
Developing a Generalized Model for
Neutron Diffraction with Quantum

Information Theory

by

Olivier Nahman-Lévesque

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Science
in

Physics (Quantum Information)

Waterloo, Ontario, Canada, 2022

© Olivier Nahman-Lévesque 2022
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manuscript for the publication was drafted by Olivier Nahman-Lévesque and Dr. Dusan
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Abstract

Due to their high mass and neutral electric charge, neutrons are often used at low
energies to probe small-scale structures or measure fundamental constants of nature. To
design neutron optical elements for use in these experiments, specific crystals are used which
satisfy the desired properties for the element in question such as a lens, beam splitter, or
waveguide. However, the mechanics which describe the neutron-crystal interactions are
governed by the equations of many-body quantum mechanics, which are often implausible
to solve exactly. With some clever approximations, such as approximating the strong
nuclear potential as a delta function, it is possible to describe these interactions in a way
consistent with experiment to a high degree of precision. Even then, these theories are
only applicable to the most basic cases, such simple geometries containing no defects. If
we wish to account for diffraction effect in more complicated cases, like might be required
for neutron optical devices, the systems of interest must be solved through numerical
simulation.

One such a case is a situation where a neutron enters a perfect crystal close to Bragg
angle. For large crystals, the theory which describes the state of the neutron as it pro-
gresses through the crystal is the theory of dynamic diffraction. While is has been verified
experimentally, it fails under some circumstances such as when the crystal contains some
defects or has an irregular shape. In 2016, it was observed that similar profiles to dy-
namical diffraction theory could be produced by looking at the intensity resulting from
a one-dimensional quantum random walk. This thesis will describe how this idea can be
generalized into a more complete description of the dynamical diffraction problem, which
provides us with a mathematical tool to simulate the neutron state everywhere in crystals
for which the standard theory is unsuitable.

In recent years, there has also been some attention given to cold neutrons diffracting
in curved crystals. Rather than approaching this system as a diffraction problem, it is
possible to model the crystal as a linear potential in the radial direction, which results
in quantum states similar to those found in other linear potentials, such as gravity. This
work will describe how these ”centrifugal states” can be modeled for different experimental
systems, which provides a strong theoretical baseline with which to compare experimental
data.
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Chapter 1

Introduction

1.1 Background and previous work

Ever since its discovery [4], the neutron has been a staple of experimental physics, specifi-
cally as a probe the fundamental properties of quantum mechanics and materials [5, 6, 7,
8, 9, 10] as well as gravity [11] due to their neutral electric charge and small wavelength.
Typical neutron experiments include small angle neutron scattering (SANS), used to study
bulk magnetic properties of materials through diffraction phenomena [12, 13, 14, 15, 16, 17],
triple axes spectrometry for crystal characterization [18], as well as interferometric tech-
niques. A neutron interferometer is an apparatus in which a neutron is made to interfere
with itself to quantify some property of a material, or constant of nature [19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29]. Unlike SANS techniques, interferometry conserves the phase
information of the neutron, which allows for the measurement of a larger breadth of inter-
actions. Most of these experiments make use of perfect crystals to separate the neutron
current coherently into two distinct paths in physical space which are then recombined.
The specific interactions between the neutron and the crystal lattice have been recently
demonstrated to be of scientific interest [30, 31, 32, 33] to measure quantities such as the
neutron charge radius, the neutron-electron scattering length and the structure factor of
multiple materials. More recently, Mach-Zehnder type interferometers which use diffrac-
tion gratings as beam splitters have seen a rise in popularity [34, 35, 36, 37, 38] due to the
lower constraints on environmental isolation. Due to this contemporary interest in neutron
interferometry, there is a need for more precise neutron optical devices, which in turn would
allow for more precise measurements. Efforts have been made, for example, to develop com-
pound refractive lenses for neutrons [39, 40, 41], or other optical devices to focus a neutron
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beam [42, 43, 44, 45, 46, 47, 48]. However, this endeavor poses enormous practical chal-
lenges, such as extremely precise machining and environmental isolation. Perfect crystal
optical devices are showing promising results [49], however their design does not account
for dynamical diffraction effects due to the computational challenge posed by DD theory
for complicated geometries, or crystals containing defects and surface roughness. The goal
of this work is to present a new framework through which dynamical diffraction problems
can be solved computationally, which would facilitate the design of new perfect-crystal
based neutron optical devices without stepping foot in a neutron reactor. We will present
evidence which suggests that it is possible to create such devices with fewer limitations on
crystal purity, machining, and other experimental constraints.

In 2016, it was postulated by members of our group at the University of Waterloo
that quantum random walks could be used as a tool to simulate the process of diffraction
[50]. The reasoning behind this observation was that since the (absorptionless) diffrac-
tion process on a microscopic level is unitary, the macroscopic process should be able to
be modeled using a lattice of nodes acting upon the neutron state as a unitary matrix.
Premiliminary results indicated that with the correct parameterization, the random walk
process produced intensity plots similar to those observed in diffraction experiments. The
contribution of this work will be to rigorously quantify the relationship between the model
parameters and the experimental variables involved in a particular diffraction experiment,
as well as apply the model to different geometries which are supported by experimental
data.

1.2 Definitions

In quantum mechanics, the states of a quantum system can be represented as vectors in a
Hilbert space H. A Hilbert space is a complete, complex inner product space with inner
product

⟨v,w⟩ = z (1.1)

where v,w ∈ H and z is a complex number. The state space can be represented by a
number of orthogonal basis vectors ei which correspond to pure states, and are symbolized
by the kets |e1⟩ , |e2⟩, etc. In a two-level system (ex: the spin of spin 1/2 particle) the basis
states are the up and down spin with respect to an arbitrary axis, which will be denoted
z. Any pure state |Ψ⟩ will be in a superposition of the basis states:

|Ψ⟩ = α |↑z⟩+ β |↓z⟩ (1.2)
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where α and β ∈ C, are defined up to a global phase factor eiθ and obey the normalization
condition

αα∗ + ββ∗ = 1 (1.3)

Every ket |Ψ⟩ has an associated bra,

⟨Ψ| = α∗ ⟨↑z|+ β∗ ⟨↓z| (1.4)

a linear map which maps a state Φ = δ |↑z⟩+ γ |↓z⟩ ∈ H to the complex plane through the
inner product

⟨Ψ|Φ⟩ = ⟨Ψ,Φ⟩ (1.5)

This inner product can be understood as taking the projection of |Φ⟩ onto |Ψ⟩, and is by
definition 0 when |Ψ⟩ and |Φ⟩ are orthogonal and 1 when they are equal. By extension, a
state |Ψ⟩ can thus be represented as a column vector in C2, and the inner product ⟨Ψ|Φ⟩
corresponds to the vector product(

α∗ β∗)(δ
γ

)
= α∗δ + β∗γ (1.6)

Physically, this operation is closely related to the concept of a measurement. When mea-
suring a system with respect to some basis, the quantum state collapses into one of the
basis states. If a system is prepared in state |Φ⟩, then the probability p of measuring it in
state |Ψ⟩ is given by

p = | ⟨Ψ|Φ⟩ |2 (1.7)

where |z| is the Euclidian norm of z. Therefore, the coefficients α and β in equation 1.2
can be understood as the “root” of the probability of measuring state |Ψ⟩ in one of the
basis states |↑z⟩ or |↓z⟩.

More generally, any measurable quantity is associated with a Hermitian operator (which
is linear, self-adjoint and has real eigenvalues) [51]. The eigenvectors of this operator
correspond to the possible states of the system after a measurement, while their respective
eigenvalues correspond to the outcome of the measurement, should the system collapse
in this state. The matrix representation of a given operator will depend on the chosen
basis. For example, the operator associated with a spin measurement on the x axis in the
previously described z basis is:

Ŝx =
ℏ
2
σx (1.8)

where ℏ is the reduced Planck constant, and σx is the first Pauli matrix

σx =

(
0 1
1 0

)
(1.9)
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This operator has two eigenvectors

|↑x⟩ =
1√
2
(|↑z⟩+ |↓z⟩) =

1√
2

(
1
1

)
(1.10)

|↓x⟩ =
1

1
√
2
(|↑z⟩ − |↓z⟩) =

1√
2

(
1
−1

)
(1.11)

with eigenvalues

Sx+ =
ℏ
2

(1.12)

Sx− = −ℏ
2

(1.13)

which are the two allowed values for the spin angular momentum of a spin 1/2 particle.

Finally, operators are used to represent some action which maps a state to another in
the same Hilbert space. Physically, this might correspond, for example, to some rotation
on a spin state inside a magnetic field. The first Pauli matrix σx corresponds to a state
“flipping”, as it interchanges the |↑z⟩ and |↓z⟩ states.

While the examples which have been given are limited to two dimensions, these concepts
generalize to any number of dimensions. A system of two spin 1/2 particles will be described
by a 4-dimensional Hilbert space, three particles: 8-dimensional, and so on. The position
distribution of a single, spinless particle restricted to one dimension is represented as a
vector in an infinite dimensional Hilbert space, spanned by the basis of position eigenkets
|x⟩:

|Ψ⟩ =
∫

Ψ(x) |x⟩ dx (1.14)

The function Ψ(x) is called the wavefunction. It related to the coefficients in 1.2 in the
same way that a probability density function is related to the probability of discrete events,
i.e: the probability of a particle being found between points a and b is given by

Pa≤x≤b =

∫ b

a

|Ψ(x)|2dx (1.15)

it is square integrable, and normalized to 1.
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1.2.1 Quantum Random Walks

Classical Random Walks

Random walks describe the path of some object through space whose movements are deter-
mined randomly in discrete time steps [52]. These are often used in classical mechanics, for
example to describe the movement of a particle inside a fluid or a gas [53][54]. Generally,
they are entirely described as a set of 2n probabilities, where n is the number of degrees
of freedom of the system, with the requirement that

2n∑
i=1

pi = 1 (1.16)

which correspond to the probability of moving in each direction at every time step.

We will concentrate on random walks in one dimension. By convention, we will imagine
a particle on the number line, which can either move left or right. An ”unbiased” random
walk is defined such that

pl = pr = 1/2 (1.17)

where pl and pr are the probabilities of moving left and right, respectively. We are interested
in the probability distribution of the particle position after N steps, for arbitrary pl and
pr. To end the walk at position n, the particle must have taken nl steps to the left and nr

steps to the right, where nl + nr = N, and nr − nl = n. nl and nr are therefore entirely
determined by N and n like nr = N+n

2
and nl = N−n

2
. Since the left and right steps

are uncorrelated and can happen in any order, there are
(
N
nl

)
=
(
N
nr

)
possible paths which

end at position n, each happening with probability pnl
l p

nr
r . Thus, the probability P (n) of

landing at position n is given by

P (n) = pnl
l p

nr
r

(
N

nl

)
= pnl

l p
nr
r

(nr + nl)!

nl!nr!
(1.18)

The mean position of the particle after N steps is simply the mean number of right
minus left steps:

⟨n⟩ = N(pr − pl) (1.19)

Fig. 1.1 shows two such distributions, for the unbiased case as well as for pl = 0.6 and
pr = 0.4. The probability distribution is approximately symmetric around the mean, and
moves according to pl − pr.
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Figure 1.1: Top: the probability distribution for an unbiased classical random walk after 50
steps. The most probable outcome for the walk is 0. Bottom: the probability distribution
for a classical random walk with pl = 0.6 and pr = 0.4. The most probable outcome is now
-10, and the distribution is biased to the left.

Generalizing Into Quantum Random Walks

Quantum random walks are a generalization of this concept which make use of the prop-
erties of quantum mechanics. While a classical random walk will produce a particle at a
definite position, a quantum random walk induces the particle in a superposition of position
states, which once measured collapses at a definite position.

For this derivation, we follow [55]. Consider a spin 1
2
particle as presented in the

previous section, restricted to discrete positions in one dimension. The total state can be
expressed as the tensor product of the spin 2-vector and the position state:

|Ψ⟩ = |s⟩ ⊗ |ψ⟩ (1.20)

where, as usual,
|s⟩ = α |↑z⟩+ β |↓z⟩ (1.21)

and the position state is given in terms of discrete allowed positions

|ψ⟩ =
∑
i

ψxi |xi⟩ (1.22)
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Eq. 1.20 can be rewritten as

|Ψ⟩ = α |↑z⟩ ⊗ |ψ↑⟩+ β |↓z⟩ ⊗ |ψ↓⟩ (1.23)

where |ψ↑⟩ and |ψ↓⟩ are the spin up and down components of the discrete position space
wavefunction respectively. We now introduce a conditional shift operator

U = |↑z⟩ ⟨↑z| ⊗
∑
i

|xi+1⟩ ⟨xi|+ |↓z⟩ ⟨↓z| ⊗
∑
i

|xi−1⟩ ⟨xi| (1.24)

which shift the particle right if it has spin up

U |↑z⟩ ⊗ |xi⟩ = |↑z⟩ ⊗ |xi+1⟩ (1.25)

and left if it has spin down

U |↓z⟩ ⊗ |xi⟩ = |↓z⟩ ⊗ |xi−1⟩ (1.26)

If we apply the operator U to some arbitrary spin state localized at some position x0

|Ψ0⟩ = (α |↑z⟩+ β |↓z⟩)⊗ |x0⟩ (1.27)

we obtain the superposition

U |Ψ0⟩ = α |↑z⟩ ⊗ |x1⟩+ β |↓z⟩ ⊗ |x−1⟩ (1.28)

If the state is measured in this configuration, it will collapse in either of the two available
positions with the corresponding spin. If we keep applying U to the measured state and
measuring between every application, the first measured state will undergo ballistic motion.

If we keep applying U over and over again, without measuring the state, the up and
down spin components will keep drifting apart from each other. However, we can apply a
rotation to the state between every application of U . The spin rotation operator is given
by:

R(θ) = cos(θ) |↑z⟩ ⟨↑z| − sin(θ) |↑z⟩ ⟨↓z|+ sin(θ) |↓z⟩ ⟨↑z|+ cos(θ) |↓z⟩ ⟨↓z| (1.29)

or equivalently

R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
(1.30)
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Figure 1.2: The position distribution of a spin 1
2
particle initialized in the spin up state after

100 steps of an unbiased quantum random walk, using the rotation operator R(π/4) and
the shift operator U . The distribution is asymmetric due to the constructive interference
on the left side.

This introduces interference between the up and down states in a strictly non-classical way,
which can be observed once the state is finally measured after multiple iterations.

It is especially interesting to consider an ”unbiased” operator, which gives the particle
an equal chance to go left and right after a single application, since it highlights the
differences between the classical and quantum behavior. In an unbiased classical walk
with n steps, the position probability distribution approaches a Gaussian distribution with
standard deviation σ =

√
N , as shown in Fig. 1.1. Now, one can see that substituting

θ = π/4 into Eq. 1.30 yields the unbiased rotation

R(π/4) |↑z⟩ =

(
1√
2
1√
2

)
(1.31)

Now, we start with the initial state |Ψ0⟩ = |↑z⟩ ⊗ |x0⟩ After applying the sequence of
operations UR(π/4) N times, we measure the particle’s position. Before the measurement,
the particle is in some superposition

|Ψf⟩ = c−n↑ |↑z⟩⊗|x−n⟩+c−n↓ |↓z⟩⊗|x−n⟩+c−n+1↑ |↑z⟩⊗|x−n+1⟩+c−n+1↓ |↓z⟩⊗|x−n+1⟩ . . .
(1.32)

Thus, the probability that it is measured at some position |xi⟩ is |ci↑|2 + |ci↓|2. Fig. 1.2
shows the position probability distribution after 100 iterations of UR(π/4). It can easily
be seen that this resembles in no fashion a Gaussian distribution, in fact it is not even
symmetric. This is due to the interference between the up and down states and they
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Figure 1.3: Position distribution after 100 applications of UR(π/4) to a spin 1
2
particle

initialized in the spin up state, if it is first measured to be spin up (left) and spin down
(right).

propagate back and forth. This is quite different from the classical expectation and is only
possible because of quantum phenomena such as superposition and interference.

On a final note, if the spin is measured before the position, a different position distri-
bution is obtained depending on the measured spin value. The two distributions are shown
in Fig. 1.3.

1.3 Neutron Optics

Neutrons are a powerful tool for probing small scale structures, and have been a staple
of many fundamental physics measurement over the past decades. This is due to their
neutral electric charge, which allows them to interact primarily with atomic nuclei through
the strong nuclear force, as well as their De Broglie wavelength:

λB =
h

p
(1.33)

where h is the Planck constant and p is the relativistic momentum of a given particle. In
most neutron experiments, this wavelength is usually on the order of 1− 10Å, which is in
the same order of magnitude as many common crystal lattice constants.
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The definitions in this section are derived in more detail in [56]. We start by noting that
matter wave fields differ from electromagnetic wave fields in that the former are described
by the Schrödinger equation(

−ℏ2

2m
∇2 + V (r⃗, t)

)
Ψ(r⃗, t) = iℏ

δΨ(r⃗, t)

δt
(1.34)

as opposed to the classical wave equation

∇2ϕ(r⃗, t)− 1

c2
δ2ϕ(r⃗, t)

δt2
= 0. (1.35)

E.M. waves always propagate at the speed of light c, whereas matter waves have a group
velocity vg, which determines the overall speed of the wave envelope, and is determined by
the De Broglie relation in Eq. 1.33. However, matter waves additionally possess a phase
velocity which describes the spatial rate of the change of the wave phase. Since different
wavelengths travel at different velocities, a neutron which is initialized as some wavepacket

ψ(x, t) =
1√
2π

∫ ∞

−∞
A(k)ei(kx−ωt)dk (1.36)

for some distribution A(k) will slowly spread over space and eventually diffuse over all
space.

The neutron interaction with the nucleus is effectively entirely determined by the strong
nuclear force. The scale of the strong interaction is on the order of a femtometer (10−15m),
while the de Broglie wavelength of a typical thermal neutron is on the order of 1 − 10
Å (10−10m - 10−9m). Due to this extreme difference in scale, the spatial distribution of
the matter potential as seen by a neutron can be approximated as a delta function. This
approximation is known as the Fermi pseudopotential, and is common practice in neutron
diffraction theory. The total potential is thus a sum of Fermi pseudopotentials at each
atomic site r⃗j

V (r⃗) =
∑
j

2πℏ
m

bcδ(r⃗ − r⃗j) (1.37)

where the coefficient bc is the neutron scattering length of the atom from which the scat-
tering occurs, and δ is the Dirac delta function. Inside a magnetic material, the magnetic
potential, given by

Vm(r⃗) = −µσ⃗ · B⃗(r⃗) (1.38)

acts on the spin element of the wavefunction (spinor) through the Pauli vector

σ⃗ = (σx, σy, σz) (1.39)
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Figure 1.4: Diffraction by a crystal lattice in the Laue geometry (a) and the Bragg geometry
(b).

composed of the three Pauli operators, the first of which was shown in Eq. 1.9. Finally,
the neutron also feels the standard gravitational potential

Vg(r⃗) =

∫
mg⃗(r⃗) · dr⃗ (1.40)

where the gravitational field g⃗ can usually be approximated as a constant, making the
potential linear in position.

If the neutron state is an eigenstate of the Hamiltonian, Eq. 1.34 reduces to its time
independent form: (

−ℏ2

2m
∇2 + V (r⃗)

)
Ψ(r⃗) = EΨ(r⃗) (1.41)

where E is the energy of the state. Inside a material, the spatially dependent wavevector
K(r⃗) is given by

K2(r⃗) =
2m

ℏ2
(E − V (r⃗)) (1.42)

and determines the material index of refraction, defined as the ratio of the wavevector
inside the material to the incident wavevector:

n(r⃗) =
K(r⃗)

k0
=

(
1− V (r⃗)

E

)1/2

(1.43)
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which also determines the angle of propagation of a neutron beam inside the material
through Snell’s law

n =
sin(θ0)

sin(θin)
(1.44)

where the incident beam makes an angle θ0 with the normal to the crystal surface, which
becomes θin inside the material. In general, n is complex, and its imaginary component
accounts for the absorption of neutron by the material. In most cases in our interest, for
non-magnetic materials, the absorption is negligible and we obtain an approximation for
n by averaging over the Fermi pseudopotential in Eq. 1.37

n ≈ 1− λ2Nbc
2π

. (1.45)

where N is the atomic density.

An important category of neutron experimental science is experiments leveraging the
concept of interferometry. Just like classical EM or mechanical waves, matter waves inter-
fere in space depending on their frequency and phase. For a given frequency, the interac-
tion between a neutron and its environment often induces a noticeable, deterministic phase
shift. The fundamental mechanism of neutron interferometry is to separate the neutron
state into multiple trajectories in physical space, induce some phase shift into a subset of
these trajectories, and recombine them. The interference measured in the final state (over
many neutrons) can be used to quantify these interactions with high precision.

An simple way to separate a neutron beam in two is with the use of a Laue crystal, as
shown in Fig. 1.4. The action a single crystal on some neutron input state can be modeled
as

ψin −→ tψt + rψr (1.46)

where t and r are some complex transmission and reflection coefficients, with the require-
ment that |t|2 + |r|2 = 1, and ψt, ψr are the transmitted and reflected part of the wave-
function. Now, consider an incident neutron to a triple Laue intereferometer, initialized
in state ψin as shown in Fig. 1.5. Each blade of the interferometer is a Laue crystal as
described above (Bragg planes perpendicular to the incident crystal surface), and sepa-
rates each part of the incoming beam in two. It can be seen that the final transmitted and
reflected neutron ψ0, ψH can be expressed as the sum of the paths:

ψ0 = trrψtrr + rrtψrrt (1.47)

ψH = trtψtrt + rrrψrrr (1.48)
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Figure 1.5: The basic geometry of a triple Laue neutron interferometer. An incoming
neutron enters a crystal (A) which splits the beam into two parts. One of the paths is
phase-shifted by an amount ∆χ (B). Both parts are reflected and recombined into another
beam splitter (c), resulting in a transmitted beam ψ0 and diffracted beam ψH . The phase
shift ∆χ can be evaluated by looking at the relative intensities of the transmitted and
reflected beam.
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where, for example, ψrrt corresponds to the path undergoing a reflection on blade 1, re-
flection on blade 2 and transmission on blade 3. Since the beam splitter coefficients are
commutative, ψtrr and ψrrt are naturally in phase at the output. Since r and t are π/2
apart in phase space, ψtrt and ψrrr are perfectly out of phase in an empty interferometer,
and thus the H beam has intensity 0. However, it is possible to add an additional phase
∆χ to one of the paths by adding an additional interaction (B on Fig. 1.5), which creates
an asymmetry between the top and bottom paths and introduces interference in the final
neutron state. With this additional phase, Eqs. 1.47 and 1.48 become:

ψ0 = trrψtrre
∆χ + rrtψrrt (1.49)

ψH = trtψtrte
∆χ + rrrψrrr (1.50)

and the intensities oscillate with ∆χ out of phase with each other

I0(∆χ) ∝ |r|4|t|2 (1 + cos(∆χ)) (1.51)

IH(∆χ) ∝ |r|2|t|4 + |r|6 − |r|4|t|2 cos(∆χ) (1.52)

The phase shift ∆χ is dependent on the nature of the system interacting with the neutron
at point B. For a nuclear potential such as the one in a nonmagnetic material, it is given
by:

∆χ = −NbcλD (1.53)

where λ is the wavelength of the neutron, D is the distance travelled though the material
and N and bc are the same as in Eq. 1.45. In a magnetic field

∆χ = ±µBmλD
2πℏ2

(1.54)

where B is the magnetic field strength, µ is the magnetic moment of the neutron, m is
neutron mass, and D is the distance travelled inside the magnetic field. The sign of the
phase shift depends on the spin of the incident neutron. In a gravitational potential, things
are slightly trickier as the whole interferometer setup will most likely be basking in the
same potential (or at least can be approximated as such). Thus, the phase shift has a
dependence of the total area between the beams A, and is given as:

∆χ =
m2gλA sinα

2πh2
(1.55)

where g is the gravitational acceleration, α is the angle between the area of interaction and
the horizontal plane, and h is the Planck constant. Due to our ability to measure this phase
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shift, neutron interferometers are an extremely powerful tool to probe to systems which
are otherwise difficult to measure. They could in theory be used to measure with high
precision the gravitational constant of the Earth, the neutron magnetic moment and many
other quantities of interest, although there are experimental challenges yet to be resolved.
Due to the weak nature of the gravitational and magnetic interaction for neutrons, any such
measurement would require precision levels above anything previously achieved previously.
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Chapter 2

Dynamical Diffraction and the
Quantum Information Model

Elements of this section have been previously published in [1], and are under APS copyright
(© 2022 American Physical Society). However, some more details are included in this
work.

Neutron diffraction through perfect crystals is a complicated problem. To solve this
problem exactly, one has to consider the interaction of the incident neutron with every
single particle across its trajectory as its wavefunction expands through space. This is
unfeasible computationally, and thus the problem must be simplified. Instead of considering
the scattering from the individual atoms, the crystal can be described as an array of planes,
called Bragg planes from which the neutron reflects, with reflectivity determined by its
incident angle. The angle which yields the highest reflectivity is called the Bragg angle,
and is given by:

θB = sin−1

(
nλ

2d

)
(2.1)

where n is the diffraction order, λ is the wavelength of the incident wave, and d is the
lattice spacing of the crystal.

Historically, this problem has been tackled by tactically neglecting multiple scattering
inside the crystal (first Born approximation). This is described by the kinematic theory of
diffraction, which predicts that the intensity of the diffracted wave is proportional to the
volume of the crystal. This is a good approximation for thin crystals, but gets increasingly
worse as the crystal thickness is made bigger, as the intensity is uncapped and is predicted
to grow infinitely as the volume goes up. A more complete, but many times more complex
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theory which accounts for multiple scattering was developed over the course of the 20th

century, including work from Cowley and Moodie [57], Zachariasen [58], Kato [59] and
more. This theory, dubbed the dynamical theory of diffraction (DD) is quite extensive and
will not be presented fully in this thesis, however some important points will be noted. In an
experimental setting, a neutron beam is usually directed at the crystal at some angle θ0 with
respect to the crystal face. Some fraction of the neutrons will propagate straight through,
and the rest will be diffracted at some angle, which depends on the Bragg condition.
The two outgoing beams are called the transmitted and diffracted beam, respectively.
The neutron inside the crystal is described as four mutually interfering wavefronts, two
propagating in each of the beam directions. The neutron intensity propagates back and
forth between the transmitted and diffracted beam with period ∆H , called the Pendellösung
period, given by

∆H =
πVcell cos θB

λ|FH |
(2.2)

where Vcell is the volume of a crystal unit cell, θB is the Bragg angle, λ is the neutron
wavelength and FH is the crystal structure factor.

2.1 The Takagi-Taupin equations

In the standard theory of dynamical diffraction, the incident neutron wavefunction is usu-
ally described as a plane wave

Ψ(r) = A0e
ik0·r (2.3)

where A0 is the incident amplitude, k0 is the incident wavevector and r is the spherical
position coordinate. However, this is an inadequate description for most experiments, since
a neutron beam will most likely be collimated through a slit. The Takagi-Taupin (T-T)
equations are an alternate approach to dynamical diffraction problems in which we are
free to specify the state of the incident neutron as the initial condition to a differential
equation. The expressions derived by the T-T equations are central to the work presented
in this thesis, so they will be descried in further detail. The following derivation follows
[56].

The incident beam is determined by a central wavevector K0, which satisfies the Bragg
condition with respect to a reciprocal lattice vector H. H is normal to the lattice planes,
which are separated by a constant distance d = 2π/H. From the Bragg condition, the
reflected wave will have wavevector K0 +H. Inside the crystal, the neutron wavefunction
must be a solution to the time-dependent Schrödinger equation

(∇2 + k20)ψ(r) = ν(r)ψ(r) (2.4)
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where

ν(r) =
2m

ℏ2
V (r) (2.5)

is the scaled periodic potential. It can be expressed in terms of its Fourier components

ν(r) =
∑
H′

νH′eiH
′·r (2.6)

where the component νH′ corresponds to the reciprocal lattice vector H′. However, the
reflected wave is almost entirely determined by the components corresponding to the re-
ciprocal lattice vector ±H, and thus the potential can be approximated

ν(r) = ν0 + ν ′He
iH·r + ν ′−He

−iH·r (2.7)

The potential can also be expressed in terms of the Fermi pseudo-potentials of the
atoms in the crystal

ν(r) = 4π
∑
j

bjδ(r− rj) (2.8)

Where bj is the scattering length of atom j and δ is the Dirac delta function. Equating
the two expressions for ν(r):

ν0 + ν ′He
iH·r + ν ′−He

−iH·r = 4π
∑
j

bjδ(r− rj)

ν0e
−iH·r + ν ′H + ν ′−He

−2iH·r = 4π
∑
j

bje
−iH·rδ(r− rj)

(2.9)

We now integrate over the volume of one crystal unit cell

1

4π

∫
Vcell

ν0e
−iH·r + ν ′H + ν ′−He

−2iH·rdV =
N∑
j=1

bje
−iH·rj (2.10)

where the sum now runs over the atoms in one unit cell. The right hand side is known
as the structure factor FH of the crystal, by definition. For the left hand side, it can be
understood heuristically that the ν0 and ν−H terms integrate to 0. This is due to the
nature of H being a reciprocal lattice vector, at the edge of the unit cell H · r = 2π, and
the integral goes to 0. Thus, we are left with

ν ′H =
4πFH

Vcell
(2.11)
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Figure 2.1: The vectors in reciprocal lattice space used in the Takagi-Taupin equations.
When the incoming wave is perfectly on Bragg, the incoming wavevector K0 and the
diffracted wavevector KH fulfill the Bragg condition, K0 + KH = H. In practice, the
incoming wave has a small misset angle ∆θ, and the effective KH is slightly offset.

where Vcell is the volume of one crystal unit cell. For convenience, we define the reduced
potential component

νH =
ν ′H
2k0

(2.12)

Inside the crystal, the neutron wavefield can be presented in the form of a sum of plane
waves (wavepacket)

ψ(r) =
∑
h

ψhe
iKh·r (2.13)

where the sum runs over all the reciprocal lattice vectors h, Kh are the wave vectors
Kh = K0 + h and K0 is the central wave vector of the incident beam. In the principal
case of interest where the wavefield is composed of two strong waves in the incident and
diffracted direction, equation 2.13 becomes

ψ(r) = ψ0e
iK0·r + ψHe

iKH ·r (2.14)

We now assume that the coefficients ψ0, ψH are slowly varying functions of position. As
shown in Fig. 2.1, the magnitude of KH differs slightly from that of K0, and is approxi-
mately given by:
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Figure 2.2: A side to side comparison of the Laue diffraction geometry in crystals with the
mechanism behind the QI model for DD, in the Laue case. a. The real-space coordinates
used in the Takagi-Taupin equations. An incident neutron with wavevector K0 hits the
crystal at a slight deviation from Bragg angle θB + ∆θ. The coordinates Ŝ0, ŜH are unit
vectors in the incident and diffracted directions, respectively. b. The individual nodes
act as a quantum unitary gate which splits the incident beam according to the model
parameter γ. c. The diffracted amplitude at a given node is composed of the summed
amplitudes of all the paths which end in the diffracted direction at that node. The widths
∆x, ∆z correspond to the size of the lattice spacing in simulations. Illustrated in blue
(dashed) is a sample path through the lattice, which undergoes two reflections. Previously
published in [1]. © 2022 American Physical Society

K2
H ≈ K2

0 [1− 2∆θ sin(2θB)] (2.15)

where ∆θ is the deviation of the incident beam angle from the Bragg angle.

We can now define the coordinate vectors S0, SH as shown in Fig.2.2

S0 =
1

2

(
x

cos θB
+

z

sin θB

)
(2.16)

SH =
1

2

(
x

cos θB
− z

sin θB

)
(2.17)

as the spatial coordinates parallel to the direction of K0, KH . Plugging the wavefunction
2.14 into the Schrödinger equation 2.4 and solving for the coefficient to the exponentials,
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we obtain the pair of differential equations

−ν0ψ0 + i
δψ0

δS0

− ν−HψH = 0 (2.18)

−νHψ0 + i
δψH

δSH

− (β − ν0)ψH = 0 (2.19)

where β = K0∆θ sin(2θB). The ∇2 order terms have been neglected, and K0 and KH are
assumed to be practically parallel to the Ŝ0 and ŜH directions (∆θ is small). We now make
an ansatz on the amplitudes ψ0,H

ψ0(S0, SH) = e−iν0(S0+SH)+iβSHU0(S0, SH) (2.20)

ψH(S0, SH) = e−iν0(S0+SH)+iβSHUH(S0, SH) (2.21)

where the functions U0,H are simply the transmitted and diffracted amplitudes, up to
a position-dependant phase. Substituting equations 2.20 and 2.21 into 2.19 yields the
Takagi-Taupin equations:

∂U0

∂S0

= −iν−HUH (2.22)

∂UH

∂SH

= −iνHU0 (2.23)

This pair of differential equations describes the amplitude current between the two
principal waves inside the crystal as they are continuously scattered back into each other.
One could imagine that to solve these equations numerically, we would determine some
initial conditions on U0,H and keep track of their value while proceeding in small increments
of position. This is the general idea behind the quantum information model which will be
presented in this thesis. These equations were solved by Werner et al. in 1986 [60]. The
general solution for UH is

UH(S0, SH) =
∞∑

n=−∞

an

(
S0

SH

)n/2

Jn

(
2ν
√
S0SH

)
(2.24)

where Jn is the nth Bessel function of the first kind, ν2 = νHν−H , and the coefficients an
are determined by the initial conditions. In the case where the incident beam is confined
to a very narrow slit close to the entrance edge of the crystal, the incident beam can be
described by the wavefunction

ψi(r) = A0δ(SH)e
iK0·r (2.25)
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where δ is the Dirac delta function. Using this function as an initial condition, the
solution to equations 2.22 and 2.23 becomes

UH(S0, SH) = −iνHJ0
(
2ν
√
S0SH

)
(2.26)

U0(S0, SH) = ν

√
S0

SH

J1

(
2ν
√
S0SH

)
(2.27)

The intensity profile of the neutron after being diffracted through a crystal was mea-
sured by Shull [61] by scanning the edge with a narrow slit and counting them as a function
of position. To determine what one could measure with such a setup in the case of our
incident beam, we must determine the intensity at x = D, the crystal thickness. Rather
than express the intensity as a function of z, it is more convenient to define the parameter

Γ =
z

D tan θB
(2.28)

and the intensities at x = D are found to be

IH(Γ) = ν2|A0|2J0
(
π
D

∆H

√
1− Γ2

)2

(2.29)

I0(Γ) = ν2|A0|2
1− Γ

1 + Γ
J1

(
π
D

∆H

√
1− Γ2

)2

(2.30)

where the constant ∆H is the period of the Pendellösung interference effects inside the
crystal, and can be expressed in terms of experimental variables as follows

∆H =
πVcell cos θB

λ|FH |
(2.31)

In typical intereferometry experiments which use perfect crystals as beam splitters,
dynamical diffraction effects are not taken into consideration, due to their negligible con-
tribution. However, it is possible that these effects become important in high precision
measurements; the properties of DD could potentially be leveraged to develop new neu-
tron optical instruments. However, the theory presented in this section lends itself poorly
to more complicated systems, since the T-T equations cannot be solved if the crystal is
locally imperfect, or if it is cut in a more complicated geometry. One of our objectives is to
develop a numerical model for DD which could help with the design of such interferometry
experiments, by precisely quantifying DD effects in complex geometries.
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2.2 The Quantum Information Model for Dynamical

Diffraction

2.2.1 Model description

Quantum random walk (QRW) theory is well established, and has been summarily pre-
sented in the introduction to this work. The original proposition of using these QRW to
model particle diffraction was presented by Nsofini et al. [50]. In this section, we will
describe the underlying mechanisms of the model, as well as the specific implementation
which we have used in the simulations that follow.

In the model, a perfect crystal is represented as a two-dimensional lattice of nodes,
through which the incident neutron travels column by column. As shown in Fig. 2.2b
and 2.2c, each node acts as a unitary operator on one part of the neutron’s state, which
is composed of a superposition of upwards and downwards paths at every position in the
lattice. Each node corresponds to the action of one or many lattice planes upon an incident
neutron, with the physical size of the node being determined by the choice of parameters.
The input state to a node at position i is represented by

αi |ai⟩+ βi |bi⟩ or

(
αi

βi

)
(2.32)

where |ai⟩ and |bi⟩ are the states of the neutron going upwards (transmitted) and down-
wards (reflected), respectively. Evolution of the initial state is performed via the unitary
time evolution operator in the interaction picture U = e−i

∫
V (r)dt/ℏ, where V (r) is the inter-

action potential representing the lattice, which appears on the right hand side of Eq. 2.5.
The potential integrated over the time it takes a neutron to pass through a single node is

⟨a|V (r)|b⟩∆t
ℏ

= π/2
∆x

∆H

eiHHH·rrr = γ ieiζ (2.33)

where ∆x = 2m∆t/(ℏKx) is twice the distance between nodes along the Bragg planes
(Figs. 2.2c and 2.3) with Kx = (2π/λ) cos θB the component of internal neutron wavevector
also along the Bragg planes; and the phase factor encodes the global translation of the
lattice. The extra factor of i is inserted for convenience and corresponds to translating the
lattice by one fourth of the Bragg plane spacing. Noting that ⟨a|V (r)|b⟩ = ⟨b|V (r)|a⟩∗, the
full time-evolution operator over one node Ui = e−i

∫
Hdt/ℏ is
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Ui =
∞∑
n=0

1

n!

(
0 γ eiζ

−γ e−iζ 0

)n

Ui =

(
cos γ eiζ sin γ

−e−iζ sin γ cos γ

) (2.34)

The unitary describing neutron propagation to the next layer of nodes

Ui = |ai+1⟩ (ta ⟨ai|+ rb ⟨bi|) + |bi−1⟩ (ra ⟨ai|+ tb ⟨bi|) (2.35)

is a slight generalization of the operator UR(θ) presented in section 1.2.1. It follows from
Eq. 2.34 that it has coefficients

ta = eiξ cos γ, rb = eiζ sin γ

ra = −e−iζ sin γ, tb = e−iξ cos γ
(2.36)

which necessarily adhere to the required normalization conditions of a unitary matrix

|ta|2 + |ra|2 = 1, |tb|2 + |rb|2 = 1, tarb + ratb = 0. (2.37)

The phase ξ on the diagonals is not physical and thus set to zero. The off-diagonal phase
ζ associated with a global lattice translation is important to interferometer simulations
[62, 63], where a relative translation of one of the diffracting optics shifts the phase of the
measured interference pattern, but it is of no consequence to the simulations presented
here and also set to zero.

The input to one column containing h nodes is

ψin =

(
αi

βi

)⊗h

(2.38)

where αi, βi are the inputs in the transmitted and reflected direction to the ith node. For
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calculation purposes, this is written as

ψin =



...
αi

βi
αi+1

βi+1
...


(2.39)

The column operator U⊗h
i is represented as a matrix, where every node has matrix repre-

sentation

Mi =


ta rb
0 0
0 0
ra tb

 (2.40)

and the full column operator is written as:

C =



ta rb 0 0
0 0 0 0
0 0 ta rb . . .
ra tb 0 0
0 0 0 0
0 0 ra tb

...
. . .


(2.41)

For a crystal with a thickness of N nodes, the output ψout is equal to C
Nψin, where the

odd entries of ψout correspond to the transmitted beam at each node and the even entries
to the reflected beam. The beam profiles are given by discrete functions of the node height
j:

IH(j) = |ψout(2j)|2 (2.42)

I0(j) = |ψout(2j − 1)|2 (2.43)

2.2.2 Generalization of QI model to arbitrary parameters

It has been shown previously in [50] that propagating a neutron inside a lattice by exciting
a single node at the entrance yielded intensity profiles consistent with dynamic diffraction
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theory, with accuracy for a specific choice of γ depending on the number of layers used in
the simulation. Here, we generalize this theory to any value of γ, and show that one has a
degree of freedom when choosing a combination of γ and the number of iterations in the
simulation (n). Furthermore, we show that the intensity profiles generated by the model
exactly reduce to the spherical wave solutions of the T-T equations, equations 2.29 and
2.30, in the appropriate limit.

To demonstrate this, we determine analytically the intensity profiles predicted by the
model at the exit face of the crystal. In [52], Chandrasekhar discusses the reduction of
random walks with large number of steps into differential equations. In this section, we will
go in the opposite direction, and show that the Takagi-Taupin equations can be reduced
to a simple set of rules for a quantum random walk, with large enough number of steps.

In Fig. 2.2c, in blue, a path is shown through a lattice of width n = 2, starting at p = 0
(by definition) and ending on node p = 1. The total neutron amplitude at p = 1 will be
a sum of the contributions from all the paths ending on that node, and thus the problem
of calculating intensity profiles can be reduced to counting lattice paths. We will start by
noting that counting the number of paths of half-length n ending at node p is equivalent
to counting the number of binary words of length 2n with exactly n + p zeros and n − p
ones, where these numbers represent an up or down movement, respectively (for example,
the aforementioned path corresponds to the string 0010). Since there are n+ p choices for
the positions of the zeros, there are 2n choose n+ p

N(p) =

(
2n

n+ p

)
(2.44)

such paths.

However, not all paths contribute equally to the final amplitude, and a given path’s
weight will depend on the number of reflections which it undergoes. Instead of simply
counting the paths which end on a specific node, we must additionally keep track of their
number of reflections.

We can uniquely represent a path P as a list v⃗ where each element corresponds to the
number of half-steps before a reflection occurs. A reflection on the first node is shown as a
0 in the first entry of v⃗, and the final node does not contribute to the list. As an example,
the path shown in blue in figure 2.2 corresponds to the list [2, 1, 1]. Since the path has
been pre-determined to start in the upwards direction, by definition of a reflection the
odd elements of v⃗ correspond to motion upwards, and the even elements to motion in the
downwards direction. By inspection, we observe that a list v⃗P corresponding to a path P
of length 2n with k reflections will have k + 1 elements. The requirement that the path
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must start on the central nodes and end on node p corresponds to the following constraint:
the odd entries of v⃗ must add to n+ p. The even entries must add to n− p.

For even k, there are k/2+1 odd entries and k/2 even entries. Let us note quickly that
an integer N can be partitioned into exactly K nonzero integers in

(
N−1
K−1

)
different ways.

Now, the odd elements of v⃗ must add to n + p, however the first element can either be a
zero or not. If it is, then n+ p must be partitioned into k/2 parts. If not, then it must be
partitioned into k/2− 1 parts instead. In total, there are(

n+ p− 1

k/2

)
+

(
n+ p− 1

k/2− 1

)
=

(
n+ p

k/2

)
(2.45)

possible arrangements. The even elements of v⃗ are all strictly larger than 0, and so there are(
n−p−1
k/2−1

)
possible arrangements for them. Since the even and odd elements are independent,

in total there are
(
n+p
k/2

)(
n−p−1
k/2−1

)
possibilities for v⃗.

For odd k, there are instead (k+1)/2 odd entries and (k+1)/2 even entries. Applying
a similar logic, we find that the total number of possibilities for v⃗ is

(
n−p−1
(k−1)/2

)(
n+p

(k−1)/2

)
. In

summary, the number of paths ending on node p of length 2n with k reflections N(n, k, p)
is:

N(n, k, p) =


(
n− p− 1

k/2− 1

)(
n+ p

k/2

)
k even(

n− p− 1

(k − 1)/2

)(
n+ p

(k − 1)/2

)
k odd

(2.46)

or, alternatively, for arbitrary k

N(n, 2k, p) =

(
n− p− 1

k − 1

)(
n+ p

k

)
(2.47)

N(n, 2k + 1, p) =

(
n− p− 1

k

)(
n+ p

k

)
(2.48)

Summing over all the paths ending at node p and giving every path the appropriate
amplitudes from equation 2.36 gives us the expression for the neutron amplitude profile at
the exit face of the crystal. The same paths contribute to the diffracted and transmitted
intensities, up to one final reflection on the last layer. The diffracted and transmitted
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amplitude profile are found to be

ψH(p, n) =

n−|p|∑
k=0

(−1)k+1 sin2k+1 γ cos2(n−k) γ

×
(
n+ p

k

)(
n− p

k

) (2.49)

ψ0(p, n) =

n−|p|∑
k=0

(−1)k sin2k γ cos2(n−k)+1 γ

×
(
n− p− 1

k − 1

)(
n+ p+ 1

k

) (2.50)

ψ(p) ranges from p = −n to p = n. For small n, ψ(p) has a low resolution and is a poor
match to the theoretical predictions. To increase the resolution of ψ while keeping the
crystal thickness finite, it is necessary to ensure that the scale of the interactions decreases
proportionally, so that the effective thickness of the crystal remains constant. This can be
achieved by considering the limit where γ → 0 and n · γ is kept constant.

To show this, we expand the binomial coefficients, and rearrange some terms. Starting
with the reflected beam:

IH(p) =

(−1) sin γ cos2n γ

n−|p|∑
k=0

(
(−1)k tan2k γ

)( (n+ p)!(n− p)!

k!2(n+ p− k)!(n− p− k)!

)2

(2.51)

The expression (n+p)!(n−p)!
(n+p−k)!(n−p−k)!

can be expanded using Stirling’s approximation, n! =√
2πn(n/e)n to obtain

√
(n− p)(n+ p)

(n− p− k)(n+ p− k)

(
n− p

e

)n−p(
n+ p

e

)n+p

×(
n− p− k

e

)−(n−p−k)(
n+ p− k

e

)−(n+p−k)

which simplifies to√
n2 − p2

n2 − 2nk + k2 − p2

(
n− p

n− p− k

)n−p(
n+ p

n+ p− k

)n+p(
n2 − 2nk + k2 − p2

e2

)k

(2.52)
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We now consider the limit: n = α/γ, p = xα/γ, γ → 0, where α is a constant of propor-
tionality and x ∈ [−1, 1]. We have

lim
γ→0

√
1− x2

1− 2kγ/α+ k2γ2/α2 − x2

(
(1 + x)α

(1 + x)α− kγ

)(1+x)α/γ

×

(
(1− x)α

(1− x)α− kγ

)(1−x)α/γ (
α2 − 2αkγ + k2γ2 − x2α2

e2γ2

)k

To first order around y = 0, β
β−ky

β/y
= ek ∀ β ∈ R. Taking the limits and recombining,

we obtain the final expression

IH(p) ≈

(−1) sin γ cos2n γ

n−|p|∑
k=0

(
(−1)k tan2k γ

) (
n2 − p2

)k2

(2.53)

From the definition of the ordinary Bessel functions Jα =
∑∞

m=0
−1m

m!Γ(m+α+1)
(x/2)2m+α, we

can see from 2.53 that for suitably large n

IH(p) ≈
[
− sin γ cos2n γJ0(2n tan γ

√
1− p2/n2)

]2
≈ γ2J20(2nγ

√
1− p2/n2) (2.54)

Which is analogous to the spherical wave solution to the T-T equations given in Eq. 2.29

For the transmitted beam, notice that at every point except p = a, there are no paths
of 0 reflections. Therefore, under the condition that p ̸= a we can run the sum starting
at n = 1. Like in the reflected beam case, we consider the limit where γ → 0 while γ · n
and γ · p are kept constant like n = α/γ and p = xα/γ. Applying the binomial identity(
n
k

)
= n

k

(
n−1
k−1

)
, and expanding:

Ψ(p) =

n−|p|∑
k=1

(−1)kγ2k
(
n− p− 1

k − 1

)(
n+ p+ 1

k

)
(2.55)

=

n−|p|∑
k=1

(−1)kγ2k
n+ p+ 1

n− p

(
n− p

k

)(
n+ p

k − 1

)
(2.56)

=

n−|p|∑
k=1

(−1)kγ2k
n+ p+ 1

n− p

(n− p)!(n+ p)!

k!(k − 1)!(n− p− k)!(n+ p− k + 1)!
(2.57)
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We apply Stirling’s approximation, n! =
√
2πn(n/e)n, as well as the appropriate limits

Ψ0(p) =

n−|p|∑
k=1

(−1)kγ2k
1

k!(k − 1)!

n+ p+ 1

n− p

√
n2 − p2

(n− p− k)(n+ p+ 1− k)

(
n− p

e

)n−p

×

(
n+ p

e

)n+p(
n− p− k

e

)−(n−p−k)(
n+ p− k + 1

e

)−(n+p−k+1)

=

n−|p|∑
k=1

(−1)kγ2k
1

k!(k − 1)!

α(1 + x) + γ

α(1− x)

√
α2(1− x2)

(α(1− x)− kγ)(α(1 + x) + (1− k)γ)
×

(
1− x

1− x− kγ

)(α/γ(1−x))(
1− x

1− x− kγ

)(α/γ(1−x))

×(
α(1− x)/γ − k

e

)k (
α(1 + x)/γ − k + 1

e

)k−1

Like in the reflected case, consider the fact that to first order around y = 0, β
β−ky

β/y
=

ek ∀ β ∈ R. We obtain

Ψ0(p) =

n−|p|∑
k=1

(−1)kγ2k
1

k!(k − 1)!

α(1 + x) + γ

α(1− x)
ekek−1×(

α(1− x)/γ − k

e

)k (
α(1 + x)/γ − k + 1

e

)k−1

=

n−|p|∑
k=1

(−1)kγ2k
1

k!(k − 1)!

α(1 + x) + γ

α(1− x)
(α(1− x)/γ − k)k (α(1 + x)/γ − k + 1)k−1

=
∞∑
k=0

(−1)k+1γ2k+2 1

k!(k + 1)!

n+ p

n− p
(n− p)k+1(n+ p)k

=
∞∑
k=0

(−1)k+1γ2k+2 1

k!(k + 1)!
(n+ p)(n2 − p2)k
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=
∞∑
k=0

(−1)k+1γ2k+2 1

k!(k + 1)!

√
(n+ p)2(n2 − p2)k

=
∞∑
k=0

(−1)k+1γ2k+2 1

k!(k + 1)!

√
(n+ p)(n+ p)(n− p)

(n− p)
(n2 − p2)k

=
∞∑
k=0

(−1)k+1γ2k+2 1

k!(k + 1)!

√
n+ p

n− p

√
n2 − p2(n2 − p2)k

= −γ
√
n+ p

n− p

∞∑
k=0

(−1)k

k!(k + 1)!
(nγ
√

1− p2/n2)2k+1

From the definition of the ordinary Bessel functions, Jα =
∑∞

m=0
−1m

m!Γ(m+α+1)
(x/2)2m+α, we

obtain that the intensity across the face of the crystal is

I0(p) = |Ψ(p)|2 = γ2
n+ p

n− p
J1(2nγ

√
1− pn/n2)2

In summary, the intensities I0,H = ψ0,Hψ
∗
0,H take the form

IH(p) = γ2J20(2nγ
√

1− p2/n2) (2.58)

I0(p) = γ2
n+ p

n− p
J21(2nγ

√
1− p2/n2) (2.59)

Comparing Eqs. 2.58 and 2.59 to Eqs. 2.29 and 2.30 we can note that they are equivalent
when we set Γ = p/n (from its definition), |A2

0| = 1 and n · γ = (π/2) D
∆H

, as expected from
equation 2.33.

2.2.3 Determining simulation parameters from experimental vari-
ables

Since γ and the number of simulation bi-layers n are related to the crystal parameters by

n · γ = π/2
D

∆H

(2.60)

there is a degree of freedom when choosing the parameters when simulating a given exper-
iment. One can sacrifice accuracy for speed by decreasing the number of layers n, as long
as γ is adjusted such that the relation in Eq. 2.60 is maintained. Changing γ changes
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Figure 2.3: A lattice as it is used in the model in the Bragg case. The nodes in the
lattice are functionally identical to the one presented in Fig. 2.2b. The reflected intensity
at node n is a sum of the contributions from all the paths which leave the crystal from
the edge at node n. The widths ∆x, ∆z once again correspond to the lattice spacing in
simulations. The height of the neutron paths through the crystal cannot exceed height h,
which corresponds to the crystal thickness in simulation space. Illustrated in blue (dashed)
is a Dyck path of length 6, bound by height 2 and containing 2 peaks. The points A and B
correspond to the points of geometric reflection from the front and back face of the crystal,
respectively, where the reflected intensity is typically the highest. Previously published in
[1]. © 2022 American Physical Society

32



the resolution of the simulation, and as γ → π/2 the intensity profiles become coarser.
In this scenario, the QI model does not provide sufficient accuracy to capture small scale
oscillations. Conversely, the exactness of the model output increases as γ → 0 and n→ ∞,
and results are already an excellent match to Eqs. 2.58 and 2.59 when γ is on the order of
π/100. In this case, a crystal with a Pendellösung thickness D/∆H of 100 would be com-
posed of 5000 lattice columns, which corresponds to 10000 (10000x10000) sparse matrix
multiplications which is a simple task for a modern computer. The simulation output must
also be interpreted differently depending on the choice of parameters. The effective size of
a simulation layer depends on the crystal thickness D, as well as the number of bi-layers n

∆x · n = D (2.61)

and the lattice spacings in both axes are related through the Bragg angle

∆z

∆x
= tan θB (2.62)

Since the simulated intensity is specified at each node, the spatial coordinate must be
scaled by a factor of ∆z. By substituting the definition of ∆H into Eq.2.60, we obtain an
expression for γ and ∆x in terms of crystal characteristics

γ

∆x
=
d|FH |
Vcell

(2.63)

where d is the distance between Bragg planes and Vcell is the volume of a unit cell in the
crystal. From this expression, we can observe that in the small γ limit, variations in the
value of γ are analogous to variations in the Bragg plane distance inside the crystal, such as
those resulting from strains or deformations. These effects are a computational challenge
in the standard theory of dynamic diffraction, while this model offers an approach to solve
these problems without the need for complex calculations. Depending on one’s choices for
the model parameters, the simulated profiles can often be produced very quickly, with high
accuracy, and without the need for complex analytical calculations. It must be noted that
these equivalences are independent of any assumption about the material, other than that
it induces dynamical diffraction. The simulation nodes must be thought of as theoretical
diffraction sites inside the crystal, whose separation depends on the choice of γ and ranges
between the size of one crystal unit cell to one Pendellösung length. The angle between
the nodes is set by the Bragg angle. The dependence on the structure factor FH accounts
for differences in the crystal structure, and thus the model is not limited to a specific atom
arrangement in the unit cell.
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2.2.4 QI Model, Bragg Case

To extend the model to the Bragg case, we introduce empty nodes, consisting of the
“transmission matrix”

T =


1 0
0 0
0 0
0 1

 (2.64)

to create regions of the simulation environment where the neutron is propagating through
empty space. It then becomes possible to simulate Bragg diffraction by filling only a
segment of the simulation space with crystal nodes, and the rest with empty space in
which we place a detector to keep track of the intensity being reflected from the crystal.
More generally, any node can be removed by replacing the appropriate block in one of the
column matrices C (Eq. 2.41) by the matrix T to simulate a crystal sample of any shape.
The nodes can also be modified individually to model the presence of strains or defects.

To demonstrate that the parameter definitions are consistent between the Laue and
Bragg geometries, we would like to obtain an analytical expression for the reflected intensity
in the Bragg case like we did for the Laue case. Since the neutron never re-enters the crystal
after leaving it, we can see that this problem is equivalent to counting the number of Dyck
paths [64] with some length n, a fixed number of peaks k and a maximal height h. A
Dyck path is a lattice walk starting at (0, 0) which only allows movements of (+1,+1) and
(+1,−1), and never drops below the x axis. In Fig. 2.3, we illustrate in blue that a path
through a lattice in the Bragg geometry is equivalent to a Dyck path.

The total number of Dyck paths of length 2n is given by the Catalan numbers

Cn =
1

n+ 1

(
2n

n

)
. (2.65)

However, similar to the Laue case, the weight associated with each path depends on the
number of reflections which it has undergone. Because the paths must leave from the same
face through which they entered, the number of reflections is always odd and we can simply
count the number of peaks k of each path, defined as a local maximum in path height.
The number of Dyck paths of length 2n with exactly k peaks is given by

N(n, k) =
1

n

(
n

k

)(
n

k − 1

)
(2.66)

which correspond to the Narayana numbers. If the crystal thickness was infinite, this would
be enough to derive an expression for the reflected intensity everywhere. However, in the
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Figure 2.4: The intensity distributions inside the crystal for the Laue case (left) and
Bragg case (right). The top row figures are for the transmitted path (post selected on
+kz momentum) and the bottom row figures are for the reflected path (post selected on
−kz momentum). For each case we plot the output intensity profiles corresponding to the
intensity at the end nodes. Lastly, the integrated intensities for the Laue case are plotted
under the crystal figures showing the Pendellösung oscillations with period ∆H . Previously
published in [1]. © 2022 American Physical Society
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Figure 2.5: In red, full line: A Bragg-reflected intensity distribution measured at the exit
face of a crystal by use of a scanning slit, from [2]. In black, dotted line: A simulated
intensity profile in the Bragg case, where we have chosen the parameters according to
Eqn. 2.60 and Shull’s experimental parameters. The simulation output was convolved
with the shape of the A peak to account for experimental effects such as slit width and
beam momentum distribution. The points A, B, C and D correspond to the geometric
reflection points as shown in the inset diagram. Previously published in [1]. © 2022
American Physical Society

finite crystal case, starting at n = h, some of the fewer-peaked paths will leave the crystal
through the top edge. These paths generally have a higher weight in the small γ limit
due to the factor of sin γ introduced on a reflection, and therefore cannot be neglected.
For a complete description, we require an expression for the number of Dyck paths of
length 2n, with exactly k peaks and which are bound above by height h, which we will
denote H(n, k, h). Unfortunately, there is no known closed form for these numbers, but it
is possible to derive a recursion relation which allows for any one of them to be computed.
We divide a path from (0, 0) to (2n+2, 0) into two sections, from 0 to 2i and 2i to 2n+2,
where (2i, 0) is the last point at which the path returns to the x axis before it ends. There
are n possibilities for i, where i = 0 means the path does not return to the x axis between
the first and last point. There are

∑i
j=0H(i, j, h) such possible paths. After the path

touches the x axis at x = 2i, the next movement is necessarily upwards, and the final
movement from (2n, 1) to (2n + 2, 0) is necessarily downwards. Furthermore, this second
path will never touch the x axis again, and will never go above height h: we can therefore
describe it as a path of half-length n− i and bounded by height h−1. Because the number
of peaks of both halves must add up to k, and there are n choices for i, the total number
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of paths H(n+ 1, k, h) is given by

H(n+ 1, k, h+ 1) =
n∑

i=0

i∑
j=0

H(i, j, h)H(n− i, k − j, h− 1) (2.67)

With initial conditions

• H(0, k, h) = δk0

• H(n, 0, h) = δn0

• H(n, k, 0) = δn0δk0

Using the aforementioned Narayana numbers and the same definitions as in the Laue
case, we can find the reflected amplitude inside the AB region (Fig. 2.3) where it is
unaffected by reflections off of the back face of the crystal

ψH(n) =
n∑

k=1

(−1)k−1 sin2k−1 γ cos2(n−k+1) γ
1

n

(
n

k

)(
n

k − 1

)
(2.68)

Once again, we consider the limiting case γ → 0 with γ · n kept constant. Here, we find
the that reflected intensity is of the form

IH(n) =
1

n2
J21(2γn) (2.69)

Note that in this geometry, n being the path length corresponds to the position variable
on the detector. Consequently, we now define h as number of nodes in the direction of the
Bragg planes. It has been shown experimentally that there is a secondary reflection peak on
the point of geometrical reflection n = h. However, the intensity for n < h is independent
of h since the outgoing paths have not yet had the chance to reach the top of the crystal.
In this sense, equation 2.69 is a good match for experimental data when simply looking at
the primary reflection peak. Furthermore, it is equivalent to the analytical solution found
in [65] for the same region.

Although we do not have a general analytical expression for the intensity in the Bragg
case, we are still able to obtain an intensity profile for any shape through numerical com-
putation. The similarities and differences of dynamical diffraction in the Laue case and
Bragg case can be contrasted by examining the intensity inside the crystals. Fig. 2.4 shows
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Figure 2.6: In black, full line: The neutron intensity profile reflected from the corner
of a Bragg crystal, from [2]. The profile calculated by Shull is displayed as a full black
line, and the corresponding experimental data points are showed. In blue, full line: The
QI model simulation where the parameters were varied to obtain a good match with the
experimental data. The output intensity profile was convoluted with the same profile as
in Fig. 2.5. Previously published in [1]. © 2022 American Physical Society

the intensities inside the crystal on the transmitted path or the reflected path. One can
observe the oscillation pattern inside the crystal that leads to the Pendellösung oscillations
as well as the output intensity profiles corresponding to the intensity at the last node.

The diffracted neutron intensity in the Bragg case was measured by C.G. Shull and
colleagues [2] using a scanning slit to determine the beam profile exiting a crystal. In DD
theory the Bragg case has 100 % reflectivity for neutrons falling within a narrow angular
range called the Darwin width

θD =
λ2|FH |

πVcell sin
2(2θB)

(2.70)

which is typically on the order of an arcsecond. Neutrons outside this range propagate
through the crystal and can reflect off the back face ultimately exiting from the front. Those
neutrons exiting the crystal in this way are spatially displaced from the primary diffraction
peak by an amount 2t/ tan(θB). In Ref. [2], neutrons (λ = 4.43 Å) were directed at a silicon
crystal with θB = 44.9◦. The results from [2] are shown in Fig. 2.5. The primary peak
(labeled A) was measured to have approximately 10 times the intensity of the secondary
peak (labeled B). Two additional small peaks were observed in locations corresponding to
neutrons exiting the corners of the crystal.
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In the same figure, we have overlaid the output of our simulation model (dashed black
curve). The model parameters such as γ and the number of nodes were calculated from the
experimental parameters found in Ref. [2] using the relationship presented in equation 2.60
and by setting γ to π

50
. The model is able to accurately simulate the features observed in

the experimental intensity, such as the presence of a primary peak at the first geometrical
reflection point, as well smaller secondary peaks which appear where the neutron has
reflected off of the back face and corners of the crystal. To obtain a proper intensity
profile from the simulations, it is necessary to account for the shape of the incoming beam.
This can be accomplished by convolving the simulation output with the experimentally
obtained shape of the first (A) peak. The points were sampled from the original figure
using the GetData graph digitizer tool, and were convolved with the simulation output
in MATLAB. The QI model enables one to easily vary the geometry of the crystal that
is being analyzed. It is possible to vary the angle of the CD side of the crystal in the
simulations. By performing a least-squares fit, it is found that good agreement is obtained
when the CD side of the crystal is at an angle of 91.35◦±0.07◦ relative to the AC side. The
QI model can also be applied to simulate the data from the corner of a Bragg crystal as
shown in Fig. 17 of Ref. [2]. The same crystal geometry/parameters (including the 91.35◦

corner angle) and beam characteristics as that of our Fig. 2.5 were used. Here it was
required to estimate for the physical location of the beam entrance point with respect to
the corner of the crystal (the “m/c” parameter) as it was not specified in Ref [2]. We find
good agreement when the beam is set to enter the crystal 6.2 mm away from the corner
point. The results displayed in Fig. 2.6 once again demonstrate that the model is a good
match for experimental data in the mixed Laue-Bragg case.

2.2.5 QI Model, Neutron Cavity

Modelling of a Neutron Cavity

The work in this section has been previously presented in [3].

Dynamic diffraction theory predicts that in the Bragg geometry, neutrons falling within
a narrow range of momentum centered around the Bragg condition (the Darwin width)
are reflected with close to 100% probability. In a neutron cavity composed of two perfect
crystals, neutrons outside the Darwin width will escape through the crystals within the
first few bounces. Conversely, neutrons inside this width are effectively confined, allowing
for a great number of bounces. Interestingly, the QI model predicts that this result can
be explained purely as a consequence of a quantum random walk: the total neutron wave-
function is expressed as a sum over all the possible paths through the Bragg lattice. The
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Figure 2.7: The simulated neutron intensity inside two perfect-crystal silicon blades acting
as a neutron cavity. The neutron is initialized as an incident spherical wave to the corner
of the top crystal. Given that most of the beam gets initially transmitted, the range of the
color bar is limited to emphasize the confined intensity. The crystals are placed a distance
D apart, have thickness t and length L. After the first few bounces, most of the leftover
neutron intensity is contained within a small band on the inside edges of the crystals. This
intensity is preserved with further propagation. A detector can be placed at the exit of
the crystals to capture the neutrons exiting the cavity. This simulation (∆H ≈ 50µm,
t ≈ 0.5mm, D ≈ 0.2mm, L ≈ 3cm) considers a very thin crystal slice to better illustrate
the behavior near the gap. Previously published in [3].
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Figure 2.8: The average neutron intensity across a horizontal slice of the top crystal shown
in Fig. 2.7 is plotted as a function of the penetration depth inside the top crystal. The
intensity drops sharply within the first Pendellösung period, indicating that the neutron is
confined within a band of width ≈ ∆H inside the cavity. Previously published in [3].

difference in phase accumulated by the different paths results in constructive interference
only for the paths which stay confined in a small region close to the gap.

As shown in Fig. 2.7, without any information about transverse momentum, boundary
conditions, or incident angle, the model predicts that only after a few bounces, the intensity
is almost entirely localized in a narrow band around the inter-crystal gap. Most neutrons
that do not settle within this band are either transmitted straight through the top of the
crystal interferometer, or bounce at most once and transmit through the bottom.

Shown in Fig. 2.8 is the neutron average intensity across a horizontal slice of the top
crystal as a function of penetration depth into the top crystal. The intensity drops sharply
within the first ∆H , showing that the neutron does not penetrate very deeply inside the
crystal after a few bounces.

Confined Intensity

With the QI model we can examine the neutrons which remain confined within the cavity.
Fig. 2.9 a) shows the confined intensity inside the cavity as a function of the number of
bounces, for cavity parameters D = 12∆H and t = 87.5∆H . It is to be noted that as the
neutron progresses through the cavity, the individual bounces become hard to resolve, and
therefore here we are considering a length of crystal corresponding to a geometrical path of
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Figure 2.9: a) The neutron intensity remaining inside the cavity as a function of the number
of bounces, for a cavity with D = 12∆H and t = 87.5∆H . The intensity drops very sharply
during the first few bounces then stabilizes as the direct beam leaves the top crystal. A
value for the reflectivity of the crystal of ≈ 1 − 1.6 × 10−5 was extracted by fitting to an
inverse exponential between bounces 500 and 800. b) The neutron intensity remaining
inside the cavity after a length of 16000 ∆H . The neutron undergoes a number of bounces
proportional to D−1. The final intensity in the cavity oscillates with period D = ∆H .
Previously published in [3].

1000 bounces. The intensity drops sharply as the direct beam transmits straight through
the first crystal, and then drops slightly less at each subsequent reflection. Eventually,
it settles to an effectively constant value of around 4% of the incoming intensity. An
estimation for the reflectivity of the crystal as the number of bounces increases can be
extracted from this curve, by fitting it to an inverse exponential. The reflectivity in the
“stable” region between 500 and 800 bounces is found to be (≈ 1− 1.6× 10−5), as shown
in Fig. 2.10.

In Fig. 2.9b, the intensity remaining in the cavity after a length L = 16000∆H is
plotted as a function of D. The confined intensity oscillates with period D = ∆H . The QI
model indicates that to maximize the number of bounces for a given set of crystals, the
spacing can be made very small without losing much intensity at the exit, but should be
made no smaller than ∆H/4.

Cavity Modes

Simulation of the neutron cavity using the QI model shows that the neutrons inside the
cavity settle in one of two regimes, depending on the intercrystal distance D. It should
be noted that in the limit where D → 0, the system reduces to a simple Laue crystal of
thickness L, in which case the neutron will diverge to the edges of the Bormann triangle
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Figure 2.10: The reflectivity of the neutron cavity extracted from the plot in Fig. 2.9a. A
straight line is fitted through the log space plot of the intensity. For an expected dependence
of I(N) = I0R

N (where N is the number of bounces), log(I) = log(I0) + N log(R) and
the reflectivity is given as the exponential of the slope of the fitted line. For log(R) ≈ 0,
elog(R) = R ≈ 1 + log(R). Previously published in [3].

as predicted by DD theory. However, for nonzero spacing, after the first few bounces,
most of the neutron current is confined within a small band of size of order ∆H on the
inside surface of the cavity, and bounces back and forth without penetrating very deeply
into the crystal. Fig. 2.11a shows the simulated reflected intensity on the surface of the
top crystal throughout the cavity, for different values of D. For the D < ∆H regime,
the neutron behaves like a standing wave inside the cavity, with a period dependant on
D. For the regime with larger values of D (> 2∆H), the bounces are well-separated and
localized at first. As the number of bounces increases, the neutron wave packets spread
and induce interference effects. This behavior is shown in Fig. 2.11b: for small D, there is
one dominant frequency which changes with D. As D increases, more pairs of harmonics
are introduced.

Experimental Implementation

An experimental implementation of a neutron cavity was performed at the NIOF beamline
at the National Institute of Standards and Technology (NIST) center for neutron research
(NCNR). The setup is shown in Fig. 2.12. A beam of neutrons with wavelength 0.235
nm was propagated through a 10 mm wide silicon neutron cavity composed of two 10
mm thick perfect-crystal silicon blades (220 reflection) attached to a common base. The
theoretical pendellösung length for this configuration is found to be 50.38 µm. The neutrons
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Figure 2.11: a) The intensity reflected from the bottom surface of the top crystal as a
function of position, for different intercrystal spacing distances D. There are two different
regimes: when the spacing is smaller than the pendellösung length, the neutron state is
represented by a standing wave, whose frequency depends on crystal spacing. The second
regime is where the spacing is larger than the pendellösung length. Here the neutron
bounces are well-separated at first followed by self interference after many bounces. There
is a noticeable disruption around 175 ∆H (indicated by an downwards arrow) caused by
the first reflection from the back face of the top crystal. b) The frequency spectrum of the
intensity profiles shown in Fig. 2.11a. In the region of D < ∆H , there is one dominant
frequency, which varies with D. As the spacing increases, the neutron bounces become
well-separated, and new frequencies appear corresponding to the higher harmonics of the
main bounce frequency. Previously published in [3].

underwent four well-defined bounces before leaving the cavity at the exit. A scanning slit
and an integrating detector were placed behind the top crystal, and were used to map the
spatial intensity of neutrons along the crystal cavity.

Using the QI model we can simulate the experimental configuration. The simulation
parameters were chosen according to the equivalence relation of Eq. 2.60. As shown in
Ref. [1] we can account for the experimental factors such as the spread of the incident
beam, beam divergence, and slit size through the analysis of a Bragg diffraction peak.
Similar to the methods of Ref. [1] the intensity penetrating through the top crystal was
convolved with the measured shape of the exit peak. The simulated intensity throughout
the setup is shown as a false-color map, and the simulated integrated intensity at the
detector is shown above the setup in a black, dashed line. The simulated intensity profile
is in good agreement with the measured intensity profile. It can be observed that the
majority of the contribution to the exiting beam of the cavity comes from the classical
bouncing path.
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Figure 2.12: The experimental implementation of a neutron cavity using two perfect-
crystal silicon blades and a position sensitive neutron detector above the top blade. Using
the described QI model of DD we can simulate the neutron propagation through the
cavity. Here the nodes outside the two crystals act as identity matrices, while a quantum
random walk occurs inside the two crystals. No further physics or boundary conditions are
present. The geometric trajectory of the neutron as it bounces back and forth is clearly
visible between the two crystals. Shown above in red is the experimental measurement
corresponding to this geometry. Overlaid in the black, dashed line, is the intensity obtained
via the QI model. Note that as shown in Ref. [1], the QI model accounts for experimental
parameters by convolving the intensity output with the shape of the exiting beam. Good
agreement is found between the simulation and experiment. Previously published in [3].

45



2.3 Conclusions

In this chapter, we have demonstrated that dynamical diffraction effects for particle diffrac-
tion in perfect crystals can be modeled in general with the help of quantum random walks.
We have applied this model to the basic cases of the Laue and Bragg geometries, where
it produces consistent results with established theory. In more complicated geometries
such as in a mixed Laue/Bragg corner, the results are consistent with experiments when
accounting for external factors such as beam divergence. Since the individual nodes in the
lattice can be edited without adding much to the computational complexity, the model is
a good candidate for modeling crystal ”imperfections” such as defects, strains, or disloca-
tions. It is our hope that this model will be useful in the future to design new, more precise
neutron optical elements for use in, for example, neutron interferometry experiments.
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Chapter 3

Neutron Whispering Gallery

3.1 Theory

In 2009, it was suggested by Nesvizhevsky et al. [66] that by diffracting a neutron along
the edge of a curved crystal, one could observe quantum states similar to those found
in a gravitational potential. These states have been observed experimentally, and have
promising applications in neutron physics. In this section, I will briefly describe the theory
behind these centrifugal states, as well as how simulations can help with the design of
future experiments.

In a curved system such as in Fig. 3.1, the potential as experienced by the neutron can
be expressed in terms of the optical potential of the mirror, as well as the potential resulting
from the centrifugal acceleration of the curved path. A critical assumption which must be
made is that the variations in ρ of the neutron within the crystal are small compared to
R, and such the centrifugal acceleration can be approximated as v2/R.

To derive the wavefunction of the neutron inside the mirror, we begin by setting up the
Schrödinger equation in cylindrical coordinates:[

− ℏ2

2M

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ

)
− ℏ2

2Mρ2
∂2

∂ϕ2
+ U(ρ)− E

]
ψ(ρ, ϕ) = 0 (3.1)

where M is the mass of the neutron, and the optical potential U(ρ) can be described as a
step function

U(ρ) = −U0Θ(R− ρ) =

{
−U0, ρ ≤ R

0 ρ > R
(3.2)
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Figure 3.1: Schematic representation of a neutron whispering gallery experiment. A neu-
tron in state ψin enters a curved crystal at an angle almost tangential to the inner surface.
The neutron settles in a superposition of quasi-stationary states inside the crystal before
exiting in states ψout. R is the radius of curvature of the mirror, ρ and ϕ are radial and
angular coordinates.
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We now make the standard substitution ψ(ρ, ϕ) = Φ(ρ, ϕ)/
√
ρ, and expand into the angular

momentum state eigenbasis:

Φ(ρ, ϕ) =
inf∑

µ=− inf

χ|µ|(ρ)eiµϕ (3.3)

The number µ determines the angular momentum of the state in units of ℏ. Equation 3.1
becomes [

− ℏ2

2M

(
∂2

∂ρ2

)
+

ℏ2

2Mρ2

(
µ2 − 1

4

)
− U0Θ(R− ρ)− E

]
χµ(ρ) = 0 (3.4)

Introducing the parameter z = ρ − R and expanding the centrifugal energy to first order
around z = 0:[

− ℏ2

2M

∂2

∂z2
+ ℏ2

µ2 − 1/4

2MR2

(
1− 2z

R

)
− U0Θ(−z)− E

]
χµ(z) = 0 (3.5)

The solution to Eq. 3.5 can be expressed in terms of the Airy functions. More specifically,
we must impose that the scattered waves be everywhere outgoing, which corresponds to
the boundary condition that the state asymptotically behaves like the Green function for
the total Hamiltonian [67]. The states χµ are then expressed as:

χµ(z) =

{
Dµ(Bi(z0 − z/l0 − ϵµ/ϵ0) + iAi(z0 − z/l0 − ϵµ/ϵ0)), z > 0

Ai(−z/l0 − ϵµ/ϵ0), z ≤ 0
(3.6)

where
l0 = (ℏ2R/(2M2v2))1/3 (3.7)

has units of length and can be considered as the characteristic length scale,

ϵ0 = (ℏ2Mv4/(2R2))1/3 (3.8)

has units of energy, z0 = ϵ0/U0 and
ϵµ = λµϵ0 (3.9)

corresponds to the radial kinetic energy of the state. The constants Dµ ensure that the
wavefunction is continuous at the miror boundary, and are given by

Dµ =
Ai(−λµ)

Bi(z0 − λµ) + iAi(z0 − λµ)
(3.10)
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and the constants λµ are found . These states are called quasi-stationary states, due to
their relative stability which depends on the neutron centrifugal energy. The states with
high centrifugal energy tunnel into the mirror with high probability, and thus have low
lifetimes and are unlikely to be detected at the output. The deeply bound states with
low energy have very long lifetimes and contribute most of the intensity observed on the
detector.

Before expressing the full state of the neutron as a sum of quasistationary states, they
must be normalized

χµ = Cµχ
′
µ (3.11)

where
1

Cµ

=

∫ 0

−∞
χµ(z ≤ 0)dz +

∫ ∞

0

χµ(z > 0)dz (3.12)

Since
∫∞
0
χµ(z > 0)dz , which corresponds to the scattering of the neutron through the

mirror, diverges, we assume that the probability of scattering is small for states with long
lifetimes relative to the time scale of the problem and set 1

Cn
=
∫ 0

−∞ χµdz.

3.2 Simulations

The objective of these simulations will be to clearly differentiate between the classical
behavior of particles interacting with curved diffraction planes and the quantum behavior
described above. Our aim will be to derive a measure of how we can compare a given set
of experimental data to a classical particle model and a quantum wave simulation, and
observe the ”quantumness” of a given experimental setup. The calculations performed in
this section are done for a cylindrical Si/Ni interface mirror, with a radius of curvature
of 206.7mm and 8 degrees of arc. However, this model is trivially adapted to any similar
configuration.

Particle Behavior

In a particle model, due to the high number of reflections undergone by a particle on a
curved surface at low incident angle, we expect that the neutron only reflects off of the
curved mirror surface if the angle of impact is lower than the critical angle of the material,

θc = arcsin
nr

ni

(3.13)
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where nr and ni are the indices of refraction of the refractive and incident media, respec-
tively. These indices are given, for a specific material, by Eqn. 1.45. We will consider an
incident wavelength of 3.9Å, which corresponds to a typical wavelength for cold neutron
experiments. For silicon and nickel, we have

nNi ≈ 0.9999780294 (3.14)

nSi ≈ 0.99999518315 (3.15)

The critical angle of a ray going from silicon to nickel at 3.9Åis then given by

θc = arcsin
nNi

nSi

≈ 89.66◦ (3.16)

This means that rays hitting the surface at an angle of less than 0.34◦ will be reflected,
and others will be transmitted.

For a given experimental configuration, the beam of incident neutrons will have some
spatial width, as well as a spread in transverse momentum. The classical behavior of these
particles will be estimated by ray tracing, by estimating which trajectories can survive to
the detector. The mirror is represented in the x-y plane by x2 + y2 = R2, where R is
the radius of curvature. The beam is divided into N2 components, distributed along N
starting points within its width, and shooting at N different angles within its spread. For
every incident ray, we calculate the point of intersection with the mirror, and calculate the
angle of impact between the incident ray and the line tangent to the mirror at this point,
given by the derivative of the above equation. If this angle is larger than the critical angle,
the beam is transmitted through and lost. If it is lower, the beam is reflected and a new
trajectory is calculated, and the process is repeated until it reaches the end of the mirror.
Once the beam reaches the exit, its final angle trajectory is recorded.

An example result is shown in figure 3.2. For this simulation, the beam was set to
a spatial divergence of 0.14mm, and an angular divergence of 0.5◦. These results seem
to show that the surviving neutrons are biased towards the low angles, and the resulting
distribution is highly asymmetric. This distribution offers a good baseline to which to
compare a given experimental dataset.

Quantum (Wave) Behavior

For the mirror used in the above, the quantum mechanical quantities described in section
3.1 are given by:

l0 = (
ℏ2R

2M2v2
)1/3 = 7.2728× 10−8m (3.17)
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Figure 3.2: A classical simulation of a Si/Ni curved mirror with 206.7mm radius of curva-
ture and measuring 8 degrees of arc. The majority of the surviving paths are transmitted
at low angles with respect to the waveguide surface at the exit.
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ϵ0 = (
ℏ2Mv4

2R2
)1/3 = 3.918× 10−9eV (3.18)

UNi =
2πℏ2bNiNNi

M
= 2.45× 10−7eV (3.19)

USi =
2πℏ2bSiNSi

M
= 0.5373× 10−7eV (3.20)

U0 = ∆U = UNi − USi ≈ 191× 10−9eV (3.21)

z0 =
U0

ϵ0
= 48.75 (3.22)

− ∂U

∂x
=
Mv2

R
≈ 53865

neV

mm
≈ −1

ϵ0
l0

(3.23)

For a typical cold neutron experiment, the neutron wavelength is within the range of 3Å-
30Å. Following a previous experiment, we take the mean wavelength to be λ = 3.83Å,
which corresponds to an incoming velocity of v ≈ 1032 m/s. The energy values are found
from ϵµ = λµϵ0 and λµ are found by requiring that the states be differentiable at the
interface. This is accomplished by numerically solving

Ai′(−λn)(Bi(z0 − λµ) + iAi(z0 − λµ)) = Ai(−λµ)(Bi′(z0 − λµ) + iAi′(z0 − λµ))

where the prime symbol denotes the first derivative with respect to z. We then find the
lifetimes from

Γµ ≈ 4ϵ0

√
z0 − λµ

z0
exp−4/3(z0 − λµ)

3/2 (3.24)

and τµ = ℏ/Γµ, where τµ is the lifetime of state µ. To determine which states contribute to
the intensity observed on the detector, the time of flight of the neutron can be estimated
classically from the tangential velocity of the neutron (specified by the mean wavelength
λ) as well as the arclength of the mirror. To calculate the population of the states, we
describe the state of the neutron at the entrance of the mirror as a distribution in radial
momentum space. For an incoming beam at incident angle θ and with angular divergence
δϕ, we take

Ψ̃beam(p) =
1

4
√
2πσ2

p

e
(p−p0)

2

4σ2
p (3.25)

where
p0 =Mv sin θ (3.26)

σp =Mv sin δϕ (3.27)
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Where θ is the angle of incidence and δϕ is the beam angular divergence. The spatial
wavefunction corresponding to this momentum distribution is found through a Fourier
transform

Ψbeam(z) =
1

ℏ

∫ ∞

−∞
Ψ̃beam(p)e

ipz/ℏdp =
1

4

√
2πℏ2/σ2

p

eip0z/ℏ−σ2
pz

2/ℏ2 (3.28)

We can then calculate the state populations for a given initial beam from its spectral
decomposition

Ψbeam(z) =

µ∑
αµχµ(z) (3.29)

where the weights αµ

αµ =

∫ ∞

−∞
Ψbeam(z)χ

∗
µ(z)dz (3.30)

Each state then separately acquires a phase along its path in the mirror, according to

∆Φ =
1

ℏ

∫
Σ

p⃗ · ds⃗ (3.31)

The path inside the mirror can be approximated as purely tangential to the mirror surface,
and as such only the tangential component of momentum is considered. The tangential
momentum of each quasistationary state can be approximated from the complex (radial)
energy of each state

ptanµ =
√
2MEtanµ =

√
2M(

Mv2

2
− λµϵ0) (3.32)

The radial position-space space wavefunction at the end of a mirror of radius R and
sustaining an angle ξ is then

Ψf (z) =

µ∑
Wµe

i∆Φµχµ(z) =

µ∑
αµe

iRξ
ℏ ptanµΨµ(z) (3.33)

The intensity in the far-field will be determined by the (radial) momentum distribution

Ψ̃f (p) =
1√
2πℏ

∫ ∞

−∞
Ψf (z)e

−ipz/ℏdz (3.34)

The intensity measured at output angle ϕ is then

I(ϕ) = Ψ̃f (Mv sinϕ)Ψ̃∗
f (Mv sinϕ) (3.35)
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Figure 3.3: The intensity profile in the far-field predicted by the quantum mechanical
numerical simulation of a Si/Ni curved mirror with 206.7mm radius of curvature and mea-
suring 8 degrees of arc. The beam wavelength is set to 3.83Å, incident to the mirror surface
at 0.05◦ with 0.01◦ divergence. Contrarily to the classical simulation, the neutron diffracts
to the negative angles, and some angles are forbidden due to destructive interference.

One such result in shown in Fig. 3.3, for the parameters given previously. It can
clearly be observed that the quantum profile differs greatly from the classical one. Firstly,
positive and negative angles are allowed, which is to be expected naively simply because
of the Heisenberg uncertainty. Secondly, some angles are forbidden due to destructive
interference between the states, such as in the case of angle −0.05◦ in our example.
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Chapter 4

Conclusions and Future Work

4.1 QI Model for Diffraction

The work presented in this thesis indicates that the QI model for dynamical diffraction is
a good match for the existing theory in the Laue and Bragg cases for simple geometries,
as well as a good match to experimental data in mixed or complex geometries. This
opens many opportunities for the design of neutron optical devices, as it is now easier
to account for dynamical diffraction effects when considering the neutron behavior inside
perfect crystals. Future work involving this model could include:

1. Designing and modeling neutron optics components that combine dynamical diffrac-
tion and phase-grating geometries. A lot of recent interest has been placed on the
applications of phase-grating interferometry, where an interference pattern in the
far-field is obtained via the grating diffraction orders ([68, 69, 70, 71, 72, 73]). Typi-
cal neutron gratings do not consider dynamical diffraction effects, and hence the QI
model can be used to rapidly investigate a multitude of different grating parameters
such as duty cycle, teeth shape and size, etc.

2. Investigating the effects of impurities and defects in perfect crystal optical instru-
ments. Indeed, the standard theory of DD does not provide a straightforward way to
account of imperfections in a general sense. The model offers a simple and intuitive
way to model impurities, by replacing individual nodes by vacancies, or adding to
them some amount of absorption.

3. Investigating the effects of strains or temperature gradients inside perfect crystal
optical devices. Imperfect crystal machining or experimental conditions may induce
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some strains inside perfect crystals. Our theory seems to suggest that the changes
to the Bragg condition introduced by these strains can be modeled by introducing a
gradient of the γ parameter in the crystal.

4. Incorporate spin into the model to account for magnetic field effects, potentially to
measure the neutron EDM

5. Designing two-dimensional crystal geometries. For example, neutron orbital angular
momentum (OAM) states [19, 22, 74, 75] and spin-coupled OAM states [76, 77, 78]
have come to the forefront of neutron science as a potential quantum probe of ma-
terials and standard physics. With the QI model we can consider a two-dimensional
fork gratings for neutrons to induce neutron OAM through dynamical diffraction.
This is would be similar to what was achieved with X-Rays [79].

4.2 Whispering Gallery

In this work, it has been shown that there is a clear difference between the expected particle
(ballistic) trajectories of neutrons inside a curved waveguide and the equivalent quantum
(wave) behaviour. However, there is a lack of experimental data when it comes to curved
waveguides. It would be of general scientific interest to observe these quantum states in
different material interfaces, especially in lower potential differences, where there are fewer
surviving states and they are well spatially separated.
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