a single-shard transaction if it is placed in the
same shard as its parent. In contrast, a transaction with 100 parents is very unlikely to be
single-shard since that requires all of the 100 parents have been placed in the same shard.
Thus, we analyze parent transaction counts for over 1 million transactions in the Bitcoin
blocks of height 601000 to 601499 (coinbase transactions are excluded since they have no
parents and are guaranteed to be single-shard). Because blocks are usually referred to
using block heights, we refer to the block of height i as block i in the rest of this chapter.

100 101 102 103

Parent transaction count

101

103

105

Fr
eq

ue
nc

y

Figure 6.1: Distribution of parent transaction counts

Fig. 6.1 shows that parent transaction counts conform to a power-law distribution,
which means that transactions with a few parents occur more frequently than transactions
with many parents. We are particularly interested in transactions with one parent be-
cause a placement algorithm can easily make such transactions single-shard. By analyzing
Bitcoin block 0 to block 680k (mined in April 2021 [12]), we found that one-parent trans-
actions account for a significant proportion throughout the history of Bitcoin and remain
approximately 75% since block 420k as shown in Fig. 6.2. The percentage changes a lot for

71

the first 100k blocks because they include only a few transactions at the start of Bitcoin,
as shown by the blue bars in Fig 6.2.

0
10

0k
20

0k
30

0k
40

0k
50

0k
60

0k
70

0k

Block height

0

20

40

60

80

100

Pe
rc

e
n
ta

g
e
 o

f
o
n
e
-p

a
re

n
t

tr
a
n
sa

ct
io

n
s

(%
)

0

1

2

3

4

5

6

7

8

Tr
a
n
sa

ct
io

n
s

p
e
r

2
0

k
b

lo
ck

s

1e7

Figure 6.2: The percentage of transactions with one parent

6.1.2 Cost of Cross-Shard Transactions

In this section, we compare the execution time of single-shard transactions and cross-
shard transactions by quantitative measurements. An OmniLedger-like sharding protocol
is implemented based on Bitcoin Core [50], and Bitcoin transactions are replayed in a 2-
shard environment. More details about the implementation and the testbed will be given
in Section 6.4. For a single-shard transaction, the client sends a TX request containing the
transaction directly to the output shard. For a cross-shard transaction, the client sends a
LOCK request to each input shard and a COMMIT request to the output shard, provided all
input shards reply with positive locking results (illustrated in Fig. 2.6). The measurement
results show that the median processing time for a TX request, a LOCK request, and a COMMIT
request are 211 µs, 438 µs, and 259 µs, respectively.

To understand why LOCK and COMMIT requests take a longer time to process than TX

requests, we further measure the processing time of each step in request processing. In a
UTXO-based blockchain, a node checks for three conditions when verifying a transaction:

72

TX LOCK COMMIT
0

200

400

600

800

1000

T
im

e
(u
s
)

(a) TX, LOCK, and COMMIT

UTXO_exist_value Sig Spend_add
0

200

400

600

800

1000

Ti
m

e
(

s)

(b) Breakdown of TX

UTXO_exist Sig Spend Sign Send
0

200

400

600

800

1000

Ti
m

e
(

s)

(c) Breakdown of LOCK

Shard_sig UTXO_value Add
0

200

400

600

800

1000
Ti

m
e

(
s)

(d) Breakdown of COMMIT

Figure 6.3: Request processing time (2 shards)

1) the input UTXOs exist and are unspent, 2) the total input value is not less than the
total output value, and 3) the transaction includes the correct signatures from input UTXO
owners. Provided the transaction meets all three conditions, the node will execute it by
removing the input UTXOs and adding the output UTXOs to the system state. In Fig.
6.3b, the UTXO exist value label corresponds to the first two transaction verification steps,
the Sig label to the third verification step, and the Spend add label to the system state
update. Fig. 6.3b shows that checking signatures of input UTXOs dominates the processing
time of a single-shard transaction. In Fig. 6.3c, the UTXO exist label corresponds to the
first transaction verification step. Note that LOCK request processing does not include
value checking because an input shard is oblivious to input UTXO values of other input

73

shards. Thus, value checking is done by the output shard during COMMIT request processing.
Similarly, system state update is separated into two parts: removing the input UTXOs in
LOCK request processing, and adding the output UTXOs in COMMIT request processing.
Compared with TX request processing, LOCK request processing includes two additional
steps: signing the lock result (labeled as Sign) and sending the result to the client (labeled
as Send). These two steps are comparable in processing time to input UTXO signature
checking. Lastly, COMMIT request processing is dominated by verifying the signatures of
lock results, which are produced by input shards. The step is labeled as Shard sig in Fig.
6.3d.

As a result, if a one-parent transaction becomes cross-shard as a result of being placed
to a different shard than its parent, its processing time would be more than tripled due to
the communication and input shard authentication overhead.

6.2 Rooted Graph Placement (RGP)

In this section, we describe our transaction placement algorithm—Rooted Graph Placement
(RGP), which reduces cross-shard transactions in UTXO-based blockchains. We observed
that, compared with unrelated transactions, transactions with (transitive) dependencies in
between are more likely to have their output UTXOs spent together. Figure 6.4 illustrates
the intuition behind this observation. Suppose Alice controls two Bitcoin addresses [9]
and decides to dedicate Alice addr2 for burger buying. In tx1, Alice transfers 1 BTC from
Alice addr1 to Alice addr2. Then in tx2, Alice pays for one burger, which costs 0.4 BTC,
with the first output UTXO of tx1 (denoted by ⟨tx1, 0⟩). In tx3, she buys the second
burger. After that, the balance in Alice addr2 is lower than the burger price, so Alice
combines her two addresses to pay for a burger in tx4.

This observation suggests that considering non-parent ancestor transactions can help
with reducing future cross-shard transactions. In the above example, when tx3 is to be
placed, transactions tx1 and tx2 are historical transactions, and tx4 does not exist yet but
is a possibility in the future. If we only consider the parent transaction tx2, we would
place tx3 to the same shard as tx2 so that tx3 is a single-shard transaction. However, tx4

will be single-shard if we place tx3 to the same shard as tx1, a non-parent ancestor of tx3.
Therefore, we design RGP to place a transaction to the shard with most of the ancestor
transactions, including non-parent ones.

Besides cross-shard transaction reduction, RGP also considers load balancing. Because
sharding protocols usually partition peers based on unbiased random numbers and recon-
figure shard membership periodically for security purposes[62][107][30], this work assumes

74

 tx1
Input:
<tx0, 0>: Alice_addr1, 2 BTC

Output:
0: Alice_addr2, 1 BTC
1: Alice_addr1, 1 BTC

 tx2
Input:
<tx1, 0>: Alice_addr2, 1 BTC

Output:
0: McDonald's, 0.4 BTC
1: Alice_addr2, 0.6 BTC

 tx3
Input:
<tx2, 1>: Alice_addr2, 0.6 BTC

Output:
0: McDonald's, 0.4 BTC
1: Alice_addr2, 0.2 BTC

Transaction
to be placed

A possible
future
transaction

Historical
transactions

 tx4
Input:
<tx3, 1>: Alice_addr2, 0.2 BTC
<tx1, 1>: Alice_addr1, 1 BTC

Output:
0: McDonald's, 0.4 BTC
1: Alice_addr1, 0.8 BTC

Figure 6.4: An output UTXO of a dependent transaction and an output UTXO of an
ancestor transaction are consumed together.

that computational resources are evenly distributed among shards. Thus, RGP attempts
to assign an equal number of transactions to all shards.

6.2.1 Cross-Shard Transaction Reduction

As RGP aims at placing a transaction to the shard with the most ancestor transactions, it
models these transactions and dependencies between them using a rooted directed acyclic
graph (DAG). Given a new transaction, RGP builds a graph G = (V,E) rooted at the

75

new transaction. A transaction u ∈ V only if u is an ancestor transaction of the new
transaction (including the new transaction itself). A directed edge (v, u) ∈ E if and only
if u ∈ V , v ∈ V , and v consumes the output UTXO(s) of transaction u. RGP builds the
graph starting from the root because child transactions carry information about parent
transaction IDs. Finding all ancestor transactions is expensive, so RGP only considers
ancestor transactions within a certain distance from the root. We refer to RGP that traces
back k levels of ancestor transactions as RGPk. Figure 6.5a illustrates an example of
RGP2, where transactions that are part of the rooted graph are underlined. Transaction a
is not part of the rooted graph because it is 3 hops away from the root x, while RGP2 only
considers ancestors within two hops. Therefore, the rooted graph is essentially a subgraph
of the global transaction dependency graph. An ancestor transaction is called a level-j
ancestor if the shortest path between the root vertex and the ancestor vertex consists of j
edges, as shown in Figure 6.5b.

With the rooted graph, RGP counts the number of ancestor transactions in each shard
and calculates cost scores based on the counting results. A shard’s cost score reflects the
cost-effectiveness of placing the new transaction in the shard. Generally, RGP attempts
to place a new transaction to the shard that has processed most of its ancestors, but we
have two special considerations.

b

c d

fe

x

Shard1 Shard2a

(a) Ancestors in two shards

lev
el-

1
an

ces
tor

s

lev
el-

2
an

ces
tor

s

b

c d

f

x

(b) Ancestor levels

Figure 6.5: An example of RGP2. Underlined transactions are vertices of the rooted graph.

First, we distinguish between totally spent ancestors and partially spent ancestors. A
partially spent ancestor has output UTXO(s) that remain unspent after the new transaction
is executed, whereas a totally spent ancestor has all its output UTXOs spent. Figure 6.6

76

demonstrates why totally spent ancestors should be given less weight than partially spent
ancestors. Suppose transaction x is a new transaction to be placed, and its two ancestors
(i.e., transaction d and f) are in different shards. Transaction d is totally spent since
UTXO2 has been spent by transaction f and UTXO3 will be spent by x. On the other
hand, transaction f is partially spent since no transaction consumes UTXO5. Thus a future
transaction y may consume the output UTXOs of both transaction f and transaction x.
To prevent such future transactions from modifying two shards, transaction x should be
placed in the same shard as f . Therefore, we use a coefficient α ∈ (0, 1) to give totally
spent ancestors less weight than partially spent ancestors.

Transaction f

output
UTXO4
UTXO5

input
UTXO1
UTXO2

Transaction d

output
UTXO2
UTXO3

input
UTXO0

Transaction x

output
UTXO6

input
UTXO3
UTXO4

Transaction y

output
...

input
UTXO5
UTXO6

Figure 6.6: Transaction f is a partially spent ancestor of transaction x, and transaction d
is a totally spent ancestor of transaction x.

Second, RGP takes level sizes (i.e., the number of ancestors in each level) into consider-
ation so that cost scores are not biased by the largest level. For example, a new transaction
may have one level-1 ancestor (in shard1) and four level-2 ancestors (one in shard1 and
three in shard2). Without considering level sizes, RGP would tend to assign the new
transaction to shard2, since shard2 holds one more ancestor than shard1. In other words,
the cost scores would be biased by level-2 ancestors because they outnumber the level-1
ancestor by 4 times. However, the level-1 ancestor is important since the new transaction
would be single-shard if placed to the same shard as the level-1 ancestor. Thus, RGP
divides ancestor counts by the corresponding level sizes to ensure the equal significance of
each level. Incorporating the two special considerations into RGP, we define the cost score
as follows:

Scost(i) =
k∑

j=1

pij + αtij∑ns

m=1(pmj + tmj)
(6.1)

77

where Scost(i) is the cost score of shard i (1 ≤ i ≤ ns); ns is the number of shards; k is
the number of ancestor levels in the graph; pij (or pmj) is the number of partially spent
level-j ancestors in shard i (or shard m); tij (or tmj) is the number of totally spent level-j
ancestors in shard i (or shard m); α is the totally spent ancestor weight (0 < α < 1).
The denominator

∑ns

m=1(pmj + tmj) is the sum of level-j ancestors across shards, which
represents the size of the j-th level in the rooted graph. Scost(i) is in the range of [0, k].
A high cost score means placing the transaction in the shard is likely to reduce future
cross-shard transactions, including the one currently being placed.

6.2.2 Load Balancing

When placing a transaction, RGP also calculates a load score for each shard to account for
load balancing. A high load score means that the shard is experiencing a relatively light
workload, so the transaction will experience a relatively low queuing delay if placed to the
shard. We use partition i (denoted by Pi) to refer to the set of transactions that have been
placed to shard i. Obviously, small partitions should receive high load scores. Also, we
want to limit the maximum partition size difference so that load imbalance is bounded. A
piecewise function is designed to satisfy these two requirements:

Sload(i) =

0 if |Pi| ≥ |Pmin|+ θ

1− γ |Pi|−|Pmin|
|Pmax|−|Pmin| if |Pmin|+ θ > |Pi| > |Pmin|

1 if |Pi| = |Pmin|
(6.2)

where Sload(i) is the load score of shard i; |Pi| is the size of partition i; |Pmin| and |Pmax|
are sizes of the smallest partition and largest partition, respectively; |Pmin| + θ is the
boundary partition size that distinguishes large partitions from medium partitions (used
to limit load imbalance); γ ∈ (0, 1] is a coefficient that determines how heavily a medium
partition is penalized. Sload(i) gently penalizes medium partitions based on their sizes
and aggressively penalizes large partitions. Note that in the second line of Equation 6.2,
the denominator |Pmax| − |Pmin| is implicitly guaranteed to be greater than zero by the
condition |Pi| > |Pmin|. For medium partitions, Sload(i) is in range [1− γ, 1).

To take into account both cross-shard transaction reduction and load balancing, the
final decision should be based on both the cost score and the load score. While adding
up the two scores seems to be a reasonable choice, it cannot limit load imbalance because
large partitions with non-zero ancestors could have a higher score sum than small partitions
without ancestors. Thus, to have bounded load imbalance, we design the overall score as

78

Algorithm 5: Rooted Graph Placement

Input: a new transaction x, the number of ancestor levels k, the number of shards
ns, transactions reachable from x within k hops, totally spent ancestor
weight α, partition sizes |P1|, |P2|, . . . , |Pns|, medium partition penalty
coefficient γ, imbalance upper bound θ

Output: x’s output shard ID sout(x)
1 if x is a coinbase transaction then
2 sout(x) = hash(x) mod ns

3 else
/* Build the rooted graph */

4 starting from transaction x, using BFS to build a rooted graph with k levels of
ancestors.

5 for i ∈ [1, ns] do
/* Compute the cost score of shard i */

6 Scost(i) =
∑k

j=1
pij+αtij∑ns

m=1(pmj+tmj)

/* Compute the load score of shard i */

7 if |Pi| ≥ |Pmin|+ θ then
8 Sload(i) = 0
9 else if |Pi| > |Pmin| then

10 Sload(i) = 1− γ |Pi|−|Pmin|
|Pmax|−|Pmin|

11 else
12 Sload(i) = 1

/* Compute the overall score of shard i */

13 Si = Scost(i) · Sload(i)

/* Place x into the shard with the highest overall score */

14 if max(Si) > 0 then
15 sout(x) = argmaxi (Si)

16 else
17 sout(x) = the shard ID of Pmin

the multiplication of the two scores:

Si = Scost(i) · Sload(i) (6.3)

where Si is the overall score of shard i. As Scost(i) is in range [0, k], and Sload(i) is in range
[0, 1], Si must be in range [0, k]. The overall scores of large partitions are always zero

79

because of Equation 6.2. If Si = 0 for all shards, which occurs when ancestors only exist
in large partitions, RGP places the new transaction in the smallest partition. In this way,
RGP never places transactions to large partitions, so the maximum partition size difference
is bounded by θ. Algorithm 5 shows the complete RGP algorithm.

6.2.3 Impacts of Parameters

In this section, we demonstrate how the four parameters of RGP affect its transaction
partitioning quality (i.e., the cross-shard transaction number and load balancing) and give
the recommended parameter values. Generally, due to the intrinsic tradeoff between cross-
shard transaction reduction and load balancing, varying a parameter usually improves one
metric but worsens the other. In this section, recommended parameter values are derived
using the first 200k Bitcoin blocks. However, we will see that these values are quite robust
and transferable to different workloads in Section 6.2.4.

Figure 6.7a demonstrates that RGP1 (i.e., RGP that traces back one level of ancestor
transactions) can lower the cross-shard transaction percentage to 25%, in contrast to 93%
with hashing placement. RGP2 further reduces cross-shard transactions to 17%. The phe-
nomenon that RGP2 produces fewer cross-shard transactions than RGP1 agrees with the
intuition described at the beginning of Section 6.2. Another way of explaining the phe-
nomenon is that RGP2 feeds the RGP algorithm with more information about the global
dependency graph than RGP1. It has also been mentioned in [94] that more information
yields better partitioning quality. RGP3 and RGP4 can produce even fewer cross-shard
transactions, but the improvement is marginal.

In Figure 6.7b, the lowest cross-shard transaction percentage occurs when α ∈ [0.8, 0.9].
This is because when α = 1 (i.e., totally spent ancestors are given the same weight as
partially spent ancestors), RGP ignores the fact that a partially spent ancestor and the new
transaction may be referenced in the same future transaction. Nevertheless, low α values
make RGP undervalue totally spent ancestors and thus increase cross-shard transactions
as well.

Figure 6.7c illustrates the impact of γ. As expected, with high γ values, medium parti-
tions are penalized heavily, hence better load balancing but more cross-shard transactions.
Surprisingly, γ = 0 also results in a relatively high cross-shard transaction percentage. We
believe the reason is that, when γ = 0, load scores equal either zero or one according to
Equation 6.2. As a result, the overall score defined in Equation 6.3 equals either the cost
score or zero instead of a comprehensive assessment based on both ancestor transaction
distribution and shard loads.

80

1 2 3 4
Levels of ancestor txns k

10

15

20

25

30

%
 o

f c
ro

ss
-s

ha
rd

 tx
ns

0

2

4

6

|P
m
ax
| -

 |P
m
in
|

1e4

Cross-shard txn
Load imbalance

(a) Vary k (α = 0.9, γ = 0.2, θ = 50k)

0.25 0.50 0.75 1.00
Totally spent ancestor weight α

10

15

20

25

30

%
 o

f c
ro

ss
-s

ha
rd

 tx
ns

0

2

4

6

|P
m
ax
| -

 |P
m
in
|

1e4

Cross-shard txn
Load imbalance

(b) Vary α (k = 2, γ = 0.2, θ = 50k)

0.0 0.2 0.4
Medium partition penalty coefficient γ

10

15

20

25

30

%
 o

f c
ro

ss
-s

ha
rd

 tx
ns

0

2

4

6

|P
m
ax
| -

 |P
m
in
|

1e4

Cross-shard txn
Load imbalance

(c) Vary γ (k = 2, α = 0.9, θ = 50k)

0 100k 200k 300k
Imbalance upper bound θ

10

15

20

25

30
%

 o
f c

ro
ss

-s
ha

rd
 tx

ns

0

1

2

3

|P
m
ax
| -

 |P
m
in
|

1e5

Cross-shard txn
Load imbalance

(d) Vary θ (k = 2, α = 0.9, γ = 0.2)

Figure 6.7: Influence of RGP parameters (16 shards)

Finally, as θ controls the maximum partition size difference, it is natural that load
imbalance grows linearly with θ and cross-shard transactions decrease as θ grows. The
elbow of the curve in Figure 6.7d suggests that θ = 50k is a reasonable choice since further
increasing θ does not reduce cross-shard transactions much but cause high imbalance. Per
the above analysis, we recommend the following parameter values: k = 2, α = 0.9, γ = 0.2,
θ = 50k. These values are used in the rest of this chapter.

81

6.2.4 Partitioning Quality Comparison

To show that the recommended parameter values generalize well with other workloads,
we employ four Bitcoin transaction sets of similar sizes, as detailed in Table 6.1. The
partitioning quality of RGP2 is compared with that of hashing placement and OptChainV2-
T2S, which is OptChainV2 [80] without transaction latency sampling1. OptChainV2 is a
state-of-the-art transaction placement algorithm for sharded blockchains, and its details
have been given in Section 3.3. OptChainV2-T2S is used instead of OptChainV2 in this
section because it can be evaluated analytically without deploying shards, which is also
true for hashing placement and RGP2. This is particularly useful when comparing the
algorithms under high shard counts, e.g., 128 shards. OptChainV2-T2S produces slightly
fewer cross-shard transactions than OptChainV2 because the former misses the sampling
feature for fine-grained load balancing. If RGP2 can achieve a similar number of cross-
shard transactions as OptChainV2-T2S, it will be at least as effective as OptChainV2 in
terms of cross-shard transaction reduction. We will compare RGP2 with sampling-enabled
OptChainV2 in Section 6.4.

Table 6.1: Four transaction datasets

Dataset Bitcoin block heights Number of transactions 1

D1 [0, 200k) 7,316,308
D2 [200k, 227k) 7,371,053
D3 [227k, 252k) 7,316,337
D4 [252k, 275k) 7,238,332

1 Coinbase transactions are excluded.

Figure 6.8 compares the cross-shard transaction percentage of the three placement
algorithms. For all datasets, regardless of the number of shards, RGP2 and OptChainV2-
T2S produce similar numbers of cross-shard transactions, and the number is significantly
less than that of hashing placement. These results confirm that despite considering only
two levels of ancestors, RGP2 is able to reduce cross-shard transactions as effectively as
OptChainV2-T2S.

To learn how shard loads vary over time, we analyze the dynamic shard loads in a 4-
shard environment, as illustrated in Figure 6.9. Unsurprisingly, hashing placement balances
loads extremely well with every shard constantly receiving about 25% of the transactions.

1The name OptChainV2-T2S comes from the OptChainV2 paper, where the method is referred to as
T2S-based.

82

4 16 128

Number of shards

0

20

40

60

80

100

%
 o

f
cr

o
ss

-s
h
ar

d
tr

an
sa

ct
io

n
s

Hashing

OptChainV2-T2S

RGP2

(a) Dataset D1

4 16 128

Number of shards

0

20

40

60

80

100

%
 o

f
cr

o
ss

-s
h
ar

d
tr

an
sa

ct
io

n
s

Hashing

OptChainV2-T2S

RGP2

(b) Dataset D2

4 16 128

Number of shards

0

20

40

60

80

100

%
 o

f
cr

o
ss

-s
h
ar

d
tr

an
sa

ct
io

n
s

Hashing

OptChainV2-T2S

RGP2

(c) Dataset D3

4 16 128

Number of shards

0

20

40

60

80

100

%
 o

f
cr

o
ss

-s
h
ar

d
tr

an
sa

ct
io

n
s

Hashing

OptChainV2-T2S

RGP2

(d) Dataset D4

Figure 6.8: Cross-shard transactions

In Figure 6.9a, the three small spikes at block heights 200k, 227k, and 251k correspond to
the start heights of datasets D2 ∼ D4, and the slight fluctuations at low block heights are
due to small block sizes.

Another observation is that Figure 6.9b and Figure 6.9c exhibit a common pattern: all
curves are quite flat in blocks [0, 50k) and [125k, 175k), but fluctuate a lot in the range of
[70k, 120k) and [180, 250k). This pattern relates to transactions that consume the output
UTXOs of their immediate predecessors on the blockchain. For example, starting from

83

0 50000 100000 150000 200000 250000

Block height

0

20

40

60

80

100

L
o
ad

 (
%

 t
x
n
s)

Shard1

Shard2

Shard3

Shard4

(a) Hashing placement

0 50000 100000 150000 200000 250000

Block height

0

20

40

60

80

100

L
o
ad

 (
%

 t
x
n
s)

Shard1

Shard2

Shard3

Shard4

(b) OptChainV2-T2S

0 50000 100000 150000 200000 250000

Block height

0

20

40

60

80

100

L
o
ad

 (
%

 t
x
n
s)

Shard1

Shard2

Shard3

Shard4

(c) RGP2

Figure 6.9: Dynamic shard loads (4 shards)

84

the 326th transaction in Bitcoin block 177253, each of the 267 subsequent transactions
spends the UTXOs produced by its immediate predecessor[15]. When faced with such
transactions, both OptChainV2-T2S and RGP2 tend to place them to the same shard
as their predecessors. Consequently, a sequence of such transactions will cause a shard
to temporarily receive more transactions than other shards. However, the load balancing
mechanisms prevent a shard from being overloaded for a long time, so shards take turns
to receive the most transactions. Table 6.2 shows that transactions depending on their
immediate predecessors account for a relatively high percentage whenever the shard load
curves fluctuate drastically.

Table 6.2: Bitcoin transactions consuming UTXOs produced by their predecessors

Block height Transactions depending on their immediate predecessors

[0, 50k) 0.1%
[70k, 120k) 18.6%
[125k, 175k) 6.1%
[180k, 250k) 21.3%
[253k, 275k) 14.6%

6.3 Efficient Cross-Shard Transaction Processing

Although RGP reduces the number of cross-shard transactions, it cannot eliminate them.
In this section, we propose two techniques to lessen the impact of the remaining cross-shard
transactions on system performance. The first technique expedites dependent transaction
processing, while the second technique reduces the communication and computation over-
head involved in cross-shard transaction processing. Both techniques require modifications
to the atomic commit protocol. Since neither technique deals with the intra-shard consen-
sus protocol, we abstract away the consensus process as if client requests are ordered as
soon as they reach their destination shards. Our two techniques focus on how transactions
are processed (i.e., verified and executed).

6.3.1 Dependent Transaction Pre-verification

Cross-shard transactions usually experience long execution latency due to atomic commit
protocols such as Atomix in Figure 2.6. This inevitably delays the processing of their

85

Client
(ACP

coordinator)

Shard1

Shard2

LOCK<tx1>
vrf and exe

LOCK<tx1> LOCK-OK<tx1, sigs1>

COMMIT<tx1>
vrf and exe

tx2 tx3

tx2
sig vrf

tx2
exe

REPLY<tx1> REPLY<tx3>

time

time

 tx3
sig vrf time

REPLY<tx2>

tx3
exe

COMMIT<tx1, sigs1>

COMMIT<tx1>
vrf and exe

(a) Plain Atomix

Shard1

Shard2

LOCK<tx1>
vrf and exe

LOCK<tx1> LOCK-OK<tx1, sigs1>

COMMIT<tx1>
vrf and exe

tx2 tx3

tx2
sig vrf

tx2
exe

REPLY
<tx1>

time

time

 tx3
sig vrf

time
tx3
exe

LOCK<tx1>
vrf and exe

OUTPUT
<tx1> LOCK-SIG<tx1_hash, sigs1>

REPLY
<tx2>

client
(ACP

coordinator)
REPLY
<tx3>

(b) Atomix with dependent transaction pre-verification

Figure 6.10: DPV parallelizes the Atomix lock phase with dependent transaction signature
verification.

dependent transactions since transactions must be executed in a dependency-respecting
order. Figure 6.10a illustrates the timeline of processing one cross-shard transaction (i.e.,
tx1) and two single-shard transactions that depend on it (i.e., tx2 and tx3). Suppose the
client runs RGP2 and determines that tx2 and tx3 should be placed to the output shard
of tx1, which is Shard2. Although the client sends tx2 and tx3 soon after sending tx1,
Shard2 delays processing the two dependent transactions until tx1 is executed in order
to respect dependencies. Throughout the process, two steps are notably expensive—the
locking phase of the atomic commit protocol and the verification of tx2 and tx3—because
both steps involve the verification of signatures from input UTXO owners. Nonetheless,
the two steps do not have to be carried out in a serialized manner.

As mentioned in Section 6.1.2, transaction verification comprises input UTXO existence
checking, input UTXO value checking, and signature checking. The first item is stateful,
whereas the second and the third are stateless. In fact, as long as the input UTXO
properties (i.e., owner address, amount, etc.) are available, the second and third conditions

86

can be checked at any time.

To reduce the execution latency of dependent transactions, we propose dependent trans-
action pre-verification (DPV), which performs dependent transaction signature verification
in parallel with the locking phase of the atomic commit protocol. In order to accommo-
date this idea, the output shard must be informed about the cross-shard transactions’
output UTXO properties early. Figure 6.10b illustrates how we achieve this by splitting
the COMMIT request into two messages, namely OUTPUT and LOCK-SIG. The OUTPUT message
carries only the cross-shard transaction and is sent to the output shard as soon as the LOCK
request is sent to the input shard. Shard2 can start verifying the signatures of tx2 and tx3

as soon as it receives the OUTPUT message. Meanwhile, the input shard is verifying tx1’s
signature(s). On the other hand, the LOCK-SIG message carries the input shard signatures
as well as a hash of the transaction, which is used to match the LOCK-SIG message with
the corresponding OUTPUT message. The LOCK-SIG message serves as proof that the input
shard has successfully locked the input UTXOs of tx1. The OUTPUT and LOCK-SIG messages
are later assembled into one COMMIT request so that the original COMMIT request processing
routine can be reused. DPV also applies to transitive dependencies, e.g., tx3 may depend
on tx2 instead of tx1, and cross-shard dependent transactions. In the latter case, the out-
put shard pre-verifies the LOCK requests of the cross-shard dependent transactions. DPV
pre-verifies dependent transactions in their appearance order on shard ledgers.

DPV is safe, i.e., invalid transactions will not be mistakenly treated as valid ones.
For parent cross-shard transactions, although dishonest clients may send dummy OUTPUT

messages, the transactions will not be executed without valid signatures from the input
shards. In other words, LOCK-SIG messages from input shards protect the output shard’s
system state from being tampered with. For dependent transactions, DPV may verify their
signatures but will not execute them until their parent transactions are executed. As a
result, a dummy OUTPUT message cannot induce the output shard to execute either the
cross-shard transaction or the dependent transactions. Nevertheless, the computational
work involved in pre-verifying the dependent transactions is wasted, so peers should only
pre-verify dependent transactions when CPUs are idle to avoid performance degradation
and DoS attacks caused by dummy OUTPUT messages.

6.3.2 Atomic Commit Protocol Consolidation

As RGP2 takes transaction dependencies into account, the vast majority of cross-shard
transactions are placed in one of their input shards. We refer to such output shards as
input-output shards, i.e., Shard1 in Figure 6.11a. This placement pattern is quite different

87

Cross-shard transaction tx
Input:
UTXO1 (Shard1)
UTXO2 (Shard2)

Output:
UTXO3 (Shard1)

(a) Input-output shard

Client

Shard1 Shard2

LOCK <t
x>

LO
C

K
 <

tx
>

Client

Shard1 Shard2

LOCK-O
K

<sig
s 1>

LO
C

K
-O

K
<s

ig
s 2

>

Client

Shard1 Shard2

COMMIT

<tx,
 sig

s 1,
 sig

s 2>

UTXO1 UTXO2 UTXO1 UTXO2 UTXO3

(b) Plain Atomix

Client

Shard1 Shard2

LO
C

K
 <
tx

>

Client

Shard1 Shard2

LO
C

K
-O

K
<s
ig
s 2

>

Client

Shard1 Shard2

LOCK&COMMIT

<tx
, si
gs 2

>

UTXO1 UTXO2 UTXO1 UTXO2
UTXO1
UTXO3

(c) Consolidated Atomix

Figure 6.11: Consolidation of Atomix

88

than that of hashing placement, which only places a few transactions to their input shards,
as illustrated in Figure 6.12a. This difference opens up opportunities for atomic commit
protocol optimization. Specifically, the lock and commit requests can be combined into
one request for input-output shards. Figure 6.11 takes Atomix as an example in order
to illustrate atomic commit protocol consolidation (ACPc). Instead of requesting the two
input shards to lock the corresponding UTXOs as in Figure 6.11b, consolidated Atomix
merges the LOCK request and the COMMIT request into a LOCK&COMMIT request for the input-
output shard (Figure 6.11c). Upon receiving the LOCK&COMMIT request, the input-output
shard checks for the following conditions: 1) the input UTXO(s) to lock exist, and the
transaction is signed properly by the owners, 2) the signatures from other input shards
are valid, and 3) total input value is not less than the total output value. If all the three
conditions are met, the input-output shard deems the transaction valid and executes the
transaction by removing the input UTXO(s) and adding output UTXO(s) to its UTXO
database. Otherwise, the input-output shard informs the client about failed locking using
a signed LOCK-NOT-OK message, which can be used as proof to restore input UTXOs in
other input shards.

4 16 128

Number of shards

0

20

40

60

80

100

%
 o

f
cr

o
ss

-s
h

ar
d

 t
x

n
s

w
it

h
 a

n
 i

n
p

u
t-

o
u

tp
u

t
sh

ar
d

Hashing

RGP2

(a) Cross-shard transactions with input-output
shards

0 50 100

Input shard count

0

25

50

75

100

C
u

m
u

la
ti

v
e

p
er

ce
n

ta
g

e
(%

)

128 shards

16 shards

(b) CDF of input shard count

Figure 6.12: The vast majority of cross-shard transactions are assigned to one of their
input shards under RGP2, and over 80% of cross-shard transactions have 2∼4 input shards
(dataset D1).

In the successful scenario, consolidated Atomix saves two messages and one shard sig-
nature. For two-input-shard transactions, the saving is almost half of the processing cost,

89

which includes five messages and two shard signatures, as shown in Figure 6.11b. Con-
sidering that over 50% of cross-shard transactions touch only two input shards, and over
80% of cross-shard transactions span two to four input shards (Figure 6.12b), ACPc should
produce obvious performance improvement. One may notice that there is a small portion
(around 1.4%) of cross-shard transactions with one input shard. Such transactions are
not placed to their input shards probably for balancing load. They will not benefit from
ACPc since they lack input-output shards. The input shard count distribution in Figure
6.12b results from the fact that parent transaction numbers follow a power-law distribution
[87]. Other transaction datasets in Table 6.1 show the same pattern as dataset D1 does in
Figure 6.12.

ACPc is compatible with DPV. When the two techniques are deployed together, the
LOCK&COMMIT message in Figure 6.11c splits into two parts: one message carrying the
transaction, and the other carrying the signatures from other input shards as well as
the transaction hash. The input-output shard utilizes the former to pre-verify dependent
transactions, and the latter to learn that other input shards have successfully executed the
transaction.

6.4 Evaluation

We implemented RGP2 as a client-side algorithm, which means a client runs the algorithm
to compute the output shard ID before sending its transaction to blockchain peers. This
architecture is compatible with OmniLedger, where clients are the atomic commit protocol
coordinators, and is also adopted by OptChainV2.

We also implemented OptChainV2 as well as an OmniLedger-like sharding protocol
based on Bitcoin Core. In the OptChainV2 paper, the authors modify the OmniLedger
protocol to avoid excessive bandwidth usage by letting clients send requests directly to
the destination shards instead of gossiping requests. We make the same modification.
In addition, each peer maintains a dependency graph of pending transactions to enforce
dependency-respecting transaction execution order. We also implemented DPV and ACPc,
and measured the system performance when they are deployed together with RGP2.

6.4.1 Testbed

Experiments are done on a local cluster. We run up to 64 peers on 16 machines, each with
dual Xeon E5-2620 at 2.1 GHz (12 cores) and 64GB RAM. A shard consists of four peers

90

co-located on the same machine. Each peer is scheduled on two fixed cores for isolation
purposes. To emulate a geo-distributed environment, network delay is injected between
each pair of peers, and bandwidth limits are imposed on every peer using Linux NetEm and
traffic control facilities. Properties of links between peers co-located on the same machine
are also configurable through loopback interfaces. One client runs on another machine
with dual Xeon E5-2630 at 2.6 GHz (12 cores, 2 hyperthreads per core) and 256GB RAM.
The client reads historical transactions from the Bitcoin blockchain sequentially and sends
them to the peers. To measure the maximum throughput of the system, we must saturate
the peers with client requests. Considering the high processing power of the cores, we limit
CPU usage to 50%.

To evaluate the performance improvement under different types of workloads, two trans-
action datasets are employed: transactions in Bitcoin block [0, 136k) and transactions in
Bitcoin block [200k, 205k). The first dataset contains simple dependencies, whereas the
second dataset is quite the opposite, according to Table 6.2. Both datasets contain ap-
proximately 1 million transactions. In 6.4.2 and 6.4.3, we measure the system performance
under the two workloads respectively with a 40ms round-trip delay injected between each
pair of peers, and a 200-Mbps bandwidth limit imposed on every peer. This mild network
configuration allows us to saturate the peers without saturating the network. The impacts
of various network configurations will be evaluated in section 6.4.4.

6.4.2 Performance Under Light-Dependency Workload

We compare the performance of four systems. In the first system, the client places trans-
actions to shards according to OptChainV2; in the second system, we replace OptChainV2
with RGP2; in the third system, we add DPV to the second system; in the fourth system,
we add ACPc to the third system. In figures presenting experimental results, the four
systems are denoted by OptChainV2, RGP2, RGP2+DPV, and RGP2+DPV+ACPc, re-
spectively. Figure 6.13 demonstrates that all four systems scale with the number of shards.
The performance of RGP2 is very close to that of OptChainV2. Adding DPV does not
improve the performance due to the simple transaction dependencies, but adding ACPc
improves the throughput by approximately 20% and reduces the average execution latency
by 75% at the specified transaction rates.

Next, we compare the four systems from different aspects in a 16-shard environment.
From Figure 6.14a, one can see that ACPc improves the maximum throughput by 37%.
Furthermore, Figure 6.14b shows that the first three systems become overloaded when
transactions arrive at a 3.8k-tps rate, so the throughput can no longer grow linearly with

91

[4, 3k] [8, 4k] [12, 4.5k] [16, 5k]

[Number of shards, txn rate (tps)]

0

1000

2000

3000

4000

5000

T
h

ro
u

g
h

p
u

t
(t

p
s)

OptChainV2

RGP2

RGP2+DPV

RGP2+DPV+ACPc

(a) Throughput

[4, 3k] [8, 4k] [12, 4.5k] [16, 5k]

[Number of shards, txn rate (tps)]

0

2000

4000

6000

8000

A
v

er
ag

e
la

te
n

cy
 (

m
s) OptChainV2

RGP2

RGP2+DPV

RGP2+DPV+ACPc

(b) Latency

Figure 6.13: Scalability

the transaction rate. ACPc raises the turning point to 5k tps. Unsurprisingly, the latency
CDF of OptChainV2, RGP2, and RGP2+DPV are fairly close as well. In contrast, ACPc
significantly shortens tail latency: the 95th percentile latency is cut down by 83%, from 30s
to 5s. ACPc’s success in reducing tail latency implies that slow cross-shard transactions
are the reason for long tail latency.

To better understand the performance of the four systems, we investigate the number
of dependency-bound requests. In our experiments, single-shard transactions are wrapped
in TX requests, whereas cross-shard transactions are accomplished via LOCK and COMMIT

requests as in Atomix. Dependency-bound requests refer to TX requests and LOCK re-
quests that are waiting for their parent transactions to be executed, so that their input
UTXOs become available. Figure 6.14d shows how the number of dependency-bound re-
quests varies over time, where the y-axis represents the sum of dependency-bound requests
across all shards. Unsurprisingly, the curves do not climb up in the first 100s because
most transactions are coinbase transactions at the early stage of Bitcoin. After that,
the RGP2+DPV+ACPc curve climbs much slower than the other three curves because
cross-shard transactions are processed faster and thus hinder less dependent transactions.
Contrary to intuition, DPV does not reduce dependency-bound requests. The reason will
be given by a comparative analysis in Section 6.4.3.

92

2000 3000 4000 5000 6000
Throughput (tps)

0

1

2

3

4

5

A
ve

ra
ge

 la
te

nc
y

(s
) OptChainV2

RGP2
RGP2+DPV
RGP2+DPV+ACPc

(a) Average latency versus throughput

2500 3500 4500 5500 6500

Transaction rate (tps)

2500

3500

4500

5500

T
h

ro
u

g
h

p
u

t
(t

p
s)

OptChainV2

RGP2

RGP2+DPV

RGP2+DPV+ACPc

(b) Throughput versus transaction rate

0 20 40 60

Latency (s)

0

20

40

60

80

100

C
u

m
u

la
ti

v
e

p
er

ce
n

ta
g

e
(%

)

OptChainV2

RGP2

RGP2+DPV

RGP2+DPV+ACPc

(c) Cumulative latency

0 100 200 300

Time (s)

0.00

0.25

0.50

0.75

1.00
D

ep
en

d
en

cy
-b

o
u

n
d

re
q

u
es

ts

1e5

OptChainV2

RGP2

RGP2+DPV

RGP2+DPV+ACPc

(d) Dependency-bound requests

Figure 6.14: Performance with light-dependency transactions (16 shards). The transaction
rate is 5k tps in the last two subfigures.

6.4.3 Performance Under Heavy-Dependency Workload

Transactions in blocks [200k, 205k) contain more predecessor-dependent transactions, hence
a challenging workload. Nevertheless, RGP2 can still match the performance of OptChainV2
as demonstrated in Figure 6.15a ∼ 6.15c. Moreover, adding DPV to the system improves
the maximum throughput from 1.9k tps to 2.7k tps (42% up), and ACPc further boosts
the maximum throughput to 3.9k tps (another 44% up). In other words, DPV and ACPc
jointly double the maximum throughput of the system. Besides, DPV notably lowers tail
latency: the 95th percentile latency is halved. ACPc also improves execution latency due
to fast cross-shard transaction processing. As a result, DPV and ACPc collectively reduced

93

the 50th percentile latency and 95th percentile latency by 80% and 84% respectively.

1000 2000 3000 4000 5000
Throughput (tps)

0

10

20

30

40

50

A
ve

ra
ge

 la
te

nc
y

(s
)

OptChainV2
RGP2
RGP2+DPV
RGP2+DPV+ACPc

(a) average latency versus throughput

1000 2000 3000 4000 5000 6000

Transaction rate (tps)

1000

2000

3000

4000

T
h

ro
u

g
h

p
u

t
(t

p
s)

OptChainV2

RGP2

RGP2+DPV

RGP2+DPV+ACPc

(b) throughput versus transaction rate

0 50 100 150 200

Latency (s)

0

20

40

60

80

100

C
u

m
u

la
ti

v
e

p
er

ce
n

ta
g

e
(%

)

OptChainV2

RGP2

RGP2+DPV

RGP2+DPV+ACPc

(c) cumulative latency

0 200 400 600
Time (s)

0

1

2

3

4

D
ep

en
de

nc
y-

bo
un

d
re

qu
es

ts
1e5

OptChainV2
RGP2
RGP2+DPV
RGP2+DPV+ACPc

(d) dependency-bound requests

Figure 6.15: Performance with heavy-dependency transactions (16 shards). The transac-
tion rate is 3k tps in the last two subfigures.

DPV improves the system performance because it reduces the number of dependency-
bound requests, as shown in Figure 6.15d. With DPV, dependency-bound requests could
be pre-verified and later executed immediately after their parent transactions are executed.
Therefore, such pre-verified requests have shorter execution latency and are less likely to
stall other requests. ACPc also reduces the dependency-bound requests, as cross-shard
transactions are processed efficiently and thus become less hindering.

The discrepancy between DPV’s performance under the light-dependency workload
and that under the heavy-dependency is due to the different ratios of dependency-bound

94

requests to pending COMMIT requests. For example, in Figure 6.16a, where the ratio is 1:1,
DPV only reduces the overall processing time by t2, which equals the signature verification
time of the dependent request. DPV cannot take advantage of the idling period t1 since
there are no more dependent requests to pre-verify. By contrast, in Figure 6.16b, where
the ratio is 5:1, DPV significantly shortens the overall processing time.

with DPV

LOCK<tx1>
vrf and exe

COMMIT sig
vrf exe

LOCK

LOCK<tx1>
vrf and exe

COMMIT sig
vrf exe

LOCK

Input
Shard

Output
Shard

Input
Shard

Output
Shard

t1 t2

without DPV

(a) Light dependencies

with DPV

without DPV

LOCK<tx1>
vrf and exe

COMMIT sig
vrf exe

LOCK

exeexe sig
vrf

 sig
vrf

 sig
vrf

 sig
vrf exeexe

LOCK<tx1>
vrf and exe

COMMIT sig
vrf exe

LOCK

 sig
vrf exe sig

vrf exe sig
vrf exe sig

vrf exe

Input
Shard

Output
Shard

Input
Shard

Output
Shard

t3

(b) Heavy dependencies

Figure 6.16: DPV saves more time for heavy-dependency workloads.

6.4.4 Performance Under Various Network Configurations

Transactions in blocks [200k, 205k) are used in this section, as dependencies in blocks [0,
136k) are too simple to show the effectiveness of DPV.

95

Figures 6.17a and 6.17b demonstrate that all four systems suffer a performance drop
as network delay grows. The RGP2+DPV curve goes down faster than the RGP2 curve
because long network delays “shift” the performance bottleneck from computation to the
network, but DPV only optimizes computation. The OptchainV2 curve also decreases
more rapidly than the RGP2 curve. We suspect the reason is that OptChainV2 estimates
the transaction queuing delay of a shard by sampling the recent execution rate (denoted by
re) and the transaction queue length (denoted by nq). Ideally, re ·nq would be the queuing
delay that a new transaction would experience if placed to the shard. However, with a
high network delay between peers, the high nq value amplifies the sampling error of re.

0 50 100 150 200

Round-trip delay between peers (ms)

0

1000

2000

3000

T
h
ro

u
g
h
p
u
t

(t
p
s)

OptChainV2

RGP2

RGP2+DPV

RGP2+DPV+ACPc

(a) Throughput versus delay

0 50 100 150 200

Round-trip delay between peers (ms)

0

100

200

300

400

A
v
er

ag
e

la
te

n
cy

 (
s)

OptChainV2

RGP2

RGP2+DPV

RGP2+DPV+ACPc

(b) Latency versus delay

0 50 100 150 200

Bandwidth (Mbps)

0

1000

2000

3000

T
h
ro

u
g
h
p
u
t

(t
p
s)

OptChainV2

RGP2

RGP2+DPV

RGP2+DPV+ACPc

(c) Throughput versus bandwidth

0 50 100 150 200

Bandwidth (Mbps)

0

50

100

150

A
v
er

ag
e

la
te

n
cy

 (
s)

OptChainV2

RGP2

RGP2+DPV

RGP2+DPV+ACPc

(d) Latency versus bandwidth

Figure 6.17: Performance under various network conditions (16 shards, 3k-tps transaction
rate)

96

In terms of bandwidth, all four systems can achieve their full potential with 50-Mbps
bandwidth. Extremely low bandwidth hurts the performance of all systems, with DPV
suffering the most. This results from the same aforementioned reason—the network be-
comes the bottleneck instead of computation. In general, ACPc and DPV jointly improve
the system performance significantly under all network conditions, though DPV alone is
not particularly helpful in harsh network environments.

6.5 Discussion

6.5.1 Advantage of RGP

Although RGP does not surpass OptChainV2 in performance, it offers two big advantages
in other aspects. First, RGP does not rely on trust entities. Specifically, information about
ancestor transactions—e.g., their respective output shards and whether they are partially
spent—are all available on shard ledgers; the partition size of a shard can be estimated
with the number of transactions on the shard’s ledger. By contrast, to place a transaction
with OptChainV2, the client must obtain the fitness score arrays of the parent transactions,
which could be generated by other clients. Because fitness score arrays are only available at
the generating clients, client-to-client trust is necessary to ensure that clients share fitness
score arrays honestly. We consulted the authors about this issue, and the two example use
cases they provided are to run OptChainV2 as a public service or inside secure hardware
(e.g., Intel SGX). Either case introduces an additional trust point.

Second, RGP does not rely on extra information about shards, i.e., information that
cannot be inferred from shard ledgers. Conversely, OptChainV2 requires clients to fre-
quently sample the transaction queue size of every shard for transaction latency estimation.
In addition to communication overhead and poor scalability with the number of clients,
the sampling is also faced with a security challenge—gleaning true transaction queue sizes
from Byzantine-faulty peers is not trivial.

6.5.2 Generalization

In this section, we discuss whether RGP, DPV, and ACPc can generalize to account-balance
blockchains. First, RGP does not apply to account-balance blockchains. This is because the
difference between UTXO-based blockchains and account-balance blockchains necessitates
different approaches to reducing cross-shard transactions, i.e., transaction placement versus

97

account placement, as mentioned in Section 3.3. Although a graph of accounts could be
built to partition accounts, RGP does not apply to such graphs. The reason is that RGP
is essentially a streaming graph partitioning algorithm, but accounts are not created in a
streaming manner.

DPV can be adapted to account-balance blockchains by modifying the definition of de-
pendent transactions accordingly. In an account-balance blockchain, dependencies should
be established based on read-write conflicts or write-write conflicts. For example, if two
transactions tx1 and tx2 both update the same account, and tx1 is ordered before tx2 on the
shard ledger, then tx2 is a dependent transaction of tx1 and must be executed after tx1.
Once dependent transactions are identified, their signatures can be verified before their
parent transactions are executed, because signature verification comprises only stateless
computing.

Lastly, ACPc does not generalize to account-balance blockchains due to the fundamen-
tal difference between the UTXO model and the account-balance model. In the UTXO
model, a UTXO is not supposed to be spent by two or more transactions, so coordinators
do not have to inform input shards of successful commits. Actually, given a cross-shard
transaction, the following two scenarios are equivalent in terms of preventing future trans-
actions from claiming its input UTXO(s): 1) the input shards receive messages confirming
the cross-shard transaction’s successful execution, and 2) the input shards have locked the
input UTXOs but do not receive any message indicating whether the transaction succeeds
or not. However, in account-balance blockchains, an account could be updated by multi-
ple transactions, so transaction isolation should be enforced to avoid concurrency issues
[30][55]. Therefore, all shards involved in a transaction must be aware of the commit de-
cision so that they can release the involved accounts for other transactions’ access. As a
result, no shard can skip signing a locking result and sending it to the coordinator, which
renders ACPc inapplicable.

6.5.3 Incentive for Clients

When RGP runs on the client side, clients may not be sufficiently motivated to follow
the algorithm merely for keeping blockchain systems healthy. To address this, we suggest
a transaction fee mechanism where following RGP will lead to low transaction fees. For
example, a shard could calculate the fee of a transaction as inversely proportional to the
number of its ancestors in the shard. This way, clients will be much more incentivized to
send their transactions to the shards with the most ancestor transactions. Shard loads can
also be factored into transaction fee calculation in a similar way.

98

6.6 Chapter Summary

Hashing placement is a common transaction placement algorithm used in blockchain shard-
ing protocols, but produces a large number of cross-shard transactions due to ignoring de-
pendencies. We have developed Rooted Graph Placement and demonstrated that it signifi-
cantly reduces cross-shard transactions. By considering two levels of ancestor transactions,
RGP can match the performance of OptChainV2, a state-of-the-art transaction placement
algorithm with additional trust requirements. For the remaining cross-shard transactions,
we have devised Dependent Transaction Pre-verification and Atomic Commit Protocol
Consolidation to speed up the processing of them and their dependent transactions. DPV
makes use of idling computational resources, and ACPc reduces both computational work
and network usage. Our experiments have demonstrated that DPV and ACPc jointly can
double the maximum throughput under heavy-dependency workloads.

99

Chapter 7

Conclusions

7.1 Concluding Remarks

This thesis presents techniques to bootstrap new blockchain nodes fast and to improve the
performance of sharded blockchains. We believe sharding will be the prevalent approach to
scalable blockchains since it has been widely deployed in distributed systems for scalability
and will be a key feature of Ethereum 2.0. The techniques described in Chapters 5 and 6
can address some performance bottlenecks of sharded blockchains without compromising
security.

Fast Bootstrapping. Long bootstrapping time hinders the expansion of blockchain
networks. Our snapshot synchronization approach saves over 99% of the bootstrapping
time. By taking advantage of the system state database, we also reduce the snapshot
storage overhead. Moreover, the approach can be incorporated into already-deployed
blockchains without causing a hard fork.

Transaction Verification Result Sharing. Transaction verification is computa-
tionally intensive and thus should only be performed when necessary. Collaborative Trans-
action Verification allows nodes to reuse the verification work of other nodes, effectively
reducing per-node verification work. Dependencies graphs ensure that nodes can ver-
ify transactions in different orders without breaking the state machine replication model.
Non-sharded BFT-based blockchains could also benefit from Collaborative Transaction
Verification.

Smart Transaction Placement. Hashing placement produces too many cross-shard
transactions to unleash the performance potential of sharding. We develop Rooted Graph

100

Placement to reduce cross-shard transactions, together with two techniques for the efficient
processing of the remaining cross-shard transactions and their dependent transactions. The
three ideas collectively can significantly improve the throughput of a sharded blockchain.

7.2 Future Research Directions

Block Archiving

With snapshot bootstrapping, new nodes do not need access to all the historical blocks for
initial synchronization. Although historical blocks may be necessary for other reasons such
as analysis or research, such scenarios are arguably infrequent and thus hardly justify the
current block storage pattern—every node stores the entire blockchain locally. Moreover,
Bitcoin and Ethereum blockchains are over 400GB [14] and 800GB [36] respectively and
keep growing, which necessitates a block archiving mechanism to release nodes from heavy
storage commitment. Simply selecting some nodes for storing the entire blockchain risks
losing block data and puts a heavy storage burden on the selected nodes. A more promising
approach is to distribute block storage among peers (i.e., each peer stores only a subset of
blocks) with each block replicated sufficient times to tolerate node churn.

Collaborative Signature Verification

In Chapter 5, we have seen that the complexity of Collaborative Transaction Verification
mainly comes from transaction dependency handling. However, the most expensive step in
transaction verification is signature checking, whose results are not affected by transaction
dependencies. Thus sharing only signature verification results instead of whole transaction
verification results can greatly simplify the algorithm.

Due to the existence of faulty nodes, a verification result cannot be trusted until it is
signed by f + 1 nodes. When f is large, verifying the f + 1 signatures may cause too
much overhead. Collective signing [61] could be explored to aggregate a large number of
signatures, thereby reducing the signature verification cost.

Adapting RGP for General Streaming Graph Partitioning

Streaming graph partitioning has many practical applications such as distributed online
social network data processing [81][1][94]. Chapter 6 has showcased that two levels of

101

ancestors are enough for RGP to produce reasonably good Bitcoin transaction partitions. It
is interesting to explore whether or not RGP also performs well using such little knowledge
about the global dependency graph in other applications. In order to adapt RGP for
general streaming graph partitioning, the weight for partially spent ancestors should be
removed since the UTXO model is not common among systems other than blockchains.

102

References

[1] Zainab Abbas, Vasiliki Kalavri, Paris Carbone, and Vladimir Vlassov. Streaming
graph partitioning: an experimental study. Proceedings of the VLDB Endowment,
11(11):1590–1603, 2018.

[2] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. Sharper: Shard-
ing permissioned blockchains over network clusters. In Proceedings of the 2021 In-
ternational Conference on Management of Data, pages 76–88, Xi’an, China, 2021.
ACM.

[3] Lance Ashdown, Tom Kyte, Jonathan Creighton, Bjørn Engsig, Steve Fogel, Bill
Habeck, Min-hank Ho, Bill Hodak, Yong Hu, Pat Huey, et al. Oracle® database
concepts 11g release 2 (11.2). 2011.

[4] Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi. Proofs of
space: When space is of the essence. In International Conference on Security and
Cryptography for Networks, pages 538–557. Springer, 2014.

[5] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without proof of
work. In International conference on financial cryptography and data security, pages
142–157. Springer, 2016.

[6] Alysson Bessani, João Sousa, and Eduardo EP Alchieri. State machine replication for
the masses with bft-smart. In 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 355–362. IEEE, 2014.

[7] Mirko Bez, Giacomo Fornari, and Tullio Vardanega. The scalability challenge of
ethereum: An initial quantitative analysis. In 2019 IEEE International Conference
on Service-Oriented System Engineering (SOSE), pages 167–176. IEEE, 2019.

[8] Bitcoincash.org. Bitcoincash: https://www.bitcoincash.org/.

103

https://www.bitcoincash.org/

[9] Bitcoin.org. Bitcoin glossary.

[10] Bitcoin.org. Coinbase Input: The Input Of The First Transaction In A Block: https:
//bitcoin.org/en/developer-reference{#}raw-transaction-format.

[11] Bitcoin.org. Coinbase input: The input of the first transaction in a block, May 2020.

[12] Blockchain.com. Bitcoin Explorer. https://www.blockchain.com/btc/block/

680000. Accessed: 2021-09-09.

[13] Blockchain.com. Block 732770.

[14] Blockchain.com. Blockchain size.

[15] Blockchain.com. Bitcoin Explorer. https://www.blockchain.com/btc/tx/

91c40e195524962aa3e6cd588e2038b392368382d0815aba7034f51c3ce2579b, 2021.
Accessed: 2021-09-08.

[16] Blockchain.com. Block 601147, June 2021.

[17] Ethereum Foundation Blog. Ask about geth: Snapshot acceleration.

[18] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A Kroll,
and Edward W Felten. Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies. In 2015 IEEE symposium on security and privacy, pages 104–121.
IEEE, 2015.

[19] Zoltán Böszörményi. PostgreSQL Replication. Packt Publishing Ltd, 2013.

[20] Christian Cachin et al. Architecture of the hyperledger blockchain fabric. In Work-
shop on distributed cryptocurrencies and consensus ledgers, pages 1–4. Chicago, IL,
2016.

[21] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony
Rowstron, and Atul Singh. Splitstream: High-bandwidth multicast in cooperative
environments. ACM SIGOPS operating systems review, 37(5):298–313, 2003.

[22] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive
recovery. ACM Transactions on Computer Systems (TOCS), 20(4):398–461, 2002.

[23] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI,
volume 99, pages 173–186, 1999.

104

https://bitcoin.org/en/developer-reference{#}raw-transaction-format
https://bitcoin.org/en/developer-reference{#}raw-transaction-format
https://www.blockchain.com/btc /block/680000
https://www.blockchain.com/btc /block/680000
https://www.blockchain.com/btc/ tx/91c40e195524962aa3e6cd588e2038b392368382d0815aba7034f51c3c e2579b
https://www.blockchain.com/btc/ tx/91c40e195524962aa3e6cd588e2038b392368382d0815aba7034f51c3c e2579b

[24] Rick Cattell. Scalable sql and nosql data stores. Acm Sigmod Record, 39(4):12–27,
2011.

[25] Usman W Chohan. The double spending problem and cryptocurrencies. Available
at SSRN 3090174, 2021.

[26] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, et al. Spanner: Google’s globally distributed database. ACM Transac-
tions on Computer Systems (TOCS), 31(3):1–22, 2013.

[27] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba Shrira.
Hq replication: A hybrid quorum protocol for byzantine fault tolerance. In Proceed-
ings of the 7th symposium on Operating systems design and implementation, pages
177–190, 2006.

[28] Tyler Crain, Christopher Natoli, and Vincent Gramoli. Red belly: a secure, fair and
scalable open blockchain. In Proceedings of the 42nd IEEE Symposium on Security
and Privacy (S&P’21), 2021.

[29] Kyle Croman, Christian Decker, Ittay Eyal, et al. On scaling decentralized
blockchains. In International conference on financial cryptography and data secu-
rity, pages 106–125. Springer, 2016.

[30] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin, and
Beng Chin Ooi. Towards scaling blockchain systems via sharding. In Proceedings of
the 2019 International Conference on Management of Data, pages 123–140, 2019.

[31] Christian Decker and Roger Wattenhofer. Information propagation in the bitcoin
network. In IEEE P2P 2013 Proceedings, pages 1–10. IEEE, 2013.

[32] Christian Decker and Roger Wattenhofer. A fast and scalable payment network with
bitcoin duplex micropayment channels. In Symposium on Self-Stabilizing Systems,
pages 3–18. Springer, 2015.

[33] John R Douceur. The sybil attack. In International workshop on peer-to-peer systems,
pages 251–260. Springer, 2002.

[34] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak.
Proofs of space. In Annual Cryptology Conference, pages 585–605. Springer, 2015.

105

[35] ethereum.org. Shard chains. https://ethereum.org/en/upgrades/shard-

chains/, 2022. Accessed: 2022-02-27.

[36] Etherscan. Ethereum full node sync (default) chart.

[37] eth.wiki. On sharding blockchains FAQs. https://eth.wiki/sharding/Sharding-
FAQs, 2022. Accessed: 2022-02-28.

[38] Stack Exchange. Sync with bitcoin-qt very slow (0,01%), August 2017.

[39] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. {Bitcoin-
NG}: A scalable blockchain protocol. In 13th USENIX symposium on networked
systems design and implementation (NSDI 16), pages 45–59, 2016.

[40] Behrouz A Forouzan. Cryptography & network security. McGraw-Hill, Inc., 2007.

[41] Bitcoin Forum. Are there faster methods of syncing bitcoin core?, July 2017.

[42] Ethereum Foundation. State tree pruning.

[43] Enrique Fynn and Fernando Pedone. Challenges and pitfalls of partitioning
blockchains. In 2018 48th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks Workshops (DSN-W), pages 128–133, Luxembourg, 2018.
IEEE.

[44] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert van Renesse, and Emin Gün
Sirer. Decentralization in bitcoin and ethereum networks. In International Conference
on Financial Cryptography and Data Security, pages 439–457. Springer, 2018.

[45] Sanjay Ghemawat and Jeff Dean. Leveldb, 2011.

[46] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
Algorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the
26th Symposium on Operating Systems Principles, pages 51–68, 2017.

[47] Github. Dogecoin block header.

[48] Github. eth/63 fast synchronization algorithm.

[49] Github. Litecoin block header.

[50] GitHub. Bitcoin core integration/staging tree, June 2020.

106

https://ethereum.org/en/upgrades/shard-chains/
https://ethereum.org/en/upgrades/shard-chains/
https://eth.wiki/sharding/Sharding-FAQs
https://eth.wiki/sharding/Sharding-FAQs

[51] James N Gray. Notes on data base operating systems. In Operating Systems, pages
393–481. Springer, 1978.

[52] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. The next 700
bft protocols. In Proceedings of the 5th European conference on Computer systems,
pages 363–376, 2010.

[53] Rachid Guerraoui and Jingjing Wang. How fast can a distributed transaction com-
mit? In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, pages 107–122, 2017.

[54] Jelle Hellings, Daniel P. Hughes, Joshua Primero, and Mohammad Sadoghi. Cer-
berus: Minimalistic multi-shard byzantine-resilient transaction processing, 2020.

[55] Jelle Hellings and Mohammad Sadoghi. Byshard: Sharding in a byzantine environ-
ment. Proceedings of the VLDB Endowment, 14(11):2230–2243, 2021.

[56] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital sig-
nature algorithm (ecdsa). International journal of information security, 1(1):36–63,
2001.

[57] George Karypis and Vipin Kumar. Multilevel graph partitioning schemes. In Pro-
ceedings of The International Conference on Parallel Processing, 1995.

[58] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual in-
ternational cryptology conference, pages 357–388. Springer, 2017.

[59] Sanghyeok Kim, Jeho Song, Sangyeon Woo, Youngjae Kim, and Sungyong Park. Gas
consumption-aware dynamic load balancing in ethereum sharding environments. In
2019 IEEE 4th International Workshops on Foundations and Applications of Self*
Systems (FAS* W), pages 188–193, Umea, Sweden, 2019. IEEE.

[60] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-of-
stake. self-published paper, August, 19(1), 2012.

[61] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus
Gasser, and Bryan Ford. Enhancing bitcoin security and performance with strong
consistency via collective signing. In 25th {usenix} security symposium ({usenix}
security 16), pages 279–296, 2016.

107

[62] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via
sharding. In 2018 IEEE Symposium on Security and Privacy (SP), pages 583–598.
IEEE, 2018.

[63] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund
Wong. Zyzzyva: speculative byzantine fault tolerance. In Proceedings of twenty-
first ACM SIGOPS symposium on Operating systems principles, pages 45–58, 2007.

[64] Butler Lampson and Howard E Sturgis. Crash recovery in a distributed data storage
system. 1979.

[65] Derek Leung. Vault: Fast bootstrapping for cryptocurrencies. PhD thesis, Mas-
sachusetts Institute of Technology, 2018.

[66] Derek Leung, Adam Suhl, Yossi Gilad, and Nickolai Zeldovich. Vault: Fast boot-
strapping for the algorand cryptocurrency. In NDSS, 2019.

[67] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain pro-
tocols. In International Conference on Financial Cryptography and Data Security,
pages 528–547. Springer, 2015.

[68] Chenxin Li, Peilun Li, Dong Zhou, Zhe Yang, Ming Wu, Guang Yang, Wei Xu,
Fan Long, and Andrew Chi-Chih Yao. A decentralized blockchain with high
throughput and fast confirmation. In 2020 {USENIX} Annual Technical Confer-
ence ({USENIX}{ATC} 20), pages 515–528, 2020.

[69] Iuon-Chang Lin and Tzu-Chun Liao. A survey of blockchain security issues and
challenges. IJ Network Security, 19(5):653–659, 2017.

[70] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert, Emin Gün Sirer, and Peter
Pietzuch. Teechain: a secure payment network with asynchronous blockchain access.
In Proceedings of the 27th ACM Symposium on Operating Systems Principles, pages
63–79, 2019.

[71] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and
Prateek Saxena. A secure sharding protocol for open blockchains. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 17–30. ACM, 2016.

108

[72] Alex Manuskin, Michael Mirkin, and Ittay Eyal. Ostraka: Secure blockchain scaling
by node sharding. In 2020 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), pages 397–406. IEEE, 2020.

[73] Roman Matzutt, Benedikt Kalde, Jan Pennekamp, Arthur Drichel, Martin Henze,
and Klaus Wehrle. How to securely prune bitcoin’s blockchain. In 2020 IFIP Net-
working Conference (Networking), pages 298–306. IEEE, 2020.

[74] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R Savagaonkar. Innovative instructions and software
model for isolated execution. Hasp@ isca, 10(1), 2013.

[75] Ralph C Merkle. Method of providing digital signatures, January 5 1982. US Patent
4,309,569.

[76] Avi Mizrahi and Ori Rottenstreich. Blockchain state sharding with space-aware
representations. IEEE Transactions on Network and Service Management, 2020.

[77] Chandrasekaran Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter
Schwarz. Aries: a transaction recovery method supporting fine-granularity locking
and partial rollbacks using write-ahead logging. ACM Transactions on Database
Systems (TODS), 17(1):94–162, 1992.

[78] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized
Business Review, page 21260, 2008.

[79] Lan N Nguyen, Truc DT Nguyen, Thang N Dinh, and My T Thai. Optchain: optimal
transactions placement for scalable blockchain sharding. In 2019 IEEE 39th Inter-
national Conference on Distributed Computing Systems (ICDCS), pages 525–535.
IEEE, 2019.

[80] Lan N Nguyen, Truc DT Nguyen, Thang N Dinh, and My T Thai. Optchain:
optimal transactions placement for scalable blockchain sharding. arXiv preprint
arXiv:2007.08596v2, 2021.

[81] Anil Pacaci and M Tamer Özsu. Experimental analysis of streaming algorithms for
graph partitioning. In Proceedings of the 2019 International Conference on Manage-
ment of Data, pages 1375–1392, 2019.

[82] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report, Stanford InfoLab,
1999.

109

[83] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permission-
less model. Cryptology ePrint Archive, 2016.

[84] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permis-
sionless model. In 31st International Symposium on Distributed Computing (DISC
2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[85] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain
instant payments, 2016.

[86] Reddit. Full node slow to sync. help needed, October 2018.

[87] Liuyang Ren and Paul A. S. Ward. Transaction placement in sharded blockchains,
2021.

[88] Liuyang Ren and Paul ASWard. Pooled mining is driving blockchains toward central-
ized systems. In 2019 38th International Symposium on Reliable Distributed Systems
Workshops (SRDSW), pages 43–48. IEEE, 2019.

[89] Team Rocket. Snowflake to avalanche: A novel metastable consensus protocol family
for cryptocurrencies. Available [online].[Accessed: 4-12-2018], 2018.

[90] Fred B Schneider. Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[91] Baron Schwartz, Peter Zaitsev, and Vadim Tkachenko. High performance MySQL:
optimization, backups, and replication. ” O’Reilly Media, Inc.”, 2012.

[92] Dale Skeen. Nonblocking commit protocols. In Proceedings of the 1981 ACM SIG-
MOD international conference on Management of data, pages 133–142, 1981.

[93] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in
bitcoin. In International Conference on Financial Cryptography and Data Security,
pages 507–527. Springer, 2015.

[94] Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large distributed
graphs. In Proceedings of the 18th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 1222–1230, Beijing, 2012. ACM.

[95] Chrysoula Stathakopoulou, Tudor David, Matej Pavlovic, and Marko Vukolić.
Mir-bft: High-throughput robust bft for decentralized networks. arXiv preprint
arXiv:1906.05552, 2021.

110

[96] Douglas R Stinson. Cryptography: theory and practice. Chapman and Hall/CRC,
2005.

[97] Michael Stonebraker, Lawrence A Rowe, and Michael Hirohama. The implementation
of postgres. IEEE transactions on knowledge and data engineering, 2(1):125–142,
1990.

[98] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus
Gasser, Ismail Khoffi, Michael J Fischer, and Bryan Ford. Scalable bias-resistant
distributed randomness. In 2017 IEEE Symposium on Security and Privacy (SP),
pages 444–460. IEEE, 2017.

[99] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jovanovic,
Linus Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford. Keeping authorities”
honest or bust” with decentralized witness cosigning. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 526–545. Ieee, 2016.

[100] Robbert Van Renesse and Fred B Schneider. Chain replication for supporting high
throughput and availability. In OSDI, 2004.

[101] Vidhyashankar Venkataraman, Kaouru Yoshida, and Paul Francis. Chunkyspread:
Heterogeneous unstructured tree-based peer-to-peer multicast. In Proceedings of the
2006 IEEE international conference on network protocols, pages 2–11. IEEE, 2006.

[102] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs. bft replica-
tion. In International workshop on open problems in network security, pages 112–125.
Springer, 2015.

[103] Qin Wang, Rujia Li, Qi Wang, and Shiping Chen. Non-fungible token
(nft): Overview, evaluation, opportunities and challenges. arXiv preprint
arXiv:2105.07447, 2021.

[104] Wenbo Wang, Dinh Thai Hoang, Zehui Xiong, Dusit Niyato, Ping Wang, Peizhao
Hu, and Yonggang Wen. A survey on consensus mechanisms and mining management
in blockchain networks. arXiv preprint arXiv:1805.02707, pages 1–33, 2018.

[105] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151(2014):1–32, 2014.

[106] Yang Xiao, Ning Zhang, Wenjing Lou, and Y Thomas Hou. A survey of distributed
consensus protocols for blockchain networks. IEEE Communications Surveys & Tu-
torials, 22(2):1432–1465, 2020.

111

[107] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scaling
blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 931–948, 2018.

112

	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Approach
	Contributions
	Organization

	Background
	Blockchain Architecture
	Block and Blockchain
	Unspent Transaction Output (UTXO) Model
	Proof-of-Work (PoW)
	Peer-to-Peer Network and Fork
	Tradeoff between Consensus and Performance

	Blockchain Sharding
	Node Partitioning
	Intra-Shard Transaction Processing
	Cross-Shard Transaction Processing

	Chapter Summary

	Related Work
	Fast Bootstrapping
	Transaction Verification Result Sharing
	Cross-shard Transaction Reduction

	Fast and Low-Storage-Demand Bootstrapping
	Design Overview
	Architecture and Protocol
	Snapshot Structure
	Snapshot Storage
	Snapshot Creation
	Snapshot Synchronization
	Fork Tolerance of Optimistic SnapshotSave
	Backward Compatibility

	Security
	Evaluation
	Testbed and Experiment Design
	SnapshotSave vs. Bitcoin Core
	SnapshotSave vs. CoinPrune

	Chapter Summary

	Collaborative Transaction Verification
	Assumptions
	Overview of CTV
	Algorithms
	Verification Committee Formation
	Pending Parent Transaction Detection
	A Concrete Example
	Sequential Processing Algorithm
	Revisiting Algorithms

	Correctness of Slow-Path-Free CTV
	Evaluation
	Importance of Transaction Dependency Awareness
	Fault-Free Performance
	Performance Under Faults

	Chapter Summary

	Smart Transaction Placement
	Transaction Characteristics
	Transaction Dependencies
	Cost of Cross-Shard Transactions

	Rooted Graph Placement (RGP)
	Cross-Shard Transaction Reduction
	Load Balancing
	Impacts of Parameters
	Partitioning Quality Comparison

	Efficient Cross-Shard Transaction Processing
	Dependent Transaction Pre-verification
	Atomic Commit Protocol Consolidation

	Evaluation
	Testbed
	Performance Under Light-Dependency Workload
	Performance Under Heavy-Dependency Workload
	Performance Under Various Network Configurations

	Discussion
	Advantage of RGP
	Generalization
	Incentive for Clients

	Chapter Summary

	Conclusions
	Concluding Remarks
	Future Research Directions

	References

