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Abstract

The art of cranial vault remodelling surgery is amazing and fascinating, but remains
much of that, an art, to this day. In this thesis, we provide two mathematical approaches
to tackle cranial vault remodelling surgery, in the hopes of bringing some insights from
the perspective of combinatorial optimization. First, an integer programming formulation
which we analyze experimentally, and second, a more theoretical approach using the local
ratio.
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Chapter 1

Introduction

This thesis pertains to developing and employing mathematical models to tackle a medical
condition called Craniosynostosis. Craniosynostosis is a birth defect that affects 1 in 2000
infants [15]. It is caused by premature fusing of cranial vault sutures and manifests itself
in abnormal skull growth patterns. In turn, this can lead to pressure on the brain as it
grows rapidly in infancy, and cognitive impairment. See figure 1.1 for an infant affected by
craniosynostosis.

Figure 1.1: An infant affected by craniosynostosis [2].

Craniosynostosis can be treated by surgery. At a high level, in such a surgery, the skull
bone is cut into an ensemble of pieces. These pieces are then moved, rotated, and sometimes
bent, with the goal of forming a more normal shaped skull. One type of Craniosynostosis
surgery is the so called front-orbital reshaping, where the bandeau (a horizontal segment



of bone right above the eye sockets—see figure 1.2) is bent in locations where kerfs (small
cuts) are made to make the bone malleable. The problem of choosing where to cut the
bandeau and where to place the resulting pieces was studied by Drygala in their thesis [5].
More specifically, in the Curve Reshaping Problem with Rearrangement, given a so-called
ideal piecewise-linear curve g, and a deformed piecewise-linear curve f representing the
shape of the infant’s bandeau, the problem they studied was to find subsegments of f, and
to match these to subsegments of g, minimizing a cost function incorporating how good
this matching is. In Drygala’s thesis, and in [1], it is shown that this problem is strongly
N P-hard using a reduction from the 3-Partition problem, even when cut locations are
prescribed. That is, one can only hope to obtain approximate solutions for these problems
in polynomial time. However, for the problem of selecting the best incisions with no
rearrangement of pieces allowed, i.e., when the bandeau is only bent at cut locations, the
authors in [1] provide a dynamic programming algorithm.

Figure 1.2: The outline of a bandeau [13].

Another type of surgery is the more general so-called cranial vault remodeling surgery.
The cranial vault is the area enclosed by the skull, containing the brain. This type of
surgery can be used when the defects are not restricted to the bandeau area of the skull.
In such a surgery, a greater part of the skull bone is cut into pieces. The pieces are then
potentially moved, rotated, or bent, until placed in their final configuration. The problem
of choosing how to cut these pieces, and where to place them, is less well studied from a
mathematical perspective. This is the problem we aim to tackle in this thesis.

This thesis is divided into two main components, described respectively in chapter 2
and chapter 3. Chapter 2 revolves around modeling the cranial vault reshaping problem
as an integer program. Here, we allow for certain types of cuts to form pieces. The goal
is then to place these pieces in a best way possible, provided the pieces cover a certain



portion of an ideal skull. To know what to strive for, it would be good to have an idea
of what a “normal” skull resembles. Indeed, surgeons and researchers at the Hospital for
Sick Children have developed a library of normative skulls modelling ideal skull shapes
of infants [13]. The second component, covered in chapter 3, is greatly influenced by
Drygala’s reduction to a scheduling framework of Bar-Yehuda, in which they achieve a %—
approximation in the bandeau setting outlined above [1][5]. The key idea in this reduction
is to think of bone pieces cut from the bandeau as time intervals to be scheduled on the
real line. This is reasonable because one can think of the bandeau as a curve. Using similar
techniques to Drygala in the bandeau setting, but applied to the cranial vault setting, we
now “schedule” bone pieces in the plane. Thinking of the skull as the plane might be a
greater assumption than considering the bandeau as a curve, but it allows for a simple
analysis similar to the bandeau case. Under this simplifying assumption, we show that the
approximation ratio depends only on how pieces can overlap. We give some examples of
classes of pieces leading to constant approximation ratios.



Chapter 2

An Integer Programming Approach.

In this chapter we are concerned with the following problem. Given an ideal skull, and a
deformed skull divided into regions (see figures 2.1, 2.2), cut each region at most once, and
place the resulting pieces on the ideal skull in some best possible way. This best possible
way will be a balance between covering a certain area on the skull, and minimizing the
volume between placed pieces and the target ideal skull. We make this precise in section
2.1. The motivation behind cutting each piece at most once is twofold: it makes the
problem simpler to model, and few cuts ensures the surgery does not last too long. The
high level idea is inspired by Jessie Yeung'’s work [17]. They gave a model for the problem of
placing pre-cut pieces. Throughout this chapter, we highlight key differences between their
approach and ours as they appear. A major contribution of ours is that our model does
not require pre-cut pieces. After describing the problem, we give an integer programming
(IP) formulation of the problem in section 2.1. In section 2.2 we provide some variants
of the base model from section 2.1. Finally, in section 2.3 we present some experimental
results.



Figure 2.2: Five regions of a
deformed skull, face pointing
Figure 2.1: An ideal skull. down.

2.1 Problem formulation.

We are given I, an ideal skull, and a collection R of disjoint contiguous subsets of a
deformed skull, which we call regions. These are given in the form of triangulated surfaces,
see figure 2.1 for an idea of what the ideal skull looks like, and figure 2.2 for an example
the five regions of a deformed skull. The goal is to cut each of these regions in two with a
straight line cut, and place the resulting pieces on the ideal skull. We now describe how
we cut a region R € R. Two points x; and x, on the boundary of R determine a line c.
Let 3 € R denote a closest point on R to the midpoint % of ¢. The normal n of R at
x3 together with ¢ determine a plane H,., which divides R in two. This division of R into
two contiguous subsets of R is what we mean by cutting R into two pieces. By a cut we
mean H.N R, but we will refer to a cut by just c. See figure 2.3 for an example of a region
cut into two pieces.



Figure 2.3: A region cut into two pieces, shown in green and red.

Figure 2.4: The pieces shown in figure 2.3, placed on an ideal skull.

Placing a piece p is defined as identifying the center point of p with the center point ¢
of a face of I, and identifying the normals of the piece with the normal of [ at t. By the
center of a face we mean the centroid of that face, i.e., the arithmetic mean of the vertices
defining said face. By center of p, we mean the nearest point on p to the arithmetic mean
of all centers of faces of p. For an example of two pieces being placed on a skull, see figure
2.4. A piece is allowed to rotate in the plane defined by this normal, according to a set of
prescribed angles ©.



We generate multiple potential cuts for each region, and select at most one of these
potential cuts per region in a solution. Each cut of a region yields two pieces. Let P be
the set of possible resulting pieces, let © be the set of possible rotations, and let 7 be the
set of possible placement locations, i.e., center points of faces in I. We introduce a binary
variable y. denoting whether we use a cut c¢. We also introduce a binary variable z, ¢,
indicating whether piece p € P is rotated with rotation # € © and placed at t € T'. We
also have a variable zp, o, corresponding to the placement and rotation of uncut region
R; € R. We emphasize that we have two fundamentally different types of pieces that we
can place, R; € R, which correspond to uncut region pieces, and p € P which is formed
from cutting a region in R in two. We denote by P; C P the set of potential pieces formed
from region R;, C; the set of cuts in R;, and ¢(p) the cut inducing piece p. We denote by C
the union of all C;. Note that each cut induces two pieces, so there are two distinct pieces
p,p’ with ¢(p) = ¢(p). Finally, we introduce a variable z, for every point g € T, indicating
whether g is covered by some piece. We now describe the constraints involved in our IP
model.

A piece can be placed in at most one location ¢ € 7 with one rotation 6 € ©

) #ppa<1,¥pe PUR.

€O teT
At most one cut is made per region
Yy < Lie[R[N
ceC;

A piece can be used only if its corresponding cut is made

Z Z Tpot < Ye(p), VD € P.

0€O teT

There are really two types of pieces, pieces p € P formed from cutting a region, and
region pieces in R, which are uncut regions. Since we allow for the placement of region
pieces, we need a constraint to ensure that we are not using a region and a piece formed
by cutting said region. With the following constraint, we encode the fact that an uncut

L[k] for k € N denotes the set {1,2,...,k}.



region piece is never placed if it is cut to form other pieces:

S0+ S anee < 1€ R

ceC; 0O teT

On the one hand, if ) 5y ¢ > ,c7 TR, 0+ equals 1, signifying region piece R; is placed, then all
cut variables y. of cuts ¢ € C; are zero. On the other hand, if ) . . equals 1, signifying
the region R; is cut, then all xp, g, variables are zero.

We have a binary variable z, for every g € 7T, indicating whether g is covered by a
piece. A point on the ideal skull is covered if and only if a piece covers it, and at most one

piece covers a point
Z Z Z Apo.t.gTpot = 2g:V9 €T,

pEPUR 0€0 teT

where d,, 9,4 is an indicator parameter for a piece p placed with 6 at ¢ covering point g.
We describe how we compute d, g4 in the next section, section 2.1.1.

To have some control over the proportion of ideal skull surface area the placed pieces
cover, we associate with each point g € T a weight a4, equal to the area of the face on 1
containing g. We then have a constraint enforcing a lower bound ~ on the area covered

Z (gZg = 7.

geT

Finally, w, ¢, is a non-negative real number, a cost, representing how poorly a piece p
placed with rotation € at location ¢ fits. We want to minimize this cost w. We describe
how w is computed in 2.1.1. Putting this all together, we obtain the following model

min Z Z Z Wy 01Tpo.t (2.1.1)

peP 0O teT

Y w0 <1¥pePUR (2.1.2)
€O teT

Yy <lie[R] (2.1.3)
ceC;

Z prmt < yc(p)a\V/p epr (214)
0€O teT

Dy <1=>"Y appnic[|R] (2.1.5)
ceCy 0O teT



Z Z Zd OtgTpot = 29, V9 €T (2.1.6)

pEPUR 6O teT

Zagzg >y (2.1.7)

geT

zpot € {0,1},Vpe PUR, 0 €O, teT (2.1.8)
y. € {0,1},Ve e C (2.1.9)
z, € {0,1},Vg e T. (2.1.10)

2.1.1 Parameters and variables.

The model described in 2.1 above comes with three types of parameters, namely wy ¢+, dpo+.4,
and ay. wpe, is the cost of placing piece p with rotation 6 at location ¢, dy g, is a 0-1
parameter indicating whether a piece p with rotation 6 placed at t covers a point g. Finally,
ag gives a weight to a point. Parameter calculations, as well as various figures throughout
this thesis, are made possible by the Python library Visualization Toolkit (VTK) [11].

The cost function w for every piece p, rotation # and placement ¢ is calculated as follows.
From the center point y of the skull, for each vertex of v of the triangulated ideal skull
mesh I, generate a ray originating at y and intersecting v. If this ray intersects p placed
with 6 at ¢, say at a point ¢,, then store the distance between v and ¢,. The cost w, g,
is the average of all these distances over all such rays, multiplied by the surface area of
p. Since p is a triangulated mesh, the surface area of p is the sum of areas of triangles
comprising p. One should think of w,¢; as an estimate for the volume between the piece
p and I. This cost function differs slightly from the one used in Yeung’s model [17]; they
used the average distance, not multiplying by the surface area of p . We made this change
in cost function because if makes sense from a medical perspective to minimize volume
between the ideal skull and placed pieces.

The parameter dp g, is computed similarly. For each point ¢t € T, extend the normal
n; of I at t in both directions, forming a line [;. If [; intersects p placed with rotation # at
location ¢, then dy, g, 4 is set to 1, and 0 otherwise. If d,, 9+, = 1, we take this to mean that
piece p with rotation 6 at placed at t covers point g.

Finally, Yeung’s model [17] attempts to cover vertices of the underlying ideal skull
mesh. It is reasonable from the point of view of the application to cover the center points
of faces instead, as covering the vertices on the bottom edge of the skull might not be very
important, since we are interested in covering a certain amount of surface area. These
are the points we attempt to cover in our model. Recall that the ideal skull mesh is a



triangulated mesh. These triangles are not all uniform; they are smaller near the apex
(the top) of the skull, and larger further from the apex, see figure 2.1. Hence, a constraint
enforcing a certain number of points to be covered favours placements near the apex of the
skull. Instead of covering a certain number of points on the ideal skull, it is more intuitive
to cover an amount of surface area. A natural notion of area we can assign to each point
on the ideal skull is the area of the mesh cell containing it. This is another reason for
favouring the center of faces over vertices of the mesh: the notion of area is more natural.
We compute this area a4 for every g € 7, and include constraint 2.1.7

Z (gZg = 7.

geT

In Yeung’s model [17], all points g € T are weighted equally, i.e., a, = 1,Vg € T. With
our modification, the points are weighted by the corresponding cell area.

We have yet to specify the number of regions, the number of cuts, the number of
rotations, and the number of possible placement locations in 2.1. Choosing any of these to
be large leads to a large model, which might have greater accuracy, but will take longer to
solve. In practice, it makes sense to consider five regions, so R = { Ry, Ry, R3, Ry, R5} [12],
as seen in figure 2.2. We choose to have approximately 100 cuts per region, i.e., |C;| ~ 100,
©=1{0,3,m7, 37”}, and approximately 250 placement locations, i.e., |T| &= 250. The 2 points
on the boundary inducing the cuts are chosen to be at least some distance apart, so that
cuts are not trivial. We often found solutions to the model where rotating a piece p a small
amount would decrease the volume between p and I. Now, © allows only for rotations in
a certain plane, whereas these seemingly natural rotations were often not in this plane.
Introducing rotations in other planes to allow for this potential improvement would lead
to a very large model that might not be solvable in a reasonable amount of time. Hence,
to address this issue, we take a local optimization step once a solution is produced, to try
to rotate the placed pieces to fit better. We describe this next.

2.1.2 Kabsch’s Algorithm

In this section, we describe how to improve the placement of a piece p in a given position.
The idea is to take n points X on a piece p, and compute for each x € X, the closest
point y on I. This gives a set Y of n points on I. Seeking a rotation of of X minimizing
the distance between X and Y is known as the constrained orthogonal Procrustes problem.
More formally, in the constrained orthogonal Procrustes problem, one is given two d X n
matrices P and Q). One wants to find a dx d rotation matrix U minimizing > 1, [|Uq;—pi|)?,

10



where ¢; and p; is the ith column of @) and P, respectively, and || - || is the d-dimensional
Euclidean norm. For a vector v = (vy,vs,...,v4) € R the d-dimensional Eucliean norm
is defined as ||v| := y/v? +vi+ .-+ 032 In the name of the problem, “constrained”
refers to the fact that U is a rotation matrix, i.e., an orthogonal matrix® constrained to
have determinant 1. In our setting d = 3, and the matrices P and () are the matrices
obtained by writing the coordinates of points of X and Y as column vectors. Kabsch’s
algorithm (sometimes refered to as the Kabsch-Umeyama algorithm) is an algorithm for
solving the constrained orthogonal Procrustes problem. It was first introduced in 1976 by
Kabsch [8] [9], and then re-introduced by Umeyama in 1991 [16]. The original proof uses
lagrange multipliers. A recent and elegant algebraic justification for the algorithm is given
by Lawrence, Bernal, and Witzgall in [11]. We give a high level overview of their short
argument.

In their paper, the authors first argue that minimizing >, ||Uq; — p;||* is equivalent to
maximizing tr(UQPT), where tr(M) is the trace of a matrix M, i.e., the sum of the diag-
onal entries of M. Since QP is fixed, the problem is now to find a matrix U maximizing
tr(UM). This is what Kabsch’s algorithm (see below) does, using a singular value decom-
position (SVD) of M. The singular value decomposition of a matrix M is a factorization

of M into VSWT, where S is diagonal, and V and W are orthogonal d x d matrices.

Algorithm 1 Kabsch-Umeyama.

Input: d x n matrices P, ().
1: Compute d x d matrix M = QPT.
2: Compute SVD of M, i.e., identify d x d matrices V, S, W,, so that M = V.SW7 in the
SVD sense.
3: Set sy =... =541 = 1.
4: if det(VW) > 0 then
5. Let sq=1.
else
Let s = —1.
Set S = diag {s1,...,54} -

return d x d rotation matrix U = WSV,

2An orthogonal matrix is a matrix whose columns are orthogonal and have unit norm.

11



The key to their proof is the following proposition.

Proposition 2.1.1. If D = diag{o1,...,04},0; > 0,1 € [d], and W is a d X d orthogonal
matrix, then

1. tr(WD) <% o).
2. If B is a d x d orthogonal matriz and S = BT DB, then tr(WD) < tr(S).

3. If det(W) = =1 and 04 < 03,1 € [d — 1], then tr(WD) < " 6, — 0.
The majority of the work for proving this proposition lies in proving 3. Using the
proposition, we have the following theorem, justifying Kabsch’s algorithm,

Theorem 2.1.2. Let M be a d x d matriz with singular value decomposition VSWT, where
V,S,and W are d x d matrices. If det(VW) > 0, then U = WVT mazimizes tr(UM) over
all d x d rotation matrices U. Otherwise, with S = diag {81,---,84},81 = ... = Sq_1 =
1,54 =—1, then U = WSVT mazimizes tr(UM) over all d X d rotation matrices U.

We use Kabsch’s algorithm on an optimal solution our IP model outputs. Ideally, one
would run Kabsch’s algorithm on all placements and rotations, and update w accordingly.
However, this is challenging computationally, as a single Kabsch computation for a single
placed piece takes more than one second, and we would have to do |0||T]320_, |Ri||C;| ~
500000 such computations. Instead, we only run the algorithm on the solutions our IP
model outputs. Experimentally, we observe that this yields a decrease in cost of the
solution, while maintaining high coverage. However, we cannot prove this holds in general.
We run this algorithm on the solutions produced by the IP model, and use the already
implemented version in SciPy [6]. This leads to an average improvement of 13.4% in the
objective value over all variants of our model analyzed in section 2.3, with some solutions
seeing an improvement of over 30%.

2.2 Model variants

We produced different variants of the model, giving alternative perspectives on the problem.
We discuss these here before presenting some experimental results in 2.3.

12



2.2.1 Overlapping pieces

At first, our model had no bound on the number of pieces that could cover a given point
on the ideal skull. Intuitively, having more than two pieces overlapping does not increase
the amount of points covered. One might think that the model would not favour such
solutions. When looking at the solutions the model produced, however, we realized some
solutions would not make sense in practice, namely ones where many pieces overlapped
at a single point, see figure 2.5. Solutions where many pieces are stacked on top of one
another do not resemble what is reasonable in practice, where one wants the end result to
approximate a skull bone.

Figure 2.5: Example of a feasible solution with no restriction of overlap. Here, the blue,

orange, and yellow pieces all overlap at a point. So do the blue, purple, red, and turquoise
: 3

pieces.

To rectify this, we introduced constraint 2.1.6

Z Z Z dpo.tgTpot = 2, V9 € T.

PpEPUR €O teT

The above constraint enforces that every point covered by a piece is covered by exactly
one piece, and that a point is counted as covered if and only if a piece covers it. The
addition of constraint 2.1.6 makes the model harder to solve. Perhaps allowing for only
one piece to cover a point is too restrictive, in the sense that hoping for such solutions

3Note that the colors of the pieces do not have any significance, they are purely there for ease of
distinction between the pieces. This is the case for similar figures hereinafter.

13



Figure 2.6: Example of solution with Figure 2.7: Example of solution with
overlap 1. overlap 2.

while requiring a lot of area covered might not exist, as seen in our experimental results in
section 2.3. Hence, we also consider the variant where at most two pieces can cover a given
point. Either form of this overlap condition can be encoded with the following constraints

ST 3T dpigrpes Swz Vg ET,

pEPUR 0O teT

Z Z Zd 0.t9Tpot = 29,9 €T,

pEPUR 0O teT

where w € {1,2} depending on how many pieces are allowed to overlap. Prior to intro-
ducing this constraint, pieces tended to be clumped near the apex of the skull. We hoped
that such a constraint would lead to less clumping near the apex, which is indeed what
occurred. See 2.6 and 2.7 for some contrasting examples to figure 2.5.

2.2.2 Disallowing central coverage.
In practice, one avoids cutting across the superior sagittal sinus (see figure 2.8) due to the

amount of blood flow it allows for. Hence, the bone covering the sinus normally stays in
place during surgery. The uncut rectangular strip in figure 2.2 is due to this. This rectangle

14



Figure 2.8: Superior sagittal sinus [3].

is exactly in the location of the sinus. It is therefore resonable to not allow pieces to cover
this area of the skull in our model, which is precisely what the following modification does.
If we denote by S the set of face center points in the region we do not want to cover, we
simply add a constraint forcing these points to be uncovered.

Zzg <0.

geS

Figure 2.9 is an example where we force the superior sagittal sinus area to be uncovered.

Figure 2.9: Example solution where no placement over the sagittal sinus is allowed.

15



2.3 Experimental results.

In this section we present the results of various computations of our model and five different
skulls. A top down view of these skulls, with the face pointing down, is shown below.

000

Skull A. Skull B. Skull C.

00

Skull D. Skull E.

Figure 2.15: Five skulls

These skulls were obtained from real patients, and scaled isotropically, i.e., uniformly
in all directions, to match the size of our ideal skull by matching aligning bandeaus. The
data on which we base the analysis in this section is given in appendix A. Each model is
allowed one wall-clock hour to run, i.e., 3600 seconds on our server, after which we select
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the best solution reached so far if no optimal solutions is reached. We make use of Gurobi’s
Python interface in solving our IPs [7].

2.3.1 Comparing overlap.

We compare solutions varying the overlap parameter w for the five skulls, at 7 different
levels of covered area, namely increments of 5% between 70% and 100%. We do this by
choosing 7 in constraint 2.1.7 accordingly. Since having w = 2 in our model is a relaxation
of having w = 1, we expect solutions where w = 2 to have smaller objective values. We
also expect the objective value to be monotone increasing with respect to the coverage
requirement. Both these expectations are not necessarily true due to the use of Kabsch’s
algorithm. For instance, the Kabsch step could improve a solution with w = 1 more than a
solution to w = 2, to the point of having lower objective value. Below is the data in table
form, related to skull A. For tables for the other skulls, refer to appendix A.

Table 2.1: Skull A.

’ w ‘ Covered area (%) ‘ Objective ‘ Non-region pieces ‘ Region pieces ‘ Run time (s) ‘
1 70 2507.575 7 0 475.37
1 75 3593.693 8 0 1133.25
1 80 4328.770 8 0 1854.34
1 85 3956.226 8 0 2015.37
1 90 6654.603 9 0 3600.00
2 70 2319.224 7 0 155.38
2 75 2700.144 8 0 142.25
2 80 3514.421 9 0 204.26
2 85 4082.187 9 0 354.17
2 90 3852.434 9 0 387.53
2 95 6573.883 10 0 725.50
2 100 8207.805 10 0 3186.44
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Figure 2.16: Skull A, area vs. objective. Figure 2.17: Skull A run time.

In figure 2.16, we see that the objective value for w = 2 is almost always lower than
that of w = 1. Interestingly, this is not the case for the area constraint at 85%. Worth
noting is that there is a decrease in objective value for w = 2 between 85% and 90%.
The absence of a blue data point in figure 2.17 for 95% and 100% signifies the model is
infeasible for w = 1 with covered area 95% and 100%. Moreover, the solution for 90% was
not necessarily optimal, but the best solution found after an hour. This could potentially
explain the sudden increase in objective value. Another observation to be made from figure
2.17 is that the run time for w = 1 is much greater than that of w = 2, indicating that, as
expected, the model is harder to solve when w = 1. With w = 2, all but the model with
100% area covered take less than 1000s for Gurobi to solve.
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Figure 2.18: Skull B, area vs. objective. Figure 2.19: Skull B run time.

In figure 2.18, we see that the objective value for w = 2 is almost always lower than
that of w = 1. This is the case for all covered area percentages except 90%. Compared to
Skull A, varying w makes a smaller difference here. Looking at figure 2.19, the solution for
w =1 at 95% was not necessarily optimal, but the best one found after an hour, and the
model was infeasible for coverage of 100%. Similarly to skull A, the run time for w =1 is
greater than that of w = 2, at least for the higher area coverage requirement cases. With
w = 2, all but the model with 100% area covered take less than 1000s for Gurobi to solve.
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Figure 2.20: Skull C, area vs. objective. Figure 2.21: Skull C run time.
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In figure 2.20, we see that the objective value for w = 2 is always lower than that of
w = 1. Here, the model was infeasible for coverage greater than 85% with w = 1, and for
w = 2 with coverage at 100%. Similar observations about run time as for the previous two
skulls can be made. To get an idea of what these solutions look like, see figures 2.22 and
2.23. Pieces might still slightly overlap when w = 1, due to the discrete nature of the IP
model, but nowhere near as much as when w = 2.

~—

Figure 2.22: Skull C, w = 1. Figure 2.23: Skull C, w = 2.
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Figure 2.24: Skull D, area vs. objective. Figure 2.25: Skull D run time.
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The situation for skull D, as seen in figure 2.24, is similar to that of skull C, probably
due to the similarity of the skull shapes, as seen in 2.15. The values are similar, and again
the model was infeasible for coverage greater than 85% with w = 1, and for w = 2 with
coverage at 100%. For skull D, the solutions for w = 1 when coverage is at 80% and 85%
were the best found after an hour. The same holds for the solution for w = 2 at 95%.
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Figure 2.26: Skull E, area vs. objective. Figure 2.27: Skull E run time.

For skull E, the model is infeasible with w = 1 for 95% and 100% coverage, and with
w = 2 for 100% coverage. Moreover, the solutions with w = 1 for 85% and 90% were the
best found after an hour, and not necessarily optimal. The same is true for w = 2 at 95%.

Overall, the results align reasonably well with our expectations, in the sense that solu-
tions with w = 1 have larger objective values than solutions with w = 2, when fixing a skull
and coverage percentage. Additionally, the objective value almost always increases with
covered areas. Unfortunately, 2 of the 5 skulls fail to have solutions with w = 1 for 90%
and above, and 4 of the 5 skulls fail to have solutions with w = 1 for 95% and above, In
contrast, when letting w = 2, all skulls allow for a solution at 95%, two of which also allow
for a solution at 100%. Many of the solutions found at the higher coverage requirements
were not necessarily optimal, and more time than an hour was needed to solve these to op-
timality. However, all but one solution that were found to be optimal for w = 2 were found
in less than 1000s, which is a very reasonable amount of time. It thus seems reasonable to
use the w = 2 variant of the model.
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2.3.2 Disallowing middle placements.

In this section, similarly to the previous section, we compare solutions with disallowed
middle placements, varying the overlap parameter w for the five skulls, at same 7 levels
of covered area percentages. We note that the percentage of the area is the percentage of
the allowed placements. Again, we expect solutions where w = 2 to have smaller objective
values and the objective value to be monotone increasing with respect to the coverage

requirement. We expect the models in this section to be easier and quicker to solve, since
we have decreased the size of the model.
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Figure 2.28: Skull A, area vs. objective. Figure 2.29: Skull A run time.

In figure 2.28, we see that the objective value for w = 2 is always lower than that of
w =1, except at 70% . Optimal solutions were found in all cases except for w = 1 at 100%,
as seen in 2.29. Remarkably, all solutions with w = 2. were found in under 500 seconds.
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Figure 2.30: Skull B, area vs. objective. Figure 2.31: Skull B run time.

In figure 2.30, we see that the objective values agree roughly with what we would
expect, except at 95%, and except for the decrease in objective value. Optimal solutions
were found in all cases, as seen in 2.31. Again, as the case for skull A, all solutions with
w = 2. were found in under 500 seconds.
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Figure 2.32: Skull C, area vs. objective. Figure 2.33: Skull C run time.

In figure 2.32, we see that the objective value for w = 2 is significantly lower than that
of w = 1 for four coverage requirements, namely 75%, 80%, 90%, and 95%. The variation
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in objective value for w = 2 is very smooth, in contrast with other skulls. Optimal solutions
were found in all cases except for w = 1 at 100%, as seen in 2.33.
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Figure 2.34: Skull D, area vs. objective. Figure 2.35: Skull D run time.

In figure 2.34, we see that the objective value for w = 2 is significantly lower than that
of w = 1 for four coverage requirements, namely 75%, 80%, 90%, and 95%. The variation
in objective value for w = 2 is very smooth, in contrast with other skulls. Optimal solutions
were found in all cases except for w = 1 at 100%, as seen in 2.33. Again, as for skulls A,
B, and C, all optimal solutions were found in much less than 1000s.
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Figure 2.36: Skull E, area vs. objective. Figure 2.37: Skull E run time.

Similarly to the model variant where we allow middle placements, the results here align
reasonably well with our expectations, in the sense that solutions with w = 1 have larger
objective values than solutions with w = 2, when fixing a skull and coverage percentage.
Additionally, the objective value almost always increases with covered areas. In contrast
with the case where middle placements were allowed, solutions for all coverage requirements
were found for w = 2. Moreover, 3 out of 5 of these solutions were optimal. Even for w = 1,
a greater number of feasible solutions were found. The objective is interestingly 2 to 3 times
higher for all skulls when disallowing for the middle placements. The run time for both
values of w were most times below 1000s, and many times even below 500s. Many times,
the run times were twice as fast as the corresponding model where middle placements were
allowed. This suggests that the model when disallowing middle placements is easier to
solve, which is reasonable, since we have limited the possible placement locations.

As seen in our experiments, there is a trade-off between low objective value and high
coverage; trivially, when no coverage is required, the empty solution is optimal. Of course,
this is not a solution we are interested in. Among all our variants, the price paid in the
objective for increased coverage is the smallest in the disallowed middle setting with w = 2.
In this setting, the solutions to the 2 instances where the objective increased drastically at
100 can most likely be improved given more time, as these solutions were not guaranteed
optimal. We believe that this variant of the model could make the most sense in practice.
Naturally, the surgeon performing on operation always has the final say when performing
a surgery. A surgeon could also potentially consider a few different solutions at different
coverage levels, and draw inspiration from these.
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2.4 Conclusion

To conclude, we gave an IP formulation to solve a problem inspired by cranial vault re-
modeling in 2.1. We described a few variants of the model in 2.2, and ran these variants on
5 skulls, analyzing the results in 2.3. Our main contribution is that we show it is possible
to solve such a problem, even without pre-cut pieces, in most cases within the reasonable
time of an hour, and many times much quicker. In practice, one might have weeks between
taking a scan of a patient, and surgery. Hence, it is sensible to run a model of the same
kindred as ours in practice; one might even try to make the model larger. Moreover, the
problem was easier to solve when allowing for pieces to overlap slightly, and when not
allowing for placements of pieces to cover the sagittal sinus.

Many potential improvements and questions remain. If one has access to more compu-
tational resources, does increasing the number of cuts, rotations, and placement locations
significantly improve the quality of optimal solutions? Does precomputing the local Kab-
sch optimization for all variables lead to significant improvement? Alternatively, and less
costly, one could potentially run the local Kabsch optimization on a few near optimal so-
lutions and select the best one. We do not have any theoretical guarantees for the Kabsch
step, but can one formulate guarantees for some set of surfaces? Our entire analysis uses
one ideal skull, but it might make sense to consider different ideal skull depending on the
type of craniosynostosis. Our model only allows for at most one cut per region. Does a
model where more cuts per regions are allowed change things?

Another way of tackling the cranial vault remodeling problem could be to adapt the
already existing dynamic programming approach given in [1]. This is yet to be done.

Our initial goal with this model was for our algorithm to be used as inspiration by
surgeons working on craniosynostosis, but even if this does not happen, the objective value
of our model could be used as some form of severity measure for craniosynostosis.
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Chapter 3

Approximation and the Local Ratio.

In the Curve Reshaping Problem with Rearrangement, introduced by [5], one is given an
ideal piecewise-linear curve g, and a deformed piecewise-linear curve f representing the
shape of the infants bandeau. One wants to find subsegments of f, and to match these to
subsegments of g, minimizing a cost function incorporating how good this matching is. This
problem was shown to be N P-hard using a reduction from the 3-Partition problem, even
when cut locations are prescribed. Nonetheless, Drygala, using the local ratio technique due
to Bar-Yehuda et. al., gave a half approximation to the problem arising from a reduction
to a scheduling problem [1][5]. In this section, we attempt to take these local ratio analyses
one step further, to get closer to something that resembles reshaping the entirety of the
cranial vault. More specifically, we study the naturally arising analogue of the scheduling
problem, now in the plane instead of on the real line.

3.1 Local Ratio

This section is based on Bar-Yehuda’s work on the local ratio technique, and more specif-
ically on the work relating to approximating resource allocation and scheduling problems
[1]. We give a summary of the one dimensional scheduling, before introducing our con-
tribution of scheduling in the plane. Suppose we have some maximization problem whose
solutions x € R™ must satisfy a set of feasibility constraints F'. A solution x has value p-x,
where p € R" is a profit vector. We say that x* is optimal if it maximizes p - * among
all feasible x € R™. Sometimes one can not hope to obtain an optimal solution, but only
an approximation of an optimal solution. A feasible solution z is an r-approximation if
p-x > rp-z*, where z* is an optimal solution, and r € (0, 1]. Note that this setting is in
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terms of maximizing an objective since the problems we study in this chapter are of such
form; however, everything works similarly in the minimization setting. The result after
which this section is named is the following.

Theorem 3.1.1. (Local Ratio) Let F' be a set of constraints, pi,pa2,p be profit vectors
satisfying p = p1 + pa. Then, if x is an r-approzimation with respect to both (F,p1) and
(F,ps), then x is an r-approximation with respect to (F,p).

We include the proof since it is extremely short and provides some intuition.

Proof. Let p = p; + py and consider z*, 7, 23 optimal solutions to (F,p), (F,p1), (F,p2)
respectively. We have by linearity p-x = (p1+p2)-x > rpy-xi+rpy-a5 > r(p1-2*+py-a*) =
rep-xt. L]

At an intuitive level, an outline on how to use this technique to solve problems is as
follows. Start with an empty solution, and search for a decomposition of p into p; + po,
such that p; is “easy to handle” in some sense. Then, recurse on (F)p,); assuming a good
approximation for (F, ps), we would like it to be a good approximation for (F,p). By the
Local Ratio theorem, that would involve showing that the recursive call on (F,ps) yields
a good approximation to (F,p;).

The authors introduce the following general framework to deal with resource allocation
and scheduling problems: we are given activities Ay,...,A,,, each being a set of time
intervals. If an interval I € A;, we say I is an instance of activity j. Specifically, an
instance I consists of a time interval [s(I),e(1)), with 0 < s(I) < e(I). Every instance [
has an associated profit p(I) € R, and a weight w(I) € [0, 1]. We wish to schedule these
instances to form a feasible schedule S. A feasible schedule S is a collection of instances
such that at most one instance of each activity is present, and for all time ¢ the sum of the
widths of instances scheduled at ¢ is at most 1. We introduce next a very natural problem
which falls into this framework: throughput maximization.

3.1.1 Throughput Maximization

In the throughput maximization problem, we simply seek to maximize the total profit of
scheduled instances p(S) := >, s p(I). Below is a linear programming formulation of the
problem. We introduce a variable z; for each I € UL, A;.
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mapr([)xI (3.1.1)

st. > wz <1,VteR" (3.1.2)
L:s(I)<t<e(I)
> @ <1,V € m (3.1.3)
IEAj
Ty € {0, 1},V[ S Aj,Vj S [m] (314)

Here, constraint 3.1.2 ensures that the sum of the widths of instances schedule at ¢
is at most 1. This can be encoded using a finite number of constraints, since the points
t € R* that matter are just start and end times of instances. In other words, we can
partition the subset of positive reals from the earliest start time to the latest end time into
a finite number of intervals so that no interval contains a start or end time in its interior.
Constraint 3.1.3 ensures at most one instance is chosen from every activity. To solve this
problem, the authors propose the following algorithm.

Algorithm 2 Local Ratio: Choosing I with earliest end time.
Input: F,p, A1, As, ... A

1: Delete all instances with non-positive profit.

2: if no instances remain then

3:  return S =0.

4: Choose I € UL, Aj with e(I) minimized.

5: Decompose p by p = p1 + p2. It is enough to define p;, which we do as follows

1 1€ A(l)

pil) =p(I) - aw(l) IeZ(I)

0 otherwise,

where A(I) is the activity to which I belongs, and Z(I) the set of instances intersecting

I from other activities.
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6: Solve the problem recursively on input (F,ps), and return S’
7. if &’ U {I} is a feasible schedule then

8 return S:=8 U{I}

9: else

10: return S := 5’

A feasible schedule S is said to be I-mazimal if I C S or S U {[} is infeasible. The
authors [I] introduced algorithm 2 to solve this problem approximately. We have the
following two propositions pertaining to algorithm 2.

Proposition 3.1.2. If for all profit functions p = py + po with pg(f) =0, every I-mazimal
schedule is an r-approrimation with respect to p1. Then the schedule S8 returned by algo-
rithm 2 is an r-approximation.

Denote by wyax and wyi, the maximum and minimum width of all instances in the
input respectively. Hereinafter, a is a parameter in the interval [0, 1] that we choose in
order to get a good approximation ratio.

Proposition 3.1.3. Every I-mazimal schedule is an r-approzimation with respect to py,

where .
min{1, @ max{wmin, I — Wmax}}

1+«

Next, we reproduce the proofs of these two propositions due to Bar-Yehuda et. al., as
our arguments later on are very similar. As a consequence of these two propositions, if we
show that every I-maximal schedule is an r-approximation, then the approximation ratio
of the algorithm is at least r.

Proof of 3.1.2. Deleting instances with non-positive profit does not change the optimal
value. It thus suffices to prove § is optimal with respect to the remaining instances. We
proceed by induction on the number of recursive calls. For the base case, at the bottom of
the recursion, there are no instances left. Then S is optimal, so indeed an r-approximation.
For the induction step, suppose &’ is an r-approximation with respect to po. Then, S is
an r-approximation with respect to ps, since py(I) = 0 and S C€ S’ U {I}. By definition, S
is I-maximal, so S is an r-approximation with respect to p; by assumption. By applying
the local ratio theorem, we conclude S is an r-approximation with respect to p. O
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Worth noting is that in the above proof we do not use any structure of the problem
instance, or the choice of I. This makes adapting this proof, as we do later on, quite
simple.

Proof of 3.1.3. We bound the optimum p; profit bep; from above, and bound the profit of
an I-maximal schedule by, from below (where we normalize the profit by pi(I)). Then

%ma: is a lower bound on the approximation ratio of the algorithm. We proceed to bound
op

bopt- Consider an optimal schedule S. By definition of p;, only instances in A(/ [) or Z(I)
contribute to the p;-profit of S. Since I is chosen to have e(I) minimized, all instances
I in Z(I) have s(I) < e(I) < e(I). Hence, all instances in S N Z(I) intersect, and thus
have total width at most 1 by feasibility. Hence, at most ozpl(f ) profit comes from such
instances. Any feasible schedule contains at most one instance of A(f ). Thus, bopt < 1+a.

Consider now a I-maximal schedule S. S contains an instance in A() or a collection of
instances X C Z(I) such that X U{I} is infeasible. The width w(X) of instances in X is at
least 1—w(f) > 1 —wpax. We also have that w(X) > wyi. Thus, byax > min{l, a max{1—
Winax, Wmin t |- We conclude that every T-maximal schedule is an r-approximation. O

Note that our choice as I is key in getting the bound on by, where the additive factor
of a comes from the fact that all intervals intersecting I intersect. The bound on by, does
not use this choice. From these observations, we have the following corollary.

Corollary 3.1.4. If I is chosen such that there exists a set of k points X contained in I
such that all I € I(f) contain some x € X, then the algorithm has an approximation ratio
of at least
min{1, @« max{wmin, 1 — Wax } }

1+ ka ‘

We apply the corollary in the following example, where we choose I of minimal length.
Though choosing [ in such a way does not improve the performance guarantee of the
algorithm, it demonstrates how we arrive at a certain approximation factor.

Example 3.1.5 (Smallest interval). In step 4 of the previous algorithm, instead of choosing
I with e(I) minimized, suppose we choose I with |e(]) — s(I)| minimized. We use the same
decomposition of p into p; and p,. Any I € Z(I) contains s(I) or e(I). By 3.1.4, this
algorithm has an approximation ratio of

min{1, o max{Wmin, 1 — Wmax}}
1+ 2a '
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3.1.2 Craniosynostosis and throughput maximization.

The relevance of throughput maximization and the local ratio to craniosynostosis is due
to Drygala [5]. They study deformities in the bandeau. In their thesis, they study the so
called Curve Reshaping Problem with Rearrangement and Pre-cut Segments (CRPRPS).
In this problem, one is given an ideal and a deformed curve, representing the ideal and
deformed bandeau. The deformed curve is cut into segments. The problem is to place
these segments onto the ideal curve so as to maximize the profit (some measure of fit and
covereage) of placing a segment at a certain location. Drygala provides a reduction from
the CRPRPS to the throughput maximization problem. At a high level, each segment J
becomes an activity A, and an instance I of activity A; is a placement of segment J at
a location on the ideal curve. The width of each instance is 1. This reduction thus gives
an r-approximation to CRPRPS, where

min{1l, @ max{Wmin, 1 — Wmax}}  min{l, a}
1+a 4o

r =

Since « is a parameter to be set, we can choose a to maximize r, giving r = % when a = 1.

When considering cranial vault reshaping, it no longer make sense to consider ideal
and deformed curves, and pieces as segments. It no longer makes sense to talk about
scheduling intervals on the real line. Instead, we generalize the throughput maximization
idea to scheduling two dimensional objects in the plane.

3.2 In the plane.

In the following, we reuse terminology from the one dimensional setting. We are given
activities A, ..., A,,, each consisting of instances. Instances are two dimensional objects,
such as polygons, placed at a certain location in the plane. A feasible schedule schedule
is a collection of instances where at most one instance is selected from each activity, and
for every point ¢ in the R?, the sum of widths of instances covering ¢ is at most 1. We
illustrate the idea with the example below.

Example 3.2.1 (Axis parallel squares.). An instance [ is specified by

1. The center point of the square I, and the side length s(I) of I.

2. The amount w([/) of resource used, where 0 < w(I) < 1.
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3. A profit p(I) collected when I is scheduled.

In step 1. of Algorithm 1, if we now choose a square I with s(_f ) minimized, then we
obtain an approximation ratio of

min{1, o« max{Wmin, 1 — Wmax}}
1+4a ‘

This follows by an application of corollary 3.1.4, and the observation that any instance
I € Z(I) contains one of the four corners of /. If all widths are 1, taking a = 1, maximizing

r, we have that r = %

min{1l,a max{wWmin,l —Wmax } }

1+ka

Remark 3.2.2. In general, if all widths are 1, r = . is maximized by

: _ _ 1
letting o = 1, and so r = 5.

3.2.1 Overlap number and kissing number.

So far, we have observed that a key detail in how we obtain bounds on our approximation
ratio r relies on bounding the denominator using some structure of the set of instances we
have, namely how instances overlap geometrically. In an attempt to make this formal, we
have the following definition.

Definition 3.2.3. (Overlap number.) Let U be a collection of sets in R? and I € U. The
overlap number of I, denoted wy,(I), is the largest collection T C U of pairwise disjoint
sets, which all intersect the interior I° of I.

We write w(I) for wy(I) when U is clear from context. Below are some examples
illustrating this definition.

Example 3.2.4. If U/ is a collection of intervals of R, and I € U/ is chosen with the smallest
right endpoint, then all sets in Z(I) intersect, giving w°(I) < 1.

Example 3.2.5. If U is a collection of closed intervals of R, and I is chosen to have
minimal length, then w°(I) < 2, as for any three intervals in Z(I), two intersect the same
endpoint.

Example 3.2.6. If I/ is the collection of axis parallel squares of side length at least one,
and [ is a unit square, then w°(I) = 4.
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Relaxing the requirement of intersecting the interior of I, we have the following defini-
tion. It is perhaps less natural with the application to craniosynostosis in mind; however,
as we will soon see, some work on the closely related kissing number notion exists.

Definition 3.2.7. (Relaxed overlap number.) Let U be a collection of sets in R? and
I € U. The relaxed overlap number of I, denoted wy (1), is the largest collection 7 C U of
pairwise disjoint sets, which all intersect I.

Note that w®(I) < w(I). We now define the notion of kissing number. First, we say that
two 2-dimensional figures kiss if their interiors have empty intersection and their boundaries
have non-empty intersection. The kissing number is generally defined as follows, as seen
in The kissing number of the regular polygon by Likuan Zhao [15], for instance.

Definition 3.2.8. (Kissing Number.) Let P, be a regular n-gon. The kissing number
k(P,) is the maximum number of pairwise disjoint copies of P, that can be arranged so
that each kiss P,.

Since it is a notion seemingly quite closely related to overlap number, we give a brief
overview of some results on kissing number.

Theorem 3.2.9. (Kissing numbers.) The following kissing numbers are known:

[ ] k’(Pg) =12
o k(P) =8
e k(P,) =6 foralln > 6.

Some work has also been done on rectangles. Let R be a rectangle with sides a and b,
with ¢ =n+7 with n € N, and r € (0,1), then 2n+6 < k(R) < 2n+ 7. The lower bound
is tight if r < %, and the upper bound is tight if r > ‘/7?:, as shown in [10].

We can generalize the kissing number definition in 3.2.8 to the following, so that it aligns
with our definition of overlap number.

Definition 3.2.10. (Kissing number.) Let U be a collection of sets in the plane, and
I € U. The kissing number of I with respect to U, denoted ry (1), is the size of the largest
collection T C U of pairwise disjoint sets, which all intersect the boundary 91 but not the
interior I° of I.
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To see how this definition of kissing number is more general, we can recover the old
definition of k(P,) by letting U be the collection of all copies of a regular n-gon of a given
size in the plane, and letting I € U be one such n-gon. The notion of overlap and kiss are
related by the inequality,

k() <w(]), (3.2.1)

since any kissing configuration is an overlapping one in the relaxed sense. The converse
is not true in general.

Figure 3.1: Overlapping squares. Figure 3.2: Kissing squares.

To tie this back to our performance guarantee of Algorithm 1, observe that if I/ is the
collection of all instances, then corollary 3.1.4 holds with k = max;¢, wy,(I). Furthermore,
consider running the local ratio algorithm, scheduling regular n-gons in the plane, and
where we used the relaxed version of overlapping. Then, the analogous analysis to the one
in handling the axis paralell squares in example 3.2.1, together with inequality 3.2.1, gives
us the following bound on the approximation ratio

1
< —
"= 1 k(B)

3.2.2 Order matters.

Using the overlap number to find a performance guarantee can be pessimistic. Perhaps
there is a certain ordering on the instances such that k = max;ey, wy(I) is never attained.
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Indeed, this is already the motivation behind choosing the interval with earliest end time
in the original paper.
As a motivating example, there exists a collection U of 1 x k rectangles, such that for

one rectangle R € U, w°(R) = 2k + 2, and for all other rectangles R’ € U, w°(R') = 1. An
instance where k& = 6 is seen in figure 3.3, where k£ = 6.

Figure 3.3: A set of overlapping rectangles with w°(R) = 12, and w°(R') = 1.

In spirit of the Bar-Yehuda algorithm, if we choose I = R, then we can only choose one
rectangle, and the area covered is much smaller then if we sequentially choose all but R.
Here the optimal solutions covering most area is choosing the twelve vertical rectangles. It
is clear that knowing max;es w®([) gives us a performance guarantee, but it is not always
the best performance guarantee we can have, as we soon show. An observation worth
making is the following.

Remark 3.2.11. If U] = n and some I € Y has w°(l) = k < n, then for all I' e U, I' # I
we have w°(I') < n — k.

Recalling figure 3.3, we have that w(R) = 12 for one rectangle, and [U| = 13, so all
other rectangles R’ have w(R') < 1. It is then natural to define w?(I), the ordered overlap
number, where < is an ordering on U/, as the overlap of I with instances I’ with I < I'.
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Again, considering the example of figure 3.3, letting R be last under <, we have that the
maximum ordered overlap number is 1. The order in which one considers the instances is
thus key in the sense that one can take k = min_ max; w? (/) in corollary 3.1.4.

3.2.3 Algorithm for fixed size axis parallel squares.

The following illustrates the idea that order matters, and what generalizing algorithm 2 to
the plane looks like. From a medical perspective, simple shapes that are easy to cut, such
as squares, might be desirable. We have an n x n grid of unit squares, where by (i, j) we
denote the square in row ¢ and column 7 in the grid, with 0 <:<n—-1,0< 5 <n—1.
We are also given a collection of activities Ay, ..., A,,, where each activity represents all
possible placements of a square. All squares are of fixed side length 1 < k£ < n, and
s(I) = (i,j) denotes the coordinates of the bottom leftmost vertex of I. At most one
square can cover any entry in the grid, and we can place at most one square from every
activity. The goal is to maximize the profit of a feasible placement. We give an algorithm
(see algorithm 3) yielding a %-approximation.

Algorithm 3 Local Ratio: Choosing bottom leftmost 1.
Inpl'It: Fap7 A17A27 cee 7Am~

1: Delete all instances with non-positive profit.

2: if no instances remain then
3:  return S =1(.
4: Choose I such that s(I) = (4, ) has 7 minimized, and subject to that, j is minimized.

5: Decompose p by p = p; + ps. It is enough to define p;, which we do as follows

1 1€ A(l)

piD) :=p(I) S aw(l) IeZ(l)

0 otherwise

where A(I) is the activity to which I belongs, and Z(I) the set of instances intersecting
I from other activities.

6: Solve the problem recursively on input (F,ps), and return S'.
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7. if &' U{I} is a feasible schedule then
8 return S:=S U{l}
9: else

10: return S =95

Again, proposition 3.1.2 holds, reworded here below to fit the vocabulary of the two
dimensional situation.

Proposition 3.2.12. If for all profit functions p = p1+ps with pg(f) =0, every I-mazimal
placement is an r-approximation with respect to p;. Then the placement S returned by
algorithm 3 is an r-approximation.

Let < be the ordering on X := UA; in step 4 of the algorithm.

Claim 1. max;cxy w<(I) < 2.

Proof. Consider a square I € X. Let I' N1 # (), with I < I’. Then, by definition of <, we
have two (non-exclusive) cases:

1. I’ intersects the bottom right corner of I

2. I’ intersects the top right corner of I.

Hence, for any I” with I”" N1 # () and I’ N 1" = (@, if I’ is in case 1, then I” is in case 2
and vice versa. Therefore, w-(I) < 2. The claim follows. O
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Figure 3.4: Examples of possible combinations of placements for I (in black), I’ (in red),
and I” (in blue).

Now, we proceed analogously to the one dimensional setting. In other words, we give
an upper bound b, on the optimum p; profit and a lower bound byax on the p; profit of
I-maximal placements.

Consider an optimal placement. By the choice of decomposition of p, the only instances
contributing profit are instances in Z(I)U.A(I). By the above claim, instances in Z(I) con-
tribute at most at most 2ap(I). The contribution of instances in A(I) is at most one, as
any placement contains at most one instance of each activity. Thus, b, < 1+ 2a.

Consider now a I-maximal placement. Any such placement contains an elements of
A(I) or a set instances preventing the addition of I. Thus, bpax > min{l,a}. Thus,
the above algorithm is a %—approximation. Note that, the naive analysis, when not caring
about the ordering, gave a %—approximation, so the ordering gave a significant improvement.
Moreover, an analogous argument holds for identical axis parallel rectangles, oriented the
same way. If we consider axis parallel rectangles of dimension k; X ky with k; < ko and
the two possible orientations are allowed, then w_ (1) <[]+ 1 by a similar argument to

min{1,a}

a2 141 For instance, if k; = 1

claim 1. This, in turn gives an approximation ratio of

and ko = 10, this gives a %—approximation.
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3.3 Conclusion

In this chapter, we generalized scheduling intervals on the real line to geometric objects in
the plane. We analyzed our problems using the local ratio and gave examples of instances
with simple geometric objects, where we achieve constant approximation ratios.

We stumbled upon kissing number, and found it intriguing, that to our knowledge,
nothing in the literature mentions the generalization of kissing number where intersection
of interiors is allowed, as this seem to be a fundamental geometric problem. We used
the notion of overlap number to give bounds on the approximability of our problems,
and also noticed that the order in which the objects are processed play a significant role.
How big is the gap when not caring about order versus when you do take order into
account is an interesting question. How slim our objects were played a significant role
in the approximability; it would be nice to have some form of general result relating the
approximately to some high level parameter of a class of geometric object. Perhaps the
ratio of the perimeter to the area is of interest?

The work in this chapter is somewhat removed from the original application of cran-
iosynostosis; the plane is quite different from an ideal skull. A skull usually has non-zero
curvature, for instance. If one is thinking of these geometric objects as skull pieces to be
placed on a skull, perhaps the profit of a piece at a certain location in the plane could be
chosen as to account for this skull-plane disparity. Further research into bridging the gap
between the plane, and a model of the skull would be great to see.

Other, more general, questions that arose are: can one say more about the relation
between kissing and overlap numbers? What are the overlap numbers for simple shapes
like regular polygons? Are optimal overlapping and kissing configurations related?

This is part of what makes mathematics wonderful: we started with an optimization
problem motivated by medicine, and are now asking questions about Euclidean geometry.
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Appendix A

Data

A.1 Allowing middle placements.

Table A.1: Skull A.

’ w ‘ Covered area (%) ‘ Objective ‘ Non-region pieces ‘ Region pieces ‘ Run time (s) ‘
1 70 2507.575 7 0 475.37
1 75 3593.693 8 0 1133.25
1 80 4328.770 8 0 1854.34
1 85 3956.226 8 0 2015.37
1 90 6654.603 9 0 3600.00
2 70 2319.224 7 0 155.38
2 75 2700.144 8 0 142.25
2 80 3514.421 9 0 204.26
2 85 4082.187 9 0 354.17
2 90 3852.434 9 0 387.53
2 95 6573.883 10 0 725.50
2 100 8207.805 10 0 3186.44
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Table A.2: Skull B.

w ‘ Covered area (%) ‘ Objective ‘ Non-region pieces ‘ Region pieces ‘ Run time (s) ‘
1 70 2704.192 8 0 155.01
1 75 3004.386 8 0 162.83
1 80 3752.150 9 0 227.27
1 85 4758.850 9 0 854.08
1 90 4960.380 9 0 1774.93
1 95 10452.819 10 0 3600.00
2 70 2454.839 8 0 196.42
2 75 2868.489 9 0 121.71
2 80 3270.785 9 0 224.35
2 85 4476.344 10 0 323.38
2 90 5125.455 10 0 363.32
2 95 6197.218 10 0 507.76
2 100 8081.915 8 1 2240.46
Table A.3: Skull C.
w \ Covered area (%) \ Objective \ Non-region pieces \ Region pieces \ Run time (s) ‘
1 70 2838.462 8 0 282.52
1 75 3304.546 8 0 317.49
1 80 4050.125 9 0 1107.77
1 85 4746.464 9 0 780.92
2 70 2144.863 8 0 95.27
2 75 2673.033 8 0 187.92
2 80 3120.331 9 0 277.21
2 85 3962.262 9 0 527.27
2 90 4852.374 10 0 294.21
2 95 6647.937 10 0 628.97
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Table A.4: Skull D.

w ‘ Covered area (%) ‘ Objective ‘ Non-region pieces ‘ Region pieces ‘ Run time (s) ‘
1 70 2475.588 8 0 474.15
1 75 2940.906 9 0 689.80
1 80 4105.957 9 0 3600.00
1 85 5015.818 10 0 3600.00
2 70 2049.013 9 0 108.52
2 75 1937.468 9 0 141.72
2 80 2511.720 10 0 129.32
2 85 3471.584 10 0 545.08
2 90 5108.069 10 0 661.89
2 95 7623.566 10 0 3600.00
Table A.5: Skull E.
w ‘ Covered area (%) ‘ Objective ‘ Non-region pieces ‘ Region pieces ‘ Run time (s) ‘
1 70 2749.418 8 0 406.68
1 75 3116.832 8 0 563.27
1 80 4609.550 9 0 825.31
1 85 4435.781 9 0 3600.00
1 90 8449.245 10 0 3600.00
2 70 2437.279 8 0 207.68
2 75 2305.033 9 0 196.58
2 80 3445.759 9 0 230.26
2 85 3690.297 10 0 284.93
2 90 4597.658 10 0 507.06
2 95 8116.526 10 0 3600.00
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A.2 Disallowing middle placements.

Table A.6: Skull A.

’ w \ Covered area (%) \ Objective \ Non-region pieces \ Region pieces \ Run time (s) ‘
1 70 7535.518 5 1 21.69
1 75 7483.207 5 1 22.80
1 80 10323.443 3 2 22.21
1 85 13393.852 6 1 115.37
1 90 24250.883 7 1 258.34
1 95 27390.623 9 0 1980.75
2 70 7760.255 5! 1 26.01
2 75 7204.546 5 1 25.62
2 80 8818.526 6 1 27.07
2 85 10560.802 7 1 29.19
2 90 23457.060 10 0 35.32
2 95 24103.856 8 1 35.36
2 100 26041.755 8 1 237.48
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Table A.7: Skull B.

w ‘ Covered area (%) ‘ Objective ‘ Non-region pieces ‘ Region pieces ‘ Run time (s) ‘
1 70 10592.282 3 2 15.70
1 75 6064.486 6 1 17.87
1 80 7099.673 6 1 22.37
1 85 13536.013 5 2 66.88
1 90 22477.605 9 0 245.07
1 95 20958.717 10 0 251.16
1 100 31258.425 8 1 1697.08
2 70 5164.049 5! 1 18.55
2 75 5378.347 6 1 18.51
2 80 6334.648 7 1 18.52
2 85 13352.410 6 1 19.72
2 90 14192.971 7 1 22.42
2 95 22766.010 8 1 53.61
2 100 19740.513 10 0 287.80
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Table A.8: Skull C.

w ‘ Covered area (%) ‘ Objective ‘ Non-region pieces ‘ Region pieces ‘ Run time (s) ‘
1 70 7816.304 3 2 14.00
1 75 17343.216 4 2 19.66
1 80 18140.420 5 2 27.99
1 85 10891.765 7 1 115.11
1 90 28642.257 8 1 365.18
1 95 24632.978 10 0 2040.62
2 70 7732.713 3 2 19.26
2 75 8324.796 4 2 21.34
2 80 8904.369 5! 2 22.06
2 85 10668.587 6 2 39.96
2 90 11781.942 8 1 42.87
2 95 13121.046 8 1 102.29
2 100 13859.205 10 0 1026.25
Table A.9: Skull D.

w \ Covered area (%) \ Objective \ Non-region pieces \ Region pieces \ Run time (s) ‘
1 70 7244.307 2 3 21.55
1 75 8841.618 3 3 23.77
1 80 7130.499 7 1 76.84
1 85 8959.342 8 1 52.94
1 90 19030.084 10 0 666.57
1 95 24143.828 10 0 3600.00
2 70 4399.714 4 2 20.76
2 75 6378.661 3 3 23.08
2 80 7295.066 8 1 26.68
2 85 13022.260 6 2 38.31
2 90 8303.358 8 1 169.62
2 95 11545.489 10 0 388.21
2 100 17936.708 10 0 3600.00
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Table A.10: Skull E.

w ‘ Covered area (%) ‘ Objective ‘ Non-region pieces ‘ Region pieces ‘ Run time (s) ‘
1 70 7223.498 8 0 15.58
1 75 8187.419 9 0 27.76
1 80 11571.038 9 0 26.65
1 85 11489.222 9 0 92.45
1 90 12509.854 10 0 835.43
1 95 18203.098 10 0 3600.00
2 70 5779.015 6 1 18.82
2 75 5531.696 7 1 18.33
2 80 7217.611 7 1 24.73
2 85 12087.947 10 0 20.42
2 90 11369.308 10 0 73.13
2 95 11223.301 10 0 310.85
2 100 23192.389 10 0 3600.00
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