
SafeDS: Safe Data Structures for
C++

by

Seyedeh Setareh Ghorshi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2022

c© Seyedeh Setareh Ghorshi 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Memory corruption vulnerabilities in low-level languages such as C/C++ have been
a problem in computer security for a long time. Accordingly, there has been a wide
variety of proposed solutions for detecting or preventing memory corruption attacks. Due
to the constantly evolving nature of such attacks and the importance of achieving high
performance in most applications, no comprehensive solution has yet been developed to
efficiently secure all data in the program memory and mitigate such attacks. Nevertheless,
solutions that only protect critical data in memory provide a balance between security and
efficiency that could be practical in many applications.

Accordingly, we introduce SafeDS, an extension to the C++ standard library containers
that provides secure design and implementation for three frequently-used data structures.
We assume a powerful adversary with arbitrary read/write access to the memory but unable
to access and modify reserved registers. Data integrity is ensured by SafeDS within the data
structures in the presence of such adversary through calculating a Message Authentication
Code (MAC) for each element, which can then be used to validate data when reading from
the data structure.

Our secure data structures are implemented as a part of the gcc-11.1.0 C++ Standard
Library and are compatible with both ARM and x86 architectures. We use the Pointer
Authentication (PA) hardware extension on ARM-v8 and Intel AES-NI instruction set to
calculate MACs on ARM and x86 architectures, respectively.

By testing our prototype against applications that use the data structure APIs in the
C++ standard library, such as OpenCV, we show that switching to the secure version of
data structures requires minimal changes to the applications’ original source code. Our
secure data structures use a Merkle tree to securely store one MAC for each instance
of them in the program. Therefore, we can theoretically estimate that an overhead of
order O(log(i)) will be added to the data structure operations, where i is the number of
data structure instances in the program. However, since the design for the secure data
structures ties the MAC calculation and verification to the normal steps of the operations,
the rest of the MAC related operations only add a constant overhead. The performance
of our prototype has been evaluated using the provided performance tests in OpenCV,
and our results show that the secure data structures introduce an overall overhead of 3.4%
compared to the baseline. Furthermore, we present game-based proofs to prove the security
of our designed data structures against data corruption attacks.

iii

Acknowledgements

I would like to thank all the people who made this thesis possible.

iv

Dedication

This work is dedicated to Pouneh, Arash, and other students on the flight PS752 whose
journeys ceased.

v

Table of Contents

List of Figures ix

List of Tables xi

List of Acronyms xii

1 Introduction 1

2 Background 5

2.1 C++ Programming Language . 5

2.1.1 Data Structures . 5

2.1.2 Constructors and Assignment Operators 6

2.2 Memory Vulnerabilities . 7

2.2.1 Control-Flow Hijacking Attacks . 9

2.2.2 Data-Only Attacks . 10

2.3 Message Authentication Code . 11

2.4 Merkle Tree . 11

2.5 Game-based Cryptographic Proofs . 13

2.6 ARM Pointer Authentication . 13

2.7 Intel AES-NI . 14

vi

3 Problem Description 15

3.1 Problem Statement . 15

3.2 Adversary Model . 16

3.3 Requirements . 17

3.3.1 Generality . 17

3.3.2 Security . 17

3.3.3 Performance . 17

4 Design 18

4.1 Securing the MACs . 18

4.2 Secure Data Structures Design . 20

4.2.1 Secure Stack . 20

4.2.2 Secure Queue . 23

4.2.3 Secure Red-Black Tree . 31

4.3 Object Wrappers . 33

5 Implementation 35

5.1 General Implementation Details . 35

5.2 Securing the MACs . 36

5.3 Secure Data Structures Implementation . 37

5.3.1 Secure Stack . 37

5.3.2 Secure Queue . 39

5.3.3 Secure Red-Black Tree . 40

5.4 MAC Calculation . 41

5.5 Object Wrappers . 43

vii

6 Evaluation 45

6.1 Generality . 45

6.2 Security . 47

6.2.1 Cryptographic Security Proofs . 47

6.2.2 Implementation Security . 66

6.3 Performance . 67

6.3.1 Microbenchmarks . 67

6.3.2 Real-World Applications . 71

6.3.3 Memory Overhead . 74

6.3.4 Comparing SafeDS With Similar Approaches 74

7 Discussion 76

7.1 Attacks against ARM Pointer Authentication 76

7.2 Object Wrappers . 77

7.3 Thread Safety . 77

7.4 Use Cases . 79

8 Related Work 80

8.1 Defenses Against Data Corruption Attacks 80

8.1.1 Spatial and Temporal Memory Safety 80

8.1.2 Control and Data plane Randomization 81

8.1.3 Data Isolation . 82

8.1.4 CFI and DFI . 82

8.1.5 Program Anomaly Detection . 83

8.2 Authenticated Data Structures . 84

9 Conclusion 85

References 86

APPENDICES 95

viii

List of Figures

2.1 Buffer overflow example: using strcpy() without proper bound checking
(e.g., strcpy(a,"OVERFLOW")) can overwrite the adjacent memory (in this
case the variable b). 8

2.2 Structure of a Merkle tree: Each element’s value is the hash of its two child
elements. As an example, in order to verify D2, we only require D2, H1,
and H34 to recalculate the H2, H12, and Hroot and verify that the newly
calculated root hash matches the previously calculated value. 12

4.1 Global Merkle tree and lookup table used for mapping each secure data
structure instance’s nonce to the position of its corresponding top MAC in
the Merkle tree. Securely storing the root of the Merkle tree guarantees the
integrity of the stored data (the top MACs of the data structures in our
case). The lookup table is also used to increase the efficiency of finding the
corresponding top MAC of each data structure instance in the Merkle tree. 19

4.2 Design of a secure stack data structure: the secure design of a stack uses
two unmodified stacks to store the elements and their MACs. Moreover,
each instance of the secure data structures is assigned a unique nonce as
an identifier. Since the nonce is included in the MACs, it also prevents an
attacker from replacing elements with elements from other data structures. 21

4.3 Design of a secure queue data structure: the secure design of a queue uses
two unmodified queues to store the elements and their MACs. Moreover,
each instance of the secure data structures is assigned a unique nonce as
an identifier. Since the nonce is included in both types of MACs, it also
prevents an attacker from replacing elements with elements from other data
structures. 26

ix

4.4 Design of a secure red-black tree data structure: The secure-rb-tree stores
MACs in the elements themselves since elements are defined as structs and
there is no need for dedicating another data structure to the MACs. 32

6.1 The microbenchmark results for performing 500 pushes and 500 pops on a
single stack instance with total number of instances ranging from 1 to 128.
The graph shows how the execution time increases with order O(log(i)) for
a secure-stack while it is fairly constant in the unmodified stack. 72

x

List of Tables

6.1 Microbenchmark results for a single stack data structure performing 500
push and 500 pop operations. The Google benchmark library computes the
average time over 1000 repetitions (106 operations in total). We then report
the mean and standard deviation calculated over ten such averages. 68

6.2 Microbenchmark results for a single queue data structure which performs
500 enqueue and 500 dequeue operations. The Google benchmark library
computes the average time over 1000 repetitions (106 operations in total).
We then report the mean and standard deviation calculated over ten such
averages. 69

6.3 Microbenchmark results for a single map data structure which uses a tree
and performs 5 insert and 5 remove operations. The Google benchmark
library computes the average time over 1000 repetitions (104 operations in
total). We then report the mean and standard deviation calculated over ten
such averages. 69

6.4 Microbenchmark results measuring the overhead caused by the Merkle tree.
Number of instances indicate the number of created data structures. 70

6.5 Data structure instances in OpenCV performance tests 71

xi

List of Acronyms

AES Advanced Encryption Standard.
ASLR Address Space Layout Randomization.

CFG Control Flow Graph.
CFI Control-Flow Integrity.
CMAC Cipher-based Message Authentication Code.
CPI Code-Pointer Integrity.

DFI Data-Flow Integrity.
DOP Data-Oriented Programming.

FIFO First-In-First-Out.

LBC Light-weight Bounds Checking.
LIFO Last-In-First-Out.

MAC Message Authentication Code.
MPK Memory Protection Keys.

PA Pointer Authentication.
PAC Pointer Authentication Code.

ROP Return Oriented Programming.

STL Standard Template Library.

XOM Execute-only Memory.

xii

Chapter 1

Introduction

Preventing or detecting the attacks that exploit memory errors in C/C++ programs has
been a popular topic in security-related research for the past decades. Spatial memory
errors allow the attacker to use an out-of-bound pointer to overwrite objects illegitimately,
while temporal errors allow using pointers to freed memory addresses to modify or leak
newly allocated objects [83]. Exploiting such memory errors provides a way for an attacker
to modify the program data as desired to gain control over the program and, for instance,
perform privilege escalation attacks. Since many popular applications have been devel-
oped in C/C++ over the years, switching to safe programming languages is not a feasible
option for the already developed applications. Accordingly, defending against such attacks
is a popular research topic among security researchers. Despite the proposed solutions,
the attacks corrupting program data remain a crucial threat to the security of C/C++
programs.

Return Oriented Programming (ROP) [70] is an example of such attacks which uses
small instruction sequences, called gadgets, in the program code to perform attacker-
defined tasks. ROP attacks leverage memory errors to modify control data, more specifi-
cally return addresses, and make the program jump to the desired gadgets. Another cate-
gory of attacks, the Data-Oriented Programming (DOP) [43] attacks, have been known for
a long time, but recent research has shown that they can achieve the same expressability
as the ROP attacks. These attacks modify the non-control data in the program to achieve
a similar goal to the ROP attacks, but they don’t alter the program’s control flow. Both
types of attacks can be mitigated by protecting the corresponding data.

The integrity and the flow of program data (including control and non-control data) can
be preserved using solutions categorized as memory error detection, Data-Flow Integrity

1

(DFI) and Control-Flow Integrity (CFI) methods, data isolation, and data or control plane
randomization [83]. Memory error detection defenses attempt to detect the errors before
being exploited, which prevents the attacks in the first place, but they might not always be
practical due to their high overhead [83]. DFI [24] and CFI [9] approaches use the correct
flow of the program to validate the changes to the control or non-control data and prevent
unexpected control or data flows. However, none of these approaches provide complete
security on their own despite introducing relatively high overhead [83]. Data isolation
techniques suffer from the same overhead issue as they separate critical data in memory
and validate any access to them. Finally, randomization techniques make the attacks
harder by deterring the attackers from finding the desired data but do not sufficiently
eliminate the chance of them succeeding in performing the attacks. For instance, Address
Space Layout Randomization (ASLR) [67] has been shown to be breakable by CAIN [16]
through using the memory page deduplication side-channel to leak the Randomized Base
Addresses (RBAs) of libraries that are loaded within user space processes in neighboring
VMs.

Accordingly, most of the solutions in the mentioned categories suffer from high overhead
or do not provide sufficient security against attacks such as ROP or DOP. One way to
reduce the high overhead of such solutions is to limit the scope of protection to a specific
type of critical data in the program, such as return addresses in PACStack [49] or code
pointers [47]. Limiting the scope of protection to a specific type of data introduces more
flexibility when securing a program, as the user (the developer who uses the security
solution) can decide which types of data are more vulnerable in their application and
apply proper protection mechanisms accordingly.

Data structures provide specific ways of organizing data, so efficient protection of their
integrity may require custom designs tailored to their distinct functionality, which could
be challenging in some cases. For instance, in a stack or queue data structure, the or-
der in which elements were inserted should be preserved as the elements are read from
it. Accordingly, the protection mechanism needs to tie the elements to their position in
the data structure. On the other hand, the organizability feature makes them suitable
choices to store the access-control or other types of decision-making data in a program.
Consequently, data structures will be valuable targets for attackers, making them worthy
of being protected against memory corruption attacks.

Accordingly, we present SafeDS, an approach for verifying the integrity of elements
in data structures through calculating Message Authentication Codes (MACs) over them.
SafeDS ensures the integrity of elements while stored inside the data structures, meaning
that the element that is read from the data structure is identical to what was originally
inserted into the data structure. We detect any illegitimate data alteration while inside

2

the data structure. A legitimate modification is changing the elements through the defined
operations or using valid pointers to the elements inside the data structures, while any
other data alteration, such as by exploiting memory errors, is considered illegitimate. We
provide the mentioned promises in the presence of a powerful adversary who has random
read/write access to memory but cannot access or modify reserved registers.

To provide the described security guarantees, we calculate a MAC for each element and
then bind the MACs into a single MAC (called top MAC) for each data structure so that
only securing the top MAC is enough to verify all the other MACs and their corresponding
element. Furthermore, we use a Merkle tree [80] to store the top MACs for data structures
and use a reserved register to securely store the root of the Merkle tree. The use of the
reserved register in our design prevents the attacker from replacing MACs with previously
seen MACs. This exploit is called a MAC reuse attack, and has been an issue in previous
work such as CCFI [54].

Finally, we implement our described mechanism and demonstrate its practicality by
leveraging Pointer Authentication (PA) [79] on ARM and AES-NI [40] on x86 architectures.
PA was introduced as a hardware extension in ARMv8.3-A and was initially used for
pointers as the name suggests. PA has been used in various schemes to verify the integrity
of pointers or return addresses, as in [50], [34], [30], and [49]. Nevertheless, this feature
can also be used for creating MACs over data to verify its integrity. However, the previous
work does not cover protecting the integrity of data structures using this feature. The x86
architectures provide a different set of instructions, AES-NI, which allows for performing
efficient encryption and decryption operations. This instruction set can be used in a similar
manner to ARM PA to calculate MACs over data in x86 architectures.

Our main contributions are as follows:

• A custom secure design for three data structures including stack, queue, and red-
black tree which is the underlying container for data structures such as map.

• A prototype of the implemented secure data structures (secure version) as an exten-
sion to the gcc-11.1.0 C++ standard library containers which is compatible
with both ARM and x86 architectures, and requires minimal change to the
program code using the C++ data structures’ API when switching to use the
secure version.

• Game-based security proofs for our secure designs proving their resistance to
illegitimate data modifications.

3

The following chapters are structured as follows: An overview of the background in-
formation is presented in Chapter 2, which covers the details about the memory errors,
attacks, and defenses, along with more detail on PA and AES-NI instructions. Chap-
ter 3 presents the details of our adversary model and generality, security, and performance
requirements. We present the design and implementation details for the secure data struc-
tures in Chapter 4 and Chapter 5. Our security proofs are presented in Chapter 6 along
with an overview of how our design and implementation satisfy the mentioned requirements
from Chapter 3. We describe the limitations of our work along with the path for future
work in Chapter 7 and include an overview of the related work in Chapter 8. Finally, we
finish with the conclusion in Chapter 9.

4

Chapter 2

Background

2.1 C++ Programming Language

In this section, some of the related aspects of the C++ are described. For comprehensive
documentation, refer to [1].

2.1.1 Data Structures

The C++ Standard Template Library (STL) implements various data structures including
stack, queue, map, list, and several other data structures. As the name suggests, these
data structures are implemented as generic template classes that support arbitrary data
types. Each data structure provides several functions that perform operations such as
adding elements to the data structures, reading elements, or removing them. Some of the
mentioned functions, such as top() in stack, allow the programmer to get a reference to the
elements inside the data structures. Hence, although stack functions only allow insertion
or removal at the top of the stack, the programmer can use the mentioned reference to
access the elements already inside the data structure at any time and potentially modify
them.

It is also worth noting that the mentioned implementation of data structures might
differ from other definitions of them (e.g., in other programming languages) in some cases.
For instance, as the C++ reference [1] describes, the C++ implementation of stack includes
two distinct functions top() and pop(). The top() function returns a reference to the top
element in the stack without removing the element. On the other hand, the pop() function

5

removes the top element from the stack without returning any reference to it. However,
the Java definition of a stack [37] assumes that the pop() function removes and returns
the top element as an output.

In this work, we extend the C++ implementation of data structures in gcc libstdc++
and hence, follow its defined semantics.

2.1.2 Constructors and Assignment Operators

C++ provides various functionalities for objects. One important part of an object is
its constructors and assignment operators. A C++ object can have different types of
constructors, including copy and move constructors.

In C++, default assignment operators and constructors including copy and move, and
deconstructors are automatically generated for a class unless they are explictily defined or
deleted [6]. Since the secure data structures require a specific design for these functions,
we describe the general properties of each constructor and operator in the following sub-
sections.

Copy Constructor

A copy constructor allows for initializing a new object using another object of a compatible
type [2]. Examples of when the copy constructor is called are as follows:

1. Initializing a using b both of which are of the same type T : T a = b; or T a(b);

2. Passing an object as a function argument: f(a);

3. Returning an object, which has no move constructor, from a function: return a;

The copy constructor can be explicitly deleted or defined by the programmer. Otherwise,
the compiler will define one implicitly. Similar to the copy constructor, a copy assignment
operator initializes an object from another. However, the constructor is called for creating
a new object, while the assignment operator is called to assign a new value to an already
existing object.

6

Move Constructor

There are various value categories in C++. In a move constructor, an object is initialized
from an rvalue with the same type [3]. An rvalue is an expression that establishes the
identity of an object or function when evaluated, but its resources cannot be reused [1].
Examples of cases that call a move constructor are described below:

1. Initializing a using b both of which are of the same type T : T a = std::move(b);

T a(std::move(b));

2. Passing an object as a function argument: f(std::move(a));

3. Returning an object, which has a move constructor, from a function: return a;

Similar to the copy constructor, the move constructor can be explicitly deleted or de-
fined by the programmer or the compiler will define it implicitly. Moreover, C++ includes
move assignment operators that differ from the move constructors in that they are called on
already existing objects, whereas the move constructors are used to initialize new objects.

2.2 Memory Vulnerabilities

Memory corruption vulnerabilities have been known as a serious issue in computer security
for a long time. C/C++ languages are among the main programming languages suffering
from memory vulnerabilities. Memory corruptions can occur using two types of memory
errors. The first type of error is dereferencing a pointer that goes out of the bounds of
its pointee object and is called a spatial error. The second type, a temporal error, is
dereferencing a pointer that points to a deleted object and is called a dangling pointer [78].
Both out-of-bounds or dangling pointers can be exploited by an attacker for various goals,
such as violating the integrity of the internal data or leaking sensitive information.

Various programming bugs allow an attacker to force a pointer to go out of the object’s
bounds, for instance, a lack of bound checking allows the attacker to index an array out of
its bounds or increment the array’s pointer until it passes the array’s bounds. Similarly,
the attacker can create a dangling pointer in different ways, such as using an incorrect
exception handler that deallocates an object but does not reinitialize the pointer to it [78].

Buffer overflows are an example of such exploits that allow the attacker to overwrite
values in memory. In a buffer overflow attack, the attacker uses out-of-bound access to a

7

buffer to overwrite the objects that are adjacent to it. Figure 2.1 shows how this attack
affects memory. a and b are two adjacent data. If the attacker is able to exploit a bug
such as usage of strcpy() without bounds check (e.g. strcpy(a,"OVERFLOW")), they can
write past the bounds of a and change the value of b as shown in the figure.

Figure 2.1: Buffer overflow example: using strcpy() without proper bound checking (e.g.,
strcpy(a,"OVERFLOW")) can overwrite the adjacent memory (in this case the variable b).

Another well-known exploit is a format string attack [62], in which a user-input that is
being treated as a command in the program is used to perform malicious tasks. Format
functions such as printf() are vulnerable to such attacks in cases where their format
string specifier is missing. These attacks can be used to create invalid pointers and read
data from arbitrary memory locations or write to them. An example of a format string
attack that writes to memory is presented below:[78] The %n format string writes the size
of the input value to the address pointed by %n. Accordingly, in this code, if the argv[1]

is for instance AAA%n, then the value 3 will be written at the address pointed by %n.

1 int main (int argc , char *argv []) {

2 ...

3 printf(argv [1]);

4 }

The buffer overflow and format string attacks take advantage of the spatial errors.
However, a temporal error similarly allows an attacker to read from or write to memory.
For instance, the attacker can read or corrupt the value of a newly allocated sensitive object
in the memory address pointed by a dangling pointer. An example of such an exploit is
described below:

1 char* data = (char *) malloc (3);

2 free (data); // Could accidentally be freed.

3 /* The allocator might allocate the

4 same memory previously allocated to data to the

8

5 sensitive value.*/

6 char* sensitive = (char *) malloc (1);

7 sensitive [0] = ’N’;

8 /* Attacker can overwrite the value of sensitive here.

9 For instance change sensitive [0] from ’N’ to ’Y’ by inputting

10 "Yxx" here.*/

11 scanf("\%s", data);

12 if (sensitive [0] == ’Y’) {

13 Do privileged tasks }

An attacker can use the above methods to attack a program in different ways. Next,
we discuss the two main attack categories that are related to this work.

2.2.1 Control-Flow Hijacking Attacks

In this category of attacks, the goal is to gain control over the program by altering its control
flow. An attacker can achieve this goal by modifying code pointers and loading them into
the instruction pointer. For example, the attacker can overwrite a return address using
either a buffer overflow or one of the previously discussed attacks that allow overwriting
memory. In order to successfully complete the attack, the attacker must find the valid
address of another target that they might want to make the program jump to. This
target could be the address of attacker-specified malicious code or an existing function
that performs the attacker’s desired instructions.

However, one generally used method to prevent the attacker from injecting and ex-
ecuting malicious code is by enforcing W ⊕ X(Write XOR Execute) [11] that allows a
page to either be writable or executable, but not both. This defense limits the attacker to
reusing existing code. Return-to-libc attack [31] uses already existing code (usually libc).
Moreover, the approach that attempts to use small instruction sequences is called Return
Oriented Programming (ROP) [70].

There are different proposed techniques for preventing control-flow hijacking attacks.
Address Space Randomization techniques [67] are known as a mitigation method against
this class of attacks, which add randomization to memory addresses and make it harder
for the attacker to find the desired target addresses. Regarding ROP attacks, examples of
proposed solutions include eliminating gadgets as in [65] and ensuring control flow integrity
as in [19].

There have also been solutions for detecting control-flow hijacking attacks. One popular
solution is called Control-Flow Integrity (CFI) [9] which enforces policies to verify the

9

indirect control transfers. For instance, CFI suggests performing a check for indirect calls,
jumps, and return addresses against a set of valid targets determined based on the correct
control flow of the program [78]. Different versions of CFI have been proposed to adjust
to the security-efficiency trade-off. CFI policies have two types. The first type of CFI is
forward-edge CFI which protects the forward edges in the Control Flow Graph (CFG) of
the program such as indirect function calls. The second type is backward-edge CFI which
protects the backward edges of the CFG such as returning from a function [69]. Stateful
Forward-Edge CFI [87] introduces a mechanism for enforcing forward-edge CFI using Intel
Memory Protection Extensions (MPX) [64], and RAGuard [86] is an example of a proposed
hardware-assisted mechanism for enforcing backward-edge CFI.

Nevertheless, research shows that even fully-precise static CFI [22] is not completely
secure against Control-Flow Bending attacks [22] that are a generalized form of non-control-
data attacks. Moreover, in order to be reasonably secure, even fully-precise static CFI
requires the use of shadow stacks which adds to the overhead of such solution.

2.2.2 Data-Only Attacks

This class of attacks does not corrupt data explicitly related to the control flow, like code
pointers. Instead, they modify data that can indirectly affect the logic of the program and
give the attacker more control or higher privilege [78]. A simple case of such an attack is
presented below:

1 /*In the below example , a queue data structure is used

2 to store the privilege level for each user. If an attacker

3 changes the stored value for a normal user and replaces it

4 with "ROOT" then they can make the program perform the

5 privileged operations illegitimately.*/

6

7 std::queue <string > access_level_queue;

8 if (access_level_queue.front() == "ROOT"){

9 // Perform privileged operations

10 }

One solution against these attacks is to detect any data corruption before the data
is used. Data-Flow Integrity (DFI) [25] proposes a way of performing such checks by
comparing the last instruction used to write to a memory location against a set of possible
valid instructions based on the program code. DFI can also be used to mitigate control-flow
hijacking attacks to some extent since it can ensure that, for instance, a return address
has been lastly written by the corresponding call instruction. Similar to CFI, DFI also

10

makes use of a shadow memory to keep track of the writing instructions that wrote to each
memory location [78].

However, despite solutions that attempt to prevent or detect memory corruption at-
tacks, new attacks are constantly being introduced that can bypass these solutions. As an
example, there are attacks that perform an exploit using intra-object corruption even in
the presence of allocation protection defenses [36].

2.3 Message Authentication Code

A Message Authentication Code (MAC) is a checksum that is used to verify the integrity
and authenticity of the message for which the MAC is calculated. A MAC algorithm
uses a secret key to calculate a MAC over an input message. As long as the secret key
and algorithm don’t change, the calculated MAC over a specific message will always be
the same [51]. Therefore, by calculating a MAC over a message again and comparing it
to a previously calculated MAC over the same message, it is possible to verify that the
message is the same as it was when the first MAC was generated. A Cipher-based Message
Authentication Code (CMAC) is an example of a MAC algorithm based on a symmetric
key block cipher [33].

2.4 Merkle Tree

A Merkle tree is a type of tree data structure in which each non-leaf element (all elements
except the ones at the lowest level) is the result of calculating a hash over the concatenation
of its left and right child elements [80]. The structure of a Merkle tree is shown in Figure 2.2.

A Merkle tree is practical in applications where data integrity verification is required
since it allows verifying the elements by recalculating the hashes up to the root and checking
if the newly calculated root matches the root of the Merkle tree at some previous time.
The key property of this structure that makes the verification process efficient is the fact
that based on the architecture of the Merkle tree, in order to verify an element, we only
require a small part of the Merkle tree, called a Merkle proof, to recalculate the hashes up
to the root. Accordingly, since the verification requires recalculating one hash per level,
the overhead of element verification in a Merkle tree is of order O(log(i)) where i is the
number of leaf elements.

11

Figure 2.2: Structure of a Merkle tree: Each element’s value is the hash of its two child
elements. As an example, in order to verify D2, we only require D2, H1, and H34 to
recalculate the H2, H12, and Hroot and verify that the newly calculated root hash matches
the previously calculated value.

12

2.5 Game-based Cryptographic Proofs

Game-based cryptographic proofs show the security of cryptographic primitives through
defining a sequence of games played between an adversary who wants to perform an attack
and a challenger who is a hypothetical benign entity. Both adversary and challenger are
probabilistic processes communicating with each other, and the goal is to show that the
probability of some specific event (shown as S, e.g., the adversary successfully breaking
the protocol) is close to a target value [75].

In order to achieve this goal, a sequence of several games is defined where the first
game describes the original attack, the last game’s probability is equal to the target value,
and the games in between define events (Si) related to the main event (S) but with small
differences. Then, the proof shows that the probability of the event described in each
game (Pr[Si]) is negligibly close to the probability of the next game’s event (Pr[Si+1]).
Therefore, by transforming each game into the next one, we will ultimately show that the
probability of the first game is very close to the probability of the last game, which is the
target value, and the goal has been achieved.

2.6 ARM Pointer Authentication

Pointer Authentication (PA) [79] is an extension of ARMv8.3, which supports calculating
and verifying a Pointer Authentication Code (PAC). PA uses the fact that, in 64-bit ar-
chitectures, the actual address space is less than 64 bits, meaning that there are several
unused bits that can be used to store a MAC.

The way that PA works is by introducing a set of pac instructions and their corre-
sponding aut instructions, which take a pointer value and a 64-bit modifier and calculate a
PAC using a PA key. The instruction set aut is used for verification through recalculating
the PAC and comparing it with the stored PAC [49]. PA provides five different keys; two
keys for data pointers(APDAKey and APDBKey), two keys for code pointers(APIAKey
and APIBKey), and one for generic use(APGAKey)[72].

In addition to the previous instructions, PA introduces an instruction, xpac, for strip-
ping the PAC, and pacga, in order to compute a 32-bit MAC over two 64-bit inputs. The
pacga instruction is useful when trying to protect data structures in memory [79]. This
instruction uses APGAKey, which is the third type of key provided by ARM besides the
code pointers keys and data pointers keys.

13

2.7 Intel AES-NI

Intel AES-NI is a set of encryption instructions based on the Advanced Encryption Stan-
dard (AES) algorithm [58], created as an extension to the x86 instruction set architecture
to provide high performance and better security. AES is a symmetric block cipher that
performs data encryption and decryption in several rounds. The plaintext used in AES
encryption is a 128-bit block that is encrypted to a 128-bit block of ciphertext. The key
used in AES encryption can have a length of 128, 192, or 256 bits. The number of iter-
ations for AES encryption depends on the length of the key and can be 10, 12, or 14 for
128,192, or 256-bit keys, respectively. Each round of encryption has two 128-bit inputs
called State and Round Key. The Round Key is different in each round and is generated
through performing a Key Expansion algorithm on the main cipher key.

The encryption process consists of one round of XOR-ing the data block with the
cipher key which generates the State, and then the State is used in the mentioned following
rounds of transformations along with the Round Keys. The result of the final round is the
ciphertext [40].

14

Chapter 3

Problem Description

3.1 Problem Statement

Low-level languages such as C and C++ can contain memory errors (spatial or temporal
errors) that can be exploited to compromise data integrity, leading to attacks like control-
flow hijacking or data-only attacks, as outlined in Section 2.2.

There have been numerous attempts to improve the security of C/C++ programs either
by introducing ways to detect memory errors or mitigating the mentioned attacks. In the
past, control-flow hijacking attacks were considered a more serious threat than non-control-
data attacks, so there has been more research done on this category of attacks. Solutions
such as Control-Flow Integrity (CFI) techniques are now widely implemented and used.
There have also been solutions that enforce Data-Flow Integrity (DFI) that attempts to
mitigate both categories of attacks. Nevertheless, as discussed in Section 2.2, there are
limitations and downsides to these solutions.

In addition, the overhead and feasibility of such solutions are critical factors to consider
when defending against memory corruption attacks. A comprehensive data protection
solution would ensure the protection of all data in a program. However, this would lead to
high overhead which makes the solution impractical. Accordingly, protecting only critical
data is a more reasonable solution. A data structure provides a way to organize data and
store it in memory. It can also be used to store sensitive information that can be a target
for memory corruption attacks. Consequently, protecting the integrity of data structures
is valuable in preventing the mentioned attacks.

In this work, our main goal is to design and implement a secure (authenticated) version

15

of gcc C++ standard library data structures (more specifically, stacks, queues, and red-
black trees), which guarantees the integrity of elements while stored in memory inside the
secure data structures.

3.2 Adversary Model

The adversary model assumes a powerful adversary with arbitrary read and write access
to the memory. However, we assume the presence of the following security mechanisms in
the system:

• W ⊕X [11]

• Coarse grained control-flow integrity [29]

W ⊕X prevents an adversary from altering code memory pages, eliminates code injec-
tion attacks, and limits the adversary to code reuse attacks. Since W ⊕X is implemented
in all major processors, it is reasonable to assume its presence.

The second assumption prevents the transfers to arbitrary addresses in the code, mean-
ing that the adversary will not be able to make the program jump to invalid targets (e.g.
call functions out of order). This assumption can be satisfied using existing coarse grained
CFI solutions with acceptable overhead, such as ROPecker [27].

We also assume that the OS and the underlying hardware are trusted; and that the
adversary is limited to userspace and has no control over the kernel space. Moreover, the
adversary is unable to access and modify reserved registers.

Since the presence of coarse grained CFI prevents transfers to attacker chosen des-
tinations as explained above, an adversary with the goal of corrupting the secure data
structures will not be able to legitimately invoke the implemented API outside the correct
flow of the program. Consequently, the adversary is limited to modifying the memory
and more specifically, the elements inside the data structures. Our goal is to prevent such
element alterations by the adversary. Attacks such as side channel and fault induction
attacks are out of the scope of this work.

16

3.3 Requirements

3.3.1 Generality

Our goal is to provide a drop-in implementation for the secure data structures with the
following properties:

G-R1 Requiring minimal change to the program code in applications when switching to
use the secure data structures: This requirement ensures maximum usability by
minimizing the overhead of switching to the secure version described in Section 3.1.

G-R2 Providing the same functionality as the unmodified data structures: Similar to the
previous requirement, this requirement ensures maximum usability since the switch
to the secure data structures does not introduce any new limitations.

G-R3 Being compatible with both ARM and x86 architectures: Finally, this requirement
reduces the limitations in using the secure version by being available for different
architectures.

3.3.2 Security

In order to mitigate the attacks through the data structures, we plan to provide the fol-
lowing security promises:

S-R1 Any corruption of secure data structures will be detected when an element is read
from the data structure. This requirement ensures that any element successfully read
from a data structure will match the element placed into it.

S-R2 The time windows within the update operations are short enough to make it infeasible
to corrupt the element when it’s in transit.

3.3.3 Performance

In order for the secure data structures to have acceptable performance overhead, they must
have the following property:

P-R1 The basic operations for each secure data structure have the same asymptotic time
complexity as the unmodified data structures.

17

Chapter 4

Design

The general idea for securing the data structures is to use Message Authentication Codes
(MACs) to verify the integrity of elements inside data structures. More specifically, we
calculate a MAC over each element in a data structure and store the MACs along with the
elements so that we can later verify the integrity of the elements. The data verification is
done by recalculating the element’s MAC and checking that the result is identical to the
previously calculated MAC. Furthermore, we assign each secure data structure instance a
unique nonce, which serves as an identifier for that instance and its elements.

In order to provide maximum protection and minimum overhead, the design details
for each data structure are slightly different. We cover the shared and case-specific design
details in the following sections. The term unmodified data structure refers to the unmod-
ified implementation of data structures in gcc libcstdc++ and is being used in the rest of
the sections and chapters.

4.1 Securing the MACs

Our designed secure data structures use MACs to verify the integrity of elements when
reading from the data structure. However, since we assume a powerful adversary with
read/write access to the entire memory as described in Section 3.2, MACs alone will not
provide complete protection against attacks such as MAC reuse attack. In a MAC reuse
attack, the attacker uses previously calculated MACs (e.g. the MAC of another element
in the data structure instance) and replaces the MAC and value of the target element
with them and their corresponding data. Since the reused MAC is a valid MAC, it will

18

Figure 4.1: Global Merkle tree and lookup table used for mapping each secure data struc-
ture instance’s nonce to the position of its corresponding top MAC in the Merkle tree.
Securely storing the root of the Merkle tree guarantees the integrity of the stored data (the
top MACs of the data structures in our case). The lookup table is also used to increase
the efficiency of finding the corresponding top MAC of each data structure instance in the
Merkle tree.

19

be verified successfully and hence allows the attacker to replace an element with another
element without being detected. This attack can be mitigated by preventing an attacker
from replacing MACs.

Reserved registers provide a secure way to store the MACs and prevent the attacker
from replacing them. However, keeping all of the MACs in reserved registers is neither a
practical nor scalable solution since there are not enough registers to dedicate to storing
MACs. Accordingly, our design for the secure data structures is based on two main features:
First, for each data structure, we calculate and securely store one specific MAC (which we
call the top MAC of that data structure instance) that allows for verifying the element
MACs. Secondly, a global Merkle tree is used to store the top MAC for each data structure
while its own root is kept in a reserved register. This approach minimizes the cost of using
reserved registers by requiring only a single register no matter the number of data structure
instances. As shown in Figure 4.1, our design consists of a global Merkle tree and a lookup
table that maps each data structure instance’s nonce to the index of its corresponding top
MAC in the Merkle tree.

4.2 Secure Data Structures Design

4.2.1 Secure Stack

A stack is a data structure designed to work in a Last-In-First-Out (LIFO) manner. There
is only one point of access in the stack since the data is both pushed to and popped from
the top of the stack. The basic operations for the gcc libstdc++ implementation of stack
data structure are as follows:

1. push: Adds an element to the top of the stack

2. pop: Removes the top element of the stack without returning the element to the
caller

3. top: Returns a reference to the element at the top of the stack

4. size: Returns the number of elements in the stack

As shown in Figure 6.1, we introduce secure-stack (out designed secure stack data
structure) which is composed of two unmodified stacks, one for storing the elements and

20

Figure 4.2: Design of a secure stack data structure: the secure design of a stack uses
two unmodified stacks to store the elements and their MACs. Moreover, each instance of
the secure data structures is assigned a unique nonce as an identifier. Since the nonce is
included in the MACs, it also prevents an attacker from replacing elements with elements
from other data structures.

21

one for the MACs that are used to verify the integrity of the elements. The nonce assigned
to the secure-stack is used to retrieve its top MAC from the global Merkle tree.

For each element in a stack, a MAC is calculated based on: the element’s value, the
current size of the stack, the nonce, and the MAC of the previous (top) element in the
secure-stack. Accordingly, the MAC for the element i is calculated as follows (assuming
that the value of i increases from bottom to top of the stack):

MAC i = MACk(element’s value, nonce, size,MAC i−1)

Based on the MAC calculation formula, each MAC depends on the MAC of the previous
element. Therefore, the MACs are chained together, and the most recent MAC alone is
enough to verify the integrity of all the other MACs. Therefore, the most recent MAC will
serve as the top MAC for a secure-stack instance and is kept in the global Merkle tree.
However, while a secure-stack instance is empty, its nonce is stored as its top MAC.

Since in a secure-stack, elements are always read from the top, we can verify the integrity
of the accessed elements using the top MAC. Moreover, if an element is removed directly
from the top of the secure-stack, we can verify the integrity of the MAC of the next element
using the MAC of the removed element (previous top MAC) and then set it as the new top
MAC for the data structure instance. Finally, when pushing new elements into a secure-
stack, the MAC of the new element will replace the previous top MAC. The details of how
each operation works in a secure-stack is presented in Algorithms 1, 2, 3 and 4.

secure-stack.push(x)

As shown in Algorithm 1, first, the top MAC is retrieved from the Merkle tree, and then
the element is pushed into the data-stack. Furthermore, before calculating and storing the
MAC for the new element, the previous top MAC is pushed into the MAC-stack, and then
its value is replaced by the MAC of the new element. Finally, the updated top MAC is
stored in the Merkle tree.

secure-stack.pop()

This operation is presented in Algorithm 2. When popping values from a secure-stack,
the next element will be the new top element and its MAC will be the new top MAC.
Therefore, we need to verify that it is valid. Consequently, we get the top of the mac-stack
and the data-stack, recalculate the top MAC using them and verify that this value matches

22

the top MAC from the Merkle tree. If the top MAC verifies, we remove the top element
from the data-stack, remove the top of the mac-stack, and store it as the new top MAC.

secure-stack.top()

The top() operation represented in Algorithm 3 is almost identical to the pop() operation
except that the top() returns a reference to the element instead of removing it from the
stack. Therefore, after verifying the top MAC, a reference to the top element is returned
as the output and nothing gets removed.

secure-stack.size()

In order to verify the size of the secure stack, we call the top() function since it performs
the required MAC verification that includes the size (the current size value is included in
the top MAC as an input). However, if the secure-stack is empty, we cannot call the top()

function for this purpose since calling top() on empty stack could result in undefined
behavior. Instead, since for an empty secure-stack the top MAC is equal to the nonce of
the data structure, we can verify the size by checking if the top MAC matches the nonce.
These steps are represented in Algorithm 4.

Algorithm 1 secure-stack.push(x)

1: top-mac = get-top-mac() . The top MAC is read from Merkle tree to be pushed into
the mac-stack so that the new top MAC can be stored in the Merkle tree.

2: data-stack.push(x)
3: size = size + 1
4: mac-stack.push(top-mac) . Previous top MAC goes into mac-stack.
5: top-mac = MACk(x, nonce, size, top-mac)
6: insert-top-mac(top-mac) . The old top MAC in the Merkle tree is replaced with the

MAC of the newly pushed element.

4.2.2 Secure Queue

A queue is a data structure that works in a First-In-First-Out (FIFO) format, where
elements are enqueued from the back of the queue and dequeued from the front. The basic
operations for the gcc libstdc++ queue data structure are:

23

Algorithm 2 secure-stack.pop()

1: x = data-stack.top()
2: top-mac = get-top-mac()
3: if top-mac == MACk(x, nonce, size, mac-stack.top()) then . This checks

the correctness of the next MAC since it will later replace the top MAC in the Merkle
tree.

4: data-stack.pop()
5: insert-top-mac(mac-stack.top())
6: mac-stack.pop()
7: else
8: exception(“MAC authentication error.”)
9: end if

Algorithm 3 secure-stack.top()

1: x = data-stack.top()
2: top-mac = get-top-mac()
3: if top-mac == MACk(x, nonce, size, mac-stack.top()) then . This check verifies the

correctness of the top element before being returned as the output. return x
4: else
5: exception(“MAC authentication error.”)
6: end if

Algorithm 4 secure-stack.size()

1: if size 6= 0 then
2: top() . Calling the top() function verifies the size as part of the MAC verification.

return size
3: else
4: if nonce == get-top-mac() then . When the size is 0, it cannot be verified using

the top() function. However, in this case, the top MAC should be equal to the nonce
and hence it can be verified by this check.

5: return size
6: else
7: exception(“MAC authentication error.”)
8: end if
9: end if

24

1. enqueue: Inserts elements to the back of the queue

2. dequeue: Removes the element at the front of the queue

3. front: Returns a reference to the element at the front of the queue

4. back: Returns a reference to the element at the back of the queue

5. size: Returns the number of the elements in the queue

The queue is different from a stack mainly due to having two points of access for the
stored elements. In a stack, an element is always pushed to, read, and popped from the
top. However, in a queue, the element is enqueued from one end and dequeued from
the other end. It also allows reading elements from both front and back. Therefore, the
chaining strategy used in the secure-stack is not practical in a queue due to compromising
efficiency. The reason is that when chaining the MACs if a new MAC is added or removed
from the bottom (or top, depending on the direction of the stacking mechanism), all MACs
need to be updated since each of them is calculated using the MAC before (or after) it.

Consequently, in order to maintain efficiency, we introduce secure-queue (our designed
secure queue data structure) with a slightly different design from the secure-stack, as
presented in Figure 4.3. As shown in the figure, the secure-queue uses two indices, back-
index and front-index, and the top MAC is calculated over them along with the MACs of
the front and back elements. The two described indices are initialized as a secure-queue is
constructed. The initial values are 0 for the back-index and 1 for the front-index. Once a
new element is pushed to the back of secure-queue, its index will be the previous back-index
plus one. The value of the back-index itself will also increase by one. When an element
is dequeued from the front of the secure-queue, the value of the front-index is updated to
front-index+1 so that it is equal to the index of the new front element. We calculate the
MAC for the front and back element differently from the rest of the elements. The MAC
for the elements with index i, except front and back elements, is calculated as presented
below:

MAC i = MACk(element value, nonce, i)

The MAC for the front and back elements does not include their indices. Therefore,
their MACs are calculated as follows:

front or back MAC = MACk(element value, nonce)

25

Figure 4.3: Design of a secure queue data structure: the secure design of a queue uses
two unmodified queues to store the elements and their MACs. Moreover, each instance of
the secure data structures is assigned a unique nonce as an identifier. Since the nonce is
included in both types of MACs, it also prevents an attacker from replacing elements with
elements from other data structures.

26

Based on this design, for each element in a secure-queue, there is an index that stays
unique during the whole lifetime of the secure-queue instance. The top MAC that is
calculated over the nonce, the front and back indices, and the MAC of the front and back
elements can be used to validate the integrity of the indices and elements at both ends.
Consequently, the attacker will not be able to illegitimately (outside the provided API)
change the element and reuse MACs calculated over other elements.

top MAC = MACk(nonce, back-index, front-index, back MAC, front MAC)

When an element is read from the front or back, its MAC can be recalculated and
verified. The values of the back and front MACs are verified using the top MAC and then
they can be used to verify the front or back elements. The algorithms for each operation
in a secure-queue are illustrated in Algorithms 5, 6, 7, 8 and 9.

secure-queue.enqueue(x)

The enqueue operation is presented in Algorithm 5. The first step is to verify the indices
and front and back MACs using the top MAC. After ensuring that the indices and MACs
are correct, the MAC of the current back element is updated since now it should include
the element index (unless it is also the front element). Then, the element is inserted into
the element queue. Next, the back-index will be updated, and the MAC for the new
element will be calculated. Finally, the top MAC is updated to realize the changes in the
back-index value and back MAC.

secure-queue.dequeue()

In the dequeue operation, similar to the enqueue(), first, the top MAC is used to verify
the indices and front and back MACs. Then the front element and its MAC are dequeued
from the element and MAC queues. The next step is to update the front-index to the index
of the next element. If the new front element has previously been a middle element, it is
first verified and then its MAC will be updated to not include the index anymore. Finally,
the top MAC should be updated to realize this change. These steps are represented in
Algorithm 6.

27

secure-queue.front() and secure-queue.back()

The design for the front and back operations is almost the same. Similar to the other
operations, the top MAC is used in both operations to verify indices and front and back
MACs. Then, in the front(), the MAC of the front element is calculated and compared to
the one stored in the MAC queue. Similarly, the same steps are performed in the back()

to verify the back element. If the MAC verification passes, the front or back element is
returned. These steps are shown in Algorithms 7 and 8.

secure-queue.size()

As shown in Algorithm 9, the size() operation in a secure-queue uses the indices to
measure the size. The top MAC is first used to verify the indices, then the size of the
secure-queue is calculated by subtracting the indices. Since the integrity of the indices is
verified by the top MAC , this approach guarantees that the returned size is always correct.

Algorithm 5 secure-queue.enqueue(x)

1: if MACk(nonce, front-index, back-index, mac-queue.back(), mac-queue.front()) 6= get-
top-mac() then

2: exception(“MAC authentication error.”) . Verifying the indices and MACs using
top MAC.

3: end if
4: . Updating the previous back element’s MAC, inserting the element, updating the

back-index and then calculating the element MAC and updating the top MAC.
5: if size() > 1 then
6: x = element-queue.back()
7: if MACk(x, nonce) 6= mac-queue.back() then . Verifying the back element before

updating its MAC.
8: exception(“MAC authentication error.”)
9: end if
10: mac-queue.back() = MACk(x, nonce, back-index)
11: end if
12: element-queue.enqueue(x)
13: back-index = back-index + 1
14: mac-queue.enqueue(MACk(x, nonce))
15: insert(MACk(nonce, front-index, back-index, mac-queue.back(), mac-queue.front()))

28

Algorithm 6 secure-queue.dequeue()

1: if MACk(nonce, front-index, back-index, mac-queue.back(), mac-queue.front()) 6= get-
top-mac() then

2: exception(“MAC authentication error.”) . Verifying the indices and MACs using
top MAC.

3: end if
4: . Removing the element and its MAC, updating the front-index and then updating

the top MAC.
5: element-queue.dequeue()
6: mac-queue.dequeue()
7: front-index = front-index + 1
8: if size() > 1 then
9: x = element-queue.front()
10: if MACk(x, nonce, front-index) 6= mac-queue.front() then . Verifying the new

front element before updating its MAC.
11: exception(“MAC authentication error.”)
12: end if
13: mac-queue.front() = MACk(x, nonce)
14: end if
15: insert(MACk(nonce, front-index, back-index, mac-queue.back(), mac-queue.front()))

Algorithm 7 secure-queue.front()

1: if MACk(nonce, front-index, back-index, mac-queue.back(), mac-queue.front()) 6= get-
top-mac() then

2: exception(“MAC authentication error.”) . Verifying the indices using top MAC.
3: end if
4: . Reading and verifying the front element with its MAC and returning the element.
5: x = element-queue.front()
6: if mac-queue.front() == MACk(x, nonce) then return x
7: else
8: exception(“MAC authentication error.”)
9: end if

29

Algorithm 8 secure-queue.back()

1: if MACk(nonce, front-index, back-index, mac-queue.back(), mac-queue.front()) 6= get-
top-mac() then

2: exception(“MAC authentication error.”) . Verifying the indices using top MAC.
3: end if
4: . Reading and verifying the back element with its MAC and returning the element.
5: x = element-queue.back()
6: if mac-queue.back() == MACk(x, nonce) then return x
7: else
8: exception(“MAC authentication error.”)
9: end if

Algorithm 9 secure-queue.size()

1: if MACk(nonce, front-index, back-index, mac-queue.back(), mac-queue.front()) 6= get-
top-mac() then

2:

3: exception(“MAC authentication error.”) . Verifying the indices using top MAC.
4: else

return back-index - front-index + 1 . Calculating the size using the indices.
5: end if

30

4.2.3 Secure Red-Black Tree

A red-black tree is a type of self-balancing binary search tree that allows for storing com-
parable data. In this data structure, every element has a key and a value and is assigned a
black or red color which is used for rebalancing the tree. The rebalancing process modifies
the position of the elements to ensure that the height of the left and right sides of the tree
do not differ by more than one. Basic red-black tree operations in gcc libstdc++ include:

1. insert: Inserts a new element into the tree

2. erase: Removes an element from the tree

3. find: Finds and returns a specified element in the tree

As shown in Figure 4.4, we introduce secure-rb-tree (our designed secure red-black tree
data structure), in which a MAC is being calculated for each element and stored along
with them, and the top MAC in the secure-rb-tree is the root’s MAC. The MAC for each
element is calculated using the nonce, the data, MAC of its left child, and MAC of its right
child as follows:

MAC = MACk(nonce, data, left-child.MAC, right-child.MAC))

In all operations, as the algorithm goes down in a secure-rb-tree to find an element
or find the proper place to insert a new one, all the elements on the path will be verified
sequentially using their MACs. The verification starts with the root, which is being verified
based on the top MAC. Moreover, adding or removing an element requires updating the
MACs from that element up to the root along with the rebalancing process.

The details of each operation in the secure-rb-tree are included in the Chapter 9 since
they are more complex than the stack or queue operations and take up a considerable
amount of space. Below, we describe the main details of the mentioned operations (the
find() operation is explained within the two other operations):

secure-rb-tree.insert(x)

The insert operation consists of three parts. First, we need to go down the tree and
compare the new element’s key with the current elements in the tree to find the correct
place for the new element. While going down the tree starting from the root, each element

31

Figure 4.4: Design of a secure red-black tree data structure: The secure-rb-tree stores
MACs in the elements themselves since elements are defined as structs and there is no
need for dedicating another data structure to the MACs.

32

is verified using its MAC. Since the root’s MAC is retrieved from the Merkle tree, and the
MAC of each element is verified when authenticating its parent’s MAC, all the accessed
elements and their MACs will be verified according to the top MAC. After finding the
correct spot, the new element is created and stored along with its MAC. The tree is then
rebalanced. The rebalancing process goes up from the newly inserted element and checks
the color of the elements for inconsistencies caused by adding the new element. We take
advantage of this process to update the MACs while rebalancing the tree. However, the
rebalancing does not necessarily go up to the root (the tree might be balanced from the
beginning or become balanced after going up a few levels). Accordingly, we perform an
updating process that continues updating the MACs all the way to the top of the tree.

secure-rb-tree.erase(x)

This operation is similar to the insert(x) operation. The first step is finding the element
that needs to be erased. The process of finding the element is very similar to finding
the insertion spot in the insert(x) operation and requires the MAC verification for the
whole path. After finding the element and removing it from the secure-rb-tree, the tree
is rebalanced and the MACs are updated along the path from the path from the removed
element to the top of the tree.

4.3 Object Wrappers

When reading elements from stack, queue, or red-black tree data structures, a reference to
the element is returned. More specifically, the gcc libstdc++ implementation of these data
structures returns a reference to the element when calling functions such as top() in the
stack, front() or back() in the queue, and find() in the red-black tree. This reference
allows for legitimately modifying the element’s value while it is inside the data structure.
In a secure-stack or secure-queue, this reference can allow for modifying an element in the
middle of the data structure and not only the top element in the secure-stack, or the front
and back elements in the secure-queue. The reason is that for instance, after returning a
reference to the top element in the secure-stack, new elements could be pushed to the top.
In this case, the reference will then point to the element which is now in the middle of
the secure-stack. The same thing can happen in a secure-queue. In a secure-rb-tree, the
reference generally allows modifying an element in the tree, which can be at any position
in the data structure.

33

In our designed secure data structures, the MACs are only calculated and updated
during the main operations described in the previous sections. Therefore, if an element
inside the secure data structures is modified using the reference, the previously calculated
MAC will not match the MAC of the element’s new value and will cause an authentication
failure which is a false positive.

In order to overcome this issue, we added an object wrapper mechanism to the design.
Accordingly, when reading an element, instead of returning a plain reference to the element,
an object wrapper is returned that includes a reference to the element and performs the
necessary MAC updates as soon as the element is modified through the object wrapper
interface. The MAC update process will update all the MACs affected by the change,
which is not always just the element’s MAC. For instance, in a secure-stack, since each
MACs is calculated based on the MAC of the element below it, if an element in the middle
of the stack changes, all of the MACs up to the top need to be updated.

34

Chapter 5

Implementation

5.1 General Implementation Details

We extended the gcc-11.1.0 C++ Standard library to include our implementation for se-
cure data structures. The gcc C++ standard library implements the data structures as
template classes that use a container as their underlying storage class. The stack and
queue templates use the deque container by default as a template parameter. Therefore,
in order to preserve the API of the standard library data structures, we implemented the
secure data structures as containers that can replace the deque. We offer an option, Se-
cure macro, which can be set at compile-time to switch the default template to use secure
data structures. Accordingly, the default container for the stack and queue will be the
secure-stack and secure-queue if the Secure option is enabled. The container can also
be manually chosen by the developer regardless of whether the Secure option is enabled.
However, the rb-tree is not directly exposed by the standard library API, but is instead
used as the underlying container for data structures such as map. Therefore, we used a
similar approach as the secure-stack and secure-queue to create a secure map using our
secure-rb-tree implementation.

As mentioned in Chapter 4, we use Message Authentication Codes (MACs) to verify
the integrity of the data structures. In order to provide a generic interface for the MAC
calculations, we implemented an interface class called top-MAC-store, which defines the
MAC calculation functions for all data structures. There are derived classes that implement
the MAC related functions for each of ARM and x86 architectures and are passed to the
secure data structures as template parameters. Therefore, although the implementation
ensures that the suitable class will be chosen by default using pre-defined compiler macros,

35

the developer can also choose their desired MAC calculation class when using secure data
structures. For the ARM version, the MACs are calculated using Pointer Authentication
(PA) feature on ARMv8.3. Specifically, we used the pacga instruction which computes a
32-bit MAC over two 64-bit inputs. Regarding the x86 version, we used the Intel AES-
NI encryption instructions described in Section 2.7. The keys for AES-NI encryption are
stored in reserved registers (xmm5-xmm15) to prevent an attacker from modifying the
keys.

Finally, we calculate the MACs over the hash of the element to easily incorporate
different data types into MAC instructions. Accordingly, we allow the developer to use a
default hash function which treats objects as flat memory structures or provide their own
hash function which could support complex data types. We use an open-source SHA256
hash generator [63] as the default option for all data structures.

Listing 5.1 presents an example of how the mentioned template options are defined in
secure data structures. This example specifically represents the secure-stack; however, a
similar approach has been used for the rest of the secure data structures.

1 template <typename _Tp , typename _Sequence = std::deque <_Tp >, typename

HashType = SecureHash <_Tp >, typename MACStoreType = MACStore >

2 class secure_stack : std:: unsafestack <_Tp >

Listing 5.1: Secure-stack template parameters: The default MACStoreType, MACStore,
will be defined as an ARM or x86 architecture class using the macros depicting the
architecture for which the library is used.

5.2 Securing the MACs

We use an open-source implementation of a Merkle tree [56] for our prototype. We created
a Merkle tree class that stores an instance of the Merkle tree along with a lookup table
and required functions to get, verify, and update the top MACs. This Merkle tree class is
created as a global object that is accessible to all derived classes from the top-MAC-store
abstract class. The root of the Merkle tree is securely stored in a reserved register as stated
in Chapter 4. The register used for storing the root of the Merkle tree is x28 for the ARM
version and r13 for the x86 version.

The implemented lookup table is a simple std::map data structure (the unmodified
version). The map data structure used for the lookup table cannot be the secure version
using the secure-rb-tree. The reason is that the secure-rb-tree itself uses the Merkle tree
class and hence the lookup table. Therefore, if the lookup table is a secure map, it will

36

make an infinite loop which does not work. However, since the top MAC for each data
structure is tied to its nonce and can be verified that it belongs to the correct data structure,
modifying the lookup table will not create any new attack opportunities for the adversary.
Accordingly, the implementation does not require using secure storage for the lookup table
in the first place.

Moreover, in order to decrease the overhead of verifying the Merkle tree, the Merkle tree
class maintains a list of indices of the emptied elements in the Merkle tree. These elements
belong to the deconstructed data structure instances which no longer exist. Therefore, their
corresponding elements in the Merkle tree can be reassigned to the new data structures.
Accordingly, upon the creation of a new data structure, the Merkle tree class checks the
list of empty indices and assigns an empty element to the new data structure instead of
immediately creating a new element in the Merkle tree. This approach eliminates the
need for fully deleting the elements from the Merkle tree when they are emptied, which
can require changing the structure of the whole tree, and improves the performance as it
assigns new values to the empty elements (taking O(log(i))) instead of leaving them unused
or removing them from the Merkle tree which could be of order O(i) in the worst case.

5.3 Secure Data Structures Implementation

5.3.1 Secure Stack

As described in Section 4.2, the stack data structure provides four main operations: push,
pop, top, and size. The template implementation of stack in the Standard Template Library
(STL) also provides the empty(), swap(), and emplace() operation. The empty() func-
tion returns a boolean showing whether or not the stack is empty. swap() and emplace()

functions are only provided since C++11 and swap the content of two stacks, and con-
struct an element in-place at the top of the stack, respectively. Although our secure stack
is used as a container replacing the deque as the default container, it is implemented with
the same functionality as the stack itself. Accordingly, the secure-stack does not imple-
ment all operations provided by a container such as a deque. However, the implemented
operations are sufficient to replace the deque container in a stack data structure based on
the requirements stated by the STL.

Our secure-stack implementation uses two deque-based stacks (which is the unmodified
version) to store the elements and their MACs. Moreover, each instance of the secure-
stack stores a pointer to its own top-MAC-store derived class, which is used for the MAC
calculations and storing the top MAC .

37

Furthermore, the stack data structure implements the copy and move constructors,
which are also included in our secure version. For a move constructor, we move the MACs,
nonce, and the top-MAC-store to the new secure-stack using the std::move() operation.
However, the copy constructor is more complicated because the copy and the original data
structures are two distinct data structures and will have two different nonce values since
no two instances should have the same nonce. Since the nonce is included in all MACs,
the previous MACs are not usable in the copied version. Accordingly, the MACs need to
be verified first to ensure the integrity of the data, and then, they need to be recalculated
for all the elements. Note that the MACs and elements do not need to be validated in the
move constructor since they will not change during the construction, and the validation
process will happen when reading the element from the new data structure. The details of
how the copy constructor works are presented in Listing 5.2. The copy constructor creates
a copy of the fields in the original secure-stack to be used for the verification process. A
temp vector is also used to store the verified elements. In the first loop, the elements
are verified one by one, starting from the top. Then, once all elements are verified, in
the second loop, the elements will be pushed into the new secure-stack using its push()
function, which handles the MAC generation too.

In addition, we customize the deconstructor for the secure-stack to call the proper
functions that remove its data from the Merkle tree and add its corresponding element in
the Merkle tree to the empty elements list as mentioned in Section 5.2.

1 explicit secure_stack(const secure_stack <_Tp , _Sequence , HashType ,

MACStoreType > &__c) {

2 top_mac_store = *new MACStoreType ();

3 nonce = Nonce:: next_nonce ();

4 // Making copies from the fields of the original secure -stack (__c)

since it is a constant and should not be modified.

5 MACStoreType copy_top_mac_store = __c.top_mac_store;

6 int nonce_copy = __c.nonce;

7 std:: unsafestack <MAC > src_macs {*__c.macs};

8 std:: unsafestack <_Tp > src_data{__c};

9 int size_copy = src_data.size();

10 // This function verifies and returns the top MAC from the merkle

tree.

11 MAC c_top_mac = *copy_top_mac_store.get_top_mac(nonce_copy);

12

13 macs = std::unique_ptr <std:: unsafestack <MAC >>(new std:: unsafestack <

MAC >());

14 std::vector <_Tp > temp;

15 int size = size_copy;

16 // Verifying the MACs of the original secure -stack

17 for (int j = 0; j < size; j++)

38

18 {

19 _Tp top_data = src_data.top();

20 std:: string dataHash = HashType ::hash(top_data);

21 // The dataHash is a string but is transformed into a long int to

calculate the MAC over it.

22 verify_mac(

23 top_mac_store.calculate_mac_stack(stol("000" + dataHash.

substr(3, dataHash.length () - 1)), nonce_copy , this_address ,

size_copy - j, src_macs.top()),

24 c_top_mac);

25 c_top_mac = src_macs.top();

26 src_macs.pop();

27 src_data.pop();

28 temp.push(top_data);

29 }

30 // Stores the initial top MAC , which is its nonce , for the new secure

-stack in the merkle tree.

31 init_mac ((MAC)nonce);

32 // Pushes the values into the new secure -stack. The push function

performs the required MAC calculations.

33 for (int i = temp.size() - 1; i > -1; i--)

34 {

35 _Tp top = temp[i];

36 push(top);

37 }

38 }

Listing 5.2: secure-stack copy constructor

5.3.2 Secure Queue

The queue data structure includes basic operations as discussed in Section 4.2.2 which
are: enqueue, dequeue, front, back, and size. The implemented queue data structure in
STL also includes empty(), swap(), and emplace() operations similar to the stack. The
secure-queue is also added to the libstdc++ stl-queue implementation as an underlying
container and implements the same operations as the template queue implementation in
STL.

The secure-queue uses unmodified queues to store the elements and MACs. The top-
MAC-store and nonce field in the secure-queue is the same as in the secure-stack. Moreover,
the move and copy constructors for the secure-queue are very similar to the secure-stack. In
the copy constructor, we verify all the MACs and then recalculate the new MACs by calling

39

the enqueue function for each element in the original secure-queue. The move constructor
uses std::move() to move the fields from the original secure-queue to the new one. The
deconstructor for the secure-queue also calls the proper functions to remove its data from
the Merkle tree class and the lookup table.

5.3.3 Secure Red-Black Tree

The secure-rb-tree is implemented separately from the stl tree implementation in libstdc++
but has been added as the underlying container to stl map to create a secure map data
structure. As explained in the Section 4.2.3, the operations in a secure-rb-tree require
verifying and updating a whole path from top to bottom and vice versa. Accordingly,
this might introduce an opportunity for the attacker to change values in between the
verification and update operations. This type of attack can be prevented by limiting the
time window for attacks on the elements while updating by using an additional reserved
register for securing a MAC over the updated value and old value of the subtree root. In
this approach, we store a MAC over the new and old value of the local root of the updated
sub-tree to ensure its security. This approach satisfies our security requirement Item S-R2.

Moreover, the unmodified rb-tree implementation makes use of an additional element,
called header, which stores the root, the leftmost, and rightmost elements in the tree for
easier access. The secure-rb-tree uses the same implementation. In order to preserve the
integrity of the header, we created a second type of MAC for the header. Since the header
MAC includes the root MAC as part of it, in the secure-rb-tree implementation, the header
MAC is stored as the top MAC instead of the root MAC.

headerMAC = MACk(nonce, leftmost.MAC, rightmost.MAC, root.MAC))

The STL implementation for the rb-tree includes various functions for simplifying the
operations on the tree. We have added the required MAC validation and updates to
those functions but preserved their general format in the secure-rb-tree. Examples of such
functions include minimum(x) which returns the leftmost descendant, and maximum() which
returns the rightmost descendant of x. In both functions, a loop has been implemented that
goes down on the left or right side of x until the last leaf is reached. We have implemented
a validation check for each step of the loop to validate the corresponding element at that
level as depicted in Listing 5.3.

1 element minimum(element __x)

2 {

40

3 while (__x ->_M_left != 0)

4 {

5 __x = __x ->_M_left;

6 // mac() returns the stored MAC for the element.

7 verify_mac(top_mac_store.calculate_mac_tree(nonce , mac(__x ->_M_left),

mac(__x ->_M_right), hash_calculation(__x)), mac(__x));

8 }

9 return __x;

10 }

Listing 5.3: minimum(x) function in red black tree which returns the leftmost descendant.

5.4 MAC Calculation

The MAC calculation functions have been defined as pure virtual functions in top-MAC-
store abstract class and then implemented in separate derived classes for the ARM and
x86 architectures. An example of how the ARM and x86 MACs are calculated is shown in
Listings 5.4 and 5.5.

1 __asm__ volatile(

2 "pacga %[data], %[data], %[nonce]\n\t"

3 "pacga %[result], %[index], %[data]\n\t"

4 : [result] "=r"(result)

5 : [data] "r"(data),

6 [nonce] "r"(nonce),

7 [index] "r"(index)

8 :);

Listing 5.4: ARM MAC calculation for secure-queue data: We use inline assembly to
calculate the MAC. Also, since the ”pacga” instruction only uses two values, we need to
perform the MAC generation two times to include all three inputs.

1 #define DO_ENC_BLOCK(m,k) \

2 do{\

3 m = _mm_xor_si128 (m, k[0]); \

4 m = _mm_aesenc_si128 (m, k[1]); \

5 m = _mm_aesenc_si128 (m, k[2]); \

6 m = _mm_aesenc_si128 (m, k[3]); \

7 m = _mm_aesenc_si128 (m, k[4]); \

8 m = _mm_aesenc_si128 (m, k[5]); \

9 m = _mm_aesenc_si128 (m, k[6]); \

10 m = _mm_aesenc_si128 (m, k[7]); \

11 m = _mm_aesenc_si128 (m, k[8]); \

41

12 m = _mm_aesenc_si128 (m, k[9]); \

13 m = _mm_aesenclast_si128(m, k[10]) ;\

14 }while (0)

15

16 void AES_CMAC (unsigned char *key , unsigned char *input , int length ,

unsigned char *mac)

17 {

18 unsigned char X[16],Y[16], M_last [16], padded [16];

19 unsigned char K1[16], K2[16];

20 int n, i, flag;

21 generate_subkey(key ,K1,K2);

22 n = (length +15) / 16; /* n is number of rounds */

23 if (n == 0) {

24 n = 1;

25 flag = 0;

26 } else {

27 if ((length %16) == 0) { /* last block is a complete block */

28 flag = 1;

29 } else { /* last block is not complete block */

30 flag = 0;

31 }

32 }

33 if (flag) { /* last block is complete block */

34 xor_128 (& input [16*(n-1)],K1 ,M_last);

35 } else {

36 padding (& input [16*(n-1)],padded ,length %16);

37 xor_128(padded ,K2 ,M_last);

38 }

39 for (i=0; i<16; i++) X[i] = 0;

40 for (i=0; i<n-1; i++) {

41 xor_128(X,& input [16*i],Y); /* Y := Mi (+) X */

42 aesencrypt(Y, X);

43 }

44 xor_128(X,M_last ,Y);

45 aesencrypt(Y, X);

46 for (i=0; i<16; i++) {

47 mac[i] = X[i];}}

Listing 5.5: x86 MAC calculation adopted from open-source implementations of CMAC
[45]: a CMAC is calculated, over a message (unsigned char *input) generated by
concatenating all inputs, using the AES-NI encryption instructions.

42

5.5 Object Wrappers

The object wrappers required for each secure data structure are implemented as structs
that store the wrapped element and provide the same interface as a plain reference. The
object wrapper implements the operator=() (pseudo-code shown in Listing 5.6) for the
element and calls the MAC update functions when the element is modified using this
operator. The object wrappers can be disabled using compiler macros regardless of the
Secure option. In this case, the application can avoid utilizing the object wrappers when
it is not required to modify any elements inside the data structures. Moreover, we created
a manually callable function for performing MAC updates. The programmer can manually
call this function where the code changes the elements inside secure data structures to
perform required MAC updates. This function can be used in cases not covered by the
object wrappers.

1 Secure_Rb_wrapper &operator =(typename value_type :: second_type other)

2 {

3 // Check whether the new value is different

4 if (* second != other)

5 {

6 // Update the element

7 node ->second = other;

8 // Check if the node is the root

9 if (node != tree ->root)

10 {

11 // If the node is not the root , the new MAC is calculated for

the node and then the MACs will be updated from that node up to the

root.

12

13 MAC old = node ->mac;

14 node ->mac = tree ->top_mac_store.calculate_mac_tree(tree ->

nonce , node ->left ->mac , node ->right ->mac , hash(node));

15 // The update function needs to know whether the node is the

left child or the right child of its parent.

16

17 if (node == node ->parent ->left)

18 tree ->Secure_Rb_tree_update_macs(node ->parent , old , node

->mac , true);

19 else

20 {

21 tree ->Secure_Rb_tree_update_macs(node ->parent , old , node

->mac , false);

22 }

23 }

43

24 else

25 {

26 // If the node is the root , aside from its own MAC , the

header MAC needs to be updated.

27 MAC new_mac = tree ->top_mac_store.calculate_mac_tree(tree ->

nonce , node ->left ->mac , node ->right ->mac , hash(node));

28 if (tree ->leftmost () == node)

29 tree ->top_mac_store.update_top_mac(tree ->top_mac_store.

calculate_header_mac(tree ->nonce , new_mac , tree ->rightmost ()->mac ,

new_mac), tree ->nonce);

30 else

31 tree ->top_mac_store.update_top_mac(tree ->top_mac_store.

calculate_header_mac(tree ->nonce , tree ->leftmost ()->mac , tree ->

rightmost ()->mac , new_mac), tree ->nonce);

32 node ->mac = new_mac;

33 }

34 }

35 return *this;

36 }

Listing 5.6: Assignment operator in object wrappers: after checking whether the newly
assigned value is different with the previous one, a process of updating the MACs is
performed.

44

Chapter 6

Evaluation

6.1 Generality

We built the secure data structures as a part of gcc-11.1.0. Our prototype has been tested
with OpenCV as an example of real-world software. The test results indicate that real-
world applications that use the standard library container APIs can switch to using the
secure data structures with no or relatively small changes to their source code. There
are some limitations that might require changing the program code in specific cases. For
instance, as described in Section 5.5, the object wrapper classes replace the plain refer-
ence when accessing values inside the data structures. The object wrapper implements
the assignment and element access operations similar to a reference to the element but it
requires a different syntax to access its fields. Moreover, the secure data structures them-
selves implement some basic operations mentioned in Chapter 4 as the Standard Template
Library (STL) data structures but leave out some of the utility functions that are typically
not used directly and will not work with the secure design, for instance, static functions
in the red-black tree. These functions are incompatible with the secure design since they
do not require any instance of the data structure to be created for performing their tasks
while generating and verifying Message Authentication Codes (MACs) necessarily requires
an instance of the data structure. These limitations might require changes to the program
code in some cases. Nevertheless, since the API of the secure data structures is similar to
the unmodified data structures for the operations described in Section 4.2, the program
code does not require any changes while using those basic functions unless in specific cases
where data is modified inside the data structures. In general, we can consider three cases:

• Constant data of any type: In this case, the data is not legitimately modifiable

45

and therefore does not require the use of object wrappers. Accordingly, no change
to the source code is required.

• Simple data types (E.g., Integer): This category includes the data types that
are only modifiable using the assignment operator. Object wrappers can perform
the required MAC updates in this case but require changes to the source code of the
program. The required changes include the case where the code expects the reference
as the returned type, but instead, object wrappers are returned (can be fixed by using
auto instead of specifying the expected type).

• Complex data types (E.g., Class): This category of data types allows for the
modification of the data in various ways, such as function calls. Our implemented
object wrappers partially cover this case meaning that they can perform the required
MAC updates if the data is modified through assignment operators but are unable to
do so when the data is modified using methods such as function calls. This issue can
be resolved by using a manual MAC update function. The details of our proposed
solution are described in Section 7.2. Nevertheless, using object wrappers and manual
MAC update function in this case also require changes to the source code. In addition
to the previously discussed changes in the source code, calling functions or accessing
fields of the complex data types through object wrappers require changes to the
source code to call the MAC update function.

The above cases either require no change to the source code or require changes to make the
code compatible with object wrappers or MAC update function. This partially satisfies
our generality requirement G-R1.

Furthermore, as described in Chapter 5, the secure data structures provide the same
basic operations as the unmodified data structures, which satisfies our generality require-
ment G-R2. The secure data structures leave out several functions provided by unmodified
data structures such as static functions in the red-black tree as mentioned before.

Finally, we implemented two different MAC functions, one using the ARM architec-
ture features and one using x86 features to satisfy the compatibility requirement G-R3.
The compatibility has also been tested through successfully building the library for both
architectures and using it in OpenCV.

The current prototype is however limited to single-threaded usage and does not work
if secure data structure instances are accessed by threads other than the one that created
them. The reason for this limitation is that in multi-threaded programs, each thread has
its own set of local registers separate from other threads. Consequently, the root of a

46

global Merkle tree cannot be stored in a single register accessible by all threads; hence,
each thread will require to have its own local Merkle tree with its root stored in reserved
registers. Therefore, each thread can only use and verify its own secure data structures,
and any cross-thread access will result in MAC authentication failure. This issue and its
possible solutions will further be discussed in Chapter 7.

6.2 Security

We demonstrate the security of our prototype by showing how both our design and imple-
mentation satisfy our security requirements in Section 3.3.2. As mentioned in the security
requirements S-R1, any corruption of the elements in the secure data structures should be
detected as soon as that element is read from them. As far as this requirement is concerned,
it is assumed that the data will remain intact until it is stored in secure data structures.
Accordingly, we don’t make any assumption about the correctness of data before being
stored in secure data structures but guarantee that the data that is read from the data
structure is identical to what was inserted in. However, since the data is hashed before
being used for the MAC calculation (as explained in Section 5.1), it is crucial to ensure that
the data is not modified by the adversary during the hashing process. This can be ensured,
for instance, using in-process isolation techniques such as Intel MPK [82]. Since the secure
data structures specifically guarantee the integrity of the data while stored inside the data
structures, the following proof sections assume that the input data is correct.

6.2.1 Cryptographic Security Proofs

In this section, we present a detailed game-based proof of the security of the secure stack
and queue data structures’ design. We leave the red-black tree out of the game-based
proofs due to its high complexity but briefly discuss the security of the red-black tree by
comparing it to a Merkle tree.

Accordingly, through a high-level cryptographic analysis, we demonstrate how our de-
sign provides data integrity for the stored elements.

The secure data structures are based upon a series of MAC calculations and verifi-
cations, and their security depends significantly on this. Consequently, we introduce a
security game called MAC-Collision-GameAMACk

(q), which serves as a basis for security
proofs of all three data structures.

47

MAC-Collision-GameAMACk
(q)

1 : for i ∈ 1, ..., q

2 : (x, y)← A.choose()
3 : A.receive(MACk(x, y))

4 : endfor

5 : (x′′, x′, y)← A.gen-collision()

6 : if x′ 6= x′′ ∧MACk(x
′, y) = MACk(x

′′, y)

7 : return 1

8 : endif

9 : return 0

As described in Chapter 5, the MAC function used in our library uses the Pointer
Authentication (PA) (pacga instruction) for ARM implementation and AES-NI encryption
for x86 Implementation. Assuming that both functions are pseudo-random with respect to
their keys, the only possible way for the attacker to find a collision is through brute force.
According to [55], we can show that based on the birthday paradox, the probability of the
attacker finding a collision after collecting q MACs is as follows: (b is the length of the
MACs)

Pr[MAC-Collision-GameAMACk
(q) = 1] = 1− 2b!

(2b − q)!2q.b

Accordingly, as shown in [55], on average, the attacker would find a collision after
collecting q MACs, where:

q =

√
π2b

2

Therefore, if the length of the MACs (b) is long enough, we can assume that the
probability of the attacker A finding a collision in MAC-Collision-GameAMACk

(q) is small.
The value of b is 32 for ARM PA and 128 for AES-NI.

Now, we show that the probability of conducting a successful corruption attack on the
secure data structures is also small since it can be reduced to finding a collision. Adversary
A in all security games has the same capabilities as in the MAC-Collision-GameAMACk

(q).

48

Stack-Game-MACA1 (q)

1 : // The following 4 steps show the secure-stack initialization. Data and MAC stacks are unprotected stacks.

2 : macs-stack← []

3 : data-stack← []

4 : nonce←$ {0, 1}`

5 : mac-in-register← nonce

6 : // pushed-values is a list that stores the values pushed into secure-stack to be later used in the attack loop.

7 : pushed-values = []

8 : // In the following loop, the adversary experiments with the secure-stack through pushing n values and

9 : // receiving the corresponding top MAC. After each round of n push operations, the stack will be emptied to

10 : // allow the same process again. The MAC validation steps have been omitted since the adversary’s

11 : // goal is not to attack at this stage.

12 : for i ∈ 1, ..., q do

13 : n← A.stack-choose-n()
14 : for j ∈ 1, ..., n do

15 : x← A.stack-choose()
16 : // The following 4 steps show secure-stack.push(x).

17 : data-stack.push(x)

18 : size← size + 1

19 : mac-stack.push(mac-in-register)

20 : mac-in-register← MACk(x,nonce, size,mac-in-register)

21 : // x is inserted in the pushed-values list to keep track of the pushed values.

22 : pushed-values.insert(x)

23 : endfor

24 : // The adversary receives the top MAC and then the secure-stack is emptied back to initial state.

25 : A.stack-receive(mac-in-register)

26 : macs-stack← []

27 : data-stack← []

28 : mac-in-register← nonce

29 : pushed-values = []

30 : endfor

49

Stack-Game-MACA1 (q)

31 : // In the following loop, the adversary attempts to violate the integrity by replacing data and its MAC.

32 : // If the returned data is different from what was originally pushed, and the MACs verify, the

33 : // attacker wins the game; otherwise,

34 : // they lose. Since the focus is on the data value, we show the combination of the rest of the inputs by y.

35 : foreach x′ ∈ pushed-values

36 : (x”, y)← A.stack-attack()
37 : if x′ 6= x”

38 : if MACk(x”, y) = mac-in-register

39 : return 1

40 : else

41 : return 0

42 : endif

43 : endif

44 : // The next line updates the state and has no effect on the probability of the adversary winning the game.

45 : mac-in-register← macs-stack.pop()

46 : endfor

47 : return 0

50

Stack-Game-MACB
A

2 (q)

1 : BA.stack-init()
2 : pushed-values = []

3 : // Here, A is replaced with BA which performs the updating steps for the data structure but could not

4 : // calculate the MACs. Therefore, the MAC calculation steps are performed outside the BA operations.

5 : for i ∈ 1, ..., q do

6 : n← BA.stack-choose-n()
7 : for j ∈ 1, ..., n do

8 : (x, y)← BA.stack-choose()
9 : mac-in-register← MACk(x, y)

10 : pushed-values.push(x)

11 : endfor

12 : // In the next step, BA receives the top MAC and also performs the reset steps.

13 : BA.stack-receive(mac-in-register)

14 : endfor

15 : // Again, A is replaced with BA who performs the attack and state updating steps.

16 : (x”, y,mac)← BA.stack-attack()
17 : if MACk(x”, y) = mac

18 : return 1

19 : else

20 : return 0

21 : endif

22 : return 0

51

BA.stack-init()

macs-stack← []

data-stack← []

nonce←$ {0, 1}`

mac-in-register← nonce

BA.stack-choose()

x← A.stack-choose()
data-stack.push(x)

size← size + 1

mac-stack.push(mac-in-register)

return (x, (nonce, size,mac-in-register))

BA.stack-choose-n()

A.stack-choose-n()
BA.stack-receive(mac)

A.stack-receive(mac)

macs-stack← []

data-stack← []

mac-in-register← nonce

pushed-values = []

BA.stack-attack()

foreach x′ ∈ pushed-values

(x”, y)← A.stack-attack()
if x′ 6= x”

return (x”, y,mac-in-register)

endif

if mac-stack.size() > 0

mac-in-register← mac-stack.pop()

endfor

// If the adversary does not attempt to attack, at the end, the initial value that was pushed in the stack is

// returned with the correct values which will verify and the adversary loses the game.

return (x′, (nonce, size, nonce),mac-in-register)

52

Secure-Stack

We create a series of games to prove the security of the secure-stack. These games demon-
strate the scenario in which the adversary attempts to change the values in a secure-stack
without being recognized. To prove that the probability of success is negligible in the
described scenario, we then reduce the game to a MAC-collision game by defining a second
adversary. Showing the incapability of the adversary to undetectably modify the content
of the secure-stack proves that the security requirement S-R1 is being satisfied in this data
structure. Below is a more detailed description of each game and the final proof of security.
For simplicity, in these games, the MAC is calculated over the data instead of the hash of
the data. Moreover, in all following security games, the nonce of the data structures is a
random value with the length of ` bits.

Stack-Game-MACA1 (q). We define Stack-Game-MACA1 (q), an attack game against
the integrity of the secure-stack. In this game, we assume an adversary A who has arbitrary
read/write access to the memory as described in Section 3.2. The game consists of two
parts as shown in Stack-Game-MACA1 (q). In the first two loops, the adversary chooses
values to be pushed to the secure-stack and receives the corresponding top MAC (which
is securely stored in a reserved register). The attacker can also empty the secure-stack as
needed to start again from an empty stack (to get different calculated MACs for each stack
state). This step of the game allows the adversary to collect the corresponding MACs for
different data values, which can later be used for the attack.

The second loop demonstrates the attack. The attacker attempts to replace at least
one of the elements in the secure-stack with another value while the MACs still verify
successfully. If the attacker does not succeed in performing such an attack, they lose the
game.

Stack-Game-MACB
A

2 (q). We now introduce a second game, Stack-Game-MACB
A

2 (q),
which can be reduced to the MAC-Collision-GameAMACk

(q) game. For this purpose, we intro-

duce a new attacker, BA, defined in BA functions, and replace A in Stack-Game-MACA1 (q)
with BA.

6.2.1 Lemma.

Pr[Stack-Game-MACA1 (q) = 1] ≤ Pr[Stack-Game-MACB
A

2 (q) = 1].

Proof. The transition from the first game to the second game only includes wrapping ad-
versaryA with BA who has the same functionality asA but also performs the computations
required for secure-stack operations. For instance, steps such as initializing or updating the

53

state of the data structure are performed by BA. These steps are required for the correct
functionality of the data structure but have no effect on the probability of the adversary
winning the game. Accordingly, A winning the first game implies that BA can also win
the second game (since BA uses A in order to perform the attack). Consequently, we can
conclude the given bound.

6.2.2 Lemma.

Pr[Stack-Game-MACB
A

2 (q) = 1] ≤ Pr[MAC-Collision-GameAMACk
(q) = 1]

Proof. We can reduce the Stack-Game-MACB
A

2 (q) to MAC-Collision-GameAMACk
(q). From

lines 16–17 of Stack-Game-MACB
A

2 (q), winning Stack-Game-MACB
A

2 (q) requires that the
adversary (BA) finds a collision in the top MACs so that the authentication can pass
successfully when comparing the MAC of the proposed top element by the adversary with
the MAC in the register. Moreover, since adversary BA winning the game implies that A
has found a collision (we can instantiate the collision game with BA with corresponding calls
from MAC-Collision-GameAMACk

(q) adversary interface instead of A and win the game), we
can conclude the above bound.

Theorem 1 (Security of the Secure Stack).

Pr[Stack-Game-MACA1 (q) = 1] ≤ Pr[MAC-Collision-GameAMACk
(q) = 1]

Proof. We can conclude this by applying Lemma 6.2.2 to Lemma 6.2.1 to get the above
bound.

Accordingly, the probability of the adversary A corrupting the secure stack data struc-
ture is less than the probability of wining the MAC-Collision-GameAMACk

(q), and hence as
long as the probability of finding a collision is negligible, the secure stack data structure is
secure.

54

Queue-Game-Data-MACA1 (q)

1 : // The following 6 steps show the secure-queue initialization. The data and MAC queues are unprotected.

2 : macs-queue← []

3 : data-queue← []

4 : nonce←$ {0, 1}`

5 : back-index← 0

6 : front-index← 1

7 : mac-in-register[]← MACk(nonce,back-index, front-index)

8 : // enqueued-values is a queue that keeps track of the values enqueued to be used in the attack loop.

9 : enqueued-values = []

10 : // In the following loop, the adversary experiments with the secure-queue through enqueue

11 : // operation in order to collect corresponding MACs for different data values. The MAC validation steps

12 : // have been omitted since the adversary’s goal is not to attack at this stage.

13 : for i ∈ 1, ..., q do

14 : x← A.queue-choose-data-attack()
15 : // The following 4 steps show secure-queue.enqueue(x).

16 : data-queue.enqueue(x)

17 : back-index← back-index + 1

18 : mac-queue.enqueue(MACk(x, (nonce,back-index)))

19 : mac-in-register← MACk(nonce, back-index, front-index)

20 : enqueued-values.enqueue(x)

21 : // The adversary receives the corresponding MAC

22 : A.queue-receive(mac-queue.back())

23 : endfor

24 : // In the following loop, the adversary attempts to violate the integrity by replacing data, and its mac.

25 : // . If the returned data is different from what was originally enqueued, and the MAC verifies, the

26 : // attacker wins the game, otherwise, they lose. Since the adversary is not attacking the indexes in

27 : // this game, we have omitted the verification for the index mac.

55

Queue-Game-Data-MACA1 (q)

28 : foreach x′ ∈ enqueued-values

29 : (x”,mac)← A.queue-data-attack()
30 : if x′ 6= x”

31 : if mac = MACk(x”, (nonce, front-index))

32 : return 1

33 : else

34 : return 0

35 : endif

36 : endif

37 : // Updating the front-index for the data MAC validation in the next iteration.

38 : front-index← front-index + 1

39 : endfor

40 : return 0

56

Queue-Game-Data-MACA2 (q)

1 : macs-queue← []

2 : data-queue← []

3 : nonce←$ {0, 1}`

4 : back-index← 0

5 : front-index← 1

6 : mac-in-register← MACk(nonce, back-index, front-index)

7 : enqueued-values = []

8 : for i ∈ 1, ..., q do

9 : x← A.queue-choose-data-attack()
10 : data-queue.enqueue(x)

11 : back-index← back-index + 1

12 : // We replaced the MAC function from previous games with RO which is a Random Oracle.

13 : mac-queue.enqueue(RO(x, (nonce,back-index)))

14 : mac-in-register← RO(nonce, back-index, front-index)

15 : enqueued-values.enqueue(x)

16 : A.queue-receive(mac-queue.back())

17 : endfor

18 : foreach x′ ∈ enqueued-values

19 : (x”,mac)← A.queue-data-attack()
20 : if x′ 6= x”

21 : if MAC = RO(x”, (nonce, front-index))

22 : return 1

23 : else

24 : return 0

25 : endif

26 : endif

27 : front-index← front-index + 1

28 : endfor

29 : return 0

57

BA.queue-init()

macs-queue← []

data-queue← []

nonce←$ {0, 1}`

back-index← 0

front-index← 1

enqueued-values = []

BA.queue-choose()

(x, enqueue)← A.queue-choose-index-attack()
if enqueue

data-queue.enqueue(x)

back-index← back-index + 1

enqueued-values.enqueue(x)

return x, (nonce,back-index),

(nonce,back-index, front-index)

else

data-queue.dequeue()

mac-queue.dequeue()

front-index← front-index + 1

enqueued-values.dequeue()

return data-queue.front(), (nonce, front-index), (nonce, back-index, front-index)

endif

BA.queue-receive(mac)

A.queue-receive(mac1,mac2)

58

BA.queue-attack()

foreach x′ ∈ enqueued-values

(x′′,mac, k1, k2)← A.queue-index-attack()
if x′ 6= x′′

return (x′′,mac,mac-in-register, (nonce, k1),

(nonce, k1, k2))

endif

// Updating the state of the authenticated queue.

front-index← front-index + 1

endfor

return (enqueued-values.front(),mac-in-register, (nonce, front-index), (nonce,back-index,

front-index))

59

Queue-Game-Index-MACA1 (q)

1 : // The following 6 steps show the secure-queue initialization. Data and MAC queues are unprotected.

2 : macs-queue← []

3 : data-queue← []

4 : nonce←$ {0, 1}`

5 : back-index← 0

6 : front-index← 1

7 : mac-in-register← MACk(nonce, back-index, front-index)

8 : // enqueued-values is a list that stores the values enqueued into secure-queue to be used in the attack loop.

9 : enqueued-values = []

10 : // In the following loop, the adversary experiments with the secure-queue through enqueue and dequeue

11 : // operations in order to collect corresponding MACs for different index values.

12 : for i ∈ 1, ..., q do

13 : (x, enqueue)← A.queue-choose-index-attack()
14 : if enqueue

15 : // The following 4 steps show secure-queue.enqueue(x).

16 : data-queue.enqueue(x)

17 : back-index← back-index + 1

18 : mac-queue.enqueue(MACk(x, (nonce,back-index)))

19 : mac-in-register← MACk(nonce, back-index, front-index)

20 : enqueued-values.enqueue(x)

21 : A.queue-receive(mac-queue.back(),mac-in-register)

22 : else

23 : // The following 4 steps show secure-queue.dequeue().

24 : data-queue.dequeue()

25 : mac-queue.dequeue()

26 : front-index← front-index + 1

27 : mac-in-register← MACk(nonce, back-index, front-index)

28 : enqueued-values.dequeue()

29 : A.queue-receive(mac-queueu.front(),mac-in-register)

30 : endif

31 : endfor

60

Queue-Game-Index-MACA1 (q)

32 : // In the following loop, the adversary attempts to violate the integrity by replacing data, its mac, and the

33 : // indexes. If the returned data is different from what was originally enqueued, and the MAC s verify, the

34 : // attacker wins the game, otherwise, they lose.

35 : foreach x′ ∈ enqueued-values

36 : (x”,mac, k1, k2)← A.queue-index-attack()
37 : if x′ 6= x”

38 : if mac = MACk(x”, (nonce, k1)) ∧MACk(nonce, k2, k1) = mac-in-register

39 : return 1

40 : else

41 : return 0

42 : endif

43 : endif

44 : front-index← front-index + 1

45 : mac-in-register← MACk(nonce,back-index, front-index)

46 : endfor

47 : return 0

61

Queue-Game-Index-MACB
A

2 (q)

1 : BA.queue-init()
2 : // In this loop, we replace the enqueue and dequeue steps with the BA.queue-choose()

3 : // function which performs the same steps.

4 : for i ∈ 1, ..., q do

5 : (x, y, y′)← BA.queue-choose()
6 : BA.queue-receive(MACk(x, y),MACk(y

′))

7 : endfor

8 : // In this part, similar to the previous steps A is replaced with BA who also performs the

9 : // authenticated-queue related steps and the loop. The step for updating the mac-in-register

10 : // is removed since it’s just a state update and doesn’t affect the probability.

11 : (x′′,mac1,mac2, y, y
′)← BA.queue-attack()

12 : if mac1 = MACk(x
′′, y) ∧MACk(y

′) = mac2

13 : return 1

14 : else

15 : return 0

16 : endif

17 : return 0

Secure-Queue

We prove the security of the queue by considering the front and back elements separately
from the elements in the middle. Regarding the front and back elements, since their MACs
are included in the top MAC, the only way for the adversary to modify them is to find
another element with the same MAC or a set of a new element and its corresponding
MAC which will result in the same top MAC. Accordingly, modifying the back and front
elements requires finding a collision in MACs and therefore, the probability of such an
attack is negligibly small.

Next, we can prove the security of the secure-queue regarding the middle elements by
considering them as a queue on their own. For simplicity, we can assume that the indices
of the front and back elements in the inside queue are included in the top MAC (since
they are the same as the actual front and back indices but transformed by 1). In this

62

case, we can consider two scenarios. In the first scenario, Queue-Game-Index-MAC, the
adversary attempts to change the indices in order to substitute one entry with another.
The second set, Queue-Game-Data-MAC games, covers the case in which the attacker
tries to violate the integrity of the secure-queue by replacing an element and its MAC
with a different value without changing the indices. Similar to the secure-stack, proving
the inability of the adversary in modifying the content of the secure-queue shows that the
security requirement S-R1 is satisfied for this data structure. In these games, the MAC is
calculated over the data instead of the hash of the data.

Queue-Game-Index-MACA1 (q). We define Queue-Game-Index-MACA1 (q) to be an
attacking game against the integrity of a secure-queue. Similar to the secure-stack, we
assume an adversary A who has arbitrary read/write access to memory as described in the
Section 3.2. Accordingly, we define the game such that A chooses values to be enqueued
in or dequeued from the secure-queue and then receives the corresponding MACs. After q
rounds of performing this process, the attacker tries to attack the secure-queue by replacing
at least one of the elements with a different value without being noticed. This is demon-
strated by the second half of the game, in which the adversary chooses values to replace the
actual secure-queue’s content with them. If the attacker can replace a value such that the
check passes successfully, they win. The game is shown in Queue-Game-Index-MACA1 (q).

Queue-Game-Index-MACB
A

2 (q). Similar to the approach used for the secure-stack,

we create a second game (shown in Queue-Game-Index-MACB
A

2 (q)) which can be reduced
to the MAC-Collision-GameAMACk

(q) game. For this purpose, we create a new adversary,

BA, defined in BA functions, and replace A in Queue-Game-Index-MACA1 (q) with BA.

6.2.3 Lemma.

Pr[Queue-Game-Index-MACA1 (q) = 1] ≤ Pr[Queue-Game-Index-MACB
A

2 (q) = 1].

Proof. The transition from the first game to the second game only includes replacing adver-
sary A with BA who has the same functionality as A but also performs the computations
required for secure-queue operations such as initializing or updating the state. These steps
only represent the correct functionality of the data structure but have no effect on the
probability of the adversary winning the game. Accordingly, we can conclude the given
bound since A winning the first game implies that BA can also win the second game (BA
uses A in order to perform the attack).

6.2.4 Lemma.

Pr[Queue-Game-Index-MACB
A

2 (q) = 1] ≤ Pr[MAC-Collision-GameAMACk
(q) = 1]

63

Proof. We can reduce the Queue-Game-Index-MACB
A

2 (q) to MAC-Collision-GameAMACk
(q).

From lines 13-15 of Queue-Game-Index-MACB
A

2 (q), winning Queue-Game-Index-MACB
A

2 (q)
requires the adversary (BA) to find a collision in index MACs. The reason is that for the
authentication to pass successfully, the MAC of the proposed indices by the adversary
should be equal to the MAC in the register (in this game, the indices proposed by the ad-
versary are necessarily different from the correct indices since this will allow the adversary
to replay previous elements’ MACs). Moreover, since BA wining the game implies that A
has found a collision (we can replace A with BA in the collision game and win the game),
we can conclude the above bound.

Queue-Game-Data-MACA1 (q). This game is similar to Queue-Game-Index-MACA1 (q)
with one minor difference. In this game, removing elements from the secure-queue does
not produce new data MACs. Hence, the first loop only enqueues the values chosen
by the adversary, and there is no need for a dequeue operation. The game is shown
in Queue-Game-Data-MACA1 (q).

Queue-Game-Data-MACA2 (q). We now transform the Queue-Game-Data-MACA1 (q)
game to Queue-Game-Data-MACA2 (q) by replacing the MAC function with a random oracle
and keeping the rest of the game exactly the same. Queue-Game-Data-MACA2 (q) shows
the details of this game.

6.2.5 Lemma.

Pr[Queue-Game-Data-MACA2 (q) = 1] = Pr[Queue-Game-Data-MACA1 (q) = 1].

Proof. In this scenario, the adversary attempts to replace an element with another element
but with the same index. Accordingly, in order to pass the authentication, the adversary
needs to find the corresponding MAC over the nonce, the new element’s value, and the
index. Considering the fact that each instance of the data structure has its own unique
nonce, and each index only appears once in the lifetime of the data structure, we can
conclude that the MAC required by the attacker has not been previously calculated (the
MAC is freshly sampled from a known distribution, and this is the definition of a random
oracle). Therefore, the attacker is not able to replay a previous MAC with a higher
probability than a random guess, and the probability of the adversary winning both games
is the same.

6.2.6 Lemma.

Pr[Queue-Game-Data-MACA2 (q) = 1] = 2−b.

64

Proof. The adversary needs to find the corresponding output for a query from a random
oracle over input values that have not been seen before. Therefore, since the adversary
does not have direct access to such a random oracle outside the game structure, the only
way is to guess the output which leads to the above probability.

Theorem 2 (Security of the Secure Queue).

Pr[Queue-Game-Data-MACA1 (q)] + Pr[Queue-Game-Index-MACA1 (q)]

≤ Pr[MAC-Collision-GameAMACk
(q) = 1] + 2−b

Proof. We can replace the Queue-Game-Data-MACA1 (q) with Queue-Game-Data-MACA2 (q)
based on Lemma 6.2.5. Then we can replace Queue-Game-Data-MACA2 (q) with 2−b ac-
cording to Lemma 6.2.6. Therefore, we can conclude that the probability of the adversary
winning Queue-Game-Data-MACA1 (q) is at most 2−b.

Similarly, we replace Queue-Game-Index-MACA1 (q) with Queue-Game-Index-MACB
A

2 (q)
according to Lemma 6.2.3 , then apply the bound from Lemma 6.2.4. Consequently, the
probability of the adversary winning the Queue-Game-Index-MACA1 (q) is at most equal to
winning the MAC-Collision-GameAMACk

(q).

Therefore, the probability of the attacker corrupting the data structure either through
data MACs or index MACs is less than Pr[MAC-Collision-GameAMACk

(q) = 1] + 2−b. As a
result, the secure queue data structure is secure as long as the probability of the adversary
A finding a collision is negligible.

Secure-Tree

The security of the secure-rb-tree, which is the basis for creating a secure map data struc-
ture, can be proven similarly to the stack and queue. However, due to the random access
property of the tree, which requires MAC updates for multiple elements when performing
operations, proving the security of a tree is noticeably more complicated than the stack or
queue.

Accordingly, we can instead conclude the security of the secure red-black tree since it
is cryptographically a Merkle tree. As proved by [28], we can assume that a Merkle tree is
secure as long as the probability of the adversary finding a collision in the hash function
it uses is reasonably low. Consequently, we can conclude the security of the red-black tree
assuming the probability of finding a collision in MACs is small.

65

6.2.2 Implementation Security

We have implemented the secure data structures considering the security requirements
mentioned in Chapter 3.

The security games in the Section 6.2.1 assume that the top MAC for each data struc-
ture is stored securely. As mentioned in Chapter 5, we use a Merkle tree along with reserved
registers to provide such secure storage for the top MACs. Storing the top MACs in the
Merkle tree and the root of the Merkle tree in a reserved register ensures the integrity of
the top MACs assuming the Merkle tree implementation is secure.

Furthermore, as mentioned in Section 5.5, we added object wrappers to our implemen-
tation, which allow for updating the MACs once the returned objects from data structures’
API calls are modified. Object wrappers are not included in the cryptographic security
proofs since they are specific to the implementation, not the high-level protocol.

Our security games for secure-queue assume that the internal elements in the queue
are immutable. This assumption prevents the attacker from performing a MAC reuse
attack on the updated elements inside the queue using their previous state. However, the
elements at the front and back of the queue are modifiable using object wrappers since our
design prevents MAC reuse attacks on them due to including their MACs in the top MAC.
The unmodified implementation of the queue allows for modifying any element inside the
queue using the references. We could design the secure-queue such that it would hold
the same property but with the cost of sacrificing the performance. One efficient way to
achieve this property is to use a Merkle tree to store the elements of the queue, which will
increase the overhead of the operations from O(1) in the unmodified version to O(log(n))
where n is the number of elements in the queue. However, in order to achieve a similar
performance overhead to the unmodified queue (O(1)), we limited the modification of the
stored elements in our prototype to the front and back elements only. This assumption
matches the functionality of a queue data structure.

Finally, as mentioned in the security requirements S-R2, the implementation of the
secure data structures should minimize the time windows among the operation steps which
can be exploited by an attacker. We minimize the attack window in our implementation by
performing MAC verifications before any update to each element or its MAC. Additionally,
we store the new and old roots of the recently updated sub-tree in a reserved register when
updating the MACs, allowing us to safely verify the upper elements before updating their
MACs. This ensures that it would be infeasible for an attacker to corrupt data while in
transfer between states.

66

6.3 Performance

We have tested the performance of our implementation as part of gcc-11.1.0 by testing the
built library with Google benchmark and real-world applications such as OpenCV.

We allow the developers to choose between secure and unmodified data structures in
each instance of declaring a stack, queue, or red-black tree (map). This option allows them
to increase efficiency by using the unmodified data structures where they are not storing
sensitive or valuable data. Below we present the details for the performance test.

6.3.1 Microbenchmarks

We used the Google benchmark library [38] along with the LLVM container benchmarks [52]
to test the performance of individual operations in the secure data structures outside real-
world applications. The reason for using LLVM benchmarks is that it implements specific
benchmark tests for the containers using the Google benchmark library which were similar
to what we required for testing our prototype while the test suites in gcc did not implement
such benchmarks.

Google benchmarks allow for creating test functions and measuring the execution time.
The tests will be iterated through several times to make sure that the result will be sta-
tistically stable. We set the number of iterations to the fixed number of 1000 for all our
microbenchmark tests to make it easier to compare the results. Based on several previous
test runs without fixing the iteration number, we concluded that 1000 iterations are enough
to get stable results.

In order to test the overhead of a single operation, we measured the overhead of several
sequential operations in both secure and unmodified data structures. The reason for per-
forming the operation more than one time is to reduce the noise in the results by increasing
the execution time. Moreover, we performed a warm-up round of executing the operations
to eliminate the effect of initial memory allocations on the results. Each benchmark can
also be set to be executed multiple times, and the benchmark library reports the mean and
standard deviation, which better reflects the overall behavior of the benchmark compared
to the result of a single run. We set the repetition number to 10 for our benchmarks.

The microbenchmark results for the stack are shown in Table 6.1. In these tests, 500
pushes and 500 pops have been performed. The comparison shows that operations of the
secure data structures are slower than those of the unmodified ones, and the overhead
varies from 153 to 1502 times slower based on the input type. The overhead for the Integer

67

Benchmark Mean Time Standard Deviation
secure-stack (Integer input) 16853.65 µs 1554.99 µs

stack (Integer input) 11.21 µs 0.03 µs
secure-stack (String input) 17288.43 µs 1530.19 µs

stack (String input) 22.61 µs 0.4 µs
secure-stack (Vector< int > input) 18124.69 µs 1564.43 µs

stack (Vector< int > input) 116.94 µs 0.62 µs

Table 6.1: Microbenchmark results for a single stack data structure performing 500 push
and 500 pop operations. The Google benchmark library computes the average time over
1000 repetitions (106 operations in total). We then report the mean and standard deviation
calculated over ten such averages.

input type is higher than the two other tested types. The reason for this difference is
that the push operations create a copy of the data to store, and the copy process is much
faster for the Integer type compared to the String or Vector. Therefore, we notice that
the execution time for the unmodified data structures is noticeably lower for the Integer
type. The secure data structures are also affected by this; however, since the mean time
is already much higher for them, the difference is less significant. Accordingly, the relative
overhead is higher in this case.

Since the tree data structure is an internal data structure and does not provide a public
API, we created tests for a map data structure using the tree. The microbenchmarks for
the queue and map (using red-black tree) were tested similarly to the stack, and the
results are presented in Tables 6.2 and 6.3. The secure-queue has been tested through 500
enqueues and 500 dequeues and shows an overhead of 142 to 1508 times the baseline. The
results for performing 10 operations(5 inserts and 5 removes) on secure and non-secure
maps also suggest that a secure-map generally has a higher overhead than the two other
data structures when considering the same input type (the secure-map takes 3676 times
as long as the unmodified map to perform these operations), which is expected because,
for each operation in the tree, several MACs need to be calculated and verified, which is a
costly operation.

Moreover, the microbenchmark results for the case of having i instances of the stack
data structures indicate a growing overhead of order O(log(i)) for the operations in secure
data structures. This overhead was expected since secure data structures use the Merkle
tree to store their top MACs, and all operations on data structures rely on obtaining that
MAC from the Merkle tree, which causes the O(log(i)) overhead. The microbenchmark
results are displayed in Table 6.4. Even though the microbenchmarks show considerable

68

Benchmark Mean Time Standard Deviation
secure-queue (Integer input) 16793.65 µs 1216.12 µs

queue (Integer input) 11.13 µs 0.05 µs
secure-queue (String input) 17060.97 µs 1224.29 µs

queue (String input) 23.24 µs 0.08 µs
secure-queue (Vector< int > input) 17868.11 µs 1261.28 µs

queue (Vector< int > input) 124.76 µs 1.73 µs

Table 6.2: Microbenchmark results for a single queue data structure which performs 500
enqueue and 500 dequeue operations. The Google benchmark library computes the average
time over 1000 repetitions (106 operations in total). We then report the mean and standard
deviation calculated over ten such averages.

Benchmark Mean Time Standard Deviation
secure-map (String key and data) 553959.23 µs 85048.1 µs

map (String key and data) 150.63 µs 0.91 µs

Table 6.3: Microbenchmark results for a single map data structure which uses a tree and
performs 5 insert and 5 remove operations. The Google benchmark library computes the
average time over 1000 repetitions (104 operations in total). We then report the mean and
standard deviation calculated over ten such averages.

69

Benchmark Number of Instances Mean Time Standard Deviation
secure-stack 1 17008.72 µs 1524.04 µs
secure-stack 2 18439.05 µs 3379.15 µs
secure-stack 4 21897.05 µs 73.03 µs
secure-stack 8 26055.28 µs 39.62 µs
secure-stack 16 31020.69 µs 82.63 µs
secure-stack 32 36777.37 µs 3609.44 µs
secure-stack 64 47938.77 µs 65.24 µs
secure-stack 128 65405.72 µs 131.06 µs

stack 1 12.03 µs 0.19 µs
stack 2 11.95 µs 0.21 µs
stack 4 11.82 µs 0.18 µs
stack 8 11.92 µs 0.15 µs
stack 16 11.92 µs 0.14 µs
stack 32 11.93 µs 0.19 µs
stack 64 11.90 µs 0.19 µs
stack 128 11.90 µs 0.20 µs

Table 6.4: Microbenchmark results measuring the overhead caused by the Merkle tree.
Number of instances indicate the number of created data structures.

70

Testsuite Number of maps
opencv perf calib3d 1
opencv perf dnn 1531
opencv perf dnn superres 2
opencv perf features2d 1
opencv perf gapi 9791
opencv perf imgcodecs 1
opencv perf imgproc 1
opencv perf line descriptor 4
opencv perf objdetect 122
opencv perf optflow 2
opencv perf photo 1
opencv perf reg 1
opencv perf rgbd 1
opencv perf stereo 2
opencv perf stitching 1
opencv perf superres 2
opencv perf tracking 2
opencv perf video 2
opencv perf videoio 3
opencv perf xfeatures2d 1
opencv perf ximgproc 2
opencv perf xphoto 1
opencv perf core 3

Table 6.5: Data structure instances in OpenCV performance tests

overhead, they reflect the worst case where a program only creates and uses multiple data
structures and does no other task. Accordingly, these results do not reflect the overhead
caused by secure data structures in real-world applications that use the data structures
more sparsely while performing other tasks. In the next section, we present the results of
overhead measurements when using secure data structures in such applications.

6.3.2 Real-World Applications

OpenCV is a Computer Vision library implemented in C++ which uses the standard library
data structures. We built OpenCV from source code with our modified C++ standard

71

Figure 6.1: The microbenchmark results for performing 500 pushes and 500 pops on a
single stack instance with total number of instances ranging from 1 to 128. The graph
shows how the execution time increases with order O(log(i)) for a secure-stack while it is
fairly constant in the unmodified stack.

72

library in gcc. The OpenCV source code provides a set of performance tests that could be
useful for testing the performance of our secure data structures. None of the performance
tests in OpenCV uses queues and only one of them (opencv perf gapi) uses 9789 stacks.
However, most of the performance tests use the tree data structure. The number of trees
used in each performance test is shown in table Table 6.5.

Although the performance tests in OpenCV do not use queues, due to the similarity
of the design for the secure stack and queue, we do not expect it to have drastically
different performance characteristics. More specifically, since both stack and queue perform
a constant number of MAC calculations for each operation, they are expected to cause
relatively close overheads. The previously stated microbenchmark results in tables 6.1
and 6.2 confirm the similarity in their overheads.

In order to compare the performance of the secure data structures with the baseline,
we used the OpenCV performance tests since they were already created to measure the
performance and included a reasonable number of data structures. Each performance test
consists of multiple test cases varying from 4 to 10040 tests. The performance tests run
the test cases multiple times and report the execution times. We ran all performance tests
and calculated the ratio of execution time for secure data structures to the baseline for
each test case and then calculated the geometric mean of the overhead ratios as the overall
performance overhead of our prototype. The results show an overhead of around 3.4%
compared to the baseline.

The mentioned overhead is calculated without using object wrappers and without en-
forcing exceptions in case of MAC authentication failures. Therefore, the mentioned over-
head is a lower bound estimation of the actual overhead in real-world applications. Nev-
ertheless, we counted the cases in the source code of OpenCV where the references to
elements inside data structures are used to modify them or call their functions. Such cases
in which the required MAC updates are skipped do not exceed 100 cases in total but could
be executed more then once. Almost all mentioned cases happen when using map data
structure (In OpenCV, the stack top() functions are followed by pop() and therefore do
not require any MAC updates since the element is no longer inside the stack). Conse-
quently, assuming each MAC update process takes at most as much time as an insertion
operation (taking 55.4µ for each insertion based on the microbenchmarking results), we
can conclude that the MAC updates would approximately add 5540µ to the whole perfor-
mance testing process which is negligible compared to the overall time. Accordingly, the
estimated lower bound for the overhead is close to the actual overhead, including the use
of object wrappers.

We also investigated how the multi-threading issue explained in Section 6.1 affects

73

the usability of our prototype. Since the current prototype’s functionality is limited to
the cases where each data structure is only accessed by its own thread (the thread that
created the data structure), if the applications require several threads accessing the same
data structure, they will get false-positive results (MAC authentication failures while there
is no malicious modification of the elements). To check whether this limitation affects
our prototype’s compatibility, we added counters that count how many times each data
structure is accessed by other threads. Using the mentioned counters we verified that this
limitation is not problematic in OpenCV as the data structures are only accessed by their
own threads.

6.3.3 Memory Overhead

Assuming that the element size is not smaller than the MAC size, in the worst case, our
approach doubles the program’s memory space by storing a MAC for each element in
the data structures. However, based on the size of the elements and MACs, the memory
overhead could be lower than this value if the data size is larger than the MACs, or higher
in systems that don’t have alignment requirements.

Moreover, since we maintain a global Merkle tree to store the top MACs for all instances
of the data structures, we also require an additional O(i) memory space where i is the total
number of data structure instances.

In terms of memory overhead, this approach is comparable with methods that use
shadow memory [20] to store metadata.

6.3.4 Comparing SafeDS With Similar Approaches

Secure data structures can be compared with memory isolation approaches such as Intel
Memory Protection Keys (MPK) [42]. MPK is a hardware primitive that can be used to set
page table permissions from user-space. An example of using MPK for memory isolation
is in ERIM [82]. Using MPK is efficient; therefore, applications such as ERIM only add
less than 1% overhead. However, MPK has several considerable limitations: First, MPK
assigns 4-bit keys to each page table. Therefore, there are only 15 possible keys (0 is used
as the default key) which might not be sufficient in some use cases. Moreover, using MPK
requires adding specific instructions to set the keys and permissions, meaning that the
source code of the programs would require several changes.

SafeDS is comparable to MPK considering the required changes to the source code of
the applications. However, our secure data structures provide stronger security guarantees

74

compared to MPK; for example, writable pages are not protected from memory errors
when using MPK. In addition, secure data structures do not require separate allocators
for the memory, while MPK requires storing data on specified pages. In general, the MPK
works on page level and is not specifically concerned about integrity, while secure data
structures provide fine-grained integrity check for their stored elements.

Although the performance overhead of SafeDS is higher than MPK, it is still less than
the maximum reasonable overhead, which is 5% [78].

75

Chapter 7

Discussion

7.1 Attacks against ARM Pointer Authentication

There have been several attempts to break the security of ARM Pointer Authentication
(PA). One recent example of these attacks is PACMAN [68], which uses speculative exe-
cution attacks to create a Pointer Authentication Code (PAC) oracle. The created PAC
oracle is able to distinguish between a valid and invalid PAC without crashing the program.
Thus, it can be used to brute force PACs and find the correct PAC for a pointer, which
can then be used to hijack the program’s control flow.

PACMAN uses a gadget including a pointer verification operation and a transmission
operation for the verification result through a micro-architectural side channel. However,
this attack would not be a serious issue for our case since we use the pacga instruction to
calculate Message Authentication Codes (MACs) and there is no such gadget consisting of
the authentication instruction or leakage of the verification result.

Another another attack on the PA instrumentation of IOS uses the Apple A12 processor,
which turns an invalid pointer to a valid pointer and its PAC [81]. However, this attack
relies on the pac instruction set used for signing pointers which is not used in our case.

Accordingly, although ARM PA has been shown to be prone to several attacks, neither
of the current attacks use pacga instruction. Moreover, although the possibility of such
attacks exists, since the pacga instruction is not widely used throughout the code, finding
proper gadgets would be harder than with the pac instruction set which could be widely
used for return addresses and pointers.

76

7.2 Object Wrappers

As mentioned in Chapter 4, having a reference to an element in data structures allows
legitimate modification of the element while inside the secure data structure. Since MAC
updates are only performed when modifying the secure data structures through the pro-
vided API, we introduced object wrappers as a method to perform MAC updates when
objects are modified while inside the data structures.

We implemented object wrappers as part of our prototype and tested their functionality
along with our compatibility tests. When trying to use object wrappers, we noticed that
there are considerable cases in OpenCV where changes to the program code are required
due to the use of object wrappers. For instance, in almost all cases, when calling functions
such as top() in stack, the OpenCV code was expecting the plain reference to the element
to be returned. Therefore, the returned type (object wrapper class) was not matching the
expected type, hence causing a compile error. Accordingly, we had to change the OpenCV
source code to fix these issues.

Moreover, we noticed that in many of the OpenCV cases where secure data structures
were used, the element type itself was a class. Method calls in such classes can change the
element, and this change was not captured by the object wrapper since the wrapper only
updates MACs on assignment.

Our manually callable function for performing MAC updates is a reasonable alternative
in cases where object wrappers would introduce the mentioned obstacles.

7.3 Thread Safety

C++ programming language supports creating several threads in a program that allow for
performing functions and tasks concurrently. Since threads in a multi-threaded program
can share the same memory, having multiple threads modify the program variables can lead
to inconsistencies, such as two threads trying to write to the same object simultaneously,
or one thread reading the data while another is writing to it. Accordingly, a thread safe
code can be safely accessed from different treads without causing any unintended behavior.

According to C++ standard specification, [4], the C++ standard library does not
guarantee correct behavior when multiple threads are writing, or writing and reading an
object simultaneously. However, C++ provides mechanisms such as locks that can be used
to ensure thread safety, for instance when using data structures.

77

Although locks provide a method to ensure thread safety, the attacker might still be
able to bypass the locks and use the legitimate API of the program to perform unsafe reads
and writes. However, based on our adversary model requirements in Section 3.2, we assume
the presence of forward-edge Control-Flow Integrity (CFI). Forward-edge CFI ensures that
an attacker is unable to make the program jump to arbitrary locations in code. Therefore,
the attacker will not be able to bypass locks by directly jumping to the API calls of the
data structures.

In the secure data structures, using locks alone will not guarantee thread safety. A
thread’s local registers can not be accessed by other threads because each has its own set
of registers. This can break our secure data structures design since we use a register to
store the root of the global Merkle tree as explained in Chapter 5. In a multi-threaded
setting, each thread will have its own reserved register for the Merkle tree’s root and will
not be able to verify the changes to the root value made by other threads. In order to
overcome this limitation, we propose two distinct approaches.

The first approach is to use a secure messaging scheme that allows threads to com-
municate with each other. The communication scheme allows each thread to notify other
threads when updating the Merkle tree. Consequently, the rest of the threads will be able
to update the root stored in their reserved registers. Nevertheless, this approach requires
the communication to be completely secure against the adversary’s attempt to modify the
messages between threads. For instance, the messages can be passed through the kernel
space to ensure that the attacker cannot alter them. However, this solution can lead to
high overhead that might not always be practical. The reason is that in order to achieve
synchronization across the threads, they need to either constantly wait for the updates
from other threads, which prevents the program from actually working, or store messages
and check the received updates before performing any operation that requires verifying or
updating the top MACs.

The second approach is to calculate and store a MAC for the root of the Merkle in
memory. In this approach, each thread stores a state value in its reserved register. The
state value for each thread is a counter starting from 0 that is incremented every time the
thread updates the Merkle tree. The MAC for the root of the Merkle tree is calculated over
the root along with all the state values. This method allows the verification of the root
value using the state values and the MAC. However, this approach alone is still vulnerable
to reuse attacks. For instance, if a thread updates the root, the attacker can restore the
previous state values, root, and its MAC to revert the recent update. Then, unless the
thread which updated the tree tries to access the root again, no other thread will detect the
attacker’s activity. The reason is that each thread only has its own latest state value safely
stored in a register, so reverted actions can only be detected by the thread responsible for

78

that action.

Since the MAC generation keys are securely stored, the adversary will not be able to
use them to calculate new MACs. Moreover, the adversary is also unable to calculate
random MACs by performing arbitrary jumps to MAC functions due to the presence of
forward-edge CFI (our adversary model requirements, Section 3.2). Therefore, because the
attacker is unable to calculate arbitrary MACs, the main issue with storing the Merkle
tree root MAC in memory is an attacker being able to reuse old MACs. We can solve
this issue by hiding the root MAC from the attacker. One potential option is to adopt a
feature called Execute-only Memory (XOM) [8] which allows making part of the memory
executable but not readable. If the root MAC is stored in such a memory area, the attacker
will not be able to read the MACs and reuse them to revert the updates.

Because the root MAC needs to be updated as the Merkle tree changes, the executable
memory should also be writable. The idea is to encode the root MAC in the instructions
and load or update it inside the unreadable memory itself. However, having a writable
and executable memory brings back the possibility of attacks such as code injection, which
might make this approach impractical unless the mentioned problem can be properly dealt
with.

7.4 Use Cases

Data structures can be the target of attacks in various applications. We were able to find
real-world attack incidents that could be mitigated by using our secure data structures [5].
As an example, a buffer overflow found in the HMI3 Control Panel contained within the
Swisslog Healthcare Nexus Panel allows an attacker to overwrite an internal queue data
structure [7]. This issue can lead to malicious remote code execution. Using secure data
structures can prevent the successful execution of the attack in this case.

79

Chapter 8

Related Work

8.1 Defenses Against Data Corruption Attacks

The defense methods against data corruption attacks can be divided into several cate-
gories [83]. In the following sections, we describe each category of defense along with
examples of the previous work done in that area.

8.1.1 Spatial and Temporal Memory Safety

This category attempts to detect spatial or temporal memory errors and prevent them
from being exploited. Examples of proposed defenses in this category are as follows:

CHERI [84] instruction set introduces a hybrid capability-system architecture that
implements fine-grained memory protection with various properties, including but not
limited to spatial and temporal safety. Most of these protections are managed mainly by
the compiler. Light-weight Bounds Checking (LBC) [41] introduces a method to perform
bound checking for the objects in memory by using guard zones around each object. The
memory addresses that are marked as guard zone should not be accessed in the program.
This approach allows the detection of out-of-bound access errors before being exploited.
Another similar example from this category is SoftBound [59] which performs bound checks
using stored metadata for the base and bound of the pointers in a shadow space. Fat [44]
and low-fat [48] pointers, are examples of approaches that store the metadata for a pointer
along with it instead of in a separate memory address. The mentioned solutions are also
referred to as pointer-based approaches.

80

CETS [60] is an example of temporal safety enforcement which uses identifiers and a
lock-and-key approach to detect the dangling pointers. In this approach, each pointer has
a unique allocation key, and there is a lock location corresponding to that key. Whenever
the region pointed by the pointer is deallocated, the lock location is set to invalid. This
allows the detection of a dangling pointer since the key will not match the lock anymore.
Another example is Undangle [21], which executes the program once inside an execution
monitor, tracks the instructions, and creates an allocation log. These traces are then used
for the early detection of temporal errors.

Furthermore, since both spatial and temporal safety are required to achieve complete
security, there are solutions such as AddressSanitizer [74] which cover both spatial and
temporal memory errors. AddressSanitizer uses shadow memory to record and check which
memory addresses are safe to access when performing a load or store instruction.

As mentioned, all these solutions attempt to protect the whole program by detecting
and preventing memory errors in the first place, while our approach attempts to detect
the occurrence of the attack and ensure data integrity even in the presence of memory
errors. Even though detecting memory errors before they are exploited provides valuable
security promises, these solutions are still vulnerable to intra-object corruption attacks [36].
Moreover, since they attempt to protect the whole memory, most of the solutions in this
category suffer from high memory or time overhead. On the other hand, we focus on
protecting specific data in the program, which helps achieve lower performance overhead
while still providing reasonable security.

8.1.2 Control and Data plane Randomization

This class of defense attempts to make the exploits harder either by randomizing the
addresses or the data representation.

Examples of this class are described below:

Address Space Layout Randomization (ASLR) [67] applies randomness to addresses
used by a given task. ASLR causes an attacker’s attempt to exploit the memory to fail
with a quantifiable probability since it limits the attacker to brute-forcing or guessing the
addresses. ASLP [46] proposes randomizing code and data segments in the user memory
space. Oxymoron [15] is another approach that divides the program code into memory
pages and randomizes and shares the corresponding pages among processes. These so-
lutions are however vulnerable to the JIT-ROP attacks since they only perform single
randomization. As an example, one solution proposes re-randomization mechanisms to fix
this issue [53].

81

DSR [18] randomizes data representations in memory by using random masking values
that are XORed with the variables. HARD [17] improves DSR by using hardware features
for shift operations.

This category still attempts to prevent attacks as opposed to our approach, which de-
tects the occurrence of an attack. Both randomizations of control and data plane require
high entropy to be secure, which could be costly to achieve. Furthermore, the randomiza-
tion information itself needs to be protected from leakage. Our solution similarly requires
protecting the Message Authentication Code (MAC) generation key from being leaked,
which we ensure by using reserved registers.

8.1.3 Data Isolation

This class of defenses isolates critical data in specific parts of memory and enforces safety
policies when accessing them. ERIM [82] combines memory protection keys (MPKs), a
hardware primitive introduced in x86 allowing protection in userspace, with binary inspec-
tion to provide efficient hardware-enforced isolation.

IMIX [35] introduces isolated pages that store the critical data. The data in these
pages can only be accessed using a new instruction smov, and the rest of the code is unable
to access these pages. Execute-no-Read [14] proposes the implementation of execute-only
memory, which allows for code execution but prevents load and store instruction to protect
against memory disclosure.

This category is similar to our approach as they focus on protecting critical data instead
of the whole program data. However, isolating data still renders non-negligible overhead in
software-based solutions or requires special hardware features in hardware-based solutions,
which can reduce its usability and compatibility. On the other hand, although our solution
utilizes hardware features such as Pointer Authentication (PA), we achieve generality by
proposing compatible implementation for x86 architectures. Moreover, our design can
further be generalized for use in other settings by replacing the MAC calculation mechanism
with available secure encryption methods.

8.1.4 CFI and DFI

This class of defenses monitors the control transfers or data load and stores in the program
and validates them against a set of valid targets or instructions to prevent exploitation

82

of memory errors for attacks such as Return Oriented Programming (ROP) and Data-
Oriented Programming (DOP) attacks.

Control-Flow Integrity (CFI) was originally proposed in [9], but there have been various
other versions that attempted to improve upon CFI, such as CCFI [54], which proposes
the idea of creating a cryptographic MAC over the objects that affect the control flow of
a program. Code-Pointer Integrity (CPI) [47] achieves CFI protection by protecting the
integrity of all code pointers (e.g. return addresses) by separately storing them securely.
PACstack [49] provides an approach for mitigating illegitimate changes in the function
return addresses through calculating and chaining MACs. The MACs allow for discovering
any changes to the correct return address hence preventing the adversary from altering the
flow of the program and making the program jump to arbitrary addresses.

Similarly, Data-Flow Integrity (DFI) was originally introduced in [24], but was followed
by many other proposed solutions to improve it, for instance, through using hardware as
in HDFI [76].

Providing CFI or DFI by protecting all critical data can cause high overhead, therefore,
most of the proposed practical solutions are approximations. Moreover, both CFI and
DFI solutions need to be used at the same time to provide complete security since CFI
is vulnerable to DOP attacks and DFI to ROP attacks. Our work uses the same idea
as CCFI [54] and PACStack [49] to use cryptographic MACs for integrity verification.
However, while the previous work used MACs to protect control data, we use them to
specifically protect the integrity of data structures which could be used to store various
types of critical data.

8.1.5 Program Anomaly Detection

In this class of defenses, the solutions detect anomalies in programs by a training process
at the beginning and then monitoring the program throughout the execution process. One
example of this category uses the Intel Processor Trace for this purpose [26].

This class of defense lacks compatibility, and its effectiveness depends on the results of
the training phase [83]. Therefore, the current solutions from this category are not reliable
enough to be generally practiced.

83

8.2 Authenticated Data Structures

Aside from securing the data structures against memory corruption attacks, verifiable data
structures can be practical in networked systems and among untrusted entities. There
are however some differences between the secure data structures and authenticated data
structures used in networked systems. In the authenticated data structures, we assume the
presence of an untrusted prover that performs the operations and provides proofs, and a
verifier who wants to check its authenticity [57].

There have been many proposed designs for the authenticated data structures, such as
binary trees, red-black trees, skip lists, and a few other data structures. For instance, there
are persistent authenticated dictionaries that provide authenticated answers for queries
about the presence of an element in the data structure at a certain time [12]. They
introduce two designs, one based on the red-black tree, and one based on the skip-list.
Moreover, they use collision-free hash functions for the authentication process.

λ· is a language for programming authenticated data structures in general [57]. With
this language, the authentication process for any defined data structure is turned into a
set of structurally similar steps performed by a prover and verifier at specific key points.
The basis of the authentication proofs is a collision-resistance hash function similar to the
previous designs for authenticated data structures.

84

Chapter 9

Conclusion

Memory attacks in low-level programming languages such as C++ are an ongoing problem
in computer security. One way to prevent memory attacks that modify the program data
is to detect when a malicious adversary changes the data illegitimately. In order to reduce
the costs associated with protecting all data in the program, it is more reasonable to pro-
tect only specific data. SafeDS introduces secure data structures that ensure the integrity
of their stored elements. We present secure designs tailored to each data structure’s spe-
cific functionality and cryptographically prove how the proposed designs ensure element
integrity. Moreover, we presented our prototype, the implementation of the secure data
structures as part of gcc-11.1.0, which can be used with no change or minimal changes
to the source code. We showed that our prototype can be used in real-world applications
with negligible overhead. Finally, we discussed the possible future work for improving the
current prototype. Our future work involves providing compatibility with multi-threaded
programs and performing automatic Message Authentication Code (MAC) updates when
the element is legitimately modified while inside the data structures.

85

References

[1] C++ reference. https://en.cppreference.com/w/cpp.

[2] C++ reference - copy constructors. https://en.cppreference.com/w/cpp/

language/copy_constructor.

[3] C++ reference - move constructors. https://en.cppreference.com/w/cpp/

language/move_constructor.

[4] C++11 standard library extensions - concurrency. https://isocpp.org/wiki/faq/

cpp11-library-concurrency.

[5] CVE. =https://cve.mitre.org/.

[6] The rule of three/five/zero. https://en.cppreference.com/w/cpp/language/rule_
of_three.

[7] swisslog healthcare letterhead. =https://www.swisslog-healthcare.com/.

[8] What is execute-only-memory (XOM)? https://community.arm.com/

arm-community-blogs/b/architectures-and-processors-blog/posts/

what-is-execute-only-memory-xom.

[9] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow integrity
principles, implementations, and applications. ACM Transactions on Information and
System Security (TISSEC), 13(1):1–40, 2009.

[10] Steven Van Acker, Nick Nikiforakis, Pieter Philippaerts, Yves Younan, and Frank
Piessens. Valueguard: Protection of native applications against data-only buffer over-
flows. In International Conference on Information Systems Security, pages 156–170.
Springer, 2010.

86

https://en.cppreference.com/w/cpp
https://en.cppreference.com/w/cpp/language/copy_constructor
https://en.cppreference.com/w/cpp/language/copy_constructor
https://en.cppreference.com/w/cpp/language/move_constructor
https://en.cppreference.com/w/cpp/language/move_constructor
https://isocpp.org/wiki/faq/cpp11-library-concurrency
https://isocpp.org/wiki/faq/cpp11-library-concurrency
=
https://en.cppreference.com/w/cpp/language/rule_of_three
https://en.cppreference.com/w/cpp/language/rule_of_three
=
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/what-is-execute-only-memory-xom
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/what-is-execute-only-memory-xom
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/what-is-execute-only-memory-xom

[11] Alvinashcraft. Data execution prevention - win32 apps. https://docs.microsoft.

com/en-us/windows/win32/memory/data-execution-prevention.

[12] Aris Anagnostopoulos, Michael T Goodrich, and Roberto Tamassia. Persistent au-
thenticated dictionaries and their applications. In International Conference on Infor-
mation Security, pages 379–393. Springer, 2001.

[13] Roberto Avanzi. The QARMA block cipher family. almost MDS matrices over rings
with zero divisors, nearly symmetric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency s-boxes. IACR Transactions on
Symmetric Cryptology, pages 4–44, 2017.

[14] Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan Nurn-
berger, and Jannik Pewny. You can run but you can’t read: Preventing disclosure
exploits in executable code. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 1342–1353, 2014.

[15] Michael Backes and Stefan Nurnberger. Oxymoron: Making fine-grained memory ran-
domization practical by allowing code sharing. In 23rd USENIX security symposium
(USENIX security 14), pages 433–447, 2014.

[16] Antonio Barresi, Kaveh Razavi, Mathias Payer, and Thomas R Gross. Cain: Silently
breaking aslr in the cloud. In 9th USENIX Workshop on Offensive Technologies
(WOOT 15), 2015.

[17] Brian Belleville, Hyungon Moon, Jangseop Shin, Dongil Hwang, Joseph M Nash,
Seonhwa Jung, Yeoul Na, Stijn Volckaert, Per Larsen, Yunheung Paek, et al. Hardware
assisted randomization of data. In International Symposium on Research in Attacks,
Intrusions, and Defenses, pages 337–358. Springer, 2018.

[18] Sandeep Bhatkar and R Sekar. Data space randomization. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment, pages 1–22.
Springer, 2008.

[19] Tyler Bletsch, Xuxian Jiang, and Vince Freeh. Mitigating code-reuse attacks with
control-flow locking. In Proceedings of the 27th Annual Computer Security Applica-
tions Conference, pages 353–362, 2011.

[20] Nathan Burow, Xinping Zhang, and Mathias Payer. Sok: Shining light on shadow
stacks. In 2019 IEEE Symposium on Security and Privacy (SP), pages 985–999. IEEE,
2019.

87

https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention

[21] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa. Undangle: early
detection of dangling pointers in use-after-free and double-free vulnerabilities. In
Proceedings of the 2012 International Symposium on Software Testing and Analysis,
pages 133–143, 2012.

[22] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R
Gross. Control-flow bending: On the effectiveness of control-flow integrity. In 24th
USENIX Security Symposium (USENIX Security 15), pages 161–176, 2015.

[23] Scott A Carr and Mathias Payer. Datashield: Configurable data confidentiality and
integrity. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, pages 193–204, 2017.

[24] Miguel Castro, Manuel Costa, and Tim Harris. Securing software by enforcing data-
flow integrity. In Proceedings of the 7th symposium on Operating systems design and
implementation, pages 147–160, 2006.

[25] Miguel Castro, Manuel Costa, and Tim Harris. Securing software by enforcing data-
flow integrity. In Proceedings of the 7th symposium on Operating systems design and
implementation, pages 147–160, 2006.

[26] Long Cheng. Program anomaly detection against data-oriented attacks. 2018.

[27] Yueqiang Cheng, Zongwei Zhou, Yu Miao, Xuhua Ding, and Robert H Deng. Ropecker:
A generic and practical approach for defending against rop attack. 2014.

[28] Carlos Coronado. On the security and the efficiency of the merkle signature scheme.
Cryptology ePrint Archive, 2005.

[29] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. Stitching
the gadgets: On the ineffectiveness of Coarse-Grained Control-Flow integrity protec-
tion. In 23rd USENIX Security Symposium (USENIX Security 14), pages 401–416,
San Diego, CA, August 2014. USENIX Association.

[30] Remi Denis-Courmont, Hans Liljestrand, Carlos Chinea, and Jan-Erik Ekberg. Cam-
ouflage: Hardware-assisted CFI for the ARM linux kernel. In 2020 57th ACM/IEEE
Design Automation Conference (DAC), pages 1–6. IEEE, 2020.

[31] Solar Designer. “return-to-libc” attack. Bugtraq, Aug, 1997.

88

[32] Gregory J Duck and Roland HC Yap. Heap bounds protection with low fat pointers.
In Proceedings of the 25th International Conference on Compiler Construction, pages
132–142, 2016.

[33] Morris Dworkin. Recommendation for block cipher modes of operation: The CMAC
mode for authentication, 2016.

[34] Reza Mirzazade Farkhani, Mansour Ahmadi, and Long Lu. PTAuth: Temporal mem-
ory safety via robust points-to authentication. In 30th USENIX Security Symposium
(USENIX Security 21), pages 1037–1054, 2021.

[35] Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, and Ahmad-Reza
Sadeghi. IMIX: In-process memory isolation extension. In 27th USENIX Security
Symposium (USENIX Security 18), pages 83–97, 2018.

[36] Ronald Gil, Hamed Okhravi, and Howard Shrobe. There’s a hole in the bottom of
the C: On the effectiveness of allocation protection. In 2018 IEEE Cybersecurity
Development (SecDev), pages 102–109. IEEE, 2018.

[37] Michael T Goodrich, Roberto Tamassia, and Michael H Goldwasser. Data structures
and algorithms in Java. John Wiley & Sons, 2014.

[38] Google. Google benchmark. https://github.com/google/benchmark/, May 2022.

[39] Google. Google benchmark user guide. https://github.com/google/benchmark/

blob/main/docs/user_guide.md, May 2022.

[40] Shay Gueron. Intel advanced encryption standard (AES) new instructions set, 2010.

[41] Niranjan Hasabnis, Ashish Misra, and R Sekar. Light-weight bounds checking. In Pro-
ceedings of the Tenth International Symposium on Code Generation and Optimization,
pages 135–144, 2012.

[42] Charly Castes https://twitter.com/CharlyCastes/. Diving into intel mpk, Feb 2020.

[43] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena, and
Zhenkai Liang. Data-oriented programming: On the expressiveness of non-control
data attacks. In 2016 IEEE Symposium on Security and Privacy (SP), pages 969–
986. IEEE, 2016.

89

https://github.com/google/benchmark/
https://github.com/google/benchmark/blob/main/docs/user_guide.md
https://github.com/google/benchmark/blob/main/docs/user_guide.md

[44] Trevor Jim, J Gregory Morrisett, Dan Grossman, Michael W Hicks, James Cheney,
and Yanling Wang. Cyclone: a safe dialect of C. In USENIX Annual Technical
Conference, General Track, pages 275–288, 2002.

[45] Jicheol Lee Junhyuk Song. Openpana. https://github.com/OpenPANA/openpana,
2014.

[46] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng Ning. Ad-
dress space layout permutation (ASLP): Towards fine-grained randomization of com-
modity software. In 2006 22nd Annual Computer Security Applications Conference
(ACSAC’06), pages 339–348. IEEE, 2006.

[47] Volodymyr Kuznetzov, Laszlo Szekeres, Mathias Payer, George Candea, R Sekar, and
Dawn Song. Code-pointer integrity. In The Continuing Arms Race: Code-Reuse
Attacks and Defenses, pages 81–116. 2018.

[48] Albert Kwon, Udit Dhawan, Jonathan M Smith, Thomas F Knight Jr, and Andre
DeHon. Low-fat pointers: compact encoding and efficient gate-level implementation
of fat pointers for spatial safety and capability-based security. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security, pages 721–
732, 2013.

[49] Hans Liljestrand, Thomas Nyman, Lachlan J Gunn, Jan-Erik Ekberg, and N Asokan.
PACStack: an authenticated call stack. In 30th USENIX Security Symposium
(USENIX Security 21), pages 357–374, 2021.

[50] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez, Jan-Erik Ekberg,
and N Asokan. PAC it up: Towards pointer integrity using ARM pointer authenti-
cation. In 28th USENIX Security Symposium (USENIX Security 19), pages 177–194,
2019.

[51] Dale Liu, Max Caceres, Tim Robichaux, Dario V. Forte, Eric S. Seagren, Devin L.
Ganger, Brad Smith, Wipul Jayawickrama, Christopher Stokes, and Jan Kanclirz.
Chapter 3 - an introduction to cryptography. In Next Generation SSH2 Implementa-
tion, pages 41–64. Syngress, Burlington, 2009.

[52] LLVM. LLVM libcxx benchmarks. https://github.com/llvm/llvm-project/tree/
main/libcxx/benchmarks, 2022.

[53] Kangjie Lu, Wenke Lee, Stefan Nurnberger, and Michael Backes. How to make ASLR
win the clone wars: Runtime re-randomization. In NDSS, 2016.

90

https://github.com/OpenPANA/openpana
https://github.com/llvm/llvm-project/tree/main/libcxx/benchmarks
https://github.com/llvm/llvm-project/tree/main/libcxx/benchmarks

[54] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières. CCFI: Cryp-
tographically enforced control flow integrity. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pages 941–951, 2015.

[55] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of applied
cryptography. CRC press, 2018.

[56] Microsoft. merklecpp. https://github.com/microsoft/merklecpp, 2021.

[57] Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi. Authenticated data
structures, generically. ACM SIGPLAN Notices, 49(1):411–423, 2014.

[58] Frederic P. Miller, Agnes F. Vandome, and John McBrewster. Advanced Encryption
Standard. Alpha Press, 2009.

[59] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic. Soft-
Bound: Highly compatible and complete spatial memory safety for C. In Proceedings
of the 30th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, pages 245–258, 2009.

[60] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic. CETS:
compiler enforced temporal safety for C. In Proceedings of the 2010 International
Symposium on Memory Management, pages 31–40, 2010.

[61] George C Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley
Weimer. CCured: Type-safe retrofitting of legacy software. ACM Transactions on
Programming Languages and Systems (TOPLAS), 27(3):477–526, 2005.

[62] Tim Newsham. Format string attacks, 2000.

[63] Okdshin. PicoSHA2 - a C++ SHA256 hash generator. https://github.com/

okdshin/PicoSHA2, 2021.

[64] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and Christof
Fetzer. Intel MPX explained: An empirical study of Intel MPX and software-based
bounds checking approaches. arXiv preprint arXiv:1702.00719, 2017.

[65] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and Engin Kirda.
G-Free: defeating return-oriented programming through gadget-less binaries. In Pro-
ceedings of the 26th Annual Computer Security Applications Conference, pages 49–58,
2010.

91

https://github.com/microsoft/merklecpp
https://github.com/okdshin/PicoSHA2
https://github.com/okdshin/PicoSHA2

[66] Aleph One. Smashing the stack for fun and profit. Phrack magazine, 7(49):14–16,
1996.

[67] Team PaX. Pax address space layout randomization (ASLR).
http://pax.grsecurity.net/docs/aslr.txt.

[68] Joseph Ravichandran, Weon Taek Na, Jay Lang, and Mengjia Yan. PACMAN: attack-
ing ARM pointer authentication with speculative execution. In ISCA, pages 685–698,
2022.

[69] Christian Fredrik Fossum Resell. Forward-edge and backward-edge control-flow in-
tegrity performance in the linux kernel. Master’s thesis, 2020.

[70] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-oriented
programming: Systems, languages, and applications. ACM Transactions on Informa-
tion and System Security (TISSEC), 15(1):1–34, 2012.

[71] Nick Roessler and Andre DeHon. Protecting the stack with metadata policies and
tagged hardware. In 2018 IEEE Symposium on Security and Privacy (SP), pages
478–495. IEEE, 2018.

[72] Mark Rutland. Pointer authentication in AARCH64 linux. https://www.kernel.

org/doc/html/latest/arm64/pointer-authentication.html, Jul 2017.

[73] Cole Schlesinger, Karthik Pattabiraman, Nikhil Swamy, David Walker, and Ben Zorn.
Yarra: An extension to c for data integrity and partial safety, 2011.

[74] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov.
AddressSanitizer: A fast address sanity checker. In 2012 USENIX Annual Technical
Conference (USENIX ATC 12), pages 309–318, 2012.

[75] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Paper 2004/332, 2004. https://eprint.iacr.org/2004/
332.

[76] Chengyu Song, Hyungon Moon, Monjur Alam, Insu Yun, Byoungyoung Lee, Taesoo
Kim, Wenke Lee, and Yunheung Paek. HDFI: Hardware-assisted data-flow isolation.
In 2016 IEEE Symposium on Security and Privacy (SP), pages 1–17. IEEE, 2016.

[77] Zhichuang Sun, Bo Feng, Long Lu, and Somesh Jha. OAT: Attesting operation in-
tegrity of embedded devices. In 2020 IEEE Symposium on Security and Privacy (SP),
pages 1433–1449. IEEE, 2020.

92

https://www.kernel.org/doc/html/latest/arm64/pointer-authentication.html
https://www.kernel.org/doc/html/latest/arm64/pointer-authentication.html
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332

[78] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal war in
memory. In 2013 IEEE Symposium on Security and Privacy, pages 48–62. IEEE,
2013.

[79] Qualcomm Technologies. Pointer authentication on ARMv8.3: Design and analysis of
the new software security instructions. 2017.

[80] Alin Tomescu. What is a merkle tree? https://decentralizedthoughts.github.

io/2020-12-22-what-is-a-merkle-tree/#fn:consideredtobe.

[81] Unknown. Examining pointer authentication on the iphone
xs. https://googleprojectzero.blogspot.com/2019/02/

examining-pointer-authentication-on.html, Jan 1970.

[82] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael Sammler, Peter
Druschel, and Deepak Garg. ERIM: Secure, efficient in-process isolation with protec-
tion keys (MPK). In 28th USENIX Security Symposium (USENIX Security 19), pages
1221–1238, 2019.

[83] Ye Wang, Qingbao Li, Zhifeng Chen, Ping Zhang, and Guimin Zhang. A survey of
exploitation techniques and defenses for program data attacks. Journal of Network
and Computer Applications, 154:102534, 2020.

[84] Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe, Jonathan
Anderson, David Chisnall, Brooks Davis, Alexandre Joannou, Ben Laurie, Simon W.
Moore, Steven J. Murdoch, Robert Norton, Stacey Son, and Hongyan Xia. Capability
Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Ver-
sion 5). Technical Report UCAM-CL-TR-891, University of Cambridge, Computer
Laboratory, June 2016.

[85] Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. CFIMon: Detecting violation
of control flow integrity using performance counters. In IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2012), pages 1–12. IEEE,
2012.

[86] Jun Zhang, Rui Hou, Junfeng Fan, Ke Liu, Lixin Zhang, and Sally A McKee. RA-
Guard: A hardware based mechanism for backward-edge control-flow integrity. In
Proceedings of the Computing Frontiers Conference, pages 27–34, 2017.

93

https://decentralizedthoughts.github.io/2020-12-22-what-is-a-merkle-tree/#fn:consideredtobe
https://decentralizedthoughts.github.io/2020-12-22-what-is-a-merkle-tree/#fn:consideredtobe
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html

[87] Jun Zhang, Rui Hou, Wei Song, Zhiyuan Zhan, Boyan Zhao, Mingyu Chen, and Dan
Meng. Stateful forward-edge CFI enforcement with Intel MPX. In Conference on
Advanced Computer Architecture, pages 79–94. Springer, 2018.

94

APPENDICES

We present the secure red-black tree functions here:

Algorithm 10 RB-DELETE

1: y = z
2: if z.left == T.nil then
3: x = z.right
4: else if z.right == T.nil then
5: x = z.left
6: else
7: y = y.right
8: while y.left 6= T.nil do
9: y = y.left
10: end while
11: x = y.right
12: end if
13: if y 6= z then
14: z.left.p = y
15: y.left = z.left
16: if y 6= z.right then
17: x-parent = y.p
18: if x then
19: x.p = y.p
20: end if
21: y.p.left = x
22: y-dummy = y
23: //updating the MACs
24: while y − dummy 6= z.right do
25: y-dummy.p.mac = calculate-mac(nonce, y-dummy.p.left.mac ,

95

26: y-dummy.p.right.mac, y-dummy.p)
27: y-dummy = y-dummy.p
28: end while
29: y.right = z.right
30: y.mac = calculate-mac(nonce, y.left.mac , y.right.mac, y)
31: z.right.p = y
32: else
33: y.mac = calculate-mac(nonce, y.left.mac , y.right.mac, y)
34: x-parent = y
35: end if
36: if root == z then
37: root = y
38: update-top-mac(calculate-mac(nonce,leftmost.mac,rightmost.mac, root.mac),
39: nonce)
40: else if z.p.left == z then
41: z.p.left = y
42: else
43: z.p.right = y
44: end if
45: z.p.mac = calculate-mac(nonce, z.p.left.mac , z.p.right.mac, z.p)
46: currently-updated = z.p
47: old =z.p.mac
48: store-mac(calculate-mac(nonce, old, z.p.mac))
49: y.p = z.p
50: if root == currently-updated then
51: update-top-mac(calculate-mac(nonce,leftmost.mac,rightmost.mac, root.mac),
52: nonce)
53: end if
54: swap(y.color,z.color)
55: y = z
56: else
57: x-parent = y.p
58: if x then
59: x.p = y.p
60: end if
61: if z == root then
62: root = x
63: update-top-mac(calculate-mac(nonce,leftmost.mac,rightmost.mac, root.mac),

96

64: nonce)
65: else if z.p.left == z then
66: z.p.left = x
67: else
68: z.p.right = x
69: end if
70: z.p.mac = calculate-mac(nonce, z.p.left.mac , z.p.right.mac, z.p)
71: currently-updated = z.p
72: old =z.p.mac
73: store-mac(calculate-mac(nonce, old, z.p.mac))
74: if root == currently-updated then
75: update-top-mac(calculate-mac(nonce,leftmost.mac,rightmost.mac, root.mac),
76: nonce)
77: end if
78: //check if leftmost and rightmost have changed, and if yes, update them along with

the top-mac
79: end if

Algorithm 11 RB-DELETE-FIXUP

// Checking if balancing is required.
1: while x 6= T.rootandx.color == BLACK do
2: if x = currently-updated then
3: temp = x.p.mac
4: verify-and-update-macs(x,1,old)
5: old = temp
6: if x != root then
7: currently-updated = x.p
8: end if
9: end if
10: if x == x.p.left then
11: w = x.p.right
12: if w.color == RED then
13: w.color = BLACK
14: x.p.color = RED
15: LEFT-ROTATE(T, x.p)
16: currently-updated = currently-updated.p
17: store-mac(calculate-mac(nonce, old, currently-updated.mac))
18: if currently-updated = root then

97

19: update-top-mac(calculate-mac(nonce,leftmost.mac,rightmost.mac,
20: root.mac), nonce)
21: end if
22: w = x.p.right
23: end if
24: if w.left.color == BLACK and w.right.color == BLACK then
25: w.color = RED
26: x = x.p
27: else
28: if w.right.color == BLACK then
29: w.left.color = BLACK
30: w.color = RED
31: verify-mac(calculate-mac(nonce, w.left.left.mac, w.left.right.mac,
32: w.left), w.left.mac)
33: verify-mac(calculate-mac(nonce, w.right.left.mac, w.right.right.mac,
34: w.right), w.right.mac)
35: dummy-x = RIGHT-ROTATE(T,w)
36: while x− dummy 6= currently − updated do
37: x-dummy.p.mac = calculate-mac(nonce, x-dummy.p.left.mac,
38: x-dummy.p.right.mac, x-dummy.p)
39: x-dummy = x-dummy.p
40: end while
41: store-mac(calculate-mac(nonce, old, currently-updated.mac))
42: if currently-updated = root then
43: update-top-mac(calculate-mac(nonce,leftmost.mac,rightmost.mac,
44: root.mac), nonce)
45: end if
46: w = x.p.right
47: end if
48: w.color = x.p.color
49: x.p.color = BLACK
50: w.right.color = BLACK
51: if currently-updated = x.p then
52: is-updated = true
53: end if
54: x-dummy = LEFT-ROTATE(T,x.p)
55: if is-updated then
56: currently-updated = currently-updated.p

98

57: else
58: while x− dummy 6= currently − updated do
59: x-dummy.p.mac = calculate-mac(nonce, x-dummy.p.left.mac ,
60: x-dummy.p.right.mac, x-dummy.p)
61: x-dummy = x-dummy.p
62: end while
63: end if
64: store-mac(calculate-mac(nonce, old, currently-updated.mac))
65: if currently-updated = root then
66: update-top-mac(calculate-mac(nonce,leftmost.mac,rightmost.mac,
67: root.mac), nonce)
68: end if
69: end if
70: else(same as then clause with ”right” and ”left” exchanged)
71: end if
72: end while
73: if x then
74: x.color = BLACK
75: end if

Algorithm 12 RB-Insert

1: y = T.nil
2: x = T.root
3: root-mac = get-top-mac()
4: verify-mac(root-mac, x.mac)
5: verify-mac(calculate-mac(nonce, x.left.mac, x.right.mac, x), x.mac)
6: while x 6= T.nil do
7: y = x
8: verify-mac(calculate-mac(nonce, y.left.mac, y.right.mac, y), y.mac)
9: if z.key < x.key then
10: x = x.left
11: else
12: x = x.right
13: end if
14: end while
15: z.p = y
16: if y == T.nil then

99

17: T.root = z
18: update-root()
19: else if z.key < y.key then
20: y.left = z
21: else
22: y.right =z
23: end if
24: z.left = T.nil
25: z.right = T.nil
26: z.color = RED
27: z.mac = calculate-mac(nonce, z.left.mac, z.right.mac, z)
28: old = 0
29: to-save = calculate-mac(old, z.mac)
30: store-mac(to-save)
31: (old, z) = RB-INSERT-FIXUP(T, z)
32: verify-mac(calculate-mac(nonce, old, z.mac), get-mac-from-register())
33: if z == z.p.left then
34: update-macs(z.p,old, z.mac, true)
35: else
36: update-macs(z.p,old, z.mac, false)
37: end if

Algorithm 13 RB-INSERT-FIXUP

1: while z.p.color = RED do
2: if z == currently-updated then
3: verify-and-update-macs(z,2)
4: currently-updated = z.p.p
5: else
6: if z.p == currently-updated then
7: verify-and-update-macs(z,1)
8: currently-updated = z.p
9: end if
10: end if
11: if z.p == z.p.p.left then
12: y = z.p.p.right
13: if y.color == RED then
14: z.p.color = BLACK

100

15: y.color = BLACK
16: z.p.p.color = RED
17: z = z.p.p
18: else
19: if z == z.p.right then
20: z = z.p
21: LEFT-ROTATE(T,z)
22: x.p.p.mac = calculate-mac(nonce, z.p.p.left.mac, z.p.p.right.mac,
23: z.p.p)
24: store-mac(old, x.p.p.mac)
25: end if
26: z.p.color = BLACK
27: z.p.p.color = RED
28: currently-updated = ROTATE-RIGHT(T, z.p.p)
29: store-mac(old, currently-updated.mac)
30: end if
31: else (same as then clause with ”right” and ”left” exchanged)
32: end if
33: end while
34: T.root.color = BLACK
35: return (z, old)

Algorithm 14 LEFT-ROTATE

1: y = x.right
2: x.right = y.left
3: if y.left 6= T.nil then
4: y.left.p = x
5: end if
6: y.p = x.p
7: if x.p == T.nil then
8: T.root = y
9: else if x == x.p.left then
10: x.p.left = y
11: else
12: x.p.right = y
13: end if
14: y.left = x

101

15: x.p = y
16: x.mac = calculate-mac(nonce, x.left.mac, x.right.mac, x)
17: y.mac = calculate-mac(nonce, x.mac, y.right.mac, y)
18: if y == root then
19: update-top-mac(calculate-mac(nonce,leftmost.mac,rightmost.mac, root.mac),
20: nonce)
21: end if
22: return y

Algorithm 15 VERIFY-AND-UPDATE-MACS

1: mac = get-mac-from-register();
2: verify-mac(calculate-mac(nonce,old,x.mac), mac)
3: verify-mac(calculate-mac(nonce, x.left.mac, x.right.mac, x), x.mac)
4: while level − count > 0 do
5: if x 6= root then
6: if x.p 6= root then
7: if x == x.p.right then
8: if x.p.left then
9: verify-mac(calculate-mac(nonce, x.p.left.left.mac, x.p.left.right.mac,
10: x.p.left), x.p.left.mac)
11: end if
12: verify-mac(calculate-mac(nonce, x.p.left.mac, old-mac, x.p), x.p.mac)
13: old = x.p.mac x.p.mac = calculate-mac(nonce, x.p.left.mac,
14: x.p.right.mac, x.p)
15: else
16: if x.p.right then
17: verify-mac(calculate-mac(nonce, x.p.right.left.mac,
18: x.p.right.right.mac,x.p.right), x.p.right.mac)
19: end if
20: verify-mac(calculate-mac(nonce,old-mac, x.p.right.mac, x.p), x.p.mac)
21: old = x.p.mac
22: x.p.mac = calculate-mac(nonce, x.p.left.mac, x.p.right.mac, x.p)
23: end if
24: level-count = level-count - 1
25: x = x.p
26: else
27: if x == x.p.right then

102

28: if x.p.left then
29: verify-mac(calculate-mac(nonce, x.p.left.left.mac,
30: x.p.left.right.mac,x.p.left), x.p.left.mac)
31: end if
32: top = get-top-mac(nonce)
33: verify-mac(top, calculate-mac(nonce, leftmost.mac,
34: rightmost.mac, root.mac))
35: verify-mac(calculate-mac(nonce,x.p.left.mac, old-mac, x.p), x.p.mac)
36: old = x.p.mac
37: x.p.mac = calculate-mac(nonce, x.p.left.mac, x.p.right.mac, x.p)
38: else
39: if x.p.right then
40: verify-mac(calculate-mac(nonce, x.p.right.left.mac,
41: x.p.right.right.mac,x.p.right), x.p.right.mac)
42: end if
43: top = get-top-mac(nonce)
44: verify-mac(top, calculate-mac(nonce, leftmost.mac, rightmost.mac,
45: root.mac))
46: verify-mac(calculate-mac(nonce,old-mac, x.p.right.mac, x.p), x.p.mac)
47: old = x.p.mac
48: x.p.mac = calculate-mac(nonce, x.p.left.mac, x.p.right.mac, x.p)
49: end if
50: level-count = level-count - 1
51: update-top-mac(calculate-mac(nonce,leftmost.mac,rightmost.mac,
52: root.mac), nonce)
53: x = x.p
54: end if
55: end if
56: end while
57: store-mac(calculate-mac(old-mac, x.mac, nonce))

Algorithm 16 UPDATE-MACS

1: if x 6= root then
2: if left then
3: verify-mac(new-mac, x.left.mac)
4: verify-mac(calculate-mac(nonce, old-mac, x.right.mac, x), x.mac)
5: else

103

6: verify-mac(new-mac, x.right.mac)
7: verify-mac(calculate-mac(nonce, x.left.mac, old-mac, x), x.mac)
8: end if
9: old-mac = x.mac
10: x.mac = calculate-mac(nonce, x.left.mac, x.right.mac, x)
11: if x == x.p.left then
12: update-macs(x.p, old-mac, x.mac, true)
13: else
14: update-macs(x.p, old-mac, x.mac, false)
15: end if
16: else
17: top = get-top-mac(nonce)
18: verify-mac(calculate-mac(nonce,leftmost.mac,rightmost.mac, root.mac), top)
19: if left then
20: verify-mac(new-mac, x.left.mac)
21: verify-mac(calculate-mac(nonce, old-mac, x.right.mac, x), x.mac)
22: else
23: verify-mac(new-mac, x.right.mac)
24: verify-mac(calculate-mac(nonce, x.left.mac, old-mac, x), x.mac)
25: end if
26: x.mac = calculate-mac(nonce, x.left.mac, x.right.mac, x)
27: update-top-mac(calculate-mac(nonce,leftmost.mac,rightmost.mac, root.mac),
28: nonce)
29: end if

104

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background
	C++ Programming Language
	Data Structures
	Constructors and Assignment Operators

	Memory Vulnerabilities
	Control-Flow Hijacking Attacks
	Data-Only Attacks

	Message Authentication Code
	Merkle Tree
	Game-based Cryptographic Proofs
	ARM Pointer Authentication
	Intel AES-NI

	Problem Description
	Problem Statement
	Adversary Model
	Requirements
	Generality
	Security
	Performance

	Design
	Securing the MACs
	Secure Data Structures Design
	Secure Stack
	Secure Queue
	Secure Red-Black Tree

	Object Wrappers

	Implementation
	General Implementation Details
	Securing the MAC
	Secure Data Structures Implementation
	Secure Stack
	Secure Queue
	Secure Red-Black Tree

	MAC Calculation
	Object Wrappers

	Evaluation
	Generality
	Security
	Cryptographic Security Proofs
	Implementation Security

	Performance
	Microbenchmarks
	Real-World Applications
	Memory Overhead
	Comparing SafeDS With Similar Approaches

	Discussion
	Attacks against ARM Pointer Authentication
	Object Wrappers
	Thread Safety
	Use Cases

	Related Work
	Defenses Against Data Corruption Attacks
	Spatial and Temporal Memory Safety
	Control and Data plane Randomization
	Data Isolation
	CFI and DFI
	Program Anomaly Detection

	Authenticated Data Structures

	Conclusion
	References
	APPENDICES

