
Single-pass stratified
importance resampling

by

Ege Ciklabakkal

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2022

© Ege Ciklabakkal 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Simulating the behavior of light to produce realistic images involves evaluation of dif-
ficult integrals. Monte Carlo integration is a general method to estimate such integrals
and is therefore widely used in physically based rendering. Being a stochastic method, it
requires generation of random samples and evaluation of the integrand at those samples.
This process can be computationally expensive, especially when samples need to be gener-
ated from arbitrary distributions and the scene is complex. When the number of samples
used in the estimation is inadequate, the resulting renderings are not converged and con-
tain (white) noise. Much effort has gone into investigating ways to efficiently reduce this
noise. In this thesis, we focus on a particular method to reduce the noise called resampling,
point out its deficiencies, and propose novel procedures to efficiently address them.

Resampling is the process of selecting from a set of candidate samples to achieve a
distribution (approximately) proportional to a desired target. Recent work has revisited
its application to Monte Carlo integration, yielding powerful and practical importance
resampling methods. One drawback of these methods is that they cannot generate stratified
(more evenly distributed) samples efficiently. There are two main reasons for the lack of
stratification: first, the discrete sampling method used for resampling fails to preserve
the stratification; second, resampling doesn’t consider the placement of high-dimensional
candidates in their domain. For the first issue, although the common inverse cumulative
distribution (CDF) sampling is successful in maintaining the stratification, the method
requires a precomputation step where a data structure is built before the sampling step.
We instead propose a novel algorithm which yields the same result as conventional inverse
CDF sampling, in a single pass over the candidates. The algorithm traverses the candidate
list adaptively from both ends, without needing to store them. For the second issue, we
introduce an ordering among the high-dimensional candidates by generating them along a
space-filling curve. Aside from stratification, we also show how blue-noise error distribution
can be achieved for better perceptual quality. The resulting method is showcased on various
resampling-based rendering problems.

iii

Acknowledgements

Firstly, I would like to thank my supervisor, Toshiya Hachisuka for giving me the
opportunity to work in his group and providing much valuable advice from day one. I
would also like to thank Adrien Gruson, Iliyan Georgiev and Derek Nowrouzezahrai for
their discussions and help during our research project which forms the basis of this thesis.
They lead me through our work and I am lucky to learn from such distinguished researchers.

I thank my parents for their constant support throughout my studies.

Finally, the scenes in Figs. 1.1, 5.2 and 5.3 are from Benedikt Bitterli’s rendering
resources [3]. The scene in Fig. 5.4 comes from PBRT’s resources. The models used in
Fig. 5.5 were obtained from Artec 3D.

iv

https://www.pbrt.org/scenes-v3
https://www.artec3d.com/

Table of Contents

List of Figures viii

1 Introduction 1

1.1 Contributions . 4

1.2 Organization . 5

2 Monte Carlo Integration 6

2.1 Basic Monte Carlo Integration . 6

2.1.1 Random Variable . 7

2.1.2 Expected Value . 8

2.1.3 Variance . 9

2.1.4 The Monte Carlo Estimator . 10

2.1.5 Monte Carlo Rendering . 11

2.2 Variance Reduction . 12

2.2.1 Importance Sampling . 13

2.2.2 Multiple Importance Sampling . 14

2.2.3 Stratified Sampling . 15

2.3 Quasi-Monte Carlo . 18

2.3.1 Discrepancy . 19

2.3.2 Radical inversion and Halton Sequence 20

v

3 Sampling 22

3.1 Inverse CDF Sampling . 22

3.2 Rejection Sampling . 24

3.3 Weighted Reservoir Sampling . 25

3.4 Resampled Importance Sampling . 28

3.5 Blue-Noise Dithered Sampling . 30

3.6 Stratified Sampling Using the Hilbert Curve 32

4 Single-Pass Stratified Importance Resampling 34

4.1 Lack of Stratification in Resampling . 34

4.1.1 Resampling in Monte Carlo Integration 34

4.1.2 Stratification of Sampled Indices . 35

4.1.3 Impact of Candidate Order . 36

4.1.4 Problem Statement and Overview 37

4.2 Single-pass Bidirectional CDF Sampling 38

4.2.1 Taking Multiple Samples . 39

4.3 Ordering Candidates on a Space-Filling Curve 42

4.4 Stratified Resampling Algorithm . 42

4.4.1 Blue-noise Error Distribution . 43

5 Results 44

5.1 Single Scattering in Media . 44

5.2 Direct Illumination . 45

5.3 Resampled Multiple Importance Sampling 46

5.4 Higher-dimensional Integration . 46

5.5 Convergence . 47

6 Conclusions 53

vi

References 55

Appendix 59

vii

List of Figures

1.1 Stochastic nature of Monte Carlo estimation results in noise in output images
when the number of rays / samples per pixel is insufficient. Rendering this
kitchen scene by casting 16384 primary rays per pixel (rpp) produces a far
more converged output than using 64 rpp. 2

2.1 Local geometry for scattering at x. 12

2.2 16 random samples generated by uniform random sampling and stratified
sampling with 16 uniform strata. Note the gaps and clumps present in
purely random case. 16

2.3 First 256 points of the Halton sequence and the Hammersley point set in 2D. 21

3.1 Comparison of a 1D random mask with decorrelated pixel values and a 1D
blue-noise dither mask with negatively correlated pixels. The random mask
displays white noise properties: It has a flat frequency spectrum meaning
that the energy is distributed uniformly over all frequency bands. In con-
trast, blue-noise has low energy in low frequencies. 31

3.2 Generation of the Hilbert curve. The curve has a resolution of 2m in each
dimension. 33

4.1 Histogram comparison between reservoir sampling with rescaled 1D Sobol
(i.e., van der Corput) samples (a) and M -dimensional Sobol samples (b),
and inverse CDF sampling with 1D independent samples (c) and 1D Sobol
samples (d). The candidates are regularly-spaced and sorted (0.5, . . . , 49.5).
Sampling is done proportionally to Gaussian weights (µ = 25, σ = 10).
Neither reservoir sampling variant retains the input’s stratification; inverse
CDF sampling does, producing a substantially lower L2 histogram error. . 36

viii

4.2 The ordering of resampling candidates can substantially affect the stratifica-
tion of the output samples. (a) We generate M = 8, 192 Halton samples on
the unit square and weight them by a 2D Gaussian target function. We then
select N = 256 of them via stratified inverse CDF sampling. (b) Process-
ing the candidates in their Halton-sequence generation order produces no
stratification in the output. (c) Ordering the candidates using our proposed
method (Section 4.3) yields stratified unit-square samples. 37

4.3 Overview of our algorithm. Sorted 1D stratified samples are mapped onto
a space-filling curve to produce stratified candidates yk on the unit hyper-
cube. We resample these candidates along the curve proportionally to their
associated weights using our on-the-fly bidirectional CDF sampling. Strati-
fying the resampling input u yields well-distributed output samples x in the
integration domain. 38

4.4 Variance analysis of 1D importance resampling using our bidirectional CDF
method (Alg. 6). (a) Candidates are generated with density p and resampled
according to q̂ which better matches the integrand f . (b) Plots of integral-
estimation variance as a function of sample count N , with M = 4N can-
didates. When the candidates and input samples are independent, subset-
based resampling (solid orange) yields lower variance than always resam-
pling from the entire candidate set (solid blue), in line with the theory in
Section 4.2.1. Stratifying the candidates and the input samples reduces
variance further (dashed curves), though slightly less with subset-based re-
sampling. 41

5.1 Importance resampled single scattering in a medium with N = 1 (top row)
and N = 8 (bottom row) samples. Our method yields lower pixel and per-
ceptual error than reservoir-based resampling, thanks to its effective sample
stratification and blue-noise dithering. prelMSE values are scaled by 100×. 45

5.2 Comparison of our bidirectional CDF resampling against reservoir baselines
on area-light illumination with N = 1 sample from M = 32 Halton-sequence
candidates. Dithered reservoir resampling fails to produce a pleasing error
distribution, whether using the candidate generation order (a) or along a
Hilbert curve (b). In contrast, our dithered bidirectional CDF resampling
with Hilbert-curve ordering (c) produces a high-quality blue-noise distribu-
tion. 48

ix

5.3 Our candidate generation along a Hilbert curve, combined with our bidi-
rectional CDF resampling, yields blue-noise error distribution (a). Using
unsorted Halton-sequence candidates (b), or reservoir sampling (c), fails to
attain such distribution. 49

5.4 Resampling an MIS mixture of direct-illumination candidates. 16 unit-
square candidates produceM = 32 hemispherical candidates via environment-
map and BSDF warping. For both N = 1 and N = 4 samples, our technique
produces a blue-noise error distribution and reduces the overall error over
reservoir-based resampling. prelMSE values are scaled by 100×. 50

5.5 Single scattering from multiple area lights in a medium. We compare our
bidirectional CDF resampling of Hilbert-curve candidates to reservoir re-
sampling of 3D Halton-sequence candidates (M = 32, N = 8). We include
false-color error zoom-ins. 51

5.6 Error plots as functions of the sample count N for different scenes, with
M = 8N candidates. Our technique always outperforms reservoir sampling
variants, achieving a better convergence rate. All of the methods shown are
single pass. 52

x

Chapter 1

Introduction

Physically based rendering refers to the process of synthesizing realistic images by follow-
ing the principles of physics that govern how light particles interact with the environment.
Simulating such realism often comes at a great computational cost. The theory requires us
to solve complex, high-dimensional integrals of functions with various sources of disconti-
nuities.

Monte Carlo integration is a natural choice to handle difficult integration problems
and therefore lends itself well to rendering. In Monte Carlo method, we generate random
points in the integration domain, evaluate the integrand at those locations and average the
values to obtain an estimate for our integral; note that the integrand can be discontinuous
and the random points can be high dimensional. Particularly, in rendering, light transport
can be simulated by generating random rays from a virtual camera, recursively tracing
them, and computing light contribution at each scattering event that occurs when the ray
intersects the scene geometry (objects or medium particles). At each scattering event, the
ray continues its path in a newly sampled random direction until it reaches a light source.
This method of solving the light transport problem is called path tracing and it requires
the evaluation of a high dimensional (light is carried over the whole path) and non-smooth
(discontinuities in the scene such as light being occluded by objects) integrand. Therefore,
Monte Carlo integration is a simple yet powerful tool to utilize in physically based rendering
algorithms.

However, Monte Carlo method is infamous for its slow convergence rate compared to
other numerical integration methods. In rendering, we see the effects of slow convergence
as noise in the output images. Figure 1.1 shows an example of how the noise appears and
how it can be reduced by increasing the number of samples used in Monte Carlo estimation.

1

However, evaluating more samples increases the amount of computation substantially. De-
pending on the scene complexity, it may take hours or even days to render a noise-free
image using a state-of-the-art path tracing method. We do not always have such high
computation budget and thus, there exist a multitude of work focusing on reducing the
amount of noise at relatively the same degree of computation. Some of this work concen-
trates on finding efficient evaluation of light transport to handle particularly challenging
lighting conditions such as the scene being lit by mostly indirect lighting or light being
focused by a glass object to form caustics. Other work investigates how sampling distribu-
tions and placement of samples in the integration domain can effect both the amount and
the distribution of noise.

16K rpp16K rpp

64 rpp64 rpp

Figure 1.1: Stochastic nature of Monte Carlo estimation results in noise in output images
when the number of rays / samples per pixel is insufficient. Rendering this kitchen scene
by casting 16384 primary rays per pixel (rpp) produces a far more converged output than
using 64 rpp.

In this thesis, we are mostly interested in superior uniformity of sample locations and
(loosely) refer to it as stratification. Section 2.2.3 presents a more rigorous definition of
stratification. Stratified samples lead to faster convergence of the output rendering. They
are especially useful for low-dimensional problems as it is easier to generate a moderate

2

amount of samples that are well distributed over the domain. The thesis builds on the
idea of resampling and shows how to enhance it by efficiently introducing stratification.
Resampling is a powerful method for approximately sampling from distributions that are
difficult to handle directly; it may be too expensive to generate samples exactly following
certain distributions. The basic approach in resampling is to stochastically select from
a list of candidate samples (coming from another, known distribution that is cheap to
sample), where the selection probability of each candidate is proportional to an associated
discrete weight. Judicious setting of these weights makes the resulting samples drawn
approximately proportionally to a chosen target distribution. Talbot et al. [34] showed
how resampling can generate scattered ray directions with distribution that follows the
light contribution (except for visibility) to obtain possibly high contribution light rays
efficiently. More recently, Bitterli et al. [4] applied such resampling to spatio-temporal
reuse of path samples.

The key operation in resampling is to select one or more candidates with probability
proportional to their weights, which is performed by a discrete sampling algorithm. Then,
the selected samples can be used in Monte Carlo integration with a small modification
to the estimator. Two common discrete sampling algorithms for resampling are inverse
cumulative distribution function (CDF) sampling and reservoir sampling [5, 8]. The former
precomputes a CDF from the candidate weights and inverts it to select a sample. The latter
is a precomputation-free alternative that can select a sample according to the desired
distribution in a single pass over all candidates.

To date, the key difference between the aforementioned two algorithms is understood
as the need or absence of a precomputed data structure. We show that another signifi-
cant difference lies in their stratification abilities. Put briefly, inverse CDF sampling can
potentially transfer the stratification of the input canonical samples (e.g., coming from a
low-discrepancy sequence) to the output samples, whereas reservoir sampling cannot. We
also show that neither approach retains stratification when the sampling domain has more
than one dimension. This latter limitation is due to the fact that resampling is always
performed on the 1D space of candidate indices, thus the ordering of candidates impacts
the output samples. As such, no efficient approaches exist to produce stratified samples
with resampling.

We propose a solution to this problem. Our bidirectional CDF sampling algorithm
combines the strengths of inverse CDF sampling and reservoir sampling, without their
limitations. Specifically, it yields the same output as inverse CDF sampling (i.e., can
retain input stratification), but in a single pass over the candidates, like reservoir sampling.
This is achieved via an adaptive traversal of the candidate list from both ends. Avoiding
precomputation is desirable when substantial memory consumption is restrictive to the

3

performance. For instance, a rendering application running on a graphics processing unit
(GPU) takes advantage of its highly parallel architecture to parallelize the computation
over all pixels. With each pixel requiring storage of (possibly) multiple CDFs, the memory
consumption quickly becomes an issue.

Bidirectional CDF sampling is a general discrete sampling method that can directly
replace inverse CDF sampling or reservoir sampling in certain applications, even outside the
context of rendering. Within a single-pass, constant memory problem setting, bidirectional
CDF sampling (largely) preserves stratification of the input to the output. We augment
this algorithm with candidate ordering along a space-filling curve to form a bijective map
that preserves the locality of high-dimensional samples in their 1D index space. A similar
idea has been used successfully in the context of importance sampling [33], and we show
how it can be used for resampling to effectively connect the stratification in the index space
to the high-dimensional candidate space.

Lastly, unless the Monte Carlo integration is run until convergence or the scenes we
render are too simplistic, the images will contain some amount of noise. Interestingly, it is
not just the numerical error of the image that determines how we perceive the visual quality
of the image but also the distribution of the error over the image pixels. The ordinary white
noise is the result of decorrelating random samples among pixels. Decorrelation and thus
white noise is generally preferred over correlated samples as correlation may lead to regular
patterns that can be more distracting than white noise. However, Georgiev and Fajardo [9]
show that not all correlation is harmful. In particular, negative correlation, which indicates
that neighboring pixels should receive very different samples, can improve the perceptual
quality of the output image. The resulting error distribution is blue noise which stands
for noise with minimal energy in low frequencies. This thesis explains how to introduce
blue-noise to resampling for improved visual fidelity.

1.1 Contributions

Combining bidirectional CDF sampling with candidate ordering enables the first single-pass
resampling method that achieves output stratification. An additional benefit of our method
is that it can be easily combined with techniques that impose a blue-noise error distribution
in image space [9], further improving the visual result. We demonstrate the benefits of our
method across various light-transport simulation settings. Our novel contributions include:

• A resampling algorithm that yields identical results to classical inverse CDF sampling
but in a single pass over the candidates;

4

• Ordering of candidates along a space-filling curve; and

• A practical stratified resampling-based rendering algorithm that exhibits blue-noise
distribution of image error.

1.2 Organization

Chapter 2 introduces relevant background information on Monte Carlo integration. We
discuss the fundamentals behind Monte Carlo estimation, variance reduction and quasi-
Monte Carlo method which replaces the independent pseudo-random samples in the stan-
dard Monte Carlo method by fully deterministic, low-discrepancy sequences.

Chapter 3 discusses relevant methods and ideas in the subject of sampling. Inverse CDF
sampling and weighted reservoir sampling are two methods commonly used for resampling,
both of which appear frequently in the discussion of our method. Furthermore, this section
talks about blue-noise dithered sampling for improved perceptual quality as well as an
application of the Hilbert space-filling curve to stratified sampling.

Chapter 4 presents the core ideas in this work. We first show the reasons for why current
methods fail to achieve stratification in resampling. Then, we introduce our bidirectional
CDF sampling algorithm that preserves the stratification of the input canonical samples to
the output, in a single-pass over the candidates. We also explain our candidate reordering
scheme on the Hilbert Curve for stratified resampling. Lastly, we combine these ideas to
form our single-pass resampling algorithm and show how to introduce negative correlation
to obtain blue-noise error distribution.

Chapter 5 demonstrates application of our method on various rendering problems such
as single scattering in media, direct illumination, combination with multiple importance
sampling and higher-dimensional integration. We also provide error plots to illustrate the
benefit of stratification compared to reservoir sampling alternatives.

Parts of the material presented in this thesis are based on:

Ege Ciklabakkal, Adrien Gruson, Iliyan Georgiev, Derek Nowrouzezahrai and Toshiya
Hachisuka. “Single-pass stratified importance resampling”, Computer Graphics Forum,
2022.

5

Chapter 2

Monte Carlo Integration

Monte Carlo integration is a general method for stochastically estimating complex inte-
grals. Estimating integrals involving high dimensional, discontinuous functions is of ut-
most importance to the study of physically-based rendering as the light transport problem
can be formulated as an integration problem by the rendering equation [16]. Thanks to
its generality, Monte Carlo integration is the method of choice for many light transport
algorithms. Robustness to scene geometry, lighting conditions, and high-dimensional inte-
grands makes Monte Carlo integration an attractive method to estimate the radiance of
light paths inside the scene. Using Monte Carlo integration in solving the rendering equa-
tion is computationally expensive due to its low convergence rate. The error of the Monte
Carlo method manifests itself as random noise in output images. A large body of work
in Monte Carlo rendering is concerned with reducing this noise with minimal added com-
putational complexity such as variance reduction techniques [36, 27, 20] and Quasi-Monte
Carlo integration [17, 19].

This chapter reviews Monte Carlo integration, followed by a brief introduction to vari-
ance reduction techniques that are relevant to the material in the following chapters. Lastly,
certain concepts regarding the Quasi-Monte Carlo method, which replaces the pseudo-
random samples in Monte Carlo integration by fully deterministic, low discrepancy [24]
sequences to obtain a faster convergence rate are discussed.

2.1 Basic Monte Carlo Integration

Monte Carlo integration is a numerical integration method for estimating integrals. It is a
probabilistic method that evaluates the integrand at random points to estimate arbitrary

6

integrals. Before discussing the Monte Carlo estimator, we review some basic probability
definitions.

2.1.1 Random Variable

In statistics, a random variable is a mapping of outcomes of a random process to numerical
values. A random variable admits a probability distribution that relates probabilities to
possible outcomes. There are two types of random variables, discrete and continuous.

A discrete random variable X takes on a finite (or countably infinite) number of values.
Thus, we can enumerate all possible outcomes xi of X and assign a particular probability
pi to each of them. This gives us the probability distribution p(x) of X which is called the
probability mass function (PMF). Often, it is required to find the probability that X is less
than some value x, which is given by the cumulative distribution function (CDF):

F (x) = P (X ≤ x) =
∑
xi<x

pi. (2.1)

A continuous random variable X defined over a range of a continuous domain takes on
infinitely many number of possible values. We consider X defined on the real line R for
brevity. The probability that X takes on a value in the interval [a, b], a < b ∈ R is given
by

P (a ≤ X ≤ b) =

∫ b

a

p(x) dx (2.2)

where p(x) is called the probability density function (PDF). The corresponding CDF is
then given by

F (x) = P (X ≤ x) =

∫ x

−∞
p(t) dt. (2.3)

Note that

p(x) =
dF (x)

dx
. (2.4)

In general, for a PDF p(x) defined over the domain Ω to be valid,

p(x) ≥ 0, ∀x ∈ Ω (2.5)∫
Ω

p(x) dx = 1 (2.6)

7

must hold. Similarly, for the discrete case, we would have a sum instead of the integral for
the second condition. If the integral (or the sum) over the domain is equal to 1, then we
say that the PDF (or PMF) is normalized.

In the following chapters, we frequently deal with probability distributions which do
not integrate to 1 but instead some C ∈ R, i.e. the PDF is unnormalized. Then, we can
normalize the distribution by dividing it by C. Following the notation by Talbot [35], we
denote the unnormalized PDF by p̂, where p̂ = Cp.

2.1.2 Expected Value

The expected value of a random variable X is the weighted average of the values X may
assume where the weights are defined by its PDF (or PMF). If X ∈ Ω is a continuous
random variable with PDF p(x), the expected value of X is given by

E [X] =

∫
Ω

x p(x) dx. (2.7)

Expectation may also be conditional on a set of random variables with known values. For
instance, given a function f(X, Y) of random variables (X, Y) ∈ ΩX × ΩY , and the value
of Y = y, the conditional expectation is:

E [f | Y = y] =

∫
ΩX

f(x, y) p(x | y) dx (2.8)

where p(x | y) is the conditional density function representing the probability distribution
of X (x ∈ X), given Y = y. Some important properties of the expected value are as
follows:

(1) For any constant c ∈ R, E [c] = c.

(2) Expected value is a linear operator: E [
∑

i ciXi] =
∑

i ciE [Xi], for constants ci and
random variables Xi.

(3) Law of total expectation states that the expectation of a random variable X is equal
to the iterated expectation of X conditioned on a random variable Y on the same
sample space as X, i.e., E [X] = E [E [X | Y]].

8

2.1.3 Variance

The variance of a random variableX is the expected value of the squared deviation between
a random variable and its expectation. Variance is defined by

V [X] = E
[
(X − E [X])2

]
(2.9)

Variance can also be conditional:

V [X | Y] = E
[
(X − E [X | Y])2 | Y

]
. (2.10)

Some important properties of the variance are as follows:

(1) For any constant c ∈ R, V [c] = 0.

(2) V [cX] = c2V [X].

(3) An alternative expression for variance is V [X] = E [X2]− E [X]2.

(4) If Xi are independent random variables, V [
∑

i Xi] =
∑

i V [Xi].

(5) Square root of the variance σ =
√
V [X] is called standard deviation.

(6) Law of total variance states that V [X] = E [V [X | Y]] + V [E [X | Y]] where X and
Y are random variables on the same probability space.

Law of total variance is derived by using law of total expectation as follows:

V [X] = E
[
X2
]
− E [X]2

= E
[
E
[
X2 | Y

]]
− (E [E [X | Y]])2

= E
[
E
[
X2 | Y

]]
− (E [E [X | Y]])2 + E

[
(E [X | Y])2

]
− E

[
(E [X | Y])2

]
=
(
E
[
E
[
X2 | Y

]]
− E

[
(E [X | Y])2

])
+
(
E
[
(E [X | Y])2

]
− (E [E [X | Y]])2

)
=
(
E
[
E
[
X2 | Y

]
− E [X | Y]2

])
+ (V [E [X | Y]])

= E [V [X | Y]] + V [E [X | Y]]

(2.11)

9

2.1.4 The Monte Carlo Estimator

The objective of Monte Carlo integration is to estimate the integral

I =

∫
Ω

f(x) dx. (2.12)

The idea is to have a random variable Î such that its expected value is equal to the integral
to be estimated. Letting Î = f(X)/p(X), where X has distribution p(X), we have

E
[
Î
]
= E

[
f(X)

p(X)

]
=

∫
Ω

f(x)

p(x)
p(x) dx =

∫
Ω

f(x) dx = I (2.13)

with the condition that p(x) is nonzero everywhere f(x) is nonzero. Î is called the estimator

of the integral I. In general, letting Î = 1
N

∑N
i=1

f(Xi)
p(Xi)

, we have

E
[
Î
]
= E

[
1

N

N∑
i=1

f(Xi)

p(Xi)

]
=

1

N

N∑
i=1

E

[
f(Xi)

p(Xi)

]
=

1

N

N∑
i=1

I = I. (2.14)

Therefore, the standard Monte Carlo estimator is defined by

ÎMC =
1

N

N∑
i=1

f(Xi)

p(Xi)
≈
∫
Ω

f(x) dx (2.15)

where Xi are from the PDF p.

To assess the accuracy of Monte Carlo method, we examine the variance of the estimator
ÎMC :

V
[
ÎMC

]
= V

[
1

N

N∑
i=1

f(Xi)

p(Xi)

]

=
1

N2

N∑
i=1

V

[
f(Xi)

p(Xi)

]
=

1

N
V

[
f(X)

p(X)

]
(2.16)

where Xi are independent and X represents an evaluation of some Xi.

10

Eq. (2.16) suggests that the variance decreases as 1/N . The standard error of the
estimator is defined as the standard deviation of the estimator:

σÎMC
=

√
V
[
ÎMC

]
=

√
1

N
V

[
f(X)

p(X)

]
. (2.17)

Hence the error converges at a rate of O(1/
√
N). The number of samples N need to be

quadrupled to halve the error. In contrast, numerical quadrature methods such as the
midpoint rule, the trapezoidal rule, and Simpson’s rule have error bounds of O(N−2),
O(N−2), and O(N−4) respectively. However, the number of function evaluations for these
quadrature methods scale exponentially with the number of dimensions d, resulting in rates
of O(N−2/d), O(N−2/d), and O(N−4/d). Moreover, if the integrand is discontinuous, the
error bounds can become much worse. For instance, Simpson’s rule requires a continuous
fourth order derivative for the integrand to obtain the O(N−4) bound. On the other hand,
the error for Monte Carlo method is independent of the number of dimensions and the
smoothness of the integrand.

2.1.5 Monte Carlo Rendering

In the context of physically-based rendering, color of each pixel can be computed by solving
the rendering equation [16] to compute the radiance (lighting) for all points (in the scene)
visible through the pixels. The rendering equation

L(x, ωo) = Le(x, ωo) +

∫
Ω

fs(x, ωi → ωo) L(t(x, ωi),−ωi) cos θi dωi (2.18)

suggests that the (outgoing) radiance at a point x in the direction ωo is equal to the sum
of emitted (Le) and reflected radiance (the integral over all incoming directions). The
reflected radiance is computed by evaluating an integral that is a product of multiple
terms: fs(x, ωi → ωo) is the bidirectional scattering distribution function (BSDF) and de-
scribes how much light from incoming direction ωi is scattered in the outgoing direction ωi,
L(t(x, ωi),−ωi) is the radiance term, and cos θi where θi is the angle between the incoming
direction and the surface normal n at point x. The integration is over all directions on the
hemisphere Ω centered at x, facing the surface normal. The radiance term contains the ray
casting function t(x, ωi), which traces a ray with origin at x towards direction ωi. Since
radiance is constant along a ray (the scene is assumed to be inside a vacuum and there
exist no particles to interact with the ray), we conclude that L(t(x, ωi),−ωi) = Li(x, ωi),

11

Figure 2.1: Local geometry for scattering at x.

i.e., the radiance term is equal to the incoming radiance in the direction ωi. Figure 2.1
provides a diagram of the local geometry at x.

Note the recursive nature of the integral equation; the radiance term L appears on
both sides. To evaluate the outgoing radiance at x, we need the radiance at t(x, ωi) in the
direction −ωi. We need to keep tracing rays and evaluate the radiance at those hitpoints.
Hence, the integral is high dimensional. Additionally, discontinuities exist in the integral
such as objects blocking the light in certain directions.

As established in Section 2.1.4, Monte Carlo method is apt to solve such integrals. One
application of the Monte Carlo integration to solve the rendering equation is path tracing,
which generates primary rays from the camera, traces them into the scene, and at each
intersection with objects, samples new rays with random directions to be further cast into
the scene. In the end, we are left with paths that connect light sources to the camera.
This process is repeated many times and the results are averaged at each pixel.

2.2 Variance Reduction

Designing efficient Monte Carlo estimators is linked closely to the variance of the estimator

V
[
ÎMC

]
.

As indicated by Eq. (2.17), a simple way to reduce the overall error of a Monte Carlo
estimation is to increase the number of samples N . However, the convergence is slow.

On the other hand, we can also reduce the variance V
[
f(X)
p(X)

]
, while keeping the number

12

of samples the same and thus reducing the overall error without a significant increase in
computational effort.

A substantial amount of work in rendering research have focused on reducing the overall
variance of Monte Carlo estimators, known as variance reduction techniques. We review
some of them that are relevant for the work presented in this thesis. For a more extensive
discussion, refer to the thesis by Veach [36].

2.2.1 Importance Sampling

In Monte Carlo integration, we have the freedom to choose an arbitrary PDF p for our
estimator. Moreover, the ratio f(X)

p(X) has direct influence on the variance of the estimator.

The main idea of importance sampling is to choose the PDF such that the variance V
[
f(X)
p(X)

]
is minimized, which leads to reduced overall variance of the estimator. If p is chosen to be
proportional to f , i.e., p(x) = cf(x) for some constant c, then we have

V
[
ÎMC

]
=

1

N
V

[
f(X)

p(X)

]
=

1

N
V

[
1

c

]
= 0. (2.19)

Since p(x) must be a normalized PDF, the constant c can be computed:

c =
1∫

Ω f(x) dx
. (2.20)

Note that finding such a p(x) and in turn c is impractical: The purpose of Monte Carlo
method is to solve the integral

∫
Ω f(x) dx in the first place. Yet, if p(x) is similar to f(x),

the variance will be reduced. Intuitively, importance sampling seeks to place more samples
in regions where the value of the integrand is high.

Care must be taken in choosing p(x) as poor choices will result in increased variance.
If p(x) is small where f(x) is large, and similarly p(x) is large where f(x) is small, the
estimates will vary greatly. Any prior knowledge we have about the integrand can help us
design PDFs that mimic f as much as possible.

It is common in rendering that we deal with complex integrands that are products of
multiple functions, e.g., f(x) = g(x)h(x). For instance, the rendering equation (Eq. (2.18))
contains the product of BSDF, radiance, and a cosine factor in the integral. It may be
challenging to construct PDFs that closely follow the product and are also cheap to sample
directly. However, it is plausible that we are able to devise a PDF that follows one of the
terms in f(x) such as p ∝ g, or approximates some of the terms so that sampling is
inexpensive.

13

2.2.2 Multiple Importance Sampling

Following the discussion of Section 2.2.1, a question that arises naturally is: Which PDF
should be sampled when there are more than one suitable alternative? It turns out, we
can construct a low-variance estimator by utilizing multiple sampling techniques. Multiple
importance sampling (MIS) [37, 36] shows how to combine estimates from multiple sampling
strategies with provable reduction of variance. The main idea of MIS is to use a set of
weighting functions such that the combination of sample estimates results in lower variance.

Given a set of sampling distributions {p1, . . . , pn}, all of which are potentially good
strategies for importance sampling, and the number of samples ni to draw from the distri-
bution pi we define the MIS estimator as follows:

ÎMIS =
n∑

i=1

1

ni

ni∑
j=1

wi(Xi,j)
f(Xi,j)

pi(Xi,j)
(2.21)

where wi are the corresponding weighting functions and Xi,j is the j’th sample from the
i’th distribution. The estimate is unbiased if the conditions

(1)
∑n

i=1wi(x) = 1 whenever f(x) ̸= 0

(2) wi(x) = 0 whenever pi(x) = 0

hold. Therefore, there is some freedom in devising the weighting functions. However,
not all sets of weighting functions will result in significant variance reduction. Veach and
Guibas [37] propose certain weighting functions that are provably close to optimal, one of
which is called the balance heuristic that defines the weights as

wi(x) =
nipi(x)∑n

k=1 nkpk(x)
. (2.22)

It should be noted that in addition to generating samples from all pi(x) and evaluating
them at f(x), balance heuristic requires evaluating pi(x) at any point x ∈ Ω as well. In
other words, samples generated from a particular density should be evaluated at all other
densities.

The estimator discussed so far is called the multi-sample estimator which takes multiple
samples from multiple strategies. The alternative is to randomly select one of the sam-
pling strategies and generate a single sample from it to be evaluated with the one-sample
estimator :

wI(XI)
f(XI)

cIpI(XI)
(2.23)

14

where I ∈ {1, . . . , n} is a random variable sampled according to the probabilities {c1, . . . , cn},∑n
i=1 ci = 1, and XI is sampled from the PDF pI . One-sample estimator is also unbiased

subject to the conditions stated above regarding the weighting functions. Furthermore,
the balance heuristic is provably optimal for one-sample estimator.

Multiple importance sampling is a powerful variance reduction method as the MIS
estimator is robust, meaning that it will achieve low variance under various configurations
of integrands. For rendering problems, even if the integrand has varying behaviour over the
scene and over the pixels in the image, we generally have an idea about its structure and
we are able to devise multiple sampling techniques, each of which mimic the integrand to
some extent. The weighting heuristics are the key to properly combine multiple sampling
techniques so that the advantages of each technique are preserved.

2.2.3 Stratified Sampling

Importance sampling and multiple importance sampling concern themselves with the prob-
ability distributions that the samples are generated from. However, it is also noteworthy
to consider how a finite amount of samples are placed over the domain of integration. In
particular, taking a finite number of samples from a random sampler may result in clumps,
i.e., multiple samples that are very close to each other. These clumps are undesirable
because the nearby samples do not add much new information about the behaviour of the
integrand. Ideally, we would like to have the samples more evenly spaced.

Stratified sampling subdivides the integration domain Ω into n non-overlapping regions
Ω1, . . . ,Ωn called strata and generates ni many samples from each strata according to PDF
pi. Thanks to this stratification, the samples are distributed more uniformly.

The stratified Monte Carlo estimator is:

Îst =
n∑

i=1

vi
1

ni

ni∑
j=1

f(Xi,j)

pi(Xi,j)
(2.24)

where vi is the volume of the stratum Ωi, and Xi,j denotes the j’th random sample from
stratum i.

Figure 2.2 shows 2D samples on a unit square generated by uniform random sampling
and stratified sampling. We can observe the clumping behavior of samples in the random
case. Stratified samples on the other hand are distributed more evenly.

15

Uniform Random Stratified

Figure 2.2: 16 random samples generated by uniform random sampling and stratified
sampling with 16 uniform strata. Note the gaps and clumps present in purely random
case.

The variance of the stratified Monte Carlo estimator is:

V
[
Îst

]
= V

 n∑
i=1

vi
1

ni

ni∑
j=1

f(Xi,j)

pi(Xi,j)

=

n∑
i=1

v2i
n2
i

V

 ni∑
j=1

f(Xi,j)

pi(Xi,j)

=

n∑
i=1

v2i
n2
i

· ni V

[
f(Xi)

pi(Xi)

]

=
n∑

i=1

v2i
ni

V

[
f(Xi)

pi(Xi)

]
(2.25)

where Xi is a sample from pi. To compare the variance of the stratified estimator to
the unstratified one, first suppose that ni’s are chosen according to volumes vi; that is
ni = viN , with N many samples in total. Then, the variance is:

1

N

n∑
i=1

vi V

[
f(Xi)

pi(Xi)

]
. (2.26)

Consider that, first selecting a stratum Ωi randomly with probability vi and then generating
the random sample Xi,j inside Ωi is equivalent to unstratified sampling in Ω. With this in

16

mind, we can say Xi,j is generated conditionally on choosing Ωi. Now, recall the variance
for the standard Monte Carlo estimator:

V
[
ÎMC

]
=

1

N
V

[
f(X)

p(X)

]
. (2.27)

Let A be a discrete random variable such that A ∈ {1, . . . , n} with probabilities v1, . . . , vn,
representing the random choice of a stratum. Let EZ [Y] denote the expectation over
the domain of random variable Z. Thus, EA[Y] =

∑n
i=1 vi Y . Note that conditional

expectation (and also variance) of f(X)
p(X) given A = a is:

E

[
f(X)

p(X)
| A = a

]
= E

[
f(Xa)

pa(Xa)

]
. (2.28)

Then, we write the variance term V
[
f(X)
p(X)

]
in terms of conditional expectations using law

of total variance:

V

[
f(X)

p(X)

]
= EA

[
V

[
f(X)

p(X)
| A
]]

+ VA

[
E

[
f(X)

p(X)
| A
]]

=
n∑

i=1

vi V

[
f(Xi)

pi(Xi)

]
+ EA

[(
E

[
f(X)

p(X)
| A
]
− EA

[
E

[
f(X)

p(X)
| A
]])2

]

=
n∑

i=1

vi V

[
f(Xi)

pi(Xi)

]
+ EA

[(
E

[
f(X)

p(X)
| A
]

︸ ︷︷ ︸
µi

−
n∑

i=1

vi E

[
f(Xi)

pi(Xi)

]
︸ ︷︷ ︸

I

)2
]

=
n∑

i=1

vi V

[
f(Xi)

pi(Xi)

]
+ EA

[
(µi − I)2

]
=

n∑
i=1

vi V

[
f(Xi)

pi(Xi)

]
+

n∑
i=1

vi (µi − I)2

(2.29)

where µi and I are the expected values of f(X)
p(X) over the regions Ωi and Ω respectively.

Hence, the variance of unstratified estimator is:

V
[
ÎMC

]
=

1

N

(
n∑

i=1

vi V

[
f(Xi)

pi(Xi)

]
+

n∑
i=1

vi (µi − I)2
)
. (2.30)

Comparing the above with the variance of the stratified estimator with ni = viN (Eq. (2.26)),
we see that the only difference is the right hand side of the sum, which is a square and

17

always non-negative. The conclusion is that stratified Monte Carlo is never worse than
plain Monte Carlo.

For stratified sampling, we typically consider the d-dimensional unit hypercube [0, 1]d

as the domain. Once the samples are generated in the hypercube, they can be transformed
to other domains by T : [0, 1]d → Ω where T is some appropriate transformation [36]. Note
that this transformation can be designed to introduce arbitrary probability densities to the
transformed samples.

The variance of unstratified Monte Carlo estimator converges at the rate of O(N−1)
under uniformly distributed random sampling (Eq. (2.16)). On the other hand, variance
when using stratified samples converges at a rate between O(N−1) and O(N−2) depending
on the smoothness of the integrand in the image space [23]. In higher dimensions (d),
convergence rate of stratified Monte Carlo for a smooth integral is O(N−1−2/s) [36].

Stratified sampling is favorable in low-dimensional settings because the number of
stratas (and thus the number of samples) grows exponentially with the number of di-
mensions: For a d dimensional problem with n stratas in each dimension, there will be nd

stratas in total. Another disadvantage of stratified sampling is that the number of samples
needs to be known in advance.

2.3 Quasi-Monte Carlo

As discussed in the previous section, superior uniformity of the samples in Monte Carlo
integration can lead to lower variance. Much like the standard Monte Carlo method, quasi-
Monte Carlo (QMC) method is used in numerical integration. The difference is that instead
of using (pseudo) random samples, fully deterministic quasi-random samples are used. For
simplicity, assume that the integration domain Ω is d-dimensional unit hypercube [0, 1]d

and the probability distribution p(x) is constant. The QMC estimator is then written as

1

N

N∑
i=1

f(xi) ≈
∫
[0,1]d

f(x) dx (2.31)

where x1, . . . , xN ∈ [0, 1]d are deterministic quasi-random points. They share some statis-
tical properties with random numbers that allow them to be used in numerical integration.
In addition, quasi-random sequences are distributed more uniformly and thus result in
faster convergence of the integration problem.

18

This section presents a discussion of the term discrepancy as a measure for uniformity
of sequences and point sets and look at a well-known low-discrepancy sequence in Halton
sequence.

2.3.1 Discrepancy

Discrepancy is a measure of equidistribution for point sample sets. In other words, it
measures how uniformly the points are distributed. A sequence with low-discrepancy will
be distributed more evenly and be devoid of clumps. Discrepancy has been introduced to
computer graphics by Shirley [31], who highlighted the connection between discrepancy
and image error.

Intuitively, for a sequence to be as uniformly distributed as possible, every subregion of
the domain [0, 1)d should contain a number of sample points proportional to the subregion’s
volume. For instance, assume that we have N sample points in the hypercube [0, 1)d and
a subregion of volume Vsub contains n sample points, then n/N should roughly be equal to
Vsub if the points are equidistributed.

Formally, let B denote the family of all subsets of [0, 1)d Then, the discrepancy of the
point set P = x1, . . . , xN is defined by:

DN (B,P) = sup
b∈B

∣∣∣∣#{P ∩ b }
N

− v(b)

∣∣∣∣ (2.32)

where v(b) denotes the Lebesgue measure (volume) of the subset b. A common choice for
B is the family of all axis-aligned boxes in [0, 1)d with a corner at the origin, denoted B∗:

B∗ = {[0, a1]× [0, a2]× · · · × [0, ad] | 0 ≤ ai < 1 for all i}. (2.33)

In particular, Eq. (2.32) is called the star discrepancy and denoted by D∗
N (P) when B∗ is

used. Another common alternative for B is to use arbitrary axis aligned boxes.

Error bounds for quasi-Monte Carlo estimation are closely related to discrepancy. The
Koksma-Hlawka inequality states that∣∣∣∣∣ 1N

N∑
i=1

f(xi)−
∫
[0,1]d

f(x) dx

∣∣∣∣∣ ≤ V (f)D∗
N (P) (2.34)

where f has bounded variation V (f) in the sense of Hardy and Krause [25]. If f has
bounded variation, than V (f) is finite and the integration error is proportional to discrep-
ancy. Therefore, by using low-discrepancy sequences, a smaller error of the integration can

19

be guaranteed. However, V (f) is generally not finite when f is discontinuous, which is
typical for rendering problems and makes the error bound less useful [36].

Sequences with discrepancy of O((log N)d/N) are often referred to as low-discrepancy
sequences. Sequences by definition are of infinite length. Finite point sets on the other
hand can have a slightly lower discrepancy: O((log N)d−1/N).

In conclusion, the error bound for quasi-Monte Carlo integration is of O((log N)d/N)
for a low-discrepancy sequence and O((log N)d−1/N) for a low-discrepancy point set, which
is a large improvement over the error bound of O(

√
N) of plain Monte Carlo.

2.3.2 Radical inversion and Halton Sequence

This section presents the construction of the low-discrepancy Halton sequence. The con-
struction is based on the concept of radical inversion.

Radical Inverse. A non-negative integer a can be expanded in any base b > 1 as the
sum of values di such that 0 ≤ di < b, i = 1, . . . ,m:

a = dmb
m−1 + dm−1b

m−2 + · · · + d2b + d1 =
m∑
i=1

dib
i−1. (2.35)

Then, a is uniquely written in base b as the sequence of digits dmdm−1 . . . d1. The radical
inversion operator ϕb in base b reflects these digits around the decimal point:

ϕb(a) = .d1d2 . . . dm (2.36)

which is a value in [0, 1).

The van der Corput sequence is a 1D low-discrepancy sequence given by radical inver-
sion in base 2 for values of a = 0, 1, . . . :

xa = ϕ2(a). (2.37)

Van der Corput sequence has discrepancy of O(logN/N).

Halton Sequence. Low-discrepancy sequences in higher dimensions ([0, 1)d) can be ob-
tained by applying radical inversion separately for each dimension, using relatively prime

20

bases. Let bi denote relatively prime bases for i ∈ {1, . . . , d}, then the Halton sequence
[11] is defined by:

xa = (ϕb1(a), ϕb2(a), ϕb3(a), . . . , ϕbd(a)). (2.38)

A reasonable choice for the bases is to use the first d prime numbers. The Halton sequence
has a discrepancy of O((log N)d/N). If the number of samples N is known beforehand,
regular samples a/N can be used for the first dimension, resulting in a slightly lower
discrepancy. Such a point set is defined by

xa = (a/N, ϕb1(a), ϕb2(a), . . . , ϕbd−1
(a)) (2.39)

and are called Hammersley point set [12] and have discrepancy of O((log N)d−1/N). Fig-
ure 2.3 compares 2D points from the Halton sequence and the Hammersley point set.

There exist a number of other low-discrepancy point sets such as the Sobol’ sequence [32],
rank-1 lattice, (t, s)-sequences, and (t,m, s)-nets. A survey of such point sets and their use
in quasi-Monte Carlo rendering algorithms is provided by Keller [17].

Halton Hammersley

Figure 2.3: First 256 points of the Halton sequence and the Hammersley point set in 2D.

21

Chapter 3

Sampling

In the core of Monte Carlo integration lies the idea of sampling which is the process of
generating discrete samples from continuous functions. In particular, sample generation
according to a given probability density function is essential for importance sampling and
for other variance reduction techniques. Sampling of general distributions frequently comes
up in Monte Carlo rendering in the form of sampling BSDFs, light sources, scattering
media. We may also be asked to sample a discrete probability distribution, in which case
it is possible to treat the distribution as a piecewise constant continuous function.

This chapter reviews basic sample generation methods that can be used to sample both
continuous and discrete distributions. Additionally, relevant methods concerning sample
placement are discussed through related work.

3.1 Inverse CDF Sampling

Often times, it is necessary to generate non-uniform random variables from a specified
probability distribution. Specialized sampling techniques may be available for general
distributions such as normal, Poisson, binomial, and exponential [27] but in Monte Carlo
rendering, sampling specific distributions defined by BSDFs, light sources or scattering
media may be needed. Inverse CDF sampling is a general method to generate random
variables from a particular probability distribution. It allows us to transform uniform
random variables to non-uniform random variables by using the inverse of the cumulative
distribution function. Depending on how the sampling is performed, we can generate
continuous or discrete random variables.

22

Continuous Case. Suppose that X is a continuous random variable with CDF

F (x) = P (X ≤ x) . (3.1)

Suppose that X has continuous PDF p(x) > 0 for all x ∈ R. Then, the CDF F (x) is also
continuous and strictly increasing. Moreover, the inverse CDF F−1 exists and is strictly
increasing as well. Now, let U ∼ U(0, 1) be a uniform random variable and let Y be a
random variable such that Y = F−1(U). Then,

P (Y ≤ x) = P
(
F−1 (U) ≤ x

)
= P

(
F
(
F−1 (U)

)
≤ F (x)

)
= P (U ≤ F (x)) = F (x) .

(3.2)

Thus, Y has the same distribution as X. In other words, to generate samples from the
distribution p, one can compute and invert its CDF, generate uniform random variables
U and convert them into non-uniform random variables with the desired distribution by
letting Y = F−1(U). Note that to perform this sampling method, a closed form expression
for CDF that can be inverted is needed.

Discrete Case. A discrete random variable X can be specified by a discrete probability
table (e.g. PMF or tabulation of a continuous PDF) such that pi = P (X = xi), i = 1, . . . , n.
Let U ∼ U(0, 1) be a uniform random variable and let Y be a random variable such that
Y = F−1(U) where F−1 is defined as follows:

Y = F−1 (U) =

x1 if U < p1

x2 if p1 ≤ U < p1 + p2
...

...

xn if
∑n−1

i=1 pi ≤ U <
∑n

i=1 pi

(3.3)

Then, Y has the same distribution as X since P (Y = xi) = pi.

Instead of a discrete probability table, we may be given elements xi with associated
weights wi. Such a setting could be interpreted as sampling from an unnormalized PMF
where probability of sampling xi is wi /wsum where wsum =

∑n
i=1wi is the total sum of

weights.

One way to transform uniform random variables is to search over the given probability
table (or its CDF). Naively, a linear search will suffice, but has complexity O(n). A more

23

standard approach is to use a bisection-based inversion for O(log n) complexity. There
exists various other approaches such as the alias method [39] and the approximate CDF
inversion methods [7] for constant-time sampling of discrete probability distributions.

The aforementioned sampling approaches require storage of the probability table or a
similar structure derived from it during a precomputation stage before sampling. If memory
usage is strictly limited (as can be for a highly paralellized application on a GPU), one
can still utilize inverse CDF sampling by a two-pass linear search; once to go over all the
elements and compute wsum , and a second time to find the output sample xi (Alg. 1). For
such an algorithm, the first pass can be considered as the precomputation step. As long
as the weights are computed on the fly, the elements don’t need to be stored.

Algorithm 1: Inverse CDF Sampling (Two-pass linear search)

1 function inverseCDFSample(E)

2 wsum ← 0 // The sum of weights

3 for i← 1 to M do
4 xi ← E[i] // Generate the element

5 wsum ← wsum + weight(xi)

6 u← rand()
7 wrun ← 0 // The running sum of weights

8 for i← 1 to M do
9 xi ← E[i] // Generate the element

10 wrun ← wrun + weight(xi)
11 if u · wsum < wrun then
12 return xi

Alg. 1 can easily be extended to select multiple final samples by having an array of
input random variables u.

3.2 Rejection Sampling

Rejection sampling is another method to sample general distributions. Suppose we want
to sample a distribution q̂ and we have another distribution p̂ that is easily sampled from.
In addition, there exists a constant C such that q̂(x) ≤ C p̂(x). Then, rejection sampling
can be used to generate samples with distribution q̂.

24

Firstly, we draw a candidate sample x according to pdf p̂ alongside a uniform random
number u ∈ U(0, 1). Then, if u ≤ q̂(x) /C p̂(x), x is accepted as a sample. Otherwise, x
is rejected and the previous steps are repeated until a candidate is accepted. We provide
pseudocode in Alg. 2.

Algorithm 2: Rejection Sampling

Input : q̂, p̂, C such that q̂(x) ≤ C p̂(x)
Output: Sample y ∼ q̂(x)

1 while true do
2 x ∼ p̂ // Sample candidate from p̂

3 u← rand()
4 if u ≤ q̂(x) /C p̂(x) then
5 y ← x
6 return y // Candidate is accepted

The geometric interpretation of rejection sampling provides some intuition. The method
generates uniform samples under the curve C p̂(x) and accepts the ones which are under
q̂(x).

Although rejection sampling is very general, it can be quite inefficient if C p̂(x) does not
bind q̂(x) tightly as many candidates will get rejected before an acceptance. If there is no
additional information relating the distributions q̂ and p̂ finding an appropriate constant
C can be difficult.

3.3 Weighted Reservoir Sampling

Weighted reservoir sampling (WRS) [5] is a family of algorithms that select N samples
from a stream of M elements in a single pass, with probability proportional to elements’
weights. The elements are processed one by one and storage is required only for the N
selected samples. Moreover, M , the length of the stream need not be known in advance.

A reservoir is a data structure that holds the N selected samples alongside some data
about the stream such as sum of the weights seen so far [4]. Processing the input stream in
order, each element is either inserted into the reservoir or discarded based on its weight. If
the element is inserted into the reservoir, it can replace existing samples inside the reservoir.
If the element is discarded, the sampling operation simply proceeds to the next element.

25

It is possible to select the same element multiple times when N > 1. This is called
reservoir sampling with replacement. Conversely, reservoir sampling without replacement
doesn’t allow selection of such subsets. In the context of Monte Carlo integration, samples
should be independent. When sampling without replacement, selection of an element de-
pends on if it has already been inserted to the reservoir or not. Sampling with replacement
on the other hand, provides independent samples.

The problem setting of weighted reservoir sampling can be described as:

• Sampling from a stream {x1, x2, . . . , xM} to select N of the them based on their
weights

• Run as a single pass over the elements

• Only store the subset of N selected elements in the memory

Given that each element xi of the stream has associated weight of w(xi), an element xi
should be selected with probability

w(xi)∑M
j=1w(xj)

(3.4)

A reservoir R of N samples is maintained by randomly accepting or rejecting the
elements in the stream. At any point in the stream, each selected sample inside the
reservoir is distributed proportionally to the weights processed so far. In other words,
for each of the N spots inside the reservoir, the probability of having selected xi after
processing k many elements (1 ≤ i ≤ k) is

w(xi)∑k
j=1w(xj)

(3.5)

Once again, considering each of the N spots in R individually, the reservoir update
rule is to stochastically select the element xk+1 and replace the previously selected sample
xi inside R with probability

w(xk+1)∑k+1
j=1 w(xj)

(3.6)

Alternatively, xk+1 is rejected and xi is kept inside the reservoir with probability

w(xi)∑k
j=1w(xj)

(
1− w(xk+1)∑k+1

j=1 w(xj)

)
=

w(xi)∑k+1
j=1 w(xj)

(3.7)

26

In either case, the sample inside the reservoir is selected with the desired probability for
the sample kept in R. This result also implies that the stream can be of infinite length; at
any point along the stream, the samples inside the reservoir follow the desired distribution.

The algorithm for weighted reservoir sampling with replacement and N = 1 is given in
Alg. 3. It follows the style of Bitterli et al. [4]. Elements come in as a stream and their
weights are computed on the fly.

Algorithm 3: Weighted Reservoir Sampling

1 class Reservoir
2 y ← 0 // The output sample

3 wsum ← 0 // The sum of weights

4 function update(xi, wi)

5 wsum ← wsum + wi

6 if rand() < (wi /wsum) then
7 y ← xi

8 function reservoirSampling(S)

9 Reservoir R
10 for i← 1 to M do
11 R.update(S[i], weight(S[i]))
12 return R

Note that we need as many uniform random numbers as the length of the stream,
which is computationally wasteful. It turns out that it is possible to consume only a single
random number and continuously rescale it at each reservoir update by the renormalization
from [22]. Starting with an initial random number u1 ∈ [0, 1), if k’th element is accepted,
set uk+1 =

uk

pk
, else uk+1 =

uk−pk
1−pk

(Alg. 4). Ogaki [26] provides further analysis on rescaling
and shows another way of consuming a single random number for reservoir sampling.

It is straightforward to extend Algs. 3 and 4 for the N > 1 case. For each of N spots
in R, the stochastic accept/reject operation is repeated (Alg. 5).

Weighted reservoir sampling recently came into greater attention in rendering research
thanks to Spatiotemporal reservoir resampling [4], efficiently addressing the problem of
real-time direct lighting in scenes lit by thousands of light sources. Making use of reservoir
sampling and reservoir reuse, they are able to efficiently reuse multiple samples in rendering
a pixel while avoiding large storage requirements. Thus, weighted reservoir sampling looks
to be a promising tool for real-time GPU ray tracing [21].

27

Algorithm 4: Weighted Reservoir Sampling with rescaling

1 class Reservoir
2 y ← 0 // The output sample

3 wsum ← 0 // The sum of weights

4 function update(xi, wi, u)
5 wsum ← wsum + wi

6 pi ← (wi /wsum)
7 if u < pi then
8 y ← xi
9 u← u/pi

10 else
11 u← (u− pi)/(1− pi)

12 return u

13 function reservoirSampling(S)

14 Reservoir R
15 u← rand()
16 for i← 1 to M do
17 u← R.update(S[i], weight(S[i]), u)
18 return R

3.4 Resampled Importance Sampling

Generally, importance sampling requires generating samples from a specified probability
distribution (e.g. using inverse CDF sampling). However, it may not always be possible
to directly sample the distribution (no closed form analytic expression or too complex to
integrate and invert). Sampling importance resampling (SIR) is a method to approximately
sample such difficult distributions [29].

Sampling importance resampling first generates a set of candidates (or proposals)
{x1, . . . , xM} from a source distribution p that is easily sampled. Then, computes weight
for each candidate as wi = q̂(xi)/p(xi) where q̂ is the (possibly unnormalized) target
distribution. Lastly, resamples the candidates by selecting (with replacement) N ≤ M
samples {y1, . . . , yN} from the candidates with probability proportional to their weights.
The selected samples are approximately distributed according to the target q̂.

Resampled importance sampling [34] (RIS) presents an unbiased Monte Carlo estimator

28

Algorithm 5: Weighted Reservoir Sampling with rescaling (N > 1)

1 class Reservoir
2 y ← Array[N] // N output samples

3 wsum ← 0 // The sum of weights

4 function update(xi, wi, u)
5 wsum ← wsum + wi

6 pi ← (wi /wsum)
7 for i← 1 to N do
8 if u[i] < pi then // for w/o rescaling, use rand() instead

9 y[i]← xi
10 u[i]← u[i]/pi
11 else
12 u[i]← (u[i]− pi)/(1− pi)

13 return u

14 function reservoirSampling(S)

15 Reservoir R
16 u← rand(N) // N random variables

17 for i← 1 to M do
18 u← R.update(S[i], weight(S[i]), u)
19 return R

that utilizes SIR in importance sampling for variance reduction. Samples are generated
using SIR so that they approximately follow a target distribution q̂. Then, these samples
are used in the standard Monte Carlo estimator as if they were directly drawn from q̂.
However, the estimator has to be weighted to correct for the fact that q̂ is unnormalized
and the selected samples are only approximately distributed according to q̂. This weight
turns out to be the average of candidate weights:

1

M

M∑
j=1

wj . (3.8)

The standard Monte Carlo estimator with normalized sampling density q and integrand f
is

ÎMC =
1

N

N∑
i=1

f(yi)

q(yi)
. (3.9)

29

Combining SIR with importance sampling, the basic RIS estimator is defined as

Îris =
1

N

N∑
i=1

(
f(yi)

q̂(yi)

)
· 1

M

M∑
j=1

wj

=
1

N

N∑
i=1

(
f(yi)

q̂(yi)

)
· 1

M

M∑
j=1

q̂(xj)

p(xj)
.

(3.10)

RIS estimator is unbiased as long as q̂ and p are positive everywhere that f is non-zero
and M,N ≥ 1.

Variance Analysis. The variance of the RIS estimator is [35]

V (Îris) =
1

M
V

(
f(X)

p(X)

)
+

(
1− 1

M

)
1

N
V

(
f(Y)

q(Y)

)
(3.11)

whereX and Y are random variables with densities p and q = q̂∫
q̂
respectively. AsM →∞,

the first term of the sum goes to zero and we conclude that resulting samples are distributed
exactly according to q. RIS achieves variance reduction over the standard Monte Carlo
estimator provided that

V

(
f(X)

q(X)

)
< V

(
f(X)

p(X)

)
(3.12)

which suggests that the target distribution q̂ follows the integrand f more closely than
the source distribution p. In addition, candidate generation should be computationally
efficient compared to evaluating samples. For instance, for a direct lighting problem,
target distribution can be designated as the unshadowed path contribution and the source
distribution as the uniform distribution. In this case, target distribution is closer to the
actual integrand compared to the source distribution and casting of the shadow rays is
avoided during candidate generation.

Note that the resampling stage of RIS can be performed by either inverse CDF sam-
pling or weighted reservoir sampling as they can both sample elements with probability
proportional to their weights.

3.5 Blue-Noise Dithered Sampling

The main objective of variance reduction and sampling techniques is to reduce the numer-
ical error of a Monte Carlo rendered image. However, distribution of this error in screen

30

space can also affect the visual fidelity of the image. To this end, sequences of random val-
ues corresponding to individual pixels are decorrelated. This results in the familiar white
noise. Georgiev and Fajardo [9] show that random pixel decorrelation is not perceptually
optimal. Instead, their method blue-noise dithered sampling (BNDS) introduces negative
correlation among pixels which results in superior perceptual quality. Negative correlation
means that neighboring pixels end up with random sequences that are as different as possi-
ble. The idea of BNDS is to negatively correlate pixel estimates by having a unique random
sequence and offsetting it for every pixel by a blue-noise dither mask. Figure 3.1 compares
a 1D random sample mask with a 1D blue-noise dither mask and shows their Fourier power
spectra. Note that the blue-noise mask has minimal energy in the low frequency region.

Random mask Blue-noise dither mask

Fourier Power Spectrum Fourier Power Spectrum

Figure 3.1: Comparison of a 1D random mask with decorrelated pixel values and a 1D
blue-noise dither mask with negatively correlated pixels. The random mask displays white
noise properties: It has a flat frequency spectrum meaning that the energy is distributed
uniformly over all frequency bands. In contrast, blue-noise has low energy in low frequen-
cies.

31

The blue-noise dither mask is constructed offline. Starting with a random mask, pixels
of the mask are continuously swapped to minimize an energy function that is a product of
image-space and sample-space Gaussians. The resolution of the mask is usually lower than
that of the image to be rendered therefore it is tiled over the image. The dimension of the
mask matches the dimension of random vectors in the unique sequence. A D-dimensional
dither mask stores D-dimensional vectors in each pixel.

During rendering, each pixel offsets the random sequence (x1, x2, . . . , xN) by looking
up the vector in the blue-noise mask tiled over the image. The offsetting is a toroidal shift,
also called Cranley Patterson rotation. Therefore, the sequence of pixel l is defined by

xi,l = mod(xi + dl, 1) (3.13)

where dl is the random vector corresponding to the pixel l in the tiled blue-noise mask.
Such offsetting is called global offsetting [18]. There is also stratified offsetting which, given
a stratified sequence of samples, offsets them in their own strata.

BNDS does not reduce the magnitude of the numerical error of Monte Carlo estimation.
Instead, it distributes the error over the image space for better perceptual quality. One
way to measure the perceptual error is to convolve an error image by a Gaussian kernel [6].
Another is to observe variance after denoising the image [2]. Denoising an image with
blue-noise error distribution will result in lower numerical error compared to denoising an
image with white-noise. This is because of the fact that denoiser is a low-pass filter and a
blue-noise image has energy in high-frequencies.

BNDS works well when the sample counts are low and integrands are smooth so that
the samples and the pixel values are correlated [13]. In addition, high-dimensional dither
masks with blue-noise properties are difficult to produce.

3.6 Stratified Sampling Using the Hilbert Curve

Hilbert space-filling curve is a continuous mapping from the unit interval I = [0, 1] to
the n-dimensional hypercube Q = [0, 1]n. It is a curve that passes through all points in
Q without intersecting itself. Hilbert [15] was the first to provide a general procedure to
construct a class of space filling curves by a series of recursive partitioning and mapping of
the unit interval domain and the unit square range. The Hilbert curve is usually defined
as the limit of this recursive procedure. In practice, discrete approximation of the Hilbert
curve is used, which is obtained after a finite number of recursive steps. The Hilbert curve

32

m = 1 m = 2 m = 3 m = 4

Figure 3.2: Generation of the Hilbert curve. The curve has a resolution of 2m in each
dimension.

goes over 2nm points in total where m is called the order of the Hilbert curve. Figure 3.2
demonstrates the first few stages in generating a 2D Hilbert curve.

Compared to other space-filling curves, a significant advantage of Hilbert curves is
their high coherence [38]. The curve sequentially visits adjacent areas. Thanks to high
coherency, nearby points in the unit interval are likely to be nearby after the application
of the Hilbert curve mapping.

Utilizing the coherency property of the Hilbert curve, Steigleder and McCool [33] in-
troduced a general method to generate high dimensional stratified samples. The main idea
is to first generate uniform stratified samples in the unit interval I, then apply the Hilbert
curve mapping to obtain uniform stratified samples in the unit hypercube Q.

33

Chapter 4

Single-Pass Stratified Importance
Resampling

This chapter develops the core technique presented in this thesis, a single-pass stratified
importance resampling algorithm. The motivation for our method is that the previous
discrete sampling methods used for resampling fail to achieve stratified sampling in a sin-
gle pass, constant memory problem setting. Section 4.1 demonstrates the issues with the
previous approaches and analyzes the reasons for their failures. Section 4.2 introduces our
bidirectional CDF sampling method which well preserves the stratification of the input to
the output in a single-pass over the candidates, using constant memory. Section 4.3 ex-
plains how to generate the candidates on the Hilbert space-filling curve. Lastly, Section 4.4
combines the previous sections to present our stratified resampling algorithm which pro-
duces well distributed output samples and blue-noise error distribution.

4.1 Lack of Stratification in Resampling

This section reviews the problem of stratification in resampling and offers two experiments
to motivate the contributions.

4.1.1 Resampling in Monte Carlo Integration

Importance resampling [29] aims to sample proportionally to a target function q̂ by selecting
from M candidate samples {yk}Mk=1 drawn from some probability density function (PDF)

34

p. A weight wk = q̂(yk)/p(yk) is associated with each candidate, and an index j is sampled
with probability proportional to the weight: P (j) = wj

/∑M
k=1wk. The PDF of the output

sample x = yj approaches proportionality to the target q̂ as M →∞. Talbot et al. [34]
showed how to construct an unbiased Monte Carlo (MC) estimator for an integral:∫

H
f(x) dx ≈ 1

N

N∑
i=1

f(xi)

q̂(xi)

(
1

M

M∑
k=1

wk

)
, (4.1)

which averages over N samples drawn from M candidates. In this work we consider inte-
gration over a unit hypercube H of problem-dependent dimension, a.k.a. primary sample
space. Sampling in this space is traditionally uniform; the integrand f may internally warp
x to the native integration domain (e.g., unit sphere, or path space, with an appropriate
Jacobian). In our case, the candidates yk are uniform (with p(yk) = 1) but the final samples
xi generally are not.

As usual in MC integration, variance is reduced when the samples xi are stratified.
Achieving this efficiently is the goal of our work. Next, we show that it requires a suitable
resampling algorithm alongside a careful candidate ordering, and why existing methods
struggle.

4.1.2 Stratification of Sampled Indices

Consider the problem of sampling a candidate index j. The conventional approach is to
select it as j = F−1(u), where u ∈ [0, 1) is a canonical uniformly distributed input sample
and F−1 is the inverse CDF of P . The mapping of the unit line to the index space via F−1

typically preserves the locality, thus a set of N well-distributed canonical input samples
yield N well-distributed indices.

As an alternative to inverse CDF sampling, reservoir sampling avoids any CDF compu-
tation, and keeps track of only one selected candidate as it sweeps over the candidates once.
For each observed candidate, a canonical sample is consumed to decide whether to replace
the candidate in the reservoir. Reservoir sampling thus requires M canonical samples to
sample a single index j. In an attempt to obtain N stratified output indices, we consider
two options. One is to use a set of N M -dimensional stratified canonical samples and
consume one dimension of each for every reservoir decision. A low-discrepancy sequence
like Sobol’s [32] can produce such an input. The second option is to use only N canonical
random numbers but repeatedly shift and scale each for every reservoir decision, much like
probability-tree traversal [22, 26].

35

Figure 4.1 compares histograms of inverse CDF sampling, with and without a stratified
input, and reservoir sampling using the two aforementioned techniques. There are M = 50
sorted, regularly-spaced candidates with Gaussian weights. We repeat the resampling pro-
cess N times before estimating the samples’ distribution. Both reservoir variants fail to
preserve input stratification, producing histograms resembling that of inverse CDF sam-
pling with independent input samples. In contrast, feeding stratified samples to inverse
CDF sampling produces a high-quality distribution, but at the cost of precomputing and
storing a CDF.

L2 error: 3.330×10−5 L2 error: 1.120×10−5

(a) Reservoir + 1D QMC + rescaling (b) Reservoir + MD QMC

L2 error: 5.205×10−5 L2 error: 0.005×10−5

(c) CDF + independent samples (d) CDF + 1D QMC

Figure 4.1: Histogram comparison between reservoir sampling with rescaled 1D Sobol
(i.e., van der Corput) samples (a) and M -dimensional Sobol samples (b), and inverse CDF
sampling with 1D independent samples (c) and 1D Sobol samples (d). The candidates are
regularly-spaced and sorted (0.5, . . . , 49.5). Sampling is done proportionally to Gaussian
weights (µ = 25, σ = 10). Neither reservoir sampling variant retains the input’s stratifica-
tion; inverse CDF sampling does, producing a substantially lower L2 histogram error.

4.1.3 Impact of Candidate Order

One may intuitively expect a stratified resampling algorithm to yield stratified samples
whenever the candidates themselves are stratified. However, this is not always true, as

36

we illustrate in Figure 4.2. We generate M stratified candidates on the unit square using
a 2D Halton sequence (Fig. 4.2a), which we then resample to produce N < M samples
distributed approximately according to a 2D Gaussian function. Even though we employ
stratified inverse CDF resampling (using a van der Corput sequence), the resulting samples
in Fig. 4.2b are not well stratified. Contrast this result to that in Fig. 4.2c which exhibits
improved stratification; the only difference is that we have applied our proposed candidate
ordering scheme. The takeaway here is that resampling operates only on the candidate
indices, oblivious to the fact that they may correspond to points in a high-dimensional
integration space. Stratification in the 1D index space thus may not correspond to strati-
fication in the integration space, unless care is taken when mapping samples to indices.

(a) 2D candidates (b) QMC order (c) Our method

Figure 4.2: The ordering of resampling candidates can substantially affect the stratifica-
tion of the output samples. (a) We generate M = 8, 192 Halton samples on the unit square
and weight them by a 2D Gaussian target function. We then select N = 256 of them via
stratified inverse CDF sampling. (b) Processing the candidates in their Halton-sequence
generation order produces no stratification in the output. (c) Ordering the candidates
using our proposed method (Section 4.3) yields stratified unit-square samples.

4.1.4 Problem Statement and Overview

The previous two experiments reveal two problems that need to be solved in order to
achieve stratified resampling. The first is that stratification in the input canonical samples
should be preserved by the index sampling algorithm. While inverse CDF sampling has
the potential to achieve this, it may not be a viable option as it requires precomputation.
As Bitterli et al. [4] pointed out, when resampling at every image pixel in parallel, it is

37

desirable to use a method that avoids precomputation, as reservoir sampling does. The
second problem is that a stratified resampling algorithm must be paired with an appropriate
candidate ordering that retains locality between the sampling domain and the index space,
so that stratified index selection translates to stratified output samples.

To solve the first problem, in Section 4.2 we propose a new algorithm that returns the
same output as inverse CDF sampling but in a single pass, without precomputation or
candidate storage, like reservoir sampling. In Section 4.3 we show that the second problem
can be solved by ordering the candidates along a space filling curve in the hypercube.
Figure 4.3 illustrates our overall algorithm.

Figure 4.3: Overview of our algorithm. Sorted 1D stratified samples are mapped onto
a space-filling curve to produce stratified candidates yk on the unit hypercube. We re-
sample these candidates along the curve proportionally to their associated weights using
our on-the-fly bidirectional CDF sampling. Stratifying the resampling input u yields well-
distributed output samples x in the integration domain.

4.2 Single-pass Bidirectional CDF Sampling

This section introduces a new discrete sampling algorithm that bands together the advan-
tages of inverse CDF sampling and reservoir sampling. It scans the list of candidates only
once, processing them one by one without keeping any in memory, similarly to reservoir
sampling. Crucially, it can produce stratified output like inverse CDF sampling.

Reservoir sampling processes a list of candidates in a streaming manner. We addi-
tionally assume that it is possible to also read the list backward from its tail. As we will
discuss later (Chapter 5), this additional constraint is typically not a limitation in practical
rendering applications.

The list of candidates are processed one by one, from both ends. We keep track of a
front index and a back index, respectively, and the corresponding running sums of weights

38

wfront and wback . Given an input sample u ∈ [0, 1), at each step we increment front if
wfront ≤ u · (wfront + wback), or decrement back otherwise, and update the corresponding
running weight sum. The algorithm terminates when front = back which is taken as the
sampled index j. We provide pseudocode in Alg. 6. Note that the algorithm does not
require any precomputation and has a constant storage cost, just like reservoir sampling.

Algorithm 6: Our bidirectional CDF sampling algorithm.

Input : {w1, . . . , wM}: weights, u ∈ [0, 1): random number
Output: Sampled index

1 Function BidirectionalCDF({w1, . . . , wM}, u):
2 front ← 1
3 back ←M
4 wfront ← wfront

5 wback ← wback

6 while front ̸= back do
7 if wfront ≤ u · (wfront + wback) then
8 front ← front + 1
9 wfront ← wfront + wfront

10 else
11 back ← back − 1
12 wback ← wback + wback

13 return front

In Chapter 6 we prove that the result of our algorithm is exactly the same as that of
inverse CDF sampling. To that end, we show that in both algorithms, the output index j
satisfies

j−1∑
i=1

wi ≤ u·w <

j∑
i=1

wi, (4.2)

where w =
∑M

i=1wi is the sum of all weights. That is, both inverse CDF sampling and our
bidirectional CDF sampling output the same index j given the same input sample u.

4.2.1 Taking Multiple Samples

When doing importance resampling, we often need to generate multiple samples (N > 1)
from a given list of candidates. This is straightforward to do with inverse CDF sampling,

39

once the CDF has been computed and stored in memory. Reservoir sampling requires
maintaining a reservoir of size N , feeding every candidate to each slot inside the reservoir.
On the other hand, our bidirectional CDF sampling from Alg. 6 can generate only a single
sample in one pass. This is because it traverses the candidates in an order that depends
on the input sample u. The naive approach of regenerating the same set of candidates and
performing N full passes for as many samples can be inefficient. To offer a better solution,
we analyze the variance of resampling-based multi-sample MC integration.

The variance of the estimator in Eq. (4.1), taking N samples from M candidates, is
[35]

1

M
Var

(
f

p

)
+

(
1− 1

M

)
1

N
Var

(
f

q

)
. (4.3)

Recall that such sampling is not efficient to do with Alg. 6 as it would require N passes
over all candidates. We therefore consider a variant of the estimator which takes one
sample out of M/N candidates and we repeat this process N times to generate N samples.
The total number of candidates is still M/N × N = M . In other words, we split the
set of M candidates into N subsets, take one sample from each subset, and average the
N estimates. The variance of this alternative estimator is obtained from Eq. (4.3) by
substituting N → 1 and M → M/N , and dividing the entire expression by N (i.e., the
average over N repetitions). This yields

1

M
Var

(
f

p

)
+

(
1− N

M

)
1

N
Var

(
f

q

)
. (4.4)

Interestingly, this variance is smaller than the variance (4.3) of the estimator which takes
N samples out of the entire set of M candidates.

The above analysis shows that we never need to consider generating multiple samples
from a single candidate set at once: taking one sample from each of multiple subsets
is always better. It also outlines a simple recipe for taking multiple samples using our
algorithm by sweeping over all candidates exactly once. Note that this recipe is, in fact,
a requirement when using Alg. 6. In contrast, reservoir sampling does not require major
changes to generate more than one sample in a single pass. Nevertheless, our variance
analysis suggests that it too should benefit from candidate splitting.

In Figure 4.4 we numerically reproduce the results of the above variance analysis. We
compare two variants of N -sample generation using our method: with repeated (One set)
and split (N subsets) candidates. The former produces the same result as multi-sample
inverse CDF sampling. The experiment is thus effectively as a comparison between inverse
CDF sampling (One set) and our proposed single-pass method (N subsets). The integrand

40

f is zero in part of the domain, and the target function q̂ mostly follows the integrand
except for a small peak when f is zero. This setting can be interpreted as having two light
sources where one is occluded and the target importance function excludes visibility. The
candidate density p is uniform.

Using uncorrelated candidates and canonical input samples, subset resampling (solid
orange curve in Fig. 4.4b) yields slightly lower variance, as the theory predicts. Stratifying
candidates and samples (dashed curves) brings even more improvement, which is larger
when not splitting the candidates. This result does not contradict the variance analysis
which assumes fully independent sampling. Since repeating the same candidates may not
be practical as we discussed above, we use the splitting approach in our experiments, even
if it yields slightly higher variance.

f(x) q̂(x) p(x) One set N subsets

0 1x 1 512N

(a) Experiment setup (b) Variance analysis

Figure 4.4: Variance analysis of 1D importance resampling using our bidirectional CDF
method (Alg. 6). (a) Candidates are generated with density p and resampled according
to q̂ which better matches the integrand f . (b) Plots of integral-estimation variance as a
function of sample count N , with M = 4N candidates. When the candidates and input
samples are independent, subset-based resampling (solid orange) yields lower variance than
always resampling from the entire candidate set (solid blue), in line with the theory in
Section 4.2.1. Stratifying the candidates and the input samples reduces variance further
(dashed curves), though slightly less with subset-based resampling.

41

4.3 Ordering Candidates on a Space-Filling Curve

Our bidirectional CDF sampling algorithm can produce stratified indices, but this alone is
not sufficient to achieve stratification after resampling. We need to ensure these indices map
to stratified samples in the integration space. Typical candidate-generation orders, e.g.,
random, or the QMC order in Fig. 4.2b, do not provide a mapping with such correlation
in the two different spaces. To that end, we propose to order the candidates along a
space-filling curve.

Suppose we discretize the n-dimensional unit hybercube into a uniform grid with res-
olution 2m along each axis and a total of 2nm points. We can map a Hilbert curve onto
that grid, which provides a bijective mapping between the index space [1..2nm] and the
grid, allowing us to enumerate the grid points. Importantly, this mapping has the desir-
able property that any two points that are nearby along the curve are also nearby in the
hypercube [30]. Steigleder and McCool [33] used this property to map 1D stratified sam-
ples to approximately stratify high-dimensional samples. We use it to generate stratified
resampling candidates

yk = Hilbert

(⌊
k

M
2nm

⌉)
, where Hilbert : [1..2nm]→ [0, 1]n (4.5)

and where ⌊·⌉ denotes rounding to the nearest integer. This analytic mapping allows
enumerating candidates on-the-fly in the order along the curve. Since the Hilbert curve
preserves proximity, stratified indices j map to stratified candidates yj . We set the grid
resolution to m = 32 to represent 32-bit floating-point coordinates.

We generate candidates directly on the Hilbert curve through Eq. (4.5), but this is not
the only option. An alternative is to use a stratified hypercube sampling method (e.g., a
Sobol sequence) to generate M = 2nm candidates, one per stratum, and enumerate the
strata along a Hilbert curve. On-the-fly resampling then requires the ability to compute
the sample location inside a given stratum [10].

4.4 Stratified Resampling Algorithm

The discrete sampling algorithm from Section 4.2 and the candidate ordering scheme from
Section 4.3 can be combined to achieve efficient single-pass importance resampling that
produces stratified samples.

42

Given a uniform sample u ∈ [0, 1), the resampling step R returns an index j = R(u)
by going over the candidates once. The final output sample is thus x = yR(u) ∈ [0, 1)n.
Feeding N stratified canonical samples ui yields N stratified hypercube samples xi. How-
ever, as discussed in Section 4.2.1, to avoid iterating over all M candidates for every
sample, in practice we split the candidates into N subsets and resample from each. The
splitting is done by interleaving the indices, i.e., the candidates for sample i ∈ [1..N] are

{yi+kN}M/N−1
k=0 . In conjunction with the Hilbert-curve ordering, this interleaving effectively

bins the candidates into M/N hypercube strata and puts one candidate from each into ev-
ery subset. And since the N input canonical samples are stratified, the resampling selects
N well-distributed strata (one per subset), producing N stratified output samples xi.

4.4.1 Blue-noise Error Distribution

Apart from stratification, another way to effectively improve rendering quality is to dis-
tribute pixel error as blue noise over the image. Since our approach is based on 1D sampling,
it can be easily combined with the dithering method of Georgiev and Fajardo [9]. Using
the same set of N stratified canonical samples ui for the entire image, the samples for pixel
l are obtained through offsetting: ul,i = mod(ui + dl/N, 1), where the offset dl ∈ [0, 1) is
taken from a dither mask [9].

Note that this sample dithering produces blue-noise error distribution only if there is
a chain of correlation between ui, xi, and f(xi) [13]. Our stratified resampling method
specifically aims to maintain high correlation between ui and xi, and we assume xi and
f(xi) are correlated (see discussion in Section 4.3). In reservoir-based resampling, the
correlation between ui and xi is low, which inhibits both stratification and blue-noise error
distribution.

If the same set of M candidates used for the entire image, aliasing may occur. To
avoid it, we also dither the candidates along the Hilbert curve across pixels, by applying a
fractional offset to the index k in Eq. (4.5). We then require a dither mask with two offsets
per pixel [9], one for the candidates and one for the samples.

43

Chapter 5

Results

We implemented our method and other resampling strategies in the PBRT renderer [28].
Being agnostic to the rendering process, our method can be easily integrated into other
rendering systems.

We show equal-sample-count comparisons since the overhead of our method is insignif-

icant. We measure the relative mean squared error (relMSE): E =
∑n

i=1
(ei−ri)2

(r2i+ϵ)
, where ri

and ei are respectively the reference and estimated values for the i-th pixel, and ϵ = 0.001.
We also show “perceptual” relMSE (prelMSE), which is the same metric but with the
images first blurred with a 2D Gaussian kernel of standard deviation 2.1 pixels [6]. We
additionally include tiled error power spectra to demonstrate that our method can generate
a blue-noise error distribution when dithering is applied, similarly to Chizhov et al. [6]. We
do not compare against inverse CDF sampling; while it can also produce stratified samples,
it requires precomputation, and our goal is to stick to single-pass resampling.

5.1 Single Scattering in Media

Our first experiment renders single scattering from a point light in a homogeneous partic-
ipating medium with isotropic phase function. This is a 1D integration problem per pixel
where we can readily define 1D ordered candidates. We use M = 32 stratified dithered
candidates, each representing a distance along a ray, distributed proportionally to trans-
mittance. We resample them with weight equal to the unoccluded path contribution, a
target function similar to existing resampling applications [35, 4].

44

Figure 5.1 compares our method and weighted reservoir sampling [5] with N = 1 and
N = 8 final samples. Both methods use the same candidate sets and dithered stratified
input samples. The tiled power spectra show that only our method produces a blue-noise
error distribution. Also thanks to the stratification, our method has lower numerical and
perceptual errors.

relMSE: 1.718relMSE: 1.718 prelMSE: 2.708prelMSE: 2.708

relMSE: 0.257relMSE: 0.257 prelMSE: 0.336prelMSE: 0.336

relMSE: 1.715relMSE: 1.715 prelMSE: 1.156prelMSE: 1.156

relMSE: 0.127relMSE: 0.127 prelMSE: 0.070prelMSE: 0.070

(a) Reservoir sampling (b) Our method

Figure 5.1: Importance resampled single scattering in a medium with N = 1 (top row)
and N = 8 (bottom row) samples. Our method yields lower pixel and perceptual error
than reservoir-based resampling, thanks to its effective sample stratification and blue-noise
dithering. prelMSE values are scaled by 100×.

5.2 Direct Illumination

We also apply our resampling method to direct illumination from area emitters, where a
candidate on the unit square maps to a point on an emitter [28]. The first dimension of
the 2D candidate is used to choose an emitter. It is then rescaled so that the candidate
can be used to sample the 2D point on the emitter. For the resampling target function,
we again chose the unoccluded path contribution function. Figure 5.2 shows results with
N = 1 sample from M = 32 candidates.

45

We use a 2D Halton sequence to generate candidates which we dither per pixel via 2D
offsetting. We consider reservoir sampling with a stratified input (Fig. 5.2a) as a reasonable
baseline. This method cannot produce blue-noise image-error distribution. We also show
two other results where the candidates are reordered along a 2D Hilbert curve. Note that
it is not the exact algorithm we propose since we actually store all the candidates and sort
them afterward for this experiment. This is done only to demonstrate the importance of
candidate ordering. Again, reservoir sampling fails to produce a blue noise error distribu-
tion (Fig. 5.2b) as its mapping of canonical samples to indices does not preserve locality.
In contrast, our technique produces the desired error distribution from the same inputs
(Fig. 5.2c).

Figure 5.3 shows another scene where we resample on the fly from M = 32 candidates
coming from an (unsorted) Halton sequence or our Hilbert-curve distribution (Section 4.3).
We apply dithering to both the candidates and the resampling (N = 1). Our ordered candi-
date generation and resampling together produce a blue-noise error distribution (Fig. 5.3a).
However, we are unable to obtain blue noise if one of these components is missing, i.e.,
using unordered Halton-sequence candidates (Fig. 5.3b) or reservoir sampling (Fig. 5.3c).

5.3 Resampled Multiple Importance Sampling

Since we operate in primary sample space, to generateM MIS candidates from T techniques
we can use the same set of M/T hypercube candidates, each producing one candidate per
technique. This intentional correlation between the techniques facilitates stratification
without adding bias. To draw N samples, we split the hypercube candidates into N
subsets. The effective candidate count per subset is still M/N , as in non-MIS applications.

Figure 5.4 shows rendering of direct illumination for a scene lit with a complex en-
vironment map. We feed Halton-sequence and Hilbert-curve candidates to reservoir and
bidirectional CDF resampling respectively. We combine emitter and BSDF techniques, and
resample from M = 32 candidates (i.e., 16 hypercube candidates). Thanks to the careful
stratification, our method produces lower error.

5.4 Higher-dimensional Integration

Our method easily scales to higher dimensions, by using a Hilbert curve of corresponding
dimension. Figure 5.5 shows a 3D integration problem of computing single scattering from

46

multiple area emitters inside a homogeneous medium. The scene contains difficult visibility
as the cage surrounding the main object heavily occludes light sources. We compare our
method with 3D Hilbert-curve candidates to reservoir-based resampling of 3D Halton-
sequence candidates. Here we do not observe blue noise even with our method. We believe
this is due to the lack of sufficient correlation between resampling input and output. It
still exhibits lower error with N > 1 samples thanks to their stratification.

5.5 Convergence

Figure 5.6 shows how error plots as functions of the number of final samples N and can-
didates M , with M = 8N . We compare our bidirectional CDF resampling and reservoir
sampling with Hilbert-curve candidates to a reservoir baseline with Halton-sequence candi-
dates, with dithering enabled for all. All three methods perform resampling in a single pass
and have the same memory complexity. Our method performs best in all cases. Note that
when the dimension of the integration problem increases, sample stratification becomes
less effective and so does our method.

47

(a) Reserv.+QMCorder (b) Reserv.+Hilb. order (c) Ours+Hilb. order

prelMSE: 0.0161 prelMSE: 0.0158 prelMSE: 0.0118

Figure 5.2: Comparison of our bidirectional CDF resampling against reservoir baselines
on area-light illumination with N = 1 sample from M = 32 Halton-sequence candidates.
Dithered reservoir resampling fails to produce a pleasing error distribution, whether using
the candidate generation order (a) or along a Hilbert curve (b). In contrast, our dithered
bidirectional CDF resampling with Hilbert-curve ordering (c) produces a high-quality blue-
noise distribution.

48

(a) Ours+Hilb. cand. (b) Ours+Halton cand. (c) Reserv.+Hilb. cand.

prelMSE: 0.0272 prelMSE: 0.0396 prelMSE: 0.0401

Figure 5.3: Our candidate generation along a Hilbert curve, combined with our bidirec-
tional CDF resampling, yields blue-noise error distribution (a). Using unsorted Halton-
sequence candidates (b), or reservoir sampling (c), fails to attain such distribution.

49

M = 32, N = 1 M = 32, N = 4

OursOurs
+ Hilbert cand.+ Hilbert cand.

ReservoirReservoir
+ Halton cand.+ Halton cand.

OursOurs
+ Hilbert cand.+ Hilbert cand.

ReservoirReservoir
+ Halton cand.+ Halton cand.

relMSE: 0.956 relMSE: 0.933 relMSE: 0.216 relMSE: 0.255

prelMSE: 1.190 prelMSE: 1.556 prelMSE: 0.288 prelMSE: 0.434

Figure 5.4: Resampling an MIS mixture of direct-illumination candidates. 16 unit-square
candidates produce M = 32 hemispherical candidates via environment-map and BSDF
warping. For both N = 1 and N = 4 samples, our technique produces a blue-noise error
distribution and reduces the overall error over reservoir-based resampling. prelMSE values
are scaled by 100×.

50

Reservoir Ours

Reservoir + Halton candidatesReservoir + Halton candidates

Ours+Hilbert cand.Ours+Hilbert cand.
relMSE: 0.491 relMSE: 0.423

Figure 5.5: Single scattering from multiple area lights in a medium. We compare our
bidirectional CDF resampling of Hilbert-curve candidates to reservoir resampling of 3D
Halton-sequence candidates (M = 32, N = 8). We include false-color error zoom-ins.

51

Figure 5.1 Figure 5.3 Figure 5.4

re
lM

S
E

p
re
lM

S
E

1 512N 1 512N 1 512N

Ours Reservoir+Hilbert Reservoir+Halton

Figure 5.6: Error plots as functions of the sample count N for different scenes, with M =
8N candidates. Our technique always outperforms reservoir sampling variants, achieving
a better convergence rate. All of the methods shown are single pass.

52

Chapter 6

Conclusions

We have analyzed the issues in introducing stratification to resampling and demonstrated
that a stratified sampling algorithm combined with carefully ordered candidates will yield
well-distributed output samples after resampling. Accordingly, we have presented our
bidirectional CDF sampling method and our candidate reordering scheme on the Hilbert
curve.

Our bidirectional CDF sampling has similar properties as reservoir sampling since both
methods do not need to store any candidates and avoid precomputation. We thus expect
that our technique can replace reservoir sampling in many existing applications when
stratification is desired.

Our work enables a combination of resampling and blue-noise error distribution for
the first time. To that end, we rely on dithered sampling [9]. Other approaches also
exist [1, 14, 2], and it would be interesting to investigate their utility. Since Monte Carlo
denoising can benefit from blue-noise error distribution [13], our approach could also enable
an efficient application of denoising to resampling.

Our work has a few limitations. While bidirectional CDF resampling achieves stratifi-
cation in a single pass, it requires the ability to traverse the list of candidates from both
ends, unlike reservoir resampling. Even though this requirement is typically not limiting
in rendering applications, some applications may be incompatible with bidirectional CDF
sampling.

Our method stratifies samples in the primary sample space, not the native integration
domain. We assume that the mapping between the two preserves the stratification, as in
quasi-Monte Carlo literature [17]. This assumption is empirically known to be violated in

53

higher dimensions [13]. For example, while it is conceivable to perform stratification over
the 8D primary space of four consecutive direction-sampling decisions along a path, the
resulting paths are unlikely to be stratified. This is not a problem for any method that
operates in primary sample space.

We generate and resample candidates along a Hilbert curve with resolution 2nm which
is the number of points on the n-dimensional grid it traverses. In our experiments we have
m = 32 and n = 1..3, but always use 32-bit numbers to offset and sample along the curve.
This means that not all grid points might be sampled. At the tested moderate sample
counts N this does not seem to be an issue, though ideally numbers with precision at least
2nm should be used.

Uniform sampling along a Hilbert does not yield very high-quality stratification in the
hypercube. The point sets lack some desirable properties such as well-stratified lower-
dimensional projections. Devising a better ordering that achieves such properties is an
important direction for future work.

Recent work has shown that reservoir resampling in combination with spatio-temporal
sample reuse can be a very effective approach for rendering complex illumination [4]. It
would be interesting to explore extending our approach to maintain stratification with
spatio-temporal reuse, which our preliminary experiments show is not straightforward.

54

References

[1] Abdalla GM Ahmed and Peter Wonka. Screen-space blue-noise diffusion of Monte
Carlo sampling error via hierarchical ordering of pixels. ACM Transactions on Graph-
ics (TOG), 39(6):1–15, 2020. 53

[2] Laurent Belcour and Eric Heitz. Lessons learned and improvements when building
screen-space samplers with blue-noise error distribution. In ACM SIGGRAPH 2021
Talks, SIGGRAPH ’21, New York, NY, USA, 2021. Association for Computing Ma-
chinery. 32, 53

[3] Benedikt Bitterli. Rendering resources, 2016. https://benedikt-bitterli.me/resources/.
iv

[4] Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and Wo-
jciech Jarosz. Spatiotemporal reservoir resampling for real-time ray tracing with dy-
namic direct lighting. ACM Transactions on Graphics (Proceedings of SIGGRAPH),
39(4), July 2020. 3, 25, 27, 37, 44, 54

[5] M. T. CHAO. A general purpose unequal probability sampling plan. Biometrika,
69(3):653–656, 12 1982. 3, 25, 45

[6] Vassillen Chizhov, Iliyan Georgiev, Karol Myszkowski, and Gurprit Singh. Perceptual
error optimization for monte carlo rendering. ACM Trans. Graph., 41(3), 2022. 32,
44

[7] D. Cline, A. Razdan, and P. Wonka. A comparison of tabular pdf inversion methods.
Computer Graphics Forum, 28(1):154–160, 2009. 24

[8] Pavlos S. Efraimidis. Weighted random sampling over data streams, 2010. 3

55

[9] Iliyan Georgiev and Marcos Fajardo. Blue-noise dithered sampling. In ACM SIG-
GRAPH 2016 Talks, SIGGRAPH ’16, New York, NY, USA, 2016. Association for
Computing Machinery. 4, 31, 43, 53

[10] L. Grünschloß, M. Raab, and A. Keller. Enumerating quasi-monte carlo point se-
quences in elementary intervals. Monte Carlo and Quasi-Monte Carlo Methods, 2010.
42

[11] J. H. Halton. Algorithm 247: Radical-inverse quasi-random point sequence. Commun.
ACM, 7(12):701–702, dec 1964. 21

[12] John M. Hammersley and David C. Handscomb. Monte Carlo Methods. Springer
Dordrecht, 1964. 21

[13] Eric Heitz and Laurent Belcour. Distributing Monte Carlo Errors as a Blue Noise in
Screen Space by Permuting Pixel Seeds Between Frames. Computer Graphics Forum,
38, 2019. 32, 43, 53, 54

[14] Eric Heitz, Laurent Belcour, V. Ostromoukhov, David Coeurjolly, and Jean-Claude
Iehl. A low-discrepancy sampler that distributes Monte Carlo errors as a blue noise
in screen space. In PROC SIGGRAPHTalks, pages 1–2. PubACM, 2019. 53

[15] David Hilbert. Ueber die stetige abbildung einer line auf ein flächenstück. Mathema-
tische Annalen, 38(3):459–460, Sep 1891. 32

[16] James T. Kajiya. The rendering equation. In Proceedings of the 13th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH ’86, page
143–150, New York, NY, USA, 1986. Association for Computing Machinery. 6, 11

[17] Alexander Keller. Quasi-monte carlo image synthesis in a nutshell. In Josef Dick,
Frances Y. Kuo, Gareth W. Peters, and Ian H. Sloan, editors, Monte Carlo and
Quasi-Monte Carlo Methods 2012, pages 213–249, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg. 6, 21, 53

[18] Alexander Keller, Iliyan Georgiev, Abdalla Ahmed, Per Christensen, and Matt Pharr.
My favorite samples. In ACM SIGGRAPH 2019 Courses, SIGGRAPH ’19, New York,
NY, USA, 2019. Association for Computing Machinery. 32

[19] Alexander Keller, Simon Premoze, and Matthias Raab. Advanced (quasi) monte carlo
methods for image synthesis. In ACM SIGGRAPH 2012 Courses, SIGGRAPH ’12,
New York, NY, USA, 2012. Association for Computing Machinery. 6

56

[20] Jack P. C. Kleijnen, Ad A. N. Ridder, and Reuven Y. Rubinstein. Variance Reduction
Techniques in Monte Carlo Methods, pages 1598–1610. Springer US, Boston, MA,
2013. 6

[21] Adam Marrs, Peter Shirley, and Ingo Wald, editors. Ray Tracing Gems II. Apress,
2021. http://raytracinggems.com/rtg2. 27

[22] Michael D. McCool and Peter K. Harwood. Probability trees. In Proceedings of the
Graphics Interface 1997 Conference, May 21-23, 1997, Kelowna, BC, Canada, pages
37–46, May 1997. 27, 35

[23] Don P. Mitchell. Consequences of stratified sampling in graphics. In Proceedings
of the 23rd Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’96, page 277–280, New York, NY, USA, 1996. Association for Computing
Machinery. 18

[24] Harald Niederreiter. Low-discrepancy and low-dispersion sequences. Journal of Num-
ber Theory, 30(1):51–70, 1988. 6

[25] Harald Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods.
Society for Industrial and Applied Mathematics, 1992. 19

[26] Shinji Ogaki. Vectorized reservoir sampling. In SIGGRAPH Asia 2021 Technical
Communications, SA ’21 Technical Communications, New York, NY, USA, 2021.
Association for Computing Machinery. 27, 35

[27] Art B. Owen. Monte Carlo theory, methods and examples. 2013. 6, 22

[28] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based Rendering: From
Theory to Implementation. PubMK, 3rd edition, 2016. 44, 45

[29] Donald B. Rubin. The calculation of posterior distributions by data augmentation:
Comment: A noniterative sampling/importance resampling alternative to the data
augmentation algorithm for creating a few imputations when fractions of missing
information are modest: The sir algorithm. Journal of the American Statistical Asso-
ciation, 82(398):543–546, 1987. 28, 34

[30] Hans Sagan. Space-Filling Curves. Springer Science & Business Media, 2012. 42

[31] Peter Shirley. Discrepancy as a Quality Measure for Sample Distributions. In EG
1991-Technical Papers. Eurographics Association, 1991. 19

57

http://raytracinggems.com/rtg2

[32] Ilya M. Sobol. The distribution of points in a cube and the approximate evaluation
of integrals. USSR Computational Mathematics and Mathematical Physics, 7:86–112,
1967. 21, 35

[33] Mauro Steigleder and Michael D. McCool. Generalized stratified sampling using the
hilbert curve. Journal of Graphics Tools, 8(3):41–47, 2003. 4, 33, 42

[34] Justin Talbot, David Cline, and Parris Egbert. Importance Resampling for Global
Illumination. In Kavita Bala and Philip Dutre, editors, Eurographics Symposium on
Rendering (2005). The Eurographics Association, 2005. 3, 28, 35

[35] Justin F. Talbot. Importance resampling for global illumination. Masters thesis,
Brigham Young University, 2005. 8, 30, 40, 44

[36] Eric Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis,
Stanford University, Stanford, CA, USA, 1998. AAI9837162. 6, 13, 14, 18, 20

[37] Eric Veach and Leonidas J. Guibas. Optimally combining sampling techniques for
monte carlo rendering. In Proceedings of the 22nd Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’95, page 419–428, New York, NY,
USA, 1995. Association for Computing Machinery. 14

[38] Douglas Voorhies. I.8 - space-filling curves and a measure of coherence. In JAMES
ARVO, editor, Graphics Gems II, pages 26–30. Morgan Kaufmann, San Diego, 1991.
33

[39] Alastair J. Walker. An efficient method for generating discrete random variables with
general distributions. ACM Trans. Math. Softw., 3(3):253–256, sep 1977. 24

58

Appendix

Equivalence of Inverse CDF Sampling and Bidirectional

CDF Sampling

We show that Eq. (4.2) holds for the output index j. We first prove by induction that
the following condition C is satisfied at any stage of the algorithm for the front and back
indices:

C :

front−1∑
i=1

wi ≤ u·w <
back∑
i=1

wi. (1)

For the initial state, front = 1 and back = M , the inequalities hold trivially since 0 ≤ u < 1
and thus 0 ≤ u · w < w.

Assume that C holds for indices front < back ; we need to show that it still holds after
one step of the algorithm. Recall that we keep track of the running sums wfront =

∑front
i=1 wi

and wback =
∑M

i=back wi. The algorithm handles the following two cases.

Case 1: If wfront ≤ u · (wfront + wback), we increment front . We then need to show that
C still holds, i.e., that

(front+1)−1∑
i=1

wi =

front∑
i=1

wi ≤ u·w <
back∑
i=1

wi. (2)

The right inequality u ·w <
∑back

i=1 wi holds by the inductive hypothesis since back remains
unchanged. For the left inequality, noting that (wfront + wback) ≤ w for any front < back
and that wfront ≤ u · (wfront + wback) (the condition for this first case), we have

front∑
i=1

wi = wfront ≤ u · (wfront + wback) ≤ u · w. □ (3)

59

Case 2: If wfront > u · (wfront + wback), we decrement back . We then need to show that
C still holds, i.e., that

front−1∑
i=1

wi ≤ u · w <
back−1∑
i=1

wi. (4)

The left inequality
∑front

i=1 wi ≤ u ·w holds by the inductive hypothesis since front remains
unchanged. For the right inequality, using the condition for this case wfront > u · (wfront +
wback), we have

back−1∑
i=1

wi = wfront +
back−1∑

i=front+1

wi > u · (wfront + wback) +
back−1∑

i=front+1

wi

> u ·

(
wfront + wback +

back−1∑
i=front+1

wi

)
= u · w. □

(5)

Therefore, the condition C holds at any stage of the algorithm. At the termination
point, where the output index is j = front = back , that condition is identical to Eq. (4.2),
and holds for j just like in inverse CDF sampling.

60

	List of Figures
	Introduction
	Contributions
	Organization

	Monte Carlo Integration
	Basic Monte Carlo Integration
	Random Variable
	Expected Value
	Variance
	The Monte Carlo Estimator
	Monte Carlo Rendering

	Variance Reduction
	Importance Sampling
	Multiple Importance Sampling
	Stratified Sampling

	Quasi-Monte Carlo
	Discrepancy
	Radical inversion and Halton Sequence

	Sampling
	Inverse CDF Sampling
	Rejection Sampling
	Weighted Reservoir Sampling
	Resampled Importance Sampling
	Blue-Noise Dithered Sampling
	Stratified Sampling Using the Hilbert Curve

	Single-Pass Stratified Importance Resampling
	Lack of Stratification in Resampling
	Resampling in Monte Carlo Integration
	Stratification of Sampled Indices
	Impact of Candidate Order
	Problem Statement and Overview

	Single-pass Bidirectional CDF Sampling
	Taking Multiple Samples

	Ordering Candidates on a Space-Filling Curve
	Stratified Resampling Algorithm
	Blue-noise Error Distribution

	Results
	Single Scattering in Media
	Direct Illumination
	Resampled Multiple Importance Sampling
	Higher-dimensional Integration
	Convergence

	Conclusions
	References
	Appendix

