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Abstract

Modeling the critical points of a Gaussian random field is an important challenge in stochas-
tic geometry. In this thesis, we focus on stationary Gaussian random fields and study the
locations and types of the critical points over high thresholds. Under certain conditions,
we show that when the threshold tends to infinity and the searching area expands with a
matching speed, both the locations of the local maxima and the locations of all the critical
points above the threshold converge weakly to a Poisson point process. We then discuss
the local behavior of the critical points by looking at the type of a critical point given there
is another critical point close to it. We show if two critical points above u are very close
one to each other, then they are most likely to be one local maximum and one saddle point
with index N − 1. We will further discuss the modeling of the critical points when the
threshold is high but not very high. The proposed model has a hierarchical structure that
can capture the positions of the global maxima and other critical points simultaneously.
The performance of the proposed model is evaluated by the comparisons between the L
functions.
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Chapter 1

Introduction

This thesis deals with the critical points and the excursion sets of stationary Gaussian
random fields. Gaussian random fields, defined by the multivariate normality on any
finite subset of some region S ⊂ RN , play an important role in the modeling in various
areas such as astronomy ([6], [40]), biomedical imaging ([42], [19]), geography ([38], [5],
[7]), etc. The topological information hidden in the high-dimensional parameter space of
the Gaussian random field is considered from both Bayesian and frequentist perspectives.
Especially, researchers are interested in the topological structure of the domain where the
underlying Gaussian random field is above a predetermined threshold. This domain is
called an excursion set (see Figure 1). More specifically, let {X(t), t ∈ RN} (N ≥ 1) be a
Gaussian random field indexed by RN . For any u ∈ R and S ⊂ RN , the excursion set of
X with threshold u and search region S is defined by

Au(X,S) := {t ∈ S : X(t) > u}.

For a sample function f of X possessing up to second order partial derivatives, its
gradient and Hessian matrix are denoted by ▽f and ▽2f , respectively. A point t ∈ RN is
said to be (the position of) a critical point of f if

▽f(t) = 0.

If it further satisfies

det (▽2f(t)) ̸= 0 and index
(
▽2f(t)

)
= k,

where 0 ≤ k ≤ N and index (·) stands for the number of negative eigenvalues of a square
matrix, then t is said to be a non-degenerate critical point of f with index (or type) k.
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(a) u=0 (b) u=1 (c) u=1.5

(d) u=2 (e) u=2.5 (f) u=3

Figure 1.1: Excursion sets of a Gaussian random field indexed by R3. The Gaussian random
field is centered with covariance function E[X(t)X(s)] = e−∥t−s∥23 , where ∥ · ∥3 denotes the
3-dimensional Euclidean norm. The colored part is the excursion set in the search region
[0, 1]3 above the threshold u, where a warmer color stands for a higher value.

For each connected component of Au(f,RN), by Morse theory ([26]), its topology can be
characterized by the number and types of the non-degenerate critical points it contains.
Therefore, studying the distribution of non-degenerate critical points above u can be very
useful for understanding the excursion set.

In general, we study the distribution of the critical points of a stationary Gaussian
random field above a threshold from two aspects. The first aspect is to study the Poisson
limit of the critical points as the threshold tends to infinity. When the threshold is very
high, this result can provide a model for the critical points in the excursion set. However,
this model cannot capture the local structure of the Gaussian random field near a high
critical point. When the threshold is high but not very high, capturing such local structure
plays an important role in modeling the critical points. Therefore, a correction is needed
for this model. Thus, the second aspect is to study the interactions between high critical
points to provide a theoretical basis for such a correction. In particular, for two high critical
points, we will see the effect of their indices on the interaction between them. From the
above two aspects, we propose a model for the critical points when the threshold is high

2



but not very high.

The remainder of the thesis is organized as follows.

In Chapter 2, we introduce three important mathematical tools used in this thesis:
Gaussian random fields, Point processes and Morse theory. In particular, we introduce
the “metatheorem” ([4]), which is a generalization of Rice’s formula ([33]), allowing us to
derive an integral expression for the expected number of the critical points in an excursion
set with a given index when N ≥ 1. This result has profound implications for many
subsequent studies and also plays an important role in this thesis.

In Chapter 3, we study the Poisson limits of the critical points of a stationary Gaussian
random field in the excursion set as the threshold tends to infinity. If a critical point has
full index, we call it a local maximum of X. If it is also the position of the global maximum
of X in the connected component containing it, we call it a global maximum. Then we
can construct three point processes using only the global maxima above the threshold,
only the local maxima above the threshold, and all the critical points above the threshold,
respectively. As u increases, the search region is expanded to keep the mean number of
the local maxima at a constant level. We will then show that as u → ∞, these point
processes will all converge weakly to the same stationary Poisson point process. This
generalization is mentioned in [1], but never formally proved. We further prove that the
number of connected components of the excursion set will converge weakly to a Poisson
random variable as u → ∞.

In Chapter 4, we explore the interactions between the critical points above a high
threshold for an isotropic Gaussian random field. This is achieved by studying the local
behavior of the underlying random field in the vicinity of the origin, provided that a
critical point above the threshold is located at the origin. We get the densities of the
mean measures of the critical points with different indices. We then use these densities to
construct two ratios and study their limiting behaviors. Combining our results for the two
ratios, we find an important relationship between different types of critical points: a pair
of very close critical points above a high threshold must consist of one local maximum and
one critical point with index N − 1.

In Chapter 5, with the help of our previous results, we propose a model for the critical
points in the excursion set when the threshold is high but not very high. In order to capture
the global maxima and other critical points simultaneously, the model has a hierarchical
structure which represents three components of the interactions under study. We evaluate
its performance empirically on two isotropic Gaussian random fields with different covari-
ance structures by checking their L functions, where the stationary Poisson point process
model serves as a benchmark.

3



Chapter 2

Preliminaries

This chapter consists of three parts: Gaussian random fields, point processes and a brief
introduction to Morse theory. For Gaussian random fields, we will mainly focus on two
types of continuity and differentiability, and the metatheorem. For point processes, we will
formally define Poisson point processes and the weak convergence of point processes. A
sufficient condition for the existence of the weak limit of a series of point processes will
also be given. Finally, we will define Morse functions and introduce Morse inequalities on
an excursion set.

Since we are working on Gaussian random fields indexed by RN (N ≥ 1), the following
notations will be used throughout this chapter. Let (Ω,A, P ) be the probability space on
which the random objects are defined. For any n ≥ 1, endow Rn with the usual Euclidean
norm ∥ · ∥n. We often drop the subscript n when the dimension can be easily seen from
the context. Denote by λn the n-dimensional Lebesgue measure, and by B(Rn) the Borel
σ-field on Rn. For any open or closed set T ⊂ RN , denote by Ck(T ) (k ≥ 1) the set of all
real-valued functions on T with continuous up to k-th order derivatives.

2.1 Gaussian Random Fields

2.1.1 The Definition of Gaussian Random Fields

A random field {X(t), t ∈ RN} is said to be a Gaussian random field indexed by RN if for
any non-empty finite subset {ti, 1 ≤ i ≤ n} ⊂ RN , the distribution of (X(t1), . . . , X(tn)) is

4



multivariate Gaussian. X is said to be a Gaussian random field on RN with mean function
µ(·) and covariance function r(·, ·) if for any s, t ∈ RN ,

µ(t) := E [X(t)] and r(s, t) = Cov [X(s), X(t)] .

From the above definition and Appendix A.1, we see that

1. X can be fully characterized by its behavior on the non-empty finite subsets of RN ;

2. X on any non-empty finite subset follows a multivariate Gaussian distribution;

3. Any multivariate Gaussian distribution can be fully characterized by its mean vector
and covariance matrix.

Therefore, the distribution of X can be fully characterized by its mean function µ(·) and
covariance function r(·, ·).

A Gaussian Random Field X is said to be homogeneous or stationary if its mean
function µ(·) is a constant and there exists a real-valued function ρ(t), t ∈ RN , such that

r(s, t) = ρ(s− t)

for any s, t ∈ RN . With some abuse of notations, we still use r(·) instead of ρ(·) to denote
the covariance function, i.e., in stationary cases,

r(s− t) = Cov [X(s), X(t)] .

If it is also true that r(s, t) is a function of the Euclidean distance ∥s − t∥ only, then X
is also called isotropic. As we mentioned before, without loss of generality, we will often
work on the centered, stationary Gaussian random fields with unit variance, i.e.,

r(0) = 1 and µ(t) = 0

for any t ∈ RN . In this case, it is easy to see that |r(t)| ≤ 1 for any t ∈ RN . While
Cov [X(s), X(t)] is defined on RN × RN , r(s − t) is defined on RN only. In the isotropic
case, we shall go even further, and write Cov [X(s), X(t)] = r(∥s− t∥), where r(∥s− t∥)
is defined on [0,∞).

5



2.1.2 Almost Sure Continuity and Differentiability

Given a compact subset T ⊂ RN , a random field X is said to be almost surely continuous
on T if it has a continuous sample function on T with probability one, i.e.,

P

[
lim

s∈T,∥t−s∥→0
|X(t)−X(s)| = 0,∀t ∈ T

]
= 1.

Suppose that X is a centered, stationary Gaussian random field with unit variance and
covariance function r(·). For any given compact subset T ⊂ RN , define

pT (u) :=
√

max
s,t∈T,∥t−s∥≤u

(1− r(t− s)).

[4] introduced a sufficient condition for the almost sure continuity of X(t) as follows.

Lemma 2.1.1. (Theorem 1.4.1, [4]) If for some δ > 0, either∫ δ

0

(− log(u))
1
2dpT (u) < ∞ or

∫ ∞

δ

pT

(
e−u2

)
du < ∞, (2.1)

then the Gaussian random field X has an almost surely continuous modification on T . A
sufficient condition which makes (2.1) hold is that for some 0 < γ < ∞, α, β > 0 and any
s, t ∈ RN with 0 < ∥t− s∥ < β,

E
[
(X(t)−X(s))2

]
≤ γ |log(∥t− s∥)|−(1+α) . (2.2)

Note that the sufficient condition (2.2) only depends on the covariance function of X.
This is an advantage for studying centered Gaussian random fields: all of their properties
only depend on the covariance structure. Also note that this condition is actually inde-
pendent from the choice of T . We will say X is almost surely continuous on RN if it is
almost surely continuous on any compact subset T ⊂ RN . In Example A.2.1, we show that
a centered Gaussian random field with covariance function r(t) = e−∥t∥2 , t ∈ RN satisfies
all the conditions in Lemma 2.1.1.

A random field X is said to be almost surely k times continuously differentiable on an
open subset T ⊂ RN if its sample function has up to k-th order continuous derivatives in
T with probability one, i.e.,

P
[
X ∈ Ck(T )

]
= 1.

At each point t ∈ T , these derivatives are called almost sure derivatives of X at t since they
exist as almost sure limits. Similarly, X is said to be almost surely k times continuously
differentiable on a subset A ⊂ RN if it is almost surely k times continuously differentiable
on an open set containing A. In the next subsection, we will also introduce a sufficient
condition for almost sure differentiability.
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2.1.3 Mean Square Continuity and Differentiability

Another mode of continuity, which is more popular in the theory of random fields is the
continuity in mean square. Given a point t ∈ RN , a random field X is said to be continuous
at t in mean square if for any sequence {tn, n ≥ 1} in RN which satisfies limn→∞ ∥t−tn∥ =
0, we have

lim
n→∞

E
[
(X(t)−X(tn))

2] = 0. (2.3)

For any A ⊂ RN , if (2.3) holds for all t ∈ A, then the random field X is said to be
continuous on A in mean square.

Compared with the almost sure continuity, an important advantage of the mean square
continuity is that it relates the continuity of a random field with the continuity of its
covariance function. This can be explained by the following lemma.

Lemma 2.1.2. (Theorem 2.2.1, [1]) A random field X is continuous in mean square at
a given point t0 ∈ RN if and only if its covariance function r(s, t) is continuous at the
point s = t = t0. Therefore, if r(s, t) is continuous on every diagonal element s = t in
RN × RN , then X is continuous in mean square on RN .

Correspondingly, we can define mean square differentiability. Here we follow the def-
inition in [4]. Choose a point t ∈ RN and k non-zero vectors t′1, . . . , t

′
k in RN . Let

t′ = (t′1, . . . , t
′
k) ∈

⊗k RN , the k-fold tensor product of RN . For any vector H =
(h1, . . . , hk) ∈ Rk, denote by t′H := (h1t

′
1, . . . , hkt

′
k). Then a random field X is said to

have the kth-order mean square (partial) derivative in the direction t′ = (t′1, . . . , t
′
k) at t if

the limit

Dt′1,...,t
′
k
X(t) := lim

h1,...,hk→0

1∏k
i=1 hi

FX,k(t, t
′
H) (2.4)

exists in the mean square sense, where

FX,k(t, t
′) =

∑
a1,...,ak∈{0,1}

(−1)k−
∑k

i=1 aiX

(
t+

k∑
i=1

ait
′
i

)
(2.5)

for any t ∈ RN and t′ ∈
⊗k RN , and the mean square limit in (2.4) is interpreted se-

quentially, i.e., first send h1 to 0, then h2, etc. Furthermore, X is said to be k times
differentiable in the mean square sense on A ⊂ RN if its kth-order mean square derivatives
exist in all directions at any point in A.
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Example 2.1.1. When k = 1, it is easy to get the mean square limit

Dt′1
X(t) = lim

h1→0

X(t+ h1t
′
1)−X(t)

h1

.

When k = 2, this is

Dt′1,t
′
2
X(t)

= lim
h1,h2→0

X(t+ h1t
′
1 + h2t

′
2)−X(t+ h1t

′
1)−X(t+ h2t

′
2) +X(t)

h1h2

= lim
h2→0

1

h2

(
lim
h1→0

X(t+ h1t
′
1 + h2t

′
2)−X(t+ h2t

′
2)

h1

− lim
h1→0

X(t+ h1t
′
1)−X(t)

h1

)
.

Note that the only difference from the almost sure first-order directional derivative in the
direction t′ is that the limit here is in the mean square sense. The cases for k > 2 are
similar.

From Example 2.1.1, we see that if the almost sure derivative and the mean square
derivative at the same order in the same direction both exist, then they will coincide
with each other almost surely. This can be easily derived from the fact that almost sure
convergence and mean square convergence of a sequence of random variables will both
result in convergence in probability, and therefore their limits are the same almost surely.
For a Gaussian random field, by Lemma A.1.1, if an almost sure derivative exists, then the
mean square derivative at the same order in the same direction also exists.

In general, for some directions t′1, t
′
2 ∈ RN , point t ∈ RN and random field X(t), the

equation
Dt′1,t

′
2
X(t) = Dt′2,t

′
1
X(t). (2.6)

does not hold. However, we can derive the commutativity as in (2.6) from the coincidence
of mean square derivatives and almost sure derivatives if almost sure differential operators
are commutable for X.

By (A.5) and (2.4), the following result is not surprising.

Lemma 2.1.3. ([4]) Let X be a centered Gaussian random field on RN . If some mean
square derivative of X exists in RN , then this mean square derivative is also a centered
Gaussian random field on RN . Moreover, let Z1(t) = X(t), and let Z2(t), . . . , Zn(t) (n ≥ 2)
be any n − 1 mean square derivatives of X at t ∈ R. Then for any t1, t2, . . . , tn ∈ RN ,
(Z1(t1), Z2(t2), . . . , Zn(tn)) is a centered Gaussian n-vector.
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The following lemma explains why the mean square derivatives are so popular in the
theory of random fields. Let ei, 1 ≤ i ≤ N be the N -vector with all zeros except for a one
at the i-th coordinate. For 1 ≤ k ≤ N and any 1 ≤ i1, . . . ik ≤ N , denote by Xi1...ik the
k-th mean square derivative of X in the direction (ei1 , . . . , eik). Let Xi1...ik = X if k = 0.

Lemma 2.1.4. (Section 5.5, [4]) Let {X(t), t ∈ RN} be a Gaussian random field with
covariance function

r(s, t) := Cov [X(s), X(t)],

where s = (s1, . . . , sN)
T and t = (t1, . . . , tN)

T .

(i) For any positive integers k and i1, . . . , ik ∈ {1, 2, . . . , N}, the k times mean square

derivatives Xi1...ik(t) exists if and only if the derivative ∂2kr(s,t)
∂si1 ···∂sik∂ti1 ···∂tik

exists and is

finite at the point (t, t) ∈ R2N .

(ii) For some positive integer k, suppose that the derivative ∂2kr(s,t)
∂si1 ···∂sik∂tj1 ···∂tjk

exists and is

finite for any s, t ∈ RN and i1, . . . , ik, j1, . . . , jk ∈ {1, 2, . . . , N} (by (i), this implies
all the mean square derivatives of X up to k-th order at any t ∈ RN exist). Then we
have for any 0 ≤ k1, k2 ≤ k and s, t ∈ RN ,

Cov
[
Xi1...ik1

(s), Xj1...jk2
(t)
]
=

∂k1+k2r(s, t)

∂si1 · · · ∂sik1∂tj1 · · · ∂tjk2
. (2.7)

Consider a centered, stationary random field {X(t), t ∈ RN}. The following theorem
shows that its covariance function r(t) has an integral representation. For completeness,
this theorem is stated in the framework of complex-valued random fields. Let C be the set
of complex number. For any z ∈ C, denote by z the complex conjugate of z. Then the
covariance function r of X is defined by

r(t− s) := E
[
X(s)X(t)

]
.

A well-known property of the covariance function r is its positive semi-definiteness, i.e.,
for any n ≥ 1, z1, . . . , zn ∈ C, and t1, . . . , tn ∈ RN , we have∑

1≤i,j≤n

zir(ti − tj)zj ≥ 0.

Theorem 2.1.5. (Theorem 5.4.1, [4]) For a continuous function r(t), t ∈ RN , the follow-
ing are equivalent:
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1. r is positive semi-definite;

2. there exists a finite measure ν on the Borel σ-field B(RN) such that

r(t) =

∫
RN

ei<t,x>ν(dx),

where < ·, · > denotes the inner product of two vectors.

By Theorem 2.1.5 and the bounded convergence theorem, we can further calculate (2.7)
in Lemma 2.1.4 by

Cov
[
Xi1...ik1

(s), Xj1...jk2
(t)
]
=

∂k1+k2r(t− s)

∂si1 · · · ∂sik1∂tj1 · · · ∂tjk2

=

∫
RN

∂k1+k2ei<t−s,x>

∂si1 · · · ∂sik1∂tj1 · · · ∂tjk2
ν(dx)

= (−1)k1ik1+k2

∫
RN

xi1 · · ·xik1
xj1 · · ·xjk2

ei<t−s,x>ν(dx).

Then by the symmetry of the covariance function, any odd-ordered partial derivative of
the continuous covariance function r(t) at t = 0 is zero. Immediately, in Lemma 2.1.4, we
have

Cov [X(t), Xi(t)] = ri(0) = 0 and Cov [Xi(t), Xkℓ(t)] = rikℓ(0) = 0 (2.8)

for any 1 ≤ i, k, ℓ ≤ N , which will be very useful in the following chapters.

Recall that in (2.5), we actually defined a real-valued function FX,k(t, t
′) on the space

RN ×
⊗k RN for each sample function of X. Endow the space RN ×

⊗k RN with the norm

∥(t, t′)∥N,k := ∥t∥N + ∥t′∥kN .

Denote

BN,k((t, t
′), h) :=

{
v ∈ RN ×

k⊗
RN : ∥v − (t, t′)∥N,k < h

}
and

Ak,ρ := A× {t′ : ∥t′∥kN ∈ (1− ρ, 1 + ρ)}

for any subset A ⊂ RN and ρ > 0. Now we are well prepared to introduce a sufficient
condition for the almost sure continuous differentiability by the existence of mean square
derivatives.

10



Theorem 2.1.6. (Theorem 1.4.2, [4]) Let X be a centered Gaussian random field on
any open subset A ⊂ Rn with kth-order mean square partial derivatives in all directions
everywhere inside A. If there exist constants 0 < K < ∞ and ρ, δ, h0 > 0 such that for
0 < η1, η2, h < h0,

E
[
(FX,k(t, η1t

′)− FX,k(s, η2s
′))

2
]
< K (− log (∥(t, t′)− (s, s′)∥N,k + |η1 − η2|))−(1+δ)

(2.9)
for all

{((t, t′), (s, s′)) ∈ Ak,ρ × Ak,ρ : (s, s
′) ∈ BN,k((t, t

′), h)} ,

then X has an almost surely k times continuously differentiable modification, i.e.,

P
[
X ∈ Ck(A)

]
= 1.

In Example A.2.2, we show that a centered Gaussian random field with covariance
function r(t) = e−∥t∥2 , t ∈ RN satisfies all the conditions in Theorem 2.1.6.

2.1.4 The Metatheorem

The construction of the point process we study in this thesis requires some knowledge of
the expected number of the critical points with different indices in a Gaussian excursion
set. The book [4] derived an important theorem which provides an integral expression in
a more general setting. To introduce the theorem, we need the following concepts. The
modulus of continuity ωF of a real-valued function F on (RN , ∥ · ∥) is defined as

ωF (δ) = sup
∥t−s∥<δ

|F (t)− F (s)|, δ > 0.

The diameter of a set B ⊂ RN is

diam (B) := sup {∥t− s∥ : s, t ∈ B} .

The Hausdorff dimension of a set A ⊂ RN is given by

Hdim(A) := inf

{
α : lim

ε↓0
inf
∑
i

(diamBi)
α = 0

}
,

where the infimum is taken over all collections {Bi} of open balls in RN such that
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1. A ⊂
⋃

i Bi

2. diam (Bi) < ε for any i.

For some N,K ≥ 1, let f := (f 1, . . . , fN) and g := (g1, . . . , gK) be RN - and RK-
valued random fields indexed by RN , respectively. Since we have used subscripts to denote
the derivatives of random fields, here we use superscripts to denote components of vector-
valued random fields. In this section, all the derivatives are supposed to exist in the almost
sure sense. The gradient ▽f is defined as

▽f :=
(
f i
j

)
1≤i,j≤N

,

where

f i
j :=

∂f i

∂tj

for 1 ≤ i, j ≤ N . For any u ∈ RN , we are interested in the number of points t ∈ T , written
as Nu(f , g;T,B), for which

f(t) = u and g(t) ∈ B ⊂ RK , (2.10)

where T ⊂ RN is a compact subset with λN−1(∂T ) < ∞ and B ⊂ RK is an open set whose
boundary ∂B has Hausdorff dimension K − 1.

Theorem 2.1.7. (Theorem 11.2.1, [4]) Let f , g, T and B be as in (2.10) and pt(x,x
′,y)

be the density of (f(t),▽f(t), g(t)). Suppose that the following conditions hold for some
u ∈ RN :

(1) Continuities of sample paths:

(a) All components of f , ▽f , and g are almost surely continuous and have finite
variances over T .

(b) The moduli of continuity with respect to the usual Euclidean norm for each
components of f , ▽f , and g satisfy

P [ω(δ) > ε] = o(δN) as δ ↓ 0

for any ε > 0.

(2) Continuities of densities:
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(a) For all t ∈ T , the marginal densities pt(x) of f(t) are continuous at x = u.

(b) The conditional densities pt(x|▽f(t), g(t)) of f(t) given g(t) and ▽f(t) are
uniformly bounded from above and uniformly continuous at x = u for all t ∈ T .

(c) The conditional densities pt(z|f(t) = x) of det (▽f(t)) given f(t) = x are con-
tinuous for z and x in some neighborhoods of 0 and u, respectively, uniformly
in t ∈ T .

(d) The conditional densities pt(y|f(t) = x) of g(t) given f(t) = x are continuous
for all y and for x in a neighborhood of u, uniformly in t ∈ T .

(3) The moment condition:

sup
t∈T

max
1≤i,j≤N

E
[∣∣f i

j(t)
∣∣N] < ∞

holds.

Then we have

E [Nu(f , g;T,B)] =

∫
T

∫
RK

∫
RN(N+1)/2

|det (x′)|1B(y)pt(u,x
′,y)dx′dydt,

where

1B(y) :=

{
1 if y ∈ B,

0 if y /∈ B.

Note that in Theorem 2.1.7, the set B is forced to be open. This condition can be
weakened by the following lemma.

Lemma 2.1.8. (Lemma 11.2.12, [4]) Let f , g, T and B be as in (2.10). Suppose that
conditions (1), (2a), and (2d) of Theorem 2.1.7 holds. Then, with probability one, there is
no point t ∈ T satisfying f(t)− u = 0 and g(t) ∈ ∂B.

Also note that the continuities of densities and the moment condition will be automat-
ically satisfied if f and g are both vector-valued Gaussian random fields such that the
distribution of (f(t),▽f(t), g(t)) is non-degenerate. In fact, by the condition of Theorem
2.1.7, if we let h(t), t ∈ RN be the remaining components of (▽f(t), g(t)) after removing
all the components of g(t) which are also components of ▽f(t), then we only need the
distribution of (f(t),h(t)) to be non-degenerate. Moreover, in Lemma 2.1.1, we have seen
that the continuity of sample paths of a Gaussian random field can be fully controlled
by its covariance structure. Therefore, [4] also derived the following corollary which looks
more friendly for the setting of this thesis.
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Corollary 2.1.9. (Corollary 11.2.2, [4]) Let f and g be centered Gaussian random fields
over T , as in (2.10), and let h be as described above such that for each t ∈ T , the distribu-
tions of (f(t),h(t)) are non-degenerate. Denote by Cf i

j
(s, t) the covariance function of f i

j

for 1 ≤ i, j ≤ N . Similarly, denote by Cgij
(s, t) the covariance function of gij for 1 ≤ i ≤ K

and 1 ≤ j ≤ N . Suppose

max
1≤i,j≤N

∣∣∣Cf i
j
(t, t) + Cf i

j
(s, s)− 2Cf i

j
(s, t)

∣∣∣ ≤ K| log(∥t− s∥)|−(1+α),

max
1≤i,j≤N

∣∣∣Cgij
(t, t) + Cgij

(s, s)− 2Cgij
(s, t)

∣∣∣ ≤ K| log(∥t− s∥)|−(1+α),
(2.11)

for some finite K > 0, some α > 0, and all s, t ∈ T such that ∥t − s∥ is small enough.
Then for any u ∈ RN ,

E [Nu(f , g;T,B)] =

∫
T

∫
RK

∫
RN(N+1)/2

|det (x′)|1B(y)pt(u,x
′,y)dx′dydt.

Let T ⊂ RN be a compact subset whose boundary has finite (N − 1)-dimensional
Lebesgue measure. Let {X(t), t = (t1, . . . , tN)

T ∈ T} be a centered Gaussian random field
on T possessing up-to second-order almost sure derivatives. Its gradient ▽X and Hessian
matrix ▽2X are defined as

▽X := (X1, . . . , XN) and ▽2X := (Xij)1≤i,j≤N ,

respectively, where for 1 ≤ i, j ≤ N ,

Xi =
∂X

∂ti
and Xij =

∂2X

∂ti∂tj
.

For any t ∈ T , a real-valued random vector

a(t) = (a1(t), . . . , aN(N+1)/2(t))
T

is said to be the usual vectorization of ▽2X(t) if

ai+j(j−1)/2(t) = Xij(t) for any integers 1 ≤ i ≤ j ≤ N .

(Note that if Xij, 1 ≤ i, j ≤ N are all continuous on T , which is always the case in the main
results of this thesis, then ▽2X is symmetric and can be fully characterized by its usual
vectorization) For convenience, we will not distinguish the N × N matrix ▽2X from its
usual vectorization in notations, but one can easily distinguish them from a given context.
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By Lemma 2.1.3, (▽2X(t),▽X(t), X(t)) is a centered Gaussian vector. Denote by Nv,B(T )
the number of points t ∈ T , such that

▽X(t) = v and (▽2X(t), X(t)) ∈ B, (2.12)

where v ∈ RN and B ⊂ RN(N+1)/2+1 is an open set whose boundary has the Hausdorff
dimension N(N + 1)/2. Then by letting f = ▽X and g = (▽2X,X) in Corollary 2.1.9,
we have the following lemma.

Lemma 2.1.10. (Corollary 11.2.2, [4]) Let X, T , v and B be as above. Suppose that
the distribution of (▽2X(t),▽X(t), X(t)) is non-degenerate for any t ∈ T . For any i, j ∈
{1, . . . , N} and s, t ∈ T , denote

Cij(s, t) := Cov [Xij(s), Xij(t)] .

Suppose

max
1≤i,j≤N

|Cij(t, t) + Cij(s, s)− 2Cij(s, t)| ≤ K| log(∥t− s∥)|−(1+α), (2.13)

for some finite K > 0, some α > 0, and all s, t ∈ T such that ∥t − s∥ is small enough.
Then we have

E [Nv,B(T )] =

∫
t∈T

∫
(x′′,x)∈B

|det (x′′)| pt(x′′,v, x)dx′′dxdt,

where pt(x
′′,x′, x) is the density of the Gaussian vector (▽2X(t),▽X(t), X(t)).

Remark 2.1.11. As discussed in the paragraphs just below Theorem 11.2.1 in Page 268
of [4], Condition (2.13) is only used to ensure that Condition (1) in Theorem 2.1.7 holds.
If X satisfies all the conditions in Lemma 2.1.10 except that the mean function of X is
non-centered and continuously twice differentiable on T , then one can easily follow these
paragraphs to show that Condition (1) in Theorem 2.1.7 still holds. As a result, Lemma
2.1.10 still holds for such a non-centered Gaussian random field.

Remark 2.1.12. By taking f(t) = ▽X(t) and g(t) = (▽2X(t), X(t)) for t ∈ T in Lemma
2.1.8, we have

P
[
#
{
t ∈ T : X(t) > u,▽X(t) = 0, det (▽2X(t)) = 0

}
= 0
]
= 1.

Therefore, with probability one, all the critical points in the excursion set Au(X,T ) are
non-degenerate.

15



When X is also stationary, the following Lemma gives a sufficient condition for (2.13)
to hold.

Lemma 2.1.13. Let {X(t), t ∈ RN} be a stationary Gaussian random field possessing
up-to second-order almost sure derivatives. Let r(t), t ∈ RN be the covariance function of
X. Suppose that all of the sixth-order partial derivatives of r(t) exist at t = 0N . Then
Condition (2.13) holds for all s, t ∈ RN such that ∥t− s∥ is small enough.

Proof. See Appendix A.2.3.

In Example A.2.3, we take f = ▽X and g = (▽2X,X), where X is a centered,
stationary Gaussian random field with covariance function r(t) = e−∥t∥2 , t ∈ RN . Then we
show that f and g satisfy all the conditions in Lemma 2.1.10.

2.2 Point Processes

2.2.1 Point Processes and Random Measures

In this section, we will review the basic concepts for point processes on RN (N ≥ 1). Endow
RN with the usual Euclidean norm. Denote by K(RN) the set of all compact subsets of RN .
A measure µ on (RN ,B(RN)) is said to be locally finite if µ(K) < ∞ for all K ∈ K(RN).
On (RN ,B(RN)), denote by M+(RN) the set of all locally finite measures and by Mp(RN)
the subset of M+(RN) whose elements take values in N+ = {0, 1, 2, . . . ,∞}, i.e.,

Mp

(
RN
)
:=
{
µ ∈ M+

(
RN
)
: µ(B) ∈ N+, B ∈ B

(
RN
)}

.

The next step is to endow the space M+(RN) and Mp(RN) with σ-fields. For M+(RN),
it is reasonable to consider that the mappings µ → µ(B) for any µ ∈ M+(RN) and
B ∈ B(RN), should be all measurable with respect to this σ-field. Therefore, the σ-field,
M+(RN), can be simply taken as the smallest σ-field containing the sets of the form{

µ ∈ M+

(
RN
)
: µ(B) ∈ G

}
for B ∈ B

(
RN
)
and G ∈ B ([0,∞]) .

Similarly, we can also endow the space Mp(RN) with the σ-field Mp(RN) which is the
smallest σ-field containing the sets of the form{

µ ∈ Mp

(
RN
)
: µ(B) ∈ G

}
for B ∈ B

(
RN
)
and G ∈ B ([0,∞]) .
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A random measure or a point process on RN is defined to be any measurable map-
ping from the probability space (Ω,F , P ) to (M+(RN),M+(RN)) or (Mp(RN),Mp(RN)),
respectively. We shall allow a point process to take values outside N+ with probability
zero. Therefore a point process can be considered as an almost surely N+-valued random
measure. The following lemma shows a decomposition of a point process.

Lemma 2.2.1. (Lemmas 2.1 and 2.3, [18]) A point process ξ on RN can be decomposed
as

ξ =
ν∑

j=1

βjδτj ,

where ν is a random variable taking values in N+, βj, 1 ≤ j ≤ ν, are random variables
taking values in {1, 2, . . . }, τj, 1 ≤ j ≤ ν, are random elements in (RN ,B(RN)), and

δt(A) :=

{
1 t ∈ A,

0 t /∈ A

for any t ∈ RN and A ∈ B(RN).

A point process ξ on RN is said to be simple if its distribution concentrates on the
simple point measures of Mp(RN):

P
[
ξ({t}) ≤ 1 for all t ∈ RN

]
= 1.

A Radon measure (the measure of compact sets is always finite) µ is said to be the mean
measure (or the intensity measure) of ξ if it satisfies

µ(B) = E[ξ(B)] for any B ∈ B(RN).

Thus, if µ(B) = ∞, then ξ(B) = ∞ almost surely.

2.2.2 Weak Convergence of Random Measures

To establish the weak convergence of random measures, the first step is to show that
the space (M+(RN),M+(RN)) is metrizable, i.e., we can find a metric on M+(RN) such
that the σ-field M+(RN) can be induced by this metric. To this end, we need to first
topologize M+(RN) by introducing the so-called vague convergence. Let F+(RN) be the
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set of measurable mappings from (RN ,B(RN)) to ([0,∞],B([0,∞])). For any locally finite
measure µ ∈ M+(RN) and function f ∈ F+(RN), we can define the following integral

µ(f) :=

∫
RN

f(t)µ(dt).

Denoted by C+
K(RN) the set of continuous, nonnegative functions with compact support.

For µn, µ ∈ M+

(
RN
)
, we say µn vaguely converges to µ if for all f ∈ C+

K(RN),

lim
n→∞

µn(f) = µ(f).

Then a sub-base of the vague topology on M+(RN) consists of the sets of the form

{µ ∈ M+(RN) : µ(f) ∈ (s, t)}

for some f ∈ C+
K(RN) and s < t. Let B(M+(RN)) be the Borel σ-field generated by vaguely

open subsets of M+(RN), and let Mv
+(RN) be the smallest σ-field containing the sets of

the form {
µ ∈ M+

(
RN
)
: µ(f) ∈ G

}
for f ∈ C+

K(R
N) and G ∈ B ([0,∞]) .

So far, we have established three σ-fields, M+(RN), B(M+(RN)) and Mv
+(RN), on

M+(RN). The following lemma shows the relationship between them.

Lemma 2.2.2. ([34]) We have the following relationships:

1. Mv
+(RN) = M+(RN);

2. Mp(RN) = {A ∩Mp(RN) : A ∈ Mv
+(RN)};

3. Mp(RN) is vaguely closed in M+(RN);

4. Mv
+(RN) = B(M+(RN)).

The second item in Lemma 2.2.2 implies that Mp(RN) is the same as the smallest
σ-field containing the sets of the form{

µ ∈ Mp

(
RN
)
: µ(f) ∈ G

}
for f ∈ C+

K(R
N) and G ∈ B([0,∞]).

The third item in Lemma 2.2.2 implies that the topological information about M+(RN)
can actually be inherited by Mp(RN). So far, we have restated M+(RN) in terms of vague
convergence. The following lemma shows that M+(RN) is metrizable.
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Lemma 2.2.3. (Proposition 3.17, [34]) The vague topology on Mp(RN) or M+(RN) is
metrizable as a complete, separable metric space.

Remark 2.2.4. It is complicated to actually give the metric. One can refer to the proof of
Proposition 3.17 in [34] for more details.

Now denote by C(M+(RN)) the bounded, continuous real-valued functions on the com-
plete, separable metrizable space (M+(RN),M+(RN)). Then for random measures ξn and
ξ on RN , we say that ξn converges weakly to ξ (written as ξn ⇒ ξ) if limn→∞ E[f(ξn)] =
E[f(ξ)] for any f ∈ C(M+(RN)). Since we are more concerned about the weak convergence
of point processes, the following lemma will be useful in the Chapter 3.

Lemma 2.2.5. ([18]) Let J be a basis of relatively compact sets such that J is closed
under finite unions and intersections. Let ξ be a simple point process on RN such that for
any I ∈ J , P [ξ(∂I) = 0] = 1. Suppose that ξn, n ≥ 1, are point processes on RN and for
all I ∈ J

• limn→∞ P [ξn(I) = 0] = P [ξ(I) = 0];

• lim supn→∞ E [ξn(I)] ≤ E [ξ(I)] < ∞.

Then as n → ∞,
ξn ⇒ ξ in M+(RN).

Here P [ξ(·) = 0] is called the avoidance functional of ξ on B(RN). The book [34]
introduced the following result which shows the importance of avoidance functionals in
characterizing point processes. Let J be a basis of relatively compact sets such that J
is closed under finite unions and intersections. Suppose that ξ1, ξ2 are two simple point
processes on RN such that

P [ξ1(I) = 0] = P [ξ2(I) = 0]

for any I ∈ J . Then ξ1 and ξ2 have the same distribution.

At the end of this section, we would like to introduce a useful application of the weak
convergence of random measures. For any f ∈ F+(RN), denote by Df the set of all
discontinuity points of f .

Lemma 2.2.6. (Lemma 4.4, [18]) Let ξ, ξ1, ξ2, . . . be random measures on RN such that
ξn ⇒ ξ. Then for every bounded function f ∈ F+(RN) with bounded support and satisfying
ξ(Df )=0 almost surely, we have ξn(f) converges to ξ(f) weakly as n → ∞.
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2.2.3 Poisson Point Processes

A point process ξ on RN is called a Poisson point process or a Poisson random measure if
there exists a Radon measure µ on B(RN), such that

1. For any B ∈ B(RN) and k ∈ {0, 1, 2, . . . },

P [ξ(B) = k] =


µ(B)ke−µ(B)

k!
if µ(B) < ∞

0 if µ(B) = ∞.

2. For any n ≥ 1, if B1, . . . , Bn ∈ B(RN) are mutually disjoint sets, then ξ(Bi), 1 ≤ i ≤ n
are mutually independent random variables.

It is easy to see µ is the mean measure of ξ. To show a Poisson limit for a series of point
processes ξn on RN , we can further simplify Lemma 2.2.5 as follows.

Lemma 2.2.7. ([18]) Let J be the set of bounded open N-dimensional cubes and their
finite unions and intersections. Suppose that ξn, n ≥ 1, are point processes on RN and
there exists a locally finite measure µ ∈ M+(RN) such that for all I ∈ J

• limn→∞ P [ξn(I) = 0] = exp{−µ(I)};

• lim supn→∞ E [ξn(I)] ≤ µ(I).

Then ξn converges weakly to a Poisson point process with mean measure µ, as n → ∞.

2.3 Morse Functions and Inequalities

Let G be a non-empty open subset of the norm space (RN , ∥ · ∥) (N ≥ 1). In this section,
we temporarily drop randomness and focus on a real-valued function f ∈ C2(G). By
convention, we denote the gradient and the Hessian matrix of f at t ∈ G by ▽f(t) and
▽2f(t), respectively. Then a point t ∈ G is said to be (the position of) a critical point of
f with index (or type) k for some integer 0 ≤ k ≤ N if

▽f(t) = 0 and index
(
▽2f(t)

)
= k,
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where for any square matrix A ∈ Rn×n, the index (A) is defined to be the number of its
negative eigenvalues counted with their multiplicities. Moreover, a point t ∈ G is said to
be a (strict) local maximum of f if there exists a neighborhood Nt ⊂ G of t, such that

f(t) ≥ f(s) (f(t) > f(s)) for any s ∈ Nt.

By treating f as a sample path, we can easily define the critical points and the local maxima
of a two times almost surely differentiable random field indexed by G. Immediately, we
can observe that a local maximum of f is also a critical point of f , and a critical point
of f with index N must be a strict local maximum. A critical point t of f is said to be
non-degenerate if

det (▽2f(t)) ̸= 0.

Then f is said to be a Morse function or non-degenerate on the open set G if every critical
point of f in G is non-degenerate.

To formally state Morse inequalities, we need to first introduce some concepts in differ-
ential topology. One can refer to [26] and [1] for more details. M is said to be a topological
N -manifold (N ≥ 1) if it is Hausdorff, second countable, and for any t ∈ M , there exists
an open neighborhood of t which is homeomorphic to an open subset of RN . A chart (U,φ)
on the topological space M is defined as an open subset U ⊂ M together with a homeo-
morphism φ from G to an open subset of Rn. For any two charts (U1, φ1) and (U2, φ2) on
M such that U1 ∩ U2 ̸= ∅, the compositions g1 ◦ g−1

2 and g2 ◦ g−1
1 are called the transition

maps of these two charts. If a collection of charts on M forms a cover of M , then this
collection is called an atlas of M . Furthermore, if all of the transition maps in this atlas
are k times differentiable, then this atlas is called a Ck-atlas (k ≥ 0). Two Ck-atlas on M
are said to be compatible if their union is still a Ck-atlas on M . An atlas on M is said
to be maximal if it is only compatible with itself. Then the topological N -manifold M
together with an maximal Ck-atlas on M forms an N -dimensional differentiable manifold
of class Ck.

A compact set K ⊂ RN is said to be a regular C2-domain in RN if its boundary ∂K is a
regular (N − 1)-dimensional differentiable manifold of class C2 possessing a finite number
of connected components (see [26], Chapters 1-5, for the formal definition of the regularity
of a C2-manifold). With the above definitions, we can further define the concept of being
“admissible relative to a regular C2-domain” as follows.

Definition 2.3.1. ([26]) A real-valued function f(t), t ∈ RN (N ≥ 1) is said to be
admissible relative to a regular C2-domain K ⊂ RN if

1. f ∈ C2(G) for some open set G ⊃ K;
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2. f has no critical points on ∂K;

3. the restrictions of f to K and ∂K, f |K and f |∂K are both non-degenerate.

For a regular C2-domain K ⊂ RN , denote by ∂K+ the open subset of ∂K for which the
directional derivative of f in the direction of the outward normal to ∂K at t is positive.
For any integer 0 ≤ i ≤ N , let M(f,K, i) be the number of the critical points of f with
index i in K, and let CC(K) be the number of connected components of K. Similarly,
we can let M(f |∂K+ , ∂K+, i), 0 ≤ i ≤ N − 1 be the number of the critical points of f |∂K+

with index i in ∂K+. The following theorem is a partial result of Morse inequalities which
discusses the relationship between the number of critical points of a Morse function and
the number of connected components of the area it lives on.

Theorem 2.3.2. (Theorem 10.2, [26]) Let f(t), t ∈ RN (N ≥ 1) be a Morse function on
an open set containing the regular C2-domain K ⊂ RN . Suppose that f is also admissible
relative to K. Then we have

M(f,K,N) +M(f |∂K+ , ∂K+, N − 2)−M(f,K,N − 1)−M(f |∂K+ , ∂K+, N − 1)

≤ CC(K) ≤ M(f,K,N) +M(f |∂K+ , ∂K+, N − 1)

for N ≥ 2, and

M(f,K,N)−M(f,K,N − 1)−M(f |∂K+ , ∂K+, N − 1)

≤ CC(K) ≤ M(f,K,N) +M(f |∂K+ , ∂K+, N − 1)

for N = 1.

Remark 2.3.3. One can refer to Theorem 10.2 in [26] for a full version of Morse inequalities
which contains N inequalities and one equation. We only provide a partial result here since
its full version involves deep background in differential topology which is not essential to
this thesis.

Theorem 2.3.2 is very general since it can be applied to any regular C2-domain to
which f is admissible relative. In this thesis, our interest is only focused on Morse-like
inequalities of a connected component of an excursion set. More specifically, for the real-
valued function f(t), t ∈ RN , the excursion set of f in the search region S ⊂ RN above
the threshold u ∈ R is defined by

Au(f, S) := {t ∈ S : f(t) > u}.
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Then the connected component D of the excursion set Au(f, S) is said to be interior if

D ∩ ∂S = ∅.

However, from Definition 2.3.1, it is easy to see that any real-valued function f can never
be admissible relative to D (if D is a regular C2-domain) since f |∂D is always constant
and thus degenerate on ∂D. This means that we cannot directly apply Morse inequalities
to such a connected component of the excursion set Au(f, S). Fortunately, [4] provides a
modification of Morse inequalities for the excursion set Au(f, S) when the search region S
is a regular stratified manifold (see Definition 9.2.2 in [4]). Since D∩∂S = ∅, the boundary
condition of the search region S in this modification can also be omitted, and finally, we
have a very concise result as follows.

Theorem 2.3.4. (Corollary 9.3.5, [4]) Let f be a Morse function on an open set G ⊂ RN

(N ≥ 1), i.e. f ∈ C2(G) and every critical point of f in G is non-degenerate. Suppose that
D is a bounded connected component of Au(f,G) for some u ∈ R, such that ∂D ∩ ∂S = ∅.
Then

M(f,D,N)−M(f,D,N − 1) ≤ CC(D) ≤ M(f,D,N).

Remark 2.3.5. Although Corollary 9.3.5 in [4] only corresponds to the last equation of
Theorem 10.2 in [26], its proof also works for other N inequalities.
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Chapter 3

Poisson Limits of the Connected
Components and Critical Points

3.1 Introduction

When N = 1, there is rich literature for the functionals concerning the topological struc-
tures of excursion sets of a Gaussian process, such as the number of level crossing points,
the number of local maxima, the height of maxima, etc. However, some of these function-
als are hard to characterize for a general N ≥ 1. This chapter is therefore dedicated to
developing a new asymptotic theory for the extension of certain important functionals to
high-dimensional parameter space under reasonable assumptions.

In this chapter, the functionals we are interested in are the numbers of the local maxima
and connected components of the excursion set of a stationary Gaussian random field above
a given threshold (see Figure 3.1). We define a family of point processes by the number
of the local maxima in the excursion set when the threshold tends to infinity and the
search region expands with a matching speed. Our first aim is to show that these point
processes will converge weakly to a Poisson point process. While the techniques needed
to rigorously prove this result are complicated, the basic intuition goes back to the well-
known Poisson approximation to binomial distribution in which the relationship between
the number and the probability of successes is selected to maintain a constant mean. In
our context, considering that the increasing threshold will decrease the number of the local
maxima above the threshold while the expanding region will work in the opposite direction,
the matching speed is then selected to maintain a constant mean measure.
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Figure 3.1: Connected components of an excursion set. The blue surface is a sample
function of the random field, and the grey square is the search region. There are seven
connected components and six local maxima in the excursion set.

To establish a Poisson limit, we define a “grid-block system” where the compatibility
between the covariance structure of the underlying Gaussian random field, the matching
speed of the expanding search region with the increasing threshold, and the existing results
we use in our proof are fully considered. The system only needs quite mild compatibility
conditions, which empower our theory to have a broad application. Although the underly-
ing Gaussian random field is continuously parameterized, the grid-block system equips us
with a powerful weapon to approximate continuity by discretization. This coincides with
the spirit of the definition of the continuous-time Gaussian random field. Moreover, the
asymptotic independence in the convergence to a Poisson limit can be fully captured by
applying the normal comparison lemma ([23]) on the grids in blocks.

We also introduce a family of events with probability increasing to 1. By conditioning
on these events and using a fundamental inequality, the avoidance functional of the local
maxima in the excursion set can be related to the tail distribution of the maximum on
an expanding region at an increasing value. This critical technique greatly simplifies our
question and also plays an important role when we relate the number of local maxima with
the number of connected components.

As mentioned above, our second aim is to show the Poisson limit for the number of
connected components of the excursion set by relating it with the number of local max-
ima. Compared with local maxima, connected components cannot be characterized locally,
and therefore resulting in the failure to construct a corresponding point process. Instead
of constructing point processes directly by connected components and proving the weak
convergence of point processes, we show the weak convergence of the number of connected
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components on expanding regions, i.e., the weak convergence of random variables. Then
we only need to bound its distribution from both sides at the same threshold and prove
that both sides will converge to the same value of a Poisson distribution. To achieve this
objective, we construct another point process by the global maximum in each connected
component and show that these point processes share the same Poisson limit with the point
processes of the number of local maxima we have studied. In general, our theory actually
provides a framework for the Poisson limit of functionals on the Gaussian excursion set
which can be characterized either locally or nonlocally.

This work has a clear and immediate motivation from biostatistics. The choice of
the functionals that we study is determined by a need to set the prior distribution in a
Bayesian model ([19]). More precisely, in scalar-on-image regression models for brain imag-
ing, researchers are interested in investigating the relationship between a scalar response,
for example cognitive score, and brain images. In Bayesian literature, the conditional
distribution of the scalar response Yi, 1 ≤ i ≤ n, for n objects are modeled by

(Yi|Wi,Xi,α,β, σ2) ∼ N

(
q∑

k=1

αkWi,k + p−1/2
n

pn∑
j=1

β(sj)Xij, σ
2

)
,

where N(µ, σ) denotes a normal distribution with mean µ and covariance σ2, Wi =
(Wi,1, . . . ,Wi,k) is the vector of related scalar covariates, Xi = (Xi,1, . . . , Xi,pn) is the
intensity value of the image measured at the locations s1, . . . , spn , and pn is the number of
voxels or pixels in the image. The choice of the prior distribution of regression coefficients
(β(s1), . . . , β(spn)) is limited by the following observations

1. The locations s1, . . . , spn are actually from a 2 or 3-dimensional lattice determined
by the resolution of the image. Therefore β should distribute spatially.

2. The total effect of an image should not increase to infinity as the resolution increase.
This results in the sparsity in regression coefficients, i.e., β(si) = 0 for the majority
of 1 ≤ i ≤ pn.

To capture the sparsity and spatiality of regression coefficients simultaneously, [19] sug-
gested using a soft-thresholded Gaussian random field as the prior of β, where the support
of β are modeled as the excursion set of the Gaussian random field indexed by R2 or R3.
However we still need some rule for the selection of the threshold to match the prior degree
of sparsity. Here the sparsity may be characterized by certain functionals of the activated
regions of the brain, such as the number of the connected components and the number
of the local maxima above the threshold, which are known from biology. Essentially, this
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chapter contributes to predict these random quantities in the Gaussian random field model
for any given high threshold, hence helps to choose the prior distribution for the Gaussian
random field in a Bayesian procedure.

The remainder of this chapter is organized as follows.

Section 3.2 mainly serves as the literature review of some existing results about Gaussian
random fields. These results can be classified into two categories which correspond to the
first two subsections. Section 3.2.1 starts from Corollary 3.2.1 which gives an integral
expression for the expected number of the local maxima in a Gaussian excursion set. One
simple asymptotic expression of this integral is shown in Lemma 3.2.2 which provides a
theoretical basis for the expanding rate of the search region as we have discussed earlier.
In Section 3.2.2, we introduce two other powerful asymptotic results of the global maxima
of Gaussian random field in certain expanding systems. These asymptotic results are used
to estimate the avoidance functional of the point process we construct. Finally, we will
also introduce some useful results in Section 3.2.3 which are not about random fields.

In Section 3.3, we will construct a family of point processes for the local maxima of a
qualified Gaussian random field on an expanding search region above an increasing thresh-
old. The main result in this section, Theorem 3.3.2, shows the existence of a Poisson limit
for this series of point processes when the expanding rate gu for the search region matches
the increasing threshold u. Our strategy is to approximate a continuously parameterized
Gaussian random field and control its correlation structure by its values on the grid-block
system we defined. Since the proof for Theorem 3.3.2 is very complicated, we also provide
a clear outline of this proof in Section 3.3.2 for reader as a road map.

In Section 3.4, instead of directly working on a family of point processes, we study the
number of connected components of a Gaussian excursion set with the expanding region
guS for any qualified S ⊂ RN when the threshold u is high. In Section 3.4.1, we study
the asymptotic behavior of the expected number of the connected components touching
the boundary of the search region. In Section 3.4.2, the Poisson limit of the number of
connected components of a Gaussian excursion set is derived from the relationship between
the number of connected components and the number of local maxima, combined with the
main results in the previous section. To further analyze the behavior of the number of
connected components when the threshold is high, we first derive an asymptotic result
about the expected number of the critical points in Theorem 3.4.5. Then in the last
part of this section, a stronger relationship between the number of connected components
and the number of local maxima will be clarified based on Theorem 3.4.5 and the Morse
inequality of the excursion set we discussed in Section 2.3.
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3.2 Literature Review

There is rich literature of functionals of Gaussian random fields indexed by RN . In this
section, we mainly review some existing results about characterizations and asymptotic
behavior of extremes of Gaussian random fields. We will also introduce some very useful
results which are not about random fields in the last part of this section.

Throughout this section, endow RN(N ≥ 1) with the Euclidean norm ∥·∥, and denote by
λN the N -dimensional Lebesgue measure. For a symmetric matrix V = (vij)N×N ∈ RN×N ,
we say W = (w1, . . . , wN(N+1)/2) ∈ RN(N+1)/2 is a usual vectorization of V if

wi+j(j−1)/2 = vij for any integers 1 ≤ i ≤ j ≤ N .

Any vectorization of a symmetric matrix appearing in this section will follow the same
way. We will not distinguish a matrix from its usual vectorization in notations, but one
can easily distinguish them from a given context.

3.2.1 The Expected Number of the Local Maxima with Full In-
dex above a Threshold

Let the random field {X(t), t ∈ RN} be almost surely two times continuously differentiable,
and let S be a compact subset of RN with λN−1(∂S) < ∞. Denote byMu(X,S) the number
of the local maxima of a Gaussian random field X above the threshold u in the set S of
the form: {

t ∈ S : X(t) > u,▽X(t) = 0, index (▽2X(t)) = N
}
,

i.e.,
Mu(X,S) := #

{
t ∈ S : X(t) > u,▽X(t) = 0, index (▽2X(t)) = N

}
,

where the index of a matrix is defined as the number of its negative eigenvalue, and #
stands for “the cardinality of”. Note that given a particular realization of X, Mu(X,S)
is not necessarily equal to the true number of the local maxima of the random field X(t),
t ∈ RN above the threshold u in the search region S. This is because some local maximum
t∗ of the random field X can be degenerate, i.e.,

det (▽2X(t∗)) = 0.

We further assume that {X(t), t ∈ S} satisfies all the conditions in Lemma 2.1.10,
where T = S. Then by Remark 2.1.12, Mu(X,S) is almost surely the number of the local

28



maxima in the excursion set Au(X,S). Note that

Mu(X,S) = #{t ∈ S : X(t) > u,▽X(t) = 0, index
(
▽2X(t)

)
= N}.

In (2.12), if we let v = 0N , T = S, and

B = {(x′′, x) ∈ RN(N+1)/2+1 : index (x′′) = N, x > u},

then we have the following important corollary.

Corollary 3.2.1. (Lemma 11.7.1, [4]) Let X and S be as above. Then

E [Mu(X,S)] =

∫
S

∫ ∞

u

∫
DN

|det (x′′)| pt(x′′,0, x)dx′′dxdt,

where pt(x
′′,x′, x), (x′′,x′, x) ∈ RN(N+1)/2×RN×R is the density function of the Gaussian

vector (▽2X(t),▽X(t), X(t)) for any t ∈ S, and

DN := {x′′ ∈ RN(N+1)/2 : index (x′′) = N}.

Corollary 3.2.1 provides an explicit integral expression for E[Mu(X,S)]. However, it
is still too complicated to calculate this integral due to the awkwardness of the domain
DN . A simplification of E [Mu(X,S)] will be very useful. In Corollary 3.2.1, if we further
assume that X is stationary, then we have

E [Mu(X,S)] = λN(S)

∫ ∞

u

∫
DN

|det (x′′)| p0(x′′,0, x)dx′′dx. (3.1)

We see that the remaining integral in (3.1) is actually independent of the choice of S. This
integral can be further estimated by the following lemma.

Lemma 3.2.2. (Theorem 6.3.1, [1]) Let X and S be as in Corollary 3.2.1. Suppose that
X is also stationary with variance σ2. Then

E [Mu(X,S)] =
λN(S)det (ΛX)

1/2 uN−1

(2π)(N+1)/2σ2N−1
exp

(
− u2

2σ2

)(
1 +O(u−1)

)
,

where ΛX is the covariance matrix of ▽X, and O(u−1) is independent of the choice of S.
More specifically, if we let

Du(X,S) =
λN(S)det (ΛX)

1/2 uN−1

(2π)(N+1)/2σ2N−1
exp

(
− u2

2σ2

)
, (3.2)

then there exists a finite constant C > 0, which is independent of the choice of S, such that∣∣∣∣E [Mu(X,S)]

Du(X,S)
− 1

∣∣∣∣ ≤ Cu−1.
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3.2.2 Some Asymptotic Results of Maxima

In this section, we will introduce two asymptotic results about the maxima of a Gaussian
random field over a compact search region expanding with an increasing threshold. Recall
that in Lemma 2.2.7, J is defined as the set of bounded open N -dimensional cubes and
their finite unions and intersections. Here we define

J :=
{
T : T ∈ J

}
,

where T is the closure of T . Therefore, any element, say J , of J is a non-empty compact
set whose boundary ∂J is piecewisely smooth (or more specifically, piecewisely flat) and
λN−1(∂J) < ∞. The first asymptotic result involves the definition of blowing-up systems
as follows.

Definition 3.2.3. ([31]) A system {Tu, u ∈ R}, Tu ∈ J , is said to blow up, if

1. λN(Tu) → ∞ as u → ∞;

2. there exist finite constants L1 > 0 and δ1 ≥ 0 such that for any u ∈ R and N -
dimensional ball B(0N , R) with radius R > 1 and centered at the origin,

λN(Tu ⊕B(0N , R))− λN(Tu) ≤ L1R
N(λN−1(∂Tu))

1+δ1 , (3.3)

where the symbol ⊕ denotes a Minkowski summation operator,

A⊕B = {x+ y : x ∈ A,y ∈ B}. (3.4)

3. there exist finite constants L2 > 0 and α ∈ R such that

α(1 + δ1) < 1 and λN−1(∂Tu) ≤ L2λN(Tu)
α. (3.5)

The following lemma also serves as an example for blowing-up systems.

Lemma 3.2.4. ([31]) For any K ∈ J and αu → ∞ as u → ∞, {αuK, u ∈ R} is a
blowing-up system with δ1 = 0 and α = (N − 1)/N .

Lemma 3.2.5. (Theorems 14.1 & 14.2, [31]) Suppose that {Tu, u > 0} is a blowing-up
system. Let {X(t), t ∈ RN} be a centered, stationary, three times differentiable in the
mean square sense, Gaussian random field with covariance function r(t) := E[X(0)X(t)]
and constant variance σ2. Suppose that there exists a finite constant α > 0 such that∫

RN

|r(t)|αdt < ∞.
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Then for any x ∈ R,

P

[
max
t∈Tu

(
σ−1X(t)− ℓX,Tu

)
ℓX,Tu < x

]
= exp {− exp{−x}} ,

where ℓX,Tu is the largest solution to the equation

λN(Tu)det (ΛX)
1/2

(2π)(N−1)/2σN/2
ℓN−1 exp

{
−ℓ2/2

}
= 1, (3.6)

and ΛX is the covariance matrix of ▽X.

It is worth mentioning that Du(X,S) in (3.2) and the left part of (3.6) are very similar.
We will make the most of this point in the following section.

The second asymptotic result involves the definition of slowly blowing-up systems as
follows.

Definition 3.2.6. The system {Tu, u ∈ R}, where Tu ⊂ RN is closed with λN(∂Tu) = 0 for
any u ∈ R, is said to blow up slowly with rate κ > 0 if each Tu contains an N -dimensional
unit cube and

λN(Tu) = O
(
exp

{
κu2/2

})
as u → ∞.

Remark 3.2.7. Note that the rate in Definition 3.2.6 is not unique. If the system {Tu, u ∈ R}
blows up slowly with rate κ0 > 0, then it also blows up slowly with rate κ for any κ ≥ κ0.

Lemma 3.2.8. (Theorem 7.2, [31]) Let {X(t), t ∈ RN} be a centered, stationary Gaussian
random field with covariance function r(t). Suppose that the following conditions hold:

1. there exists a non-degenerate matrix QX and a finite constant β > 0 such that

r(QXt) = 1− ∥t∥β + o(∥t∥β) as ∥t∥ → 0, (3.7)

2. r(t) → 0 as ∥t∥ → ∞.

Then there exists a finite constant κX > 0 such that for any slowly blowing-up system
{Tu, u ∈ R} with rate κX ,

P

[
max
t∈Tu

X(t) > u

]
= HβλN(Tu)det (Q

−1
X )uNΨ(u)(1 + o(1)) as u → ∞,

where Hβ is a Pickands’ constant (see [30] and [31]). Especially, H2 = π−N/2.
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When β = 2, the relationship between ΛX in Lemma 3.2.5 and QX in Lemma 3.2.8
can be derived as follows. Note that by a Taylor’s expansion at 0 and the definition of the
mean square derivatives,

r(t) = 1− 1

2
tTΛXt+ o(∥t∥2),

while by (3.7),
r(QXt) = 1− ∥t∥2 + o(∥t∥2).

Thus, we can take QX such that

1

2
QT

XΛXQX = IN ,

where IN is the identity matrix of size N . Therefore,

det (QX)
−1 = 2−N/2det (ΛX)

1/2. (3.8)

Example 3.2.1. Let {X(t), t ∈ RN} be a centered, stationary Gaussian random field with
covariance function r(t) = e−∥t∥2. Since r(t) has any order partial derivatives, by Lemma
2.1.4, X is three times differentiable in the mean square sense on RN . We also have∫

RN

|r(t)| dt =
∫
RN

e−∥t∥2dt =

(∫
R
e−t21dt1

)N

= πN/2 < ∞.

Therefore, X satisfies all the conditions in Lemma 3.2.5. By Lemmas 2.1.3 and 2.1.4, Xj

is also a centered, stationary Gaussian random field with covariance function

rXj
(t) = −rjj(t) = 2(1− 2t2j)e

−∥t∥2 .

Denote by σ2
Xj

the variance of Xj. Then

σ2
Xj

:= −rjj(0) = 2.

Let rXj/σXj
(t) be the covariance function of Xj/σXj

. Then∫
RN

∣∣∣rXj/σXj
(t)
∣∣∣ dt = ∫

RN

∣∣1− 2t2j
∣∣ e−∥t∥2dt

=

(∫
R
e−t21dt1

)N−1 ∫
R

∣∣1− 2t2j
∣∣ e−t2jdtj

≤ π(N−1)/2

∫
R
(1 + 2t2j)e

−t2jdtj

= 2πN/2

< ∞.
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Therefore, Xj/σXj
also satisfies all the conditions in Lemma 3.2.5. Moreover, by a Taylor’s

expansion of the function e−x2
, x ∈ R at x = 0, we have for any t ∈ RN×1,

r(t) = e−∥t∥2 = 1− ∥t∥2 + o(∥t∥2)

and for any 1 ≤ j ≤ N ,

rXj/σXj
(Q1t) = −σ−2

Xj
rjj(Q1t) = e−∥Q1t∥2

(
1− 2t2j/3

)
= 1− ∥t∥2 + o(∥t∥2),

where Q1 ∈ RN×N is a diagonal matrix with all diagonal elements equal to one except for
a 1/

√
3 at the j-th column. Finally, it is easy to see that

r(t) → 0 and rXj/σXj
(t) → 0

as ∥t∥ → ∞. Therefore, both X and Xj/σXj
satisfy all the conditions in Lemma 3.2.8.

3.2.3 Some Useful Lemmas

In this section, we will introduce three existing results which will play important roles
in the proofs of the main results in this chapter. The first lemma gives a bound for the
difference between the joint distribution functions of two sets of Gaussian random variables
by their covariances.

Lemma 3.2.9. (Theorem 4.2.1, [23]) Let Y1, . . . , Yn and Z1, . . . , Zn be standard Gaussian
random variables with covariance matrices Λ = (λij) and Γ = (γij), respectively. Denote
ρij := max(|λij|, |γij|) for any 1 ≤ i, j ≤ n. Then

P [Y1 ≤ t1, . . . , Yn ≤ tn]− P [Z1 ≤ t1, . . . , Zn ≤ tn]

≤ 1

2π

∑
1≤i<j≤n

(λij − γij)
+ (1− ρ2ij

)−1/2
exp

(
−

1
2

(
t2i + t2j

)
1 + ρij

)
,

where (x)+ := max(x, 0) for any x ∈ R.

Let Λ ∈ RN×N be a diagonal matrix with positive diagonal elements. Define

Dk,x,Λ :=
{
v ∈ RN×N : index (v − xΛ) = k

}
.

The second lemma can deal with the asymptotic behavior of Dk,x,Λ as x → ∞.
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Lemma 3.2.10. (Lemma 6.3.1, [1]) Suppose that

• V is an N ×N symmetric matrix;

• W is the usual vectorization of V with length L := N(N + 1)/2;

• Λ is a diagonal matrix with positive diagonal elements;

• Yu ∈ RL is defined by

W ∈ Yu is equivalent to V − uΛ is negative definite.

Then there exists a finite constant C only determined by Λ, such that for each pair (r, u)
satisfying u > Cr,

BL(0, r) ⊂ Yu,

where BL(0, r) = {t ∈ RL : ∥t∥ ≤ r}.

3.3 The Number of Local Maxima above a Threshold

In Section 3.2, we have defined

Mu(X,S) = #
{
t ∈ S : X(t) > u,▽X(t) = 0, index (▽2X(t)) = N

}
,

where the index of a matrix is defined as the number of its negative eigenvalues. By Remark
2.1.12 and Corollary 3.2.1, we do not need to distinguish Mu(X,S) from the corresponding
true number of the local maxima as long as the conditions in Corollary 3.2.1 are all satisfied.

With the help of the above definition, we will construct a series of point processes by
expanding the search region for an increasing threshold. Then we will show the existence
of a Poisson limit for this series of point processes when the rate of the expansion for the
search region matches the rate of the increase of the threshold in a specific way. Throughout
this section, for N ≥ 1, we endow RN with the Euclidean norm ∥ · ∥. Denote by λN the
N -dimensional Lebesgue measure and by B(RN) the Borel σ-field of (RN , ∥ · ∥). Denote by
⊕ the Minkowski summation operator (see (3.4)). For any a > 0 and A ⊂ RN , we define

aA := {at : t ∈ A},

and let
◦
A be the interior of A. For any A,B ⊂ RN , define A−B := A ∩Bc, i.e.,

A−B := {a ∈ A : a /∈ B}.
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Moreover, as in Section 3.2.2, let J be the set of N -dimensional cubes and their finite
unions and intersections and define

J := {T : T ∈ J },

where T denotes the closure of T . Note that λN−1(∂K) < ∞ for any K ∈ J .

3.3.1 Main Results

Let {X(t), t ∈ RN} (N ≥ 1) be a centered, stationary Gaussian random field with covari-
ance function r(t). Suppose that the following conditions hold:

1. the distribution of (▽2X,▽X,X), written as p(x′′,x′, x), is non-degenerate;

2. X is almost surely three times continuously differentiable;

3. X is four times differentiable in the mean square sense;

4. there exist finite constants α1, α2 > 0 such that∫
RN

|r(t)|α1dt < ∞,

and for any 1 ≤ i ≤ N , ∫
RN

∣∣∣∣∂2r(t)

∂t2i

∣∣∣∣α2

dt < ∞;

5. X satisfies the conditions of Lemma 3.2.8, i.e., there exists a non-degenerate matrix
QX such that

r(QXt) = 1− ∥t∥2 + o(∥t∥2) as ∥t∥ → 0,

and
r(t) → 0 as ∥t∥ → ∞;

6. denote by σ2
Xj
(σXj

> 0) the variance of Xj, 1 ≤ j ≤ N , and then we assume that
Xj/σXj

also satisfies the conditions of Lemma 3.2.8, i.e., there exists a non-degenerate
matrix QXj/σXj

such that

rXj/σXj

(
QXj/σXj

t
)
= 1− ∥t∥2 + o(∥t∥2) as ∥t∥ → 0,

and
rXj/σXj

(t) → 0 as ∥t∥ → ∞,

where rXj/σXj
(t), t ∈ RN is the covariance function of Xj/σXj

;
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7. since r(t) → 0 as ∥t∥ → ∞, we can properly define

r(x) := max
∥t∥≥x

|r(t)| (3.9)

for any x ≥ 0. Assume that there exists some finite constant β > 0 such that

γ(β, u) := u2(N+1)r
(
eβu

2
)
→ 0 as u → ∞. (3.10)

Example 3.3.1. Let {X(t), t ∈ RN} be a centered, stationary Gaussian random field with
covariance function r(t) = e−∥t∥2. Then it is easy to see that Condition (3.10) holds.
Moreover, from Examples 3.2.1, A.2.2 and A.2.3, we see that X satisfies all the above
conditions.

Since {X(t), t ∈ RN} is stationary and almost surely three times continuously differen-
tiable, all of the sixth-order partial derivatives of r(t) exist at t = 0. Then by Lemma
2.1.13, we are allowed to apply Corollary 3.2.1 to the Gaussian random field X on any
compact set S ⊂ RN with λN−1(∂S) < ∞. From Section 3.2, we see that the above condi-
tions also allow us to apply Lemmas 3.2.5 and 3.2.8 to the Gaussian random field X, and
Lemmas 3.2.5 and 3.2.8 to Gaussian random fields Xj/σXj

, 1 ≤ j ≤ N . In this section,
we first fix a mean constant c > 0. Then by Corollary 3.2.1 and (3.1), we can choose a
function, written as gu, of u such that

E [Mu(X, guK)] = cλN(K) (3.11)

for all u ∈ R and any bounded subset K ∈ B(RN) with λN−1(∂K) < ∞. Here we actually
define a family of point processes {Mu(X, gu·), u ∈ R} on RN . For convenience, we say the
pair (X, gu) (or the triple (X, gu, c) if we need to emphasis the mean constant c in (3.11))
is qualified if X and gu satisfy all of the above conditions. By Lemma 3.2.2, we do not
need to distinguish Mu(X, guK) and Mu(X, guK) for K ∈ J since

E[Mu(X, gu∂K)] = 0.

The following are the main results in this section.

Theorem 3.3.1. Let (X, gu, c) be a qualified triple. Then

lim
u→∞

P [Mu (X, guK) = 0] = exp {−cλN(K)}

for any K ∈ J .
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Theorem 3.3.2. Let (X, gu, c) be a qualified triple. Then Mu(X, gu·) converges weakly to
a Poisson point process with mean measure cλN as u → ∞.

Proof. This is an immediate consequence of Theorem 3.3.1, Lemma 2.2.7 and (3.11).

In the rest of this section, we will provide a poof for Theorem 3.3.1. To this end, we
have to first define a grid-block system as follows.

Definition 3.3.3. Let the pair (X, gu) be qualified. {(Gu, Bu) ∈ 2R
N × 2R

N
, u ∈ R} is said

to be a grid-block system adapted to (X, gu) if there exist functions bu, du and fu of u ∈ R
such that

1. Gu = duZN .

2. Bu,k := b−1
u

(
fu[−0.5, 0.5]N ⊕ {k}

)
for any k ∈ ZN , and Bu :=

⋃
k Bu,k.

3. As u → ∞, we have

(a) u−2d−1
u → ∞;

(b) bu → ∞;

(c) 0 < fu ↑ 1;

(d) gub
−1
u (1− fu) → ∞;

(e) gub
−1
u = O(eκu

2/2), for

κ =
1

2N
min

{
1, κX , κXj

, 1 ≤ j ≤ N
}
, (3.12)

where κX and κXj
are only determined by X (see Lemma 3.2.8);

(f)

g2Nu d−2N
u r(2gub

−1
u (1− fu)) exp

{
− u2

1 + r (2gub−1
u (1− fu))

}
→ 0,

where r is defined in (3.9).

4. For any sufficiently large u,
gub

−1
u ZN ⊂ duZN .
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Figure 3.2: A part of the grid-block system {(Gu, Bu), u ∈ R} with the expanding rate gu.
For the blocks (squares) in the top-left corner of this part, the bigger one is gu∆u,0, the
smaller one is guBu,0, and (guBu,0) ∩Gu consists of all the marked points in the figure.

Remark 3.3.4. Let εu = d
1/2
u . Then from Condition 3(a), we have

u−1d−1
u εu → ∞ and εuu → 0

as u → ∞. This property of εu will be very useful in the following sections. Define

∆u,k := b−1
u ([−0.5, 0.5]N ⊕ {k}). (3.13)

For example, Figure 3.3.1 shows the relationship between gu∆u,0, guBu,0 and (guBu,0)∩Gu.
Conditions 3(b)-3(d) actually imply that as u → ∞, Bu,0 will be dominating in ∆u,0, guBu,0

will be dominating in RN , and the shortest distance between expanded blocks guBu,k,
k ∈ RN will increase to infinity. Condition 4 ensures that the center of each expanded
block guBu,k, k ∈ ZN is a grid point in Gu, which implies that

(guBu,k) ∩Gu ̸= ∅,
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and the joint distribution of {X(t), t ∈ (guBu,k)∩Gu} is the same as the joint distribution
of {X(t), t ∈ (guBu,0) ∩Gu} for any k ∈ ZN .

The following lemma shows the existence of the grid-block system for every qualified
pair (X, gu).

Lemma 3.3.5. Every qualified pair (X, gu) possesses an adapted grid-block system.

Proof. See Appendix B.1.1.

Immediately, we can construct a blowing-up system (see Definition 3.2.3) by a grid-
block system. For K ⊂ RN , let

Bu(K) = ∪∆u,k⊂K,k∈ZNBu,k. (3.14)

Then we have the following lemma.

Lemma 3.3.6. Suppose that (X, gu) is a qualified pair with the adapted grid-block system
{(Gu, Bu), u ∈ R}. Then for any non-empty K ⊂ J , guBu(K) is a blowing-up system.

Proof. From (3.14), we see that Bu(K) is the union of finite number of disjoint identical
sets Bu,k, k ∈ ZN . Therefore, it suffices to show that guBu,0 is a blowing-up systems. Note
that

guBu,0 = gub
−1
u fu[−0.5, 0.5]N .

By Definition 3.3.3, we have
gub

−1
u fu → ∞

as u → ∞. It is easy to see that [−0.5, 0.5]N ∈ J . Then the proof is completed by directly
applying Lemma 3.2.4 on [−0.5, 0.5]N .

In preparation for the proof of Theorem 3.3.1, there is the following lemma. This
important lemma shows that a qualified search region can be approximated by a family of
increasing sets in J from the inside of the search region and a family of decreasing sets in
J from the outside of the search region.

Lemma 3.3.7. For any bounded set S ⊂ RN (N ≥ 1) with λN−1(∂S) < ∞, we can always
find J1,u(S), J2,u(S) ⊂ J for any u ∈ R large enough, such that

1. J1,u(S) ⊂
◦
S ⊂ S ⊂ J2,u(S);
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2. λN(J2,u(S)− J1,u(S)) → 0 as u → ∞;

3. {guJ2,u(S)− J1,u(S), u ∈ R} is a blowing-up system.

Proof. See Appendix B.1.2.

3.3.2 The Outline for the Proof of Theorem 3.3.1

To make the proof for Theorem 3.3.1 easy to understand, we will first provide an outline
of the proof. For space reasons, the proofs for the new lemmas appearing in the outline
and the formal proof of Theorem 3.3.1 are all relegated to Appendix B.1.3. Given K ∈ J ,
we use the following notations for convenience:

1. Hu(K) := {maxt∈guK−J1,u(K) X(t) ≤ u}, where J1,u(K) is as defined in Lemma 3.3.7.

2. Write fu
u
≈ gu if |fu − gu| → 0 as u → ∞.

3. Let nu(K) be the number of ∆u,k defined in (3.13) fully contained in K. Note that
{∆u,k,k ∈ RN} forms a cover of RN for each u ∈ R, λN(∆u,k1 ∩∆u,k2) = 0 for any
k1,k2 ∈ ZN , and λN(∆u,k) = b−N

u → 0 as u → ∞ for any k ∈ ZN . Therefore, it is
easy to see that

b−N
u nu(K)

u
≈ λN(K). (3.15)

Consider the following fundamental inequality. For any two events A and B with P [A] > 0,
we have

|P [B]− P [B|A]| =
∣∣∣∣P [B]P [A]− P [BA]

P [A]

∣∣∣∣
=

∣∣∣∣(P [BA] + P [BAc])P [A]− P [BA]

P [A]

∣∣∣∣
=

∣∣∣∣P [BAc]P [A]− P [BA]P [Ac]

P [A]

∣∣∣∣
=

∣∣∣∣P [BAc]− P [BA]P [Ac]

P [A]

∣∣∣∣
≤ P [Ac].

(3.16)

The outline for the proof of Theorem 3.3.1 is as follows.
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1. Prove
P [Hu(K)] → 1 as u → ∞. (3.17)

2. Show
P [Mu(X, guK) = 0]

u
≈ P [Mu(X, guBu(K)) = 0] , (3.18)

where Bu(K) is defined in (3.14).

3. By (3.17) and Inequality (3.16), we have

P [Mu(X, guBu(K)) = 0]
u
≈ P

[
Mu(X, guBu(K)) = 0

∣∣ Hu(K)
]

= P

[
max

t∈guBu(K)
X(t) ≤ u

∣∣∣∣ Hu(K)

]
.

(3.19)

4. Again, by (3.17) and Inequality (3.16),

P

[
max

t∈guBu(K)
X(t) ≤ u

∣∣∣∣ Hu(K)

]
u
≈ P

[
max

t∈guBu(K)
X(t) ≤ u

]
. (3.20)

5. Show

P

[
max

t∈guBu(K)
X(t) ≤ u

]
u
≈ P

[
max

t∈(guBu(K))∩Gu

X(t) ≤ u− d1/2u

]
. (3.21)

6. Since Bu(K) = ∪∆u,k⊂K,k∈ZNBu,k, we have

P

[
max

t∈(guBu(K))∩Gu

X(t) ≤ u− d1/2u

]

= P

 ⋂
∆u,k⊂K,k∈ZN

{
max

t∈(guBu,k)∩Gu

X(t) ≤ u− d1/2u

} .

(3.22)

7. Show

P

 ⋂
∆u,k⊂K,k∈ZN

{
max

t∈(guBu,k)∩Gu

X(t) ≤ u− d1/2u

}
u
≈

∏
∆u,k⊂K,k∈ZN

P

[
max

t∈(guBu,k)∩Gu

X(t) ≤ u− d1/2u

]
.

(3.23)
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8. By the stationarity of X and Condition 4 in Definition 3.3.3, we have∏
∆u,k⊂K,k∈ZN

P

[
max

t∈(guBu,ki
)∩Gu

X(t) ≤ u− d1/2u

]

=

(
P

[
max

t∈(guBu,0)∩Gu

X(t) ≤ u− d1/2u

])nu(K)

=

1−
nu(K)P

[
maxt∈(guBu,0)∩Gu X(t) > u− d

1/2
u

]
nu(K)

nu(K)

.

(3.24)

9. Show

bNu P

[
max

t∈(guBu,0)∩Gu

X(t) > u− d1/2u

]
u
≈ bNu P

[
max

t∈guBu,0

X(t) > u

]
→ c as u → ∞.

(3.25)

10. By (3.15) and (3.25), we have

nu(K)P

[
max

t∈(guBu,0)∩Gu

X(t) > u− d1/2u

]
= b−N

u nu(K)bNu P

[
max

t∈(guBu,0)∩Gu

X(t) > u− d1/2u

]
→ cλN(K) as u → ∞.

(3.26)

11. Finally, combining (3.18)-(3.24) and (3.26) implies

P [Mu(X, guK) = 0] → exp {−cλN(K)} .

3.4 The Number of Connected Components of the

Excursion Set

Let the pair (X, gu) be qualified. For any given search region S ⊂ RN (N ≥ 1) and
threshold u ∈ R, we can define the excursion set Au(X,S) = {t ∈ S : X(t) > u}. In
the last section, we have established the Poisson limit of the series of point processes
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Mu(X, gu·). This actually implies that for any give S ∈ B(RN), Mu(X, guS) follows a
Poisson distribution as u → ∞, i.e., the number of the local maxima of X with index N
in the excursion set Au(X, guS) follows a Poisson distribution as u → ∞.

By Lemma 2.2.1, any point process ξ on RN corresponds to a preset {τj, 1 ≤ j ≤ ν}
which is independent of the choice of the set to be measured by ξ. Since the number of
the connected components can not be described locally, it does not correspond to such a
set in RN , and therefore, we cannot directly construct point processes from it. Instead of
directly working on point processes, we study the number of the connected components
of X in Au(X, guS) for any qualified S ⊂ RN . Its Poisson limit is then derived from the
relationship between the number of the connected components and the number of the local
maxima, combined with the main results in the last section. To this end, some notations
will be inherited from the last section. Recall that we studied the avoidance functional
P [Mu(X, gu·) = 0] on J , i.e., the set of bounded open cubes and their finite unions and
intersections. For any bounded set S ⊂ RN (N ≥ 1) with λN−1(∂S) < ∞ as in Lemma
3.3.7, we can also define the event

Hu(S) :=

{
max

t∈guS−J1,u(S)
X(t) ≤ u

}
, (3.27)

where J1,u(S) is defined in Lemma 3.3.7. The above notations will also play important
roles in this section. Also recall that

Mu(X,S) := #
{
t ∈ S : X(t) > u,▽X(t) = 0, index (▽2X(t)) = N

}
,

where the index of a matrix is defined as the number of its negative eigenvalue. To indicate
the index, we define the number of the critical points of X with index 0 ≤ k ≤ N above
the threshold u ∈ R in the search region S ⊂ RN (or equivalently, in the excursion set
Au(X,S)) as

Mu(X,S, k) := #
{
t ∈ S : X(t) > u,▽X(t) = 0, index (▽2X(t)) = k

}
.

Obviously, we have
Mu(X,S,N) ≡ Mu(X,S).

Immediately, Corollary 3.2.1 can be generalized for any Mu(X,S, k), 0 ≤ k ≤ N .

Corollary 3.4.1. (Lemma 11.7.1, [4]) Let {X(t), t ∈ RN} be the same as in Corollary
3.2.1 and let S be a compact subset of RN with λN−1(S) < ∞. Then for any 0 ≤ k ≤ N ,

E [Mu(X,S, k)] =

∫
S

∫ ∞

u

∫
Dk

|det (x′′)| pt(x′′,0, x)dx′′dxdt,

where
Dk := {x′′ ∈ RN(N+1)/2 : index (x′′) = k}.
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3.4.1 Expectation of the Number of Connected Components of
the Excursion Set

Throughout this section, let {X(t), t ∈ RN} be a Gaussian random field satisfying the
conditions in Corollary 3.2.1, and let gu satisfy (3.11). For any K ∈ J , K is an open set
and ∂K can be decomposed as

∂K =
N−1⋃
i=0

⋃
J∈Ki

J,

where Ki is the set of i-dimensional open facets of ∂K. Here “open” means that Ki is an
open subset of the i-dimensional Hyperplane HJ endowed with the usual Euclidean norm.
Let KN := {K}. From the definition of J , we have

#Ki < ∞ (3.28)

for 0 ≤ i ≤ N , where “#” stands for “the cardinality of”. For any 0 ≤ i ≤ N and J ∈ Ki,
the facet boundary of J , written as FJ , is defined as

FJ :=

{⋃
0≤j≤i−1,J ′∈Kj ,J ′ is a facet of J J

′ if 1 ≤ i ≤ N,

∅ if i = 0.

Obviously, we have ∂K = FK . As for 0 ≤ i ≤ N−1 and J ∈ Ki, since ∂J = J in the space
(RN , ∥ · ∥), we do not have ∂J = FJ . Since each J ∈ Ki, 0 ≤ i ≤ N − 1 is an open subset
of the i-dimensional Hyperplane HJ endowed with the usual Euclidean norm, it is easy to
check that restriction X|HJ

is also a Gaussian random field indexed by HJ , and satisfies all
the conditions in Corollary 3.2.1, where we substitute RN with HJ . Similarly, we denote
by Mu(X|HJ

, Si, k) the number of the critical points of X|HJ
with index 0 ≤ k ≤ i above

the threshold u ∈ R in the search region Si ⊂ HJ , i.e.,

Mu(X|HJ
, Si, k) := #

{
t ∈ Si : X|HJ

(t) > u,▽X|HJ
(t) = 0, index (▽2X|HJ

(t)) = k
}
.

We also denote by M̃u(X|HJ
, Si) the true number of the local maxima of X|HJ

in Si ⊂ HJ

over u ∈ R. For any 0 ≤ i ≤ N , J ∈ Ki and u ∈ R, we define that

• CC(Au(X, guJ)) is the number of the connected components of Au(X, guJ);

• Ct(Au(X, guJ)) is the number of the connected components of Au(X, guJ) touching
FJ (i.e., its intersection with FJ is not empty);
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• Cn(Au(X, guJ)) is the number of the connected components of Au(X, guJ) not touch-
ing FJ (i.e., its intersection with FJ is empty).

From the above definitions, it is easy to see that

1. if J ∈ K0, then FJ = ∅ and Ct(Au(X, guJ)) = 0;

2. CC(Au(X, guJ)) ≡ Ct(Au(X, guJ)) + Cn(Au(X, guJ)).

Given u ∈ R, the following are some useful observations about these quantities.

• For any 0 ≤ i ≤ N and J ∈ Ki, each connected component of Au(X, guJ) touching
guFJ must contain at least one connected component of Au(X, guFJ), while obviously
each connected component of Au(X, guFJ) cannot be the subset of two different
connected components of Au(X, guJ) touching guFJ , simultaneously. Thus, we have

Ct(Au(X, guJ)) ≤ CC(Au(X, guFJ)). (3.29)

• Each connected component of Au(X, gu∂K) must contain at least one connected
component of Au(X, guJ) not touching guFJ for some 0 ≤ i ≤ N − 1 and J ∈ Ki,
while obviously each connected component of Au(X, guJ) cannot be the subset of
two different connected components of Au(X, gu∂K) simultaneously. Thus, we have

CC(Au(X, gu∂K)) ≤
N−1∑
i=0

∑
J∈Ki

Cn(Au(X, guJ)). (3.30)

• For any 1 ≤ i ≤ N and J ∈ Ki, let X|HJ
be the restriction of X on J . Note

that X(t) = u when t is in the boundary of a connected component of Au(X, guJ)
not touching guFJ . Thus, the global maximum of each connected component of
Au(X, guJ) not touching guFJ must exist and be a local maximum of X|HJ

, which
implies

Cn(Au(X, guJ)) ≤ M̃u(X|HJ
, guJ).

Similarly, by Remark 2.1.12, we have

Cn(Au(X, guJ)) ≤ Mu(X|HJ
, guJ) (3.31)

almost surely.
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Figure 3.3: An example of Au(X, gu∂K) for some u ∈ R. The interior of the shaded part
is the search region guK, and the interior of each circle, written as Ci, 1 ≤ i ≤ 4 is a
connected component of Au(X,RN).

Example 3.4.1. Figure 3.3 is an example of Au(X, gu∂K) for some u ∈ R, where

Au(X, gu∂K) =
4⋃

i=1

(Ci ∩ gu∂K) .

From Figure 3.3, we have

1.
∑

J∈K1
Ct(Au(X, guK)) = 3;

2. CC(Au(X, gu∂K)) = 4;

3.
∑

J∈K1
Cn(Au(X, guJ)) = 3;

4.
∑

J∈K0
Cn(Au(X, guJ)) = 1.

Therefore, we can see that both (3.29) and (3.30) hold in this example.

Now we have made enough preparation for the following theorem.

46



Theorem 3.4.2. Let X satisfy the conditions in Lemma 3.2.2, and let gu satisfy (3.11).
Then for any K ∈ J ,

lim
u→∞

E [Ct(Au(X, guK))] = 0.

Proof. By (3.28), (3.29) and (3.30), we only need to show that for any 0 ≤ i ≤ N − 1 and
J ∈ Ki,

lim
u→∞

E [Cn(Au(X, guJ))] = 0.

If i = 0, then

E [Cn(Au(X, guJ))] = P [X(0) > u] → 0, as u → ∞.

If 1 ≤ i ≤ N − 1, then by (3.31),

Cn(Au(X, guJ)) ≤ Mu(X|HJ
, guJ)

almost surely, where X|HJ
is the restriction of X on J . Thus, we only need to show that

for any 1 ≤ i ≤ N − 1 and J ∈ Ki

lim
u→∞

E [Mu(X|HJ
, guJ)] = 0.

By Lemma 3.2.2 and (3.11), we have

lim
u→∞

gNu uN−1 exp

(
−u2

2

)
= C.

for some constant C. Then by Lemma 3.2.2, gu → ∞ as u → ∞, and 1 ≤ i ≤ N − 1, we
have

E [Mu(X|HJ
, guJ)] =

λi−1(guJ)det
(
ΛX|HJ

)1/2
ui−1

(2π)(i+1)/2
exp

(
−u2

2

)(
1 +O(u−1)

)
= gNu uN−1 exp

(
−u2

2

) λi−1(J)det
(
ΛX|HJ

)1/2
gi−N
u ui−N

(2π)(i+1)/2

(
1 +O(u−1)

)
→ 0 as u → ∞,

which completes the proof.
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3.4.2 Poisson Limit for the Number of Connected Components
of the Excursion Set

Let the pair (X, gu) be qualified. Endow RN with the Euclidean norm ∥ · ∥. For any
tk = (tk1, . . . , tkN) ∈ RN , k = 1, 2 such that t1 ̸= t2, t1 is said to be less than t2 in the
lexicographical order on RN if t1n < t2n for some 1 ≤ n ≤ N and t1i = t2i if 1 ≤ i < n
and n > 1. Since each bounded connected component of the excursion set Au(X,RN) is
a non-empty open set and X(t) = u for all t ∈ ∂Au(X,RN), the global maximum of X
in this connected component must exist and be a local maximum. Note that there can be
more than one global maximum taking the same value in this connected component. In
this case, we only consider the global maximum with the smallest lexicographical order in
this connected component. Denote by Gu(X) the set of the global maxima in Au(X,RN)
as above. Then by Remark 2.1.12 and Lemma 3.2.2, we have for any compact set T , with
probability one, Gu(X) ∩ T is a finite set, and for any t ∈ Gu(X) ∩ T , X(t) is a strict
local maxima of X with index N . Thus, we can define a new family of point processes
{Nu(X, gu·), u ∈ R} such that for any S ∈ B(RN), Nu(X,S) counts the number of points
in Gu(X) ∩ S. From the above, it is easy to see that for any S ∈ B(RN),

Nu(X, guS) ≤ min {CC(Au(X, guS)),Mu(X, guS)} (3.32)

almost surely. The following theorem establishes the Poisson limit of Nu(X, gu·) as u → ∞.

Theorem 3.4.3. Let (X, gu, c) be a qualified triple, and let Nu(X, gu·) be as above. Then
as u → ∞, Nu(X, gu·) converge weakly to a Poisson point process with mean measure cλN .

Proof. Note that for any K ∈ J , the following two events are equivalent:

1. {Nu(X, guK) = 0} ∩Hu(K);

2. {Mu(X, guK) = 0} ∩Hu(K).

Therefore,

P [Nu(X, guK) = 0 | Hu(K)] = P [Mu(X, guK) = 0 | Hu(K)] .

Then by Inequality (3.16) and Lemma B.1.5, we have

lim
u→∞

P [Nu(X, guK) = 0] = lim
u→∞

P [Nu(X, guK) = 0 | Hu(K)]

= lim
u→∞

P [Mu(X, guK) = 0 | Hu(K)]

= lim
u→∞

P [Mu(X, guK) = 0]

= e−cλN (K).

(3.33)
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Moreover, by (3.32), it is easy to see that for any K ∈ J ,

lim sup
u→∞

E [Nu(X, guK)] ≤ lim
u→∞

E [Mu(X, guK)] = cλN(K) < ∞. (3.34)

Finally, combining (3.33), (3.34) and Lemma 2.2.7 completes the proof.

Combining Lemma 2.2.6, Corollary 3.2.1 and Theorem 3.4.3, we have for any bounded
S ∈ B(RN) with λN−1(∂S) < ∞ and non-negative integer k,

lim
u→∞

P [Nu(X, guS) = k] = lim
u→∞

P [Mu(X, guS) = k] = e−cλN (S) c
kλN(S)

k

k!
, (3.35)

where, in Lemma 2.2.6, we let

f(t) = 1S(t) :=

{
1 if t ∈ S,

0 if t /∈ S.

In consequence, we can study the Poisson limit of the number, denoted by CC(Au(X, guS)),
of the connected components of the excursion set Au(X, guS) by (3.35) and the relation-
ship between Nu(X, guS) and CC(Au(X, guS)) for any bounded set S ∈ B(RN) with
λN−1(∂S) < ∞.

Theorem 3.4.4. Let (X, gu, c) be a qualified triple. For any bounded set S ∈ B(RN) with
λN−1(∂S) < ∞, CC(Au(X, guS)) converge weakly to a Poisson random variable with mean
cλN(S).

Proof. Note that for any bounded set S ∈ B(RN) with λN−1(∂S) < ∞ and any non-
negative integer k, the following events are equivalent:

1. {Nu(X, guS) = k} ∩Hu(S);

2. {CC(Au(X, guS)) = k} ∩Hu(S).

Therefore,

P [Nu(X, guS) = k | Hu(S)] = P [CC(Au(X, guS)) = k | Hu(S)] .

By Lemmas 3.3.7 and B.1.5, we have

lim
u→∞

P [Hu(S)] = 1. (3.36)
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Then by Inequality (3.16), (3.35) and (3.36), we have

lim
u→∞

P [CC(Au(X, guS)) = k] = lim
u→∞

P [CC(Au(X, guS)) = k | Hu(S)]

= lim
u→∞

P [Nu(X, guS) = k | Hu(S)]

= lim
u→∞

P [Nu(X, guS) = k]

= e−cλN (S) c
kλN(S)

k

k!

for any non-negative integer k, and hence the proof is completed.

3.4.3 A Further Relationship between the Number of Local Max-
ima and the Number of Connected Components

In this section, we will show some asymptotic results about the number of the critical
points over some threshold. We will also relate these results to the number of the connected
components of an excursion set we have discussed in the last section.

Lemma 3.4.5. Let the pair (X, gu) be qualified. Then for any bounded set S ⊂ RN with
λN−1(∂S) < ∞, we have

lim
u→∞

E [Mu(X, guS, k)] = 0

for every 0 ≤ k ≤ N − 1.

Proof. See Appendix B.1.4.

Theorem 3.4.6. Let (X, gu, c) be a qualified triple. Then as u → ∞,
∑N

k=0Mu(X, gu·, k)
converge weakly to a Poisson point process with mean measure cλN .

Proof. Follow the proof of Theorem 3.4.3 and use Lemma 3.4.5.

The following lemma is a simple application of Theorem 2.3.4. Recall that we have
defined Morse functions in Section 2.3.

Lemma 3.4.7. Let f be a Morse function on an open set containing the compact set
S ⊂ RN (N ≥ 1). Suppose that D is a connected component of Au(f, S) for some u ∈ R
such that ∂D ∩ ∂S = ∅. Suppose that p1,p2 ∈ D are two local maxima of f with index N .
Then there exists a critical point of f in D with index less than N .
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Combining Lemma 3.4.5 with Lemma 3.4.7, we can further get the following closer
relationship between the number of the connected components and the number of the local
maxima with index N when the threshold is very high.

Theorem 3.4.8. Let the pair (X, gu) be qualified, and let the set S ⊂ RN (N ≥ 1) be
bounded with λN−1(∂S) < ∞. Then

lim
u→∞

P [CC(Au(X, guS)) = Mu(X, guS) = Nu(X, guS)] = 1.

Proof. By Lemma 3.4.5, we have

lim
u→∞

E

[
N−1∑
k=0

Mu(X, guS, k)

]
= 0,

which implies that

lim
u→∞

P

[
N−1∑
k=0

Mu(X, guS, k) = 0

]
= 1.

By Lemmas 3.3.7 and B.1.5, we have

lim
u→∞

P [Hu(S)] = 1,

where Hu(S) is defined in (3.27). Then by the Inequality (3.16), we have

lim
u→∞

P

[
N−1∑
k=0

Mu(X, guS, k) = 0

∣∣∣∣∣ Hu(S)

]
= 1.

By Lemma 3.4.7, it is easy to see that the event {
∑N−1

k=0 Mu(X, guS, k) = 0}∩Hu(S) implies
the event {CC(Au(X, guS)) = Mu(X, guS) = Nu(X, guS)} ∩Hu(S). Thus,

lim
u→∞

P [CC(Au(X, guS)) = Mu(X, guS) = Nu(X, guS) | Hu(S)] = 1.

Finally, again by Inequality (3.16), we have

lim
u→∞

P [CC(Au(X, guS)) = Mu(X, guS) = Nu(X, guS)] = 1.
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Chapter 4

Local Behavior of Critical Points

4.1 Introduction

In Section 3.4.3, we have explored that the critical points of a stationary Gaussian random
field indexed by RN above an extremely high threshold behave very similarly to a Poisson
point process on RN , and each connected component of the excursion set tends to contain
only one critical point which is the global maximum of the Gaussian random field in this
connected component. However, when the threshold is high but not extremely high, the
possibility for a connected component to contain more than one critical point increases. In
this case, the main difference between the critical points above the threshold and a Poisson
point process lies in their local behaviors which can be characterized by the interactions
between different critical points. In fact, there are many excellent results on the local
structure of a Gaussian random field near a high excursion point ([24], [10], [3]). In this
chapter, this excursion point is chosen to be a critical point with unknown index, and we
are interested in its impact on other critical points nearby.

When the Gaussian random field is isotropic, we can simply choose the origin as the
given high critical point without loss of generality. Then conditional on the event that

the origin is a critical point above the threshold u,

we can define fu,k(t), t ∈ RN as the density of the mean measure of the critical points
above u with index k (0 ≤ k ≤ N). The existence of these densities are guaranteed by
Lemma 2.1.10 as shown later.
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Note that all of these densities of mean measures will decrease to zero as u → ∞ since
a higher threshold can always screen out more critical points. Thus, their relative values
carry more information about the interactions. In this chapter, we mainly consider two
ratios. The first ratio is ∑

k even fu,k(t)∑
k odd fu,k(t)

,

which reflects how a high critical point affects the signs of the determinants of the Hessian
matrices of others. We will see its limiting behavior as ∥t∥ → 0 for any u ∈ R. The second
ratio is ∑N−2

k=1 fu,k(t)

fu,N−1(t) + fu,N(t)
,

which reflects whether the critical points with index greater than or equal to N − 1 are
more likely to appear than others near a high critical point. We will establish its limiting
behavior as u → ∞ on a compact region. The combination of the results on these ratios
reveals a profound relationship between the local maxima and critical points with index
N − 1 above a high threshold. This relationship also serves as a part of the intuition for
the next chapter.

The remainder of this chapter is organized as follows. Section 4.2 reviews some existing
results about Gaussian random fields and matrix perturbations. Section 4.3 introduces
basic settings including notations and the conditions on the underlying Gaussian random
field in this chapter. For convenience, we still call a Gaussian random field qualified if it
satisfies these conditions. One should not confuse a “qualified” Gaussian random field with
a “qualified triple” in Chapter 3. Next, there is a covariance matrix playing an important
role in the construction of our theory, and we collect some useful properties of it in Section
4.4. Based on these properties, Sections 4.5 and 4.6 state and prove our main results about
the two ratios above, respectively.

4.2 Literature Review

Let {X(t), t ∈ RN} be a centered, isotropic Gaussian random field. Endow RN with the
usual Euclidean norm ∥ · ∥. Due to isotropy, there exists some function ρ : [0,∞) → R
such that the covariance function of X can be written as

E [X(s)X(t)] = ρ(∥t− s∥2) for any s, t ∈ RN .

Lemma 4.2.1. (Proposition 3.3, [11]) Let {X(t), t ∈ RN} be a centered, isotropic Gaus-
sian random field possessing almost sure derivatives of up to second order and satisfying
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Condition (2.13) in Lemma 2.1.10. Then the Gaussian vector (▽2X(t),▽X(t), X(t)) is
non-degenerate if and only if

ρ(1)(0) ̸= 0 and
ρ(2)(0)

ρ(1)(0)2
>

N

N + 2
.

For any positive integer n, endow Rn×n with the spectral norm ∥ · ∥s, i.e., for any
A ∈ Rn×n,

∥A∥s = max{
√
ν : ν is an eigenvalue of ATA}

.

Lemma 4.2.2. (Pages 405 and 411, [17]) Let Cn be the set of all positive semi-definite
matrix in Rn×n. Then for any Σ ∈ Cn, there exists a unique matrix A in Cn such that
Σ = AAT . Here A is called the non-negative square root of Σ and can be written
as Σ1/2. Moreover, let fn : Cn → Cn, where f(Σ) = Σ1/2. Then fn is continuous on the
interior of Cn.

Lemma 4.2.3. (Theorem 5.1, [20]) Let T : R → Rn×n be continuous on A ⊂ R. Then
there exist continuous functions µ1, . . . , µn on x ∈ A such that

T (x) = P (x)Λ(x)P T (x),

for any x ∈ A, where Λ(x) := diag (µ1(x), . . . , µn(x)) and P (x)P T (x) = In.

4.3 Basic Settings

In the following sections, we will make heavy calculation of matrices and their sub-matrices.
Let N := {0, 1, . . . } and Z+ := {1, 2, . . . }. For any matrix M ∈ Rm×n (m,n ∈ Z+), denote
by M(i) its i-th row and by M (j) its j-th column for i = 1, . . . ,m and j = 1, . . . , n. For any
a, b ∈ Z+ such that a ≤ b, denote by a : b the set of all integers in [a, b]. For any S1 ⊂ 1 : m
and S2 ⊂ 1 : n, denote by M [S1, S2] the sub-matrix of M formed by the entries with row
indices in S1 and column indices in S2. For a real vector a ∈ Rn (row or column), we use
a[i] to denote its i-th coordinate for i = 1, . . . , n. Denote by In the identity matrix of size
n, by 0n the origin of Rn, and by 0m×n the origin of Rm×n. All vectors are column vectors
by default.

The following conventional notations will frequently appear in this chapter. The Kro-
necker delta is defined by

δi,j =

{
0 if i ̸= j

1 if i = j
.
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For any n ∈ Z+, let λn (n ∈ Z+) be the n-dimensional Lebesgue measure, and let ∥ · ∥n be
the usual Euclidean norm of Rn. For conciseness, We often drop the subscript n when the
dimension can be easily seen from the context. For any matrix M ∈ Rm×n (m,n ∈ Z+),
denote by Rank (M ) the rank of M . Given a vector space V over R, for any S ⊂ V ,
denote by span (S) the linear span of S, i.e.,

span (S) :=

{
n∑

i=1

kivi

∣∣∣∣∣n ∈ N, ki ∈ R,vi ∈ S

}
.

For any two non-negative real-valued functions h(x) and g(x), x ∈ R, we write

h(x) = Θ(g(x)) as x → ∞

if there exist positive constants k1, k2 and C such that for any x > C,

k1g(x) ≤ h(x) ≤ k2g(x).

For any two times differentiable function f : RN → R, let ▽f and ▽2f be the gradient
and the Hessian matrix of f , respectively. Recall that in Section 2.3, the point t ∈ RN

is said to be a critical point of f if ▽f(t) = 0. The index or type of a critical point t
is defined to be the number of negative eigenvalues (counted with their multiplicities) of
▽2f(t). For example, a local maximum is typically a critical point with index N .

Recall that for any symmetric matrix M = (mij) ∈ RN×N , a vector a ∈ RN(N+1)/2 is
said to be the usual vectorization of M if

a[i+ j(j − 1)/2] = mij for any 1 ≤ i ≤ j ≤ N .

Definition 4.3.1. (Matriculation) A matrix M ∈ RN×N is said to be the N -th order
matriculation of a vector a ∈ Rn (n ≥ N(N + 1)/2), written as M = MatriN(a), if
a[1 : (N(N + 1)/2)] is the usual vectorization of M .

It is noticeable that different vectors, with different coordinate values or even different
lengths, can share the same N -th order matriculation since only the first N(N + 1)/2
elements of them are considered.

Definition 4.3.2. An isotropic Gaussian random field X(t), t ∈ RN (N ≥ 2) with covari-
ance structure

ρ(∥t− s∥2) ≡ R(t− s) := Cov [X(s), X(t)]

is said to be qualified if the following conditions are satisfied:
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(1) X is centered with unit variance, i.e., E[X(0)] = 0 and ρ(0) = 1.

(2) X has almost surely partial derivatives of up to second order.

(3) The sixth derivative of ρ(x) at x = 0 exists, which implies there exists a constant
δρ > 0 such that the fifth-order derivative of ρ(x) exists and is bounded on x ∈ [0, δ2ρ].

(4) The distribution of
(▽2X(t),▽X(t), X(t),▽X(0), X(0))

is non-degenerate for any t ∈ RN \ {0N}, and the distribution of (X111(0),▽X(0)) is
also non-degenerate (note that by Lemma 2.1.4 and Condition (4), the mean square
derivative X111(0) exists).

Remark 4.3.3. The above conditions allow us to apply Lemma 4.2.1 to X (see Lemma
2.1.13). If ρ(x) is four times continuously differentiable on a compact set T ⊂ RN \ {0N}
with λN−1(∂T ) < ∞, then Conditions (1), (2) and (4) allow us to apply Lemma 2.1.10 to
the Gaussian random field X(t) conditional on {▽X(0) = 0N , X(0) = z} for any z ∈ R
(see Appendix C.2 and Remark 2.1.11). Condition (3) is critical in the calculation of the
asymptotic expansion of Σ(t) as ∥t∥ → 0 introduced later. Conditions (3) and (4) are also
associated with the convergence speeds of those ordered eigenvalues of Σ(t) converging to
0 as ∥t∥ → 0.

Remark 4.3.4. Indeed, the assumption that X is qualified imposes some constraints on the
derivatives of ρ. Let ρ(i)(x), x ≥ 0 and i ≥ 1 be the i-th derivative (if exists) of ρ at
x. Firstly, by Condition (4) in Definition 4.3.2, X1, X11 and X111 are all non-degenerate.
Then by Lemma 2.1.4 and (C.1),

−2ρ(1)(0) = Var[X1(0)] > 0,

by (C.4),
12ρ(2)(0) = Var[X11(0)] > 0,

and by (C.5),
−120ρ(3)(0) = Var[X111(0)].

This implies
ρ(1)(0) < 0, ρ(2)(0) > 0 and ρ(3)(0) < 0. (4.1)

Secondly, let α = ρ(1)(0)−1ρ(2)(0)2 and β = ρ(3)(0). Then by Condition (4) in Definition
4.3.2 and the Cauchy–Schwarz inequality,

(Cov [X111(0), X1(0)])
2 < Var[X111(0)]Var[X1(0)].
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By Lemma 2.1.4, (C.2), (C.4) and (C.5), this is equivalent to(
12ρ(2)(0)

)2
<
(
−120ρ(3)(0))(−2ρ(1)(0)

)
.

Then by ρ(1)(0) < 0, we have

α >
5

3
β. (4.2)

Moreover, for any r > 0 and t ∈ RN , let B(t, r) be theN -dimensional open ball centered
at t with radius r. Then by the Cauchy–Schwarz inequality, we have for any 1 ≤ i ≤ N
and t ∈ B(0N , δρ) (see δρ in Definition 4.3.2),

|Cov [Xi(t), Xi(0)]| ≤
√

Var[Xi(t)]Var[Xi(0)].

By Lemma 2.1.4 and (C.2), this is equivalent to∣∣−ρ(1)(∥t∥2)− 2t2i ρ
(2)(∥t∥2)

∣∣ ≤ −ρ(1)(0).

Note that the equal sign in the above inequality holds if and only if Xi(t) and Xi(0) are
linearly dependent, which is impossible for any t ∈ B(0N , δρ) \ {0N} by Condition (4) in
Definition 4.3.2. Thus, for any 1 ≤ i ≤ N and t ∈ B(0N , δρ) \ {0N},∣∣−ρ(1)(∥t∥2)− 2t2i ρ

(2)(∥t∥2)
∣∣ < −ρ(1)(0). (4.3)

Then for any x ∈ (0, δ2ρ], by taking t := (0, . . . , 0,
√
x) ∈ RN and i = 1 in (4.3), we have∣∣ρ(1)(x)∣∣ < −ρ(1)(0). (4.4)

Finally, by Lemma 4.2.1, we see

1− ρ(1)(0)2

3ρ(2)(0)
> 1− N + 2

3N
≥ 0.

Let X be qualified and L := N(N +1)/2+ 2. For any t ∈ RN \ {0N}, by Lemma 2.1.4
and Appendix A.1,

(▽2X(t), X(t), X(0)|▽X(t) = ▽X(0) = 0N)

(i.e., (▽2X(t), X(t), X(0)) conditional on ▽X(t) = ▽X(0) = 0N) is a Gaussian L-vector,
and let Σ(t) be its covariance matrix. By (A.8) and Condition (4) in Definition 4.3.2, Σ(t)
is positive-definite for any t ∈ RN \ {0N}. Let

λ1(t) ≥ λ2(t) ≥ · · · ≥ λL(t) > 0 (4.5)
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be the ordered eigenvalues of Σ(t). Then an eigen-decomposition of Σ(t) is given by

Σ(t) = P (t)Λ(t)P T (t),

where P (t) is an L × L orthogonal real matrix and Λ(t) := diag (λ1(t), . . . , λL(t)). One
should note that P (t) in the above eigen-decomposition may be not unique since the
ordering in (4.5) is not strict.

For any t ∈ RN \ {0N}, denote

A(t) := P (t)Λ1/2(t) = P (t)diag
(
λ
1/2
1 (t), . . . , λ

1/2
L (t)

)
.

Immediately, we have for any t ∈ RN \ {0N},

Σ(t) = A(t)AT (t),

and A(t) can be uniquely determined by a version of P (t).

Denote by SN−1 the unit (N − 1)-sphere. Since X is isotropic, we will focus on the
behavior of Σ(ur) along a given direction u = (u1, . . . , uN)

T ∈ SN−1 for r > 0. Thus, it
would be more convenient and comprehensible to adopt the notations:

Σu(r) := Σu(r), Au(r) := Au(r), Pu(r) := Pu(r), and Λu(r) := Λu(r),

which emphasize on them being the matrix-valued functions of r.

LetML(R) be the space of all L×L real symmetric matrices endowed with the Frobenius

norm ∥ · ∥F , i.e., for any A = (aij) ∈ ML(R), ∥A∥F =
√∑L

i,j=1 a
2
ij. Endow RN with the

usual Euclidean norm. The following lemma describes the behavior of Σu(r) as r → 0.

Lemma 4.3.5. Let X be qualified. Then for any direction u = (u1, . . . , uN)
T ∈ SN−1,

Σu(0) := limr↓0Σu(r) exists, and the function Σu(·) : [0,∞) → ML(R) is continuous on
[0, δρ], where δρ is as defined in Definition 4.3.2. In addition, we have as r → 0,

Σu(r) = Σu,0 +Σu,2r
2 + o(r2),

where Σu,0,Σu,2 ∈ ML(R) satisfy

1. Σu,0 = Σu(0) is positive semi-definite;
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2. for any 1 ≤ i1 ≤ j1 ≤ N and 1 ≤ i2 ≤ j2 ≤ N , we have

Σu,0[i1 + j1(j1 − 1)/2, i2 + j2(j2 − 1)/2]

= 4ρ(2)(0)(δi2,j1δi1,j2 + δi1,i2δj1,j2 − δj1,j2ui1ui2 − δi1,j2uj1ui2

− δi2,j1ui1uj2 − δi1,i2uj1uj2 + 2ui1uj1ui2uj2)

+
8

3
ρ(2)(0)(δi1,j1 − ui1uj1)(δi2,j2 − ui2uj2)

(4.6)

and

Σu,2[i1 + j1(j1 − 1)/2, i2 + j2(j2 − 1)/2]

=

(
2α− 14

9
β

)
δi1,j1δi2,j2 +

(
4α− 52

9
β

)
δi2,j2ui1uj1 +

(
4α− 52

9
β

)
δi1,j1ui2uj2

+ (2α− 6β) δj1,j2ui1ui2 + (2α− 6β) δi1,j2uj1ui2 + (2α− 6β) δi2,j1ui1uj2

+ (2α− 6β) δi1,i2uj1uj2 +
64

9
βui1uj1ui2uj2 .

(4.7)
where α = ρ(1)(0)−1ρ(2)(0)2 and β = ρ(3)(0);

3. for any 1 ≤ i1 ≤ j1 ≤ N , we have

Σu,0[i1 + j1(j1 − 1)/2, L] = Σu,0[i1 + j1(j1 − 1)/2, L− 1] =
4

3
ρ(1)(0)(δi1,j1 − ui1uj1)

(4.8)
and

Σu,2[i1 + j1(j1 − 1)/2, L] = Σu,2[i1 + j1(j1 − 1)/2, L− 1]

=

(
1

3
α′ − 1

9
β′
)
δi1,j1 +

(
2

3
α′ − 14

9
β′
)
ui1uj1 ,

where α′ = ρ(2)(0) and β′ = ρ(1)(0)ρ(2)(0)−1ρ(3)(0);

4.
Σu,0[L− 1, L− 1] = Σu,0[L,L− 1] = Σu,0[L− 1, L] = Σu,0[L,L]

= 1− 1

3
ρ(1)(0)2ρ(2)(0)−1

(4.9)

and

Σu,2[L− 1, L− 1] = Σu,2[L,L− 1] = Σu,2[L− 1, L] = Σu,2[L,L]

= −1

6
ρ(1)(0) +

5

18
ρ(1)(0)2ρ(2)(0)−2ρ(3)(0).
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Proof. Since the proof is long and computationally heavy, we include it in Appendix C.3.

From Lemma 4.3.5, we see that the elements ofΣu(r) are at least two times continuously
differentiable in r at 0. Intuitively, one may also expect that the diagonal matrix Λu(r) of
its ordered eigenvalues and the corresponding matrix Pu(r) consisting of its eigenvectors
to have the similar properties. In particular, when ρ(x), x ≥ 0 is real analytic on a
neighborhood of 0, we can simply follow the proof of Lemma 4.3.5 to show thatΣu(r) is also
real analytic on that neighborhood. Then by the first theorem in [22], both the eigenvalues
and eigenvectors of Σu(r) can be parameterized real analytically on a neighborhood of 0.
As for the ordering of these eigenvalues, by noting the fact that zeros of a real analytic
function indexed by R are isolated (see Corollary 1.2.5 in [21]), we can also show that
Λu(r) and Pu(r) can be both real analytic on a neighborhood of 0.

However, the above result relies heavily on the assumption that ρ is real analytic, and
is not guaranteed even when ρ is infinitely differentiable (see more explanation in [20]).
Thus, the following condition can be regarded as a generalization of real analyticity of ρ
on a neighborhood of 0, such that both the ordered eigenvalues and the corresponding
eigenvectors of Σu(r) can change smoothly enough under perturbation.

Definition 4.3.6. (Perturbation Condition) Let X be qualified, and let Σ(t), P (t) and
Λ(t), t ∈ RN \ {0N} be the matrices as defined above. Then X is said to be qualified
under perturbation if there exists a version of P (t) and Λ(t), such that for any direction
u = (u1, . . . , uN)

T ∈ SN−1,

1. both Pu(0) := limr↓0Pu(r) and Λu(0) := limr↓0Λu(r) exist;

2. there exists a constant δpc ∈ (0, δρ] such that Pu(r) and Λu(r) are both continuous
on r ∈ [0, δpc];

3. Pu(r) = Pu,0 + Pu,1r + o(r) as r → 0 for some Pu,0, Pu,1 ∈ RL×L;

4. Λu(r) = Λu,0 +Λu,1r+Λu,2r
2 + o(r2) as r → 0, where Λu,j, j = 0, 1, 2 are all L×L

real-valued diagonal matrices. More specifically, this is equivalent to

λu,i(r) = λu,i,0 + λu,i,1r + λu,i,2r
2 + o(r2),

where λu,i,j ∈ R for i = 1, . . . , L and j = 0, 1, 2, such that Λu,0 := diag (λu,i,0, i =
1, . . . , L), Λu,1 := diag (λu,i,1, i = 1, . . . , L), and Λu,2 := diag (λu,i,2, i = 1, . . . , L).
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In the following sections, if X is qualified under perturbation, then P (t) and Λ(t) are
selected to be a version satisfying all the four conditions in Definition 4.3.6 by default.

Remark 4.3.7. Let X be qualified under perturbation and u ∈ SN−1. Then by Definition
4.3.6, Au(r) := Pu(r)Λ

1/2
u (r), r ≥ 0 is also continuous on r ∈ [0, δpc] and there exist

Au,0,Au,1/2,Au,1 ∈ RL×L such that ,

Au(r) = Au,0 +Au,1/2r
1/2 +Au,1r + o(r)

as r → 0. In particular, we have Au,0 = Au(0).

In addition, by the continuities of Σu(r), Au(r), Pu(r) and Λu(r) on r ∈ [0, δpc], it is
easy to see

(i) Pu,0 is orthogonal;

(ii) Σu,0 has the eigen-decomposition

Σu,0 = Pu,0Λu,0P
T
u,0;

(iii) Au,0 = Pu,0Λ
1/2
u,0.

4.4 Covariance Structure

4.4.1 General Covariance Structure

The following lemma collects some useful results from Lemma 4.3.5 and Definition 4.3.6.

Lemma 4.4.1. Let X be qualified under perturbation and u ∈ SN−1. Then for any 1 ≤
i ≤ L, we have

(i) (P
(i)
u,0)

TP
(i)
u,1 = 0;

(ii) λu,i,1 = 0, i.e., Λu,1 = 0L×L;

(iii) if λu,i,0 = 0, then λu,i,2 = (P
(i)
u,0)

TΣu,2P
(i)
u,0;

(iv) Σu,0P
(i)
u,1 = λu,i,0P

(i)
u,1.
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Proof. By Definition 4.3.6 and the orthogonality of Pu(r) for any r ≥ 0, we have

IL = Pu(r)
TPu(r)

= (Pu,0 + Pu,1r + o(r))T (Pu,0 + Pu,1r + o(r))

= IL +
(
P T

u,0Pu,1 + P T
u,1Pu,0

)
r + o(r),

which implies
P T

u,0Pu,1 + P T
u,1Pu,0 = 0L×L.

Thus, for any 1 ≤ i ≤ L,

(P
(i)
u,0)

TP
(i)
u,1 =

1

2

(
P T

u,0Pu,1 + P T
u,1Pu,0

)
[i, i] = 0.

For (ii), note that

Σu(r)Pu(r)
(i) =

(
Σu,0 +Σu,2r

2 + o(r2)
) (

P
(i)
u,0 + P

(i)
u,1r + o(r)

)
= Σu,0P

(i)
u,0 +

(
Σu,0P

(i)
u,1

)
r +O

(
r2
)

and

λu,i(r)Pu(r)
(i) =

(
λu,i,0 + λu,i,1r + λu,i,2r

2 + o(r2)
) (

P
(i)
u,0 + P

(i)
u,1r + o(r)

)
= λu,i,0P

(i)
u,0 +

(
λu,i,0P

(i)
u,1 + λu,i,1P

(i)
u,0

)
r +O(r2).

(4.10)

Then by Σu(r)Pu(r)
(i) = λu,i(r)Pu(r)

(i), we get

λu,i,0P
(i)
u,1 + λu,i,1P

(i)
u,0 = Σu,0P

(i)
u,1. (4.11)

By left-multiplying (P
(i)
u,0)

T on the both sides of (4.11), (i) of this lemma, (i) and (ii) in
Remark 4.3.7, and the symmetry of Σu,0, we have for any 1 ≤ i ≤ L,

λu,i,1 =
(
P

(i)
u,0

)T
Σu,0P

(i)
u,1 =

(
P

(i)
u,1

)T
Σu,0P

(i)
u,0 = λu,i,0

(
P

(i)
u,1

)T
P

(i)
u,0 = 0.

For (iii), by (ii) and λu,i,0 = 0, Equation (4.10) becomes

λu,i(r)Pu(r)
(i) =

(
λu,i,2r

2 + o(r2)
) (

P
(i)
u,0 + P

(i)
u,1r + o(r)

)
= λu,i,2P

(i)
u,0r

2 + o(r2).
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Similarly, by Σu(r)Pu(r)
(i) = λu,i(r)Pu(r)

(i), we can get

Σu,2P
(i)
u,0 = λu,i,2P

(i)
u,0. (4.12)

Then by left-multiplying (P
(i)
u,0)

T on the both sides of (4.12), we have for any 1 ≤ i ≤ L,

λu,i,2 =
(
P

(i)
u,0

)T
Σu,2P

(i)
u,0.

Finally, taking (ii) into Equation (4.11) yields (iv).

Remark 4.4.2. Let X be qualified under perturbation and u ∈ SN−1. By (ii) of Lemma
4.4.1, it is easy to see the matrix Au,1/2 in (iii) of Remark 4.3.7 is 0L×L, and then we have

Au(r) = Au,0 +Au,1r + o(r)

as r → 0. In addition, by Definition 4.3.6 and (ii) of Lemma 4.4.1, we have

λ
1/2
u,i (r) =

λ
1/2
u,i,0 +

λu,i,2

2(λu,i,0)1/2
r2 + o

(
r2
)
, for any 1 ≤ i ≤ Rank (Σu,0);

λ
1/2
u,i,2r + o(r), otherwise.

Then by Definition 4.3.6, Remark 4.4.2, and Au(r) = Pu(r)Λ
1/2
u (r), we have

A
(i)
u,1 =

{
λ
1/2
u,i,0P

(i)
u,1, for any 1 ≤ i ≤ Rank (Σu,0);

λ
1/2
u,i,2P

(i)
u,0, otherwise.

(4.13)

For any 1 ≤ i ≤ j ≤ N , 1 ≤ k ≤ N and u = (u1, . . . , uN)
T ∈ SN−1, define H(u) =

(hk,ℓ(u)) ∈ RN×L by

hk,i+j(j−1)/2(u) = δj,kui + (1− δj,k)δi,kuj and hk,L−1(u) = hk,L(u) = 0. (4.14)

For example, when N = 3, we have

H(u) =

u1 u2 0 u3 0 0 0 0
0 u1 u2 0 u3 0 0 0
0 0 0 u1 u2 u3 0 0

 .

The following lemma collects some useful results about H(u).
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Lemma 4.4.3. Let X be qualified under perturbation and u ∈ SN−1. Then

(i) if M ∈ RN×N is the N-th order matriculation of a vector a ∈ Rn (n ≥ N(N+1)/2),
then

H(u)a = Mu;

(ii) Σu,0H
T (u) = 0L×N ;

(iii) H(u)Au(r)
(i) = 0N + o(r) as r → 0 for any 1 ≤ i ≤ Rank (Σu,0).

Proof. One can directly check (i) by (4.14). As for (ii), one can note that the expressions in
(4.6) and (4.8) are both symmetric in i1 and j1. As a result, for any 1 ≤ i ≤ L, the elements
in Matri

(
(Σu,0)

(i)
)
for which the row number i1 is greater than the column number j1 will

also be described by these expressions. Thus, for any 1 ≤ i ≤ L,

Matri
(
(Σu,0)

(i)
)
u = 0N .

Then by (i) of this lemma and Σu,0 = ΣT
u,0,

(Σu,0)(i)H
T (u) =

(
H(u)(Σu,0)

(i)
)T

=
(
Matri

(
(Σu,0)

(i)
)
u
)
= 0T

N .

As for (iii), by (ii) of this lemma, we have

H(u)Au,0 = 0N×L. (4.15)

Then by Remark 4.4.2, it suffices to show that for any 1 ≤ i ≤ Rank (Σu,0),

H(u)A
(i)
u,1 = 0N . (4.16)

Note that λu,i,0 ̸= 0 for any 1 ≤ i ≤ Rank (Σu,0). By (iii) in Remark 4.3.7 and (4.15), we
have for any 1 ≤ i ≤ Rank (Σu,0),

H(u)P
(i)
u,0 = λ

−1/2
u,i,0H(u)A

(i)
u,0 = 0N . (4.17)

By (4.13), we have

A
(i)
u,1 = λ

1/2
u,i,0P

(i)
u,1,

which, together with (iv) of Lemma 4.4.1, implies for any 1 ≤ i ≤ Rank (Σu,0),

A
(i)
u,1 ∈ span

{
P

(1)
u,0, . . . ,P

(Rank (Σu,0))
u,0

}
.

Then by (4.17), (4.16) is immediate, and hence completes the proof.
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4.4.2 Properties of the Covariance Matrix along a Coordinate
Axis

In the last section, we have explored some properties of Σu(r) for any u ∈ SN−1. Let
u0 := (0, . . . , 0, 1)T ∈ RL which is the direction of the last coordinate axis. By Lemma
4.3.5, Σu0(0) has a simple form. This would be helpful in solving problems that depend
on Σu(0) but are independent of the choice of u ∈ SN−1. In this section, we focus on the
properties of the covariance matrix Σu0(r), r ≥ 0. For conciseness, we will drop u0 from
subscripts.

By Lemma 4.3.5, it is easy to see the form of Σ0 can be very simple after swapping some
of its rows and the corresponding columns. For example, for N = 4 and ρ(x) = exp(−x),
x ≥ 0, i.e., the covariance function R(t) = ρ(∥t∥2) = exp(−∥t∥2), t ∈ R4, we have

Σ0 =



32
3

0 8
3

0 0 8
3

0 0 0 0 −4
3

−4
3

0 4 0 0 0 0 0 0 0 0 0 0
8
3

0 32
3

0 0 8
3

0 0 0 0 −4
3

−4
3

0 0 0 4 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0 0 0
8
3

0 8
3

0 0 32
3

0 0 0 0 −4
3

−4
3

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
−4

3
0 −4

3
0 0 −4

3
0 0 0 0 2

3
2
3

−4
3

0 −4
3

0 0 −4
3

0 0 0 0 2
3

2
3



.
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After swapping some rows and the corresponding columns, it is turned into

Σ′
0 =



32
3

8
3

8
3

−4
3

−4
3

0 0 0 0 0 0 0
8
3

32
3

8
3

−4
3

−4
3

0 0 0 0 0 0 0
8
3

8
3

32
3

−4
3

−4
3

0 0 0 0 0 0 0
−4

3
−4

3
−4

3
2
3

2
3

0 0 0 0 0 0 0
−4

3
−4

3
−4

3
2
3

2
3

0 0 0 0 0 0 0
0 0 0 0 0 4 0 0 0 0 0 0
0 0 0 0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



.

Indeed, one can easily check that Σ′
0 is the limit of the covariance matrix of

(X11(u0r), X22(u0r), X33(u0r), X(u0r), X(0), X12(u0r), X13(u0r), X23(u0r),

X14(u0r), X24(u0r), X34(u0r), X44(u0r)|▽X(u0r) = ▽X(0) = 0N)

as r → 0. In general, we can rearrange the elements of the random vector

(▽2X(t), X(t), X(0)|▽X(t) = ▽X(0) = 0N)

such that the limiting covariance matrix Σ′
0 of the random vector after the rearrangement

has the form

Σ′
0 =


B0 B2 0 0
BT

2 B3 0 0
0 0 B1 0
0 0 0 0N×N

 , (4.18)

whereB0 ∈ R(N−1)×(N−1),B1 ∈ R(N−1)(N−2)/2×(N−1)(N−2)/2,B2 ∈ R(N−1)×2, andB3 ∈ R2×2

satisfy that

B0[i0, j0] = 4

(
2

3
+ 2δi0,j0

)
ρ(2)(0) for any 1 ≤ i0, j0 ≤ N − 1,

B1[i1, j1] = 4ρ(2)(0)δi1,j1 for any 1 ≤ i1, j1 ≤ (N − 1)(N − 2)/2,

B2[i2, j2] =
4

3
ρ(1)(0) for any 1 ≤ i2 ≤ N − 1 and 1 ≤ j2 ≤ 2,
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and

B3[i3, j3] = 1− ρ(1)(0)2

3ρ(2)(0)
for any 1 ≤ i3, j3 ≤ 2.

Indeed, B0 corresponds to the elements in (4.6) with 1 ≤ i1, j1, i2, j2 ≤ N − 1, i1 = j1 and
i2 = j2; B1 corresponds to the elements in (4.6) with 1 ≤ i1, j1, i2, j2 ≤ N − 1, i1 < j1 and
i2 < j2; B2 corresponds to the elements in (4.8) with 1 ≤ i1 = j1 ≤ N − 1; B3 corresponds
to the elements in (4.9). It is noticeable that Σ0 and Σ′

0 share the same eigenvalues (but
different eigenspaces). The following lemma introduces some properties of the eigenvalues
and eigenvectors of Σ0.

Lemma 4.4.4. Let

W :=

(
a b
c d

)
∈ R2×2,

where

a =
1

3
(32 + 8(N − 2))ρ(2)(0), b =

8

3
ρ(1)(0),

c =
4

3
(N − 1)ρ(1)(0) and d = 2

(
1− ρ(1)(0)2

3ρ(2)(0)

)
.

Then we have

(i) The eigenvalues

λ+ =
a+ d+

√
(a− d)2 + 4bc

2
and λ− =

a+ d−
√
(a− d)2 + 4bc

2

of W are also two different eigenvalues of Σ0, i.e., there exist integers 1 ≤ l < s ≤ L
such that

λl,0 = λ+ and λs,0 = λ−.

Moreover, we have
λl,0 > 8ρ(2)(0) and λs,0 ̸= 0.

(ii) 0 is an eigenvalue of Σ0 with multiplicity N +1 and its eigenvector, p0, must satisfy

p0[i+ j(j − 1)/2] = 0 for any 1 ≤ i ≤ j ≤ N − 1

and
p0[L− 1] + p0[L] = 0.
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(iii) 4ρ(2)(0) is an eigenvalue of Σ0, and if λs,0 ̸= 4ρ(2)(0), then the multiplicity of 4ρ(2)(0)
as an eigenvalue of Σ0 is (N − 1)(N − 2)/2.

(iv) 8ρ(2)(0) is an eigenvalue of Σ0, and if λs,0 ̸= 8ρ(2)(0), then the multiplicity of 8ρ(2)(0)
as an eigenvalue of Σ0 is N − 2.

(v) For any nonzero eigenvalue of Σ0, its eigenvector, pnz, must satisfy

pnz[L− 1] = pnz[L] (4.19)

and
pnz[i+N(N − 1)/2] = 0 for any 1 ≤ i ≤ N. (4.20)

(vi) If λs,0 /∈ {4ρ(2)(0), 8ρ(2)(0)}, then any eigenvector, p∗, of 4ρ
(2)(0) or 8ρ(2)(0) must

satisfy
p∗[L− 1] = p∗[L] = 0.

(vii) If λs,0 /∈ {4ρ(2)(0), 8ρ(2)(0)}, then for λl,0 and λs,0 as eigenvalues of Σ0, any eigen-
vector, p, of them must have the form:

p[i+ j(j − 1)/2] = δi,jx, for any 1 ≤ i ≤ j ≤ N − 1,

p[i+N(N − 1)/2] = 0 for any 1 ≤ i ≤ N, and p[L− 1] = p[L] = y,

where x and y are both non-zero.

(viii) There exists a constant C > 0 such that

λ̃s,0 < 4ρ̃(2)(0),

where λ̃s,0 is the analog of λs,0 defined using the rescaled covariance function

ρ̃(∥t∥2) := ρ(C∥t∥2) for any t ∈ RN \ {0N}.

Proof. In (4.18), denote

B̃ :=

(
B0 B2

BT
2 B3

)
∈ R(N+1)×(N+1).

Since det (B̃−λIN+1) = 0 for some λ ∈ R implies det (Σ′
0−λIL) = 0, for (i), it suffices to

show that an eigenvalue of W must also be an eigenvalue of B̃ . Let q̃ := (q̃1, . . . , q̃N+1)
T ∈

RN+1 \ {0N+1} and λ ∈ R satisfy

(B̃ − λIN+1)q̃ = 0. (4.21)
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It is easy to see that (4.21) implies

q̃1 = · · · = q̃N−1 and q̃N = q̃N+1.

Then (4.21) is equivalent to

(W − λI2)(q̃1, q̃N)
T = 02.

Thus, λ+ and λ− are both eigenvalues of Σ0. Since bc > 0 and ρ(2)(0) > 0 (see Remark
4.3.4), we have

λl,0 − λs,0 ≥
√
4bc > 0

and

λl,0 =
a+ d+

√
(a− d)2 + 4bc

2
≥ a+ d+ |a− d|

2
≥ max(a, d) > 8ρ(2)(0).

Moreover, if λs,0 = 0, then ad = bc. By some calculation, this implies

ρ(2)(0)

ρ(1)(0)2
≤ N

N + 2
.

However, by Lemma 4.2.1 and Condition (4) in Definition 4.3.2, we can get

ρ(2)(0)

ρ(1)(0)2
>

N

N + 2
,

which leads to a contradiction. Thus, λs,0 ̸= 0.

As for (ii), we can observe from (4.18) that

L−N − 2 ≤ Rank (Σ0) = Rank (Σ′
0) ≤ L−N − 1,

and the only uncertainty of Rank (Σ0) comes from B̃, where the last two rows (and
columns) are the same, and hence, one of them can be dropped in the subsequent dis-
cussion. Thus,

Rank (Σ0) = L−N − 1 if and only if B̃[1 : N, 1 : N ] is non-degenerate.

By solving the equation B̃[1 : N, 1 : N ]q = 0N for q = (q1, . . . , qN)
T ∈ RN , we see that

the non-degeneracy of B̃[1 : N, 1 : N ] is equivalent to the equation W (q1, qN)
T = 02 not

having any non-trivial solutions, i.e.,

det (W ) = λl,0λs,0 ̸= 0,
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which is obvious by (i). Thus, Rank (Σ0) = L − N − 1, and then the multiplicity of 0 is
N + 1. By (4.18) and solving the equation Σ0p0 = 0L for p0 ∈ RL, we have

p0[i+ j(j − 1)/2] = 0 for any 1 ≤ i ≤ j ≤ N − 1 (4.22)

and
p0[L− 1] + p0[L] = 0. (4.23)

As for (iii), similarly, we can observe from (4.18) that

1

2
(N − 1)(N − 2)− 1 ≤ Rank (Σ0 − 4ρ(2)(0)IL) ≤

1

2
(N − 1)(N − 2),

and the only uncertainty of Rank (Σ0 − 4ρ(2)(0)IL) comes from Rank (B̃[1 : N, 1 : N ] −
4ρ(2)(0)IN), i.e.,

Rank (Σ0 − 4ρ(2)(0)IL) =
1
2
(N − 1)(N − 2) if and only if B̃[1 : N, 1 : N ]− 4ρ(2)(0)IN is

non-degenerate.

By solving the equation (B̃[1 : N, 1 : N ]−4ρ(2)(0)IN)q
′ = 0N for q′ = (q′1, . . . , q

′
N)

T ∈ RN ,

we see that the non-degeneracy of B̃[1 : N, 1 : N ]− 4ρ(2)(0)IN is equivalent to

det (W − 4ρ(2)(0)I2) ̸= 0.

Then by (i), this is equivalent to λs,0 ̸= 4ρ(2)(0) as we desired. Note that the proof for (iv)
is only an analog of (iii) by replacing 4ρ(2)(0) with 8ρ(2)(0).

As for (v), note that j = (0, . . . , 0, 1,−1)T ∈ RL is in the eigenspace of 0. Thus,
by the orthogonality of eigenspaces, any eigenvector, pnz, of a nonzero eigenvalue satisfies
pnz[L−1] = pnz[L] as stated in (4.19). Then by (4.19), (4.22), (4.23) and the orthogonality
of eigenspaces, (4.20) is immediate.

As for (vi), let pk,ℓ, 1 ≤ k < ℓ ≤ N − 1 be (N − 1)(N − 2)/2 vectors in RL such that

pk,ℓ[i+ j(j − 1)/2] = δi,kδj,ℓ for any 1 ≤ i < j ≤ N − 1,

pk,ℓ[i+N(N − 1)/2] = 0 for any 1 ≤ i ≤ N,

and
pk,ℓ[L− 1] = pk,ℓ[L] = 0. (4.24)

Then by (iii) and (4.18), it is easy to check that pk,ℓ, 1 ≤ k < ℓ ≤ N − 1 are linearly inde-
pendent and form a basis of the eigenspace of 4ρ(2)(0). By the orthogonality of eigenspaces
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and (4.20), this implies for any eigenvalue of Σ0 not equal to 4ρ(2)(0), its eigenvector, p′,
must satisfy

p′[i+ j(j − 1)/2] = 0 for 1 ≤ i < j ≤ N. (4.25)

Let p′′
k, 1 ≤ k ≤ N − 2 be N − 2 linearly independent vectors in RL such that for any

1 ≤ k ≤ N − 2,

N−1∑
i=1

p′′
k[i+ i(i− 1)/2] = 0, p′′

k[N +N(N − 1)/2] = 0, (4.26)

p′′
k[i+ j(j − 1)/2] = 0 for any 1 ≤ i < j ≤ N,

and
p′′
k[L− 1] = p′′

k[L] = 0. (4.27)

Then by (iv) and (4.18), it is easy to check that p′′
k, 1 ≤ k ≤ N − 2 form a basis of the

eigenspace of 8ρ(2)(0). Then combining (4.24), (4.27) and the orthogonality of eigenspaces
yields (vi).

As for (vii), by the orthogonality of eigenspaces, (vi), (4.20), (4.25) and (4.26), we have
for any nonzero eigenvalue of Σ0 not equal to 4ρ(2)(0) or 8ρ(2)(0), its eigenvector, p must
have the form

p[i+ j(j − 1)/2] = δi,jx, (4.28)

for a constant x ∈ R and any 1 ≤ i ≤ j ≤ N − 1. By (4.19), (4.20) and (4.28), the only
thing left is to show xy ̸= 0. Let pl,ps ∈ RL be eigenvectors of λl,0 and λs,0 respectively,
such that

pl[i+ j(j − 1)/2] = δi,jxl, for any 1 ≤ i ≤ j ≤ N − 1,

ps[i+ j(j − 1)/2] = δi,jxs, for any 1 ≤ i ≤ j ≤ N − 1,

pl[L− 1] = pl[L] = yl and ps[L− 1] = ps[L] = ys.

Then it suffices to show xlylxsys ̸= 0. Suppose xlylxsys = 0. By the orthogonality of
eigenspaces,

(N − 1)xlxs + 2ylys = 0.

Then we must have
xlxs = ylys = 0.

Without loss of generality, suppose xl = 0. Then yl ̸= 0 since pl is nonzero. By checking
the first rows of the both sides of the equation (Σ0−λl,0IL)pl = 0L, (4.8) and (i), we have

8

3
ρ(1)(0)yl = (Σ0[1, L− 1] +Σ0[1, L])yl = 0.

71



This implies ρ(1)(0) = 0, which leads to a contradiction with Remark 4.3.4. Therefore,
xlylxsys ̸= 0 as we desired.

As for (viii), note that for any C > 0

λ̃s,0 =
ã+ d̃−

√
(ã− d̃)2 + 4b̃c̃

2
,

where

ã =
1

3
(32 + 8(N − 2))C2ρ(2)(0), b̃ =

8

3
Cρ(1)(0),

c̃ =
4

3
(N − 1)Cρ(1)(0) and d̃ = 2

(
1− ρ(1)(0)2

3ρ(2)(0)

)
.

Then we can define

k1 := ãC−2, k2 := b̃C−1, k3 := c̃C−1, and k4 := d̃,

and by Remark 4.3.4, we have ki ̸= 0 for i = 1, 2, 3, 4. In particular, we have

k1 =
1

3
(32 + 8(N − 2))ρ(2)(0) > 8ρ(2)(0).

Then by (i), the inequality λ̃s,0 < 4ρ(2)(0)C2 holds if and only if

k1C
2 + k4 −

√
(k1C2 − k4)2 + 4k2k3C2 < 8ρ(2)(0)C2.

Thus, it suffices to have

f(C) := ((k1 − 8ρ(2)(0))C2 + k4)
2 − (k1C

2 − k4)
2 − 4k2k3C

2 < 0.

Note that f is a polynomial of C with degree four and its coefficient of C4 is

(k1 − 8ρ(2)(0))2 − k2
1 = −16ρ(2)(0)k1 + 64ρ(2)(0)2 = 16ρ(2)(0)(4ρ(2)(0)− k1) < 0.

Thus, there exists a constant C0 > 0 such that f(C) < 0 for any C > C0. This implies
λ̃s,0 < 4ρ(2)(0)C2 = 4ρ̃(2)(0) for any C > C0, and hence proved.

Remark 4.4.5. Recall that L = N(N+1)/2+2. By Lemma 4.4.4, the sum of multiplicities of
0, 4ρ(2)(0), 8ρ(2)(0), λs,0, and λt,0 is equal to L, which implies they are the only eigenvalues
of Σ0. The condition in (vii) of Lemma 4.4.4, i.e.,

λs,0 /∈ {4ρ(2)(0), 8ρ(2)(0)},
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ensures that these eigenvalues are distinct.

However, if the problem of interest is independent of the choice of C in the covariance
function R(t) = ρ(C∥t∥2), t ∈ RN , then by (viii) of Lemma 4.4.4, we can assume that this
condition always holds, since it can be achieved by a suitable rescaling.

Lemma 4.4.6. Let X be qualified under perturbation. Then

(i) there exists an integer L−N ≤ i ≤ L such that λi,2 > 0;

(ii) there exists an integer L−N ≤ i ≤ L such that λi,2 = 0.

Proof. By (ii) of Lemma 4.4.1 and (ii) of Lemma 4.4.4, λi,0 = λi,1 = 0 for any L − N ≤
i ≤ L. Then by Definition 4.3.6,

λi,2 = lim
r→0

λ(r)− λi,0 − λi,1r

r2
= lim

r→0

λ(r)

r2
≥ 0.

Thus, for (i), it suffices to show λi,2 ̸= 0 for some L−N ≤ i ≤ L. Let p ∈ RL satisfy

p[k] = δk,N+N(N−1)/2 for k = 1, . . . , L.

Then pT = H(u0)(N), and by (ii) of Lemma 4.4.3,

pTΣ0p = 0.

Recall that in Lemma 4.3.5 and Remark 4.3.4, α = ρ(1)(0)−1ρ(2)(0)2 and β = ρ(3)(0). Then

pTΣ2p = Σ2[N +N(N − 1)/2, N +N(N − 1)/2] = 18α− 30β ̸= 0,

which implies
pTΣ(r)p = Θ(r2) as r → 0. (4.29)

By pT = H(u0)(N), (iii) of Lemma 4.4.3, and (ii) of Lemma 4.4.4, we can also get

pTΣ(r)p

=
(
pT (A(r)[1 : L, 1 : (L−N − 1)];A(r)[1 : L, (L−N) : L])

)(
pT (A(r)[1 : L, 1 : (L−N − 1)];A(r)[1 : L, (L−N) : L])

)T
=
(
pT (A(r)[1 : L, (L−N) : L])

) (
pT (A(r)[1 : L, (L−N) : L])

)T
+ o(r2)

=
(
pTP (r)Λ1/2(r)[1 : L, (L−N) : L]

) (
pTP (r)Λ1/2(r)[1 : L, (L−N) : L]

)T
+ o(r2)

=
(
pTP (r)

)
diag (0, . . . , 0, λL−N(r), . . . , λL(r))

(
pTP (r)

)T
+ o(r2)

=
(
pTP (r)

)
diag (0, . . . , 0, λL−N,2, . . . , λL,2)

(
pTP (r)

)T
r2 + o(r2),
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where the semicolons represent juxtaposition operations on matrices. If λi,2 = 0 for all
integer L − N ≤ i ≤ L, then from the above equation, we see pTΣ(r)p = o(r2), which
contradicts with (4.29).

As for (ii), by Lemma 4.3.5, we see

Σ
(i+N(N−1)/2)
0 = 0L for any 1 ≤ i ≤ N,

which contributes O(r2N) in det (Σ(r)), and

Σ
(L−1)
0 = Σ

(L)
0 and Σ

(L−1)
2 = Σ

(L)
2 ,

which contribute o(r2) in det (Σ(r)). Since Σ(r) = Σ0 +Σ2r
2 + o(r2), we have

det (Σ(r)) = o
(
r2N+2

)
as r → 0.

Thus, there must be an integer L − N ≤ i ≤ L such that λi(r) = o(r2), which implies
λi,2 = 0 as desired.

Lemma 4.4.7. Let X be qualified under perturbation. Denote j := (0, . . . , 0, 1,−1)T ∈ RL.
Then

λi,2 > 0 for any L−N ≤ i ≤ L− 1, and λL,2 = 0.

Moreover, P
(L)
0 and j are linearly dependent.

Proof. Note that by (ii) of Lemma 4.4.6, there exists an integer L−N ≤ i∗ ≤ L such that
λi∗,2 = 0, and by (4.7),

Σ2[(N(N − 1)/2 + 1) : N(N + 1)/2, (N(N − 1)/2 + 1) : N(N + 1)/2]

= diag (2α− 6β, . . . , 2α− 6β, 18α− 30β)N×N .

Then by (iii) of Lemma 4.4.1 and (ii) of Lemma 4.4.4, we have

0 =
(
P

(i∗)
0

)T
Σ2P

(i∗)
0

= (2α− 6β)
N−1∑
i=1

P0[i+N(N − 1)/2, i∗]
2 + (18α− 30β)P0[N +N(N − 1)/2, i∗]

2.

(4.30)
By Remark 4.3.4, we have 18α− 30β > 0 and β < 0, which implies 2α− 6β > 0. Then by
(4.30), we have

P0[i, i∗] = 0 for any 1 ≤ i ≤ N(N + 1)/2,
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and by (ii) of Lemma 4.4.4,

P0[L− 1, i∗] + P0[L, i∗] = 0.

Since P0 is non-degenerate, we have

P
(i∗)
0 and j are linearly dependent.

Note that this property holds for any column L−N ≤ i ≤ L satisfying λi,2 = 0. However,
by the non-degeneracy of P0, there can only be one column of P0 satisfying this property.
This means that there exists a unique integer L−N ≤ i∗ ≤ L such that λi∗,2 = 0. By the
continuity of P (r) at r = 0 and (4.5), we have i∗ = L.

4.5 Asymptotic Behavior as r → 0

4.5.1 Main Result 1

LetX be qualified under perturbation. Then for any z ∈ R and compact set T ⊂ RN \{0N}
with λN−1(∂T ) < ∞,

X(t) conditional on ▽X(0) = 0N and X(0) = z

is still a Gaussian random field on t ∈ T and satisfies all the conditions in Lemma 2.1.10
except that it may not be centered. By (A.6), Condition (2) in Definition 4.3.2 and Lemma
2.1.4, one can easily check that for any z ∈ R, the mean function of this new random field
is continuously twice differentiable. Then by Remark 2.1.11, the result in Lemma 2.1.10
still holds for this new random field.

Consider a set T ⊂ RN \ {0N} such that T ∪{0N} is compact. Since T is not compact,
we cannot directly apply Lemma 2.1.10 to get the expected number, denoted by n(T ), of
the critical points in T for this new Gaussian random field. However, if we take Tm :=
T \B(0N , 2

−m) for m ≥ 1, where B(t, r) is the N -dimensional open ball centered at t with
radius r for any t ∈ RN and r > 0, then these Tm (if non-empty) are all compact and
form an increasing sequence of sets. This means that we can get the expected number,
denoted by n(Tm), of the critical points in each Tm by Lemma 2.1.10, and then n(T ) =
limm→∞ n(Tm). To explore the integral expression of n(T ) given by Lemma 2.1.10, we need
to define some notations.
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For any 0 ≤ k ≤ N , define

Dk :=
{
x ∈ RN(N+1)/2 :MatriN(x) is non-degenerate

and has exactly k negative eigenvalues
}
.

Let p(z), z ∈ R be the density of X(0), let p(z), z ∈ RN be the density of ▽X(0), and
let p(z, z), (z, z) ∈ RN × R be the density of (▽X(0), X(0)). Then by Lemma 2.1.4,
(▽X(0), X(0)) are Gaussian with

Cov [Xi(0), X(0)] = 0

for any 1 ≤ i ≤ N , and thus, for any (z, z) ∈ RN × R,

p(z, z) = p(z)p(z).

For any t ∈ RN \ {0N}, let pt(x, z), (x, z) ∈ RN ×RN be the density of (▽X(t),▽X(0)),
and let pt(x

′′,x′, x,z, z), (x′′,x′, x,z, z) ∈ RN(N+1)/2 × RN × R × RN × R be the density
of (▽2X(t),▽X(t), X(t),▽X(0), X(0)). For any z′ ∈ RN and z ∈ R, let pt(x′′,x′, x|z, z),
(x′′,x′, x) ∈ RN(N+1)/2 × RN × R be the density of (▽2X(t),▽X(t), X(t)) conditional on
▽X(0) = z′ and X(0) = z.

Similarly, for any t ∈ RN \ {0N}, x′, z′ ∈ RN , let pt(x
′′, x, z|x′, z′), (x′′, x, z) ∈

RN(N+1)/2 ×R×R be the density of (▽2X(t), X(t), X(0)) conditional on ▽X(t) = x′ and
▽X(0) = z′. In particular, the covariance matrix of the Gaussian density pt(x

′′, x, z|0,0)
is Σ(t) which we carefully studied in the previous sections. In addition, by Lemma 2.1.3
and (A.6), the mean vector of pt(x

′′, x, z|0,0) is 0L. Thus, we have

pt(x
′′, x, z|0,0) = 1√

(2π)Ldet (Σ(t))
exp

(
−1

2
(x′′, x, z)Σ(t)−1(x′′, x, z)T

)
. (4.31)

By Lemma 2.1.10, we have for any 0 ≤ k ≤ N and u ∈ R, the density, fu,k(t) of the
mean measure of the (non-degenerate, but we have mentioned in Remark 2.1.12 that a
sample function on a compact set T ⊂ RN with λN−1(∂T ) < ∞ does not have degenerate
critical points with probability one) critical points of X above u with index k, conditional
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on ▽X(0) = 0N and X(0) > u, is given by

fu,k(t)

= P (X(0) > u)−1

∫
x,z>u

∫
Dk

|det (MatriN(x
′′))| pt(x′′,0, x|0, z)p(z)dx′′dxdz

= P (X(0) > u)−1

∫
x,z>u

∫
Dk

|det (MatriN(x
′′))| pt(x′′,0, x,0, z)p(0, z)−1p(z)dx′′dxdz

= P (X(0) > u)−1p(0)−1pt(0,0)

∫
x,z>u

∫
Dk

|det (MatriN(x
′′))| pt(x′′, x, z|0,0)dx′′dxdz.

(4.32)

We can further define
fu,+(t) :=

∑
k even

fu,k(t)

and
fu,−(t) :=

∑
k odd

fu,k(t),

i.e., to replace Dk in (4.32) with {x′′ ∈ RN(N+1)/2 : det (MatriN(x
′′)) > 0} and {x′′ ∈

RN(N+1)/2 : det (MatriN(x
′′)) < 0}, respectively. It is trivial to show that fu,±(t) are both

continuous functions of t ∈ RN \ {0N}. The following is our first main result.

Theorem 4.5.1. Let X be qualified under perturbation. Then for any u ∈ R,

lim
∥t∥→0

fu,+(t)

fu,−(t)
= 1.

4.5.2 Preparation for Main Result 1

Let X be qualified under perturbation. In this section, we only consider t = u0r, r > 0.
Based on the knowledge of the covariance Σ(r) in the previous sections, we can establish
two lemmas suggesting the asymptotic symmetry between the domains

Du,+(r) :=

{
y ∈ RL : A(r)(L−1)y > u,A(r)(L)y > u,

1

r
det (MatriN(A(r)y)) > 0

}
and

Du,−(r) :=

{
y ∈ RL : A(r)(L−1)y > u,A(r)(L)y > u,

1

r
det (MatriN(A(r)y)) < 0

}
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as r → 0. This asymptotic symmetry plays an essential role in our first main result.

We first introduce an important matrix. For any r > 0, let aij(r) be the element ofA(r)
on the i-th row and j-th column for any 1 ≤ i, j ≤ L. Define the map τ : {1, . . . , N}2 →
{1, . . . , N(N + 1)/2}, where for any 1 ≤ i ≤ j ≤ N ,

τ(j, i) ≡ τ(i, j) := i+ j(j − 1)/2.

Then for any v = (v1, . . . , vN)
T ∈ {1, . . . , L}N and r > 0, we can define Bv(r) :=

(bvi,j(r))1≤i,j≤N , where for any 1 ≤ i, j ≤ N ,

bvi,j(r) = aτ(i,j),vi(r).

For example, when N = 3,

Bv(r) :=

a1,v1(r) a2,v1(r) a4,v1(r)
a2,v2(r) a3,v2(r) a5,v2(r)
a4,v3(r) a5,v3(r) a6,v3(r)

 .

In particular, if taking v1 = · · · = vN = i for some 1 ≤ i ≤ L, then we have

Bv(r) = MatriN
(
A(r)(i)

)
.

In general, for any r > 0, Bv(r) can be written in the form:

Bv(r) =

MatriN(A(r)(v1))(1)
...

MatriN(A(r)(vN ))(N)

 . (4.33)

Let ΠN be the set of permutations on {1, . . . , N}. For any σ ∈ ΠN , define a map
σ̂ : {1, . . . , L}N → {1, . . . , L}N , where for any v ∈ {1, . . . , L}N ,

σ̂(v) = (vσ(1), . . . , vσ(N)).

With slight abuse of notation, we still write σ̂ as σ, but one can easily distinguish them by
the object it works on.

Now we can explain why Bv(r) is important in the asymptotic symmetry between
Du,+(r) and Du,−(r). Note that for any y ∈ RL and integers 1 ≤ i, j ≤ N ,

MatriN(A(r)y)[i, j] =
L∑

k=1

aτ(i,j),k(r)yk.
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Then by the definition of determinant, we have

det (MatriN(A(r)y))

=
∑
σ∈ΠN

(−1)sign (σ)
∏

1≤n≤N

(
L∑

k=1

aτ(n,σ(n)),k(r)yk

)
=

∑
v∈{1,...,L}N

∑
σ∈ΠN

(−1)sign (σ)aτ(1,σ(1)),v1(r) · · · aτ(N,σ(N)),vN (r)yv1 · · · yvN

=
∑

v∈{1,...,L}N

∑
σ∈ΠN

(−1)sign (σ)bv1,σ(1)(r) · · · bvN,σ(N)(r)yv1 · · · yvN

=
∑

v∈{1,...,L}N
det (Bv(r))yv1 · · · yvN

=
1

N !

∑
v∈{1,...,L}N

(∑
σ∈ΠN

det (Bσ(v)(r))

)
yv1 · · · yvN .

(4.34)

This implies that the asymptotic symmetry between Du,+(r) and Du,−(r) is determined
by the asymptotic behavior of the coefficients,

∑
σ∈ΠN

det (Bσ(v)(r)), of yv1 · · · yvN , v ∈
{1, . . . , L}N as r → 0. To study asymptotic properties of

∑
σ∈ΠN

det (Bσ(v)(r)), the pertur-
bation condition in Definition 4.3.6 will be intensively used, and we also need the following
notations:

VN := {(v1, . . . , vN) ∈ {1, . . . , L}N : L−N ≤ v1 ≤ L,

1 ≤ vi ≤ L−N − 1 for any 2 ≤ i ≤ N}
and

ṼN := {v ∈ {1, . . . , L}N : σ(v) ∈ VN for some σ ∈ ΠN}.

Lemma 4.5.2. Let X be qualified under perturbation. Then

max
v∈{1,...,L}N\ṼN

∣∣∣∣∣ ∑
σ∈ΠN

det (Bσ(v)(r))

∣∣∣∣∣ = o(r) as r → 0.

Proof. For any v = (v1, . . . , vN)
T ∈ {1, . . . , L}N \ṼN , there are only two possible situations:

(1) 1 ≤ vi ≤ L−N − 1 for i = 1, . . . , N ;

(2) there exist integers 1 ≤ i, j ≤ N such that i ̸= j and L−N ≤ vi, vj ≤ L.
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Since these two situations (as two separated subsets of {1, . . . , L}N \ ṼN) are closed under
permutations in ΠN , it suffices to show that as r → 0,

det (Bv(r)) = o(r)

for any v in these two situations.

For Situation (1), note that by (ii) of Lemma 4.4.4,

Rank (Σ0) = L−N − 1.

By (i) and (iii) of Lemma 4.4.3, for any 1 ≤ i ≤ N ,

Matri
(
A(r)(vi)

)
(i)

u0 =
(
H(u0)A(r)(vi)

)
(i)

= 0T
N + o(r) as r → 0.

Then by (4.33),
Bv(r)(N) = Bv(r)u0 = 0N + o(r) as r → 0.

This implies det (Bv(r)) = o(r) as r → 0.

As for Situation (2), by (ii) of Lemma 4.4.1, (4.33) and that A(r) = P (r)Λ1/2(r), there
are two rows of Bv(r) converge to 0N with the speed O(r) as r → 0. This also implies
det (Bv(r)) = o(r) as r → 0.

Lemma 4.5.3. Let X be qualified under perturbation. Then

max
v∈ṼN

∣∣∣∣∣ ∑
σ∈ΠN

det
(
Bσ(v)(r)

)∣∣∣∣∣ = Θ(r) as r → 0. (4.35)

Proof. The basic idea of this proof is to select a suitable v ∈ ṼN such that∑
σ∈ΠN

det (Bσ(v)(r)) = Θ(r) as r → 0.

First of all, we need to define some notations. For any 1 ≤ j ≤ L, define

M j(0) := MatriN

(
A

(j)
0

)
, M j(r) := MatriN

(
A(r)(j)

)
,

M̃ j(0) := MatriN

(
P

(j)
0

)
, and M̃ j(r) := MatriN

(
P (r)(j)

)
.
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Indeed, M j(0) and M̃ j(0) are the left limits of M j(r) and M̃ j(r) as r ↓ 0, respectively.
According to Remark 4.4.5, since the problem is independent of the rescaling of the co-
variance function, it is safe to use (vii) of Lemma 4.4.4 in this proof. By (i), (ii), and (vii)
of Lemma 4.4.4, we can find an integer 1 ≤ v∗ ≤ L−N − 1 such that

P0[i+ j(j − 1)/2, v∗] = δi,jxv∗ for any 1 ≤ i ≤ j ≤ N − 1,

P0[i+N(N − 1)/2, v∗] = 0 for any 1 ≤ i ≤ N, and P0[L− 1, v∗] = P0[L, v
∗] = yv∗ ,

where xv∗ and yv∗ are both non-zero. Then

M v∗(0) = MatriN

(
A

(v∗)
0

)
= diag

(
xv∗λ

1/2
v∗,0, . . . , xv∗λ

1/2
v∗,0, 0

)
. (4.36)

Our next step is to calculate
∑

σ∈ΠN
det (Bσ(v)(r)) for a general v ∈ ṼN using the above

notations. By (4.33), for any v ∈ {1, . . . , L}N ,

∑
σ∈ΠN

det
(
Bσ(v)(r)

)
=
∑
σ∈ΠN

det

M vσ(1)(r)(1)
...

M vσ(N)(r)(N)


=
∑
σ∈ΠN

(−1)sign (σ−1)det

M v1(r)(σ−1(1))
...

M vN (r)(σ−1(N))


=
∑
σ∈ΠN

(−1)sign (σ)det

M v1(r)(σ(1))
...

M vN (r)(σ(N))

 .

Note that for any matrix A = (ai,j) ∈ RN×N ,

det (A) :=
∑
σ∈ΠN

(−1)sign (σ)a1,σ(1) · · · aN,σ(N).

Similarly, we can define an operation f on any symmetric matrices A1, . . . ,AN ∈ RN×N

by

f(A1, · · · ,AN) : =
∑
σ∈ΠN

(−1)sign (σ)det

 (A1)(σ(1))
...

(AN)(σ(N))


≡
∑
σ∈ΠN

(−1)sign (σ)det
(
(A1)

(σ(1)), · · · , (AN)
(σ(N))

)
.

(4.37)
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Then in our context, we have for any r > 0,∑
σ∈ΠN

det
(
Bσ(v)(r)

)
= f (M v1(r), · · · ,M vN (r)) .

Note that by Remark 4.4.2, we have

M i(r) =

{
M i(0) +O(r), for any 1 ≤ i ≤ L−N − 1;

λ
1/2
i,2 rM̃

i(r) + o(r), otherwise.

For any v ∈ ṼN , there exists an integer 1 ≤ k ≤ N such that L−N ≤ vk ≤ L. Then∑
σ∈ΠN

det
(
Bσ(v)(r)

)
= λ

1/2
vk,2

rf
(
M v1(r), · · · ,M vk−1(r),M̃ vk(r),M vk+1(r), · · · ,M vN (r)

)
+ o(r)

= (−1)N−kλ
1/2
vk,2

rf
(
M v1(r), · · · ,M̂ vk(r), · · · ,M vN (r),M̃ vk(r)

)
+ o(r)

= (−1)N−kλ
1/2
vk,2

rf
(
M v1(0), · · · ,M̂ vk(0), · · · ,M vN (0),M̃ vk(0)

)
+ o(r),

where the hat over a component of a vector means that component is discarded.

From the above calculation, we see that it suffices to show

λ
1/2
vk,2

f
(
M v1(0), · · · ,M̂ vk(0), · · · ,M vN (0),M̃ vk(0)

)
̸= 0

for some v ∈ ṼN (with L − N ≤ vk ≤ L for some 1 ≤ k ≤ N). To take the advantage of
(4.36) and by noting that λi,2 > 0 for any L − N ≤ i ≤ L − 1 and λL,2 = 0 (see Lemma
4.4.7), we select v having the form: v = (v∗, . . . , v∗, v0) for some L − N ≤ v0 ≤ L − 1.
Then it suffices to show that there exists an integer L−N ≤ v0 ≤ L− 1 such that

f
(
M v∗(0), · · · ,M v∗(0),M̃ v0(0)

)
̸= 0.
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To this end, we first observe that

f
(
M v∗(0), · · · ,M v∗(0),M̃ v0(0)

)
=
∑
σ∈ΠN

(−1)sign (σ)det
(
M v∗(0)(σ(1)), · · · ,M v∗(0)(σ(N−1)),M̃ v0(0)(σ(N))

)
=
∑
σ∈ΠN

(−1)sign (σ)M̃ v0(0)[N, σ(N)]

det
((
M v∗(0)(σ(1)), · · · ,M v∗(0)(σ(N−1))

)
[1 : (N − 1), 1 : (N − 1)]

)
= (N − 1)!

N∑
j=1

(−1)N−jM̃ v0(0)[N, j]

det

((
M v∗(0)(1), · · · ,M̂ v∗(0)

(j)

, · · · ,M v∗(0)(N)

)
[1 : (N − 1), 1 : (N − 1)]

)

= (N − 1)!det


M v∗(0)(1)

...
M v∗(0)(N−1)

M̃ v0(0)(N)

 ,

where the second equation follows from the fact that M v∗(0)(N) = 0N (see (4.36)), and
the last equation is given by Laplace’s expansion.

Now if f(M v∗(0), · · · ,M v∗(0),M̃ v0(0)) = 0 for any integer L−N ≤ v0 ≤ L− 1, then

det


M v∗(0)(1)

...
M v∗(0)(N−1)

M̃ v0(0)(N)

 = 0,

which, together with (4.36), implies

M̃ v0(0)[N,N ] = uT
0 M̃

v0(0)u0 = 0.

Then by (i) of Lemma 4.4.3, we have for any L−N ≤ v0 ≤ L− 1,

uT
0H(u0)P

(v0)
0 = uT

0 M̃
v0(0)u0 = 0.

Note that (uT
0H(u0))

T = (H(u0)(N))
T is non-zero, and by (ii) of Lemma 4.4.3, it is in

the zero space of Σ0 which is expanded by P
(L−N)
0 , . . . ,P

(L)
0 . Thus, the above equation
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implies (H(u0)(N))
T and P

(L)
0 must be linearly dependent. Then by Lemma 4.4.7, we get

H(u0)(N) and (0, . . . , 0, 1,−1) ∈ RL are linearly dependent, which contradicts (4.14). This
completes the proof.

Let X be qualified under perturbation. By (4.34), Lemmas 4.5.2, and 4.5.3, we have
the following important observation: for any y = (y1, . . . , yL)

T ∈ RL,

lim
r→0

r−1det (MatriN(A(r)y)) =
L∑

i=L−N

yiKi(y1, . . . , yL−N−1), (4.38)

where each of Ki(y1, . . . , yL−N−1), i = L−N, . . . , L is either a homogeneous polynomial of
y1, . . . , yL−N−1 with degree N −1 or a zero function, and at least one of Ki, L−N ≤ i ≤ L
is not a zero function. Thus,

∑L
i=L−N yiKi(y1, . . . , yL−N−1) is a homogeneous polynomial

of y1, . . . , yL with degree N . For any r > 0 and y ∈ RL, define

hr(y) := r−1det (MatriN(A(r)y)) . (4.39)

We can also define

h0(y) :=
L∑

i=L−N

yiKi(y1, . . . , yL−N−1). (4.40)

Then hr(y), r ≥ 0 are all polynomials of y1, . . . , yL, and (4.38) becomes for any y ∈ RL,

h0(y) = lim
r→0

hr(y). (4.41)

Since A(r) is continuous on r ∈ [0, δpc] (Definition 4.3.6), we have for any y ∈ RL, hr(y)
is a continuous function of r ∈ [0, δpc].

For any u ∈ R, r ≥ 0 and i = L− 1, L, define

Hi,u(r) :=
{
y ∈ RL : A(r)(i)y > u

}
. (4.42)

For any r ≥ 0, we also define

G+(r) :=
{
y ∈ RL : hr(y) > 0

}
and G−(r) :=

{
y ∈ RL : hr(y) < 0

}
.

With the above notations, the domains Du,±(r) mentioned at the start of this section can
also be defined as

Du,±(r) := HL−1,u(r) ∩HL,u(r) ∩G±(r), (4.43)
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for any r ≥ 0. In particular, by A(0) = P (0)Λ1/2(0), (ii) and (v) of Lemma 4.4.4,

A(L−1)(0) = A(L)(0).

Then we have
HL−1,u(0) = HL,u(0),

which implies
Du,±(0) := HL,u(0) ∩G±(0). (4.44)

The following lemma reveals the most important idea in this section: the asymptotic
symmetry between Du,±(r) as r → 0. Let b > a. For any r0 ∈ [a, b] and Ar ⊂ Rn (n ≥ 1),
r ∈ [a, b], define

lim inf
r→r0

Ar :=
⋃
δ>0

⋂
|r−r0|<δ

Ar and lim sup
r→r0

Ar :=
⋂
δ>0

⋃
|r−r0|<δ

Ar.

Lemma 4.5.4. Let X be qualified under perturbation. Then for any u ∈ R, we have

(i) if (y1, . . . , yL) ∈ Du,±(0), then (y1, . . . , yL−N−1,−yL−N , . . . ,−yL) ∈ Du,∓(0);

(ii) Du,±(0) are both non-empty open sets;

(iii) for any r0 ∈ [0, δpc], we have

lim
r→r0

IDu,±(r)(y) = IDu,±(r0)(y) for almost all y ∈ RL,

where I stands for the indicator function of a set.

Proof. For (i), let y = (y1, . . . , yL) ∈ Du,+(0) and y′ = (y1, . . . , yL−N−1,−yL−N , . . . ,−yL).
Then by (4.44),

A(N)(0)y > u and h0(y) > 0.

Note that by A(0) = P (0)Λ1/2(0) and (ii) of Lemma 4.4.4, A(0)(i) = 0 for any L − N ≤
i ≤ L, which implies A(L)(0)y

′ > u. In addition, by (4.40),

h0(y
′) =

L∑
L−N

(−yi)K(y1, . . . , yL−N−1) = −h0(y).

Thus, y′ ∈ Du,−(0). The proof of the other part is similar.
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As for (ii), it is easy to see Du,±(0) are both open. By (i), Du,±(0) are either both
empty or both non-empty. Since

Du,+(0) ∪Du,−(0) = HL,u(0) \ {y ∈ RL : h0(y) = 0},

their union is non-empty. Thus, Du,±(0) are both non-empty open sets, as required.

As for (iii), fix r0 ∈ [0, δpc]. By the continuity of A(r) on r ∈ [0, δpc], it is easy to see

Hi,u(r0) ⊂ lim inf
r→r0

Hi,u(r) ⊂ lim sup
r→r0

Hi,u(r) ⊂ Hi,u(r0) ∪ ∂Hi,u(r0)

for i = L− 1, L, and

G±(r0) ⊂ lim inf
r→r0

G±(r) ⊂ lim sup
r→r0

G±(r) ⊂ G±(r0) ∪ ∂G±(r0),

where ∂ stands for the boundary of a set. This implies

Du,±(r0) ⊂ lim inf
r→r0

Du,±(r) ⊂ lim sup
r→r0

Du,±(r) ⊂ Du,±(r0) ∪Q0, (4.45)

where
Q0 := ∂HL−1,u(r0) ∪ ∂HL,u(r0) ∪ ∂G±(r0),

and it is easy to see λL(Q0) = 0. Note that for any y ∈ (lim infr→r0 Du,±(r)) ∩Du,±(r0),

IDu,±(r)(y) = 1 for any n ≥ 1 and IDu,±(r0)(y) = 1,

while for any y ∈ (lim infr→r0 D
c
u,±(r)) ∩Dc

u,±(r0) = (lim supr→r0 Du,±(r))
c ∩Dc

u,±(r0),

IDu,±(r)(y) = 0 for any n ≥ 1 and IDu,±(r0)(y) = 0,

where by (4.45), (
lim inf
r→r0

Du,±(r)

)
∩Du,±(r0) = Du,±(r0)

and (
lim sup
r→r0

Du,±(r)

)c

∩Dc
u,±(r0) =

(
lim sup
r→r0

Du,±(r)

)c

⊃ Dc
u,±(r0) ∩Qc

0.

Combining all of the above, we have for any y ∈ Qc
0, limr→r0 IDu,±(r)(y) = IDu,±(r0)(y).

This completes the proof of the lemma.
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Definition 4.5.5. For any n ≥ 1, a function g : Rn → R is said to be regular if it can be
written in the form:

g(y) = |α(y)| exp(−β(y)),

where α(y) is a non-zero polynomial of y1, . . . , yn and β(y) = yTΣy for some positive-
definite matrix Σ ∈ Rn×n.

Remark 4.5.6. It is easy to check that a regular function on Rn must be non-negative,
bounded and integrable. Moreover, the integral of a regular function on a non-empty open
set must be positive.

Let X be qualified under perturbation. For any r ≥ 0 and y ∈ RL, define

gr(y) := |hr(y)| pL(y), (4.46)

where hr(y) is as defined in (4.38)-(4.41) and

pL(y) :=
1

(2π)L/2
exp

(
−1

2
yTy

)
. (4.47)

For any r ≥ 0, since hr(y) is a nonzero polynomial of y1, . . . , yL, gr(y) is a regular function
of y ∈ RL. In addition, since A(r) is continuous on r ∈ [0, δpc] (where δpc is as defined
in Definition 4.3.6), all the coefficients of the polynomial hr are continuous, and then
uniformly bounded on r ∈ [0, δpc]. Then by the triangle inequality, there exists a constant
C > 0 such that for any r ∈ [0, δpc],

hr(y) ≤ C
∑

v1,...,vN∈{1,...,L}

|yv1 · · · yvN | .

Thus, for any r ∈ [0, δpc] and y ∈ RL,

gr(y) ≤ C
∑

v1,...,vN∈{1,...,L}

|yv1 · · · yvN | pL(y), (4.48)

where the right-hand side is a finite sum of regular functions.

4.5.3 Proof of Theorem 4.5.1

Proof. Fix u ∈ R. Since X is isotropic, we only need to show

lim
r→0

fu,+(u0r)

fu,−(u0r)
= 1.
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For any r > 0, since Σ(r) is positive-definite and Σ(r) = A(r)AT (r), A(r) is invertible.
By the change of variable y = A−1(r)(x′′, x, z)T , (4.31) and (4.47), we have

pt(x
′′, x, z|0,0) = 1√

(2π)Ldet (Σ(t))
exp

(
−1

2
(x′′, x, z)Σ(t)−1(x′′, x, z)T

)
=

1√
(2π)Ldet (Σ(t))

exp

(
−1

2
yTy

)
=

1√
det (Σ(t))

pL(y).

Then the ratio becomes

fu,+(u0r)

fu,−(u0r)
=

∫
x,z>u

∫
det (MatriN (x′′))>0

|det (MatriN(x
′′))| pt(x′′, x, z|0,0)dx′′dxdz∫

x,z>u

∫
det (MatriN (x′′))<0

|det (MatriN(x′′))| pt(x′′, x, z|0,0)dx′′dxdz

=

∫
Du,+(r)

|det (MatriN(A(r)y))| pL(y)dy∫
Du,−(r)

|det (MatriN(A(r)y))| pL(y)dy

=

∫
Du,+(r)

|r−1det (MatriN(A(r)y))| pL(y)dy∫
Du,−(r)

|r−1det (MatriN(A(r)y))| pL(y)dy

=

∫
Du,+(r)

|hr(y)|pL(y)dy∫
Du,−(r)

|hr(y)|pL(y)dy

=

∫
Du,+(r)

gr(y)dy∫
Du,−(r)

gr(y)dy

=

∫
RL gr(y)IDu,+(r)(y)dy∫
RL gr(y)IDu,−(r)(y)dy

,

(4.49)

where Du,±(r) are the same as in Lemma 4.5.4 (see also (4.43)), hr, gr and pL are as defined
in (4.39), (4.46) and (4.47).

Note that by (iii) of Lemma 4.5.4, for any r0 ∈ [0, δpc], gr(y)IDu,±(r)(y) converges almost
everywhere on RL to gr0(y)IDu,±(r0)(y) as r → r0, and gr(y)IDu,±(r)(y) is dominated by the
right-hand side of (4.48) which does not depend on r and is integrable over RL. Then by
the dominated convergence theorem, we have

lim
r→r0

∫
RL

gr(y)IDu,±(r)(y)dy =

∫
RL

gr0(y)IDu,±(r0)(y)dy =

∫
Du,±(r0)

gr0(y)dy.
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Moreover, by (i) and (ii) of Lemma 4.5.4 and Remark 4.5.6, we have∫
Du,+(0)

g0(y)dy =

∫
Du,−(0)

g0(y)dy > 0.

Then

lim
r→0

fu,+(u0r)

fu,−(u0r)
=

limr→0

∫
Du,+(r)

gr(y)dy

limr→0

∫
Du,−(r)

gr(y)dy
=

∫
Du,+(0)

g0(y)dy∫
Du,−(0)

g0(y)dy
= 1.

This completes the proof of the theorem.

Remark 4.5.7. In fact, the result in Theorem 4.5.1 also holds for N = 1. Following the
proof of Lemma 4.3.5, one can easily check that the expression of Σ0 and Σ2 in Lemma
4.3.5 also holds for N = 1. Then for N = 1, all the results in Section 4.4.1 hold, and we
have

Σ0 =

0 0 0
0 a a
0 a a

 ,

where a := 1 − 1
3
ρ(1)(0)2ρ(2)(0)−1, and by Lemma 4.2.1, we have a > 0. By solving the

equation det (Σ0 − λI3) = 0 for any λ ∈ R, we have

Λ0 = diag (2a, 0, 0),

which implies A
(2)
0 = A

(3)
0 = 03. Then by Σ0 = A0A

T
0 , we have

A0 =

 0 0 0√
a 0 0√
a 0 0

 .

Thus,
A(r)(1) = A1r + o(r).

As N = 1, MatriN(A(r)y) = A(r)(1)y. Then by Remark 4.4.2,

lim
r→0

r−1det (MatriN(A(r)y)) = lim
r→0

1

r
A(r)(1)y = (A1)(1)y.

Note that by Remark 4.4.2,

A
(i)
1 =

{
λ
1/2
i,0 P

(i)
1 , i = 1;

λ
1/2
i,2 P

(i)
0 , i = 2, 3.
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Thus,

lim
r→0

r−1det (MatriN(A(r)y)) = λ
1/2
1,0P1[1, 1]y1 + λ

1/2
2,2P0[1, 2]y2 + λ

1/2
3,2P0[1, 3]y3. (4.50)

Note that the dimension of the eigenspace of 2a, as an eigenvalue of Σ0, is one. Thus, an
eigenvector of 2a must have the form kP

(1)
0 for some k ̸= 0. By (iv) of Lemma 4.4.1, P

(1)
1

is either 03 or an eigenvector of 2a. Then by (i) of Lemma 4.4.1, we have

P
(1)
1 = 03.

Note that 0 is an eigenvalue of Λ0 with multiplicity N + 1 for N = 1. In addition, since
Σ

(1)
0 = 03, Σ

(2)
0 = Σ

(3)
0 and Σ

(2)
2 = Σ

(3)
2 , we can also get

det (Σ(r)) = o
(
r2N+2

)
for N = 1. Then we can follow the proof of Lemma 4.4.6 to show that it also holds for
N = 1. This implies λ2,2 > 0 and λ3,2 = 0.

Therefore, (4.50) becomes

lim
r→0

r−1det (MatriN(A(r)y)) = λ
1/2
2,2P0[1, 2]y2.

Note that by Lemma 4.3.5,

Σ2 =

18α− 30β α′ − 5
3
β′ α′ − 5

3
β′

α′ − 5
3
β′ −b −b

α′ − 5
3
β′ −b −b

 ,

where b := 1
6
ρ(1)(0)− 5

18
ρ(1)(0)2ρ(2)(0)−2ρ(3)(0), and by (4.2), we have b > 0. SinceΣ0P

(3)
0 =

0, we have
P0[2, 3] + P0[3, 3] = 0.

Then by (iii) of Lemma 4.4.1,

0 = λ3,2 =
(
P

(3)
0

)T
Σ2P

(3)
0

= (18α− 30β)P0[1, 3]
2 + 2

(
α′ − 5

3
β′
)
P0[1, 3](P0[2, 3] + P0[3, 3])

− b(P0[2, 3] + P0[3, 3])
2

= (18α− 30β)P0[1, 3]
2.
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Since 18α − 30β > 0, we have P0[1, 3] = 0 (and thus, Lemma 4.4.7 also holds for N = 1).

By (Σ0 − 2aI)P
(1)
0 = 0 and a ̸= 0, we have P0[1, 1] = 0. Thus, if P0[1, 2] = 0, then from

the above, we can get (P0)(1) = (0, 0, 0). This implies P0 is degenerate, resulting in a
contradiction. Thus, we have

P0[1, 2] ̸= 0.

Therefore, for N = 1, we can define

h0(y) := λ
1/2
2,2P0[1, 2]y2

which is a non-zero polynomial of y with degree one. Then we can also define Du,±(r) as
in (4.43). Since (y1, y2, y3) ∈ Du,±(0) is equivalent to (y1,−y2,−y3) ∈ Du,∓(0), one can
follow the proof of Lemma 4.5.4 and show that it also holds for N = 1. The remaining
proof is the same as that of Theorem 4.5.1.

4.6 Asymptotic Behavior as u → ∞

4.6.1 Main Result 2

Let X be qualified under perturbation. Recall that Condition (3) in Definition 4.3.2 implies
ρ(x) is four times continuously differentiable on [0, δ2ρ], which makes Σ(r) continuous on

r ∈ [0, δρ] (see Lemma 4.3.5). Indeed, for any δ̃ρ > 0 such that

ρ(x) is four times continuously differentiable on
[
0, δ̃2ρ

]
, (4.51)

we can show that Σ(r) is continuous on r ∈ [0, δ̃ρ] by a similar proof of Lemma 4.3.5.

Suppose that (4.51) holds for some δ̃ρ > 0. For any r ≥ 0, let Ã(r) be the non-negative

square root of Σ(r). Recall that this means Ã(r) is the unique positive semi-definite matrix
such that

Σ(r) = Ã(r)ÃT (r).

Then by Lemma 4.2.2, Ã(r) is continuous on r ∈ (0, δ̃ρ]. In addition, for any r ≥ 0, we
can get

Ã(r) = A(r)P T (r). (4.52)

Then by Definition 4.3.6,
lim
r→0

Ã(r) = Ã(0).
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Thus, Ã(r) is continuous on r ∈ [0, δ̃ρ].

To establish our second main result, we also need

Σ(r)[k + k(k − 1)/2, i] < 0

for any 1 ≤ k ≤ N − 1, r ≥ 0 and i = L− 1, L. Note that by Lemma 4.3.5, Σ(0)[k+ k(k−
1)/2, i] = 4

3
ρ(1)(0) < 0 for any 1 ≤ k ≤ N − 1 and i = L − 1, L. Thus, it is equivalent to

requiring that the above inequality to hold for any r > 0. By the proof of Lemma 4.3.5
(see (C.10), (C.11), (C.46) and (C.47)), this is equivalent to

k1(u0r) > 0 and 1− k1(u0r)k∗(u0r)− k2
2(u0r)r

4 > 0,

for any r ∈ (0, δ̃ρ], where for any t ∈ RN ,

k1(t) =
ρ(1)(∥t∥2)
ρ(1)(0)

, k2(t) =
2ρ(2)(∥t∥2)
ρ(1)(0)

, and k∗(t) = k1(t) + k2(t)∥t∥2,

i.e., for any x ∈ (0, δ̃2ρ],

ρ(1)(x) < 0 and (ρ(1)(x))2 + 2ρ(1)(x)ρ(2)(x)x+ 4(ρ(2)(x))2x2 < (ρ(1)(0))2. (4.53)

Example 4.6.1. For any a > 0, we can show that condition (4.53) is satisfied when
ρ(x) = e−ax, x ≥ 0. Since condition (4.53) is invariant under rescaling, it is equivalent to
check this condition when a = 1. Note that ρ(1)(x) = −e−x < 0 and ρ(2)(x) = e−x, x ≥ 0.
Thus, it suffices to check for any x > 0,

e2x > 1− 2x+ 4x2,

i.e., for any t > 0,
et > 1− t+ t2.

Note that et =
∑∞

n=0
tn

n!
. Thus, for any t > 0,

et > 1 + t+
1

2
t2 +

1

6
t3

= (1− t+ t2) +

(
2t+

1

6
t3 − 1

2
t2
)

> 1− t+ t2,

where the last inequality follows from the fact that 2t+ 1
6
t3 ≥

√
1
3
t4 > 1

2
t2 for any t > 0.
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Recall that by (4.32),

fu,k(t) := P (X(0) > u)−1p(0)−1

∫
x,z>u

∫
Dk

|det (x′′)|pt(x′′, x, z|0,0)pt(0,0)dx′′dxdz,

where
Dk :=

{
x ∈ RN(N+1)/2 :MatriN(x) is non-degenerate

and has exactly k negative eigenvalues
}
.

For any 0 ≤ k ≤ N , fu,k(t) is positive and continuous (by the dominated convergence
theorem) on t ∈ RN \ {0N}.

For any u > 0 and t ∈ RN \ {0N}, define

Ψu(t) :=

∑N−2
k=0 fu,k(t)

fu,N−1(t) + fu,N(t)
.

Then Ψu(t) is also continuous on t ∈ RN \ {0N}. The following theorem describes the
limiting behavior of Ψu(t) as ∥t∥ → 0 or u → ∞.

Theorem 4.6.1. Let X be qualified under perturbation. Assume that X also satisfies
(4.51) and (4.53) for some δ̃ρ > 0. Then we have

(i) For any u > 0, the limit Ψu(0) := lim∥t∥→0Ψu(t) exists (and thus, Ψu(t) is well-
defined and continuous on t ∈ RN).

(ii) As u → ∞,
max

t∈B(0N ,δ̃ρ)

Ψu(t) → 0.

4.6.2 Preparation for Main Result 2

By replacing A(r) in (4.42) with Ã(r), we can similarly define

H̃i,u(r) :=
{
y ∈ RL : Ã(r)(i)y > u

}
, (4.54)

for any r ≥ 0, u > 0 and i = L− 1, L. It is noticeable that

• by (4.52) and (v) of Lemma 4.4.4, H̃L−1,u(0) and H̃L,u(0) coincide;
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• by the continuity of A(r) on r ∈ [0, δ̃ρ], for i = L− 1, L,

H̃i,u(0) ⊂ lim inf
r→0

H̃i,u(r) ⊂ lim sup
r→0

H̃i,u(r) ⊂ H̃i,u(0) ∪ ∂H̃i,u(0), (4.55)

• for any r > 0, since Σ(r) is non-degenerate, the two (L−1)-dimensional hyper-planes

∂H̃L−1,u(r) and ∂H̃L,u(r) cannot be parallel, and thus, ∂H̃L−1,u(r) ∩ ∂H̃L,u(r) ̸= ∅.

By convention, the closure of a set A ⊂ RL is denoted by A. For any r ≥ 0 and u > 0,
let Vu(r) := H̃L−1,u(r) ∩ H̃L,u(r). Since V u(r) is a convex set, the point in V u(r) which
minimizes the distance between the origin and a point in V u(r) is unique. Thus, we can
define

ŷu(r) := argmin
y∈V u(r)

∥y∥. (4.56)

Let ŷi,u(r), i = L − 1, L be the projection of the origin on the (L − 1)-dimensional

hyper-plane ∂H̃i,u(r), and let ŷL−1,L,u(r) be the projection of the origin on the hyper-

plane ∂H̃L−1,u(r) ∩ ∂H̃L,u(r) (when r > 0, this hyper-plane is (L − 2)-dimensional, where
L = N(N + 1)/2 + 2 > 2). Obviously, for any r ≥ 0 and u > 0, we have

ŷu(r) ∈ {ŷL−1,u(r), ŷL,u(r), ŷL−1,L,u(r)} , (4.57)

and in particular,
ŷu(0) = ŷL−1,u(0) = ŷL,u(0). (4.58)

Recall that the index of a critical point is defined to be the number of negative eigen-
values of its Hessian matrix.

Lemma 4.6.2. Let X be qualified. Assume that X also satisfies (4.51) and (4.53) for
some δ̃ρ > 0. Let ŷu(r), ŷL−1,u(r), ŷL,u(r) and ŷL−1,L,u(r) be as defined above. Then for
any u > 0,

(i) MatriN(Ã(r)ŷi,u(r)), i = L − 1, L has at least N − 1 negative eigenvalues for any
r ∈ [0, δ̃ρ];

(ii) MatriN(Ã(r)ŷL−1,L,u(r)) has at least N − 1 negative eigenvalues for any r ∈ (0, δ̃ρ].

These, together with (4.57) and (4.58), imply that MatriN(Ã(r)ŷu(r)) has at least N − 1
negative eigenvalues for any r ∈ [0, δ̃ρ].
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Proof. For (i), fix u > 0 and r ∈ [0, δ̃ρ]. Since ŷi,u(r) is the projection of the origin on the

hyper-plane ∂H̃i,u(r) for i = L− 1, L, it is easy to see

ŷi,u(r) = βi,u(r)
(
Ã(r)(i)

)T
for some real number βi,u(r) ̸= 0. Then

0 < u = Ã(r)(i)ŷi,u(r) = βi,u(r)
∥∥∥Ã(r)(i)

∥∥∥2 = βi,u(r)Σ(r)[i, i].

Since Σ(r) is positive semi-definite, we have βi,u(r) > 0 for i = L− 1, L, and then

MatriN

(
Ã(r)ŷi,u(r)

)
= βi,u(r)MatriN

(
Ã(r)

(
Ã(r)(i)

)T)
= βi,u(r)MatriN

(
Σ(r)(i)

)
.

Note that by (i) and (ii) in Appendix C.4, (C.29) and (C.30), it is easy to check that
MatriN(Σ(r)(i)) is diagonal with the first N − 1 diagonal elements equal to Σ(r)[1, i] for
i = L − 1, L. In addition, by Condition (4.53), we have Σ(r)[1, i] < 0 for i = L − 1, L.

Thus, MatriN(Ã(r)ŷi,u(r)), i = L− 1, L has at least N − 1 negative eigenvalues.

For (ii), fix u > 0 and r ∈ (0, δ̃ρ]. It is easy to see

Ã(r)(L−1)ŷL−1,L,u(r) = Ã(r)(L)ŷL−1,L,u(r) = u,

and for any x ∈ RL such that Ã(r)(L−1)x = Ã(r)(L)x = u,

ŷT
L−1,L,u(r)(x− ŷL−1,L,u(r)) = 0.

This implies

ŷL−1,L,u(r) = β′
L−1,u(r)

(
Ã(r)(L−1)

)T
+ β′

L,u(r)
(
Ã(r)(L)

)T
,

for some constants β′
L−1,u(r) and β′

L,u(r). Then for i = L− 1, L,

u = Ã(r)(i)ŷL−1,L,u(r)

= Ã(r)(i)

(
β′
L−1,u(r)

(
Ã(r)(L−1)

)T
+ β′

L,u(r)
(
Ã(r)(L)

)T)
= β′

L−1,u(r)Σ(r)[i, L− 1] + β′
L,u(r)Σ(r)[i, L],
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i.e., (
β′
L−1,u(r)
β′
L,u(r)

)
= (Σ(r)[(L− 1) : L, (L− 1) : L])−1

(
u
u

)
. (4.59)

Denote
a(r) := Σ(r)[L− 1, L− 1] = Σ(r)[L,L],

where the equality comes from the symmetry between X(0) and X(u0r) in the definition
of Σ(r), and

b(r) := Σ(r)[L− 1, L] = Σ(r)[L,L− 1].

Since Σ(r)[(L− 1) : L, (L− 1) : L] is positive-definite, we have

a(r) > 0 and a2(r)− b2(r) > 0.

Then by (4.59), we have

β′
L−1,u(r) = β′

L,u(r) =
u

a2(r)− b2(r)
(a(r)− b(r)) =

u

a(r) + b(r)
> 0.

Thus,

MatriN

(
Ã(r)ŷL−1,L,u(r)

)
=

u

a(r) + b(r)
MatriN

(
Ã(r)

(
Ã(r)(L−1) + Ã(r)(L)

)T)
=

u

a(r) + b(r)

(
MatriN

(
Σ(r)(L−1)

)
+MatriN

(
Σ(r)(L)

))
=

u

a(r) + b(r)

(
β−1
L−1,u(r)MatriN(Ã(r)ŷL−1,u(r)) + β−1

L,u(r)MatriN(Ã(r)ŷL,u(r))
)
,

which is diagonal and has at least N−1 negative eigenvalues by the proof of (i), and hence
proved.

Recall that in Section 4.5.1, we have defined for any 0 ≤ k ≤ N ,

Dk :=
{
x ∈ RN(N+1)/2 :MatriN(x) is non-degenerate

and has exactly k negative eigenvalues
}
.

For any 0 ≤ k ≤ N and r > 0, define

G̃k(r) :=

{
y ∈ RL : Ã(r)y ∈

N⋃
i=k

Di

}
,
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and let
G̃k(0) := lim inf

r→0
G̃k(r).

Then for any u > 0, 0 ≤ k ≤ N and r ≥ 0, we can further define

D̃u,k(r) := H̃L−1,u(r) ∩ H̃L,u(r) ∩ G̃k(r). (4.60)

The following lemma describes the behavior of D̃u,k(r) as r → r0 for any r0 ∈ [0, δ̃ρ],
which is important for our second main result.

Lemma 4.6.3. Let X be qualified under perturbation and satisfy (4.53) for some δ̃ρ > 0.
Then for any u > 0, we have

(i) D̃u,k(0) has a non-empty interior for any 0 ≤ k ≤ N − 1;

(ii) for any r0 ∈ [0, δ̃ρ] and 0 ≤ k ≤ N ,

lim
r→r0

ID̃u,k(r)
(y) = ID̃u,k(r0)

(y) for almost all y ∈ RL.

Proof. Fix u > 0. Without loss of generality, we can assume δ̃ρ ≤ δρ. For (i), since

D̃u,j(0) ⊂ D̃u,i(0) for any 0 ≤ i ≤ j ≤ N − 1, it suffices to show that D̃u,N−1(0) contains

a non-empty open set. By (i) of Lemma 4.6.2, MatriN(Ã(0)ŷL,u(0)) has at least N − 1

negative eigenvalues. Note that by Lemma 4.2.3 and the continuity of Ã(r) on r ∈ [0, δ̃ρ],

the eigenvalues of MatriN(Ã(r)y) are continuous on (r,y) ∈ [0, δ̃ρ] × RL. Thus, there

exist constants δ > 0 and γ > 0, such that MatriN(Ã(r)y) has at least N − 1 negative
eigenvalues for any r ∈ [0, δ) and y ∈ B(ŷL,u(0), γ), the L-dimensional open ball centered
at ŷL,u(0) with radius γ. Note that for any y′ ∈ RL, if there exists r′n ↓ 0 such that

det
(
MatriN

(
Ã (r′n)y

′
))

= 0 for any n ≥ 1,

then by (4.38)-(4.41), (4.52) and the continuity of P (r) on r ∈ [0, δpc],

h0

(
P T (0)y′) = lim

n→∞
hr′n

(
P T (r′n)y

′) = lim
n→∞

1

r′n
det

(
MatriN

(
A (r′n)P

T (r′n)y
′)) = 0.

Then by the orthogonality of P (0), we have

y′ ∈ Qh :=
{
P (0)y : y ∈ RL, h0(y) = 0

}
.

97



Combining all of the above, we have

B(ŷL,u(0), γ) \Qh ⊂ G̃N−1(0).

Then by (4.55),

D̃u,N−1(0) = lim inf
r→0

D̃u,N−1(r)

= lim inf
r→0

H̃L−1,u(r) ∩ lim inf
r→0

H̃L,u(r) ∩ G̃N−1(0)

⊃
(
H̃L,u(0) ∩B(ŷL,u(0), γ)

)
\Qh.

Since H̃L,u(0) is open and ŷL,u(0) ∈ ∂H̃L,u(0), we have H̃L,u(0) ∩ B(ŷL,u(0), γ) is a non-
empty open set. Since h0(y) is a non-degenerate homogeneous polynomial of y1, . . . , yL
with degree N , we have Qh is closed and λL(Qh) = 0. Thus, (H̃L,u(0)∩B(ŷL,u(0), γ)) \Qh

is also a non-empty open set, and hence (i) is proved.

As for (ii), we also fix 0 ≤ k ≤ N . Since the eigenvalues of MatriN(Ã(r)y) are all
continuous on (r,y) ∈ [0, δ̃ρ]× RL, we have

D̃u,k(0) ⊂ lim inf
r→0

D̃u,k(r) ⊂ lim sup
r→0

D̃u,k(r) ⊂ D̃u,k(0) ∪ ∂H̃L,u(0) ∪Qh. (4.61)

The rest of the proof is only an analog of the proof of (iii) of Lemma 4.5.4.

The following lemma is the last preparation for the second main result.

Lemma 4.6.4. For any a, b > 0

sup
k1>a,k2−k1>b

e
1
2
k21u

2

∫
∥y′∥≥k2u

exp

(
−1

2
y′Ty′

)
dy′ → 0 as u → ∞.

Proof. By the change of variable for spherical coordinates, we get∫
∥y′∥≥k2u

exp

(
−1

2
y′Ty′

)
dy′ = C

(∫ ∞

k2u

e−
1
2
r2rL−1dr

)
,
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where C is positive and independent of k2. Thus, we have

e
1
2
k21u

2

∫
∥y′∥≥k2u

exp

(
−1

2
y′Ty′

)
dy′ = C

(∫ ∞

k2u

e−
1
2
(r2−k21u

2)rL−1dr

)
= C

(∫ ∞

k2u

e−
1
2
(r+k1u)(r−k1u)rL−1dr

)
≤ C

(∫ ∞

k2u

e−
1
2
(r+k1u)burL−1dr

)
= Ce−

1
2
k1bu2

(∫ ∞

k2u

e−
1
2
burrL−1dr

)
≤ Ce−

1
2
abu2

(∫ ∞

(a+b)u

e−
1
2
burrL−1dr

)
,

which is independent of k1, k2, and converges to 0 as u tends to infinity.

4.6.3 Proof of Theorem 4.6.1

Proof. The proof of (i) is similar to that of Theorem 4.5.1. Fix u > 0. Since X is isotropic,
it suffices to show that Ψu(u0r) converges as r → 0. By the change of variable

y = Ã−1(r)(x′′, x, z)T ,
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and (4.52), we have for any r > 0,

Ψu(u0r) =

∑N−2
k=0 fu,k(u0r)

fu,N−1(u0r) + fu,N(u0r)

=

∫
x,z>u

∫
∪N−2
k=0 Dk

|det (x′′)|pt(x′′, x, z|0,0)pt(0,0)dx′′dxdz,∫
x,z>u

∫
DN−1∪DN

|det (x′′)|pt(x′′, x, z|0,0)pt(0,0)dx′′dxdz

=

∫
D̃u,0(r)\D̃u,N−1(r)

∣∣∣r−1det
(
MatriN

(
Ã(r)y

))∣∣∣ pL(y)dy∫
D̃u,N−1(r)

∣∣∣r−1det
(
MatriN

(
Ã(r)y

))∣∣∣ pL(y)dy
=

∫
D̃u,0(r)\D̃u,N−1(r)

∣∣r−1det
(
MatriN

(
A(r)P T (r)y

))∣∣ pL (P T (r)y
)
dy∫

D̃u,N−1(r)
|r−1det (MatriN (A(r)P T (r)y))| pL (P T (r)y) dy

=

∫
D̃u,0(r)\D̃u,N−1(r)

gr
(
P T (r)y

)
dy∫

D̃u,N−1(r)
gr (P T (r)y) dy

=

∫
D̃u,0(r)\D̃u,N−1(r)

g̃r(y)dy∫
D̃u,N−1(r)

g̃r(y)dy
,

(4.62)

where D̃u,k(r), 0 ≤ k ≤ N − 1 are the same as in Lemma 4.6.3 (see also (4.60)), gr and pL
are as defined in (4.46) and (4.47), and for any y ∈ RL and r ≥ 0,

g̃r(y) := gr
(
P T (r)y

)
. (4.63)

The fourth equality follows from the fact that pL(y) = pL(P
T (r)y). Then we can use (ii)

of Lemma 4.6.3, which plays the role of (iii) of Lemma 4.5.4 in the proof of Theorem 4.5.1,
to show that

∫
D̃u,k(r)

g̃r(y)dy, 0 ≤ k ≤ N − 1 are continuous functions of r ∈ [0, δ̃ρ]. In

addition, by Remark 4.5.6 and (i) of Lemma 4.6.3, we have for any 0 ≤ k ≤ N − 1,∫
D̃u,k(0)

g̃0(y)dy > 0.

Then

lim
r→0

Ψu(u0r) =
limr→0

∫
D̃u,0(r)\D̃u,N−1(r)

g̃r(y)dy

limr→0

∫
D̃u,N−1(r)

g̃r(y)dy
=

∫
D̃u,0(0)\D̃u,N−1(0)

g̃0(y)dy∫
D̃u,N−1(0)

g̃0(y)dy
.

As for (ii), it suffices to show that for any ε > 0, there exists a constant U > 0 such
that for any r ∈ [0, δ̃ρ] and u > U ,

Ψu(u0r) < ε.
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To this end, we need to introduce some notations and concepts.

We start from ŷu(r), u > 0 and r ≥ 0 as defined in (4.56). It is easy to see ŷu(r) =
uŷ1(r) for any u > 0 and r ≥ 0. By Lemma 4.6.2, there exists a positive function γ(r)

of r ∈ [0, δ̃ρ] such that for any y ∈ B(ŷ1(r), γ(r)), MatriN(Ã(r)y) has at least N − 1

negative eigenvalues. Since Ã(r) is continuous on r ∈ [0, δ̃ρ], {ŷ1(r), r ∈ [0, δ̃ρ]} is compact
and covered by {B(ŷ1(r), γ(r)), r ∈ [0, δ̃ρ]}. Then by the Heine–Borel theorem, there exists
a finite open subcover {B(ŷ1(r), γ(r)), r ∈ {r1, . . . , rn}} of {ŷ1(r) : r ∈ [0, δ̃ρ]} for some
positive integer n and r1, . . . , rn ∈ [0, δ̃ρ]. Let γ

′ be the distance between the two compact
sets {ŷ1(r), r ∈ [0, δ̃ρ]} and ∂(

⋃n
k=1 B(ŷ1(rk), γ(rk))), i.e.,

γ′ := min

{
∥ŷ1(r)− y∥ : y ∈ ∂

(
n⋃

k=1

B(ŷ1(rk), γ(rk))

)
and r ∈ [0, δ̃ρ]

}
. (4.64)

It is easy to see γ′ > 0. Then for any r ∈ [0, δ̃ρ] and y ∈ B(ŷ1(r), γ
′), MatriN(Ã(r)y)

has at least N − 1 negative eigenvalues. Therefore, for any u > 0, y ∈ B(ŷu(r), γ
′u) and

r ∈ [0, δ̃ρ], MatriN(Ã(r)y) also has at least N − 1 negative eigenvalues.

The next step is to define some useful distances. For any u > 0 and r ∈ [0, δ̃ρ], let γ2,u(r)

be the distance between the origin and the compact set ∂B(ŷu(r), γ
′u) ∩ ∂(H̃L−1,u(r) ∩

H̃L,u(r)), let
γ0,u(r) := ∥ŷu(r)∥,

and let

γ1,u(r) :=
1

2
(γ0,u(r) + γ2,u(r)).

It is easy to see for any u > 0, γi,u(r), i = 0, 1, 2 are all positive and continuous on r ∈ [0, δ̃ρ]
with γi,u(r) = γi,1(r)u. Thus, for any u > 0 and i = 0, 1, 2, we have

min
r∈[0,δ̃ρ]

γi,u(r) > 0. (4.65)

Illustrations of these distances with P̃L−1,u(r), P̃L,u(r), B(ŷu(r), γ
′u) and B(0L, γ2,u(r)) are

provided in Figure 4.6.3.

Fix r ∈ [0, δ̃ρ] and u > 0. We have some results about these distances. Firstly, note
that

γ2,u(r)− γ1,u(r) =
1

2
(γ2,u(r)− γ0,u(r)) =

γ′2u2

2(γ2,u(r) + γ0,u(r))
>

γ′2u2

4maxr∈[0,δ̃ρ] γ2,1(r)
> 0.

(4.66)
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Figure 4.1: Illustrations of ∂H̃L−1,u(r), ∂H̃L,u(r), B(ŷu(r), γ
′u) and B(0L, γ2,u(r)) when

ŷu(r) = ŷL−1,L,u(r) (left) and ŷu(r) = ŷL−1,u(r) (right).

From geometry, it easy to see

γ2
2,u(r) = γ2

0,u(r) + γ′2u2.

In addition, for any y ∈ RL such that Ã(u0r)(i)y > u for i = L− 1, L and ∥y∥ < γ2,u(r),
suppose ∥y − ŷu(r)∥ ≥ γ′u, then

∥y∥2 < γ2
2,u(r) = γ2

0,u(r) + γ′2u2 ≤ ∥ŷu(r)∥2 + ∥y − ŷu(r)∥2.

By discussing each case in (4.57), this means that the origin and y are on the same side of

the (L− 1)-dimensional hyper-plane ∂H̃L−1,u(r) or ∂H̃L,u(r). Then we get Ã(r)(L−1)y < u

or Ã(r)(L)y < u, resulting in a contradiction. Thus, we must have ∥y − ŷu(r)∥ < γ′u,
which implies

H̃L−1,u(r) ∩ H̃L,u(r) ∩B(ŷu(r), γ
′u) ⊃ H̃L−1,u(r) ∩ H̃L,u(r) ∩B(0L, γ2,u(r)). (4.67)

or equivalently,

H̃L−1,u(r) ∩ H̃L,u(r) ∩Bc(ŷu(r), γ
′u) ⊂ H̃L−1,u(r) ∩ H̃L,u(r) ∩Bc(0L, γ2,u(r)).

Then by (4.64),

D̃u,0(r) \ D̃u,N−1(r) ⊂ H̃L−1,u(r) ∩ H̃L,u(r) ∩Bc(ŷu(r), γ
′u) ⊂ Bc(0L, γ2,u(r)), (4.68)

where recall D̃u,k(r), 0 ≤ k ≤ N − 1 was defined in (4.60).
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Now we further define some useful subsets of RL. For any r ∈ [0, δ̃ρ] and u > 0, define

Cu(r) := H̃L−1,u(r) ∩ H̃L,u(r) ∩B(0L, γ1,u(r)). (4.69)

It is easy to see Cu(r) = uC1(r), λL(C1(r)) > 0, and λL(C1(r)) is a continuous function of
r ∈ [0, δ̃ρ]. Then we have

C1,δ̃ρ
:= min

r∈[0,δ̃ρ]
λL(C1(r)) > 0. (4.70)

For any r ≥ 0 and y ∈ RL, let

h̃r(y) := hr

(
P T (r)y

)
,

where hr is as defined in (4.39) and (4.40). Indeed, by (4.46) and (4.63), we have

g̃r(y) =
∣∣∣h̃r(y)

∣∣∣ pL(y) = r−1
∣∣∣det (MatriN

(
Ã(r)y

))∣∣∣ pL(y). (4.71)

For any r ≥ 0, define

Qr :=
{
y ∈ RL : h̃r(y) = 0

}
Since hr(y) is a polynomial of y, we have

λL (Qr) = 0. (4.72)

By the continuity of Ã(r) on r ∈ [0, δ̃ρ], h̃r(y) is continuous on r ∈ [0, δ̃ρ] for any y ∈ RL

(not just continuous on [0, δpc] as hr(y)). By (4.66) and (4.67), we also have

Cu(r) ⊂ H̃L−1,u(r) ∩ H̃L,u(r) ∩B(0L, γ2,u(r))

⊂ H̃L−1,u(r) ∩ H̃L,u(r) ∩B(ŷu(r), γ
′u)

⊂ D̃u,N−1(r) ∪Qr,

(4.73)

where D̃u,N−1(r) is as defined in (4.60). For any ε > 0, denote

Iε :=
{
r ∈ [0, δ̃ρ] : λL

(
C1(r) ∩

{
y ∈ RL :

∣∣∣h̃r(y)
∣∣∣ ≥ ε

})
/λL(C1(r)) ≤ 0.5

}
. (4.74)

It is also easy to see λL(C1(r)∩{y ∈ RL : |h̃r(y)| ≥ ε}) is a continuous function of r ∈ [0, δ̃ρ].
Then Iε is compact for any ε > 0. Suppose Iε ̸= ∅ for any ε > 0, then {I1/n, n ≥ 1} forms
a decreasing sequence of non-empty compact set. By Cantor’s intersection theorem, this
implies

∞⋂
n=1

I1/n ̸= ∅,
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i.e., there exists a constant r0 ∈ [0, δ̃ρ] such that for any n ≥ 1,

λL

(
C1(r0) ∩ {y ∈ RL :

∣∣∣h̃r0(y)
∣∣∣ ≥ 1/n}

)
≤ 0.5λL(C1(r0)).

By taking limits on the both sides of the above inequality as n → ∞, we have

λL

(
C1(r0) ∩ {y ∈ RL :

∣∣∣h̃r0(y)
∣∣∣ > 0}

)
≤ 0.5λL(C1(r0)). (4.75)

However, by (4.70), (4.72) and (4.75), we have

0 < C1,δ̃ρ
≤ λL(C1(r0)) ≤ λL

(
C1(r0) ∩

{
y ∈ RL :

∣∣∣h̃r0(y)
∣∣∣ > 0

})
+ λL(Qr0)

= λL

(
C1(r0) ∩

{
y ∈ RL :

∣∣∣h̃r0(y)
∣∣∣ > 0

})
≤ 0.5λL(C1(r0)),

resulting in a contradiction. Therefore, there exists some η > 0 independent of u such that
Iη = ∅. For any u > 0 and r ∈ [0, δ̃ρ], let

Tu(r) := Cu(r) ∩
{
y ∈ RL :

∣∣∣h̃r(y)
∣∣∣ ≥ ηuN

}
. (4.76)

By (4.39), (4.40) and (4.69), it is easy to see

Tu(r) = T1(r)u
L.

Then by (4.74),

λL(Tu(r)) = λL(T1(r))u
L ≥ 1

2
λL(C1(r))u

L ≥ 1

2
C1,δ̃ρ

uL (4.77)

By (4.73) and η > 0, we also have

Tu(r) ⊂ D̃u,N−1(r). (4.78)

Now we return to the proof of (ii). Given ε > 0, we can choose U (as mentioned at
the start of the proof of (ii)) as follows. Firstly, choose θ ∈ (0, 1). Note that there exists a

constant C̃ > 0 such that for any r ∈ [0, δ̃ρ] and y ∈ RL,

h̃r(y) ≤ C̃
∑

v1,...,vN∈{1,...,L}

|yv1 · · · yvN | .
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Thus, there exists U1 > 0 such that

h̃r(y) ≤ exp

(
1

2
θyTy

)
, (4.79)

for any r ∈ [0, δ̃ρ] and y ∈ RL satisfying ∥y∥ ≥ U1mins∈[0,δ̃ρ] γ2,1(s) (see (4.65)). Then by

(4.65), (4.66) and Lemma 4.6.4 with k2 = γ2,1(r) and k1 = γ1,1(r), there exists U2 > 0 such
that

(1− θ)−
L
2

∫
uBc(0L,γ2,1(r))

exp
(
−1

2
y′Ty′) dy′

1
2
ηC1,δ̃ρ

uL+N exp
(
−1

2
γ2
1,1(r)u

2
) < ε, (4.80)

for any u ≥ U2. Then we can simply take U := max(U1, U2). Indeed, for any r ∈ [0, δ̃ρ]
and u > max(U1, U2),

Ψu(u0r)

=

∫
D̃u,0(r)\D̃u,N−1(r)

g̃r(y)dy∫
D̃u,N−1(r)

g̃r(y)dy
(by (4.62))

=

∫
D̃u,0(r)\D̃u,N−1(r)

h̃r(y) exp
(
−1

2
yTy

)
dy∫

D̃u,N−1(r)
h̃r(y) exp

(
−1

2
yTy

)
dy

(by (4.71))

≤

∫
Bc(0L,γ2,u(r))

h̃r(y) exp
(
−1

2
yTy

)
dy∫

Tu(r)
h̃r(y) exp

(
−1

2
yTy

)
dy

(by (4.68) and (4.78))

≤

∫
Bc(0L,γ2,u(r))

exp
(
−1

2
(1− θ)yTy

)
dy

ηuN
∫
Tu(r)

exp
(
−1

2
yTy

)
dy

(by (4.76) and (4.79))

≤
(1− θ)−

L
2

∫
uBc(0L,γ2,1(r))

exp
(
−1

2
y′Ty′) dy′

1
2
ηC1,δ̃ρ

uL+N exp
(
−1

2
γ2
1,1(r)u

2
) (by y′ =

√
1− θy, (4.69), (4.76), (4.77))

< ε, (by (4.80))

as desired.

4.6.4 A Corollary of the Main Results

Note that (ii) of Lemma 4.6.3 holds for k = N . Then by a similar proof for (i) of Theorem

4.6.1, the limit of
fu,N (t)

fu,N−1(t)+fu,N (t)
as ∥t∥ → 0 also exists for any u > 0. The following is an

immediate corollary of Theorems 4.5.1 and 4.6.1.
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Corollary 4.6.5. Let X be qualified under perturbation and satisfy Condition (4.53). Then

lim
u→∞

lim
∥t∥→0

fu,N(t)

fu,N−1(t) + fu,N(t)
=

1

2
.

Remark 4.6.6. Since we are conditioning on having a critical point at the origin with
unknown index, the ratio in Corollary 4.6.5 being very close to 1

2
implies that a pair of

very close critical points should consist of one local maximum and one critical point with
index N − 1.

Intuitively, a connected component of a high excursion set most likely contains exactly
one critical point (one global maximum) or three critical points (two local maxima and
one critical point with index N − 1). Thus, for a connected component containing three
critical points, Corollary 4.6.5 predicts that the critical point with index N−1 will be very
close to one of the two local maxima.
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Chapter 5

Modeling Critical Points

5.1 Introduction

Modeling the critical points of a Gaussian random field, X, is an important challenge
in stochastic geometry and has various applications in astronomy ([6], [40]), biomedical
imaging ([42], [19]), geography ([38], [5], [7]), etc. It is noticeable that many of these
applications only consider critical points above a high threshold, u, i.e., the critical points
in the excursion set

Au(X,S) := {t ∈ S : X(t) > u},
for some search region S.

If the underlying Gaussian random field is known, then one can simply obtain a sample
of the critical points in an excursion set by locating the critical points on the generated
sample functions of the underlying Gaussian random field. However, in practice, one may
only be able to observe critical points from a high excursion set, lacking information of
the underlying Gaussian random field. In this case, it may not be practical to generate
a sample function, as this requires estimating the mean and covariance functions of the
underlying Gaussian random field, which can be very difficult. In this case, an above-
threshold critical point model that does not require much information about the underlying
Gaussian random field would be very useful. Moreover, generating a sample function of the
underlying Gaussian random field, even if feasible, would be very time-consuming, while
many real-world problems often require to produce a large number of samples of critical
points in a short period of time but allowing concessions for the accuracy. Therefore, a
relatively accurate but more efficient model can be better adapted to the needs of the
practice.
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From Theorem 3.4.3, we have learnt that as the threshold u tends to infinity and the
search region expands with a matching speed, the point process consisting of (the position
of) the global maximum of a Gaussian random field in each connected components of the
excursion set will converge weakly to a stationary Poisson point process. An intuitive ex-
planation for this convergence is that distances between the global maxima above u will
increase as u increases, resulting in the approximate independence of these global maxima.
By Theorem 3.4.6, the above convergence also holds for the point process consisting of the
critical points of the Gaussian random field, and the Poisson limits in these two conver-
gences have the same intensity. This is because when the threshold is extremely high, the
critical points with index smaller than N should be much less compared with the local
maxima as shown in Lemma 3.4.5, while Morse theory asserted that a connected compo-
nent cannot have more than one local maximum without other types of critical points, and
thus, the majority of the critical points above the threshold are the global maxima. This
implies when u is extremely high, a Poisson point process can be a suitable model for these
critical points above u.

It is natural to ask whether a Poisson point process can still be a suitable model for the
critical points of a Gaussian random field above a not-so-high u which is more commonly
met in practice. Indeed, under this setting, we can observe from simulations that not only
the interactions between the global maxima can be nonnegligible, which causes the global
maxima to deviate from a Poisson point process, but also a connected component of the
excursion set is more likely to have a complicated structure in the sense that it contains
more than one critical point, which further compromises the accuracy of modeling the
critical points by a Poisson point process. The emergence of these phenomena poses a
challenge to the modeling of the critical points.

Considering that some topological features of a sample function on an excursion set
may not be detectable due to the limitation of measurement accuracy, and are often in-
terpreted as noises in persistent homology (see [2]), only the critical points corresponding
to detectable topological features are worth studying from both practical and theoretical
perspectives. For convenience, we call such critical points persistent.

In this chapter, we will construct a model for the persistent critical points of an isotropic
Gaussian random field indexed by RN (N ≥ 2) above a high but not very high threshold
with the help of the results that we have obtained in the previous two chapters. Since u is
still high, one should expect the Poisson heuristic still hold to certain degree. Moreover,
the deviation from it comes from different mechanisms as discussed above. Therefore, the
basic idea is to first study the underlying Poisson structure, the interactions between global
maxima, the interactions within connected components separately, and then integrate them
into one single model. This gives the model a hierarchical structure which allows to capture
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the global maxima and other critical points simultaneously. To the best of our knowledge,
there is no similar study on the modeling of the critical points of a Gaussian random field
above a threshold.

The remainder of this chapter is organized as follows. Section 5.2 introduces the hard-
core process which serves as the starting point of the model, and the L function which is
used to evaluate the performance of the model in the empirical study. Section 5.3 mainly
defines the persistent critical points and some other useful concepts. The intuitions behind
these concepts are also discussed. Section 5.4 elaborates in detail the construction of
the model. To better understand the hierarchical structure of the model, we divided the
construction into three stages which correspond to the underlying Poisson structure, the
interactions between global maxima, and the interactions within connected components as
mentioned above. The relationships between these stages and the intuitions behind them
are also clarified. Section 5.5 explains the estimation of the parameters in the proposed
model, and Section 5.6 checks the performance of the model using two isotropic Gaussian
random fields indexed by R2.

5.2 Preliminaries

5.2.1 Hard-core Processes

A hard-core process is a point process whose points maintain a predetermined minimum
distance rH ≥ 0 from one another. This distance is usually called the hard-core distance
or the radius of the hard core. In practice, one can simulate a hard-core process by thinning
an underlying process, i.e., deleting some points of the underlying process according to the
hard-core distance and some thinning rules. For example, [25] introduced two hard-core
processes, the first and the second Matérn processes, by thinning a Poisson point process.
The constructions of the two Matérn processes both start from detecting all the pairs of
points of a Poisson point process with distance less than rH . However, their thinning rules
are slightly different: the first Matérn process requires to delete the whole pair, while the
second Matérn process only requires to delete the point with the lower height, where the
heights of points are independently and identically sampled from the uniform distribution
on [0, 1] (written as U(0, 1)) and also independent of other source of randomness in this
construction.

More specifically, equip RN with the usual Euclidean norm ∥ · ∥. For any t ∈ RN and
r > 0, let B(t, r) be the N -dimensional open ball centered at t with radius r, and let
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B̊(t, r) := B(t, r) \ {t}. A point s ∈ RN is said to be an r-neighbor of t if s ∈ B̊(t, r).
The intensity of a stationary point process on RN is defined to be the average number of
its points in a unit of area. Let {ti, i ≥ 1} be the points of a Poisson point process on RN

with intensity µP > 0. Let {hi, i ≥ 1} be a random sample from U(0, 1), and hi is called
the height of ti. The thinning rule of a second Matérn process with hard-core distance
rH > 0 is

a point ti is only retained if it has no rH-neighbors in {ti, i ≥ 1}
that are higher than or equal to it.

(5.1)

Based on [29], the intensity µH of this second Matérn Process is given by

µH =
1− e−µP πr2H

πr2H
. (5.2)

5.2.2 L Functions

Denote by B(RN) the Borel σ-field of RN . Let ξ be a point process on RN with the intensity
function µ : RN → [0,∞), i.e., for any B ∈ B(RN),

E[ξ(B)] =

∫
B

µ(s)ds.

Then the Ripley’s K function (see [35] and ([36])) of ξ at a point t ∈ RN is defined by

Kt(r) :=
1

µ(t)
lim
h→0

E
[
ξ
(
B̊(t, r)

) ∣∣∣∣ξ (B(t, h))

]
, r > 0. (5.3)

If ξ is stationary, then the values of µ(t) and Kt(r) are independent of t, and thus, the
subscript t can be omitted. In particular, if ξ is a stationary Poisson point process, its
Ripley’s K function is

K(r) = πr2, r > 0, (5.4)

which is independent of its intensity.

In practice, points of ξ are collected on a bounded search region, S. For any n ≥ 1, let
λn be the n-dimensional Lebesgue measure. Let M := ξ(S), and let ξS := {ti, 1 ≤ i ≤ M}
be the points of ξ in S. By (5.3), it is straightforward to estimate Ripley’s K function
by the average number of r-neighbors over all the points in ξS per unit area. This is the
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intuition behind the classical empirical K function, K̂(r), on S, suggested by [35] and [36].
More specifically,

K̂(r) : =
1

µ̂

1

M

M∑
i=1

M−1∑
j=1,j ̸=i

I{∥ti−tj∥<r}

=
λN(S)

M(M − 1)

M∑
i=1

M−1∑
j=1,j ̸=i

I{∥ti−tj∥<r},

where I stands for the indicator function of an event, and the estimator µ̂ := M−1
λN (S)

of the

intensity µ (instead of using µ̂ := M
λN (S)

) is suggested by [12] for technical reasons.

However, the classical empirical K function on S at r fails to consider the r-neighbors
outside S, which leads to the so-called edge effect bias. A correction method for this bias is
called the border correction. This correction method requires shrinking the original search
region to the extent that for any point in the search region, its r-neighbors are all included
in the original one, and hence, the edge effect does not occur. However, when r is large, the
border correction method may dramatically reduce the available data due to a significant
shrinkage of the search region. In this case, a more efficient correction method needs to be
considered.

To this end, we choose the isotropic correction method from several candidates sug-
gested by [37]. This correction method can eliminate the edge effect bias without reducing
available data. For any set A ∈ RN , let ∂A be the boundary of A. The empirical K
function on S with the isotropic correction is defined by

K̂iso (r) : =
λN(S)

M(M − 1)

M∑
i=1

M−1∑
j=1,j ̸=i

wijI{∥ti−tj∥<r}, r > 0,

where wij represents the weight of the ordered pair (ti, tj) and is defined by

wij :=
λN−1(∂B(ti, ∥ti − tj∥))

λN−1(∂B(ti, ∥ti − tj∥) ∩ S)
.

In fact, λN(S)
−1
∑M

i=1

∑M−1
j=1,j ̸=i wijI{∥ti−tj∥<r} is an unbiased estimator of µ2K(r) when r

is small relative to S (see [35] and [36]). Thus, for any r > 0, K̂iso (r) is an asymptotically
unbiased estimator of K(r) as S expands to RN . In particular, when S is a rectangle,
λN(S)

−1
∑M

i=1

∑M−1
j=1,j ̸=i wijI{∥ti−tj∥<r} is an unbiased estimator of µ2K(r) when r is less

than or equal to half of the diagonal of S. In this case, an explicit formula for wij is
provided in [15].
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When ξ is a Poisson point process on R2 with intensity µ, [37] provided an approximate
variance of its empirical K function on S with the isotropic correction as S expands to R2,

V ar[K̂iso (r)] ≈
2

µ

(
πr2

λ2(S)
+

0.96λ1(∂S)r
3

λ2(S)2
+ 0.13µ

λ1(∂S)r
5

λ2(S)3

)
.

This implies the variance of K̂iso (r) on a fixed search region will explode as r increases,
which makes it unsuitable for a graphical comparison. A workaround is to use the L
function ([8])

L(r) :=

√
K(r)

π
− r, r > 0.

This transformation, inspired by Ripley’s K function of a stationary Poisson point process
in (5.4), can stabilize the variance of the estimator. Since the L function of any stationary
Poisson point process is the zero function, one can easily compare a point process with a
stationary Poisson point process by comparing its L function with zero.

Let ξi, 1 ≤ i ≤ ℓ be independent copies of ξ conditional on ξ(S) ≥ 2, and let K̂iso ,i(r)
be the empirical K function of ξi on S with the isotropic correction. Then we can define
the L̄ function

L̄(r) :=

√∑ℓ
i=1 K̂iso ,i(r)

ℓπ
− r, r > 0.

From the above discussion, it is easy to see for any r > 0, L̄(r) is an asymptotic unbiased
estimator of L(r) as S expands to RN and ℓ → ∞. To reduce the bias of L̄(r), one needs
to select S as large as possible to reduce the bias of K̂iso ,i(r).

Let K̄ := 1
ℓ

∑ℓ
i=1 K̂iso ,i(r). Since the variance of K̄ can be estimated by V̂ar(K̄) :=∑ℓ

i=1(K̂iso ,i(r)−K̄)2

ℓ(ℓ−1)
, the variance of L̄(r) can be estimated by V̂ar(K̄) and the delta method,

i.e.,

V̂ar
(
L̄(r)

)
:= h′ (K̄)2 V̂ar (K̄) = 1

4πK̄

∑ℓ
i=1(K̂iso ,i(r)− K̄)2

ℓ(ℓ− 1)
,

where h(y) =
√

y
π
, y ≥ 0.

5.3 Basic Settings

Let {X(t), t ∈ RN} be an isotropic Gaussian random field and satisfy the conditions
of Lemma 2.1.10. Assume that the covariance function Cov [X(s), X(t)] ≥ 0 for any
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s, t ∈ RN . Define the excursion set, Au(X,S), of X at the threshold u ∈ R in the search
region S ⊂ RN by

Au(X,S) := {t ∈ S : X(t) > u}.

Given u ∈ R, the point t ∈ RN is said to be a (component) global maximum of X if it is the
position of the global maximum of X in a bounded connected component of Au(X,RN).
When u is reasonably high, all the connected components are almost surely bounded. Also,
we call a connected component of Au(X,RN) “a connected component at u”.

Figure 5.1: A sample function of a Gaussian random field above a high threshold. The
connected component has three critical points: two local maxima (blue) and one saddle
point (red).

Let f be a sample function of X. Recall that in Section 2.3, a point t ∈ RN is said to
be a critical point of f with index k (0 ≤ k ≤ N) if

▽f(t) = 0 and index
(
▽2f(t)

)
= k,

where ▽f(t) and ▽2f(t) denote the gradient and the Hessian matrix of f respectively, and
index (·) denotes the number of negative eigenvalues of a square matrix. A critical point t
of f is said to be non-degenerate if

det (▽2f(t)) ̸= 0.

By Remark 2.1.12, with probability one, all the critical points of X in a bounded search
region are non-degenerate. Thus, we can focus only on non-degenerate critical points of X
in the remainder of this chapter.
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Now let us review our previous results about critical points of an isotropic Gaussian
random field above a high threshold u. In Lemma 3.4.5, we have shown that the majority
of the critical points above u are local maxima. In Corollary 4.6.5, we have shown that if
two critical points above u are very close one to each other, then they are most likely to
be one local maximum and one saddle point with index N − 1. These results imply that
the number of the critical points with index less than N −1 should be negligible compared
with the number of local maxima or the number of the saddle points with index N − 1.
Thus, when u is reasonably high, most of the connected components at u only contain
local maxima and saddle points with index N − 1. By Morse theory (see Corollary 9.3.5 in
[4] and Theorem 9.1 in [26]), such a connected component typically contains either exactly
one critical point which is its global maximum, or three critical points consisting of one
global maximum, one local maximum and one saddle point with index N − 1.

A connected component at u is said to be

• simple if it contains exactly one critical point which is its global maximum;

• typical if it is simple, or contains exactly three critical points: one global maximum,
one local maximum and one saddle point with index N − 1, which form a family of
three at u.

One should note that, a family of three at u may not be a family of three at u′ when
u′ ̸= u. This is because if u′ > u, then a family member may be lower than u′; if u′ < u,
the connected component at u′ which contains the whole family may have more than three
critical points (be non-typical).

Assume that f is a sample function of X, u1 ∈ R, and Cu1 is a typical connected
component of Au1(f,RN). Let u2 := maxt∈Cu1

f(t). For any u ∈ [u1, u2), define

Cu := Au

(
f,RN

)
∩ Cu1 .

Then as u increases, we can observe the change in the topology of Cu as follows. If Cu1 is
a simple connected component, then Cu will gradually shrink to the position of the global
maximum of f in Cu1 and there is no change of the topology of Cu during this process.
However, if Cu1 contains a family of three at u1, then the change is more complicated.
When u just passes the value of the saddle point in the family of three, Cu will split
into two simple connected components at u such that one of them contains the global
maximum and the other one contains the local maximum. As u further increases until
it just passes the value of the local maximum, the connected component containing the
local maximum will disappear. Such changes of the topology of Cu can be captured by the
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so-called persistence barcode (see [14]) which is a widely used tool in persistence homology.
Furthermore, if the difference between the values of the saddle point and local maximum
are small and u is interpreted as time, then the simple connected component containing
the local maximum can only “survive” for a short time, which corresponds to a short bar
on the persistence barcode. Note that in persistence homology, a short bar, corresponding
to a short-lived topological feature, is usually interpreted as noise (see [2]). We will follow
this idea to eliminate these noises in our data.

More specifically, a family of three is said to be short-lived if the difference between
the values of the local maximum and the saddle point is less than some predetermined
small value δp. Let ut be our target threshold. Considering that in practice, it is often
hard to distinguish a typical connected component containing a short-lived family of three
from a simple connected component, and in order to eliminate the interference of noises
from short-lived topological features, it is more realistic and reasonable to modify every
short-lived family of size three at any u ∈ [ut,∞) (u is from low to high) into a single point,
by deleting the local maximum and the saddle point in the family. After this modification,
all the critical points above ut are called persistent.

In summary, given an isotropic Gaussian random field X indexed by RN and a target
threshold ut > 0 which is high but not very high, we are interested in the simulation of
the persistent critical points of X above ut.

5.4 Modeling Critical Points Using a Clustering Pro-

cess

We call a persistent critical point typical if it is contained by a typical (after the modifica-
tion) connected component at ut. From the last section, we have learnt that the majority of
the connected components at ut are typical. As such, we will focus only on the distribution
of persistent and typical critical points above ut in our model design. In the remainder
of this chapter, denote by ξCut

the point process on RN consisting of persistent and typ-
ical critical points above ut, by ξMut

the point process on RN consisting of the persistent
and typical global maxima above ut, and for convenience, we will not distinguish a point
process from the set of its points. Then it is easy to see ξMut

⊂ ξCut
.

When the target threshold ut is very high, Sections 3.4.2 and 3.4.3 suggest that the
difference between ξCut

and its subset ξMut
is negligible, and both of them can be approximated

by a Poisson point process in distribution. However, this is not the case when ut is high
but not very high. Figure 5.2 shows that the estimates of the L functions (see Section
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5.2.2) of ξCut
and ξMut

both obviously deviate from the zero function, which is the theoretical
L function of a stationary Poisson point process. Thus, more subtle models for ξCut

and ξMut

should be considered in this case.

Figure 5.2: Estimates of L functions of the critical points ξCut
and the global maxima ξMut

for the covariance function C(r) = exp(−4r2), r ≥ 0 and ut = 3.5.

A stochastic process is called a clustering process on RN if it can be constructed by
the following procedures:

• generate a parent process on RN which may or may not be observed;

• each parent point produces a random number of observed daughter points, and these
numbers are independently and identically distributed;

• the positions of daughter points relative to their respective parents are also indepen-
dently and identically distributed.
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For a clustering process, we call it a clustering process of order one if its parent process
is not a clustering process. As an immediate generalization, we can define a clustering
process of order n (n ≥ 2) iteratively by letting its parent process be a clustering process
of order n− 1. One can also refer to [28] for a similar generalization of the Neyman–Scott
process to higher orders.

In particular, a clustering process of order n with parents points being observed in
every iteration can be divided into n + 1 different groups. These groups are also called
generations and denoted by Gi for i = 1, . . . , n + 1. For any 1 ≤ k ≤ n, Gk+1 is called
the daughter of the accumulative union

⋃k
i=1 Gi, and each point in Gk+1 can only have one

parent in
⋃k

i=1Gi.

In essence, the proposed model for the critical points ξCut
is a clustering process of order

two on RN with parent points being observed in every iteration. This means that the
model consists of three observed generations, Gi, i = 1, 2, 3 such that G2 is the daughter
of G1, and G3 is the daughter of G1 ∪G2.

The intuition behind the model is that one can find a similar structure in ξCut
. We

first look at its subset ξMut
. When ut is high but not very high, the Poisson characterization

should be largely kept between points of ξMut
which maintain a minimum distance, r′H , from

one another due to the decreasing dependence in distance. In fact, these points form a
hard-core process with hard-core distance r′H , and can be considered as the first generation,
denoted by G′

1, in ξCut
. Thus, the behavior of G′

1 should be close to a second Matérn process
with the same hard-core distance. Since points of ξMut

are all born with natural heights (i.e.,
the values of X at these points), we can identify G′

1 from ξMut
by applying the thinning rule

(5.1) to ξMut
. An advantage of this thinning rule is that for each point in ξMut

\ G′
1, it has

at least one r′H-neighbor in G′
1, and then its closest r′H-neighbor in G′

1 (by Lemma 3.2.2,
with probability one, there are only finite local maxima in a bounded subset of RN) can
be considered as its parent. Thus, ξMut

\G′
1 is the second generation, denoted by G′

2, in ξCut
.

Finally, if a global maximum in G′
1 ∪ G′

2 = ξMut
is the member of a family of three in ξCut

,
then it can be considered as the parent of other family members, the local maximum and
the saddle point. Thus, ξCut

\ ξMut
, consisting of the local maxima and saddle points of the

families of three at ut, can be considered as the third generation, denoted by G′
3, in ξCut

.

From the above intuition, we see that each generation Gi can be considered as a model
for G′

i for i = 1, 2, 3. Moreover, note that the accumulative unions G′
1 (a hard-core process

consisting of global maxima), G′
1 ∪ G′

2 (i.e., ξMut
) and G′

1 ∪ G′
2 ∪ G′

3 (i.e., ξCut
) are all well-

defined point processes with explicit geometric meanings. Thus, it is more helpful to divide
the construction of our modeling into three stages, so that each stage can be considered as
(and also named by) the modeling of one of these point processes.
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5.4.1 Stage 1: Obtaining Global Maxima not Affected by the
Hard-core Thinning

Let ξ be a stationary Poisson point process on RN with intensity µP > 0. Then we can
apply the thinning rule (5.1) to ξ to generate a second Matérn process with hard-core
distance rH > 0. This second Matérn process is G1.

5.4.2 Stage 2: Modeling Other Global Maxima

In this stage, we will construct a model for ξMut
which is essentially a clustering process of

order one. This model consists of two generations: G1, the second Matérn process in Stage
1, and G2, the daughter of G1. Our algorithm to produce G2 from G1 is as follows.

For each parent in G1, a Bernoulli trial with success rate p1 > 0 is run to determine
whether it produces daughters in its neighborhood: if successful, it produces one daughter;
otherwise, it does not produce any daughters. These Bernoulli trials are mutually inde-
pendent and also independent of all other randomness in the model. Once the Bernoulli
trial succeeds, a distribution on RN is needed to determine where to produce its daughter.
Since the underlying random field is isotropic, this distribution can be characterized by
the distance R between the daughter and the parent. More specifically, if the parent is at
P ∈ RN , then the position, D, of its daughter can be given by

D = P +R
V

∥V ∥
, (5.5)

where V is a Gaussian N -vector with zero-mean and identity covariance matrix.

As far, the only thing left to determine G2 is the distribution of R. Let p(r), r > 0 be
the probability density function of R. Intuitively, we see that p(r) should be a model for
the distribution of the distance, R′, between a random point in G′

2 and its parent in G′
1,

and R′ ≤ r′H . Thus, it is reasonable to assume

p(r) = 0 for any r ≥ rH .

Note that the distribution of R′ is naturally weighted by λN−1(∂B(0N , r)) at R
′ = r. Thus,

equivalently but more naturally, we can consider the density function

q(r) ∝ p(r)

rN−1
, r > 0,
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where “∝” means “is proportional to”. This should give us the “density” of finding a
member of G2(r) at any given point with distance r from its parent.

Intuitively, the interaction between a point in G′
1 and its daughter in G′

2 (as defined in
our intuition) is similar to the interatomic interaction since as the distance increases, they
both go through the following three stages:

1. Strong repulsion at a very short distance: consider the situation where two global
maxima above ut are very close one to each other. The two global maxima should
be both contained by a connected component at u which is still high (just slightly
lower than ut). By Morse theory, there must be a critical point in this connected
component at u such that its index is smaller than N and its value is between u
and ut. However, from Lemma 3.4.5, we have learnt that the critical points above u
with index smaller than N are very few compared with the local maxima above u.
Therefore, such a situation should be rare, which corresponds to the strong repulsion
at a very short distance.

2. Relatively strong attraction at a short distance: since the covariance function is
positive, a high global maximum may have some “1ifting” effect on other points
nearby. Thus, it is more likely to get another global maximum above ut at a small
distance from a high global maximum.

3. Decreasing attraction as the distance increases: as the distance increases, the “1ift-
ing” effect will diminish due to the decreasing dependence, and the critical points
behave more and more like in a Poisson point process.

Due to the similarity in the interactions discussed above, we turn to particle physics
for a suitable model. An influential model to describe the interatomic interaction is the
Morse potential ([27]) possessing the form

VM(r) := D
(
1− e−a(r−c)

)2
, r > 0,

where D, a and c are all positive constants. This is in terms of the energy (potential). To
turn energy into probability density, we use the Gibbs measure ([13]), which has the form

qG(r) ∝ exp(−βV (r)), r > 0,

where β > 0 and the function V is often interpreted as potential energy in physics appli-
cations. Then we can define the Gibbs-Morse density by

qGR(r) ∝ I{0<r<rH} exp(−VM(r)), r > 0.
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Plots of qGR(r) with rH = 2 are provided in Figure 5.3. Finally, the density of R in the
model is defined by

p(r) := CrN−1I{0<r<rH} exp(−VM(r)), r > 0,

where

C :=

(∫ rH

0

rN−1 exp(−VM(r))dr

)−1

.

Figure 5.3: Plots of the Gibbs-Morse densities with rH = 2.

5.4.3 Stage 3: Modeling Critical Points

In this stage, we will construct a model for ξCut
consisting of the clustering process G1 ∪G2

of order one in Stage 2 and its daughter process G3. Our algorithm to produce G3 from
G1 ∪G2 is as follows.

For each point in G1 ∪ G2, a Bernoulli trial with success rate p2 is run to determine
whether it produces daughters in its neighborhood: if successful, it produces two daughters;
otherwise, it does not produce any daughters (intuitively, if a global maximum is the
member of a family of three, then it has two daughters: a local maximum and a saddle
point in the same family; otherwise, it has no daughters). These Bernoulli trials are
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mutually independent and also independent of all other randomness in the model. Then
G3 is defined as the set of the daughters produced in this way.

In fact, a parent in G1 ∪ G2 and its two daughters in G3 also form a family of three
in the model, which can be considered as the counterpart of a family of three in ξCut

. In
each such family, denote by 0 the parent, by 1 and 2 the two daughters, by △012 the
triangle formed by these three points, and by rij the distance between members i and j
for i, j = 1, 2, 3. Denote by α1 ∈ (π

2
, π) the interior angle of △123 at 1. An illustration of

a family of three of the model is provided in Figure 5.4.

Figure 5.4: An illustration of a family of three of the proposed model.

Let θ1 := Wα1, whereW is a Rademacher random variable. These Rademacher random
variables are mutually independent and also independent of all other randomness. Note
that by the law of sines,

sin(θ1)

r02
=

sin(Wα1)

r02
=

W

2R123

,

where R123 is the radius of the circumscribed circle of △123. If 1
R123

is integrable, we must
have

E
[
sin(θ1)

r02

]
= E[W ]E

[
1

2R123

]
= 0.

Then we set the distribution of (log(r01), log(r02),
sin(θ1)
r02

) to be a multivariate Gaussian
distribution, N (ν,Σ), with mean vector ν := (ν1, ν2, 0) and covariance matrix

Σ :=

 σ2
11 ρ12σ11σ22 0

ρ12σ11σ22 σ2
22 0

0 0 σ2
33

 ,

where (ν1, ν2) ∈ R2, ρ12 ∈ (−1, 1), and (σ11, σ22, σ33) ∈ (0,∞)3.
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The motivation of the above setting comes from both theoretical analysis and simulation
results. More precisely, the Rademacher random variable is a result of the symmetry
implied by the isotropy. The joint normality and independence between (log(r01), log(r02))

and sin(θ1)
r02

are observed in simulation (for their counterparts in ξCut
) with several different

covariance functions.

Note that r01, r02 and θ1, derived from the above Gaussian distribution, can only
determine the shape of a family of three. We still need some directions to fully determine
the positions of the two daughter points 1 and 2 relative to their parent 0. Since the
underlying random field is isotropic, a uniform random direction, together with r02, can
determine the position of the daughter 2, but the daughter 1 can still be located at any
point of a sphere of dimension N−2. The (N−1)-dimensional plane containing the sphere
is perpendicular to 0⃗2, and the sphere is centered at the intersection of the plane with the
line of 0⃗2. Therefore, we need another random vector uniformly distributed on the sphere
to determine the position of the daughter 1. This completes the construction of our model.

5.5 Estimation of Parameters

In this section, we will illustrate the estimation of the parameters in the proposed model in
two examples where the Gaussian random fields are defined on R2 with specific covariance
structures. In total, there are 13 parameters in the proposed model, and we can divide
them into the following groups to make the structure of this section clearer:

1. p1 in Stage 2 and p2 in Stage 3;

2. rH and µP in Stage 1;

3. θ := (D, a, c) in Stage 2;

4. γ := (ν1, ν2, ρ12, σ
2
11, σ

2
22, σ

2
33), i.e, the parameters in ν and Σ in Stage 3.

First of all, we need to make some preparations.

5.5.1 Selections of the Hard-core Distance for an Isotropic Gaus-
sian Random Field

The first preparation is to determine a range for the hard-core distance r′H .

122



Recall that r′H should be large enough to ensure the interaction between two points of
G1 are weak. Since the random field is Gaussian, this interaction is characterized by their
covariance. Thus, to control this interaction, for a centered isotropic Gaussian random
field X on R2 with covariance function ρ(∥t∥2) := Cov [X(0), X(t)], t ∈ R2, we require
that r′H satisfy

ρ(r′2H) ≤ α, (5.6)

for some α > 0.

5.5.2 Range of the Threshold

As stated earlier, our goal is to model the critical points when the threshold u is high but
not very high. In our model, this is translated into requiring almost all the critical points
above u to be still typical (see the beginning of Section 5.4). As a result, a value of u which
would allow a satisfactory approximation using the proposed model should make the ratios

P (ξMut
(B(0N , r

′
H)) ≥ 2)

P (ξMut
(B(0N , r′H)) = 1)

and
P (ξMut

(B(0N , r
′
H)) ≥ 3)

P (ξMut
(B(0N , r′H)) = 2)

both very small. Note that in the above two ratios, if replacing ξMut
with a stationary

Poisson point process, then both of them are almost proportional to the intensity of this
Poisson point process. Considering that the behavior of ξMut

should not be too far from
that of a stationary Poisson point process when ut is high, we can control these two ratios
by controlling the expectation E[ξMut

(B(0N , r
′
H))].

Since a global maximum must be a local maximum, it is sufficient to control the ex-
pected number E[Mut(X,B(0N , r

′
H))] of the local maxima of X in Aut(X,B(0N , r

′
H)). Re-

call that an integral expression of E[Mut(X,B(0N , r
′
H))] is provided in Corollary 3.2.1.

Since there is no simple expression of this integral, one can use a numerical method to get
an approximation of this integral. Alternatively, one can use the asymptotic expression of
this integral in Lemma 3.2.2, by which r′H and ut can be selected to satisfy

M(r′H , ut) :=
λN(B(0N , r

′
H))
√

det (Λ)uN−1
t

(2π)(N+1)/2σ2N−1
exp

(
− u2

t

2σ2

)
< β (5.7)

for some β > 0, where σ and Λ are as defined in Lemma 3.2.2.

In fact, (5.6) and (5.7) jointly determine a lower bound of the threshold to be considered
as “high but not very high”. In the following treatments, we take

α = 0.0003 and β = 0.15. (5.8)

123



According to our empirical studies, the performance of the proposed model is not sensitive
to the changes of α and β when they are both reasonably small.

5.5.3 Border Effect

To correctly identify G′
i, i = 1, 2, 3 in the search region S, we need to generate sample

functions of X on a larger region S ′ ⊃ S such that with a very large probability,

1. for every local maximum in S, the connected component it lies in is fully contained
in S ′;

2. for any global maximum t ∈ S, we have B(t, r′H) ⊂ S ′.

5.5.4 Estimation of p1 and p2

For i = 1, 2, 3, denote by µi the intensity (i.e., the average number of points in a unit of
area) of Gi, and by µ′

i the intensity of G′
i. Based on the definitions of p1 and p2 in Stages

1 and 2 respectively, we can derive that

p1 =
µ2

µ1

and p2 =
µ3

µ1 + µ2

. (5.9)

For i = 1, 2, 3, let Yi = {Yi1, . . . , Yin} be independent copies of G′
i(S)/λN(S), and let Ȳi be

the average of Yi. For convenience, we also define Y4 := {Y11 + Y21, . . . , Y1n + Y2n}, and
similarly, let Ȳ4 be the average of Y4 (i.e., Ȳ4 = Ȳ1 + Ȳ2). Then it is easy to see

E[Yij] = µ′
i

for any 1 ≤ i ≤ 4 and 1 ≤ j ≤ n. Thus, we can use the sample mean Ȳi to estimate µi.
Then, by (5.9), the consistent estimators of p1 and p2 can be

p̂1 :=
Ȳ2

Ȳ1

and p̂2 :=
1

2

Ȳ3

Ȳ4

, (5.10)

respectively.

For i = 1, 2, 3, 4, let S2
Yi

:= 1
n−1

∑n
j=1(Yij − Ȳi)

2. For any 1 ≤ i1, i2 ≤ 4 and i1 ̸= i2, let

SYi1
Yi2

:= 1
n−1

∑n
j=1(Yi1j − Ȳi1)(Yi2j − Ȳi2). Then the consistent estimators (see [43]) of the

variances of p̂1 and p̂2 can be

V̂ar(p̂1) :=
1

n

(
S2
Y2

Ȳ 2
1

+
Ȳ 2
2 S

2
Y1

Ȳ 4
1

− 2Ȳ2SY1Y2

Ȳ 3
1

)
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and

V̂ar(p̂2) :=
1

4n

(
S2
Y3

Ȳ 2
4

+
Ȳ 2
3 S

2
Y4

Ȳ 4
4

− 2Ȳ3SY3Y4

Ȳ 3
4

)
,

respectively.

5.5.5 Estimation of rH and µP

Since the hard-core process G′
1 is modeled by the second Matérn process G1 and they share

the same thinning rule, it is natural to set rH = r′H .

As for the estimation of µP , by (5.2), we have

µ1 = µH =
1− e−µP πr2H

πr2H
.

Since Ȳ1 can be the estimator of µ1, we set the estimator of µP

µ̂P := −
log
(
1− πr′2H Ȳ1

)
πr′2H

.

It is easy to see V̂ar(Ȳ1) := S2
Y1
/n is an unbiased estimator of the variance of the sample

mean Ȳ1. Then using the delta method, an estimator of the variance of µ̂P is

V̂ar (µ̂P ) := g′
(
Ȳ1

)2
V̂ar

(
Ȳ1

)
=

S2
Y1

n
(
1− πr′2H Ȳ1

)2 ,
where g(y) := − log(1−πr′2Hy)

πr′2H
, y ≥ 0.

5.5.6 Estimation of D, a and c

We use the maximum likelihood estimation to estimate the parameters θ = (D, a, c) ∈
(0,∞)3 in the density

p(r) := C(θ)rN−1I{0<r<rH} exp
(
−D

(
1− e−a(r−c)

)2)
, r > 0,

where

C(θ) :=

(∫ rH

0

rN−1 exp
(
−D

(
1− e−a(r−c)

)2)
dr

)−1

.
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Let R1, . . . , Rk be independent copies of R
′, the distance between a random point in G′

2

and its parent in G′
1 (see Stage 2). Note that p(r) is a model for the density of R′. Then

the log-likelihood function of p(r) based on R1, . . . , Rk is

ℓ(θ|R1, . . . , Rk) = k log(C(θ)) +
k∑

j=1

(
(N − 1) log(Rj)−D

(
1− e−a(Rj−c)

)2)
.

Then the maximum likelihood estimator of θ is defined by

θ̂ := argmax
θ∈(0,∞)3

ℓ(θ|R1, . . . , Rk).

In practice, the maximum likelihood estimate of θ can be numerically solved. By the
asymptotic efficiency of the maximum likelihood estimator ([9]), the inverse of the Hessian
matrix of the log-likelihood function at the maximum likelihood estimate can be used as
the estimate of the covariance matrix of θ̂.

5.5.7 Estimation of Parameters in ν and Σ

Let Γ := R2×(−1, 1)×(0,∞)3. We also use the maximum likelihood estimation to estimate
the parameters

γ := (ν1, ν2, ρ12, σ
2
11, σ

2
22, σ

2
33) ∈ Γ, (5.11)

i.e, the parameters of the multivariate Gaussian distribution N (ν,Σ) with density

ρ3(z|γ) =
1√

(2π)3det (Σ)
exp

(
−1

2
(z − ν)TΣ−1(z − ν)

)
, z ∈ R3, (5.12)

where ()T represents the transpose of a matrix,

ν = (ν1, ν2, 0) and Σ =

 σ2
11 ρ12σ11σ22 0

ρ12σ11σ22 σ2
22 0

0 0 σ2
33

 .

Let Zi = (Zi1, Zi2, Zi3), 1 ≤ i ≤ m be a random sample from the distribution of the

counterpart of (log(r01), log(r02),
sin(θ1)
r02

) in ξCut
(see 5.4.3). Then by (5.12), the log-likelihood

function based on this random sample is

ℓ(γ|Z1, . . . ,Zm) = −3m

2
log(2π)− m

2
log(det (Σ))− 1

2

m∑
i=1

(Zi − ν)TΣ−1(Zi − ν).

126



Then the maximum likelihood estimator of γ based on Z1, . . . ,Zm is defined by

γ̂ := argmax
γ∈Γ

ℓ(γ|Z1, . . . ,Zm).

Similarly as in Section 5.5.6, we can obtain the maximum likelihood estimate of γ by a
numerical method, and the inverse of the Hessian matrix of the log-likelihood function at
the maximum likelihood estimate can be used as the estimate of the covariance matrix of
γ̂.

5.6 Empirical Analysis

5.6.1 Collecting Data from a Grid

In this section, we apply the proposed model to centered and isotropic Gaussian random
fields indexed by RN . Two covariance functions are considered in this empirical study. The
first one is a Gaussian covariance function (or a squared exponential covariance function)
of the form

C1(r) := exp(−4r2) r > 0.

The second one is a Cauchy covariance function of the form

C2(r) :=
1

(1 + r2)3.

Figure 5.5 shows how they decrease as r increases. Since C1(r) decreases much faster
than C2(r), the interactions between two critical points can be very different in these two
configurations, which allows us to verify the general applicability of the proposed model.
In addition, for both covariance functions, the sample functions of the Gaussian random
fields can be generated fast and easily using R ([32]) and the R package “RandomFields”
([39]). This makes it possible to later evaluate the performance of our model by comparing
its outcome with the average of a large number of sample functions of the random fields.

According to Constraints (5.6) and (5.7), for each of the two covariance functions, say
C(r), we can select the hard-core distance r′H and threshold ut such that C(r′H) = ρ(r′2H) <
α = 0.0003 and M(r′H , ut) < β = 0.15, as suggested in (5.8).

We also select δp = 0.01 for the modification in Section 5.3 to get the persistent critical
points above ut. Note that the global maximum of a simple connected component at ut

could also be the local maximum of a short-lived family of three at u for some u < ut. To
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Figure 5.5: Covariance functions Ci(r), i = 1, 2.

remove the effect of all the short-lived topological features from our data, we need to select
a threshold ub < ut and then modify every family of three at every u ∈ [ub,∞) (from low
to high). Here we select ub = 3.2 for both covariance functions.

Let S ′ = [0, 100]2. This region should be as large as possible, such that it allows a
large search region S to diminish the bias of the estimator of a Ripley’s L function (see
Section 5.2.2). For Ci(r), i = 1, 2, we generate 12000 and 6000 sample functions on S ′,
respectively. Then based on these sample functions, S can be set as [12, 88]2 such that the
two properties in Section 5.5.3 hold. The selection results are all exhibited in Table 5.1.

Cov r′H ρ(r′2H) ut M(r′H , ut) ub δp S ′ S n
C1(r) 2 0.0000 3.5 0.0069 3.2 0.01 [0, 100]2 [12, 88]2 12000
C2(r) 4 0.0002 3.5 0.1466 3.2 0.01 [0, 100]2 [12, 88]2 6000

Table 5.1: Selections of r′H , ut, ub, δp, S
′, S and the sample size n for Ci(r), i = 1, 2.

Let H :=
{(

i
128

, j
128

)
, i, j ∈ Z

}
. Since we can only generate sample functions on a finite

set, we take S ′ ∩ H as a discretization of S ′ and generate sample functions on it. Thus,
for any u ≥ ub and K ⊂ S ′, a generated excursion set of a sample function f at u in K is
Au(f,K) ∩H.

For a connected component Cu of Au(f,RN), let mk, 0 ≤ k ≤ N be the number of
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non-degenerate critical points of index k in Cu. By the definition of typical connected
components, even if mN = 2 and mN−1 = 1, Cu may not be typical since it may have
mk > 0 for some 0 ≤ k ≤ N − 2. However, when N = 2, by Corollary 9.3.5 in [4] and
Theorem 9.1 in [26], we have

m2 −m1 +m0 = 1− b1 ≤ 1, (5.13)

where b1 ≥ 0 is the 1st Betti number, a concept in homology and can be interpreted as the
number of one-dimensional holes of Cub

. Note that a typical connected component always
satisfies m2 −m1 = 1 before or after the modification (see Section 5.3). Then by (5.13),
we have m0 = 0. This means that to locate all the persistent and typical critical points
above ut, it suffices to locate all the local maxima and saddle points above ut.

Intuitively, for each sample function f , we can locate all the critical points in Aut(f, S)∩
H by locating the positions where the gradients of f are very “close” to the zero vector.
We call this the derivative method. However, it is hard to determine a unified threshold
for the gradient to be close enough to 0 which works for every sample function. Inspired by
the discussion on persistent critical points in Section 5.3, we can determine the positions,
denoted by PTf (S, ut), of all the persistent and typical critical points in Aut(f, S) ∩H by
the following steps:

1. Two points in Aub
(f, S ′)∩H are considered to be in the same connected component if

the distance between them is less than or equal to five grid distances. In this way, we
can determine all the connected components of Aub

(f, S ′)∩H. Then we can determine
the positions and values of the global maxima of these connected components.

2. Let Cub
be a connected component of Aub

(f, S ′) not touching the boundary of S ′.
Define

CH
ub

= Cub
∩H and um := max

t∈CH
ub

f(t).

For any u ∈ (ub, um), define

CH
u :=

{
t ∈ CH

ub
: f(t) > u

}
.

As in Section 5.3, we look at the change of the number of connected components of
CH

u as u increases from ub to um. The difference is that in practice, we can only
increase u in a discrete manner: in the i-th iteration (i ≥ 1),

(a) count the number, denoted by nu, of the connected components of CH
u ;

(b) increase u by 0.001;
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(c) if u ≥ um, then stop.

Here we only increase u by a very small value 0.001 in each iteration. This is to
ensure as much as possible that there is at most one critical point of Cub

whose value
is between u and u+ 0.001, and thus, nu can increase or decrease by at most one in
each iteration.

3. Assume that the above algorithm stops at the k-th iteration (k ≥ 1). Let ui be the
value of u in the i-th iteration for 1 ≤ i ≤ k with u1 = ub. It is easy to see {CH

ui
}1≤i≤k

forms a decreasing sequence of finite sets. For any A ⊂ RN and t ∈ RN , the distance,
dt(A) between t and A is defined by

dt(A) :=
√

inf
s∈A

∥t− s∥2.

Then for any 2 ≤ i ≤ k,

• if nui
= nui−1

+ 1, we can find a saddle point in CH
ui
\CH

ui−1
: there must be only

one connected component of CH
ui−1

splitting into two connected components of

CH
ui
, denoted by A1 and B1, and then the position of the saddle point is set to

be a member of the set

argmin
t∈CH

ui
\CH

ui−1

√
dt(A1)2 + dt(B1)2

since it should be very close to both connected components.

• if nui
= nui−1

− 1, we can find a local maximum in CH
ui
\ CH

ui−1
: there must be

only one connected component of CH
ui−1

whose values are all less than ui, and
then the local maximum can be located at the global maximum of f in this
connected component.

4. As far, we have obtained the positions of all the local maxima and saddle points in
Aub

(f, S ′) ∩H. Then we can

(a) modify all the short-lived families of three at u in S ′ from u = ub to u = ∞;

(b) remove the points whose values are less than ut;

(c) remove the points in the non-typical connected components at ut;

(d) remove the points outside S

to get the set PTf (S, ut) of positions of all the persistent and typical critical points
in Aut(f, S) ∩H.
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The above algorithm cannot determine the number and positions of the local minima
above ut since nu will not change when the threshold u passes the value of a local minimum.
However, to measure the performance of our model, we still need to locate the positions
of all the local minimum to obtain an estimate of the L function of the persistent critical
points above ut (which can be local minima). However, note that local minima can only
appear in non-typical connected components at ut whose number is very small. As such,
we omit these connected components when estimating the L function.

In fact, PTf (S, ut) represents a realization of G′
1∪G′

2∪G′
3 in S. One can also identify G′

3

in S from PTf (S, ut) using the information of all the critical points in S ′ in Step 2. However,
to identify G′

1 (and also G′
2) in S from PTf (S, ut), one needs more information outside S.

More specifically, this requires to first apply the thinning rule (5.1) to PTf (S
′, ut) to identify

the first generations in S ′ (not just S), and then only retain the first generations in S. One
should note that the identification of the first generation in S ′ \ S may not be accurate
since it still needs information outside S ′ (see Section 5.5.3). However, the identification
in S is accurate since for any point in PTf (S, ut), all of its r

′
H-neighbors in PTf (S

′, ut) can
be correctly identified.

Applying the above steps on every generated sample function gives a sample of (dis-
cretized) Gi(S) for i = 1, 2, 3. Base on these samples, we can obtain the estimates of p1,
p2 (see Section 5.5.4), µP (see Section 5.5.5), and their variances.

When applying the thinning rule (5.1) to PTf (S
′, ut), for each deleted point, if its

parent is in S, then the distance between them will be recorded. The collection of all these
distances over all the sample functions forms a sample of R′ which can be used to estimate
D, a, c and their variances as in Section 5.5.6.

In the above steps, we can find all the families of three at ut whose global maxima are
in S. By decorating a “′” on each symbol (as shown in Figure 5.4), we can also define
symbols for a family of three in ξCut

where 0′, 1′ and 2′ represent the global maximum, the
saddle point and the local maximum, respectively. Define

θ′ := sign ((x0 − x1)(y2 − y1)− (x2 − x1)(y0 − y1))α
′
1,

where (xi, yi) is the position of the point i′ for i = 1, 2, 3. Then from these families, we can

obtain a sample of (log(r′01), log(r
′
02),

sin(θ′1)

r′02
) which can be used to estimate parameters in

ν, Σ and their variances as in Section 5.5.7.

5.6.2 Estimation Results

The estimation results of the parameters in our model are exhibited in Table 5.2.
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C1(r) C2(r)
est. s.d. est. s.d.

λ 0.003889 0.000008 0.002856 0.000010
p1 0.024123 0.000308 0.088697 0.001029
D 0.134664 0.037141 1.380521 0.038231
a 3.991681 0.361824 2.549077 0.087810
c 0.754681 0.029225 0.665931 0.009528
p2 0.002531 0.000098 0.009082 0.000304
ν1 -1.189444 0.010756 -1.151694 0.010121
ν2 -0.688618 0.009082 -0.672078 0.008687
ρ12 0.875685 0.008909 0.867642 0.008178
σ2
11 0.079131 0.004272 0.093530 0.004373

σ2
22 0.056422 0.003044 0.068901 0.003221

σ2
33 0.138004 0.007462 0.227393 0.010643

Table 5.2: The estimates (est.) of the parameters and their standard errors (s.d.).

Recall that in Stage 2, we use the Gibbs-Morse distribution to model the distribution of
de-weighted R′. Based on the estimates ofD, a and c, we provide a comparison between the
fitted Gibbs-Morse distribution and the empirical distribution of de-weighted R′ for each
selected covariance function in Figure 5.6. One can see that for both covariance functions,
the Gibbs-Morse distribution has an impressively good fit.

In Stage 3, we have the following hypotheses:

(i) (log(r01), log(r02),
sin(θ1)
r02

) is normally distributed;

(ii) (log(r01), log(r02)) and
sin(θ1)
r02

are independent;

(iii) E[ sin(θ
′
1)

r′02
] = 0.

One should not that (i) and (ii) are the settings of our model, but (iii) only serves as the
motivation for our model (and its version with all the “′” removed can be derived from
the construction of the model). These hypotheses can be tested based on the sample of

(log(r′01), log(r
′
02),

sin(θ′1)

r′02
) obtained from the last section. We adopt the Henze-Zirkler Test

([16]) for (i), the distance correlation test ([41]) for (ii), and one sample t-test for (iii). The
p-values and sample sizes are all exhibited in Table 5.3, and there are no rejections of the
null hypotheses at the significance level 5%.
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Figure 5.6: The fitted Gibbs-Morse densities and the histograms of the de-weighted R′ for
Ci(r), i = 1, 2.

C1(r) C2(r)
p-value n p-value n

HZ 0.17 684 0.24 913 (1)
dcor 0.19 684 0.96 913 (1)
t 0.28 684 0.95 913 (1)

Table 5.3: The p-values and sample sizes of the hypothesis tests based on the sample

of (log(r′01), log(r
′
02),

sin(θ′1)

r′02
). The number of outliers which have being removed in each

hypothesis test is shown in the parentheses.
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For each selected covariance function, we have generated 20000 samples of the critical
points from the proposed model using the parameters estimated in Table 5.2. The quality
of simulation are evaluated by a comparison between the L function of the proposed model
and the L function of the critical points ξCut

. Since the proposed model has three stages,
we can also compare the L functions of G1, G1 ∪G2 with the L functions of G′

1, G
′
1 ∪G′

2

(= ξMu ), respectively. All the L functions are estimated by the L̄ functions (see Section
5.2.2), and all these comparisons, together with the estimated 95% confidence band, are
shown in Figures 5.7 and 5.8. We also use the stationary Poisson point process as the
benchmark model, and recall that its theoretical L function is simply the zero function.

From Figures 5.7 and 5.8, we see that for every selected covariance functions and every
stage, our model has an impressively good fit to the corresponding point process of the
critical points of the isotropic Gaussian random field above a not-so-high threshold. In
Figure 5.8, we see that there are still some small discrepancies between the estimated L
functions of the proposed model and the estimated L functions of persistent critical points.
These discrepancies start to get bigger from the hard-core distance. This may be because
the Cauchy covariance function C2(r) decreases so slow with increasing distance that some
interactions are not captured by the model, and also an L function, by its definition, will
accumulate the discrepancy as distance increases.
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(a) Estimated L functions. (b) Estimated L functions ofG1 andG′
1 with their

95% confidence bands.

(c) Estimated L functions of G1∪G2 and G′
1∪G′

2

with their 95% confidence bands.
(d) Estimated L function of G1 ∪ G2 ∪ G3 and
G′

1 ∪G′
2 ∪G′

3 with their 95% confidence bands.

Figure 5.7: Comparisons between the estimated L functions of
⋃k

i=1Gi and the estimated

L functions of
⋃k

i=1G
′
i for k = 1, 2, 3 respectively, where the covariance function is C1(r) =

exp(−4r2), r ≥ 0.
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(a) Estimated L functions. (b) Estimated L functions ofG1 andG′
1 with their

95% confidence bands.

(c) Estimated L functions of G1∪G2 and G′
1∪G′

2

with their 95% confidence bands.
(d) Estimated L function of G1 ∪ G2 ∪ G3 and
G′

1 ∪G′
2 ∪G′

3 with their 95% confidence bands.

Figure 5.8: Comparisons between the estimated L functions of
⋃k

i=1Gi and the estimated

L functions of
⋃k

i=1G
′
i for k = 1, 2, 3 respectively, where the covariance function is C2(r) =

1
(1+r2)3

, r ≥ 0. In estimating the L functions for
⋃k

i=1 G
′
i, k = 1, 2, 3, we dropped 85

connected components at ub = 3.2 due to the numerical precision of the method used to
identify the critical points.
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Appendix A

Appendix for Chapter 2

A.1 Properties of Gaussian Random Vectors

A real-valued random variable X : (Ω,A, P ) → (R,B(RN)) is said to be Gaussian (or
normally distributed) if its probability density function, ϕX(x), can be written as

ϕX(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (A.1)

for some constants µ ∈ R and σ > 0. Then by some calculations, it is easy to show that

E[X] = µ and Var[X] = σ2.

From above, we see that the distribution of the Gaussian random variable X can be fully
characterized by its mean and variance, and thus, we can write X ∼ N (µ, σ2), where “N ′′

stands for “normally distributed”. Especially, X is said to be a standard normal random
variable, written as X ∼ N (0, 1), when E[X] = 0 and Var[X] = 1. Then its probability
density function will become

ϕ(x) :=
1√
2π

e−x2

.

An important fact is: if X ∼ N (µ, σ2) for some µ ∈ R and σ > 0, then σ−1(X − µ) ∼
N (0, 1). The simple transformation in this fact implies that many studies working on gen-
eral normal distributions can actually be constrained on the standard normal distribution
without loss of generality. Similar arguments will also apply when we introduce Gaussian
random fields.
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The characteristic function of X ∼ N (µ, σ2) is defined by

φX(t) := E
[
eitX

]
= eitµ−

1
2
σ2t2 . (A.2)

Due to the simple structure of the characteristic function of a Gaussian random variable,
we have the following lemma.

Lemma A.1.1. Let Xk ∼ N (0, σ2
k), k ≥ 1. Then as k → ∞,

(i) if Xk converges to X∞ in distribution, then

X∞ ∼ N (0, σ2
∞),

where σ2
∞ := limk→∞ σ2

k < ∞.

(i) Xk converges to X∞ in probability if and only if Xk converges to X∞ in the mean
square sense.

Proof. For (i), by the Lévy’s continuity theorem, we have for any t ∈ R,

lim
k→∞

φXk
(t) = φX∞(t).

By (A.2), φX∞(t) must have the form

φX∞(t) = e−
1
2
σ2
∞t2 ,

where σ2
∞ := limk→∞ σ2

k < ∞.

As for (ii), the “if” direction is trivial. For the “only if” direction, by (i),

lim
k→∞

E
[
X4

k

]
= 3 lim

k→∞
σ4
k = 3σ4

∞ < ∞.

Then it is easy to show {(Xk − X∞)2, k ≥ 1} is uniformly integrable. Since (Xk − X∞)2

also converges to 0 in probability, we have (Xk−X∞)2 converges to 0 in L1, as desired.

Denote by Ψ(x) the tail distribution function of a standard Gaussian random variable
X ∼ N (0, 1), i.e.,

Ψ(x) := P [X > x] =

∫ ∞

x

ϕ(u)du. (A.3)

It is easy to see that
lim
x→∞

Ψ(x) = 0.
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However, researchers are more concerned about the speed of this convergence in many
asymptotic theories. Since there is no explicit expression for Ψ(x), alternatively, we choose
to bound Ψ(x) by the following inequality (see also (1.2.2) in [4])(

1

x
− 1

x3

)
ϕ(x) < Ψ(x) <

1

x
ϕ(x). (A.4)

To show the lower bound in (A.4), we need to make the change of variable u = x + v/x.
Then by the fact that e−y > 1− y for all y ≥ 0, we have∫ ∞

x

e−
u2

2 du =

∫ ∞

0

x−1e−(x2+2v+v2/x2)/2dv

= x−1e−x2/2

∫ ∞

0

e−(2v+v2/x2)/2dv

≥ x−1e−x2/2

∫ ∞

0

e−v(1− v2/(2x2))dv

≥ x−1e−x2/2(1− x−2)

= (x−1 − x−3)e−x2/2.

Moreover, observe that ∫ ∞

x

e−
u2

2 du ≤
∫ ∞

x

u

x
e−

u2

2 du = x−1e−x2/2,

which implies the upper bound in (A.4). This inequality is rough but enough for the thesis.

A random n-vector X = (X1, . . . , Xn)
T , n ≥ 1, is said to be multivariate Gaussian

distributed (or a Gaussian n-vector) with mean vector µ ∈ Rn×1 and covariance matrix
Σ ∈ Rn×n, written as X ∼ Nn(µ,Σ), if every linear combination of its components {Xi,
1 ≤ i ≤ n} is almost surely a constant or follows a univariate Gaussian distribution. More
specifically, for every a ∈ Rn×1, we have

aTX ∼ N (aTµ,aTΣa),

where the univariate normal distribution N (µ, 0) with mean µ ∈ R and zero variance
denotes a point mass on µ (almost surely equal to µ). The above definition implies that any
multivariate Gaussian distribution can also be fully characterized by its mean vector and
covariance matrix. By taking ai ∈ Rn, 1 ≤ i ≤ n, as the n-vector with all coordinates being
zeros except for a one at the i-th coordinate, we see that each marginal Xi = aT

i X follows
the univariate Gaussian distribution N (µi, σ

2
ii). Especially, if Σ is positive-definite, then
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X = (X1, . . . , Xn)
T , n ≥ 1, is said to be non-degenerate multivariate Gaussian distributed

(or a non-degenerate Gaussian n-vector), and the joint density function of X1, . . . , Xn at
any point t ∈ Rn×1 can be written as

ϕX(t) =
1

(2π)n/2det (Σ)1/2
exp

{
−1

2
(t− µ)TΣ−1(t− µ)

}
.

The following facts (see Section 1.2, [4]) about Gaussian n-vectors will be very useful in
the thesis.

1. LetX ∼ Nn(µ,Σ), i.e., X is a column Gaussian n-vector with mean vector µ ∈ Rn×1

and covariance matrix Σ ∈ Rn×n. Then for any A ∈ Rm×n, we have

AX ∼ Nm(Aµ,AΣAT ).

2. Let Xk ∼ Nn(µk,Σk), k ≥ 1. Assume that the sequence {Xk}∞k=1 converges in mean
square, i.e., there exists a random n-vector X such that

lim
k→∞

E
[
∥Xk −X∥2n

]
= 0. (A.5)

Then there exist a n-vector µ ∈ Rn×1 and a positive semi-definite matrix Σ ∈ Rn×n,
such that

∥µk − µ∥n → ∞ and ∥Σk −Σ∥n2 → ∞

as k → ∞, and
X ∼ Nn(µ,Σ).

3. Let X = (X1, . . . , Xn)
T be a Gaussian n-vector (n ≥ 2) with mean vector µ =

(µ1, . . . , µn)
T ∈ Rn×1 and covariance matrix Σ ∈ Rn×n. We separate the coordinates

of X into two parts

X1 = (X1, . . . , Xn1)
T and X2 = (Xn1+1, . . . , Xn)

T

for some integer 1 ≤ n1 < n. Let

µ1 = (µ1, . . . , µn1) and µ2 = (µn1+1, . . . , µn).

Let Σij be the cross-covariance matrix of Xi and Xj, i, j = 1, 2, i.e.,

Σij = E
[
(Xi − µi) (Xj − µj)

T
]
.
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Then we have
X1 ∼ Nn1(µ1,Σ11), X2 ∼ Nn−n1(µ2,Σ22),

and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Moreover, for i, j = 1, 2 and i ̸= j, the conditional distribution of Xi given Xj = xj

is Nni
(µi|j,Σi|j), where

µi|j = µi +ΣijΣ
−1
jj (xj − µj), (A.6)

Σi|j = Σii −ΣijΣ
−1
jj Σji, (A.7)

and Σ−1
jj is a generalized inverse of Σjj, i.e., Σ

−1
jj satisfies

ΣjjΣ
−1
jj Σjj = Σjj.

Note that if Σ22 is non-degenerate, then

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
=

(
Ik Σ12Σ

−1
22

0(n−k)×k In−k

)(
Σ1|2 0k×(n−k)

0(n−k)×k Σ22

)(
Ik 0k×(n−k)

Σ−1
22 Σ21 In−k

)
,

(A.8)

where Im is the identity matrix of size m for any positive integer m, and 0i×j is the
i× j matrix of zeros for any positive integers i and j. Thus, if Σ is non-degenerate,
then Σ1|2 is also non-degenerate.

4. Let (X1, . . . , Xn, Y1, . . . , Ym) be a non-degenerate Gaussian (n + m)-vector. Let
X := (X1, . . . , Xn)

T and Y := (Y1, . . . , Ym)
T . Then X is a non-degenerate Gaus-

sian n-vector, and Y is a non-degenerate Gaussian m-vector. Let ϕX , ϕY and ϕX,Y

be the probability density functions of X, Y and (X,Y ), respectively. Assume
Cov [Xi, Yj] = 0 for any 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then

ϕX,Y (x,y) = ϕX(x)ϕX(y) (A.9)

for any x ∈ Rn and y ∈ Rm.

Here Fact 1 also implies a similar transformation as in univariate cases. Let X be a non-
degenerate column Gaussian n-vector with mean vector µ and positive-definite covariance
matrix Σ. Since Σ is a real positive-definite symmetric matrix, we can always find a matrix
Q ∈ Rn×n such that

QΣQT = In.

Then
Q(X − µ) ∼ Nn(0, In).
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A.2 Examples for Chapter 2

A.2.1 An Example for Lemma 2.1.1

Example A.2.1. Suppose r(t) = e−∥t∥2, t ∈ RN . It is easy to see that 1 − e−x ≤ x for
any x ≥ 0, and x ≤ (− log(x))−2 for any 0 < x < 1. If 0 < ∥t− s∥ < 1, then

E
[
(X(t)−X(s))2

]
= 2

(
1− e−∥t−s∥2

)
≤ 2∥t− s∥2

≤ 2
(
− log

(
∥t− s∥2

))−2

=
1

2
|log (∥t− s∥)|−2

Therefore, (2.2) holds for α = 1 and γ = 1
2
and any s, t ∈ RN with 0 < ∥t − s∥ <

1. By Lemma 2.1.1, we conclude that a centered, stationary Gaussian random field with
covariance function r(t) = e−∥t∥2, t ∈ RN , is almost surely continuous on RN .

A.2.2 An Example for Theorem 2.1.6

Example A.2.2. Let X be a centered Gaussian random field with covariance function
r(t) = e−∥t∥2, t ∈ RN . For any positive integer k, we now show that X satisfies all the
conditions in Theorem 2.1.6. Since r(t) has any order partial derivatives, by Lemma 2.1.4,
X is k times differentiable in the mean square sense on RN . Let ρ > 0, δ = 3, h0 =

1
2
and

K = k22k+3(1 + ρ)2. The only thing left is to check (2.9) for any 0 < η1, η2, h < h0 and{
((t, t′), (s, s′)) ∈ RN

k,ρ × RN
k,ρ : (s, s

′) ∈ BN,k((t, t
′), h)

}
,

such that ∥(t, t′)− (s, s′)∥2N,k ̸= 0. Since h0 =
1
2
, it is easy to see

0 < ∥(t, t′)− (s, s′)∥2N,k + |η1 − η2|2 < h2 +
1

4
< 1.

Since x ≤ (− log(x))−2 for any 0 < x < 1,(
∥(t, t′)− (s, s′)∥2N,k + |η1 − η2|2

)
≤
(
− log

(√
∥(t, t′)− (s, s′)∥2N,k + |η1 − η2|2

))−4

≤ (− log (∥(t, t′)− (s, s′)∥N,k + |η1 − η2|))−4
.

(A.10)
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Then by (2.5), 0 < η1 < 1, ∥s′∥kN < 1 + ρ, k ≥ 1, and the fact that 1 − e−y ≤ y for all
y ≥ 0, we have

E
[
(FX,k(t, η1t

′)− FX,k(s, η2s
′))

2
]

≤ 2k
∑

ai∈{0,1},1≤i≤k

E

(X (t+ η1

k∑
i=1

ait
′
i

)
−X

(
s+ η2

k∑
i=1

ais
′
i

))2


= 2k+1
∑

ai∈{0,1},1≤i≤k

1− exp

−

∥∥∥∥∥t+ η1

k∑
i=1

ait
′
i − s− η2

k∑
i=1

ais
′
i

∥∥∥∥∥
2



≤ 2k+1
∑

ai∈{0,1},1≤i≤k

(
1− exp

{
−2

(
∥t− s∥2 + k

k∑
i=1

a2i ∥η1t′i − η2s
′
i∥

2

)})

≤ 22k+1
(
1− exp

{
−2
(
∥t− s∥2 + k ∥η1t′ − η2s

′∥2kN
)})

≤ 22k+1
(
1− exp

{
−4
(
∥t− s∥2 + k ∥η1t′ − η1s

′∥2kN + k ∥η1s′ − η2s
′∥2kN

)})
≤ 22k+1

(
1− exp

{
−4k(1 + ρ)2

(
∥t− s∥2 + ∥t′ − s′∥2kN + |η1 − η2|2

)})
≤ k22k+3(1 + ρ)2

(
∥(t, t′)− (s, s′)∥2N,k + |η1 − η2|2

)
≤ k22k+3(1 + ρ)2 (− log (∥(t, t′)− (s, s′)∥N,k + |η1 − η2|))−4

= K (− log (∥(t, t′)− (s, s′)∥N,k + |η1 − η2|))−(1+δ)
.

A.2.3 Proof of Lemma 2.1.13

Proof. Since X is stationary, it suffices to show that there exist finite constants K > 0 and
α > 0 such that

max
1≤i1,i2,i3,i4≤N

|ri1i2i3i4(0)− ri1i2i3i4(t)| ≤ K| log(∥t∥)|−(1+α)

for all ∥t∥ > 0 small enough. Since x ≤ (− log(x))−2 for any 0 < x < 1, we have
∥t∥ < (− log (∥t∥))−2 when 0 < ∥t∥ < 1. Thus, it suffices to show that there exists a
constant C > 0 such that

max
1≤i1,i2,i3,i4≤N

|ri1i2i3i4(0)− ri1i2i3i4(t)| ≤ C∥t∥ (A.11)

for all ∥t∥ > 0 small enough. Since all of the sixth-order partial derivatives of r(t) exist at
t = 0, there exists a constant ε > 0 small enough such that for any 1 ≤ i1, i2, i3, i4, i5 ≤ N ,
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ri1i2i3i4(t) is continuous and ri1i2i3i4i5(t) is bounded on t ∈ B(0, ε), where B(0, ε) is the
N -dimensional open ball centered at the origin with radius ε. Then by the mean value
theorem, (A.11) is immediate, and hence proved.

A.2.4 An Example for Lemma 2.1.10

Example A.2.3. Let X be a centered, stationary Gaussian random field with covariance
function r(t) = e−∥t∥2, t ∈ RN . By Lemma 2.1.4, X has any order mean square partial
derivatives. From Example A.2.2, we see that X is almost surely k times differentiable for
any positive integer k. Let f = ▽X and g = (▽2X,X). Let T be a compact set as in
Lemma 2.1.10. In this example, we will show that f and g on T satisfy all the conditions
in Lemma 2.1.10.

We first note that all of the sixth-order partial derivatives of r(t) exist at t = 0. Then
by Lemma 2.1.13, Condition (2.13) holds for all s, t ∈ T such that ∥t−s∥ is small enough.
The only thing left is to show that the joint distribution of (f ,h) = (▽X,▽2X,X) is non-

degenerate. For any p ≥ 1 and 1 ≤ i1, . . . , ip ≤ N , define ri1,...,ip(t) :=
∂pr(t)

∂ti1 ···∂tip
, t ∈ RN .

By Lemma 2.1.3 and (2.8), the joint distribution of (▽X,▽2X,X) is Gaussian, and for
any 1 ≤ i, k, ℓ ≤ N and t ∈ RN ,

Cov [X(t), Xi(t)] = ri(0) = 0 and Cov [Xi(t), Xkℓ(t)] = rikℓ(0) = 0.

Therefore, we only need to show that the joint distribution of (▽2X(t), X(t)) and the dis-
tribution of ▽X(t) are non-degenerate for any t ∈ RN . Suppose

aX(t) =
∑

1≤i,j≤N

aijXij(t)

for some t ∈ RN , a, aij ∈ R, 1 ≤ i, j ≤ N , where for any 1 ≤ i, j ≤ N , aij = aji and
|a|+

∑
1≤i,j≤N |aij| ≠ 0. Then for any 1 ≤ k, ℓ ≤ N ,

Cov [aX(t), Xkℓ(t)] = rkℓ(0) = −2aδkℓ
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and simultaneously,

Cov [aX(t), Xkℓ(t)] =
∑

1≤i,j≤N

aijrijkℓ(0)

= 4
∑

1≤i,j≤N

aij (δijδkl + δjkδil + δikδjl) .

= 4
∑

1≤i≤N

aiiδkl + 8akℓ.

Thus for any 1 ≤ k, ℓ ≤ N ,

−2aδkℓ = 4
∑

1≤i≤N

aiiδkl + 8akℓ,

and then,

akℓ = −

(
a

4
+

1

2

∑
1≤i≤N

aii

)
δkℓ. (A.12)

From (A.12), we have akℓ = 0 when k ̸= ℓ. Taking summation over all k, ℓ such that
1 ≤ k = ℓ ≤ N on the both sides of (A.12), we have for any 1 ≤ k ≤ N ,

akk =
1

N

∑
1≤i≤N

aii = − a

2(N + 2)
.

If a ̸= 0, then

X(t) = − 1

2(N + 2)

∑
1≤i≤N

Xii(t)

150



for any t ∈ RN . Therefore,

1 = r(0)

=

(
1

2(N + 2)

)2 ∑
1≤i≤N

∑
1≤k≤N

Cov [Xii(t), Xkk(t)]

=

(
1

2(N + 2)

)2 ∑
1≤i≤N

∑
1≤k≤N

riikk(0)

= 4

(
1

2(N + 2)

)2 ∑
1≤i≤N

∑
1≤k≤N

(1 + 2δik)

= 4

(
1

2(N + 2)

)2

(N2 + 2N)

=
N

N + 2

< 1,

which leads to a contradiction. If a = 0, then by Lemma 2.1.4, we have

0 =
∑

1≤i≤N

Cov [Xii(t)X(t)]

=
∑

1≤i≤N

rii(0)

= 2N,

which also leads to a contradiction. Therefore, the joint distribution of (▽2X(t), X(t)) is
non-degenerate for any t ∈ RN . If

∑
1≤i≤N aiXi(t) = 0 for some t ∈ RN , then for any

1 ≤ j ≤ N , we have

0 = Cov

[ ∑
1≤i≤N

aiXi(t), Xj(t)

]
= −

∑
1≤i≤N

airij(t)

= −2aj,

which implies that the joint distribution of ▽X(t) is non-degenerate for any t ∈ RN .

151



Appendix B

Appendix for Chapter 3

B.1 Proofs for Sections 3.3 and 3.4

B.1.1 Proof of Lemma 3.3.5

Lemma B.1.1. Every qualified pair (X, gu) possesses an adapted grid-block system.

Proof. Let bu = g
1−κ/2
u and 1− fu = g

−κ/4
u , where κ are defined in (3.12). Then Conditions

3(b)-3(d) in Definition 3.3.3 automatically hold. As for Condition 3(e), note that by Lemma
3.2.2, we have

lim
u→∞

gNu uN−1e−u2/2 = L0 (B.1)

for some finite constant L0 > 0. Thus

gNu ≤ L1u
−N+1eu

2/2

for some finite constant L1 > 0. Then

gub
−1
u = gκ/2u

= O

((
u−N+1eu

2/2
)κ/(2N)

)
= O

(
u(−N+1)κ/(2N)eκu

2/(4N)
)

= O
(
eκu

2/2
)
.
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Let du = u−2γ(β, xu)
1/(4N), where γ(β, u), u > 0 is defined in Condition (3.10), and xu > 0

satisfies eβx
2
u = 2g

κ/4
u . It is easy to see that xu → ∞ as u → ∞. Then by Condition (3.10),

we have
u−2d−1

u = γ(β, xu)
−1/(4N) → ∞

as u → ∞, which is Condition 3(a). For Condition 3(f), note that from (B.1), we also have

eεu
2 ≤ L2gu

for some 0 < ε < 1/(2N) and some finite constant L2 > 0. Then

L−1
2 eεu

2 ≤ gu =

(
1

2
eβx

2
u

)4/κ

,

which implies
u2 = O

(
x2
u

)
as u → ∞. Again by Condition (3.10), we have

u2r(2gub
−1
u (1− fu)) = u2r(2gκ/4u )

= O
(
x2
ur
(
eβx

2
u

))
= O

(
x2N+2
u r

(
eβx

2
u

))
= o(1)

as u → ∞, and then

g2Nu d−2N
u r(2gub

−1
u (1− fu)) exp

{
− u2

1 + r (2gub−1
u (1− fu))

}
= O

(
u−2N+2u4Nγ(β, xu)

−1/2r
(
2gub

−1
u (1− fu)

)
exp

{
u2r (2gub

−1
u (1− fu))

1 + r (2gub−1
u (1− fu))

})
= O

(
u2(N+1)r(2gub

−1
u (1− fu))γ(β, xu)

−1/2
)

= O
(
x2(N+1)
u r(eβx

2
u)γ(β, xu)

−1/2
)

= O
(
γ(β, xu)γ(β, xu)

−1/2
)

= o(1)

as u → ∞. Therefore, Condition 3(f) holds. Finally, to meet Condition 4 in Definition
3.3.3, we only need to change du to d′u by

d′u = gub
−1
u /⌊gub−1

u d−1
u ⌋,
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where for any x ∈ R, ⌊x⌋ denotes the largest integer less than or equal to x. Let Nu =
⌊gub−1

u d−1
u ⌋. Then

d′u =

(
1 +

gub
−1
u d−1

u −Nu

Nu

)
du,

where 0 ≤ gub
−1
u d−1

u −Nu < 1. This implies

0 < d′u − du ≤ du
Nu

≤ du
gub−1

u d−1
u − 1

→ 0

as u → ∞. Then we have

g2Nu (d′u)
−2Nr(2gub

−1
u (1− fu)) exp

{
− u2

1 + r (2gub−1
u (1− fu))

}
≤ g2Nu d−2N

u r(2gub
−1
u (1− fu)) exp

{
− u2

1 + r (2gub−1
u (1− fu))

}
= o(1)

as u → ∞, and

u−2(d′u)
−1 = u−2d−1

u

du
d′u

≥ u−2d−1
u

du
du + du/(gub−1

u d−1
u − 1)

→ ∞
as u → ∞.

B.1.2 Proof of Lemma 3.3.7

Lemma B.1.2. For any bounded set S ⊂ RN (N ≥ 1) with λN−1(∂S) < ∞, we can always
find J1,u(S), J2,u(S) ⊂ J for any u ∈ R large enough, such that

1. J1,u(S) ⊂
◦
S ⊂ S ⊂ J2,u(S);

2. λN(J2,u(S)− J1,u(S)) → 0 as u → ∞;

3. {guJ2,u(S)− J1,u(S), u ∈ R} is a blowing-up system.
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Proof. For any positive integer i and k ∈ ZN , let

∆′
i,k := 2−i

(
[0, 1]N ⊕ {k}

)
,

where the prime on the superscript is used to distinguish this notation from (3.13). Then
each ∆′

i,k is an N -dimensional cube with the side length 2−i. For any positive integers n
and i, let

Cn,i :=
{
t = (t1, . . . , tN) ∈ RN : tj ∈

[
0, 2−i

]
for 1 ≤ j ≤ n, and tj = 0 for n < j ≤ N

}
.

Then each Cn,i is an n-dimensional cube with side length 2−i. For the consistency of the
notations in following, we let C0,i = {0}, where 0 is the origin in RN . Then we have the
following facts:

1. for n ≥ 0, λn(Cn,i) = 2−in;

2. for n ≥ 1, λn−1(∂Cn,i) = bn,n−12
−i(n−1) = n2−in+i+1;

3. for n ≥ 1, we have

λn((aCn−1,i)⊕Bn(0, R)) = λn(Bn(0, R)) + 2
n−1∑
k=0

bn−1,kR
n−kλk(Ck,i)a

k

for any a > 0,

where for any integer 0 ≤ k ≤ n, bn,k := 2n−k
(
n
k

)
is the number of k-dimensional faces of

Cn,i if n ≥ 1, and bn,k := 0 if n = 0. Immediately, we have

∆′
i,0 = CN,i

for any positive integer i.

For any positive integer i, we can define

K1,i(S) :=
⋃{

∆′ ∈
{
∆′

i,k,k ∈ ZN
}
: ∆′ ⊂

◦
S

}
.

By the definitions above, it is easy to see that

∞⋃
i=1

K1,i(S) ⊂
◦
S. (B.2)
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For any t ∈
◦
S, there exists some neighborhood Nt of t such that Nt ⊂ S, and then

we can find some ∆′ ∈ {∆′
i,k : i ∈ {1, 2, . . . },k ∈ ZN} such that ∆′ ⊂ Nt. Therefore,

t ∈ ∆′ ⊂ ∪∞
i=1K1,i(S), which together with (B.2) implies

∞⋃
i=1

K1,i(S) =
◦
S.

Note that λN−1(∂S) < ∞ implies that

λN(∂S) = 0.

Thus,

lim
i→∞

λN(K1,i(S)) = λN

(
∞⋃
i=1

K1,i(S)

)
= λN(S). (B.3)

Moreover, let K1,0(S) = ∅, and for any positive integer i, define

Li(S) := K1,i(S)−K1,i−1(S)

and
ai(S) := #

{
∆′ ∈

{
∆′

i,k,k ∈ ZN
}
: ∆′ ⊂ Li(S)

}
.

where “#′′ stands for “the cardinality of”. Then by Fact 1, for any positive integer m, we
have

K1,m(S) =
m⋃
i=1

Li(S) and λN(K1,m(S)) =
m∑
i=1

λN(Li(S)) =
m∑
i=1

ai(S)2
−iN < λN(S) < ∞.

By the subadditivity of λN−1, for any positive integer m, we have

λN−1 (∂K1,m(S)) ≤ λN−1 (∂K1,m−1(S) ∪ ∂Lm(S)) .

≤ λN−1 (∂K1,m−1(S)) + λN−1 (∂Lm(S)) .

Note that by Fact 2, for any positive integer i, we have

λN−1 (∂Li(S)) ≤ ai(S)N2−iN+i+1,

and then

λN−1 (∂K1,m(S)) ≤
m∑
i=1

λN−1 (∂Li(S))

≤ 2N
m∑
i=1

ai(S)2
−i(N−1).
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Since S is bounded, we can find a positive integer b > 0 such that S ⊂ [−2b, 2b]N . Then
Sb := [−2b+1, 2b+1]N − S is also a bounded set with

λN−1 (∂Sb) ≤ λN−1

(
∂[−2b+1, 2b+1]N

)
+ λN−1(∂S) < ∞.

The choice of Sb ensures that

∂[−2b, 2b]N ⊂ K1,1(Sb).

For any positive integer m, define

K2,m(S) := [−2b, 2b]N −K1,m(Sb).

Then it is easy to see that

K1,m(S), K2,m(S) ∈ J and K1,m(S) ⊂
◦
S ⊂ S ⊂ K2,m(S).

By (B.3), we also have

λN(K2,m(S))− λN(S) = λN(K2,m(S)− S)

= λN

((
[−2b, 2b]N − S

)
−K1,m(Sb)

)
≤ λN

((
[−2b+1, 2b+1]N − S

)
−K1,m(Sb)

)
= λN(Sb −K1,m(Sb))

→ 0 as m → ∞,

which together with (B.3) implies that

lim
m→∞

λN(K2,m(S))− λN(K1,m(S)) = 0. (B.4)

Given any 0 < r < N−1, we can find a positive-integer valued function nr(u), u ∈ R
increasing slowly enough as u → ∞, such that

g−r
u 2nr(u) ≤

(
λN

(
K2,nr(u)(S)

)
− λN

(
K1,nr(u)(S)

))α0 (B.5)

for sufficiently large u, where α0 = (N − 1 + r)/N . The definition of nr also implies that

gNu λN(K2,nr(u)(S)−K1,nr(u)(S)) ≥ gNu
(
g−r
u 2nr(u)

)1/α0

= g
N(N−1)
N−1+r
u 2

Nnr(u)
N−1+r

→ ∞
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as u → ∞, and

gu2
−nr(u) = g1−r

u

(
g−r
u 2nr(u)

)−1 → ∞ (B.6)

as u → ∞. Now let J1,u(S) = K1,nr(u)(S) and J2,u(S) = K2,nr(u)(S). So far we have shown
that

1. J1,u(S) ⊂
◦
S ⊂ S ⊂ J2,u(S);

2. λN(J2,u(S)− J1,u(S)) → 0 as n → ∞;

3. λN(guJ2,u(S)− J1,u(S)) → ∞ as n → ∞.

The only thing left is to show that the system {guJ2,u(S)− J1,u(S), u ∈ R} satisfies Con-
ditions (3.3) and (3.5). For Condition (3.5), by (B.5) and Facts 1 and 2, we have

λN−1 (gu∂J1,u(S))

= λN−1

(
gu∂K1,nr(u)(S)

)
≤ 2NgN−1

u

nr(u)∑
i=1

ai(S)2
−i(N−1)

= 2NgN−1+r
u

nr(u)∑
i=1

(g−r
u 2i)ai(S)2

−iN

≤ 2NgN−1+r
u

(
λN

(
K2,nr(u)(S)

)
− λN

(
K1,nr(u)(S)

))α0

nr(u)∑
i=1

ai(S)2
−iN

≤ 2NλN(S)
(
gNu
(
λN

(
K2,nr(u)(S)

)
− λN

(
K1,nr(u)(S)

)))α0

= 2NλN(S)λN

(
guJ2,u(S)− J1,u(S)

)α0

.

(B.7)

Note that

K2,nr(u)(S) = [−2b, 2b]N −K1,nr(u)(Sb) and ∂[−2b, 2b]N ⊂ K1,nr(u)(Sb).

Then by the subadditivity of λN−1, we have

λN−1

(
∂K2,nr(u)(S)

)
≤ λN−1

(
∂K1,nr(u)(Sb)

)
.
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Similarly, we have

λN−1 (gu∂J2,u(S))

= λN−1

(
gu∂K2,nr(u)(S)

)
≤ λN−1

(
gu∂K1,nr(u)(Sb)

)
≤ 2NgN−1+r

u

(
λN

(
K2,nr(u)(S)

)
− λN

(
K1,nr(u)(S)

))α0

nr(u)∑
i=1

ai(Sb)2
−iN

≤ 2NλN(Sb)λN

(
guJ2,u(S)− J1,u(S)

)α0

.

(B.8)

Again, by the subadditivity of λN−1 and combining (B.7) with (B.8), we have

λN−1

(
gu∂J2,u(S)− J1,u(S)

)
≤ λN−1 (gu∂J2,u(S) ∪ gu∂J1,u(S))

≤ λN−1 (gu∂J2,u(S)) + λN−1 (gu∂J1,u(S))

= O
(
λN

(
guJ2,u(S)− J1,u(S)

)α0
)
.

(B.9)

As for Condition (3.3), from the construction of J1,u(S) and J2,u(S), we see that if

t ∈
(
guJ2,u(S)− J1,u(S)

)
⊕BN(0, R)− guJ2,u(S)− J1,u(S)

for some R > 0, then

BN(t, R) ∩
(
gu∂J2,u(S)− J1,u(S)

)
̸= ∅.

From the construction of J1,u(S) and J2,u(S), we see that there exists a finite set Gu(S) ⊂
ZN such that

J2,u(S)− J1,u(S) =
⋃

k∈Gu(S)

∆′
nr(u),k.

Therefore,

λN

((
guJ2,u(S)− J1,u(S)

)
⊕BN(0, R)

)
− λN

(
guJ2,u(S)− J1,u(S)

)
≤ λN

((
gu∂J2,u(S)− J1,u(S)

)
⊕BN(0, R)

)
≤

λN−1

(
gu∂J2,u(S)− J1,u(S)

)
λN−1

(
guCN−1,nr(u)

) λN

((
guCN−1,nr(u)

)
⊕BN(0, R)

)
.

159



Then by Facts 1 and 3 and (B.6), we have

λN

((
guJ2,u(S)− J1,u(S)

)
⊕BN(0, R)

)
− λN

(
guJ2,u(S)− J1,u(S)

)
≤

λN−1

(
gu∂J2,u(S)− J1,u(S)

)
λN−1

(
guCN−1,nr(u)

) λN

((
guCN−1,nr(u)

)
⊕BN(0, R)

)
= λN−1

(
gu∂J2,u(S)− J1,u(S)

) λN(BN(0, R)) + 2
∑N−1

k=0 bN−1,kR
N−kλk(Ck,nr(u))g

k
u

gN−1
u λN−1

(
CN−1,nr(u)

)
= RNO

(
λN−1

(
gu∂J2,u(S)− J1,u(S)

)N−1∑
k=0

λk(Ck,nr(u))g
k
u

gN−1
u λN−1

(
CN−1,nr(u)

))

= RNO

(
λN−1

(
gu∂J2,u(S)− J1,u(S)

)N−1∑
k=0

(
gu2

−nr(u)
)−(N−1−k)

)
= RNO

(
λN−1

(
gu∂J2,u(S)− J1,u(S)

))
.

(B.10)
Finally, combining (B.9) with (B.10) implies that {guJ2,u(S)− J1,u(S), u ∈ R} is a blowing-
up system with δ1 = 0 and α = α0 in Definition 3.2.3.

B.1.3 Proof of Theorem 3.3.1

Throughout this section, let (X, gu) be a qualified pair with the adapted grid-block system
{(Gu, Bu) ∈ 2R

N × 2R
N
, u ∈ R} as defined in Definition 3.3.3.

Lemma B.1.3. Let H(x) = xN−1 exp{−x2/2}, and xu, yu → ∞ as u → ∞. Then

1. if H(xu)/H(yu) → ∞ as u → ∞, we have

y2u − x2
u → ∞ as u → ∞;

2. if H(xu)/H(yu) → C for some constant C > 0 as u → ∞, we have

xu = O(yu) and yu = O(xu).
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Proof. For the first part, we assume that there exist a finite constant C > 0 and a subse-
quence un ↑ ∞ such that y2un

− x2
un

< C. Since H(xu)/H(yu) → ∞, we can also assume
xun < yun for sufficiently large n. Then

H(xun)

H(yun)
=

(
xu

yu

)N−1

exp

{
−x2

u − y2u
2

}
≤ exp

{
C

2

}
< ∞,

which leads to a contradiction. For the second part, if there exists a subsequence un ↑ ∞
such that xun/yun ↑ ∞, then for sufficiently large n,(

xun

yun

)2

− 1 >
xun

yun

>
xun

y3un

,

and therefore
x2
un

− y2un
>

xun

yun

.

Then we have

H(xun)

H(yun)
=

(
xun

yun

)N−1

exp

{
−
x2
un

− y2un

2

}
<

(
xun

yun

)N−1

exp

{
− xun

2yun

}
→ 0 as n → ∞,

which leads to a contradiction. The other half, yu = O(xu), can be proved symmetrically
by observing H(yu)/H(xu) → 1/C.

Recall that by Lemma 3.2.5 and Lemma 3.3.6, ℓX,guBu(K) denotes the solution of (3.6)
for the blowing-up system {guBu(K), u ∈ R} and the Gaussian random field X, where
K ∈ J . Similarly, for 1 ≤ j ≤ N , ℓXj ,guK

denotes the solution of (3.6) for the blowing-up

system {guK,u ∈ R} and Gaussian random field Xj. Then we have the following lemma.

Lemma B.1.4. There exist some finite positive constants c1 and c2 such that as u → ∞,

1.
H(ℓXj,guK)

H(u)
→ c1;

2.
H(ℓX,guBu(K))

H(u)
→ c2.

In general, for any blowing-up system {Tu, u ∈ R}, there exists a finite constant c3 > 0
such that

H(ℓX,Tu)

H(u)

λN(Tu)

gNu
→ c3

as u → ∞.
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Proof. The proof of this lemma makes use of the similarity between Lemmas 3.2.5 and
3.2.2. Note that by Lemma 3.2.2 and the definition of gu (see (3.11)), we have as u → ∞,

H(u)λN(guK) → k1 (B.11)

for some finite constant k1 > 0. By Lemma 3.2.5, we have

H(ℓXj ,guK
)λN(guK) = k2, (B.12)

H(ℓX,guBu(K))λN(guBu(K)) = k3 (B.13)

and
H(ℓX,Tu)λN(Tu) = k4 (B.14)

for any 1 ≤ j ≤ N and some finite constants k2, k3, k4 > 0. By 0 < fu → 1 and (3.15), we
have

λN(Bu(K))

λN(K)
→ 1. (B.15)

Finally combining (B.11)-(B.15) completes the proof.

Lemma B.1.5. Let {Tu, u ∈ R} be a blowing-up system. If

lim
u→∞

g−N
u λN(Tu) = 0,

then

lim
u→∞

P

[
max
t∈Tu

X(t) > u

]
= 0.

Proof. Let ZX,Tu = maxt∈Tu (X(t)− ℓX,Tu) ℓX,Tu . Then it suffices to show as u → ∞,

(ZX,Tu/ℓX,Tu + ℓX,Tu)
2 − u2 p−→ −∞,

where “
p−→” denotes the convergence in probability. According to Lemma 3.2.5, ZX,Tu

converges in distribution. Note that ℓX,Tu → ∞ as u → ∞. Then it suffices to show
u2 − ℓ2X,Tu

→ ∞ as u → ∞. Since

lim
u→∞

g−N
u λN(Tu) = 0,

by Lemma B.1.4, we have
H(ℓX,Tu)

H(u)
→ ∞ as u → ∞.

Then by Lemma B.1.3,
u2 − ℓ2X,Tu

→ ∞ as u → ∞,

and hence the proof is completed.
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Lemma B.1.6. For any 1 ≤ j ≤ N,

• if hu/u → ∞ as u → ∞, then

lim
u→∞

P

[
max
t∈guK

|Xj(t)| > hu

]
= 0;

• for any blowing-up system {Tu, u ∈ R}, if hu/ℓXj ,Tu → ∞ as u → ∞, then

lim
u→∞

P

[
max
t∈Tu

|Xj(t)| > hu

]
= 0.

Proof. Let ZXj ,guK
= maxt∈guK

(
σ−1
j Xj(t)− ℓXj ,guK

)
ℓXj ,guK

, where σj = Var[Xj(0)]. Ac-

cording to Lemma 3.2.5, ZXj ,guK
converges in distribution and ℓXj ,guK

→ ∞ as u → ∞.
By Lemma B.1.4, we have

H(ℓXj ,guK
)

H(u)
→ c1 as u → ∞.

Then by Lemma B.1.3, we have
ℓXj ,guK

= O(u).

Since hu/u → ∞ as u → ∞,
hu/ℓXj ,guK

→ ∞

as u → ∞, which implies that

ZXj ,guK
/ℓXj ,guK

+ ℓXj ,guK
− σ−1

j hu
p−→ −∞

as u → ∞. Then we have

P

[
max
t∈guK

|Xj(t)| > hu

]
≤ P

[
max
t∈guK

Xj(t) > hu

]
+ P

[
min
t∈guK

Xj(t) < −hu

]
= 2P

[
max
t∈guK

Xj(t) > hu

]
= 2P

[
ZXj ,u/ℓXj ,guK

+ ℓXj ,guK
− σjhu > 0

]
→ 0 as u → ∞.

The proof for the second part is similar.
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Lemma B.1.7.
P [Mu(X, guK) = 0]

u
≈ P [Mu(X, guBu(K)) = 0]

Proof. By (B.15) and Lemma 3.2.2, it is easy to see that

Du(X, guBu(K))

Du(X, guK)
=

λN(Bu(K))

λN(K)
→ 1

as u → ∞, where Du(X, ·) is defined in (3.2). Note that the constant C in Lemma 3.2.2 is
independent of the choice of search regions. Then∣∣∣∣E [Mu(X, guK)]− E [Mu(X, guBu(K))]

cλN(K)

∣∣∣∣ E [Mu(X, guK)]

Du(X, guK)

=

∣∣∣∣E [Mu(X, guK)]− E [Mu(X, guBu(K))]

Du(X, guK)

∣∣∣∣
≤

∣∣∣∣∣
(
E [Mu(X, guK)]−Du(X, guK)

)
Du(X, guK)

∣∣∣∣∣+
∣∣∣∣(E [Mu(X, guBu(K))]−Du(X, gu(Bu(K)))]

Du(X, guK)

∣∣∣∣
+

∣∣∣∣Du(X, gu(Bu(K))−Du(X, guK)

Du(X, guK)

∣∣∣∣
≤

C
(
Du(X, guK) +Du(X, gu(Bu(K))

)
u−1

Du(X, guK)
+

∣∣∣∣Du(X, gu(Bu(K))−Du(X, guK)

Du(X, guK)

∣∣∣∣
→ 0 as u → ∞.

Thus, we have
|Mu(X, guK)−Mu(X, guBu(K))| p−→ 0

as u → ∞, which implies

P [Mu(X, guK) = 0]− P [Mu(X, guBu(K)) = 0]

≤ P [|Mu(X, guK)−Mu(X, guBu(K)| > 0.5]

→ 0 as u → ∞.

Lemma B.1.8. Let {Tu, u ∈ R} be a blowing-up system. Suppose εuℓX,Tu → 0 as u → ∞.
Then

P

[
u− εu < max

t∈Tu

X(t) ≤ u

]
→ 0 as u → ∞.
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Proof. Let F (x) = e−e−x
. Then F ′(x) = e−(e−x+x), F ′′(x) = −e−(e−x+x)(1 − e−x), and the

Lipschitz constant of F (x) is e−1. Let Fu(x) = P [(maxt∈Tu X(t) − ℓX,Tu)ℓX,Tu ≤ x]. By
Lemma 3.2.5, we have

lim
u→∞

Fu(x) = F (x)

for any continuity point x of F . Since F is continuous on R, by the monotonicity of Fu

and F , we have Fu converge to F uniformly. Thus, for any given ε > 0, there exists a
finite constant U such that when u > U , we have |Fu(x)−F (x)| < ε/3 and εuℓX,Tu < eε/3.
Then

P

[
u− εu < max

t∈Tu

X(t) ≤ u

]
= P

[(
max
t∈Tu

X(t)− ℓX,Tu

)
ℓX,Tu ≤ (u− ℓX,Tu)ℓX,Tu

]
− P

[(
max
t∈Tu

X(t)− ℓX,Tu

)
ℓX,Tu ≤ (u− εu − ℓX,Tu)ℓX,Tu

]
= Fu ((u− ℓX,Tu)ℓX,Tu)− Fu ((u− εu − ℓX,Tu)ℓX,Tu)

≤ 2ε/3 + |F ((u− ℓX,Tu)ℓX,Tu)− F ((u− εu − ℓX,Tu)ℓX,Tu)|
≤ 2ε/3 + e−1εuℓX,Tu

≤ ε.

Lemma B.1.9.

P

[
max

t∈guBu(K)
X(t) ≤ u

]
u
≈ P

[
max

t∈(guBu(K))∩Gu

X(t) ≤ u− d1/2u

]
.

Proof. Let hu = 2N−1d
−1/2
u . Recall that in Definition 3.3.3, we have hu/u → ∞ as u → ∞.
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Then∣∣∣∣P [ max
t∈(guBu(K))∩Gu

X(t) ≤ u− d1/2u

]
− P

[
max

t∈guBu(K)
X(t) ≤ u

]∣∣∣∣
≤ P

[
max

t∈(guBu(K))∩Gu

X(t) ≤ u− d1/2u , max
t∈guBu(K)

X(t) > u

]
+ P

[
u− d1/2u < max

t∈guBu(K)
X(t) ≤ u

]
≤ P

[
max

t∈guBu(K)
∥▽X(t)∥ > 2N−1/2d−1

u d1/2u

]
+ P

[
u− d1/2u < max

t∈guBu(K)
X(t) ≤ u

]
≤ P

[
max
1≤j≤N

max
t∈guBu(K)

|Xj(t)| > hu

]
+ P

[
u− d1/2u < max

t∈guBu(K)
X(t) ≤ u

]
≤

N∑
j=1

P

[
max

t∈guBu(K)
|Xj(t)| > hu

]
+ P

[
u− d1/2u < max

t∈guBu(K)
X(t) ≤ u

]

≤
N∑
j=1

P

[
max
t∈guK

|Xj(t)| > hu

]
+ P

[
u− d1/2u < max

t∈guBu(K)
X(t) ≤ u

]
→ 0 as u → ∞,

where the second “≤” is derived from the mean value theorem and the fact that for any
t ∈ RN , there exists a grid point tu ∈ Gu such that

∥t− tu∥ ≤ duN
1/2/2,

and the last convergence is derived from Lemmas B.1.6 and B.1.8. Note that to use Lemma
B.1.8, we still need to show d

1/2
u ℓX,guBu(K) → 0 as u → ∞. By Lemma B.1.4, we have

H(ℓX,guBu(K))

H(u)
→ c2.

Then by Lemma B.1.3, we have

d1/2u ℓX,guBu(K) = O
(
d1/2u u

)
= o(1),

where the last line is from Definition 3.3.3.

Lemma B.1.10.

bNu P

[
max

t∈(guBu,0)∩Gu

X(t) > u− d1/2u

]
u
≈ bNu P

[
max

t∈guBu,0

X(t) > u

]
→ c.
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Proof. Let hu = 2N−1d
−1/2
u . Then∣∣∣∣P [ max

t∈(guBu,0)∩Gu

X(t) ≤ u− d1/2u

]
− P

[
max

t∈guBu,0

X(t) ≤ u

]∣∣∣∣
≤ P

[
max

t∈(guBu,0)∩Gu

X(t) ≤ u− d1/2u , max
t∈guBu,0

X(t) > u

]
+ P

[
u− d1/2u < max

t∈guBu,0

X(t) ≤ u

]
≤ P

[
max

t∈guBu,0

∥▽X(t)∥ > 2N−1/2d−1
u d1/2u

]
+ P

[
u− d1/2u < max

t∈guBu,0

X(t) ≤ u

]
≤ P

[
max
1≤j≤N

max
t∈guBu,0

|Xj(t)| > hu

]
+ P

[
u− d1/2u < max

t∈guBu,0

X(t) ≤ u

]
≤

N∑
j=1

P

[
max

t∈guBu,0

|Xj(t)| > hu

]
+ P

[
u− d1/2u < max

t∈guBu,0

X(t) ≤ u

]

= 2
N∑
j=1

P

[
max

t∈guBu,0

Xj(t) > hu

]
+ P

[
u− d1/2u < max

t∈guBu,0

X(t) ≤ u

]
.

Recall that in Definition 3.3.3, we have

• hu/u → ∞ as u → ∞

• gub
−1
u = O(exp{κu2/2}) for

κ =
1

2N
min

{
1, κX , κXj

, 1 ≤ j ≤ N
}
,

where κX and κXj
, 1 ≤ j ≤ N , is defined in Lemma 3.2.8.

Then we have
hN
u Ψ(hu)

uNΨ(u)
→ 0, (B.16)

where Ψ is the tail distribution function of standard Gaussian distribution (see (A.3)),

gNu b−N
u = O(exp{κXu

2/2}) and gNu b−N
u = O(exp{κXj

h2
u/2}).

By Lemmas 3.2.2, 3.2.8, (A.4) and (3.8), we have

bNu P

[
max

t∈guBu,0

X(t) > u

]
= bNu H2λN(gub

−1
u [0, 1]N)uN2−N/2det (ΛX)

1/2Ψ(u)(1 + o(1))

→ c as u → ∞.
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By Lemmas 3.2.2, 3.2.8, (A.4) and (B.16), we have

bNu P

[
max

t∈guBu,0

Xj(t) > hu

]
= bNu P

[
max

t∈guBu,0

σ−1
Xj
Xj(t) > σ−1

Xj
hu

]
= bNu H2λN(gub

−1
u [0, 1]N)σ−N

Xj
hN
u 2

−N/2det
(
ΛXj/σXj

)1/2
Ψ(hu)(1 + o(1))

= bNu H2λN(gub
−1
u [0, 1]N)σ−N

Xj
uN2−N/2det

(
ΛXj/σXj

)1/2
Ψ(u)

(
hN
u Ψ(hu)

uNΨ(u)

)
(1 + o(1))

= H2σ
−N
Xj

2−N/2det
(
ΛXj/σXj

)1/2
gNu uNΨ(u)

(
hN
u Ψ(hu)

uNΨ(u)

)
(1 + o(1))

≤ H2σ
−N
Xj

2−N/2det
(
ΛXj/σXj

)1/2
gNu uN−1ϕ(u)

(
hN
u Ψ(hu)

uNΨ(u)

)
(1 + o(1))

→ 0 as u → ∞.

Now the only thing left is to show

bNu P

[
u− d1/2u < max

t∈guBu,0

X(t) ≤ u

]
→ 0 as u → ∞.

Note that by Definition 3.3.3,

gNu b−N
u = O(exp{Nκu2/2})

= O(exp{κX

(
u− d1/2u

)2
/2}).
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Then by Lemma 3.2.8,

bNu P

[
u− d1/2u < max

t∈guBu,0

X(t) ≤ u

]
= bNu P

[
max

t∈guBu,0

X(t) > u− d1/2u

]
− bNu P

[
max

t∈guBu,0

X(t) > u

]
= bNu H2λN(guBu,0)2

−N/2det
(
Λ

−1/2
X

) (
u− d1/2u

)N
Ψ
(
u− d1/2u

)
(1 + o(1))

− bNu H2λN(guBu,0)2
−N/2det

(
Λ

−1/2
X

)
uNΨ(u)(1 + o(1))

= bNu H2λN(guBu,0)2
−N/2det

(
Λ

−1/2
X

)(
Ψ
(
u− d1/2u

) (
u− d1/2u

)N −Ψ(u)uN
)

+ o
(
gNu Ψ

(
u− d1/2u

)
uN
)

= H2g
N
u fN

u 2−N/2det
(
Λ

−1/2
X

)(
Ψ
(
u− d1/2u

) (
u− d1/2u

)N −Ψ(u)uN
)

+ o
(
gNu Ψ

(
u− d1/2u

)
uN
)
.

(B.17)

Since d
1/2
u u → 0 as u → ∞ (see Definition 3.3.3), by (A.4), we have

Ψ
(
u− d

1/2
u

)(
u− d

1/2
u

)N
Ψ(u)uN

− 1 ≤ e
−
(
u−d

1/2
u

)2
/2

(1− u−2)e−u2/2

(
u− d

1/2
u

)N−1

uN−1
− 1

=
1

1− u−2

(
u− d

1/2
u

)N−1

uN−1
ed

1/2
u u−du/2 − 1

= o(1).

Note that by Lemma 3.2.2, gNu = O(u−N+1eu
2/2). Then for the first term in (B.17), we

have

H2g
N
u fN

u 2−N/2det
(
Λ

−1/2
X

)(
Ψ
(
u− d1/2u

) (
u− d1/2u

)N −Ψ(u)uN
)

= H2g
N
u fN

u 2−N/2det
(
Λ

−1/2
X

)
Ψ(u)uN

Ψ
(
u− d

1/2
u

)(
u− d

1/2
u

)N
Ψ(u)uN

− 1


= o

(
gNu Ψ(u)uN

)
= o

(
u−N+1eu

2/2e−u2/2uN−1
)

= o(1).
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For the second term in (B.17), similarly, we have

gNu Ψ
(
u− d1/2u

)
uN = gNu Ψ

(
u− d1/2u

) (
u− d1/2u

)
uN
(
u− d1/2u

)−1

= O

(
u−N+1eu

2/2e
−
(
u−d

1/2
u

)2
/2
uN
(
u− d1/2u

)−1
)

= O
(
u
(
u− d1/2u

)−1
)
O
(
ed

1/2
u u−du/2

)
= O(1),

and then
o
(
gNu Ψ

(
u− d1/2u

)
uN
)
= o(1).

Lemma B.1.11.

P

 ⋂
∆u,k⊂K,k∈ZN

{
max

t∈(guBu,k)∩Gu

X(t) ≤ u− d1/2u

}
u
≈

∏
∆u,k⊂K,k∈ZN

P

[
max

t∈(guBu,k)∩Gu

X(t) ≤ u− d1/2u

]
.

Proof. By Definition 3.3.3, we have,

gub
−1
u (1− fu) → ∞

as u → ∞, and thus,
r(2gub

−1
u (1− fu)) → 0
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as u → ∞. Then by Lemma 3.2.9 and Definition 3.3.3,

P

 ⋂
∆u,k⊂K,k∈ZN

{
max

t∈(guBu,k)∩Gu

X(t) ≤ u− d1/2u

}
−

∏
∆u,k⊂K,k∈ZN

P

[
max

t∈(guBu,k)∩Gu

X(t) ≤ u− d1/2u

]

≤ 1

2π

(
v

2

)
m2r

(
2gub

−1
u (1− fu)

) (
1− r2

(
2gub

−1
u (1− fu)

))−1/2

exp

−

(
u− d

1/2
u

)2
1 + r (2gub−1

u (1− fu))


= O

(mv)2r
(
2gub

−1
u (1− fu)

)
exp

−

(
u− d

1/2
u

)2
1 + r (2gub−1

u (1− fu))




= O

g2Nu d−2N
u r(2gub

−1
u (1− fu)) exp

−

(
u− d

1/2
u

)2
1 + r (2gub−1

u (1− fu))




= O

(
g2Nu d−2N

u r(2gub
−1
u (1− fu)) exp

{
− u2

1 + r (2gub−1
u (1− fu))

})
= o(1),

where, for shortness, we let m = #((guBu,0) ∩Gu), i.e., the number of grid points in each
block, and let v = nu(K). Here it is easy to see that mv = O(gNu d−N

u ).

Now we have prepared well for a formal proof of Theorem 3.3.1.

Proof. If λN(K) = 0, then by Lemma 3.2.2,

P [Mu(X, guK) = 0] = exp {−cλN(K)} = 0.

If λN(K) > 0, let Hu(K) := {maxt∈guK−J1,u(K)X(t) ≤ u}, where J1,u(K) is defined in
Lemma 3.3.7. Thus

P [Hu(K)] ≥ P

[
max

t∈guJ2,u(K)−J1,u(K)
X(t) ≤ u

]
.
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Then by Lemmas B.1.5 and 3.3.7, we have

lim
u→∞

P [Hu(K)] = 1. (B.18)

By Lemma B.1.7,

P [Mu(X, guK) = 0]
u
≈ P [Mu(X, guBu(K)) = 0] ,

where Bu(K) is defined in (3.14). Then by (B.18) and Inequality (3.16), we have

P [Mu(X, guBu(K)) = 0]
u
≈ P

[
Mu(X, guBu(K)) = 0

∣∣ Hu(K)
]
.

= P

[
max

t∈guBu(K)
X(t) ≤ u

∣∣∣∣ Hu(K)

]
.

Again, by (B.18) and Inequality (3.16),

P

[
max

t∈guBu(K)
X(t) ≤ u

∣∣∣∣ Hu(K)

]
u
≈ P

[
max

t∈guBu(K)
X(t) ≤ u

]
.

By Lemma B.1.9,

P

[
max

t∈guBu(K)
X(t) ≤ u

]
u
≈ P

[
max

t∈(guBu(K))∩Gu

X(t) ≤ u− d1/2u

]
.

Since Bu(K) = ∪∆u,k⊂K,k∈ZNBu,k, we have

P

[
max

t∈(guBu(K))∩Gu

X(t) ≤ u− d1/2u

]
= P

 ⋂
∆u,k⊂K,k∈ZN

{
max

t∈(guBu,k)∩Gu

X(t) ≤ u− d1/2u

} .

By Lemma B.1.11,

P

 ⋂
∆u,k⊂K,k∈ZN

{
max

t∈(guBu,k)∩Gu

X(t) ≤ u− d1/2u

}
u
≈

∏
∆u,k⊂K,k∈ZN

P

[
max

t∈(guBu,k)∩Gu

X(t) ≤ u− d1/2u

]
.
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By the stationarity of X and Condition 4 in Definition 3.3.3,∏
∆u,k⊂K,k∈ZN

P

[
max

t∈(guBu,ki
)∩Gu

X(t) ≤ u− d1/2u

]

=

(
P

[
max

t∈(guBu,0)∩Gu

X(t) ≤ u− d1/2u

])nu(K)

=

1−
nu(K)P

[
maxt∈(guBu,0)∩Gu X(t) > u− d

1/2
u

]
nu(K)

nu(K)

.

By Lemma B.1.10,

bNu P

[
max

t∈(guBu,0)∩Gu

X(t) > u− d1/2u

]
u
≈ bNu P

[
max

t∈guBu,0

X(t) > u

]
→ c as u → ∞.

Then by (3.15),

nu(K)P

[
max

t∈(guBu,0)∩Gu

X(t) > u− d1/2u

]
= b−N

u nu(K)bNu P

[
max

t∈(guBu,0)∩Gu

X(t) > u− d1/2u

]
→ cλN(K) as u → ∞.

Finally, combining all of the above implies

lim
u→∞

P [Mu(X, guK) = 0] = exp {−cλN(K)}

for any K ⊂ J .

B.1.4 Proof of Theorem 3.4.5

Theorem B.1.12. Let the pair (X, gu) be qualified. Then for any bounded set S ⊂ RN

with λN−1(∂S) < ∞, we have

lim
u→∞

E [Mu(X, guS, k)] = 0

for every 0 ≤ k ≤ N − 1.

173



Proof. This proof is a generalization of the proof of Theorem 6.3.1 in [1]. By Lemma 3.2.2
and λN−1(∂S) < ∞, it suffices to show that as u → ∞,

E [Mu(X, guS,N)]

E
[∑N−1

k=0 Mu(X, guS, k) +Mu(X, guS,N)
] → 1

for any compact S ⊂ RN with λN−1(∂S) < ∞.

Step 1:

Without loss of generality, we can assume that the various first-order partial derivatives
are uncorrelated. If this is not the case, it can be achieved by an appropriate orthogonal
transformation of the parameter space without changing E [Mu(X, guS, k)]. More specifi-
cally, note that X is stationary, let ΛX be the covariance matrix of ▽X(0) and let r(t),
t ∈ RN be the covariance function of X. Since (X, gu) is qualified, we have

Cov [Xi(t), Xj(t)] = −rij(0)

for any 1 ≤ i, j ≤ N . Since the joint distribution of ▽X(t) is non-degenerate for any
t ∈ RN , ΛX is positive-definite and we can find an orthogonal matrix QX ∈ RN×N such
that

QXΛXQ
T
X = diag (µ1, . . . , µN),

where µi, 1 ≤ i ≤ N are the eigenvalues of ΛX . Define

XQX (t) := X(QXt)

for any t ∈ RN×1. Then XQX (t), t ∈ RN×1 is also a centered, stationary random field with
covariance function

rQX (t) = r(QXt)

for t ∈ RN . It is easy to check that the pair (XQX , gu) is also qualified, and we have

▽XQX = QX▽X.

Thus, the covariance matrix of ▽XQX (t), written as ΛQX
, can be calculated by

ΛQX
= E

[
▽XQX (t)▽XQX (t)T

]
= QXΛXQ

T
X = diag (µ1, . . . , µN),

which implies the uncorrelatedness between the various first-order partial derivatives of
XQX . Moreover, note that the function fQX (t) = QXt, t ∈ RN is a homeomorphism.
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Thus, for any 0 ≤ k ≤ N , t0 is a critical point with index k of XQX is equivalent to that
QXt0 is a critical point with index k of X. For any Lebesgue measurable set A ⊂ RN , let

fQX (A) := {QXt : t ∈ RN×1}.

Since det (QX) = 1, we have

λN

(
fQX (A)

)
= λN (A) .

Let x′′ be the vectorization (see the second paragraph in Section 3.2) of the symmet-
ric matrix (xij)1≤i,j≤N and let ϕ(x′′,x′, x) be the joint probability density function of
(▽2X,▽X,X), where ▽2X is also vectorized in the same way, and we drop the parameter
t ∈ RN in this density function since X and its derivatives are all stationary Gaussian
random fields. Similarly, let ϕ(x), ϕ(x′), ϕ(x′′, x) and ϕ(x′′|x) be the probability density
functions of X, ▽X, (▽2X,X), and (▽2X|X), respectively. Then by Corollary 3.4.1 and
the stationarities of XQX and X, we have

E [Mu(X, guS, k)] =

∫
t∈guS

∫ ∞

u

∫
Dk

|det (x′′)|ϕ(x′′,0, x)dx′′dxdt

= λN (guS)

∫ ∞

u

∫
Dk

|det (x′′)|ϕ(x′′,0, x)dx′′dx

= λN

(
guf

QX (S)
) ∫ ∞

u

∫
Dk

|det (x′′)|ϕ(x′′,0, x)dx′′dx

=

∫
t∈gufQX (S)

∫ ∞

u

∫
Dk

|det (x′′)|ϕ(x′′,0, x)dx′′dxdt

= E
[
Mu

(
XQX , guf

QX (S), k
)]

,

where Dk ⊂ RN(N+1)/2 is defined in Corollary 3.4.1.

Step 2:

By (A.9) and (2.8), we have

ϕ(x′′,0, x) = ϕ(x′′, x)ϕ(0)

for any x ∈ R and x′′ ∈ RN(N+1/2). Then by Corollary 3.4.1 and the stationarity of X, we
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have

E [Mu(X, guS, k)] = λN(guS)

∫ ∞

u

∫
Dk

|det (x′′)|ϕ(x′′,0, x)dx′′dx

= λN(guS)

∫ ∞

u

∫
Dk

|det (x′′)|ϕ(x′′, x)ϕ(0)dx′′dx

= λN(guS)

∫ ∞

u

∫
Dk

|det (x′′)|ϕ(x′′|x)ϕ(x)ϕ(0)dx′′dx

= λN(guS)(2π)
−N/2det (ΛX)

−1/2

∫ ∞

u

ϕ(x)

∫
Dk

|det (x′′)|ϕ(x′′|x)dx′′dx

for any 0 ≤ k ≤ N . Note that µj, 1 ≤ j ≤ N is the eigenvalue of ΛX on the j-th column.
For 1 ≤ i, j ≤ N , we make the change of variables

vij = xij + xδijµj,

where δij is the Kronecker delta. Then by (A.6),∫ ∞

u

ϕ(x)

∫
Dk

|det (x′′)|ϕ(x′′|x)dx′′dx = (−1)k
∫ ∞

u

ϕ(x)

∫
Dk,x

det (v − xΛX)ϕ
∗(v)dvdx,

whereDk,x ⊂ RN(N+1)/2 is the region over which v−xΛX has exactly k negative eigenvalues,
and ϕ∗(v) is a zero-mean Gaussian density independent of u and k. We can write

det (v − xΛX) =
N∑
ℓ=0

bℓ(v)x
ℓ,

where bℓ, 0 ≤ ℓ ≤ N are multivariate polynomial functions of vij, and particularly bN(v) =
(−1)Ndet (ΛX). Furthermore, for any 0 ≤ k ≤ N and x > u, we can write

(−1)k
∫
Dk,x

det (v − xΛX)ϕ
∗(v)dv =

N∑
ℓ=0

ck,x,ℓx
ℓ,

where

ck,x,ℓ = (−1)k
∫
Dk,x

bℓ(v)ϕ
∗(v)dv

176



for 0 ≤ ℓ ≤ N . Therefore

E [Mu(X, guS,N)]

E
[∑N−1

k=0 Mu(X, guS, k) +Mu(X, guS,N)
]

=

∫∞
u

ϕ(x)(−1)N
∫
DN,x

det (v − xΛX)ϕ
∗(v)dvdx∫∞

u
ϕ(x)

∑N
k=0(−1)k

∫
Dk,x

det (v − xΛX)ϕ∗(v)dvdx

=

∫∞
u

ϕ(x)
∑N

ℓ=0 cN,x,ℓx
ℓdx∫∞

u
ϕ(x)

∑N
k=0

∑N
ℓ=0 ck,x,ℓx

ℓdx

=

∑N
ℓ=0

∫∞
u

cN,x,ℓϕ(x)x
ℓdx∑N

ℓ=0

∑N
k=0

∫∞
u

ck,x,ℓϕ(x)xℓdx
.

Since bℓ, 0 ≤ ℓ ≤ N are multivariate polynomial functions of vij, we have for any 0 ≤
k, ℓ ≤ N and x > u,

|ck,x,ℓ| =

∣∣∣∣∣
∫
Dk,x

bℓ(v)ϕ
∗(v)dv

∣∣∣∣∣
≤
∫
RN(N+1/2)

|bℓ(v)|ϕ∗(v)dv

≤ max
1≤j≤N

∫
RN(N+1/2)

|bj(v)|ϕ∗(v)dv

< ∞,

and especially,

|cN,x,N | =

∣∣∣∣∣
∫
DN,x

bN(v)ϕ
∗(v)dv

∣∣∣∣∣
= |det (ΛX)|

∣∣∣∣∣
∫
DN,x

ϕ∗(v)dv

∣∣∣∣∣
→ |det (ΛX)|

∣∣∣∣∫
RN(N+1)/2

ϕ∗(v)dv

∣∣∣∣ as x → ∞,

where the last limit is given by Lemma 3.2.10. Therefore all of |ck,x,ℓ| are uniformly bounded
from above and all of |cN,x,N | are bounded from below for x large enough. This implies

lim
x→∞

∣∣∣∣cN,x,Nx
N

ck,x,ℓxℓ

∣∣∣∣ = ∞ (B.19)
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for any 0 ≤ k ≤ N and 0 ≤ ℓ ≤ N − 1. Then by L’Hospital’s rule and (B.19),

lim
u→∞

E [Mu(X, guS,N)]

E
[∑N−1

k=0 Mu(X, guS, k) +Mu(X, guS,N)
]

= lim
u→∞

∑N
ℓ=0

∫∞
u

cN,x,ℓϕ(x)x
ℓdx∑N

ℓ=0

∑N
k=0

∫∞
u

ck,x,ℓϕ(x)xℓdx

= lim
u→∞

∑N
ℓ=0 cN,u,ℓϕ(u)u

ℓ∑N
ℓ=0

∑N
k=0 ck,u,ℓϕ(u)u

ℓ

= lim
u→∞

cN,u,N∑N
k=0 ck,u,N

= lim
u→∞

(−1)N
∫
DN,u

bN(v)ϕ
∗(v)dv∑N

k=0(−1)k
∫
Dk,u

bN(v)ϕ∗(v)dv

= lim
u→∞

(−1)N
∫
DN,u

(−1)Ndet (ΛX)ϕ
∗(v)dv∑N

k=0(−1)k
∫
Dk,u

(−1)Ndet (ΛX)ϕ∗(v)dv

= lim
u→∞

∫
DN,u

ϕ∗(v)dv∑N
k=0(−1)N+k

∫
Dk,u

ϕ∗(v)dv

≥ lim
u→∞

∫
DN,u

ϕ∗(v)dv∫
RN(N+1)/2 ϕ∗(v)dv

= 1,

where the last limit is again given by Lemma 3.2.10.
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Appendix C

Appendix for Chapter 4

C.1 Derivatives of the Covariance Function

Let ρ(i)(∥t∥2), t ∈ R and 1 ≤ i ≤ 6 be the i-th derivative (if exists) of ρ at ∥t∥2. Let
Ri1,...,im(t) be the partial derivative of R(t) at t ∈ R along the directions i1, . . . , im for
i1, . . . , im ∈ {1, 2, . . . , N}. Let Πn be the set of permutations on {1, . . . , n} for any n ≥ 1.
Then we can get the expressions of all partial derivatives of R(t) up to the sixth order in
terms of ρ(i) as follows. For any i1, . . . , i6 ∈ {1, 2, . . . , N} and t ∈ RN ,

Ri1(t) = 2ti1ρ
(1)(∥t∥2), (C.1)

Ri1i2(t) = 2ρ(1)(∥t∥2)δi1,i2 + 4ti1ti2ρ
(2)(∥t∥2), (C.2)

Ri1i2i3(t) = 4(ti3δi1,i2 + ti1δi2,i3 + ti2δi1,i3)ρ
(2)(∥t∥2) + 8ti1ti2ti3ρ

(3)(∥t∥2), (C.3)

Ri1i2i3i4(t)

= 4 (δi1,i2δi3,i4 + δi2,i3δi1,i4 + δi1,i3δi2,i4) ρ
(2)(∥t∥2)

+ 8 (ti3ti4δi1,i2 + ti1ti4δi2,i3 + ti2ti4δi1,i3 + ti2ti3δi1,i4 + ti1ti3δi2,i4 + ti1ti2δi3,i4) ρ
(3)(∥t∥2)

+ 16ti1ti2ti3ti4ρ
(4)(∥t∥2),

(C.4)
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and
Ri1i2i3i4i5i6(t) = ρ(3)(∥t∥2)

∑
(p1...,p5)∈Π5

δip1 ,i6δip2 ,ip3δip4 ,ip5 + f(t), (C.5)

where f(t) is a real-valued function of t ∈ RN such that f(0) = 0.

C.2 Discussion on the Conditions in Definition 4.3.2

By Appendix A.1, for any z ∈ R and any compact set T ⊂ RN \{0N} with λN−1(∂T ) < ∞,
{(X(t)|▽X(0) = 0N , X(0) = z), t ∈ T} is a Gaussian random field. In this section, we
will explain why the conditions in Definition 4.3.2 allow us to apply Lemma 2.1.10 to this
Gaussian random field when ρ(x) is four times continuously differentiable on T .

In the remainder of this section, fix a compact set T ⊂ RN \{0N} with λN−1(∂T ) < ∞.
It suffices to show

max
1≤i,j≤N

|Cij(t, t) + Cij(s, s)− 2Cij(s, t)| ≤ K| log(∥t− s∥)|−(1+α)

for some finite K > 0, some α > 0, and all s, t ∈ T such that ∥t − s∥ is small enough,
where for any i, j ∈ {1, . . . , N} and s, t ∈ T ,

Cij(s, t) := Cov [Xij(s), Xij(t)|▽X(0) = 0N , X(0) = z] .

Since x ≤ (− log(x))−2 for any 0 < x < 1, we have ∥t∥ < (− log (∥t∥))−2 when
0 < ∥t∥ < 1. Thus, it suffices to show that there exist constants β > 0 and 0 < ε < 1 such
that for any s, t ∈ T satisfying ∥t− s∥ < ε,

max
1≤i,j≤N

|Cij(t, t) + Cij(s, s)− 2Cij(s, t)| ≤ β∥t− s∥.

Fix s, t ∈ T , z ∈ R, and 1 ≤ i, j ≤ N . Let Y1 := (Xij(s), Xij(t))
T and Y2 :=

(▽X(0), X(0))T . By Lemma 2.1.3, Y1 and Y2 are both centered and Gaussian. Consider
Gaussian 2-vector (Y1|Y2 = (0N , z)

T ). By (A.7), we have

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ

T
12, (C.6)

where Σ1|2 is the covariance matrix of (Y1|Y2 = (0N , z)
T ), Σ11 is the covariance matrix of

Y1, Σ22 is the covariance matrix of Y2, and Σ12 is the cross-covariance matrix of Y1 and
Y2 (i.e., Σ12 = E[Y1Y

T
2 ]). By (2.7) and (2.8), we have

Σ11 =

(
Rijij(0) Rijij(t− s)

Rijij(t− s) Rijij(0)

)
, Σ−1

22 =

(
− 1

2ρ(1)(0)
IN 0N×1

01×N 1

)
,
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and

Σ12 =

(
−Rij1(s) · · · −RijN(s) Rij(s)
−Rij1(t) · · · −RijN(t) Rij(t)

)
,

where Ri1...ip , p = 2, 3, 4 and 1 ≤ i1, . . . , ip ≤ N are the same as in Section C.1 (one
should note that by Condition (2) in Definition 4.3.2 and (i) of Lemma 2.1.4), Ri1i2i3i4(t),
1 ≤ i1 . . . i4 ≤ N exist for any t ∈ RN). Then,

Σ12Σ
−1
22 Σ

T
12 =

(
a b
b c

)
where

a := Rij(s)
2 − 1

2ρ(1)(0)

(
N∑
k=1

Rijk(s)
2

)
, c := Rij(t)

2 − 1

2ρ(1)(0)

(
N∑
k=1

Rijk(t)
2

)

and

b := Rij(s)Rij(t)−
1

2ρ(1)(0)

(
N∑
k=1

Rijk(s)Rijk(t)

)
.

By Condition (3) in Definition 4.3.2, ρ(5)(x) is bounded on x ∈ [0, δ2ρ]. Then there exists
a finite constant CT,1 > 0 such that for any s, t ∈ T satisfying ∥t − s∥ ≤ min(δρ, 1) and
any 1 ≤ i, j ≤ N ,

2(Rijij(0)−Rijij(t− s)) ≤ CT,1∥t− s∥.

Since Rijkℓ(t), 1 ≤ i, j, k, ℓ ≤ N are all continuous on t ∈ T and T is compact, there exists
a finite constant CT,2 > 0 such that for any s, t ∈ T and 1 ≤ i, j, k ≤ N ,

|Rij(s)−Rij(t)| ≤ CT,2∥t− s∥ and |Rijk(s)−Rijk(t)| ≤ CT,2∥t− s∥.

Note that by (4.1), ρ(1)(0) < 0. Then

a+ c− 2b = (Rij(s)−Rij(t))
2 − 1

2ρ(1)(0)

(
N∑
k=1

(Rijk(s)−Rijk(t))
2

)

≤
(
1− N

2ρ(1)(0)

)
C2

T,2∥t− s∥2.
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Finally, for any s, t ∈ RN satisfying ∥t− s∥ ≤ min(δρ, 1), we have

max
1≤i,j≤N

|Cij(t, t) + Cij(s, s)− 2Cij(s, t)|

≤ CT,1∥t− s∥+
(
1− N

2ρ(1)(0)

)
C2

T,2∥t− s∥2

≤
(
CT,1 +

(
1− N

2ρ(1)(0)

)
C2

T,2

)
∥t− s∥,

and hence proved.

C.3 Proof of Lemma 4.3.5

Fix N ≥ 2. For any r > 0 and t ∈ RN , let B(t, r) be the N -dimensional open ball centered
at t with radius r. Since ρ(x) is four times continuously differentiable on x ∈ [0, δ2ρ] (see δρ
in Definition 4.3.2), all the partial derivatives of R(t) up to fourth order are continuous on
t ∈ B(0N , δρ). Recall that L = N(N+1)/2+2. For convenience, we will not distinguish the
N×N matrix ▽2X from its usual vectorization in notations, but one can easily distinguish
them from a given context. For any t ∈ B(0N , δρ) \ {0N}, denote

1. V11(t) ∈ RL×L: the covariance matrix of the random L-vector (▽2X(t), X(t), X(0));

2. V12(t) ∈ RL×2N : the covariance matrix between random vectors

(▽2X(t), X(t), X(0)) and (▽X(t),▽X(0)) ;

3. V22(t) ∈ R2N×2N : the covariance matrix of the random (2N)-vector

(▽X(t),▽X(0)) .

Since Σ(t), t ∈ RN \ {0N} is the covariance matrix of the random L-vector(
▽2X(t), X(t), X(0)|▽X(t) = ▽X(0) = 0N

)
,

by (A.7), we have for any t ∈ B(0N , δρ) \ {0N},

Σ(t) = V11(t)− V12(t)V
−1
22 (t)V T

12(t).
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C.3.1 The Blocked Covariance Matrix

Let N ≥ 2. For convenience, we adopt the following notations for t ∈ B(0N , δρ) \ {0N}:

1. G00(t) := Cov [X(0), X(t)] = R(t);

2. G01(t) := Cov [X(0),▽X(t)] = −Cov [▽X(0), X(t)] = (R1(t), . . . , RN(t));

3. G20(t) := Cov [▽2X(0), X(t)] = Cov [X(0),▽2X(t)] ∈ R(L−2)×1;

4. G21(t) := Cov [▽2X(0),▽X(t)] = −Cov [▽X(0),▽2X(t)] ∈ R(L−2)×N ;

5. G22(t) := Cov [▽2X(0),▽2X(t)] ∈ R(L−2)×(L−2).

Their relationships with the covariance function R are given by Lemma 2.1.4. In particular,
by (C.1)-(C.4), we have

1. G00(0) := Cov [X(0), X(0)] = R(0);

2. G01(0) := Cov [X(0),▽X(0)] = (R1(0), . . . , RN(0)) = 01×N ;

3. G20(0) := Cov [▽2X(0), X(0)] ∈ R(L−2)×1;

4. G21(0) := Cov [▽2X(0),▽X(0)] = 0(L−2)×N ;

5. G22(0) := Cov [▽2X(0),▽2X(0)] ∈ R(L−2)×(L−2).

Immediately, we have

V11(t) =

G22(0) G20(0) G20(t)
GT

20(0) G00(0) G00(t)
GT

20(t) GT
00(t) G00(0)

 (C.7)

and

V12(t) =

−G21(0) −G21(t)
−G01(0) −G01(t)
G01(t) −G01(0)

 =

0(L−2)×N −G21(t)
01×N −G01(t)
G01(t) 01×N

 . (C.8)

As for V −1
22 (t), by (C.2), we have

Cov [▽X(0),▽X(0)] = −2ρ(1)(0)IN
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and
Cov [▽X(t),▽X(0)] = −2ρ(1)(∥t∥2)IN − 4ρ(2)(∥t∥2)ttT .

Since ρ(1)(0) < 0 (Remark 4.3.4), we can define

k1(t) :=
ρ(1)(∥t∥2)
ρ(1)(0)

and k2(t) :=
2ρ(2)(∥t∥2)
ρ(1)(0)

,

for any t ∈ B(0N , δρ) \ {0N}. Thus,

V22(t) = −2ρ(1)(0)

(
IN k1(t)IN + k2(t)tt

T

k1(t)IN + k2(t)tt
T IN

)
and then

V −1
22 (t) = − 1

2ρ(1)(0)

(
IN k1(t)IN + k2(t)tt

T

k1(t)IN + k2(t)tt
T IN

)−1

.

To further calculate V −1
22 (t), we need the following two facts which can be easily checked:

1. for any symmetric matrix B ∈ RN×N such that IN −B2 is invertible,(
IN B
B IN

)−1

=

(
(IN −B2)−1 −B(IN −B2)−1

−(IN −B2)−1B (IN −B2)−1

)
;

2. (The Sherman–Morrison Formula) for any w,v ∈ RN such that 1 + vTw ̸= 0,

(IN +wvT )−1 = IN − wvT

1 + vTw
.

By taking B = k1(t)IN + k2(t)tt
T in Fact 1, we get

IN −B2 =
(
1− k2

1(t)
) (

IN − k3(t)tt
T
)
, (C.9)

where by letting k∗(t) := k1(t) + k2(t)∥t∥2 for any t ∈ B(0N , δρ) \ {0N},

k3(t) :=
2k1(t)k2(t) + k2

2(t)∥t∥2

1− k2
1(t)

=
k2(t)(k1(t) + k∗(t))

1− k2
1(t)

.

By (4.4),

1− k2
1(t) =

(ρ(1)(0))2 − (ρ(1)(∥t∥2))2

(ρ(1)(0))2
> 0 for any t ∈ B(0N , δρ) \ {0N}. (C.10)
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Thus, k3(t) is well-defined for any t ∈ B(0N , δρ) \ {0N}. To apply Fact 2 to the right-hand
side of (C.9), we still need to show 1 − k3(t)∥t∥2 ̸= 0 for any t ∈ B(0N , δρ) \ {0N}. One
can easily check that (

1− k3(t)∥t∥2
) (

1− k2
1(t)

)
= 1− k2

∗(t).

Taking t′ := (t′1, t
′
2, . . . , t

′
N) = (0, . . . , 0, ∥t∥) and by (4.3), we have

|k∗(t)| = |k∗(t′)| =
∣∣k1(t′) + ∥t∥2k2(t′)

∣∣ = ∣∣∣∣ρ(1)(∥t′∥2) + 2t′2Nρ
(2)(∥t′∥2)

ρ(1)(0)

∣∣∣∣ < 1.

Thus, for any t ∈ B(0N , δρ) \ {0N},

1− k3(t)∥t∥2 =
1− k2

∗(t)

1− k2
1(t)

> 0. (C.11)

Then by Fact 2, we have

(IN −B2)−1 =
1

1− k2
1(t)

(
IN +

k3(t)tt
T

1− k3(t)∥t∥2

)
=

1

1− k2
1(t)

(
IN + k4(t)tt

T
)
,

where

k4(t) :=
k3(t)

1− k3(t)∥t∥2
=

(1− k2
1(t)) k3(t)

1− k2
∗(t)

=
k2(t)(k1(t) + k∗(t))

1− k2
∗(t)

.

Then
(IN −B2)−1B = B(IN −B2)−1

=
1

1− k2
1(t)

(
IN + k4(t)tt

T
) (

k1(t)IN + k2(t)tt
T
)

=
1

1− k2
1(t)

(
k1(t)IN +

(
k2(t) + k1(t)k4(t) + k2(t)k4(t)∥t∥2

)
ttT
)

=
1

1− k2
1(t)

(
k1(t)IN + k5(t)tt

T
)
,

where
k5(t) : = k2(t) + k1(t)k4(t) + k2(t)k4(t)∥t∥2

= k2(t) + k∗(t)k4(t)

=
k2(t)(1 + k1(t)k∗(t))

1− k2
∗(t)

.
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It is easy to see ki(t), i = 1, 2, . . . , 5 are all well-defined for any t ∈ B(0N , δρ) \ {0N} (see
δρ in Definition 4.3.2). In summary, for any t ∈ B(0N , δρ) \ {0N}, we have

− 2ρ(1)(0)V −1
22 (t)

=

(
1

1−k21(t)
IN − k1(t)

1−k21(t)
IN

− k1(t)

1−k21(t)
IN

1
1−k21(t)

IN

)
+

(
k4(t)

1−k21(t)
ttT − k5(t)

1−k21(t)
ttT

− k5(t)

1−k21(t)
ttT k4(t)

1−k21(t)
ttT

)

=
1

1− k2
1(t)

(
IN −k1(t)IN

−k1(t)IN IN

)
+

1

1− k2
1(t)

(
k4(t)tt

T −k5(t)tt
T

−k5(t)tt
T k4(t)tt

T

)
,

(C.12)

where

k1(t) =
ρ(1)(∥t∥2)
ρ(1)(0)

, k2(t) =
2ρ(2)(∥t∥2)
ρ(1)(0)

, k∗(t) = k1(t) + k2(t)∥t∥2,

k4(t) =
k2(t)(k1(t) + k∗(t))

1− k2
∗(t)

and k5(t) =
k2(t)(1 + k1(t)k∗(t))

1− k2
∗(t)

.

Here one should note that

k5(t)− k4(t) =
k2(t)(1− k1(t))(1− k∗(t))

1− k2
∗(t)

=
k2(t)(1− k1(t))

1 + k∗(t)

→ 0 as ∥t∥ → 0.

(C.13)

In consequence, by (C.7), (C.8) and (C.12),

− 2ρ(1)(0)(1− k2
1(t))V12(t)V

−1
22 (t)V T

12(t)

=

0(L−2)×N −G21(t)
01×N −G01(t)
G01(t) 01×N

( IN −k1(t)IN
−k1(t)IN IN

)(
0N×(L−2) 0N×1 GT

01(t)
−GT

21(t) −GT
01(t) 0N×1

)

+

0(L−2)×N −G21(t)
01×N −G01(t)
G01(t) 01×N

( k4(t)tt
T −k5(t)tt

T

−k5(t)tt
T k4(t)tt

T

)(
0N×(L−2) 0N×1 GT

01(t)
−GT

21(t) −GT
01(t) 0N×1

)

=

 G21(t)G
T
21(t) G21(t)G

T
01(t) k1(t)G21(t)G

T
01(t)

G01(t)G
T
21(t) G01(t)G

T
01(t) k1(t)G01(t)G

T
01(t)

k1(t)G01(t)G
T
21(t) k1(t)G01(t)G

T
01(t) G01(t)G

T
01(t)


+

k4(t)G21(t)tt
TGT

21(t) k4(t)G21(t)tt
TGT

01(t) k5(t)G21(t)tt
TGT

01(t)
k4(t)G01(t)tt

TGT
21(t) k4(t)G01(t)tt

TGT
01(t) k5(t)G01(t)tt

TGT
01(t)

k5(t)G01(t)tt
TGT

21(t) k5(t)G01(t)tt
TGT

01(t) k4(t)G01(t)tt
TGT

01(t)

 ,
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and then the blocked version of Σ(t) is given by

Σ(t) = V11(t)− V12(t)V
−1
22 (t)V T

12(t) = M0(t) +
1

2ρ(1)(0) (1− k2
1(t))

(M1(t) +M2(t)),

(C.14)
where

M0(t) :=

G22(0) G20(0) G20(t)
GT

20(0) G00(0) G00(t)
GT

20(t) GT
00(t) G00(0)

 ,

M1(t) :=

 G21(t)G
T
21(t) G21(t)G

T
01(t) k1(t)G21(t)G

T
01(t)

G01(t)G
T
21(t) G01(t)G

T
01(t) k1(t)G01(t)G

T
01(t)

k1(t)G01(t)G
T
21(t) k1(t)G01(t)G

T
01(t) G01(t)G

T
01(t)


and

M2(t) :=

k4(t)G21(t)tt
TGT

21(t) k4(t)G21(t)tt
TGT

01(t) k5(t)G21(t)tt
TGT

01(t)
k4(t)G01(t)tt

TGT
21(t) k4(t)G01(t)tt

TGT
01(t) k5(t)G01(t)tt

TGT
01(t)

k5(t)G01(t)tt
TGT

21(t) k5(t)G01(t)tt
TGT

01(t) k4(t)G01(t)tt
TGT

01(t)

 .

Fix a direction u ∈ SN−1, then by (C.14), each element in the covariance matrix Σ(ur) is
a continuous function of r ∈ [0, δρ].

In the following sections, we will calculate the asymptotic expansion of Σ(t) as ∥t∥ →
0. To make the following proofs better organized, we will first calculate the asymptotic
expansions associated with coefficients ki(t), i = 1, . . . , 5 as ∥t∥ → 0. Then the calculation
will be performed separately for each of the three parts in (C.14):

1. the main part

Σ(t)[1 : (L− 2), 1 : (L− 2)]

= G22(0) +
1

2ρ(1)(0)(1− k2
1(t))

G21(t)G
T
21(t) +

k4(t)

2ρ(1)(0)(1− k2
1(t))

G21(t)tt
TGT

21(t);

2. the side part

Σ(t)[1 : (L− 2), L− 1]

= G20(0) +
1

2ρ(1)(0)(1− k2
1(t))

G21(t)G
T
01(t) +

k4(t)

2ρ(1)(0)(1− k2
1(t))

G21(t)tt
TGT

01(t)

and

Σ(t)[1 : (L− 2), L]

= G20(t) +
k1(t)

2ρ(1)(0)(1− k2
1(t))

G21(t)G
T
01(t) +

k5(t)

2ρ(1)(0)(1− k2
1(t))

G21(t)tt
TGT

01(t);
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3. the corner part

Σ(t)[L− 1, L− 1] = Σ(t)[L,L]

= G00(0) +
1

2ρ(1)(0)(1− k2
1(t))

G01(t)G
T
01(t) +

k4(t)

2ρ(1)(0)(1− k2
1(t))

G01(t)tt
TGT

01(t)

and

Σ(t)[L− 1, L] = Σ(t)[L,L− 1]

= G00(t) +
k1(t)

2ρ(1)(0)(1− k2
1(t))

G01(t)G
T
01(t) +

k5(t)

2ρ(1)(0)(1− k2
1(t))

G01(t)tt
TGT

01(t).

C.3.2 Asymptotic Expansions of Coefficients

Note that by Condition (3) in Definition 4.3.2, we have

ρ(x) = ρ(0) + ρ(1)(0)x+
1

2
ρ(2)(0)x2 +

1

6
ρ(3)(0)x3 + o(x3) as x ↓ 0.

In this part, we would like to use the above expansion to expand

(i) ∥t∥2
2ρ(1)(0)(1−k21(t))

,

(ii) k4(t)∥t∥2
2ρ(1)(0)(1−k21(t))

,

(iii) k1(t)∥t∥2
2ρ(1)(0)(1−k21(t))

,

(iv) k5(t)∥t∥2
2ρ(1)(0)(1−k21(t))

.

For (i), note that(
ρ(1)(0) + ρ(1)(∥t∥2)

)−1
=
(
ρ(1)(0) + ρ(1)(0)

)−1 −
(
ρ(1)(0) + ρ(1)(0)

)−2
ρ(2)(0)∥t∥2 + o(∥t∥2)

=
(
2ρ(1)(0)

)−1 −
(
2ρ(1)(0)

)−2
ρ(2)(0)∥t∥2 + o(∥t∥2)

and

∥t∥2
(
ρ(1)(0)− ρ(1)(∥t∥2)

)−1
= −∥t∥2

(
ρ(2)(0)∥t∥2 + 1

2
ρ(3)(0)∥t∥4 + o(∥t∥4)

)−1

= −
(
ρ(2)(0) +

1

2
ρ(3)(0)∥t∥2 + o(∥t∥2)

)−1

= −ρ(2)(0)−1 +
1

2
ρ(2)(0)−2ρ(3)(0)∥t∥2 + o(∥t∥2).
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Then we have

∥t∥2

2ρ(1)(0)(1− k2
1(t))

=
1

2
ρ(1)(0)∥t∥2

(
ρ(1)(0)2 − ρ(1)(∥t∥2)2

)−1

=
1

2
ρ(1)(0)

(
ρ(1)(0) + ρ(1)(∥t∥2)

)−1 ∥t∥2
(
ρ(1)(0)− ρ(1)(∥t∥2)

)−1

=
1

2
ρ(1)(0)

((
2ρ(1)(0)

)−1 −
(
2ρ(1)(0)

)−2
ρ(2)(0)∥t∥2 + o(∥t∥2)

)
(
−ρ(2)(0)−1 +

1

2
ρ(2)(0)−2ρ(3)(0)∥t∥2 + o(∥t∥2)

)
= −1

4
ρ(2)(0)−1 +

1

8

(
ρ(1)(0)−1 + ρ(2)(0)−2ρ(3)(0)

)
∥t∥2 + o(∥t∥2)

=: a0 + b0∥t∥2 + o(∥t∥2),

(C.15)

where

a0 = −1

4
ρ(2)(0)−1 and b0 =

1

8

(
ρ(1)(0)−1 + ρ(2)(0)−2ρ(3)(0)

)
.

For (ii), we first note that

k∗(t) = k1(t) + k2(t)∥t∥2

= ρ(1)(0)−1
(
ρ(1)(∥t∥2) + 2ρ(2)(∥t∥2)∥t∥2

)
= ρ(1)(0)−1

(
ρ(1)(0) + ρ(2)(0)∥t∥2 + 1

2
ρ(3)(0)∥t∥4 + 2ρ(2)(0)∥t∥2 + o(∥t∥4)

)
= ρ(1)(0)−1

(
ρ(1)(0) + 3ρ(2)(0)∥t∥2 + 5

2
ρ(3)(0)∥t∥4 + o(∥t∥4)

)
= 1 + 3ρ(1)(0)−1ρ(2)(0)∥t∥2 + 5

2
ρ(1)(0)−1ρ(3)(0)∥t∥4 + o(∥t∥4),

(C.16)

which is followed by

k1(t) + k∗(t) = 2 + 4ρ(1)(0)−1ρ(2)(0)∥t∥2 + 3ρ(1)(0)−1ρ(3)(0)∥t∥4 + o(∥t∥4)

and

1− k2
∗(t)

= 1−
(
1 + 3ρ(1)(0)−1ρ(2)(0)∥t∥2 + 5

2
ρ(1)(0)−1ρ(3)(0)∥t∥4 + o(∥t∥4)

)2

= −6ρ(1)(0)−1ρ(2)(0)∥t∥2 −
(
5ρ(1)(0)−1ρ(3)(0) + 9ρ(1)(0)−2ρ(2)(0)2

)
∥t∥4 + o(∥t∥4),

189



and thus

∥t∥2(1− k2
∗(t))

−1

= −
(
6ρ(1)(0)−1ρ(2)(0) +

(
5ρ(1)(0)−1ρ(3)(0) + 9ρ(1)(0)−2ρ(2)(0)2

)
∥t∥2 + o(∥t∥2)

)−1

= −
(
6ρ(1)(0)−1ρ(2)(0)

)−1

+
(
6ρ(1)(0)−1ρ(2)(0)

)−2 (
5ρ(1)(0)−1ρ(3)(0) + 9ρ(1)(0)−2ρ(2)(0)2

)
∥t∥2 + o(∥t∥2)

= −1

6
ρ(1)(0)ρ(2)(0)−1 +

(
5

36
ρ(1)(0)ρ(2)(0)−2ρ(3)(0) +

1

4

)
∥t∥2 + o(∥t∥2).

(C.17)

Then we have

∥t∥2k4(t)

= ∥t∥2k2(t)
k1(t) + k∗(t)

1− k2
∗(t)

= k2(t)(k1(t) + k∗(t))(
−1

6
ρ(1)(0)ρ(2)(0)−1 +

(
5

36
ρ(1)(0)ρ(2)(0)−2ρ(3)(0) +

1

4

)
∥t∥2 + o(∥t∥2)

)
= 2ρ(1)(0)−1

(
ρ(2)(0) + ρ(3)(0)∥t∥2 + o(∥t∥2)

)(
2 + 4ρ(1)(0)−1ρ(2)(0)∥t∥2 + 3ρ(1)(0)−1ρ(3)(0)∥t∥4 + o(∥t∥4)

)(
−1

6
ρ(1)(0)ρ(2)(0)−1 +

(
5

36
ρ(1)(0)ρ(2)(0)−2ρ(3)(0) +

1

4

)
∥t∥2 + o(∥t∥2)

)
= −2

3
+

(
−1

3
ρ(1)(0)−1ρ(2)(0)− 1

9
ρ(2)(0)−1ρ(3)(0)

)
∥t∥2 + o(∥t∥2).

(C.18)

Therefore, by (C.15) and (C.18),

∥t∥4k4(t)
2ρ(1)(0)(1− k2

1(t))

=
(
a0 + b0∥t∥2 + o(∥t∥2)

)(
−2

3
+

(
−1

3
ρ(1)(0)−1ρ(2)(0)− 1

9
ρ(2)(0)−1ρ(3)(0)

)
∥t∥2 + o(∥t∥2)

)
=: a′0 + b′0∥t∥2 + o(∥t∥2),

(C.19)

where

a′0 = −2

3
a0 =

1

6
ρ(2)(0)−1
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and

b′0 = a0

(
−1

3
ρ(1)(0)−1ρ(2)(0)− 1

9
ρ(2)(0)−1ρ(3)(0)

)
− 2

3
b0 = − 1

18
ρ(2)(0)−2ρ(3)(0).

For (iii), by (C.15),

∥t∥2k1(t)
2ρ(1)(0)(1− k2

1(t))

=
(
1 + ρ(1)(0)−1ρ(2)(0)∥t∥2 + o(∥t∥2)

) (
a0 + b0∥t∥2 + o(∥t∥2)

)
= a0 +

(
a0ρ

(1)(0)−1ρ(2)(0) + b0
)
∥t∥2 + o(∥t∥2)

=: a′′0 + b′′0∥t∥2 + o(∥t∥2),

(C.20)

where

a′′0 = a0 = −1

4
ρ(2)(0)−1

and

b′′0 = −1

4
ρ(2)(0)−1ρ(1)(0)−1ρ(2)(0) +

1

8

(
ρ(1)(0)−1 + ρ(2)(0)−2ρ(3)(0)

)
=

1

8

(
−ρ(1)(0)−1 + ρ(2)(0)−2ρ(3)(0)

)
.

For (iv), by (C.13), (C.15) and (C.19),

∥t∥4k5(t)
2ρ(1)(0)(1− k2

1(t))
=

∥t∥4k4(t)
2ρ(1)(0)(1− k2

1(t))
+

∥t∥4(k5(t)− k4(t))

2ρ(1)(0)(1− k2
1(t))

=
∥t∥4k4(t)

2ρ(1)(0)(1− k2
1(t))

+ o(∥t∥2)

= a′0 + b′0∥t∥2 + o(∥t∥2),

(C.21)

C.3.3 Asymptotic Expansions of the Main Part

In this part, we would like to get the asymptotic expansion of

Σ(t)[1 : (L− 2), 1 : (L− 2)]

= G22(0) +
1

2ρ(1)(0)(1− k2
1(t))

G21(t)G
T
21(t) +

k4(t)

2ρ(1)(0)(1− k2
1(t))

G21(t)tt
TGT

21(t)

(C.22)
as ∥t∥ → 0. To this end, we still need to expand
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(i) G21(t)(i1+j1(j1−1)/2)

(
G21(t)(i2+j2(j2−1)/2)

)T
(ii) G21(t)tt

TGT
21(t) [i1 + j1(j1 − 1)/2, i2 + j2(j2 − 1)/2]

for any integers 1 ≤ i1 ≤ j1 ≤ N and 1 ≤ i2 ≤ j2 ≤ N .

Note that G21(t) = −Cov [▽2X(t),▽X(0)] can be written in the form:

G21(t) =


B11(t) B12(t) · · · B1N(t)
B21(t) B22(t) · · · B2N(t)

...
... · · · ...

BN1(t) BN2(t) · · · BNN(t)

 ,

where by (C.3),

Bjk(t) : =


R1jk(t)
R2jk(t)

...
Rjjk(t)



= 4ρ(2)(∥t∥2)

tk


δ1,j
δ2,j
...

δj,j

+


t1
t2
...
tj

 δj,k + tj


δ1,k
δ2,k
...

δj,k


+ 8ρ(3)(∥t∥2)tjtk


t1
t2
...
tj


for any integers 1 ≤ j, k ≤ N . For any integers 1 ≤ i ≤ j ≤ N and 1 ≤ k ≤ N ,

G21(t)

[
i+

j(j − 1)

2
, k

]
= Bjk(t)[i] = Rijk(t). (C.23)

Let vk = (δ1,k, . . . , δN,k)
T , k = 1, 2, . . . , N . Then by (C.3) and (C.23),

(
G21(t)(i+ j(j−1)

2 )

)T
=


Rij1(t)
Rij2(t)

...
RijN(t)

 = 4ρ(2)(∥t∥2)(δi,jt+ tivj + tjvi) + 8ρ(3)(∥t∥2)titjt

= 4
(
ρ(2)(0) + ρ(3)(0)∥t∥2

)
(δi,jt+ tivj + tjvi)

+ 8ρ(3)(0)titjt+ o(∥t∥3).
(C.24)
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Note that for any integers 1 ≤ i, j ≤ N , since vT
j t = tj and vT

i vj = δi,j, we have

(δi,jt
T + tiv

T
j + tjv

T
i )t = δi,j∥t∥2 + 2titj.

Then for any integers 1 ≤ i1 ≤ j1 ≤ N and 1 ≤ i2 ≤ j2 ≤ N , we have

G21(t)(i1+j1(j1−1)/2)

(
G21(t)(i2+j2(j2−1)/2)

)T
= 16

(
ρ(2)(0) + ρ(3)(0)∥t∥2

)2
(δi1,j1t

T + ti1v
T
j1
+ tj1v

T
i1
)(δi2,j2t+ ti2vj2 + tj2vi2)

+ 32ρ(3)(0)ti2tj2
(
ρ(2)(0) + ρ(3)(0)∥t∥2

)
(δi1,j1t

T + ti1v
T
j1
+ tj1v

T
i1
)t

+ 32ρ(3)(0)ti1tj1
(
ρ(2)(0) + ρ(3)(0)∥t∥2

)
(δi2,j2t

T + ti2v
T
j2
+ tj2v

T
i2
)t+ o(∥t∥4)

= 16
(
ρ(2)(0)2 + 2ρ(2)(0)ρ(3)(0)∥t∥2

) (
δi1,j1∥t∥2 + 2ti1tj1

)
δi2,j2

+ 16
(
ρ(2)(0)2 + 2ρ(2)(0)ρ(3)(0)∥t∥2

)
(δi1,j1ti2tj2 + δj1,j2ti1ti2 + δi1,j2tj1ti2)

+ 16
(
ρ(2)(0)2 + 2ρ(2)(0)ρ(3)(0)∥t∥2

)
(δi1,j1ti2tj2 + δi2,j1ti1tj2 + δi1,i2tj1tj2)

+ 32ρ(3)(0)
(
ρ(2)(0) + ρ(3)(0)∥t∥2

) (
δi1,j1ti2tj2∥t∥2 + δi2,j2ti1tj1∥t∥2 + 4ti1tj1ti2tj2

)
+ o(∥t∥4)

=: a1∥t∥2 + b1∥t∥4 + o(∥t∥4),
(C.25)

where
a1 = 16ρ(2)(0)2

(
δi1,j1δi2,j2 + 2δi2,j2ui1uj1 + 2δi1,j1ui2uj2

+ δj1,j2ui1ui2 + δi1,j2uj1ui2 + δi2,j1ui1uj2 + δi1,i2uj1uj2

)
and

b1 = 2ρ(2)(0)−1ρ(3)(0)a1 + 32ρ(3)(0)ρ(2)(0) (δi1,j1ui2uj2 + δi2,j2ui1uj1 + 4ui1uj1ui2uj2)

= 32ρ(3)(0)ρ(2)(0)
(
δi1,j1δi2,j2 + 3δi2,j2ui1uj1 + 3δi1,j1ui2uj2

+ δj1,j2ui1ui2 + δi1,j2uj1ui2 + δi2,j1ui1uj2 + δi1,i2uj1uj2 + 4ui1uj1ui2uj2

)
.

By (C.24), we also have

G21(t)(i1+j1(j1−1)/2)t = (G21(t)t)(i1+j1(j1−1)/2)

=
(
4ρ(2)(∥t∥2)(δi,jtT + tiv

T
j + tjv

T
i ) + 8ρ(3)(∥t∥2)titjtT

)
t

= 4ρ(2)(∥t∥2)(δi,j∥t∥2 + 2titj) + 8ρ(3)(∥t∥2)titj∥t∥2

= 4
(
ρ(2)(0) + ρ(3)(0)∥t∥2

)
(δi,j∥t∥2 + 2titj) + 8ρ(3)(0)titj∥t∥2 + o(∥t∥4),

(C.26)
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and thus

G21(t)tt
TGT

21(t) [i1 + j1(j1 − 1)/2, i2 + j2(j2 − 1)/2]

= 16
(
ρ(2)(0) + ρ(3)(0)∥t∥2

)2
(δi1,j1∥t∥2 + 2ti1tj1)(δi2,j2∥t∥2 + 2ti2tj2)

+ 4
(
ρ(2)(0) + ρ(3)(0)∥t∥2

)
(δi1,j1∥t∥2 + 2ti1tj1)8ρ

(3)(0)ti2tj2∥t∥2

+ 4
(
ρ(2)(0) + ρ(3)(0)∥t∥2

)
(δi2,j2∥t∥2 + 2ti2tj2)8ρ

(3)(0)ti1tj1∥t∥2

+ 8ρ(3)(0)ti1tj1∥t∥28ρ(3)(0)ti2tj2∥t∥2 + o(∥t∥6)
= 16

(
ρ(2)(0)2 + 2ρ(2)(0)ρ(3)(0)∥t∥2 + ρ(3)(0)2∥t∥4

)
(δi1,j1∥t∥2 + 2ti1tj1)(δi2,j2∥t∥2 + 2ti2tj2)

+ 32ρ(3)(0)
(
ρ(2)(0) + ρ(3)(0)∥t∥2

)
(δi1,j1∥t∥2 + 2ti1tj1)ti2tj2∥t∥2

+ 32ρ(3)(0)
(
ρ(2)(0) + ρ(3)(0)∥t∥2

)
(δi2,j2∥t∥2 + 2ti2tj2)ti1tj1∥t∥2 + o(∥t∥6)

=: a2∥t∥4 + b2∥t∥6 + o(∥t∥6),
(C.27)

where
a2 = 16ρ(2)(0)2(δi1,j1 + 2ui1uj1)(δi2,j2 + 2ui2uj2)

and

b2 = 32ρ(2)(0)ρ(3)(0)(δi1,j1 + 2ui1uj1)(δi2,j2 + 2ui2uj2)

+ 32ρ(2)(0)ρ(3)(0)(δi1,j1ui2uj2 + δi2,j2ui1uj1 + 4ui1uj1ui2uj2)

= 32ρ(2)(0)ρ(3)(0) (δi1,j1δi2,j2 + 3δi1,j1ui2uj2 + 3δi2,j2ui1uj1 + 8ui1uj1ui2uj2) .

By (C.4),

G22(0) [i1 + j1(j1 − 1)/2, i2 + j2(j2 − 1)/2] = Ri1j1i2j2(0)

= 4ρ(2)(0) (δi1,j1δi2,j2 + δi2,j1δi1,j2 + δi1,i2δj1,j2) .
(C.28)

Finally, by (C.15), (C.19), (C.22), (C.25), (C.27) and (C.28) we have for integers 1 ≤ i1 ≤
j1 ≤ N and 1 ≤ i2 ≤ j2 ≤ N ,

Σ(t) [i1 + j1(j1 − 1)/2, i2 + j2(j2 − 1)/2]

= 4ρ(2)(0) (δi1,j1δi2,j2 + δi2,j1δi1,j2 + δi1,i2δj1,j2)

+ ∥t∥−2
(
a0 + b0∥t∥2 + o(∥t∥2)

) (
a1∥t∥2 + b1∥t∥4 + o(∥t∥4)

)
+ ∥t∥−4

(
a′0 + b′0∥t∥2 + o(∥t∥2)

) (
a2∥t∥4 + b2∥t∥6 + o(∥t∥6)

)
= 4ρ(2)(0) (δi1,j1δi2,j2 + δi2,j1δi1,j2 + δi1,i2δj1,j2)

+
(
a0 + b0∥t∥2 + o(∥t∥2)

) (
a1 + b1∥t∥2 + o(∥t∥2)

)
+
(
a′0 + b′0∥t∥2 + o(∥t∥2)

) (
a2 + b2∥t∥2 + o(∥t∥2)

)
=: a3 + b3∥t∥2 + o(∥t∥2),
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where
a3 = 4ρ(2)(0) (δi1,j1δi2,j2 + δi2,j1δi1,j2 + δi1,i2δj1,j2) + a0a1 + a′0a2

= 4ρ(2)(0)(δi2,j1δi1,j2 + δi1,i2δj1,j2 − δj1,j2ui1ui2 − δi1,j2uj1ui2

− δi2,j1ui1uj2 − δi1,i2uj1uj2 + 2ui1uj1ui2uj2)

+
8

3
ρ(2)(0)(δi1,j1 − ui1uj1)(δi2,j2 − ui2uj2),

and by letting α := ρ(1)(0)−1ρ(2)(0)2 and β := ρ(3)(0),

b3 = a0b1 + b0a1 + a′0b2 + b′0a2

=

(
2α− 14

9
β

)
δi1,j1δi2,j2 +

(
4α− 52

9
β

)
δi2,j2ui1uj1 +

(
4α− 52

9
β

)
δi1,j1ui2uj2

+ (2α− 6β) δj1,j2ui1ui2 + (2α− 6β) δi1,j2uj1ui2 + (2α− 6β) δi2,j1ui1uj2

+ (2α− 6β) δi1,i2uj1uj2 +
64

9
βui1uj1ui2uj2 ,

which can be verified by lengthy but straightforward calculation.

C.3.4 Asymptotic Expansions of the Side Parts

In this part, we would like to get the asymptotic expansion of

Σ(t)[1 : (L− 2), L− 1]

= G20(0) +
1

2ρ(1)(0)(1− k2
1(t))

G21(t)G
T
01(t) +

k4(t)

2ρ(1)(0)(1− k2
1(t))

G21(t)tt
TGT

01(t)

(C.29)
and

Σ(t)[1 : (L− 2), L]

= G20(t) +
k1(t)

2ρ(1)(0)(1− k2
1(t))

G21(t)G
T
01(t) +

k5(t)

2ρ(1)(0)(1− k2
1(t))

G21(t)tt
TGT

01(t)

(C.30)
as ∥t∥ → 0. To this end, we still need to expand

(i) G20(t)[i+ j(j − 1)/2],

(ii) (G21(t)G
T
01(t))[i+ j(j − 1)/2],

(iii) (G21(t)tt
TGT

01(t))[i+ j(j − 1)/2]
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for any integers 1 ≤ i ≤ j ≤ N .

By (C.2), we have

G20(0)[i+ j(j − 1)/2] = Rij(0) = 2ρ(1)(0)δi,j (C.31)

and

G20(t)[i+ j(j − 1)/2]

= Rij(t)

= 2ρ(1)(∥t∥2)δi,j + 4titjρ
(2)(∥t∥2)

= 2δi,j
(
ρ(1)(0) + ρ(2)(0)∥t∥2 + o(∥t∥2)

)
+ 4uiuj∥t∥2

(
ρ(2)(0) + ρ(3)(0)∥t∥2 + o(∥t∥2)

)
= 2δi,jρ

(1)(0) + (2δi,j + 4uiuj) ρ
(2)(0)∥t∥2 + o(∥t∥2).

(C.32)
By (C.1),

G01(t) = (R1(t), . . . , RN(t)) = 2ρ(1)(∥t∥2)tT . (C.33)

Then by (C.26) and (C.33),(
G21(t)G

T
01(t)

)
[i+ j(j − 1)/2]

= 2ρ(1)(∥t∥2)G21(t)(i+j(j−1)/2)t

= 2ρ(1)(∥t∥2)
(
4ρ(2)(∥t∥2)(δi,j∥t∥2 + 2titj) + 8ρ(3)(∥t∥2)titj∥t∥2

)
= 2

(
ρ(1)(0) + ρ(2)(0)∥t∥2 + o(∥t∥2)

) (
4ρ(2)(∥t∥2)(δi,j∥t∥2 + 2titj) + 8ρ(3)(∥t∥2)titj∥t∥2

)
= 8

(
ρ(1)(0)ρ(2)(0) +

(
ρ(2)(0)2 + ρ(1)(0)ρ(3)(0)

)
∥t∥2

)
(δi,j + 2uiuj)∥t∥2

+ 16ρ(1)(0)ρ(3)(0)uiuj∥t∥4 + o(∥t∥4)
=: ã1∥t∥2 + b̃1∥t∥4 + o(∥t∥4),

(C.34)
where

ã1 = 8ρ(1)(0)ρ(2)(0)(δi,j + 2uiuj)

and
b̃1 = 8

(
ρ(2)(0)2 + ρ(1)(0)ρ(3)(0)

)
(δi,j + 2uiuj) + 16ρ(1)(0)ρ(3)(0)uiuj.

By (C.33),
tTGT

01(t) = 2ρ(1)(∥t∥2)∥t∥2. (C.35)

Then we have(
G21(t)tt

TGT
01(t)

)
[i+ j(j − 1)/2] = 2ρ(1)(∥t∥2)G21(t)(i+j(j−1)/2)t∥t∥2

=: ã2∥t∥4 + b̃2∥t∥6 + o(∥t∥6),
(C.36)
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where by (C.34),

ã2 = ã1 and b̃2 = b̃1.

Now combining (C.15), (C.19), (C.29), (C.31), (C.34) and (C.36) implies for any inte-
gers 1 ≤ i ≤ j ≤ N ,

Σ(t)[i+ j(j − 1)/2, L− 1]

= 2ρ(1)(0)δi,j +
(
a0 + b0∥t∥2 + o(∥t∥2)

) (
ã1 + b̃1∥t∥2 + o(∥t∥2)

)
+
(
a′0 + b′0∥t∥2 + o(∥t∥2)

) (
ã2 + b̃2∥t∥2 + o(∥t∥2)

)
=: ã3 + b̃3∥t∥2 + o(∥t∥2),

where

ã3 = 2ρ(1)(0)δi,j + a0ã1 + a′0ã2

= 2ρ(1)(0)δi,j + 8ρ(1)(0)ρ(2)(0)(δi,j + 2uiuj)

(
−1

4
ρ(2)(0)−1 +

1

6
ρ(2)(0)−1

)
=

4

3
ρ(1)(0)(δi,j − uiuj),

and by ã1 = ã2 and b̃1 = b̃2,

b̃3 = a0b̃1 + b0ã1 + a′0b̃2 + b′0ã2

=

(
−1

4
ρ(2)(0)−1 +

1

6
ρ(2)(0)−1

)
(
8
(
ρ(2)(0)2 + ρ(1)(0)ρ(3)(0)

)
(δi,j + 2uiuj) + 16ρ(1)(0)ρ(3)(0)uiuj

)
+

(
1

8

(
ρ(1)(0)−1 + ρ(2)(0)−2ρ(3)(0)

)
− 1

18
ρ(2)(0)−2ρ(3)(0)

)
(
8ρ(1)(0)ρ(2)(0)(δi,j + 2uiuj)

)
=

(
1

3
α′ − 1

9
β′
)
δi,j +

(
2

3
α′ − 14

9
β′
)
uiuj,

where α′ := ρ(2)(0) and β′ := ρ(1)(0)ρ(2)(0)−1ρ(3)(0). Also combining (C.20), (C.21), (C.30),
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(C.32), (C.34) and (C.36) implies for any integers 1 ≤ i ≤ j ≤ N ,

Σ(t)[i+ j(j − 1)/2, L] = 2ρ(1)(0)δi,j + (2δi,j + 4uiuj) ρ
(2)(0)∥t∥2 + o(∥t∥2)

+
(
a′′0 + b′′0∥t∥2 + o(∥t∥2)

) (
ã1 + b̃1∥t∥2 + o(∥t∥2)

)
+
(
a′0 + b′0∥t∥2 + o(∥t∥2)

) (
ã2 + b̃2∥t∥2 + o(∥t∥2)

)
=: ã4 + b̃4∥t∥2 + o(∥t∥2),

where by a0 = a′′0,

ã4 = 2ρ(1)(0)δi,j + a′′0ã1 + a′0ã2 = 2ρ(1)(0)δi,j + a0ã1 + a′0ã2 = ã3,

and by (2δi,j + 4uiuj)ρ
(2)(0) + b′′0ã1 = b0ã1,

b̃4 = (2δi,j + 4uiuj) ρ
(2)(0) + a′′0 b̃1 + b′′0ã1 + a′0b̃2 + b′0ã2 = a0b̃1 + b0ã1 + a′0b̃2 + b′0ã2 = b̃3.

C.3.5 Asymptotic Expansions of the Corner Part

In this part, we would like to get the asymptotic expansion of

Σ(t)[L− 1, L− 1] = Σ(t)[L,L]

= G00(0) +
1

2ρ(1)(0)(1− k2
1(t))

G01(t)G
T
01(t) +

k4(t)

2ρ(1)(0)(1− k2
1(t))

G01(t)tt
TGT

01(t)

(C.37)
and

Σ(t)[L− 1, L] = Σ(t)[L,L− 1]

= G00(t) +
k1(t)

2ρ(1)(0)(1− k2
1(t))

G01(t)G
T
01(t) +

k5(t)

2ρ(1)(0)(1− k2
1(t))

G01(t)tt
TGT

01(t)

(C.38)
as ∥t∥ → 0. To this end, we still need to expand

(i) G00(t),

(ii) G01(t)G
T
01(t),

(iii) G01(t)tt
TGT

01(t).
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For (i), it is easy to see

G00(t) = R(t) = ρ(0) + ρ(1)(0)∥t∥2 + o(∥t∥2) and G00(0) = R(0) = ρ(0). (C.39)

For (ii), by (C.33), we have

G01(t)G
T
01(t) = 4

(
ρ(1)(0) + ρ(2)(0)∥t∥2 + o(∥t∥2)

)2 ∥t∥2
= 4ρ(1)(0)2∥t∥2 + 8ρ(1)(0)ρ(2)(0)∥t∥4 + o(∥t∥4)
=: â1∥t∥2 + b̂1∥t∥4 + o(∥t∥4),

(C.40)

where
â1 = 4ρ(1)(0)2 and b̂1 = 8ρ(1)(0)ρ(2)(0),

By (C.35),

G01(t)tt
TGT

01(t) = 4ρ(1)(0)2∥t∥4 + 8ρ(1)(0)ρ(2)(0)∥t∥6 + o(∥t∥6)
=: â2∥t∥4 + b̂2∥t∥6 + o(∥t∥6),

(C.41)

where
â2 = 4ρ(1)(0)2 and b̂2 = 8ρ(1)(0)ρ(2)(0).

Therefore, combining (C.15), (C.19), (C.37), (C.39), (C.40) and (C.41) implies

Σ(t)[L− 1, L− 1] = Σ(t)[L,L]

= ρ(0) +
(
a0 + b0∥t∥2 + o(∥t∥2)

) (
â1 + b̂1∥t∥2 + o(∥t∥2)

)
+
(
a′0 + b′0∥t∥2 + o(∥t∥2)

) (
â2 + b̂2∥t∥2 + o(∥t∥2)

)
=: â3 + b̂3∥t∥2 + o(∥t∥2),

where
â3 = ρ(0) + a0â1 + a′0â2

= ρ(0) +

(
−1

4
ρ(2)(0)−1 +

1

6
ρ(2)(0)−1

)
4ρ(1)(0)2

= ρ(0)− 1

3
ρ(1)(0)2ρ(2)(0)−1
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and by â1 = â2 and b̂1 = b̂2,

b̂3 = a0b̂1 + b0â1 + a′0b̂2 + b′0â2

= (a0 + a′0)̂b1 + (b0 + b′0)â1

=

(
−1

4
ρ(2)(0)−1 +

1

6
ρ(2)(0)−1

)
8ρ(1)(0)ρ(2)(0)

+

(
1

8

(
ρ(1)(0)−1 + ρ(2)(0)−2ρ(3)(0)

)
− 1

18
ρ(2)(0)−2ρ(3)(0)

)
4ρ(1)(0)2

= −1

6
ρ(1)(0) +

5

18
ρ(1)(0)2ρ(2)(0)−2ρ(3)(0).

Also, combining (C.20), (C.21), (C.38), (C.39), (C.40) and (C.41) implies

Σ(t)[L− 1, L] = Σ(t)[L,L− 1]

= ρ(0) + ρ(1)(0)∥t∥2 + o(∥t∥2)

+
(
a′′0 + b′′0∥t∥2 + o(∥t∥2)

) (
â1 + b̂1∥t∥2 + o(∥t∥2)

)
+
(
a′0 + b′0∥t∥2 + o(∥t∥2)

) (
â2 + b̂2∥t∥2 + o(∥t∥2)

)
=: â4 + b̂4∥t∥2 + o(∥t∥2),

where by a0 = a′′0,

â4 = ρ(0) + a′′0â1 + a′0â2 = ρ(0) + a0â1 + a′0â2 = â3,

and by ρ(1)(0) + b′′0â1 = b0â1,

b̂4 = ρ(1)(0) + a′′0 b̂1 + b′′0â1 + a′′′0 b̂2 + b′′′0 â2 = a0b̂1 + b0â1 + a′0b̂2 + b′0â2 = b̂3.

Hence the proof of Lemma 4.3.5 is completed.

C.4 Features of the Side Parts

Fix N ≥ 2. Let X be qualified. Suppose that X also satisfies (4.51) for some δ̃ρ > 0.
Recall in Section 4.5.2, u0 = (0, . . . , 0, 1) ∈ RN . In this section, we would like to calculate
the side parts (C.29) and (C.30) when t has the form t := u0r for any r ∈ [0, δ̃ρ]. Recall
that by (C.31)

G20(0)[i+ j(j − 1)/2] = 2ρ(1)(0)δi,j, (C.42)
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by (C.32)
G20(t)[i+ j(j − 1)/2] = 2ρ(1)(∥t∥2)δi,j + 4titjρ

(2)(∥t∥2), (C.43)

by (C.34) (
G21(t)G

T
01(t)

)
[i+ j(j − 1)/2]

= 2ρ(1)(∥t∥2)
(
4ρ(2)(∥t∥2)(δi,j∥t∥2 + 2titj) + 8ρ(3)(∥t∥2)titj∥t∥2

)
,

(C.44)

and by (C.36)(
G21(t)tt

TGT
01(t)

)
[i+ j(j − 1)/2]

= 2ρ(1)(∥t∥2)∥t∥2
(
4ρ(2)(∥t∥2)(δi,j∥t∥2 + 2titj) + 8ρ(3)(∥t∥2)titj∥t∥2

) (C.45)

for any t ∈ B(0N , δρ) \ {0N} and integers 1 ≤ i ≤ j ≤ N . Then by taking t := u0r into
(C.42)-(C.45), one can easily check

(i) for any integers 1 ≤ i < j ≤ N

G20(0)[i+ j(j − 1)/2] = 0,

G20(t)[i+ j(j − 1)/2] = 0,(
G21(t)G

T
01(t)

)
[i+ j(j − 1)/2] = 0,

and (
G21(t)tt

TGT
01(t)

)
[i+ j(j − 1)/2] = 0;

(ii) for any integer 1 ≤ k ≤ N − 1

G20(0)[k + k(k − 1)/2] = 2ρ(1)(0),

G20(t)[k + k(k − 1)/2] = 2ρ(1)(r2),(
G21(t)G

T
01(t)

)
[k + k(k − 1)/2] = 8ρ(1)(r2)ρ(2)(r2)r2,

and (
G21(t)tt

TGT
01(t)

)
[k + k(k − 1)/2] = 8ρ(1)(r2)ρ(2)(r2)r4;

(iii) when k = N
G20(0)[k + k(k − 1)/2] = 2ρ(1)(0),

G20(t)[k + k(k − 1)/2] = 2ρ(1)(r2) + 4r2ρ(2)(r2),(
G21(t)G

T
01(t)

)
[k + k(k − 1)/2] = 24ρ(1)(r2)ρ(2)(r2)r2 + 16ρ(1)(r2)ρ(3)(r2)r4,

and(
G21(t)tt

TGT
01(t)

)
[k + k(k − 1)/2] = 24ρ(1)(r2)ρ(2)(r2)r4 + 16ρ(1)(r2)ρ(3)(r2)r6.
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Then by (C.29) and (C.30), we have for k = 1, 2, . . . , N − 1

Σ(u0r)[k + k(k − 1)/2, L− 1]

= 2ρ(1)(0) +
1

2ρ(1)(0)(1− k2
1(u0r))

8ρ(1)(r2)ρ(2)(r2)r2

+
k4(u0r)

2ρ(1)(0)(1− k2
1(u0r))

8ρ(1)(r2)ρ(2)(r2)r4

= 2ρ(1)(0) + 8ρ(1)(r2)r2ρ(2)(r2)
1 + k4(u0r)r

2

2ρ(1)(0)(1− k2
1(u0r))

= 2ρ(1)(0)

(
1 + k1(u0r)k2(u0r)r

21 + k4(u0r)r
2

1− k2
1(u0r)

)
= 2ρ(1)(0)

(
1 +

k1(u0r)k2(u0r)r
2

1− k2
∗(u0r)

)
= 2ρ(1)(0)

(
1− k1(u0r)k∗(u0r)− k2

2(u0r)r
4

1− k2
∗(u0r)

)

(C.46)

and
Σ(u0r)[k + k(k − 1)/2, L]

= 2ρ(1)(r2) +
k1(u0r)

2ρ(1)(0)(1− k2
1(u0r))

8ρ(1)(r2)ρ(2)(r2)r2

+
k5(u0r)

2ρ(1)(0)(1− k2
1(u0r))

8ρ(1)(r2)ρ(2)(r2)r4

= 2ρ(1)(r2) + 8ρ(1)(r2)r2ρ(2)(r2)
k1(u0r) + k5(u0r)r

2

2ρ(1)(0)(1− k2
1(u0r))

= 2ρ(1)(0)k1(u0r)

(
1 + k2(u0r)r

2k1(u0r) + k5(u0r)r
2

1− k2
1(u0r)

)
= 2ρ(1)(0)k1(u0r)

(
1 +

k2(u0r)k∗(u0r)r
2

1− k2
∗(u0r)

)
= 2ρ(1)(0)k1(u0r)

(
1− k1(u0r)k∗(u0r)

1− k2
∗(u0r)

)
.

(C.47)
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