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© Tümay Özdemir 2022



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Achieving satisfying fluid animation through numerical simulation can be time-consuming
because such simulations are computationally expensive to perform and there are few
practical post-processing tools for editing of completed simulations – often, the user must
modify their scene setup and launch it again from scratch. To address this challenge, we
present a divergence-free biharmonic vector field interpolation and extrapolation method
for reusing and/or stitching together spatial regions of existing flows. Given velocities and
velocity gradients on the boundary of a domain at each timestep, which may be either
user-defined or drawn from existing simulations, we fill in the given domain by construct-
ing an optimally smooth, divergence-free, boundary-satisfying vector field. We measure
smoothness using the Laplacian energy to allow smooth boundary behavior and enforce
divergence constraints through explicit Lagrange multipliers. The prior methods for this
problem suffer from non-zero divergence and associated visible compression artifacts, or
cannot smoothly match the desired slopes at the domain boundaries. Moreover, we intro-
duce a new extrapolation scheme that can handle unprescribed boundaries by smoothly
extending the vector field through the unspecified boundary. In this case, we measure the
smoothness using the Hessian energy which provides well-behaved solutions for “free” or
natural boundary conditions. We demonstrate that our new interpolation and extrapo-
lation procedures always produce smooth and incompressible flows, as well as enabling a
range of natural simulation editing capabilities including hole-filling, copy-pasting, extrap-
olation, and scene stretching.
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Chapter 1

Introduction

Physically-based simulation of fluids has become an important tool for many visual effects
applications, such as movies and computer games. However, high quality fluid simulations
remain computationally and financially expensive. They are computationally expensive
because standard simulation methods scale roughly quartically with grid resolution. More-
over, there is not an easy way to to guess the scene parameters that must be used to obtain
the desired animation before simulating. As a result, artists are bound to resimulate re-
peatedly with different parameters until they obtain the desired animation.

Due to the high computation time of standard fluid simulation methods, re-simulating
from scratch becomes a bottleneck for visual effects production. For that reason, providing
tools that enable reuse of existing simulations is an important task. While the main
goal is to synthesize a new flow reusing existing simulation data, it is important and
also challenging to provide a tool that respects the governing physics, which give the
fluid its natural appearance. In particular, it is essential to preserve incompressibility
to avoid volume change. Incompressibility implies that the divergence of the vector field
representing the fluid’s velocity should always be zero.

Cut-and-paste editing has been ubiquitously applied to seamlessly combine images and
videos; however, it has also been recently introduced to physically-based fluid animation by
Sato et al. [2018]. Sato et al. applied this concept to fluid animation to combine pieces of
existing simulations using an interpolation scheme. The central task is to fill a volumetric
region with a smooth incompressible vector field, given only the boundary data, which
comes from the existing simulations. This approach can be used for several meaningful
scenarios such as hole-filling, copy-paste, and scene stretching.
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Unfortunately, existing methods for this vector field interpolation problem possess key
limitations. The method of Sato et al. [2018] introduces significant divergence inside the
interpolation region depending on the choice of input flows. As a result, the interpo-
lated vector fields fail to satisfy the divergence-free property, violating the underlying
incompressibility assumption and leading to undesired expansion and contraction effects.
Instead, to strictly enforce incompressibility, one might use a potential-flow-based interpo-
lation [Nielsen and Bridson, 2011], or solve a Stokes problem [Bhattacharya et al., 2012],
which better preserves rotational motion. The shortcoming of these methods is that, while
the generated vector field matches the prescribed boundary velocity values, it does not
match their gradients, resulting in undesirable derivative discontinuities along the border
of the generated vector field. This effect can highlight the presence of the computational
boundary and break the illusion of a natural flow.

To address this challenge, we develop a novel divergence-constrained biharmonic in-
terpolation technique for fluid animation editing. We pose this task as an optimization
problem discretized on a grid over the region of interest, where we minimize an appropri-
ately chosen smoothness energy subject to the incompressibility constraint. The result is a
maximally smooth field that is able to simultaneously match prescribed velocity values and
derivatives on the boundary; meanwhile the use of explicit Lagrange multipliers for the con-
straints tightly couples the three velocity components together to ensure a divergence-free
field. Furthermore, unlike prior work we generalize our approach to handle regions with
open or partially specified boundaries, leading to a new method for incompressible vector
field extrapolation. We demonstrate our new vector field interpolation and extrapolation
tools on various flow field editing scenarios.
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Chapter 2

Related Work

The control and editing of fluid flows has been an interesting problem in computer graphics
and a wide range of approaches have been proposed. We will focus our review primarily on
control of smoke, although a significant amount of work, going back to Foster and Metaxas
[1997], has also explored controlling liquid surfaces.

A keyframe-based approach is used to make the fluid flow evolve in a way that the fluid
density or shape matches a sparse set of user-provided target keyframes while the resulting
flow still respects the governing physics. Fattal and Lischinski [2004], McNamara et al.
[2004], Pan et al. [2013], Shi and Yu [2005], Thuerey et al. [2006], and Treuille et al. [2003]
formulate this task as an optimization problem. For example, McNamara et al. [2004]
introduce an adjoint method to efficiently compute the gradients for their gradient-based
nonlinear optimization.

A boundary conditions-based approach relies on applying velocity boundary conditions
to the underlying simulation [Rasmussen et al., 2004; Raveendran et al., 2012; Stomakhin
and Selle, 2017; Wiebe and Houston, 2004]. Often these methods have been used to cause
liquid to follow a target motion or character, with varying degrees of “looseness” allowed
in order to retain a fluid-like effect. For example, Raveendran et al. [2012] introduce a
novel volume-preserving morphing method for liquid shapes and motions based on input
meshes (can be poses for a character or deformations of a 3D model) with an additional
divergence-free constraint.

A guiding-based approach is employed to combine the low-frequency features that pro-
vide overall flow structure at the coarse scale with the high-frequency features that give the
fluid its high resolution turbulent details [Forootaninia and Narain, 2020; Inglis et al., 2017;
Nielsen and Bridson, 2011; Nielsen and Christensen, 2010; Nielsen et al., 2009; Pan et al.,
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2013; Sato et al., 2021; Thuerey et al., 2006]. Typically, the low-frequency guiding vector
field is either designed manually by an artist or generated using a fast low-resolution simula-
tion. Given a low-resolution precomputed or procedural flow lacking small-scale turbulent
details, guiding-based methods aim to obtain a new simulation based on the low-resolution
input simulation that has the additional high-resolution details. For example, Sato et al.
[2021] propose an optimization-based approach in the stream function space. They first
convert an input low-resolution guide simulation into a so-called stream function repre-
sentation that guarantees incompressibility by construction. Then, at each timestep, they
solve for a new high resolution velocity field that balances between matching the coarse
guide data and the high resolution physics of the unconstrained simulation, thereby adding
physically plausible fine details while preserving the overall coarse flow structure.

There are other approaches that directly modify the fluid geometry (surface shape or
density field), rather than the velocity field, such as space-time fluid sculpting [Manteaux
et al., 2016] and fluid-carving [Flynn et al., 2019]. Another geometric approach seeks to
interpolate the global fluid shape and motion from multiple input simulations [Raveendran
et al., 2014; Thuerey, 2016]. Since these methods focus on geometry rather than the
underlying velocities, they don’t necessarily enforce the incompressibility condition and
can therefore struggle to preserve volume.

A related task in liquid animation is to insert a localized 3D simulation, such as the
region around a ship or swimming character, into a much larger surrounding procedural
ocean or shallow water model. This effect has typically been achieved through the use of
non-reflecting boundary conditions [Bojsen-Hansen and Wojtan, 2016; Söderström et al.,
2010], which smoothly damp out the surface flow to match the prescribed exterior model.

Closest to our method are PDE-based velocity interpolation approaches that solve for
a discrete vector field over a bounded region. Inspired by Poisson image editing [Pérez
et al., 2003], recent work by Sato et al. [2018] demonstrates the potential of a cut-and-
paste metaphor for fluids. Given two velocity fields, referred to as the source and target
fields, the user defines a copy region on the source velocity field to be pasted on the target
velocity field. The method of Sato et al. [2018] consists of two processes: “frame matching”
and “flow interpolation”. We focus our review on their “flow interpolation” process since
it is more relevant to our work. To ease or smooth out the transition of the velocity field
from the exterior target region into the pasted interior source region, a narrow buffer or
blend region is introduced at their border. To fill in the blend region Ω between the pasted
region of the source flow and its new surrounding target flow, their “flow interpolation”
step consists of solving a vector Laplacian problem. Unfortunately, they show that their
approach suffers from compression artifacts even when the inputs are divergence-free. We
provide more insight on their method in Section 5.1.
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Nielsen and Bridson propose using a potential flow approximation for incompressible
velocity interpolation in the context of a guiding method for liquid animation [Nielsen and
Bridson, 2011]. Potential flow has the advantage that it strictly ensures incompressibility
by construction. Subsequently, Bhattacharya et al. [2012] show that interpolation based
on the Stokes equations offers better preservation of rotational modes than the potential-
flow-based interpolation. However, the Stokes formulation offers only C0 continuity on the
velocity field at the boundaries, leading to a lack of visual smoothness. These formulations
also do not offer convenient support for open/unprescribed boundaries (i.e., extrapolation
rather than interpolation). Since the derivations for the potential flow and Stokes flow
approaches provide essential context for our method, we review them in Sections 5.2 and
5.3.
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Chapter 3

Mathematical Background

We propose a method to synthesize a new fluid simulation using pieces of existing (pre-
viously simulated) fluid simulations that we combine via an interpolation scheme. In our
implementation, the input simulations are drawn from standard grid-based fluid simula-
tions. Thus, for a better understanding of our method, in this chapter, we give a brief
background on the governing physical equations and the advection/pressure projection
steps behind these fluid simulations. For a complete introduction to these topics, we refer
the reader to the textbook by Bridson [2015].

We also describe our spatial discretization details in Section 3.2 and the divergence
operator that we make use of in our formulations in Section 3.3.

3.1 Governing Equations

Most fluid flows of interest to animation are primarily determined by the incompressible
Navier-Stokes equations, a system of partial differential equations, formulated as:(

∂u

∂t
+ u · ∇u

)
+

1

ρ
∇p = g + ν∇ · ∇u (3.1)

∇ · u = 0 (3.2)

where u is fluid velocity, t is time, ρ is fluid density, p is pressure, g is the body forces such
as gravity (and possibly other control forces applied to guide the fluid towards a desired
shape), and ν is kinematic viscosity [Bridson, 2015].
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Equation (3.1) is essentially the well-known Newton’s law of conservation of momentum,

F⃗ = ma⃗, adapted to the case of a continuous medium. In equation (3.1), the terms
surrounded by parentheses constitute the material derivative, denoted as Du

Dt
= (∂u

∂t
+u·∇u).

The material derivative describes the rate of change of velocity with respect to the moving
velocity field. Incompressibility is enforced with a divergence-free condition in equation
(3.2).

For the kinds of smoke animations that will be the focus of this thesis, we might
prefer to omit the viscosity since the effect of viscosity is negligibly small. Moreover, most
numerical methods for simulating fluids inevitably introduce errors that have an apparent
effect similar to viscosity, i.e., applying damping effects on the velocity. Navier-Stokes
equations without the viscosity term are called the Euler equations and have the following
form [Bridson, 2015]:

Du

Dt
+

1

ρ
∇p = g (3.3)

∇ · u = 0. (3.4)

Operator splitting is applied to the incompressible Euler equations to divide the solution
procedure into three separate parts: the advection part, the body forces part, and the
pressure/incompressibility part. Then, we obtain the following three equations:

Du

Dt
= 0 (advection) (3.5)

∂u

∂t
= g (body forces) (3.6)

∂u

∂t
+

1

ρ
∇p = 0

such that ∇ · u = 0 (pressure projection). (3.7)

Loosely speaking, advection (3.5) transports the fluid velocities along the velocity vector
field itself, body forces (3.6) apply acceleration due to gravity, and pressure projection
(3.7) ensures that the velocity field at the end of a timestep is volume preserving.
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Figure 3.1: A MAC grid cell in 2D (a) and in 3D (b). (a) For the cell (i, j) in 2D,
pressure, indicated by pi,j, is sampled at the cell center. The horizontal u-components of
the velocity, indicated by ui−1/2,j, ui+1/2,j, are sampled at the vertical cell faces and the
vertical v-components of the velocity, indicated by vi,j−1/2, ui,j+1/2, are sampled at the
horizontal cell faces. (b) Similarly, for the cell (i, j, k) in 3D, pressure is sampled at the
cell center. The incoming and outgoing velocity normal components are sampled at the
corresponding cell faces [Bridson, 2015].

3.2 Spatial Discretization

3.2.1 Staggered Grid

We use the staggered “marker-and-cell” (MAC) spatial discretization introduced by Harlow
and Welch [1965] in our implementation. With this discretization, after laying a uniform
Cartesian grid over the fluid domain of interest, pressure values are sampled at the cell
centers and the normal velocity components are sampled at the cell faces as illustrated in
Figure 3.1.

This type of discretization allows us to formulate second-order accurate central differ-
ences, which are used in pressure projection, without causing the undesirable non-trivial
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null-space [Bridson, 2015]. We provide more explanation on this in Section 3.3.

3.3 Discrete Divergence

The desired incompressibility condition is satisfied with a divergence-free constraint stating
that the divergence of the field is zero: ∇ · u = 0. The divergence operator is:

∇ · u =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
, (3.8)

where u, v, and w correspond to the three components of the velocity in x, y, and z
direction. This operator is discretized using finite differences on the staggered grid and in
3D, for the grid cell (i,j,k), it has the form:

(∇ · u)i,j,k ≈
ui+1/2,j,k − ui−1/2,j,k

∆x
+

vi,j+1/2,k − vi,j−1/2,k

∆x
(3.9)

+
wi,j,k+1/2 − wi,j,k−1/2

∆x
.

It is this discrete measure of incompressibility that will be enforced by pressure projection
(Section 3.5), and which we will later seek to preserve in our new interpolation scheme.

Unlike a staggered grid, a regular collocated grid, where all velocity components are
sampled at the same grid location, would make the divergence computation less robust.
Let us consider an alternative, collocated central differences-based approximation formu-
lated in 2D as (∇ · u)i,j,k ≈ ui+1,j−ui−1,j

∆x
+

vi,j+1−vi,j−1

∆x
. If a highly divergent velocity field,

such as ui,j = ((−1)i, (−1)j), is used, the divergence operator can incorrectly measure zero
divergence at some grid locations, resulting in high-frequency oscillations and local com-
pression errors [Bridson, 2015]. In contrast, on the staggered grid, even for high frequency
data, the corresponding divergence operator does not overlook any divergence present in
the velocity field. Therefore, a staggered grid tends to be a better fit for discrete divergence
computation.

3.4 FLIP Advection

The advection step in equation (3.5) can be performed by using various methods. In
our implementation, we use fluid-implicit-particle (FLIP) advection [Brackbill et al., 1988]
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while generating the input simulations; therefore, we focus on this advection scheme in this
section.

The FLIP method is a hybrid particle-grid method that makes use of both Lagrangian
(moving particle) and Eulerian (stationary grid) viewpoints. In this method, particles with
assigned velocities are responsible for advecting the velocity field. Velocities are trivially
advected with particles and Du

Dt
= 0 is automatically satisfied when particles are advected

in a Lagrangian manner through an interpolated grid-based velocity field. After advection,
velocity data is transferred to the grid and all other non-advection steps such as addition
of body forces and pressure projection are performed on the grid in an Eulerian fashion.
The full simulation loop for a simulator based on FLIP advection can be summarized by
the following ordered steps [Bridson, 2015]:

■ Transfer particle velocities up to grid velocities un. Transferring particle velocities to
the grid is performed by simply taking a weighted sum of particle velocities at each
grid location (i,j,k):

un
i,j,k =

∑
p

up
(x⃗p − x⃗i,j,k)

W
, (3.10)

where x⃗ represents the position and W is the weight value which depends on the
particular interpolation kernel one chooses to use.

■ Perform addition of body forces, such as buoyancy forces, and pressure projection
on the grid. After we apply body forces and pressure, we obtain a new grid velocity
field un+1.

■ Update the particle velocities by combining the interpolated grid velocities with
particles’ velocities. Classic particle-in-cell (PIC) interpolation sets the new particle
velocity up as:

uPIC
p = bilerp(un+1,xp), (3.11)

where bilerp indicates a bilinear interpolation operation given grid velocities u and
particle’s position xp. On the other hand, “pure” FLIP interpolation sets the new
particle velocity up as:

uFLIP
p = up + bilerp(un+1 − un,xp), (3.12)

i.e., it determines the difference/change from the grid un+1 − un, and increments up

with the difference information, rather than overwriting the particle data completely
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like PIC does. This incremental approach avoids the severe smoothing suffered by
PIC due to repeated interpolation and overwriting of the velocities.

Finally, Bridson [2015] recommends updating up with a combination of PIC and
FLIP, to smooth out some of FLIP’s inherent noisiness as:

up = 0.99uFLIP
p + 0.01uPIC

p . (3.13)

■ Advect the particles using the grid velocities with a standard integrator (forward
Euler, Runge-Kutta, etc.).

3.5 Pressure Projection

Pressure projection is a critical step in incompressible fluid simulations because it makes the
fluid incompressible and simultaneously imposes the boundary conditions. It is formulated
as [Bridson, 2015]:

un+1 = u− ∆t

ρ
∇p (3.14)

such that ∇ · un+1 = 0 (3.15)

and un+1 · n = usolid · n at solid boundaries. (3.16)

It consists of subtracting the pressure gradient from the fluid velocity u such that the
resulting velocity un+1 will be divergence-free and satisfy the free-slip boundary conditions.

Equation (3.14) has the following discretized form:

un+1
i+1/2,j,k = ui+1/2,j,k −

∆t

ρ

pi+1,j,k − pi,j,k
∆x

vn+1
i,j+1/2,k = vi,j+1/2,k −

∆t

ρ

pi,j+1,k − pi,j,k
∆x

(3.17)

wn+1
i,j,k+1/2 = wi,j,k+1/2 −

∆t

ρ

pi,j,k+1 − pi,j,k
∆x

for each u-, v-, and w-component of the velocity in 3D.

We can now combine equations (3.14) and (3.15) by simply inserting u−∆t1
ρ
∇p from

(3.14) into (3.15) in the place of un+1. After rearranging, the resulting pressure equation
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has the following form in 3D:

∆t

ρ

(
4pi,j,k − pi+1,j,k − pi,j+1,k − pi,j,k+1 − pi−1,j,k − pi,j−1,k − pi,j,k−1

∆x2

)
= (3.18)

−
(
ui+1/2,j,k − ui−1/2,j,k

∆x
+

vi,j+1/2,k − vi,j−1/2,k

∆x
+

wi,j,k+1/2 − wi,j,k−1/2

∆x

)
.

Note that the resulting equation (3.18) is the numerical approximation of the Poisson
equation, −∆t

ρ
∇·∇p = −∇·u. These discrete equations can be straightforwardly modified

to enforce static interior and exterior solid boundaries by requiring the appropriate normal
velocity components to be zero.
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Chapter 4

Problem Statement

The central task that we seek to address in this thesis is to fill a volumetric domain Ω with
a divergence-free fluid vector field u, given prescribed vector field data on its boundary
∂Ω = Γ. That is, we seek to perform incompressible vector field interpolation.

Furthermore, one can also perform incompressible vector field extrapolation in addition
to interpolation by introducing support for open rather than prescribed boundaries. In
the presence of one or more unprescribed boundaries, we aim to find a vector field that
smoothly extends into the unspecified boundaries.

For there to exist a feasible incompressible interpolated velocity field, an additional
compatibility condition must be satisfied: the net flux of fluid entering and leaving the
domain across the prescribed boundaries must be zero, meaning that the input boundary
velocities must integrate to zero. (This stipulation can be straightforwardly upgraded to
a prescribed net in/out flux.) It can be formulated as:

∫∫∫
Ω

∇ · u dV = 0 =

∫∫
Γ

u · n dA (4.1)

Let us now consider a few use cases.

4.1 Hole-Filling

The simplest meaningful use case is a vector field hole-filling scenario, where Ω is a region
of an existing simulation that has been deleted and must now be smoothly replaced. For
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example, if a region of a simulation yields a local motion that turns out to be undesir-
able (e.g., due to an object, some external force, etc.), one can simply delete that region
and, on every frame, interpolate a new vector field to replace it. For the typical case of
time-dependent simulations, the process should be performed for every timestep, using
the corresponding boundary data from the existing simulation. Figure 4.1 illustrates the
discrete grid layout for a low resolution example hole-filling scenario. In practice both the
hole region and the surrounding simulation region will consist of many more voxels than
shown here.

4.2 Copy-Paste

Another use case, explored by Sato et al. [2018], is to combine two (or more) previously
computed simulations in a copy-and-paste fashion, as follows. Select the region to be copied
in the source simulation. Place it into the desired location in the target simulation. Add
a buffer region of a user-defined width around the source region, which will provide the
flexibility to blend between the inputs. The buffer region should be at least one layer and
the thicker it is the more flexibility the optimization has to find a smoother blend field. On
the other hand, increasing the thickness of the buffer region makes our system bigger and as
a result more costly to solve. Thus, we/the user choose the width of the buffer region such
that the result is satisfyingly smooth and also has acceptable performance. Finally, using
the boundary data from the source and target regions, interpolate a new vector field for
the buffer region (Figure 4.2). This copy-and-paste methodology also naturally generalizes
to N source regions being pasted into the target.

4.3 Open Boundary Scenarios

The scenarios above were based on vector field interpolation, i.e., when boundaries are
fully prescribed. However, many other interesting use cases involving one or more open/
unprescribed boundaries can also be considered. In this thesis, we use the term “extrapola-
tion” for scenarios with one or more unprescribed boundaries and the term “interpolation”
for scenarios with fully prescribed boundaries. For example, by slicing a simulation into
a series of layers along one axis, spacing them apart, and filling the spaces in by ex-
trapolation, a scene stretching mechanism can be supported (Figure 4.3c). This scenario
contains unprescribed boundaries where the region to be filled coincides with part of the
exterior boundary along the sides, thus it requires an extrapolation scheme to mimic open
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(a) 2D (b) 3D

Figure 4.1: Hole-Filling structure in 2D (a) and in 3D (b). Basic setup for filling a
hole in a simulation on a MAC grid. (a) In 2D, each square (red or yellow) represents a
grid cell and the velocity components (dark red or green) are sampled at the edges. Yellow
squares represent the hole region to be filled using the boundary data on the edges (dark
red) between the hole (yellow) and the input simulation (red). The interpolated velocity
field is represented by the velocity components inside the hole (green). (b) Similarly, in
3D, voxels represent the grid cells and cylinders represent the velocity components which
are sampled at cell faces. Yellow voxels represent the hole to be filled using the simulation
data (red). Boundary velocity components (red cylinders) around the hole come from the
input simulation (red).
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(a) 2D (b) 3D

Figure 4.2: Copy-paste structure in 2D (a) and in 3D (b). Basic setup for com-
bining pieces of existing one source and one target simulation on a MAC grid. (a) Voxels
represent the grid cells and cylinders represent the velocity components which are sampled
at cell faces. Simulation domain is divided into three distinct regions: target (red), blend
(yellow), and source (blue). Yellow voxels represent the blend region between source (blue)
and target (red) regions. Outer boundary velocity components (red cylinders) of the blend
region come from the target simulation (red) and inner boundary velocity components
(blue cylinders) come from the source simulation (blue). Green cylinders represent the
interpolated velocity components in the blend region. Note: in this low-resolution visu-
alization, blend regions have one-cell width for simplicity; but, in practice we use wider
blend regions in real applications so there is more flexibility in fitting a smooth blending
field.
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boundaries. Similarly, multiple distinct previously-computed simulations can afterwards
be patched together side-by-side to synthesize a new larger combined scene. This idea can
be viewed as a very basic (but efficient) domain decomposition strategy.

In another scenario, extrapolation could be used to change the behavior of the domain
boundaries. For example, having a previously-computed simulation of a vector field with
closed boundaries, one might wish to generate an animation that has the same inner vector
field but with apparently open outer boundaries. This can be achieved by removing a few
layers of cells on the boundary, and filling them back in with our extrapolation scheme.

In addition to changing the outer boundary type from closed to open, another plausible
use case for this extrapolation method can be domain extension. For example, you may
have already computed a smoke simulation over a small region, but you want to expand
the apparent size of the simulation in a way that is not immediately obvious to the viewer
without re-simulation. Then, our extrapolation method can be used to fill in a large outer
padding area surrounding the input simulation.
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(a) 2D (b) 3D (c) Scene Stretching

Figure 4.3: Extrapolation structure in 2D (a), in 3D (b), and Scene Stretching
in 2D (c). Basic setup for scenarios with open boundaries on a MAC grid. (a) In 2D,
each square (red or yellow) represents a grid cell and the velocity components (dark red or
green) are sampled at the edges. Yellow squares represent the extrapolation region to be
filled using the boundary data on the edges (dark red) between the extrapolation region
(yellow) and the input simulation (red). Exterior boundary of the extrapolation region
is unprescribed (green velocity components). For the unprescribed boundaries, open or
natural boundary conditions are used to allow the vector field to flow in and out through
the unprescribed boundary. (b) Similarly, in 3D, yellow voxels represent the extrapolation
region to be filled using the simulation data (red).
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Chapter 5

Limitations of the Existing Methods

Having laid out the core problem, we now proceed to consider methods for solving it. In
Chapter 2, we referred to several approaches that use PDEs for vector field interpolation
as closest to our method. To motivate our approach, in this chapter, we investigate these
methods and identify their limitations.

5.1 Vector Harmonic Interpolation

Let us think about the characteristics that we want our output field u to possess. First,
u should match the boundary data ub on the boundary Γ. Second, it should be smooth
inside the interpolation domain Ω. We will make these requirements mathematically precise
below.

Having only these two characteristics in mind, harmonic interpolation [Joshi et al.,
2007] (adapted to vector data) might be a good choice and can be expressed as minimizing
the vector Dirichlet energy ([Stein et al., 2020]):

argmin
u

∫∫∫
Ω

1

2
∥∇u∥2F dV (5.1)

subject to u = ub on Γ.

The minimizer satisfies ∇ · ∇u = 0, i.e., a vector Laplacian on the velocity, with Dirichlet
boundary condition (i.e., prescribed boundary values). In the context of a fluid problem,
this Dirichlet boundary condition is also a no-slip condition.
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The vector Dirichlet energy, E(u) =
∫∫∫

Ω
1
2
∥∇u∥2F dV , measures how much a vector

field u varies in Ω [Stein et al., 2020]. For example, the vector Dirichlet energy is zero
for a constant vector field, whereas it will be high for rapidly changing vector fields. In
equation (5.1), by minimizing the magnitude of the gradient of u, this formulation fits the
data while avoiding steep slopes in the output field.

In addition to smoothness and boundary agreement, we want our field to possess a third
characteristic: incompressibility. However, Dirichlet energy is not guaranteed to produce a
divergence-free field (Figure 5.1). One might enforce incompressibility by projecting u to
be incompressible as a post-process. However, in doing so, the resulting harmonic flow’s
smoothness might be distorted but more importantly, tangential velocity discontinuities
might occur at the boundaries because pressure projection only applies a free-slip condition
(matching boundary normal components but not tangential components).

We use line integral convolution (LIC) [Cabral and Leedom, 1993] to visualize resulting
two dimensional vector fields in our comparisons (such as Figure 5.1) between existing
methods and our method since it provides a convenient way of visualizing static vector
fields. While it is sufficient to use LIC to visualize the local behavior of vector fields, it
does not capture the orientation and strength of these fields and is thus limited in some
ways. Lastly since the LIC method starts from random noise and deforms it according to
the vector field, we obtain different results from each run of the method.

5.2 Potential Flow

Inspired by the work of Hong and Kim [2004], Shi and Yu make use of potential functions
to enforce the shape of rapidly changing target shapes for liquids [Shi and Yu, 2005]. The
authors aim to generate forces that cause a liquid surface to move in such a way that it
better coincides with a prescribed target surface and the liquid remains incompressible, at
each frame. Using boundary forces, which are obtained by the difference between target
shapes’ boundary velocities and liquid boundary velocities, one can compute forces inside
the liquid domain. The authors argue that it is important to obtain a divergence-free
force field inside the liquid domain; otherwise, the pressure projection step can change
the original force field that should be applied to match the target shape best in order to
make the resulting field incompressible. To obtain a divergence-free force field, Shi and Yu
[2005] formulate their force field as the gradient of a potential function H, f = ∇H, and
enforce the divergence-free constraint by requiring that ∇ · ∇H = 0. Their method has
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(a) Input Field (b) Vector Harmonic

(c) Divergence Plot of (b) (d) Constrained Biharmonic (Ours)

Figure 5.1: Vector Harmonic Interpolation vs. our method on a four-vortex hole-filling
test. (a) The input simulation with black indicating the hole region to be filled in. (b)
The result of vector harmonic interpolation. (c) A visualization of the divergence of the
field in (b), where red indicates positive and blue indicates negative. (d) The result of our
method looks similar in the static image, but has uniformly zero divergence. (Note: The
LIC visualization does not indicate velocity magnitudes.)
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the following form:

∇2H = 0, ∇H|∂Ω = f |∂Ω (5.2)

where ∇2 = ∇ · ∇ and f is the boundary force.

While Shi and Yu [2005] use this idea to construct a divergence-free force field, Nielsen
and Bridson [2011] use potential flow for velocity field interpolation letting the interpolated
velocity u be the gradient of a scalar potential ϕ, u = ∇ϕ. Nielsen and Bridson [2011]
similarly define the potential flow using the Laplace equation, ∇ ·∇ϕ = 0, with Neumann
boundary condition, ∂ϕ/∂n = u · n to match the boundary velocity normal components.
Since this approach offers a divergence-free interpolated field, it represents another possible
solution to our task.

As we did for the harmonic interpolation approach, we can express the potential flow
problem in optimization form to provide additional insight. We simply minimize the kinetic
energy of the flow, subject to matching boundary (normal) velocities, giving

argmin
ϕ

∫∫∫
Ω

1

2
∥∇ϕ∥2 dV (5.3)

subject to ∇ϕ · n = ub · n on Γ.

This form yields a scalar Laplacian problem, ∇ · ∇ϕ = 0, with the Neumann boundary
condition, i.e., exactly the same PDE as discussed above. Since ∇·∇ϕ = ∇·u = 0, the re-
sulting flow is incompressible. Unfortunately, Bhattacharya et al. [2012] demonstrated that
the irrotationality property sacrifices important rotational motions, as we also demonstrate
in Figure 5.2.

5.3 Stokes Flow

We can combine the strengths of harmonic interpolation (smoothness, no-slip boundaries)
and potential flow (incompressibility) by adding an explicit divergence-free constraint to
(5.1):

argmin
u

∫∫∫
Ω

1

2
∥∇u∥2F dV (5.4)

subject to ∇ · u = 0 on Ω,

u = ub on Γ.
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(a) Input Field (b) Potential Flow (c) Ours

Figure 5.2: Potential Flow vs. our method on a rotational hole-filling test. (a) A square
hole in the middle of the image is filled in using (b) potential flow and (c) our constrained
biharmonic interpolation. Although potential flow is divergence free, it cannot recover the
expected rotation and yields an unnatural result.

Applying constraints with Lagrange multiplier p, the optimality conditions yield the steady
Stokes equations with unit viscosity,

∆u−∇p = 0, (5.5)

∇ · u = 0, (5.6)

where the operator ∆ = ∇ ·∇ indicates the Laplacian (in this case, the vector Laplacian).
Bhattacharya et al. [2012] were the first to suggest using Stokes flow for fluid interpolation
and demonstrate its superior rotational behavior compared to potential flow.

As we discuss more in Chapter 6, this approach is relatively effective but still provides
insufficient smoothness along the boundary and does not support open boundaries. It
produces sharp transitions at the boundaries between regions (Figure 5.3c and 5.3e). This is
because Stokes flow is unable to match the gradients of velocities at the boundaries resulting
in velocity gradient discontinuities at the boundaries. For this reason, the combined flow
lacks visual smoothness.
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(a) Input Field (b) Potential Flow (c) Stokes Flow

(d) Ours (e) Stokes – Zoomed (f) Ours – Zoomed

Figure 5.3: Stokes Flow vs. our method on a fluid cut-and-paste test where the outer
flow is vertical and the (pasted) inner flow is diagonal. While both are continuous and
divergence-free, Stokes flow interpolation (a) only matches velocity values at the bound-
aries. Constrained biharmonic interpolation (b) additionally matches gradients at bound-
aries. As a result, Stokes flow interpolation exhibits nonsmooth velocity transitions between
regions, especially along the topmost and bottommost borders.
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Chapter 6

Proposed Methods, Discretization
and Solution Procedure

In Chapter 5, we provided our insights on existing methods and their limitations. We
concluded that the resulting Stokes flow field is smooth, incompressible, and satisfies no-slip
boundaries. However, this remains insufficient. To understand why, let us now consider our
copy-paste application. Given previously simulated source and target flow data, the newly
interpolated flow indeed satisfies smoothness, incompressibility, and the no-slip boundary
condition. However, the no-slip boundary condition u = ub provides only C0 smoothness
across the boundary; the vector field’s derivative is nonsmooth at the boundaries where
the flow crosses from the previously simulated region into the newly interpolated region.
Visually, this effect can produce sharp transitions at the boundaries that highlight the
borders of the interpolation domain. This becomes a significant limitation because the
newly interpolated flow combined with the previously simulated flow does not give the
desired illusion of a single natural flow, which is our main task. Moreover, Stokes flow
and other existing methods do not provide support for open/unprescribed boundaries (i.e.,
extrapolation rather than interpolation). We now introduce our new formulations that
address these limitations.

6.1 Divergence-Constrained Biharmonic Interpolation

Our approach is to upgrade our objective function in (5.4) from the vector Dirichlet en-
ergy to the vector Laplacian energy. Intuitively, this change implies that, rather than
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minimizing the steepness (gradient magnitude) of the vector field, we will be minimizing
its curvature. A useful analogy to consider is cubic spline interpolation, which yields the
minimum curvature curve that passes through a given set of points. In classic clamped
boundary conditions for splines, we specify not just the values/positions of the curve end-
points but also their slopes. In much the same way, since it is a higher order energy, the
vector Laplacian energy necessitates providing an additional boundary condition, for which
various options exist (see e.g., Stein et al. [2018]). The advantage of this choice is that, by
specifying the vector field values and (first) derivatives across the boundary, we recover C1

continuity and achieve the desired visual smoothness:

argmin
u

∫∫∫
Ω

1

2
∥∆u∥2F dV (6.1)

subject to ∇ · u = 0 on Ω,

u = ub on Γ,

∇u · n = ∇ub · n on Γ.

Again using a Lagrange multiplier p to enforce incompressibility, the optimality conditions
yield the partial differential equations:

∆2u−∇p = 0, (6.2)

∇ · u = 0, (6.3)

where ∆2 represents the bilaplacian operator. The solution to these equations is our
divergence-constrained biharmonic interpolant.

6.2 Divergence-Constrained Biharmonic Extrapolation

Equation (6.1) is well-suited to interpolation, i.e., where the entire
boundary is prescribed. However, one might alternatively wish to fill
in a region that has one or more boundaries that lack specified values
and derivatives (as suggested in Section 4.3). Consider the hole-filling
task in a case where the region to be filled happens to overlap part
of the exterior boundary of the original simulation domain (see inset).
While the boundary data (values and derivatives) between the hole
and the original simulation is drawn from the original simulation, the
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exterior part of the boundary of the hole is not specified at all. In this case, we would
rather use “free” or natural boundary conditions without specifying values and derivatives
in order to find an optimally smooth extension of the vector field into the unspecified
boundary. In this way, we can mimic the effect of an open boundary, where the vector field
is free to flow in or out of the exterior boundary to optimize smoothness.

Smoothness energies involving second derivatives, such as the Laplacian energy, E∆2(u) =∫∫∫
Ω

1
2
∥∆u∥2F dV , in (6.1), are by definition more expressive compared to first-order

smoothness energies, such as the Dirichlet energy in (5.1); however, they require care-
ful treatment of boundary conditions. As illustrated by Stein et al. [2018], they suffer from
unnatural and unfavorable artifacts along boundaries when boundary conditions are not
chosen carefully. In Section 6.1, we specified values and derivatives for the Laplacian en-
ergy, which was sufficient for prescribed boundary behavior. However, Stein et al. showed
(in the scalar case) that the Laplacian energy fails to produce the desired behavior and
leads to boundary-dependent bias in the presence of natural boundary conditions, where
there are no explicit boundary conditions. As a result, Stein et al. propose using the
Hessian energy which is also second-order and provides well-behaved solutions for natural
boundary conditions.

Inspired by the work of Stein et al. [2018], we replace the Laplacian energy used in (6.1)
with the Hessian energy. The Hessian energy is extended from the scalar to the vector case
by applying it in a componentwise fashion. Our formulation becomes:

argmin
u

∫∫∫
Ω

1

2
(∥Hu∥2F + ∥Hv∥2F ) dV (6.4)

subject to ∇ · u = 0 on Ω,

u = ub on ΓP,

∇u · n = ∇ub · n on ΓP,

where Hu and Hv represent the Hessian operator applied to each velocity component u
and v in two dimensions and ΓP represents the prescribed part of the boundary. In our
problem, the whole boundary consists of two parts: the prescribed and the natural part,
where the latter is denoted as ΓN, i.e., Γ = ΓP ∪ ΓN. Our formulation above does not
explicitly mention ΓN because the natural boundary conditions are handled “naturally”
(i.e., implicitly, as a result of the minimization).

Stein et al. [2018] show that the optimality conditions of the Hessian energy yield the
same PDE operator (i.e., the bilaplacian: ∆2) as the Laplacian energy in the interior of the
domain. Furthermore, when both Dirichlet and Neumann boundary conditions are defined
(i.e., u = f and ∇u · n = g on Γ), minimizing the Hessian and the Laplacian energies also
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yield the same PDE operator (i.e., the bilaplacian: ∆2) [Stein et al., 2018] since boundary
values and normal derivatives uniquely define biharmonic functions [Evans, Lawrence C.,
2010]. However, in the presence of natural boundary conditions, i.e., where there are no
explicit boundary conditions, the solution of the Hessian energy differs from the solution of
the Laplacian energy; the Hessian energy’s solution is the desired unbiased free boundary
conditions. To reiterate, the fundamental difference between our formulation in (6.4) and
that of Stein et al. [2018] is that we consider the case of a vector field rather than a scalar
field, and we additionally enforce incompressibility.

6.3 Discretization

In our implementation, the simulation domain is discretized using the standard staggered
MAC grid and similarly, the input boundary data is drawn from standard grid-based fluid
simulations described in Chapter 3. Recall that in this discretization, velocity components
are placed on the cell faces and Lagrange multiplier (pressure) degrees of freedom are
placed at grid cell centers (Figure 3.1).

In our discretization, cell faces, which contain the velocity data,
separate distinct regions, such as the simulation (red) and the hole
(yellow), and become the boundary between different regions (see in-
set). The boundary data is taken from the input simulation(s).

The divergence-free constraint on each cell is formulated using finite
differences (Section 3.3). The discrete bilaplacian operator is formed
by applying the classic Laplacian stencil twice, which leads to a 13-
point stencil in 2D and a 25-point stencil in 3D. Below, we describe
how the bilaplacian stencil is derived in 2D and in 3D.

6.3.1 Discrete Bilaplacian

The discrete Laplacian operator has the following formula in 2D:

(∆hu)i,j = (D2
xxu)i,j + (D2

yyu)i,j (6.5)

where (D2
xxu)i,j =

ui−1,j+ui+1,j−2ui,j

h2 , (D2
yyu)i,j =

ui,j−1+ui,j+1−2ui,j

h2 , and the subscript h refers
to the grid cell size. Inserting (D2

xxu)i,j and (D2
yyu)i,j into (6.5), the Laplacian operator is:

(∆hu)i,j =
ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j

h2
. (6.6)
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As previously mentioned, the discrete bilaplacian can be derived by applying the Laplacian
operator twice:

(∆2
hu)i,j = (∆h(∆hu))i,j = (D2

xx(∆hu))i,j + (D2
yy(∆hu))i,j. (6.7)

Inserting the right-hand side of (6.6) in place of (∆hu)i,j into (6.7), and then applying the
second-order partial derivative operators, i.e., D2

xx and D2
yy, the bilaplacian becomes:

(∆2
hu)i,j =

1

h4
(ui−2,j + ui,j − 2ui−1,j + ui,j + ui+2,j − 2ui+1,j

+ ui−1,j−1 + ui+1,j−1 − 2ui,j−1 + ui−1,j+1 + ui+1,j+1 − 2ui,j+1

− 4(ui−1,j + ui+1,j − 2ui,j) (6.8)

+ ui−1,j−1 + ui−1,j+1 − 2ui−1,j + ui+1,j−1 + ui+1,j+1 − 2ui+1,j

+ ui,j−2 + ui,j − 2ui,j−1 + ui,j + ui,j+2 − 2ui,j+1

− 4(ui,j−1 + ui,j+1 − 2ui,j)).

Rearranging the terms in (6.8), we obtain the 13-point bilaplacian stencil in 2D:

(∆2
hu)i,j =

1

h4
(20ui,j − 8(ui−1,j + ui+1,j + ui,j−1 + ui,j+1) (6.9)

+ 2(ui−1,j−1 + ui−1,j+1 + ui+1,j+1 + ui+1,j−1)

+ (ui−2,j + ui+2,j + ui,j−2 + ui,j+2)).

The discrete Laplacian operator is extended to 3D with an additional second-order
partial derivative with respect to the additional variable, i.e., z:

(∆hu)i,j,k = (D2
xxu)i,j,k + (D2

yyu)i,j,k + (D2
zzu)i,j,k, (6.10)

where (D2
xxu)i,j,k =

ui−1,j,k+ui+1,j,k−2ui,j,k

h2 , (D2
yyu)i,j,k =

ui,j−1,k+ui,j+1,k−2ui,j,k

h2 , and

(D2
zzu)i,j,k =

ui,j,k−1+ui,j,k+1−2ui,j,k

h2 . Then:

(∆hu)i,j,k =
ui−1,j,k + ui+1,j,k + ui,j−1,k + ui,j+1,k + ui,j,k−1 ++ui,j,k+1 − 6ui,j,k

h2
. (6.11)

Similarly, in 3D, the discrete bilaplacian is:

(∆2
hu)i,j,k = (∆h(∆hu))i,j,k = (D2

xx(∇hu))i,j,k + (D2
yy(∇hu))i,j,k + (D2

zz(∇hu))i,j,k. (6.12)
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The right-hand side of (6.11) is inserted into (6.12) in place of (∆hu)i,j,k, and then the
second-order derivatives, i.e., D2

xx, D2
yy, and D2

zz, are applied. The resulting 25-point
bilaplacian stencil in 3D is:

(∆2
hu)i,j,k =

1

h4
(42ui,j,k − 12(ui+1,j,k + ui−1,j,k + ui,j+1,k + ui,j−1,k + ui,j,k+1 + ui,j,k−1)

(6.13)

+ ui+2,j,k + ui−2,j,k + ui,j+2,k + ui,j−2,k + ui,j,k+2 + ui,j,k−2

+ 2(ui+1,j+1,k + ui−1,j+1,k + ui−1,j−1,k + ui+1,j−1,k + ui+1,j,k+1 + ui−1,j,k+1

+ ui−1,j,k−1 + ui+1,j,k−1 + ui,j+1,k+1 + ui,j−1,k+1 + ui,j−1,k−1 + ui,j+1,k−1)).

Recall that we will use this bilaplacian operator for pure interpolation problems. For
problems with open or natural boundaries we must instead discretize our Hessian-based
energy.

6.3.2 Discrete Hessian-based Stencil Derivation

The Hessian energy is discretized using a sparse matrix H [Stein et al., 2018]:

H =

 HT
xx

HT
yy√

2HT
xy

 , (6.14)

where Hxx(u) ≈ ∂2u/∂x2, Hyy(u) ≈ ∂2u/∂y2, and Hxy(u) ≈ ∂2u/∂x∂y. Using the stan-
dard, second-order approximation of the second-order derivatives, the Hessian of a scalar
velocity component u has the following discrete form:

Hu =

 (ui−1,j − 2ui,j + ui+1,j)/h
2

(ui,j−1 − 2ui,j+i,j+1)/h
2

√
2
4
(ui−1,j−1 + ui+1,j+1 − ui−1,j+1 − ui+1,j−1)/h

2

 . (6.15)

By plugging Hu from (6.15) into EH2 =
∫∫∫

Ω
1
2
∥Hu∥2F dV , we obtain the u-contribution to

the discrete Hessian energy:

EH2(u) =
1

2h4

∑
i,j

voli,j ((ui−1,j − 2ui,j + ui+1,j)
2 + (ui,j−1 − 2ui,j + ui,j+1)

2 (6.16)

+
1

8
(ui−1,j−1 + ui+1,j+1 − ui−1,j+1 − ui+1,j−1)

2),
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where voli,j are volumetric integration weights (i.e., the discrete approximation of dV from
the continuous integral) for the corresponding ui,j sample points. Since the energy inte-
gral is over the interior of the interpolation/extrapolation region, these weights implicitly
delineate the boundary between the interior being solved for and the exterior region that
is unprescribed (i.e., where natural boundary conditions should be applied). While partial
volume fractions or other quadrature schemes could be used for approximating the inte-
gral, we employ simple binary (inside vs. outside) weights. (The actual volume of a cell
introduces a rescaling that does not change the solution, thus we ignore it and treat the
weights as binary.) We set the weights as follows. First, we call cells inside the extrap-
olation domain active and cells outside inactive. Since velocity samples lie on the faces
between cells, we set the voli,j weight for a velocity sample to 1 if it is a face of any active
cell, and otherwise set it to 0.

To derive the stencil for the minimizer u in (6.4), we take the derivative of the discrete
Hessian energy, EH2 , from (6.16) with respect to one particular velocity sample ui,j and
equate it to 0:

∂

∂ui,j

EH2(u) =
1

h4
voli,j (−2(ui−1,j − 2ui,j + ui+1,j)− 2(ui,j−1 − 2ui,j + ui,j+1)) (6.17)

+ voli−1,j (ui−2,j − 2ui−1,j + ui,j)

+ voli+1,j (ui,j − 2ui+1,j + ui+2,j)

+ voli,j−1 (ui,j−2 − 2ui,j−1 + ui,j)

+ voli,j+1 (ui,j − 2ui,j+1 + ui,j+2)

+ (voli−1,j−1 (ui−2,j−2 + ui,j − ui−2,j − ui,j−2)

+ voli+1,j+1 (ui,j + ui+2,j+2 − ui,j+2 − ui+2,j)

− voli−1,j+1 (ui−2,j + ui,j+2 − ui−2,j+2 − ui,j)

− voli+1,j−1 (ui,j−2 + ui+2,j − ui,j − ui+2,j−2)) / 8 = 0.
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Rearranging the terms in (6.17), we obtain the 13-point Hessian-based stencil in 2D:

(H2
hu)i,j =

1

h4
(ui,j (8voli,j + voli−1,j + voli+1,j + voli,j−1 + voli,j+1 (6.18)

+
1

8
(voli−1,j−1 + voli+1,j+1 − voli−1,j+1 − voli+1,j−1))

+ ui−1,j (−2voli,j − 2voli−1,j) + ui+1,j (−2voli,j − 2voli+1,j)

+ ui,j−1 (−2voli,j − 2voli,j−1) + ui,j+1 (−2voli,j − 2voli,j+1)

+ ui−2,j

(
voli−1,j −

1

8
(voli−1,j−1 + voli−1,j+1)

)
+ ui+2,j

(
voli+1,j −

1

8
(voli+1,j+1 + voli+1,j−1)

)
+ ui,j−2

(
voli,j−1 −

1

8
(voli−1,j−1 + voli+1,j−1)

)
+ ui,j+2

(
voli,j+1 −

1

8
(voli+1,j+1 + voli−1,j+1)

)
+ ui−2,j−2

1

8
voli−1,j−1 + ui+2,j+2

1

8
voli+1,j+1

+ ui−2,j+2
1

8
voli−1,j+1 + ui+2,j−2

1

8
voli+1,j−1).

6.3.3 Resulting Linear System

In the pure interpolation problem, (6.2) and (6.3) lead to the following linear system:
Bx 0 0 DT

x

0 By 0 DT
y

0 0 Bz DT
z

Dx Dy Dz 0




u
v
w
p

 = b, (6.19)

where Bx, By, Bz are the scalar bilaplacian operator on each velocity component and Dx,
Dy, Dz are the components of the discrete divergence operator for each cell. The solution
is the set of interior cell face velocities u, v, w and interior pressures p. The right-hand-side
vector b is initially set to zero. Then, when setting up the stencils for each unknown using
the bilaplacian stencil in (6.13) and the stencil for the discrete divergence in (3.9), whenever
a stencil entry “touches” a sample that lies outside the interpolation region, we transfer its
contribution to the right-hand-side using the known value at that location (drawn from the
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input simulations). This simple boundary condition treatment straightforwardly enforces
continuous value and derivative conditions on velocity, as well as Neumann conditions on
pressure.

For the Hessian-based extrapolation case, we replace the B terms with the Hessian-
based stencil in (6.18). Binary per-face weights are used to approximate the integral in
(6.4), to distinguish active and inactive cells and thereby enforce the natural boundary
conditions.

6.3.4 Getting rid of the Pressure Nullspace

The linear system in (6.19) leads to a one-dimensional pressure null space. It arises because
our equations only constrain the gradient of p. We can eliminate this null space by simply
pinning one pressure degree of freedom to zero. Doing this would not change the solution
for the velocity field. Let us consider a viable pressure field solution ps; then, for any
constant c, ps + c is also a valid solution because adding a constant does not change the
value of the field’s gradient. For this, we perform the following steps:

■ Select a row in the matrix
[
Dx Dy Dz

]
and delete all the entries in the correspond-

ing row (set them to zero).

■ Place a “1” on the diagonal in the selected row of the matrix
[
Dx Dy Dz

]
.

■ Lastly, place a “0” on the other entries in the same column as the newly placed 1, to
maintain the symmetry of the whole system by deleting the appropriate entries.

6.4 Solution Procedure

The linear system in (6.19) is symmetric indefinite (i.e., a saddle point system) for which
a wide array of solution techniques have been proposed [Benzi et al., 2005]. We adopt a
simple conjugate-gradient (CG) scheme as follows. Our system has the general form:[

A CT

C 0

] [
u
p

]
=

[
f
g

]
, (6.20)
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where A =

Bx 0 0
0 By 0
0 0 Bz

, C =
[
Dx Dy Dz

]
, and u =

 u
v
w

. The system in (6.20)

corresponds to the following equations:

Au+ CTp = f (6.21)

Cu = g. (6.22)

Then, we apply a Schur complement transformation to our system to eliminate the velocity
variables u, by plugging u = A−1(−CTp + f) from (6.21) into (6.22) in place of u. By
doing so, we obtain the following system:

CA−1CTp = CA−1f − g. (6.23)

The resulting system in (6.23) is a symmetric positive definite (SPD) system allowing us to
compute a solution using a standard CG solver. After solving for p, we can plug it back in
(6.21) to recover u. One problem would be that A−1 is potentially a much denser matrix
due to fill-in, so we would prefer not to explicitly form it. Fortunately, Krylov solvers like
CG do not require us to provide an explicit matrix. Instead, it is sufficient to provide the
operation of that matrix on a vector, i.e., given x, we only need to be able to determine the
result y = CA−1CTx. In our case, we can compute the matrix-vector product CA−1CTx
in three steps:

■ Multiply CTx to obtain a vector c, where c = CTx, i.e., the matrix-vector product.

■ Then, we need to compute A−1c to obtain a vector d, where d = A−1c. To compute
d, we can apply a forward/backward substitution to solve the system Ad = c, after
performing LU factorization on A.

■ Finally, multiply Cd to obtain the final result of the product.

To compute the right-hand-side matrix-vector product CA−1f in (6.23) avoiding explicitly
forming a possibly dense matrix A−1, we adapt the same solution procedure described
above in the second step as follows. To compute the resulting vector d of the matrix-vector
product A−1f , where d = A−1f , we apply a forward-backward substitution to solve the
system Ad = f without explicitly forming A−1. Lastly, after solving for p, we perform
one last forward/backward substitution to recover u in (6.21), i.e., Au = f − CTp. In the
common case where the shape and location of the interpolation region does not change
over time, we can perform the factorization on A once and reuse it on every time step.
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For example, let us consider a hole-filling scenario with a 20-cell thick hole/interpolation
region. In this scenario, in 3D, there are 8000 cells in the interpolation region which leads
to A being of size 22800× 22800. As illustrated in this example, A can be a large matrix,
therefore; it is important not to form a possibly dense matrix A−1 explicitly and to compute
the matrix-vector products with A−1 efficiently.

For completeness, we list the details of the CG algorithm (Algorithm 1) we use to solve
(6.23) for p. The inputs are b = CA−1f − g and M = CA−1CT . However, we do not need
to explicitly form the matrix M = CA−1CT . Instead, we can just compute the matrix-
vector product Mx0 and Mpk (see Algorithm 1) using the 3-step process described above
involving two matrix-vector multiplications and one forward/backward substitution with
the factors of A.

Algorithm 1 Conjugate-Gradient (CG)

1: r0 := b−Mx0

2: If r0 is sufficiently small, then return x0 as the result
3: p0 := r0
4: k := 0
5: while true do
6: prod = Mpk ▷ Compute using the 3-step procedure

7: αk :=
rTk rk
pTk prod

8: xk+1 := xk + αkpk
9: rk+1 := rk − αkprod
10: If rk+1 is sufficiently small, then exit the loop

11: βk :=
rk+1T rk+1

rTk rk

12: pk+1 := rk+1 − βkpk
13: k := k + 1
14: end while
15: return xk+1 as the result

As alluded to above, there are many other approaches one could take to further accelerate
the solution of this system, such as incorporating multigrid techniques or preconditioning,
but the approach above was sufficient for our purposes.

As in the work of Sato et al. [2018], the full trajectories of any material to be visu-
alized/rendered (e.g., smoke densities and/or tracer particles) must be recomputed from
scratch because the new combined vector field differs significantly from its input field(s).
The data must be advected through the new velocity field to yield a consistent final result.
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Fortunately, this can often be done efficiently and in parallel, since each (passive) parti-
cle’s motion does not affect other particles. The velocity field on the grid is interpolated
to particles using bilinear interpolation and we trace their trajectories with second-order
Runge-Kutta.

6.5 One Fluid-Editing Timestep

Putting everything together, we obtain Algorithm 2 for a single fluid-editing timestep.
The inputs are input simulation(s) per-frame velocity field data and the output is the
edited velocity field. After obtaining the resulting velocity field over the whole domain,
tracer particles and/or densities are advected via the output velocity field using standard
Lagrangian or semi-Lagrangian advection procedures.

Algorithm 2 One Fluid-Editing Timestep

1: Read input simulation(s) current timestep velocity field data into appropriate grid
locations (the part of the domain with known values).

2: Perform divergence-constrained biharmonic interpolation (Eq 6.1) or extrapolation (Eq
6.4) on the grid locations without known values, i.e., interpolation/extrapolation do-
main, as follows:

3: if interpolation then
▷ In case of hole-filling & copy-paste scenarios (Sec 4.1, 4.2)

4: Use the scalar bilaplacian operator (Eq 6.9 in 2D & 6.13 in 3D) to fill in Bx, By,
and Bz in Eq (6.19).

5: else if extrapolation then
▷ In case of open boundary scenarios (Sec 4.3)

6: Use the Hessian-based stencil (Eq 6.18 in 2D) to fill in Bx and By in Eq (6.19).
7: end if
8: Use the discrete divergence operator (Eq 3.9) to fill in Dx, Dy, and Dz.
9: Eliminate the one-dimensional pressure nullspace (Sec 6.3.4).
10: Apply Schur complement transformation to the saddle point system in (6.20) to obtain

the SPD system in (6.23) (Sec 6.4).
11: Solve (6.23) for p using the CG algorithm (Alg 1).
12: Recover u from (6.21) using the computed values of p (Sec 6.4).
13: Output: A combined velocity field over the whole domain, i.e., input velocities (drawn

from the input simulation(s)) ∪ interpolated/extrapolated velocities u.
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Line 12 and Algorithm 1 require a forward/backward substitution with A (Sec 6.4).
In our implementation, we use Intel Math Kernel Library (MKL)’s PARDISOLU solver
through the Eigen library [Guennebaud et al., 2010] to factorize A and then perform the
necessary forward/backward substitutions. Note: factorization of A is performed only once
in the beginning and reused in the forward/backward substitutions.
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Chapter 7

Results

The static illustrations in Chapter 5 demonstrated some of the technical aspects of our
numerical method, in terms of its improvement over prior alternatives. We now consider
a collection of illustrative dynamic scenarios to further demonstrate the behaviour of our
method. Several of our figures make use of passive marker particles with alternating colors
in initially horizontal rows to better highlight the developing flow structure. Other figures
use the LIC visualization seen earlier to emphasize the structure of the vector field at
a particular time instant. We primarily evaluate the capabilities of our method in two
dimensions, but include one 3D example to demonstrate that the approach can extend
naturally to higher dimensions.

7.1 Hole-Filling

Our first scenario (Figure 4.1) is a hole-filling scenario of a rotational vector field. Given
a rotational vector field with a square region in the middle being erased, our goal is to fill
in the missing region with a smooth incompressible vector field using the boundary data
(drawn from the input simulation). Our constrained biharmonic interpolant seamlessly
fills in the region lacking vector field data and the resulting simulation of the combined
vector field (interpolated vector field plus the input vector field) gives the illusion of being
a simulation of a single natural flow. The result is qualitatively indistinguishable from the
input.

Another scenario (Figure 7.2) consists of filling “over” a hole with a solid obstacle in an
input animation to produce a new animation without the obstacle. Let us consider a case
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Input

Ours

Input

Ours

Figure 7.1: Hole-filling Scenario: Our simplest scenario involves performing a hole-filling
task (with region to be filled surrounded in blue). A rotational vector field with a square
region in the middle being erased (surrounded in blue) is used as input to our method.
Our constrained biharmonic interpolant interpolates a smooth incompressible vector field
inside the hole (surrounded in blue) using the boundary data (outside of the blue square).
Six frames of the input animation are shown on the first and third rows. The same six
frames of the edited animation result of our hole-filling approach are shown on the second
and fourth rows.

39



where we already have a previously-computed simulation over a domain with an obstacle
in the center. However, we now wish to remove the obstacle from the scene and obtain
the same animation without the obstacle without re-simulating from scratch. In this case,
we perform our divergence-constrained biharmonic interpolation method for a hole-filling
scenario. Figure 7.2 shows that our method successfully removes the obstacle from the
input animation and smoothly interpolates a vector field inside the hole. However, even
though our approach produces a new plausible animation, it fails to recover a perfectly
vertically-flowing animation. This happens because the presence of the obstacle globally
disturbed the motion of the input animation such that after particles move past the ob-
stacle, an empty region (with no inflow/outflow of particles) behind the obstacle occurs
(Figure 7.2c, 7.2d). Since our method strictly enforces the divergence-free constraint, to
achieve a divergence-free interpolation inside the hole, it necessarily gives up on generating
a perfectly vertical flow.

7.2 Copy-Paste

Next, we consider a copy-paste scenario (Figure 7.3) consisting of a static solid disk in
a vertical wind-tunnel with inflow at the bottom and outflow at the top. We wish to
paste the disk and its surroundings from the source simulation into an even simpler empty
vertically translating wind-tunnel target simulation. This yields a smooth divergence-free
combination of the two flows, where the flow outside of the blend region is completely
undisturbed. Our result necessarily differs from the source animation, since in the source
animation the presence of the disk globally disturbed the flow; our biharmonic interpolation
approach must therefore deform the flow more strongly in the blend region to compensate.
Yet, we still achieve a visually plausible flow. Figure 7.4 demonstrates a few frames of
the edited animation for the scenario described above to show how the combined flow is
evolving.

Similarly, our next example (Figure 7.5) involves copying the flow around two disks
from a source simulation into an obstacle-free target simulation. However, in this example,
we use a more complex flow structure for the source and target simulations. The source
simulation features a rising smoke plume due to buoyancy forces in a domain containing
two disk obstacles. The target simulation is of a rising smoke plume in an obstacle-free
domain. The resulting flow is a smooth divergence-free combination of the source and
target flows. In Figure 7.5, the copied flow around two disks is pasted on the same location
on the target animation as the source animation. Then we compare our combined result
with the simulated source animation. Doing so, we demonstrate that our method produces
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.2: Hole-Filling Scenario To Remove an Obstacle: A vertical flow animation
in a domain with a circular obstacle in the center is used as input to our method (a,b,c,d).
To remove the obstacle, we apply our divergence-constrained biharmonic interpolant to
fill over the region with the obstacle. Our method successfully removes the obstacle from
the input animation (with region filled over surrounded in blue) (e,f,g,h). The same four
frames of the input and edited animations are shown for comparison.

comparable results as the original source simulation for the same scenario (having the
obstacle on the same location). In practical use cases, one can copy the desired flow from
its source animation and paste it onto any desired location on the target animation to
obtain a rising smoke simulation with two disk obstacles in any desired location.
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(a) Source (b) Target (c) Result (d)

Figure 7.3: Basic Setup for Fluid Copy-Paste: Our simplest copy-paste scenario
involves copying the flow around a disk from its source simulation (a), (with region to be
copied surrounded in blue) into an obstacle-free target simulation (b). The result of our
method is a new smoothly combined flow (c). Our combined flow with the blue lines that
denote the inner and outer borders of the blend region over which we apply our biharmonic
interpolation is shown in (d). (The same frame of animation is shown in all four images.)

Figure 7.4: Merged Flow Over Time: Three frames of the edited animation result of
our approach based on the scenario described in Figure 7.3.

Our 3D copy-paste scenario (Figure 7.6) demonstrates an example of how our method
can be used in real applications. Let us consider a case where we have a previously-
computed rising smoke simulation in an obstacle-free environment. However, we now
wish to place a solid spherical obstacle in any desired location in the domain and obtain
approximately the same rising smoke simulation in the presence of the added obstacle
without re-simulating. In this case, our method can be used to paste the obstacle and its
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(a) Source (b) Target (c) Result

Figure 7.5: 2D Copy-Paste Scenario: The flow around two disks from its rising smoke
source simulation (a) is copied (with region copied surrounded in blue) into a 2D obstacle-
free rising smoke target simulation (b). The result of our method is a new smoothly
combined flow (c). The blue lines in (c) denote the inner and outer borders of the blend
region over which we apply our biharmonic interpolation. (The same frame of animation
is shown in all three images.)

surroundings from a previously-computed source simulation into the desired location in
the target simulation. The resulting flow is a smooth divergence-free combination of the
source and target flows.

To further stress-test our method, we consider some challenging scenarios analogous to
those suggested by Sato et al. [2018]. We combine flows in which the source and target
differ in direction or speed. The method of Sato et al. [2018] leads to severe failure of
the divergence-free condition for larger speed and angle deviations between the source and
target. We refer the reader to the supplemental video of their paper to see the visualizations
of this issue. On the other hand, our method produces a divergence-free output field
regardless of the size of the speed and angle deviations. Let us consider the same scenario
performed in Figure 5.3, where a source simulation is pasted on a vertically-flowing target
simulation, except that in this case, we change the ambient flow direction of the source
simulation to have steadily increasing angles between source and target flows (Figure 7.7).
While this leads to an increasingly unnatural look, the resulting flow field is still smooth in
the blend region interior and along the boundaries (between blend region and source/target
regions) and divergence-free independent of this artistic decision.

Similarly, we perform a test (Figure 7.8) in which the speed of the source (inner)
simulation is slower or faster than the target (outer) simulation. Once again more severe
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(a) (b)

(c) (d)

Figure 7.6: 3D Copy-Paste Scenario: Our 3D copy-paste scenario involves copying the
flow around a spherical obstacle from its source simulation (a), (with region to be copied
surrounded in blue) into an obstacle-free rising smoke target simulation (b). The result of
our method is a new smoothly combined flow (c). The blue lines in (d) denote the inner
and outer borders of the blend region over which we apply our biharmonic interpolation.
(The same frame of animation is shown in all four images.) Note: In this figure, the blue
boxes show approximately where source and blend regions are (might not be on exact
positions used while simulating). They are placed later on the rendered images to help the
reader understand our method.
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speed differences lead to more unusual motions in the blend region in order to compensate
for the difference. For example, when the speed ratio between the source and target is
3.0 (Figure 7.8d), a more elaborate interior circulation of the flow in the blend region
becomes necessary to satisfy the incompressibility condition. However, because the source
and target are divergence-free and therefore provide compatible boundary conditions, the
result is still divergence-free.
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(a) (b)

(c) (d)

Figure 7.7: Varying Angles Test: Experimental results combining two velocity fields
with different angles. (a) A vertical target velocity field. (b) The target field combined
with a a 45-degree angled source flow. (c) The target field combined with a 60-degree
angled source flow. (d) The target field combined with a 90 degree-angled source flow.
Despite the extreme difference in inputs, we always obtain a divergence-free velocity field.
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(a) (b)

(c) (d)

Figure 7.8: Varying Speeds Test: In this test, we combine two vertical velocity fields
with different speeds. The outer velocity field drawn from the target simulation has a
fixed speed while the pasted inner velocity field from the source simulation has a speed
ratio of: 1.0 (a), 0.5 (b), 1.5 (c), and 3.0 (d). In all cases, the resulting velocity field is
divergence-free.
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7.3 Open Boundary Scenarios

Lastly, we consider other scenarios (described in Section 4.3) which make use of our
divergence-constrained biharmonic extrapolation scheme. Our first example (Figure 7.9)
is a vector-field extrapolation scenario. In this scenario, given a previously-computed sim-
ulation of a four-vortex vector field with closed boundaries, our goal is to replace closed
boundaries with open or natural boundaries without re-simulating. In this case, we achieve
the desired simulation by smoothly extending a selected interior region with our extrapo-
lation scheme. Unlike previous scenarios, this scenario consists of an unprescribed exterior
boundary. In this case, we use natural boundary conditions where the vector field is free
to flow in or out through the exterior boundary as in Figure 7.9c.

(a) Input Flow (b) Trimmed Input (c) Div-Constr Extrapolation

Figure 7.9: Vector-Field Extrapolation Test: Input flow (a) is a four-vortex flow
generated using closed boundary conditions. (b) shows a square region in the middle of
the same flow in (a) which we use as the input for our extrapolation task. Our divergence-
constrained biharmonic extrapolator fills in the outer black region in (b) by smoothly
extending the flow inside the square region in the middle in (b). Lastly, (c) shows the
extrapolated flow result of our divergence-constrained biharmonic extrapolation scheme.

Our next example (Figure 7.10) is a scene stretching scenario of a simple vertically trans-
lating simulation. Given an input simulation of a vector field, our divergence-constrained
biharmonic extrapolation synthesizes a simulation of the same vector field in an extended
domain as follows. First, the input simulation is divided into two regions and a padding
region is added in between. Then, our method fills in the padding region with a vector field
by smoothly interpolating the boundary data on the top and bottom. Natural boundary
conditions are applied on the unprescribed side boundaries of the padding region.
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(a) Input Flow (b) Scene Stretching Output

Figure 7.10: A Simple Scene Stretching Test: The input (a) is a simple vertically
flowing wind-tunnel simulation in a domain with size 1× 1. The output (b) is a stretched
version of the input simulation in a domain with size 1 × 1.5. We apply our divergence-
constrained biharmonic extrapolation within the region in between the blue lines in (b).

We perform another scene stretching test (Figure 7.11) on a more complicated rota-
tional input flow. In this case, our divergence-constrained biharmonic extrapolation scheme
stretches the input vector field as in Figure 7.11b. Our method predictably produces inner
circulations in the padding region because it matches both boundary values and gradients
while extrapolating a vector field inside the padding region. Similarly, natural boundary
conditions are applied along the unprescribed side boundaries of the padding region. In-
terestingly, one might initially anticipate that the extrapolated field would contain only
vertical velocities, rather than produce the interesting rotational pattern that is observed.
However, the result is indeed correct: it occurs because the extrapolant matches the nonzero
gradients of the velocity field at the boundaries, so the rotations present in the input field
are smoothly extended into the extrapolation region.

Our last example (Figure 7.12) is a vector field extrapolation scenario where the region
to be filled overlaps part of the exterior boundary of the domain (as described in Section
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(a) Input Flow (b) Scene Stretching Output

Figure 7.11: Scene Stretching Test on a Rotational Vector Field: The input (a) is
a rotational flow simulation. The output (b) is a stretched version of the input simulation.
We apply our divergence-constrained biharmonic extrapolation within the padding region
in between the black lines in (b).

6.2). Given a simulation of a rotational vector field generated using closed boundaries, our
divergence-constrained biharmonic extrapolant produces a smooth divergence-free exten-
sion of the input flow with open exterior boundaries. We observe that in the presence of
open or natural boundaries as on the top-right corner of Figure 7.12c, the result flows freely
in or out through the exterior boundary unlike the input simulation as expected (Figure
7.12a).
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(a) Input Flow (b) Input (c) Div-Constr Extrapolation

Figure 7.12: Specific Extrapolation Test: Input flow (a) is a rotational flow generated
using closed boundary conditions. A black square region on the top-right corner of the same
flow in (a) is used as the extrapolation domain (b). Our divergence-constrained biharmonic
extrapolator fills in the black region in (b) by smoothly extending the flow outside the black
region in (b). Lastly, (c) shows the extrapolated flow result of our divergence-constrained
biharmonic extrapolation scheme.
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Chapter 8

Conclusion and Future Work

In this thesis, we have presented a new vector field interpolation and extrapolation scheme
for simulation editing based on a vector biharmonic problem with an added incompress-
ibility constraint. In chapter 7, we demonstrated the success of the proposed methods
in achieving desired behavior in a wide range of scenarios. Our work suggests several
directions to explore in future work.

First, we assumed that the interpolation region borders are voxelized, and saw no
artifacts from doing so. However, it would be interesting to explore a cut-cell approach
[Batty et al., 2007; Larionov et al., 2017] for regions with irregular shapes, based on a
more precise discretization of the relevant energies. This would add greater flexibility and
potentially make the region borders even less apparent.

Moreover, by introducing a cut-cell approach allowing interpolation
region borders to be nonvoxelized, one might simply use our method to
add an arbitrarily shaped obstacle in an obstacle-free target simulation
by initializing the source region with a zero velocity field. Here the
source region with zero velocity acts as an obstacle. For example, to
put a star-shaped obstacle in an obstacle-free target simulation, one
might initialize a star-shaped source region with a zero velocity field
and let our divergence-constrained biharmonic interpolant fill in the
blend region between the source and target regions (see inset).

Next, the hole-filling scenario when used to remove an obstacle from an input simulation
(as shown in Figure 7.2) cannot perfectly recover the input simulation without the obstacle.
In the general case, this is likely to be impossible. Since the presence of the obstacle changes
net in/out flux along the blend region borders, to achieve a divergence-free interpolation
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inside the hole, our method gives up on exactly recovering the input flow without the
obstacle. Even though our method successfully removes the obstacle and fills over the
region with a plausible smooth divergence-free vector field, as future work, one might
want to implement the divergence condition as a penalty-like energy term to control how
much divergence is allowed instead of strictly enforcing the divergence-free constraint. In
that case, the user would have a parameter controlling the balance between the smoothness
energy and incompressibility, thereby providing greater flexibility in the resulting behavior.

Lastly, the bilaplacian operator does not offer the type of maximum principle exhibited
by the Laplacian, and thus it is possible for the interpolated velocities to overshoot the
boundary data, i.e., the combined or interpolated field may contain faster velocities than
the input velocity field(s) alone. However, since we used the resulting velocity only for
advecting passive data, rather than advecting velocity, such overshoots cannot feed back
into an underlying simulation and cause instabilities. If all overshoots were deemed unde-
sirable, enforcing bounds using inequality constraints is an option [Jacobson et al., 2011];
however, doing so may also harm smoothness of the boundaries.
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