
KG-Pipeline: An Automated
Knowledge Graph Generation

Framework

by

Alireza Vezvaei

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2022

© Alireza Vezvaei 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Knowledge Graphs (KGs) have many applications, specifically in information retrieval
and question answering. Community projects are conducted for building large-scale KGs
with crowdsourcing, but building KGs with this approach is costly and sometimes infeasi-
ble. Considering the rapidly growing amount of unstructured text on the Web, we highly
need systems for automatic KG generation. We propose KG-Pipeline, a general-purpose
end-to-end pipeline designed for automatically constructing KGs from unstructured text
documents. We leverage state-of-the-art NLP models for implementing various compo-
nents of the pipeline. We also utilize our generated KGs in Question Answering (QA) and
evaluate the performance of our system on a QA benchmark, comparing it to previous
work and an information retrieval baseline model.

iii

Acknowledgements

I would like to express my appreciation to my supervisor, Professor Lukasz Golab, for
his support, patience and guidance throughout my research.

I would like to express my sincere gratitude to Professor Mehdi Kargar, Professor
Jaroslaw Szlichta, and Professor Morteza Zihayat for guiding me in my research with their
patience and valuable advice.

I would also like to thank Professor Charles Clarke and Professor Olga Vechtomova
who served as the readers of this thesis for their valuable time.

Last but not least, I would like to warmly thank Andrew Chai for developing an excellent
demo for the system, and Mohammad Dehghan for his helpful advice and consultation.

iv

Table of Contents

List of Figures vii

List of Tables ix

1 Introduction 1

2 Preliminaries 5

2.1 Knowledge Graphs . 5

2.2 Question Answering . 7

2.3 Open Information Extraction . 8

2.4 Coreference Resolution . 9

2.5 Named Entity Recognition . 9

2.6 Sentence Simplification . 10

3 Related Work 12

3.1 Related NLP sub-tasks . 12

3.1.1 Open Information Extraction . 12

3.1.2 Coreference Resolution . 13

3.1.3 Sentence Simplification . 14

3.2 Automatic Knowledge Graph Generation 16

3.3 Question Answering with Knowledge Graphs 19

v

4 Knowledge Graph Generation Pipeline 22

4.1 Overview . 22

4.2 NLP Pipeline . 23

4.2.1 Open Information Extraction . 25

4.2.2 Coreference Resolution . 25

4.2.3 Named Entity Recognition . 26

4.3 Entity Linking And Graph Generation . 26

4.4 Sentence Simplification . 28

5 Question Answering via KG Utilization 31

5.1 Overview . 31

5.2 Seed Entity Extraction . 33

5.3 KG Traversal . 33

5.4 Answer Extraction . 35

6 Experiments 37

6.1 Overview . 37

6.2 Datasets . 38

6.2.1 WikiMovies . 38

6.2.2 MetaQA . 39

6.2.3 MDQA . 41

6.3 Evaluation Metrics . 42

6.4 System Configuration . 43

6.5 Question Answering Results . 44

6.5.1 Comparison to AutoKG . 44

6.5.2 Comparison to IR baseline . 45

7 Conclusion and Future Work 47

References 50

vi

List of Figures

1.1 A part of a KG (a) and the triples corresponding to the KG (b) 2

1.2 The first paragraph of the Wikipedia pages of the movies Illuminata (a) and
Company Man (b) . 3

2.1 A Knowledge Graph . 6

2.2 The Knowledge Base corresponding to the KB in Figure 2.1 6

2.3 Some piece of text (a) and triples extracted by Allennlp’s OpenIE model (b) 8

2.4 Some piece of text (a) and coreference clusters extracted by Allennlp’s coref-
erence resolution model (b) . 9

2.5 Some piece of text (a) and named entities extracted by Allennlp’s NER
model (b) . 10

2.6 A sentence before simplification (a) and after being simplified to several
shorter sentences (b) . 10

3.1 Comparison of state-of-the-art OpenIE models obtained from [24] 14

3.2 Comparison of state-of-the-art coreference resolution models obtained from
[50] . 15

3.3 Architecture of T2KG captured from [23] 17

3.4 KnowText framework captured from [8] . 18

4.1 KG generation framework . 23

4.2 An example of running KG generation framework on a sample input document 24

4.3 Graph generation part of the example in Figure 4.2. 27

vii

4.4 Results of applying AllenNLP’s OpenIE on a piece of text before simplifica-
tion (left) and after simplification (right) 29

5.1 The QA Framework . 32

5.2 An example of the QA Framework . 32

5.3 A screenshot of our QA demo corresponding to the example in Figure 5.2 . 35

viii

List of Tables

2.1 Some factoid questions and answers . 7

3.1 Comparison of automatic KG generation models 20

6.1 Question types of WikiMovies dataset extracted from [32] 39

6.2 Some questions of MetaQA-2-hop dataset captured from [60] 40

6.3 Some questions of MetaQA-3-hop dataset captured from [60] 40

6.4 Question types of MDQA dataset . 42

6.5 %hits@5 QA results calculated with path evaluation approach 45

6.6 %hits@5 QA results calculated with exact answer evaluation approach . . . 46

ix

Chapter 1

Introduction

A Knowledge Graph (KG)1 is a structured representation of real-world entities and the
relationships between them. (subject, predicate, object) triples are the building blocks of
KGs. Each triple represents a real-world fact as a relationship between the subject and
object entities. In the graph interpretation, subject and object entities are represented
as graph nodes and the predicate is represented as a labeled edge connecting subject and
object nodes.

Figure 1.1 shows a part of a KG with the corresponding triples. Such triples can be
extracted from text documents by applying NLP techniques that will be further discussed
in the next chapters. The first three triples shown in Figure 1.1 can be extracted from
the Wikipedia page of the movie Illuminata, and the last one can be extracted from the
Wikipedia page of the movie Company Man, both are shown in Figure 1.2.

KGs have been proven to have many applications in both industry and academia.
Google leverages a large underlying KG to improve search results with structured knowl-
edge panels [62]. Major data-driven companies such as Amazon, Walmart, and Airbnb use
their own private KGs to store, visualize, and query their customers’ data. KGs are also
receiving increased attention among researchers in data mining, information retrieval, and
other related domains. According to a survey in [62], the most popular research applica-
tions of KGs in recent years have been Question Answering, Information Retrieval, and
Recommender Systems.

Due to the advantages of KGs, prominent community projects are conducted for build-
ing large-scale KBs such as DBpedia [6], Wikidata [51], and ConceptNet [47, 52]. However,

1Also known as Knowledge Base (KB)

1

(a) (b)

Figure 1.1: A part of a KG (a) and the triples corresponding to the KG (b)

building KBs with crowdsourcing is expensive and time-consuming; considering the rapidly
growing amount of unstructured text on the Web, we need pipelines to automate KG gen-
eration.

A few frameworks on automatic KG construction have been proposed in the recent
years, namely T2KG [23], KnowText [8], and AutoKG [58]. Following the introduction
of BERT in 2018, various NLP domains were subject to noticeable advances. However,
as will be elaborated in the next chapters, the aforementioned systems used relatively old
models, not reflecting the recent advances in NLP. Moreover, none of the systems provided
either implementation details, or detailed examples of the KGs generated from input doc-
uments. In this work, we propose a general-purpose end-to-end pipeline to automatically
construct KGs from unstructured text documents. Several NLP components are incorpo-
rated in the pipeline; we used state-of-the-art models to implement each of them. The
implementation of each component can be easily replaced by new models in future, regard-
less of the other components. We plan to publish the source code after some modifications
in future versions.

Question Answering (QA) is one of the main applications of the KGs. Traditional IR-
based QA procedure on a text corpus includes leveraging information retrieval methods for
retrieving the most relevant documents, and an answer extraction step for identifying and
scoring the answer from the retrieved documents. This common procedure has two major
limitations:

(a) Such systems are not capable of answering complex multi-document questions, ques-
tions requiring combining information from several sources to be answered.

2

(a)

(b)

Figure 1.2: The first paragraph of the Wikipedia pages of the movies Illuminata (a) and
Company Man (b)

(b) Neural models used for extracting and scoring the answer are not usually explainable.

Considering the limitations of IR-based QA, KGs are preferred over plain text as the
knowledge source for QA. Firstly, multi-hop inference2 in KGs allow QA systems to answer
more complex questions. Secondly, unlike IR-based QA, KG-based QA provides a KG path
showing how the answer is extracted, which can be viewed as an explainability mechanism
[58].

Structured data sources such as KBs are expensive and scarce compared to unstruc-
tured data sources. For the cases in which only unstructured text is available for QA, a
novel alternative for traditional IR-based QA is automatically building KGs from unstruc-
tured text, then leveraging the generated KG for the QA task. To our knowledge, AutoKG
[58] is the only QA system using this approach. In this work, we use a similar approach
for answering questions by utilizing our automatically generated KGs. Our experiments
demonstrate that our QA system performs similar to AutoKG in answering simple ques-
tions while noticeably outperforming AutoKG in answering complex questions. Moreover,
we show that our QA system performs similar to a traditional IR-based baseline, while it
is also explainable and capable of answering multi-document questions. To compare the
performance of the models in answering multi-document questions, we introduce MDQA3,
a QA dataset consisting of questions not answerable with the content of a single document.

As an example of multi-document QA, consider the following question:

2Reasoning by combining the information from several (neighbouring) KG nodes
3Multi Document Question Answering

3

In which movies did the director of Illuminata act?

The question is answerable by traversing the KG in Figure 1.1: The director of Illumi-
nata is John Turturro and John Turturro acted in Company Man. Hence, Company Man
is a valid answer to the question. Note that in this approach, the facts extracted from both
documents in Figure 1.2 are used. Thus, the question is not answerable by applying the
IR-based procedure.

In summary, we make the following contributions:

• We introduce KG-Pipeline, an end-to-end framework, constituted of state-of-the-art
NLP components, for automatically generating KGs from input documents.

• We developed a QA module similar to AutoKG’s for answering open-domain factoid
questions by leveraging our automatically-generated KGs.

• We demonstrate the performance of our QA system compared to AutoKG and an
IR-based baseline on a QA benchmark. We extend the benchmark by adding a new
set of question-answer pairs focusing on multi-document QA evaluation.

4

Chapter 2

Preliminaries

2.1 Knowledge Graphs

A Knowledge Graph (KG) is defined as a structured representation of real-world facts [20].
A KG consists of nodes representing real-world entities or concepts, and labeled edges
representing relationships between the entities. Figure 2.1 shows a part of a KG in the
domain of movies; most of the nodes represent movies and people, and most of the edges
represent person-movie relations such as directed (directed by) and wrote (written by).

Ontology is a categorization of nodes and edges of a KG. An ontology provides some
background knowledge about edges and nodes, if available. For example, it can determine
whether a node represents a person, a location, or a date. In general, KGs may or may
not include such an ontology1.

The term Knowledge Base (KB) is frequently used as a synonym for KG. However,
according to [20, 52], the term KB is mainly referred to a set of facts stored in the format
of (subject, predicate, object) triples (RDF2 format) while the term KG emphasizes on the
graph interpretation of the KBs in which the subject and the object are represented as
graph nodes and the predicate is represented as a labeled edge. The KB corresponding to
the KG in Figure 2.1 is demonstrated in Figure 2.2. Similar to [20], for simplicity, we will
use these two terms interchangeably.

1[55] suggested to call a KG without an ontology a Data Graph. However, to be consistent with most
of the resources, we simply call them KG as well.

2Resource Description Framework

5

Figure 2.1: A Knowledge Graph

Figure 2.2: The Knowledge Base corresponding to the KB in Figure 2.1

6

Table 2.1: Some factoid questions and answers

Question Answer(s)

the film Illuminata was written by who? John Turturro, Brandon Cole

what was the release date of the film Illuminata? 1998

the director of Mac is also the director of which movies? Illuminata, Fading Gigolo

which person wrote the films directed by the director of Illuminata? John Turturro

2.2 Question Answering

Question Answering (QA) is the task of automatically extracting answers in response to
the questions asked in natural language. The QA task can be considered as an extension
of Information Retrieval (IR) which requires a deeper level of Natural Language Under-
standing (NLU)[15]. While in IR we are looking for documents related to a search query,
in QA tasks a precise answer in natural language is desired; thus, after retrieving a bunch
of candidate documents, we need to leverage NLU models to extract the answer from the
candidate documents.

Based on the domain aspect, QA systems are divided into open domain and closed
domain categories[15]. Closed-domain systems are designed for answering questions in a
specific domain (e.g., Medical questions) while open-domain systems are intended to be
able to answer general questions in various domains. Our system is designed for open-
domain QA3.

The type and format of questions and answers vary in the QA datasets. [15, 33]
categorized the question types into several groups. According to the survey conducted by
[15], the most common type used in the QA datasets is factoid questions. Factoid questions
require a single piece of information (a few words) as the answer. The answers to the factoid
questions are usually real-world entities. Questions starting with when/who/where are
examples of factoid questions [15]. In Table 2.1 some factoid questions alongside acceptable
answers for each one are listed. Note that the questions in Table 2.1 are all answerable
with the information represented in the KG in Figure 2.1. Our QA system is designed for
answering factoid questions.

Finally, the source of knowledge that the QA systems use to extract the answer can
be structured or unstructured data. Structured data include RDF KBs, SQL databases or

3In our experiments, we utilized WikiMovies which is a dataset in the movies domain. However, as will
be elaborated in the next chapters, we avoided including any domain-specific components in our system.

7

(a)

(b)

Figure 2.3: Some piece of text (a) and triples extracted by Allennlp’s OpenIE model (b)

other forms of processed data whereas unstructured data is referred to corpora of plain
text [15]. QA systems may use structured data, unstructured data, or a combination of
the. If available, KBs and databases are more suitable for QA compared to plain text,
but in many real-world scenarios, no structured source is available. Our system leverages
automatically-generated KGs for QA, thus, the knowledge source is considered structured
data.

2.3 Open Information Extraction

Open Information Extraction, aka OpenIE or triple extraction, is the task of extracting
structured information from natural language text in the format of (subject, predicate,
object) triples, similar to the RDF format in KBs. Traditional Information Extraction
(IE) systems were designed to extract a limited set of target relations (predicates) in a
specific domain. Such systems are not generally extensible and generalizable to be utilized
in other domains [36]. On the other hand, OpenIE, introduced by [7] in 2007, is an
ontology-free paradigm for extracting all types of relations from text in general domain
[36, 24].

A triple extraction model takes text as input and generates a list of the triples as output.
Figure 2.3 shows a piece of text alongside the triples extracted by applying AllenNLP’s
triple extraction implementation [3].

8

(a)

(b)

Figure 2.4: Some piece of text (a) and coreference clusters extracted by Allennlp’s coref-
erence resolution model (b)

2.4 Coreference Resolution

Coreferences (co-references) are two or more phrases referring to the same entity in a
natural language text. One of the most common forms of coreferences is where a pronoun
substitutes a noun phrase coming before or after it (anaphora or cataphora). For example,
in both John went to sleep when he arrived home. and When he arrived home, John went
to sleep. “he” and “John” are coreferences since they refer to the same entity.

Coreference Resolution is the task of finding all the phrases (mentions) referring to the
same entity in the text. A coreference resolution model takes text as input and generates a
list of coreference clusters as output. Each coreference cluster consists of a list of mentions
extracted from the text, all referring to the same entity.

Figure 2.4 shows a piece of text alongside the coreference clusters extracted by apply-
ing AllenNLP’s coreference resolution model. Mentions tagged with label 0 all refer to
“Illuminata” while mentions tagged with label 1 refer to “John Turturro”. The AllenNLP
demo is used for the visualization in Figure 2.4. [1].

2.5 Named Entity Recognition

Named Entity Recognition (NER) is the task of identifying and categorizing named entities
such as people, locations, and organizations in natural language texts. NER is one of the
fundamental NLP tasks used in many higher-level NLP tasks such as coreference resolution,
information extraction, and question answering [57].

NER models take text as input and identify and tag expressions belonging to named
entities in the text. Figure 2.5 shows a piece of text alongside the entities tagged by

9

(a)

(b)

Figure 2.5: Some piece of text (a) and named entities extracted by Allennlp’s NER model
(b)

AllenNLP’s NER model. Note that in this example, “John Turturro” and “Brandon Cole”
are correctly recognized as a person while “Illuminata” is recognized as an organization,
which is not accurate since it refers to a movie in this sentence. The AllenNLP demo is
used for the visualization in Figure 2.5. [2].

2.6 Sentence Simplification

Sentence Simplification is the task of making a sentence easier to read and understand by
reducing its lexical and syntactic complexity (simplifying its vocabulary and grammar re-
spectively) while preserving the original meaning of the sentence [4, 30]. Applying sentence
simplification as a preprocessing step can help improve the results in many NLP tasks such
as information extraction [4].

A sentence simplification model takes a sentence as input and generates one or multiple

(a)

(b)

Figure 2.6: A sentence before simplification (a) and after being simplified to several shorter
sentences (b)

10

simpler sentence(s) as the output. Figure 2.6 shows a sentence and the result of applying
MUSS [30] simplification model on it. It can be observed that a long sentence is broken
into three grammatically simpler sentences. Also, it can be observed that the main points
of the original sentence are retained while some minor details are eliminated.

11

Chapter 3

Related Work

As a high-level NLP task, automatic KG generation requires combining several NLP sub-
tasks, which are usually implemented as an NLP pipeline including OpenIE, coreference
resolution, NER, and other components [55]. In Section 3.1 the state-of-the-art models in
the main NLP sub-tasks are studied. In Section 3.3, we discuss previous work on automatic
KG creation. Finally, in Section 3.3, related work on KGQA is reviewed.

3.1 Related NLP sub-tasks

As will be further elaborated in the next chapter, our system consists of several components
performing various NLP sub-tasks. The main tasks are sentence simplification, NER,
OpenIE, and coreference resolution. we review the current state-of-the-art systems and
justify our model selection for each task. Note that most of the recent NER models fulfill
our need from the NER component, thus, we saw it unnecessary to conduct a literature
review to justify our model selection for NER. In the rest of this section, we discuss related
work in other three tasks: OpenIE, coreference resolution, and sentence simplification.

3.1.1 Open Information Extraction

From its introduction by [7] in 2007 until now, OpenIE models have had noticeable progress.
The most prominent OpenIE models proposed over this period (in chronological order) are
Textrunner [7], OLLIE [46], REVERB [17], ClauseIE [14], OpenIE4 [11, 37], StanfordOIE

12

[5], PropS [48], Graphene [10], NeuralOpenIE [13], OpenIE5 [44, 45, 38, 12], RnnOIE [49],
SenseOIE [43], SpanOIE [59], IMoJIE [25], and OpenIE6 [24].

The aforementioned models used various approaches to extract accurate triples. [36]
classified classic methods1 into the four categories: (non-neural) learning-based methods
such as Textrunner and OLLIE, rule-based methods such as REVERB and PropS, clause-
based methods such as ClauseIE and StanfordOIE, and methods capturing inter-proposition
relationships such as OpenIE42.

As observed by [24], recent neural-network-based systems outperformed non-neural
learning-based and rule-based OpenIE systems, thus becoming the main trend in OpenIE.
Authors of [24] classified recent neural models into the labeling-based and generation-based
systems. Labeling-based systems, for each triple, label all the words as subject, rela-
tion, object, or none; the labeling is done independently for each triple, thus making the
labeling-based methods incapable of detecting dependencies among triples. On the other
hand, generation-based models use seq2seq networks to extract triples sequentially. Before
extracting the next triple, generation-based models re-encode the triples extracted so far.
While generation-based methods are more accurate due to the capability of capturing de-
pendencies between triples, they are generally much slower than labeling-based approaches.
Finally, OpenIE6, the state-of-the-art OpenIE model to our knowledge, bridges two meth-
ods and proposes an efficient iterative labeling framework with an accuracy comparable to
generation-based methods.

Figure 3.1 demonstrates the performance of state-of-the-art OpenIE models as well as
their F1 and AUC3 scores on OpenIE benchmarks, captured from [24]. The last three rows
represent the variations of OpenIE6. According to the speed column in Figure 3.1, only
RnnOIE and two variations of OpenIE6 are suitable for applying to large corpora. As will
be further discussed in the next chapter, we leveraged a re-implementation of RnnOIE in
our framework.

3.1.2 Coreference Resolution

Coreference resolution models demonstrated noticeable progress over recent years. [50] is a
recent survey that compares the approaches and the results of state-of-the-art coreference
resolution models.

1Models proposed before 2018
2For more details about each category please refer to the original paper [36].
3Aria Under Curve

13

Figure 3.1: Comparison of state-of-the-art OpenIE models obtained from [24]

Figure 3.2 demonstrates the performance of state-of-the-art coreference resolution mod-
els based on average F1 on CoNLL-2012 dataset, the main benchmark in coreference res-
olution literature. c2f-coref4 (represented by Lee et al. (2018) in Figure 3.2) [27] and
CorefQA5 (represented by Wu et al. (2020) in Figure 3.2.) [54] and their variations
are the most popular open-sourced models to our knowledge. While Lee et al. (2018)
used c2f-coref in combination with ELMo embeddings and achieved 73.0%, Joshi et al.
(2019) [22] and Joshi et al. (2020) [21] replaced ELMo embeddings with BERT-large and
SpanBERT-large embeddings and achieved 76.9% and 79.6% respectively. CorefQA also
achieved as high as 83.1% as represented in Figure 3.2. As will be described in the next
chapter, we leveraged a model similar to Joshi et al. (2020) in our framework.

3.1.3 Sentence Simplification

It has been observed that the syntactic complexity of input sentences is one of the main
sources of failure in OpenIE models. More specifically, recent OpenIE models reported
losing substantial recall in extracting triples from conjunctive sentences [44, 45]. To address
this issue, several models have been proposed to split up a complex sentence into simpler
sentences, as a preprocessing step for OpenIE.

4Higher-order Coreference Resolution with Coarse-to-fine Inference
5Coreference Resolution as Query-based Span Prediction

14

Figure 3.2: Comparison of state-of-the-art coreference resolution models obtained from [50]

15

Graphene proposed a rule-based framework called discourse simplification to split up
multi-clause sentences. The framework has been shown to improve the results of state-of-
the-art OpenIE models (back in 2018), such as ClauseIE and OpenIE4, when being used as
a preprocessing step. Similarly, CalmIE proposed a coordination analyzer that splits up
a complex sentence around its coordinating conjunctions (e.g. and, or, but) into simpler
sentences which are more suitable for the downstream OpenIE. CalmIE is also shown to
improve ClauseIE and OpenIE4 when being used as a preprocessing step. Finally, following
CalmIE’s approach, OpenIE6 proposed a novel coordination analyzer called IGL-CA that
in combination with CIGL-OIE, the OpenIE component of OpenIE6, outperforms all the
state-of-the-art OpenIE models, as demonstrated in Figure 3.1.

As suggested by [4], simplification can help improve the performance of downstream
NLP tasks such as information extraction. Previous systems utilized sentence-splitting
components dedicatedly designed for OpenIE. On the other hand, we found it faster and
easier to leverage state-of-the-art sentence simplification models to prepare complex input
sentences for downstream OpenIE. By using simplification models, we can paraphrase or
split complex sentences into simpler ones rather than only splitting them around coordi-
nating conjunctions. To our knowledge, this is the first usage of sentence simplification
models in OpenIE and KG-generation.

Recent supervised and unsupervised sentence simplification models have shown promis-
ing results in simplifying the vocabulary and structure of sentences. According to the sen-
tence simplification literature, MUSS is the state-of-the-art simplification model achieving
the highest SARI6 score in various simplification benchmarks [30]. As will be further elabo-
rated in the next chapter, We leveraged MUSS as a preprocessing step in our KG-generation
pipeline.

3.2 Automatic Knowledge Graph Generation

In this section, we review distinguished projects on automatic KG generation. Note that we
focus on projects on generating KGs solely from unstructured text, without using any prior
KG. Thus, related work on generating KGs from other sources (such as [16]) or populating
existing KGs (such as [9]) are not studied.

T2KG [23] is a KG creation framework introduced in 2018. It takes unstructured text
as input and applies five stages of entity mapping (NER + entity linking), coreference
resolution, triple extraction, triple integration, and predicate mapping to generate a KG.

6The most common metric for evaluating sentence simplification models proposed by [56]

16

Figure 3.3: Architecture of T2KG captured from [23]

T2KG pipeline is demonstrated in Figure 3.3. The models used for OpenIE and coreference
resolution are OLLIE [46] and Stanford NLP tool [26, 40], respectively. They are both
relatively old7 and far from the current state-of-the-art models in OpenIE and coreference
resolution, as discussed in Section 3.1. As it can be viewed in Figure 3.3, the triple
integration component combines the results of entity mapping, coreference resolution, and
triple extraction to generate the triples. Then, it applies an elaborated predicate mapping
module to map the extracted predicates into a set of predefined relations (ontology).

The authors of T2KG evaluated the quality of the KG creation by measuring the cover-
age, precision, and recall of the KB generated from 100 Wikipedia sentences (compared to
a manually created KB). T2KG is not open-sourced, and the KGs constructed by T2KG
are not evaluated in any downstream tasks.

Knowtext [8] is an automatic KG generation and visualization tool introduced in
2021. As demonstrated in Figure 3.4, KnowText firstly extracts triples and ontology in
parallel from the input text corpus. Then, it links the entities and aligns the triples with
the extracted ontology to generate the KG. Extracting triples (lower box in Figure 3.4)
incorporates two bottom-level tasks of POS8 tagging and dependency parsing as well as
two main tasks including OpenIE and coreference resolution. StanfordOIE [5] is used
for OpenIE and neuralcoref [34] python library is utilized for coreference resolution.

7Stanford NLP tool is introduced in 2011 and OLLIE is introduced in 2012
8part-of-speech

17

Figure 3.4: KnowText framework captured from [8]

These models are not among current state-of-the-arts in OpenIE and coreference resolution,
respectively. Extracting ontology (upper box in Figure 3.4) incorporates NER and domain-
specific vocabulary extraction, then binding entities to a simple 16-class ontology9. Note
that extracting triples in KnowText is analogous to the first four steps in T2KG while
extracting ontology in KnowText is similar to predicate mapping in T2KG.

KnowText is more of a commercial KG construction and visualization tool. The source
code is not available, and the authors did not attempt to evaluate the generated KGs,
either directly (similar to T2KG) or in a downstream application.

DELFT [61], introduced in 2020, constructs free-text KG from Wikipedia. The KG is
further leveraged for factoid QA. The entities of DELFT KG are Wikipedia articles, and
the edge labels are the sentences in which endpoint entities co-occurred. Unlike KnowText
and T2KG which extract well-defined concise predicates, edge labels in DELFT KG are
long sentences. Rather than using OpenIE to extract fine-grained relations, it preserves
the entire sentences, resulting in a noisy and dirty, but high-recall KG. The reason behind
this design is that DELFT builds KGs exclusively for factoid QA, hence, it prefers recall
(coverage) over precision. GNNs10 are further applied to the KGs to answer complex
factoid questions. Outperforming state-of-the-art QA models, DELFT performs well in
QA. However, DELFT KG is dirty and noisy, and cannot serve any purposes other than
QA. The source code of DELFT is available on Github.

AutoKG [58], introduced in 2021, constructs a KG from an input document, then

9Some classes are: Person, Organization, Location, etc.
10Graph Neural Networks

18

applies a simple multi-hub graph traversal algorithm on the KG to answer factoid questions.
For OpenIE, AutoKG utilizes OpenIE5 (combination of [44, 45, 38, 12])11 which according
to Figure 3.1, is a decent but very slow model. For coreference resolution, AutoKG uses
a simple heuristic instead of well-established coreference resolution models: It encodes the
extracted entities with BERT, then based on an adaptive threshold, links entities with high
cosine similarity.12

The authors evaluated the coverage of AutoKG KGs compared to a human-annotated
KB as the gold standard. Each triple of the gold standard is considered to be covered by
the AutoKG KG only if the object entity is covered by the KG. As mentioned earlier, the
authors also proposed a graph traversal algorithm to leverage the generated KG in QA.
The details of their QA algorithm will be discussed in the next section. Performance of
AutoKG in QA task is evaluated on several datasets and compared with classic IR methods
such as BM25. AutoKG is not open-sourced, and some details about their KG construction
and QA algorithm are unclear.

To summarize, in Table 3.1, we compared the properties of the existing models on
automatic KG creation from unstructured text. As demonstrated in Table 3.1, to our
knowledge, there is no open-sourced KG generation framework that takes a text corpus as
input and outputs a KG that benefits developers, NLP engineers, or researchers.

3.3 Question Answering with Knowledge Graphs

In the recent decade, many systems have been proposed on open-domain factoid KBQA. A
comprehensive survey on such systems is provided in [15]. According to [15] (and also [62]),
two common approaches for KBQA are Semantic Parsing and Information Extraction and
Retrieval. Semantic-parsing-based methods attempt to convert natural language questions
into predefined logical forms such as SPARQL query language, then query the underlying
KB and retrieve the answer. IE-IR-based methods, on the other hand, try to extract
entities from the question, match them to the KG nodes, and retrieve the correct answer
by searching in the neighbourhood of the matched KG nodes.

11The authors mentioned that they used CalmIE for OpenIE. CalmIE is not a standalone OpenIE
model, but an extension that improves the result of a base OpenIE model. Since CalmIE is usually used
in combination with OpenIE4 (constituting OpenIE5 together), we guess that the authors used OpenIE5.

12According to our experiments, such heuristics do not perform as well as state-of-the-art coreference
resolution models; thus, it is unclear for us why the authors of AutoKG have not used a coreference
resolution model instead.

19

Table 3.1: Comparison of automatic KG generation models

System
Automatic KG

generation
Application

in QA
Source-code
availability

OpenIE
method

Coref resolution
method

T2KG ✔ ✘ ✘ OLLIE Stanford NLP tool

KnowText ✔ ✘ ✘ StanfordOIE Neuralcoref

DELFT ✘∗ ✔ ✔ — —

AutoKG ✔ ✔ ✘ OpenIE5 Heuristic

∗ Since each edge label in DELFT is a long sentence, it is arguable whether it can be considered as a KG
or not. Anyways, it seems that the KG generated by DELFT would not be useful for any tasks other
than QA.

To our knowledge, the only attempt on QA with automatically-generated KGs is made
by AutoKG. Except AutoKG, all the KBQA models are designed to be used on high-
quality human-annotated KGs. Automatically-generated KGs are noisier and dirtier than
human-annotated KGs. Moreover, automatically-generated KGs usually lack a well-defined
ontology and background knowledge about nodes, edges, and the KG structure. Therefore,
it is unclear in what degree proposed KBQA models apply to automatically-generated
KGs. At first glance, simple IE-IR-based methods seem more suitable for automatically-
generated KGs. The reason is that semantic-parsing-based approaches require a well-
defined ontology and a query language designed by human experts, which are unavailable
for automatically-generated KGs. The QA approach proposed by AutoKG is a simple
IR-based algorithm. The algorithm is described in the following paragraph.

AutoKG conducts an intuitive KG-traversal algorithm: It first extracts the entities
from the input question and matches them with the KG nodes to obtain a list of seed
nodes to start with. Candidate paths are initialized with the seed nodes, then, in an
iterative manner, each candidate path is expanded by adding the neighbours of its last
node. The paths are scored based on the cosine similarity of their embedding with the
question embedding. Since the number of paths may grow exponentially, AutoKG conducts
an expand-and-prune strategy to only keep the best k paths at each time. After several
iterations, AutoKG returns the best k candidate paths that are most likely to contain the
correct answer. A QA transformer can be further applied to the retrieved paths to extract
the exact answer.

As the second work on QA with automatically-generated KGs, we used a QA algorithm
very similar to AutoKG’s. Still, some experimental study is required to examine the
applicability of other types of KBQA models on automatically-generated KGs. We delegate

20

this study to future work.

21

Chapter 4

Knowledge Graph Generation
Pipeline

4.1 Overview

Our KG-generation framework is demonstrated in Figure 4.1. The input is a corpus of
unstructured natural language text. In the first step (box no. 1), a sentence simplifi-
cation module is applied to input documents as a preprocessing step. Details about the
implementation of the simplification component, as well as justification for using sentence
simplification, are discussed in Section 4.4. After simplification, the documents are indi-
vidually processed by a pipeline of NLP components (box no. 2) including NER, OpenIE,
and coreference resolution. After applying each component to each document, the results
are stored alongside the document. Details about implementation of the pipeline are pro-
vided in Section 4.2. In the third step (box no. 3), entities extracted from documents are
aggregated (linked) to form the KG nodes. Then, a graph generation module combines
raw triples extracted in OpenIE with the results of coreference resolution and NER to
attain processed triples, triples with subject and object mapped into KG nodes. Finally,
edges are added between KG nodes according to the processed triples. Details of graph
generation are discussed in Section 4.3. An example of executing the pipeline on an input
document is provided in Figure 4.2. The input and output of the first two steps, sentence
simplification and NLP pipeline, are shown in Figure 4.2. More details about the third
step will be provided in Section 4.3 explaining how the KG in Figure 4.2 is generated from
the extracted triples.

22

Figure 4.1: KG generation framework

4.2 NLP Pipeline

KG generation, as a demanding NLP task, requires a sequence of various NLP tasks to be
applied to each document. The tasks range from bottom-level NLP such as tokenization
and sentencization1 to more advanced NLP tasks including NER, OpenIE, and coref-
erence resolution. Consistent tokenization is also required to be done before applying
other modules. We noticed the performance of OpenIE is superior when the input is given
at sentence-level rather than document-level; that’s why we used a sentencizer to split each
document into sentences before applying other modules. NER is a fundamental component
for KG generation. The entities extracted by the NER module are further aggregated and
form the KG nodes (in the third step). OpenIE is the core of KG generation; raw triples
extracted by the OpenIE module, after being processed in the third step, form the edges
of the KG. Finally, coreference resolution is essential for replacing the references of entities
with the original entity names in extracted triples.

We used SpaCy [19], a prominent NLP python library, to implement our pipeline. The
SpaCy pipeline has many advantages including providing a default implementation for
bottom-level NLP tasks (e.g., tokenization and POS tagging) and providing the capability
of adding custom components. We used SpaCy default implementation for tokenization
and sentencization. We also used SpaCy default components for other bottom-level tasks
such as POS tagging, lemmatization, and dependency parsing; these tasks do not play
a major role in KG generation but provide some useful information which is indirectly

1To Split up sentences

23

Figure 4.2: An example of running KG generation framework on a sample input document

24

used in the third step. For OpenIE, NER, and coreference resolution, we implemented our
custom components by leveraging state-of-the-art models, as specified in the rest of this
section. The advantage of using such a pipeline is that the components are implemented
independently, thus, the implementation of each component can be easily replaced by a
newer model.

SpaCy uses a Doc object to store each document. After applying each component, the
results are stored as an attribute of the corresponding Doc object. More specifically, in case
of our custom components, extracted entities are stored in Doc._.entities after NER,
triples are stored in Doc._.triples after OpenIE, and coreference clusters are stored in
Doc._.clusters after coreference resolution.

In the rest of this section, models used for NER, OpenIE, and coreference resolution
are introduced.

4.2.1 Open Information Extraction

Scalability was the main criteria in selecting the OpenIE model since the model should be
applied to all sentences of large datasets. As mentioned in Section 3.1, among the state-of-
the-art OpenIE models, only RnnOIE and OpenIE6 (without the coordination analyzer)
are efficient enough for our task. OpenIE6 is open-sourced and available on Github as
a python package, while RnnOIE is re-implemented by AllenNLP and is provided within
the allennlp python library, making it easier to use as a component of NLP pipelines
[18]. Taking software engineering aspects of the system into account, we decided to utilize
AllenNLP’s implementation of RnnOIE which is efficient, easy to use, and consistent with
other components. Note that as discussed in Section 4.4, we combined RnnOIE with a
sentence simplification model to improve the accuracy of OpenIE. Hence, the resulting
system is expected to perform better than the scores reported in Figure 3.1.

4.2.2 Coreference Resolution

As discussed in Section 3.1, c2f-coref (SpanBERT-large implementation) and corefQA are
the two open-sourced state-of-the-art coreference resolution models. c2fcoref is imple-
mented by AllenNLP and provided within the allennlp python library, making it much
easier to use [18]. Note that in AllenNLP’s implementation of c2f-coref, ELMo embed-
dings are substituted by SpanBERT embeddings. Thus, it is expected to perform similar
to Joshi et al. (2020), the first model in Figure 3.2, achieving the second best score among

25

all the open-sourced models to our knowledge. We leveraged the AllenNLP model which
is efficient, easy to use, and consistent with other components of the pipeline.

4.2.3 Named Entity Recognition

Most of the recent NER models fulfill our need from the NER component since the only
information we use from NER output is whether each span is an entity or not (we do not
use predicted entity types). Thus, the NER component is not critical in our pipeline in the
sense that a decent NER model fulfills our requirement. We simply used AllenNLP’s NER
model [18] which is easy to use and consistent with other components. The AllenNLP’s
NER model is based on the model proposed in [39].

4.3 Entity Linking And Graph Generation

After processing documents in the pipeline, the entities extracted from documents are
filtered, aggregated, and deduplicated. For filtering entities, some simple rules are applied.
For instance, if one of the entities extracted from a document is a substring of another
one, the former will be eliminated. The reason is that in many sentences, a shortened
coreference to a previously-mentioned entity is mistakenly recognized as a different entity.
In the following example, Christopher Nolan and Nolan are both recognized as entities.
However, after applying the aforementioned rule, only the former one is kept, as desired.

“Batman Begins is a 2005 British-American superhero film based on the fictional DC
Comics character Batman, co-written and directed by Christopher Nolan ... After a series
of unsuccessful projects to resurrect Batman on screen following the 1997 critical failure of
‘Batman & Robin’, Nolan and David S. Goyer began to work on the film ...”

In addition to entity filtering, some domain-specific entities (which are not already
recognized by the NER) can be added in this step. For example, in the movie domain,
genres and production years can be added to the list of entities; genres like comedy and
years like 1997 are not normally recognized as named entities. However, recognizing them
as graph nodes might be desired in some applications. Specifically, adding them can
improve the QA results, when the KG is leveraged for the QA task.

After refining entities, the entities are aggregated and linked. In this step, similar
entities that are most likely to refer to an identical entity are merged and deduplicated.
After filtering, aggregating, and linking, the resulting set of entities will constitute the the
KG nodes.

26

Figure 4.3: Graph generation part of the example in Figure 4.2.

The final step is graph generation. In this step, the triples extracted from each docu-
ment are processed and converted to KG nodes. For each subject (of a triple), if some part
of the subject or a coreference of that is recognized as a named entity, the subject is linked
to the corresponding entity node. The exact same procedure is done for the objects of the
extracted triples. Then, for triples having both subject and object linked to KG nodes, an
edge labeled with the predicate will be added between subject and object nodes. Triples
lacking subject/object nodes will be stored as attributes of the object/subject node. Some
rule-based heuristics are also applied to retrieve the correct subject/object node when the
subject/object is not linked to a KG node. The triples in which none of the subject or
object are linked into a KG node are thrown away.

Figure 4.3 shows the graph generation part corresponding to the example demonstrated
in Figure 4.2. It in (It, directed, by John Turturro) is replaced by Illuminata, which is
coreference with It and is also recognized as a named entity. Also, by John Turturro is
replaced by John Turturro which is recognized as a named entity. The resulting triple
will be (Illuminata, directed, John Turturro) that leads to drawing an edge labeled with
directed between nodes of Illuminata and John Turturro in the KG. Similarly, (The movie,
written, by Brandon Cole and John Turturro) will be processed, resulting in (Illuminata,
written, Brandon Cole) and (Illuminata, written, John Turturro).

In the case of (Illuminata, is, a 1998 romantic comedy movie), the first extracted triple,
the object does not link to any nodes, unless we intervene in NER in order to recognize
domain-specific words such as comedy as named entities. In this case, an edge labeled with
is would be added between the nodes representing Illuminata and comedy. Otherwise, the
sentence “s a 1998 romantic comedy movie” is stored as an attribute of Illuminata, without
adding any edges to the graph. To keep our framework domain-agnostic, we decided to

27

conduct the latter approach which is avoiding any intervention in NER, and only storing
comedy as an attribute of Illuminata.

Finally, in the case of (The cinematographer, is, Harris Savides), the last triple, the
subject is not initially linked to a node, however, a heuristic is applied to recognize Il-
luminata as the subject node; knowing that the context (the title of the document) is
Illuminata, we set the subject node of such subjectless triples to Illuminata and recognize
the combination of subject and predicate as the new predicate. The resulting triple would
be (Illuminata, the cinematographer is, Harris Savides) which is shown in the KG.

Note that while some previous work such as T2KG map the extracted predicates to a
set of predefined relations, we do not apply any predicate mapping (ontology mapping).
The reason is that thousands of unique predicates are extracted from a text corpus to
build a general-purpose KG; mapping all the predicates to a limited set of relations leads
to losing a large amount of information, as a study in [23] reported that 23% of KG
generation errors arose from predicate mapping. Specifically, complicated predicates, such
as ‘the cinematographer is’, will be lost in predicate mapping. Although predicate mapping
standardizes the KG and makes it evaluable, the KGs generated without predicate mapping
cover more facts and are more powerful in IR and QA tasks. Hence, we decided not to
apply predicate mapping in our framework.

4.4 Sentence Simplification

We noticed that the syntactic complexity of sentences prevents OpenIE models from cor-
rectly extracting the triples. As described in Section 3.1, we leverage MUSS for breaking
complex sentences into the simpler ones2. As demonstrated in Figure 4.1, simplification
is the first step in the framework; it takes raw documents as input and outputs simplified
(preprocessed) documents which are ready to be processed by the pipeline.

MUSS is built on top of Access [31], a sentence simplification model providing four
control tokens for adjusting the simplification according to the application. While simpli-
fying the syntactic structure of sentences is beneficial for downstream OpenIE, simplifying
the vocabulary is unnecessary and potentially harmful. Therefore, we tune control tokens
in such a way that maximizes syntactic simplification while minimizing lexical simplifica-
tion. Specifically, by setting the target ratio of WordRankRatioPreprocessor token to 1,
we prevented the model from changing the vocabulary of the original sentences.

2Note that despite some state-of-the-art OpenIE models, such as OpenIE6, have built-in coordina-
tion analyzer, RnnOEI lacks a built-in sentence simplification component. Hence, we need to add the
simplification as a preprocessing step before OpenIE

28

Figure 4.4: Results of applying AllenNLP’s OpenIE on a piece of text before simplification
(left) and after simplification (right)

29

Figure 4.4 demonstrates the advantage of using sentence simplification on a sample
input. It can be observed that in the simplified case, subjects and objects are accurate and
fine-grained. On the othe hand, in the non-simplified case, long conjunctive sentences are
identified as the subject or object of a single triple. More specifically, notice that in the
simplified version, It and The movie, the subjects of the second and third sentences, both
belong to the coreference cluster of Illuminata. Therefore, after combining the results of
NER, OpenIE, and coreference resolution, the final set of triples would include (Illuminata,
directed, Joun Turturro), (Illuminata, written, Brandon Cole), and (Illuminata, written,
John Turturro). On the other hand, in the non-simplified case, a 1998 romantic comedy
film is the subject of both the second and third triples. None of the words in the subject
span belong to any coreference cluster or named entity span. As a result, the second and
third triples would be thrown away without extracting any of the three important triples
mentioned earlier.

30

Chapter 5

Question Answering via KG
Utilization

5.1 Overview

As mentioned in Section 3.3, AutoKG [58] uses a simple algorithm consisting of extracting
seed entities from the input question and KG-traversal for finding paths relevant to the
input question. We utilized a QA algorithm similar to AutoKG’s description for retriev-
ing the candidate paths. Moreover, we extend AutoKG’s framework by adding an answer
extraction component. While AutoKG returns candidate paths with no attempt to fur-
ther process them, our answer extraction component extracts the exact answer from the
candidate paths.

Our QA framework is demonstrated in Figure 5.1. In the first step, similar to AutoKG,
seed entities are extracted from the input question and mapped into the KG nodes. Details
of this step are discussed in Section 5.2. In the second step, explained in Section 5.3, we
search the neighbourhood of the seed nodes to find paths that are most likely to contain
the correct answer to the input question. This step is also a re-implementation of the
KG-traversal described in AutoKG. Finally, we apply a state-of-the-art neural QA model
to extract the answer from the candidate paths. This step completes our QA framework
and allows us to compare our QA results with other QA methods. More details on the
third step are discussed in Section 5.4.

Figure 5.2 demonstrates the QA procedure on an input question. Firstly, the word
Illuminata is extracted from the question as the seed entity, and then mapped to the

31

Figure 5.1: The QA Framework

Figure 5.2: An example of the QA Framework

32

KG node representing Illuminata. In the second step, among short paths starting from
the Illuminata node, the path containing Illuminata, John Turturro, and Company Man is
identified as a candidate path potentially containing the answer. The text corresponding to
this path is ”Illuminata directed by John Turturro. Company Man stars John Turturro”. In
the final step, a QA model takes the question and the text (corresponding to the candidate
path) and extracts the answer which is Company Man.

5.2 Seed Entity Extraction

In this step, firstly, the same NER model as the one used in KG-generation is used to
extract entities (called seed entities) from the input question. In addition to NER, several
simple heuristics are applied to improve the accuracy of entity recognition. The heuristics
are either designed for i. Identifying phrases that are likely to represent an entity, but are
not recognized by the NER model (such as title-case phrases). ii. Filtering out entities
recognized by the NER model that are not likely to represent actual entities (such as
entities that are substrings of longer entities).

After entity extraction, extracted entities are mapped into the KG nodes. If an exact
match is not found, some similarity metrics are used to map the entities to the most similar
KG nodes. The mapped nodes are called seed nodes since the KG-traversal in the next
step will be initialized with these nodes. In the QA datasets we used for evaluation, almost
all the questions only contain one seed node similar to the input question in Figure 5.2.
However, the algorithm theoretically works for questions with multiple entities, as well.

5.3 KG Traversal

In this step, having the input question, KG, and a set of starting nodes, we traverse the
KG to find paths containing the answer. Algorithm 1 is a high-level pseudocode describing
the KG-traversal procedure. The pseudocode is analogous to the pseudocode provided by
AutoKG [58] while differing in details and terminologies. The main inputs are the KG, seed
nodes, and the input question. Other inputs include hops, a hyper-parameter specifying
the maximum depth of graph search, and beam size, another hyper-parameter specifying
the maximum number of active paths that are kept to be expanded in future rounds of the
algorithm.

In the beginning, active paths is initialized with seed nodes. Then in hops rounds, the
paths are expanded with a breadth-first expand-and-prune strategy. In each round, active

33

Algorithm 1 KG Traversal algorithm

Input: KG, seed nodes, question, hops, beam size
Output: candidate paths

1: active paths← seed nodes
2: for i = 0→ hops do
3: expanded paths ← {}
4: for each path ∈ active paths do
5: head← last node of path
6: for each new node ∈ Neighbours(head) do
7: expanded path← path+ [new node]
8: add Text(expanded path) to candidate paths
9: add expanded path to expanded paths

10: sort expanded paths according to their similarity to question
11: active paths ← The first beam size paths in expanded paths having highest scores

12: return candidate paths

paths are expanded by the neighbours of their front node (line 7). The text corresponding
to each expanded path (the result of concatenating consecutive nodes and edge labels along
the path) is added to the list of candidate paths (line 8). Expanded paths are sorted based
on the similarity of their corresponding text to the input question (line 10). all-MiniLM-
L6-v2, a popular sentence-similarity model, is utilized for similarity calculation. The most
relevant paths are used as the active paths for the next rounds while less relevant paths are
pruned away (line 11). As mentioned in [58], the pruning is due to an exponential growth
in the number of active paths, making it impossible to investigate all the paths. Finally,
the list of candidate paths (in the text format) is returned to be further processed in the
answer extraction step.

Back to the example shown in Figure 5.2, the KG-traversal begins with Illuminata as
the seed node. In the first round, it is expanded with the neighbouring nodes, including
John Turturro. The resulting path, {Illuminata, John Turturro}, is kept in the list of active
paths since its corresponding text, “Illuminata directed by John Turturro”, has a relatively
high similarity with the input question. In the next round, the path is expanded with
Company Man, resulting in {Illuminata, John Turturro, Company Man}. The text form of
this path (“Illuminata directed by John Turturro. Company Man stars John Turturro.”) is
appended to the list of candidate paths as well as other promising candidates. The answers
will be extracted from candidate paths in the next step.

34

Figure 5.3: A screenshot of our QA demo corresponding to the example in Figure 5.2

5.4 Answer Extraction

While AutoKG ends up reporting the most relevant candidate paths, we further process
candidate paths to extract and report exact answers. For answer extraction, We leverage
roberta-base-squad2 (RoBERTa-base model [29] fine-tuned on SQuAD2.0 dataset [41]
provided by Hugging face transformers python library [53]), a popular QA model. It takes
the question and context as input and extracts the answer from the context along with a
confidence score. We give each candidate path separately to the model as the context. For
each candidate path, we store the extracted answer as well as the confidence score. The
answers with the highest confidence scores (along with their corresponding paths) are then
reported as the final answers.

Returning to the example in Figure 5.2, the QA model takes candidate paths as context,
trying to find a confident answer to In which movies did the director of Illuminata act?.
Taking “Illuminata directed by John Turturro. Company Man stars John Turturro.” as
the context, it extracts Company Man with a relatively high score. Therefore, Company
Man is returned as the answer and the path from Illuminata to Company Man is returned
as the path leading to the answer.

A screenshot of our QA demo is demonstrated in Figure 5.3. The question “In which
movies did the director of Illuminata act?” is entered into the demo. The system applies

35

the QA procedure, retrieves the best answers, and visualizes the paths containing the best
retrieved answers.

36

Chapter 6

Experiments

6.1 Overview

In this section, we aim to evaluate the KGs generated by our pipeline. Among KnowText,
T2KG, and AutoKG, the three KG generation frameworks described in Section 3.2, the
former did not attempt to evaluate the generated KGs. T2KG manually generated a gold
standard KB from 100 Wikipedia sentences and evaluated the precision and recall of the
automatically-generated KG against the gold standard. Since T2KG applies predicate
mapping, the KGs generated by T2KG are evaluable by this approach. On the other
hand, calculating the precision and recall of the KGs generated by our pipeline is not
straightforward. The reason is that without predicate mapping, predicates may appear
in various forms, making it difficult to decide whether a predicate should be considered
correct or incorrect.

As an example, consider the triples that might be extracted from “Illuminata is a 1998
romantic comedy film directed by John Turturro”. While the subject node is Illuminata
and the object node is John Turturro, extracted predicate might be various phrases such
as ‘directed’, ‘is directed’, ‘is’, ‘directed by’, ‘film directed by’, ‘is a 1998 romantic comedy
film directed by’, etc., depending on the underlying OpenIE method. Clearly, predicates
such as ‘directed’ and ‘directed by’ are acceptable while predicates like ‘is’ and ‘is a 1998
romantic comedy film directed by’ are not acceptable edge labels for a KG. Even though we
have access to a gold standard KB, automatically deciding whether each predicate matches
the gold standard or not is not straightforward.

AutoKG indirectly evaluated the KGs, combined with a KG-traversal algorithm, in
question answering. The authors also conducted a direct evaluation by calculating the

37

coverage (recall) of the retrieved triples against a gold standard KB. Similar to our frame-
work, AutoKG does not apply predicate mapping, thus, the authors needed a way to
overcome the aforementioned issue with calculating recall. The authors considered each
triple of gold standard KB to be covered by the generated KG only if the object entity is
covered by the KG. This way, they did not need to take predicates into account. However,
this method of reporting coverage seems simplistic and misleading to us since it does not
evaluate the quality of extracted predicates.

As discussed above, we are not aware of a fair way of directly evaluating KGs. Hence,
similar to AutoKG, we indirectly evaluate the KGs in question answering as the main
downstream application of KGs. This way we can easily quantify the results and compare
KGs with each other. In the rest of this chapter, we present our QA experiments. Datasets
used in our experiments are introduced in Section 6.2. Evaluation approaches and metrics
are discussed in chapter 6.3. In Section 6.4, we discuss the configurations of the system we
used for our implementations as well as the hyper-parameter settings. Finally, in Section
6.5 we discuss the baseline models and compare the QA results of KG-Pipeline with the
baselines.

6.2 Datasets

Similar to [58], we evaluated our QA algorithm on two QA benchmarks: WikiMovies
[32] and MetaQA (2-hop and 3-hop) [60]. Both datasets consist of Q&A pairs from the
same corpus: 18128 Wikipedia articles in the movie domain. Each document includes text
extracted from the Wikipedia page of a movie. Documents corresponding to the movies
Illuminata and Company Man are shown in Figure 1.2. We also introduced MDQA, a
QA dataset consisting of multi-document questions: questions which require combining
information from multiple documents. Although the three datasets are extracted from the
same corpus, they include different question types. In the rest of this section, we discuss
the details of the datasets.

6.2.1 WikiMovies

WikiMovies, introduced in 2016, includes 11 types of questions. The question types are
represented in Table 6.1. In terms of KGQA, all questions in WikiMovies are 1-hop; the
answer is always available in the neighbourhood of the seed node in an ideal KG. The
dataset is partitioned into training, development, and testing sets. The testing partition
includes 9952 Q&A pairs.

38

Table 6.1: Question types of WikiMovies dataset extracted from [32]

Question Type Example

Movie to Director who directed the movie Beneath the Darkness?

Movie to Writer who is the writer of Anna Karenina?

Movie to Actors who stars in The Deceivers?

Movie to Language what is the language spoken in Eye of the Needle?

Movie to Year what was the release year of the movie In Bloom?

Movie to Genre what is the genre of the movie Holy Matrimony?

Movie to Tag what topics is Eraser about?

Writer to Movie which film did David Carter write the story for?

Director to Movie what is a film directed by Eddie Murphy?

Actor to Movie what films does William Atherton appear in?

Tag to Movie what movies are about feminism?

6.2.2 MetaQA

MetaQA-2-hop and MetaQA-3-hop were introduced in 2018 as extensions to WikiMovies.
They consist of more complicated questions: questions requiring 2-hop and 3-hop KG-
traversal, respectively. Due to their multi-hop complexity, MetaQA datasets are more suit-
able for evaluating KGs, compared to WikiMovies. MetaQA-2-hop consists of 21 question
types: 18 types in format of {Actor/Writer/Director to Movie to Actor/Writer/Director
/ Year/Language/Genre} plus 3 types in format of {Movie to Actor/Writer/Director to
Movie}. Some examples are shown in Table 6.2. MetaQA-3-hop consist of 15 question
types in format of {Movie to Actor/Writer/Director to Movie to Actor/Writer/Director
/ Year/Language/Genre}. Some examples are represented in Table 6.3. MetaQA-2-hop
and MetaQA-3-hop include 14872 and 14274 questions in testing partition, respectively.

Multi-hop QA datasets are more suitable for evaluating KGs compared to 1-hop datasets.
Back to the example presented in Introduction, to answer the 2-hop question of In which
movies did the director of Illuminata act? the KG needs to identify Illuminta, John Tur-
turro, and Comany Man as nodes; capture the Director relation between Illuminta and
John Turturro; and also capture the Actor relation between John Turturro and Comany
Man as demonstrated in Figure 1.1(a). Thus, a single 2-hop question verifies the veracity
of several nodes and edges.

39

Table 6.2: Some questions of MetaQA-2-hop dataset captured from [60]

Question Type Example

Director to Movie to Actor
who acted in the films directed by
Gerard Johnson?

Writer to Movie to Language
what are the primary languages in the films
written by Kevin Noland?

Actor to Movie to Genre
what are the genres of the movies acted by
Odette Annable?

Movie to Actor to Movie
the actor of Black Swan also starred in
which films?

Director to Movie to Year
when were the films directed by Peter Lord
released?

Table 6.3: Some questions of MetaQA-3-hop dataset captured from [60]

Question Type Example

Movie to Director to Movie to Actor
who acted in the films directed by
the director of Curious George?

Movie to Writer to Movie to Genre
what types are the movies written by
the writer of Lamerica?

Movie to Actor to Movie to Year
what were the release years of the films
that share actors with the film Deep Red?

Movie to Writer to Movie to Director
who directed films for the writer
of Swann in Love?

40

6.2.3 MDQA

Although MetaQA questions require multi-hop reasoning, they are mostly answerable with
the content of a single document. In the case of MetaQA-2-hop, Movie is the middle node
in 18 out of 21 question types. Since the documents are about movies, such questions are
answerable with the content of a single document. For example, the question What types
are the movies directed by John Turturro? is answerable with the content of the document
describing Illuminata. In this document, it is mentioned that Illuminata is comedy and
directed by John Turturro. Thus, by solely processing this document, we can report comedy
as the answer. In the case of MetaQA-3-hop, Movie is the first and third node in all the
question types. Thus, in most of the questions, the answer is available in the document
of the given movie. For example, the 3-hop question of Who acted in the films directed
by the director of Illuminata? can be simply answered by mentioning one of the actors of
Illuminata.

The fact that the MetaQA questions are mostly answerable with a single document
makes them less accurate in evaluating the quality of underlying KGs. In our experiments,
many single-document questions are correctly answered despite the low quality of the
KG in the corresponding subgraph. For example, consider the 2-hop question of “Who
directed the films written by Brandon Cole?” which is answerable with the content of
Illuminata article: “Illuminata is a 1998 romantic comedy film directed by John Turturro
and written by Brandon Cole and John Turturro”. In an ideal KG, the answer path starts
from Brandon Cole, passes through Illuminata, and ends in John Turturro. However,
a faulty KG-generation framework may put an edge between Brandon Cole and John
Turturro labeled with the whole sentence. Such KG is also capable of answering the given
question despite being dirty. In conclusion, dense and dirty KGs can perform well in
answering MetaQA questions.

On the other hand, there is no way to cheat in answering multi-document questions. The
information must be correctly extracted from source documents and correctly aggregated
into the KG so that the KG is capable of answering a multi-document question. Motivated
by this observation, we propose MDQA, Multi-Document Question Answering dataset.
MDQA consists of 2-hop questions extracted from the same Wikipedia corpus. The middle
node in none of the questions is Movie. Thus, the questions are not answerable with a
single document. MDQA is created by using the gold-standard KB proposed in [32].

MDQA consists of 9 question types represented in Table 6.4. Note that the first three
question types are the same as the three multi-document question types in MetaQA-2-hop.
The testing partition includes 10,000 questions. We suggest future work to also evaluate
their framework on MDQA.

41

Table 6.4: Question types of MDQA dataset

Question Type count Example

Movie to Director to Movie 11412
Which movies have the same director as
Lucky Jordan?

Movie to Writer to Movie 8817
The scriptwriter of Top Hat also wrote
which movies?

Movie to Actor to Movie 11709
Which movies have the same actor as
The Package?

Movie to Director-Actor to Movie 2017
In which movies the director of Reel Injun
performed as an actor?

Movie to Director-Writer to Movie 7977
Which movies are written by the director of
Midnight?

Movie to Writer-Director to Movie 6101
Which movies are directed by the scriptwriter
of Gentlemen Broncos?

Movie to Writer-Actor to Movie 1839
The writer of Traitor played in
which movies?

Movie to Actor-Director to Movie 4031
What are the movies directed by the actor of
Perfect Sense?

Movie to Actor-Writer to Movie 3474
Which movies are written by the actor of
Beyond Outrage?

6.3 Evaluation Metrics

Following the previous work, we use % hits@k to evaluate QA results [58]. Hits@k measures
the ratio of questions for which the system retrieved a correct answer among the top k
predictions. The authors of AutoKG reported % hits@1, % hits@3, and % hits@5 of their
model on each dataset. During our experiments, specifically in the case of WikiMovies,
we noticed that the ground truth is incomplete. For some questions, there are correct
answers which are missing in the ground truth. Manually evaluating a sample of 20 Q&A

42

pairs from WikiMovies showed that in 5 out of 20 questions, the top answer retrieved by
KG-Pipeline is correct but is missing in the ground truth. Due to such a high error rate,
we decided to only report % hits@5, which is more reliable than % hits@1 and % hits@3.
Clearly, the % hit@k evaluation error is less for higher values of k since there is a higher
chance that at least one of the top k retrieved answers are included in the ground truth.

To compare our results with other QA systems, we report % hits@5 on WikiMovies,
MetaQA-2-hop, MetaQA-3-hop, and MDQA. For each question, we check if any of the
5 retrieved answers (either in lower-case, title-case or upper-case form) is present in the
ground truth. We refer to this evaluation approach as exact answer evaluation. The IR
baseline discussed in Section 6.5.2 is evaluated in the same way.

AutoKG ends up reporting the best candidate paths, without further attempt for answer
extraction. For calculating % hit@k scores, the authors counted a path as a correct path
if the text form of the path contains one of the ground-truth answers as a substring. We
refer to this approach as path evaluation. Clearly, higher scores are reported with path
evaluation compared to exact answer evaluation since the answer extraction error is not
reflected in the former approach. We also calculated our % hits@5 results with path
evaluation approach to compare our results to AutoKG’s in a fair way.

6.4 System Configuration

We implemented our pipeline on top of Spacy pipeline [19]. We used Python 3.71 for
all implementations. Allennlp models (for OpenIE, coreference resolution, and NER),
roberta-base-squad2 (QA model), and all-MiniLM-L6-v2 (sentence similarity model) are
all used with default parameters, without any fine-tuning. MUSS is used with the following
hyper-parameters:

LengthRatioPreprocessor = 1

ReplaceOnlyLevenshteinPreprocessor = 0.8

WordRankRatioPreprocessor = 1

DependencyTreeDepthRatioPreprocessor = 0.4

hops and beam_size are the main hyper-parameters of the QA algorithm. To achieve
the best results, we set hops to one more than the hops of the input dataset. For ex-
ample, for MetaQA-2-hop and MDQA, we run the algorithm with hops = 3. We used

1MUSS, the model used in the sentence simplification component, is not compatible with recent Python
versions like Python 3.9.

43

beam_size = 10 in all experiments. We did not use the training partition of the datasets
since our KG-based QA approach does not incorporate any trainable components. Devel-
opment partitions are used for hyper-parameter tuning.

We conducted our experiments on a Linux Ubuntu 21.10 server with 24 CPU cores and
an NVIDIA 2080 Ti GPU. The GPU makes the simplification step much faster. However,
the whole pipeline can be executed without GPU. Note that the pipeline has a high usage
of memory. The size of the MUSS is 4.8GB and the total size of pipeline models is about
2GB. Thus, at least 8GB of free memory is recommended for running the pipeline. More
implementation details will be published along with code in our Github repository.

6.5 Question Answering Results

In this section, we present the QA results in two scenarios. In the first scenario, we compare
our results to AutoKG, the only previous work on QA with automatically-generated KGs.
The results demonstrate the advantage of our pipeline in answering complicated questions,
showing the higher quality of our KGs. In the second scenario, we compare our QA results
to an IR baseline. We show that in addition to explainability and capability of answering
multi-document questions, our pipeline performs well in terms of %hits@5 QA results,
compared to the IR baseline.

In the following results, we incorporated a row specified with Fine-tuned KG-Pipeline,
identifying the results of our pipeline when fine-tuned on the movie domain. In Section
4.3, we claimed that KG-Pipeline is a domain-agnostic framework that can be fine-tuned
on various domains. In this fine-tuned version, a slight modification is made: We intervene
in the NER component so that it recognizes production years, movie genres, and languages
as entities. Since the QA datasets include year, genre, and language questions, we expect
an improvement in the QA results when such attributes are recognized as KG nodes.

6.5.1 Comparison to AutoKG

Hits@5 results of our model are compared to AutoKG in Table 6.5. As discussed in Section
6.3, we used the path evaluation approach to calculate the result of KG-Pipeline in Table
6.5. While KG-Pipeline performs close to AutoKG in WikiMovies and MetaQA-2-hop, it
outperforms AutoKG in MetaQA-3-hop by a large margin. We believe this is due to the
higher quality of our KGs, as our KG-traversal algorithm is analogous to the algorithm

44

Table 6.5: %hits@5 QA results calculated with path evaluation approach

Model WikiMovies MetaQA-2hop MetaQA-3hop

AutoKG 64.48 47.04 32.86

KG-Pipeline 63.16 44.11 44.66

Fine-tuned KG-Pipeline 67.36 42.51 45.44

described in the AutoKG paper. The source code of AutoKG is not published so we could
not compare the models on the proposed MDQA dataset.

6.5.2 Comparison to IR baseline

We discussed that KG-based QA has two advantages compared to the traditional IR-based
QA:

• Unlike IR-based QA systems, KG-based QA systems are explainable.

• Unlike IR-based QA systems, KG-based QA systems are capable of combining infor-
mation extracted from various sources.

In this section, we aim to show that our KG-based QA system also performs as well
as IR-based systems in terms of QA results. To this end, we compare the QA results of
KG-Pipeline to BM25+RoBERTa, as an IR-based baseline. In this baseline, we first utilize
BM25 to search the corpus for the most relevant documents to the input question. Then,
we apply roberta-base-squad2 [29], the same model as the one used in our QA framework,
to extract the answer from documents retrieved by BM25. In our experiments, we used
the Pyserini [28] implementation of BM25. Note that our KG-Pipeline does not use the
training partitions of datasets. Thus, we avoided fine-tuning the RoBERTa model on
training datasets to conduct a fair comparison.

The QA results are shown in Table 6.6. As discussed in Section 6.3, we used the
exact answer evaluation approach to calculate the scores in Table 6.6. According to the
results, KG-Pipeline outperforms the baseline in 3 out of 4 datasets. Since the same answer
extraction model (roberta-base-squad2) is used in both systems, we can claim that our KG-
traversal approach is a more effective way of retrieving relevant information to a candidate
query, compared to BM25. The results of models on the MDQA dataset verify our claim

45

Table 6.6: %hits@5 QA results calculated with exact answer evaluation approach

Model WikiMovies MetaQA-2hop MetaQA-3hop MDQA

BM25+RoBERTa 57.65 43.66 35.12 2.60

KG-Pipeline 56.88 36.16 35.15 25.88

Fine-tuned KG-Pipeline 64.70 38.21 41.58 25.88∗

∗ Since MDQA does not include any genre, language, or year questions, the fine-tuned version would not
be helpful in the case of MDQA. Thus, we repeated the result of the base version.

about the capability of KG-Pipeline in answering some multi-document questions while
the IR-based approach is incapable of answering such questions.

46

Chapter 7

Conclusion and Future Work

We formulated a solution framework to the problem of automatic KG generation. The
framework constitutes of well-known NLP components, namely sentence simplification,
open information extraction, coreference resolution, and named entity recognition. The
NLP tasks are separately applied to the input texts. The outputs are combined and
processed within a graph generation module, resulting in a KG. This modular design, unlike
the previous work on KG generation, is not dependent on any specific implementations for
information extraction or other NLP tasks. Thus, with the advent of superior NLP models
in future, the pipeline can be upgraded by replacing the implementation of each component
with state-of-the-art models. To showcase the advantage of our pipeline, we focused on
question answering as a downstream application of KG creation. Our KG generation
pipeline, combined with a simple KG-traversal algorithm, performs as well as baselines in
answering simple factoid questions while outperforming them in answering more complex,
specifically multi-document, questions.

There are several directions for future work to consolidate the current project. The
notable ones are as follows:

• Our system is originally designed for capturing binary relationships between entities.
The current framework is incapable of capturing more complicated forms of relations
in which more than two entities are associated. Treating such relationships as binary
relations may lead to augmenting KGs with noisy information. For example, taking
“Person[A] believes that Movie[B] is directed by Person[C]” as input, the system
simplistically infers director relation between the nodes representing Movie[B] and
Person[C] although this might not be a correct fact. Improving the system to capture

47

more advanced relations and distinguish between facts and opinions is one important
direction for future work.

• We discussed that we used state-of-the-art models for sentence simplification, coref-
erence resolution, and open information extraction. However, an ablation analysis
for each component is required to be conducted to formally prove the superiority
of the current models in the KG generation task. Specifically, since we introduced
sentence simplification as a useful preprocessing step, an ablation analysis is needed
to show the effect of sentence simplification component.

• We noticed that splitting complex sentences with MUSS noticeably improves the
quality of extracted triples and the resulting KG. It is the first usage of a model from
sentence simplification literature in OpenIE. In future, experiments can be conducted
to formally demonstrate the effect of extending RNNOIE by adding MUSS in OpenIE
literature. In other words, experiments on the OpenIE benchmarks can be conducted
to locate the position of RNNOIE + MUSS among other state-of-the-art models
shown in Figure 3.1.

• As discussed in Section 3.3, we used a simple QA algorithm similar to AutoKG’s.
State-of-the-art KBQA models are designed for high-quality manually-annotated
KGs. At first glance, such models do not seem to be applicable to our automati-
cally generated KGs. However, an experimental study is required to test popular
KBQA algorithms on the generated KGs.

• As discussed in Section 6.1, the literature lacks a standard way of directly evaluating
automatically-generated KGs. Specifically, since we do not apply ontology mapping,
the extracted predicates can be in various forms. Thus, it is unclear how to calculate
the precision/recall of the extracted triples against a gold standard KB. Consequently,
we preferred to evaluate KGs indirectly, i.e., in QA as a downstream application of
KGs. In future, an attempt is required to find out a robust way of directly evaluating
KGs.

• As discussed in Section 4.3, predicate mapping standardizes the generated KGs while
reducing their coverage and QA recall. More experiments can be conducted in future
to test the pipeline with a predicate mapping component, and measure the degree to
which predicate mapping harms the QA results.

• We conducted all the experiments on the document corpus of WikiMovies. Experi-
ments on other QA datasets can be conducted in future to further evaluate the quality
of our pipeline in different domains. Moreover, we only used BM25 + RoBERTa as

48

the IR baseline to compare with our QA framework; experiments with more advanced
baselines should be added in future versions.

• Finally, our generated KGs are still far from the human-annotated KGs, specifically
in terms of the quality of extracted edge labels. On many input questions, our QA
module fails to retrieve the correct answer even though the answer is available in
the neighbourhood of the seed node. In future versions of KG-Pipeline, we aim to
improve the system by focusing on predicate extraction as well as the KG-traversal
algorithm.

49

References

[1] Allennlp’s coreference resolution demo. https://demo.allennlp.org/

coreference-resolution. Accessed: 2021-06-07.

[2] Allennlp’s named entity recognition demo. https://demo.allennlp.org/

named-entity-recognition/named-entity-recognition. Accessed: 2021-06-07.

[3] Allennlp’s open information extraction demo. https://demo.allennlp.org/

open-information-extraction. Accessed: 2021-06-07.

[4] Fernando Alva-Manchego, Carolina Scarton, and Lucia Specia. Data-driven sentence
simplification: Survey and benchmark. Computational Linguistics, 46(1):135–187,
2020.

[5] Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D Manning. Lever-
aging linguistic structure for open domain information extraction. In Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 344–354, 2015.

[6] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. Dbpedia: A nucleus for a web of open data. In The semantic web,
pages 722–735. Springer, 2007.

[7] Michele Banko, Michael J. Cafarella, Stephen Soderland, Matt Broadhead, and Oren
Etzioni. Open information extraction from the web. In Proceedings of the 20th In-
ternational Joint Conference on Artifical Intelligence, IJCAI’07, page 2670–2676, San
Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

[8] Bojan Bozic, Jayadeep Kumar Sasikumar, and Tamara Matthews. Knowtext: Auto-
generated knowledge graphs for custom domain applications. In The 23rd Interna-

50

https://demo.allennlp.org/coreference-resolution
https://demo.allennlp.org/coreference-resolution
https://demo.allennlp.org/named-entity-recognition/named-entity-recognition
https://demo.allennlp.org/named-entity-recognition/named-entity-recognition
https://demo.allennlp.org/open-information-extraction
https://demo.allennlp.org/open-information-extraction

tional Conference on Information Integration and Web Intelligence, pages 350–358,
2021.

[9] Ermei Cao, Difeng Wang, Jiacheng Huang, and Wei Hu. Open knowledge enrichment
for long-tail entities. In Proceedings of The Web Conference 2020, pages 384–394,
2020.

[10] Matthias Cetto, Christina Niklaus, André Freitas, and Siegfried Handschuh.
Graphene: Semantically-linked propositions in open information extraction. arXiv
preprint arXiv:1807.11276, 2018.

[11] Janara Christensen, Stephen Soderland, and Oren Etzioni. An analysis of open in-
formation extraction based on semantic role labeling. In Proceedings of the sixth
international conference on Knowledge capture, pages 113–120, 2011.

[12] Janara Christensen, Stephen Soderland, and Oren Etzioni. An analysis of open in-
formation extraction based on semantic role labeling. In Proceedings of the sixth
international conference on Knowledge capture, pages 113–120, 2011.

[13] Lei Cui, FuruWei, and Ming Zhou. Neural open information extraction. arXiv preprint
arXiv:1805.04270, 2018.

[14] Luciano Del Corro and Rainer Gemulla. Clausie: clause-based open information ex-
traction. In Proceedings of the 22nd international conference on World Wide Web,
pages 355–366, 2013.

[15] Eleftherios Dimitrakis, Konstantinos Sgontzos, and Yannis Tzitzikas. A survey on
question answering systems over linked data and documents. Journal of intelligent
information systems, 55(2):233–259, 2020.

[16] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy,
Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: A web-scale
approach to probabilistic knowledge fusion. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 601–610,
2014.

[17] Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying relations for open
information extraction. In Proceedings of the 2011 conference on empirical methods
in natural language processing, pages 1535–1545, 2011.

51

[18] Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F.
Liu, Matthew Peters, Michael Schmitz, and Luke S. Zettlemoyer. Allennlp: A deep
semantic natural language processing platform. 2017.

[19] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd. spacy:
Industrial-strength natural language processing in python. 2020.

[20] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu Philip. A survey
on knowledge graphs: Representation, acquisition, and applications. IEEE Transac-
tions on Neural Networks and Learning Systems, 2021.

[21] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer
Levy. Spanbert: Improving pre-training by representing and predicting spans. Trans-
actions of the Association for Computational Linguistics, 8:64–77, 2020.

[22] Mandar Joshi, Omer Levy, Daniel S Weld, and Luke Zettlemoyer. Bert for coreference
resolution: Baselines and analysis. arXiv preprint arXiv:1908.09091, 2019.

[23] Natthawut Kertkeidkachorn and Ryutaro Ichise. An automatic knowledge graph cre-
ation framework from natural language text. IEICE TRANSACTIONS on Informa-
tion and Systems, 101(1):90–98, 2018.

[24] Keshav Kolluru, Vaibhav Adlakha, Samarth Aggarwal, Soumen Chakrabarti, et al.
Openie6: Iterative grid labeling and coordination analysis for open information ex-
traction. arXiv preprint arXiv:2010.03147, 2020.

[25] Keshav Kolluru, Samarth Aggarwal, Vipul Rathore, Soumen Chakrabarti, et al.
Imojie: Iterative memory-based joint open information extraction. arXiv preprint
arXiv:2005.08178, 2020.

[26] Heeyoung Lee, Yves Peirsman, Angel Chang, Nathanael Chambers, Mihai Surdeanu,
and Dan Jurafsky. Stanford’s multi-pass sieve coreference resolution system at the
conll-2011 shared task. In Proceedings of the fifteenth conference on computational
natural language learning: Shared task, pages 28–34, 2011.

[27] Kenton Lee, Luheng He, and Luke Zettlemoyer. Higher-order coreference resolution
with coarse-to-fine inference. arXiv preprint arXiv:1804.05392, 2018.

[28] Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep, and
Rodrigo Nogueira. Pyserini: A Python toolkit for reproducible information retrieval
research with sparse and dense representations. In Proceedings of the 44th Annual

52

International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2021), pages 2356–2362, 2021.

[29] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[30] Louis Martin, Angela Fan, Éric de la Clergerie, Antoine Bordes, and Benôıt Sagot.
Muss: multilingual unsupervised sentence simplification by mining paraphrases. arXiv
preprint arXiv:2005.00352, 2020.

[31] Louis Martin, Benôıt Sagot, Eric de la Clergerie, and Antoine Bordes. Controllable
sentence simplification. arXiv preprint arXiv:1910.02677, 2019.

[32] Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes,
and Jason Weston. Key-value memory networks for directly reading documents. arXiv
preprint arXiv:1606.03126, 2016.

[33] Amit Mishra and Sanjay Kumar Jain. A survey on question answering systems with
classification. Journal of King Saud University-Computer and Information Sciences,
28(3):345–361, 2016.

[34] Spacy neuralcoref library. https://spacy.io/universe/project/neuralcoref. Ac-
cessed: 2021-07-07.

[35] Christina Niklaus, Bernhard Bermeitinger, Siegfried Handschuh, and André Freitas.
A sentence simplification system for improving relation extraction. arXiv preprint
arXiv:1703.09013, 2017.

[36] Christina Niklaus, Matthias Cetto, André Freitas, and Siegfried Handschuh. A survey
on open information extraction. arXiv preprint arXiv:1806.05599, 2018.

[37] Harinder Pal et al. Demonyms and compound relational nouns in nominal open ie. In
Proceedings of the 5th Workshop on Automated Knowledge Base Construction, pages
35–39, 2016.

[38] Harinder Pal et al. Demonyms and compound relational nouns in nominal open ie. In
Proceedings of the 5th Workshop on Automated Knowledge Base Construction, pages
35–39, 2016.

53

https://spacy.io/universe/project/neuralcoref

[39] Matthew E Peters, Waleed Ammar, Chandra Bhagavatula, and Russell Power. Semi-
supervised sequence tagging with bidirectional language models. arXiv preprint
arXiv:1705.00108, 2017.

[40] Karthik Raghunathan, Heeyoung Lee, Sudarshan Rangarajan, Nathanael Chambers,
Mihai Surdeanu, Dan Jurafsky, and Christopher D Manning. A multi-pass sieve for
coreference resolution. In Proceedings of the 2010 conference on empirical methods in
natural language processing, pages 492–501, 2010.

[41] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad:
100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

[42] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese
bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 11 2019.

[43] Arpita Roy, Youngja Park, Taesung Lee, and Shimei Pan. Supervising unsupervised
open information extraction models. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and the 9th International Joint Con-
ference on Natural Language Processing (EMNLP-IJCNLP), pages 728–737, 2019.

[44] Swarnadeep Saha et al. Open information extraction from conjunctive sentences. In
Proceedings of the 27th International Conference on Computational Linguistics, pages
2288–2299, 2018.

[45] Swarnadeep Saha, Harinder Pal, et al. Bootstrapping for numerical open ie. In Pro-
ceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 317–323, 2017.

[46] Michael Schmitz, Stephen Soderland, Robert Bart, Oren Etzioni, et al. Open language
learning for information extraction. In Proceedings of the 2012 joint conference on
empirical methods in natural language processing and computational natural language
learning, pages 523–534, 2012.

[47] Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open mul-
tilingual graph of general knowledge. In Thirty-first AAAI conference on artificial
intelligence, 2017.

[48] Gabriel Stanovsky, Jessica Ficler, Ido Dagan, and Yoav Goldberg. Getting more out
of syntax with props. arXiv preprint arXiv:1603.01648, 2016.

54

[49] Gabriel Stanovsky, Julian Michael, Luke Zettlemoyer, and Ido Dagan. Supervised
open information extraction. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 885–895, 2018.

[50] Nikolaos Stylianou and Ioannis Vlahavas. A neural entity coreference resolution re-
view. Expert Systems with Applications, 168:114466, 2021.

[51] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase.
Communications of the ACM, 57(10):78–85, 2014.

[52] Gerhard Weikum, Xin Luna Dong, Simon Razniewski, Fabian Suchanek, et al. Ma-
chine knowledge: Creation and curation of comprehensive knowledge bases. Founda-
tions and Trends® in Databases, 10(2-4):108–490, 2021.

[53] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison,
Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M.
Rush. Transformers: State-of-the-art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online, October 2020. Association for Computational
Linguistics.

[54] Wei Wu, Fei Wang, Arianna Yuan, Fei Wu, and Jiwei Li. Corefqa: Coreference
resolution as query-based span prediction. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 6953–6963, 2020.

[55] Xindong Wu, Jia Wu, Xiaoyi Fu, Jiachen Li, Peng Zhou, and Xu Jiang. Automatic
knowledge graph construction: A report on the 2019 icdm/icbk contest. In 2019 IEEE
International Conference on Data Mining (ICDM), pages 1540–1545. IEEE, 2019.

[56] Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-Burch.
Optimizing statistical machine translation for text simplification. Transactions of the
Association for Computational Linguistics, 4:401–415, 2016.

[57] Vikas Yadav and Steven Bethard. A survey on recent advances in named entity
recognition from deep learning models. arXiv preprint arXiv:1910.11470, 2019.

55

[58] Seunghak Yu, Tianxing He, and James Glass. Autokg: Constructing virtual knowl-
edge graphs from unstructured documents for question answering. arXiv preprint
arXiv:2008.08995, 2020.

[59] Junlang Zhan and Hai Zhao. Span model for open information extraction on accurate
corpus. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 9523–9530, 2020.

[60] Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander J Smola, and Le Song. Varia-
tional reasoning for question answering with knowledge graph. In Thirty-second AAAI
conference on artificial intelligence, 2018.

[61] Chen Zhao, Chenyan Xiong, Xin Qian, and Jordan Boyd-Graber. Complex factoid
question answering with a free-text knowledge graph. In Proceedings of The Web
Conference 2020, pages 1205–1216, 2020.

[62] Xiaohan Zou. A survey on application of knowledge graph. In Journal of Physics:
Conference Series, volume 1487, page 012016. IOP Publishing, 2020.

56

	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Knowledge Graphs
	Question Answering
	Open Information Extraction
	Coreference Resolution
	Named Entity Recognition
	Sentence Simplification

	Related Work
	Related NLP sub-tasks
	Open Information Extraction
	Coreference Resolution
	Sentence Simplification

	Automatic Knowledge Graph Generation
	Question Answering with Knowledge Graphs

	Knowledge Graph Generation Pipeline
	Overview
	NLP Pipeline
	Open Information Extraction
	Coreference Resolution
	Named Entity Recognition

	Entity Linking And Graph Generation
	Sentence Simplification

	Question Answering via KG Utilization
	Overview
	Seed Entity Extraction
	KG Traversal
	Answer Extraction

	Experiments
	Overview
	Datasets
	WikiMovies
	MetaQA
	MDQA

	Evaluation Metrics
	System Configuration
	Question Answering Results
	Comparison to AutoKG
	Comparison to IR baseline

	Conclusion and Future Work
	References

