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Abstract

The adoption of deep learning (DL) techniques in the domain of remote sensing, and
specifically sea ice concentration (SIC) prediction, using passive microwave (PM) data
and atmospheric climate data has seen a growing interest. Given these predictions, it has
been called upon to accompany predictions with their uncertainty, as a means to enhance
quality and trustworthiness of results, which can be used in various climate applications
in modelling and policy. Though, studies regarding uncertainty quantification (UQ) for
SIC prediction has seen little interest. Within DL, there exists a subset of methodologies
that work alongside prediction methodologies to effectively quantify uncertainty present
within the model, as well as the uncertainty inherent in the data. Among these techniques
include Bayesian Neural Networks (BNN’s), and heteroscedastic neural networks (HNN’s),
where the former is used to measure model (epistemic) uncertainty and the latter data
(aleatoric) uncertainty. For predicting SIC, and quantifying model and data uncertainty,
we propose the use of a combined methodology using a heteroscedastic Bayesian neural
network (HBNN) which follows the architecture of a multilayer perceptron (MLP) using
PM and atmospheric data. Additionally, we explore the notion of calibration, and related
methodologies as a means to evaluate the quality of uncertainties. The advantage of the
proposed approach is its data driven nature for prediction and UQ, which is flexible to the
context of the given data, such as in space or time. From the results of UQ, it was found
that uncertainties vary throughout the seasonal ice cycle, where the months that coincide
with melt-onset in the region are susceptible to the highest uncertainties. Additionally,
within the study region, uncertainties were scattered, where highest uncertainties were
found in areas near or in the marginal ice zone. It was also found that the inclusion of
TB’s in the feature space are most necessary to produce quality estimates of SIC, and
the inclusion of atmospheric variables as input contributed to reduce uncertainty. Finally,
when analyzing the effects of calibration on the model, it was found to yield quality and
trustworthy predictions of uncertainty.
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Chapter 1

Introduction

1.1 Motivation

Sea ice concentration (SIC) is a variable used by climate scientists to measure the fraction
of surface area covered by ice. It is described as a numeric value between zero and one,
where zero represents an area devoid of ice, and one, an area fully covered by ice. As
a variable, SIC is useful to determine a number of important climate variables such as
sea ice surface albedo, ice volume, and ice extent [27], which also act as input for some
climate models [22]. Values of SIC are also helpful to nautical navigators on ships that
pass through ice covered domains such as in the Arctic and Antarctic, for evaluations in
the safety of routes [39].

Passive microwave (PM) sensors onboard satellites are used as a means to monitor
sea ice in arctic regions. These sensors measure microwave radiation as emitted from
the earth’s surface, known as brightness temperature (TB). Using TB data, various SIC
algorithms based on empirical tie points can be used to calculate the SIC for a region [38].
PM sensors and SIC algorithms have shown to work well in estimating SIC, but require
processing to alleviate weather affects due to overlaps in TB signatures of intermediate SIC
and respective weather effects. With recent advances in the realms of machine learning
and deep learning, powerful models such as neural networks (NN’s) have been used for SIC
prediction. They have shown their capability to predict SIC given brightness temperature
as input, without the requirements of such processing steps as needed for the previous SIC
algorithms [71], [32]. This entices the possibility of such NN models to replace the use of
SIC algorithms that traditionally use empirical tie points in future applications.
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In the realm of remote sensing, including applications to sea ice, it has been called
upon to accompany data records with estimates of their uncertainties, which is necessary to
support applications for various policy, climate modelling, and weather prediction ventures
[58]. For sea ice remote sensing data, as related to PM-TB, uncertainty quantification has
been explored, such as in Tonboe et. al. [75], which assessed uncertainties of SIC estimates
as related to tie points and smearing due to sensor footprint, and in Brucker et. al. [10] for
uncertainty in NT2 SIC retrieval, but in general has received little attention. Methodologies
in neural networks to measure uncertainty have gained traction in recent years [9] [41] [1],
and can be easily adapted to suit most architectures. Thus, to estimate SIC, it is sensible
to utilize a multilayer perceptron (MLP) neural network architecture with an uncertainty
modelling framework.

Additionally, one must take into account the predictions of uncertainty themselves, and
evaluate these uncertainties such that they are trustworthy. In deep learning, this notion is
called calibration and is a means to measure the quality of uncertainty predictions [28] [45].
Recent work on calibration has been developed in deep learning tasks for classification and
regression, primarily in fields such as health sciences and autonomous vehicles. Given the
need for uncertainty and respective evaluations of these uncertainties in climate sciences,
calibration is also needed.

1.2 Objective

Previous studies on uncertainty quantification for sea ice related applications have shown
uncertainty to originate from technical characteristics as related to the measurement or
retrieval of data, such as in sensor noise, observational error, or processing errors due to
resolution mismatch [10], [75]. This uncertainty is well understood for use in previous
methodologies to estimate SIC, but their effect on SIC retrieval with deep learning has not
been explored. Thus we propose an approach to not only measure this data uncertainty,
but also the uncertainty originating from the model itself, while providing data driven
uncertainties, specific to the current data instance which may able to provide insight into
local conditions.

The objective of this thesis is then to predict sea ice concentration, quantify epis-
temic (model) and aleatoric (data) uncertainty, and produce a calibrated model utilizing
brightness temperature data obtained from passive microwave sensors, and geophysical
atmospheric climate data as input. To estimate sea ice concentration, we propose a deep
learning model based on a multilayer perceptron architecture (MLP). As we frame the
problem of estimating SIC to be that of solving a non-linear regression problem, the choice
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of MLP is appropriate. To estimate epistemic and aleatoric uncertainty, we propose the use
of the Bayes by backprop method combined with heteroscedastic loss, as these methods
translate well to MLP architectures. To calibrate the model, we utilize auxiliary inter-
val predictors, posing a methodology that uses two models to perform both prediction
and interval estimation that together produce quality uncertainty estimates needed for a
calibrated model.

We also explore the outcome of different sources of training label data to the model,
independently testing both training label data from SIC values obtained from bootstrap
(BT) and the enhanced nasa team (NT2) algorithms to the model. Additionally, we
introduce combinations of geophysical climate variables as input features to the model,
and analyze their effects on SIC predictions. Finally, we explore the predictions with
respect to uncertainty for the seasonal variations in data.

1.3 Thesis Outline

The remainder of the thesis is outlined as follows. Chapter 2 discusses background infor-
mation on the topics of sea ice concentration, retrieval methods for sea ice concentration,
deep learning, uncertainty, and calibration. Chapter 3 discusses the various data used in
the study, as well as the area of interest. The next chapters, (4 and 5), provides techni-
cal details of the methodologies used, and subsequent experimental setup. Following this,
chapters 6 and 7, describe the experiments and the subsequent analysis of such experiments
respectively. To conclude, chapter 8 discusses and summarizes the results, and provides
avenues for future work.
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Chapter 2

Background

2.1 Sea Ice concentration

Sea ice concentration (SIC) is defined as the measurement of sea ice area relative to the
total area in some location [51]. SIC has a value between 0 and 1, where 0 indicates the
absence of sea ice, also known as areas of open water and values of 1 indicate full sea ice
cover, also known as consolidated ice. The zone of sea ice which transitions from open
water to consolidated ice is known as the marginal ice zone (MIZ) and is characterized by
SIC values between 0.15 and 0.85. The portion of the MIZ directly bordering that of open
water is also known as the ice edge.

2.1.1 Sea Ice Extent

An alternative measure of sea ice is the sea ice extent (SIE). As opposed to SIC, which is
a unitless value of sea ice in some area, SIE is a measurement of the approximate area of
ocean where sea ice is present. The threshold for what is considered sea ice is typically any
area which has SIC greater than or equal to 0.15 or 15%. SIE and SIC are directly related,
where SIE can be calculated given SIC data and the spatial resolution of such data.

2.2 Sea Ice Concentration Retrieval

To estimate SIC, several remote sensing methodologies have been used, based off optical
imagery, synthetic aperture radar (SAR) imagery and passive microwave (PM) data [76],
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[11]. These methodologies use satellite sensors due to their ability to obtain information
in vast spatial regions. The advantage of optical imagery lies in the straightforward inter-
pretation of sea ice due to strong contrasts of albedo between sea ice and open water. The
downfall of such images though is the obstruction of clouds, which are especially present
in the Arctic.

On the other hand, SAR is an active sensor that measures the backscattered signal
from the Earth’s surface. These measures are generally in the low-frequency portion of
the electromagnetic spectrum and are thus not affected by atmospheric moisture nor cloud
cover. SAR sensors have high spatial resolution, approximately 50-100 meters (m). SAR
imagery from SAR sensors can often be difficult to interpret due to the presence of speckle
noise and SAR’s sensitivity to both imaging geometry and properties of the surface.

PM sensors, on the contrary, measure microwave radiation emitted from the earth’s
surface, and at low frequencies, are also not affected by cloud cover. PM sensors do
not measure SIC directly, and instead first measure the brightness temperatures (TB)
emitted from the earth’s surface, then calculate SIC via retrieval algorithms such as the
bootstrap (BT) algorithm or enhanced NASA team (NT2) algorithm. PM-TB based SIC
estimation data from these algorithms are open source and are readily accessible to the
general populous, though may have some pitfalls. SIC estimates are negatively affected
by many factors, influencing their accuracy. These include atmospheric weather effects on
the sea ice surface and open water, as well as the presence of surface melt [31], [5], [55].
These can then be further complicated due to seasonal/monthly changes of these weather
effects [3]. To correct these erroneous effects, the algorithms often use weather filters [26],
[13] but have been shown to not only remove weather effects but the ice itself [38]. An
alternative approach is to correct the brightness temperatures before using them in the
retrieval algorithm [75], [4], [3].

2.3 Deep Learning

Machine learning (ML) research is a continuously growing field in the domain of computer
science and has been of interest for the last half-century, attributed to algorithms that can
adapt, learn and predict through data. A specific subset of ML, known as deep learning
(DL) is specifically of interest as of late, as well as the chosen tool of DL, deep neural
networks (DNN’s). The interest in NN’s can be attributed to the universal approximation
theorem, stating that for any function, there exists a NN that can represent and solve
said function [36]. Such a concept is exciting, given the numerous problems the scientific
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community is interested in solving. Here, the concept of deep refers to the model archi-
tecture being partially composed of a series of layers where each layer has a set of weights
that need to be learned. The minimum architecture that neural networks use consist of
an input layer, an output layer, and a variable amount of layers in between the input and
output. With recent advances in computational hardware, software, data volume, and data
availability, research and production of DNN’s has flourished, as they have demonstrated
their ability to solve difficult problems and better learn patterns in data as opposed to
other ML approaches [50].

2.4 Uncertainty Quantification in Deep Learning

The results obtained from NN’s are useful, but are taken without considering whether the
results are trustworthy. Such a measure of trustworthiness is the notion of uncertainty.
NN’s are increasingly used in decision making processes, and such the requirement to
provide uncertainty estimates have seen a rises of interest in various domains including
health sciences [44], computer vision [41], automated vehicles [20], remote sensing [29], [6]
and many more [1]. Additionally, if uncertainty quantification is possible in our models, we
can then aim to reduce uncertainty and increase confidence in predictions. In the context of
machine learning, uncertainty can be categorized into epistemic and aleatoric uncertainty.

2.4.1 Epistemic Uncertainty

Epistemic uncertainty is described as the uncertainty that stems from a lack of knowledge
in a system. If such a systems is a NN model, then the lack of knowledge stems from
the inability of the model to predict an output. As this type of uncertainty is attributed
to lack of knowledge, it can be improved by producing a model that better encapsulates
the problem, or to add more knowledge, in the form of data into the model. Methods to
measure epistemic uncertainty include Monte Carlo (MC) Dropout [23], Bayesian NN’s [9],
and Deep Ensembles [48].

2.4.2 Aleatoric Uncertainty

In contrast, aleatoric uncertainty is the uncertainty that originates from the intrinsic ran-
domness of observations. In a NN, these observations are analogous to the input, i.e. our
data of the model, which in this SIC application originate from the instruments that record
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our data. This cannot be reduced in the same manner as the epistemic uncertainty, but
can be reduced by increasing dimensionality of input feature space [37]. The aleatoric
uncertainty can be further categorized into heteroscedastic and homoscedastic aleatoric
uncertainty [49]. Homoscedastic uncertainty is the uncertainty originating from noise that
is assumed to be identical for all points in the data. Heteroscedastic uncertainty on the
other hand is the uncertainty when the noise is assumed to be variable across all points in
the data.

2.4.3 Model Calibration

Uncertainties are useful when assessing the predictions of the model, but in some uncer-
tainty predicting models, they can fail to capture the true uncertainty in the model. To
validate the quality of such uncertainty measurements, model calibration is used. Studies
[45], [48], [52] have shown models that capture uncertainty, such as Bayesian NN’s are
inherently non-calibrated, and fail to capture the true distributions of data. In the case of
uncertainty quantification for regression, a model is said to be calibrated if the observed
confidence level matches exactly with an expected confidence level. Here the observed
confidence level is the observed ground truth values that fall within a predictive interval
(PI) as produced by the prediction of the model at a specific expected confidence level. For
example, for a PI produced at an expected confidence level of 95%, we should expect to
find 95% of ground truth values are contained within this PI. If at this same PI (produced
at an expected confidence level of 95%) there is found to only have 80% of ground truth
values contained within it, then the model is uncalibrated.

2.5 Related Work

Deep learning methodologies for predicting SIC has gained popularity in the last decade,
an example of which is the use of deep convolutional neural networks (CNN’s) that have
demonstrated their ability to produce significant improvements to SIC estimates from
SAR data during both melt and freeze-up periods as compared to passive microwave data
[77], [78]. These studies used ice charts as training labels, but similar approaches have
been done using PM data as training labels, which have shown success [19], [66]. Among
other approaches in deep learning methodologies for SIC endeavors, some studies have
utilized historical SIC data to forecast monthly estimates of SIC and use architectures
such as multilayer perceptron’s (MLP) [14], LSTM (Long short term memory) [14], and
deep ensembles [42]. Encompassing studies concerning estimating SIC with deep learning
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methodologies using PM data, some have used additional features with TB, showing im-
provements in accuracy while alleviating short comings produced by PM based algorithms
and their respective algorithms [71], [32]. These additional features include various atmo-
spheric geophysical variables such as windspeed and air temperature, typically obtained
via a reanalysis data set, such as from the European Reanalysis Agency-5 (ERA-5) dataset
[34].

To assess the reliability and trustworthiness from the results obtained from these deep
learning methodologies, one can perform uncertainty quantification (UQ) [1], [25]. Uncer-
tainty quantification has been explored for SIC products, such as for NT2 SIC [10], but for
endeavors concerning UQ using deep learning methodologies for sea and lake ice remote
sensing, they have only been recently explored. An example of which is in Asadi et. al. [6],
where they proposed a methodology utilizing MLP’s to quantify epistemic and aleatoric
uncertainty in classification and detection of ice and water in SAR imagery. In the study,
introducing uncertainty helped in reducing misclassification of ice and water in the domain.
Additionally, quantification of aleatoric uncertainty from a convolutional neural network
was incorporated for lake ice mapping using SAR images in Saberi et. al [70], which found
the addition of incorporating uncertainty helped to improve water and ice mapping.

On its own, UQ can help to address trustworthiness of ML predictions, but lack in
evaluations to validate the quality of the uncertainties themselves. In recent years, studies
have used the notion of model calibration as a means to evaluate predictions of models,
as well as predictions of uncertainty. Methods to calibrate models have been explored in
both the context of classification [28], [33], [61] and regression tasks [45], [48], [74]. Most of
the methodologies have been applied to problems such as medical diagnosis [53], [67], [73]
and autonomous vehicles [64]. Recent applications in remote sensing have been explored
for producing well calibrated uncertainties in precipitation type classification [63], and
calibrated uncertainty quantification for estimating canopy height [2]. In sea ice related
applications, a calibration approach based on temperature scaling was used in Anderssen
et. al [5] for their probabilistic deep learning ensemble method for sea ice forecasting.
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Chapter 3

Dataset and Study Area

3.1 Study Area and Timeframe

The area of interest for this study falls in the North Eastern portion of Canada, a region
covered primarily in seasonal ice, which is ice that completely melts in the summer and
forms again in the winter. The area was chosen given that it is a region experiencing
declines in SIC [47], with increases in shipping activity [65], and contains part of the
Tallurutiup Imanga National Marine conservation area, which is an important habitat
for marine mammals and seabirds [47, 30]. The area comprises the whole of Baffin Bay,
Davis Strait, some of the Labrador Sea, and most of Nares Strait towards the the Lincoln
Sea (Figure 3.1). Baffin Bay is located between Greenland in the east, Baffin Island in
the West, and the Davis strait directly south. To encapsulate relatively recent trends
within this region, we explore the use of the year 2020 and 2021. Specifically, we train the
models based on features (as described later) on the year of 2020, and perform predictions
(inference) for the year of 2021.

3.2 Brightness Temperature Data

For this study, we utilize two independent sets of brightness temperature data as input for
experiments. The first are from the Advanced Microwave Scanning Radiometer 2 (AMSR2)
Brightness temperatures (TB). This TB data is derived from the Japanese Aerospace Ex-
ploration Agency (JAXA) AMSR2 dataset. The data is comprised of swatch observations
from six frequencies. The six frequencies are: 6.9, 10.7, 18.7, 23.8, 36.5, and 89 Ghz, at
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Figure 3.1: Study area map for May of 2021, which shows the average SIC as calculated
by the NT2 algorithm, having a nominal gridded resolution of 12.5 km
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both horizontal and vertical polarization. The spatial resolution for each channel differs,
with instantaneous field of views (IFOV) of 35 x 62 km, 24 x 42 km, 14 x 22 km, 11 x 19
km, 7 x 12 km, and 3 x 5 km respectively [56]. As the original data are swath observations,
processing is done by the NSIDC to map observations onto a 12.5 km polar stereographic
grid. This is done by using a method which takes the sum and average of data samples
that fall within the same grid cell (also known as a drop-in-the-bucket method). Data from
AMSR2 are available from July 2nd, 2012 to present.

The second set of brightness temperature data are the special sensor microwave im-
ager/sounder (SSMIS) TB data which are from the SSMIS sensor onboard the Defense
Meteorological Satellite Program (DMSP) F17 platform. Brightness temperatures are
measured at four frequencies, and are the 19.3, 22.2, 37.0, and 91.7 Ghz channels, with
horizontal and vertical polarization’s for each channel available. Here the IFOV for each
channel are 42 x 70 km for both 19 and 22 Ghz channels, 28 x 44 km for the 37.0 channel,
and 13 x 14 km for the 91 Ghz channel [57]. As the raw data are satellite swath obser-
vations, processing is done by the NSIDC to map the observations onto a 25 km polar
stereographic grid using a similar drop-in-the-bucket method as above. The data from F17
SSMIS sensor is available from June 12th, 2006 to present.

3.3 Sea Ice Concentration Data

For the present study, we use two sets of sea ice concentration (SIC) data from two sources.

3.3.1 Bootstrap Algorithm

The bootstrap (BT) algorithm uses brightness temperature (TB) observations from 37
horizontal (H), 37 vertical (V), and 19.3V Ghz (which for ease we will refer to hereafter as
19V) channels from the F17 SSMIS sensor to estimate SIC [17], [15]. Scatterplots between
the two channels are created, where two non-linear clusters are identified. Most data
points in consolidated ice regions where ice concentration is greater than 95% are clustered
in a common area, where a line along this area is inferred from a regression analysis, and
is known as the line A-D. Additionally, most points that correspond to open water are
clustered in a different area of the scatter plot, and can be represented as the line known
as O-W. The points closest to O usually correspond to lowest brightness temperatures in
the plot. Take for example an arbitrary ice surface represented by the point I along A-D.
Different concentrations of this ice type are represented by data points along the line O-I.
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Figure 3.2: Schematic diagram of the technique used in two SIC algorithms. Here red
ellipses simulate group of scatter points corresponding to consolidated ice, while blue ellipse
simulate groups of scatter points corresponding to open water (a) Schematic for the BT
algorithm. Points in the consolidated ice region where SIC > 95% , are represnted as the
(red) line A-D. Most of the ice free and/or open water points are clustered along the (blue)
line O-W. The (black) dotted line I-O measures SIC relative to the distance to A-D or
O-W. (b) Schematic for the NT algorithm. The tie points A, B, and OW, correspond to
first year ice, multi year ice, and open water respectively. The (red) A-B line corresponds
to 100% SIC. The distance from the point OW to the line A-D, represented as the (black)
dashed line, is a measure of the SIC. Laslty, the group of points clustered at C are points
with significant surface effects.
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Given some data point along the line I-O, the distance from such point to I (or O) is a
measure of the sea ice concentration, where SIC = 0 corresponds to points near O, and
SIC = 1 corresponds to points closer to or on the line A-D. A schematic diagram of this
method is provided in Figure 3.2(a).

Additionally the bootstrap algorithm uses two more plots to derive sea ice concentra-
tions for different regions of ice. Higher TB measurements are typically observed within
the ice pack, as opposed to near the ice edge, which helps to delineate the two regions.
Then, for TBs within the ice pack, plots of 37H vs 37V (polarization mode) are used to
calculate SIC. To calculate SIC near the ice edge boundary, TBs of 37V vs 19V (frequency
mode) are plotted, since the combination of 37V and 19V is more sensitive to the ice-water
boundary. Additionally, a weather filter is applied to help identify areas where weather
related erroneous effects may affect SIC estimates [18].

The SIC from the bootstrap algorithm is available as the Bootstrap Sea Concentration
dataset at the NSIDC [15], and has a nomimal gridded resolution of 25 km.

3.3.2 Nasa Team (NT) and Enhanced Nasa Team (NT2) Algo-
rithms

SIC obtained from the the NASA Team (NT) algorithm uses two equations [54]. The first
is the polarization ratios of brightness temperatures,

PR(v) =
TB(vV )− TB(vH)

TB(vV ) + TB(vH)
, (3.1)

and the second is the spectral gradient ratio of brightness temperatures,

GR(v1pv2p) =
TB(v1p)− TB(v2p)

TB(v1p) + TB(v2p)
. (3.2)

Here, TB is the brightness temperature at a frequency v, for a polarized component p, i.e.
vertical (V ) or horizontal (H), where the brightness temperatures are obtained from the
AMSR2 sensor [56].

First, the NT algorithm calculates the polarization ratios of the 18.7 GHz brightness
temperatures, and plots it against the spectral gradient ratio calculated between the 36.5
GHz vertical (V) and 18.7 GHz vertical (V) brightness temperatures, an example can be
seen in Figure 3.2(b). For ease, we denote the 18.7 and 36.5 GHz channels as 19 and 37
Ghz respectively from this point onward. Here, tie points for first-year (A), multi-year ice
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(B), and open water (OW) are identified and shown, then a line connecting A-B to OW is
subsequently plotted. To measure SIC, the relative distance a point contained on the line
connecting A-B to OW, is measured relative to either A-B or OW. The closer the point is to
OW, the lower the SIC, while the closer the point is to the line A-B, the higher the the SIC.
The primary source of error in the NT algorithm can be attributed to ice surface effects
such as glazing and layering [16], which can affect 19 GHz TBH’s, underestimating SIC.
These significant surface effects are clustered as a group of points, denoted C, away from the
100% ice concentration line A-B. The difference between GR(89V19V) and GR(89H19H),
known as ∆GR help to distinguish between pixels of low ice concentration and pixels with
significant surface effects.

The NT2 algorithm utilizes a similar basis to that of the NT, but employs a greater
complexity than that of the NT to account for surface effects, atmospheric types, and
weather related effects, where a short summary of the process is detailed as follows. First,
the response of theoretical TB’s to different weather conditions are calculated using an
atmospheric radiative transfer model [46]. As input, the model uses emissivities of first
year ice under winter conditions, as well as various atmospheric profiles with different cloud
properties, atmospheric temperatures, and humidity profiles for summer and winter condi-
tions. Following this, theoretical brightness temperatures for all possible ice concentration
and weather combinations are calculated, and for each of these solutions the ratios between
PR(19), PR(89), and ∆GR are calculated. This creates a ”prism” in which each element
contains a vector of these three ratios. Next, similar PR(19), PR(89) and ∆GR ratios are
calculated from the observed AMSR2 brightness temperatures. The weather corrected ice
concentration ratios is found by minimizing the observed ratios to the theoretical (mod-
elled) ratios. The weather corrected ratios are then used to calculate the final SIC via plots
of GR(37V19V) and PR(19).

Although the NT2 algorithm produces weather corrected sea ice concentrations, er-
roneous SIC estimates are still possible. Thus, the NT2 algorithm requires additional
methodologies to correct SIC estimates. The first is an atmospheric correction scheme,
providing weather corrected SIC through a forward atmospheric radiative transfer (RT)
model. This helps to eliminate remaining severe specious ice concentrations in open water,
while also applying atmospheric corrections to currently covered ice. For the most severe
weather effects, which are present in open ocean, the use of weather filters [26], [13] are
needed. In some cases, spurious SIC are found in low latitude locations, so a sea sur-
face temperature (SST) filter from the National Oceanic and Atmospheric Administration
(NOAA) are used [12]. Then, to correct for erroneous SIC measures found along coast
lines, a land mask is overlayed and applied.

The SIC data using the NT2 algorithm is available at the AMSR2 Unified Daily Bright-
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ness Temperatures and Sea Ice Concentration’s from the NSIDC [56], which has a nominal
gridded resolution of 12.5 km and uses TB’s from the from the AMSR2 sensor.

3.4 Reanalysis Data

In this study, 5th generation reanalysis (ERA5) data produced by the European Centre
for Medium-Range Weather Forecasts (ECMWF) [34] is utilized for input into the MLP
models. The ERA5 dataset is a large collection of various atmospheric, land, and oceanic
climate variables, provided from the year of 1979 to present. The data covers most regions
of the earth, with a nominal gridded resolution of 30 km. From the ERA5 dataset, we
utilize 4 climate variables.

The first climate variables is an aggregation of two original components of the 10-meter
meridional-component and 10-m zonal-component of wind. The ERA5 dataset collects
the in-situ data from the Drifting Buoy dataset from the world meteorological informa-
tion system (WMO WIS). The 10-meter meridional-component is the horizontal speed of
air moving towards the north at a height of ten metres above the earths surface. On
the contrary, the 10-meter zonal-component of wind is the horizontal speed of air mov-
ing towards the east. The two components are then transformed into a single measure
of the horizontal 10-meter windspeed (WS), by calculating the magnitude between the
meridional-component and zonal-component. The second climate variable used is the 2
meter air temperature (AT), which is the temperature of air 2 meters above the surface of
land or sea measured in kelvin (K). ERA5 collects and aggregates temperature data from
the WMO WIS. The third climate variable is the total column vertically integrated water
vapour (WV), which is the total amount of water vapour in a column extending from the
surface of the earth to the top of the atmosphere measured in millimeters (mm). The
fourth and last climate variable is the total column cloud liquid water (LW), which is the
amount of liquid water contained within cloud droplets in a column extending from the
surface of the earth to the top of the atmosphere and is measured in mm. Both VW and
LW are collected by ERA5 from satellite sensor data.

3.5 Data organization and processing

For this study, the atmospheric variables and brightness temperatures are used as input
features into the neural network model. We use data in the study area for the full years of
2020 and 2021, where 2020 is used in training of the model, and 2021 is used in inference.
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SIC data is used solely as labels during model training for the 2020 dataset, while for the
2021 dataset, they are utilized purely as a means for visual comparison between the ground
truth and predicted SIC. For the 2020 set, data is split such that 80% is used for training,
and 20% is used for validation.

As brightness temperatures are used in the algorithms for estimating SIC we incorpo-
rate brightness temperatures as an input feature. For models which use BT SIC values
as training labels, the TB obtained from the SSMIS sensor (which are the TBs used in
calculating said SIC in the original BT algorithm) are used as the input features in the
model. Conversely, models which use the NT2 sic values as training labels utilize the TB
from AMSR2 as input features into the model, as this TB was the same TB used in the
original NT2 algorithm for SIC estimation. As mentioned previously, both AMSR2 and
SSMIS have TB’s measured at various channels. Although higher frequency channels such
as 89 GHz (from AMSR2) and 91.7 GHz (from SSMIS) have the finest spatial resolutions,
they are sensitive to atmospheric water vapor and cloud liquid water [72]. Thus, we choose
the 37 GHz frequency from AMSR2 and 37 GHz frequency from SSMIS at both horizontal
and vertical polarization’s due to its lower sensitivity [59] and its availability across histor-
ical passive microwave sensors, enabling the method to be more easily extended to climate
data records.

Additionally, as discussed in Chapter 2.5, the use of climate variables are common
when applying corrections to sea ice concentration, specifically WS, WV, and LW, which
have been used in atmospheric physical models. Furthermore, AT has shown to have
strong correlation to sea ice concentrations, and thus is a variable of interest that may help
produce better results. Note that data from the ERA5 dataset has an hourly temporal
resolution. To be consistent with the daily gridded TB’s from AMSR2 and SSMIS, we
take the average of the hourly ERA5 data over each day in 2020 and 2021. An example
of the input features consisting of TBs from AMSR2 and the ERA5 atmospheric climate
variables can be found in Figure 3.3 for the month of May in 2021.

Finally, as the data from AMSR2, SSMIS, and ERA5 have different spatial resolutions,
a nearest neighbour interpolation scheme is applied to upsample the lower resolution 30
km ERA5 data to either the 12.5 km AMSR2 TB and NT2 SIC values or 25 km SSMIS
TB and BT SIC values, depending on which model is utilized in experiments.
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Figure 3.3: Maps of input features used in the testing set for NT2 based models averaged
over the month of May 2021. The features are (a) Brightness Temperature (H) (TBH), (b)
Brightness Temperature (V) (TBV), (c) Windspeed (WS), (d) Water Vapour (WV), (e)
Cloud Water (CW), (f) Air Temperature (AT). TB’s shown are obtained from the AMSR2
sensor.
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Chapter 4

Methodology

The methodology of this paper is comprised of parts to predict sea ice concentration,
measure epistemic and aleatoric uncertainty, and provide a calibrated model. For choice
of model architecture, we choose a multilayer-perceptron. To measure the epistemic un-
certainty in our model, we utilize the method known as Bayes By Backprop (BBB) [9] to
produce a Bayesian neural network (BNN). Following this, aleatoric uncertainty is captured
by transforming a BNN into a heteroscedastic BNN (HBNN) which uses the heteroscedastic
loss function [41]. Finally the method for calibration is based off the method of Auxiliary
Interval Predictors by [74]. We point to the original papers for full technical details but
provide a brief overview of each methodology here.

4.1 Multilayer Perceptron

The problem of predicting sea ice concentrations (SIC) can be thought of as a non linear
regression problem. Multilayer perceptron (MLP) neural network models are a popular
choice for solving non linear regression problems [69], [36] and thus may be well suited to
predict SIC. MLP models are a type of feedforward neural network characterized by several
layers of neurons, which at minimum consist of an input layer, output layer, and a variable
number of hidden layers in between the input and output (Figure 4.1). Given (x, y), where
x is the samples of input data consisting of n features, i.e. x = {x1, ...,xn}, and y are the
labels used for training, then the number of neurons in the input layer correspond to the n
features of x. The inputs are forward propagated through the layers of the network until
they reach the output layer. Note that the number of hidden layers, number of hidden
layer neurons, and the neurons in the output layer vary and are defined by the user, usually
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dependent on the problem at hand. For this instance, assuming that the only goal is to
predict sea ice concentration, the number of output neurons for the MLP is 1. Note, as
discussed later in Chapter 4.3, this output may be altered to produce not just predictions
of SIC, but uncertainty.

Within each layer of the model, the neurons from each forward propagation of the input
are calculated as,

νl+1
i = ϕ(

m∑
i=1

wl
iν

l
i + bl). (4.1)

Here, the model is comprised of m neurons at some hidden layer l. The variable νl+1
i

represents the neuron at the current layer of forward propagation l + 1, and νl
i is the

connecting neuron to νl+1
i in the previous hidden layer l. The wl

i term corresponds to the
weight of connections between neurons, while bl is the bias within the layer, and ϕ is a
nonlinear activation function.

When the input reaches the output layer through forward propagation and an output
ŷ is produced, the loss of the network can be calculated between ŷ and the training labels
y, using a loss function. For regression problems, a common loss function utilized is the
mean squared error (MSE) loss, which is defined as,

LMSE =
1

N

N∑
i=1

||yi − ŷi||2, (4.2)

where yi and ŷi represent the N elements of the vectors y and ŷ respectively. Finally, this
loss is backpropagated through the network [69], updating the weights between neurons
in the network. This process of alternating forward and back propagation are repeated to
optimize the network in an attempt to get the best possible output, represented by the
lowest loss, or until a stopping criteria is invoked.

4.2 Bayes by Backprop

The weights and biases of a NN, such as an MLP, are provided as single values [69], [79],
[36], [35]. One way to quantify the uncertainty of the NN models is to define probabilistic
distributions on the weights and biases of the model, such that each weight is defined by
a variance and mean (assmuming the form of a Gaussian distribution). An example of
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Figure 4.1: Left: Neural network with point values (blue) as weights. Right: (Bayesian)
Neural network with distributions (red) representing the weights.

the differences between point and distribution defined weights can be seen in Figure 4.1.
Bayes by backprop suggests a method to achieve this, using a variational approximation
to Bayesian inference.

Bayes Theorem and Inference: We first introduce Bayes theorem [40], which is defined
as,

P (w|D) =
P (D|w), P (w)

P (D)
, (4.3)

where P (w|D) is the posterior, P (w) the prior, P (D|w) the likelihood, and P (D) is the
scaling factor. Here, w is the vector of weights in our neural network, and D is the data,
characterized by sets of vectorized (x,y) input/output pairs. For the present problem, it
is of interest to find P (w|D), which is the probability for some weights to be calculated
after the data has been seen, and gives the maximum a posteriori (MAP) point estimates
of our weights w. This can be further approximated as the following,

P (w|D) ≈ P (D|w)P (w),

as the denominator of Equation 4.3, i.e. the scaling factor, is not a function of w, and
hence does not change the posterior with respect to w.

If we instead had a distribution over weights, as opposed to point estimates, as in the
MAP estimation, we could make predictions that take weight uncertainty into account. To
produce such distributions upon our weights w, we apply Bayesian inference, which looks
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to calculate the posterior predictive distribution (PPD), for some arbitrary new output y∗,
and input x∗,

P (y∗|x∗, D) =

∫
P (y∗|x∗,w)P (w|D)dw.

Unfortunately, the calculation of the PPD is intractable, stemming from the intractability
of the posterior. And thus, the functional form of neural networks does not allow for exact
integration of Bayesian inference.

Variational Inference: BBB proposes a variational approximation of the posterior as
opposed to the exact Bayesian approach. This variational approximation uses a simpler
distribution as a proxy for the true posterior distribution where the proxy posterior dis-
tribution (or variational distribution), parameterized by θ, is as close to the true posterior
distribution as possible. To find the optimal theta (θ∗) that minimizes the difference be-
tween the two, the use of the Kullback-Leibler (KL) divergence is employed between the
variational distribution, and the true posterior P (w|D). Calculating θ∗ can be formalized
as,

θ∗ = argmin
θ

KL[q(w|θ)||P (w|D)], (4.4)

where the KL divergence is a distance measure between two probability distributions.
When the KL divergence is minimized, the variational distribution is close to or equal
to the true distribution. Equation 4.4 can be further broken down as the following loss
function for use in a neural network,

F (D, θ) = KL[q(w|θ)||P (w)]− Eq(w|θ[logP (D|w)], (4.5)

where the loss function of Equation 4.5 is comprised of two parts, a prior dependent
part (known as the complexity cost) minus a data dependent part (also known as the
likelihood cost). Rearranging the components of the KL divergence term using a Monte
Carlo approximation [9] allows for a new form to be rewritten as,

F (D, θ) = Eq(w|θ)[log q(w|θ)]
− Eq(w|θ)[log p(w)]

− Eq(w|θ)[logP (w)].

Notice that all three terms are expectations with respect to the variational posterior.
An unbiased Monte Carlo sampling scheme [69], drawing Nmc samples directly from the
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variational posterior can be used to approximate the expectation in each term. Doing this,
the new form of this loss function, and the form that is utilized in the BBB methodology
is,

LBBB =
1

Nmc

Nmc∑
j=1

[log q(wj|θ)− logP (wj)− logP (D|wj)]. (4.6)

This form of the loss function is derived and used due to its simplicity of understanding
of each component of log posterior, log prior, and log likelihood, as well as a simpler
implementation in practice. Here wj denotes the jth Monte Carlo weight vector drawn
from the variational posterior, and Nmc the total draws taken. The variance between draws
as taken from the variational posterior is the epistemic uncertainty of the model.

Posterior: The variational posterior (q(w|θ)) is defined to be a Gaussian distribution.
For a single weight of wi, it is shifted by a mean µi and scaled by a standard deviation
σw(i). Note that the standard deviation vector is parameterised by the softplus function
(pointwise) as,

σw = log (1 + exp(ρ)), (4.7)

such that σw is always non-negative. Thus the variational posterior has the parameters
θ = (µ,ρ). Neural networks require the use of a forward pass and backward pass in training
to effectively learn and solve a problem. The forward pass draws a sample or samples from
the variational posterior, a stochastic process, while the backwards (backpropagation) takes
the gradients of µ and ρ and updates said values via an optimizer. Since the forward pass is
stochastic in nature, the reparameterization trick [62] is used to effectively backpropagate
the two variables. The trick is to first sample a variable ϵ from a parameter free distribution,
and then transform ϵ with a deterministic function t(θ, ϵ) for which a gradient can then be
properly defined. The algorithm for optimisation of the variational posterior parameters in
BBB is described in Algorithm 1. The gradients for the mean and standard deviation can

Algorithm 1 Reparameterization Algorithm

1: Sample ϵ ≈ N(0, I)
2: Let w = µ+ log (1 + exp(ρ) ◦ ϵ
3: Let θ = (µ,ρ)
4: Calculate loss using LBBB

5: Calculate the gradients of µ and ρ as ∆µ and ∆ρ
6: Update the variational parameters
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be learned by the common backpropagation algorithm in neural networks, and are scaled
and shifted appropriately as described above.

Prior: Next, the prior is chosen. It may be intuitive to use a simple Gaussian for the
prior, which the original authors of BBB noted, but it was found that choosing a scale
mixture of Gaussian densities as the prior proved to produce better results. It is defined
as follows,

P (wj) =
∏
k

πN(wk|0, σ2
p1) + (1− π)N(wk|0, σ2

p2), (4.8)

where wk is the kth weight of the current jth Monte Carlo weight vector. Additionally,
each density is defined to have zero mean, with differing variances of σ2

p1 and σ2
p2, and scaled

by π. The first mixture component is given a larger variance then the second (σ2
p1 > σ2

p2),
while also requiring the second mixture component to have a variance much less than one
(σ2

p2 << 1). This achieves two things: 1) It provides a heavier tailed Gaussian, and 2)
it causes many weights to tightly center around zero. This prior is shared among all the
weights, making it tractable to use during the optimisation step.

Likelihood: Finally, for the likelihood component, the choice of form is dependent on the
problem statement, as it is the component of the loss function most related to the data.
For instances of binary classification for example, it may be appropriate to choose the cross
entropy loss function. In the case of the non-linear regression problem presented in this
paper, mean square error (MSE) loss is an appropriate choice, similarly seen in Equation
4.2,

P (D|w) = P (x|y,w) = LMSE. (4.9)

Combining the three components of Gaussian variational posterior, Gaussian mixture
prior, and MSE loss (as our likelihood) into the function of Equation 4.6 produces our true
loss function.

4.3 Heteroscedastic Loss

In BNN’s such as of our iteration of BBB, the data dependent portion of the loss func-
tion, i.e. the likelihood cost, is measured by the MSE loss. This output corresponds to
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a Gaussian distribution assuming a constant (homoscedastic) variance, and is not usually
accounted for in the loss function. As this variance is constant, there is no notion of the
uncertainty which originates from the data. A proposed method by Kendall et. al. [41]
considers non-constant variances as to measure the data uncertainty, or aleatoric uncer-
tainty. To measure the aleatoric uncertainty in a BNN, specifically BBB, one can replace
the current MSE loss in the likelihood portion, to that of the heteroscedastic loss,

LHNN = P (D|w) =
1

N

N∑
i=1

1

2

( ||yi − ŷi||2

σ̂2
a(i)

+ log (σ̂2
a(i))

)
, (4.10)

where the heteroscedastic loss is the log of a Gaussian assuming a non-constant variance.
Here yi and ŷi represent the N elements of the vectors y and ŷ respectively. The term
σ̂a is the aleatoric standard deviation vector for the model. This term is obtained from
a network which has two output neurons, one vector for the predicted mean ŷ, and the
other vector for σ̂a. This vector of σ̂a differs from σw, since the latter is the standard
deviation which parameterizes the posterior and subsequently all weights w in the model.
In practice, Kendall et. al. suggests to train the network on the log variance,

si = log (σ̂2
a(i))

such that the new proposed loss function, which replaces Equation 4.10 as the likelihood
component in BBB as,

P (D|w) = 1

N

N∑
i=1

1

2
(exp (−si)(yi − ŷi)

2 + si). (4.11)

This is advised, since the training on the log variance is numerically stable when regressing
the aleatoric variance, as the loss avoids division by zero. The exponential mapping also
allows the regressor to regress on unconstrained scalar values, producing positive values
for the variance. Note, NN’s that produce this output are sometimes referred to as het-
eroscedastic NN’s (HNN), and as we are transforming the BNN from Bayes by backprop to
include this additional architecture, it is appropriate to distinguish it as a heteroscedastic
Bayesian NN (HBNN) or heteroscedastic Bayes by backprop (HBBB).

4.4 Auxiliary Interval Predictors

A newer approach for calibration in regression settings was proposed by Thiagarajan et.
al. (2019) [74] using what is known as Auxiliary Interval Predictors. The approach utilizes
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two separate models, a main model and auxiliary (aux) model, where the main model is
used for mean prediction of SIC and the aux model for predictive interval estimation. The
strategy behind the approach allows for each model to take into account one another’s
results in an alternative training fashion, as to match the mean predictions to that of the
prediction intervals.

First we define the main model (or mean estimaotr) to be F (x; Θ), and the auxil-
iary model (predictive interval (PI) estimator) to be τ(x; Φ), parameterized by Θ and Φ
respectively. Then, the objective function which is to be minimized is,

min
Θ

LF (Θ;x,y, τ(x; Φ∗), s.t.,

Φ∗ = argmin
Θ

Lτ (Φ;x, F (x; Θ)).
(4.12)

In the above equation, the main model F (x; Θ) produces mean estimates that takes the
PI’s into account from the auxiliary model τ(x; Φ∗). The auxiliary model then takes into
account the parameters from the main model for PI estimation, as well as performing the
calibration process. The authors [74] note that the task of producing prediction intervals
is used to regularize the main task of fitting a predictive model, i.e. producing mean
estimates, by constraining its uncertainty estimates to match the estimated intervals. This
process as denoted by the authors is referred to as uncertainty matching.

Interval Estimator: The interval estimator operates such that the model works to achieve
a calibration level α, which implements the task of calibration as a differentiable function.
The loss of the interval estimator Lτ is produced on the current condition of the parameters
defined in the mean estimating term, i.e. Θ, and is represented in three portions. The
first portion of loss optimizes calibration, measuring the empirical probability of the true
target lying in the estimated intervals,

Lemce =
∣∣∣α− 1

N

N∑
i=1

I[(ŷi − δli) ≤ yi ≤ (ŷi + δui )]
∣∣∣. (4.13)

Here ŷi is the result of evaluating the mean estimator at xi, i.e. F (xi; Θ). I is an indicator
function implemented as,

SIGMOID[η(yi − ŷli)(ŷ
u
i − yi)],

where η is some large scaling factor (η ≥ 1e6) and ŷli and ŷui are the lower and upper
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bounds of output ŷi,

ŷli = ŷi − δli
ŷui = ŷi + δui .

The next portion looks to perform width regularization, which is done by matching the
widths vi to the residuals ri from F ,

Lnoise =
N∑
i=1

∣∣∣0.5 ∗ vi − |ri|
∣∣∣, (4.14)

where,

vi = δui + δli
ri = yi − ŷi.

The third and final portion ensures the widths of the estimated prediction are as tight as
possible around the mean prediction, and as formulated as,

Lsharp =
N∑
i=1

(
|ŷui − yi|+ |yi − ŷli|

)
. (4.15)

Finally, the combined loss function for the interval estimator Lτ is:

Lτ = Lemce + βnLnoise + βsLsharp, (4.16)

where βn and βs are penalty terms to scale the effects of their respective loss portion.

Mean Estimator: The mean estimator F (x; Θ) predicts mean estimates of a target,
i.e. the SIC in the context of our study, along with uncertainty estimates. Here the
uncertainties are guided by the parameters Φ of the interval estimator τ to ensure high
quality estimates of both the mean, and uncertainties. The mean estimator is evaluated
by its loss function LF , which is defined as,

LF =
1

N

N∑
i=1

(1
2

( ||yi − ŷi||2

σ̂2
a(i)

+ log (σ̂2
a(i))

)
+ λm|σ̂a(i) − γ

vi
2
|
)
, (4.17)

where, ŷi is the result of evaluating the mean estimator at xi, i.e. F (xi; Θ). The mean
estimator F (x; Θ) is designed to be a heteroscedastic neural network, where it returns
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a mean and standard deviation estimate, as defined above in section 4.3. Notice that
Equation 4.17 is similar in form to the heteroscedastic Loss function of Equation 4.10, but
with the added penalty scaling portion, which utilizes a penalty term λm and a scaling
term γ. The scaling term γ is defined to be γ = 1/z(1−αv)/2, with αv being the calibration
level achieved for that current instance by Lτ , and z indicates the z-score.

Predictive Interval: For the methodology of Auxiliary Interval predictors, the variances
estimated by the mean estimator loss function are used to estimate intervals for calibration.
Recall that calibration for regression is based on the notion that the observed confidence
level matches with an expected confidence level. The observed confidence level is the
proportion of observed ground truth values that fall within the PI, while the expected
confidence level is some threshold. Take the toy example presented in Figure 4.2. Here
PI’s are produced from predictions given some trained model, at an expected confidence
level of 0.90 or 90%. We should observe that approximately 90% of ground truth SIC’s
fall within these PI’s for the model to be calibrated. But, only 80% of ground truth SIC’s
are observed to fall within their PI’s at this expected confidence level of 90%, thus the
model is said to be non-calibrated. For a model to be ”perfectly” calibrated, its observed
and expected confidence levels should be equal for all discrete expected confidence levels,
ςexp : [0, 1]. We now define how the predictive interval is calculated given a single mean
prediction of SIC ŷi as,

PI(i),ςexp = [PI lower
(i),ςexp , P Iupper(i),ςexp

]

= [ŷi − z(1−ςexp)/2

σ̂a(i)

M
, ŷi + z(1−ςexp)/2

σ̂a(i)

M
],

(4.18)

where z indicates the z-score (a function of the expected confidence level), and M the
number of samples taken from the model, which in our case is equal to the number of NMC

samples. Then, for these discrete expected confidence levels, the corresponding observed
confidence level ςobs is calculated. We use the following formulation, which is to count
the empirical frequency that the ground truth SIC y, is contained within the PI of its
corresponding predicted SIC ŷ for all points i,

ςobs =
|{yi|PI lower

(i),ςexp
≤ yi ≤ PIupper(i),ςexp

), i = 1, ..., K}|
K

, (4.19)

where K is the total amount of points. Finally, as a measure to evaluate calibration, a plot
of observed vs. expected confidence levels, known as calibration plots [45], [74] (Figure
7.4) are used.
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Figure 4.2: Calibrated regression toy problem. Here green points correspond to true (label)
values. Blue lines indicates prediction intervals (PIs) as produced by predictions (not
shown) from a theoretically trained model at an expected confidence level of 90%. Observe
two points (circled in red) not contained within their respective PI’s, resulting in an 80%
observed confidence level. As the expected confidence level of 90% does not equal the
observed confidence level of 80%, the model is said to be non-calibrated for this confidence
level.

28



Calibration Algorithm: The overall algorithm incited for training is described in Algo-
rithm 2. It repetitively performs the mean estimation and interval prediction but in an
alternating fashion. The mean estimator takes into account the intervals from the interval
prediction for its update, while the interval estimator takes into account the mean predic-
tion. This process is repeated until convergence or until a set amount of the outer epochs
has been reached.

Algorithm 2 Calibration using Auxiliary Interval Predictors

1: Input: Labeled Data {(xi, yi)}Ni=1,
Target Calibration Level α,
Epochs nouter, nmain, naux

2: Initialize: Randomly Initialize Θ∗, Φ∗

3: for nouter epochs do
4: for nmain epochs do
5: Compute intervals δui , δ

l
i = τ(xi; Φ

∗)
6: Compute Loss Function LF (Equation 4.17)
7: Update Θ∗ = argminΘLF

8: end for
9: for naux epochs do
10: Get predictions ŷi from F (xi; Θ

∗)
11: Compute Loss Function Lτ (Equation 4.16)
12: Update Φ∗ = argminΦLτ

13: end for
14: end for
15: Output: Trained Mean and Interval Estimators F and τ
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Chapter 5

Experimental Setup

We culminate the parts described in the methodology which allows for a well calibrated
model that produces accurate mean estimates and measures both epistemic and het-
eroscedastic aleatoric uncertainty.

By utilizing Bayes by Backprop, we can transform non-Bayesian models such as an
MLP into Bayesian models (i.e. BNN) such that the weights are represented as probabilistic
distributions, but the original MLP architecture stays the same. For our method, we follow
[71] and define an MLP to have 4 hidden layers between the input and output layers, with
each hidden layer comprised of 10 neurons. Between each layer of the model, a ReLU
activation function is used and for choice of optimiser, we utilise Adam. Through trial
and error, we found that a learning rate of 0.001 worked best combined with mini batches
comprised of 1000 samples per batch. The data is split into train/validation/test sets as
described in the data section. Note that this MLP architecture is chosen for its efficiency
and quality predictions of SIC [71]. A summary of the MLP values can be found in Table
5.1.

For BBB, hyperparameter tuning was also required. For Nmc it was found that values
between 10-50 provided robust results, with any values greater than 50 only providing
minimal improvements, but greater computational requirements. Thus an appropriate
value of Nmc to set to best balance computational efficiency and garner good results was
30. Prior parameters (σp1, σp2, π) were chosen to be 1.0, 0.01 and 0.5 respectively, based
on Blundell et. al. [9]. Subsequently, the mean µ of the variational posterior is initialized
to be a vector of 0’s for all weight values, such that the distribution is centered, while ρ is
set to -2 [9]. A summary of the BBB hyperparameters can be found in Table 5.2. To then
measure aleatoric uncertainty, we replace the MSE loss of BBB, with the heteroscedastic
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loss, producing a HBNN, or HBBB specifically.

In the case of auxiliary interval predictors for calibration, it requires the use of HNN’s,
which fits well with our HBBB iteration. We thus define two models, a main HBBB and
auxiliary HBBB where both models retain the same Bayesian architecture. When training
is completed, the main HBBB model is now said to be calibrated, and as such is denoted as
CHBBB, where C stands for calibrated.We also experiment with the hyperparameters of
this method. For choice of calibration level α, we train such that a value of 0.95 is achieved
as seen in Equation 4.13. Theoretically, this indicates that the model is fully calibrated for
all observed confidence levels at and below 0.95. Next, both β terms are set to 0.1. This
is similar to the values set by the original authors of the paper [74]. The β terms help
to balance the contributions of each component of the loss function, such that the largest
effect on learning is the Lemce term (Equation 4.13). From experiments utilizing higher β
values (greater than 0.5), it was found that uncertainty estimates for aleatoric uncertainty
were greatly constrained which would negatively affect mean predictions, leading to higher
RMSE’s. Thus relaxing these terms to values less than or equal to 0.1 allowed for better
learning of the mean and aleatoric uncertainty. We found that it was also important to
scale λm appropriately. If the value is set too high (i.e. λm ≥ 1) the aleatoric uncertainty
can be constrained to a very narrow range, which is a similar effect as the scaling of the
β penalty terms. Thus for λm, a value of 0.1 is set. The incorrect learning stems from
the LF loss function (Equation 4.17). Observe from (Equation 4.17), the last term of the
loss function which includes the vi term. If the width of vi is too narrow and becomes a
single constant value for all values i, the aleatoric uncertainty (σ̂a) can inflate in learning,
and eventually converge to aleatoric uncertainty values that are constant for all values
and represent no variability. As both loss functions in Equations 4.16 and 4.17 require
parameters learned and transferred from one another, it can produce a cycle of incorrect
learning, and thus these adjustments for both the β terms and λ term are necessary. A
summary of the calibration methodology hyperparameters are found in Table 5.3.

Lastly, we perform experiments as analyzed in the results and analysis section, with
models using varying combinations of input features and training labels. For ease, we
provide a table as illustrated in Table 5.4. Here MLP denotes models trained only on
an MLP, which can predict SIC but are not capable to measure epistemic nor aleatoric
uncertainty. Models denoted as BBB are Bayes by backprop based, which predicts SIC
and measures epistemic uncertainty. Models with the added H, as in HBBB utilize
the heteroscedastic loss to produce a heteroscedastic neural network, predicting SIC and
measuring both epistemic and aleatoric uncertainty, while models with C, such as CHBBB
are models calibrated with the auxiliary interval predictors method. Subscripts that follow
the main model name, indicate the training label used, where NT2 indicates models using
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NT2 SIC values as training labels, and BT indicates models using BT SIC values as training
labels.

Table 5.1: Hyperparameter Summary for MLP architecture
Input Dimensions 6
Hidden Layers 4
Neurons in each layer 10
Output Dimension 2
Learning Rate 0.001
Batch Size 1000
Activation Function ReLU
Optimizer Adam

Table 5.2: Hyperparameter Summary for BNN
Initial Posterior Mean (µ) 0.0
Initial Posterior Rho (ρ) -2
Prior sigma 1 (σp1) 1.0 [9]
Prior sigma 2 (σp2) 0.01 [9]
Prior pi (π) 0.5 [9]
Monte Carlo Samples (Nmc) 30

Table 5.3: Hyperparameter Summary for Auxiliary Interval Predictors
Lambda match penalty term (λm) 0.1
Beta noise penalty term (βn) 0.1
Beta sharp penalty term (βs) 0.1
Calibration level (α) 0.95 [74]
Scaling factor (η) 1e6
Outer epochs (nouter) 10
Main model epochs (nmain) 5
Auxiliary model epochs (naux) 5
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Table 5.4: Models and Data Summary
Model Name Uncertainty

Measure
SIC
Label

TB sensor Input Features

MLPNT2 N/A NT2 AMSR2 TBH, TBV, AT,
WS, WV, LW

BBBNT2 Epistemic NT2 AMSR2 TBH, TBV, AT,
WS, WV, LW

HBBBNT2 Epistemic,
Aleatoric

NT2 AMSR2 TBH, TBV, AT,
WS, WV, LW

CHBBBNT2 Epistemic,
Aleatoric

NT2 AMSR2 TBH, TBV, AT,
WS, WV, LW

HBBBBT Epistemic,
Aleatoric

BT SSMIS TBH, TBV, AT,
WS, WV, LW

CHBBBBT Epistemic,
Aleatoric

BT SSMIS TBH, TBV, AT,
WS, WV, LW

CHBBBNT2−only−tb Epistemic,
Aleatoric

NT2 AMSR2 TBH, TBV

CHBBBNT2−no−tb Epistemic,
Aleatoric

NT2 N/A AT, WS, WV, LW
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Chapter 6

Experiment Descriptions

6.1 Experiments on Monthly Data

We look to perform experiments as they pertain to monthly observations over an annual
cycle. This is done to explore monthly variations of RMSE, epistemic uncertainty, and
aleatoric uncertainty as related to periods within the study region such as in times of
freeze up, melt, and summer months where little ice is present. For this analysis, we utilize
inference results from the 2021 testing dataset on the fully trained and calibrated het-
eroscedastic neural network of Bayes by backprop, utilizing SIC training labels calculated
via the NT2 algorithm, which we denote as CHBBBNT2 and the model utilizing training
labels calculated via the BT algorithm denoted as CHBBBBT .

6.2 Comparison Between Methodologies

A few methodologies are chosen for comparison to the proposed methodology of CHBBBNT2

on the basis of RMSE, epistemic uncertainty, and aleatoric uncertainty. They are the base
model MLP (MLPNT2), Bayes by backprop (BBBNT2), and a heteroscedastic NN using
BBB (HBBBNT2). This is done to measure changes as greater complexity is introduced
to each model. Here the models are trained on the full year of 2020 data, and inference is
performed for the full year of 2021. As per the results of the previous set of experiments,
May was found to have the results with the greatest RMSE and total uncertainty overall.
It would be of interest to show the capabilities of each model based on the least performing
month.
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6.3 Spatial Experiments using a Calibrated Model with

NT2 SIC as training labels

As predictions of SIC and values of epistemic and aleatoric uncertainty are tied to unique
latitude and longitude values, it is possible to plot these values to evaluate their spatial
distribution. It is also of interest to explore areas of the study region showing the most
accurate estimates of SIC, as well as areas most (and least) susceptible to higher epistemic
and aleatoric uncertainties. Given numerous models, we first focus on the CHBBBNT2

model as a baseline experiment, but perform experiments and analysis on other models in
subsequent sections.

6.4 Experiments on Non-Calibrated and Calibrated

Models

Next, spatial behaviour of calibrated models and how they differ from their non-calibrated
counterparts are then examined. We perform spatial evaluation similar to those performed
for CHBBBNT2 and compare it to the non-calibrated HBBBNT2. Additionally, to mea-
sure calibration, a calibration plot is constructed where points of expected confidence level
vs. the observed confidence level are plotted. Here, the measure of calibration using
the approach of auxiliary interval predictors (CHBBBNT2) is compared to that of the
non calibrated HBBBNT2. This same comparison is performed between the uncalibrated
HBBBBT and CHBBBBT models.

6.5 Spatial Experiments on NT2 vs. BT as SIC Train-

ing Labels

Subsequently, the effects that the use of different SIC training labels have on the prediction
of SIC as well as quantification of uncertainty are considered. As described in Chapter 3,
we utilize two sets of data as input with varying training labels. The first set of data uses
brightness temperatures obtained from the AMSR2 sensor combined with 4 atmospheric
variables. This set uses SIC training labels calculated via the NT2 algorithm. The second
dataset uses brightness temperatures obtained from the SSMIS sensor combined with the
same 4 atmopsheric variables as input to the model. Here, the SIC training labels are
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calculated from the BT algorithm. Similar to the NT2 case, we train two models, the
CHBBBBT and its non-calibrated counterpart HBBBBT .

6.6 Feature Experiments

6.6.1 Experiments on input feature combinations

We explore the spatial effects of features as they pertain to SIC estimates, RMSE, epistemic
uncertainty and aleatoric uncertainty. We look at two groupings of input features, one
where only TB’s are used as input, and the other where no TB’s, i.e. only atmospheric
variables, are used. As SIC retrieval algorithms utilize TB’s we look at what specific
contributions these TB’s make to SIC predictions within the proposed model, independent
of the additional features. Conversely, the same can be said for the contributions of the
atmospheric variables, and whether they are necessary, or if simply using only TB’s are
sufficient. Lastly, the annual cycle of the model using only TB’s as input is examined
in comparison to the annual cycle of the models previously using TB’s combined with
atmospheric variables as input.

6.6.2 Experiments on specific features

Subsequently specific details of the features as they are related to the monthly trends is
analyzed. We look at the monthly trends of each feature as related to the annual cycle, with
respect to the cumulative total (epistemic plus aleatoric) uncertainty. Here the cumulative
uncertainty is the summation of the total uncertainty over the whole region for a given
month. In addition, we look at the correlation between input features and SIC training
labels.
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Chapter 7

Results and Analysis

7.1 Monthly Observations

First, we observe the RMSE’s for the CHBBBNT2 model as presented Fig 7.1 (top). A
pattern is recognized that shows the gradual increasing of RMSE starting in January, which
then peaks in May, sharply declines in the summer and September, culminating in a slow
increase again in October, November, and December. The lowest RMSE values correspond
to the months of October and September, while the highest were found to be the months
of April, May, and June. We observe a similar pattern to that of the CHBBBBT model,
but with a larger RMSE magnitude in all months, with significantly higher values in the
months of January to May, and December.

When observing the uncertainty of both the CHBBBNT2 model and CHBBBBT ,
a similar pattern can be seen for the total uncertainty (where the total uncertainty is
equal to the sum of the epistemic and aleatoric uncertainties) as compared to the RMSE,
but with smaller difference in magnitude. Taking only the epistemic uncertainty into
account, it is apparent that the highest epistemic uncertainty (model uncertainty) is in
the late spring and summer months of June, and July for both models, but with slightly
higher epistemic uncertainties for the CHBBBBT model. The aleatoric uncertainty (data
uncertainty) on the other hand, peaks in May for both models, but is similar to the
epistemic uncertainty where the CHBBBBT model has slightly higher aleatoric uncertainty
consistently throughout the year. We note that the highest values of both RMSE and total
uncertainty occur in May for the CHBBBNT2 model, and for the CHBBBBT model May
is indicated to have the highest uncertainty and second highest RMSE. This coincides
with the melt onset in this region [8]. However, this does not coincide with the trend
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seen in SIE, where SIE sharply decreases in the month of April. This could be attributed
to the advection of sea ice out of the domain [7]. The lowest values of RMSE and total
uncertainty for both models coincide with times of low SIC, even in the absence of weather
filters and/or TB corrections as used in previous studies [26], [13], [75], [4], [3].

Next, we observe that when comparing periods of freeze up (i.e. November and Decem-
ber) to winter conditions (i.e. January, February, and March), the former has comparably
lower RMSE than the latter, consistent with both models, albeit different magnitudes.
From examination of the ice charts during Nov and Dec this is the time of freeze-up. At
this time the initial ice cover is thin in the northern portion of Baffin Bay, and then be-
comes thicker as the ice cover also expands to cover more of the region, which indicates
that the model works well for thin ice periods. Lastly, the aleatoric uncertainty is similar
among the months in the same seasonal time frame (i.e. freeze up periods vs times of
melt).

7.2 Evaluation of Methods

Evaluating the methods used to esimate SIC (Table 7.1), we can observe a gradual decrease
in the RMSE with increasing model complexity, showing an improvement in the accuracy
of the estimated SIC relative to the SIC for the test year. The RMSE is is highest for
the base model MLPNT2 returning an average RMSE over the whole domain for May
2021 of 0.283. To the contrary, the lowest RMSE is for the calibrated heteroscedastic
neural network using Bayes by Backprop, CHBBBNT2, with a value of 0.235, nearly a
20% improvement in RMSE. Next, the epistemic uncertainty is nearly 0.066 for the BBB
or 6.6%, while HBBBNT2 and CHBBBNT2 reduce this uncertainty to 1.5% and 1.8%
respectively. Finally, the aleatoric uncertainty between models only slightly varies.

7.3 Spatial Analysis of Calibrated Model which uses

NT2 SIC as training labels

From Figure 7.2(b), the spatial distribution of predicted SIC from the CHBBBNT2 model
for May 2021, aligns well with the expected spatial distribution of the NT2 SIC training
labels (Figure 3.1) for areas of open water in the far south of the domain, as well areas
of consolidated ice in the northern portion near Baffin Bay. It also captures the North
Water Polynya [21], [60], and the portion of Nares Strait near 80◦N. Further, the RMSE
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Figure 7.1: Root mean squared error (RMSE), epistemic uncertainty, aleatoric uncertainty
using the CHBBBNT2 model (top) and CHBBBBT (bottom). The aleatoric and epistemic
uncertainty are shown as a stacked bar, representing total uncertainty. The sea ice extent
(SIE) values averaged per month for the testing of year of 2021 are also shown for reference
to the seasonal cycle. Note the RMSEs and uncertainties are highest during May, which
corresponds to melt onset in this region [8].
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Table 7.1: Results Summary Between Methods for May of 2021

Method RMSE Epistemic Aleatoric
MLPNT2 0.283 N/A N/A
BBBNT2 0.260 0.066 N/A
HBBBNT2 0.249 0.015 0.166
CHBBBNT2 0.235 0.018 0.170
CHBBBNT2−only−tb 0.301 0.008 0.190
CHBBBNT2−no−tb 0.368 0.015 0.214

plot of Figure 7.2(d) shows some areas of the large consolidated ice patch to have small
degree of error. In this area, the model predicts SIC values in an approximate range of
0.975-1.0. As the ground truth SIC for this area has a SIC of exactly 1.0, this can lead to
slight deviations in the error measurement, which suggest a slight tendency of the model to
under-predict. The epistemic uncertainty (Figure 7.2(f)) has 0% uncertainty in nearly all
areas where the ground truth SIC is 0, such as in the Davis Strait and Northern Labrador
Sea, as well as a large area in Baffin Bay by the 70th to 75th parallel.

Where the CHBBBNT2 model predictions differ from the expected SIC is in areas near
the ice edge, such as in the southern portion of Baffin Bay near Davis Strait, and the
North Water Polyna, corresponding to marginal ice zones (MIZs). Epistemic uncertainty
predictions in this area are relatively higher than previous, corresponding to values in the
range of 3-4%. When plotting the epistemic and aleatoric uncertainties against SIC bins
as seen in Figures 7.3(a) and (c), this pattern can be further illustrated. Both epistemic
and aleatoric uncertainty are lowest in the SIC bins of 0 to 0.3, with increasing mean
uncertainty as the SIC increases. The highest uncertainties for both are within the SIC
bins of 0.6-0.9, which promptly decreases for the SIC bin of 0.9-1.0. The SIC values in
the 0.9-1.0 bin have both uncertainty values higher than the values for SIC bins between
0.0-0.3, which may reflect openings in the ice cover that change day-to-day or changes in
the surface conditions due to melt onset.

Observing the spatial patterns of the epistemic and aleatoric uncertainty in the CHBBBNT2

algorithm as seen in Figure 7.2(f) and 7.2(h), both uncertainties are highest along the MIZ
and ice edge. Lastly, both uncertainties have very slight signatures along the coasts, specif-
ically in the open water region near the eastern coast of Labrador. When observing feature
maps of TBH and TBV (Figures 3.3(a) and 3.3(b) respectively), the TB’s have similar
structure as that of the uncertainties along these coasts. This signifies land contamination
from the TB data for pixels that overlap with the land-ocean boundaries.
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Figure 7.2: Left: HBBBNT2 model, right: CHBBBNT2 model. Models use 6 climate
variables as input, where TB values are obtained from the AMSR2 sensor, and SIC labels
used in training are calculated via the enhanced NASA team (NT2) algorithm. The cal-
ibrated model is trained to a calibration level of 0.95. Rows correspond to predicted sea
ice concentrations (SIC), root mean squared error between ground truth and predicted,
epistemic uncertainty, and aleatoric uncertainty in descending order from the top.
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7.4 Calibration Results

In this section, we compare the results of the non-calibrated vs. calibrated models, i.e.
HBBBNT2 and CHBBBNT2, as seen in Figure 7.2 for May of 2021. Observing the SIC
predictions of both models (Figure 7.2(a),(b)), there are no significant differences. This is
also reflected in the RMSE plots of each model (Figure 7.2(c),(d)). Yet, when comparing
the uncertainty maps, there is a difference. The CHBBBNT2 model can be seen to have
both higher epistemic and aleatoric uncertainty as compared to that of the HBBBNT2

model. This same behaviour can also be observed for CHBBBBT and HBBBBT models
in Figure 7.5. Per Table 7.1, the differences between the CHBBBNT2 and HBBBNT2

models translate to an average of 2% increase in both epistemic and aleatoric uncertainty
across the domain.

Furthermore, to aid in the analysis of calibration, we look to the calibration plot of
Figure 7.4 between the calibrated models of CHBBBNT2 and CHBBBBT and uncalibrated
HBBBNT2 and HBBBBT models. Here, the plot shows that both HBBBNT2 and model
HBBBBT over-predicts the observed frequency of ground truth SIC values at all observed
confidence levels, where HBBBNT2 over-predicts at a greater severity. For instance, at
an observed confidence level of 0.2 or 20%, the calibration curve of the HBBBBT model
shows that roughly 30% of ground truth SIC values are contained within their respective
predictive intervals as produced by the predicted SIC (i.e. Equations 4.18 and 4.19), and
for the HBBBNT2 model that value is closer to 50%. Both calibrated models CHBBBNT2

and CHBBBBT achieve near perfect calibration for the confidence levels of 0.0 - 0.3, with
slight under predictions for higher confidence levels, although with less severity than the
over prediction as seen in the HBBBNT2 model.

7.5 Training Label Spatial Analysis

Comparing SIC prediction results and RMSE’s between CHBBBNT2 and CHBBBBT

models (Figures. 7.2(b) and 7.5(b)), it is apparent that the CHBBBBT produces SIC
estimates that encompass a larger spread than that of the CHBBBNT2. This is consistent
with the larger grid scale (25 km) for the SIC BT training labels, as opposed to that of the
12.5 km SIC NT2 training labels. This is most apparent near the ice edge, and the North
Water Polynya, with slight differences along the Labrador Coast. The MIZ area predicted
by the CHBBBBT model is larger than that of the CHBBBNT2, translating to higher
RMSE values in this area.
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Figure 7.3: Box whisker plots of ground truth SIC vs epistemic uncertainty (top) and
aleatoric uncertainty (bottom) from CHBBBNT2 (left) and CHBBBNT2 (right) models
for May 2021. The ground truth SIC is divided into 10 equal sized bins. The box whisker
plots show the mean, median, interquantile range, and extremes of uncertainties for each
SIC bin.
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Figure 7.4: Calibration plots for the models HBBBNT2, CHBBBNT2, HBBBBT , and
CHBBBBT .
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Figure 7.5: Left: HBBBBT model, right: CHBBBBT model. Models use 6 climate
variables as input, where TB values are obtained from the AMSR2 sensor, and SIC labels
used in training are calculated via the bootstrap (BT) algorithm. The calibrated model is
trained to a calibration level of 0.95. Rows correspond to predicted sea ice concentrations
(SIC), root mean squared error between ground truth and predicted, epistemic uncertainty,
and aleatoric uncertainty in descending order from the top.
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When observing the epistemic uncertainties of both models (Figures 7.2(f) and 7.5(f)),
the epistemic uncertainty of CHBBBBT is in a consistent area throughout the consolidated
ice region, while the CHBBBNT2 epistemic uncertainty is localized to areas near the MIZ
and ice edge. In addition, aleatoric uncertainties of each model (Figures 7.2(h) and 7.5(h))
exhibit similar patterns, however the CHBBBBT aleatoric uncertainty spans a slightly
larger area. This area extends the uncertainty south past the ice edge, and further north
towards the north water polynya. Lastly, we perceive larger signature’s of both epistemic
and aleatoric uncertainty for the CHBBBBT model in near the Hudson strait outflow
and the southern open water region, specifically near the eastern coasts of Labrador and
western coasts of Greenland.

When plotting the epistemic and aleatoric uncertainties for SIC bins as seen in Figure
7.3(b) and (d) for the CHBBBBT model, a similar pattern to that of the CHBBBNT2

model can be seen, although with slightly different magnitudes of the mean at each bin.
Here both mean epistemic and aleatoric uncertainty are lowest in the SIC bins of 0 to 0.3,
and highest within the bins of 0.6-0.9.

7.6 Feature Analysis

7.6.1 Analysis on Combinations of Input Features

We first turn our attention to the spatial results from the experiments of CHBBBNT2−only−tb.
The SIC prediction of CHBBBNT2−only−tb (Figure 7.6(a)) shows that the model can pre-
dict the structure of the large consolidated ice covered region. However, it falters near the
MIZ and open water region, where its predicts some SIC, which is originally expected to be
open water. Observing the brightness temperatures, TBH and TBV, in Figures 3.3(a) &
3.3(b), we notice that these TB signatures in the open water are similar to the signatures
of predicted SIC in the MIZ. The overlap in said feature space could be the reason why
the model has difficulty differentiating between intermediate values of SIC and weather
impacted TBs without the presence of additional atmospheric data.

Next, the epistemic uncertainty of CHBBBNT2−only−tb (Figure 7.6(e)) is relatively low
in all areas of the region, where small sporadic signatures can be observed near the ice edge
and in the open water region. Compared to the epistemic uncertainty however, the aleatoric
uncertainty (Figure 7.6(g)) is consistent to the predicted SIC as seen in Figure 7.6(a), where
the highest values of aleatoric uncertainty are observed to be in the consolidated ice region,
and smaller signatures present in open ocean.
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Following these observations from the model with TBs as the only features, we exhibit
CHBBBNT2−no−tb, the model with all features other than TBs. For this scenario, the SIC
prediction (Figure 7.6(b)) shows the model’s inability to capture the same sharp detail as
that of CHBBBNT2 (Fig 7.2(b)) or CHBBBNT2−only−tb (Fig 7.6(a)), ultimately leading
to higher levels of RMSE. As per Figures 3.3(c)-(f), none of the features delineate the
SIC and open water regions as clearly as the TB’s (Figures 3.3(a)-(b)). This is made
apparent by the low correlation these atmospheric variables have to SIC as compared to
the TB’s, illustrated in Figure 7.9, which may help to explain the difficulties this model has
to estimate SIC. For the epistemic uncertainty of this model, values of 3-4% are consistent
across most of the domain, the exception being open water, where values are slightly higher.
Observing the epistemic uncertainty, it is highest within the consolidated ice region, with
some small patterns again contained over open ocean. Lastly, the aleatoric uncertainty
values are greatest in high SIC areas, where uncertainty is roughly in the range of 25-30%.
Although both CHBBBno−tb and CHBBBonly−tb models suffer from aleatoric uncertainty
in most parts of the study region (Figure 7.6(g)-(h)), when all 6 features are used as input,
as is the case for the CHBBBNT2 model (Figure 7.2(f)), the aleatoric uncertainty in open
water is reduced to zero, while the aleatoric uncertainty in areas of consolidated ice are
then isolated to areas of the MIZ.

Additionally, for comparison, the average results of the models CHBBBNT2−only−tb and
CHBBBNT2−no−tb for May of 2021 can be found in Table 7.1. It can be seen from this
table that both models suffer from higher averages of RMSE, and aleatoric uncertainty for
the whole study region, and CHBBBNT2−no−tb produces the worst performance. We note
though, that both models have lower average epistemic uncertainty than the CHBBBNT2

model.

Lastly, we explore the annual cycle with respect to the CHBBBNT2−only−tb model.
The annual cycle of the CHBBBNT2−only−tb model (Figure 7.7) has a RMSE trends and
magnitudes which differ significantly from the annual cycle of both the CHBBBNT2 and
CHBBBBT (Figure 7.1). First, the RMSE overall is much higher in magnitude. Second,
the RMSE trend of the CHBBBNT2−only−tb model shows that the RMSE is higher for
the summer months. This is directly related to TB signatures over open water, similar
to the result seen in Figure 7.6(c), where large portions of open water were erroneously
predicted to have SIC, resulting in higher average values of RMSE. As the summer months
are characterized with larger areas of open water and less sea ice, this affect is pronounced
for the whole study region. Next, epistemic uncertainties for the whole cycle are shown to
have slightly smaller magnitudes in most months, while aleatoric uncertainties are observed
to have higher magnitudes.
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Figure 7.6: Left: CHBBBNT2−only−tb model, right: CHBBBNT2−no−tb, Model
CHBBBNT2−only−tb uses only TB’s from AMSR2 as input, while CHBBBNT2−no−tb uses
the 4 atmospheric climate variables of WS, WV, CW, and AT. Both use SIC labels calcu-
lated from the NT2 algorithm, and are trained until a calibration level of 0.95 is reached.
Rows correspond to predicted SIC, RMSE between ground truth and predicted, epistemic
uncertainty, and aleatoric uncertainty in descending order from the top.
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Figure 7.7: Root mean squared error (RMSE), epistemic uncertainty, aleatoric uncertainty
using the CHBBBNT2−only−tb model. The aleatoric and epistemic uncertainty are shown
as a stacked bar, representing total uncertainty. The sea ice extent (SIE) values averaged
per month for the testing of year of 2021 are also shown for reference to the seasonal cycle.
Note the RMSEs and uncertainties are highest during May, which corresponds to melt
onset in this region [8].

7.6.2 Analysis on input features

Moreover, we look at specific details of the features as they pertain to the annual cycle.
The heatmaps of TBH and TBV (Figures 7.8(a)-(b)), show that all features have highest
cumulative uncertainties in the month of May. WS values of 2-5 m/s are shown to have the
highest total uncertainty, while WV has the highest total uncertainties for values between
5-10 mm. The final two features of CW and AT have high cumulative uncertainty in bins
of 0-0.1 mm and 268-275 K respectively. These observation suggest that values in these
ranges for each feature contribute in some way to conditions that favor high uncertainty.
Relating this back to the monthly observations of uncertainty and RMSE in Section 7.1,
these conditions are ones that favor rapid rates of melt specifically in this region.

In addition, all features, except CW, have some distribution of uncertainty spread
to various bins across months. Differing from the others, cloud water has the highest

49



uncertainty in the bins of 0 to 0.1 mm regardless of the month. When analyzing the
correlation matrix between features used in NT2 models (Figure 7.9), CW has the lowest
correlation to SIC as compared to the other features, with a value of -0.23. There are
more moderate negative correlations of SIC between WS and WV, with a strong negative
correlation to AT. The feature with the highest correlation to SIC are both TB’s, where
both TB’s also show strong positive correlations between one another. The TB’s have a
similar correlation relationship to the other 4 features of WS, WV, CW, and AT, but with
the lowest correlation to CW. The same results were found for the correlation matrix of
features used in BT models (Figure 7.10)
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Figure 7.8: Heatmaps of input features, plotted with bins of their respective values
against month. The colorbars represent cumulative total uncertainty as outputted by
the CHBBBNT2 model. For most features, May distinctly shows the highest cumulative
uncertainty.
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Figure 7.9: Correlation matrix between features and SIC. TB values are from the AMSR2
sensor, and SIC training labels are calculated from the NT2 algorithm.

52



Figure 7.10: Correlation matrix between features and SIC. TB values are from the SSMIS
sensor, and SIC training labels are calculated from the BT algorithm.
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Chapter 8

Concluding Remarks

8.1 Discussion

When analyzing predictions of SIC from CHBBBNT2 and CHBBBBT over the annual
cycle of 2021, the highest values for both RMSE and uncertainty are shown to be in the
months of April and May, where May coincides with the melt onset in this region [8]. Within
this period of melt onset and the following period of summer, SIC retrieval algorithms have
high uncertainty, and estimates of SIC can be poor [55], [38]. Additionally, for months with
greater variability in SIC, there can be larger differences in retrievals of SIC, due to greater
influences by atmospheric effects, and surface conditions [68]. To the contrary, the lowest
values of RMSE and uncertainty coincide with times in the annual cycle corresponding
to low SIC. This result was found without the need for weather filters or TB corrections
within the methodology, which had been used in previous studies [26], [13], [75], [4], [3].
The model had also shown promise to predict SIC in times of freeze up, such as in the
months of November and December. These trends suggests that the uncertainty varies
from season to season, consistent with the findings of Brucker et. al. [10], which found
that uncertainty of NT2 varied seasonally as well. Prediction of uncertainties as a function
of SIC peaks for higher values of intermediate ice concentration. Similar results were found
in the study by Tonboe et. al. [75] based on tie-point standard deviations and smearing
due to the large footprint associated with the PM measurements. The advantage of the
approach presented in this study though is its data-driven nature. Given new changes to
the data, spatially or temporally, uncertainty estimates are specific to that data instance.
Along side these benefits, are the production of spatial uncertainty maps.

Subsequently, when comparing between methodologies, it was shown that the use of
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the heteroscedastic loss as opposed to homoscedastic loss (MSE loss) as likelihood in our
models produce lower epistemic (model) uncertainty as well as greater accuracy in SIC
predictions. The aleatoric uncertainty changes slightly between methodologies, but from
Kendall et. al [41], these changes in magnitude were minimal, which is consistent with
our findings. As noted later, these changes are a directly result of the calibration method-
ology. Though when exploring experiments done on different subsets of input features,
i.e. CHBBBNT2−no−tb, and CHBBBNT2−only−tb, it was found that when utilizing the full
set of input features, as in the case for CHBBBNT2−no−tb, we observed the reduction of
aleatoric uncertainty. This suggests the addition of features to the feature space, as op-
posed to adding more data, help reduce the aleatoric uncertainty. Methods such as Monte
Carlo dropout for measuring epistemic uncertainty were explored in past trials but did not
show capabilities to effectively predict SIC and estimate epistemic uncertainty for these
predictions. Ensemble methods were also considered, but required greater computational
costs then that of a Bayesian neural network, and due to limited computational power were
not used.

Additionally, from spatial observations of the CHBBBNT2 model, it has been observed
that the model had larger uncertainty for SIC value in the MIZ and along the sea ice edge.
In general, these large uncertainties are captured in ice covered regions, as opposed to
open water regions, similar to the another method of PM based SIC uncertainty estimation
[10]. We also looked at the differences between the CHBBBNT2 and CHBBBBT models,
where it was first observed from the monthly observations a difference in the RMSE and
uncertainties between the models (Figure 7.1). When comparing the spatial behaviour of
CHBBBBT to the that of the CHBBBNT2 estimates, the former slightly underestimates
SIC in regions of the MIZ as opposed to the latter. Furthermore, epistemic and aleatoric
uncertainty for the CHBBBBT model span larger areas, which include some pronounced
areas along the coasts in the domain. The differences between the two algorithms may
be attributed to the spatial resolution of each SIC retrieval algorithm, which stems from
the TBs used by each algorithm. Higher resolution data are able to introduce finer detail
during training, and as a result, when performing predictions, the results using the higher
resolution data are less diffuse than that of the results using lower resolution data, leading
to differences in SIC estimates, and their respective RMSEs and uncertainties. Irregardless
of these differences, choice of training label do not pose a challenge to estimate SIC, which
shows the flexibility of the methodology to garner accurate predictions.

Next, when examining the the calibrated models of CHBBBNT2 and CHBBBBT ,
it was observed that both had higher values of epistemic and aleatoric uncertainty than
that of the uncalibrated models HBBBNT2 and HBBBBT . From Equation 4.18, the
approximate predictive interval (PI) has two ways of adjusting itself, either through the

55



aleatoric standard deviation (uncertainty) σ̂a or mean prediction ŷ. It may be possible that
both are adjusted and accounted for in the model, but from Figure 7.2 of CHBBBNT2 and
HBBBNT2, as well for CHBBBBT and HBBBBT (Figure 7.5) the predicted mean does
not appear to have changed as significantly as compared to the aleatoric uncertainty. The
changes to the aleatoric uncertainty are apparent as there is an increase in the aleatoric
uncertainty of the calibrated model(s) as compared to the uncalibrated model(s). We
also observe that the epistemic uncertainty between the calibrated model(s) compared to
the uncalibrated model(s) increases as well. We argue that this effect is caused by the
adjustment of the predicted mean. As the epistemic uncertainty is the resulting deviations
between different samples as drawn from the model, this suggests that single samples of SIC
mean predictions in the calibrated model have changed such that they are more variable
than that of the uncalibrated model, resulting in higher measures of epistemic uncertainty.
Additionally, this may also be attributed to the bias-variance trade off [43], where as
the model increase in complexity, i.e. transforming non-calibrated models to calibrated
models which require more complex model architecture, the model variance is expected
to increase. Thereafter, although the model produces higher estimates of uncertainty, we
reason that these estimates provide better quality and produce a representation aligned
with the definition of calibration. As a result, both the CHBBBNT2 and CHBBBBT are
significantly more calibrated than their respective uncalibrated counterparts of HBBBNT2

and HBBBBT which is seen from the calibration plot of Figure 7.4. Additionally, both
calibration curves of CHBBBNT2 and CHBBBBT are in close agreement with one another,
which indicates that the methodology can produce calibrated models, and reduces the
dependency on the choice of SIC used as a training label. Recall though that both models
are trained to a calibration level of 0.95. We would expect that all observed confidence
levels would match perfectly to the expected confidence level for all observed confidence
levels until 0.95. This is not the case however, as the models are over confident at higher
confidence levels, implying further training or hyper parameter tuning is needed.

Finally, from the analysis on input feature combinations, a few things come to light. The
features of brightness temperature contribute the most to producing sharp and detailed
SIC predictions as seen in the maps of predicted SIC (7.6(a)-(b)). This is exemplified
through the high correlation between TBs and SIC, as shown by the correlation matrices
in Figures 7.9 and 7.10. The TBs, combined with the 4 features of wind speed, column
water vapour, liquid water, and air temperature are able to help correct the over prediction
of CHBBBNT2−only−tb in open water regions, as reflected in the RMSE maps in Figures
7.2(c)-(d) 7.6(c)-(d). Next, the models which used less features (CHBBBNT2−no−tb and
CHBBBNT2−only−tb), contributed less epistemic uncertainty in most areas of the study
region as compared to the CHBBBNT2 model. This may be attributed to the bias-variance
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trade off [43], where increasing model complexity (i.e. adding more features) has been
known to increase the variance. This variance as described by the bias-variance trade
off differs from the epistemic uncertainty, where it has been suggested that the epistemic
uncertainty is actually a sum of the bias and variance [24]. This may suggest that the
epistemic uncertainty for the CHBBBNT2 model has a larger contribution from the model
variance then the bias as compared to the CHBBBNT2−only−tb and CHBBBNT2−no−tb

models, but requires further study on epistemic uncertainty bias-variance decomposition.
Though the model suggests an increase in variance, the trade off though, is the greater
accuracy (i.e. lower RMSE’s) in predicting SIC when using all 6 input features, as is the
case for the CHBBBNT2 model. Finally, The combination of features also reduces the
expected aleatoric uncertainty of the model for CHBBBNT2 (Figure 7.2(h)), localizing
it to areas of consolidated ice. This does not necessarily affect the bias-variance trade
off, given that the aleatoric uncertainty is a measure of the noise as opposed to model
variance. Overall, the combination of all 6 features evidently helps in improvements of SIC
estimation, reduction of RMSE, and reduction of aleatoric uncertainty.

8.2 Conclusion

The study as shown in this thesis has conveyed the capabilities of a heteroscedastic Bayesian
MLP model calibrated with auxiliary interval predictors using PM-TB and atmospheric
reanalysis data to produce accurate predictions of SIC, and the quantification of both
epistemic (model) and aleatoric (data) uncertainty. The model has shown the ability to
evaluate SIC over the full annual cycle of 2021 in a seasonal ice zone, including times of
melt, freeze up, and solid ice. The model had also exhibited pockets of high uncertainty
in the study region, such as in the marginal ice zone (MIZ), and along the ice edge.

We observed that as calibration was performed, there was an overall increase of uncer-
tainty. Since calibration is the chosen method in deep learning to evaluate the uncertainties
produced by these models, we argue that producing a calibrated model produces greater
quality, and trustworthiness in uncertainty estimates as opposed to the uncalibrated model.

Finally, the choice of features has shown to affect the prediction of SIC, epistemic, and
aleatoric uncertainty. When using solely brightness temperatures (TB) as an input feature,
it was to capture spatial extent of SIC well, due to their high correlation and the use of
TB in SIC algorithms, but produced erroneous predictions of SIC and high uncertainty in
open water due to noise. The 4 atmospheric climate variables windspeed, air temperature,
cloud water vapour, and cloud liquid water, could not capture spatial extent well, but when
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combined with TBs, they aid in reducing epistemic and aleatoric uncertainties, especially
over open water.

8.3 Future Work

Given the expansive research in the fields of machine learning and deep learning as applied
to remote sensing, as well as growing data availability, there are several aspects that can
be improved upon in this study for future work.

With the continuous rise of data content in sea ice remote sensing it may be of interest
in the future to encompass decades worth of data to use for training and inference. We
have observed the uncertainty (and error) of the model to vary seasonally, with highest
uncertainties coinciding with times of melt onset. If a larger dataset is to be introduced,
which is not limited to computational resources (and time), the model may learn to gen-
eralize better and produce greater accuracy in mean predictions of SIC, but also reduce
the model uncertainty in these high uncertainty periods. To add, it may also be feasible
to incorporate a larger dataset which reach greater domains, such as that of the whole
arctic. We have observed the model to produce varying predictions spatially, where high-
est uncertainties coincide with areas of the MIZ. Similar to the reasoning for introducing
yearly data, introducing a larger region scope may help to reduce uncertainty in these high
uncertainty regions, while also encapsulating regions of uncertainty for the whole arctic.
For example, regions known to have a significant fraction of melt pond coverage. If other
data such as independent in-situ data such as from SAR or optical imagery are available,
it may be of interest to compare these trained models to this independent data to measure
the accuracy of our predictions.

Next, the ERA5 dataset contains a plethora of atmospheric and oceanic variables.
We have seen with the addition of 4 atmospheric climate variables the improvements of
the model as opposed to the input of only using brightness temperatures. A research
direction could be to utilize a larger quantity of such variables as input into the model,
while observing the uncertainties that originate from this data. This may help to develop
greater accuracy of SIC predictions while also decreasing uncertainties. It is also of great
interest to explore new calibration techniques for regression, to compare to the methods
used in this study, and if greater computational resources are available, to utilize alternative
methodologies in uncertainty quantification, such as that of deep ensembles, as well as
epistemic uncertainty decomposition to measure the effects of bias and variance, which
may help lead suggestions on model complexity and reducing epistemic uncertainty.
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