
End-to-End Whole Slide Image
Classification and Search using Set

Representations

by

Bo Yang You

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Statistics

Waterloo, Ontario, Canada, 2022

© Bo Yang You 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Due to the sheer size of gigapixel whole slide images (WSIs), it is difficult to apply deep
learning and computer vision algorithms for digital pathology. Traditional approaches rely
on extracting meaningful patches from a WSI and obtaining a representation for each patch
individually. This approach fails to incorporate inherent information between the set of
extracted patches. In this thesis, we approach the problem of WSI representation by using
Set Transformers, a neural network architecture capable of incorporating the element-
wise interactions of sets to obtain one global representation. We show through extensive
experiments the representation capabilities of our method by outperforming existing patch-
based approaches on search and classification tasks.

iii

Acknowledgements

Firstly, I would like to thank my supervisor, Professor Ali Ghodsi, for his continued support
and feedback throughout my research journey. Thank you for welcoming me to the team
and for giving me the freedom to pursue my research interests.

Thank you to Professor Mu Zhu and Professor Yeying Zhu for agreeing to be a part of the
committee and for taking the time to review this thesis.

Many thanks to the members of the Data Analytics Lab, for their insightful presentations
and research discussions. I am incredibly grateful for the collaborative learning experience
especially during the period of remote learning.

To my parents and brother, thank you for your continued support and love.

Finally, I would like to thank Lillian Li, for being the best partner I could ever ask for.

iv

Table of Contents

List of Figures vii

List of Tables viii

1 Introduction 1

2 Background 3

2.1 Deep Learning . 3

2.2 Whole Slide Images . 7

3 Set Encoding 10

3.1 Set Classification . 10

3.2 Structure of Set-Valued Functions . 11

3.3 Deep Sets . 13

3.4 Set Transformer . 14

4 Method 17

4.1 WSI Representation in the Set Encoding Framework 17

4.2 Dataset . 18

4.2.1 Data Generation . 18

4.3 Model Architecture . 18

4.3.1 Feature Extraction . 20

v

4.3.2 Set Encoding . 20

4.3.3 Classification . 21

4.3.4 Improving Model Accuracy Using Game Theory 21

5 Experiments 23

5.1 Training . 23

5.2 Architecture Selection . 23

5.3 WSI Search . 24

5.3.1 Horizontal Search . 25

5.3.2 Vertical Search . 27

6 Conclusion 29

References 30

vi

List of Figures

2.1 Examples of WSI thumbnails . 8

2.2 Examples of extracted patches from WSI using the Yottixel algorithm . . . 9

5.1 Distribution of patches per WSI across the training, validation, and testing
datasets . 24

5.2 Average accuracy with standard deviation for horizontal search task. . . . 26

vii

List of Tables

4.1 Number of WSIs by dataset . 19

5.1 3-nearest neighbors accuracy (%) for horizontal search task. 26

5.2 3-nearest neighbors F1 score (%) for vertical search task. 28

viii

Chapter 1

Introduction

Deep learning and neural networks have been effective at solving numerous problems in
domains like computer vision and natural language processing. In the traditional deep
learning framework, an input of fixed size in Rd is given to a neural network that learns to
solve a specific problem. For non-conventional inputs like images or text, pre-processing is
done to convert each image or text to this specific framework. Examples of such problems
are object detection and translation. However, when the input is a set, where ordering of
the elements and size of the set is arbitrary, the problem becomes much more complicated.
In particular, the method has to be invariant to permutations of the input as well as being
flexible to inputs of varying sizes. A case where set-valued functions are present is in the
field of multiple instance learning where a set of instances are given as input and the target
variable is a label for the entire set [21]. Additional problems involving set-valued inputs
are sequence ordering and point cloud classification [21].

In this thesis, we focus on the problem of obtaining representations of whole slide images
(WSIs). Whole slide imaging refers to the process of scanning glass slides in order to
produce digitized slides. This process provides a use case for image processing techniques
and computer vision algorithms to detect patterns in the underlying images. However, one
of the major challenges in applying traditional computer vision algorithms and methods
is the sheer size of a WSI. WSIs are extremely large files and the task of even loading an
entire WSI into memory is infeasible. To address this issue, image patches are extracted and
each processed individually [25, 14]. One disadvantage of this method is that information
between patches are lost and the model is not invariant to permutations. By considering
the entire WSI as a set and extracted patches as elements of the set, we frame the problem
of WSI representation into a set representation problem.

1

Our contributions for the thesis are as follows. We provide an end-to-end process of WSI
representation by using an attention based set-encoder called Set Transformer [21]. We are
able to obtain a representation of a WSIs that can be used for tasks such as classification
and search. We show through extensive experiments that this method outperforms on
tasks compared to current state of the art.

In Chapter 2, we provide the relevant deep learning and WSI processing background. In
Chapter 3 we discuss in detail the set-encoding framework and the inner workings of Set
Transformer. Chapter 4 discuss our proposed model architecture as well as the dataset
and data generation techniques used. We report our experiment results in Chapter 5.

2

Chapter 2

Background

2.1 Deep Learning

Definition 1 (Statistical Learning Problem). Given i.i.d observations{
(xi, yi) ∈ Rm × Rd : 1 ≤ i ≤ n, i ∈ N

}
from a distribution D, we wish to find a function f in some hypothesis class H using
(xi, yi)

n
i=1 such that the expected loss

L̂(f) =
1

n

n∑
i=1

ℓ(f(xi), yi)

is minimized.

Deep Learning is a subclass of statistical learning where the class of functions H that we
consider are neural networks. In recent years, deep learning algorithms have been very
effective at learning representations of unstructured data such as images or text [20, 15,
10, 24, 27]. Advancements in computational resources as well as the availability of data
have allowed deep learning algorithms to excel at a variety of tasks [27].

Definition 2. Let l ∈ N and (h1, . . . , hl) ∈ Nl. Let Wi ∈ Rhi×hi+1 be parameters for
1 ≤ i ≤ hl. Set fi(x) = σ(W T

i x + bi) where σ is an activation function and bi is a bias
term. We define a standard feed-forward neural network f : Rh1 → Rhl by

f(x) = fl ◦ · · · ◦ f1(x)

3

We call functions fi layers, l the network depth, hi the number of nodes in layer i, Wi

the weight matrix of layer i. f1, fl are the input and output layers, respectively while the
remaining layers f2, . . . , fl−1 are called hidden layers. The weights Wi as well as the bias
bi are learnable parameters that are tuned based on an optimization procedure.

This class of functions is useful as it can be shown that the class of neural networks can
approximate any continuous function [5, 16]. Thus if one can formulate a problem in the
form of approximating a continuous function, then neural networks would be a good way
to solve that problem.

The weights of the neural network are learned through a procedure called backpropagation
using training data with respect to a loss function. Backpropagation [29] is a method of
efficiently computing (sub)-gradients with respect to neuron weights in order to minimize
the empirical loss. Since the introduction of the vanilla feed forward network (Definition
2), many new types of neural network architectures have been developed. We only focus
on a few that are relevant to this thesis.

Convolutional Neural Networks (CNNs) are a type of neural network that is partic-
ularly useful for feature extraction, image classification, and image representation [20, 9].
The main difference between CNNs and regular neural networks is the use of convolution
instead of general matrix multiplication in at least one of the layers.

Definition 3. The continuous convolution of f and g denoted by ⋆ is defined by

(f ⋆ g)(t) =

∫ ∞

−∞
f(τ)g(t− τ)dτ

In the case of discrete inputs t, we define the discrete convolution by

(f ⋆ g)(t) =
∞∑

a=−∞

f [a]g[t− a]

Additionally, we may also apply convolution over many dimensions. For example, in 2-
dimensions, we have

(f ⋆ g)(i, j) =
∑
m

∑
n

f [m,n]g[i−m, j − n]

When the input is an (RGB) image, the input is usually a 3-dimensional tensor of size
(h,w, c) where h, w, c denote the height, width, and number of channels, respectively.

4

In a convolutional layer, the input X ∈ Rh×w×c is first convolved with k filters of size
(kh, kw, kc) with a step-size of s. Then a non-linear activation function is applied to the
generated feature map. Finally, there is a pooling layer which allows the network to
generate a representation that is approximately invariant to translations of the input. By
using kernels that are usually smaller in size than the input, CNNs typically have sparse
interactions. Also, the use of a kernel allows parameter sharing of weights, enabling filters
to learn meaningful features such as edges [9].

Pre-trained network architectures like ResNet [11], DenseNet [13], and EfficientNet
[31] are all variants of CNNs with additional properties that have been previously trained
on large image datasets. The learned kernels produce meaningful, rich features that are
applicable to many downstream tasks and types of images. Using the pretrained kernels
as a starting point, the network is then fine-tuned for a specific dataset or task.

ResNet [11] is a CNN type architecture that solve the problem of vanishing gradients and
the performance degradation that comes with more convolutional layers. The difference
in the architecture between residual blocks and convolutional blocks are the use of skip-
connections.

Definition 4. Let X be the input and F(X, {Wi}) denote any feature mapping layer with
weight matrix Wi. Then a residual block is defined by

Y = F(X, {Wi}) +X

where Y is the output of the layer.

The skip-connections allow the network to learn the identity function which ensures that
more layers will perform at least as well as a lower number of layers.

DenseNet [13] is another CNN type architecture. It uses additional connections in order
to improve information flow between layers. In particular, DenseNet propagates all features
in a specific layer to all subsequent layers.

Definition 5. Let xl denote the feature map from layer l, then a dense block is defined
by

xl = Fl({x0, . . . ,xl−1})

By propagating the feature map of previous layers, the size of the feature map would
change from layer to layer. To address this, transition blocks are introduced which perform
convolution and pooling to down-sample layers. Intuitively, the use of the feature maps in
previous layers contribute to the “collective knowledge” of the network [13].

5

KimiaNet [28] is a patch-based model that is a fine-tuned version of DenseNet121. It has
been shown to be effective at extracting features from individual patches of WSIs.

EfficientNet [31] addresses the issue of efficiently scaling a CNN to obtain optimal perfor-
mance in terms of computational efficiency. The network considers the resolution or image
size, the depth of the network, and the width of the network (the number of channels) as
parameters to optimize. EfficientNet uses a coefficient ϕ that uniformly scales the depth,
width, and resolution, denoted by d, w, r respectively. The scaling problem is defined by

d = αϕ

w = βϕ

r = γϕ

s.t.α · β2 · γ2 ≈ 2

α ≥ 1, β ≤ 1, γ ≥ 1

The coefficient ϕ can be thought of as a variable that controls the amount of computational
resources available for model scaling, while α, β, γ determine resource allocation.

Transformers [33] is a neural network architecture that relies the attention mechanism
[23, 3]. Inspired by cognitive attention, the attention mechanism had seen great success
in many NLP and computer vision tasks [15, 10, 23]. In particular, Transformer based
architectures excel at learning representations of data so that the latent representations
may be fine-tuned for downstream tasks. The attention mechanism can be thought of as a
mapping between a set of query and key-value pairs to an output. The output is a weighted
sum of the values where the weight of each value is a similarity measurement between the
query and the corresponding key.

Definition 6. Let Q ∈ Rn×dq be a query matrix of n query vectors. Let K ∈ Rnv×dq ,
V ∈ Rnv×dv be the key and value matrices respectively. Here, nv denotes the number of
value vectors and dv denotes the dimension of the value vectors. The attention function

Att : Rn×dq × Rnv×dq × Rnv×dv

is defined by
Att(Q,K, V) = ω

(
QKT

)
V

where ω is an activation function (typically Softmax).

We can see that the dot-product term QKT ∈ Rn×nv is a measure of the similarity between
query and keys. The activation function converts the similarity measurement to a weight

6

so that the final output is a weighted sum of the value vectors. A value would get a
higher weight if the corresponding key has a higher similarity with the query. There are
variations of this function, with different ways to compute the weights. In the Transformers
architecture, scaled dot-product attention is used. That is

Att(Q,K, V) = Softmax

(
QKT

√
dk

)
V

where dk is the dimension of the keys. Additionally, rather than computing one attention
function on Q,K, V , Transformers use multi-head attention.

Definition 7. Let Q,K, V be query, key, and value matrices respectively. Let h ∈ Rn.
For i = 1, 2, . . . , h, let WQ

i ∈ Rn×dk ,WK
i ∈ Rn×dk ,W V

i ∈ Rn×dv denote learnable linear
projections forQ,K, V respectively. LetWO ∈ Rhdv×n. The multi-head attention operation
is defined by

Multihead(Q,K, V) = Concat(o1, . . . , oh)W
O

where
oi = Att(QWQ

i , KWK
i , V W V

i)

In multi-head attention, the query, key, and value matrices are first linearly projected
h times. Attention is then computed on the projections in parallel and the final result
is concatenated together. This allows the model to attend to information from different
subspaces[33].

2.2 Whole Slide Images

Due to the size of WSIs, existing methods first need to extract patches or a “mosaic” from
the WSI in order to be able to apply existing computer vision techniques. The Yottixel
algorithm [14] is an approach that has been shown to be effective at extracting meaningful
patches from WSIs. We provide a brief overview of the Yottixel algorithm [14]:

1. Yottixel receives as input a WSI and begins by separating the tissue areas from the
background. This is so that the (white) background which does not contain any
tissue information is discarded.

2. The separated tissue area gets divided into a grid of patches at fixed magnification
and size.

7

(a) Tongue (b) Mouth (c) Cervical

Figure 2.1: Examples of WSI thumbnails

3. Each patch is then clustered using k-means clustering in order to obtain groups of
similar patches based on color composition. The number of clusters selected was
based on manual observation of nine different types of visually distinct regions. The
authors note that increasing the number of clusters may capture additional variability
but do not seem to have relevance from a histopathology point of view.

4. A percentage of patches are then sampled (5% - 15%) from each cluster forming the
mosaic of patches.

The patch extraction used in KimiaNet [28] is a slight modification of the original Yottixel
algorithm. The intuition is that regions of interest such as high-grade carcinomas have high
cellularity levels. Cellularity is measured by first deconvolving the patch color from RGB
to hematoxylin and eosin channels using color deconvolution [28]. Then the patches are
filtered based on the top 20% based on cellularity ratios. This approach filters the patches
to ones that are more likely to be cancerous resulting in a condensed set of patches. As
an example, Figure 2.1 contains thumbnails of entire WSIs and Figure 2.2 contains the
extracted patches.

8

(a) Tongue (b) Mouth

Figure 2.2: Examples of extracted patches from WSI using the Yottixel algorithm

9

Chapter 3

Set Encoding

Traditional machine learning algorithms work well when the input data is a fixed dimension
d. However, the generalization to set-valued inputs is not trivial. Problems like point cloud
classification, set anomaly detection and multiple instance learning all require the model
to be invariant to permutation [21, 35]. In this section, we present the set classification
problem, the structure of set-valued functions, and deep learning based methods used to
generate representations of sets.

3.1 Set Classification

Definition 8. Let X be a set and P(X) denote the power set of X . Suppose we have data
instances X1, . . . , Xn ∈ P(X), y1, . . . , yn ∈ {0, 1}. The set classification problem is to find
a function f : P(X) → {0, 1} such that

f(Xi) = yi

for i = 1, . . . , n. In practice, we often want to find an approximation f̂ such that some loss
function ℓ is minimized. That is,

f̂ = min
f∈F

ℓ(f(X), y)

In the deep learning setting, we restrict the class of functions F to be neural networks.
Because the input data is a set, there are some additional properties that the function of
interest should have. In particular, the function should be invariant to the ordering of the
elements in the input set.

10

Definition 9. Let X be a set and let π be any permutation. We say that f : P(X) → R
is permutation invariant if

f({x1, . . . , xn}) = f(
{
xπ(1), . . . , xπ(n)

}
)

In the supervised learning setting, we also want the function to be invariant to the order
of the training examples.

Definition 10. Let π be any permutation and suppose there are m training examples
(Xi, yi)

m
i=1. We say a function f : Xm → ym is permutation equivariant if

f([X1, . . . , Xm]) =
[
fπ(1)(X1), . . . , fπ(m)(Xm)

]
In the context of supervised learning and neural networks in particular, this property is
important as it allows for training and performing inference in batches. Since compositions
of permutation equivariant functions are permutation equivariant, if we are able to find
a neural network layer that is permutation equivariant, we can compose those layers to
generate a final model that is permutation equivariant.

3.2 Structure of Set-Valued Functions

Theorem 1 (Countable Case). Let X be countable. A function f : P(X) → R is permu-
tation invariant if and only if it can be decomposed in the form

f(X) = ρ

(∑
x∈X

ϕ(x)

)
(3.1)

We say that a function is sum-decomposable if it satisfies Equation 3.1.

Proof. We provide a proof adapted from [35]. It is easy to see that by definition of 3.1
that f is permutation invariant as the summation function is permutation invariant. To
show the reverse direction, notice that if we can choose ϕ so that Φ(X) =

∑
x∈X ϕ(x) is

one-to-one, we can choose ρ = f ◦ Φ−1 so that

f(X) = ρ

(∑
x∈X

ϕ(x)

)
Since X is countable, there is a one-to-one mapping c : X → N. Let ϕ(x) = 2−c(x), so
that each input x is a real number in base 2. Then Φ(X) =

∑
x∈X 2−c(x) is a unique real

number so that Φ is one-to-one as required.

11

Theorem 2 (Uncountable Case). Let f : [0, 1]M → R. f is permutation invariant if and
only if it can be decomposed in the form

f(x1, . . . , xM) = ρ

(
M∑
i=1

ϕ(xi)

)

for a continuous outer function ρ : RM+1 → R and a continuous inner function ϕ : R →
Rm+1.

Proof. The proof is much more involved than the countable case and is provided in Ap-
pendix A of [35].

The above theorems provide some characterizations of set-valued functions. In the count-
able case, the above theorem says that we only need a 1-dimensional latent space to rep-
resent a set. In the uncountable case, for a set-valued function of fixed size, the minimum
size required to represent a set of size M is M + 1.

Additional results have been presented in [34] which dive deeper into the structure of set-
valued functions. The above results consider general set-valued functions. However, in
the supervised learning and deep learning framework, the classes of functions that are of
interest are usually continuous. The following results deal with continuous set-valued
functions.

Theorem 3 (Fixed Size). Let f : RM → R be continuous. Then f is permutation invariant
if and only if it is continuously sum-decomposable via RM .

Theorem 4 (Variable Size). Let f : R≤M → R be continuous. Then f is permutation
invariant if and only if it is continuously sum-decomposable via RM .

The proofs of the above theorems are in [34]. This theorem says that for continuous set-
valued functions, the size of the latent space needs to have a dimension of at least M . Note
that this does not mean that all functions require a latent dimension size of at least M .
However in the general case of continuous set-valued functions, we need a latent dimension
size of at least M .

Although the latent dimension size of M can represent a set-valued function, learning this
function using neural networks or other supervised learning methods is quite challenging.
In the neural network framework, this challenge is greatly amplified due to the fact that the
networks are composed of many permutation equivariant layers, thus making ϕ extremely

12

complex. Because of this, we typically require a latent dimension that is much larger than
M in order to learn a set-valued function well.

Looking at the structure of Equation 3.1, we see that the function consists of a few pieces.
First, a mapping ϕ maps (encodes) each element from the set to a set of features. The
features are then aggregated by summation (which is permutation invariant). Finally,
another mapping ρ maps (decodes) the aggregated feature set to a final output. This
process of encoding, aggregation, and then decoding is present in deep learning methods
for set encoding.

3.3 Deep Sets

Deep Sets [35] is a deep learning framework for learning set-valued functions. Other ar-
chitectures that learn set-valued functions such as PointNet [26] or T-Net [19] can be
thought of as a specific instance of this framework. There are two major components to
this framework. The first is a process to learn permutation invariant functions. By using
the sum-decomposable characterization of set-valued functions in Equation 3.1, we note
that we can replace ϕ, ρ by universal approximators like neural networks [5, 16]. Using
neural networks to approximate ϕ, ρ, we obtain the following procedure:

1. Transform each element xm into a representation ϕ(xm).

2. Aggregate each element representation ϕ(xm), say z.

3. Transform z into a representation of the entire set ρ(z).

By backpropagation, we are then able to learn an approximation of ϕ, ρ using neural
networks. The second component to this framework is to create neural network layers that
are permutation equivariant.

Lemma 1. Let fΘ be a standard neural network layer, i.e.

fΘ(x) = σ(Θx)

where Θ ∈ RM×M is the weight matrix and σ : R → R is an activation function. fΘ is
permutation equivariant if and only if

Θ = λI + γ(11T)

for λ, γ ∈ R, 1 = [1, . . . , 1]T and I ∈ RM×M is the identity matrix.

13

The result above [35] can be generalized to higher dimensions when λ, γ are matrices.
Furthermore, it is possible to change the elements in the layer to obtain more complex
permutation equivariant layers. By stacking these permutation equivariant layers, it is
possible to build a more complex Deep Sets model.

3.4 Set Transformer

Although Deep Sets is a framework that can learn set-valued functions, the simple sum
aggregation step after encoding each element fails to model interactions between elements
of the set. Set Transformer [21] is a set-valued generalization of the original Transformer
architecture in [33]. It uses a self-attention mechanism in order to encode pairwise and
higher order interactions between elements of a set. Like Deep Sets, Set Transformer
consists of an encoder, decoder and a new aggregation function that leverages self-attention.

Definition 11. Let X, Y ∈ Rn×d represent two sets of d-dimensional vectors. The Multi-
head Attention Block (MAB) parameterized by ω is given by

MAB(X, Y) = LN(H + fΘ(H))

where H = LN(X +Multihead(X, Y, Y ;ω)), fΘ is a row-wise feed forward neural network
layer, and LN is a layer normalization layer [2]. Note that the MAB layer is very similar
to the encoder of the Transformer architecture [33] without the use of positional encoding
and dropout layers.

Definition 12. Let X ∈ Rn×d be a set of n d-dimensional vectors. The Set Attention
Block (SAB) is given by

SAB = MAB(X,X)

Notice that SAB takes in a set as input and outputs a set of equal size. Additionally,
it performs self attention between elements of the set resulting in pairwise interactions.
Additionally, composing layers of SAB will result in higher order interactions between
elements of the set. One disadvantage of this architecture is the computational complexity.
Computing self-attention between all elements in the set has quadratic time complexity
O(n2) which may become costly for large sets. To address this, m learnable inducing
vectors I ∈ Rm×d are introduced.

Definition 13. Let I ∈ Rm×d be m d-dimensional learnable inducing points. The Induced
Set Attention Block (ISAB) is given by

ISABm(X) = MAB(X,H) ∈ Rn×d

14

where H = MAB(I,X) ∈ Rm×d.

The ISAB first attends I with X to produce an output that contains information about
X. Then that output is attended again with X to produce the final output. This is similar
to an autoencoder where we first project X do a lower dimensional latent space and then
reconstruct to produce an output. Notice that the computational complexity is now O(nm)
so for smaller m, this operation is approximately linear. Furthermore, it can be shown that
the SAB and ISAB functions are permutation equivariant [21] which makes it possible to
compose these layers to learn more complex functions.

In the Deep Sets framework, the aggregation function used was summation. Other func-
tions like max,min and mean have also been used. Set Transformer uses a pooling function
that relies on multihead attention.

Definition 14. Let S ∈ Rk×d denote k d-dimensional seed vectors. Let Z ∈ Rn×d denote
the set of features generated from the encoder. The Pooling by Multihead Attention (PMA)
layer is given by

PMAk(Z) = MAB(S, fΘ(Z))

where fΘ is a feed-forward neural network layer.

Typically, k = 1 is used for most scenarios. The pooling by attention operation is essen-
tially a weighted average. Intuitively, this makes sense since the weight of each element
of a set should not necessarily be equal when predicting a target. Additionally this is a
generalization of the summation function used in Deep Sets. Notice that if the key and
query values are 1 = (1, . . . , 1)T , we obtain the regular summation function when comput-
ing attention. Set Transformer performs a weighted average based on the attention values
of each element in a set rather than assigning each element equal weight.

To frame this architecture like Equation 3.1, we have that

ϕ(X) = f1 ◦ f2 ◦ · · · ◦ fl(X) = Z ∈ Rn×d

where fi is an ISAB or MAB block. For the decoder layer, Set Transformer applies a feed
forward layer and SAB layer to the output of the pooling layer. That is,

ρ(Z) = fΘ ◦ SAB(Z)

Putting this all together, we have that

f(X) = ρ(PMA(ϕ(X)))

15

Theorem 5. The Set Transformer architecture is permutation invariant.

Proof. We provide an outline of the proof. Notice that SAB and ISAB are permutation
equivariant, so the composition of these blocks will be permutation equivariant. This means
that the encoder that maps an input X to a latent representation Z is permutation equiv-
ariant. Furthermore, we have that the PMA layer in the decoder is permutation invariant.
Use a similar argument as in Theorem 2 to show that Set Transformer is permutation
invariant.

Theorem 6. The Set Transformer architecture is a universal approximator of set-valued
functions.

A proof of the above theorem is provided in the supplementary materials of [21]. These
results show the promise of using Set Transformers for approximating set-valued functions.
Additionally, the inherent properties of using self-attention allows Set Transformer to cap-
ture the pairwise and higher order interactions between elements of the set, potentially
leading to better representations.

16

Chapter 4

Method

4.1 WSI Representation in the Set Encoding Frame-

work

As WSI images are extremely large, training a model on the entire WSI is infeasible.
Additionally, only a diagnosis label is provided for the entire WSI. However, we do not
know where the cancerous regions within a WSI are. Because of this, existing works focus
on processing patches from the WSI.

Putting this together within the context of set encoding, we treat each WSI as a set, and
the patches within the WSI as elements of the set. Formally, we let W be the space of all
WSIs. Fix n to be the number of patches for each WSI and d to be the dimension of each
patch. Let Y be the space of labels. The goal is to learn a set-valued mapping f : W → Y
such that

f(W) = y

for each sample (W, y) ∈ W × Y .

Note the use of a fixed set size n. Thus for WSIs with more than n patches we select
randomly a subset of size n. For WSIs with m patches for m < n, we pad the remaining
m− n patches with 0 ∈ Rd.

17

4.2 Dataset

The main dataset used for the experiments was obtained from The Cancer Genome Atlas
(TCGA). TCGA is a publicly available, rich dataset containing WSIs of over 20,000 primary
cancer and matched normal samples spanning over 33 cancer types. We used a subset of
the TCGA data containing 8,544 WSIs. Each WSI belonged to 1 of 13 different tumor
types and 1 of 30 different subtypes. to be consistent with the dataset used in [28]. A full
breakdown of the class label and the corresponding number of slides is presented in Table
4.1. Of the 8,544 WSIs, 7,097 was used for training, 703 was used for validation, and 744
was used for testing resulting in an approximate 80-10-10 split. We process each WSI using
the modified Yottixel algorithm described in Section 2 to obtain a set of 242,202 patches,
24,646 patches, and 116,088 patches from the training, validation, and testing datasets,
respectively. Table 4.1 shows the breakdown of the number of WSIs in each of the datasets
and classes.

4.2.1 Data Generation

As described above, our method requires the use of a fixed set size n. However, many
images in the training dataset contains more than n patches. Thus in order to create a
richer dataset for the model, we can generate data by selecting subsets of patches from
each WSI. To generate the dataset, we fix n and s which denote the number of patches
and number of samples per WSI, respectively. For each WSI, we generate a subset of size
n from {0, . . . , w − 1} where w denotes the number of patches in that WSI. We repeat
this procedure s times to obtain the new training dataset. Additionally, we apply relevant
transformations such as normalization, horizontal and vertical flips, and rotations so that
the network does not learn to memorize training instances and to improve the generalization
capabilities of our model. We also resize the patches from a dimension of (1000, 1000, 3)
to dimension (224, 224, 3) so that the patches can be fed into the backbone networks.

4.3 Model Architecture

Our proposed model consists of three main stages. We first extract features from each
patch using a CNN based backbone. Then we obtain a permutation invariant embedding
of the set of features using Set Transformer. Finally, we apply a classification network in
order to predict the label. We choose Set Transformer over other set encoders like Deep

18

Tumor Site Subtype Train Validation Test
Brain LGG 574 40 39
Brain GBM 750 36 35
Endocrine THCA 406 51 51
Endocrine ACC 210 5 6
Endocrine PCPG 130 15 15
Gastro. ESCA 99 14 14
Gastro. COAD 236 31 32
Gastro. STAD 196 27 30
Gastro. READ 89 9 12
Gynaeco. UCS 35 3 3
Gynaeco. CESC 164 22 17
Gynaeco. OV 78 10 10
Liver, panc. CHOL 26 4 4
Liver, panc. LIHC 284 35 35
Liver, panc. PAAD 106 12 12
Melanocytic SKCM 206 25 24
Melanocytic UVM 24 4 4
Prostate/testis PRAD 361 38 40
Prostate/testis TGCT 156 13 13
Pulmonary LUAD 303 38 38
Pulmonary LUSC 361 41 43
Pulmonary MESO 50 5 5
Urinary tract BLCA 308 34 34
Urinary tract KIRC 404 50 50
Urinary tract KIRP 239 25 28
Urinary tract KICH 97 11 11
Breast BRCA 797 87 91
Head, neck HNSC 246 32 32
Sarcoma SARC 134 13 13
Thymoma THYM 28 3 3

Table 4.1: Number of WSIs by dataset

19

Sets [12] due to the attention-based mechanism of Set Transformer. This allows the model
to incorporate patch-level interactions which a Deep Sets architecture lacks.

4.3.1 Feature Extraction

The first component of the network is to extract meaningful features from each image
patch. This step mimics the role of ϕ in Definition 3.1. Rather than training a model from
scratch, we use CNN based backbones trained on ImageNet [6]. In particular, we ran our
experiments with three sets of backbones: ResNet, DenseNet, and EfficientNet.

LetW beWSI image of n patches, b be the batch size, and ϕ be the backbone network. Thus
our input tensor to the network has dimensions (b, n, 224, 224, 3). Prior to feeding W to the
network, we apply a reshape transformation g : Rb×n×224×224×3 → R(b·n)×224×224×3 to obtain
a tensor W ′ of dimension (b ·n, 224, 224, 3). This is so that feature extraction is performed
on the patch level and also utilizes the parallelism nature of deep learning packages [12].
The size of the features extracted d vary with d = 2048 for ResNet, d = 1024 for DenseNet,
and d = 1280 for EfficientNet. We then reshapeW ′ to obtain a tensor of dimension (b, n, d).
This can be thought of applying the inverse g−1 : R(b·n)×224×224×3 → Rb×n×224×224×3.

Putting this all together, we obtain a set of features Z for the set of WSI patches with

Z = g−1(ϕ(g(W))) ∈ Rb×n×d

4.3.2 Set Encoding

The set encoding step mimics the role of ρ in Definition 3.1. At the beginning of this
stage, we are given a set of features Z ∈ Rb×n×d. We use the Set Transformer architecture
described in Section 3 to encode the entire set of features into one representation. There
are a few parameters of interest when constructing the Set Transformer architecture:

1. The number of ISAB blocks nb.

2. The dimension of the inducing points m.

3. The number of attention heads h.

4. The dimension of the set representation ne.

20

The use of the PMA layer ensures that the network is permutation invariant. The use of
ISAB layers reduce the computational complexity of computing self-attention. Letting ρ
be the Set Transformer, we obtain a representation of size ne. Thus after the set encoding
stage, we obtain

W ⋆ = ρ(Z) ∈ Rb×ne

4.3.3 Classification

Notice that W ⋆ is the final representation of the WSI. However, in order to train the entire
network architecture, we use a classification network layer in order to predict the class
labels. The final stage of the architecture is to use a classification layer that takes in as
input a batch of WSI representations W ⋆ ∈ Rb×ne , and produces an output y ∈ Rb×30.
Our choice of network for the classification stage is a 4-layer feed forward neural network.
The hidden layers have sizes of 512, 256 and 128 respectively. The input size is ne and
the output size is a vector of logits with size 30. As the focus of this work is on the set
representations of the WSI itself, we did not tune the hyper-parameters of the classification
architecture.

We use the cross-entropy loss function with label smoothing in order to prevent overconfi-
dent predictions. The cross entropy function is defined by

Definition 15. Let n be the number of samples and C be the number of classes. Let
(xi, yi)

n
i=1 with xi denoting a vector of logits and yi being a one-hot encoded vector of the

true class label. The cross-entropy loss is defined by

ℓ(x,y) = − 1

n

n∑
i=1

C∑
j=1

yi,j log
exp(xi,c)∑C
k=1 exp(xi,k)

with yi,j denoting the j-th element of the one-hot encoded label of sample i and xi,k

denoting the k-th element of the logits of sample i.

In label smoothing, we fix a smoothing parameter α and replace y with a mixture of y with
a uniform distribution. That is,

y′i = (1− α)yi +
α

C

4.3.4 Improving Model Accuracy Using Game Theory

Throughout our experiments, we notice a significant gap between top-1 accuracy and top-k
accuracy. This suggests that the model contains useful information about the task, but

21

is not confident enough to predict accurately. Drawing inspiration from game theory, we
address this problem by framing it as a Lewis signaling game [30, 9].

Formally, a Lewis signaling game consists of a set of states X, a sender f , a receiver g and
a reward function R. The sender is a mapping f : X → M that maps a state to a specific
message. The receiver is a mapping g : X × M → Y that maps a message (along with
the state) to a specific action. Finally, the reward is a function R : S × Y → R that is
optimized.

In the context of our set classification problem, we have X being the space of WSIs, M
being the space of representations, and Y being the specific labels.

We keep the sender and receiver architecture the same with the exception of an additional
message m ∈ M which is the representation generated by f . Additionally, we modify the
loss function used to train our network. Let ℓα denote the cross-entropy loss with label
smoothing parameter α. We define our training loss function ℓ as a weighted sum of the
sender and receiver loss.

ℓ(x) = βℓα(x, f(x)) + (1− β)ℓα(x, g(x, f(x))), β ∈ (0, 1)

This loss allows the sender model to continuously improve the quality of messages being
sent to the receiver model as well as allowing the receiver model to generate more accurate
predictions using the representations. Similar to the mode collapse problem of GANs
[9, 18], our proposed training method runs into a similar issue when the initial messages
generated by f are not meaningful. To address this problem, we first train f by itself and
then train f, g simultaneously when f is able to send meaningful messages to g. We report
our results in Section 5.

22

Chapter 5

Experiments

In order to test our proposed architecture, we trained it using a number of different con-
figurations. Additionally, we compare our model to KimiaNet [28] in both horizontal and
vertical search tasks.

5.1 Training

In all cases, we trained our models for 20 epochs. The batch size varied depending on
the GPUs that were available from Compute Canada (Graham Cluster). All models were
trained on nodes with 2 NVIDIA P100 Pascal GPUs and we note that the use of distributed
training methods via additional nodes and GPUs can improve the training times even more.

Figure 5.1 shows the distribution of patches per WSI across the various datasets. We
fix the number of patches used as input to be 32. 32 was selected as it was the median
patch size of all training and validation images. This resulted in a dataset with 50% of
the training dataset that required padding and 50% of the dataset that required sampling.
Notice that this also allows the model to generalize to WSIs with less than 32 patches. We
also note that the testing dataset had a median patch size of 146.

5.2 Architecture Selection

We run a number of experiments to decide the final set of hyper-parameters used for
our network. In particular, we wish to decide the CNN backbone architecture, and the

23

Figure 5.1: Distribution of patches per WSI across the training, validation, and testing
datasets

parameters used for Set Transformer. For each set of parameters in Set Transformer, we
run three experiments with each of the candidate backbone architectures. We use a smaller
generated dataset in order to quickly evaluate the performance of each set of parameter
configurations and then train a final model on a larger generated dataset. For each WSI,
we sample 32 patches 3 times. This results in a total of 21,378 WSIs for the training set.
We train each candidate model for a total of 10 epochs and select the model based on the
lowest validation loss.

We use the Optuna [1] package for hyperparameter tuning. Each architecture was tuned
for a total of 10 trials and we prune trials based on the median stopping rule. That is,
we stop a trial early if the trial’s best intermediate result is worse than the median of the
intermediate results of previous trials at the same step. Using the method discussed in
Section 4.3.4, we first train a sender model for 10 epochs. Then we train both sender and
receiver models simultaneously for another 10 epochs with early stopping. We also use a
larger generated dataset which samples each WSI 8 times for a total of 57,008 training
samples.

5.3 WSI Search

In addition to classification accuracy, we evaluate the effectiveness of our representations
by search tasks. The search tasks refers to how well the algorithm can select similar WSIs
from a database. From the point of view of a pathologist, we are given a query WSI Q
that is completely new (no previous diagnosis). We wish to find similar cases in an existing
database of WSIs so that the pathologist has previous data to compare to. An effective
WSI representation should be able to find WSIs in the database that have similar diagnosis
or subtypes. Notice that this task is different from classification. For classification, we only

24

give a class label as output, however we do not know which WSIs are similar to our input.
In search, we solely use the representation in order to find similar WSIs in the database.

There are two kinds of search tasks. Horizontal search refers to how well the algorithm
can find the overall tumor type (brain, breast, liver, etc.). Vertical search refers to how
well the representations can find the correct subtype (LGG, GBM, etc) given an overall
tumor type. In both tasks, we compare our results with KimiaNet. Since KimiaNet
does representations on a patch level, the method of searching is slightly different than
comparing WSI representations directly. To compare the similarity between two WSIs,
KimiaNet uses the median-of-min approach. That is, the minimum distance of each patch
in the query WSI is first calculated when compared to all the patches of the other WSI.
The median value of the minimum distances is then taken as the similarity between the
query WSI and the candidate WSI. Thus the similarity measure is defined by

s(Q,W) = Medianq∈Q

(
min
w∈W

d(q, w)

)
for patches q ∈ Q and w ∈ W .

In order to keep the method similar for comparison, we obtain a representation for each
patch by padding each WSI with zeros. We then apply the same median-of-min method
with Euclidean distance in order to find the k-nearest neighbors to the query patch with
k = 3.

We also report the results of using the representations of the WSI directly. However, from
the point of view of a pathologist, this may not be as meaningful. Additionally, our method
allows for representations for subsets of WSIs. One potential application of this is to obtain
more refined search results. That is, given a specific subset of patches in a sub-region of
the WSI, one may search for similar representations of subsets in the database. Comparing
representations on a patch level is much more meaningful as it allows pathologists to isolate
areas of interest.

5.3.1 Horizontal Search

We compare our results against KimiaNet. The metric for evaluations in the horizontal
search task is classification accuracy. Table 5.1 shows the results of our method compared
to KimiaNet. RN, DN, EN, KN correspond to the ResNet, DenseNet, EfficientNet, Kimi-
aNet backbone architectures of our method, respectively. The best performing scores are
highlighted in green.

25

Figure 5.2 also shows the average accuracy across all horizontal classes (along with the
standard deviation). We observe comparable results to KimiaNet and outperforms in
identifying several of the horizontal search classes.

Tumor Type KimiaNet RN DN EN KN
Brain 99 97 96 97 97
Breast 91 91 85 88 89
Endocrine 92 92 81 94 92
Gastro. 84 78 69 73 72
Gynaec. 57 63 30 67 60
Head/neck 88 75 41 81 66
Liver 88 76 67 75 80
Melanocytic 86 68 43 71 61
Mesenchymal 69 85 100 85 92
Prostate/testis 96 87 87 94 92
Pulmonary 86 81 80 90 81
Urinary tract 89 93 88 90 95

Table 5.1: 3-nearest neighbors accuracy (%) for horizontal search task.

Figure 5.2: Average accuracy with standard deviation for horizontal search task.

26

5.3.2 Vertical Search

The metric for evaluations in the vertical search task is the F1 score. Table 5.2 shows the
results of our method compared to KimiaNet. RN, DN, EN, KN correspond to the ResNet,
DenseNet, EfficientNet, KimiaNet backbone architectures of our method, respectively. The
best performing scores are highlighted in green.

We see that our methods outperform KimiaNet overall in the vertical search tasks. Specif-
ically, we obtain better results in the Brain, Endocrine, Gynaeco., Liver, panc., and Pul-
monary sites and achieve comparable performance in the remaining categories.

27

Site Subtype KimiaNet RN DN EN KN
Brain LGG 85 91 89 91 95
Brain GBM 83 90 87 90 94
Endocrine THCA 100 100 100 99 98
Endocrine ACC 55 92 71 80 92
Endocrine PCPG 85 97 86 93 97
Gastro. ESCA 83 90 63 92 67
Gastro. COAD 76 85 66 79 85
Gastro. STAD 86 84 70 82 83
Gastro. READ 30 59 29 56 63
Gynaeco. UCS 86 100 75 75 75
Gynaeco. CESC 97 97 91 94 91
Gynaeco. OV 95 95 82 89 95
Liver, panc. CHOL 40 89 67 40 0
Liver, panc. LIHC 97 99 99 97 93
Liver, panc. PAAD 82 91 96 96 89
Melanocytic SKCM 98 96 92 94 96
Melanocytic UVM 86 67 0 40 67
Prostate/testis PRAD 100 100 99 100 99
Prostate/testis TGCT 100 100 96 100 96
Pulmonary LUAD 78 85 90 90 88
Pulmonary LUSC 84 89 89 91 91
Pulmonary MESO 75 89 33 89 89
Urinary tract BLCA 96 94 89 94 93
Urinary tract KIRC 99 94 95 97 96
Urinary tract KIRP 91 90 91 96 93
Urinary tract KICH 86 86 80 84 84

Table 5.2: 3-nearest neighbors F1 score (%) for vertical search task.

28

Chapter 6

Conclusion

We conclude the thesis by summarizing our contributions and suggesting directions for
future research. We developed an end-to-end approach for representation of WSIs that is
flexible to number of extracted patches and obtains comparable results for classification
and search tasks. The extracted representation is permutation invariant and is easily
adaptable to any feature extractor on the patch level. By using the Set Transformer
architecture, we are able to incorporate higher order patch level interactions. We show
that our representations show success in both classification and search tasks. In particular,
we obtain comparable results with KimiaNet on horizontal search tasks and outperform
on vertical search tasks.

There are a few possible directions for future research. As discussed above, our method is
adaptable to use any feature extractor backbone. Newer methods of Vision Transformers
like ViT [8] and Swin Transformers [22] may serve as better feature extractors of patches.
The downside to using these methods is the additional computational complexity it adds
to the entire model.

Another direction of research is adapting Set Transformer to be flexible to WSIs with an
arbitrary number of patches. Currently, our method fixes a patch size n and is flexible to
WSIs with a number of patches that is smaller than n. However, by using an additional
aggregation step, it may be possible to obtain a set valued model that is flexible to any
number of patches [4].

29

References

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.
Optuna: A Next-generation Hyperparameter Optimization Framework, July 2019.
Number: arXiv:1907.10902 arXiv:1907.10902 [cs, stat].

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization.
arXiv:1607.06450 [cs, stat], July 2016. arXiv: 1607.06450.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation
by Jointly Learning to Align and Translate. arXiv:1409.0473 [cs, stat], May 2016.
arXiv: 1409.0473.

[4] Andreis Bruno, Jeffrey Ryan Willette, Juho Lee, and Sung Ju Hwang. Mini-Batch
Consistent Slot Set Encoder for Scalable Set Encoding. page 16.

[5] G Cybenkot. Approximation by superpositions of a sigmoidal function. page 12.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. page 8.

[7] Neofytos Dimitriou, Ognjen Arandjelović, and Peter D. Caie. Deep Learning for Whole
Slide Image Analysis: An Overview. Frontiers in Medicine, 6, 2019.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale. arXiv:2010.11929 [cs], June 2021. arXiv:
2010.11929.

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016.

30

[10] Meng-Hao Guo, Tian-Xing Xu, Jiang-Jiang Liu, Zheng-Ning Liu, Peng-Tao Jiang,
Tai-Jiang Mu, Song-Hai Zhang, Ralph R. Martin, Ming-Ming Cheng, and Shi-Min
Hu. Attention Mechanisms in Computer Vision: A Survey. arXiv:2111.07624 [cs],
November 2021. arXiv: 2111.07624.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. arXiv:1512.03385 [cs], December 2015. arXiv: 1512.03385.

[12] Sobhan Hemati, Shivam Kalra, Cameron Meaney, Morteza Babaie, Ali Ghodsi, and
Hamid Tizhoosh. CNN and Deep Sets for End-to-End Whole Slide Image Represen-
tation Learning. In Proceedings of the Fourth Conference on Medical Imaging with
Deep Learning, pages 301–311. PMLR, August 2021. ISSN: 2640-3498.

[13] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely
Connected Convolutional Networks. arXiv:1608.06993 [cs], January 2018. arXiv:
1608.06993.

[14] S. Kalra, C. Choi, S. Shah, L. Pantanowitz, and H. R. Tizhoosh. Yottixel – An
Image Search Engine for Large Archives of Histopathology Whole Slide Images.
arXiv:1911.08748 [cs, eess], November 2019. arXiv: 1911.08748.

[15] Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shah-
baz Khan, and Mubarak Shah. Transformers in Vision: A Survey. ACM Computing
Surveys, page 3505244, January 2022. arXiv: 2101.01169.

[16] Patrick Kidger and Terry Lyons. Universal Approximation with Deep Narrow Net-
works. page 22.

[17] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs], January 2017. arXiv: 1412.6980.

[18] Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. On Convergence and
Stability of GANs, December 2017. arXiv:1705.07215 [cs].

[19] Jean Kossaifi, Adrian Bulat, Georgios Tzimiropoulos, and Maja Pantic. T-
Net: Parametrizing Fully Convolutional Nets with a Single High-Order Tensor.
arXiv:1904.02698 [cs], April 2019. arXiv: 1904.02698.

[20] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, May 2015.

31

[21] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye
Teh. Set Transformer: A Framework for Attention-based Permutation-Invariant Neu-
ral Networks. In Proceedings of the 36th International Conference on Machine Learn-
ing, pages 3744–3753. PMLR, May 2019. ISSN: 2640-3498.

[22] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. Swin Transformer: Hierarchical Vision Transformer using Shifted
Windows. arXiv:2103.14030 [cs], August 2021. arXiv: 2103.14030.

[23] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective Approaches
to Attention-based Neural Machine Translation. arXiv:1508.04025 [cs], September
2015. arXiv: 1508.04025.

[24] Niall O’ Mahony, Sean Campbell, Anderson Carvalho, Suman Harapanahalli, Gus-
tavo Velasco-Hernandez, Lenka Krpalkova, Daniel Riordan, and Joseph Walsh. Deep
Learning vs. Traditional Computer Vision. arXiv:1910.13796 [cs], 943, 2020. arXiv:
1910.13796.

[25] Liron Pantanowitz, Paul N. Valenstein, Andrew J. Evans, Keith J. Kaplan, John D.
Pfeifer, David C. Wilbur, Laura C. Collins, and Terence J. Colgan. Review of the
current state of whole slide imaging in pathology. Journal of Pathology Informatics,
2:36, August 2011.

[26] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. PointNet: Deep Learning
on Point Sets for 3D Classification and Segmentation. arXiv:1612.00593 [cs], April
2017. arXiv: 1612.00593.

[27] Maithra Raghu and Eric Schmidt. A Survey of Deep Learning for Scientific Discovery.
arXiv:2003.11755 [cs, stat], March 2020. arXiv: 2003.11755.

[28] Abtin Riasatian, Morteza Babaie, Danial Maleki, Shivam Kalra, Mojtaba Valipour,
Sobhan Hemati, Manit Zaveri, Amir Safarpoor, Sobhan Shafiei, Mehdi Afshari,
Maral Rasoolijaberi, Milad Sikaroudi, Mohd Adnan, Sultaan Shah, Charles Choi,
Savvas Damaskinos, Clinton JV Campbell, Phedias Diamandis, Liron Pantanowitz,
Hany Kashani, Ali Ghodsi, and H. R. Tizhoosh. Fine-Tuning and Training of
DenseNet for Histopathology Image Representation Using TCGA Diagnostic Slides.
arXiv:2101.07903 [eess], January 2021. arXiv: 2101.07903.

[29] David E Rumelhart, Geoffrey E Hintont, and Ronald J Williams. Learning represen-
tations by back-propagating errors. page 4, 1986.

32

[30] Brian Skyrms. The flow of information in signaling games. Philosophical Studies,
147(1):155–165, January 2010.

[31] Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking Model Scaling for Con-
volutional Neural Networks. arXiv:1905.11946 [cs, stat], September 2020. arXiv:
1905.11946.

[32] Hamid Reza Tizhoosh and Liron Pantanowitz. Artificial Intelligence and Digital
Pathology: Challenges and Opportunities. Journal of Pathology Informatics, 9:38,
November 2018.

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need.
arXiv:1706.03762 [cs], December 2017. arXiv: 1706.03762.

[34] Edward Wagstaff, Fabian B. Fuchs, Martin Engelcke, Ingmar Posner, and Michael
Osborne. On the Limitations of Representing Functions on Sets. arXiv:1901.09006
[cs, stat], October 2019. arXiv: 1901.09006.

[35] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan
Salakhutdinov, and Alexander Smola. Deep Sets. arXiv:1703.06114 [cs, stat], April
2018. arXiv: 1703.06114.

33

	List of Figures
	List of Tables
	Introduction
	Background
	Deep Learning
	Whole Slide Images

	Set Encoding
	Set Classification
	Structure of Set-Valued Functions
	Deep Sets
	Set Transformer

	Method
	WSI Representation in the Set Encoding Framework
	Dataset
	Data Generation

	Model Architecture
	Feature Extraction
	Set Encoding
	Classification
	Improving Model Accuracy Using Game Theory

	Experiments
	Training
	Architecture Selection
	WSI Search
	Horizontal Search
	Vertical Search

	Conclusion
	References

