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Abstract

Constant-depth quantum circuits, or shallow quantum circuits, have been shown to exhibit
behavior that is uniquely quantum. This thesis explores the power and limitations of constant
depth quantum circuits, in particular as they compare to constant-depth classical circuits.

We start with a gentle introduction to shallow quantum and classical circuit complexity,
and we review the hardness of sampling from the output distribution of a constant-depth
quantum circuit. We then give an overview of the shallow circuit advantage from the 1D
Magic Square Problem from [BGKT20].

The first novel contribution is an investigation into the limitations of shallow quantum
circuits for local optimization problems. We prove that if a shallow quantum circuit’s in-
put/output relation is exactly that of a local optimization problem, then we can construct
a shallow classical circuit that also solves the optimization problem. We also prove an ap-
proximate version of this statement.

Finally, we introduce a novel sampling task over an n-bit distribution Dn such that there
exists a shallow quantum circuit that takes as input the state |GHZn⟩ = 1√

2
(|0n⟩ + |1n⟩)

and produces a distribution close to Dn whereas, any constant-depth classical circuit with
bounded fan-in and n + nδ random input bits for some δ < 1, will produce a distribution
that is not close to Dn.
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Chapter 1

Introduction

What can quantum computers do that classical computers cannot? This is the central
question guiding much quantum computing research.

Tasks for which quantum algorithms outperform classical algorithms are said to exhibit
quantum advantage. We note that quantum advantage is a vague term that is used in various
contexts. For this reason, it is useful to characterize different types of quantum advantage. In
particular, we highlight three desirable properties of a computational problem in the context
of quantum advantage.

The first desirable property is that the quantum advantage is provable. That is, we
can information-theoretically prove that any classical algorithm which completes the task
requires significantly more resources than the quantum algorithm. The second property is
that the computational problem is useful, and the third is that the quantum algorithm is
implementable in the near-term.

Unfortunately, this first property of provability has shown to be quite difficult. Perhaps
the most famous quantum algorithm is Shor’s factoring algorithm. Shor’s algorithm factors
an integer in polynomial-time. In contrast, it is widely believed that any classical factoring
algorithm requires exponential time. This widespread belief of classical hardness, however,
has not been proved. Therefore, we consider the complexity separation of factoring as
conditional on complexity-theoretic conjectures. Furthermore, the quantum algorithm for
factoring requires a large-scale quantum computer and is not amenable to near-term, smaller-
scale devices.

One model of computation that is more reasonable for near-term implementation, and
is the topic of this thesis, is low-depth (or shallow) quantum circuits Shallow quantum cir-
cuits can be considered as quantum computers that only run for a constant amount of time,
but can make small (acting on a constant number of (qu)bits) operations in parallel. Al-
though shallow quantum circuits are relatively simple, they still exhibit uniquely quantum
behavior. Assuming complexity-theoretic conjectures, shallow quantum circuits produce out-
put distributions that cannot be efficiently sampled classically [TD02, Aar04] (Section 2.5).
Rather than comparing shallow quantum circuits with efficient classical algorithms, if we
instead compare them with shallow classical circuits with bounded fan-in, Bravyi, Gosset,
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and Koenig prove unconditionally that there exists a search problem with such a quantum
advantage [BGK18]. We detail such an unconditional separation in Chapter 3. Following
this result, more search problems were introduced, which also achieve a shallow circuit sep-
aration [BGKT20, WKST19, Gal18, CSV21]. These problems, however, are quite contrived
and not immediately useful for any natural problem.

In practice, many problems that we care about can be stated as local optimization prob-
lems. These are problems with some local objective function1 F : {0, 1}n → R that can be
written as a sum of smaller (or local) terms such that the goal is to find a y ∈ {0, 1}n that
minimizes F (y).

Can we achieve a shallow quantum circuit advantage for local optimization problems?
The Quantum Approximate Optimization Algorithm (QAOA) introduced by [FGG14] and
discussed in Section 2.6, is an algorithm for this type of problem. Moreover, the simplest
version of the QAOA can be implemented in constant depth. While there are performance
guarantees for low-depth QAOA for certain optimization problems [FH16], they still do not
outperform the best-known classical algorithms.

In Chapter 4, we prove limitations of constant depth circuits for local optimization prob-
lems. We prove that if a shallow quantum circuit’s input/output relation is exactly that of a
local optimization problem, then we can construct a shallow classical circuit that also solves
the optimization problem. We also prove an approximate version of this statement. While
this property is rather strict, it still limits the behavior we can expect from shallow quantum
circuit optimization algorithms such as the QAOA.

So far, the computational tasks where shallow quantum circuits are proven to outperform
classical shallow circuits take the form of search problems. In Chapter 5, we consider sampling
problems. As a step toward finding a sampling task that provides a shallow circuit quantum
advantage, we consider the scenario that the shallow quantum circuit is allowed to take the
|GHZn⟩ = 1√

2
(|0n⟩ + |1n⟩) state as input. We introduce a distribution Dn over n bits such

that for the task of sampling from Dn, shallow quantum circuits with |GHZn⟩ as input
outperform shallow classical circuits that take uniformly random bits as input.

1See Definition 6 for a formal definition of a local objective function.
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Chapter 2

Background

This chapter is intended to be a gentle introduction to low-depth, or “shallow” quantum and
classical circuits.

2.1 Prelims/Notation

A quantum state on n qubits is a unit vector in C2n . We use bra-ket (or Dirac) notation: using

|ψ⟩ to denote a quantum state, and ⟨ψ| its conjugate transpose. We define |0⟩ =
(
1 0

)⊤
and

|1⟩ =
(
0 1

)⊤
, and for each bitstring x ∈ {0, 1}n, we define |x⟩ = |x1⟩⊗|x2⟩⊗· · ·⊗|xn⟩, where

⊗ is the tensor product. We refer to {|x⟩ : x ∈ {0, 1}n} as the computational basis. Upon
measuring state |ψ⟩ in the computational basis, the probability that we get measurement
outcome x is Prψ[x] = |⟨x|ψ⟩|2. For some bitstring x ∈ {0, 1}n and index i ∈ [n], we use xi
to denote the ith bit of x. Similarly, for some set of indices S ⊆ [n], we use xS to denote the
substring of x indexed by S. So xS = (xS1 , xS2 . . . , xS|S|).

Throughout this thesis we will use the single-qubit Pauli operators X,Y,Z the Hadamard
H and the Identity I

X =

(
0 1
1 0

)
Z =

(
1 0
0 −1

)
Y =

(
0 −i
i 0

)
H =

1√
2

(
1 1
1 −1

)
I =

(
1 0
0 1

)
(2.1)

as well as the two-qubit CNOT operator CNOT = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ X. The operator
which applies a single qubit operator G to only the ith qubit of an n qubit state, is denoted
Gi. For example X2 = I⊗ X⊗ I⊗ · · · ⊗ I.

2.2 Circuits

Classical Circuit A classical circuit with m input bits, and n output bits, is a function
C : {0, 1}m → {0, 1}n that is represented by a directed acyclic graph G with m source
vertices (no in-degree) and n sink vertices (no out-degree) of in-degree 1. The remaining
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vertices are gates. Each edge is assigned some bit value determined by its starting vertex.
Each of the m input vertices are given some bit {0, 1} which then gets assigned to their
outgoing edges. Each gate g with k incoming edges corresponds to some Boolean function
fg : {0, 1}k → {0, 1} which is evaluated on the string s ∈ {0, 1}k corresponding to the values
of its incoming edges. The value fg(s) is then assigned to each of the outgoing edges of g.
Finally, the output vertices, which each have in-degree 1, are assigned the same value as
their incoming edge.

The depth of a circuit is the number of gates along the longest path between input and
output vertices. A circuit has bounded fan-in k and fan-out k′ if each vertex has in-degree at
most k and out-degree at most k′. The size of a circuit, denoted |C| is the number of gates.
Figure 2.1a depicts an example of a classical circuit with 8 input bits and 3 output bits.

0

1

1

1

0

0

1

0

∧

∧

∧

∧

1

1

0

∨

∨

∨

(a) Classical Circuit with depth 2, fan-
in 2 and fan-out 2

U11 U31

U12 U32

U13 U33

U14 U34

U21

U22

U23

(b) Quantum Circuit with depth 3 and
fan-in/fan-out 2.

Figure 2.1: Classical and quantum circuits as represented by directed acyclic graphs. Blue
vertices represent input (qu)bits, and green vertices represent output (qu)bits. Orange ver-
tices are gates. For clarity these circuits only include gates between nearest neighbors,
however, this is not necessary in general.

Quantum Circuit A quantum circuit is also defined on a directed acyclic graph. The
input and output are now quantum states, with input/output vertices representing qubits of
the state. Each gate is a local unitary that acts on the qubits represented by the incoming
edges. A k-qubit quantum gate is a C2k×2k unitary that acts on a k-qubit state in C2k . A
quantum circuit’s fan-in, fan-out, depth, and size are defined in the same way as for classical
circuits. Note that a quantum gate has equal fan-in and fan-out, as we cannot copy the
output of a gate onto multiple edges. In Figure 2.1b, we display a quantum circuit as a
directed acyclic graph, analogous to the classical circuit description.

Equivalently, we can define a quantum circuit on n qubits with bounded fan-in/fan-out
k and depth d as of a sequence of d unitaries U1U2 . . . Ud with each Ui ∈ C2n×2n consisting
of a tensor product of gates on k or fewer qubits.

For the remainder of this thesis, we assume that the input to the quantum circuit is a
computational basis state, and the output is measured in the computational basis. Although
we will continue to refer to these directed edges or paths in the circuits, we typically use
the standard quantum circuit diagram as shown in Figure 2.2. Unless otherwise specified, a
quantum circuit is assumed to have bounded fan-in 2.
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|x1⟩
U11 U31

y1

|x2⟩
U21

y2

|x3⟩
U12 U32

y2

|x4⟩
U22

y2

|x5⟩
U13 U33

y3

|x6⟩
U23

y2

|x7⟩
U14 U34

y4

|x8⟩ y2

Figure 2.2: Standard quantum circuit diagram of the circuit described by the acyclic graph
in Figure 2.1b. Each Uij is a 2-qubit unitary. Time flows left to right. The input is a
computational basis state |x⟩ on the left. We apply the first layer of gates U11⊗U12⊗U13⊗U14

in the first time step. The output is measured in the computational basis resulting in the
classical output string y ∈ {0, 1}8. The double lines (or wires) indicate classical information.

2.3 Lightcones

In this section, we introduce lightcones, a useful tool for analyzing the limitations of low-
depth circuits.

Definition 1 (Lightcone). Let xj be an input (qu)bit to (classical or quantum) circuit C
The forward lightcone

−→LC(xj) is the subset of output (qu)bits that are connected to xj via a
path along the directed edges in the circuit. Similarly, for each output bit yk, the backwards

lightcone
←−LC(yk) is the set of input bits that are connected to yk. Moreover, for any subset

of input bits T , and any subset of outputs S, let
−→LC(T ) :=

⋃
xj∈T
−→LC(xj) and

←−LC(S) :=
⋃
yk∈S
←−LC(yk).

Figure 2.3 depicts a forwards and backwards lightcone of a quantum circuit.

Definition 2 (Blowup). Let C be a circuit with inputs I and outputs O, we define the
forwards-blowup and backwards-blowup of C as

Bf := max
xj∈I
|−→LC(xj)| Bb := max

yk∈O
|←−LC(yk)|

respectively. We define the blowup of C as B := max(Bf , Bb).

Adding a layer of gates (depth 1) to a circuit with bounded fan-in K and fan-out K ′,
will increase the size of any backwards or forwards lightcone by at most a factor of K and
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(a) (b)

Figure 2.3: Lightcones for quantum circuit Q. The yellow shaded inputs in (a) are the
backwards lightcone of output qubit a. The yellow shaded outputs in (b) are the forwards
lightcone of input qubit b.

K ′ respectively. Therefore, for a circuit C of depth D, bounded fan-in K and fan-out K ′ the
forwards and backwards blowup can be upper bounded as follows

|←−LC(yk)| ≤ KD for each output yk

|−→LC(xj)| ≤ K ′D for each input xj.

Thus, C has blowup at most max(KD, K ′D).

We will be focusing on quantum and classical circuits with constant depth D = O(1)
and fan-in K = O(1) and therefore constant-sized backwards blowup Bb = O(1). Small
backwards blowup limits the ways in which a given output can depend on the circuit’s
inputs. Understanding these limitations, and how they differ between quantum and classical
circuits, helps us characterize the abilities and limitations of shallow circuits.

As shown in Figure 2.4, a particular output bit yk of a classical circuit C can be computed

by the subcircuit induced by the paths connecting
←−LC(yk) to yk. The gates in this subcircuit

are sometimes referred to as the gates in the backwards lightcone of yk. Thus, for a classical
circuit with small blowup, each output bit is only dependent on a few of the inputs

0

1

1

1

0

0

1

0

∧

∧

∧

∧

1

1

0

∨

∨

∨

Figure 2.4: Classical subcircuit induced by the backwards lightcone of the first bit.

Do the same limitations hold for quantum circuits with small blowup? While we have
defined quantum and classical lightcones in the same way, the distinction between an output’s
dependence on its backwards lightcone in the quantum versus the classical regime is subtle.
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Upon measuring the output of a quantum circuit C in the computational basis, the resulting
string measured will not be fixed by the input, but rather follow a probability distribution
that is fixed by the input. For some subset S of measured output bits, rather than being
fixed by the inputs in their backwards lightcone, the marginal distribution of S is fixed by the

inputs in
←−LC(S). This marginal distribution is the same distribution that results from the

subcircuit consisting only of gates in the backwards lightcone of S as shown in Figure 2.5.
Thus, for both quantum and classical circuits with small blowup, the marginal distribution
of any single output bit does not indicate any global properties of the input – however, this
is no longer true for quantum circuits once we condition on other outputs.

Lemma 1 (Properties of lightcones in quantum circuits). Consider a quantum circuit C
acting on n qubits, taking input in the computational basis |x⟩ for x ∈ {0, 1}n. Let y ∈ {0, 1}n
be string resulting from measuring the circuit output in the computational basis.

1. For each subset of output bits S ⊆ [n], the marginal probability distribution of yS is a
function of the inputs in the backwards lightcone of S and is determined by the gates

along the path from
←−LC(S) to S as shown in Figure 2.5.

2. If two subsets of outputs S, S ′ ⊆ [n] have non-intersecting backwards lightcones←−LC(S) ∩
←−LC(S ′) = ∅, then the distributions of yS and yS′ are independent.

To see why (1) implies (2), note that if two subsets S, S ′ ⊆ [n] have disjoint backwards

lightcones, then the subcircuit induced by the gates of
←−LC(S ∪S ′) is disconnected. Therefore

this circuit produces the outputs of S and S ′ independently.

While similar in flavor to the restriction on classical circuits imposed by lightcones,
the quantum case is more general. As we will explore in Chapter 3, the less restrictive
limitations imposed by lightcones in quantum circuits actually allows us to solve problems
with constant-depth quantum circuits that cannot be solved by constant-depth classical
circuits [BGK18, BGK18, WKST19].

The notion of a lightcone is present in both quantum and classical circuits but has
implications with a subtle difference. At the crux of the distinction is that in contrast
with classical circuits, the measurement outcome of the output of a quantum circuit is not
fixed by the inputs. The reader may wonder, “what about randomized classical circuits?”
Each randomized classical circuit (gates are probabilistic) can be equivalently represented
by a deterministic classical circuit (the type we have so far been discussing) that takes an
additional random bit-string as input. Therefore, we can always assume that a classical
circuit is deterministic. This “randomness extraction” technique does not carry over to
quantum circuits and is central to the separation in computational power of quantum and
classical constant-depth circuits.

To highlight the usefulness of lightcones for lower bounding the depth of both quantum
and classical circuits, we provide the following example.
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|x1⟩ y1

|x2⟩ y2

|x3⟩ y3

|x4⟩ y4

|x5⟩ y5

|x6⟩ y6

|x7⟩ y7

|x8⟩ y8

|x9⟩ y9

|x12⟩ y12

=

|x1⟩ y1

|x2⟩ y2

|x3⟩ y3

|x4⟩ y4

|x5⟩ y5

|x6⟩ y6

|x7⟩ y7

|x8⟩ y8

|x9⟩ y9

|x12⟩ y12

Figure 2.5: The marginal probability distribution of the measurement outcome of outputs

y5 and y6 from quantum circuit Q depends only on the inputs in
←−LQ(y5) (highlighted in

blue). This figure illustrates how we can “stretch out” our circuit while maintaining the
same measurement statistics. Note that in the second circuit diagram, we measure output

yk after only applying the gates in the blue region, acting only on the qubits in
←−LQ(yk).

Lower bound for parity using lightcones Consider the function parityn which indicates
whether a given string x ∈ {0, 1}n has an even or odd number of ones:

parityn(x) :=
n∑

i=1

xi mod 2, x ∈ {0, 1}n.

The parityn function clearly depends on each of its input bits, since flipping any single bit
of a string will flip its parity. Therefore, any classical circuit C that computes parityn, has
backwards-blowup n. Furthermore, if C has bounded fan-in K and depth D, its backwards-
blowup is upper bounded byKD, thereforeKD ≥ n andD ≥ logK n. Therefore, any classical
circuit with constant fan-in K = O(1) that computes parity, has depth Ω(log(n)).

This lower bound also holds for quantum circuits, since the single output bit of the
quantum circuit which indicates the parity of the input must have a marginal distribution
that also depends on all n inputs.

2.4 Circuit Complexity

This thesis explores the difference in computational power between low-depth quantum and
classical circuits. In this section, we define circuit classes and complexity classes involving
constant depth circuits, and we categorize different types of computational tasks.

When considering the complexity of some computational task, we usually analyze how
the resource requirements (time, space, etc.) of an algorithm for the task grows with the

8



input size. For a given quantum or classical circuit, however, the circuit’s input size is fixed.
For this reason, we consider circuit families. A circuit family {Cn}n∈N is a family of circuits
such that for each n, the circuit Cn takes n classical bits as input. For a quantum circuit
that takes n input bits, we allow the quantum circuit to take additional ancillae qubits, so
for input x ∈ {0, 1}n, the circuit acts on input state |x⟩⊗

∣∣0ℓ
〉
for some ℓ. Moreover, we may

choose to ignore some of the outputs of the circuit (sometimes referred to as “junk”) and
consider only the remaining bits as the output, as shown below.

n

ℓ

“input” |x⟩
C

y ∈ {0, 1}m “output”

“ancillae”
∣∣0ℓ
〉

r ∈ {0, 1}n+ℓ−m “junk”

Definition 3 ( NC0/QNC0 circuits). A family of classical (quantum) circuits {Cn}n∈N is said
to be a NC0 (QNC0) circuit family if there exists constants k, d, c such that for each n ∈ N,
Cn has fan-in at most k and depth at most d, and |Cn| = O(nc).

Recall that a quantum circuit has equal fan-in and fan-out, so QNC0 circuit families have
constant-sized fan-out, whereas NC0 circuit families have unbounded fan-out.

We will often consider a quantum or classical circuit that takes n input bits– implicitly
referring to a circuit family. Furthermore, we will say such a circuit is a QNC0 circuit or an
NC0 circuit rather than stating this for the corresponding circuit family.

While quantum circuits can produce randomness, we can also produce randomness clas-
sically by flipping unbiased coins. Thus it is more interesting to consider classical circuits
that also are given some random bits as input. NC0/rpoly circuits are NC0 circuits that also
can sample from a distribution on a polynomial number of bits that is independent of the
input.

Before diving into classifying the computational power of quantum and classical shallow
circuits, we first distinguish between different types of computational tasks.

Function: Given n input bits, compute some function f : {0, 1}n → {0, 1}m, and outputs
the result.

Decision Problem: A decision problem on n bits is characterized by a function with a
single output bit f : {0, 1}n → {0, 1}. This one output bit indicates the decision: 1=“yes”,
0=“no”. Example: the OR function, “output 1 if and only if there is at least one 1 in the
input.” Often people will refer to a decision problem as a language L, which is the set of all
1-inputs (or “yes” instances) L := {x ∈ {0, 1}n : f(x) = 1}

9



Search (Relational) Problem: A search problem (or relational problem), can have many
valid outputs for one input. It is characterized by a relation R ⊆ {0, 1}n × {0, 1}m, such
that for some input x ∈ {0, 1}n, an output y ∈ {0, 1}m is valid if and only if (x, y) ∈ R.
Example: “output a string with the same number of ones as the input string.” Note that
search problems are a generalization of functions/decision problems.

Sampling Problem: A sampling problem is characterized by a distribution D(x) that
may depend on some input x ∈ {0, 1}n, and is defined over m bits. The task is to output a
sample y ∈ {0, 1}m from the distribution D(x). Example: “output uniformly at random an
m-bit string with the same number of 1s as x.”

The difference in computational power between QNC0 and NC0 (or NC0/rpoly) circuits
is not obvious. On one hand, an NC0 circuit can fan-out or copy any input polynomially-
many times, whereas a quantum circuit has constant-sized fan-out. Thus the simple task
of computing the function which maps an n-bit string (x1, x2, . . . , xn) to one with each bit
XOR’ed with the first bit, (0, x2 ⊕ x1, . . . , xn ⊕ x1) can be computed with a NC0 circuit
but not with a QNC0 circuit, since this requires that the forwards lightcone of x1 contains
all outputs (although this issue is resolved if we allow the quantum circuit to take multiple
copies of the input basis qubits |xi⟩). Moreover, if a QNC0 circuit computes a function,
each output bit can be determined as a function of the inputs in its backwards lightcone,
of which there are O(1). So the value of each output bit can be determined with an NC0

and therefore so can the entire function. Thus, NC0 is strictly more powerful than QNC0 for
function problems. This is not true, however, for search problems and sampling problems.

Typically, complexity classes are defined by decision problems. However, since any de-
cision problem in QNC0 is also in NC0, we will be focusing our attention on other types of
problems such as relational and sampling problems. For this reason, we will abuse typical
notation and say that some relation R is “in NC0” (or “in QNC0”) if there exists an NC0 (or
QNC0) circuit that satisfies the relation (with probability 1).

2.5 Hardness of classically sampling from shallow quan-

tum circuits

The first wave of interest in shallow quantum circuits for quantum advantage was sparked
by a line of work on the hardness of sampling from the output distribution of constant depth
quantum circuits [TD02, FGHZ05, Aar04, JSB10]. For these results, the hardness proved
is conditional. That is, they prove that the output distributions of these shallow circuits
cannot be sampled by an efficient classical algorithm if we assume some conjecture(s) from
complexity theory. This result concerns exact sampling, as opposed to approximate sampling,
a more realistic framework which warrants discussion in Section 2.5.2.

Combining results from [TD02, Aar04], we get the following theorem, whose hardness
relies on the polynomial hierarchy (PH) not collapsing:
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Theorem 1 ([TD02, Aar04]). If there exists an efficient classical algorithm that can sample
from the output distribution of any polynomial-sized quantum circuit with 1- and 2-qubit
gates, and depth at most 3, then the polynomial hierarchy collapses to the third level: PH =
Σ3.

While we will not further discuss or define the complexity class PH and its third level
Σ3, we note that the collapse of the polynomial hierarchy is widely believed to be unlikely
amongst complexity theorists and akin to NP = P. For more detail on the polynomial
hierarchy, we refer the reader to [AB09].

At the core of the proof of Theorem 1 is that we can simulate the output distribution of
any post-selected quantum circuit with a post-selected constant-depth quantum circuit.

Definition 4 (Post-selection). Post-selecting a circuit C, refers to altering the output mea-
surement statistics of the circuit by conditioning on the event that a subset of measurements
is all 0. Formally, for some t ∈ [0, n + ℓ − m], let p ∈ {0, 1}t denote the t “post-select”
bits after the m output bits C(x). The output y post-selected on p follows the distribution
Pr[C(x) = y|p = 0t].

n

ℓ

|x⟩

C

C(x) ∈ {0, 1}m “output”

p ∈ {0, 1}t “post-select”

∣∣0ℓ
〉

r ∈ {0, 1}n+ℓ−m−t “junk”

Post-selection is defined in the same way for classical circuits.

Models of computation that allow post-selection are somewhat nonphysical and may seem
obscure since we cannot control which probabilistic outcome will occur. However, we will
see how they can be used as tools to better understand their non-post-selected counterparts.

The following lemma is helpful for the proof of Theorem 1. We will first show how this
Lemma can be used to prove Theorem 1, then we will prove the lemma in the following
subsection.

Lemma 2 ([TD02], Compression via post-selection). For each post-selected quantum circuit
C with n inputs, and size O(poly(n)), there exists a post-selected quantum circuit with depth
at most 3, and size O(poly(n)), that implements C.

The proof of Lemma 2 is in Section 2.5.1

Definition 5 (PostBQP, PostBPP). For each decision problem L, we say that L ∈ PostBQP
if and only if there exists a uniform 1 family of polynomial-sized quantum circuits {Cn} such
that for each n ∈ N, Cn has one “output” bit, and a “post-select” register p ∈ {0, 1}ℓ for
some ℓ(n) ∈ {1, . . . , n+m− 1} such that for each x ∈ {0, 1}n:

if x ∈ L : Pr
[
Cn(x) = 1|p = 0ℓ

]
≥ 2/3

if x /∈ L : Pr
[
Cn(x) = 1|p = 0ℓ

]
≤ 1/3
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PostBPP is defined in the same way, for uniform families of polynomial-sized probabilistic
classical circuits {Cn}.

Proof of Theorem 1.

Claim 1. If there exists an efficient probabilistic classical algorithm, that takes as input the
description of any depth-3 quantum circuit, and samples from its output distribution, then
PostBPP = PostBQP.

Proof. Since any polynomial-size classical circuit can be simulated by a polynomial-sized
quantum circuit, it is always the case that PostBPP ⊆ PostBQP. So we just need to show
the other direction PostBQP ⊆ PostBPP under the assumption of efficient classical simulation
of depth-3 quantum circuits.

Consider some decision problem L ∈ PostBQP. By the definition of PostBQP, we have
that there exists a polynomial-sized quantum circuit family {Cn} such that for each n, and
each x ∈ {0, 1}n,

if x ∈ L : Pr
[
Cn(x) = 1|p = 0ℓ(n)

]
≥ 2/3

if x /∈ L : Pr
[
Cn(x) = 1|p = 0ℓ(n)

]
≤ 1/3

Where p is the value of the post-selected register. By Lemma 2, there exists a uniform family
of depth-3 circuits {C ′n} that, with the assistance of post-selection, have the same output
statistics as {Cn}.

Pr
[
C ′n(x)|p′ = 0ℓ

′(n)
]
= Pr

[
Cn(x)|p = 0ℓ(n)

]
for each n ∈ N, x ∈ {0, 1}n (2.2)

Where p′ denotes the post-selected register of size ℓ′(n) for C ′n.
Let A be the efficient classical algorithm that samples from depth-3 quantum circuits.

The classical description of quantum circuit C(x) that is taken as input to A is denoted C̃(x).

Let yA ∈ {0, 1} and pA ∈ {0, 1}ℓ′(n) denote the outputs of our classical algorithm A(C̃n(x))
corresponding to the output bit of C ′n and its post-select register p′ respectively.

Pr
[
yA = 1|pA = 0ℓ

′
]
= Pr

[
C ′n(x)|p′ = 0ℓ

′
]
= Pr

[
Cn(x)|p = 0ℓ

]

Thus if we can run A(C̃n(x)) with post-selection, we will get the same output statistics as
Cn. Since A is a probabilistic, polynomial-time classical algorithm, L ∈ PostBPP. 2

Finally, with some facts from complexity theory, we may complete our proof. In 2004,
Aaronson showed that PostBQP is equivalent to the complexity class PP [Aar04]. Since it had
previously been shown by Toda in 1989 that PPP ⊇ PH [Tod89], it follows from Claim 1 that

1A circuit family {Cn} is uniform if there exists an efficient classical algorithm that takes as input any
n ∈ N and outputs a description of Cn. The circuit families we construct maintain uniformity but we avoid
further discussion of uniformity for the sake of clarity.

2The relevant uniform classical circuit family is {A ◦ C̃n}, where ◦ denotes composition.
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PPostBQP ⊇ PH. However, it was shown in 1997 by Han, Hemaspaandra, and Thierauf that
PPostBPP ⊆ Σ3 [HHT97]. Therefore, if PostBPP = PostBQP, then the polynomial hierarchy
collapses to the third level, PH ⊆ PPostBQP = PPostBPP ⊆ Σ3.

2.5.1 Proof of Lemma 2: Compression of quantum circuits with
post-selection

In this section, we will prove Lemma 2 by constructing a method of compressing quantum
circuits into depth-3 with post-selection. While Lemma 2 was first proved in [TD02], this
compression scheme follows more closely to the construction in [FGHZ05].

Teleportation We define the Bell gate B as the following two-qubit gate:

B :=
H

When applied to the |0⟩ |0⟩ state, B prepares the Bell state 1√
2
(|00⟩+ |11⟩).

|00⟩ H−→ 1√
2
(|0⟩+ |1⟩) |0⟩ CNOT1,2−−−−−→ 1√

2
(|00⟩+ |11⟩)

It can easily be verified that B maps the four computational basis states to the Bell basis
{ 1√

2
(|00⟩ ± |11⟩), 1√

2
(|01⟩ ± |10⟩)}

The circuit B†1,2B2,3 allows us to “teleport” a single qubit state with some Pauli errors
that depend on our measurements.

|b⟩
B†

z

|0⟩
B

x

|0⟩ XxZz |b⟩

(2.3)

Our measurement outcomes (z, x) ∈ {0, 1}2 on the first two bits are uniformly random, but
once measured, the last qubit is XxZz |b⟩, where we use the convention G0 = I,G1 = G for
any gate G.
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Post-selection While quantum teleportation is interesting in its own right, we will be
interested in the scenario where we allow ourselves to assume the measurement outcomes on
the first two bits are both 0. This is called post-selection.

|b⟩
B†

⟨0|

|0⟩
B

⟨0|

|0⟩ |b⟩

(2.4)

If the first two qubits are measured as 0, as indicated by ⟨0| in the above diagram, then
the qubit |b⟩ is teleported to the third qubit without error. This is sometimes referred to as
non-adaptive teleportation [TD02]. Furthermore, we can teleport an entire n qubit state |ψ⟩
by implementing Equation (2.4) for each qubit.

n n

n n n

n n

|ψ⟩
(B†)⊗n

⟨0n|

|0n⟩
B⊗n

⟨0n|

|0n⟩ |ψ⟩

(2.5)

We refer to this as our n-qubit teleportation gadget. Suppose we would like to implement
a depth D circuit UDUD−1 . . . U2U1. Where each Ui can be implemented in depth 1.

. . .n n|ψ⟩ U1 U2 U3 U4 UD |ψ′⟩ (2.6)

With 2n ancilla qubits in the |0⟩ state, and post-selection, we can teleport the state after
the first gate with our n-qubit teleportation gadget as follows.

. . .

n n

n n n

n n

|ψ⟩ U1

(B†)⊗n
⟨0n|

|0n⟩
B⊗n

⟨0n|

|0n⟩ U2 U3 U4 UD |ψ′⟩

(2.7)

By iteratively applying our teleportation gadget after each Ui for i ∈ {1, 2, . . . , D}, we
transform our original circuit into the following one, with 2nD ancillae and 2nD post-
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selected bits.

...

...

...

n n

n n

n n

n n

n n

n n

n n

n n

|ψ⟩ U1

(B†)⊗n
⟨0n|

|0n⟩
B⊗n

⟨0n|

|0n⟩ U2

(B†)⊗n
⟨0n|

|0n⟩
B⊗n

⟨0n|

|0n⟩ U3

(B†)⊗n
⟨0n|

...
...

...
B⊗n

...

|0n⟩ UD−1
(B†)⊗n

⟨0n|

|0n⟩
B⊗n

⟨0n|

|0n⟩ UD |ψ′⟩

(2.8)

Therefore, for each quantum circuit C with n inputs, and depth D, we can implement it
with a post-selected quantum circuit C ′ with depth 3, and size at most 3(n+ 2nD).

It follows that, for each quantum circuit C with n inputs and size O(poly(n)), and thus
depth D = O(poly(n)), we can implement C with a depth 3 post-selected quantum circuit of
size O(poly(n)).

2.5.2 Exact vs approximate sampling

What does this hardness of sampling result tell us? Even assuming the relevant complexity
conjectures are true, can we claim this as a victory for quantum advantage? Note that the
result as stated only considers the complexity of exact sampling. That is, the sampler must
sample from the exact same distribution as the described quantum circuit. But can a quan-
tum computer even do this? Certainly not the ones that currently exist. It is unreasonable to
assume that any physical system, quantum or classical, will have zero error (interaction with
its environment, or control errors). We should instead be considering approximate sampling.

Fortunately, the hardness of sampling statement of Theorem 1 can be easily extended
to apply to hardness of sampling up to multiplicative (or relative) error. We say that the
classical algorithm A approximately samples from the same distribution as the circuit C with
multiplicative error ϵ ∈ (0, 1) if for each input x and output y

|Pr[A(x) = y]− Pr[C(x) = y]| ≤ ϵPr[C(x) = y]. (2.9)
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This notion of error is still quite strict. Alternatively, we might consider additive error,
which is more realistic considering the error rates expected in near-term quantum devices. We
say that A approximately samples with additive (or total variation distance) error ϵ ∈ (0, 1)
if for each input x,

1

2

∑

y

|Pr[A(x) = y]− Pr[C(x) = y]| ≤ ϵ. (2.10)

In contrast to multiplicative error, the hardness of sampling with additive error is less
understood though work is ongoing [BMS16, BFLL22, MT20].

2.6 The Quantum Approximate Optimization Algorithm

The hardness of classically sampling from the output distributions of shallow quantum cir-
cuits shown in the previous section, provides strong evidence that there exists constant-depth
quantum circuit families whose measurement statistics cannot be reproduced by an efficient
classical algorithm– however, it does not tell us specifically which circuits are hard to sam-
ple, nor if they are useful for anything. The Quantum Approximate Optimization Algorithm
(QAOA) aims to get us closer to answering both of these questions. The QAOA, introduced
by Farhi, Goldstone, and Gutmann [FGG14], is a quantum optimization algorithm that is
considered a potential candidate for a useful near-term quantum advantage.

The simplest version of the QAOA can be implemented in constant-depth for some prob-
lems. Even for QAOA circuits that are constant depth, it has been shown, using similar
techniques as in Section 2.5 that the QAOA is hard to simulate classically in general [FH16].
Furthermore, Farhi et al. showed there are certain optimization problems for which the
QAOA has performance guarantees [FGG14]. However, there still remains a gap between
quantum advantage and usefulness as there is no known optimization problem for which the
QAOA outperforms classical methods. In fact, for some problems, it has been shown that
even constant-depth classical circuits can outperform constant-depth QAOA [Has19].

Optimization Problems An optimization problem parameterized by input x ∈ {0, 1}m
is characterized by an objective (or “cost”) function Cx : {0, 1}n → R. The goal is to output
a value for y ∈ {0, 1}n that minimizes Cx(y).

In particular, the QAOA is usually considered for local -objective functions as these can
be implemented in constant-depth.

Definition 6 (Local-optimization problem). An objective function Cx(y) =
∑

iCx,i(y) is
local if there exists some c = O(1) such that

(i) each term Cx,i(y) is a function of at most c variables x1, . . . , xm, y1, . . . , yn (input and
output), and

(ii) each output variable y1, . . . , yn is involved in at most c terms.
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For a physical interpretation, we can consider the objective function Cx as a (classi-
cal) Hamiltonian, and each term Cx,i as an interaction between some variables x1, . . . xm,
y1, . . . , yn. This definition of locality is that for each i ∈ [n], the variable yi interacts with a
constant number of other variables.

A special case of local-optimization problems are problems defined over graphs of bounded
degree.

For example, consider the MaxCut problem which takes as input some subgraph of a
bounded degree graph. For some graph G = (V,E), MaxCutG takes as input x ∈ {0, 1}|E|
indicating a subset of edges E ′ ⊆ E, and the task is to output an assignment to the vertices
y ∈ {0, 1}n to maximize the number of edges in E ′ across the cut. The cost function consists
of a term for each edge (u, v) ∈ E such that C(u,v)(y) is set to -1 if yu ̸= yv and x(u,v) = 1,
and otherwise, it evaluates to 0.

C(u,v)(y) = x(u,v)(yu + yv − 2yuyv) for each (u, v) ∈ E (2.11)

We consider an algorithm to be optimal, if for each x ∈ {0, 1}m, it always outputs an
y ∈ {0, 1}n that achieves the optimal value:

C∗x = max
y
Cx(y). (2.12)

Even for the seemingly-simple MaxCut problem, this task is known to be NP-hard. Thus
it is unlikely there exists an efficient algorithm, quantum or classical, to solve this problem
exactly. And so, typically, we aim instead to find a good approximate solution: a string
y ∈ {0, 1}n with a large approximation ratio Cx(y)/C

∗
x.

We now define the QAOA for a particular local objective function C(y).

The QAOA The local objective function C(y) gives rise to a cost Hamiltonian which we
will denote as C

C |y⟩ = C(y) |y⟩ for each y ∈ {0, 1}n

We also define the mixing Hamiltonian B as B :=
∑n

j=1Xj. The QAOA starts the algorithm

in the uniform superposition state |+⟩⊗n and proceeds by alternating between applying the
unitary evolution of C and B.

UC(γ) := exp(iγC) (2.13)

UB(β) := exp(iβB) =
n∏

j=1

exp(iβXj) (2.14)

The mixing unitary UB(β) can be implemented in depth 1 since each of the exp(iβXj) gates
act on different qubits. Furthermore, since C a local objective function, then UC(γ) can also
be implemented in constant depth.
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For example, the cost Hamiltonian for the MaxCut problem is

C =
1

2

∑

(u,v)∈E
1− ZuZv (2.15)

Since each term commutes, the corresponding unitary (up to a global phase) is

UC(γ) =
∏

(u,v)∈E
exp
(
−iγ

2
ZuZv

)
(2.16)

Note that the gates exp
(
−γ

2
ZuZv

)
commute, so the order in which we apply them does

not matter. Since each edge corresponds to a gate acting on its endpoints, if the graph
has degree at most d then the gates can all be applied in depth d + 1 according to an edge
coloring [Viz65].

The QAOA for depth p applies each of these unitaries p times. The algorithm is param-
eterized by 2p variables: γ⃗ = (γ1, . . . , γp) and β⃗ = (β1, . . . , βp) which determine the unitary
evolution time. The final state output by the QAOA is

∣∣∣γ⃗, β⃗
〉
:= UB(βp)UC(γp) . . . UB(β2)UC(γ2)UB(β1)UC(γ1) |+⟩⊗n .

With the expected value of the cost function C denoted as

⟨C⟩γ⃗,β⃗ :=
〈
γ⃗, β⃗

∣∣∣C
∣∣∣γ⃗, β⃗

〉
.

Since this thesis is concerned with circuit complexity at constant depth, we will focus on
the QAOA at constant depth p = O(1).

Constant depth QAOA for quantum advantage Even with just one iteration of
QAOA, p = 1, Farhi and Harrow showed, using similar techniques as shown in Section 2.5,
that sampling exactly from the output distribution of an arbitrary such QAOAp=1 circuit
cannot be done classically efficiently unless the polynomial hierarchy collapses. Interestingly
though, for any p = O(1), given as input γ⃗, β⃗ we can efficiently compute the expectation

value of the cost function
〈
γ⃗, β⃗

∣∣∣C
∣∣∣γ⃗, β⃗

〉
. This is because the expectation is the sum of the

expectation of each term of C

⟨C⟩γ⃗,β⃗ =
∑

e∈E
⟨Ce⟩γ⃗,β⃗ (2.17)

The expectation of each term Ce only depends on the marginal distribution of these outputs in
e which can be calculated efficiently by simulating the sub-circuit induced by the backwards
lightcone of e. Moreover, there are at most O(poly(n)) terms. So although the QAOA
requires some parameter optimization of β, γ this can be done classically before running the
QAOA.
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While Farhi and Harrow’s hardness of sampling result tells us that there exist QAOA
circuits that are hard to simulate exactly, it does not have implications as to whether these
circuits are any good at their corresponding optimization problems.

A more appropriate sampling task to help characterize whether there the QAOA has
an algorithmic advantage would be sampling from a distribution that is consistent with the
output of the QAOA circuit’s marginal distributions along the edges. Since this distribution
will have the same performance on the related optimization problem.

In Chapter 4, we investigate the limitations of shallow quantum circuits algorithms, such
as the QAOA, for solving local optimization problems.

2.7 Shallow circuit separations

In this chapter, we reviewed the proof of [TD02, Aar04] for the hardness of sampling from
shallow quantum circuits, which relies on some complexity theoretic assumptions (condi-
tional). The rest of this thesis will focus on unconditional proofs of separation between
shallow classical and quantum circuits – that is, showing that a QNC0 circuit can solve a
problem that NC0 circuits cannot, without relying on any complexity-theoretic assumptions.
In Chapter 3, we review such an unconditional separation from [BGKT20]. In Chapter 5, we
investigate whether we can prove a shallow circuit unconditional separation for preparing a
specific distribution that does not depend on input.

In this chapter, we also discussed local optimization problems and the QAOA, a shallow
quantum circuit algorithm for local optimization problems. In Chapter 4 we investigate
whether we can achieve a shallow circuit separation for these problems, proving some limi-
tations of shallow quantum circuits.
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Chapter 3

Shallow circuit quantum advantage:
the 1D Magic Square Problem

In this chapter, we review previous work by Bravyi, Gosset, Koenig, and Tomamchel [BGKT20].

In 2018 Bravyi, Gosset and Koenig showed the first unconditional separation between
shallow quantum and classical circuits. They proved a relational separation. That is, there
exists a relational problem that can be solved by a shallow quantum circuit (QNC0), but
cannot be solved by a randomized shallow classical circuit (NC0/rpoly). This relational
problem is called the 2D Hidden Linear Function Problem, or 2D-HLF.

Theorem ([BGK18]). The relational problem 2D-HLF can be solved exactly by a QNC0

circuit family, yet no NC0/rpoly circuit family can solve the 2D-HLF with probability greater
than 7/8 on each input.

Soon after, Bravyi, Gosset, Koenig, and Tomamichel [BGKT20] showed that another
problem, the 1D Magic Square Problem (1D-MSP), also has a shallow circuit separation, for
which the constant-depth quantum circuit that solves it can be implemented with geometri-
cally local gates in one dimension– that is the circuit only consists of nearest neighbor gates
between qubits arranged on a line.

Theorem 2 ([BGKT20]). For each n the relational problem, 1D-MSPn, can be solved exactly
by a QNC0 circuit with 1D geometrically local gates, yet there exists a set of inputs Sn with
|Sn| = poly(n) such that each NC0/rpoly will not solve the problem with probability at greater
than 9/10 over the uniform choice of input from Sn.

Furthermore, they show an extension of the 1D-MSP maintains a separation even when
the shallow quantum circuit is noisy ; for which the corresponding quantum circuit can be
implemented with geometrically local gates in three dimensions. This chapter, however, will
only be concerned with the original 1D Magic Square Problem, and will not further discuss
the noise-resilient extension.

Both the 2D Hidden Linear Function and the 1D Magic Square Problem incorporate
specific nonlocal games to achieve a circuit separation. While both results employ a similar
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general framework, this chapter will showcase this technique by detailing the proof for the
1D Magic Square Problem (Theorem 2).

The 1D Magic Square Problem uses a generalization of the magic square game to provide
classical lower bounds. The magic square game is a game played with two coordinating
players Alice and Bob, who are not allowed to communicate but must each provide answers to
some given questions. It is known that if Alice and Bob are allowed shared entanglement, they
can win this game with probability 1 whereas if they are only allowed shared randomness,
they cannot win with probability greater than 8/9.

The overview of the proof of Theorem 2 in [BGKT20] is as follows: First, they construct
a constant-depth 1D quantum circuit and a subset of inputs Sn such that choosing an input
randomly from Sn corresponds to randomly choosing two registers j < k ∈ [n] of the circuit to
play a variation of the magic square game. The 1D-MSP is then defined as the input/output
relations of this quantum circuit. To prove classical hardness, they then show that for any
constant depth classical circuit with bounded fan-in, there are a large fraction of pairs (j, k)
of registers (and therefore inputs in Sn) with non-intersecting lightcones. For these inputs,
such a circuit implements a classical strategy for the magic square game and therefore is
correct with probability at most 8/9.

Before constructing the quantum circuit which defines the 1D-MSP, we first introduce
its components. In the rest of this section, we formally define the (generalized) magic square
game, as well as an entangled state that can be prepared by a constant-depth 1D circuit. In
Section 3.1 we define the 1D-MSP, and the constant-depth 1D quantum circuit that solves
it. In Section 3.2 we prove the classical hardness of the 1D-MSP for constant-depth classical
circuits with bounded fan-in.

The magic square game The Magic square game is a 2-player nonlocal game with co-
ordinating players Alice and Bob, who are not allowed to communicate. Alice is given α ∈
{1, 2, 3} and outputs a ∈ {+1,−1}3. Bob is given β ∈ {1, 2, 3} and outputs b ∈ {+1,−1}3.
They “win” the game if Alice’s string has odd weight a1a2a3 = −1, Bob’s string is even
b1b2b3 = 1 and aβ = bα. This game can also be described in terms of filling out a 3× 3 grid
array (or square, as the name indicates). Alice is given a column index and Bob is given a
row index. Alice and Bob then output an assignment for their row and column respectively.
They “win” if Alice’s column is odd, Bob’s row is even, and they give the same value for
their overlapping cell (β, α).

A perfect deterministic classical strategy can be described by some assignment to each cell
in the square satisfying the row and column parity constraints. However, this is impossible,
since the row constraints tell us that the parity of the entire array will be even, while that
of the columns requires an overall odd parity.

Thus, if Alice and Bob always output a column and row satisfying their parity constraints,
there will always be some cell where they are not consistent. For example consider the
strategy below, where Alice and Bob are consistent on all but the last cell in the array.

-1 -1 1
-1 1 -1
-1 1 ?

(3.1)
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In order to maintain the parity constraints, Alice will assign +1 while Bob will assign −1
to this last cell. In this case, Alice and Bob will win with probability 8/9 over the uniform
choice of α, β ∈ [3], which is in fact an optimal classical strategy. This classical bound of
success probability ≤ 8/9 also holds for randomized classical strategies, since such strategies
correspond to a probability distribution over deterministic strategies, even if Alice and Bob
have shared randomness.

Perhaps surprisingly, if Alice and Bob share two entangled Bell pairs |Φ⟩ ⊗ |Φ⟩ =
( 1√

2
(|00⟩ + |11⟩))⊗2, they can win the Magic Square game with probability 1. A winning

quantum strategy now corresponds to filling out the square with observables with eigenval-
ues in {−1,+1} such that the observables of each row and column commute and that the
product of each row is +I and the product of each column is −I. Such an optimal strategy
is shown below.

α = 1 α = 2 α = 3
β = 1 X⊗ I I⊗ X X⊗ X
β = 2 I⊗ Z Z⊗ I Z⊗ Z
β = 3 −X⊗ Z −Z⊗ X Y⊗ Y

(3.2)

Alice and Bob will win the game with probability 1 by measuring their states according to
these measurement bases.

Equivalently, Alice and Bob can implement this strategy by applying classically con-
trolled gates U(α), V (β), that change the basis according to (3.2), then measuring in the
computational basis.

2

2

2

2

Alice: |00⟩
B⊗2

U(α) (a1, a2)

Bob: |00⟩ V (β) (b1, b2)

(3.3)

Where we use the convention that measuring |0⟩ in the computational basis results in
measurement outcome +1 and measuring |1⟩ results in measurement outcome −1 (corre-
sponding to measuring in the Z = |0⟩⟨0| − |1⟩⟨1| basis). Alice and Bob then determine their
third measurement outcomes from the first two: a3 = −a1a2 and b3 = b1b2. An explicit
definition of U(α) and V (β) are shown in Figure 3.1.

Next we define a parameterized version of the magic square game, which has the same
optimal quantum strategy, but for a different shared state between Alice and Bob.

Definition 7 (Generalized magic square game MSG(s, t, s′, t′)). The generalized magic
square game is parameterized by s, t, s′, t′ ∈ {−1,+1}. Just as in the original magic square
game, Alice and Bob are given inputs α, β ∈ {1, 2, 3}, and each output a string in {+1,−1}3
of odd and even weight respectively, however now their intersecting bits aβ, bα, rather than
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α/β U(α) V (β)

0 I⊗ I I⊗ I
1 H⊗ I H⊗ H
2 (H⊗ I) · SWAP SWAP
3 (H⊗ I) · CNOT (H⊗ H) · CZ · (Z⊗ Z)

Figure 3.1: Change of basis gates to implement the optimal strategy for the magic square
game on input α, β. Applying these gates then measuring in the computational ba-
sis is equivalent to measuring in the bases specified in (3.2). SWAP is a swap oper-
ator (SWAP |x1x2⟩ = |x2x1⟩ for each x1, x2 ∈ {0, 1}), and CZ is the controlled-Z gate
(CZ = |0⟩⟨0| ⊗ I+ |1⟩⟨1| ⊗ Z). While α, β are never set to 0 in the Magic Square Game, we
have included this as a possible input as it will be useful later.

being equal must satisfy aβbα = fα,β(s, s
′, t, t′) for fα,β(s, s′, t, t′) defined as follows.

fα,β(s, t, s
′, t′) :=

α = 1 α = 2 α = 3
β = 1 s s ss′

β = 2 t′ t tt′

β = 3 −st′ −s′t ss′tt′

(3.4)

Note that the case s, s′, t, t′ = 1 is the original magic square game.

Suppose that rather than sharing two Bell pairs |Φ⟩⊗ |Φ⟩, Alice and Bob share two poor
man’s Bell pairs |Φs,t⟩⊗ |Φs′,t′⟩. Where a poor man’s Bell pair for some s, t, s′, t′ ∈ {+1,−1}
is defined as

|Φs,t⟩ := (X(1−t)/2Z(1−s)/2 ⊗ I) |Φ⟩ .

Claim 2. If Alice and Bob play the generalized magic square game with parameters (s, t, s′, t′)
following the measurements in Equation (3.2), on the poor man’s Bell pairs |Φs,t⟩ ⊗ |Φs′,t′⟩,
they will win with probability 1.

Proof. Measuring the state |Φs,t⟩⊗|Φs′,t′⟩ in the basis O is equivalent to measuring |Φ⟩⊗|Φ⟩
in the basis Õ := U †OU where

U := (X(1−t)/2Z(1−s)/2 ⊗ I)⊗ (X(1−t′)/2Z(1−s′)/2 ⊗ I). (3.5)

Note that U only acts nontrivially on Alice’s qubits (the first of each pair). Therefore,
each of Bob’s measurement bases MB, commute with U and are the same as before: M̃B =
U †MBU = MB. Alice’s measurements on her two qubits, however, are conjugated by UA =
X(1−t)/2Z(1−s)/2 ⊗X(1−t′)/2Z(1−s′)/2. Since X and Z anticommute, applying a Pauli Z flips X
measurement results, and applying an X flips Z measurement results. Therefore, following
the measurements from the optimal strategy for the original game Equation (3.2), on the poor
man’s Bell pairs |Φs,t⟩ ⊗ |Φs′,t′⟩ is equivalent to measuring the error-free Bell pair |Φ⟩ ⊗ |Φ⟩
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with Alice’s measurements changed to the following:

α = 1 α = 2 α = 3
sX⊗ I s′I⊗ X ss′X⊗ X
t′I⊗ Z tZ⊗ I tt′Z⊗ Z
−st′X⊗ Z −s′tZ⊗ X ss′tt′Y⊗ Y

(3.6)

and Bob’s measurements the same as Equation (3.2). Note that the row and parity con-
straints are still satisfied since the operators in each of Alice’s columns commute and multiply
to −I. Moreover, Alice’s measurement for entry (α, β) in the square is equal to that of Bob’s
times fα,β(s, t, s

′, t′), therefore the condition that aβbα = fα,β(s, t, s
′, t′) is always satisfied.

Therefore, this corresponds to an optimal strategy to win the generalized magic square game
with parameters (s, t, s′, t′).

Poor Man’s Bell Pair in 1D Constant Depth To prepare the Bell state |Φ⟩ = 1√
2
(|00⟩+

|11⟩) between the first and last of n qubits arranged on a line requires depth Ω(log n) if we
only have nearest-neighbor gates. This is because the backwards lightcones of the two qubits
must intersect. However, we can instead prepare a poor man’s Bell pair in constant depth.
Which is a Bell pair with some Pauli error that is determined by measurements of the qubits
in between the pair.

|Φs,t⟩ = (X(1−t)/2Z(1−s)/2 ⊗ I) |Φ⟩

Where s, t ∈ {−1,+1} are uniformly random and depend on measurement outcomes of
the qubits in between our pair. This type of state turns out to be a very helpful resource
state for proving shallow circuit separations. Although the backwards lightcones of each
qubit in the pair may be disjoint (and thus their marginal distributions are independent),
by conditioning on the measurements of the intermediate qubits, we can exhibit quantum
nonlocality in constant depth!

We now describe two different methods for preparing a poor-man’s Bell pair.

Method 1: Teleportation/Entanglement Swapping We can use the teleportation
circuit in Equation (2.3) and link multiple such teleportation gadgets similar the circuit
compression scheme in Section 2.5.1 but in this instance we will not be utilizing post-
selection. Note that when we “teleport” a qubit twice getting measurement outcomes
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x1, z1, x2, z2 ∈ {0, 1} as shown below,

|b⟩
B†

z1

|0⟩
B

x1

|0⟩
B†

z2

|0⟩
B

x2

|0⟩ Xx2Zz2Xx1Zz1 |b⟩

(3.7)

the final teleported state will be proportional to Xx1⊕x2Zz1⊕z2 |b⟩, since X and Z anticommute.
Moreover, we can continue to teleport the state a total of n times with measurement outcomes
(z1, . . . , zn) ∈ {0, 1}n and (x1, . . . , xn) ∈ {0, 1}n, resulting in a final state XxZz |b⟩ where
x =

⊕n
i=1 xi and y =

⊕n
i=1 yi.

Applying this chain of teleportations to the second qubit of a Bell pair |Φ⟩ = B |00⟩ =
1√
2
(|00⟩ + |11⟩), we prepare a poor man’s Bell pair as shown in Figure 3.2a. Note that this

circuit can be implemented by only using the CNOT and H gates (Since B = (H⊗ I)CNOT).

Method 2: Graph State Another method for preparing a poor man’s Bell pair on a line
is by measuring a graph state. While we have not yet defined graph states, the resulting
circuit is shown in Figure 3.2b. This circuit only requires H and CZ gates. We will not go
into detail on this method in this section since we will instead utilize the Teleportation-based
construction to be consistent with [BGKT20]. Yet it is useful to note that we get similar
behavior from a graph state, as this is the method used in [BGK18, WKST19]

Using either the teleportation method or the graph state method shown in Figure 3.2, we
can prepare the poor-man’s Bell state |Φs,t⟩ in 1D in constant depth, with s, t determined
by the measurement outcomes of the intermediate qubits. Thus, if we prepare two such
states in this way |Φs,t⟩⊗ |Φs′,t′⟩ and measure them according to the optimal strategy for the
(original) magic square game, we will win the generalized magic square game parameterized
by (s, t, s′, t′) exactly. In the next section, we introduce a quantum circuit that does exactly
this.

3.1 The 1D Magic Square Problem

The 1D Magic Square Problem is a relational problem corresponding to a variation of playing
the magic square game on a line. It can be formally defined by the input-output relation of
the quantum circuit shown in Figure 3.3. There are n “Alice” registers (Ai) and n “Bob”
registers (Bi), each holding 2 qubits. For each i ∈ [n], the register Ai takes a (classical) input
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z1

x1

z2

x2

...
...

zn

xn

|0⟩
B

|0⟩
B†

|0⟩
B

|0⟩
B†

...

B

|0⟩
B†

|0⟩
B

|0⟩

(a) Using teleportation, or entanglement
swapping to prepare the state XxZz ⊗
I |Φ⟩. Measurements in between the pair are
xi, zi ∈ {0, 1} for i ∈ [n], and Pauli correc-
tion bits are x =

⊕n
i=1 xi and z =

⊕n
i=1 zi.

o1

e1

o2

e2

...
...

en−1

on

|0⟩ H

|0⟩ H H

|0⟩ H H

|0⟩ H H

H

...

|0⟩ H H

|0⟩ H H

|0⟩ H

(b) Using a graph state to prepare XoZe ⊗
I |Φ⟩. Measurements in between the pair are
oi,∈ {0, 1} for i ∈ [n] and ei ∈ {0, 1} for
i ∈ [n− 1], and Pauli correction bits are o =⊕n

i=1 oi and e =
⊕n−1

i=1 ei. The two-qubit
gates correspond to CZ gates (CZ = |0⟩⟨0| ⊗
I+ |1⟩⟨1| ⊗ Z).

Figure 3.2: Preparation of a poor man’s Bell pair in 1D between the first and last qubits on
a line.
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αi ∈ {0, 1, 2, 3} and outputs an xi ∈ {−1,+1}2, similarly Bi takes input βi ∈ {0, 1, 2, 3} and
outputs a yi ∈ {−1,+1}2.

To understand the circuit’s behavior, let’s step through each layer of gates. The circuit
first produces two Bell pairs between Ai and Bi for each i ∈ [n], followed by a controlled B†

between Bi and Ai+1, conditioned on (αi+1, βi) = (0, 0).

B†αi+1,βi
:=

{
B† if αi+1 = βi = 0

I otherwise
αi+1, βi ∈ {0, 1, 2, 3} (3.8)

In the case that αj is the only nonzero {αi}i and βk is the only nonzero {βi}i, this has the
effect of creating poor-man’s Bell pairs between Aj and Bk (for j < k) via the teleportation
method in Equation (3.7). The U(α) and V (β) gates are the same as those used in the
optimal strategy for the magic square game, defined in Figure 3.1, which act as the identity
upon input 0. Therefore, in the case where αj and βk are the only nonzero inputs for
j < k ∈ [n], the circuit simply prepares two poor man’s Bell pairs between Aj and Bk and
applies the gates U(αj) to Aj’s state and V (βk) to Bk’s state as shown in Figure 3.4.

Finally, we are ready to define the 1D Magic Square Problem.

Definition 8 (1DMagic Square Problem (1D-MSPn)). Given some string zin ∈ {0, 1, 2, 3}2n,
output some string zout ∈ {0, 1}4n such that

⟨zout| C1D-MSP
zin

∣∣04n
〉
> 0 (3.10)

Where C1D-MSP
zin

is the circuit (parameterized by zin) in Figure 3.3. For any valid pair (zin, zout)
we say that (zin, zout) is “in” 1D-MSPn.

Note that in binary representation, the input to 1D-MSPn is a 4n-bit string. By definition,
the quantum circuit C1D-MSP

zin
is a QNC0 circuit that solves every instance of the 1D-MSPn.

Theorem 3. There exists a QNC0 circuit with 1D geometrically local gates that solves the
1D Magic Square Problem on all inputs with probability 1.

To understand the connection between the 1D-MSP and the (generalized) magic square
game, we consider choosing inputs from the set Sn defined below.

Definition 9 (zin(j, k, α, β), Sn). For each j, k ∈ [n] with j < k, and α, β ∈ {1, 2, 3}, we
define zin(j, k, α, β) := (α1, β1, α2, β2, . . . , αn, βn) ∈ {0, 1, 2, 3}n where αi, βi are set as

αi =

{
α if i = j

0 if i ̸= j
βi =

{
β if i = k

0 if i ̸= j
(3.11)

We also define the set of all such inputs Sn

Sn :=
{
zin(j, k, α, β) : j < k ∈ n, α, β ∈ {1, 2, 3}

}
(3.12)
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...
...

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

A1 : |00⟩
B⊗2

U(α1) x1

B1 : |00⟩
(B†α2,β1

)⊗2
V (β1) y1

A2 : |00⟩
B⊗2

U(α2) x2

B2 : |00⟩
(B†α3,β2

)⊗2
V (β2) y2

U(α3) x3

...

An−1 : |00⟩
B⊗2

Bn−1 : |00⟩
(B†αn,βn−1

)⊗2
V (βn−1) yn−1

An : |00⟩
B⊗2

U(αn) xn

Bn : |00⟩ V (βn) yn

(3.9)

Figure 3.3: The quantum circuit for the 1D Magic Square Problem, parameterized by
zin = (α1, β1, . . . αn, βn) ∈ {0, 1, 2, 3}n. The gates B†α,β are defined in Equation (3.8), and
U(α), V (β) are defined in Figure 3.1.
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...
...

...
...

...
...

...
(B†0,0)

⊗2

Aj−1 :

B⊗2

Bj−1 :

(B†α,0)
⊗2

V (0)

Aj :

B⊗2

U(α)

Bj :

(B†0,0)
⊗2

V (0)

Aj+1 :

B⊗2

U(0)

Bj+1 :

(B†0,0)
⊗2

V (0)

U(0)

...

Ak−1 :

B⊗2

Bk−1 :

(B†0,0)
⊗2

V (β)

Ak :

B⊗2

U(0)

Bk :

(B†0,β)
⊗2

V (0)

Ak+1 :

B⊗2

U(0)

Bk+1 :

(B†0,0)
⊗2

V (0)

...

=

...
...

...
...

...
...

...
B†⊗2

Aj−1 :

B⊗2

Bj−1 :

Aj :

B⊗2
U(α)

Bj :

B†⊗2

Aj+1 :

B⊗2

Bj+1 :

B†⊗2

...

Ak−1 :

B⊗2

Bk−1 :

B†⊗2

Ak :

B⊗2

Bk : V (β)

Ak+1 :

B⊗2

Bk+1 :

B†⊗2

...

Figure 3.4: Quantum circuit for the 1D Magic Square Problem for input (α1, β1, . . . , αn, βn)
with αj = α, βk = β and all other inputs are 0.
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For a particular α, β ∈ {1, 2, 3} and j < k ∈ [n], the circuit C1D-MSP
zin

controlled by
input zin(j, k, α, β) prepares two poor man’s Bell pairs |Φs,t⟩ ⊗ |Φs,t⟩ with correction bits
s, t, s′, t′ ∈ {−1,+1} determined by the uniformly random bits measured in between Aj and
Bk. Let a, b ∈ {−1,+1}3 denote the strings corresponding to Aj, Bk’s outputs with the third
value determined by the first two.

a = (x1j , x
2
j ,−x1jx2j) b = (y1k, y

2
k, y

1
ky

2
k) (3.13)

It follows from Claim 2 that (a, b) is a valid output for input (α, β) for the generalized magic
square game for (s, t, s′, t′). We state this as a lemma below, whose formal proof can be
found in [BGKT20].

Lemma (Lemma 3 in [BGKT20]). For each zin(j, k, α, β) ∈ Sn, and zout = (x1, y1, . . . , xn, yn)
such that (zin, zout) ∈ 1D-MSPn. Then (xj, yk) is a valid output for the generalized magic
square game on input (α, β) with parameters

s :=
k−1∏

i=j

y1i s′ :=
k−1∏

i=j

y2i t :=
k−1∏

i=j

x1i+1 t′ :=
k−1∏

i=j

x2i+1. (3.14)

Where we set x3j := −x1jx2j , y3k := y1ky
2
k.

All that’s left to prove the main theorem of this section, Theorem 2 is to show the classical
hardness of the 1D-MSP.

3.2 The classical hardness of the 1D Magic Square

Problem

Now we will prove that the 1D Magic Square Problem cannot be solved exactly by a prob-
abilistic constant-depth classical circuit with constant fan-in (NC0/rpoly). To this end, it is
useful to consider the behavior of the classical circuit on the set of inputs Sn, with only one
of each αi and βi nonzero.

Theorem 4. Suppose a probabilistic classical circuit C with bounded fan-in K given a random
input from Sn, outputs a valid string for the 1D Magic Square Problem with probability at
least 9/10 over the randomness in the circuit and the choice of input. Then C has depth
D = Ω(log n).

In order to prove Theorem 4, we first show that if the lightcones of the registers Aj and
Bk of the 1D Magic Square Problem do not intersect in a certain way, then they essentially
cannot communicate any information to each other about αj and βk. In this case, outputting
a valid string is at least as hard as winning the original magic square game with a classical
strategy, which has probability at most 8/9. Then we show that if we choose j and k
randomly, with high probability Aj and Bk have non-intersecting lightcones. Since classical
circuits and their lightcones are defined in terms of input and output bits, we will denote the
binary representation of αi, βi ∈ {0, 1, 2, 3} as α̂i, β̂i ∈ {00, 01, 10, 11} for each i ∈ [n].
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Definition 10 (EC). Consider some classical circuit C with input (α̂1, β̂1, . . . , α̂n, β̂n) and
output (x1, x1, . . . , xn, yn), where for each i ∈ [n], α̂i, β̂i, xi, yi ∈ {0, 1}2. Suppose j < k ∈ [n]
are chosen uniformly at random. Define EC to be the event that all the following are true:

−→LC(α̂j) ∩
−→LC(β̂k) = ∅

−→LC(α̂j) ∩ yk = ∅
−→LC(β̂k) ∩ xj = ∅. (3.15)

In words, EC is the event that no output bit depends on both α and β, and that the Aj
register’s output a (or xj), does not depend on β. Likewise, the Bk register’s output b (or
yk) does not depend on α.

Lemma 3 (Lemma 8 in [BGKT20]). Consider some classical circuit C and j < k ∈ [n] such
that EC is true. Then given input zin(j, k, α, β), C will give a valid output to the 1D Magic
Square Problem with probability at most 8/9 over uniformly random choice of α, β ∈ {1, 2, 3}.

We provide some proof intuition below, but we refer the reader to [BGKT20] for the
formal proof.

Proof Idea of Lemma 3. Consider some j < k such that EC is true. Suppose the input

to the circuit is zin(j, k, α, β) with α, β ∈ [3] chosen uniformly at random. Since
−→LC(α̂j) ∩−→LC(β̂k) = ∅, each output bit of the circuit is a function of at most one of α or β. Therefore,

we can partition the outputs of the circuits into two separate strings zA(α) and zB(β). Since−→LC(α̂j) ∩ yk = ∅ and
−→LC(β̂k) ∩ xj = ∅ (by definition of EC), it follows that xj is in the A

string and yk is in the B string. Therefore, these two strings are independent and can be
interpreted as two non-communicating players.

The final step in the proof is to show that if the classical circuit outputs a correct value,
then this would allow two non-communicating players Alice and Bob with access to zA(α)
and zB(β) respectively to win the magic square game. Since this is a classical strategy, this
happens with probability at most 8/9.

Next, we just need to show that if we choose j < k randomly, the event EC that Aj
and Bk do not have intersecting lightcones as specified by Definition 10 occurs with high
probability.

Lemma 4. For classical circuit C, with depth D and bounded fan in K, the probability of
EC occurring is at least 1− 24K2D

n
over the random choice of j < k ∈ [n].

Proof. First we will bound the probability of EC occurring when j, k ∈ [n] are chosen uni-
formly at random, not necessarily such that j < k, we denote this probability as Prj,k[EC].
We will then use this to bound the probability over the choice of j, k ∈ [n] such that j < k,
denotes Prj<k[EC].

Claim 3. Prj,k[
−→LC(αj) ∩ yk ̸= ∅],Prj,k[

−→LC(βk) ∩ xj ̸= ∅] ≤ 2KD

n
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Proof. First, let’s consider Prj,k[
−→LC(αj) ∩ yk ̸= ∅]. It is helpful to consider each fixed k.

Pr
j,k
[
−→LC(αj) ∩ yk ̸= ∅] =

1

n

n∑

k=1

Pr
j
[
−→LC(αj) ∩ yk ̸= ∅] (3.16)

=
1

n

n∑

k=1

∑

z∈←−LC(yk)

Pr
j
[z ∈ αj] (3.17)

(3.18)

Note that for each input bit z for exactly one choice of j ∈ [n] will z be one of the two bits in
αj. Thus, Prj[z ∈ yk] ≤ 1

n
for each input bit z. So we can upper bound the above expression

by

≤ 1

n

n∑

k=1

∑

z∈←−LC(yk)

1

n
(3.19)

≤ 2KD

n
(3.20)

Where we used the fact that |←−LC(yk)| ≤ 2KD for each k ∈ [n]. We can use the same exact

reasoning to show Prj,k[
−→LC(βk) ∩ xj ̸= ∅] ≤ 2KD

n
.

Claim 4. Prj,k[
−→LC(αj) ∩

−→LC(βk) ̸= ∅] ≤ 2K2D

n

Proof. Again, we will consider each k as fixed.

Pr
j,k
[
−→LC(αj) ∩

−→LC(βk) ̸= ∅] =
1

n

n∑

k=1

Pr
j
[
−→LC(αj) ∩

−→LC(βk)] (3.21)

=
1

n

n∑

k=1

Pr
j
[αj ∩

←−LC(
−→LC(βk)) ̸= ∅] (3.22)

=
1

n

n∑

k=1

∑

z∈←−LC(
−→LC(βk))

Pr
j
[z ∈ αj] (3.23)

≤ 2K2D

n
(3.24)

Where we used that |←−LC(
−→LC)(βk)| ≤ 2K2D for each k ∈ [n], and again that Prj[z ∈ αj] ≤ 1

n

for each input bit z over random j ∈ [n].

Combining Claims 3 and 4, and using the union bound,

Pr
j,k
[¬EC] ≤

4KD

n
+

2K2D

n
(3.25)
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Finally, we want to convert this bound on the probability of ¬EC (lightcone intersection)
occurring over uniformly random choice of j, k ∈ [n] to the probability over the uniform
choice of j, k ∈ [n] such that j < k. Note that Prj<k[A] = Prj,k[A|j < k]. Therefore,
Prj<k[A] = Prj,k[A] · 1

Prj,k[j<k]
. Since there

(
n
2

)
choices of j < k ∈ [n] and there are n2

choices for j, k ∈ [n], it follows that Prj,k[j < k] = n(n−1)
2n2 = n−1

2n
. Combining this with

Equation (3.25), it follows that

Pr
j<k

[¬EC] ≤
(
4KD

n
+

2K2D

n

)
· 2n

n− 1
(3.26)

≤ 24K2D

n
(3.27)

Where we used that K ≥ 1 and 2n
n−1 ≤ 4

Combining Lemmas 3 and 4, we are ready to prove Theorem 4.

Proof of Theorem 4. From Lemma 3, we have that for a random input z from the set Sn,
the probability of success if EC is true is Pr[ success |EC] ≤ 8/9, from Lemma 4, we have

that Pr[EC] ≥ 1− 24K2D

n
. Suppose, as in the theorem statement, that our classical circuit C

succeeds with probability at least 9/10, then we have that

9

10
≤ Pr[ success ] = Pr[success |EC] · Pr[EC] + Pr[ success |¬EC] · Pr[¬EC] (3.28)

≤ 8

9
· Pr[EC] + Pr[ success |¬EC] ·

24K2D

n
(3.29)

≤ 8

9
+

24K2D

n
(3.30)

1

90
≤ 24K2D

n
. (3.31)

Rearranging the previous equation and taking a logarithm of each side we lower bound the
circuit depth D.

D ≥ 1

2
logK(

n

90 · 24) ≥
logK(0.0004n)

2
=

log(0.0004n)

2 logK
(3.32)

This bound is actually tighter by a constant factor than the original bound in [BGKT20],

which was D ≥ log(0.00001n)
2 logK

.

3.2.1 Near-term prospects of the 1D Magic Square Problem

The 1D Magic Square Problem has key properties that are amenable to a provable quantum
advantage that can be implemented on near-term devices. Firstly, the quantum circuit for the
1D Magic Square Problem can be implemented in a 1D architecture (qubits on a line) with
only nearest-neighbor interactions. Secondly, Bravyi, Gosset, Koenig, and Tomamichael
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[BGKT20] further extend this problem to one that is noise-resilient. That is, even if the
quantum circuit is implemented with some errors, as long as the error rate is below some
threshold, there is still a separation between the shallow quantum and classical circuit per-
formance. To allow for the presence of noise, the quantum circuit for this new relation makes
use of a quantum error-correcting code.

So, can we implement this quantum circuit experimentally and claim quantum advantage?
Well, not yet. The 1DMagic Square Problem provides a separation between shallow quantum
and classical circuits as we scale up n. In order to implement this problem experimentally
and claim a quantum advantage, we must at some point pick a particular problem size n.
Even for the 1D Magic Square Problem, which is not resilient to noise, we need to choose
quite a large value for n for our classical lower bound to kick in.

To illustrate, suppose we want to choose an n such that the probability of success of a
classical circuit with depth D = 3 and fan in K = 2 (matching the quantum circuit), has
probability of success at most 9/10 for the 1D Magic Square Problem. By Equation (3.28)

9

10
≥ 8

9
+ Pr[¬EC]. (3.33)

Since Pr[¬EC] depends on n,K,D, we just need to set our n such that Equation (3.33)
holds. We can do this by plugging in our tightest bound for Pr[¬EC] from Equation (3.26)
and solving for n.

9

10
≥ 8

9
+

8KD + 4K2D

n− 1
(3.34)

n ≥ 90(8KD + 4K2D) + 1 (3.35)

= 90(8 · 23 + 4 · 26) + 1 (3.36)

= 28801 (3.37)

If we set n = 28, 801, then every classical circuit with depth 3 and fan in 2 cannot succeed at
the 1D Magic Square Problem with probability better than 9/10 over inputs drawn randomly
from Sn. Recall that the quantum circuit for the 1D Magic Square Problem requires 4n
qubits, so implementing this quantum circuit requires a reliable quantum computer with
115, 204 qubits. And much more if we want to implement error correction!

It should be noted that it is not necessarily true that we need this large of a problem
instance to see the quantum advantage, but that this is the scale at which we can currently
prove such a separation according to our best-known classical lower bounds for the 1D Magic
Square Problem.
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Chapter 4

Limitations of shallow quantum
circuits for optimization problems

So far, we have seen that shallow quantum circuits outperform shallow classical circuits
at certain relational tasks (Chapter 3), and can produce distributions that are hard to
sample from efficiently (Section 2.5), under some strong complexity-theoretic assumptions.
However, neither of these hardness results give performance guarantees for any problem
which is currently considered useful. In this chapter, we explore whether these shallow
circuit separations can be extended to more natural problems.

In practice, many problems we care about can be stated as optimization problems with
local objective (or “cost”) functions. Throughout this chapter we use the convention that
problems are defined over inputs from the set X = {0, 1}m and outputs from Y = {0, 1}n.
An optimization problem with input x ∈ X and output y ∈ Y is defined by its objective
function:

F (x, y) =
∑

i∈[t]
Fi(xTi , ySi

) (4.1)

with t ∈ N, and for some Ti ⊆ [m], Si ⊆ [n] and Fi : {0, 1}|Ti|×{0, 1}|Si| → R for each i ∈ [t].
Upon given input x ∈ {0, 1}m the goal is to output a y ∈ {0, 1}n that minimizes F (x, y).

F (x, y) defines a relation R ⊆ X × Y consisting of all pairs (x, y) ∈ X × Y such that
F (x, y) is the optimal value for input x, that is (x, y) ∈ R if F (x, y) = miny′ F (x, y

′). We
then refer to F (x, y) as a checking function for R.

Definition 11 (Checking function). F (x, y) is a checking function for a relation R ⊆ X ×Y
if for each x ∈ X , y ∈ Y,

(x, y) ∈ R ⇐⇒ F (x, y) = min
y′∈Y

F (x, y′) (4.2)

We refer to each term Fi(xTi , ySi
) as a check.

Definition 12 (Local checking function, local checkability). We say that F (x, y) is a local
checking function, and R is locally checkable if there exists some c = O(1) such that
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1. Each check is a function of at most c variables

|Si|+ |Ti| ≤ c for each i ∈ [t] (4.3)

2. Each (output) y variable is involved in at most c checks

|{i : j ∈ Si}| ≤ c for each j ∈ [n]. (4.4)

An example of an optimization problem with an objective function that meets these
criteria is the MaxCut problem where we only consider inputs which are a subgraph of
some bounded degree graph. For a graph G = (V,E), the MaxCutG problem takes as
input x ∈ {0, 1}|E| and the goal is to output a y ∈ {0, 1}|V | that minimizes

−
∑

(u,v)∈E
x(u,v)(yu + yv − 2yuyv). (4.5)

To see why this is a local checking function, note that each term in this sum involves exactly
1 input variable and 2 output variables. Furthermore, each output variable yu is involved
deg(yu) terms.

In this chapter, we investigate whether shallow quantum circuits can outperform shallow
classical circuits for local optimization problems. In [Has19], Hastings introduced shallow
classical circuit algorithms for certain problems (referred to as local algorithms) which out-
perform, in expected objective value, constant-depth QAOA. In this chapter, we prove a
limitation for shallow quantum circuits for local optimization problems in general, using a
much stricter performance metric.

We investigate the following question:

Question 1. Does there exist a locally-checkable relation that can be solved by a shallow
quantum circuit (QNC0), but not by a shallow classical circuit (NC0, NC0/rpoly)?

Why is using shallow quantum circuits to solve locally checkable relations interesting?
Firstly, locally checkable relations are a very large class of problems. In fact, many NP-
complete problems, such as MaxCut and Maximum Independent Set (on bounded degree
graphs), are optimization problems defined by local objective functions. Secondly, there
are proposed shallow quantum circuit algorithms for such problems, such as the QAOA. As
discussed in Section 2.6, the simplest version of the QAOA can be implemented in constant
depth for these local optimization problems.

Finally, the performance of a shallow quantum circuit for a local optimization problem
is inherently robust to noise. In particular, we consider the error model of applying a qubit
depolarizing channel Nϵ to the output state of our quantum circuit. The depolarizing channel
for an n-qubit state acts independently on each qubit such that for qubit i ∈ [n], with
probability ϵ a uniformly random operator from {I,X, Y,X} is applied. For a single qubit
state ρi this has the following behavior.

Nϵ : ρi → (1− ϵ)ρi + ϵI (4.6)
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A nice property of the depolarizing channel is that the expectation value of low-weight Pauli
operators is approximately preserved. To illustrate this, consider the n-qubit operator Z(S),
the tensor product of the Z applied to each of the qubits in S ⊆ [n] and the identity on all
n− |S| others.

tr(Nϵ(ρ)Z(S)) = (1− ϵ)|S| tr(ρZ(S)) (4.7)

A local objective function F (x, y) for a particular x ∈ X can be written as a k-local Hamil-
tonian in the Pauli-Z basis Fx for some k = O(1), such that F (x, y) = tr(|y⟩⟨y|Fx). Let’s
consider such a function with no constant terms.

Fx =
∑

S⊆[n]:
|S|≤k,
S ̸=∅

αSZ(S) αS ∈ R for each S ⊆ [n] : |S| ≤ k. (4.8)

For example, the MaxCut problem has such a Hamiltonian with k = 2. The MaxCut
problem for graph G = (V,E), on input x ∈ {0, 1}|E|, is equivalent to finding a y ∈ Y that
minimizes tr

(
|y⟩⟨y|FMaxCut

x

)
with FMaxCut

x defined as

FMaxCut
x =

∑

(u,v)∈E:x(u,v)=1

ZuZv. (4.9)

Suppose that we have a quantum algorithm for such a problem that outputs the state ρ(x),
achieving expectation value ⟨Fx⟩ = tr(ρFx). Now suppose that the quantum state undergoes
qubit depolarizing noise with rate ϵ. For each S ⊆ [n] : |S| ≤ k, the expected value of each
term ⟨FS⟩ϵ = tr(αSNϵ(ρ)Z(S)) is

⟨FS⟩ϵ = (1− ϵ)|S|⟨FS⟩ ≈ (1− |S| · ϵ)⟨FS⟩. (4.10)

Therefore, the noise only causes a multiplicative error of O(kϵ) to each term of the objective.

|⟨FS⟩ϵ − ⟨FS⟩| ≤ O(kϵ)⟨FS⟩ (4.11)

By linearity of expectation, it follows that

|⟨F ⟩ϵ − ⟨F ⟩| ≤ O(kϵ)⟨F ⟩. (4.12)

While calculating the expectation value of some function of the output of a shallow
quantum circuit is hard in general, we know that if the function is local, it can be done
efficiently. This is because the marginal distribution of each term (and thus the expectation)
can be computed efficiently as shown in Section 2.6. Does this promise of function locality
make classical simulation easier in general? If a shallow quantum circuit satisfies some
relation R, does the classical task of satisfying R become easier if R is locally-checkable?

One might wonder whether any of the known relations used to separate QNC0 and NC0 (or
even AC0) are locally checkable. All currently known relational separations between QNC0

and NC0 (or even AC0), use relations that are characterized by a QNC0 circuit [BGK18,
BGKT20, WKST19, Gal18, CSV21]. We first consider this class of relations.

For a (classical or quantum) circuit C, let C(x) denote the random variable over Y of
the circuits (measured) output upon given input x ∈ X .
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Definition 13 (characterizes relation). We say that a (quantum or classical) circuit C
characterizes relation R ⊆ X × Y if for each x ∈ X , y ∈ Y

Pr[C(x) = y] > 0 ⇐⇒ (x, y) ∈ R. (4.13)

This is stricter than just satisfying the relation.

Definition 14 (satisfies relation). The (quantum or classical) circuit C satisfies R if for
each x ∈ X, y ∈ Y

Pr[C(x) = y] > 0 =⇒ (x, y) ∈ R. (4.14)

In addition to requiring that the circuit output is always correct (satisfying R), a cir-
cuit that characterizes R requires that every valid solution is output with some nonzero
probability.

The 1D Magic Square Problem, discussed in Chapter 3, is an example of a problem that is
characterized by a quantum circuit. In fact, the problem itself is defined by the input/output
relation of a QNC0 circuit C1D-MSP (see Section 3.1).

In this chapter, we show that quantum advantage is limited in this regime. First, we
show that if F (x, y) is efficiently computable classically (not necessarily local) then we can
construct an efficient classical algorithm that satisfies R.

Theorem 5. For each relation R ⊆ X ×Y with an efficiently computable checking function
F (x, y), if there exists a quantum circuit with fan-in 2 and depth D = O(log logm) that
characterizes R, then there exists an efficient classical algorithm that satisfies R.

A direct implication of this theorem is that if a QNC0 circuit characterizes some search
problem that is efficiently verifiable (in NP), then this search problem can be solved by an
efficient classical algorithm (in P).

Furthermore, we show that if F (x, y) is a local checking function, the classical algorithm
can be parallelized into a depth that is exponentially larger than the quantum circuit’s
depth. Therefore, if the quantum circuit has depth D = O(1), then we can actually solve
the relation with an NC0 circuit.

Theorem 6. For each locally-checkable relation R ⊆ X ×Y, if there exists a quantum circuit
with depth D and fan-in/out 2 that characterizes R, then there exists a classical circuit with
fan-in 2, depth O(23D) and size O(22

D+3D) that satisfies R.

Setting D = O(1), we get the following corollary.

Corollary 1. For each locally-checkable relation R ⊆ X × Y, if there exists a QNC0 circuit
that characterizes R, then there exists an NC0 circuit that satisfies R.
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This corollary tells us that the known relational separations (2D-HLF, 1D-MSP, PHP)
from [BGK18, BGKT20, WKST19] between quantum and classical shallow circuits, are not
locally checkable, since they are each characterized by a QNC0 circuit. Moreover, Theorem 5
provides an efficient classical algorithm for each of these problems, since they are efficiently
verifiable.

Note that the classical circuit in Theorem 8 has an exponential depth blowup compared
to the quantum circuit. It remains open whether there exists a locally checkable relation
that is characterized by a Θ(log(n)) depth quantum circuit but cannot be satisfied by a
O(log(n))-depth classical circuit.

Note that both of these theorems require the quantum circuit to always output a valid
solution, leaving no room for error. We strengthen the above two theorems and allow for
some probability of invalid outputs so long as each valid output string has a significantly
larger probability of being output than the invalid output strings.

Definition 15 (approximately characterizes). We say that a (quantum or classical) circuit
C β-approximately characterizes relation R ⊆ X ×Y for β ∈ [0, 1) if for each x ∈ X , y ∈ Y

1. If (x, y) ∈ R then Pr[Q(x) = y] ≥ p, and

2. If (x, y) /∈ R then Pr[Q(x) = y] ≤ βp

for some p ∈ (0, 1]

We note that this definition is not the most well-motivated performance metric for an
approximate optimization algorithm. Ideally, we would use a more natural and less restrictive
metric such as the expected objective value, or the overall probability of outputting an
optimal solution. However this definition allows us to generalize Theorems 5 and 6 so that
the quantum circuit does not necessarily solve the relation exactly.

Theorem 7. For each relation R ⊆ X ×Y with an efficiently computable checking function
F (x, y), if there exists a quantum circuit with fan-in 2 and depth D = O(log logm) that
2−2

D
-approximately characterizes R, then there exists an efficient classical algorithm that

satisfies R.

Theorem 8. For each locally-checkable relation R ⊆ X ×Y, if there exists a quantum circuit
with fan-in 2 and depth D = O(1) that 2−2

D
-approximately characterizes R, then there exists

a classical circuit that satisfies R, has depth O(23D), fan-in 2, and size O(22
D+3D).

Corollary 2. For each locally-checkable relation R ⊆ X × Y, if there exists a QNC0 circuit
with depth D = O(1) that 2−2

D
-approximately characterizes R, then there exists an NC0

circuit that satisfies R.

Intuitively, we can interpret Corollary 2 as saying that we can not expect a quantum
advantage for a local optimization problem where the quantum circuit does exceptionally
well.
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The two main insights used to prove these theorems are lightcones, and the locality of
the checking function. To highlight how these two techniques work together, we will first
make use of lightcones to prove Theorem 7, by constructing an efficient classical algorithm
that satisfies a relation with an efficiently computable checking function. This algorithm
iteratively updates an input-output pair until arriving at a pair with the desired input.
Then we will show that if the checking function is local, this algorithm can be parallelized
into constant depth.

While we did not answer our Question 1: whether there exists a locally checkable relation
with a shallow circuit quantum advantage, we answer it in the negative in the case where
the relation is characterized or approximately characterized by a shallow quantum circuit.
Furthermore, we conjecture that the answer is also no in the case where our task requires
that the classical and quantum circuits satisfies the relation.

Conjecture 1. For each locally-checkable relation, if there exists a QNC0 circuit that satisfies
R, then there exists a NC0 circuit that also satisfies R.

Even this conjecture would not rule out the possibility that shallow quantum circuits
might outperform shallow classical circuits, or even polynomial-sized circuits, in terms of
a different performance metric, such as the expectation value of F , or the probability of
outputting the optimal solution. Moreover, our no-go theorems (implicitly) assume that the
relation is a total relation (that the range is X = {0, 1}m), and they break down for partial
relations.

These no-go results do, however, rule out the possibility of proving a complexity separa-
tion akin to previously known results [BGK18, BGKT20, WKST19] for the task of finding
an optimal solution to a local optimization problem. As each of these known separations
uses relations that are characterized by a QNC0 circuit. See the definition the 1D-MSP in
Section 3.1 in terms of the input/output relation of a constant-depth circuit.

Note that characterizing a relation is a special case of approximately characterizing a
relation for any β < 1. Therefore, Theorems 5 and 6 are special cases of Theorems 7 and 8,
so it is sufficient for us to just prove Theorems 7 and 8 – which are proved in the following
two sections (Sections 4.1 and 4.2). Following that, in Section 4.3 we prove a stronger version
of Theorem 6, with a weaker requirement on the notion of locality for the checking function
in the case where there is a QNC0 circuit that characterizes the relation.

4.1 An efficient algorithm for efficiently checkable re-

lations

In this section we prove Theorem 7, (which itself implies Theorem 5). We construct a
classical algorithm that given a goal input x ∈ X will iteratively update some initial valid
input-output pair (0m, y0) by changing a single bit of the input at a time until arriving at a
final pair (x, y) ∈ R for the goal x and some y. We can assume we have access to the pair
(0m, y0) since such a pair exists, and we are only proving the existence of such an algorithm.
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For each i ∈ [m], we will construct a function updatei : X × Y → X × Y such that for
each (x, y) ∈ R, and (x′, y′) := updatei(x, y), we have that (x

′, y′) ∈ R and x′ = x⊕ ei, where
we use the notation that x ⊕ ei is the string x with the ith bit flipped. Once we have an
updatei function for each i ∈ [m], we can then use them iteratively to get from any valid pair
(x0, y0) ∈ R to another (x′, y′) for any given x′ ∈ X .

Definition 16 (updatei). For a relation R, we define a subroutine updatei : X ×Y → X ×Y
for each input index i ∈ [m]. For each (x, y) ∈ R, updatei(x, y) must produce a (x′, y′) such
that

(a) x′ is x flipped at the ith bit: x′ := x⊕ ei, and

(b) (x′, y′) ∈ R.

For notational clarity in our proofs throughout this chapter, we define Ai :=
−→LQ(xi) and

Ac
i := [n] \ Ai for each i ∈ [m].

Claim 5. For each relation R ⊆ X × Y with an efficiently computable checking function,
if there exists a quantum circuit Q with blowup B that 2−B-approximately characterizes R,
then updatei can be implemented (classically) in time 2B · poly(n,m).

Proof. Suppose the quantum circuit Q characterizes relation R ⊆ X ×Y , and R has checking
function F (x, y) which can be computed in time f(n).

The algorithm for updatei is as follows:

Algorithm 1: updatei
Input : (x, y) ∈ R
Output: (x′, y′) ∈ R with x′ = x⊕ ei.
Let S := {z ∈ Y : zAc

i
= yAc

i
}

x′ ← x⊕ ei
y′ ← argminz∈S F (x

′, z)
output (x′, y′)

Correctness: This algorithm always meets Item a of the updatei subroutine, by always
outputting x′ = x⊕ei for input x ∈ X . Therefore, to show correctness, all that remains is to
prove that if (x, y) ∈ R, then updatei(x, y) = (x′, y′) ∈ R also. Let S := {z ∈ Y : zAc

i
= yAc

i
}

as defined in Algorithm 1. The marginal distribution of the quantum circuit output at Ac
i

is independent of the ith input xi since
−→LQ(xi) ∩Ac

i = ∅. Therefore we can lower bound the
probability that the quantum circuit outputs a string in S.

Pr[Q(x⊕ ei) ∈ S] = Pr
[
Q(x⊕ ei)Ac

i
= yAc

i

]
(4.15)

= Pr
[
Q(x)Ac

i
= yAc

i

]
(4.16)

≥ Pr[Q(x) = y] ≥ p (4.17)
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Now, let ỹ ∈ S be the element of S with the highest probability

ỹ := argmaxz∈S Pr[Q(x⊕ ei) = z|Q(x⊕ ei) ∈ S] (4.18)

Using a simple counting argument, Pr[Q(x⊕ ei) = ỹ|Q(x⊕ ei) ∈ S] > 1
|S| ≥ 1

2B
, since

Pr[Q(x⊕ ei) ∈ S] > 0. Combining this with Equation (4.17) we can show that ỹ is output
with significant probability.

Pr[Q(x⊕ ei) = ỹ] ≥ Pr[Q(x⊕ ei) = ỹ|Q(x⊕ ei) ∈ S] · Pr[Q(x⊕ ei) ∈ S] (4.19)

≥ p

2B
(4.20)

Since Q 2−B-approximately characterizes R, it follows that (x⊕ ei, ỹ) ∈ R. Since ỹ is in the
set S that our algorithm minimized over, the y′ output by our algorithm satisfies

F (x⊕ ei, y′) ≤ F (x⊕ ei, ỹ). (4.21)

Therefore (x⊕ ei, y′) ∈ R by definition of the checking function.

Runtime: This algorithm searches over 2|Ai| ≤ 2B strings z ∈ S and evaluates the function
F (x⊕ ei, z) on each. Since F has a runtime of f(n), the total runtime is O(2Bf(n)).

Proof of Theorem 7. Now that we have an efficient updatei function for each i ∈ [m], we can
start with some arbitrary pair in the relation (x(0), y(0)) and iteratively update the pair to
get a pair for a desired x ∈ X as shown in Algorithm 2. The pair (x(0), y(0)) is hardcoded
into our algorithm.

Algorithm 2: Classical algorithm to satisfy relation R

Input : x ∈ X
Output: y ∈ Y : (x, y) ∈ R.
Let (x(0), y(0)) ∈ R be some known pair.
Initialize (x̂, ŷ)← (x(0), y(0))
for i ∈ [m] do

if xi ̸= x′i then
(x̂, ŷ)← updatei(x̂, ŷ)

end

end
output y := ŷ

Correctness: First note that at each iteration, the x̂ variable is only updated at its ith
index such that it takes on the value of x̂ ⊕ ei. Therefore, after the last iteration, x̂ = x.
Since the pair (x̂, ŷ) at the start is valid (x̂, ŷ) ∈ R, and updatei preserves the relation, at the
end of each iteration, we still have that (x̂, ŷ) ∈ R. Therefore, the algorithms final output y
is correct: (x, y) ∈ R.

Runtime: By Claim 5, the updatei subroutine takes 2B · poly(n,m) time, which we may
run within each of the m iterations of Algorithm 2. Thus the runtime of Algorithm 2 is at
most m · 2Bpoly(n,m) = 2B · poly(n,m)
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4.2 NC0 circuits for locally-checkable relations

To prove Theorem 8, we will show that Algorithm 2 for satisfying a relation R, can be
parallelized into constant depth if R is locally checkable. When the checking function is
local, we can implement the updatei functions locally, and thus implement many in parallel.

For a local checking function F (x, y) =
∑

i∈[t] Fi(xTi , ySi
) we say that two variables share

a check if they are acted on by the same checking term. It will be useful to define the check
neighborhoods of output variables to denote the other variables they share a check with.

Definition 17 (Output Check Neighborhood NF ). For each output k ∈ [n], we define its
output check neighborhood as NF (yk) :=

⋃
i∈[t]:yk∈Si

Si. Similarly, we define the output check

neighborhood of any subset of outputs S ⊆ [n] as NF (S) :=
⋃
i∈[t]:Si∩S ̸=∅ Si.

Definition 18 (Input Check Neighborhood, N in
F ). For each output k ∈ [n], we define its

input check neighborhood as N in
F (yk) :=

⋃
i∈[t]:yk∈Si

Ti. Similarly, for each subset of output

bits S ⊆ [m] we define N in
F (S) :=

⋃
i∈[t]:Si∩S ̸=∅ Ti.

We now provide a parameterized definition of checking function locality.

Definition 19 ((K,L)-local checking function). A checking function is (K,L)-local if

|N in
F (S)| ≤ K|S| |NF (S)| ≤ L|S| for each S ⊆ [n] (4.22)

Note that our notion so far of local checking functions is equivalent to (O(1), O(1))-local
checking functions.

In the process of upper bounding the circuit complexity of our classical algorithms, we
will prove their function locality. Slightly overloading “locality”, we say that a function
f : {0, 1}m → {0, 1}n is ℓ-local if each output bit f(z)i can be written as a function of only
ℓ of the inputs fi : {0, 1}ℓ → {0, 1}. In Appendix A, we show how to upper bound circuit
complexity from function locality.

Theorem 9 (Theorem 8 restated). For each relation R with a (K,L)-local checking function,
if there exists a quantum circuit Q with blowup B that 2−B-approximately characterizes R,
then there exists a (B(2K+L))(B

2L)-local function that satisfies R which can be implemented
by a classical circuit with fan-in 2, depth O(B3L(2K + L)), and size O(B3L(2K + L) ·
2B(2K+L)).

Proof. Recall that for a particular quantum circuit Q, we use the notation Ai =
−→LQ(xi) and

Ac
i = [n] \ Ai. Additionally, we will define the boundary of Ai as δ(Ai) = NF (Ai) \ Ai.

Claim 6. For each i ∈ [m], updatei(x, y) can be implemented to only flip the ith bit of x,
and update yAi

as a function of xN in
F (Ai) and yδ(Ai).

Proof. The local algorithm for updatei is the same as Algorithm 1, except for the step
y′ ← argminz∈S F (x ⊕ ei, z) can be implemented without actually computing the entire
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checking function F (x, z), but instead just the sum of the terms that act on the y bits that
we are changing: yAi

.

argminz∈S
∑

i∈[t]:Si∩Ai ̸=∅
Fi(x

′
Ti
, zSi

) (4.23)

This is equivalent to choosing a y′ that minimizes the entire checking function because we
are simply ignoring the terms whose values are fixed to the same value for each z ∈ S.
Therefore, the correctness of the algorithm follows from the correctness of Algorithm 1
proved in Claim 5. Calculating the sum of these local terms depends only on the variables
xN in

F (Ai) and yNF (δ(Ai)). Clearly, the update on x only flips xi. Moreover, we are only updating
y at its bits in Ai, as desired.

We generalize the updatei subroutine from the previous section to update multiple inputs
as updateV for some subset of inputs V ⊆ [m].

Definition 20 (updateV ). For some subset of input indices V ⊆ [m], we define the subroutine
updateV : X × Y × {0, 1}|V |. For each (x, y) ∈ R and v ∈ {0, 1}|V |, updatei must produce an
(x′, y′) such that the following are true:

(a) x′ is flipped at the indices in V according to v.

x′V = xV ⊕ v, x′V c = xV c (4.24)

(b) (x′, y′) ∈ R.

Clearly for any V ⊆ [m], we can implement updateV by implementing each updatei in
series for each i ∈ V . However, we will show, that for certain choices of V we can parallelize
these updates.

Claim 7. For each V ⊆ [m] if

NF (
−→LQ(a)) ∩

−→LQ(b) = ∅ for each a ̸= b ∈ V (4.25)

then updateV can be implemented with a B(2K + L)-local function.

Proof. Let V ⊂ [m] be some subset of inputs satisfying Equation (4.25), with some ordering
V = {V1, V2, . . . , Vm}. Consider the implementation of updateV (x, y, v) shown in Algorithm 3
which iteratively updates with updatei for each i ∈ V with vi = 1.

We will denote the initial values for (x, y) as (x(0), y(0)), and for each i ∈ {1, 2, . . . , |V |},
let (x(i), y(i)) denote the value of (x, y) after the ith iteration (after updateVi).

Note that for each i ∈ V , each updatei updates disjoint variables. This is because each
updatei changes only the bits xi and yAi

(by Claim 6), and Ai∩Aj = ∅ for each i ̸= j ∈ V by
Equation (4.25). Therefore it is sufficient to show that each updatei(x, y) can be implemented
as a B(2K + L)-local function of the initial inputs (x(0), y(0), v).
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Algorithm 3: updateV (x, y, v)

for j ∈ {1, . . . , |V |} do
if vj = 1 then

(x, y)← updateVj(x, y)

end

end
Output (x, y)

By Claim 6, for each i ∈ [m], the update step (x, y) ← updatei(x, y) can be replaced
by just flipping xi and applying a local update function for y, localupdatei : {0, 1}|N

in
F (Ai)| ×

{0, 1}|δ(Ai)| → {0, 1}|Ai| such that

(x, y)← updatei(x, y) =

{
yAi

← localupdatei(xN in
F (Ai), yδ(Ai))

xi ← 1− xi
. (4.26)

Next, we will show that each localupdatei depends (still locally) only on the original inputs
(x(0), y(0), v), and therefore can be implemented independently. To do this, it is sufficient to
show that xN in

F (Ai) and yδ(Ai) depend locally on (x(0), y(0), v).

Claim 8. y
(j)
δ(Ai)

= y
(0)
δ(Ai)

for each i, j ∈ [|V |].

Proof. Note that for each i ∈ V the δ(Ai) bits of y do not change throughout our update
algorithm. This is because only the y bits of ∪i∈VAi change and for each a ̸= b ∈ V ,
δ(Aa) ∩Ab ⊆ NF (Aa) ∩Ab = ∅ and δ(Ai) ∩Ai = ∅ for each i ∈ V . That is y

(j)
δ(Ai)

= y
(0)
δ(Ai)

for

each i, j ∈ [|V |].

Next, we will show that for each step of the algorithm j ∈ [|V |], xN in
F (Aj) is determined

by at most |N in
F (Aj)| bits of each x(0) and v.

Let v̂ ∈ {0, 1}m denote the change in x determined by the input v, that is v̂ := x(0)⊕x(|V |).

v̂Vi = vi for i ∈ [|V |], and (v̂(j))i = 0 for i ∈ [m] \ V (4.27)

Furthermore, for each j ∈ [|V |], let v̂(j) := x(j) ⊕ x(0). Note that v̂(j) is now a function of
v1, v2 . . . vj.

(v̂(j))Vi =

{
vi if i ≤ j

0 otherwise
for i ∈ [|V |], and (v̂(j))i = 0 for i ∈ [m] \ V (4.28)

So for each j ∈ [|V |], we can write x(j) as x(0) ⊕ v̂(j).
So the local update step can be rewritten as a local function of (x(0), y(0), v̂).

(x, y)← updatei(x, y) =

{
yAi

← localupdatei(x
(0)

N in
F (Ai)

⊕ v̂(j)N in
F (Ai), y

(0)
δ(Ai)

)

xi ← 1− xi
. (4.29)
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Note that each of these localupdatei is a function of at most 2|N in
F (Ai)|+|δ(Ai)| ≤ 2B(K+L)

bits of (x(0), y(0), v). Therefore, each output bit of updateV is also a function of at most
2B(K + L) bits of (x(0), y(0), v).

Claim 9. There exists a partition of the input bits into k ≤ B2L subsets [n] = V (1) ⊎ V (2) ⊎
· · · ⊎ V (k) such that for each i ∈ [k]

NF (
−→LQ(xa)) ∩

−→LQ(xb) = ∅ for each a ̸= b ∈ V (i) (4.30)

Proof. Consider the graph G with each vertex representing an outut V (G) = [n], and edges
defined by the negation of Equation (4.25).

E(G) = {(a, b) : NF (
−→LQ(xb)) ∩

−→LQ(xa) ̸= ∅, a ̸= b ∈ [n]} (4.31)

Note that this condition is symmetric:

NF (
−→LQ(xb)) ∩

−→LQ(xa) ̸= ∅ ⇐⇒ NF (
−→LQ(xa)) ∩

−→LQ(xb) ̸= ∅.
By the definition of our edges E(G), any independent set I ⊆ V (G) (no edges between any
vertices in I) satisfies Equation (4.25). Any proper k-vertex coloring forms a partition of the
vertices into k independent sets. Note that G has maximum degree at most B2L−1 because

|←−LQ(NF (
−→LQ(xa)))| ≤ B2L for each a ∈ [n], and xa ∈

←−LQ(NF (
−→LQ(xa))). Therefore, there

exists a k-vertex coloring for k ≤ B2L [Viz65]. Let V (1), V (2), . . . V (k) be the color classes for
such a coloring.

Finally, we can describe our algorithm which satisfies R:

Algorithm 4: Local algorithm for a locally-checkable relation

Input : x ∈ X
Output: y ∈ Y : (x, y) ∈ R.
Let (x(0), y(0)) ∈ R be some known pair.
Let V (1), V (2), . . . , V (k) ⊆ [m] be the partition of [m] into k ≤ B2L sets from Claim 9
Initialize (x̂, ŷ)← (x(0), y(0))
for i ∈ [k] do

if xi ̸= x′i then
(x̂, ŷ)← updateV (k)(x̂, ŷ)

end

end
output y := ŷ

Combining Claims 7 and 9, the function implemented by Algorithm 4 which iteratively
applies updateV (i) for each i ∈ [k] has locality (B(2K + L))k ≤ (B(2K + L))B

2L. Moreover,
for each i ∈ [k], since updateV (i) has locality B(2K+L), it can be implemented by a classical
circuit with fan-in 2, depth O(B(2K+L)) and size O(B(2K+L) ·2B(2K+L)) by Lemma 11 in
Appendix A. Therefore, iteratively applying updateV (i) for each i ∈ [k] can be implemented
by a classical circuit with fan-in 2, depth O(k · (B(2K + L)) = O(B3L(2K + L)) and size
O(k ·B(2K + L) · 2B(2K+L)) = O(B3L(2K + L) · 2B(2K+L)).
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4.3 Removing input locality for relations characterized

by shallow quantum circuits

We actually prove a result that is slightly stronger than Theorem 6. In the case where
a quantum circuit characterizes a relation, our theorem statement only requires that the
checking function is local in the output, rather than the output and the input.

Theorem 10. Suppose the relation R has a checking function that is L-local in output
(|NF (S)| ≤ L|S| for each S ⊆ [n]). If there exists a quantum circuit with blowup B that
characterizes R, then there exists a (BL(2B + 1))B

2L-local function that satisfies R which
can be implemented by a classical circuit with fan-in 2, depth O(B3L(2K + L)), and size
O(B3L(2K + L) · 2B(2K+L)).

In the case where a relation R is characterized by some quantum circuit with blowup B,
we can upper bound the output locality of the checking function for R with its input locality
and B.

Lemma 5. Suppose the relation R has a quantum circuit with blowup B that characterizes
R. If R has a checking function that is L local in output, then R has a (BL,L)-local checking
function.

Proof. Let F (x, y) =
∑

i∈[t] Fi(x, ySi
) be the L-local checking function for R, with Si ⊆ [n].

We define a new relation R′ ⊆ X ×Y such that (x, y) ∈ R if y is in the marginal support of
Q(x) for each Si.

R′ = {(x, y) : x ∈ X , ySi
∈ supp(Q(x)Si

) for each i ∈ [t]}

Which has a corresponding checking function F ′(x, y) =
∑

i∈[t] F
′
i (x, ySi

). Where check i

verifies that ySi
∈ supp(Q(x)Si

).

F ′i (x, ySi
) =

{
0 if ySi

∈ supp(Q(x)Si
)

1 if ySi
/∈ supp(Q(x)Si

)

Note that supp(Q(x)Si
) is determined by the backwards lightcone of Si for each i ∈ [t].

Setting Ti =
←−L[Q](Si), we can rewrite F ′(x, y) as F ′(x, y) =

∑
i∈[t] F

′
i (xTi , ySi

). Thus, R′ is
(BL,L)-local.

Next we will prove that R′ = R. Since R = {(x, y) : x ∈ X , y ∈ supp(Q(x))}, clearly
R ⊆ R′. To prove the other direction, we consider the expected value of F (x, y). For each
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x ∈ X , let Yx := miny∈Y F (x, y).

Yx = F (x, y) for each (x, y) ∈ R
= E[F (x, y)] for each x ∈ X , y ∼ Q(x)

=
∑

i∈[t]
E[Fi(x, ySi

)] for each x ∈ X , y ∼ Q(x)

=
∑

i∈[t]
EySi

∼Q(x)Si
[Fi(x, ySi

)] for each x ∈ X

= E[F (x, y)] for each x ∈ X , y ∼S Q(x)

Where y ∼S Q(x) denotes that y ∼ Q̃(x), where Q̃(x) is a distribution over Y such that

Q̃(x)Si
∼ Q(x)Si

for each i ∈ [t]. Since F (x, y) ≥ Yx for each x ∈ X , y ∈ Y , there is no
probability mass of F (x, y) below its expectation: Pry∼SQ(x)[F (x, y) < E[Yx]] = 0. There-
fore, there is also no probability above the expectation: Pry∼SQ(x)[F (x, y) > E[Yx]] = 0. It
follows that

Pr[F (x, y) = Yx] = 1 for each x ∈ X , y ∼S Q(x)
F (x, y) = Yx for each (x, y) ∈ R′

Therefore R′ ⊆ R, so R′ = R as desired.

Proof of Theorem 10. By Lemma 5, R has a (BL,L)-local checking function. Plugging this
into Theorem 9 with K = BL, there exists a (BL(2B + 1))B

2L-local function that satisfies
R.
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Chapter 5

The Sampling Power of Shallow
Quantum Circuits with GHZ Input

This chapter is joint work with and coauthored by Adam Bene Watts.

This chapter studies the sampling power of constant depth quantum circuits with bounded
fan-in (QNC0). We have already seen in Section 2.5 that sampling exactly from the output
distributions of QNC0 circuits for any input is hard in general for an efficient classical al-
gorithm (assuming the PH does not collapse). And in Chapter 3 we saw that there exist
search problems that can be solved by QNC0 circuits but not constant-depth bounded fan-in
classical (NC0) circuits. However, perhaps counterintuitively, neither of these results directly
provide a specific distribution, which does not depend on any input, that can be produced
by a QNC0 circuit but not an NC0 circuit. The question of whether such a distribution exists
was proposed in [BGK18].

Answering this question is the basis of ongoing research with Adam Bene Watts. In this
chapter, we prove a sampling separation for a weaker model. We consider the sampling power
of a QNC0 circuit that takes as input an n-qubit GHZ state: |GHZn⟩ = 1√

2
(|0n⟩+ |1n⟩). We

construct a sampling task for which QNC0 circuits with a GHZ state as input outperform
NC0 circuits that take uniformly random bits as input. Before making this statement more
rigorous, we introduce our sampling task.

Sampling task We consider the task of sampling from the distribution (X,majmodp(X)⊕
parity(X)), whereX is sampled uniformly from {0, 1}n−1. The functions majmodp and parity
are defined as

majmodp(x) :=

{
0 if

∑
i xi ≤ p/2 (mod p)

1 otherwise
parity(x) :=

∑

i

xi mod 2 (5.1)

for x ∈ {0, 1}n−1 and prime p. The function majmodp (majority mod p) was introduced by
Viola, where he showed the hardness of sampling from the distribution (X,majmodp(X)) for
classical circuits with bounded fan-in and unbounded fan-out (NC0 circuits) [Vio12]. The
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suggestion to look into Viola’s work on classical lower bounds for distributions was also
proposed in [BGK18].

In contrast with the hardness of sampling result [TD02, Aar04] discussed in Section 2.5,
in this chapter we consider separations for approximate sampling tasks (additive error) rather
than exact sampling. As discussed in Section 2.5.2, approximate sampling is a more reason-
able task since in practice we do not expect quantum computers to sample exactly either
(there will always be some noise).

The measure we use to define how close a sampling algorithm is to a distribution is total
variation distance.

Definition 21 (Total variation distance, ∆). The total variation distance (or statistical
distance) between two distributions D,D′ over {0, 1}m is

∆(D,D′) := max
T⊆{0,1}m

∣∣∣Pr[D ∈ T ]− Pr[D′ ∈ T ]
∣∣∣ = 1

2

∑

a∈{0,1}m

∣∣∣Pr[D = a]− Pr[D′ = a]
∣∣∣

(5.2)

A sampling algorithm A is said to approximately sample from the distribution D with
additive error ϵ, if ∆(A, D) ≤ ϵ. We consider a rather loose requirement for our sampling
task, that we just need to approximately sample with constant (< 1/2) additive error. We
are now ready to state the main result of this chapter.

Theorem 11. For any prime p, define the distribution Dn,p := (X,majmodp(X)⊕parity(X))
with X sampled uniformly from {0, 1}n−1. For each δ < 1, sufficiently large n, and prime
p ∈ [n1/δ, n1/3]:

• There exists a constant-depth quantum circuit with fan-in 2 which takes |GHZ⟩n as
input, and produces an output distribution with total variation distance 1

2
− Ω(1) from

Dn,p.

• Each classical circuit with fan-in 2 and depth Ω(log log(n)) which takes n+nδ random
bits as input, has total variation distance 1

2
−O(1/ log(n)) from Dn,p.

In Section 5.1 we construct the quantum circuit that takes as input a GHZ state and
produces an output that is close to the distribution (X,majmodp(X)⊕ parity(X)). To this
end, we first consider a pseudo-quantum circuit defined with non-unitary gates that gives
us the desired behavior. Then we replace these non-unitary gates with actual unitaries, and
show that we preserve our desired output statistics. In Section 5.2 we prove the hardness
of sampling from (X,majmodp(X)⊕ parity(X)) with a constant-depth classical circuit with
bounded fan-in. This proof follows closely to Viola’s proof of the hardness of sampling
(X,majmodp(X)) [Vio12].
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5.1 Sampling from (X,majmodp(X) ⊕ parity(X)) using

a GHZ state

In this section we consider quantum circuits with access to an n-qubit GHZ state as input. We
show these circuits can produce samples from the distribution (X,majmodp(X)⊕parity(X)),
where X is a uniformly random bitstring of length n − 1. We will prove this result in two
steps – in Section 5.1.1 we give a “quantum-like” circuit which samples from the correct
distribution but includes non-unitary single qubit operations. In Section 5.1.2 we show how
to replace those non-unitary operations with actual unitaries. Before beginning these proofs
we review some details about GHZ states.

Review of GHZ States An n-qubit GHZ state is defined to be the state

|GHZn⟩ =
1√
2

(
|0⟩⊗n + |1⟩⊗n

)
. (5.3)

It is a well-known fact that applying a Hadamard transform to each qubit of a GHZ state
produces a uniform superposition over bitstrings with even Hamming weight:

H⊗n |GHZn⟩ = 2−n/2
∑

e∈En

|e⟩ (5.4)

where En is the set containing all even parity n-bit strings. We can equivalently describe
this state as coherent superposition of n− 1 random bits and a final bit whose value equals
the parity of the n− 1 other bits. We can compute the parity of the first n− 1 bits onto the
final qubit by preparing the |0⟩ state and flipping it once for each of the first n − 1 qubits
that are in the |1⟩ state. So,

H⊗n |GHZn⟩ =
(
n−1∏

i=1

CNOTi,n

)
|+⟩⊗n−1 ⊗ |0⟩ . (5.5)

where CNOTi,j denotes a CNOT gate controlled on qubit i and applied to qubit j. Equa-
tion (5.5) will be our starting point for designing circuits which use the GHZ state as a
resource state.

|+⟩ •
|+⟩ •

...

|+⟩ •
|0⟩

Figure 5.1: A circuit constructing the state H⊗n |GHZn⟩, as described in Equation (5.5).
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5.1.1 Sampling with non-unitary operations

We now consider constant depth quantum circuits augmented with specific single qubit
non-unitary “gates” Aθ, which we will soon define. We show these circuits can sample
(approximately) from the distribution (X,majority(X) + parity(X)). While this model is
obviously non-physical, introducing it allows us to isolate some key ideas which we will reuse
in the fully quantum circuit developed in the next section.

First, for each θ ∈ R, define the (non-unitary) matrix Aθ to be the two qubit matrix
which acts on the computational basis states as

Aθ |0⟩ = |0⟩ (5.6)

Aθ |1⟩ = exp(iθX) |1⟩ (5.7)

When drawing circuit diagrams in this section we sometimes include Aθ gates, and under-
stand that they represent the matrix A acting on the qubits indicated. We also sometimes
drawn A†θ gates, which represent the adjoint of the matrix Aθ acting on the qubits indicated.

We now prove the following useful circuit identity.

Lemma 6. For any one-qubit state |ψ⟩ and computational basis state |x⟩ with x ∈ {0, 1},
we have

⟨x|2
(
A†θ

)
2
CNOT2,1 |ψ⟩1 |+⟩2 =

1√
2
exp(i(θ + π/2)xX1) |ψ⟩1 (5.8)

Proof. Direct computation gives

⟨x|2
(
A†θ

)
2
CNOT2,1 |ψ⟩1 |+⟩2 = ⟨x|2 exp(iθxX2)CNOT2,1 |ψ⟩1 |+⟩2 (5.9)

= ⟨x|2CNOT2,1 exp(iθxX1X2) |ψ⟩1 |+⟩2 (5.10)

= ⟨x|2CNOT2,1 exp(iθxX1) |ψ⟩1 |+⟩2 (5.11)

= exp(i(θ + π/2)xX1) |ψ⟩1 ⟨x|+⟩2 (5.12)

=
1√
2
exp(i(θ + π/2)xX1) |ψ⟩1 (5.13)

where we used on the first line that

Aθ|x⟩ = exp(iθXx) |x⟩ (5.14)

by definition, the commutation relation1

X2CNOT2,1 = CNOT2,1X1X2 (5.15)

=⇒ exp(iθX2)CNOT2,1 = CNOT2,1 exp(iθX1X2) (5.16)

on the second line, that |+⟩ is a 1-eigenstate of the X operator on the third line, and then
the definition of the CNOT gate and the |+⟩ state on the final two lines. Figure 5.2 gives a
diagrammatic version of this proof.
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|ψ⟩ |ψ⟩
=

|+⟩ • A†θ ⟨x| |+⟩ • exp(iθxX) ⟨x|

|ψ⟩
exp (iθxXX)=

|+⟩ • ⟨x|

|ψ⟩ exp (iθxX)

=

|+⟩ • ⟨x|

|ψ⟩ exp (ix(θ + π/2)X)

=
|+⟩ ⟨x|

Figure 5.2: A diagrammatic proof of Lemma 6. The equivalence between each line is ex-
plained in the proof of the lemma.

We now prove the main result of this section, and construct a constant depth circuit
with a GHZ state as input and Aθ gates which samples approximately from the distribution
(X,majmodp(X)) for any p. The construction builds on Lemma 6 as well as the observations
about the GHZ state discussed in Section 5.1.

Theorem 12. For each prime number p there is a constant depth circuit consisting of one
and two-qubit unitary gates and Aθ operations which takes a GHZ state as input and produces
an output which, when measured in the computational basis, produces a distribution with total
variation distance 1

2
−Ω(1) from the distribution (X,majmodp(X)⊕parity(X)) for sufficiently

large n.

1To prove the implication, use the standard decomposition exp(iθX) = cos(θ)+ i sin(θ)X, then commute
the resulting terms.
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H A†
π/p

H A†
π/p

...

H A†
π/p

H exp(−iπX/4)




|GHZn⟩

Figure 5.3: Constant depth circuit producing approximate samples from the distribution
(X,majmodp(X)⊕ parity(X)).

Proof. We first describe the circuit which, when measured in the computational basis, pro-
duces a distribution close to (X,majmodp(X)⊕ parity(X)). Fix θ = π/p. The circuit takes
as input a GHZ state, applies a Hadamard transform to each qubit of the state, then applies
a A†θ operation to the first n− 1 qubits in the GHZ state and a exp(−iπX/4) rotation to the
final qubit. This circuit is indicated diagrammatically in Figure 5.3.

To prove this circuit samples (approximately) from the correct distribution we write the
(unnormalized) output state of the circuit conditioned on first n − 1 qubits of the circuit
being measured in computational basis state |x⟩ = |x1⟩ ⊗ |x2⟩ ⊗ ...⊗ |xn−1⟩ as:

⟨x|1...n−1
((

A†θ

)⊗n−1
⊗ exp(−iπX/4)

)
H⊗n |GHZn⟩

= ⟨x|1...n−1
((

A†θ

)⊗n−1
⊗ exp(−iπX/4)

)(n−1∏

i=1

CNOTi,n

)
|+⟩⊗n−1 ⊗ |0⟩

(5.17)

=
n−1∏

i=1

⟨xi|A†θ (CNOTi,n)|+⟩i ⊗ exp(−iπX/4) |0⟩n (5.18)

= 2−(n−1)/2 exp

(
iX

(
−π
4
+

n−1∑

i=1

xi

(
θ +

π

2

)))
|0⟩n (5.19)

where we used Equation (5.5) on the first line, reordered terms on the second (noting that
exp(iπX/4)n commutes with CNOTi,n for any i ∈ [n− 1]), and then used Lemma 6 on the
third. A diagrammatic version of this analysis is given in Figure 5.5.

Now, tracing over the final qubit we see the probability of the first n − 1 qubits being
measured in any computational basis state |x⟩ is 2−(n−1) so the measurement of the first
n− 1 bits produces a uniformly random bit string, as desired. Additionally, conditioning on
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0 p/4 p/2 3p/4 p

1/2

1

|x|

Pr[y = parity(x)]
majmodp(|x|)

(a) Inverse correlation of Pr[Yx = parity(x)]
and majmodp(x)

0 p/4 p/2 3p/4 p

1/2

1

|x|

Pr
[
y ̸= majmodp(x)⊕ parity(x)

]

(b) Probability that Yx is incorrect, f(|x|)

Figure 5.4: Plots displaying the correlation of Yx and majmodp(x) ⊕ parity(x) where Yx is
the last bit output by the circuit in Figure 5.3 conditioned on the first n− 1 measurements
resulting in string x ∈ {0, 1}n−1.

bit string x = x1x2...xn−1 being measured, we see the state of the n-th qubit is

exp
(
iX
(
−π
4
+ |x|

(
θ +

π

2

)))
|0⟩n (5.20)

∝ exp
(
iX
(
−π
4
+ θ|x|

))
|parity(x)⟩n (5.21)

= cos
(
−π
4
+ θ|x|

)
|parity(x)⟩n + i sin

(
−π
4
+ θ|x|

)
|1⊕ parity(x)⟩n . (5.22)

Where |x| =∑n−1
i=1 xi denotes the hamming weight of x. Let Yx denote the random variable

that is the measurement of the last output bit of the quantum circuit conditioned on the
measurement of the first n− 1 bits being x. When measured in the computational basis, the
probability that the measurement Yx on the nth qubit is parity(x) is

Pr[Yx = parity(x)] = cos2
(
−π
4
+
π

p
|x|
)
. (5.23)

Where we set θ = π
p
. Figure 5.4 displays the inverse correlation between Pr[Yx = parity(x)]

and majmodp(x). We refer to a measured string (x, y) ∈ {0, 1}n−1 × {0, 1} as correct if
y = majmodp(x)⊕ parity(x). The probability that the last bit Yx is correct is

Pr
[
Yx = majmodp(x)⊕ parity(p)

]
=




cos2

(
−π

4
+ π

p
|x|
)
, |x| ≤ p/2

sin2
(
−π

4
+ π

p
|x|
)
, |x| > p/2

. (5.24)

Claim 10. The probability that the quantum circuit output (X, Y ) ∈ {0, 1}n−1 × {0, 1} is
incorrect is at most

Pr
[
Y ̸= majmodp(X)⊕ parity(X)

]
≤ 1

2
− 1

2π
+O(p3/2 exp

(
−n/p2

)
). (5.25)
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Proof. The probability that the circuit output is invalid is

Pr
[
Y ̸= majmodp(X)⊕ parity(X)

]
=

p−1∑

k=0

Pr
[
Y ̸= majmodp ⊕ parity(x)

∣∣|X| = k
]
· Pr[|X| = k]

(5.26)

Let f(k) be the probability that our output measurement is incorrect given that the hamming
weight of the first n bits have hamming weight k.

f(k) := Pr
[
Y ̸= majmodp(X)⊕ parity(X)

∣∣|X| = k
]

(5.27)

It follows from Equation (5.24), that

f(k) =




sin2

(
−π

4
+ π

p
k
)
, k ≤ p/2 mod p

cos2
(
−π

4
+ π

p
k
)
, k > p/2 mod p

(5.28)

which is plotted in Figure 5.4b. Let δ be the total variation distance between |X| mod p
and Up, the uniform distribution over {0, 1, . . . , p − 1}. Then Pr[|X| = k mod p] ≤ 1

p
+ δ.

We can upper bound Equation (5.26), as

Pr
[
Y ̸= majmodp(X)⊕ parity(X)

]
≤
(
1

p
+ δ

) p−1∑

k=0

f(k) (5.29)

=

(
1

p
+ δ

)
1

2
+ 2

(p−1)/2∑

k=1

f(k)


 (5.30)

=

(
1

p
+ δ

)(
1

2
+ 2

∫ p/2

1/2

f(k)

)
dk (5.31)

Where in the second line we use the fact that f(k) is symmetric about p/2, so
∑(p−1)/2

k=1 f(k) =∑p−1
k=(p+1)/2 f(k). In the third line we used that f(k) is convex over (0, p/2), and therefore

∑(p−1)/2
i=1 f(k) is a (midpoint-Riemann sum) overapproximation of

∫ p/2
1/2

f(k). Next we evalu-

ate the integral.

∫ p/2

1/2

f(k) dk =

∫ p/2

0

sin2

(
−π
4
+
π

p
k

)
dk (5.32)

=

∫ p/2

0

1

2

(
1 + cos

(
2π

p
k +

π

2

))
dk (5.33)

=
1

2

(
k +

p

2π
sin

(
2π

p
k +

π

2

))∣∣∣∣
p/2

0

(5.34)

=
p

4

(
1− 2

π

)
(5.35)
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Combining this with Equation (5.31), we get the probability we measure an incorrect string
is at most

Pr
[
Y ̸= majmodp(X)⊕ parity(X)

]
≤
(
1

p
+ δ

)(
p

2

(
1− 2

π

)
+

1

2

)
(5.36)

=
1

2
− 1

π
+
δp

2

(
1− 2

π

)
+

1

2

(
1

p
+ δ

)
(5.37)

=
1

2
−
(
1

π
− 1

2p

)
+O(pδ) (5.38)

All that’s left is to upper bound δ, the total variation distance between |X| mod p and Up.
For this we use the following Fact from [Vio12].

Fact 1 (special case of Fact 3.2 in [Vio12]). Let (x1, x2, . . . , xt) ∈ {0, 1}n be sampled uni-
formly. Then the total variation distance between

∑t
i=1 xi mod p and Up, the uniform dis-

tribution over {0, 1, . . . , p− 1} is at most
√
pe−t/p

2

Using this fact, we get the upper bound δ ≤ p1/2e−n/p
2
. The probability the measured

string is incorrect is then

Pr
[
Y ̸= majmodp(X)⊕ parity(X)

]
≤ 1

2
− 1

π
+

1

2p
+O(p3/2e−n/p

2

). (5.39)

The final step of this proof is translating the probability of (X, Y ) being incorrect into
total variation distance between the measurement of the quantum circuit (X, Y ) and the
ideal distribution D = (X,majmodp(X)⊕ parity(X)).

Claim 11. ∆((X, Y ), D) = Pr
[
Y ̸= majmodp(X)⊕ parity(X)

]

Proof. For the sake of clarity, we denote the event Y = majmodp(X) ⊕ parity(X) as “Y
correct”, and its negation as “Y incorrect”. Let V ⊆ {0, 1}n−1 × {0, 1} be the subset of all
correct strings and V c := {0, 1}n−1 × {0, 1} \ V the set of all incorrect strings. We calculate
the total variation distance as follows

∆((X, Y ), D) =
1

2

∑

x∈{0,1}n−1

y∈{0,1}

∣∣∣Pr[(D = (x, y))]− Pr[(X, Y ) = (x, y)]
∣∣∣ (5.40)

=
1

2

∑

(x,y)∈V

∣∣∣ 1

2n−1
− Pr[(X, Y ) = (x, y)]

∣∣∣+ 1

2

∑

(x,y)∈V c

Pr[(X, Y ) = (x, y)] (5.41)

=
1

2

∑

x∈{0,1}n−1

Pr[X = x] (1− Pr[Y correct|X = x]) (5.42)

+
1

2

∑

x∈{0,1}n−1

Pr[Y incorrect ∧X = x] (5.43)

=
∑

x∈{0,1}n−1

Pr[Y incorrect ∧X = x] = Pr[Y incorrect] (5.44)
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It follows directly from Claim 10 and Claim 11 that the total variation distance between
the measured output of the quantum circuit and (X,majmodp(X) ⊕ parity(X)) is at most
1
2
− 1

π
+ 1

2p
+ O(p3/2e−n/p

2
). Therefore, setting n to be sufficiently large, this probability is

at most 1
2
− 1

π
+ 1

2p
< 0.19 + 1

4
= 0.44 since p ≥ 2.

H A†
π/p ⟨x1| |+⟩ • A†

π/p ⟨x1|

H A†
π/p ⟨x2| |+⟩ • A†

π/p ⟨x2|
... = ...

H A†
π/p ⟨xn−1| |+⟩ • A†

π/p ⟨xn−1|

H exp(−iπX/4) |0⟩ exp(−iπX/4)





|GHZn⟩

|+⟩ ⟨x1|

|+⟩ ⟨x2|
= ...

|+⟩ ⟨xn−1|

|0⟩ exp
(
iX
(
−π

4 +
∑n−1

i=1 xi

(
2π
p + π

2

)))

Figure 5.5: Diagrammatic analysis of the circuit presented in the proof of Theorem 12. The
first line follows from Equation (5.5), while the second follows from Lemma 6.

5.1.2 Removing non-unitary operations

We now construct a fully quantum circuit that takes a GHZ state as input and produces
a state which, when measured in the computational basis, samples approximately from the
distribution (X,majmodp(X) ⊕ parity(X)). Our starting point is the non-unitary circuit
constructed in Section 5.1.1. First, we modify this circuit by replacing the non-unitary
Aθ gates with a different set of non-unitary gates, and show then sampling statistics are
unchanged. Then we show these new non-unitary gates are close to unitary gates, and hence
the circuit can be made fully unitary with minimal change to the output statistics.
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Introducing multi-qubit non-unitary operations

We start by defining the m-qubit non-unitary operation Aθ,m whose action on the m qubit
basis state |x⟩ = |x1x2...xm⟩ is given by:

Aθ,m |x1x2...xm⟩ = exp(iθxm) |x1⟩ ⊗ exp(iθx1) |x2⟩ ⊗ ...⊗ exp(iθxm−1) |xm⟩ . (5.45)

Intuitively, we can think of the Aθ,m operation as consisting of m distinct Aθ operations, just
with the qubits they act on “shifted” away from the qubits controlling the gate by 1 modulo
m.

Now we observe that, in certain situations, an Aθ,m operation can replace a tensor product
of m different Aθ operations.

Lemma 7. For any m-qubit computational basis state |x⟩ = |x1x2...xm⟩ and arbitrary one
qubit state |ψ⟩, the following equivalence holds:

⟨x|1...m
(
A†θ,m

)
1...m

(
m∏

i=1

CNOTi,m+1

)
|+⟩⊗m ⊗ |ψ⟩

= ⟨x|1...m

(
m∏

i=1

(
A†θ

)
i
CNOTi,m+1

)
|+⟩⊗m ⊗ |ψ⟩ (5.46)

Proof. The proof is similar to the proof of Lemma 6. In what follows we identify indices
mod m so, in particular, we have x0 = xm. Then we see:

⟨x|1...m
(
A†θ,m

)
1...m

(
m∏

j=1

CNOTj,m+1

)
|+⟩⊗m ⊗ |ψ⟩

= ⟨x|1...m

(
m∏

j=1

exp(iθXjxj−1)CNOTj,m+1

)
|+⟩⊗m ⊗ |ψ⟩

= ⟨x|1...m

(
m∏

j=1

CNOTj,m+1 exp(iθXjXm+1xj−1)

)
|+⟩⊗m ⊗ |ψ⟩ (5.47)

= ⟨x|1...m

(
m∏

j=1

CNOTj,m+1

)
|+⟩⊗m ⊗ exp

(
iθX

m∑

j=1

xj−1

)
|ψ⟩ (5.48)

= ⟨x|1...m

(
m∏

j=1

CNOTj,m+1

)
|+⟩⊗m ⊗ exp

(
iθX

m∑

j=1

xj

)
|ψ⟩ (5.49)

= ⟨x|1...m

(
m∏

j=1

exp(iθXjxj)CNOTj,m+1

)
|+⟩⊗m ⊗ |ψ⟩ (5.50)

= ⟨x|1...m

(
m∏

j=1

(
A†θ

)
j
CNOTj,m+1

)
|+⟩⊗m ⊗ |ψ⟩ . (5.51)
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Here the first line follows from definition of Aθ,m, the second line follows from commuting an
exp(iθX) gate past a CNOT gate as in the proof of Lemma 6, the third line follows because
|+⟩ is a 1 eigenstate of the X operator and the fourth line follows from a simple relabeling of
indices. The fifth line follows from applying the same argument as in the second and third
lines, just in the reverse direction, and the sixth line follows by definition of Aθ. Figure 5.6
gives a diagrammatic version of this proof.

A straightforward consequence of Lemma 7 and the arguments of Section 5.1.1 is that
constant depth quantum circuits augmented with Aθ,m gates and acting on a GHZ state can
also approximately sample from the distribution (X,majmodp(X)⊕ parity(X)).

Corollary 3. Let m and D be integers, and n = Dm+ 1. Then the state

((
A†π/p,m

)⊗D
⊗ exp(−iπX/4)

)
H⊗n |GHZn⟩ , (5.52)

when measured in the computational basis, approximately samples from the distribution
(X,majmodp(X)⊕ parity(X)).

Proof. By Lemma 7 and Equation (5.5) we have

((
A†π/p,m

)⊗D
⊗ exp(−iπX/4)

)
H⊗n |GHZn⟩

=

((
A†π/p,m

)⊗D
⊗ exp(−iπX/4)

)(n−1∏

i=1

CNOTi,n

)
|+⟩⊗n−1 ⊗ |0⟩ (5.53)

=

((
A†π/p

)⊗n−1
⊗ exp(−iπX/4)

)(n−1∏

i=1

CNOTi,n

)
|+⟩⊗n−1 ⊗ |0⟩ (5.54)

=

((
A†π/p

)⊗n−1
⊗ exp(−iπX/4)

)
H⊗n |GHZn⟩ (5.55)

In the proof of Theorem 12 we show this state, when measured in the computational basis,
approximately samples from the distribution (X,majmodp(X)⊕ parity(X)).

Replacing multi-qubit non-unitary operations with unitary operations

In this section, we construct a fully unitary circuit which takes a GHZ state as input and
produces an output which, when measured in the computation basis, samples approximately
from the distribution (X,majmodp(X) + parity(X)). We do this by proving that we can
replace the non-unitary operations Am,θ introduced in the previous section with unitary
operations while causing minimal change to a circuit using these elements.

To make these statements formal, we first recall some definitions and useful standard
facts about matrix norms.
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|+⟩ •

A†
θ,m

⟨x1| |+⟩ • exp(iθXxm) ⟨x1|

|+⟩ • ⟨x2| |+⟩ • exp(iθXx1) ⟨x2|
... = ...

|+⟩ • ⟨xm| |+⟩ • exp(iθXxm−1) ⟨xm|

|ψ⟩ |ψ⟩

|+⟩ • ⟨x1|

|+⟩ • ⟨x2|
= ...

|+⟩ • ⟨xm|

|ψ⟩ exp
(
iθX

∑m
j=1 xj

)

|+⟩ • exp(iθXx1) ⟨x1|

|+⟩ • exp(iθXx2) ⟨x2|
= ...

|+⟩ • exp(iθXxm) ⟨xm|

|ψ⟩

|+⟩ • A†
θ

⟨x1|

|+⟩ • A†
θ

⟨x2|

= ...

|+⟩ • A†
θ

⟨xm|

|ψ⟩

Figure 5.6: Diagrammatic proof of Lemma 7. |ψ⟩ is an arbitrary single qubit state. The
equivalence between lines is explained in the proof of the lemma.
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Definition 22. The Frobenius norm of a matrix M , denoted ∥M∥F , is defined by

∥M∥F =
√

tr[M∗M ] (5.56)

Definition 23. The infinity (or operator) norm of a matrix M, denoted ∥M∥∞, is defined
by

∥M∥∞ = max
|ψ⟩:∥|ψ⟩∥=1

∥M |ψ⟩∥, (5.57)

where ∥|ψ⟩∥ denotes the regular Euclidean norm of any vector |ψ⟩.

The proofs of the following Facts can be found in Appendix A.

Fact 2. For any matrix M , the Frobenius norm upper bounds the operator norm

∥M∥∞ ≤ ∥M∥F . (5.58)

Fact 3. Given matrices A1, A2, ...As and B1, B2, ..., Bs with

∥Ai −Bi∥∞ ≤ ϵ, (5.59)

∥Ai∥ ≤ 1 (5.60)

for all i ∈ [s], and

sϵ < 1, (5.61)

we also have
∥∥∥∥∥∥
⊗

i∈[s]
Ai −

⊗

i∈[s]
Bi

∥∥∥∥∥∥
∞

≤ 2sϵ. (5.62)

Fact 4. Given two states |ρ⟩ and |σ⟩, let p(x) and q(x) denote the resulting classical distri-
butions when |ρ⟩ and |σ⟩ are measured in some basis {|x⟩}. Then we have

∑

x

|p(x)− q(x)| ≤ 4∥|ρ⟩ − |σ⟩∥ (5.63)

Next, we recall the definition of the matrix Am,θ in terms of its action on computational
basis states.

Am,θ |x1x2...xm⟩ := exp(iθXxm) |x1⟩ ⊗ exp(iθXx1) |x2⟩ ⊗ ...⊗ exp(iθXxm−1) |xm⟩ . (5.64)

The matrix Am,θ would be a unitary matrix if and only if it mapped computational basis
states to some set of orthonormal basis states.2 The following lemma shows that this condi-
tion is close to being satisfied. In what follows, for any bitstring x = x1x2...xm ∈ {0, 1}m we
let x denote the bitwise complement of x. We also interpret all subscripts in the remainder
of this section mod m so, in particular, x0 = xm.

2More generally it is unitary if and only if it maps any set of orthonormal basis states to some other
orthonormal basis.
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Lemma 8. For any θ ∈ R,m ∈ Z+ and x = x1x2...xm ∈ {0, 1}m the matrix Aθ,m satisfies
the following properties:

1. ⟨x|A†θ,mAθ,m|x⟩ = 1.

2. ⟨x|A†θ,mAθ,m|x⟩ = −im+2|x| sinm(θ).

3. ⟨y|A†θ,mAθ,m|x⟩ = 0 for any y ∈ {0, 1}m\{x, x}.

Proof. The proof of Items 1 and 2 are purely computational. For any x = x1x2...xm ∈ {0, 1}m
we have

⟨x|A†m,θAm,θ |x⟩ =
∏

j∈[m]

⟨xj| exp(−iθxj−1) exp(iθxj−1) |xj⟩ (5.65)

=
∏

j∈[m]

⟨xj|xj⟩ = 1, (5.66)

proving Item 1. A similar calculation gives

⟨x|A†m,θAm,θ|x⟩ =
∏

j∈[m]

⟨xj|exp(−iθXxj) exp(iθXxj)|xj⟩ (5.67)

=
∏

j∈[m]

⟨xj|exp
(
i1+2xjθX

)
|xj⟩ (5.68)

=
∏

j∈[m]

⟨xj|cos(θ) + i1+2xj sin(θ)X|xj⟩ (5.69)

=
∏

j∈[m]

i1+2xj sin(θ) (5.70)

= im+2|x| sinm(θ) (5.71)

= −im+2|x| sinm(θ), (5.72)

where we used that X |xj⟩ = |xj⟩ by definition of the compliment on the fourth line and that
|x|+ |x| = m for any x in the final line. This proves Item 2.

To prove Item 3 note that for any m bit strings x and y with x /∈ {y, y} there exists a
k ∈ [m] with xk−1 = yk−1 and xk ̸= yk. Fixing k to be that value we find:

⟨y|A†m,θAm,θ|x⟩ =
m∏

j=1

⟨xj|exp(−iθXyj−1) exp(iθXxj−1)|yj⟩ (5.73)

= ⟨yk|exp(iθX(xk − yk))|xk⟩ ×
∏

j∈[m]\{k}
⟨yj|exp(iθX(xj−1 − yj−1))|xj⟩

(5.74)

= ⟨yk|xk⟩ ×
∏

j∈[m]\{k}
⟨yj|exp(iθX(xj−1 − yj−1))|xj⟩ (5.75)

= 0 (5.76)

since yk ̸= xk by definition. This completes the proof of Item 3.
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We show that, as a consequence of Lemma 8, there exists anm qubit unitary matrix which
is close (in Frobenius norm) to the non-unitary matrix Aθ,m. We construct this unitary by
applying Gram-Schmidt orthonormalization applied to the state’s output by Am,θ acting on
computational basis states.

Lemma 9. For any m, there exists unitary matrices Um,θ satisfying

∥Am,θ − Um,θ∥F ∈ O
(
θ−m

)
(5.77)

as θ → 0.

Proof. We will define Um,θ by its action on computational basis states. First, fix Bm to be
any set containing half the bit strings of length m with the property that for any x ∈ {0, 1}m
either x ∈ Bm or x ∈ Bm. (That is, Bm contains one representative element from the
equivalence classes of the set {0, 1}m induced by the equivalence relation x ∼ y if x = y or
x = y). Then define:

Um,θ |x⟩ :=
{
Am,θ |x⟩ if x ∈ Bm

C−1
(
Am,θ |x⟩+ im+2|x| sinm(θ)Am,θ |x⟩

)
otherwise.

(5.78)

with C :=
√
1− sin2m(θ) a normalizing constant. Observe that, by Item 2 of Lemma 8, for

x /∈ Bm we can also write

Um,θ |x⟩ = C−1
(
Am,θ |x⟩ − ⟨x|A†m,θAm,θ|x⟩Am,θ |x⟩

)
(5.79)

and

C =

(
1−

∣∣∣ ⟨x|A†m,θAm,θ|x⟩
∣∣∣
2
)1/2

. (5.80)

We now prove that Um,θ is unitary. To do this, we prove Um,θ maps computational basis
states to an orthonormal basis. First note that Item 1 of Lemma 8 gives that for any x ∈ Bm:

⟨x|U †m,θUm,θ|x⟩ = ⟨x|A†m,θAm,θ|x⟩ = 1 (5.81)

while a similar calculation gives for any x /∈ Bm:

⟨x|U †m,θUm,θ|x⟩ = C−2
(
⟨x|A†m,θ − ⟨x|A†m,θAm,θ|x⟩† ⟨x|A†m,θ

)(
Am,θ |x⟩ − ⟨x|A†m,θAm,θ|x⟩Am,θ |x⟩

)

(5.82)

= C−2
(
1−

∣∣∣ ⟨x|A†m,θAm,θ|x⟩
∣∣∣
2
)

= 1. (5.83)

Where we used Equations (5.79) and (5.80) on the first and second lines, respectively. Then
we see the states {Um,θ |x⟩} for x ∈ {0, 1}m acting on computational basis states are correctly
normalized.

64



It remains to show that these states are orthogonal. First, we note that Item 3 of Lemma 8
gives that for any x, y ∈ {0, 1}m with y /∈ {x, x} we have

⟨y|A†θ,mAθ,m|x⟩ = ⟨y|A†θ,mAθ,m|x⟩ = ⟨y|A†θ,mAθ,m|x⟩ = ⟨y|A†θ,mAθ,m|x⟩ = 0 (5.84)

and then a quick proof by cases shows that ⟨y|U †θ,mUθ,m|x⟩ = 0 for any x ∈ {0, 1}m and y /∈
{x, x}. Finally, we consider the inner product ⟨x|U †θ,mUθ,m|x⟩. By definition of Bm, exactly
one of x or x is in Bm. Assume for the moment that x /∈ Bm. Then using Equation (5.79)
we have

⟨x|A†θ,mAθ,m|x⟩ = C−1
(
⟨x|A†m,θ

)(
Am,θ |x⟩ − ⟨x|A†m,θAm,θ|x⟩Am,θ |x⟩

)
(5.85)

= C−1
(
⟨x|A†m,θAm,θ|x⟩ − ⟨x|A†m,θAm,θ|x⟩ ⟨x|A†m,θAm,θ|x⟩

)
(5.86)

= C−1
(
⟨x|A†m,θAm,θ|x⟩ − ⟨x|A†m,θAm,θ|x⟩

)
= 0 (5.87)

as desired. We conclude Um,θ is unitary.

Finally, to show Um,θ is close to Am,θ we compute

∥Am,θ − Um,θ∥2F =
∑

x∈{0,1}m
|(Am,θ − Um,θ) |x⟩|2 (5.88)

=
∑

x∈Bm

∣∣(1− C−1
)
Am,θ |x⟩ − im+2|x|C−1 sinm(θ)Am,θ |x⟩

∣∣2 (5.89)

≤
∑

x∈Bm

(
1− C−1

)2
+ C−2 sin2m(θ) (5.90)

≤ 2m/2
(
sin4m(θ)

2
+

sin2m(θ)

1− sin2m(θ)

)
∈ O

(
θ2m
)

(5.91)

where the final big O approximation holds for any fixed m as θ → 0. Taking a square root
then completes the proof.

Finally, we are in a position to describe the fully unitary (X,majmodp(X) + parity(X))
sampling circuit.

Theorem 13. For n sufficiently large and p = nc for some constant c ∈ (0, 1] there is a
constant depth circuit consisting of one and two qubit unitary gates and Um′,θ′ gates with
m′ = ⌈c−1 + 1⌉ and θ′ = π/p which takes an n qubit GHZ state as input and produces an
output which, when measured in the computational basis, produces an n bit output with total
variation distance 1

2
− Ω(1) from the distribution (X,majmodp(X)⊕ parity(X)).

Proof. For convenience, we first describe the circuit when n = Dm′+1 for some constant D.
This circuit consists of a Hadamard gate applied to each qubit of the GHZ state, followed by
U †m′,θ′ gates applied to all qubits except the final qubit and an exp(−iπX/4) rotation applied
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to the final qubit. Figure 5.7 illustrates this circuit. Note the quantum state produced by
this circuit pre-measurement is

((
U †θ′,m′

)⊗D
⊗ exp(−iπX/4)

)
H⊗n |ψ⟩ . (5.92)

To prove this circuit samples from the correct distribution first note that Lemma 9 and
Fact 2 give that

∥∥Uπ/p,m − Aπ/p,m
∥∥
∞ ∈ O(θ

′m) = O(n−mc) ≤ O(n−(1+c)) (5.93)

Them, Fact 3 gives that
∥∥∥∥
((

U †θ′,m′

)⊗D
⊗ exp(−iπX/4)

)
H⊗n −

((
A†π/p,m

)⊗D
⊗ exp(−iπX/4)

)
H⊗n

∥∥∥∥
∞
∈ O(Dn−(1+c))

(5.94)

≤ O(n−c).
(5.95)

Combining this observation with Fact 4 and the definition of the operator norm ∥∥∞ gives
that the classical distributions resulting from computation basis measurements of the states

((
U †θ′,m′

)⊗D
⊗ exp(−iπX/4)

)
H⊗n |ψ⟩ . (5.96)

and
((

A†π/p,m

)⊗D
⊗ exp(−iπX/4)

)
H⊗n |ψ⟩ (5.97)

are O(n−c) in total variation distance away from each other. Then Corollary 3 completes
the proof.

5.2 Classical Hardness of sampling (X,majmodp(X) ⊕
parity(X))

In this section we prove the classical hardness of sampling from (X,majmodp(X)⊕parity(X))
for each prime number p, where X is sampled from the uniform distribution over {0, 1}n.
Recall that the total variation distance distributions D1, D2 over {0, 1}m is

∆(D1, D2) := max
T⊆{0,1}m

∣∣∣∣Pr[D1 ∈ T ]− Pr[D2 ∈ T ]
∣∣∣∣ (5.98)

By the definition of ∆, each set T ⊆ {0, 1}m, witnesses a lower bound on ∆(D1, D2) of∣∣Pr[D1 ∈ T ]−Pr[D2 ∈ T ]
∣∣. To prove a lower bound on ∆(D1, D2), we construct a particular
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
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

|GHZn⟩

Figure 5.7: Constant depth fully unitary circuit producing approximate samples from the
distribution (majmodp(X) + parity(X), X). Here p = nc for some constant c ∈ (0, 1],
θ′ = π/p, m′ = ⌈c−1 + 1⌉ and n = Dm′ + 1 for some large integer D.

T ∈ {0, 1}m and refer to it as our statistical test, and we say that Di “passes” the statistical
test with probability Pr[Di ∈ T ].

We are interested in the total variation distance between the true distribution D =
(X,majmodp(X) ⊕ parity(X)), and the output distribution of some local function f :
{0, 1}ℓ → {0, 1}n+1 that takes a uniformly random ℓ-bit string U as input. That is, we
aim to lower-bound ∆(f(U), D).

Theorem 14. For all δ < 1 there exists an ϵ > 0 such that for all sufficiently large n and
prime number p = Θ(nα) for α ∈ (δ/3, 1/3): Let f : {0, 1}ℓ → {0, 1}n+1 be an ϵ log(n)-local
function, with ℓ ≤ n+nδ. Then ∆(f(U), (X,majmodp(X)⊕parity(X))) ≥ 1/2−O(1/ log n)

Proof. This proof follows closely to the analogous proof for (X,majmodp(X)) in [Vio12],
with similar notation. Let d be the locality of f , d = ϵ log(n). We start by permuting the
outputs, as shown in [Vio12]. Note that ◦ denotes concatenation.
Lemma 10 ([Vio12]). There exists a partition of the input u ∈ {0, 1}ℓ into u = (x, y), and
permutation of the output bits such that

f(x, y) = g1(x1, y) ◦ g2(x1, y) ◦ · · · ◦ gs(xs, y) ◦ h(y).

With gi : {0, 1} × {0, 1}ℓ−s → {0, 1}|Bi|, |Bi| ≤ O(d) and s ≥ Ω(n/d2).

We will refer to each gi(xi, y) as the ith block of the output, for i ∈ [s]. Note that if we
fix y, each block is independent, and block i ∈ [s] only depends on xi. We say that gi is
y-fixed for some y ∈ {0, 1}ℓ−s if gi(0, y) = gi(1, y).
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Without loss of generality, and for simplicity of notation, let’s assume that the last output
bit does not get permuted, so f(x, y)n+1 still corresponds to majmodp⊕ parity of the first n
outputs, and that it only depends on y. Next we define our statistical test.

Statistical Test: Let N0 := 3n3α, NF := 2n3α, we define our statistical test as T :=
T0 ∪ TF ∪ TS, with

T0 := {z ∈ {0, 1}n+1 : gi(xi, y) = 0|Bi|for ≤ N0 blocks i ∈ [s]}
TF := {z ∈ {0, 1}n+1 : ∃(x, y) : f(x, y) = z and ≥ NF blocks gi(xi, y) are y-fixed}
TS := {(z′, b) ∈ {0, 1}n × {0, 1} : b ̸= majmodp(z

′)⊕ parity(z′)} (“incorrect strings”)

We will show that f(U) passes the statistical test (f(U) ∈ T ) with probability at least
1/2 − O(1/ log n) and (X,majmodp(X) ⊕ parity(X)) passes with probability at most 1/n.
To this end, the following Fact and Corollary will be useful.

Fact 5 (Fact 3.2 in [Vio12]). Let a1, a2, . . . at be integers modulo p, and let (x1, x2, . . . , xt) ∈
{0, 1}n be sampled uniformly. Then the total variation distance between

∑t
i=1 aixi mod p

and Up, the uniform distribution over {0, 1, . . . , p− 1} is at most
√
pe−t/p

2

Corollary 4. For t = Θ(p3) = Θ(n3α), a0, a1, . . . at integers modulo p, and A ⊆ {0, 1, . . . , p−1}

|A|
p
−O(1/n) ≤ Pr

x∈{0,1}t

[
a0 +

t∑

i=1

aixi ∈ A
]
≤ |A|

p
+O(1/n)

Proof. It is sufficient to prove that ∆(Up, a0+
∑t

i=1 aixi) ≤ O(1/n), by the definition of total
variation distance.

∆(Up, a0 +
t∑

i=1

aixi) ≤
√
pe−t/p

2

=
√
pe−Θ(p) = Θ(nα/2)e−Θ(nα/2) ≤ O(1/n).

Claim 12. Pr[f(U) ∈ T ] ≥ 1/2−O(1/ log n)

Proof of Claim 12. We will show that for each y, Prx[f(x, y) ∈ T ] ≥ 1/2− 1/n. Suppose we
fix y arbitrarily.

If y fixes at least NF , blocks gi(xi, y), then Prx[f(x, y) ∈ TF ] = 1. Moreover, if there are
≤ N0 blocks gi such that gi(xi, y) = 0|Bi| for some xi ∈ {0, 1}, then for each x, there will also
be ≤ N0 blocks with gi(xi, y) = 0|Bi|, so Prx[f(x, y) ∈ T0] = 1.

Therefore, we assume that there are < NF blocks gi that are y-fixed, and > N0 blocks
with gi(xi, y) = 0|Bi| for some x ∈ {0, 1}s. Thus, there are more than N0 −NF = n3α blocks
gi such that for some xi ∈ {0, 1}, gi(xi, y) = 0|Bi| and gi(1−xi, y) ̸= 0|Bi|. Let J ⊆ [s] denote
this subset of blocks, with |J | ≥ n3α.

We arbitrarily fix the xi for i ∈ [s] \ J . Now, the total hamming weight of the first n
bits of f(x, y) (denoted as |f(x, y)1:n|) only depends on the xi for i ∈ J . We will show over
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uniformly random choice of {xi}i∈J , that |f(x, y)1:n| is close to the uniform distribution of
integers mod p.

Let Si denote the hamming weight of the ith block for each i ∈ [s]. Note that for each
i ∈ J , Si = 0 with probability 1/2, and Si is some positive integer modulo p, with probability
1/2, since |Bi| ≤ O(d) = O(ϵ log n) < p. Moreover, for each i ∈ [s]\J , Si is fixed. Therefore,

|f(x, y)1:n| = a+
∑

j∈J
|gi(xi, y)| = a+

∑

i∈J
Si

for some positive integer a that does not depend on {xi}i∈J .
Since the last bit b := f(x, y)n+1 is fixed, the correctness of the output is determined by

the majmodp and parity of f(x, y)1:n. We will slightly abuse our notation and also define
majmodp and parity as functions over integers, so

majmodp(j) =

{
0 if j ∈ {0, 1, . . . , (p− 1)/2} mod p

1 if j ∈ {(p+ 1)/2, . . . , p− 1} mod p
, parity(j) = j mod 2, for j ∈ Z.

Thus, we have that f(x, y) ∈ TS ⇐⇒ majmodp(a +
∑

i∈J Si) ⊕ parity(a +
∑

i∈J Si) ̸= b.

Note that we can write a+
∑

i∈J Si = a+
∑

i≤|J | airi for some uniformly random r ∈ {0, 1}|J |,
and for each ai a fixed positive integer mod p. Therefore,

Pr
xJ
[f(x, y) ∈ TS] = Pr

r∈{0,1}|J|
[majmodp(a+

|J |∑

i=1

airi)⊕ parity(a+

|J |∑

i=1

airi) ̸= b] (5.99)

Let’s consider the case that at least 1/2 of the ai for i ∈ J are even. Then we fix all xi
such that ai is odd, and we let Je = {i ∈ J : ai even}. Note that now the parity is fixed to
c := parity(a+

∑
i∈J\Je aixi). Let a

′
i = aJe

i
for each i ∈ {1, 2, . . . , |Je|}.

Pr
xJe

[f(x, y) ∈ TS] = Pr
r∈{0,1}|Je|

[majmodp(a
′ +

∑

i≤|Je|
a′iri)⊕ c ̸= b]

= Pr


a′ +

∑

i≤|Je|
a′iri ∈Mc⊕b




Where M0 = {0, 1, . . . , (p − 1)/2} and M1 = {(p + 1)/2, . . . , p − 2, p − 1}. Since |M0| =
(p+ 1)/2, |M1| = (p− 1)/2, and using Corollary 4 with t = |Je| = Θ(n3α), it follows that

Pr
xJe

[f(x, y) ∈ TS] ≥ (p− 1)/2p−O(1/n) = 1/2−O(1/ log(n))

All that’s left is to consider the case where more than half of the ai for i ∈ J are odd. In this
case we will fix xi for each i ∈ J with ai even, setting a

′ := a +
∑

i∈Je aixi. We denote the
set of such “odd” elements of J as Jo = {i ∈ J : ai odd}, and we let t = |Jo| = Θ(n3α) and
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set a′i = aJo
i
for each i ∈ [t]. Note that since each a′i is odd, we have parity(a

′ +
∑

i≤t a
′
iri) =

a′ ⊕ (parity(r, . . . , rt)).

Pr
xJo

[f(x, y) ∈ TS] = Pr
r∈{0,1}t

[
majmodp

(
a′+

∑

i≤t
a′iri

)
⊕ parity(r) ̸= b⊕ a′

]

=
1

2
Pr
r

[
majmodp

(
a′+

∑

i≤t
a′iri

)
̸= b⊕ a′

∣∣∣∣parity(r) = 0

]

+
1

2
Pr
r

[
majmodp

(
a′ +

∑

i≤t
a′iri

)
= b⊕ a′

∣∣∣∣parity(r) = 1

]

Sampling a uniformly random t bit string z1z2 . . . zt with even hamming weight is equivalent
to sampling a random t − 1 bit and setting the last bit to zt = parity(z1, . . . , zt−1). So the
equation above is equal to

=
1

2
Pr

r1,...rt−1

[
majmodp

(
a′+

∑

i≤t−1
a′iri + a′t · parity(r1, . . . , rt−1)

)
̸= b⊕ a′

]

+
1

2
Pr

r1,...rt−1

[
majmodp

(
a′ +

∑

i≤t−1
a′iri + a′t · parity(1, r1, . . . , rt−1)

)
= b⊕ a′

]
.

For any positive integers z1, z2, s, t such that s < t and t − s − z2 ≥ 0, if Z2 is a positive
random variable such that Z2 ≤ z2, then Pr[z1 + Z2 ∈ [s, t]] ≥ Pr[z1 ∈ [s, t− z2]]. Therefore,
with all addition done modulo p, we lower bound the above expression as

≥1

2
Pr

[
a′ +

∑

i≤t−1
a′iri ∈ [0, p/2− at)

]
+

1

2
Pr

[
a′ +

∑

i≤t−1
a′iri ∈ (p/2, p− 1− at]

]

≥ 1

2p
((p+ 1)/2− at + (p− 1)/2− at)−O(1/n)

=
1

2
− at

2p
−O(1/n)

=
1

2
− O(log n)

2nα
−O(1/n) ≥ 1

2
−O(1/ log n).

Where we used Corollary 4, and that at ≤ |Bt| ≤ O(ϵ log n) and p = Θ(nα).

In conclusion, we’ve showed that after arbitrarily fixing y, Prx[f(x, y) ∈ T ] ≥ 1
2
−

O(1/ log n). Therefore, Prx,y[f(x, y) ∈ T ] ≥ 1
2
−O(1/ log n), as desired.

Claim 13. Pr
[
(X,majmodp(X)⊕ parity(X)) ∈ T

]
≤ O(1/n)

Proof. This proof follows that of Claim 3.3 in [Vio12]. Let D := (X,majmodp(X) ⊕
parity(X)). By the union bound Pr[D ∈ T ] ≤ Pr[D ∈ T0]+Pr[D ∈ TF ]+Pr[D ∈ TS]. Clearly
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Pr[D ∈ TS] = 0, since TS is the set of invalid strings. Therefore, it is sufficient for us to show
that Pr[D ∈ TF ],Pr[D ∈ T0] ≤ 1

2n
.

Pr[D ∈ TF ] = |TF |/2n, so it is sufficient to upper bound |TF |. Recall that z ∈ TF if
z = f(x, y) for some x, y such that at least NF blocks are y-fixed. Thus, each z ∈ TF is
characterized by y, and the bits of x that do not belong to fixed blocks. That is, we need at
most ℓ−NF bits to characterize z. Since ℓ ≤ n = nδ and NF = 2n3α,

|TF | ≤ 2n+n
δ−2n3α

≤ 2n−n
3α

since δ < 3α. So

Pr[D ∈ TF ] ≤ 2−n
3α ≤ 1

2n
.

All that’s left is to bound Pr[D ∈ T0], the probability that at most N0 = 3n3α blocks i are all
zero, DBi

= 0|Bi|. Since the first n bits of D are independently random, the probability that
the block DBi

is all zero is independent of other blocks DBj
for i ̸= j ∈ [s]. The probability

that block i ∈ [s] is all zero is

Pr
[
DBi

= 0|Bi|] = (1/2)|Bi| ≥ (1/2)O(d) = (1/2)O(ϵ logn) =

(
1

n

)O(ϵ)

.

Now, the probability that at most N0 = 3n3α are fixed is

Pr[D ∈ T0] = Pr



⋃

T⊆[s]:
|T |=N0

{DBi
̸= 0|Bi| for each i ∈ [s] \ T}




≤
(
s

N0

)(
1− 1

nO(ϵ)

)s−N0

≤
(
s

N0

)
e
− s−N0

nO(ϵ)

Since s ≥ Ω(n/d2) = Ω( n
ϵ2 log2 n

), s ≤ n and N0 = 3n3α,

≤
(

n

3n3α

)
e
−n−O(ϵ)( n

ϵ2 log2 n
−3n3α)

≤
( n

3n3α

)3n3α

e−n
1−O(ϵ)/ log2 ne3n

3α

≤ n3n3α

e−n
1−O(ϵ)/ log2 n

≤ 1

2n

For sufficiently large n and small ϵ. In conclusion, Pr[D ∈ T ] ≤ 1
n
, as desired.
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Appendix A

Ommitted Proofs

Lemma 11. If the function f : {0, 1}m → {0, 1}n is ℓ-local, it can be implemented by a
classical circuit with fan-in 2, depth O(ℓ) and size (nℓ2ℓ).

Proof. Consider the function fi : {0, 1}ℓ → {0, 1} for each output bit i ∈ [n]. It is sufficient
to prove that each of these can be implemented with fan-in 2, depth O(ℓ) and size O(ℓ2ℓ).

For each i ∈ [n], let Si ⊆ {0, 1}ℓ be the set of all 1-strings for fi.

Si := {z ∈ {0, 1}ℓ : fi(z) = 1} (A.1)

Now evaluating fi(z) for some z ∈ {0, 1}ℓ is equivalent to determining if z is in Si. Consider
some i ∈ [n]. For each s ∈ Si, let cs : {0, 1}ℓ → {0, 1} be a function which checks if s = z.

cs(z) :=

{
1 if s = z

0 if s ̸= z
for each s ∈ Si, z ∈ {0, 1}ℓ (A.2)

We can implement cs(z) by checking in parallel that each bit matches, then taking an AND.

cs(z) =
∧

i∈[ℓ]
(zi = si) (A.3)

This AND of ℓ variables can be implemented with fan-in 2, depth log ℓ, and size O(ℓ). Now,
to implement fi(z), we check if any of the cs(z) are 1

fi(z) =
∨

s∈Si

cs(z) (A.4)

Since |Si| ≤ 2ℓ, we can implement all of the cs in parallel with fan-in 2, depth log ℓ and total
size O(ℓ2ℓ). Then, the OR of each of these O(2ℓ) bits can be implemented with fan-in 2 and
depth ℓ, and size O(ℓ). Therefore, fi can be implemented with fan-in 2, depth O(ℓ), and size
O(ℓ2ℓ) for each i ∈ [n].
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Fact 2. For any matrix M , the Frobenius norm upper bounds the operator norm

∥M∥∞ ≤ ∥M∥F . (58)

Proof. For an arbitrary matrix M , let λ1, ..., λd denote the eigenvalues of M∗M , with λ1 ≥
λ2 ≥ ...λd. Note all λi are positive. Then we have

∥M∥2∞ = λ1 ≤
d∑

i=1

λi = ∥M∥2F (5)

as desired.

Fact 3. Given matrices A1, A2, ...As and B1, B2, ..., Bs with

∥Ai −Bi∥∞ ≤ ϵ, (59)

∥Ai∥ ≤ 1 (60)

for all i ∈ [s], and

sϵ < 1, (61)

we also have
∥∥∥∥∥∥
⊗

i∈[s]
Ai −

⊗

i∈[s]
Bi

∥∥∥∥∥∥
∞

≤ 2sϵ. (62)

Proof. First note that ∥M∥∞ is equal to the largest singular value of the matrix M , from
which it follows that

∥M ⊗N∥∞ = ∥M∥∞∥N∥∞ (6)

for any matrices M and N . Then an inductive argument gives

∥∥∥∥∥
s⊗

i=1

Ai −
s⊗

i=1

Ai

∥∥∥∥∥
∞

=

∥∥∥∥∥
⊗

i=1s

Ai −B1

s⊗

i=2

Ai +B1

s⊗

i=2

Ai −
s⊗

i=1

Bi

∥∥∥∥∥
∞

(7)

≤
∥∥∥∥∥(A1 −B1)

s⊗

i=2

Ai

∥∥∥∥∥+
∥∥∥∥∥B1 ⊗

(
s⊗

i=2

Ai −
s⊗

i=2

Bi

)∥∥∥∥∥ (8)

≤ ϵ+ (1 + ϵ)

∥∥∥∥∥
s⊗

i=2

Ai −
s⊗

i=2

Bi

∥∥∥∥∥ (9)

= ϵ+ (1 + ϵ)(2ϵ(s− 1)) ≤ 2sϵ (10)

as desired.
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Fact 4. Given two states |ρ⟩ and |σ⟩, let p(x) and q(x) denote the resulting classical distri-
butions when |ρ⟩ and |σ⟩ are measured in some basis {|x⟩}. Then we have

∑

x

|p(x)− q(x)| ≤ 4∥|ρ⟩ − |σ⟩∥ (63)

Proof. First, we note that for any two states |ρ⟩ and |σ⟩ and PSD matrix M ≤ I we have

2∥|ρ⟩ − |σ⟩∥ ≥ 2∥M(|ρ⟩ − |σ⟩)∥ (11)

≥ 2 (∥M |ρ⟩∥ − ∥M |σ⟩∥) (12)

≥ (∥M |ρ⟩∥ − ∥M |σ⟩∥) (∥M |ρ⟩∥+ ∥M |σ⟩∥) (13)

= ∥M |ρ⟩∥2 − ∥M |σ⟩∥2 (14)

Then defining probability distributions p(x) and q(x) and the basis {|x⟩} as above, let

Px := {x : p(x) ≥ q(x)} (15)

and

Mx =
∑

x∈Px

|x⟩⟨x| . (16)

Then note

∥Mx |ρ⟩∥2 − ∥Mx |σ⟩∥2 =
∑

x∈Px

|⟨x|ρ⟩|2 − |⟨x|σ⟩|2 (17)

=
∑

x∈Px

(p(x)− q(x)) (18)

=
1

2

∑

x

|p(x)− q(x)| (19)

with the final inequality holding because both p(x) and q(x) must sum to one. Combining
the two inequalities above proves the result.
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