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Abstract

In recent years, there has been enormous public interest in autonomous vehicles (AV), with
more than 80 billion dollars invested in self-driving car technology. However, for the foreseeable
future, self-driving cars will interact with human driven vehicles and other human road users,
such as pedestrians and cyclists. Therefore, in order to ensure safe operation of AVs, there is
need for computational models of humans traffic behaviour that can be used for testing and
verification of autonomous vehicles. Game theoretic models of human driving behaviour is a
promising computational tool that can be used in many phases of AV development. However,
traditional game theoretic models are typically built around the idea of rationality, i.e., selection
of the most optimal action based on individual preferences. In reality, not only is it hard to infer
diverse human preferences from observational data, but real-world traffic shows that humans
rarely choose the most optimal action that a computational model suggests. Through the lens of
behavioural game theory, my thesis bridges the gap between observational naturalistic behaviour
and game theory to create models of traffic behaviour that can have versatile applications in AV
development, including testing, verification, and motion planning.

The first part of the thesis makes a set of methodological contributions towards creating mod-
els of traffic behaviour from naturalistic datasets using behavioural game theory. In the second
part, the thesis demonstrates practical uses of models for safety validation of autonomous vehicle
planners. At each step, the models are built around the behaviour of boundedly rational agents
and demonstrate multiple ways of modelling suboptimal behaviour, with suboptimality being
considered from the perspective of a game designer.

Although there has been an increasing interest in the use of game theoretic models for AV, it
is not clear which solution concepts align well with naturalistic driving behaviour. Based on the
structure of a hierarchical game, the thesis first presents various design choices that can be used
in the construction of a game, along with the solution concepts from behavioural game theory
that can be applied to solve such games. These choices result in thirty behaviour models, which
are evaluated based on their model fit and predictive accuracy on naturalistic data. The results
provide practical guidance for practitioners for the construction of traffic behaviour models.

Driving is a multi-objective task, and humans aggregate objectives of safety and progress in a
context and individual specific manner. It is challenging to infer the parameters of multiobjective
utility aggregation solely from observations because of a number of unobserved variables. Based
on the concept of rationalisability, the thesis develops algorithms for estimating multiobjective
aggregation parameters for two aggregation methods, weighted and satisficing aggregation, and
also when the underlying model of reasoning consists of both strategic and nonstrategic reason-
ers. Experiments conducted in three different datasets provide interesting insights into how road
users aggregate these objectives, as well as the situational dependence of the aggregation process.
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In the final methodological contribution, the thesis addresses two key challenges of building
traffic behaviour models using dynamic games; model instability and model uncertainty. Model
instability arises when a class of boundedly rational agents who follow elementary nonstrategic
models of behaviour have no reason to adhere to elementary models over time in the game.
The thesis addresses this problem by developing a nonstrategic yet sophisticated finite-state
transducer-based model of level-0 behaviour within the level-k framework. Model uncertainty
arises when agents are free to follow any model of reasoning as is often the case in naturalistic
data. This problem is addressed by developing a generalised cognitive hierarchy model consist-
ing of three layers, nonstrategic, strategic, and robust. Each layer can hold multiple behaviour
models, and the chapter develops solutions for heterogeneous models based on the consistency
of beliefs over observations. Simulation experiments demonstrate that a robust layer model is an
appropriate choice for an AV behaviour planner.

Building on the game theoretic models, the second part of the thesis demonstrates the applica-
tion of the models by developing novel safety validation methodologies for testing AV planners.
The first application is an automated generation of interpretable variations of lane change be-
haviour based on Quantal Best Response model. The proposed model is shown to be effective
for generating both rare-event situations and to replicate the typical behaviour distribution ob-
served in naturalistic data. The second application is safety validation of strategic planners in
situations of dynamic occlusion. Using the concept of hypergames, in which different agents
have different views of the game, the thesis develops a new safety surrogate metric, dynamic oc-
clusion risk (DOR), that can be used to evaluate the risk associated with each action in situations
of dynamic occlusion. The thesis concludes with a taxonomy of strategic interactions that maps
complex design specific strategies in a game to a simpler taxonomy of traffic interactions. Regu-
lations around what strategies an AV should execute in traffic can be developed over the simpler
taxonomy, and a process of automated mapping can protect the proprietary design decisions of
an AV manufacturer.
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Chapter 1

Introduction

On average, Canadians spend at least one hour every day as occupants or driving a passenger
vehicle1. This may not seem much, but driving is relatively a new human activity that has estab-
lished itself as a major drain of our daily time only in the past century [167]. A technological
utopia that will help us recover that hour of our time through safe and fast automated transporta-
tion has been part of our imagination for at least six decades [214]. Today’s futuristic landscape
of an urban city is incomplete without the image of a self-driving car transporting individuals for
whom the stress of driving is a thing of the past. However, this spectacular dream stays grounded
in the modality of the transportation it envisions, that is, the transportation of individual vehicles
over roadways. Over the past decade we have been inching closer to this promised utopia, with
more than 80 billion US dollars invested towards the development of autonomous vehicles2. The
technology behind autonomous vehicles has been synonymous with the advent of the AI revo-
lution, and computer scientists have the responsibility to oversee the safe development of that
technology.

Autonomous vehicles have also captured the imagination of a wide range of research dis-
ciplines, thus heralding a new avenue for multidisciplinary research. AV technologies present
cross-cutting concerns that span several disciplines, including engineering, computer science,
law [17], economics [244, 125], social sciences [206], and philosophy [168, 157]. At the core of
this technology, however, are the human road users; people who (will) interact with the vehicles
on the roads. Unless all modes of transportation on the road are automated, for the foreseeable
future, humans will continue to interact with these automated vehicles as pedestrians, bicyclists,
and occupants or drivers of other vehicles. For the most part, vehicles that interact with AV on

1 https : / / www150.statcan.gc.ca / t1 / tbl1 / en / tv.action?pid = 4510001401
2 https://www.brookings.edu/research/gauging-investment-in-self-driving-cars/
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roads today are driven by humans, and driving as we understand today is still a human activity
based on rules and patterns of behaviour, both explicit and implicit. If an automated system en-
ters this ecosystem, it is clear that there has to be some level of understanding of that behaviour
for AVs to interact in a safe and sustainable manner. This thesis is an effort in that direction,
in which I focus on modelling human driving behaviour for testing, verification, and behaviour
planning of autonomous vehicles.

Automated driving system (ADS) architecture. Driving is a complex human activity that involves
perception (e.g., assessing the distance and velocity of other road users), motor control (brak-
ing, acceleration, steering), attention (staying focused on the road and situational awareness),
reasoning (assessing the intent and behaviour of other road users) among other mentally and
physically demanding tasks [91]. The goal of an automated driving system is replacement of
these complex functions, and with advances of AI and automation, self driving cars on the road
today have started that journey. Advances in computer vision can detect relevant road users in
the vicinity of a vehicle, LIDAR systems can asses distance and speed [10], and onboard com-
puter systems can execute commands that control the physical movements of the vehicle [145].
Although commercial self-driving cars may use their own proprietary design and architecture to
engineer an automated driving system, an example architecture of a typical ADS is shown in Fig.
1.1. The main components of the architecture include i) the vehicle platform, which consists of
sensors and actuators, ii) the perception stack (object detection, tracking, and localisation), iii)
the environment model, which is responsible for integrating information about lanes, maps, and
other static environmental aspects together for the perception and planning modules, and iv) the
planning module, which is responsible for planning the physical motion of the vehicle by syn-
chronising three hierarchical tasks: mission, behaviour, and trajectory planning [98]. The mission
planner’s responsibility is to plan the route between the origin and destination of the vehicle. This
action plan is broken down into sequence of manoeuvres by the behaviour planner, which further
sets up the problem of trajectory generation for the trajectory planner. The trajectory planner
module uses various search and optimisation based methods to generate a set of control actions
to be executed by the vehicle controller [173]. Within the context of behaviour planning, traffic
behaviour models of other road users play an important role in both the operation of an AV as
well as its development3. Traffic behaviour models are the focus of this thesis, and I address
challenges associated with computational modelling of human interactive behaviour in traffic for
autonomous vehicles.
3 Development here refers to the software development life cycle of the ADS
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Figure 1.1: A typical high-level architecture for an automated driving system in an AV. Arrows
depict flow of information between modules.

1.1 Motivation

In this section, I discuss the motivation behind traffic behaviour models for AV. First, I present
the different scopes of use of traffic behaviour models. Next, I highlight the versatile applications
of the models in AV development.

1.1.1 Traffic behaviour modelling for autonomous driving.

A traffic behaviour model is a general term that refers to a model of the behaviour of road users,
such as vehicles, pedestrians, and cyclists, in the vicinity of the autonomous vehicle. Traffic be-
haviour models can have different functional scopes in which they can be used in an application.

• Predictive scope. When used in a predictive scope, a model predicts future actions (such as
high-level manoeuvres or trajectories) of other vehicles and road users in the vicinity of a
subject AV. Predictive scope is relevant when an AV has to plan its own actions taking into
account the predicted actions of other road users. Additionally, performance in a predictive
scope measured through predictive accuracy is also a key metric of evaluation to assess the
quality of behaviour models regardless of whether those models are specifically used in
the motion planning algorithm in an ADS.

• Descriptive scope. Descriptive scope deals with the aggregate behaviour of agents in a
population. A typical example of the use of a behaviour model in a descriptive scope is the
probability distribution of gap acceptance rates in a population of drivers in a city during
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lane changes. To facilitate quantitative analysis from a descriptive scope, models are often
made parametric and then fitted to observational data. Subsequently, the parameters of the
model can answer specific questions of interest, e.g., what percentage of drivers engage in
risky lane change behaviours.

• Generative scope. While descriptive model can explain certain characteristics of a popula-
tion based on observed data, in a generative scope, a model has the ability to generate new
situations and behaviours that were not observed in the data. This is done in simulation by
changing the parameters in the descriptive scope of the model in a principled way. For ex-
ample, changing the distribution of gap acceptance rates to sample from a more aggressive
population of drivers to evaluate whether an AV can behave safely under those conditions.
In the context of AV development, being able to use a model in a generative scope helps to
sample novel and edge-case situations that are essential for ensuring safety.

1.1.2 Applications of traffic behaviour models for ADS.

Based on the above functional scopes, traffic behaviour models can have versatile applications in
AV development. When used in a predictive scope, traffic behaviour models can be used to plan
AV behaviour, whereas when used in a descriptive and generative scope, the models can be used
to test, verify, and train behaviour planners in the development lifecycle. Next, I briefly discuss
these applications.

• Planning. Behaviour planning module in an ADS is responsible for planning vehicle ma-
noeuvres, often interpreted as the behaviour of the vehicle as understood in a colloquial
sense. This involves decisions such as slowing down, executing a turn, changing lanes,
yielding, etc. In order to choose the right behaviour, the AV needs to predict the actions
of other road users and respond accordingly. When used in a predictive scope, the role of
a traffic behaviour model is the generation of predicted actions of other road users for a
given traffic situation.

Descriptive and generative scopes are often applied in conjunction with each other. For the fol-
lowing applications, traffic behaviour models can be used in both descriptive and generative
scopes.

• Training. In recent years, reinforcement learning based methods have gained prominence
as a scalable method of training an ADS to learn optimal behaviour [112]. The learning
of the optimal policy during the training process occurs through interaction with other
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road users in the simulated training environment. Traffic behaviour models can provide a
model of the behaviour of other road users in the training environment that is reflective of
real-world traffic behaviour.

• Testing. In order to ensure that an AV is safe for operation, simulation plays a critical
role, as it is not possible to rely primarily on extensive field tests as a primary testing
method [107]. Test scenarios for simulation need to balance the generation of scenarios
that are representative of typical behaviour and edge case scenarios. While the former can
be derived from naturalistic datasets, the latter are not often observed in datasets because
of their rarity. Since the behaviour of road users can be parameterized in traffic behaviour
models, the models can augment naturalistic data with rare and edge case scenarios for
testing AV motion planners.

• Verification. The goal of formal verification techniques applied to autonomous driving sys-
tems is to ensure the functional safety of an automated vehicle [180]. Safety properties,
often derived from traffic rules, are expressed in a formal specification language such as
Linear Temporal Logic (LTL) [183] and Signal Temporal Logic (STL) [219]. Similarly to
the environment model in reinforcement learning, model checking techniques that verify
safety properties also make use of a model of behaviour against which the motion plan-
ner’s safety properties are verified. Along with the problem of scale [123], having a realistic
model of interactive human behaviour is a bottleneck in formal verification [28]. A com-
putational traffic behaviour model can address the latter problem by acting as a model of
the environment, i.e., the behaviour of other road users, thereby advancing the feasibility
of the use of formal methods in the development of AV.

1.2 Properties and current landscape

With respect to the specific modelling paradigms, traffic behaviour models in the context of AV
can take different forms [32]. In this thesis, I focus on game theoretic models of behaviour.
This choice is based on a set of properties of interactive reasoning that enables the modelling
framework to be used in a variety of applications, as discussed in the previous section. I present
those properties next, followed by a brief overview of the current literature on traffic behaviour
models.

• Conditional reasoning. This includes the ability of a model to infer the probability of
possible outcomes as a consequence of a specific action taken by a road user. This is based
on the conditional probability of the form P (Y |X) where Y is a random variable encoding
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the outcome (e.g., a collision) andX is a random variable in the domain of possible actions.
This property helps answer questions of the form — if the self driving car executes a merge
manoeuvre, what is the probability of a collision with a vehicle in the target lane.

• Normative reasoning. Behaviour models should ideally support a theory of what agents
ought to do. The importance of normative reasoning for behaviour models is in relation to
traffic rules; which provide a prescriptive notion of how drivers and other road users should
act in different traffic circumstances. Normative reasoning may also include support for
other theories, such as rational choice theory, which says that a rational driver will choose
an optimal action with respect to a set of objectives.

• Counterfactual reasoning. This refers to the ability of the models to engage in what-if
type reasoning, i.e., reasoning based on possible events that are contrary to the observed
ones. A practical use of counterfactual reasoning is to update beliefs about the behaviour
of other road users, which can be later incorporated in planning the action of the subject
vehicle. For example, if a self-driving car observes another vehicle not slowing down near
a stop sign as expected, it can form possible hypotheses about the other vehicle, such as its
aggressive disposition, being in a hurry, or being distracted.

• Strategic reasoning. Strategic reasoning involves reasoning that takes into account that the
actions of others may be influenced by one’s own action. It brings together conditional,
counterfactual, and normative reasoning in a unified reasoning framework. A typical ex-
ample in the context of driving involves reasoning of the following nature: a vehicle needs
to turn right at an unprotected right turn. The vehicle observes a vehicle approaching the
intersection, and reasons that if I execute a turn instead of yielding, it is in the interest of
the other driver, who seems to be a cautious driver, to slow down for me.. When multiple
road users apply strategic reasoning jointly to an interactive problem, along with the belief
that others are also strategic reasoners, the solution results in equilibrium.

Current landscape of traffic behaviour models. Over the years, traffic behaviour models have
been an area of extensive research in the field of traffic safety engineering and traffic psychol-
ogy [69]. The focus of that research precedes treating the problem of behaviour modelling as
one for AVs, with various objectives for building the models. Traffic accidents and collisions
parallel the use of motor vehicles, and a primary objective of building computational models of
driver behaviour in the field of safety engineering is to design appropriate interventions to reduce
traffic accidents. At the same time, since driving is fundamentally a human activity, understand-
ing driving from a psychological perspective has also played a key role in this endeavour [208].
Treating the problem of traffic safety as an interdisciplinary science, models such as Task Diffi-
culty Homeostasis (TDH) [78], Risk Allostasis Theory (RAT) [76], and Risk Monitoring Model
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(RMM) [220], bridge the psychological aspects of driving with behavioural observations such
as steering control and speed choices [132]. Driver behaviour models have also been developed
in the field of highway and transportation engineering to design effective transportation strate-
gies that reduce congestion. Simulation plays an important role in this regard, and aggregate
outcomes of traffic behaviour, such as traffic flow, are modelled with macroscopic traffic simula-
tion models [126, 158]. However, since aggregate behaviour results from individual interaction
among vehicles, traffic simulation frameworks also support microscopic simulation models that
capture individual driver behaviour and their interactions. Microscopic models are well suited
for applications in AV development, i.e, a model for use in planning, testing, and verification.
Popular models such as the Gipps model [88], the Newell model [162], and the Intelligent Driver
model [218], have been a cornerstone of microscopic models and have been widely used in sim-
ulation platforms such as SUMO [118]. Most of these models, however, were designed for the
main purpose of simulating aggregate behaviour of vehicles on a highway, therefore, the sup-
port for vehicle interactions were limited to car following scenarios. Autonomous vehicles, on
the other hand, have to navigate a wide range of scenarios beyond just car following, and there-
fore behaviour models developed for AV needs to be general enough to be applied to any traffic
scenario.

In autonomous vehicle research, the problem of modelling traffic behaviour has been ad-
dressed primarily through machine learning methods [128, 32], and the main functional scope is
a predictive scope for the application of motion planning. The use of machine learning models
is promising, especially since in theory the models have the potential to generalise to any type
of traffic situations. However, to realize that potential, there is need for availability of significant
amount of training data to the researchers. In recent years, open datasets like Argoverse [44]
and Waymo Open Data [68] have filled that gap. The machine learning based approaches are
nevertheless limited in its ability to reason interactively with respect to some of the properties
discussed earlier. Still, there has been effort to address those shortcomings within machine learn-
ing based models. The first two properties, vis-à-vis conditional reasoning and counterfactual
reasoning, have been addressed through multimodal prediction models [154] and simulation of
synthetic scenarios [224], respectively. Addressing the latter two, i.e., normative reasoning and
strategic reasoning, purely through machine learning based methods is still an open question. In
that regard, game theoretic techniques can provide a sophisticated model of interactive reasoning.
Models that combine game theoretic approaches with machine learning methods bring together
the best of both worlds, and have been an interesting recent development of the field [189, 85].
This thesis restricts itself mainly to game theoretic models, with support of machine learning
based techniques in cases where parameters of the models are to be estimated from observational
data.

Game theory provides a model of interactive decision making by rational agents modelling
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everyone else as rational agents [75]. Game theoretic models are built on rational choice theory
of individual decision making, in which a rational agent facing multiple choices selects an action
that maximises their individual utility; and the utility is taken to be broadly representative of their
ordered preference over those actions [131]. Most planning methods developed for autonomous
vehicles, for example, trajectory optimisation [173], model predictive control [145], also work
under that principle, i.e., a rational agent (in this case an AV) selecting an action from a set of
valid actions (the trajectories or control actions) by optimising a combination of objectives such
as safety, progress, comfort. Extending this idea to a multi-agent setting of decision making by
a set of rational agents interacting with each other leads to a game theoretic construction. With
the idea taking hold that AVs will eventually interact seamlessly with other human drivers in a
variety of traffic situations, in recent years, there has been a rapid interest in using game theoretic
models for planning the behaviour of an AV [215, 211, 190, 70, 179]; although the first use of
game theory models as a computational model of driving goes back several decades [113].

With just a few constituents of a model that includes a set of players, their preferences over
actions, and informational assumptions that encapsulate what agents know about each other,
game theoretic models provide a general and parsimonious model of interaction. The models
also support the set of desirable properties that was listed earlier, namely conditional, normative,
counterfactual, and strategic reasoning. However, applying the general framework to the prob-
lem as complex as human driving is non-trivial. In reality, not only is it hard to infer human
preferences from observational data in the face of diverse behaviour, but real-world traffic shows
that humans rarely choose the most optimal action that a computational model suggests. Addi-
tional questions such as who are the players of the game and the construction of actions in the
game need to be studied methodically in order to build usable models that reflect actual traffic
behaviour. This thesis focusses on addressing those essential problems, methodologically and
empirically.

1.3 Problem statement

The general form of a game theoretic traffic behaviour model can be expressed as the following
function, O ∽ f(S, U,B, ϵ), where O is the output of the model, which are either high-level ma-
noeuvres, trajectory control signals, or both. If the traffic behaviour model supports probabilistic
output, O can be a random variable in the domain of manoeuvre and trajectories. S, U , B, ϵ are
the state, utilities, a model of reasoning, and a model of decision errors, respectively. Each of
these aspects is discussed in detail next.

State (S) — S is a vector that represents the state of the world, including instantaneous or
historical states of vehicles, for example, position, velocity, acceleration, and traffic information,
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such as lanes and the state of traffic lights. Models that use additional information, for example
historical information about inferred vehicle manoeuvres, can also be included in S. Any external
factor that is relevant to the behaviour can be included in the state vector. Typically, models use S
as an independent variable, and other aspects of the models (U,B, ϵ) are modelled as a dependent
variable.

Preferences (U ) — The second aspect, U , of the model encapsulates the preferences of road
users, which are relevant in their traffic decision making. Game theoretic models work under the
premise that every player (a road user) in a game chooses their action broadly based on prefer-
ences they have over the possible outcomes. To make the process of human choices amenable
to computational modelling, preferences over choices are assigned a real-valued utility that is
consistent with that ordering [223, 26]. Standard optimisation based techniques can then be em-
ployed to model the selection of an action. In many applications, the utilities have correspon-
dence with a concrete human desire, for example, money in the case of economic models. In
the context of driving, utilities often correspond to the desire to avoid collisions with other road
users, to make progress towards the destination, to experience a smooth ride, etc. There are two
distinct problems when it comes to constructing the utilities in a game theoretic setting of driv-
ing behaviour. First, unlike in a laboratory setting in which experimental game theoretic studies
are typically based upon, when models are constructed from observational naturalistic data, the
underlying utilities are opaque to the model designer. Therefore, the designer must first estimate
the utility under which the road user chose the observed action. Estimating the underlying util-
ity from observations is further complicated by other variables in the model, i.e., the underlying
model of reasoning of the player, the errors in judgement one can make in their decision making,
which all act as confounding factors. Therefore, the first research question the thesis addresses
in this context is

How to estimate multiobjective utilities of players in a game from observational data
that takes into account the underlying model of reasoning?

The second problem arises from the multi objective nature of utilities. During traffic interac-
tions, humans balance multiple objectives in the process of selecting their action. Game theoretic
models on the other hand relies on a scalar utility, based on which a notionally optimal action is
calculated. Therefore, the second research question is

How are performance of game theoretic models affected when different aggregation
methods, such as linear weighting and satisficing, are used in the construction of the
player utilities?
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Model of reasoning (B) — In order to select an action, players in a game need to “solve” the
game based on a model of reasoning B. The model of reasoning often uses a specific solution
concept, which is a formal process that generates one or more actions for each player in the
game. The most popular solution concept used is the Nash equilibrium, which has been pro-
posed as a solution to model the actions of drivers in traffic [113, 201]. Nash equilibrium has
the appeal of stability, that is, if all players follow the prescribed action of an equilibrium, then
no player can gain advantage by unilaterally deviating from the prescribed action. Other solution
concepts that are similar in nature but with different informational assumptions (e.g., who takes
the first action in the game) include the Stackelberg equilibrium, which has also been proposed
as a solution for traffic decisions [70]. However, in real traffic situations, even if the utilities
constructed by the designer align well with the actual player in question, humans may possibly
deviate from those equilibrium solutions that a computational model suggests. In part, that devi-
ation can be explained by suboptimal reasoning, i.e., in situations of cognitive pressure, humans
might not engage in the complex deliberative reasoning required to arrive at an equilibrium so-
lution. In order to accommodate such deviations, level-k based methods have been proposed as
a computational model where the population of players in the game consists of different lev-
els, {0, 1, .., k}, of reasoners with increasing capacity of strategic reasoning [40, 234]. In recent
years, level-k models have also gained prominence as a model of traffic behaviour [215, 210].
Another way to model suboptimal reasoning involves the use of non-strategic solution concepts,
such as maxmax (choosing an utility maximising action) or maxmin (best of worst case) based
action selection. In short, various solution concepts have been proposed as the model of traffic
behaviour; however, there has been comparatively less focus on evaluation of different models of
reasoning with respect to real-world data. Since there are several possibilities of deviation from
the idealised solutions, evaluating a model’s efficacy against naturalistic observational data is
essential. Therefore, this thesis addresses the following research questions related to the model
of reasoning.

Which model of reasoning fares best with respect to model fit and predictive accuracy
when evaluated against naturalistic data?

Are there models that work best in all traffic situations? If not, then how to build
game theoretic models of traffic behaviour that support multiple models of reason-
ing?

Errors (ϵ) — Another explanation for deviations from optimal solutions is due to players not
always selecting the optimal response. In other words, even if they have a correct understanding
of other players’ behaviour, the player might make errors in selection of a response action. The
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deviation from optimality of this nature can be attributed to one of suboptimal response. In a
behaviour model, these deviations can be captured by the error term ϵ. Specific theories have
been proposed that model these errors in a formal way. Quantal Best Response is a commonly
used theory that suggests that players make cost-proportional errors. These errors are modelled
with a negative exponential distribution such that higher utility responses have an exponentially
higher likelihood of selection [234]. Although it is necessary to have an error term that allows
for deviations from optimality, an associated problem is that it can act as a catch all for any
deviation from equilibrium; ones that the term is designed to model (i.e., suboptimal response),
along with others that can arise from suboptimal reasoning or even any mismatch of other model
aspects like preferences and reasoning model. This presents a problem for the good model design
because any observed behaviour can be explained away through the errors. In order to address
this problem, the thesis addresses the following research question.

How to distinguish through observation different forms of bounded rational be-
haviour in game theoretic models of traffic behaviour?

Another problem related to errors is their quantification. To be able to use the models in predic-
tive capacity, it is necessary to quantify the errors and examine whether there is an association
between the state vector S and the error ϵ. The latter not only helps to quantify the error, but
also gives insight into whether there are certain traffic situations (encoded in S) where the model
solutions and the observed decisions do not align well. This is addressed as part of the following
research question in the thesis.

Is there an association between the traffic state S and other model aspects, such as
preferences (U ), model of reasoning (B), and errors (ϵ)?

Beyond just developing methodologies for modelling traffic behaviour, one of the goals of the
dissertation is also to demonstrate practical uses of the models in AV development. To that end,
the thesis also addresses the following research question.

How can game theoretic models of traffic behaviour help in the safety validation of
autonomous vehicle motion planners?

1.4 Research contributions

The contributions of this thesis can be categorised into three parts: methodological, which in-
cludes methods to model human driving behaviour for use in AV development; theoretical, which
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includes formal techniques that advance methodological contributions; and empirical, which in-
cludes understanding of human driving and road user behaviour from naturalistic observational
data, along with associated datasets.

1.4.1 Methodological and theoretical contributions

• Formalisation of solution concepts of strategic and non-strategic reasoning in hierarchical
games as well as estimation of precision parameter based on a generalized linear model .
(Chapter 3)

• Axiomatic construction of rationalisability of observed behaviour for multi-objective util-
ity aggregation in strategic and non-strategic behaviour models. (Chapter 4)

• An algorithm for estimating parameters of satisficing based aggregation of multi-objective
utilities. (Chapter 4)

• A cognitive hierarchy model that allows for relaxed assumptions about common knowl-
edge by allowing heterogeneous reasoning models. (Chapter 5)

• Development of a model (dlk(A)) of level-k based behaviour for dynamic games, where
level-0 behaviour is modelled as automata (Chapter 5)

• Two boundedly rational models of equilibrium behaviour are based on the idea of satisfic-
ing, namely, safety-satisfied perfect equilibrium (SSPE) and manoeuvre-satisfied perfect
equilibrium (MSPE). (Chapter 5)

• A behaviour driven rare event sampling methodology for generating edge case scenarios
for AV testing. (Chapter 6)

• A safety validation framework for testing the performance of an AV planner in dynamic
occlusion scenarios using hypergames. (Chapter 7)

• A taxonomy of strategic interactions that helps in understanding of the strategies of game
theoretic behaviour planners in common language. (Chapter 8)

1.4.2 Empirical contributions

• Evaluation of thirty behaviour models for one-shot moving horizon games of hierarchical
structure based on model fit and predictive accuracy on naturalistic datasets. (Chapter 3)
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• Study of two modalities of multi-objective aggregation, weighted and satisficing, in human
driving behaviour. (Chapter 4)

• Study of the risk and payoff dominance behaviour of road users in different traffic scenar-
ios. (Chapter 4)

• Evaluation of behaviour models for dynamic games with respect to predictive accuracy
and as a model of behaviour planning in AV. (Chapter 5)

• A novel multiagent traffic dataset4 covering a variety of traffic scenarios, such as intersec-
tion, crosswalk, and roundabout. (Appendix B)

1.4.3 Thesis statement

Based on the above contributions, the dissertation makes the following thesis statement.

Game-theoretic models built from observational naturalistic driving data show devi-
ations between the chosen human actions to the theoretical optimal solutions. Mod-
els that take into account boundedly rational behaviour can capture the deviations
from optimality as established from the game designers’ point of view. Such com-
putational models can also have various applications in the domain of autonomous
vehicles, such as behaviour planning, safety verification, and validation.

1.5 Thesis overview

This section provides a summary of the chapters in the thesis. Chapters 3, 4, and 5 address
the methodological challenges of game theoretic models of traffic behaviour, Chapters 6 and 7
focus on models’ applications, and Chapter 8 develops a taxonomy for better understanding the
decisions made by an AV planner.

Chapter 3 models driving behaviour in the context of one-shot moving horizon games. The
solution concepts developed in the chapter are built upon the framework of hierarchical games,
which is a game structure that addresses computational complexity through hierarchical abstrac-
tion of actions. This construction enables integration of the models with the rest of the AV motion
planning architecture. The chapter highlights how different models of strategic and non-strategic

4 Partial contribution. See statement of contributions.
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reasoning as well as other modalities of bounded rationality can be used to solve a hierarchi-
cal game. Based on two metamodels, namely the level-k framework and another based on Nash
equilibrium, the chapter evaluates 30 models of behaviour based on a contributed observational
dataset of unprotected right turns and left turn across path.

Chapter 4 deals with the problem of estimating the utilities of players in a game when play-
ers need to aggregate multi-objective utilities. The chapter presents the case that the underlying
model of reasoning acts as a confounding factor, and therefore the process of estimation needs to
take into account the reasoning model. The chapter provides an axiomatic characterisation based
on which observations can be rationalized with respect to a reasoning model. With the help of
the characterisation, new algorithms to estimate aggregation parameters of multi-objective utili-
ties are developed. Evaluation based on a diverse set of scenarios, including traffic behaviour in
crosswalks, intersections, and roundabouts, provides information on how human drivers aggre-
gate safety and progress objectives when viewed through the lens of different reasoning models.

Chapter 5 focusses on behaviour models for dynamic games. Dynamic games provides a
more sophisticated space of strategies for players in the game; however, it also presents additional
challenges when behavioural game theoretic concepts are applied to dynamic games, namely the
problems of model instability and model uncertainty. The chapter addresses the two problem
through a generalised cognitive hierarchy model consisting of non-strategic, strategic, and robust
layers, where each layer can hold multiple models of behaviour. Furthermore, the chapter also
demonstrates how satisficing can be used as a model of boundedly rational behaviour within
the context of behaviour models. The models are evaluated based on naturalistic data as well as
simulation of critical scenarios.

Chapter 6 develops a methodology for sampling rare event scenarios for the safety validation
of AV motion planners. Verification of AV motion planners in rare event situations is essential for
guaranteeing safety. However, generating such scenarios presents a challenge since naturalistic
datasets usually do not contain enough of such observations. Methods to address this problem
usually rely on sampling situations from a surrogate metrics distribution, e.g. distance or time
gap. This chapter presents an alternate method based on the idea that crashes are more likely to
be caused by certain combination of road user behaviours. The proposed approach is compared
with state-of-the-art methods of accelerated evaluation and are shown to expedite the process of
rare event generation.

Chapter 7 presents an application of game theoretic models for safety validation of AV
planners under conditions of dynamic occlusions. Dynamic occlusions are transient moments in
traffic where a vehicle occludes a relevant road user from the view of a subject vehicle. Dynamic
occlusions are one of the leading factors in traffic accidents. This presents a challenge for game
theoretic planners since the games rely on players being aware of the other players in the game.
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The chapter develops a method of safety validation of such scenarios based on the framework of
hypergames, which is a modelling framework that allows each player to have different views of
the same interactive scenario. With the help of metric that quantifies the safety risk due to con-
flicting views (Dynamic Occlusion Risk metric), the developed approach can identify situations
where a game theoretic planner can fail. Evaluation of the methodology shows that it can recreate
real-world dynamic occlusion crash scenarios 4000% faster compared to direct sampling from
naturalistic dataset.

Chapter 8 focusses on developing a common taxonomy of interactions in traffic. To make
the behaviour of AVs amenable for regulation, there needs to be a common language of under-
standing of AV based traffic interactions. The simultaneous development of several behaviour
models, game structure, solution concepts, and other ways of designing the game, makes this
task challenging. Therefore, based on common patterns of interaction in traffic conflicts, the
chapter develops a taxonomy for strategic interactions in everyday traffic situations. The tax-
onomy is developed along the dimensions of agents’ initial response to right-of-way rules and
subsequent response to other agents’ behaviour. Furthermore, the chapter also presents a process
of automatic mapping of strategies generated by a game theoretic planner to the categories in the
taxonomy. Case studies include vehicle-vehicle and vehicle-pedestrian interaction simulation,
and strategies generated for those interactions by QLk and Subgame perfect ϵ-Nash Equilibrium
based planners are mapped to the categories in the taxonomy.

The scenarios in the dataset were selected based on traffic locations where there is a higher
likelihood of strategic interactions. These scenarios, namely, intersection, roundabout, and cross-
walk, are typical locations where static traffic conflict (in which the location of the conflict de-
pends only on the lane structure) occurs between road users. Compared to dynamic conflicts
(e.g., lane changes along a highway), static conflicts are well suited for capturing interactions
through drone video capture, and are also more common in an urban traffic network. However,
whether the behaviour of road users in scenarios of static conflict easily translated to dynamic
ones is not covered in the thesis. Due to the timeline of the work undertaken in the thesis, there
are differences in the selection of evaluation scenarios in Chapters 3 and 4; however, in Chap-
ter 4, which presents a more sophistical model, the findings were re-evaluated on a subset of
scenarios from Chapter 3.
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Chapter 2

Background

The models developed in this dissertation make use of various concepts from game theory in
order to model the interaction of road users in different traffic situations. In this chapter, I present
the preliminary background of the concepts used throughout the thesis.

2.1 Normal form game

A normal form game is characterised by the tuple (N,A,U ) where

• N is the set of players, indexed as i ∈ N , playing a game. These represent the set of
interacting road users in a traffic situation.

• Ai is the set of actions that the player i can execute, and the set A = A1 × ...AN is the set
of all such actions.

• ui : A → R is a mapping from the set of actions to a real number that represents the
utility that a player i receives as a result of a set of actions chosen by each player. The
set U(a) = [u1(a), ..., uN(a)] where a ∈ A, is a vector of utilities of all players. For the
models in this work, the utilities lie in the bounded interval [-1,1].

A pure strategy of an agent i in the game is an action ai ∈ Ai that a player i selects to play in
the game. A mixed strategy πi is a probability distribution over the domain of pure strategies Ai.
A strategy profile is a combination of strategies of all players in the game.

16



Figure 2.1: Running example of right turn interactions between two vehicles modelled as a game.

I use a running example of a right turn scenario where the interaction between two moving
vehicles is modelled as a game (Fig. 2.1). In this game, the two players are the right turning
vehicle (marked G) and straight through vehicle (marked B). The actions of the right turning
vehicle are i) stop — in which the vehicle stops before the stopline, ii) rolling stop — in which
the vehicle slows down but never stops completely, and iii) proceed — in which the vehicle
executes a right-turn manoeuvre. The straight through vehicle’s action space consist of three self
explanatory actions, speed up, slow down, and maintain same speed. The normal form game for
this scenario is illustrated in Table 2.1 with example utilities for each strategy.

speed up slow down maintain

stop 0.6,0.75 0,0.1 0.2,0.5
rolling stop 0.4,0.5 0.75,0.2 0.5,0.3
proceed -1,-1 1,0.2 -1,-0.1

Table 2.1: Utility matrix for the game of Fig. 2.1
.

17



2.2 Solution concepts

A solution concept is a process that maps a game to a set of action profiles A∗ ⊆ A, commonly
referred to as solving the game. Solving the game is often based upon the idea of a rational agent
who wishes to maximise their own utility as a response to other players’ actions. Formally, this
is modelled through a best response function BRi(a−i) = argmax

ai

ui(ai, a−i) where the index

−i refers to the set of all other players other than i. When the set of other players choose the set
of action a−i ∈ A1 × ..Ai−1 × Ai+1 × ..AN , a rational player i as a response, chooses an action
given by the function BRi(a−i).

2.2.1 Nash equilibrium

A pure strategy Nash equilibrium is a set of action profiles that is a result of each player playing
their best response action to each other. Therefore, a∗ ∈ A is a pure strategy Nash equilibrium
iff ∀i, a∗i = BRi(a

∗
−i). Another way to look at Nash equilibrium is to think of Nash equilibrium

as a strategy profile in which no player can gain by unilaterally deviation to another strategy.
In the example of Fig. 2.1, the strategy profiles (stop,speed up) and (proceed,slow down) are
pure strategy Nash equilibria since neither of the two players can gain by deviating from jointly
following one of these two strategy profile.

A mixed strategy Nash equilibrium is the generalisation of pure strategy Nash equilibrium
when players select mixed strategy actions instead of pure strategies. Formally, a strategy profile
π ∈ |△Ai|N is in mixed strategy Nash equilibrium iff ∀i and ∀πi, EUi(π

∗
i , π

∗
−i) ⩾ EUi(πi, π

∗
−i),

where EUi(πi, π−i) =
∑
ai

πi(ai)
∑
a−i

π−i(a−i)ui(ai, a−i), πi(ai) is the probability of selecting the

action ai by i when playing the mixed strategy πi, and△Ai is the space of all probability distri-
butions over the domain of actions Ai.

2.2.2 Stackelberg model

A stackelberg model is a game between two players, a leader, and a follower. The model works
under the constraint that both the leader and the follower are aware ex ante of their own assign-
ment. The leader selects the first action in the game, and the follower, upon observing the leader’s
actions, selects their own action. The leader models the follower as a rational agent who best re-
sponds following the leader’s action. Formally, the leader’s strategy is modelled as follows.

a∗L = argmax
aL

uL(aL, BRF(aL))
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where aL ∈ AL is one of the actions available to the leader and BRF is the best response function
of the follower. The follower’s action is a best response to the leader’s Stackelberg optimal action
a∗L, i.e., aF = BRF(a

∗
L). In the example of Fig. 2.1, if we consider the straight through vehicle to

be the leader and the right turning vehicle to be the follower, the follower’s best response to the
three leaders action speed up, slow down, maintain are stop, proceed, rolling stop respectively. Of
these three outcomes, since the leader gains the most by choosing speed up, which corresponds
to the utility 0.75, the strategy profile (stop,speed up) is also an equilibrium in the Stackelberg
model.

2.3 Boundedly rational models

Behavioural game theory deals with empirical models of behaviour of human players playing
games in a naturalistic or laboratory setting. In these models, there is an allowance for systematic
deviations from completely rational behaviour. Quantal Best Response (QBR) is a suboptimal
response model in which players make cost proportional errors in their response.

QBRi(a−i;λ) =
exp[λ · ui(ai, a−i)]∑

a′i

exp[λ · ui(a′i, a−i)]

In the above model of response, λ is a precision parameter in a way that when λ → ∞, QBR
response is identical to a best response, and when λ = 0, the response models the selection of all
actions with uniform probability.

A popular class of boundedly rational models considers that the population playing the game
consists of a mix of people with different levels of iterated strategic reasoning. Depending on
the depth of iterated reasoning that is involved, the behaviour is classified as levels 0 to k.

• Level - 0 agent uniformly randomises from their set of actions Ai. Therefore, the probabil-
ity of selecting any action ai is given by πlevel-0

i (ai) =
1

|Ai|

The behaviour of a level-1 player and players of higher levels depends on the specific model
being considered. In level-k model of [53], the strategy of level - 1 agent is given by

πlevel-1
i (ai) =

{
1−ϵ1

|BRi(π
level-0
i )| , if ai ∈ BRi(π

level-0
i )

ϵ1
|Ai\BRi(π

level-0
i )| , otherwise

In the above model, a level-1 agent best responds to the level-0 agent’s strategy πlevel-0
i . However,

they are modelled as imperfect agents and can select alternate actions with a small probability ϵ1.
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Level - 2 agent in this model believes the population to consist of level-1 agents and best responds
with their own error ϵ2. The special case where level-k (k ⩾ 1) agents are perfect responders can
be modelled by setting ϵk = 0, k ⩾ 1.

The model called Quantal level-k [234, 205] is similar in nature; however, instead of level-
k⩾ 1 agents’ selecting a suboptimal action with probability ϵk, the error is modelled through the
QBR function. The model of behavior for the level-0 (πQLk=0

i ) and level-1 (πQLk=1
i ) agent in this

model is as follows.
πQLk=0
i (ai) =

1

|Ai|

πQLk=1
i (ai) = QBRi(π

Qlk=0
i , λ1)

Level-2 agent in this model is aware of suboptimal nature of level-1 agent; however, they can
have an erroneous perception of level-1 agent’s precision parameter. Therefore, a level-2 agent’s
response is modelled as QBRi( ˆπQlk=1, λ2), where ˆπQlk=1 is the misperceived strategy of level-1
agent.

2.4 Dynamic game

Whereas normal form games model situations of one time interaction among players, extensive
form games in comparison models situations where players interact with each other multiple
times in sequence. Formally, an extensive form game or a dynamic game is characterised by the
tuple (N,A,X,Z, ρ, χ, σ, U,H)

• N is the set of players, indexed as i ∈ N , playing a game. These represent the set of
interacting road users in a traffic situation.

• Ai is the set of actions that the player i can execute, and the set A = A1 × ...AN is the set
of all such actions.

• X is a set of non-terminal nodes, also called the choice nodes.

• Z is a set of terminal nodes. The union set X ∪ Z is the set of nodes that form the game
tree.

• ρ : X → N is a node assignment function that assigns each choice node to a player i ∈ N
whose turn it is to act in the corresponding choice node.
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• χ : X → 2Ai assigns each choice node a set of possible action that the assigned player i
can take in that node.

• σ : X × A → X ∪ Z is the transition function that models the movement of a player to a
new successor node (another choice node or a terminal node) after taking an action at node
X .

• ui : Z → R is a mapping from the set of terminals to a real number that represents the
utility that a player i receives as a result of the game play sequence that ends at a terminal
node. The set U = {u1, .., uN} represent the utility of all players in the game at a specific
terminal node in Z.

• H = {H1, .., HN}: an information partition such that for each x ∈ X , h(x) denotes the set
of nodes given what the assigned player ρ(x) knows at node x of the game. This captures
the uncertainty of player ρ(x) at a specific stage in the game, and if x′ ∈ h(x), then
ρ(x) = ρ(x′), χ(x) = χ(x′), and h(x′) = h(x). h(x) is called the information set, and the
set Hi = {h(x) : ρ(x) = i} is the set of all information sets of player i.

A game where h(x) is a singleton, i.e., h(x) = {x}; ∀x ∈ X , represents no uncertainty
for any player at any node in the game, and therefore such games are called perfect informa-
tion game. Any game that is not of perfect information, is an imperfect information game. The
structure of the games used in the thesis are all of perfect information.

Fig. 2.2 shows a nominal extension of the normal form game presented earlier for the scenario
in Fig. 2.1 to the extensive form by adding a second sequence of action for player B (straight-
through vehicle), who can now after observing the action of player G (right-turning vehicle) can
choose to either maintain speed or slow down. The choice nodes assigned to the straight-through
vehicles (marked in blue) are {X1, X4, X5, X6, X7}, and the choice nodes assigned to the right-
turning vehicle are {X2, X3}. Only two out of the three straight-through vehicle’s actions are
shown in the game tree for the sake of simplicity. The terminal nodes Z are shown as shaded
nodes in the tree, and the two numbers represent the utilities of the straight-through vehicle
and the right-turning vehicle, respectively. In this game of extensive form, the straight-through
vehicle chooses an action at node X1, which is observed by the right-turning vehicle, who in turn
can choose their response at one of nodes X2 or X3 depending on the straight-through vehicle’s
action choice. In the third step, the straight-through vehicle can observe and select their next
action at one of nodes X4, X5, X6, X7, after which the game ends and the utility is realized by
each player. The purpose of this game is to illustrate the construct of an extensive form game. In
a more practical setting, one can imagine a game like this to consist of arbitrary long sequences
of action choices of each vehicle in an interactive traffic situation. Therefore, it is important to
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make sensible design choices in order to make the games computationally tractable, and in the
following chapters, the thesis offers guidance in that regard by evaluating some of those choices.

A pure strategy in an extensive form game is an realization of the function χ, which assigns
an action (or a set of actions) for each player at every choice node that is assigned to that player.
Similar to the normal form game, a pure strategy profile in extensive form is the combination of
strategies of all the players in the game.

Solution concepts for extensive form games make use of structures in the game tree called
subgames. A subgame of a perfect information extensive form game is the game that is con-
structed from a subtree rooted at every choice node x ∈ X . Therefore, the game of Fig. 2.2 has
7 subgames each starting at the choice nodes X1 to X7. The most commonly used refinement of
Nash equilibrium in a perfect information extensive form game is Subgame Perfect Nash equi-
librium (SPNE). In order to define SPNE, let s(g) be the part of the strategy s that denotes the
strategies of the players in the subgame g. A SPNE strategy s∗ is a strategy profile such that
s∗(g) is a Nash equilibrium for all g ∈ G. SPNE in a pure extensive form game can be calculated
through the recursive procedure of backward induction as described in Algorithm 1 [203].

Algorithm 1: Backward induction for perfect information extensive form game
input : node x

1 if x ∈ Z then
2 return U(x)
3 else
4 U∗ ← [−∞]N

5 for a ∈ χ(x) do
6 U ′ ← backward induction(σ(x, a))
7 if U ′[ρ(x)] > U∗[ρ(x)] then
8 U∗ ← U ′

9 end
10 end
11 return U∗

12 end

The algorithm does a depth-first traversal of the game tree by recursively calling the back-
ward induction procedure for each subgame. At each choice x, the optimal utility U∗ is returned
that corresponds to the action that maximizes the utility of the player ρ(x) assigned to the cor-
responding choice node (lines 4-11). The SPNE strategy can be found by keeping track of the
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strategy corresponding to u∗. Corresponding to the example in Fig. 2.2, the backward induction
procedure would proceed at follows.

• At choice nodes X4, X5, X6, X7, the comparisons −0.5 > −1, 0.9 > −1, 0 > −0.5, 0 >
−0.5 for the assigned player B would result in slow down, maintain speed, maintain speed,
maintain speed being the optimal actions.

• At nodes X3, X4, for player G, proceed would fetch the highest utility 0.8 in both cases
considering the optimal actions that B would choose as a result of the calculations from
the previous step.

• Finally, at choice node X1, the optimal action for player B is to slow down corresponding
to utility 0, since the alternate action maintain speed will only fetch utility -0.5 conditioned
on the optimal action of the other player in the rest of the game.

The SPNE for the two players are highlighted in the figure, which are {(slow down, slow down),(slow
down, maintain speed)} and {(proceed)} for players B and G, respectively. If both players play
according to their SPNE strategies, the realised utility will be [0,0.8] corresponding to the se-
quence of actions slow down, proceed, maintain speed.
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Figure 2.2: Example scenario of Fig. 2.1 modelled as a perfect information extensive form game
by addition of a second action for player B (straight through vehicle). The highlighted strategy is
the Subgame perfect Nash equilibrium (SPNE) of the game
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Chapter 3

Behaviour models for hierarchical games

3.1 Introduction

Models for motion planning in autonomous vehicles and modelling human driving behaviour
have typically represented drivers as completely rational, i.e., agents making decisions that are
optimal given the constructs of the game [200]. This assumption of optimality takes the form of
optimal response, i.e., selecting the best response to possible actions of other drivers, and opti-
mal reasoning, i.e., the ability to reason strategically about how other drivers may choose their
actions. In reality, especially since the construction of the game from the modeller’s perspective
may not reflect the actual game or the reasoning process undertaken by human drivers in real-
world scenarios, the assumption of complete rationality may be too strong. The issues around
rationality in this context is also exacerbated by the fact that there has been relatively less focus
on empirical evaluation of the different game theoretic models, and therefore we do not have
a clear understanding on how to quantify human boundedly rational behaviour for the case of
driving.

In this chapter, I develop solution concepts for hierarchical games that support boundedly
rational agents. I formalise the different solution concepts that can be applied in the context
of hierarchical games (a framework used in multi-agent motion planning) for the purpose of
creating game theoretic models of driving behaviour. Furthermore, based on a contributed dataset
of human driving at a busy urban intersection with a total of 4k agents and 13k game instances,
I evaluate the behaviour models on the basis of model fit to naturalistic data, as well as their
predictive accuracy. I also study the impact of i) game construction, ii) agent response, and iii)
agent reasoning, on the performance of the models. The results suggest that among the behaviour
models evaluated, modelling driving behaviour as a model where drivers best respond to other
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drivers with the belief that everyone else will follow the rules is the superior model of manoeuvre
selection. Furthermore, bounds sampling of actions, i.e. by including the prototype and extreme
trajectories under each manoeuvre, provides the best fit to naturalistic driving behaviour.

3.2 Motivation

Traditional approaches to motion planning have typically treated the problem as a single agent
problem; in this perspective, a vehicle interacts with the environment (in simulation or on-field
setting), possibly with the help of recorded human-driven trajectories, and plans its actions by
optimizing over its objectives while taking into account the dynamic obstacles in the vicinity
[200, 98]. However, in reality human driving is a complex system with a symbiotic relation
among agents, where actions of a vehicle influence the future actions of other road users and
vice versa. More recently, there has been a focus towards treating motion planning of AVs as a
multi-agent problem with game-theoretic solutions to AV decision making [70, 190, 38, 136].
Such approaches can account for heterogeneous objectives in a group of vehicles in a traffic
scene and identify equilibrium solutions that guide the actions of the AV. Given that the move-
ment dynamics of a vehicle is in the continuous domain, it is intuitive to model the dynamics
as a differential game, an approach adopted by multiple models in the literature [74, 190, 225].
However, the applicability of such games as a general purpose planner is limited by the trade
off between the computational burden and expressivity; cases where efficient solutions exist in
a multi-agent setting restrict the behaviour of the agents to only linear dynamics [74], and ex-
panding behaviour to realistic nonlinear dynamic make problems computationally challenging.
As an alternative, Fisac et al. [70] introduced the concept of a hierarchical game for AV planning
where the game is decomposed into two levels: a long-horizon strategic game that can model
richer agent behaviour, and a short-term tactical game with a simplified information structure.
The motivation for using hierarchical game as a framework is based upon the belief that in or-
der for the behaviour models to be used in in different stages of AV development, the model
needs to seamlessly integrate within the AV motion planning architecture. This means that the
construction of the games in terms of the agents, available actions, utilities, etc., should be based
upon techniques that have already been developed for AV motion planning — and hierarchical
games are a natural candidate for that purpose [70]. Although hierarchical games are well suited
for AV considering that the idea of hierarchical decomposition of driving actions is well estab-
lished in the literature [156, 229, 70], for the models to be applicable in real world situations, we
need to understand how well the solution concepts in the game match naturalistic human driving
behaviour. It is well known that in many realistic settings, the theoretical fixed point of Nash
equilibrium is a poor predictor of human behaviour [89]; therefore, it is necessary to investigate
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if the same is true for human driving behaviour too. In the absence of that information, we do not
know whether the strategies followed by AV are the right ones or not.

Behavioural game theory provides a framework to analyse decision making in a naturalistic
setting and models of behaviour that often have higher predictive power than Nash equilibria
[39]. A key element in behavioural game theory is bounded rationality, where the conventional
game-theoretic notion of agents as fully rational is relaxed to allow for sub-optimal behaviour.
Such behaviour may arise from limitations in cognitive reasoning, error-prone actions [192], or it
may also be that the behaviour is optimal with respect to some game structure but not the one the
modeller chose to model the situation in question. In any case, driving is a cognitively demanding
job that requires situational awareness and sophisticated visuomotor co-ordination, added on to
individual habits, biases, and preferences; and it is not hard to imagine that driving at its core is a
bounded rational activity. Consequently, it becomes essential for AV game theoretic planners to
be able to characterize the bounded rational behaviour in human driving; for example, if humans
are prone to making errors in judgement when the signal is about to turn red from amber at a busy
intersection, then the AV planner should take that into account since the safety of the AV decision
is conditioned on the error made by the human driver. Wright and Leyton-Brown developed a
general framework of analysing and estimating parameters of popular behavioural game theory
models based on observations of game play. They focus on two models of behaviour, i.e. Quantal
Level-k (Qlk) and Poisson-Cognitive Hierarchy (P-CH) [235], which model iterated reasoning
where agents have a limited capacity to maintain higher order belief about other agents. Although
Qlk and P-CH do not capture all types of bounded rationality that one can think of in the case
of human driving, such as the ones that arise from sampling the actions of other agents, the
framework developed in [235] nevertheless can be applied to a wider set of behaviour models
including the ones we develop in this chapter.

Developing a game-theoretic planner for an AV is a multi-step process, broadly involving
a) selection of the right behaviour model and equilibrium concepts for other road agents, b)
estimation of the parameters of the model, and c) generation of a safe maneuver and trajectory
after accounting for the model and its parameters. In this chapter, I focus on the first two aspects. I
also restrict my focus in this chapter to the single-shot moving horizon based setting, which is the
planning process where agents play a fixed time horizon game at a constant planning frequency,
starts execution of their action and replans again in the next time step. The contributions of this
chapter are as follows.

• Formalisation of the concept of a hierarchical game along with the various solution con-
cepts from behavioural game theory that can be applied to the solve such games.

• Development and evaluation of thirty behaviour models demonstrating different methods
of game construction and solution concept choices for modelling traffic interactions.
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3.3 Related work

One of the first works to include game theory as a methodology to model human driving be-
haviour is by Kita [113], where a lane change scenario is modelled as a two player game. The
solution concept used in that work is a mixed strategy Nash equilibria of merge/give way be-
haviour. MLE (Maximum Likelihood Estimation) is used to estimate utility parameters based
on data recorded by a video camera on a Japanese highway. Since [113], many game theoretic
models have focused on lane change behaviour, and a recent review provides good coverage of
this literature [103]. Since the interest of this thesis is autonomous vehicles, I review the rele-
vant literature in that domain of application in more detail. During the period the thesis was in
progress, there has been several works published in the area of game theoretic models and AV,
and I categorise the relevant literature along key dimensions as shown in Table 3.1.

• Structure: This refers to the structure of the game as modelled by the available actions
and the planning time horizon. Most of the works, including mine in this chapter, are
of one shot games with moving horizon [241, 252, 67, 137, 144, 138, 85, 83, 81]. In
this type of construction, agents play a normal form game (therefore the name one shot)
constructed with respect to a fixed horizon. Based on the solution of the game, the agent
starts to proceed with their action, and replan again by constructing a new game at fixed
time interval, which is the planning frequency. This method of planning with a moving
or receding horizon, in which only a part of the planned action is executed before re-
planning again, is commonly used in AV motion planning techniques [49]. An alternate
way of solving the game is replacing the normal form game with a dynamic game, thereby
supporting a richer strategy and action space. In this construction, the agent repeatedly
plays a dynamic game, executes the action, and replans again at the terminal node. In
a single-agent setting, this method of planning is similar to a Model Predictive Control
(MPC) based planning [37]. Since the construction of the dynamic game may involve an
exponentially large state space, Monte Carlo-based sampling methods are often used in the
construction and evaluation of the game tree [216, 210]. I develop methods for dynamic
game structure in Chapter 5.

• Solution concept : This categorisation is based on the solution concept used in solving the
game. Stackelberg and Nash equilibrium are more commonly used solution concepts in
this regard, and more recently, level-k [215] type methods have also been in use in order to
support boundedly rational agents. Stackelberg solution lends well to the problem of traffic
interaction, since many situations can be modelled as one agent being the leader and the
other as the follower. For example, the driver holding the right of way can be modelled as a
leader. However, since this assignment is part of common knowledge and has to be agreed
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upon by both agents, the use of Stackelberg may be too restrictive due to this assumption.
Geary et al. [83] show that the breakdown of this assumption can lead to dangerous sit-
uations (such as collisions and stopping on highways) and show that changing the utility
structure to model aspects such as altruism can be one way to avoid such situations. The
solution concept used in this chapter is based on a hierarchical decomposition of the game
and is different for different levels of the game. Such a hierarchical decomposition with
respect to the solution concept is seen in the work by Fisac et al. [70], and more recently,
the use of local Nash equilibrium in [85] can also be interpreted as a form of hierarchical
decomposition.

• Empirical : Although there have been several sophisticated models developed within a
game theoretic setting, since the problem is one of modelling human behaviour, it is vital
to judge the effectiveness of the models in real world setting. Therefore, we cover the lit-
erature on the basis of whether the proposed methods include empirical evaluation. Some
works include evaluation only in simulation where the efficacy is demonstrated by per-
formance in different scenarios in simulation. Other methods include experiments with
human subjects in a driving simulator where either data is collected based on how humans
drive in the simulator or models are evaluated against a human taking the role of one of
the players. However, there is a gap in the literature on the evaluation of models based
on naturalistic driving data in a real world setting, which my work in this chapter aims to
address. Contemporary works that address the proposed game-theoretic models based on
naturalistic data include [210] and [85], both of which were published in the similar time
frame as this chapter.

• Bounded rationality: This categorization is based on whether the models have support
for boundedly rational agents. Most game theoretic models are built upon the assumption
that agents are completely rational, either through their ability to calculate a best response
action often in conjunction with their ability to reason over the possible actions of other
agents. This can be taken as a reasonable assumption when models are evaluated based
on human in simulator studies, since it is possible to give all the relevant information to
the participant, which includes the utilities, the actions, game structure, etc. However, in
a real-world setting all of these elements are outside of the control of the game modeller,
and therefore having support for boundedly rational agents (bounded from the perspective
of the game modeller) becomes essential.

• Scenario : This column refers to the specific traffic scenario based on which the models
are developed or evaluated. Typical examples include the lane change scenario (which
has been the most common scenario studied), along with the scenarios of intersection and
roundabout in recent years.
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• Utilties : Driving is often a multi-objective activity that includes balancing multiple ob-
jectives such as safety, progress, comfort, and most of the literature shown in Table 3.1
is reflective of that. Typical dimensions along which the proposed methods model driver
behaviour include safety, progress, comfort, adherence to lane and speed limits, along with
behavioural attributes such as empathy and altruism in some cases. Since solution concepts
needed to solve the games involve aggregation of the multivalued utility into a single real
number, a linear weighting of the objectives is the most common method of aggregation.
In some cases, the weights are estimated a-priori through a separate process based on tech-
niques such as Inverse Reinforcement Learning [216], and in other cases fixed weights are
also used. Alternatively, utilities can also be modelled purely through demonstrations as
in [190], where any action that is more similar to the demonstrated action fetches higher
utility and, therefore, the canonical dimensions of safety, progress, etc. are not modelled
explicitly.

In relation to the literature presented above, the methods developed in this chapter fall under one-
shot moving horizon in terms of the game structure, solution concepts include Nash equilibrium,
Level-k, along with elementary non-strategic decision models, and intersection as the scenario
of study. The methods also focus on modelling boundedly rational behaviour, and I evaluate the
models based on naturalistic driving data.

3.4 Hierarchical Games

Prior to the recent focus on autonomous driving, there has been a considerable body of research
on modelling driving behaviour within the field of traffic psychology with a long history of treat-
ing driving behaviour as a hierarchical model [110, 221, 132, 156]. One of the more influential
models, the Michon hierarchy of driving tasks [156], decomposes driving into three levels of
control; a strategic plan such as a route and general speed choice of going from point A to B
is decomposed into several tactical decisions of choosing the right manoeuvres, which is fur-
ther decomposed into high-fidelity actions that control the steering and acceleration. A primary
motivation of a hierarchical decomposition is that drivers have different motivations and risk
judgements at each level of the hierarchy, and the functional decomposition into a hierarchical
system allows modelling of risk and safety considerations separately at each level. A driver for
example may be indifferent about the choices at a granular level of trajectories but care more
about choosing the right manoeuvre, e.g., waiting for an oncoming vehicle. Motion planners in
autonomous vehicles also follow a similar hierarchical pattern of decomposition; a high level
route planner plan is given to a behaviour planner, which sets up the tactical manoeuvres for
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a lower level trajectory planner, which in turn generates the trajectory profile for the vehicle
controller after respecting its nonholonomic constraints. In addition to the motivation mentioned
above, treating the problem of planning as a hierarchical system is also driven by computational
efficiency, as previously shown in [70].

3.4.1 Illustrative example

Figure 3.1: An example of a two level hierarchical game with action level game 1 being the game
of manoeuvres and action level game 2 is the game of trajectories. Different solution concepts
can be used at different levels to find a game solution.

I first explain the construction of a hierarchical game through a simple illustrative exam-
ple in this section, followed by a more formal construction in the next section. Fig. 3.1 shows
an example hierarchical game played between a vehicle turning right (column player) and a
straight-through vehicle (row player) in an unprotected right turn at an intersection. This sce-
nario is similar to the one shown in Fig. 3.3 where the vehicle with id:14 is the right turning
vehicle and the vehicle with id:26 is the straight-through vehicle. For the sake of simplicity of
this example, I show only a 2 player game between 14 and 26 rather than an N player game
involving all the relevant vehicles in the scene. Let us say the right turning vehicle has two high
level manoeuvres available to them, wait (W) or turn (T), and similarly the straight through ve-
hicle has two manoeuvres slow down (D) or speed up including the special case of maintaining
their current speed (U). The high-level manoeuvre determines the velocity profiles, and then sets
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up the constraints expressed in terms of the target velocity ranges for a low-level trajectory plan-
ner (refer to section A.1 in the appendix for a detailed description of the trajectory generation
process). For example, if v0 is the vehicle speed during the initiation of the game, the slowing
down manoeuvre may involve setting a constraint for the trajectory generation process with a
target velocity in the range [vmin

T , vT ] where vT < v0 and vmin
T is the minimum velocity reachable

by the vehicle in T seconds after taking into account the kinematic limits of the vehicle. Assum-
ing that the vehicles use a method for sampling the possible trajectories (I elaborate on this later
in the chapter), the trajectories are the main actions that the vehicles can execute in the game.
Therefore, the set of trajectories for both vehicles forms the game matrix, as shown in the lower
matrix of Fig. 3.1. Each coloured section of the matrix represents the trajectories corresponding
to a specific combination of high-level manoeuvres. For now, let us assume that the utilities in
the table are calculated after taking into account the various objectives such as safety, progress,
etc. In the worst case scenario, finding a pure strategy Nash equilibrium of the game involves
a quadratic time algorithm in terms of the size of the matrix that grows exponentially with the
number of players [188]. As an alternative, one can use a different solution concept that runs in
linear time, e.g. maxmax (selection of the utility maximizing action), or does not involve pairwise
comparison, e.g. maxmin (action that maximizes the utility of worst case scenario with respect to
other agents’ actions), for the subgame under each manoeuvre combination. Each shaded matrix
in the game of trajectories can then be replaced by a representative solution (in this example I
take a sample maxmin solution that maximizes the sum of utilities), thereby forming the game of
manoeuvres as shown in the top matrix in the figure. The game of manoeuvres can subsequently
be solved using a more computationally involved solution concept such as a pure strategy Nash
equilibrium. The key idea behind hierarchical game construction is the use of heterogeneous so-
lution concept at different levels based on the hierarchy of actions (manoeuvres and trajectories
in our case). This is akin to the possible mental process involved in driving, where a driver de-
liberates more at the level of manoeuvres but less so at the level of individual trajectories within
each manoeuvre combination.

3.4.2 Formalization

In this section, I formalise the construct of a hierarchical game for the general case of N players
and K levels of action hierarchy. Wherever possible, I use the term action level to disambiguate
between the levels of action hierarchy, and levels of cognitive hierarchy that appears later in the
chapter as part of the behaviour models to solve the games. I also highlight the relation between
solving a hierarchical game in the way that was illustrated in the example above and subgame
solving through backward induction. A hierarchical game is formulated by
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(a) (b)

Figure 3.2: Illustration of two instances of hierarchical games. (a) As a Stackelberg game mod-
elling a lane change maneuver and (b) simultaneous move game modelling intersection naviga-
tion. A hierarchical game is instantiated every ∆tp seconds with action plan of ∆th seconds.

• Set of N agents indexed by i ∈ {1, 2, 3, ..N}.

• A set of K levels indexed by κ ∈ {1, 2, 3, ..K}.

• Set of actions Ai,κ available to each agent i at level κ.

• A strategy si for agent i is a K-tuple si = (ai,1, ai,2, .., ai,K) where ai,κ ∈ Ai,κ and the
strategy space of si is

∏
κ∈K

Ai,κ.

• A set of states Xi of agent i in level 1, and an initial mapping function fi,1 : Xi → P(Ai,1)
that maps the initial state of the agent to the available actions in level 1, where P(·) is the
power set.

• Set-valued functions fi,κ :
κ−1∏
j=1

Ai,j → P(Ai,κ) for each agent i that maps a partial strategy

(ai,1, ai,2, .., ai,κ−1) to P(Ai,κ) and gives the set of available actions to i in level κ > 1 for
the partial strategy till level κ− 1.

• Set of N pay-off (utility) functions U = {ui(si, s−i)}, where −i refers to all agents other
than i.

The hierarchical game imposes a total ordering in actions Ai = {Ai,1, Ai,2, .., Ai,K} of a given
agent, and along with fi,κ induces a game tree, as shown in Fig. 3.2b. The frequency at which a
hierarchical game is instantiated (∆tp) and the time horizon of each strategy (∆th) are exogenous
to the model. Each node is labeled ni,κ,j , where i and κ are the agent and level indices, and j
is the node identifier within level κ. This general formulation of a hierarchical game does not
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prescribe a fixed information structure, and allows the modeller to set an information structure
that is appropriate to the environment and situation they want to model. For example, Fisac et
al. [70] models a lane change scenario where an AV merges into a lane occupied by a human
driven vehicle. The game is modelled as a Stackelberg game with the AV being the leader and
the human driven vehicle responding to the action of the AV. Fig. 3.2a shows a 2-agent 2-level
the game tree for such a scenario where each decision node is a singleton information set since
for every decision node, the agent who owns the decision node has perfect information on where
they are in the game. At node n1,1,1, the AV (indexed as agent 1) has the choice of either staying
in its current lane (L) or merging into the adjoining lane (M) A1,1 = {L,M}. Conditioned on
this choice, the vehicle has to generate a trajectory a1,2 ∈ f1,2(a1,1) to execute the maneuver
chosen in level 1. Whereas actions in A1,1 are discrete choices, the agent can choose from a
continuum of actions (shaded region in the figure) at node n1,2,2. The human driven vehicle after
having observed the actions of the AV, can respond by deciding to speed up (U) to dissuade the
merging AV cut-in the front, or slow down (D) followed by a trajectory that corresponds to the
choice. In situations where assignment of a leader and a follower is unclear or that assumption
is too strong, the agents might not have perfect information on the state of the play. Interactions
at an intersection for example, are such scenarios. Continuing from the illustrative example from
the previous section, Fig. 3.2b illustrates a 2-agent 2-level scenario as an example where an AV
(indexed as 1) executes a free right turn on red at a signalized intersection (in a situation similar
to id:14 in Fig. 3.3), while a human driven vehicle (id:26 and re-indexed as 2 in Fig. 3.2b)
approaches cross path from left to right. The AV can either decide to turn (T) or wait (W) for the
cross path vehicle to pass, i.e., f1,1(X1) = A1,1 = {T,W}. The human driven vehicle (id:26)
can either slow down (D) or choose not to slow down (U), f2,1(X2) = A2,1 = {D,U}. Since
either agent does not have perfect information about what the other agent is about to do next,
agent 2 does not know whether they are in node n2,1,1 or n2,1,2 (connected by the information set
I(1)). This imperfection of information is also reflected at the trajectory level (level 2 actions),
where each agent can only distinguish between the nodes in level 2 that follow from their own
chosen actions in level 1, but not from the ones that follow from the other agent’s level 1 decision
(I(2)-I(5)).

It becomes apparent from this structure that the game has no proper subgame, and the game
reduces to a simultaneous move game. It is well understood that a way to solve such games
is by reduction to normal form. However, as we shall see, the hierarchical game has additional
constraints that allow solving the game in Fig. 3.2 also through backward induction. To designate
the nodes where utilities accumulate at each level in the backward induction process, we label a
set of nodes in each level κ as level roots L(κ) = {ni,κ,j|parent(ni,κ,j) /∈ Nκ} where Nκ is the
set of nodes in level κ. In other words, the set of level roots contain nodes in each level κ whose
parent is not in level κ. Therefore, L(1) = {n1,1,1} and L(2) = {n1,2,1, n1,2,2, n1,2,3, n1,2,4}.
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Algorithm 2: Backward induction for a hierarchical game
Result: S∗

1 , V
∗
1

1 for κ := K;κ = 1; κ := κ− 1 do
2 for n ∈ L(κ) do

3 S∗
κ,n, V

∗
κ,n ← solve Gκ(

N∏
i=1

fi,κ(σi(n)),

4 κ = K?U ;V ∗
κ+1,L(κ+1))

5 end
6 end

Algorithm 2 shows the standard backward induction process adapted to the hierarchical game.
The algorithm starts at the bottom most level (K) and recursively moves up the tree by solving the
action level games Gκ at every level. At each level, a simultaneous move action level game Gκ is
instantiated from each node in L(κ). These action level games are constructed by first extracting
σi(n), which gives the partial pure strategy for agent i that lies on the branch from the root node
of the game tree L(1) to node n ∈ L(κ). fi,κ gives the available actions for each agent i in the
current level κ, and these actions form the domain of available strategies in the action level game
Gκ. The utilities depend on the level of the game; for action level game Gκ=K the utilities are same
as the game utility U , whereas for action level games Gκ<K are solved based on the game values
V ∗
κ+1,L(κ+1) from the game Gκ+1 solved in the previous iteration. Note that the pseudocode shows

only the case where a single solution and game value (S∗
κ,n, V

∗
κ,n) is propagated up the hierarchy.

In the case of multiple solutions for the action level games, the strategies and values have to be
tracked and repeated for each solution. The solutions and game value S∗

κ,n, V
∗
κ,n depend on the

solution concept used for the individual action level game, and this is discussed in detail later
under Solution concepts.

Due to the tree-like structure of the hierarchical game and the process of solving the game
bottom up from the leaf nodes through backward induction, one can see that the process is very
similar to solving for subgame perfect equilibria in multi-stage games with stages being replaced
by levels in the hierarchy [213]. However, it is not a subgame perfect equilibria, since the ac-
tion level games are not subgames in the game tree. The connection between subgame perfect
equilibria and the solution in the hierarchical game is that in the hierarchical game, the map-
ping functions fi,κ impose an action selection method that is similar to action selection based
on the condition of sequential rationality in subgame perfect equilibria. The mapping functions
fi,κ eliminate strategies for all agents i that are not direct successors of the partial strategies
σi(n) · σ−i(n), essentially breaking any information set within a level κ that spans two separate
levels in L(κ). To illustrate this more intuitively, take the example in Fig. 3.2(b) when agent
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(x, y)O

Figure 3.3: A snapshot of the intersection traffic scene. Representative trajectories based on the
three sampling schemes over a R3. The figure shows the path (R2) projection of the trajectories
and the dimension of time not represented in the figure.

1 is in the information set I(2) connecting the two nodes n1,2,1 and n1,2,2. At this information
set, agent 1 could solve the game under two nodes separately only under a guarantee that after
solving the game starting from node n1,2,1 and following that strategy, under no condition would
they find themselves at a leaf node of the tree starting at n1,2,2, and vice versa. The function fi,κ
provides that guarantee and eliminates hypothetical strategies where, at level 1, a vehicle may
think about slowing down, but at level 2 chooses a trajectory that speeds up; and the fact that this
cannot happen is part of the common knowledge among the agents in the game mediated by fi,κ.

3.5 Game Structure

In this section, I describe the details of the game structure, including the number of agents,
actions, strategies, and utilities.
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3.5.1 Relevant agents and available actions

Since we are interested in investigating decision making in situations where there may be strate-
gic reasoning involved, we extract situations where vehicles are executing a left turn across path
or unprotected right turns. At each time step ∆tp=1s, we setup a hierarchical game with an action
plan horizon of ∆th=5s into the future from the perspective of each vehicle that turns left or right
in the scenario. For example, in the snapshot of Fig. 3.3, the black dashed line shows the game
from the perspective of the vehicle 14, which is turning right. The process of including the rel-
evant vehicles in the game is as follows: we identify the conflict points on the map with respect
to all the lanes in the intersection that cross each other. Since a game is initiated with respect to
a ‘subject vehicle’, we first locate the conflict points corresponding to the lane that the subject
vehicle is currently in, and include all agents in the scene that are on the lanes in conflict with the
subject vehicle’s lane. We also include the leading vehicle of these conflicting vehicles. This set
of relevant vehicles along with the subject vehicle form the set of agents in each game. Pedes-
trian actions are not modelled explicitly in the game tree; however, their influence is modelled in
the utility structure of the game, which is described later in the section. Further details about the
conflict point and the process of relevant vehicle assignment is also included in appendix B.

Each game is a N -player 2-level hierarchical game where level 1 actions for each agent are
high level manoeuvres that are relevant to the task under execution, and level 2 actions are the
corresponding trajectories. We setup the set of manoeuvres with the help of a first order logic
rules (appendix A.2) that takes into account the task of the vehicle and its situational state. The
complete list of level 1 actions is documented in Table 3.4. Level 2 actions (Ai,2) are trajectories
that are generated based on the actions in level 1. To generate the trajectories for each vehicle,
we use a lattice sampling based trajectory generation similar to one presented in [251]. First a
set of lattice endpoints are sampled on R2 cartesian co-ordinate centered on the vehicle’s cur-
rent position. Each lattice sample point on R2 is then extended with a temporal lattice which is
re-sampled to form the final lattice points in R3 that contain the (x, y) positions and the target
velocity at each lattice point after accounting for acceleration and jerk limits of passenger vehi-
cles [14]. Finally, the sampled lattice points are connected with a smooth cubic spline that adhere
to the velocity, acceleration, and jerk constraints, representing the vehicle trajectory (Fig. 3.4).
Appendix A.1 explains this process in more detail.

Since the trajectory generation is in continuous space with infinite actions for the drivers
to reason over, combined with the time constraints to make a decision (which is in the order
of milliseconds), the situation is ripe for bounded rationality to be in play — in a form where
agents look at the game through samples1 of action rather than all possible trajectories over the
1 The usage of the word sample here means an example, and does not necessarily imply a presence of a specific
statistical sampling procedure over a distribution.
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continuous space. This form of bounded rationality is connected to Osborne and Rubinstein’s
model where agents’ employ a mental process to sample other agents’ actions and respond based
on the imagined outcome of those samples [171]. In Osborne and Rubinstein’s model, the model
further develops this view of bounded rationality into an equilibrium (sampling equilibrium),
whereas in our case I use this only as a method of action construction. I also use a common
sampling procedure for all agents, and this enables the agents to have the same view of the
action space and therefore play the same game. In the context of driving, this process is the
same as when vehicles sample a set of trajectories of other agents and respond in accordance to
those sampled trajectories with the additional assumption of having a common sampling scheme.
Naturally, one may imagine that some sampling procedures make more sense than others, and in
some procedures the assumption of a common sampling scheme is more reasonable than others. I
now briefly mention the sampling procedures used in our experiments, and the intuitive reasoning
behind each.

o

S(1)
(x, y)S(1)

(x, y)O S(1+B)

S(1+G)

(a)

S(1)

vτ=5
S(1)

vτ=0
O

S(1+B)

S(1+G)

(b)

Figure 3.4: Representative trajectories based on the 3 sampling schemes over aR3 lattice showing
the spatial representation of the (a) path and (b) velocity profiles. Lattice points are connected
with cubic splines.

At each time step when the game tree is instantiated, agents observe the current attributes
(such as position, velocity and acceleration) of other relevant agents in the game tree and use one
of the following sampling methods to construct the game tree.

• S(1): In the most basic case, an agent i may sample a single trajectory (level 2 action) of
every agent −i that that they, i.e., i, think is most representative of the level 1 action of
the agent they are currently reasoning over. To construct the trajectory sample, we select
lattice endpoints along the lane centerline and use a piecewise constant acceleration model
to generate the final trajectory.
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• S(1+B): With a little more cognitive bandwidth, along with the S(1) trajectory sample,
they can also sample trajectories that form the extreme ends of the bounded level-2 action
space of other agents. These trajectories are bounded spatially by the lane boundaries and
temporally by the upper and lower bounds on the velocity limits of the level 1 action
they correspond to. There are a total of 9 trajectory samples that are generated from this
scheme; 3 velocity profiles generated over each of 3 path samples. This set of trajectories
indicate what other agents might do in normative (i.e. following the rules as captured by
the piecewise constant acceleration model) as well as in the extreme case but still within
the physical limitations of the vehicle.

• S(1+G): The final sampling scheme lies in between the two schemes. Similar to S(1+B),
this scheme includes the S(1) trajectory; however, the rest of the trajectories are sampled
from a multivariate Gaussian distribution with µ = [xS(1), yS(1), vS(1)]

⊤ and an unit diag-
onal covariance matrix, where (xS(1), yS(1), vS(1)) is the lattice endpoint corresponding to
the S(1) trajectory. We refer to this scheme as S(1 + G) and the samples include the nor-
mative behaviour that comes from S(1) along with variations in the path and velocity of
the vehicle but not to the extremes that were captured in the S(1 +B) scheme.

One can see that S(1) and S(1+B) are methods of action construction that do not sample from a
distribution in a statistical sense, and therefore the only assumption is that the agents share the
general method of the action construction and the limits of the vehicle movement. In S(1+G)
however, the specific samples of the distribution also need to be a part of the common knowledge
for the agents to play the same game. In practice, this is a restrictive assumption; however, I
include this method solely for comparison with other approaches.

3.5.2 Utilities

To determine the utility structure, we draw from motivational aspects of driver behaviour mod-
elling in traffic psychology literature [209]. In general, driving motivations are multiobjective
and the broad dimensions can be classified into inhibitory and excitatory motives. Whereas ex-
citatory motivations drive a driver to make progress towards reaching the destination, inhibitory
motivations are the balancing factors that account for mitigating crashes and mental stress. The
three different utlities used in this work are as follows

• Excitatory utility. the degree of progress a driver can make based on a selected trajec-
tory ai,2 is the excitatory utility uv exc(ai,2) as determined by the trajectory length ∥ai,2∥,
uv exc(ai,2) = min(

∥ai,2∥
dg

, 1), where dg is a constant and can be interpreted as the distance
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Figure 3.5: Utility function that maps a) minimum distance gap between trajectories to an utility
interval [-1,1] (inhibitory utility for vehicle-vehicle interactions), and b) trajectory length to the
utility interval [0,1] (excitatory utility).

to goal or crossing the intersection. We set dg = 100 (Fig. 3.5b), which is approximately
the distance to cross the intersection we study in our experiment. The minimum excitatory
(i.e., progress) utility is set to 0 instead of -1 since even transiently waiting for another
vehicle (trajectory length 0) may invoke a feeling of making some progress towards their
destination.

• Vehicle inhibitory utility. This utility, uv inh, is based on the minimum distance gap be-
tween pairs of trajectories of vehicles. The form of the utility function is a sigmoidal
function (Fig. 3.5a), which are a popular family of functions that can map preferences
over surrogate metrics, e.g., minimum distance gap d(ai,2, a−i,2), into an utility interval
[71]. For uv inh, we first fix a minimum safe distance gap d∗ai,2,a−i,2

based on collision type
that may occur as a result of the distance gap reaching zero between the trajectories of
the agents in the game. Collision types include side collisions, rear-end collisions, and
other types that include angle collisions. The value of the safe distance gap determines
the location θ of the sigmoidal function (erf). However, since the conception of what is
considered safe may vary in a population of drivers, we let θ to be a random variable that
is normally distributed with µ = d∗ai,2,a−i,2

and constant variance σ determining the scale
of the sigmoidal function. The choice of erf as the sigmoidal function is a mathematical
convenience since the Gaussian integral of the erf in uv inh(ai,2, a−i,2) evaluates to another
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sigmoidal erf(
d(ai,2,a−i,2)−d∗ai,2,a−i,2

2σ
).

uv inh(ai,2, a−i,2) =

∫
erf

[
d(ai,2, a−i,2)− θ

σ
√
2

]
N (θ; d∗ai,2,a−i,2

, σ)dθ (3.1)

• Pedestrian inhibitory utility. This utility, up inh, is a step function over [-1,1] such that
up inh(ai,2) = −1 if ai,2 is a trajectory that does not wait for a pedestrian when the pedes-
trian is in the vicinity having a right of way, or is on the crosswalk to be traversed; and 1
otherwise.

The above multi objective utilities are aggregated using a weighted aggregation method with a
weight vector W that combines inhibitory and excitatory utilities to produce a single real value.

ui(ai,2, a−i,2) = W ·
[
uv inh(ai,2, a−i,2) up inh(ai,2) uv exc(ai,2)

]⊤ (3.2)

The utilities for the actions in G1 depends on the solution concept (discussed in the next
section), and can be calculated as follows. ui(ai,1, a−i,1) = V ∗

2,η(i), where η is the leaf node of
the branch ai,1, a−i,1 and V ∗

2,η(i) is the utility of agent i following the pure strategy response a∗i,2,
where a∗i,2 is the solution to the underlying G2 game. The utilities presented above are the utilities
at the leaf nodes of the game (as represented by U based on the formalization in Sec. 3.4.2).

3.6 Solution concepts in hierarchical games

A key element that influences solution concepts in games is the manner in which each agent
reasons over the strategies of other agents. In non-strategic behaviour models, agents do not
explicitly model other agents in the game and respond solely on the basis of their own utility
structure. Wright and Leyton-Brown [237] refer to this property of behaviour being dependent
only on the agent’s own payoff as dominance responsive. Along with following the property of
dominance responsiveness, strategic agents, on the other hand, also reason over the strategies of
other agents. This means that strategic agents are not only responsive to their own utilities, but
also demonstrate a behaviour that is dependent on others’ utilities too; a property that is referred
to as other responsiveness [237].

The first category of behaviour models we consider is the Quantal level-k (Qlk) model
[235]. Qlk models the population of agents as a mix of strategic and non-strategic agents, with
agents having a bounded iterated cognitive hierarchy of reasoning. Strategic agents in Qlk use
Quantal Best Response (QBR) function, often expressed as a logit response πQBR

i (ai, s−i, λ) =

42



exp{[λ·ui(ai,s−i)]}
Σ

a
′
i
exp{[λ·ui(a

′
i,s−i)]} , where s−i represents the pure or mixed strategies of other agents and λ is

the precision parameter that can account for errors in agent response with respect to utility dif-
ferences2. When λ → 0, the mixed response is a uniform random distribution, whereas λ → ∞
makes the response equivalent to best response. Level-0 agents are non-strategic (NS) agents
who choose their actions uniformly at random, whereas Level-1 agents are strategic (S) agents
who believe that the population consists solely of Level-0 agents, and their response is a QBR
response to Level-0 agents’ actions. In the original Qlk model, level-0 agents follow a mixed
uniform distribution strategy; however, in [236], the behaviour of level-0 agents is formalised by
noting that any behaviour that is dominance responsive only can be considered a model of level-0
behaviour. Additionally, the behaviour that is other responsive, are level-k ⩾ 1 behaviour. In this
chapter, I use this expanded definition, and similar to [236], the level-0 agents’ strategies follow
more intuitive, yet nonstrategic response, such as the maxmax response (MX) or the maxmin
(MM) response. Note that for both models, an agent only needs to perform operations on their
own utilities, thus adhering to the level-0 constraint of not being other responsive. We believe
that the expanded definition of the level-0 agents suits our situation much better, since it is un-
realistic to expect a driver to choose actions purely at random from their available actions. Even
with this expanded definition, these are still non-strategic since level-0 agent responses depend
purely on their own utilities and do not rely on strategic reasoning over other agents’ utilities
[237].

Another category of non-strategic behaviour that I consider is rule following behaviour. Un-
der a rule following behaviour level-0 agents strictly adhere to the traffic rules regardless of what
the utilities may suggest. Such a strict rule following behaviour is not even dominance responsive
because based on the utilities constructed in Section 3.5.2, the action that the rule suggests can
be strictly dominated by all other actions, and the agent would still follow the rule. On the other
hand, if the utilities are constructed in an alternate way that captures the preference of the rule
following, then our level-0 agent can be deemed to be dominance responsive. Based on these
characteristics, the rule following can be said to be a nonstrategic behaviour, therefore in the
category of level-0.

In a hierarchical game, since the agent strategies are factored into levels si = (ai,1, ai,2),
the manner in which an agent reasons over strategies in one level might not be the same as the
reasoning process in another level. Therefore, instead of a single solution concept in the game
of Fig. 3.2, action level games G2 can have a different solution concept than the one in the game
G1. In our models, we let agents have a cognitively less demanding non-strategic response in G2,
and a more deliberative strategic response in G1. This choice is similar to one taken in [70], and

2 In this formulation, the symbols si and ai are strategies and actions of a game in a general sense, respectively, and
not related to the symbols used specifically in the formulation of hierarchical games earlier.
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QL0 QL1 PNE-QE QlkR

G1 G2 G1 G2 G1 G2 G1 G2
NS NS S+NS NS S NS S NS

Table 3.2: Distribution of strategic (S) and non-strategic (NS) behaviour in action level games G1
and G2 in four metamodels QL0, QL1, PNE-QE, and QlkR.

reflects the natural process where it is easier for drivers to reason strategically over the strategy
space of discrete manoeuvres than over the space of infinitely many trajectories.

We consider three metamodels of behaviour under Qlk: Ql0, Ql1, and QlkR. We refer to them
as metamodels, since they can be further refined based on the choice of response function and
sampling schemes to create concrete models (see Table 3.3).

Ql0 metamodel. In QL0 metamodel, we restrict the population to be solely level-0 responders in
both G1 and G2. Level-0 agents follow non-strategic behaviour with one of two solution concepts,
maxmax response (MX), and best worst-case or maxmin response (MM). The model of MX is:

a∗i,κ = argmax
∀ai,κ,a−i,κ

ui(ai,κ, a−i,κ) (3.3)

πi(ai,κ) =
exp

[
λi · ui(ai,κ, argmax∀a−i,κ

ui(ai,κ, a−i,κ))
]

Σ∀ai,κ exp
[
λi · ui(ai,κ, argmax∀a−i,κ

ui(ai,κ, a−i,κ))
] (3.4)

where a∗i is the pure-strategy utility-maximizing action for i. The model for nonstrategic MM
response is:

a∗i,κ = argmax
∀ai,κ

argmin
∀a−i,κ

ui(ai,κ, a−i,κ) (3.5)

πi(ai,κ) =
exp

[
λi · ui(ai,κ, argmin∀a−i,κ

ui(ai,κ, a−i,κ))
]

Σ∀ai,κ exp
[
λi · ui(ai,κ, argmin∀a−i,κ

ui(ai,κ, a−i,κ))
] (3.6)

Equations 3.4 and 3.6 are relaxations that translate the pure strategy action to a noisy response
πi(ai,κ) based on the precision parameter λi and sensitivity to i’s utility difference with respect
to opponent actions that maximizes i’s utility for MX and minimizes for MM.

Ql1 metamodel. In QL1, the population consists of a mix of level-0 and level-1 responders in G1
and level-0 responders in G2 (Table 3.2). Level-0 agents in this population follow MX and MM
nonstrategic behaviour as formulated earlier, and level-1 agents best respond quantaly to level-0
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agents’ behaviour. With the expanded definition of level-0 agents as nonstrategic bounded ra-
tional agents, there is a design choice to be made on what level-1 agents believe about level-0
agents. They can consider level-0 agents to be bounded rational responders having mixed re-
sponse of Equations 3.4 and 3.6, or level-1 agents can consider level-0 agents to be pure strategy
rational responders based on Equations 3.3 and 3.5. We choose the latter to align with the original
Qlk model, where agents modelling other agents as bounded rational agents are observed only
at a higher cognitive level (level-2 and above). In Qlk models, the mixed population is modelled
as a bimodal mixture distribution. Therefore, if the proportion of level-0 and level-1 agents is α
and 1− α, respectively, then the QL1 model response in G1 is the mixed strategy response.

πQL1
i (ai,1) = α · πQL0

i (ai,1) + (1− α) · πQBR
i (ai,1, a

∗
−i,1, λi) (3.7)

where πQL0
i (ai,1) is the left hand side of the equation 3.4 or 3.6 and a∗−i,1 is the solution set to

equations 3.3 or 3.5 for each of the other agents.

QlkR metamodel. In the QlkR metamodel, the population consists of level-1 agents who believe
that everyone else follows a rule following, and the agents in the QlkR model best respond quan-
taly with precision parameter λi. The table of rules that determine the behaviour of rule-following
is included in Appendix A.2. The rule following behaviour in this case can be considered as an
alternate model of level-0 behaviour. However, the only property that a level-0 model adheres to
is dominance responsive. One can argue that such a strict rule following behaviour is not even
dominance responsive because based on the utilities constructed in Section 3.5.2, the action that
the rule suggests can be strictly dominated by all other actions, and the agent would still follow
the rule. On the other hand, if the utilities are constructed in an alternate way that captures the
preference of the rule following, then our level-0 agent can be deemed to be dominance respon-
sive. Let R−i(X−i) be the action corresponding to the traffic rule that agent −i should follow in
state X−i, then the model of QlkR behaviour is as follows.

a∗i,κ = argmax
∀ai,κ,R−i(X−i)

ui(ai,κ,R−i(X−i)) (3.8)

πQlkR
i (ai,κ) =

exp[λi · ui(ai,κ, ui(ai,κ,R−i(X−i))]

Σ∀ai,κ exp[λi · ui(ai,κ,R−i(X−i))]
(3.9)

PNE metamodel. The final metamodel we consider is a generalization of pure strategy Nash
equilibrium with noisy response. In this metamodel, agents follow a non-strategic model in G2,
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and a strategic model in G1 as described below.

a∗i,1 = argmax
∀ai,1

ui(ai,1, a
∗
−i,1) (3.10)

πPNE-QE
i (ai,1) =

exp
[
−λi ·min∀(a∗i,1,a∗−i,1)

(u∗i − ui(ai,1, a∗−i,1))
]

Σ∀ai,1 exp
[
−λi ·min∀(a∗i,1,a∗−i,1)

(u∗i − ui(ai,1, a∗−i,1))
] (3.11)

where u∗i = ui(a
∗
i,1, a

∗
−i,1). In the above model, agents respond according to pure strategy Nash

equilibria a∗i,1, but in error may choose actions ai,1 /∈ a∗i,1 based on the sensitivity to the difference
in the utility of the action and an equilibrium action. We refer to this model as pure strategy
Nash equilibria with quantal errors (PNE-QE). The formulation is similar to Quantal Response
Equilibrium (QRE), yet with key differences. In QRE, strategic reasoning occurs in a space of
mixed responses and the precision parameter is part of common knowledge in the game. In
our model, reasoning over opponent strategies is in pure strategy action space and the precision
parameter is endogenous to each agent; therefore, when an agent reasons about the strategies of
other agents, their parameters do not play a role [55]. Based on the choice of the metamodel, the
response function, and the sampling scheme, we get 30 different behaviour models (B), cf. Table
3.3, which we evaluate in the next section.

Estimation of game parameters

The dataset used in this chapter includes D (˜23k) hierarchical games, instantiated with planning
frequency ∆tp = 1s, and planning horizon ∆th = 5s and with the state variables Xi along with
the observed strategy soi = (aoi,1, a

o
i,2) for every agent i in the game. For each behaviour model

b ∈ B, we note the errors in actions with respect to the pure strategy responses in the games as
∆Ub = {ϵi,b|ϵi,b = min∀a∗i [ui(a

∗
i , a

∗
−i)−ui(aoi , a∗−i)]}, where a∗i are the solutions to Equations 3.3

or 3.5 for non-strategic models, Equation 3.8 for QlkR model, and 3.10 for PNE-QE model (we
verified the existence of pure strategy NE for all G1 games in D). Within the context of a game,
we assume that all players follow a common behaviour model, and the precision parameters (λi,b)
in an individual game is a function of the agent’s state Xi (see Tables 3.6 and 3.7 for the list of
state factors) from whose perspective the game is initiated as well as the behaviour model b of
the game. Therefore, for a given state factor Xi, ϵi,b, or the error value that captures the utility
difference follows an exponential distribution based on the game’s precision parameter for Ql0,
QlkR and PNE-QE metamodels, and a mixed exponential distribution (3.7) for QL1 in G1. The
exponential distribution of the errors and the (assumed) dependency based on state factors lend
well for the model to be fit based on a generalized linear model [86]. Additionally, since the
mean of an exponential distribution is just the inverse of the distribution parameter, the estimate
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that the glm model gives is the inverse of the precision parameter estimate that we wish to infer.
Therefore, to estimate the value of λi,b we fit a generalized linear model glm(ϵi,b ∼ βXi)|∆Ub

with Gamma(k = 1) family and inverse link, which models ϵi,b as an exponentially distributed
random variable with E[ϵi,b] = 1

λi,b
and Var[ϵi,b] = 1

λ2
i,b

. β is the model co-efficient, solved
through maximum likelihood estimate based on the data in ∆Ub. The prediction of the glm
model gives the mean and standard error of λ−1

i,b based on the state observation Xi. For the mixed
exponential distribution in QL1 model, once we estimate the individual precision parameters of
3.7, we estimate α by maximizing the likelihood function Σ∀aoi,1 ln

(
πQL1
i (aoi,1)

)
.

3.7 Experiment and evaluation

Dataset. I used the intersection dataset of Waterloo Multi-Agent Traffic Dataset, which con-
tains a total of 3649 vehicles and 264 pedestrians, including their centimetre-accurate trajectory
estimates. We analyse the decision making in right turning and left turning vehicles, which re-
sults in a total of 12526 hierarchical games. The detailed process of data collection, labelling,
and description is included in Appendix B. Table 3.4 shows the manoeuvres that are used in
the construction of the level-1 games. The manoeuvres are context specific, and I use a rule
based method (appendix A.2) to generate the set of available manoeuvres to each agent in the
game. The situational context in which each maneuver is available to an agent is shown in the
description column of Table 3.4. Relevant code for the experiments is available at https:
//git.uwaterloo.ca/a9sarkar/traffic behavior modeling.

In this experiment I study naturalistic driving behaviour and evaluate which behaviour model
captures human driving better, both in terms of model fit and predictive accuracy. I set W =[
0.25 0.5 0.25

]
, thereby giving more importance to pedestrian inhibitory actions and set the

value of dg = 100m. In particular I answer the following research questions:

• RQ1. Which solution concept provides the best explanation for the observed naturalistic
data?

• RQ2. How do state factors influence the precision parameters in the games?

• RQ3. How does the choice of the response function in the lower action level game G2 affect
the higher level solutions in G1?

Table 3.3 shows a synopsis of all the behaviour models included in the evaluation. The model
names are indexed by their metamodel followed by the choices of the response functions in G1:G2

47

https://git.uwaterloo.ca/a9sarkar/traffic_behavior_modeling
https://git.uwaterloo.ca/a9sarkar/traffic_behavior_modeling


Model name Metamodel Action level game
G1

Action level
game G2

Trajectory sampling

PNE-QE:MM S(1+B) PNE Pure strategy NE Maxmin Bounds, S(1+B)
PNE-QE:MM S(1+G) PNE Pure strategy NE Maxmin Truncated Gaussian, S(1+G)
PNE-QE:MX S(1+B) PNE Pure strategy NE Maxmax Bounds, S(1+B)
PNE-QE:MX S(1+G) PNE Pure strategy NE Maxmax Truncated Gaussian, S(1+G)
PNE-QE S(1) PNE Pure strategy NE NA Prototype trajectory, S(1)
Ql0:MM:MM S(1+B) Ql0 Maxmin Maxmin Bounds, S(1+B)
Ql0:MM:MM S(1+G) Ql0 Maxmin Maxmin Truncated Gaussian, S(1+G)
Ql0:MM:MX S(1+B) Ql0 Maxmin Maxmax Bounds, S(1+B)
Ql0:MM:MX S(1+G) Ql0 Maxmin Maxmax Truncated Gaussian, S(1+G)
Ql0:MM S(1) Ql0 Maxmin NA Prototype trajectory, S(1)
Ql0:MX:MM S(1+B) Ql0 Maxmax Maxmin Bounds, S(1+B)
Ql0:MX:MM S(1+G) Ql0 Maxmax Maxmin Truncated Gaussian, S(1+G)
Ql0:MX:MX S(1+B) Ql0 Maxmax Maxmax Bounds, S(1+B)
Ql0:MX:MX S(1+G) Ql0 Maxmax Maxmax Truncated Gaussian, S(1+G)
Ql0:MX S(1) Ql0 Maxmax NA Prototype trajectory, S(1)
Ql1:MM:MM S(1+B) Ql1 BR to Maxmin Maxmin Bounds, S(1+B)
Ql1:MM:MM S(1+G) Ql1 BR to Maxmin Maxmin Truncated Gaussian, S(1+G)
Ql1:MM:MX S(1+B) Ql1 BR to Maxmin Maxmax Bounds, S(1+B)
Ql1:MM:MX S(1+G) Ql1 BR to Maxmin Maxmax Truncated Gaussian, S(1+G)
Ql1:MM S(1) Ql1 BR to Maxmin NA Prototype trajectory, S(1)
Ql1:MX:MM S(1+B) Ql1 BR to Maxmax Maxmin Bounds, S(1+B)
Ql1:MX:MM S(1+G) Ql1 BR to Maxmax Maxmin Truncated Gaussian, S(1+G)
Ql1:MX:MX S(1+B) Ql1 BR to Maxmax Maxmax Bounds, S(1+B)
Ql1:MX:MX S(1+G) Ql1 BR to Maxmax Maxmax Truncated Gaussian, S(1+G)
Ql1:MX S(1) Ql1 BR to Maxmax NA Prototype trajectory, S(1)
QlkR:BR-R:MM S(1+B) QlkR BR to traffic rule Maxmin Bounds, S(1+B)
QlkR:BR-R:MM S(1+G) QlkR BR to traffic rule Maxmin Truncated Gaussian, S(1+G)
QlkR:BR-R:MX S(1+B) QlkR BR to traffic rule Maxmax Bounds, S(1+B)
QlkR:BR-R:MX S(1+G) QlkR BR to traffic rule Maxmax Prototype trajectory, S(1)
QlkR:MX S(1) QlkR BR to traffic rule NA Prototype trajectory, S(1)

Table 3.3: Synopsis of the thirty behaviour models included in the evaluation. ’BR’ stands for
Best response.
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Level-1 action (maneuver) Description

wait-for-oncoming (aggressive) Applies to left and right turning vehicles. The
action of waiting for a vehicle that has the right
of way. Generates a trajectory with terminal
velocity of zero.

wait-for-oncoming (normal)

proceed-turn (aggressive) Applies to left and right turning vehicles.
Action of executing the turn.proceed-turn (normal)

track-speed (aggressive) Applies to straight through vehicles. Trajectory
accelerates or decelerates to road speed limit.track-speed (normal)

follow-lead (aggressive) Applies to straight through vehicles vehicles
with a lead vehicle. Generates a trajectory with
same target velocity as leading vehicle.follow-lead (normal)

decelerate-to-stop (aggressive) Applies to all vehicles. Indicates vehicles
coming to a stop on change of traffic light from
green to amber/red. Generates a trajectory with
terminal velocity of zero.decelerate-to-stop (normal)

wait-for-lead-to-cross (aggressive) Applies to left and right turning vehicles with a lead
vehicle. Indicates vehicle waiting for a lead vehicle
to finish executing its turn. Generates a trajectory
with terminal velocity of zero.wait-for-lead-to-cross (normal)

follow-lead-into-intersection (aggressive) Applies to left and right turning vehicles with a
lead vehicle which is yet to execute the turn.
Indicates a vehicle following the its vehicle
into the intersection while the lead vehicle
executes a turn. Generates a trajectory with
same target velocity as leading vehicle.

follow-lead-into-intersection (normal)

wait-on-red (aggressive) Applies to all vehicles. Indicates vehicles
waiting on red light.wait-on-red (normal)

wait-for-pedestrian (aggressive) Applies to left and right turning vehicles. Indicates
waiting for a pedestrian to cross a crosswalk.wait-for-pedestrian (normal)

Table 3.4: Description of actions used in G1 of the hierarchical game. aggressive actions
generate trajectories with maximum absolute acceleration/deceleration ≥ 2ms−2.

followed by the sampling scheme used in G2. For QlkR metamodels, recall that level-1 agents
believe that other agents will follow the traffic rules. Therefore, level-1 agents when solving their
own action level game G2, would only solve the game under the manoeuvre that corresponds to
the rule following behaviour on the part of level-0 agents. The MX or MM solution concept noted
for QlkR metamodels is the one used to solve the G2 games. For models using S(1) sampling of
trajectories, the response function in G2 is omitted, since the hierarchical game consists only of
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Figure 3.6: Comparison of models based on (a) precision parameters (λi,b), fit (AIC values
marked in brackets), and (b) predictive accuracy (log likelihood of observations in test data after
30 runs). The first plot shows the mean estimate along with the standard error of the precision
parameter across every state, and the second plot shows the boxplot of the likelihood estimates
across 30 runs.

G1 games; and in those cases, each agent has a single choice under each G2 roots. We perform
our analysis of RQs 1 and 2 based on G1, and discuss the impact of the choice of G2 solution
concepts as part of RQ3. The list of manoeuvres for G1 is shown in Table 3.4 along with their
descriptions. Each manoeuvre is further divided into aggressive and normal modes, thus giving
a total of 18 G1 actions.

RQ1. Which solution concept provides the best explanation for the observed naturalistic
data? We address this question in three ways; with respect to (i) parameter values in the model,
(ii) predictive accuracy in unseen data, and (iii) model fit. Fig. 3.7 shows the box plot of ∆Ub or
the utility difference between the true utility (i.e. utility of observed manoeuvre) and the utility
of the manoeuvre predicted by the game solutions for each behaviour model. Therefore, a lower
value indicates that the solutions are closer to the true manoeuvre executed by the vehicle. For
cases where there are multiple solutions, the one with the minimum ∆Ub is chosen. The models
in the figure are sorted based on the mean ∆Ub. We see that the QlkR metamodel consistently
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R(G1): MX MM

R(G2): MX MM MX MM

QL0 +5.5 – +4.5 –
QL1 +4.9 – +4.9 –

R(G1): PNE-QE QlkR

R(G2): MX MM MX MM

+3.9 – +6.3 –

Table 3.5: Impact of response function choice in G2 on rationality parameters in G1. Maxmax
(MX) as the solution concept in G2 lead to higher precision parameter estimates.

shows lower values in the utility difference compared to the Ql0, Ql1, and PNE-QE metamodels.
Within the QlkR metamodels, utilities of the actions selected by the QlkR:MMS(1+B) model are
closest to the utilities of real action selected by the vehicles, however, the difference among the
QlkR models is not as distinct.

In general, similar to the results in Fig. 3.7, QlkR models show higher values of the precision
parameter as well, thus reflecting better performance as a model of behaviour in level-1 games,
i.e. for selection of manoeuvres. QlkR:MXS(1+B) (QlkR model with maxmax response in G2 with
bounds sampling) show highest value of the precision parameter, λ = 22.1 ± 0.22 (Fig. 3.6a).
Next, we evaluate model fit using Akaike information criterion (AIC) values, which are noted in
Fig. 3.6(a) in brackets. Since AIC is an evaluation of model fit rather than predictive accuracy,
the log likelihood values used in AIC calculation was performed over the entire dataset instead
of just the training set. QlkR model with bounds sampling of trajectories have lowest AIC values
(-225.3 and -195.6 for QlkR:MMS(1+B) and QlkR:MXS(1+B) respectively), indicating the best fit
among the models based on this criterion.

Alternatively, model selection can also be guided by their predictive power in unseen situa-
tions. For evaluation based on this criterion, we use random subsampling with 75:25 training and
testing split and 30 runs. The model parameters are estimated based on the observations in the
training set, and the predictive accuracy is measured in two ways. First, the predictive accuracy
of the models is measured when the solution is in mixed strategies; which is evaluated on the
basis of the log likelihood of the observed actions in the testing set. Second, the models are also
evaluated based on their accuracy of pure strategy solutions. Fig. 3.6(b) shows the boxplot of sum
log likelihood of the observed G1 actions in the testing set as predicted by each model across 30
runs. The sum log likelihood is calculated based on the likelihood of the observed actions in the
test set as predicted by the Quantal Response model with the estimated precision parameter (λ̂).
The set of available actions for the games are often different (since the available actions depend
on the state of the road user), and therefore to standardize the analysis process, the likelihood
was calculated over the domain of utilities based on a continuous negative exponential distri-
bution rather than over the actions as is often done in estimation of parameter of Quantal Best
Response. This process of estimating the likelihood is invariant to different sets of actions, but

51



still keeps the main model of Quantal Best Response intact. However, note that the likelihood
values in this transformed model can be greater than 1. More specifically, the likelihood value
of an individual observed action was calculated using the formula πQBR(a∗−i,λ̂i)(aoi ) = λ̂e−λ̂∆u

where ∆u = ui(a
∗
i , a

∗
−i)−ui(aoi , a∗−i) is the difference in utility between the game’s solution and

the selected action, λ̂ is the estimate of the precision parameter based on the generalized linear
model, and the sum log likelihood was calculated with the formula

∑
log

(
πQBR(a∗−i,λ̂i)(aoi )

)
.

Next, I further compare the models with respect to their pure strategy solutions. Although
the mixed strategy solutions of the models (as expressed through the precision parameter) give
a good understanding of how well the models capture naturalistic behaviour, when it comes to
using the behaviour models as a behaviour planner in an AV, it is important to evaluate them also
with respect to the pure strategy solutions, since an AV can only execute a single action at a time
rather than a mixed one. Fig. 3.8 shows the multi-class confusion matrix of the predicted manoeu-
vres (G1 solutions) of each model. Instead of all 30 models, I select a cross sectional sample of
the five models that are based on S(1) sampling of trajectories. In addition to the models already
presented in the chapter, I also include a model solely for the sake of comparison. In this model,
labelled ‘best response to observed action’, as the name suggests, agents simply best respond to
the observed manoeuvre of other agents in the game that was played in the previous time step.
Based on the data, we see that the accuracy varies significantly across different manoeuvres. The
mean accuracy is highest for the rule-based model (78%) followed by QlkR model (75%), which
is not surprising since the dataset contains many situations that do not involve strategic reason-
ing which the strategic behaviour models are good for, for example, approaching the intersection
before deciding whether to take the turn. With respect to specific manoeuvres, the behaviour
models fare better for the decision of whether to tail a lead vehicle into an intersection or not
(follow-lead-into-intersection). On the other hand, the rule based model does better with respect
to waiting for oncoming vehicles and pedestrians. In the next chapter, we will revisit this com-
parison again by focusing on situations that involve higher chance of strategic reasoning as well
as some techniques that improve the overall accuracy of the models.

Overall, these results indicate that based on the three evaluation criteria combined (preci-
sion parameter, AIC, and predictive performance) and all the models studied, QlkR model where
players best respond to the belief that others will follow the traffic rules, especially with bounds
sampling of trajectories, is the better model of decision making at the level of manoeuvres for
both pure strategy (comparison based on best response) and mixed strategy responses (compari-
son based on Quantal response).

RQ2. How do state factors influence the precision parameters in the games? In this research
question, I study the impact of the state factors on the precision parameter. The state factors
are shown in the first column of Tables 3.6 and 3.7. Most state factors are self explanatory;
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NEXT CHANGE refers to the next change in the traffic signal and time in seconds till the
change occurs, RELEV VEHICLE refers to the type of relevant vehicle in the game, for ex-
ample, whether there is a lead vehicle present or other vehicles in conflict which are not lead
vehicles. The table shows the mean precision parameter of the behaviour models for each state
factor variable. Since λi,b depends on the state Xi, which is a vector of the five categorical state
factors, each row in the table shows the mean precision parameter for situations with the cor-
responding state factor value, but in isolation; i.e. without taking into account the interaction
between the state factors like in the predictive glm model. For each state factor value, the value
corresponding to the highest precision parameter is underlined. As expected from the previous
results, for most state factor variables, QlkR models have the highest precision parameter values.
When we compare the values of the precision parameter in Tables 3.6 and 3.7 with the values of
Fig. 3.6 (b), we observe that there is much more variation within individual models depending
on the agent’s state compared to the variation between different models.

RQ3. How does the choice of the response function in the lower action level game G2 affect
the higher level solutions in G1? As part of this research question, I analyse the impact on the
estimate of the precision parameter based on the choice of the solution concept in the lower action
level game G2. For the six possible combinations of the metamodel and the solution concept in G1,
namely, Ql0:MX, Ql0:MM, Ql1:MX, Ql1:MM, PNE-QE, and QlkR, Table 3.5 shows the relative
change in the precision parameter of action level games G1 based on the choice of the response
function in G2. All estimates were found to be significant at p = 0.05 based on Dunn’s pairwise
comparison test after Kruskal-Wallis test indicated significant within group difference. We see
that choosing maxmax as the solution concept in G2 consistently results in a better precision
parameter after controlling for the model and the solution concept in G1.
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Figure 3.7: Comparison of the models based on spread of utility differences (∆u) between se-
lected action (aoi,1) and the solution (a∗i,1) in G1 games for each behaviour model, sorted by mean
∆u.
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Figure 3.8: Confusion matrix of the pure strategy solutions of level-1 games with S(1) sampling
of models with respect to the ground truth maneuver.
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3.8 Conclusion

We formalise the concept of a hierarchical game and develop various solution concepts that can
be applied to a hierarchical game by adapting popular behavioural game theoretic metamodels
(Qlk and PNE-QE). In the context where games are constructed to model naturalistic scenar-
ios, modellers are faced with multiple choices, and this chapter shows different ways in which
strategic and non-strategic models can be applied to solve a hierarchical game. We evaluated the
behaviour models based on a large dataset of human driving at a busy urban intersection. The re-
sults show that among the behaviour models evaluated, modelling driving behaviour as a model
where drivers best respond to other drivers with the belief that everyone else will follow the rules
is the superior model of manoeuvre selection. As a design choice, constructing the action space
of the games with bounds sampling of trajectories provides the best fit to naturalistic driving
behaviour. However, if computational efficiency is a concern, then modellers do not lose much
performance if they use a single prototype trajectory as a method of constructing actions in a
hierarchical game. Furthermore, choosing maxmax as a solution concept for solving the game of
trajectories results in higher precision parameter values compared to a maxmin model. The work
undertaken in this chapter provides practical insight for practitioners interested in modelling in-
teractive human decision making in traffic for autonomous vehicles.
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Chapter 4

Revealed multi-objective utility
aggregation

4.1 Introduction

Construction of utilities of agents is one of the main steps involved in the design of game theo-
retic models based on observational data. During driving, humans balance different potentially
conflicting objectives, such as safety, progress, and comfort, in the process of selecting their de-
sired action. The manner in which a driver aggregates these objectives is often context dependent
and individual specific. Developing a methodology for estimation of the parameters involved in
the aggregation process is a necessary first step towards constructing the agent utilities in a game.
One way to estimate the parameters is from naturalistic observational data using the concept of
rationalisability, that is, the aggregation parameters that would make the observed agent deci-
sion optimal. However, the process is nontrivial since not only are there different modalities of
aggregation, but also the definition of optimality depends on the various strategic and nonstrate-
gic reasoning models involved. To solve the aforementioned problem, in this chapter I develop a
methodology based on the ideas of revealed preference to estimate parameters involved in mul-
tiobjective aggregation that are specific to the underlying reasoning model and the aggregation
method used by the agent.
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4.2 Motivation

The general form of a driver behaviour model presented in the problem statement of this thesis
is f(S, U,B, ϵ), where the driver behaviour is a function of the situational traffic state (S), the
utility of the agent (U ), the behaviour model (B) and the error model (ϵ) involved in the decision-
making process. The focus of the previous chapter was mainly on components S, B, ϵ, where
we evaluated different behaviour models based on accuracy, and also analysed the impact of
situational state S on error ϵ which was modelled by the precision parameter. The utility U
was multi-objective, with safety and progress being the two dimensions, and these utilities were
scaled using weighted aggregation using fixed weights. This process of fixing the aggregation
parameter to a specific value is commonly encountered in the literature that uses multiobjective
utilities [229, 215, 153], especially since it helps focus the game construction and evaluation
on models rather than introduce another free variable. However, addressing the question of how
drivers aggregate safety and progress in their decision making is a critical question in the context
of driving and requires further investigation. To this end, the goal of this chapter is to develop
methods that can estimate the aggregation parameters involved in U that are rationalisable based
on a given model of reasoning and empirical observation of naturalistic behaviour.

Analysing the aggregation process helps us gain a basic understanding of drivers’ prefer-
ences under different driving situations, and answering questions such as observed association
from the state S and the agent preferences encoded in the utilities U . For example, if a driver is
observed to have a higher than expected speed close to an intersection, can we infer something
about their aggregation parameter based on that observation — maybe that a driver in that con-
text may weigh progress more than safety? From a modelling point of view, we obtain a more
accurate identification of agent preferences, which is especially relevant for behavioural mod-
els, since in the absence of such an analysis, any behavioural model, no matter how incorrect
the preferences are, can explain away deviations of observed behaviour under the error term ϵ.
The line of inquiry of estimating some aspect of agent preferences from observations is related
to the problem of inverse reinforcement learning [190, 111], inverse game theory [121], theory
of revealed preference [54], and multi-criteria decision making in operations research [61, 102].
In the related work section, I highlight the contribution of this chapter in light of the extensive
literature on these topics.

In the context of estimating preferences, it is important to note that there are two separate
questions. First, we have the question of form, that is, estimating the form and parameters of
the utility function, say usafety(δ) : R+ → [−1, 1] that maps the choices (the distance gap in
this example) into a utility interval ([-1,1]). This has been well studied within the literature of
revealed preference with specific behavioural theories such as time discounting of utilities [64],
risk aversion [65], and prospect theory of loss aversion [230], some of which have been applied
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to driving [199] and robotics [122]. However, a second question around multi-objective utilities,
i.e. how to estimate aggregation parameters of multi-objective utilities based on consistency of
observations and reasoning model, has received comparatively less attention in the context of
AV or human driving— and that is the focus of this work. Specifically, I address the following
questions.

• Aggregation: Given a multi-objective utility U and a parametric scalarization function
S(U, θ), how do we estimate θ that is rationalisable with a set of observed choices of all
agents conditioned on a model of reasoning?

• Bounded rationality: How can the estimation of θ accommodate nonstrategic reasoning
models such as maxmax or maxmin?

• State association: Is there an observed association between state factors such as velocity,
traffic situation, etc., and θ. In other words, are the parameter values stable across different
traffic situations?

• Model performance: How does the performance of different behaviour models change
when utilities U are constructed based on a learning-based technique that infers the aggre-
gation parameter θ from the data?

The question of aggregation is addressed by constructing axiomatic conditions under which a
set of observations is rationalisable using a given parameterized aggregation method, namely
weighted aggregation and satisficing aggregation. As a part of the second question, I show that
such a construction is different for strategic and nonstrategic models, where the former can be
formulated by a set of linear constraints and the latter as a set of nonlinear constraints. For
the third question, I estimate the rationalisable parameters for different traffic situations and
evaluate whether there are significant situational differences in how drivers aggregate the utilities,
namely safety and progress. Finally, by treating the state factors as independent variables and the
aggregation parameter as dependent, I use the data to learn a regression model (CART) that
can predict the aggregation parameter in new situations, and use that method to evaluate the
performance of the behaviour models developed in the previous chapter based on predictive
accuracy of driver manoeuvres.

4.3 Related work

This section spans three different fields of research that deal with similar problems in their
own right. Namely, literature on the theory and applications of reveled preference from eco-
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nomics, multicriteria decision making literature from operations research, and inverse reinforce-
ment learning from robotics and computer science.

Theory of revealed preferences: The main problem addressed in this chapter, i.e., estimation of
agent preferences given a set of observations and a model, falls under the scope of the theory
of revealed preferences. Samuelson’s [193] classical work on the theory of revealed preference
led to an axiomatic characterisation of preferences with the simple observation that all other
factors remaining constant, ”if an individual selects batch one over batch two, he [sic] does not
at the same time select two over one”, which was later defined as the Weak Axiom of Revealed
Preference1. Ironically, although a primary motivation of Samuelson’s work was to construct
a model of consumer choice behaviour without reference to utility functions, most of recent
literature on revealed preference has built upon Afriats’s approach [4], which defines axioms
of existence of a utility function u that can rationalise a set of observed behaviours. Although
most of the literature is focused on aggregate consumer demand problems [222, 59], revealed
preference conditions can also be constructed for noncooperative strategic models such as Nash
equilibrium [46]; and Chambers et al. [42] lay the universality and existence conditions of such a
construction for any model beyond just equilibrium. Covering the extensive literature on revealed
preference in economics is outside of the focus and scope of this work; therefore, I refer to [59]
as a good reference for that general literature.

Most economics models are based on rational choices, and given that my work builds mod-
els that include non-strategic behaviour and boundedly rational agents, it is relevant to include
literature on revealed preference that is based on behavioural economics. Crawford [54] presents
a review of the literature on revealed preference that covers behavioural theories and links to
empirical evidence. Dziewulski [64] constructs the revealed preference conditions based on a
model in which a single agent uses time-based discounting of their utilities with various dis-
counting models such as quasi-hyperbolic and exponential. In contrast, this chapter uses a model
that is simpler in some way (one-shot game as opposed to dynamic game) and complex in other
way (multi-agent behaviour). Application of the construction from [64] for the case of driving in
dynamic semi-cooperative setting is an interesting future direction of research, especially since
discounted utilities are standard in reinforcement learning (RL) based methods, and RL has re-
ceived a lot of attention from the AV community in recent years. Another behavioural attribute,
altruism, has been consistently observed in an empirical setting, especially in the context of dic-
tator games [18]. Andreoni and Miller [9] set the construction of the revealed preference with
respect to altruistic behaviour in a dictator game and find that only a quarter of the participants
were selfish money maximisers and the rest passed the test of altruistic behaviour. More recently,
Porter and Adams [178] study revealed preference with respect to altruistic behaviour in the con-
1 Weak refers to the fact that the statement does not say anything about transitive relations, i.e., a preferred to b and
b preferred to c contain no information about the preference relation between a and c.
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text of intergenerational wealth transfer, that is, transfer of money from an adult child to ageing
parents. Not finding an apparent strategic motive of why one may wish to do that has, unsur-
prisingly, if I may say so, intrigued some economists. The study in [178] varies different models
of utility, from pure selfish behaviour to pure altruism, and finds that although more than 90%
of the participants pass the test of revealed preference (i.e., behaviour consistent with the mod-
els and utilities), there were differences observed based on whom they were playing the game
against, whether parents or strangers. Similarly to [178], I vary the utility construction (different
models of aggregation), construct the revealed preference conditions, and test on empirical data
([178] is based on a laboratory experiment) to evaluate what proportion of behaviour passes those
conditions. However, the models and applications in this chapter are, of course, quite different.
Overall, although the above works have treated different behavioural attributes with respect to
theory of revealed preference well, to my understanding there is no existing work on revealed
preference that is based on multi-objective utilities and non-strategic reasoning models especially
in the context of driving behaviour.

Multi-criteria decision analysis (MCDA) Another strand of literature that is related to this chap-
ter is on multi-criteria decision making from operations research [61]. Compared to theory of re-
vealed preference, where the focus is more on the model of decision making, in MCDA, the focus
is on multiobjective nature of the utilities. The process of estimating the parameters of the aggre-
gation process that an agent uses is called preference disaggregation (a terminology I retain in
the chapter), and Jacquet-Lagreze and Siskos [102] provide a review of the tools and techniques
for that purpose until 2000. From a set of datapoints of ranked choices made by an individual,
typical algorithms solve the general minimisation problem argmin

w
||R(X)o,R(X,Aw)||, where

R(X)o is the observed ranking of the alternatives by the agent, R(X,Aw) is the ranking based
on the aggregation modelA parameterized on w on the same set of alternatives S. Standard algo-
rithms, such as UTA [101] formulate the solution as a mathematical programming problem, and
in recent years, statistical learning methods similar to those I use (CART) have also been used
[61]. There are few differences between the MCDA methods and those in this chapter. First, in
my case, the models I study are strategic (and non-strategic) decisions, thereby adding another
layer of complexity. Second, our problem in this chapter is also less well-defined, since we do
not have access to the drivers’ ranking of the preferences, but rather only a singular choice of the
observed action. Finally, the preferences in this chapter is taken to be dependent on the situational
state.

Inverse reinforcement learning (IRL): Although IRL [163] is conceptually different from the
methods presented in this chapter, it is relevant to include some recent works in the literature
due to the interest and application of IRL for autonomous driving. IRL formulates the problem
of estimating an agents’ behaviour as a single agent problem as opposed to the game theoretic
approach of treating the problem as one of multi-agent behaviour with support for different rea-

63



soning processes. Another salient distinction in IRL is that it typically retrieves the utility U that
fits the observed behaviour best without referencing utility to prespecified dimensions of safety,
progress, comfort, etc., but rather uses a single objective function that may or may not have a
semantic meaning. Sadigh et al. [190] use IRL to first learn a policy of behaviour from demon-
strations and subsequently use that in a game theoretic based planning module using a level-k (k
= 2) type solution concept, although the solution concept is not explicitly stated as such in the
paper. As a mathematical formulation, such an approach works well in practise because IRL can
provide a best-response type behaviour to the (other) agent action; however, the implicit assump-
tion that the agents adhere to a single model of reasoning throughout every interaction might be
a strong one. Nevertheless, the authors show practical ways to integrate a single agent method
such as IRL into a game-theoretic setting.

A recent work on learning preference along multiple criteria with a game theoretic view and
also in the context of driving is by Bhatia et al. [21], where agent preferences are learnt with
respect to a solution concept developed based on the Blackwell approachability theorem [23].
Compared to [21], in this work, I use non-zero sum games and pure strategies in terms of the
game constructs, as well as focus on multiple solution concepts. Additionally, in this chapter, I
also learn the preferences of drivers based on real-world observational data.

4.4 Aggregation

The general problem of aggregation for an agent is the transformation of a vector valued utility
function Ui to a scalar valued function ui in order to solve the game in question. In other words,
this involves the construction of a scalarization function S(Ui(ai, a−i), θi) that maps the multi-
objective vector of utilities for agent i, Ui(ai, a−i), to the real value utility ui(ai, a−i) based on
the parameter θi.

4.4.1 Weighted aggregation

Weighted aggregation is a linear combination of individual utility objectives as follows.

S(Ui(ai, a−i),wi) = wi · Ui(ai, a−i) (4.1)

The above equation is simply the dot product between the aggregation parameter (wi in this case)
and the vector valued utility function. The disaggreagation process involves the estimation of the
weight vector wi based on the observed actions of the agents in the game.
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4.4.2 Satisficing aggregation

A driver always operating at their own subjective tolerance level of risk has been a well estab-
lished model of behaviour in traffic psychology [233, 77], and has also been empirically validated
[133]. Lexicographic thresholding is a method of aggregation that is based on satisficing and en-
capsulates two concepts, namely, ordered criteria of objectives and a thresholding effect [135]. In
lexicographic thresholding, an agent ranks the objective criteria based on a fixed and strict total
order, for example, safety >progress >comfort. In this work, I focus on safety and progress with
a lexicographic ordering of safety >progress. The aggregation of the two utilities into a scalar
value is given by

S(Ui(ai, a−i), γi) =

{
us,i(ai, a−i), if us,i(ai, a−i) ≤ γi

up,i(ai, a−), otherwise
(4.2)

where γi is the safety aspiration level of agent i; us,i(ai, ai) is the safety component of the vector
valued function Ui; and up,i(ai, ai) is the progress component. Based on the above formulation,
an agent evaluates an action of multivalued utility based on progress rather than safety only when
the safety utility of that action is greater than γi. The disaggregation process for the lexicographic
thresholding method involves estimating the parameter γi based on the observed action of the
agent i in the game.

4.5 Model specific estimation of multiobjective aggregation

The problem we are interested in solving in this section is the estimation of the parameters of
the aggregagation for an agent given their observed action in a game. This involves estimating
the weight parameters w for the case of the weighted aggregation method, and the safety aspira-
tion level parameter γ for the case of the satisficing aggregation method. Additionally, since the
choice of reasoning model (strategic or non-strategic) influences the behaviour of the agent in a
game, we will develop separate methods based on strategic and non-strategic reasoning assump-
tions.

We start with the following definition of what rationalisability means in the context of disag-
gregation of multiobjective utilities.

Definition 1. Given a normal form game G, a vector-valued utility Ui, a solution concept B, and
a tuple of observed action (aoi , a

o
−i), an aggregation parameter θ is rationalisable iff (aoi , a

o
−i) is

in the solution set of G solved with the solution concept B with scalarized utility S(Ui, θi).
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Figure 4.1: An example of right turning scenario with actions Turn (T) and Wait (W) with on-
coming vehicle Speed up (U) or Slow Down (D). The first row in each cell is safety utility and
second row is progress utility.

Based on a dataset of observations (aoi , a
o
−i) in various game situations, the goal is to estimate

the rationalisable θ for each agent in each game situation. We first do this for the case where S
is the weighted aggregation function followed by the case where it is the satisficing aggregation
function.

4.5.1 Weighted aggregation

Strategic models

For strategic models, for the observed action, aoi , of a strategic agent i to be in the solution
set, the action needs to be the best response to the action that i believes −i will play. We use
the case of Nash equilibrium in this section where aoi and ao−i are best responses to each other.
A running example of a right-turning scenario (Fig. 4.1) elaborates the estimation process. The
maneuver level game for the scenario is shown on the right with values derived from the prototype
trajectories for each maneuver combination. For each combination of maneuvers, the top row
utility values in each cell represent the safety utility and the bottom row represent the progress
utility of the right turning vehicle (row player) and straight through (column player) vehicle
respectively. Let’s say the observed action in this game was (W,U ). In that case, for the right
turning vehicle, forW to be the best response to the observed action of−i, (i.e., U ), the necessary
and sufficiency conditions are wi,s×0.5+wi,p×0.1 ≥ wi,s×−0.9+wi,p×1 and wi,s+wi,p = 1,
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where wi,s and wi,p are agent i’s weights for safety and progress utilities respectively. In the
general case of arbitrary number of finite discrete actions and |O| is the number of objectives,
this can be formulated as a linear program (LP) and the rationalisable weights of agent i can be
estimated as the solution to the following LP

maxmize
|O|∑
j=1

wi,jui,j(a
o
i , a

o
−i)

subject to
|O|∑
j=1

wi,j(ui,j(a
o
i , a

o
−i)− ui,j(a

′

i, a
o
−i)) ≥ 0, ∀a′

i ̸= aoi

|O|∑
j=1

wi,j = 1

In the above LP, we select weights in the feasible set that maximise the utility of the chosen
action; however, any combination of weights that fall into the feasible set based on the constraints
would be consistent with the conditions of rationalisability.

Non-strategic models

In the case of a non-strategic model, an agent is not other responsive but only dominant re-
sponsive [237]. In other words, since they do not reason about the actions of the other agents,
it is not possible to pin down a specific action of the other agent (ao−i) with respect to which
agent i’ calculates its best response. This follows from the discussion in Sec. 3.6 in Chap-
ter 3 about the nature of non-strategic agents. To recap, this means that they do not best re-
spond based on a specific belief about other agents’ actions, but rather evaluate actions based
only on their own utility values, and in our case, choose an action based on an elementary
maxmax or maxmin model. This makes the process of estimating the weights slightly more
complicated (read nonlinear) compared to the strategic case. Following from the example of
Fig. 4.1, for action W to be the optimal action for agent i (based on the non-strategic model
maxmax), the maximum utility for agent i that can be realised by choosing W in the ag-
gregate form post scalarization should be greater or equal to the maximum utility that can
be realized by choosing T . Therefore, the necessary and sufficiency conditions for the non-
strategic case in this example are max{wi,s × 0.5 + wi,p × 0.1, wi,s × 0.8 + wi,p × 0.1} ≥
max{wi,s ×−0.9 + wi,p × 1, wi,s × 0.2 + wi,p ×−0.5} and wi,s + wi,p = 1. The left term in the
inequality gives the maximum realised utility for the actionW and the right term is the maximum
realised utility for the action T . The process of estimating the weights in the non-strategic case
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can therefore be formulated as a nonlinear optimisation problem as follows.

maxmize
|O|∑
j=1

wi,jui,j(a
o
i , argmax

a−i

wi,jui,j(a
o
i , a−i))

subject to
|O|∑
j=1

wi,j(ui,j(a
o
i , argmax

a−i

wi,jui,j(a
o
i , a−i))

−ui,j(a
′
i, argmax

a−i

wi,jui,j(a
′
i, a−i))) ≥ 0, ∀a′

i ̸= aoi

|O|∑
j=1

wi,j = 1

Due to the presence of the argmax operator, the above problem changes to a nonlinear optimisa-
tion problem. Similarly, for maxmin non-strategic models, the process of estimating the weights
is identical except that the argmax operator is replaced by the argmin operator. In the latter
case, the argmin operator gives the minimum realisable utility of the observed action. In our
experiments, for both maxmax and maxmin models, we solve the above optimisation problem
using a trust region based method [56].

4.5.2 Satisficing disaggregation

The estimation process for the satisficing method involves estimating the parameter γi based on
the observed action of the agent i in the game. Similar to the weighted aggregation case, the
method of estimation depends on the underlying model due to the assumption an agent has over
other agents’ behaviour and the subsequent impact on the optimality calculations based on that
agent’s perspective. However, unlike in the weighted aggregation case, due to the thresholding
effect, it is not straightforward to construct a functional form of the scalar utility over which the
optimality conditions can be built. Instead, we develop an algorithmic estimation process that
helps estimate the complete set of rationalisable values of the aggregation parameter γ.

Strategic model

Based on Eqn. 4.2, the aggregation process for lexicographic thresholding can be ex-
pressed in a parametric form as ui(ai, a−i) = S(Ui(ai, a−i), γi) where Ui(ai, a−i) =
[ui,s(ai, a−i), ui,p(ai, a−i)] and S is the scalarization function of Eqn. 4.2. We present an adapted
definition of rationalisability for strategic models as follows:
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Algorithm 3: Estimation of Γi based on consistency with respect to satisficing aggre-
gation
1 Algorithm

Result: Γi

2 Input: (aoi , ao−i)
3 P ←partition([−1, 1], <)
4 Γi ← {∅}
5 for I ∈ P do
6 γ ←sample(I)
7 if is rationalisable(γ) then
8 Γi ← Γi ∪ I
9 end

10 end

Definition 2. For any agent i, a safety aspiration level γi ∈ [−1, 1] is equilibrium rationalisable
with strategy profile (aoi , a

o
−i) iff S(Ui(a

o
i , a

o
−i), γi) ⩾ S(Ui(a

′
i, a

o
−i), γi) ∀a

′
i ̸= aoi

The above definition follows from the definition 1 with an explicit reference to the condition
of optimality of the equilibrium solution, that is, for the safety aspiration level of the agent i to
be rationalisable, their observed action aoi must be the best response to the action of the other
agents ao−i. Algo. 3 presents the general algorithm to estimate the rationalisable parameter. The
intuition behind the algorithm is as follows: the value of the parameter γi lies within the utility
interval [-1,1]. Let P = {I1, I2, ..., IP} be an ordered partition of the interval [-1,1]; the process
of constructing the partition depends on the underlying models of reasoning, and is explained
later. We sample a single value of γ ∈ I and check if the scalarization S based on that sampled
value is rationalisable with respect to the definition 2. If so, we include the partition I from
which γ was sampled in the set of rationalisable parameter set Γ, and the union of these sets is
the set of rationalisable γ. Next, we set the condition under which the algorithm will be sound
and complete.

Proposition 1. Algorithm 3 is sound and complete based on a partition P iff ∀I ∈ P ,
is rationalisable(γ)↔ is rationalisable(γ′) ∀γ, γ′ ∈ I

Implementing the is rationalisable method based on the definition 2 ensures soundness; this
is because the utility maximizing action (which is checked in the condition of definition 2) in
response to an equilibrium action means that the said action is in equilibrium, and therefore
(correctly) rationalisable. The bidirectional implication condition of proposition 1 ensures that
if we sample only a single value γ from an interval I ∈ P and check for rationalisability, then
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any γ′ in that interval that was not sampled is also rationalisable. Next, I construct a partition for
which the double-implication condition of proposition 1 holds. Given a game, let the partition
Peq consist of the ordered safety utility of the agent i’s action as follows

Peq = {[−1, ui,s(ai,1, ao−i)), [ui,s(ai,2, a
o
−i), ...), [ui,s(ai,|Ai|, a

o
−i), 1]}

where ui,s(ai,1, aoi ) ⩽ ui,s(ai,2, a
o
i ) ⩽ ... ⩽ ui,s(ai,|Ai|, a

o
i ) is the ordered sequence of the safety

utility values of agent i. An example partition for the game with respect to the row player (right
turning vehicle) in response to the action U (the observed action) of the column player of Fig.
4.1 is shown in Fig. 4.2.

Figure 4.2: The partition intervals I0, I1, .. of P based on the game of Fig. 4.1.

Theorem 1. For any interval I ∈ Peq, if γ ∈ I is equilibrium rationalisable, then ∀γ′ ∈ I , γ′ is
equilibrium rationalisable. Conversely, if γ ∈ I is not equilibrium rationalisable, then ∀γ′ ∈ I ,
γ′ is not equilibrium rationalisable.

The proof is based on the intuition that if the partitions are constructed using ordered safety
values of different actions, then for any given threshold that falls between two such utilities
continue to impose the same ordering of actions after scalarization since the conditions of Eqn.
4.2 remain unchanged.

Proof. Since the equilibrium rationalisability is based on the condition S(Ui(a
o
i , a

o
−i), γi) ⩾

S(Ui(a
′
i, a

o
−i), γi), I first show that S(Ui(ai, a−i), γi) = S(Ui(ai, a−i), γ

′
i) ∀γ, γ′ ∈ I , i.e., the

scalarized value based on any two parameters that fall in the same interval is equal.
Consider any Ui(ai, a

o
−i),

Case us,i(ai, a
o
−i) ⩽ min I: In this case, us,i(ai, a

o
−i) ⩽ γ, ∀γ ∈ I . Therefore,

S(Ui(ai, a−i), γi) = S(Ui(ai, a−i), γ
′
i) since both evaluate to us,i(ai, ao−i) based on Eqn. 4.2.

Case us,i(ai, ao−i) > min I: In this case, us,i(ai, ao−i) ⩾ sup I , since for any us,i(ai, ao−i) ̸= 1,
us,i(ai, a

o
−i) = min I when us,i(ai, ao−i) ∈ I based on the construction of Peq. Therefore, ∀γ ∈ I ,

γ < us,i(ai, a
o
−i), and S(Ui(ai, a−i), γi) = S(Ui(ai, a−i), γ

′
i) since both evaluates to up,i(ai, ao−i)
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based on Eqn. 4.2
Therefore for any I ∈ Peq, the condition S(Ui(ai, a−i), γi) = S(Ui(ai, a−i), γ

′
i) holds true for all

γ, γ′ ∈ I .
By the above equality condition, S(Ui(a

o
i , a

o
−i), γi) ⩾ S(Ui(a

′
i, a

o
−i), γi)↔ S(Ui(a

o
i , a

o
−i), γ

′
i) ⩾

S(Ui(a
′
i, a

o
−i), γ

′
i), which establishes the biconditional relationship of the theorem based on the

definition of equilibrium rationalisability (Defn. 2).

Theorem 1 helps significantly reduce the number of consistency checks that we need to per-
form, since we need to check only one value in each interval in P to determine whether all the
values in that interval are rationalisable or not. This keeps the run-time complexity of Algo. 3
linear in the number of actions of the agent in the worst case (that is, O(|Ai|)), since the run time
depends on the size of the partition Peq, which in turn depends on the number of unique safety
utilities, i.e., |Ai| in the worst case.

Non-strategic models

Recall that for non-strategic models, an agent i does not hold a specific belief about the action
another agent might play, and therefore, similar to the weighted aggregation case, we cannot pin
down a specific action ao−i in response to which the parameters can be estimated. This leads to a
revision of the rationalisability definition of Def. 2 to make it independent of the actions of other
agents for the maxmax and maxmin models.

Definition 3. For any agent i, a safety aspiration level γi ∈ [−1, 1] is maxmax rationalisable
with action aoi iff max

a−i

S(Ui(a
o
i , a−i), γi) ⩾ max

a−i

S(Ui(a
′
i, a−i), γi)∀a

′
i ̸= aoi .

Definition 4. For any agent i, a safety aspiration level γi ∈ [−1, 1] is maxmin rationalisable
with action aoi iff min

a−i

S(Ui(a
o
i , a−i), γi) ⩾ min

a−i

S(Ui(a
′
i, a−i), γi)∀a

′
i ̸= aoi .

For the strategic case, we needed to check aoi for rationalisability only as a response to a fixed
action ao−i, and therefore it sufficed to construct the partition Peq based only on the safety utilities
for all actions that were in response to ao−i. However, for non-strategic models, the rationalisabil-
ity of aoi involves comparison with all entries of the safety utilities of agent i in the game matrix.
Therefore, to apply Prop. 1 for the non-strategic case, the partition points of P need to include
all the entries of the table as follows:

Pns = {[−1, ui,s(ai,1, a−i)), [ui,s(ai,2, a−i), ui,s(ai,k, a−i)), ..., [ui,s(ai,|Ai|, a−i), 1]}
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where ui,s(ai,1, a−i) ⩽ ui,s(ai,2, a−i) ⩽ ... ⩽ ui,s(ai,|Ai|, a−i) is the ordered sequence of the
safety utility values of agent i, and (with a minor abuse of notation) a−i steps through all the
corresponding actions of the other agents based on that ordering. The only difference between
Peq and Pns is that Pns is partitioned based on the safety utilities of i in the entire game matrix,
whereas Peq was based on the column corresponding to ao−i. This also has an impact on the
runtime of the algorithm, which is O(|A|N), where N is the number of players in the game and
|A| is the number of actions for a player. This value is the same as the size of the game matrix
since the partition is constructed from each safety utility value for each agent. The corresponding
corollaries of Theorem 1 for the non-strategic case are as follows:

Corollary 1. For any interval I ∈ Pns, if γ ∈ I is maxmax rationalisable, then ∀γ′ ∈ I , γ′ is
maxmax rationalisable. Conversely, if γ ∈ I is not maxmax rationalisable, then ∀γ′ ∈ I , γ′ is
not maxmax rationalisable.

Corollary 2. For any interval I ∈ Pns, if γ ∈ I is maxmin rationalisable, then ∀γ′ ∈ I , γ′ is
maxmin rationalisable. Conversely, if γ ∈ I is not maxmin rationalisable, then ∀γ′ ∈ I , γ′ is not
maxmin rationalisable.

Proof. The proof of the above corollaries is similar to the proof of Theorem 1. Observe that for
the partition set Pns, for any agent i, the aggregation of the utilities of i is the same for any pair of
γ, γ′ ∈ I . This follows from the equality condition S(Ui(ai, a−i), γi) = S(Ui(ai, a−i), γ

′
i), which

holds for the partition Pns in the same way as was established for Peq earlier in Theorem 1. This
means that the pairwise comparison between the utilities of actions of i is invariant to the value
of γ ∈ I , thus establishing the conditions of definitions 3 and 4.

4.6 Experiments and evaluation

4.6.1 Dataset

The dataset to evaluate the utility aggregation estimation methods presented in this chapter is
based on three datasets, intersection, crosswalk and roundabout dataset from the Waterloo Multi-
Agent Traffic dataset. Refer to Appendix B for a detailed description of the datasets. This set of
datasets includes the additional datasets for the roundabout and crosswalk scenarios that were
not available when the work on Chapter 3 was undertaken. Furthermore, I select a subset of
scenarios from the intersection dataset with the following rationale. In order to select situations
where there is a higher chance of strategic interaction between road users, in Chapter 3, I selected
the left-turn and right-turn tasks from the intersection dataset. However, even under those tasks,

72



there are segments where there is less scope for strategic interactions; such as when a vehicle
approaches the intersection and is on the traffic segments prior to the point of turn. Similarly,
when the vehicle is on traffic segments in the exit lane after the turn has been executed. In
such situations, the action of the vehicle mainly involves following the lead vehicle (if any), and
therefore less scope for strategic reasoning compared to the action of having to decide whether
to start executing the turn or not. Therefore, in this chapter, I refine the scenarios by excluding
such situations. Each game is instantiated from the perspective of a principal agent, and any road
user who is in conflict with the principal agent (a relevant agent) is included as a player in the
game. The process of selecting situations from the three datasets is as follows.

• Intersection. 2-player games, in which a vehicle about to enter the intersection to make
a left or right turn (on the prep-left-turn or prep-right-turn segments) is a
principal agent. A straight through vehicle about to enter an intersection at the same time
is the relevant agent. Situations are selected so that there are no other vehicles in conflict
with the principal agent other than the relevant agent. These situations are a subset of the
situations included in Chapter 3.

• Crosswalk. N-player games, in which a vehicle about to navigate the crosswalk (on the
west-entry or east-entry segments) is a principal agent. Pedestrians who are about
to enter the crosswalk or on the crosswalk are included as relevant agents.

• Roundbaout. N-player games, in which a vehicle about to enter the roundabout (on the
* feeder2 segments) is a principal agent. Vehicles that are already in the roundabout
(three closest inner and outer circle segments, refer to Fig. B.5) or about to enter the round-
about at the same time (two closest feeder segments) are included as relevant agents.

For crosswalk and roundabout scenarios, since the number of relevant road users can be high, a
group of road users on the same traffic segment at the moment of game initiation is represented
with a single player randomly selected from that group. For these two scenarios, the models are
evaluated only on the basis of the actions of the principal agents since the game construction does
not correctly capture the behaviour of the representative relevant agents due to the missing agents
in the game; the missing agents on account of being on the same segment are more ‘relevant’
to the chosen representative agent that the principal agent. Table 4.1 shows the scenarios, the
number of games, and the traffic segments of the principal agents included in each game. A
detailed description of the traffic segments, the methodology for the identification of the relevant
agent, and the data set collection process are covered in the Appendix B.

To make the comparison easier across the three different scenarios, the action space of ma-
noeuvre for all agents included only two manoeuvres, wait and proceed. Under each manoeuvre,
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20 trajectories were generated, half of which were aggressive. A trajectory was labelled aggres-
sive for vehicles if the maximum acceleration limit was greater than 2 ms−2), and for pedestrians
it was labelled aggressive if the mean walking speed was greater than 1.55 ms−1. Relevant code
for the experiments is available at https://git.uwaterloo.ca/a9sarkar/single-
shot-hierarchical-games.

Dataset No. of games Scenario Principal
agent seg-
ments

Intersection 1667 Unprotected right-turn,
Left-turn across path

prep-left-turn,
prep-right-turn

Crosswalk 288 Crosswalk navigation * entry
Roundabout 2441 Roundabout entry * feeder2

Table 4.1: Details of the datasets and scenarios covered in the evaluation.

4.6.2 Analysis of agent preference parameters

Intersection Roundabout Crosswalk

Weighted Satisficing Weighted Satisficing Weighted Satisficing

Strategic Nash 100% 68% 100% 96.9% 100% 100%

Non strategic
maxmax 100% 72.2% 100% 56.8% 100% 66.9%
maxmin 100% 72.28% 100% 56.87% 100% 64.3%

Table 4.2: Pass rate of estimated preferences for each model, aggregation method, and dataset.

Pass rate

The first point of analysis is the pass rate for each model, that is, the percentage of games in
which a rationalisable parameter was found for each model and aggregation method combina-
tion (Table 4.2). Based on the estimation procedure, I observe that the chosen action of drivers
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can be rationalised by a weighted aggregation parameter in all cases for all models. For satis-
ficing aggregation, the pass rate is sensitive to the specific traffic situation and the choice of the
reasoning model. In the roundabout and crosswalk scenarios, rationalisable parameters for strate-
gic models could be estimated for almost all games (96.9% and 100%, respectively), whereas for
non-strategic models it could only be found for 56.8% to 66.9% of the games depending on the
specific solution concept. There are two possible reasons why weighted aggregation parameters
show higher rationalisability. First, at least for non-strategic models, the optimisation method
involves an approximate procedure (in the form of the use of trust region based method of [56]),
which ends up finding a solution, albeit approximate, more easily than the corresponding exact
estimation procedure for satisficing based methods. Second, it might be possible that contrary
to models in traffic psychology, drivers indeed use a weighted aggregation methodology when
evaluating different conflicting objectives as opposed to a satisficing based procedure. The actual
parameter values of the weights shed more light on this aspect, which is discussed next.

Parameter values

Next, I study the values of the rationalisable parameters that were estimated under each model.
Figures 4.3 and 4.4 show the violin plots of the safety weight (safety weight of w) and safety
aspiration level (γ) for weighted and satisficing aggregation methods, respectively. To study the
association between the state factors, the figures are stratified based on the velocity of the agent
as well as the scenario. The first observation about the weighted aggregation method is that
irrespective of the reasoning model, the distributions of the weight parameters are multimodal
with the modes being concentrated towards lower and higher values in most cases. This means
that in most cases, with safety and progress as the two objectives, drivers tend to weigh heavily
one or the other rather than weighing both together in some mixed proportion at the same time.
Intuitively, this makes sense because what the revealed preference estimation rationalises are
the weights of the two objectives that would make the chosen action of the driver optimal. For
example, in a given game, if the driver chose to proceed, then what we find is that evaluating
that action only with respect to its, say, progress utility, makes it more optimal than if the driver
had evaluated that action based on both safety and progress utility. On the other hand, for the
satisficing method of aggregation, the distribution of γ is not multimodal in most cases. Rather,
the mean values (shown in red) are concentrated near 0, thereby indicating that the population of
drivers is homogeneous with respect of satisficing aggregation regardless of the reasoning model
or the game situation.
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Subgroup analysis

Next, we study the association between the vehicle speed and the estimated parameters val-
ues. The mean values of the parameters are shown in red within the violin plots. Within
each dataset and scenario, we perform subgroup analysis based on discretised velocity levels,
and significance between groups is noted according to Wilcoxon t-test at significance levels
p ⩽ 0.05(∗), p ⩽ 0.01(∗∗), p ⩽ 0.001(∗ ∗ ∗), p ⩽ 0.0001(∗ ∗ ∗∗). In general, significant differ-
ences in parameter values with respect to velocity levels were found for 72% and 42% of pair-
wise group comparisons for weighted and satisficing aggregation, respectively, where a group
is a combination of scenario and model. This points to the fact that the safety aspiration levels
of drivers show more stability at different velocity levels compared to the weight parameters.
Additionally, within each scenario and reasoning model, for the cases where there is a significant
difference, higher velocities are associated with lower safety weights and higher safety aspiration
level for weighted and satisficing aggregation, respectively.
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Figure 4.3: Weighted preference disaggregation parameter distribution stratified by vehicle
speed, scenario, and task. Significance levels are noted as p ⩽ 0.05(∗), p ⩽ 0.01(∗∗), p ⩽
0.001(∗ ∗ ∗), p ⩽ 0.0001(∗ ∗ ∗∗), and ns.
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Figure 4.4: Satisficing preference disaggregation parameter distribution stratified by vehicle
speed, scenario, and task. Significance levels are noted as p ⩽ 0.05(∗), p ⩽ 0.01(∗∗), p ⩽
0.001(∗ ∗ ∗), p ⩽ 0.0001(∗ ∗ ∗∗), and ns.

78



4.6.3 Predictive accuracy of rationalisable parameters
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Figure 4.5: Root mean squared error (RMSE) of CART predictive model of aggregation param-
eters based on state factors.

Based on the subgroup analysis, in many cases, an association is observed between factors
such as speed and task with the values of the aggregation parameter. In this section, I evaluate
whether a statistical learning method, such as CART, can be used to predict parameters in unseen
situations. Since the use of behaviour models as a predictive model in unseen situations involves
constructing the utility U of all agents, being able to accurately predict the aggregation parameter
for U is the first step in this process. To this end, I use a regression tree (CART) with a feature
vector consisting of the driving task, reasoning model, scenario, and velocity, with the parameter
value as a dependent variable. I construct two separate regression trees, one for weighted aggre-
gation (which predicts the safety weight in the vector w) and another for satisficing aggregation
(which predicts the safety aspiration level, γ, of the agent). The root mean squared error (RMSE)
of the predicted parameter values based on 30 runs of random subsampling validation with 80-20
training and testing split is shown in Fig. 4.5. We observe that the model for predicting parame-
ters of weighted aggregation has higher predictive accuracy than the one for satisficing. This is
expected from the previous discussion on parameter values and as reflected in Figs. 4.4 and 4.3
that the parameter values for satisficing do not seem to be strongly associated with the velocity
level of the vehicle or the chosen feature vectors. This provides evidence that if satisficing is the
method of aggregating multiple objectives in the utility, using a predictive model to estimate the
parameter might not provide greater benefit, at least in relation to the state attributes (independent
variables) considered in this work. The mean RMSE values for the prediction of the weighted
aggregation parameter is 0.38. Compare this to the distribution observed in Fig. 4.3. Since the re-
gression tree generates a prediction of single parameter value instead of a distribution, the RMSE
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value is in good agreement with the variance observed within a specific mode of Fig. 4.3. This
calls for an interesting direction for further work on aggregation methods in which the weight
vector is a distribution (as this evidence suggests) rather than a single value.

4.6.4 Evaluation of model accuracy

In this section, I close the loop on the evaluation of behaviour models by using the predictive
model of the previous section to first predict the aggregation parameter of the utilities, and use
that to reevaluate how the accuracy of the behaviour models from Chapter 3 changes with this
more sophisticated methodology of utility construction. When evaluating the models, I consider
pure strategy solutions of the models with the same definition of mean accuracy, i.e., the pro-
portion of games in which the model predicted the observed manoeuvre chosen by the driver.
I include models from Chapter 3 with S(1+B) method of trajectory sampling. I also include a
Stackelberg model for the 2-player games (intersection scenario) for comparison. In the Stack-
elberg model, the principal agent, on account of not holding the right of way, is modelled as
the follower. To match the observed (ground truth) manoeuvre with one of the two manoeuvres
in our games, I first select the trajectory generated in the game that is closest to the observed
trajectory based on the trajectory length. The manoeuvre corresponding to that closest trajectory
is selected to be the ground-truth manoeuvre of the vehicle. To give an estimate of how far off
the closest trajectories were compared to the real ones, Fig. 4.6 shows the plot of the absolute
difference between the trajectory length of the real trajectory and the closest trajectory sample in
the game. We observe that this difference is comparable to the state-of-the-art machine learning
based trajectory prediction methods in the literature [142].

Fig. 4.7 shows the mean accuracy of the behaviour models with the model nomenclature sim-
ilar to the ones in Chapter 3. The new models include a level-2 model (Ql2), which is a model
of best-response to level-1 (Ql1) strategies, and a Stackelberg (Stack.) model. Compared to a
baseline where I use a weighted aggregation with w = [0.5, 0.5] (shown with the dashed line
in figure Fig. 4.7), a prediction-based aggregation consistently shows better accuracy regardless
of whether the choice of the G2 (trajectory game) solution concept is maxmax (red shapes) or
maxmin (blue shapes). The performance of the models with respect to weighted and satisficing
aggregation show some dependency on the specific scenario. For intersection and roundabout
scenarios, weighted aggregation shows higher accuracy, whereas for crosswalk satisficing based
aggregation shows higher accuracy. The crosswalk scenario, which is vehicle-pedestrian inter-
action type, is quite different compared to the intersection or roundabout where there are only
vehicle-vehicle interaction games. Drivers are also much more cautious when navigating a cross-
walk, since there are pedestrians involved. Combining the insights from the accuracy result along
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Figure 4.6: Trajectory errors, i.e, the absolute difference of trajectory length in meters between
the real trajectory and the generated trajectories in the games.

with the pass rate of Table 4.2, where crosswalk was the only scenario where satisficing aggre-
gation reached the 100% pass rate, the data suggest that satisficing is much more effective as an
aggregation method in scenarios where drivers exhibit higher levels of caution, such as cross-
walk navigation. The final observation is the worse performance of pure rule following in these
scenarios compared to the results in Chapter 3, indicating that a model of pure rule following
might not be best suited for the selected situations of high strategic interactions.

Additional analysis of model performance in terms of its false positive rate (model predicts
proceed when the driver chose to wait), and the true positive rate (both predicted and chosen
were proceed) is shown as receiver operating characteristic (ROC) plots in Fig. 4.8. The dashed
line shows the line of no-discrimination, i.e., the points in the plot where a random classifier
would lie. Each point in the figure represents one of the behaviour models included in the anal-
ysis, and different choices of the level-2 game solution concept and aggregation methods are
shown with different colours and shapes, respectively. Overall, most models generate predictions
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Figure 4.7: Mean accuracy of all the models. The dashed line highlights the accuracy of the
models constructed with baseline weights.

that are better than random, with scenario specific effects. For intersection scenario, weighted
aggregation performs especially well with the models showing close to perfect classification for
the straight-through task (square boxes). This performance is primarily driven by the predictive
aggregation model since the baseline model (i.e., non-predictive with w = [0.5,0.5]) although
being a weighted aggregation based method shows performance that is close to or worse than
random (blue and red rounds). This hints at the fact that estimating the aggregation parameters
based on state factors, such as velocity, is easier in some scenarios than in others. Similarly, for
the crosswalk scenario, we see that the non-predictive aggregation based models do worse than
random and the use of a predictive model improves the models’ accuracy.

Effect of sampling method

The analysis of the model accuracy presented until now was performed based on S(1+B) or
bounds sampling of the trajectories for the level-2 games. This was based on the observation
from the previous chapter that bounds sampling shows better predictive accuracy of the models.
Given that in this chapter, I presented new methods for calculating the utilities as well as addi-
tional datasets, I revisit RQ. 3 of Chapter 3, i.e., whether sampling more trajectories results in
better predictive accuracy compared to S(1) sampling. Specifically, I compare S(1+B), which was
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Figure 4.8: Receiver operating characteristics (ROC) of all the models. Dashed line represent the
line of no-discrimination.

shown to have the highest predictive accuracy, with S(1). Fig. 4.9 shows the comparison of the
accuracy of the models for each scenario with respect to S(1+B) and S(1) sampling. For S(1+B)
sampling, the level-2 games are solved using the maxmax solution concept. The level-1 solution
concepts are indexed in the figure with different shapes. We see that for straight through vehi-
cles at intersection, there is a consistent drop in accuracy when using the S(1) sampling method,
which suggests that regardless of the aggregation process, bounds sampling provides better ac-
curacy than just using a prototype trajectory in the games. This is not observed consistently for
other scenarios, where sampling those extra trajectories may not provide as much benefit, and in
fact, in some cases such as the crosswalk with satisficing aggregation, we see increased accuracy
with only the S(1) sampling. One reason for this difference can be that strategic models generate
solutions that include extreme behaviour, thereby reducing the predictive accuracy of the model.
This analysis shows that the choice of the sampling method is not independent of the solution
concept, and therefore in practise, the game construction (vis-a-vis the trajectories sampled) must
be carried out keeping in mind the solution concept that would be used to solve the game.
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Figure 4.9: Comparison of model accuracy between S(1) and S(1+B) method of action construc-
tion with learned weights of utilities. The trajectory level games were solved with maxmax.

4.7 Additional impact on game structures

Different ways of aggregating multi-objective utility mean that for the same traffic situation,
depending on the choice of aggregation, the game may have a different utility structure. Con-
sequently, it may be the case that with some methods of aggregation, the drivers have more
opportunity to select coordinated actions, i.e., selection of a strategy profile that is mutually ben-
eficial to all the players in the game. In this section, I focus on the aspect of coordination and
answer the following question — are certain methods of multi-objective utility aggregation more
likely to lead to the games being one of pure coordination?

The purpose of this analysis is two-fold. First, it provides insight into the nature of the games
that are constructed as a consequence of modelling decisions. Second, since in coordination
games, different solution concepts often agree on the same set of strategy profiles as the solu-
tion of the game, a designer can focus their efforts elsewhere rather than spending resources on
identifying the right model for every situation. The second point is illustrated with the help of
an example situation in 4.10(a). As usual, the actions T, U, W, D refer to the manoeuvres turn,
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speed up, wait, slow down, respectively. In this example, for the left turning vehicle, the action T
is strictly dominated by the action W, i.e., no matter what the straight through vehicle does, the
action W fetches higher utility for the left turning vehicle. This is reflected in the game’s solution
based on any of the different behaviour models discussed (Nash, Stackelberg, Level k), most of
which agree on (W,U) being the solution. The only exception being the maxmin model which
generates the action D for the straight through vehicle – a model that is useful to deal with the
worst-case scenario.

Figure 4.10: An example left turn across path situation illustrating a) pure coordination game
with one Nash equilibrium {(W,U)} and b) pure coordination game with multiple Nash equilibria
{(W,U), (T,D)}.

4.7.1 Coordination

In contrast to games of conflict where each player has different strategy profiles that they prefer,
in coordination games, there is a strong incentive for all players to accept a particular set of
outcomes; all of which are often a Nash equilibrium of the game [36]. I focus on games of pure
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coordination, where there are common strategy profiles that are strictly better than others for all
agents.

Definition 5. A game is one of pure coordination iff ∀i, argmax
ai,a−i

ui(ai, a−i) =

argmax
ai,a−i

u−i(ai, a−i).

In games of pure coordination, other than behaviour models using a maxmin solution concept,
all behaviour models converge to the strategy profile that is strictly better than the rest. The
two games in Fig. 4.10 are examples of pure coordination, since both straight-through and left-
turning vehicles would prefer (W,U) in the first game and (T,D) in the second game than any
other outcome. In a two-player game, it is easy to check whether a game is of pure coordination.
This can be done simply by checking that the condition of Definition 5 is satisfied for each agent
in the game. However, in the case of N-player game, this is nontrivial since the game can be one
of pure coordination for some subset of players and not for others. To solve this problem, I use an
indicator function that evaluates whether a player in an N-player game can potentially coordinate
with another player in the game. This coordination indicator function ICI(i) for a player i in the
game is as follows.

ICI(i) =

1, if ∃ − i : argmax
ai,a−i

ui(ai, a−i) = argmax
ai,a−i

u−i(ai, a−i)

0, otherwise
(4.3)

The above function evaluates to 1 for a player i, if there exists another player −i such that the
utility maximising strategy for both players coincides. A value of 0 indicates that there is no pure
coordination potential from the perspective of the player i. Fig. 4.11 shows the mean values of
ICI for all the games in each dataset grouped by the aggregation method and the task. Each point
in the figure represents a specific method of solving the trajectory level games (shown in differ-
ent shades) and reasoning model based on which the utilities are aggregated (shown in different
shapes). The two methods of aggregation along with the baseline, i.e., weighted aggregation with
w = [0.5, 0.5] is shown on the x-axis. For the two methods of aggregation, the aggregation pa-
rameters were predicted based on the CART model developed in the earlier section. If the mean
ICI value is 1 for a model, this means that all games in the dataset for that specific method of
game construction are of pure coordination, whereas 0 would imply none. Based on the figure,
we observe that the satisficing method of aggregation consistently leads to a higher proportion
of pure coordination games across all datasets. In fact, for roundabout and crosswalk scenarios,
almost all games, when constructed using a satisficing method of aggregation, leads to pure co-
ordination. Second, we observe that the games in the roundabout scenarios have a much higher
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Figure 4.11: Mean coordination indicator value across all the games for each dataset grouped by
aggregation method.

proportion of pure coordination games compared to the other scenarios. Other than the intersec-
tion scenario, where S(1) sampling of trajectories leads to higher proportion of pure coordination
compared to S(1+B), the other two scenarios do not show much impact of model choices in
trajectory-level game construction. Finally, we can also connect the above results with the model
accuracy results in Fig. 4.7. Since there is a higher proportion of pure coordination games in
the roundabout and crosswalk scenarios, there is less distinction between the models in terms of
model accuracy in Fig. 4.7.

4.7.2 Risk and payoff dominance

When games are of pure coordination, agents would be better off choosing the utility maximizing
strategy profile, and unless there are multiple such profiles, there should be minimal scope of
uncertainty in the action selection. Drivers can further reduce uncertainty by communicating
their intention through common practises such as hand signalling and other such communication
channels. However, if there is no scope of such pre-play communication, as is often the case
when interacting with autonomous vehicles, players may have reasons to select alternate strategy
profiles. This is especially relevant in games with multiple Nash equilibria, such as the one in the
example in Fig. 4.10b. In this example, there are two Nash equilibria, namely, (W,U) and (T,D).
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Figure 4.12: Distribution of the number of Nash equilibria across all models for each dataset.

Maxmax and NE solutions agree on (T,D) as the most optimal solution, and the coordination
indicator, ICI, is also 1 for both players. However, there is also a certain degree of risk involved
from the driver’s perspective in selecting (T,D), since if, for some odd reason, the other agent
decides to deviate from (T,D), then there is a chance that the agent may end up with the worst
possible utility of -1. In other words, although (T,D) is optimal and most models agree upon
that, it is also a high stake situation that is contingent upon the other agent doing the right thing.
Alternatively, consider the other Nash equilibrium (W,U). Although this strategy profile fetches
less utility to both players (0.3,0.3), the stakes are lower than the more optimal (T,D), since
in the worst case, even if the other player errs, the player loses 0.7 points instead of 2 as was
the case for (T,D). Therefore, for a player who may be worried about things going wrong, (W,U)
may be preferable to (T,D). It also happens that (W,U) is the maxmin solution from a nonstrategic
perspective. In a general sense, when there are multiple Nash equilibria in a game, players can use
different processes to select their preferred NE. The above example demonstrates two common
processes, namely payoff dominant (PD) and risk dominant (RD) NE selection. The solution
(T,D) is the payoff dominant refinement of the Nash equilibrium since this selection is based
upon maximising the utility, and (W,U), which is based upon minimising the potential risk from
uncertainty about the other player’s action choice, is the risk dominant refinement. Next, I study
whether drivers tend to select risk dominant solutions more often than payoff dominant or vice
versa. Additionally, I also answer whether the PD or RD selection changes based on how the
games are constructed with respect to the aggregation method and the trajectory level game
solution concept.

Since the focus is on games with multiple Nash equilibria, I first filter those games where
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Figure 4.13: Mean proportion of payoff dominant equilibrium selection across all models strati-
fied by scenario, aggregation method, and trajectory level game’s solution concept.

there is more than one NE. Fig. 4.12 shows the distribution of the number of Nash equilibria
in all games. In most cases, the games had a single Nash equilibrium; however, a significant
number of games also had multiple ones. In the subsequent analysis of payoff and risk dominant
selection, I include the games with multiple Nash equilibria. Additionally, since the goal is to
compare PD and RD selection, I also exclude games in which the PD and RD equilibrium are
the same.

Fig. 4.13 shows the proportion of all games in which the selected action was a payoff dom-
inant equilibrium with the games stratified by scenarios, aggregation method (shown on the x-
axis) and the solution concept used to solve trajectory level games (shown with different shapes).
A value 1 on the y-axis implies that when a selected action by a driver was a NE equilibria of a
game, the NE was a payoff dominant one in every game constructed with the model character-
istics in question. On the contrary, a value 0 implies that the selected NE was RD in all cases.
Based on Fig. 4.13, drivers are more likely to select a PD equilibrium (22 models) compared
to a RD equilibrium (12 models). Additionally, when the games are constructed using weighted
aggregation, regardless of the scenario or the solution concept chosen for the trajectory games,
the drivers always select a payoff dominant equilibrium.
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4.8 Conclusion

In this chapter, I address the problem of estimation of multi-objective aggregation parameters of
agents based on observed behaviour. The methods developed in the chapter are based on the idea
of rationalisability, i.e., a value of the aggregation parameter that makes the observed decision
of a player optimal conditioned upon a reasoning model. The chapter covers two processes of
aggregation, namely weighted and satisficing aggregation, and the reasoning models cover strate-
gic as well as non-strategic models. I show that the process of estimating aggregation parameters
for weighted aggregation can be formulated as a linear and non-linear program for strategic and
non-strategic models, respectively. Furthermore, I develop a novel algorithm for estimation of
aggregation parameters for satisficing aggregation that is linear time for strategic models and
polynomial time in the size of actions for non-strategic models. Based on a naturalistic dataset of
three different traffic scenarios, rationalisable parameters for weighted aggregation were found
for all games in the dataset, and for majority of the games for satisficing aggregation.

The chapter also includes an extensive evaluation of game theoretic models for three different
traffic scenarios, intersection, crosswalk and roundabout. The first part of the analysis evaluates
the improvement in predictive accuracy of the model when a learning-based method (CART)
is used to predict the aggregation parameters of the utilities in the game. Results show that the
predictive accuracy improves significantly compared to a weighted aggregation with fixed set of
weights. The second part of the analysis studied the process of aggregation with respect to coor-
dination and dominant equilibrium selection. Results from this analysis showed that satisficing
method of aggregation is more likely to lead to games being of pure coordination, and players are
more likely to select a payoff dominant equilibrium regardless of how the games are constructed.
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Chapter 5

Behaviour models for dynamic games

5.1 Introduction

In this chapter, I return to the study of reasoning models. In Chapter 3, the behaviour models
developed were in the context of a one-shot hierarchical game. In that construction, the sequence
of activity for the players are a repeated sequence of observe (perceiving the state S), solve
(solving the game based on the model B), and act (based on the solution O)1. Dynamic games
adds a fourth activity in this sequence — players updating belief about other players’ behaviour.
This allows for more sophisticated reasoning in two mutually related ways, communication and
elicitation. First, since the belief updating activity is part of the common knowledge, i.e., every
player knows that other players update beliefs about each other based on observations, a player
can use that to communicate their own intention. Second, based on the response of other agents,
a player can also elicit information about other players’ behaviour, i.e., other players choosing
(or not choosing) the expected action in response to the action of any player may say something
about the other player’s behaviour. In everyday driving, this is a common process of reasoning as
exemplified by the following example. Nudging forward is a commonly observed behaviour in
unprotected left and right turns. It communicates intention of a vehicle that it wishes to proceed,
and at the same time, the response of other vehicles to being nudged elicits information about
the other vehicles’ driving attitude; a slowing down to being nudged communicates that the other
vehicle may be more considerate than if they didn’t yield.

The space of strategies in dynamic games are over the domain of beliefs along with the
domain of player actions [213]. As long as the common knowledge [82] assumptions are es-
tablished, that is, players are aware that everyone is aware of each other’s model of behaviour,
1 Section 1.3 covers details of the notation
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solution concepts exist for dynamic games that take into account strategies as well as consis-
tent belief assignment. However, in a naturalistic scenario where players are free to follow het-
erogeneous models of behaviour, assumptions about the common knowledge end up being too
strict for the purpose of modelling naturalistic traffic behaviour. Applying standard models of
behavioural game theory is also a challenge, since the addition of beliefs in the strategic solution
space presents an additional scope of deviations from the optimal solutions in the game.

The first challenge is of model uncertainty, in which the players are uncertain about the
reasoning model used by the other players. Whether in the case of Nash equilibiria based models
(rational agents assuming everyone else is a rational agent) [201, 85], in Stackelberg equilibrium
based models (common understanding of the leader-follower relationship) [70], or level-k model
(the level of reasoning of AVs and humans), there has to be a consensus between an AV planner
and other road users on the type of reasoning everyone is engaging in. But when there is the
possibility of multiple models being followed, the same observation can be explained by different
behaviour models, and it is not clear how a player can respond in such a scenario.

The second challenge is the question of model instability. Whereas model uncertainty arises
from different players using different model of reasoning, model instability deals with the prob-
lem of a single player not adhering to a single model of reasoning over time. This problem is
especially relevant for level-k models in dynamic games, since the model relies on some players
following an elementary non-strategic reasoning (level-0). Therefore, the choice of level-0 model
is important, since the behaviour of every agent in the hierarchy depends on the assumption about
the behaviour of level-0 agents. The main models proposed for level-0 behaviour include simple
obstacle avoidance [216], maxmax, and maxmin models [237, 196]. Although such elementary
models may be acceptable when games are one-shot, in a dynamic game setting, it is not clear
why human drivers, would cognitively bind themselves to such elementary models throughout
the play of the game.

In addition to the above challenges, this chapter also demonstrates different ways in which
satisficing can be used as a concept of game theoretic modeling of traffic behaviour. First, fol-
lowing from the work in Chapter 4, satisficing is used as a method of multi objective aggregation.
This application is motivated by models in traffic psychology literature [132]. The second use
is the more traditional use of satisficing in economic literature, and it is related to the process
of optimization involved in individual decision making [34, 204]. A typical use of satisficing in
the latter context is a billionaire businessman being indifferent between a profile of a $1 million
and $1.001 million. The same concept can also model a suboptimal choice of actions in traffic
where a driver is indifferent between two trajectories that have minimum distance gaps of 10m
and 10.01m. Surprisingly, there has been less focus on satisficing compared to Quantal Best Re-
sponse as a model of suboptimal response in game theoretic models of traffic behaviour. Both
uses of satisficing are explored and evaluated in this chapter. Considering that the thesis links

92



traffic psychology literature and economic literature in several ways, evaluation of the use of
satisficing in such models is a natural line of inquiry.

The primary contribution of this chapter is a framework that addresses the aforementioned
challenges by unifying modeling of heterogeneous human driving behaviour with strategic plan-
ning for AV. In this framework, behaviour models are mapped into three layers of increasing
capacity to reason about other agents’ behaviour – non-strategic, strategic, and robust. Within
each layer, the possibility of different types of behaviour models lends support for a popula-
tion of heterogeneous behaviour, with a robust layer on top addressing the problem of behaviour
planning with relaxed common knowledge assumptions. Standard level-k type and equilibrium
models are nested within this framework, and in the context of those models, secondary con-
tributions of the work are a) the use of automata strategies as a model of level-0 behaviour in
dynamic games, resulting in behaviour that is rich enough to capture naturalistic human driv-
ing (dLk(A) model), and b) an interpretable support for bounded rationality based on different
modalities of satisficing — safety and manoeuvre. Finally, the efficacy of the approach is demon-
strated with evaluation on two large naturalistic driving datasets as well as simulation of critical
traffic scenarios.

5.2 Related work

The models developed in the chapter consider players to have heterogeneous beliefs and be-
haviour. Heterogeneous agent models (HAMs) have been a mainstay of economic and finan-
cial literature where bounded rational behaviour of agents needs to be modeled. Hommes [95]
presents an overview of the literature on HAMs in the field of economic and finance and identifies
eight reasons behind the popularity of heterogeneous models. Some of the reasons, such as exper-
imental evidence of bounded rational behaviour in humans go beyond just economic behaviour
[106]. A common aspect among HAMs is identification of different prototype behaviours of
agents. Traditional HAMs, in finance for example, have often used fundametalists and chartists
as the prototype trading behaviours [245]. The former refer to traders who base their decisions
on macroeconomic metrics, and the later refer to traders who focus on observed market per-
formance. These prototype models in heterogeneous models are often application specific, and
this chapter therefore includes prototype models (accomodating and non-accomodating) that are
relevant to driving behaviour.

Driver behaviour heterogeneity has been well established through observational studies, and
these heterogeneities are often interpreted as different driving styles [191]. For the task of car
following behaviour, Ossen and Hoogendoorn [172] show that the heterogeneity in car following
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behaviour can be better explained through heterogeneity in the models itself compared to hetero-
geneity in the parameters of a single models. This is similar to the construction of the models in
this chapter, where the player types within a model represent heterogeneity within each model
and different models provide another layer of heterogeneity. Ellison et al. [66] identifies four
different factors relevant in the study of driving behaviour heterogeneity — variation in driving
behaviour across different road structures, locations, driving tasks, etc. (spatial heterogeneity),
variation in different times of the day (temporal heterogeneity), variation in behaviour within a
driver (longitudinal heterogeneity), and variation across a population of drivers (cross sectional
heterogeneity). After controlling for each of the factors, they show that based on an observational
study, there is much more cross-sectional variation in driving behaviour compared to longitudinal
variation. Also, there is significant impact of spatial and temporal factors in driving behaviour
even within a single driver.

Heterogeneity in behaviour can be interpreted in multiple ways depending on the specific
metric used to study the heterogeneity. In general, heterogeneity in driving behaviour can be
measured at three different levels. First, as was studied in [66], variation in drivers’ choice of
speed and acceleration values are an indicator of heterogeneity. These attributes are referred
to as driving style measures in [191]. Second, heterogeneity can be measured in terms of the
underlying endogenous factors that play a role in speed and acceleration choices. Risk toler-
ance of the driver has found wide acceptance as a key endogenous factor relevant for modeling
[132, 100]. In [159], based on user questionnaires the heterogeneity with respect to risk was cap-
tured through four different risk profiles. These include drivers who are unaware of their risky
behaviour, drivers who undertake risks in a calculated manner, drivers who take risks only in re-
sponse to certain situations such as being in hurry, and those who engage in risky behaviour in a
compulsive manner. Simulation studies have also identified the heterogeneity in drivers’ percep-
tion of risk as a function of speed and time gap [134, 133]. The third level at which heterogeneity
can be measured is at the level of the behaviour model. For example, in [172] different models
of car following behaviour are considered based on how many leading vehicles a follower vehi-
cle takes into account in their decision making. The follow up observational study suggests that
the heterogeneity can be explained by different drivers engaging in different reasoning models,
whereas some respond only to the immediate leading vehicle, others consider two or three leaders
when choosing their actions. In relation to the literature on heterogeneity, the models developed
in this chapter can capture heterogeneity in all three levels. At the highest level, different models
of behaviour (level-k, MSPE, SSPE, and robust) capture the heterogeneity of models, the agent
types as expressed through safety aspiration level capture the heterogeneity of the endogenous
attributes such as risk tolerance, and finally, the output of the models show the final heterogeneity
in the specific indicators such as speed and acceleration choices.

Another line of research deals with the model instability problem of lower level agents in
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Figure 5.1: Schematic representation of the dynamic game. Each node is embedded in a spatio-
temporal lattice and nodes are connected with a cubic spline trajectory.

dynamic games by developing a model of learning based on observations of game play. Ho and
Su [94] presents a model of level-k behaviour in dynamic games where agents form beliefs about
the levels of other players and update them based on observations of game play, thereby taking
care of the learning aspect. Additionally, the agents are also free to choose from any level in the
hierarchy that maximizes their payoff. This dynamic assignment of the levels allows agents to
not be adversely affected by being restricted to a single level. In this work, since the focus is
less on modelling the mechanism of how humans learn to drive, I do not incorporate an explicit
learning aspect into the model. Rather, compared to [94], I address model instability by allowing
level-0 agents to have a more sophisticated model of level-0 behavior that allows them to switch
between the two finite state transducer models.

5.3 Game Tree, Utilities, and Agent Types

The dynamic game is constructed as a sequence of simultaneous move games played start-
ing at time t = 0 at a period of ∆tp secs. over a fixed horizon of ∆th secs. Each vehicle
i ∈ {1, 2, .., N}’s state at time t is a vector Xi,t = [x, y, vx, vy, v̇x, v̇y, θ] representing posi-
tional co-ordinates (x, y) on R2, lateral and longitudinal velocity (vx, vy) in the body frame,
acceleration (v̇x, v̇y), and yaw (θ). The nodes of the game tree Xt = XN

i,t are the joint system
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states embedded in a spatio-temporal lattice [251], and the actions are cubic spline trajectories
[109, 6] generated based on kinematic limits of vehicles with respect to bounds on lateral and
longitudinal velocity, acceleration, and jerk [14]. A history ht of the game consists of a sequence
of nodes X0..Xt traversed by both agents along the game tree until time t. I also use a hier-
archical approach in the trajectory generation process [156, 70, 196], where at each node, the
trajectories are generated with respect to high-level manoeuvres, namely, wait and proceed ma-
noeuvres. For wait manoeuvre trajectories, a moving vehicle decelerates (or remains stopped if
it is already stopped), and for proceed manoeuvres, a vehicle maintains its moving velocity or
accelerates to a range of target speeds. Strategies are presented in the behaviour strategy form,
where πi(ht) ∈ Ti(Xt) is a pure strategy response (a trajectory) of an agent i that maps a history
ht to a trajectory in the set Ti(Xt), which is the set of valid trajectories that can be generated
at the node Xt corresponding to both manoeuvres. The associated manoeuvre for a trajectory is
represented as m(πi(h)) ∈ {wait , proceed}. Depending on the context where the response de-
pends on only the current node instead of the entire history, I use the notation πi(Xt); I also drop
the time subscript t on the history when a formulation holds true for all t. Since each history ends
in an unique node of the game tree, the overall strategy of the dynamic game is the cross product
of behaviour strategies along all histories of the game σ : π1(h)× π2(h)× ..πN(h);∀h. I use the
standard game-theoretic notation of i and −i to refer to an agent and other agents respectively in
a game.

The fixed horizon nature of the game construction is motivated by the need to study behaviour
at specific interactive situations under static conflict, such as left and right turns at intersections.
This is a departure from the usual moving horizon planning technique used in Model Predictive
Control (MPC) type planners [37]. However, the framework developed in this chapter can also
be extended as a general purpose planner (or for modelling behaviours of dynamic conflict such
as lane changes) by changing the construction to a moving horizon setting.

The utilities in the game are formulated as multi-objective utilities consisting of two
components — safety us,i(πi(h), π−i(h)) ∈ [−1, 1] (modelled as a sigmoidal function that
maps the minimum distance gap between trajectories to a utility interval [-1,1]) and progress
up,i(πi(h), π−i(h)) ∈ [0, 1];∀i,−i (a function that maps the trajectory length in meters to a util-
ity interval [0,1]). In general, these two are the main utilities (often referred to as inhibitory and
excitatory utilities, respectively) upon which different driving styles are built [191]. Agent types
γi ∈ Γ are numeric in the range [-1,1] representing each agent’s safety aspiration level — a
level of safety that an agent is comfortable operating. This construction is motivated by traffic
behaviour models such as Risk Monitoring Model [220] and Task Difficulty Homeostasis theory
[76], where, based on a traffic situation, drivers continually compare each possible action to their
own risk tolerance threshold and make decisions accordingly. To avoid dealing with complexities
that arise out of agent types being continuous, for the scope of this chapter, I discretize the types
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by increments of 0.5 for the experiments. Based on their type (i.e. their safety aspiration level)
how each agent selects specific actions at each node depends on the particular behaviour model,
and is elaborated in Sec. 5.4 when I discuss the specifics of each behaviour model.

Unless mentioned otherwise, the utilities (both safety and progress) at a node with associated
history ht are calculated as discounted sum of utilities over the horizon of the game conditioned
on the strategy σ, type γi and discount factor δ as follows

L∑
k=1

δkui(πi(h(k−1)∆tp), π−i(h(k−1)∆tp);σ, γi) +Nui,C

where L = ⌊∆th
∆tp
⌋ is the maximum number of planning steps; ui,C is the continuation utility

beyond the horizon of the game and is estimated based on agents continuing with the same chosen
trajectory as undertaken in the last decision node of the game tree for another ∆th seconds, and
N is a normalisation constant to keep the sum of utilities in the same range as the step utilities.

5.4 Generalised Dynamic Cognitive Hierarchy Model

In order to support heterogeneous behaviour models, the generalised dynamic cognitive hierarchy
model consists of three layers of increasing sophistication of strategic reasoning, each of which
can hold multiple behaviour models. The three layers include: a) non-strategic, where agents
do not reason about the other agents’ strategies, b) strategic, where agents can reason about the
strategies of other agents, and c) robust, where agents not only reason about the strategies of other
agents but also the behaviour model [237] that other agents may be following (Fig. 5.2a). All of
these layers operate in a setting of a dynamic game and I present the models and the solution
concepts used in each layer in order.

5.4.1 Non-strategic Layer

Similar to level-0 models in the standard level-k reasoning [40], non-strategic agents form the
base of the cognitive hierarchy in the model. However, in this case, I extend the behaviour for the
dynamic game. The main challenge of constructing the right level-0 model for a dynamic game
is that it has to adhere to the formal constraints of non-strategic behaviour, i.e. not reason over
other agents’ utilities [237], while at the same time it cannot be too elementary for the purpose
of modelling human driving.
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I propose that automata strategies, which were introduced as a way to address bounded ratio-
nal behaviour that results from agents having limited memory capacity to reason over the entire
strategy space in a dynamic game [187, 149], address the above problem by striking a balance
between adequate sophistication and non-strategic behaviour. To this end, I extend the standard
level-k model for a dynamic game setting with level-0 behaviour mediated by a finite state au-
tomata (referred to as dLk(A) henceforth in the chapter). However, modeling strategies with the
help of a finite state automata (FSA) is just a modeling paradigm, and does not say much about
the specific strategies of players in a game. Even with the level-0 constraint of non-strategic be-
haviour, one can construct several different strategies (modelled through an FSA) that can act
as a model of level-0 behaviour. Evaluating the effectiveness of all such FSA based strategies
in the context of traffic behaviour is beyond the scope of this chapter. Instead, I develop two
models of manoeuvre selection using FSAs that enable level-0 agents demonstrate sophisticiated
non-strategic behaviour.

I use Finite State Transducer (FST), which is a refinement of FSA, as a model of level-0
behaviour. FST is a type of FSA that supports both input and output symbols, therefore being well
suited to modelling input (state) to output (action) based control processes [185]. In the proposed
model, a level-0 agent has two reactive modes of operation, each reflecting a specific driving
style modeled through a FST; accomodating FST (AAC), which always waits whenever safe, and
non-accomodating FST (ANAC) (Fig. 5.2b), which always proceeds whenever safe based on risk
tolerance. Next, I present the formal definition of FST along with the specific connections to the
game constructs.

Definition 6. A Finite State Transducer is a 6-tuple (M,Σ1,Σ2,⃝, δ) such that

• M is the set of states. In this case, each state in M represents the high-level manoeuvre
currently executed by the road user.

• Σ1 is a finite set representing the input alphabet. In both AAC and ANAC, this set is con-
structed based on Boolean properties over the game state S.2

• Σ2 is a finite set representing the output alphabet. In both AAC and ANAC, this set is
constructed based on the output action of the player following the FST, i.e., Σ2 =
{wait, proceed}.

• ⃝ is the initial state. In this state, the player has yet to choose a manoeuvre.

• δ : {M
⋃
⃝} × Σ1 → M × Σ2 is the transition relation that models the progress of the

FST.
2 The state of the FST being an element of M , tracks operation of the FST process executed by a level-0 player,
whereas the game state X is a common state of all players in the game as discussed in Sec 5.3
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The process of selecting a trajectory is as follows. An agent i playing AAC as a type γAC
i ∈ Γ

in state WAC (Fig. 5.2b) randomize uniformly between trajectories belonging to wait manoeu-
vres that have step safety utility at least γAC

i . If no such wait trajectories are available to them,
they move to state PAC and randomizes uniformly between trajectories belonging to proceed ma-
noeuvre. ANAC is similar, but the states are reversed thereby resulting in a predisposition that
prefers the proceed state. The switching between the states of the FST is mediated by the set
Σ1 = {ϕAC

i ,¬ϕAC
i } in AAC and Σ1 = {ϕNAC

i ,¬ϕNAC
i } in ANAC. ϕAC

i and ϕNAC
i are boolean proper-

ties over the current game state Xt in the game as follows:

ϕAC
i := max

πi(Xt)∈Ti(Xt)|W
π−i(Xt)

u
∆tp
s,i (πi(Xt), π−i(Xt)) > γAC

i (5.1)

ϕNAC
i := max

πi(Xt)∈Ti(Xt)|P
π−i(Xt)

u
∆tp
s,i (πi(Xt), π−i(Xt)) > γNAC

i (5.2)

ϕAC
i is true when there is at least one wait trajectory (and conversely, at least one proceed

trajectory in the case of ϕNAC
i ) available whose step safety utility (u∆tp

s,i ) at the current node Xt is
above γAC

i (and γNAC
i for ϕNAC

i ). Recall that agent types are in the range [-1,1] and are reflective
of safety aspiration.

One can see that in the above construction, the agent type is conditioned on the specific FST
rather than being a fixed value attached to an agent. This allows for a player to have different
risk tolerance depending on the FST they use in the game. Along with switching between states,
agents are also free to switch between the two FSTs; however, I leave open the question of
modeling the underlying process and the causal factors. I envision them to be non-deterministic
and a function of the agent’s affective states, such as impatience, attitude, etc., which are an
indispensable component of modeling driving behaviour [191]. For example, one can imagine
a left-turning vehicle approaching the intersection starting with an accommodating strategy, but
along the game play, changing its strategy to non-accommodating on account of impatience or
other endogenous factors; and in each FST, they may have different safety aspiration levels.
Although leaving open the choice of mode switching leads to the level-0 model in this paradigm
to be partly descriptive rather than predictive, as we will see in the next section, such a choice
does not compromise the ability of higher level agents’ to form consistent beliefs about the level-
0 agent and respond accordingly to their strategies. This richer model of level-0 behaviour not
only imparts more realism in the context of human driving, but also allows for level-0 agent to
adapt their behaviour based on the game situation in a dynamic game.

99



(a)

(b)

Figure 5.2: (a) Organization of models in the generalised dynamic cognitive hierarchy frame-
work. Dashed arrows indicate agents’ belief about the population. (b) Automata AAC (accomo-
dating) and ANAC (non-accomodating)
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5.4.2 Strategic Layer

The difference between non-strategic and strategic models is that while both adhere to the prop-
erty of dominance responsiveness, i.e. optimising over their own utilities, the latter adhere to an
additional property of other responsiveness, i.e., reasoning over the utilities of the other agents
[237]. Agents in the strategic layer in this framework adhere to the above two properties and I in-
clude three models of behaviour, namely, level-k (k ⩾ 1) behaviour based on the dLk(A) model
and two types of bounded rational equilibrium behaviour, i.e. SSPE (Safety satisfied perfect equi-
libria) and MSPE (manoeuvre satisfied perfect equilibria). I note that the choice of models in the
strategic layer is not exhaustive; however, I select popular game-theoretic models (level-k and
equilibrium based) that have been used in the context of autonomous driving and address some
of the gaps within the use of those models as secondary contributions.

For the strategic models, I use satisficing as a method of utility aggregation (Chapter 4), and
the aggregation parameter is the same as the agent’s type γi. Specifically, the combined utility
ui(πi(h), π−i(h)) is equal to us,i(πi(h), π−i(h)), i.e., the safety utility when us,i(πi(h), π−i(h)) ⩽
γi, and otherwise ui(πi(h), π−i(h)) = up,i(πi(h), π−i(h)), i.e., the progress utility. Based on the
aggregation method, an agent would consider the progress utility of an action only when it’s
safety utility is greater than γi. This way of aggregation provides a natural connection between
an agent’s type and their risk tolerance. In the following sections, when I use the agent types in
different behaviour models, I also index the agent types with the specific models for clarity.

dLk(A) Model

A level-1 agent3 believes that the population consists solely of level-0 agents, and generates a
best response to those (level-0) strategies. In a dynamic setting, however, a level-1 agent has to
update it’s belief about level-0 agent based on observation of the game play. This means that in
order to best respond to level-0 strategy, a level-1 agent should form a consistent belief based on
the observed history ht of the game play about the type (γAC

−i , γ
NAC
−i ) a level-0 agent plays in each

automaton. The tuple of types follows from the construction that since each level-0 agent has two
modes of operation as modelled by the automata, the types in each of these two automata can be
different, therefore the belief of level-1 agent also needs to reflect the same construction.

Definition 7. A belief Bl1 = {Υ̂AC
l0 , Υ̂

NAC
l0 } of a level-1 agent at history ht is consistent iff

∀γAC
−i ∈ Υ̂AC

l0 , the history of manoeuvres m(π−i(X0))...m(π−i(Xt)) is in the output language
of FST AAC(γAC

−i ) and ∀γNAC
−i ∈ Υ̂NAC

l0 , m(π−i(X0))...m(π−i(Xt)) is in the output language of
FST ANAC(γNAC

−i ).
3 I focus on k = 1 behaviour in this section as well as later in the experiments, but the best response behaviour can
be extended to k > 1 similar to a standard level-k model in normal form games.
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Before the level-1 agent has observed any action by the level-0 agent, their estimates for
Υ̂AC

l0 and Υ̂NAC
l0 is the default set of types, i.e. Υ̂AC

l0 = Υ̂NAC
l0 = Γ with range 2 (recall Γ =

[−1, 1]). However, over time with more observations of level-0 actions, the level-1 agent forms
a tighter estimate, i.e. |max(Υ̂AC

l0 ) − min(Υ̂AC
l0 )| ⩽ 2, of level-0’s type. If the observed history

is inconsistent with that of an automaton, the belief for the corresponding automaton will be an
empty set. The following theorem formulates the set of consistent inference of beliefs Bl1 based
on observed level-0 actions with history h more formally.

Theorem 2. Given a history h of a game, a consistent belief γAC
l0 ∈ Υ̂AC

l0 and γNAC
l0 ∈ Υ̂AC

l0 for a
level-1 agent is given by,

γAC
l0

< min
X∈h[W]

max
πl0(X)∈Tl0(X)|W

u
∆tp

s,l0 (πl0(X), πl1(X))

⩾ max
X∈h[P]

max
πl0(X)∈Tl0(X)|W

u
∆tp

s,l0 (πl0(X), πl1(X))

γNAC
l0

⩾ max
X∈h[W]

max
πl0(X)∈Tl0(X)|P

u
∆tp

s,l0 (πl0(X), πl1(X))

< min
X∈h[P]

max
πl0(X)∈Tl0(X)|P

u
∆tp

s,l0 (πl0(X), πl1(X))

where h[P] and h[W] are a set of nodes in the game where the level-0 agent chose a proceed and
wait manoeuvre, respectively, and T (X)|P ,T (X)|W represent the available trajectories at node
X belonging to the two manoeuvres, proceed and wait, respectively.

The intuition behind the proof is that h[W ] contain the set of nodes X in which the level-0
agent chose to wait, and h[P ] are the nodes where the observed action was proceed. In each of
these nodes, if the level-0 agent was playing AAC (or ANAC), then the condition of Eqn. 5.1 (or
Eqn. 5.2) has to be met. The conjunction of all such conditions over the history of nodes provides
the bounds of the parameters that would be consistent with all the observations.

Proof. There are two parts to the equation, one for γAC
l0 and another γNAC

l0 . I prove the bounds
of γAC

l0 corresponding to automata AAC, and the proof for γNAC
l0 corresponding to automata ANAC

follows in an identical manner.

By construction of automataAAC, proceed trajectories are only generated in state PAC, which

follows one of the three transitions {⃝|PAC|WAC}
¬ϕAC

l0 (X)
−−−−−→ PAC. Therefore, ∀X ∈ h[P], ϕAC

l0 :=
⊥ for the transition to happen. Based on eqn. 1, this means that ∀X ∈ h[P],

γAC
l0 ⩾ max

πl0∈Tl0(X)|W
u
∆tp
s,i (πl0(X), πl1(X)) (A.1)
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Since γAC
l0 stays constant throughout the play of the game, for γAC

l0 to be consistent for the set
of all nodes X ∈ h[P], the lower bound (i.e., at least as high to be true for all nodes X ∈ h[P]) of
γAC
l0 based on eqn A.1 is

γAC
l0 ⩾ max

X∈h[P]
max

πl0∈Tl0(X)|W
us,l0(πl0(X), πl1(X)) (A.2)

Similarly, by construction of automata, wait trajectories are only generated in state WAC,

which follows one of the three transitions {⃝|PAC|WAC}
ϕAC
l0 (X)
−−−−→ WAC. Therefore, ∀X ∈ h[W],

ϕAC
l0 := ⊤ for the transition to happen. Based on eqn. 1, this means that ∀X ∈ h[W],

γAC
l0 < max

πl0∈Tl0(X)|P
u
∆tp
s,i (πl0(X), πl1(X)) (A.3)

and the upper bound (i.e., at least as low to be true for all nodes X ∈ h[W]) of γAC
l0 based on eqn

A.3 ∀X ∈ h[W]
γAC
l0 < min

X∈h[W]
max

πl0∈Tl0(X)|W
us,l0(πl0(X), πl1(X)) (A.4)

Since h[P]
⋂
h[W] = ∅ and h = h[P]

⋃
h[W], equations A.2 and A.4 in conjunction proves the

case for γAC
l0 bounds.

The proof for γNAC
l0 follows in the identical manner as γAC

l0 , but with the condition reversed
based on the P and W states.

The above theorem formalizes the idea that looking at manoeuvre choices made by a level-
0 agent at each node in the history, as well as the range of step safety utility at that node for
both manoeuvres (recall that preference conditions of the automata are based on step safety
utility), a level-1 agent can calculate ranges for γAC/NAC

−i from Eqns 5.1 and 5.2, for which the
observed actions were consistent with each automata. With respect to the set of consistent belief
Bl1 about level-0 agent’s strategy, level-1 agent generates a best response that is consistent with
Bl1. Dropping the AC/NAC superscripts Let π(Xt;A, Υ̂l0) = {π(Xt;A, γ−i);∀γ−i ∈ Υ̂l0} be
the union of all actions when the automata A is played by the types in Υ̂l0, then Πl0(Xt,Bl1) =
π(Xt;AAC, Υ̂AC

l0 )
⋃
π(Xt;ANAC, Υ̂NAC

l0 ) is the set of all actions that level-0 agent can play based
on level-1’s consistent belief Bl1. The response to those actions by level-1 agent (indexed as i) is
as follows.

πi(ht;Bl1) = argmax
Ti(Xt)

Πl0(Xt,Bl1)

ui(πi(h), π−i(Xt)|γl1i ) (5.3)
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where γl1i ∈ Γ is the type of the level-1 agent, π(h) ∈ Ti(Xt) is a valid trajectory that can be
generated at the node with history h, and π−i(Xt) ∈ Πl0(Xt,Bl1) is the other agent’s trajectory.
Note that the strategy of the level-1 agent, unlike level-0 agent depends on the history ht instead
of just the state of the nodeXt; since the history influences the belief Bl1 which in turn influences
the response.

The above model of best response can be extended similarly for k > 1 just like in standard
level-k models. However, I restrict the focus for k up to 1 mainly due to following reasons: i)
aspects of higher level thinking are already incorporated in the equilibrium based models; ii) in
other domains, I often see diminishing returns with higher k values with respect to empirical data
[234].

5.4.3 Equilibrium Models

Along with the level-k (k⩾ 1) behaviour, another notion of strategic behaviour that have been
proposed as a model of behaviour planning in AV [179, 201] are based on an equilibrium. How-
ever, when it comes to modelling human driving behaviour, an equilibrium model needs to ac-
commodate bounded rational agents in a principled manner, and ideally should provide a rea-
sonable explanation of the origin of the bounded rationality. Based on the idea that drivers are
indifferent as long as an action achieves their own subjective safety aspiration threshold [132],
I use the idea of satisficing as the main framework for bounded rationality in the equilibirum
models [207]. Specifically, I develop two notions of satisficing; one based on safety satisficing
(SSPE), where agents choose actions close to the Nash equilibria as long as the actions are above
their own safety aspiration threshold, and another based on manoeuvre satisficing (MSPE), where
agents chose actions close to the Nash equilibria as long as the actions are of the same high-level
manoeuvre as the optimal action.

Safety-satisfied Perfect Equilibrium (SSPE)

The main idea behind satisficing is that a bounded rational agent, instead of always selecting the
best response action, selects a response that is good enough, where good enough is defined as
an aspiration level where the agent is indifferent between the optimal response and the response
in question. In the case of Safety-satisfied perfect equilibrium (SSPE), I define a response good
enough for agent i if the response is above their own safety aspiration threshold as determined
by their type. The goal of this model is to let agents chose their action based on the subgame
perfect Nash equilibrium of the game, however, also allow for selection of actions close to the
equilibrium that are safe enough based on their own safety aspiration level. Therefore, in response
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to other agents’ equilibrium action, any action that is safer than either their own equilibrium
action or their own safety aspiration level γi is part of the solution. A more formal definition is
as follows

Definition 8. A strategy σ; (γSS
i , γ

SS
−i) :

∏
∀i∈N

πi(h), is in safety satisfied perfect equilibria for a

combination of agent types (γSS
i , γ

SS
−i) ∈ ΓN if for every history h of the game and ∀i ∈ N

us,i(πi(h), π
∗
−i(h)) ⩾ min{u∗s,i(h), γSS

i }

where σ∗; (γSS
i , γ

SS
−i) :

∏
∀i∈N

π∗
i (h), is a subgame perfect Nash equilibrium in pure strategies of the

game for agents with type (γSS
i , γ

SS
−i) and u∗s,i(h) = us,i(π

∗
i (h), π

∗
−i(h)).

4

Based on the above definition, if the safety utility of the best response of agent i to agent
−i’s subgame perfect Nash equilibrium (SPNE) strategies at history h is less than agent i’s own
safety threshold as expressed by their type γSS

i , then the SSPE response is any trajectory that
matches the safety utility of the SPNE response. However, if the SPNE response is higher than
their safety threshold, then any suboptimal response that has safety utility higher than γSS

i is a
satisfied response, and thus in SSPE.

4 I calculate the SPNE using backward induction with the combined utilities (lexicographic thresholding) in a
complete information setting where agent types are known to each other.
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Figure 5.3: Illustrative example of Safety Satisfied Perfect Equilibrium by expanding the solution
set of Subgame perfect Nash equilibrium (SPNE). Full calculation of the Nash equilibrium is
omitted for brevity.

Fig. 5.3 shows an illustrative example of SSPE at a typical unprotected right turn scenario.
The normal form matrix for the subgame starting at node marked in red that is constructed in
the process of calculating the Subgame Perfect Nash Equilibrium through backward induction is
shown in the table. The safety and progress utilities are marked with suffixes s and p, respec-
tively. The top and bottom numbers in each box in the utility matrix show the two utilities of
right turning (i) and straight through vehicle (−i) respectively. The type of both vehicles, γSS

i

and γSS
−i is 0.1. Since this example is for the purpose of illustration, only the utilities that are

relevant for that purpose are shown in the figure. Let us say that the trajectory pair (τ 1i , τ
1
−i) is

the Nash equilibrium of the subgame. The SSPE set is calculated by expanding the best response
of both players to each other’s equilibrium action. Specifically, any action that fetches a safety
utility greater than 0.1 for each player would be in the SSPE set. These set of actions are shown
with a lighter shade in the figure; the trajectory pairs (τ 2i , τ

2
−i). Therefore, SSPE for this subgame

includes the two pairs of actions (τ 1i , τ
1
−i) and (τ 2i , τ

2
−i). Since SSPE generates multiple equilibria

at a game node, the process of calculating the SSPE for the rest of the game tree proceeds by
repeating the backward induction process one subgame SSPE solution at a time.
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Manoeuvre-satisfied Perfect Equilibrium (MSPE)

This model of satisficing is based on the idea that agents may be indifferent between actions that
belong to the manoeuvre corresponding to the equilibrium trajectory. For example, at any node,
if the equilibrium trajectory belongs to the wait manoeuvre, then all the trajectories belonging to
the wait manoeuvre will be in MSPE. However, additional constraints need to be imposed on this
manner of action selection. In order to avoid selection of trajectories that belong to equilibrium
manoeuvre but have lower utility than a non-equilibrium manoeuvre, I add the constraint that the
utility of a selected trajectory has to be strictly higher than that of any non-equilibrium manoeu-
vre’s trajectory. A typical example for the need of this constraint includes situations where the
equilibrium trajectory corresponds to wait manoeuvre, but selecting a trajectory that is akin to a
rolling stop, which although falls under wait manoeuvre, is worse than executing a proceed tra-
jectory, i.e., a non-equilibrium manoeuvre. Therefore, such trajectories should be excluded from
the MSPE solution set. A formal definition follows.

Definition 9. A strategy σ; (γMS
i , γMS

−i ) :
∏

∀i∈N
πi(h), is in manoeuvre satisfied perfect equilibria

for a combination of agent types (γMS
i , γMS

−i ) ∈ ΓN if for every history h of the game and ∀i ∈ N ,
m(πi(h)) = m(π∗

i (h)) and

us,i(πi(h), π
∗
−i(h)) > max

π
′
i(h)∈Ti(X)\m∗

ui(π
′
i(h), π

∗
−i(h))

where σ∗; (γMS
i , γMS

−i ) :
∏

∀i∈N
π∗
i (h), is a subgame perfect equilibrium in pure strategies of the

game with agent types (γMS
i , γMS

−i ), and Ti(X) \ m∗ = {πi(h) : m(πi(h)) ̸= m(π∗
i (X))} or

in other words, the set of available trajectories at node S that do not belong to the manoeuvre
corresponding to the equilibrium trajectory m(π∗

i (h)) and S is the last node in the history h.
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Figure 5.4: Illustrative example of Manoeuvre Satisfied Perfect Equilibrium with (γMS
i , γMS

−i ) =
(0.1, 0.1).

Fig. 5.4 shows the utility matrix for the same example in Fig. 5.3 with the multiobjective
utilities aggregated into a scalar value based on each agent’s type, i.e., 0.1. The only difference
between the SSPE calculation and MSPE is the process of expansion of the action sets for each
player in relation to the Nash equilibrium solution. For the right-turning vehicle (i), the two wait
trajectories with utilities 0.1 and 0.05 are in MSPE, since they belong to the same manoeuvre as
the equilibrium trajectory. The third wait trajectory, however, is not in MSPE, since the utility
(-0.75) of that trajectory is lower than the maximum utility the nonequilibrium manoeuvre (-0.5),
thereby violating the condition in Definition 9.

5.4.4 Robust Layer

While the presence of multiple models in the strategic layers allows for a population of hetero-
geneous reasoners, an agent following one of those models still has specific assumptions about
the reasoning process of other agents, e.g., level-1 agents believing that the population consists
of level-0 agents and equilibrium responders believing that other agents adhere to a common
knowledge of rationality. However, it follows from the results in Chapters 3 and [210] that there
is no single model of reasoning that can uniquely capture human traffic behaviour. Rather, the
performance of models is context-dependent on the specific traffic situation. For behaviour plan-
ning, this raises two problems. First, the problem of heterogeneity, meaning that an AV at any
point in time can encounter multiple road users, each following a different model of reasoning.
Second is the problem of model underspecification, i.e., based on the observed action of other
road users an AV can rationalise the same actions of a single road user based on multiple models
of reasoning and player-type combination.

In order to address the aforementioned problems, I develop the robust layer. What differ-
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entiates the robust layer from the strategic layer is that, along with the two properties of other
responsiveness and dominance responsiveness for the strategic layer, agents in the robust layer
also adhere to the property of model responsiveness, i.e., the ability to reason over the behaviour
models of other agents. This gives them the ability to reason about (forming beliefs about and
responding to) a population of different types of reasoners including strategic, non-strategic, as
well as agents following different models within each layer. The overall behaviour of a robust
agent can be broken down into three sequential steps as follows.

i. Type expansion: Since the robust agent has to reason over the types of other agents, but also the
possible behaviour models, I augment the initial set of agent types Γ that were based on agents’
safety aspiration with the corresponding agent models. Reasoning over this augmented type can
then proceed similarly to non-augemented types. Let Γ+ :M× Γ be the augmented type of an
agent, whereM is the set of models presented earlier, i.e., {accomodating, non-accomodating,
level-1, SSPE, MSPE} and Γ is the (non-augmented) agent type (γAC

i , γNAC
i , γl1

i , γ
SS
i , γ

MS
i ) within

each model. For example, an element of Γ+ can be (level-1, 0.5), which means that the aug-
mented type of the other player is a dLk(A) level-1 reasoner with safety aspiration level (non-
augmented type) 0.5.

ii. Consistent beliefs: Similar to strategic agents, based on the observed history h of the game,
a robust agent forms a belief βh ⊆ Γ+ such that the observed actions of the other agent in
the history h are consistent with the augmented types (i.e., model and agent type) in βh. The
process of checking whether a history is consistent with a combination of a model and agent
type was already developed earlier for two non-strategic models (Def. 7). For level-1 models,
the history is consistent if at each node in history, the response of the other agent adheres to
equation 5.3. For the equilibrium models, a history h is consistent if the observed actions follow
the equilibrium path of the game tree according to definitions 8 and 9 for SSPE and MSPE
respectively. Assuming that in driving situations agents behave truly according to their types, βh

is then constructed as a union of all consistent beliefs for each model. This set represents the
possible reasoning models, as well as the types of the other road users in question that can be
rationalised based on the observed actions.

iii. Robust response: In the final step, the agent in the robust layer responds to the possible
actions of other agents based on consistent beliefs. The belief set βh represents the uncertainty
over the possible models the other agents may be using along with the corresponding agent types
within those models. The idea of a robust response to heterogeneous models is along the lines
of the robust game theory approach of [5]. An alternate method of responding to heterogeneous
types is by estimating the expected utilities of each action according to a distribution of the types
of other agents. However, I favour the distribution-free approach of [5] since in our case, we
only have constructed the support of the possible augmented types (βh) rather than a distribution
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over βh
5. A robust response to that is the optimisation over the worst possible outcomes that can

happen with respect to that set. Eqn. 5.4 formulates this response of a robust agent playing as
agent i.

πi(h;βh) = argmax
Ti(X)

min
∀β∈βh

max
∀π−i(h;β)

ui(π(h), π−i(h;β); γ
R
i ) (5.4)

where π−i(h; β) are the possible actions of the other agent based on the augmented type β ∈ βh

and γR
i ∈ Γ is the robust agent’s own type. In this response, the minimisation happens over

the agent types (inner min operator), rather than over all actions π−i(h) as is common in a
maxmin response. Since driving situations are not, in most cases, purely adversarial, this is a less
conservative, yet robust, response compared to a maxmin response.

I illustrate the calculation of the robust response with the help of the same game matrix as
in Fig. 5.3 from the perspective of the column player with γR = 0.1. Let the example belief set
βh of the column player (based on the row player’s history of action) be βh = {(level-0, γNAC =
−0.6), (SSPE,0.1), (MSPE,0.1)}. From the perspective of the column player, the innermost max
operator in Eqn. 5.4 calculates the maximum utility they can achieve by playing against each
type of row player in the belief set βh. The row player’s actions corresponding to the three types
in βh are (τ 3i , τ

4
i ), (τ

1
i , τ

2
i ), and (τ 1i , τ

2
i ) respectively. One can check thatANAC with γNAC = −0.6

would randomise between the two proceed trajectories since the maximum safety utility is higher
than -0.6. Consequently, for the column player’s action τ 1−i, the innermost max operator evaluates
to -0.5, 0.9, and 0.9 for those three sets of row player’s actions. Since -0.5 is the result of the min
operator over this set, the utility that the column player can expect to get playing τ 1−i is -0.5
based on the robust response formulation in Eq. 5.4. Note that this is higher than a maxmin
based calculation for τ 1−i, which fetches -1, thereby demonstrating a less conservative behaviour
of a robust response compared to maxmin. Once this calculation is repeated for τ 2−i and τ 3−i,
the robust response of the column player would be the action that fetches the maximum utility
among τ 1−i, τ

2
−i, and τ 3−i.

5.5 Experiments and Evaluation

In this section, I present the evaluation of the models under two different experiment setups.
First, I compare the models with respect to large naturalistic observational driving data using a)
the Intersection dataset from the Waterloo multi-agent traffic dataset (WMA) recorded at a busy

5 The main property of a robust layer is model responsiveness rather than a specific method of response to the
augmented types. The method of response chosen in this chapter just happens to bear the title of ‘robust’ following
from [5]. In future one can also construct a response according to the Bayesian Nash equilibrium as an alternative
without violating the basic model responsiveness property of the robust layer.
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(a) Snapshot of naturalistic datasets (WMA and inD)

(b) Simulation of critical scenarios: intersection clearance, merge before intersection, parking pullout.

Figure 5.5: Evaluation setup based on naturalistic datasets and simulation scenarios.

Canadian intersection (Appendix B), and b) the inD dataset recorded at intersections in Germany
[27] (Fig. 5.5a). From both datasets, which include around 10k vehicles in total, I extract the long
duration unprotected left turn (LT) and right turn (RT) scenarios, and instantiate games between
left (and right) turning vehicles and oncoming vehicles with ∆th = 6s and ∆tp = 2s, resulting
in a total of 1678 games. The second part of the evaluation is based on simulation of three
critical traffic scenarios derived from the NHTSA pre-crash database [160], where I instantiate
agents with a range of safety aspirations as well as initial game states, and evaluate the outcome
of the game based on each model. All the games in the experiments are 2 agent games with
the exception of one of the simulation of critical scenario (intersection clearance), which is a 3
agent game. Code and supplementary videos are available at https://git.uwaterloo.ca/
a9sarkar/repeated driving games.

Baselines. I select multiple baselines depending on whether a model is strategic or non-strategic.
For non-strategic models, I compare the automata based model with a maxmax model, shown
to be most promising from a set of alternate elementary models with respect to naturalistic data

111

https://git.uwaterloo.ca/a9sarkar/repeated_driving_games
https://git.uwaterloo.ca/a9sarkar/repeated_driving_games


[196]. For the strategic models (level-1 in dLk(A), SSPE, MSPE), I select a Qlk model used in
multiple works within the context of autonomous driving [136, 215, 216, 140]. I use the same
parameters used in [216] for the precision parameters in the Qlk model, i.e., λ = 0.5, 1.

Naturalistic data

I evaluate the performance of the models based on the match rate, i.e., the number of games
where the observed strategy of the human driver matched the solution of a model divided by the
total number of games in the data set. More formally, let D be the set of games in the dataset,
an indicator function I : D → {0, 1} be 1 if in the game g, there exists a combination of agent
types (γi, γ−i), such that the observed strategy is in the set of strategies predicted by the model or
0 otherwise. The overall match rate of a model is given by

∑
∀g∈D I/|D|. Qlk (baseline) models

being mixed strategy models, I count a match if the observed strategy is assigned a probability of
⩾ 0.5. Table 5.1 shows the match rate of each model for each dataset and scenario. It also shows
in parenthesis the mean γi, i.e. the agent type value for each model when the strategy matched the
observation. Since the agent types are a free parameter within each model, this gives the models
flexibility to match the observed action to a driver’s safety aspiration level. The overall numbers
in the table show that there is variation both with respect to match rate as well as the matched
safety aspiration level (agent type) for a given model. The match rate, especially for the WMA
dataset, is better for right-turning scenarios than for left-turning ones. The models sometimes
find it harder to match a consistent safety aspiration level at left turns in WMA when vehicles
exhibit impatient behaviour by creeping forward. Notice that the difference is less stark in the
inD dataset because in inD (Fig. 3a), the LT vehicle is still in the turn lane at point of initiation
(i.e., before the stopline), and therefore has less incentive to take a risk and creep.

A major takeaway is that for non-strategic models, automata models show much higher match
rate thereby reflecting high alignment with human driving behaviour compared to the maxmax
model. In fact, as I can see from the table that the entries for AC and NAC sum up to 1. The
combination of AC and NAC, although being non-strategic, can capture all observed driving de-
cisions in the dataset, which indicates that automata models are very well suited for modelling
level-0 behaviour in a dynamic game setting for human driving. The performance of an accom-
modating model is not very surprising since for left and right turning scenarios, most drivers
generally give way to oncoming vehicles. For the strategic models, dLK(A) and SSPE models
show better performance than Qlk and MSPE models. However, the mean agent type values for
the case when SSPE strategies match the observation are very low. Under the reasonable as-
sumption that the population of drivers on average have moderate safety aspiration level, say
in the range [-0.5,0.5], dLk(A) is a more reasonable model of strategic behaviour compared to
SSPE. I include the robust model comparison for the sake of completeness (and it shows perfor-
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WMA inD
LT (1103) RT (311) LT (187) RT (77)

maxmax 0.33438
(0.02)

0.43023
(0.27)

0.37975
(-0.2)

0.43506
(0.1)

AC 0.82053
(0.82)

0.90698
(0.84)

0.92089
(0.75)

0.81818
(0.79)

NAC 0.17947
(0.87)

0.09302
(0.82)

0.07911
(0.88)

0.18182
(0.85)

Qlk(λ=1) 0.18262
(-0.07)

0.43265
(0.33)

0.37658
(0.37)

0.43506
(-0.1)

Qlk(λ=0.5) 0.34131
(-0.03)

0.43023
(0.26)

0.37658
(0.37)

0.43506
(-0.1)

dLk(A) 0.5529
(0.19)

0.65449
(0.3)

0.51266
(0.51)

0.53247
(-0.4)

SSPE 0.69144
(-0.84)

0.90033
(-0.94)

0.6962
(-0.86)

0.53247
(-0.85)

MSPE 0.30479
(-0.1)

0.44518
(-0.13)

0.21519
(0.21)

0.27273
(-0.7)

Robust 0.56045
(0.20)

0.66944
(0.34)

0.51582
(0.51)

0.53247
(-0.4)

Table 5.1: Overall match rate of the models for each dataset and scenario. Mean agent type (γ)
noted in parenthesis. LT: Left turn, RT: Right turn. Number of games noted in the header.

mance comparable to dLk(A) model), but as mentioned earlier, the robust model is a model of
behaviour planning for an AV, and therefore ideally needs to be evaluated on criteria beyond just
comparison to naturalistic human driving, which I discuss in the next section.

Critical scenarios

While evaluation based on a naturalistic driving datasets helps in the understanding of how well
a model matches human driving behaviour, in order to evaluate the suitability of a model for
behaviour planning of an AV, the models need to be evaluated on specific scenarios that encom-
pass the operational design domain (ODD) of the AV [97]. Since the models developed in this
chapter are not specific to an ODD, I select three critical scenarios from the ten most frequent
crash scenarios in the NHTSA pre-crash database [160].

Intersection Clearance (IC): Left turn across path (LTAP) scenario where the traffic signal
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Figure 5.6: Mean and SD of success for each model in each scenario across all agent types.

has just turned from green to yellow at the moment of the game initiation. There is a left turning
vehicle in the intersection and two oncoming vehicles from the opposite direction close to the
intersection who may chose to speed and cross or wait for the next cycle. The expectation is that
the left turning vehicle should be able to clear the intersection by the end of the game horizon
without crashing into either oncoming vehicles, and no vehicles should be stuck in the middle of
the intersection.

Merge Before Intersection (MBI): Merge scenario where a left-turning vehicle (designated
as the merging vehicle) finds itself in the wrong lane just prior to entering the intersection, and
wants to merge into the turn lane in front of another left-turning vehicle (designated as the on-lane
vehicle). The expectation is that the on-lane vehicle should allow the other vehicle to merge.

Parking Pullout (PP): Merge scenario where a parked vehicle is pulling out of a parking spot
and merges into traffic while there is a vehicle coming along the same direction from behind. The
expectation is that the parked vehicle should wait for the coming vehicle to pass before merging
into traffic.

For each scenario, simulations are run with a range of approach speeds, as well as all combi-
nation of agent types from the set of agent types Γ = {−1,−0.5, 0, 0.5, 1}.
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One way to compare the models is to evaluate them based on the mean success rate across
all initiating states and agent types. Fig. 5.6 shows the mean success rate (success defined as the
desired outcome based on expectation defined in the description for each scenario) for all the
strategic and robust models. The mean success rate of the robust and dLk(A) model is higher
compared to the equilibrium models or the Qlk model. However, this is only part of the story.
With varying initiation conditions, it may be harder or easier for a model to lead to a successful
outcome. For example, in the parking pullout scenario a vehicle with low safety aspiration com-
ing at a higher speed is almost likely to succeed in all models when facing a parked vehicle with
high safety aspiration at zero speed. Therefore, to tease out the stability of models across differ-
ent safety aspirations (i.e. agent type combinations), Fig. 5.6 also plots on y-axis, the standard
deviation of the mean success rate across different agent types. Ideally, a model should have a
high success rate with low SD across types indicating that with different combinations of agent
type population (from extremely low safety aspiration to very high), the success rate stays sta-
ble. As seen in Fig. 5.6, robust and dLk(A) models are broadly in the ideal lower right quadrant
(high mean success rate, low SD) for parking pullout and merge before intersection scenarios.
However, for the IC scenario, the success rate comes at a price of high SD (for all models), as
indicated by the linearly increasing relationship between the mean success rate and its SD across
agent types. This means that the success outcomes are skewed towards a specific combination of
agent types; specifically, the case where the left turning vehicle has low safety aspiration. It is
intuitive to imagine that in a situation like IC, agents with high safety aspiration would be stuck
in the intersection instead of being able to navigate out of the intersection quickly.

Finally, the failure of models to achieve the expected outcome can also be due to a crash (min-
imum distance gap between trajectories ⩽ 0.1m) instead of an alternate outcome (e.g. getting
stuck in the intersection). In all simulations, for the parking pullout and intersection clearance,
no crashes were observed for any of the models. However, for the merge before intersection,
due to starting at a more risky situation than the other two in terms of the chance of a crash, the
crash rate (ratio of crashes across all simulations) for the models across all initial states and agent
types were as follows: (dlk(A): 0.052, MSPE: 0.022, SSPE: 0.007, Qlk(level-1): 0.026, Robust:
0.053). Qlk (level-1) demonstrates conservative behaviour primarily due to maxmax behaviour
of level-0 agent, where best responding to maxmax behaviour always ends up being more conser-
vative than best-responding to diverse models by belief updating (as in robust and dlk(A)). This
is reflected in the lower crash rate for the Qlk model compared to Robust. Equilibrium models
lead to a reduced collision rate compared to the dlk(A) and the Robust models, likely a result
of working under a complete information setting where there is no scope for misinterpreting the
other agents’ type. In terms of success rates, MBI also shows a lower success rate for all models.
This is mainly because the situation (low distance gap between vehicles during game initiation)
is setup such that for most models the optimal strategy profile is for the merging vehicle to wait
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for the on lane vehicle to pass. In fact, the WMA dataset had one instance of MBI scenario and
that resulted in failure. Similarly, collisions are also observed only in the MBI scenario.

Overall, whether or not an AV planner can succeed in their desired outcome depends on a
variety of factors, such as, the assumption the vehicle and the human drivers hold over each
other, the safety aspiration of each agent, as well as the specific state of the traffic situation. The
analysis presented above helps in quantifying the relation between the desired outcome and the
criteria under which it is possible.

5.6 Conclusion

This chapter developed a unifying framework for modelling human driving behaviour and strate-
gic behaviour planning of AVs that supports heterogeneous models of strategic and non-strategic
reasoning. The model consists of three layers of increasing ability for strategic reasoning, where
each layer can hold multiple behaviour models. For the non-strategic layer, I also developed
a model of level-0 behaviour for level-k type models through the use of automata strategies
(dLk(A)) that is suitable as a non-strategic model for the context of modeling driving behaviour.
The evaluation on two large naturalistic datasets shows that a combination of a rich level-0 be-
haviour can capture most of the driving behaviour as observed in the dataset. On the other hand,
for the problem of behaviour planning, with the awareness that there can be different types of
reasoners in the population, an approach of robust response to heterogeneous behaviour models
is not only effective, but also is stable across a population of drivers with different levels of risk
tolerance.
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Chapter 6

Application: Rare event sampling and
estimation

6.1 Introduction

With autonomous vehicles (AV) poised to change the transportation landscape, the ability of AVs
to handle a wide range of human traffic behaviours safely and reliably is of paramount impor-
tance. To guarantee this, it is not adequate to rely solely on field tests as the primary method of
AV evaluation, since the number of kilometres that needs to be driven for any statistical safety
guarantee is prohibitively high [107]. Thus, there is an increasing role of simulation in all major
components of an autonomous driving system (ADS), including perception, planning, testing,
and verification. Although it is possible to significantly speed up the verification process in sim-
ulation, it is also necessary for simulation environments to be realistic. For the behaviour planner
(which is the component in ADS responsible for tactical and high-level decision making), this
means that simulation environments should be able to qualitatively model the behaviour of other
traffic users in a way that is reflective of the real-world behaviour. Popular approaches design this
behaviour in several ways: expert-driven, where designers programme the motion and behaviour
of users [243], data-driven, where a model of behaviour is learnt from observations and natu-
ralistic driving datasets [45], or a hybrid model that uses a combination of both [246] and[197].
Although it is possible to design models that learn from real-world data, a major challenge in
any approach is the generation of unusual or atypical behaviour that is not readily observed in
the data, such as crashes or near-miss scenarios.

In dynamic systems, rare event (RE) sampling provides a mathematical framework to
analyse events of very low probability [186]. RE sampling techniques can be used to both
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estimate the probability of occurrence of rare events and to generate the conditions that lead to
rare events. In recent years, RE sampling based techniques have been used for simulation based
verification and testing of a wide range of motion and behaviour planners. O’Kelly et al. use
RE sampling for testing of planners that work in an end-to-end manner based on deep learning
[169], whereas other approaches apply similar techniques to evaluate performance in specific
traffic situations, such as lane changes and cut-ins [250]. Most approaches that use rare event
sampling for AV evaluation use cross-entropy based importance sampling, which is an adaptive
sampling technique to search for a sampling distribution that maximises the odds of leading
to crashes and near-miss scenarios. Part of the uncertainty in traffic environments arises from
the inherent stochastic behaviour of road users, as reflected in different driving styles of human
drivers. This is in contrast to the design of motion and behaviour planners of an ADS, which
optimize a set of defined objectives, such as, progress, safety, observance of traffic rules, etc.
Therefore, applying the same driving algorithm that drives the subject autonomous vehicle to
simulate the behaviour of other road users does not lead to the diversity needed for a proper
safety validation methodology. In this chapter, I bridge this disconnect by applying the models
of bounded rational behaviour developed in the previous chapters to sample both rare and typical
situations of interest for testing an AV planner. First, I construct different behaviour categories
based on the Quantal Best Response model to model stochastic traffic behaviour, and next, I
develop a rare event sampling and optimisation method that provides greater interpretability to
the generation of rare event situations compared to standard rare event sampling approaches
that are based on safety surrogate metrics. The results show that categorising different driving
behaviours and optimising for an appropriate driving policy can act as an effective technique
for rare event estimation. I compare the approach with a crude Monte Carlo based method, as
well as a baseline cross-entropy based approach [250], which has been shown to be effective for
accelerated evaluation of ADS. The proposed method in the chapter shows better performance
in key metrics such as the variance of the rare-event probability estimates and achieves 39%
speed-up over cross entropy sampling and a speed-up to the order of 104 compared to crude
Monte Carlo sampling. Further, I fit the behaviour model to a naturalistic driving dataset, and
evaluate its use for the generation of new situations. The evaluation is based on vehicle cut-in
events from the University of Michigan SPMD naturalistic driving dataset, which contains
several hours of real world driving.
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6.2 Background

6.2.1 Rare event sampling

Rare event sampling provides a framework for studying events of very low probability in dynamic
systems with the primary goal of estimating their probability. In a dynamical system, the gener-
alised dynamics of the system can be expressed asXt+1 = Φ(Xt, Gt), whereXt ∈ Rn, Gt ∈ Rm

are the state of the system and the input at time t, and Φ is the dynamics of the system. A rare
event ϵ is defined using a scalar performance function η, and the rare event is the occurrence of
the condition in which the function is greater than or equal to a specified threshold, η(Xt) ≥ b.
For convenience, rare events can also be defined over the input space, i.e, the set of inputs that
leads the system trajectory to a critical state, as defined by η(·) and b. Thus, the probability of
rare events can be expressed by the following integral.

pϵ =

∫
Iϵ(g)p(g)dg (6.1)

where Iϵ(g) is the indicator function such that Iϵ(g) = 1 if g ∈ ϵ, and Iϵ(g) = 0 otherwise.
We assume that the outcome for ϵ is deterministic given g. In crude Monte Carlo methods, the
above integral can be approximated by generating several independent and identically distributed
samples1 of the system inputs G(0), G(1), .., G(N) drawn from the distribution p(g) as

pϵ ≈ pMCS
ϵ =

1

N

N∑
i=1

Iϵ(G
(i)) (6.2)

By the Central Limit Theorem, as N → ∞, pMCS
ϵ is distributed asymptotically as a Gaussian

distribution with mean pϵ and variance σ2 = pϵ(1−pϵ)
N

. Since the above is only an estimate of
the true probability, it is important to calculate the margin of error based on the number of
samples. The relation between the sample size and the relative margin of error (re) of estimation
for a confidence interval of 0.95 is given by the relation2 N > 1.96

re2pϵ
. Therefore, even for a

relative error of 0.01 and a high rare event probability of 0.001, we need 107 samples. A major
problem of crude Monte Carlo sampling is that reducing error variance is difficult; we need
an prohibitively high number of samples, since most Iϵ(G(i))s are 0 and only very few are 1.
Importance sampling is a variance reduction technique that helps improve the accuracy of the
estimate pϵ with fewer samples. Instead of drawing samples from p(g), importance sampling uses
a proposal distribution q(g), where samples drawn from q(g) have a higher probability of leading
1 I use the convention where small g is the random variable and capital G is a sample. 2 Derivation in [186] page
4.
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to rare event situations. Using q(g), the integral in (6.1) can be written as pϵ =
∫
ϵ
Iϵ(g)p(g)

q(g)
q(g)dg,

which is the expectation Eq[
Iϵp
q
]. Following a similar approach to the crude Monte Carlo, the

above integral can be approximated as

pϵ ≈ pISϵ =
1

N

N∑
i=1

Iϵ(G
(i))w(G(i)) (6.3)

where w(G(i)) = p(G(i))

q(G(i))
is the importance weight of the sample G(i) or the likelihood ratio.

Estimator 6.3 is an unbiased estimator with µ = pϵ and σ2 = 1
N
(Eq[

Iϵp2

q2
] − p2ϵ) under the

condition that when I(g)p(g) > 0, q(g) > 0 is true. Thus, for every sample drawn from p(·)
that leads to a rare event, the same sample should also lead to a rare event if it were drawn from
q(·). Given a proposal distribution q(g), the complete algorithm for estimating pϵ based on the IS
technique is shown in Algorithm 4.

The most optimal choice for the proposal distribution q(·) is the original distribution condi-
tioned on the rare event ϵ

q∗(·) = p(g|ϵ) = p(ϵ|g)p(g)
pϵ

=
Iϵ(g)p(g)

pϵ
(6.4)

We can see that with this choice the variance of the estimator (6.3) reduces to zero, since any
sample drawn from the distribution would have the value Iϵ of 1 and the weight w = pϵ. Thus,
just a single sample can estimate the exact value of pϵ. In most cases, it is practically impossible
to find the exact distribution p(g|ϵ) as it requires knowing pϵ. However, this optimal distribution
gives an indication that a distribution close to p(g|ϵ) is a good proposal distribution.

One approach to generate the proposal distribution is based on cross-entropy (CE) method.
If q is chosen from a family of distributions ψ(·, θ), then the distance between the distribution
ψ(·, θ) and p(g|ϵ), measured by the Kullbeck-Leibler divergence, gives an estimate of the good-
ness of the proposal distribution. Thus, the optimal distribution can be found by solving the
following optimisation problem:

θ∗ = argmin
θ

DKL(ψ(·, θ), p(g|ϵ)) (6.5)

where DKL is the KL divergence between the two distributions, and θ∗ is the parameter of the
optimal distribution. The CE approach gives a fast iterative scheme to find the solution to the
above minimisation problem. The optimisation procedure can be further simplified by choosing
ψ(·, θ) as the exponential change of measure (ECM) function of the original distribution p(g).
Most approaches for rare event sampling in the AV literature approximate p(g) with a heavy-
tailed distribution from the exponential family. This enables CE optimisation to find a closed
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form solution to (6.5), thus making the process much faster. Although the CE approach provides a
point estimate of the probability of rare events, it provides little insight into the type of behaviour
that leads to rare event situations. This becomes especially relevant for safety evaluation, where
it is important to know what conditions and behaviours cause rare event situations.

Algorithm 4: Importance sampling algorithm for estimating probability of rare events.

Result: IS estimate pϵ := 1
N
·

N∑
i=1

wi

1 foreach i ∈ [0, .., N ] do
2 Sample an initial condition from the proposal distribution gi ∼ q(g) ;
3 Compute system trajectory based on the system dynamics :

Xi = Xt=0, Xt=1, ..., Xt=T ;
4 if max

0≤i≤T
η(Xi) ≥ b then

5 Calculate the importance weight of the ith particle wi :=
p(gi)
q(gi)

;
6 end
7 end

6.2.2 Bounded rationality and utility alignment

The Quantal Best Response (QBR) model described in Sec. 2.3 is a model of suboptimal decision
making, in which a boundedly rational agent, instead of always selecting the utility maximising
action, makes cost-proportional errors. Although QBR was presented as a model of response
to other agents’ strategies, it can also be reformulated as a method of action selection that is
independent of other agents’ actions. In this formulation, the probability P (a|s, λ) of taking a
discrete action a ∈ A in the environment state s ∈ S is based on the utility u : S × A→ [−1, 1]
as

p(a|s, λ) = exp[λ · u(s, a)]∑
∀a

exp[λ · u(s, a)]
(6.6)

The above formulation is a single agent view of QBR, and the only difference between the above
formulation and the one in Sec. 2.3 is that the agent’s utilities are expressed as a function of the
environment state (s), rather than as a function of the actions of the other agents a−i (a more
specific semantic meaning of the states and actions considered for the scenario under study is
presented in Section 6.3.1). Recall that when λ → ∞, the behaviour converges to pure utility
maximisation, i.e. the agent always takes the optimal action. Whereas λ→ 0 leads to a behaviour
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of action selection based on a uniform distribution. The utilities in the standard QBR model is
single objective, however, in our case, we build a model by considering multi-objective utilities.
In the case of multi-objective utilities, an agent may have different levels of precision for each
utility objective. Therefore, the precision parameter is a vector Λ = [(λ1, u1), (λ2, u2).., (λk, uk)],
where each λi acts as the precision parameter for the corresponding utility ui ∈ U , and U is the
set of multi-objective utilities. The probability of action selection f : S×A→ [0, 1] in this multi-
objective model can be formulated as the following mixture model in which p(a|s, (λi, ui) refers
to the action selection based on Eq. 6.6 conditioned on the individual utility function ui ∈ U .

f(a|s,Λ) = 1

k

k∑
i=1

p(a|s, (λi, ui)) (6.7)

The main idea behind the methods developed in this chapter is that individual values of the
precision parameter λi ∈ Λ result in different degrees and categories of suboptimal behaviour,
and some values of the vector Λ may lead to adverse outcomes, such as collisions more often
than others. To broaden the scope of the behaviours that result from the different values of Λ,
I also expand the acceptable range of individual precision parameters. Note that the typically
acceptable range of λ is [0,∞], and the worst an agent can do with respect to optimality is a
random selection of action (λ = 0). For other values, the agent’s action selection is still in
alignment with the utility, which means that the probability of selecting an action that fetches
a higher utility is strictly higher than the one that fetches a lower utility, u(s, ai) > u(s, a′i) ↔
P (ai|s, λ) > P (a′i|s, λ). In a typical scenario, it is understood that a driver will not willingly
wish to crash into a vehicle and, therefore, if the utility is modelling, for example, safety, the
condition should hold. However, for the kind of situation we want to model, this condition may
not always hold. For example, consider the case of a distracted driver accelerating and crashing
into another vehicle during a lane change manoeuvre. From a purely observational point of view,
this behaviour is indistinguishable from the case where a driver wants to willingly crash into
a vehicle. To generate these types of scenario, the range of individual values of the precision
parameters λ in this model is in the range [−∞,∞], in which a negative value allows a convenient
modelling of behaviour that is completely misaligned with the predefined utilities.

Figure 6.1 shows the relation between the probability of an action p(a|s) and its utility u(s, a)
at various levels of λ. A high value of λ = 100, skews the distribution p(a|s) such that the policy
prefers actions with maximum utility (u(s, a) = 1) with close to probability 1, i.e., a pure utility
maximisation model. Whereas, lower values of λ = 2,−2,−10 progressively lead to a more
sub-optimal policy. λ = 0 being the special case where actions are chosen based on a random
policy. As I discuss in the next section, the flexibility of the bounded rationality model provided
by the precision vector Λ helps model a wide range of naturalistic driving behaviours.
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Figure 6.1: Probability distribution of an action a based on its utility u(s, a). The plot shows the
effect of the precision parameter λ on the probability (a higher λ leads to actions that have higher
utility).

6.3 Rare event sampling and situation generation

6.3.1 Behavior categorisation

In this section, I use a typical vehicle cut-in scenario as a motivating example and show how the
bounded rationality model developed in the previous section can be used to categorise a range
of driving behaviours. A vehicle cut-in scenario (Figure 6.2) involves a vehicle (VS) maintaining
its lane of travel, while another vehicle (VLC) performs a lane change manoeuvre into the lane
of travel of VS . I consider the case where VS is driven in autonomous mode (subject vehicle) and
VLC is driven by a human (target vehicle). There are two conflict points, as marked by a cross in
the figure — a side-to-side conflict that can result in sideways collision, and a sequential conflict
that can result in rear-end collision.

As part of the cut-in manoeuvre, VLC needs to decide on its target velocity vLCt+∆t, where
t + ∆t is the time step when the front wheel of VLC crosses the lane boundary of VS’s travel
lane. VLC also needs to decide the safety distance (distance gap) it has to keep from VS , as
measured by the difference between the vehicles’ respective positions along the direction of
travel δ = d(lLCt+∆t, l

S
t+∆t). Based on these choices, VLC’s cut-in behaviour can vary significantly.

For example, VLC can cut-in close to VS with a low speed, or execute a high-speed manoeuvre
maintaining a fair distance gap. Thus, the action space for VLC for the manoeuvre consists of
the tuple (vLCt+∆t, δ), and the state space consists of vSt . Once VLC initiates the cut-in manoeuvre,
the subject vehicle VS needs to respond appropriately according to its behaviour decision logic,
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Figure 6.2: Vehicle cut-in scenario on a two-lane road. vS,LCt are the velocities of the autonomous
subject vehicle (VS) and the target vehicle (VLC) resp. at the start of the lane change manoeuvre.
v
{S,LC}
t+∆t and l{LC,S}

t+∆t are the velocities and locations when the front wheel of the target crosses the
lane boundary. δ is the distance gap.

Table 6.1: Behavior categories based on the constraints on the values of the precision vector
dimensions Λ = [(λδ, .), (λτ , .), (λp, .)]

Behavior
id

[λδ, λτ , λp] Behavior description

B1 [−,−,+] cut-in with high speed at close distance with
low ttc

B2 [−,+,+] high speed at close distance with high ttc
B3 [+,+,−] low speed at longer distance with high ttc
B4 [+,−,−] low speed at longer distance with low ttc
B5 [−,−,−] low speed at close distance with low ttc
B6 [−,+,−] low speed at close distance with high ttc
B7 [+,+,+] high speed at longer distance with high ttc
B8 [+,−,+] high speed at longer distance with low ttc
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which might include slowing down to maintain a safe distance gap or time-to-collision (ttc).

To model the behaviour of the target vehicle VLC , I use three utility functions; two based
on safety (uδ,uτ ), measured by the distance gap and the time to collision (ttc), and one based
on progress (up), measured by velocity (vLCt+∆t). u{δ,τ}(s, a) = 2S(2α{δ,τ}(s

′ − {δ∗, τ ∗})) − 1
and up(s, a) = 2S(10(x − 5)) − 1, where S is the standard logistic sigmoid function, α is the
slope parameter, δ, τ are the ttc and distance gap for the next state (s′), and δ∗, τ ∗, v∗ are the
parameter values that are based on safe driving best practices. These functions belong to the
general class of exponential utility functions, which is a popular class of utility functions used
in decision theory [71]. The choice is also based on insights from [105], which shows that a
driver’s perception of risk level and their response have an exponential relation to critical vehicle
and environmental states, such as getting close to an obstacle or curbside, and vehicle speed.
Based on these utilities, the precision vector is Λ = [(λδ, uδ), (λτ , uτ ), (λp, up)]. Following the
equations in Section 6.2.2, every instance of the vector Λ generates a stochastic driving policy
f(vS, (v

LC
t+∆t, δ)), and λδ, λτ , λp control the level of adherence of the policy to each utility.

As shown in Table 6.1, based on the level of adherence, the values of λ in Λ can be grouped to
form categories of driving behaviour. For example, the constraint λδ < 0, λτ < 0, λp > 0 leads
to a driving policy that cares less about maintaining a safe distance-gap and time-to-collision,
but more about making fast progress; shown in the table as the behaviour category B1. Thus, we
get eight behaviour categories for a vehicle cut-in scenario, and even within a category, there is a
wide range of individual driving policies sharing the common behaviour. We model the response
of the subject vehicle VS based on the Krauss car following model [120], which is activated at
time step t+∆T .

6.3.2 Parameter optimisation

In this section, we develop an optimisation scheme and show how the behaviour model developed
can be used for the purpose of rare event sampling. Revisiting (6.4), an optimal proposal distribu-
tion q(·) for importance sampling of rare events should be as close as possible to the distribution
p(g|ϵ). In other words, the goal is to find a low variance estimator that has high probability in
regions of the system input space g that lead to rare events. One way to achieve that is to find a
driving policy that is more likely to lead to such events. To this end, we use the parameterized
driving policy of (6.7) as the proposal distribution q(·). The system input space (g) is R2

>0 which
consists of the velocity of the target vehicle and the distance gap. Thus, q = f(g|Λ∗), where Λ∗

is the solution to the following optimisation problem Λ∗ = argmaxΛ Iϵ(g)f(g|Λ), where Iϵ(g)
is the indicator function for rare events. To solve the above optimisation problem, we use a Sim-
ulated Annealing (SA) based heuristic that first finds the category of behaviour (B1-8) that has a
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high Iϵ(g) and then subsequently finds a value of Λ within that behavior category that maximises
the optimisation objective.
Algorithm 5 describes the optimisation procedure. The two main structures in the algorithm,
[pB1

max, .., p
B8
max] and [ΛB1

max, ..,Λ
B8
max] maintain the maximum probability of rare events for each

behaviour category and the corresponding Λ of the driving policy that caused the rare events.
There are two loops in the procedure, the outer loop iterates over all behaviours to find a be-
haviour with maximum rare event probability (line 5), and the inner loop iterates to find the Λ
that maximises rare events within the behaviour category line (10). Following the standard tech-
nique in Simulated Annealing, the acceptance of a better solution (line 8 and 14) is controlled by
the temperature parameters (Tout, Tinn), which are reduced by a constant factor in every iteration
of the loop (line 18 and 21). The neighborhood generation of the outer loop (line 6) performs a
weighted sampling of behaviour ids based on the current [pB1

max, .., p
B8
max] vector at each iteration.

For the inner loop, the sample() method generates a value of Λ constrained by the behavior
category based on a uniform distribution (line 11). simulate scene() is the main entry point
to simulate a set of situations with different initial conditions. In our implementation, we use the
SUMO open source simulator to simulate the cut-in scenarios [118]. The method samples the
initial state vSt from the distribution of the subject vehicle velocities observed in the naturalistic
driving dataset, and runs N separate simulations where the behaviour of the target vehicle is
sampled based on the driving policy f(s, a|Λ). The algorithm outputs an estimate of Λ∗, which
is subsequently used to construct the final driving policy to be used in the estimation of the rare
event probability pISϵ based on the algorithm 4.

6.3.3 Situation generation

While the bounded rationality model can be used to provide a point estimate of the probability
of rare events, the model can also be used to sample new situations of interest to evaluate the
planner’s performance in specific circumstances. One simple way to achieve this is by sampling
the behaviours of other vehicles from the driving policy conditioned on a behaviour category.
For example, to generate situations of high speed cut-ins at close distances (B1, B2), the be-
haviours can be sampled from the distribution f(s, a|ΛB1,B2), where ΛB1,B2 is the domain of Λ
after applying the constraints of the respective behaviour categories (B1,B2) based on Table 6.1.
Although this approach can sample a wide range of behaviours, a more effective technique can
use a data-driven strategy consisting of the following steps: (i) acquisition of naturalistic driving
data for the scenario under evaluation, (ii) fitting a behaviour model based on the data, and (iii)
using the behaviour model to sample new situations that are not present in the dataset. In this
section, we propose an approach to achieve the above objectives.

Compared to the problem of rare event sampling, where we optimise for a single value of Λ
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Algorithm 5: Simulated Annealing (SA) based optimization procedure for Λ∗

Result: Λbidmax
max

1 [ΛB1
max, ..,Λ

B8
max]← init Λ()

2 foreach bid ∈ [B1, .., B8] do
3 pbidmax ← simulate scene(Λbid

max, N )
4 end
5 while i < Imax do
6 bid← weighted sample([pB1

max, .., p
B8
max])

7 pmax ← max([pB1
max, .., p

B8
max])

8 if exp
{
((pbidmax − pmax)/Tout)

}
<random(0,1) then

9 j ← 0
10 while j < Jmax do
11 Λ← sample(bid)
12 p ϵ← simulate scene(Λ, N )
13 if p ϵ > pbidmax or exp

{
((p ϵ− pbidmax)/Tinn)

}
<random(0,1) then

14 pbidmax ← p ϵ
15 Λbid

max ← Λ

16 end
17 Tinn ← temperature(j)
18 end
19 end
20 Tout ← temperature(i)
21 bidmax ← argmax

bid
pbidmax

22 end

that maximises the probability of rare events, fitting the model to naturalistic data poses ad-
ditional challenges. Naturalistic data are often multimodal in nature, i.e, they contain a mix
of different driving behaviours, and thus a model fitted with a single value of Λ cannot ade-
quately capture the variation. In order to resolve this problem, we apply insights from the be-
haviour categories developed earlier, and extend the bounded rationality based model for the
more general setting of modelling mixed behaviours. We introduce three mixing parameters
A = {αδ, ατ , αp} ∈ R3

[0,1], one for each utility, and correspondingly extend the driving pol-
icy formulation of (6.7) to

f(s, a|Λ, A) = 1

k

k∑
i=1

αip(a|s, (λ+i , ui)) + (1− αi)p(a|s, (λ−i , ui)) (6.8)
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Figure 6.3: Behaviour model that mixes different categories of behaviours (B1-B8) based on the
mixing parameter A = αδ, ατ , αp

where λ+, λ− are the positive and negative precision parameters, respectively. The distribution
in the above model has multiple peaks and allows for mixing multiple behaviours [B1-B8]. A
convenient way to imagine this is with a unit hypercube (Figure 6.3) where the corners are the
behaviour categories from Table 6.1, and the parameter A controls the corresponding mix of
behaviours. To fit the nine parameters (λ+,−

δ , λ+,−
τ , λ+,−

p , αδ, ατ , αp) to the observed data, we use
least squares optimisation based on Trust Region Reflective algorithm since the parameters are
bounded [141]. Finally, based on the fitted parameters, we use the behaviour model of (6.8) to
sample new situations that are unseen in the original dataset.

6.4 Experiments

In order to evaluate the bounded rationality based behaviour model for rare event sampling as
well as situation generation, we use the University of Michigan SPMD (Safety Pilot Model De-
ployment) dataset. SPMD is one of the largest naturalistic driving datasets collected over two
years, with 2842 equipped vehicles driving a total of 34.9 million miles. Part of the dataset with
two months of driving data is publicly available in [1], and contains information recorded from
the vehicle’s data acquisition systems, such as MobilEye camera, CAN bus, and GPS. We follow
the approach in [249] to extract 74,449 cut-in events recorded in the dataset, as well as the target
and subject vehicle trajectory for 5 seconds immediately following the event. For our experi-
ments, we define rare events as near-crash situations where the distance gap between the subject
and the target vehicle is 0.01 metre or less and the subject vehicle is not stopped.

128



As part of the evaluation, we address two specific research questions based on the approaches
developed earlier:3

• RQ1: How does behaviour-driven RE sampling compare to crude Monte Carlo and cross-
entropy based methods?

• RQ2: How well does the bounded-rationality model fit the observed naturalistic driving
data?

RQ1: Based on the theory presented in Section 6.2.1, we revisit that any system input sampled
from the optimal proposal distribution q∗ = p(g|ϵ) always leads the system to a rare event. A
factor that helps judge the goodness of a proposal distribution is the probability of generation of
rare events; the general intuition being that a higher probability is an indication of the distribution
being closer to p(g|ϵ). Thus, we first compare the bounded rationality based model developed
in the chapter (BR) with a proposal distribution based on surrogate metrics and Cross-Entropy
optimisation (CE) from [250], as well as crude Monte Carlo sampling (CMC) on the basis of
probability of generation of rare events.

(a) (b)

Figure 6.4: Comparison of probability of rare events based on proposal distribution q() and esti-
mates of pϵ after 100x1000 simulation runs. (a) Box plot of the probability of rare events based
on q() (b) Box plot of the pϵ estimates. Dotted and straight line shows the median and mean
values respectively for box plots.

For both BR and CE, we run 100 iterations of the algorithm to optimise the parameters of the
proposal distributions, and subsequently run another 100 iterations of 1000 simulations each with
the final proposal distributions. For the BR approach, the final proposal distribution parameter
3 Link to source code: https://bit.ly/2H83i1o

129

https://bit.ly/2H83i1o


was Λ = [λp = −6, λτ = −71, λδ = 6], with the distribution falling under the behaviour
category B4. As shown in Figure 6.4a, the proposal distribution based on the bounded rationality
model outperforms the cross-entropy-based model on the basis of the probability of RE when
sampled from the respective proposal distributions. (µ = 4.43 × 10−2 and µ = 3.17 × 10−2 for
BR and CE, respectively.) Since both BR and CE are biased distributions, they have a higher
probability of generating rare events compared to crude Monte Carlo sampling (µ = 5.6×10−4).

Along with the probability of occurrence of rare events, another important metric to evaluate
the quality of the proposal distribution is the variance of the estimate pϵ. A variance closer to 0 is
an indication of the proposal distribution being closer to the optimal distribution (p(g|ϵ)). A lower
variance also reduces the width of the confidence intervals of the pISϵ estimates, thus reducing the
relative error between the estimate and the true probability pϵ. Figure 6.4b compares the variance
of the estimates. As seen in the figure, the variance is significantly lower for BR compared to CE,
suggesting that BR provides a more reliable estimate of pϵ compared to CE. Furthermore, one
reason why the estimate for BR is lower compared to CE is because of a lower probability of the
input samples in the original distribution p(g). In other words, this means that the BR approach
was better able to sample values that have a higher probability of leading to rare events, but a
low probability of occurrence in the original distribution p(g). This is an advantage of having a
proposal distribution of different functional form, which means that input samples that have low
probability can be sampled more easily. Thus, the results show that categorising based on the
behaviours and optimising over them to find a crash-prone driving policy can act as an effective
rare event sampling strategy. RQ2: As a part of the second research question, we evaluate how

(a) (b) (c)

Figure 6.5: (a,b): Comparison of generated (blue cross) and naturalistic data (orange dots) for low
speed cut-in situations (subject vehicle speed is less than 15 meters per second). x-axis: metric
values (a: ttc (secs), b: range (meters)), y-axis: probability. (c) Distribution of behaviours for all
situations in the dataset.
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(a)

(b)

Figure 6.6: QQ plot for naturalistic data with respect to bounded rationality based behaviour
model (a) ttc (b) distance-gap. x-axis: theoretical quantiles of the distribution for the behaviour
model, y-axis: empirical quantiles from naturalistic data.

well the behavioural model based on bounded rationality can model naturalistic traffic data. To
do this, we performed a random split (80-20) of the SPMD lane change dataset. We use 80% of
the data to fit the parameters based on the approach discussed in Section 6.3.3, and we use the
remaining data for evaluation. Since the distributions depend on the speed, we repeat our analysis
for low (≤ 15 m/s), medium (15− 25 m/s), and high speed (> 25 m/s) situations. Figures 6.5a,b
show a visual comparison of the range and time-to-collision distribution of the generated and
observed data for low speed situations, shown as blue crosses and orange dots, respectively.
6.5c also shows the distribution of the behaviour categories in the dataset. Since almost 70%
of the events in the dataset were of low velocity, the distribution is tilted towards low speed
behaviours. To evaluate the fit analytically, the QQ plots are shown in Figures 6.6a,6.6b. QQ
plots are an effective tool to measure the fit of observed data to a theoretical distribution. The x-
axis represents the quantiles of the distribution, the y-axis represents the observed data quantiles,
and the blue dots map a quantile from the data to the distribution. As seen in the figure, we see
a linear relation (Pearson correlation coefficient ρ = 0.93, 0.98 resp. for ttc and distance gap)
between the two, which indicate that the observed data from the dataset is distributed according
to the fitted bounded rationality based model.

131



6.5 Related work

Rare event sampling: There are a number of different approaches used for rare event sampling,
including importance sampling, subset simulation, and splitting [16]. Subset simulation has been
used in domains where the rare event probability pϵ can be expressed as a product of factors of
higher probability, and the approach estimates the factor probabilities separately. Splitting is a
related technique where the simulation makes iterative copies of the system state that leads to a
state close to a rare event, and subsequently running simulations from that state [231]. Rare event
sampling also has a rich history of application in various domains such as aerospace [25], sys-
tems biology [194], and telecommunication [24]. Blom et al. [25] apply splitting technique to the
problem of safety verification for air traffic control in order to avoid rare events such as aircraft
collision. Blanchet and Mandjes [24] apply an importance sampling based technique for queuing
systems, and highlight the relevance of standard deviation of the estimate in a good IS proposal
distribution. In the domain of autonomous vehicles, Zhao et al. use rare event sampling for ac-
celerated evaluation of AV for lane change scenarios [250]. Kelly et al. use rare event sampling
to test driving policies that are based on end-to-end learning [169]. Both approaches use cross-
entropy based importance sampling as the simulation technique. To our knowledge, we present
the first approach that highlights the importance of different driving behaviours for sampling rare
events in the context of autonomous vehicles. Behavior modelling: Most previous approaches
to modelling traffic behaviour are limited to the deterministic case, where vehicle behaviour was
modelled as differential equations. Examples of such models include the Intelligent Driver Model
[218], along with its extensions, such as the Newell car-following model [162]. When applied to
the problem of ADS simulation, these approaches are limited in their ability to model the vari-
ation of human traffic behaviour, including positive, negative, and edge case behaviour. In the
broader field of behaviour modelling, there is an extensive body of literature on modelling and
simulation of pedestrian behaviour under varied situations. Popular approaches use variations of
the Social Forces Model (SFM) [93], where the behaviour of agents is modelled as a dynamical
system containing attractive and repulsive forces, and the final behaviour is the result of all such
forces acting on the agent. Although SFM provides an intuitive modelling paradigm to model
agent movement, it has been shown to be difficult to calibrate the models to real empirical data
due to the forces not being linearly additive in nature. To address the shortcomings of the social
forces model, potential-based methods follow an agent-free model, where the behaviour is not
modelled individually for every agent, as in SFM. Instead, potential-based methods treat goals
and obstructions as a continuous potential field, and the resulting behaviour is the solution to the
energy minimisation problem in the field. Potential field based methods can be considered to be
a special case of utility-based methods. However, like most utility-based methods, potential field
models work under the assumption that the behaviour always follows the optimal path. We con-
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sider this assumption to be restrictive and address this using bounded rationality in our approach.
Schmidt uses the notion of bounded rationality through prospect balancing theory to study driver
speed choices [199]. In our work, we use bounded rationality for lane change behaviours and
demonstrate methods to apply the models for verification and testing of ADS. Yang and Peng
[239] develop an errable driver model to model suboptimal driving behaviours, including dis-
traction and perceptual errors. Compared to the errable model, our approach is based on a more
general utility-driven framework, and thus can be applied to a wider variety of driving situations.

6.6 Conclusion

In this chapter, I develop a model of driver behaviour based on the Quantal Best Response model
of suboptimal decision making. I apply the behaviour model to two cases: (i) generation of rare
event situations and estimating the probability of rare events, and (ii) applying the behaviour
model to generate new synthetic data for testing behaviour planners. I evaluate the proposed
model based on a large naturalistic dataset and show that bounded rationality based behaviour
model can improve crude Monte Carlo sampling by an order of 104. Compared to an approach of
sampling surrogate safety metrics and cross-entropy optimisation, the performance of the new IS
proposal distribution model provides a 39% speedup of estimation and a reduction in variance by
an order of 102. I also show that the synthetic data sampled from the developed behaviour model
has a strong correlation with the naturalistic driving data.
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Chapter 7

Application: Dynamic occlusion safety
validation

7.1 Introduction

Safety validation of autonomous vehicle (AV) planners is a critical component in the develop-
ment of AVs. In recent years, as AVs face the challenge of sharing the roads with other human
drivers with diverse behaviour, the problem of behaviour planning for AVs has taken a multi-
agent view with the use of game-theoretic models for planning [136, 215, 216, 140, 85, 70].
Such planners, referred to in this chapter as strategic planners, view other road users in the
vicinity as agents playing a game, and the AV chooses an action based on a game solution, for
example a Nash equilibrium. Such models have been shown to be effective in simulation, and
also have been evaluated against naturalistic human driving behaviour [196, 210]. On the other
hand, evaluation of safety is also arguably a multi-agent problem, based on the idea that the
outcome of a traffic situation depends on the assumptions traffic agents have of each other as
well as the collective behaviour based on those assumptions. For example, it is clear that two
vehicles deciding to cross an intersection at the same time result in a higher risk than one vehicle
deciding to wait for the other. In order to perform a safety assessment of strategic planners, a
safety validation framework needs to be aware that the AV planner places certain assumptions
on the model of behaviour of other drivers, and therefore ideally focus the safety assessment on
scenarios where such assumptions are likely to break down. Since most existing game theoretic
planners work under the assumption that each vehicle in the game is aware of all other vehicles
in traffic, occlusions are prime avenues of such high risk situations.

Occlusions or obstructed views, where a road user’s view is obstructed due to static structures
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(trees, buildings, etc.), other vehicles in traffic, and elevation and geometry of the road, are the
leading cause of traffic accidents [2]. Most of the risk assessment due to occlusion has focused
on static occlusion, i.e., occlusions that are caused by static structures, such as trees, buildings,
parked cars, etc. [242, 150, 58]. On the other hand, situations of dynamic occlusion, i.e., occlu-
sion caused by another vehicle in traffic, have unique challenges and can appear unexpectedly at
any moment in traffic. For the problem of planning under dynamic occlusions, existing methods
have been proposed with a single-agent view (i.e., without taking into account collective be-
haviour) [96, 143, 30]; however, to our knowledge, there are no safety validation frameworks for
the evaluation of strategic planners for the problem. Given the criticality of dynamic occlusion
scenarios [2, 47], it is necessary to address this gap.

A major challenge of dealing with dynamic occlusions is that they are transient in nature,
i.e., they can occur in any traffic situation based on certain alignments of three vehicles. There-
fore, unlike the case of static occlusions, it is not possible to leverage prior information about
structures, such as buildings and trees, from high-definition (HD) maps and incorporate that in-
formation in the assessment of occlusion risk. The transient nature also means that the scope of
the problem is much bigger, with infinite possibilities of dynamic occlusions that cause poten-
tially risky situations that can arise in traffic. Therefore, existing repositories of observational
data drawn from naturalistic driving are not adequate to achieve complete coverage of all dy-
namic occlusion situations an AV will face in its operational lifetime. To address the problem
at scale, following the principle of a scenario-based accelerated evaluation [250, 182], an ideal
approach should generate realistic and critical simulation test scenarios that can effectively as-
sess the safety based on situations that go beyond the set of observed scenarios in existing data.
This chapter addresses the aforementioned challenges by making the following contributions. i)
A novel planner-in-the-loop (white box) safety validation framework for strategic planners using
the theory of hypergames ii) A multi-agent dynamic occlusion risk (DOR) measure for assess-
ing situational risk in dynamic occlusion scenarios, and iii) a search-based method to augment
naturalistic data with realistic dynamic occlusion scenarios using vehicle injection.

While dynamic occlusion can occur anywhere while driving, occlusions tend to occur at
multi-lane intersections where there is ample opportunity for vehicles to block each other’s view,
and vehicles are often moving along paths that intersect. In fact, the National Motor Vehicle
Crash Causation Survey found that 7.8% of all intersection-related collisions were caused by
the driver’s incorrect decision to turn with an obstructed view of traffic [47]. Therefore, we
demonstrate the efficacy of the approach with the help of experiments conducted on a large
naturalistic dataset from a busy traffic intersection, and show that our proposed validation method
achieves a 4000% gain in generating occlusion causing crashes compared to naturalistic data
only, along with a more diverse coverage, and ability to generate commonly observed dynamic
occlusion crashes in traffic that are beyond the naturalistic data used as input in an automated
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manner.

7.2 Background

Strategic planners for AV planning use standard models of game theory with the assumption
that all agents have a common view of the game, including the set of available actions to each
player, the utility of each action for every agent, collectively are part of common-knowledge in
game-theoretic terminology [82]. However, due to factors such as occlusion, distraction, and inat-
tention, a driver may not be aware of the presence of another conflicting vehicle and thereby have
a different view of the game than other vehicles in the vicinity. The hypergame framework pro-
vides a formal model of interaction for such scenarios where the strict assumption of a common
view of the game breaks down [19, 116, 226].

In a standard formulation of a game, all agents play a common game G = (N,A,U), where
N is the number of agents in the game indexed by i, A =

∏
∀i∈N

Ai is the set of actions available to

all agents and U : A→ RN are the utilities that map a set of actions of every agent (a strategy) to
a real vector RN , and Ui is the ith component of the vector representing the utility of the strategy
to player i. In the hypergame framework, instead of agents playing a common game G, they
play hypergames (H). The hypergames H = {H0, H1, .., HL} are organised in levels of game
hierarchy, where at higher levels, agents have greater awareness of the view of other agents of the
game that may not match their own. The level-0 hypergame is the common singular gameG, i.e.,
H0 = G, where all agents share the common view and play the common game. At level 1, players
have different views of the game, i.e., H1 = {G1

1, G
1
2, .., G

1
N}, where G1

i = (N1, A1, U1)i is the
ith agent’s view of the game, where they may have a completely different view of the number
of agents, the actions and utilities of the game relative to other agents’ view G1

−i (where −i
represents any other agent). At level 2, agents not only have their own individual view of the
game, but also awareness that other agents may have their own different views; therefore, the
level-2 hypergame H2 = {H1

1 , H
1
2 , .., H

1
N}, where each agent i’s view of the level-1 hypergame,

H1
i , together forms H2. Continuing up the hierarchy, the hypergame model can be extended to a

finite level L; however, we focus up to level-2 in our analysis, as that level is sufficient to model
risk arising from conflicts due to dynamic occlusion scenarios in traffic.

In this chapter, we use the above theory to construct three distinct perspectives of a traffic
situation with respect to dynamic occlusion: level-0 is occlusion resolved, where all agents have
a common omniscient view of the traffic situation (i.e., as if vehicles were transparent objects),
level-1 is occlusion naive, i.e., drivers ignore occluded spaces, and level-2 is occlusion aware,
i.e., drivers are aware of the occlusions in the situation and can have their own subjective process
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Figure 7.1: A left turn across path (LTAP) scenario from the WMA database. (a) Real traffic
footage along with the synthetic OV injected. (b) occlusion check without the OV; 2 is not oc-
cluded from 1. (c) occlusion checking with the OV; 2 is occluded from 1. The road lines in (b)
and (c) represent the centerlines of each lane.
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of resolving these occlusions and incorporating that awareness in their planning. We also assume
a setting where only one vehicle in the scene is occlusion-aware, such as an AV under test, and
the rest are occlusion-naive human drivers. Therefore, H2 = {H1} is a singleton set where the
level-1 hypergame H1 is constructed from the sole occlusion-aware vehicle’s perspective.

A solution concept provides a solution to a game, which results in a strategy profile, i.e.,
a set of trajectories that every vehicle executes. Some of the solution concepts proposed in the
literature for strategic planning in AVs include Nash equilibrium [179, 201, 85, 196], Stackelberg
equilibrium [70], the Qlk model [215, 216, 136, 196], and Pareto optimality [210].

The games are instantiated as simultaneous move games based on the joint system state
Xt =

∏
∀i∈N

Xi,t, of N vehicles in traffic at time t. Xi,t = [x, y, vx, vy, v̇x, v̇y, θ] are location co-

ordinates (x, y) on R2, lateral and longitudinal velocity (vx, vy) in the body frame, acceleration
(v̇x, v̇y), and yaw (θ) of a vehicle i at time t. We use the notation σ(Xt, G) for a strategy profile
for all players in the game G played in state Xt, with an additional subscript σi to refer to vehicle
i’s strategy in the strategy profile. The actions in the game are cubic spline trajectories [109, 6],
generated over a planning horizon of 6 secs. The utilities Ui in the game are multi-objective, with
two components: safety (a sigmoidal function that maps the minimum distance gap between
vehicle trajectories into the interval [-1,1]), and progress (a linear function that maps the length
of the trajectory in metres into the interval [0,1]). The two objectives are combined using a
lexicographic thresholding parameter (γ) [135]. Following [70, 196], we also use a hierarchical
decomposition of the actions of the game, where trajectories are generated based on high-level
manoeuvres. The construction of the game is the same as that in Chapter 3. Since our validation
method is white-box, we need to choose a solution concept a strategic planner uses. We choose
the Nash equilibrium (for the level of manoeuvres) due to its ubiquity [179, 201, 85, 196] along
with maxmax (for the level of trajectories) for its promise of being able to model naturalistic
human driving behaviour better than others [196]. However, we note that the method is planner
agnostic and can be extended to any strategic planner with just the knowledge of the solution
concept.

7.3 Dynamic occlusion

Occlusions are caused by specific spatial alignments between at least three vehicles such that
one vehicle is obstructed from the view of another vehicle. LetO(i, j, k) ∈ {0, 1} be an indicator
function that represents an occlusion. It has value 1 when vehicle k is occluded from vehicle
i’s view by an occluding vehicle (OV), j. For a traffic scenario with N vehicles, if O(i, j, k) =
0;∀i, j, k ∈ N , then the maximum level of the hypergame played by N agents is 0. This follows
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trivially from the observation that there are no occlusions, and therefore each agent is aware of
every other agent in the scene and plays the common game H0 = G. However, if there is a set of
vehicles for which O(i, j, k) = 1, there is an occlusion in the scenario, and therefore, on account
of i having a different view of the game, the minimum level of hypergame that the agents are
playing is at least 1. Fig. 7.1a illustrates a scenario where O(1,OV, 2) = 1 and O(2,OV, 1) = 1,
i.e., vehicle 1 and 2 are occluded from each other by vehicle OV.1

Purely the presence of an occlusion does not necessarily lead to a collision; for example, in
the same illustrative example, regardless of the view 1 has of the game, if the solution of that
game is such that 1 waits for the OV to cross, then that is a much safer outcome compared to a
solution where 1 decides to follow the OV across 2’s path and 2 decides to accelerate assuming
the OV will cross the intersection in time (recall that 1 and 2 are not aware of each other).
Therefore, we develop our risk estimation with a planner-in-the-loop approach that takes into
account, along with the traffic situation, the dynamic behaviour of all the involved vehicles given
by the strategic model used by the AV planner. Next, we present this notion more formally.

An occlusion-aware perspective is the level-1 hypergame H1 = {G1
1, G

1
2, .., G

1
N} that repre-

sents the individual games that occlusion-naive vehicles play. A Dynamic Occlusion Risk (DOR)
is a measure of relative risk based on that hypergame and traffic state Xt as follows.

DOR(Xt, H
1,S) =S( σ∗(Xt, H

0)︸ ︷︷ ︸
occlusion-resolved strategy

)

− S(
∏
∀i∈N

σi(Xi,t · X̂i
t , G

1
i )︸ ︷︷ ︸

occlusion naive strategies

) (7.1)

where X̂ i
t = {Xy,t : O(i, x, y) = 0; ∀x ∈ N,∀y ∈ N \x}, or the game state constructed from the

vehicles that an occlusion naive vehicle can see. The first component of the equation is the safety,
with respect to a surrogate metric S (we use minimum distance gap), of the occlusion-resolved
game. This reflects the situation in which all vehicles see each other and follow the equilibrium
strategy. However, an occlusion-naive vehicle i will instead solve the game G1

i and construct
occlusion-naive strategies. Comparing that strategy with the solution of the occlusion-resolved
game (H0) estimates the relative risk arising from dynamic occlusion. The above measure is
calculated based on one occlusion-aware AV’s level-1 perspective (H1). However, if there are
multiple AVs in the scenario with their own level-1 perspectives, the measure can be calculated
from each of those perspectives. The perspectives could be coordinated via V2X and the esti-
mated risk could be incorporated into planning.
1 The function O is asymmetric since occlusion depends on the position and orientation of the sensors on each
vehicle.
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7.4 Method

Figure 7.2: Schematic representation of accelerated scenario-based dynamic occlusion safety
validation method

Fig. 7.2 shows a schematic representation of our proposed method. A scenario-based acceler-
ated evaluation method [250, 182] generally has three key components, all of which are covered
in our approach — a) being able to draw scenarios from naturalistic driving data (input, step 1),
b) guided generation or sampling of novel test scenarios based on a target condition (steps 2-3),
and c) identification of risk based on a quantifiable measure and assessment of the component
under test through the measure (steps 4-5). Next, we describe each of the steps in more detail.

7.4.1 Naturalistic data and Relevant vehicle mapping.

From all situations in naturalistic driving data (we use the intersection dataset from the WMA
database [196]), we extract scenarios corresponding to the two main intersection navigation tasks,
namely, left turn across the path (LTAP) (Fig. 7.1a) and unprotected right turn (RT). For each of
these scenarios, we select the vehicle that executes the scenario at a given time and call it the
subject vehicle. With respect to the subject vehicle, we construct the set of relevant vehicles
by including i) any vehicle that is in cross-path conflict with the subject vehicle, ii) the leading
vehicle of the subject vehicle, and iii) the leading vehicle of a cross-path conflicting vehicle. The
set of relevant vehicles along with the subject vehicle forms the set of vehicles N , the system
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Algorithm 6: Occlusion-guided random search for a naturalistic scene with N vehicles.
1 DO ← {∅}
2 for s ∈ D do
3 V I ← occluding vehicle sampling(s)
4 for o ∈ V I do
5 for i ∈ N do
6 if ∃x ∈ N \ i;O(i, o, x) = 1 then
7 s← add to scene(o)
8 DO ← DO + {s}
9 end

10 end
11 end
12 end
13 return DO

state Xt at time step t, and represents a situation. The set D is the set of all such situations in
the dataset and represents important interactions based on traffic conflicts, and we use the set to
create the games/hypergames in the subsequent steps. The notion of subject and relevant vehicle
is used here as a way of isolating the LTAP and RT scenarios from the input data set and does
not have any special meaning outside of this context. As a minimal example of this construction,
in the snapshot shown in Fig. 7.1a, 1 is a subject vehicle corresponding to an LTAP scenario;
the relevant vehicles is the set {2,3}, since 2 is in cross-path conflict with 1, and 3 is the leading
vehicle of 2.

7.4.2 Dynamic occlusion identification and vehicle injection

The goal of this stage is twofold; first, to implement an occlusion check process that identifies
whether there is a dynamic occlusion in a given traffic scene (step 2), or in other words, imple-
ment the occlusion indicator function O, and second, augment naturalistic data with such scenes
by injecting vehicles in realistic configurations (step 3).

To achieve the first goal, we use a voxel-based raycasting approach [8]. We plot the raycasts
and vehicle bounding boxes (size l by w) using an occupancy grid map with a grid size of c. A
vehicle is considered occluded if fewer than ϵ rays collide with its bounding box. A particular
challenge of modelling driver vision is modelling driver attention, since where a driver is looking
directly influences what they can and cannot see. We use a distance-based approach as a model
of driver attention, whereby closer vehicles receive more attention than vehicles farther away.
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Algorithm 7: DOR identification algorithm.
1 DC ← {∅} ; // Initialize OCC set

2 for s ∈ DO do
3 H1 ← {∅} ; // initialize hypergame set

4 Xt ← states(s) ; // construct vehicle states

5 for i ∈ N do
6 Ni ← N
7 for j ∈ N \ i do
8 if ∃x : O(i, x, j) = 1 then
9 Ni ← Ni − {j} ; // Remove occluded vehicle

10 end
11 end
12 G1

i ← (N1
i , A

1
Ni
, U1

Ni
) ; // occlusion-naive game

13 H1 ← H1 + {G1
i } ; // Add it to the hypergame

14 end
15 if DOR(Xt, H

1, S) ⩾ θ ; // Collision check

16 then
17 DC ← DC + {s} ; // Add to OCC

18 end
19 end
20 return DC

The intuition behind this is that human drivers pay more attention to vehicles that are nearby,
since these vehicles are more relevant to the driver’s decision-making process. This translates to
closer vehicles receiving a larger number of raycasts than vehicles farther away. Figs. 1b,c are
examples of our occlusion-checking approach applied to a LTAP scenario with and without a
synthetic occluding vehicle.

Algo. 6 achieves the second goal (step 3). Since dynamic occlusion can occur anywhere in
the intersection, we sample configurations of potential occluding vehicles that can be realistically
injected into the scene (ln.,3, occluding vehicle sampling). We use a grid-based sampling with a
resolution of d metres along the lane centerline, and place vehicles ensuring minimum distance
gap with existing vehicles. For velocities, we sample from a distribution based on the naturalistic
dataset. Step 3 iterates over the samples of injected vehicles, V I , and if the injected vehicle
causes an occlusion, the vehicle’s configuration is added to the scene s (ln. 7, add to scene), and
the scene is added to the list of occlusion scenes DO (ln. 8).
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7.4.3 Hypergame construction and DOR estimation

Step 5 outputs the set of occlusion-caused collision (OCC) scenarios, represented by their initial
scenes DC ⊆ DO. It does so by selecting the scenes from DO that lead to collisions based on
the DOR measure. For each scene in DO, Algo. 7 constructs the level-1 hypergame based on
what each occlusion-naive vehicle sees and plays (G1

i ). If the DOR measure from the hypergame
results in a collision, the corresponding scene is added to the OCC set DC .

In order to make dynamic occlusion situations more realistic, we finish Step 5 with a reso-
lution check (Fig. 7.2). We run the game starting from state Xt in simulation. If, right after the
game initialisation, the occlusion is resolved and an emergency manoeuvre by any of the vehicles
avoids a crash, we exclude that situation from DC .

7.5 Experiments and evaluation

To evaluate and demonstrate the efficacy of our approach, we use the Waterloo Multi-Agent
(WMA) database recorded at a busy Canadian intersection with over 3.5k vehicles. We evaluate
our approach by comparing its output with the dynamic occlusion and risk identified directly
from naturalistic data, that is, without injecting additional occluders. We also evaluate the real-
ism of the occlusions and crashes identified by our method relative to ones commonly seen in
traffic and provide a severity analysis of the identified crashes. For the experiments, we used the
following parameter values: l = 4.1m, w = 1.8m, c = 0.1m, and ϵ = 3.

Comparison with naturalistic data. We first compare the number and variety of occlusion-
caused collisions (OCC) that were generated based on our approach with occlusion injection
and the OCCs generated purely from the naturalistic dataset. As seen in Table 7.1, using a non-
augmented approach purely based on the naturalistic dataset, we can generate only 2 OCCs,
whereas using the proposed accelerated approach allows us to increase the total number of OCCs

Naturalistic data Our approach

No. of OCC 2 80
No. of dynamic occlusion scenarios 1534 105,914

Table 7.1: Comparison with validation from only naturalistic data.
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by 4000%, to a total of 80 OCCs. Similar gains in manifold (7×104) are also seen in the number
of dynamic occlusion scenarios generated by our method.

In addition to faster generation of OCCs, our method also shows a greater coverage of OCC
configurations. Figures 7.5a and 7.5d show the positions of the occluding vehicles in the 80
OCCs generated using the augmented dataset and the 2 OCCs generated from the nonaugmented
dataset, respectively. Similarly, figures 7.5c and 7.5d show the positions of each vehicle involved
in an OCC at the moment of impact for the augmented and nonaugmented dataset, respectively.
The figures show that our approach achieved a much more even and wider coverage of the dy-
namic occlusion situations compared to the one observed from naturalistic data.

Diversity of generated scenarios. We were also able to generate a diverse range of OCCs.
Among the 80 OCCs, we found 53 front-to-front collisions, 21 angle collisions, 4 sideswipe
collisions, and 2 front-to-rear collisions (refer to [3] for details of these types). Many of these
collisions can be attributed to “tagging on” behaviour, which is characterised by a vehicle follow-
ing behind a left-turning occluding vehicle and not noticing that there is an oncoming vehicle.
This behaviour is typically caused by the follower vehicle making the impatient decision to pro-
ceed with the left-turn even though they do not know if there are oncoming vehicles. In fact,
69 out of the 80 OCCs possess this characteristic. This “tagging on” is an occlusion-naive be-
haviour, and is observed to be a common cause of crashes due to dynamic occlusion in the real
world (https://youtu.be/jDEZ-igoDgw?t=629). The same behaviour was also illus-
trated earlier in Fig. 7.1a, where vehicle 1 performs this “tagging on” behaviour which results in
a collision with vehicle 2.

11 out of the 80 OCCs do not possess this “tagging on” behaviour. However, in the case
of LTAP scenarios, the collision is also caused by a similar occlusion naive behaviour of the
left-turning vehicle, proceeding without having vision of potential oncoming vehicles. Figure
7.3a is an example of this situation. Here, vehicle 1 executes a left-turn without having vision
of vehicle 2. The result is an “angle” collision between both vehicles. This type of occlusion
scenario configuration is also commonly seen in real world situations (https://youtu.be/
tDN-mwNSJc8?t=43, https://youtu.be/Qk7ejm8MlEc?t=198).

Analyzing the locations of the occlusions, Figure 7.5a shows that occluding vehicles tend to
be positioned close to the center of the intersection (and along their respective straight-through
path for LTAP scenarios). However, for RT scenarios, our results suggest that the occluding vehi-
cle must be positioned at a particular location—at the end of the SW left-turn lane for (WS,NS)
OCCs or at the end of the ES left-turn lane for (SE,WE) OCCs. The large clusters in Figure
7.5c show that OCCs tend to occur as one of the colliding vehicles is in the process of complet-
ing its left-turn and the other colliding vehicle is crossing straight through the intersection. This
demonstrates that our proposed method not only has high diversity in the type of risky situations
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Figure 7.4: (a) 1 begins making a left-turn while 2 proceeds through the intersection. Both vehi-
cles are occluded from each other. (b) 1 collides with 2.

it can identify, but can also generate common situations observed in daily traffic in an automated
manner.

Severity analysis. Our results also allow for an analysis on how severe OCCs tend to be. Figure
7.7a shows the distribution of the 4 severity classes across the 80 synthetic OCCs. We calculate
severity of an OCC by extracting the relative velocity between the colliding vehicles and mapping
the value based on the ranges from injury models in [119, 79]. The severity class mapping is as
follows: S0:[0,5.3], S1:(5.3,7.7], S2:(7.8,10.3], S3:⩾10.3, all in ms−1. We use relative velocity
as a worst-case assumption instead of ∆v (where ∆v for a light vehicle approaches the relative
velocity between colliding vehicles when the other vehicle in the collision is much heavier, such
as a truck). That the severity distribution is skewed towards S3 is not surprising. Out of the 80
OCCs, 78 were LTAP scenarios, which most often lead to front-to-front collisions, resulting in
the highest relative impact speeds. In addition to the high likelihood of a severe collision, OCCs
are dangerous because they allow for little time for either driver to respond to the situation.
Figure 7.7b shows the distribution of durations from the moment both colliding vehicles are no
longer occluded to the moment of impact, across the 80 synthetic OCCs. The distribution ranges
from 0.5s to 3.0s with a mean value of 1.65s. The range of driver response time is typically
between 0.8s to 2.5s with a mean response time between 1.3s to 1.5s [63, 31, 130]. Based on the
average response times then, drivers only have between 0.15s and 0.35s to decelerate or perform
an evasive maneuver before a collision. Therefore, proactively identifying potential occlusion
situations before they occur is critical for ensuring driver safety.
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Figure 7.6: Figures (a) and (c) show the occluding vehicle and colliding vehicle positions for
the 80 synthetic OCCs. Figures (b) and (d) show the same information but for the 2 naturalistic
OCCs. The colliding vehicle positions are plotted at the moment of impact.
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(a) (b)

Figure 7.8: (a) Severity class distribution. (b) The distribution of time duration from occlusion
resolution to collision.

7.6 Related work

The literature on occlusion-aware planning can be divided into two categories: reachable set
analysis and probabilistic methods. Reachable set analysis [170, 115, 96] provides a method to
generate provably-safe trajectories by over-approximating the occupancy states of potential oc-
cluded vehicles. A challenge with set-based approaches is to tune the implementation such that
the vehicle not only produces provably-safe trajectories but also does not behave too conserva-
tively so as to disrupt the flow of traffic.

Probabilistic models, such as partially observable Markov decision processes [30, 143, 96],
provide a method to both handle uncertainty and perform optimal decision-making. Particle fil-
ters [242, 161], use Monte Carlo sampling to approximate future positions of potential occluded
vehicles, where large clusters of particles indicate a high likelihood of future occupancy. McGill
et al. [150], propose a probabilistic risk assessment tool which, in addition to incorporating cross
traffic, sensor errors and driver attentiveness in its risk calculation, also uses a dynamic Bayesian
network to reason about the occupancy of road segments. Occlusion-aware deep reinforcement
learning (DRL) [99, 108] has been used to learn safe policies for navigating unsignalized inter-
sections. However, both these works have only been applied to situations with static occlusion
and it is difficult for DRL to adapt to unseen scenarios. Unlike reachable set analysis, probabilis-
tic methods do not allow for safety guarantees.
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In the context of safety validation of AVs, there are several black-box approaches to the
problem [169, 52, 250]. In contrast, our work addresses the problem of safety validation from a
white-box perspective, which has received relatively less focus in this domain. Although a very
recent work addresses the problem of planning [248], to our knowledge, there are no existing
methodologies for the problem of validation of strategic planners.

7.7 Conclusion

In this work we presented a novel safety validation framework for strategic planners in AV. We
showed how the theory of hypergames can be used to develop a novel multi-agent measure of sit-
uational risk associated with dynamic occlusion scenarios. Based on that measure, we developed
an accelerated approach of safety validation by augmenting naturalistic datasets with realistic
dynamic occlusion scenarios, and assessing the safety of a strategic planner. We showed that the
validation method can achieve 104 gain in generation of dynamic occlusion scenarios, 4000%
gain in generation of collision scenarios, as well as diversity and alignment with common crash
situations. Ultimately, we foresee our proposed method fitting into a larger safety validation
pipeline [114], where, first, failure scenarios are found in low-fidelity in an accelerated manner,
followed by a high-fidelity examination of these failure scenarios. We hope that this work can be
a stepping stone for performing safety validation of autonomous vehicles under situations with
high levels of dynamic occlusion.
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Chapter 8

A taxonomy of interactions

8.1 Introduction

Human coordination and cooperation are crucial to solving conflicts in any busy traffic situation.
With self-driving cars thrown into the mix, it is clear that behaviour planning algorithms for au-
tonomous vehicles (AVs) need to understand and act in a manner that ensures safe co-existence
with other human road users for the foreseeable future. Coordination between road users is often
mediated by traffic rules; however, anyone who has ever walked through a busy city intersection
recognises that humans do not always act according to the prescribed rules, and ad-hoc strategic
interactions take the place of strict adherence to the rules. To equip AVs to participate in such
interactions, in recent years there has been a focus on strategic models for AVs, where a set of
road users are modelled as players in a general sum game, and various solution concepts have
been applied to address the problem of planning [70, 215, 136, 189], as well as the problem of
modelling naturalistic human driving behaviour [196, 210, 85]. The expression of strategies gen-
erated by these models is closely tied to the choice of the action space in the game formalism,
and covers a wide array of examples, such as specific control actions (acceleration, target veloc-
ity, etc.). [140], continuous trajectories [85], combination of hierarchical long- and short-horizon
control actions [70], and combination of hierarchical high-level manoeuvre and trajectory pat-
terns [196]. Although these models collectively provide a rich landscape of strategic models for
engineers to choose from in the development of AVs, when it comes to a broader understanding,
there is a lack of a common language to communicate to all stakeholders, including engineers,
regulators, and the broader public what these strategic behaviours in a given traffic situation on
the part of an AV entail. AV manufacturers can use their proprietary designs with the several
design options that game-theoretic modelling provides; however, a regulatory authority may be
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Figure 8.1: A typical use case for the taxonomy developed in this chapter. Different manufactur-
ers may use proprietary designs which when mapped automatically to a common taxonomy of
strategies can be verified by a regulatory authority.

interested in determining whether the strategies executed by an AV adhere to safety standards
more than the manufacturer’s internal design choices (Fig. 8.1). Therefore, as a step towards de-
veloping a common language for strategic interactions that is independent of game design, this
chapter develops a simplified taxonomy of traffic interactions that encapsulates common patterns
of behaviour observed in traffic, and a method of automated translation of the strategies generated
by strategic planners into that taxonomy.

Along related lines, the need for a taxonomy of strategic interactions is also relevant when
developing safety standards. What is considered safe action for an AV should ideally depend on
verifiable safety specifications, and frameworks such as Responsibility-sensitive Safety (RSS)
[202] and Safety Force Field [165] provide such frameworks of safety requirements. However,
the safety requirements in the frameworks focus on short-term reactive safety (e.g. over instan-
taneous velocities of vehicles), whereas strategic planners generate a plan over a longer-horizon
interactions. Since unsafe behaviour at the strategic level can eventually lead to hazardous situ-
ations, there is a gap in current safety specification frameworks to address strategic safety. The
development of a taxonomy for strategic interactions is a first step toward addressing that gap,
thereby allowing for identification of hazardous behaviours of a subject AV in strategic interac-
tions in traffic conflicts.

In this chapter, I develop a taxonomy of strategic interactions based on common determi-
nants of traffic interactions, such as who claims the right-of-way, whether an agent relinquishes
that right, whether an agent responds to the actions of other agents, and other alternate ways
of resolving conflicts. We also provide an example mapping of strategies from the form that a
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Figure 8.2: Schematic diagrams showing the relation among the taxonomy of strategies.

strategic planner AV generates to the taxonomy developed in this chapter, followed by an exper-
imental evaluation of two popular models of strategic behaviour, QLk and SPϵNE, based on one
pedestrian-vehicle and one vehicle-vehicle interaction scenario in simulation with respect to the
taxonomy. Finally, we also provide real-world interaction video clips to illustrate the usefulness
of the taxonomy.

8.2 Taxonomy of strategies

The taxonomy we develop is focused on traffic situations that have a static conflict point, such
as intersections and roundabouts. We first present the dimensions based on which the taxonomy
is organised followed by the taxonomy. Right-of-way (ROW) rules. One of the basic tasks in
traffic navigation is conflict resolution. Conflict points are locations in the traffic network where
multiple lanes intersect, merge, or intersect with a crosswalk, and road users traversing those
lanes need to behave in a coordinated manner to reduce the risk of collision [175]. Traffic rules
play a major role in resolving the conflicts and provide guidelines of behaviour for all the road
users involved. The way traffic rules resolve conflicts is by ROW assignment to a road user (e.g.
who has the priority to proceed at an unsignalised intersection), where a road user holding the
ROW has priority and can proceed to be the first to cross the conflict zone. In some jurisdic-
tions, such as Austria, traffic rules even require road users relinquishing their ROW to indicate
that through a signal. Therefore, the first dimension of the taxonomy is based on how road users
(agents) behave in relation to the ROW rule in a traffic conflict.
Responsiveness. The second dimension of the taxonomy is based on how agents behave in re-
lation to the actions of other agents. A basic assumption of game-theoretic modelling of traffic
is that the agents play a common game, in which each agent is aware of the other agents in the
game. On the other hand, aspects such as distraction, mis-attention, and occlusion, lead to cir-
cumstances where one agent may not be aware of the other agent; and therefore, due to these

151



arguably natural aspects of traffic and human behaviour, the common game assumption breaks
down. For humans, checking whether another road user is aware of them and at the same time
making the other road user aware of their presence is a skill that we learn over time and takes the
form of various non-verbal modalities of communication [181]. One such modality is through
kinematic motion patterns [60, 7], where, based on changes in motion trajectories (e.g. pedestri-
ans slowing down for a turning vehicle), a road user may communicate an acknowledgement that
they are aware of another road user. Therefore, the second dimension of the taxonomy, respon-
siveness, is built upon the above idea, where we denote an agent’s strategy to be responsive if it
involves changes in the motion characteristics in response to the actions of other agents. Whereas
following the default ROW rule can resolve the game in one round, the second dimension be-
comes salient when, due to miscommunication or agents not following the default rule, the game
goes to subsequent rounds. Fig. 8.2 shows the taxonomy of strategies categorized based on the
two dimensions of initial response to ROW rule (lighter boxes) and subsequent response to other
agents’ actions (darker boxes). Anonymised links to real-world snippets showing examples for
each category are noted in Table 8.2.

8.2.1 Taxonomy

Adherence

Adherence is a class of strategies in which an agent holds the ROW and starts to proceed. De-
pending on the subsequent state of the game and whether there is a change in the characteristics
of its trajectory, an adherence strategy can be further classified as responsive or unresponsive.
Unresponsive adherence (UA). In an unresponsive adherence strategy, an agent claims their
ROW by starting to proceed, and irrespective of the actions of other agents’ in the vicinity with
whom they are in conflict with, they do not change their motion trajectory. A typical unrespon-
sive adherence strategy is moving with a steady velocity even in the face of other conflicting
agents’ (who do not have the ROW) attempts to violate that right. Fig. 8.3a shows an example
of unresponsive adherence. In this scenario, a pedestrian at a crosswalk has the ROW and starts
crossing the crosswalk, while a white left turning vehicle in conflict (who does not have the
ROW) starts to proceed with the left turn at the same time. An UA strategy on the part of the
pedestrian is to continue walking at a steady speed, as opposed to slowing down in response to
the white vehicle’s action.
Although the UA strategy is motivated along the lines of whether or not a road user is aware of
another conflicting road user, there can also be alternate explanations for this type of strategy.
For example, while it is possible that in the above example, the pedestrian did not notice the
white vehicle moving into the crosswalk, it is also possible that the pedestrian kept moving at a
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Figure 8.3

steady speed because they anticipated the white vehicle would slow down and wait after noticing
them to be unresponsive, in other words, UA just being the optimal strategy from the pedestrian’s
perspective.

Responsive adherence (RA). Similar to UA, responsive adherence also implies that a ROW hold-
ing road user claims that right by starting to proceed. However, if a non-ROW holding conflicting
agent attempts to violate that right and proceeds at the same time, the ROW holding agent may
demonstrate a change in their trajectory, for example, by slowing down and proceeding cau-
tiously. In the example of Fig. 8.3a, a responsive adherence strategy on the part of the pedestrian
can be a) slowing down and proceeding with caution upon observing the turning white vehicle, b)
increasing their speed to move through the crosswalk fast to clear the way for the turning vehicle,
and c) slowing down and waiting for the turning white vehicle to pass. Although these individual
strategies represent different ways of dealing with the conflict, they demonstrate commonality
in terms of the pedestrian being aware of the vehicle, a signal being established that they are
playing a common game by their reaction to the white vehicle, as well as the initial willingness
of the pedestrian to claim their ROW status.
Responsive and unresponsive assertive adherence (RAA and UAA). Assertive adherence is a
specific type of adherence strategy, where a road user holding the ROW starts to proceed aggres-
sively (aggression can be indicated by a higher than normal jerk and acceleration) in order to
dissuade any conflicting road user from violating their right. The goal of this strategy is to signal
a strong willingness to defend the ROW. Depending on whether the agent subsequently modifies
their trajectory characteristics as a response to other agents’ action, an assertive adherence can
be responsive or unresponsive. Fig. 8.3c shows a responsive assertive adherence scenario, where
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the left turning vehicle starts to turn without holding the ROW; however, the right turning vehicle
in this case starts an aggressive turn to dissuade the other vehicle from violating their ROW, but
subsequently changes its manoeuvre to a non-aggressive turn when the white vehicle relents.

Relinquishment

Relinquishment strategy is the opposite of adherence, where an agent holding the ROW chooses
to wait and let another agent (who does not hold the ROW at that moment) proceed instead.
Unresponsive relinquishment (UR). In a unresponsive relinquishment strategy, the agent con-
tinues to wait for the other agent to pass even when the other agent keeps waiting.
Responsive relinquishment (RR). Under responsive relinquishment, an agent after initially re-
linquishing their ROW reclaims the right and proceeds if the other agent continues to wait.

Violation

As the name suggests, this type of strategy is demonstrated by an agent who does not hold the
ROW in the game, but decides to proceed. Similar to adherence strategies, ROW violation strate-
gies can also belong to two categories, responsive and unresponsive.
Unresponsive violation (UV). In this strategy, an agent without holding the ROW starts to pro-
ceed, and continues while not responding to the ROW holding agents’ attempt to reclaim their
right. Under such a scenario, to avoid a collision, some of the strategies that the other agent can
generate are unresponsive relinquishment, and responsive adherence of the type where they slow
down and wait. Responsive adherence of speeding up can also avoid a collision but may be much
more riskier choice.
Responsive violation (RV). In this type of ROW violation, a vehicle without holding the ROW
starts to proceed; however, as a response to another ROW holding agent reclaiming their right,
they can respond by changing their trajectory during the course of the game. Fig. 8.3b illustrates
an example of responsive violation on the part of the white left-turning vehicle, which on ac-
count of not holding the ROW should have waited for the right turning vehicle. However, after
starting to execute the turn, upon observing the right turning vehicle (who had the ROW) not
relinquishing their right, speeds up to complete the turn fast in order to avoid getting stuck in
middle of the intersection. The white left turning vehicle in the previous example of Fig. 8.3c
also demonstrates responsive violation of a different flavor, where it first starts to proceed without
holding the ROW, but eventually relents when the right turning vehicle demonstrates an assertive
adherence strategy.
Responsive and unresponsive aggressive violation (RAV and UAV). Similar to assertive adher-
ence, if a violating vehicle starts to proceed aggressively, this strategy is categorised as aggressive
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violation (the term aggressive is commonly used as a driving behaviour indicator [191] and in
this case is used instead of the word assertive to indicate that the agent did not hold the ROW).
Depending on whether an agent demonstrating aggressive violation later changes its trajectory
characteristics based on the response of the other agents’ action, the strategy can be of responsive
or unresponsive flavor.

Flexible path execution (FP)

The strategies presented until now are primarily based on a road user’s choice of trajectory.
Without the temporal component of a trajectory, just the sequence of locations (called a path)
is generally determined by navigable traffic regions, such as vehicle lanes for vehicles, bike
lanes for bicycles, and sidewalks and crosswalks for pedestrian. Common strategies in traffic are
variations over the trajectories by agents changing their movement velocities, whereas changes
in path are often minimal and are kept within the prescribed navigable regions. However, in
some cases, road users may choose to execute an alternate path as a way to resolve a conflict.
This alternate path execution strategy may be executed by an agent regardless of their ROW
status, and is demonstrated by agents choosing an alternate path to their desired goal location.
Fig. 8.3d shows an example of an alternate path execution strategy that follows after a (RA,RV)
strategy. In this scenario, a pedestrian having the ROW starts to proceed over the crosswalk,
and at the same time a right turning vehicle continues to turn through the intersection thereby
attempting to violate the ROW. Both agents generate responsive strategies by observing each
other’s actions, and choose to wait for the other agent to cross as their next action, thereby
leading to a deadlock. In order to resolve that deadlock, instead of reclaiming their ROW over
the crosswalk, the pedestrian chooses to go around the back of the vehicle to the other side of
the crosswalk. This type of strategy can be an initial action in the game as well as a subsequent
response and can be demonstrated by both the ROW and non-ROW holding agent (noted by the
placement of the block in Fig. 8.2).

8.2.2 Intermediate outcome — deadlock

Although not a strategy in and of itself, deadlocks are momentary states in the game where agents
in conflict stop and wait in order to avoid a collision. Deadlocks follow from certain strategy
choices (for example, the case of (RA,RV) in the previous example) and need a way of resolution
in the subsequent steps of the game. It can also result from a combination of relinquishment and
adherence strategies where both agents wait for the other to proceed. Attempted resolutions of
a deadlock can take one of the following forms — a ROW holding agent proceeds (RA), a non-
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ROW holding agent proceeds (RV), both proceeding at the same time (RA,RV), and any of the
agents involved in the deadlock chooses an alternate path to their destination (FP).

8.3 Mapping strategies to taxonomy

In order for the developed taxonomy to be usable in the evaluation of AV planners, there needs
to be a well-defined translation of the strategies that a strategic planner generates into one of
the strategy categories developed in the taxonomy. Although developing a translation for every
strategic planner proposed in the literature is beyond the scope of this chapter, in this section,
we illustrate one example. Hierarchical game theoretic planners, similar to the ones proposed
in [196], generate strategies that are a combination of high-level manoeuvre and a low-level
trajectory segment, where each trajectory segment at a node in the game belongs to one of the
two types of high-level manoeuvre, wait or proceed. We denote each manoeuvre as a symbol,
where w corresponds to the wait manoeuvre, p corresponds to the proceed manoeuvre, and pa is
a aggressive proceed manoeuvre defined based on the maximum acceleration of the trajectory.
The manoeuvre choices in the strategy can then be expressed as a regular expression (regex),
where each literal in the regex corresponds to a manoeuvre choice at each node of the game
starting from t = 0 (Table 8.1). To illustrate a few examples, for an agent holding the ROW,
an unresponsive relinquishment strategy involves the generation of a manoeuvre wait, regardless
of the actions of the other agents, which can be expressed as the regex w+. Similarly, a regex
w+p{w|p}∗ expresses strategies in which the agent chooses the wait manoeuvre at the first node,
followed by at least one proceed choice at any node in the game. For a non-ROW holding agent,
this would imply responsive adherence since they adhere to the ROW rule by waiting; however,
they can subsequently respond to the other agent’s action by choosing a proceed manoeuvre.
On the other hand, for a ROW holding agent, the same regex is responsive relinquishment type.
While we defined the process of matching a strategy to one of the taxonomy purely based on
the manoeuvre choices, one can also think of a more granular process of matching the strategies
based on the trajectory choices; for example, based on bounds of the acceleration to define what
counts as a steady movement for unresponsive strategies.

8.4 Evaluation of strategic behaviour models

One of the goals of developing a taxonomy is to establish a common language based on which
different models of strategic behaviour can be compared and evaluated. For the context of this
chapter, we perform an evaluation of two popular classes of models proposed for the problem
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Figure 8.4: Schematic representation of the dynamic game. Each node is embedded in a spatio-
temporal lattice and nodes are connected with a cubic spline trajectory.

of strategic behaviour planning in the AV literature, the QLk model [215, 140] and the Nash
equilibrium [179, 85, 155], and discuss the type of strategies that each model generates. More
specifically, for the Nash equilibrium based model, we select subgame perfect ϵ−Nash equi-
librium (SPϵNE) [72] as the solution concept for even comparison with QLk in regards to the
support for bounded rational agents in a dynamic game setting. For the Qlk model, there is a
choice to be made on the solution concept that a level-0 agent uses based on the caveat that level-
0 behaviour should be nonstrategic. To that end, we select a maxmax model due to its higher
alignment with naturalistic driving behaviour compared to other non-strategic models [196]. In
our implementation of the QLk model, all agents are modelled as level-1, i.e., internally they
model other agents as level-0 [234].

8.4.1 Game structure

The game is constructed as a dynamic game between two road users in conflict modelled as a
sequence of simultaneous move games played every ∆tp = 1.3 secs. starting at time t = 0 over
a horizon of ∆th = 4 secs. The rest of the construction of the game tree is identical to the one in
Chapter 5.

8.4.2 Simulation runs

For each of the models, we run simulations in two scenarios, one pedestrian-vehicle interaction
scenario and one vehicle-vehicle interaction scenario. For the pedestrian-vehicle scenario (Fig.
8.6b), a pedestrian (who has the ROW) has just started to cross the crosswalk at the moment of
initiation of the game, and a right turning vehicle should ideally wait for the pedestrian to cross.
For the vehicle-vehicle interaction scenario (Fig. 8.6 c), a right-turning vehicle holding the ROW
has just started to execute its turn, and the left-turning vehicle should wait for the right-turning
vehicle to cross before executing the turn. Both scenarios are simulated based on an intersection
in New York City (Fig. 8.6 a). The scenarios are initiated based on different initial velocities
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Figure 8.5: Distribution of strategies for SPϵNE and QLk model for the two simulation scenarios.

of the agents (1.3 to 1.8 ms−1 for pedestrians and 1 to 12 ms−1 for vehicles) as well as all
combinations of agent types γ ∈ [-1,1] with increments of 0.5. In total, there are a total of 1250
games for the pedestrian-vehicle scenario and 2,500 games for the vehicle-vehicle scenario. All
games are solved in a complete information setting with respect to agent types, the parameter ϵ
for SPϵNE model is 0.1, and the precision parameter (λ) for QLk is 1.

8.4.3 Results

Fig. 8.5 shows the distribution of the basic strategies (without the aggressive and assertive modi-
fiers) corresponding to each behaviour model. We see that there is a wide range of strategies that
each model generates based on the initiating situations of the game. However, for agents holding
the ROW, unresponsive strategies (both relinquishment and adherence) are the most common
type of strategies generated by both models. Given that the simulation did not incorporate an ex-
plicit model of distraction or misattention, the results demonstrate that the unresponsive strategies
can also be the optimal strategies compared to the other alternatives in some situations. Certain
strategies are frequently seen in both models, for example, (UR,UA), i.e., both pedestrian and
vehicle waiting for each other in vehicle-pedestrian interaction, and (UR,UV), i.e., pedestrian
waits, and the vehicle executes the turn for vehicle-vehicle interaction. There are other strategies
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(a) (b) (c)

Figure 8.6: Pedestrian-vehicle and vehicle-vehicle interaction scenario

Figure 8.7: Distribution of agent types for ROW holding agent for frequently generated strategies.

in which the models show considerable disagreement. For the vehicle-pedestrian scenario, the
most common strategy in the QLk model is unresponsive adherence for both agents (the vehicle
waiting for the pedestrian to cross) and is observed in approximately 30% of the games. Al-
though this is arguably the ideal strategy in this scenario, it is not a commonly observed strategy
in SPϵNE model (less that 10% of the games). Similar disagreement is seen for vehicle-vehicle
scenario with respect to (RA,UV) strategy, i.e., the right turning vehicle claims its ROW and
starts to move but waits because the left turning vehicle violates the ROW in an unresponsive
way; this strategy is more commonly observed in SPϵNE model than QLk.

The generated strategies also depend on the type value of the agents (recall that the higher the
type value of an agent, the higher their risk tolerance). Figure 8.7a shows the distribution of the
two most common strategies observed in the QLk model for the pedestrian-vehicle interaction
scenario with respect to the pedestrian type value. Since with higher types, the chances that
the pedestrian generates a proceed action increase, we see in the two graphs of Figure 8.7 a
that with higher types the probability of unresponsive adherence increases and unresponsive
relinquishment decreases. There is also an association between the agent type value and whether
the strategies they generate are responsive or unresponsive. Fig. 8.7b contrasts the strategies
(UA, UV) and (RA, UV), which differ only in responsiveness. The first graph of Fig. 8.7 b shows
what we would normally expect; the chances that a vehicle claims its ROW even in the face
of the right being violated will increase with its type, reflected in the increasing probability of
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the unresponsive adherence strategy. However, as we see in the second graph, the probability
of responsive adherence strategy peaks at medium risk tolerance (-0.5). This is because if the
risk tolerance is too low, then the ROW holding agent will not claim their ROW at all and, thus,
will not generate an adherence strategy. On the other hand, if their risk tolerance is too high,
then they will demonstrate unresponsive adherence rather than responsive one. Based on the
above analysis, first, since the two popular models generate a wide range of strategies based on
different game situations, an AV will need to carefully evaluate whether a chosen strategic model
is appropriate based on the type of strategy they generate in that specific situation. Second, since
certain types of strategy are more commonly generated by agents with specific types, an AV can
use the observed strategies to form a possible hypothesis about a road user, for example, if a
road user generates a responsive strategy, then their risk tolerance may be lower than someone
generating an unresponsive strategy, and an AV needs to take into account that information.

8.5 Conclusion

This chapter presented a taxonomy of human strategic interactions in traffic conflicts that is built
on the basic dimensions of how agents respond to their right of way and to each other’s actions
in a game. We demonstrated a way to map strategies from a form generated by a typical strategic
planner to those in the taxonomy. Based on our evaluation of two popular solution concepts used
in strategic planning, we highlighted the relation between the types of strategy generated and the
agents’ risk tolerance. On top of the presented taxonomy, one can build a formal framework of the
emergent communication as well as outcomes based on the different combination of strategies,
e.g., resolution based on traffic rules, deadlock, severe conflict (near miss, crash, etc.), successful
violation, etc. We hope that along with the development of a more formal framework for strategic
safety specifications over the taxonomy as a future work, the taxonomy can also be extended
for other traffic situations with discretionary actions and dynamic conflict points, such as lane
changes, which were not covered in this chapter.
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ROW status Maneuver strategy regex Matched taxonomy

For agent holding ROW

w+ unresponsive relinquishment (UR)
p+ unresponsive adherence (UA)
p+a unresponsive assertive adherence (UAA)

w+p{w|p}∗ responsive relinquishment (RR)
p+w{w|p}∗ responsive adherence (RA)
p+a w{w|p}∗ responsive assertive adherence (RAA)

For agent not holding ROW

w+ unresponsive adherence (UA)
p+w{w|p}∗ responsive violation (RV)
p+a w{w|p}∗ responsive aggressive violation (RAV)

p+ unresponsive violation (UV)
p+a unresponsive aggressive violation (UAV)

w+p{w|p}∗ responsive adherence (RA)

Table 8.1: Regular expression mapping strategies to taxonomy
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Category Link to an example snippet Description

unresponsive
adherence

https://git.uwaterloo.ca/a9sarkar/
traffic taxonomy project/ - /blob /
master / videos / taxonomy snippets /
non responsive adherence.mp4

Person walking
on left crosswalk

responsive
adherence

https://git.uwaterloo.ca/a9sarkar/
traffic taxonomy project/ - /blob /
master / videos / taxonomy snippets /
responsive adherence.mp4

Person walking
on left crosswalk

responsive
assertive
adherence

https://git.uwaterloo.ca/a9sarkar/
traffic taxonomy project/ - /blob /
master / videos / taxonomy snippets /
responsive assertive adherence.mp4

Right turning ve-
hicle

unresponsive
relinquish-
ment

https://git.uwaterloo.ca/a9sarkar/
traffic taxonomy project/ - /blob /
master / videos / taxonomy snippets /
non responsive relinquishment.mp4

Person standing
on left crosswalk

unresponsive
violation

https://git.uwaterloo.ca/a9sarkar/
traffic taxonomy project/ - /blob /
master / videos / taxonomy snippets /
non responsive violation.mp4

Person walking
on bottom-right
crosswalk

responsive
violation

https://git.uwaterloo.ca/a9sarkar/
traffic taxonomy project/ - /blob /
master / videos / taxonomy snippets /
responsive violation.mp4

silver left-turning
vehicle

flexible path
execution

https://git.uwaterloo.ca/a9sarkar/
traffic taxonomy project/ - /blob /
master / videos / taxonomy snippets /
flexible path execution.mp4

Person walking
on left crosswalk

deadlock https://git.uwaterloo.ca/a9sarkar/
traffic taxonomy project/ - /blob /
master / videos / taxonomy snippets /
deadlock.mp4

Between person
walking on left
crosswalk and
right-turning
vehicle

Table 8.2: Links to real-world examples of each category of strategy developed in the taxonomy
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https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/non_responsive_adherence.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/non_responsive_adherence.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/non_responsive_adherence.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/non_responsive_adherence.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/responsive_adherence.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/responsive_adherence.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/responsive_adherence.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/responsive_adherence.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/responsive_assertive_adherence.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/responsive_assertive_adherence.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/responsive_assertive_adherence.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/responsive_assertive_adherence.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/non_responsive_relinquishment.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/non_responsive_relinquishment.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/non_responsive_relinquishment.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/non_responsive_relinquishment.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/non_responsive_violation.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/non_responsive_violation.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/non_responsive_violation.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/non_responsive_violation.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/responsive_violation.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/responsive_violation.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/responsive_violation.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/responsive_violation.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/flexible_path_execution.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/flexible_path_execution.mp4
https://git.uwaterloo.ca/a9sarkar/traffic_taxonomy_project/-/blob/master/videos/taxonomy_snippets/flexible_path_execution.mp4
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Chapter 9

Conclusion and future work

9.1 Conclusion

Building artificial intelligence systems that can reason in a manner similar to that of humans
is a challenging task. However, this is an essential step towards the advancement of human-AI
interaction systems, such as self-driving cars. The focus of this dissertation is on the use of game
theory to build computational models of human driving behaviour so that the models can be used
as practical tools for the development and testing of autonomous vehicles (AV).

Game theory provides a mathematical framework of decision making in which rational agents
reason strategically over each others’ actions, and decide upon an optimal course of action in a
game. The theory is based upon several assumptions, most important of which is the idea of a
rational agent who (or which) selects utility maximising actions after modelling everyone else
as rational agents. There are also additional assumptions in the theory, such as that agents are
expected to know who they are playing the games with, the available actions of each player
in the game, and some information about the preferences of other players in the game. Once
these assumptions are met, the solution of the game can accurately predict the behaviour of
every agent in the game. However, in order to make this theory useful for building models of
decision making as observed in a naturalistic real-world setting, this dissertation systematically
evaluates each assumption. The dissertation also provides empirically backed practical guidance
to practitioners for the construction of the game-theoretic models of road user behaviour.

The focus of Chapter 3 is the question: Which model of reasoning fares best with respect to
model fit and predictive accuracy when evaluated against naturalistic data? In order to make the
models more intuitive and easy to integrate into existing AV development process, the models are
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developed over hierarchical games, i.e., a game construction where the actions of players in the
game are decomposed hierarchically into manoeuvres and trajectories. The chapter developed
three sampling-based methods of action construction, namely S(1), S(1+G), and S(1+B). The
evaluation of the three methods found that S(1+B) method, where agents sample a prototype
trajectory along with the trajectories corresponding to spatial and velocity limits under each
manoeuvre, shows higher predictive accuracy compared to alternate methods. Based on different
methods of action construction, as well as the solution concepts that can be used to solve the
games, the chapter evaluates thirty behaviour models with respect to naturalistic observational
data of driving behaviour at a busy intersection. A model of behaviour, QlkR, where each agent
believes that other agents will strictly adhere to basic traffic rules and the agent best responds
based on that belief demonstrates superior predictive performance and model fit compared to
alternate strategic (Nash equilibrium), non-strategic (maxmax and maxmin), and behavioural
game theoretic (Quantal level-k) based models.

When human behaviour in games is studied in a laboratory setting, the utilities are often con-
structed by the designer, and players are given that information a-priori, which in turn influence
their behaviour. However, the process is more difficult when game theoretic models are con-
structed from observational data since the utilities are beyond the control of the designer. Driving
behaviour in particular is also multi-objective with safety and progress as the two main dimen-
sions along which utilities of actions are aggregated. Chapter 4 focused on two theories of utility
aggregation, weighted aggregation, in which players weigh both safety and progress as a linear
combination, and satisficing aggregation, in which players evaluate utilities based on one or the
other dimension depending on the traffic situation. The process of inferring the utilities of agents
from observations is formulated as an estimation problem of the multiobjective aggregation pa-
rameter. The key question addressed in this regard is how to estimate preferences of players
in a game from observational data that takes into account the underlying model of reasoning?
Chapter 4 develops algorithms for estimation of utility aggregation parameters from observed
data for both weighted and satisficing aggregation and strategic and nonstrategic reasoning mod-
els. Furthermore, the chapter also evaluates the predictive performance of models when utilities
are constructed with the two aggregation methods for both strategic and non-strategic models.
The results showed that a linear weighting of safety and progress utilities had superior predic-
tive performance for intersection and roundabout scenarios, whereas satisficing methods showed
superior performance for crosswalk scenarios. The performance of models is also significantly
improved when a regression tree based learning method is applied to infer the aggregation pa-
rameters in unseen traffic situations compared to a fixed aggregation parameter.

Humans often demonstrate complicated sequence of actions that cannot be captured easily us-
ing normal form games. Therefore, the thesis also develops models for dynamic games, in which
the space of strategies includes a more complicated sequence of actions. Chapter 5 addressed
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problems that arise as a result of applying standard models from behavioural game theory, such
as the level-k model, in dynamic games. The first question, how to construct a model of level-0
behaviour for dynamic games that is non-strategic yet sophisticated enough for human driving
behaviour, is addressed through two finite-state transducer (FST) based models, accomodating
and non-accomodating automata. When agents are allowed to be of different degrees of risk tol-
erance, it is shown that almost all observed behaviours in two different datasets that include right
and left turning behaviours, can be explained through a combination of the two FST models.
Chapter 5 also addressed the question: how to build game theoretic models of traffic behaviour
that supports heterogeneous models of reasoning?. Based on three different layers of reasoning
capabilities, nonstrategic, strategic, and robust, in which each layer can hold multiple models,
a generalised cognitive hierarchy model is built to support heterogeneous models in a dynamic
game. Simulation based evaluation of three different traffic scenario setups showed that an AV
behaviour planner using a robust response model has superior success rates when facing a popu-
lation of drivers with diverse risk tolerance.

The second part of the dissertation focused on the applications of game theoretic models for
safety validation of AV planners. Chapter 6 developed a methodology to generate rare events
to test AV planners for lane-change scenarios. Different values of the precision parameter of
a Quantal Best Response model in a multi-objective setting are mapped to eight categories of
interpretable lane change behaviour. Using a simulated annealing based optimisation method,
the evaluation methodology finds the behaviour category and parameter values that maximise
the likelihood of a crash. Compared to a standard technique of rare-event sampling over surro-
gate safety metrics combined with cross-entropy optimisation, the proposed approach showed
a speedup of 39% in generating crash situations. Chapter 7 shows another application of game
theoretic models for safety evaluation of AV planners. Dynamic occlusions are momentary situa-
tions in traffic where a vehicle is occluded from the view of a subject vehicle by another vehicle.
These types of situation are one of the leading causes of traffic accidents at intersections. In the
proposed method, we show that the framework of hypergames, in which different agents have
different views of the game, can be used to develop a novel surrogate risk metric, Dynamioc
Occlusion Risk (DOR). When new situations are sampled from a naturalistic dataset, the DOR
metric can be used to effectively evaluate the safety of an AV planner under the conditions of
dynamic occlusion.

With different methods of action and utility construction along with various solution con-
cepts, a designer has several design choices at hand that they can use to design a game theoretic
behaviour planner for an AV. Understanding these modelling choices as well as the strategies
generated by an AV often requires technical expertise. From the perspective of AV operators,
revealing all design choices can compromise intellectual property. At the same time, even if de-
tailed design choices are made known to regulators, they may require a simpler representation
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to express what strategies are acceptable for an AV to execute. In order to address both of these
problems, the thesis concludes by developing a taxonomy of strategic interactions in Chapter 8,
which includes a simpler representation of action strategies for AV compared to game solutions.
The chapter also includes simulation experiment demonstrating how solutions from different be-
haviour models can be mapped automatically to the taxonomy using regular expressions and the
diversity of strategies that different behaviour models generate based on the proposed taxonomy.

9.1.1 Model recommendation

Chapters 3-5 presented the various modelling choices available to a designer for the purpose of
modelling driving behaviour as a game-theoretic problem. As is the case with any modelling
paradigm, the modelling decisions depend on the specific problem that the modeler wishes to
address. However, to make it easier for a practitioner, I present a synopsis of recommendations
based on the empirical findings in the chapters.

One-shot hierarchical games are well suited to model instantaneous decisions taken by road
users and are studied in Chapters 3 and 4. Many traffic scenarios, for example, point of turn
at intersections, entry at roundabouts, where the road user needs to make stop-go decisions are
examples of scenarios where this modelling construct is applicable. Such scenarios are also more
strategic in nature since the conflict presents a higher likelihood of an adverse event, and the
road user needs to reason over the actions over other agents. In the context of these models, the
following modelling recommendations are applicable.

• S(1+B) sampling is the preferred method of action construction for the trajec-
tories game in a hierarchical game.

• Maxmax is the recommended solution concept to solve the game of trajectories
in a hierarchical game.

• Weighted aggregation of safety and progress utilities with weights inferred from
observational data is the recommended method of utility construction for inter-
section and roundabout navigation. For crosswalk navigation, satisficing is the
recommended method of aggregation.

• For weighted aggregation, the parameters of aggregation should be estimated
from naturalistic observations. For satisficing aggregation, a parameter value
0 for the safety aspiration level can be considered adequate.

• QlkR is the recommended solution concept for the game of manoeuvres if a
common behaviour model is used for all scenarios (including scenarios such
as approach and exit from intersections).
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• Nash equilibrium is the recommended solution concept for a subset of scenar-
ios and situations where chances of strategic nature of interactions are higher
(the point where a road user needs to make a stop/go decision at a conflict).

• In the case of multiple Nash equilibria, payoff dominant equilibrium selection
is the preferred method.

Dynamic hierarchical games use similar decomposition of actions into manoeuvres and trajecto-
ries like a one-shot hierarchical game, but can also capture the sequential nature of strategic in-
teractions, including forming and updating beliefs about other road users based on observations.
The sophistication of such models comes with the drawback of having to address issues around
scalability. Chapter 5 studies such games in the context of left and right-turning behaviour. The
recommendations for dynamic games are as follows.

• The dynamic level k model is the recommended model for modelling traffic be-
haviour as a dynamic game, with level-0 behaviour modelled as a combination
of accommodating and non-accommodating finite state transducers.

• For autonomous vehicle behaviour planning, a robust response to a heteroge-
neous population of strategic and nonstrategic reasoners is the recommended
approach.

9.2 Limitations and future work

Observational data and game-theoretic models are not natural allies. Nevertheless, in the age of
big data, the two paradigms need to be bridged for human-centred AI systems to make use of
research from social sciences and economics, where there exists extensive literature on modelling
human behaviour using game theory. The thesis is a step in that direction with a narrow focus on
traffic behaviour and autonomous vehicles. However, the creation of models from observational
data can only generate hypotheses, and conducting user studies to confirm the hypotheses is an
essential step of model building. The biggest limitation of this work is the absence of user studies
due to reasons beyond our control1, and this limitation also provides a direction for future work.
Another limitation of the work is around the gap between the models developed in this thesis,
especially for dynamic games, and the scalability issues that arise in a practical use of dynamic
game-theoretic models for motion planning. There are also assumptions made in a few of the
models, the most important of which is the assumption of modelling the games as one of perfect

1 https://www.who.int/emergencies/diseases/novel-coronavirus-2019
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information. This assumption made it easier to analyse boundedly rational behaviour, but is also
a limitation because in reality uncertainty about the precise state of the game (which includes
estimating the speed, location, etc.) is a key behavioural factor. The thesis covered some of the
more common traffic scenarios (intersections, roundabout, crosswalk); however, there are several
other scenarios that road users encounter in traffic (e.g., highways, ramps, and interchanges), and
whether the empirical findings of this thesis would readily translate to other traffic scenarios, and
other traffic cultures (such as dense conditions like India or China) is an open question.

The limitations of this work also helps us identify potential future work one can undertake,
and I present a non-exhaustive list of such directions next.

User studies. The dissertation focused on observational data and matched the game constructs
that align with the observed action choices of the players. The conclusion that the thesis draws
about the reasoning model of road users needs to be validated with user studies conducted in
parallel to the observational data. This can be done by recording observational data with a drone,
and once the road user has completed the task, an exit interview can be conducted to elicit in-
formation about their action choices. The exit interviews would consist of the user selecting the
reasoning model and utility structure that aligned with their actual thought process. This would
require translating the game constructs into natural language descriptions that capture the key
concepts behind them.

AV driving strategy. Although the dissertation touched on the problem of behaviour planning for
AV, i.e., what driving strategy an AV should follow in traffic, in Chapter 5, the study is limited to
the three specific scenarios. This work should be extended to more general research on the design
of AV behaviour planning strategies. An open question in this context is whether an AV should
follow a pure or mixed strategy behaviour. The benefits and disadvantages of both approaches
should be evaluated on the basis of safety assessment and operational feasibility. An interesting
direction is the characterisation of traffic situations where one should be preferred over the other.

Behaviour driven safety analysis. Similar to the approaches in Chapters 6 and 7, there is a
need for a safety analysis that takes into account behavioural factors. Attitudes of impatience,
distraction, road rage, etc. are often typical causes of traffic accidents. Incorporating these at-
tributes into a game-theoretic model and building safety analysis tools using such models is an
interesting direction of future work. This line of research can result in a safety analysis test bed
where a test engineer can configure and tune these typical behavioural attributes. Such a test bed
can be built on top of existing microscopic simulation platforms such as SUMO, in which other
attributes such as traffic density and road structures are already configurable.

Machine learning and game theoretic models. At the moment most machine learning-based
methods for traffic behaviour prediction predict trajectories or manoeuvres of road users. On
the other hand, this dissertation identifies that reasoning models are affected by different traffic
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situations. In some cases like when a vehicle is about to enter an intersection, QlkR models are
observed to be superior, whereas in more strategic situations like at the moment of left or right
turns, Nash equilibrium based models are found to be superior. Since having a tabular catalogue
of which models works best for which traffic situation is not scalable due to the explosion of
possible traffic states, there is a scope of building machine learning models that predict both the
reasoning model and the resulting trajectories given any traffic situation.

Computational complexity in dynamic games. General sum, N-player, incomplete informa-
tion dynamic games are game structures that are well suited for modelling traffic interactions.
However, an explicit representation of the game tree can grow exponentially with each time step
and the number of players. Solving for all the equilibrium actions over such large game trees can
be computationally intractable. In order for game-theoretic models to be applied as a real-time
behaviour planner of an AV, we need better techniques to address the computational issue. Monte
Carlo based methods are often used to solve dynamic games for planning [200], however; char-
acterising bounded rational behaviour when using approximate techniques can be challenging.
One way to address this issue is to take the cost of computation into account in the characterisa-
tion of bounded rational behaviour, similar to the approach taken in [124] for mechanism design
considering that mechanism design based techniques have already been proposed for AV plan-
ning [43]. Another interesting line of research to address the computational problem is also the
use of game abstraction [33] combined with behavioural game theoretic approaches for planning
real-time AV behaviour.
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Senthil Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driv-
ing: A survey. IEEE Transactions on Intelligent Transportation Systems, 2021.

[113] Hideyuki Kita. A merging–giveway interaction model of cars in a merging section: a game
theoretic analysis. Transportation Research Part A: Policy and Practice, 33(3-4):305–312,
1999.

179



[114] Mark Koren. Approximate Methods for Validating Autonomous Systems in Simulation.
PhD thesis, Stanford University, 2021.

[115] Markus Koschi and Matthias Althoff. Set-based prediction of traffic participants consider-
ing occlusions and traffic rules. IEEE Transactions on Intelligent Vehicles, 6(2):249–265,
2020.

[116] Nicholas S Kovach, Alan S Gibson, and Gary B Lamont. Hypergame theory: a model for
conflict, misperception, and deception. Game Theory, 2015, 2015.

[117] Robert Krajewski, Tobias Moers, Julian Bock, Lennart Vater, and Lutz Eckstein. The
round dataset: A drone dataset of road user trajectories at roundabouts in germany. In
2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC),
pages 1–6, 2020.

[118] Daniel Krajzewicz, Georg Hertkorn, Christian Rössel, and Peter Wagner. Sumo (simula-
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pedestrian dataset of vehicle-crowd interaction from controlled experiments and crowded
campus. In 2019 IEEE Intelligent Vehicles Symposium (IV), pages 899–904. IEEE, 2019.

190



[239] Hsin-Hsiang Yang and Huei Peng. Development and evaluation of collision warn-
ing/collision avoidance algorithms using an errable driver model. Vehicle system dynam-
ics, 48(S1):525–535, 2010.

[240] Mehmet Yilmaz and Buse Buyum. Parameter estimation methods for two-component
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Appendix A

Appendix

A.1 Trajectory generation

In order to generate realistic future movements of road users, I use a lattice based trajectory
generation process. A planing lattice is a discretization of the continuous planning space along
three dimensions, the spatial lattices (X, Y )L and the velocity lattice VL. The spatial lattice is
constructed on a R2 Cartesian coordinate system with unit in metres. The resolution of (X, Y )L
depends on the task of the vehicle. Planning over a higher resolution lattice is computationally
more demanding, but can generate trajectories with higher accuracy (with respect to the target
reference points) compared to a lattice with lower resolution. For the roundabout, left turn, right
turn, and crosswalk navigation tasks, I use a resolution of 0.5 metres, and for straight-through
navigation at intersections, I use a resolution of 5 metres for (X, Y )L. For pedestrians, the reso-
lution (X, Y )L is also 0.5 metres. I use a higher resolution lattice for tasks that need fine grained
control over the planned future paths. The velocity lattice VL is constructed with a resolution of
0.3 ms−1.

A.1.1 Trajectory constraints

Proceed trajectory

The input to the trajectory generation process is in the form of two sets of constraints for each
of the lattices. The spatial constraints are the reference points on (X, Y )L that represent the cen-
terline along which the vehicle path needs to be generated. Depending on the sampling scheme
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presented in Chapter 3, i.e., S(1), S(1+B), S(1+G), the reference centerline can be constructed in
different ways. The velocity constraints on the trajectory generation process map each reference
point in (X, Y )L to a range of target velocities for that reference point. Formally, a velocity con-
straint Cv : (X, Y )L → V 2

L maps a reference point in (X, Y )L to a point in V 2
L that represents the

upper and lower bound of the target velocities corresponding to that point. It is not necessary to
specify the constraint explicitly for every reference point. For the reference points with missing
constraints, I interpolate the constraint velocity range from the ones for which the range has been
provided.

The input constraints for the trajectories that must be generated under the wait manoeuvre
are expressed in terms of the stopping distance range (Cv=0

d ∈ R2) and the stopping time range
(Cv=0

t ∈ R2), where Cv=0
d and Cv=0

t represent the distance range in metres and the time range in
seconds at which the vehicle comes to a stop.

A.1.2 Path generation

Let CX = [x0, ..., xK ] and CY = [y0, ..., yK ] be the x-axis and y-axis reference points of the path
centerline. Two second degree univariate splines, pX(s), pY (s) with smoothing factor 1

|CX | are fit
to the two sets of reference points as follows.

pref
X = {(xi, si) : xi = CX,i; si =

i∑
j=0

∥(xj, yj)− (x0, y0))∥2

k∑
j=0

∥(xj, yj)− (x0, y0))∥2
}

pref
Y = {(yi, si) : yi = CX,i; si =

i∑
j=0

∥(xj, yj)− (x0, y0))∥2

k∑
j=0

∥(xj, yj)− (x0, y0))∥2
}

The points s ∈ [0, 1] upon which the two splines are fit is a reference axis constructed as the
proportion of the planning horizon in terms of the Euclidean distance measured along the cen-
terline. Let sref be the points in [0, 1] that are used to construct the set pref

X and pref
Y . The final

generated path of the vehicle is {(pX(s), pY (s))} where s ∈ [0, 1]. The curvature of the path can
be calculated at any point s using the formula κ(s) = x′y′′−y′x′′

(x′2+y′2)
3
2

, where x′ = dpX
ds

, x′′ = d2pX
ds2

and

y′ = dpY
ds

, y′′ = d2pY
ds2

are the first and second order derivatives of the splines with respect to the
reference axis s. We can also calculate the arc length of the generated path at any point in s as
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follows.
l(s) =

∫ s

0

(x′(s)2 + y′(s)2)
1
2 ds

A.1.3 Trajectory generation

Proceed trajectory

The next step in the trajectory generation process is the construction of velocity profiles. Recall
that Cv maps each reference point in CX × CY to a set of points in the velocity lattice. Since the
path generated in the previous step is over the reference axis s, in order to generate a trajectory
over a time axis, we map the axis s to a time axis t. The time scaling is performed with the
following sequence of steps.

• Step 1. A cubic spline ϕ(l(s)) : [0, 1] → R is fitted based on the velocity lattice points
in the reference sref, which maps the arc length l(s) to a velocity value. This represents a
velocity profile with respect to the path length from the origin.

• Step 2. A set of time reference points tref
i =

i∑
j=0

2·|l(sj+1)−l(sj)|
ϕ(l(sj))+ϕ(l(sj+1))

;i ∈ {0, .., K − 1} is

constructed for each point si in sref that represents the time taken by the vehicle to reach a
reference point si following the velocity profile ϕ(l(s)) on the generated path.

• Step 3. Finally, another cubic spline v(t) is constructed with the time reference points tref

from the previous step with the same target velocities in the velocity lattice as used in the
construction of ϕ(l(s)).

The above steps establish a one-to-one correspondence between the axis s and the time axis t. For
any arbitrary time point t, we can calculate the corresponding value on the s axis as

∫ t
0 v(t) dt

l(1)
. The

integral gives the length traversed by the vehicle in time t, l(1) is the total length of the trajectory
until the end of the planning horizon, and the ratio gives the proportion that the vehicle travels
in time t. With some compromise in notation, let us refer to this conversion as s(t). Therefore,
the final trajectory is calculated at a frequency of 10 Hz. where each trajectory point at time t is
given by

time = t,
position = (pX(s(t)),pY (s(t))),
velocity = v(t),
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longitudinal acceleration = v′(t),
lateral acceleration = v(t)2 · κ(s(t)) ,
jerk = v′′(t),
yaw = atan2(p′Y (s(t)), p

′
X(s(t)))

A final set of constraints on velocity, longitudinal and lateral acceleration, jerk, and yaw, taken
from [14] selects the set of trajectories that are considered executable by the vehicle.
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Figure A.1: Sample deceleration profiles of a vehicle moving at 4 ms−1 with a target stopping
distance of 6 meters. The convexity parameter θ for the different profiles are shown as the black
dashed line.

Wait trajectory

The trajectory generation for trajectories corresponding to the wait manoeuvre is identical with
the exception of Step 1. Instead of using a cubic spline to model each velocity profile, I use a
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sigmoidal shaped curve as follows:

v(l, θ) =

{
vt=0 · 2(d

v=0−l)
dv=0·θ , if dv=0 − l ⩽ θ

vt=0 · 2l
dv=0·(dv=0−θ)

, otherwise

where dv=0 is the desired stopping distance, l is the trajectory length, vt=0 is the starting velocity
and θ is a convexity parameter that controls the shape of the curve in a way that when θ ⩽ dv=0−l,
the deceleration profile is convex and for θ > dv=0−l, the profile is concave. I use different values
of θ ∈ [0, dv=0] to generate the velocity profiles. Fig. A.1 shows 20 such deceleration profiles
for a desired stopping distance of 6 metres and vt=0 = 4ms−1. The deceleration profile curve
formulation is an adaptation of the cumulative density function of a Triangular distribution. In
summary, the set of steps for the generation of vehicle trajectories consists of the following steps.

• 1. Build the lattice (X, Y )L and VL with chosen resolution.

• 2. Setup constraints CX ,CY for the path, Cv for the velocity profiles corresponding to the
proceed manoeuvre, and Cv=0

d for stopping distance of the wait manoeuvres.

• 3. Generate path based on constraints CX and CY .

• 4. Generate trajectory based on constraints Cv and Cv=0
d

• 5. Select valid trajectories based on velocity, acceleration, jerk, and yaw limits.

For the generation of trajectories of pedestrian movements, I use a constant acceleration
(CA) movement model. In this model, first an acceleration / deceleration value is sampled from a
uniform distribution in the range of [0.1,0.5] ms−2. Next, a point mass kinematic motion model
is constructed to follow the sampled acceleration / deceleration value until the pedestrian stops
(under the wait manoeuvre) or reaches the target walking velocity. The target walking velocity
is sampled from an uniform distribution in the range [0.8, 2.3] ms−1. The sampling ranges are
based on the observed ranges in the crosswalk dataset.

A.2 Rules table for manoeuvres

Chapter 3 uses a set of rules to assign a high level manoeuvre based on the traffic segment, the
state of the traffic signal, the task and other conditions such as presence of pedestrians, a lead
vehicle or an oncoming vehicle. The assignment of high-level maneuvers based on the condition
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is shown in Table A.1. The columns SEGMENT and MANEUVER are self explanatory, TRAF-
FIC SIGNAL state is one of Green (G), Red (R), Any (*), and presence of other road users is
shown as Yes (Y), No (N), Any (*). The condition Any (*) is a free variable that returns true for
all values.
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SEGMENT MANEUVER TRAFFIC SIGNAL TASK LEAD PRESENT, PEDESTRIAN PRESENT,
ONCOMING VEHICLE PRESENT

IS RULE

prep-left-turn wait-for-oncoming G LEFT TURN N,N,Y Y
exec-left-turn proceed-turn * LEFT TURN N,N,N Y
left-turn-lane decelerate-to-stop R LEFT TURN *,*,* Y
prep-left-turn proceed-turn G LEFT TURN N,N,N Y
left-turn-lane wait for lead to cross G LEFT TURN Y,*,* Y
exit-lane follow lead * * Y,*,* Y
left-turn-lane proceed-turn G LEFT TURN N,N,N Y
left-turn-lane follow lead into intersection G LEFT TURN Y,N,N Y
prep-left-turn wait for lead to cross G LEFT TURN Y,*,* Y
exec-left-turn wait for lead to cross G LEFT TURN Y,*,* Y
left-turn-int-entry wait-on-red R LEFT TURN
left-turn-int-entry proceed-turn G LEFT TURN
left-turn-int-entry wait-for-oncoming G LEFT TURN
left-turn-int-entry wait for lead to cross G LEFT TURN
exec-left-turn wait-for-oncoming G LEFT TURN *,*,Y Y
through-lane-entry decelerate-to-stop R STRAIGHT *,*,* Y
through-lane-entry follow lead G STRAIGHT Y,*,* Y
through-lane follow lead * STRAIGHT Y,*,* Y
through-lane-entry wait-on-red R STRAIGHT *,*,* Y
left-turn-lane wait-on-red R LEFT TURN *,*,* Y
exit-lane track speed * * *,N,* Y
through-lane-entry track speed G STRAIGHT N,*,* Y
through-lane track speed * STRAIGHT N,*,* Y
through-lane-entry cut-in G LEFT TURN
left-turn-lane yield-to-merging * LEFT TURN
right-turn-lane decelerate-to-stop * RIGHT TURN
right-turn-lane wait for lead to cross * RIGHT TURN Y,*,* Y
right-turn-lane proceed-turn * RIGHT TURN N,N,N Y
prep-right-turn wait-for-oncoming * RIGHT TURN N,N,Y Y
prep-right-turn proceed-turn * RIGHT TURN N,N,N Y
prep-right-turn wait for lead to cross * RIGHT TURN Y,*,* Y
exec-right-turn proceed-turn * RIGHT TURN N,N,N Y
exec-right-turn wait for lead to cross * RIGHT TURN Y,N,* Y
exec-right-turn wait-for-oncoming * RIGHT TURN *,*,Y Y
right-turn-lane follow lead into intersection * RIGHT TURN
right-turn-lane wait-for-pedestrian * RIGHT TURN *,Y,* Y
prep-right-turn wait-for-pedestrian * RIGHT TURN *,Y,* Y
prep-left-turn wait-for-pedestrian G LEFT TURN *,Y,* Y
exec-left-turn wait-for-pedestrian * LEFT TURN *,Y,* Y
left-turn-lane wait-for-oncoming G LEFT TURN N,*,Y Y
exec-right-turn follow lead into intersection * RIGHT TURN Y,N,*
prep-right-turn follow lead into intersection * RIGHT TURN
prep-left-turn follow lead into intersection * LEFT TURN
exec-left-turn follow lead into intersection * LEFT TURN
through-lane-entry wait for lead to cross G LEFT TURN
through-lane-entry proceed-turn G LEFT TURN
through-lane-entry wait-for-oncoming G LEFT TURN
left-turn-lane wait-for-pedestrian G LEFT TURN N,Y,* Y
exec-right-turn wait-for-pedestrian * RIGHT TURN N,Y,* Y
exec-left-turn proceed-turn R LEFT TURN *,N,* Y
exec-left-turn proceed-turn Y LEFT TURN *,N,* Y
prep-left-turn decelerate-to-stop Y LEFT TURN *,Y,* Y
prep-left-turn proceed-turn Y LEFT TURN *,Y,Y Y
prep-left-turn decelerate-to-stop R LEFT TURN *,*,* Y
prep-left-turn decelerate-to-stop Y LEFT TURN *,*,Y Y
prep-left-turn proceed-turn Y LEFT TURN Y,N,N Y
exec-right-turn wait-for-pedestrian * RIGHT TURN *,Y,* Y

Table A.1: Rule table for generating manoeuvres for vehicles in Chapter 3
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Appendix B

Waterloo multi-agent traffic dataset

B.1 Introduction

A main goal of the dissertation is the study of interactive road user behaviourbehaviour in a
naturalistic setting using game theoretic models. A necessary artefact to achieve that goal is
access to naturalistic data that capture interactive behaviour among a group of road users in traffic
situations that may involve strategic reasoning. At the time when the work on the dissertation
started, existing large naturalistic datasets such as SHRP2 Naturalistic Driving Study (NDS)
captured driving of a single driver and had little information about the trajectories of all other road
users in the vicinity, which is necessary for the creation of interactive models. Other datasets such
as The Next Generation Simulation (NGSIM) dataset had limited coverage, and the accuracy in
terms of trajectory information was lower than that needed for the evaluation of game-theoretic
models [50].

To address the gap in the availability of an accessible dataset for the study of interactive road
user behavior in a naturalistic setting, one of the contributions of this thesis is the Waterloo multi-
agent (WMA) traffic dataset. The dataset was recorded at three locations in the city of Waterloo,
Ontario, with the help of an overhead drone. The locations covered a signalised intersection (Uni-
versity and Weber), a roundabout (Ira Needles Boulevard and Erb Street West) and a pedestrian
crosswalk at the University of Waterloo. The choice of locations was due to the intersection and
roundabout being the ones with the highest number of crashes for their respective traffic scenar-
ios in the city of Waterloo 1 2. The three datasets that are part of the WMA traffic dataset are
1 https://spokeonline.com/2018/11/the-most-dangerous-intersections-in-
waterloo-region/ 2 https://www.northumberlandnews.com/news-story/6140022-road-
ahead-roundabouts-are-safe-if-you-re-happy-with-lots-of-fender-benders/
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Dataset Location No.
of
road
users

Road user types Relevant
Agent
informa-
tion

Lane
conflict
informa-
tion

DUT/CITR [238] United States 2202 Vehicles, pedestrians,
golf carts

No No

inD [27], rounD
[117]

Germany 25246 Vehicles, pedestrians,
bicycles

No No

Stanford Drone
Dataset [184]

United States 10240 Vehicles, pedestrians,
bicycles

No No

Interaction
dataset [247]

United States,
Germany, China

40054 Vehicles, pedestrians No No

Waterloo multi-
agent dataset

Canada 11985 Vehicles, pedestrians,
bicycles

Yes Yes

Table B.1: Details of other naturalistic multiagent datasets.

available to anyone under the Creative Commons Attribution-NonCommercial 4.0 International
licence. The dataset, annotated videos, and documentation of the schema can be found at http:
//wiselab.uwaterloo.ca/waterloo-multi-agent-traffic-dataset/.

Multiagent datasets provide complete trajectory information about a group of interacting
road users for a traffic scenario. Due to advances in aerial photography, drones have been an
effective method for capturing naturalistic traffic data. During the time of development of the
WMA dataset, there were other similar datasets released using a drone-based data collection
method. Table B.1 provides an overview of the other available datasets of similar nature, includ-
ing the Stanford interaction dataset [184], the interaction dataset [247], and the xD set of datasets
[27, 117]. Compared to some of the larger datasets. WMA has a relatively lower number of road
users. This isn’t a reflection of the traffic density of the chosen locations, but rather WMA dataset
is shorter in duration (3 hours) compared to other ones, most notable of which is the interaction
dataset spanning 16 hours total. However, the WMA data set contains other information, such as
relevant agent information and lane conflict information. This set of information is essential in
the creation of game-theoretic models of traffic behaviour, and I discuss these attributes in detail
in Section B.3.
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(a) Intersection location at University Ave. and
Weber Street.

(b) Roundabout location at Ira Needles boule-
vard and Erb Street

(c) Crosswalk location at University of Water-
loo

Figure B.1: Location of the three datasets in the Waterloo multiagent traffic dataset.
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Figure B.2: Lane segments in the intersection dataset. Entry lanes are coded with a suffix of
positive integers and exit lanes are coded with a suffix of negative integers. The turn segments
are shown for south to west left turn and south to east right turn.

B.2 Data collection and processing

Data were collected using an overhead drone during midday traffic at the three locations in Wa-
terloo, Ontario, shown in Fig. B.1. The drone operation was carried out by a licenced drone
operator 3 approved by Transport Canada. The collection method did not include any identifying
information about the individuals, such as their faces, clothing, or physical features. Neverthe-
less, in order to protect the privacy of individuals, attention was paid to placing the drone at a
height that minimises the recording of such information. The raw drone footage was then sent to
a commercial company4, for the detection of the type of traffic user (vehicles, buses, pedestrians,
motorcycles, bicycles, etc.) and their geolocated trajectories.

B.3 Lane and conflict relations

The traffic map of each of the three locations in the dataset is divided into a set of lane segments.
For the intersection and roundabout dataset, the datasets also contain additional information on
whether two lane sequences are in conflict with each other.

3 http://hawkeyefilms.ca/ 4 https://datafromsky.com/
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Figure B.3: Lane segments in the roundabout dataset.

Figure B.4: Lane segments in the crosswalk dataset.
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B.3.1 Intersection dataset lane information

Fig. B.2 shows all lane segments in the intersection dataset. The table CONFLICT POINTS
(schema shown in Table B.2) lists all conflict points in the intersection scenario. Conflict points
belong to two or more paths (a sequence of lane segments) that are in conflict with each other.
Currently the data definition supports only conflict between two paths. If there are multiple lanes
in conflict, there is one conflict point for all two-path combinations of the conflicting lanes.

B.3.2 Roundabout dataset lane conflict information

Fig. B.3 shows all the lane segments in the roundabout dataset. In the roundabout data set, the
relation between lanes, including conflicts, is present in the LANE RELATIONS table (schema
shown in Table B.3). This table contains information between lane segments that are i) next to
each other in the direction of the lawful vehicle travel sequence, ii) in conflict with each other,
and iii) adjacent to each other.

B.3.3 Crosswalk dataset lane conflict information

Fig. B.4 shows all the lane segments in the crosswalk dataset. Since pedestrians can travel in any
direction, the conflict relations are maintained not only with respect to the lane regions, but also
the direction of the pedestrian.

B.4 Relevant agent information

In order to help researchers and practitioners easily construct the games in an interactive traffic
scenario, the dataset includes the set of relevant agents from the perspective of each road user. The
relevant agents (R(i)) from the perspective of a vehicle i for the three datasets are constructed as
follows.

Intersection dataset.

A vehicle in conflict with the subject vehicle i is included in R(i) if the vehicle has not yet
crossed the conflict point. A leading vehicle of the vehicle in direct conflict is included in R(i)
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Column Name Description
ID Conflict point id
PATH 1 One of the paths that lead to the conflict point. The form

of the path is : [ln <direction of entry> <entry lane id>,
[ln <direction of exit> <exit lane id>]. E.g. [ln s 3,
ln n -2] : Path from South entry lane 3 to North exit lane -2.
Lane id are numbered as follows: Entry lanes: Numbered
+ (positive) from left to right of lane direction. Exit lanes:
Numbered - (negative) from left to right of lane direction.

PATH 1 GATES Lane Gate ids along PATH 1.
PATH 2 One of the paths that lead to the conflict point. Format is

same as PATH 1.
PATH 2 GATES Lane Gate ids along PATH 2.
X POSITION UTM lateral co-ordinate (zone 17T) of the conflict point

location
Y POSITION UTM longitudinal co-ordinate (zone 17T) of the conflict

point location
SIGNAL STATE PATH 1 The traffic signal states of PATH 1 for the current conflict

point to be active from PATH 1’s perspective
SIGNAL STATE PATH 2 The traffic signal states of PATH 2 for the current conflict

point to be active from PATH 1’s perspective
POINT LOCATION Indicates whether the conflict point is location on the inter-

section or after (e.g. conflict between North to West turn-
ing vehicles using dedicated right turn and South to West
turning vehicles.) ON INTERSECTION : Conflict point is
located within the intersection. AFTER INTERSECTION :
Conflict point is located after crossing the intersection.

Table B.2: CONFLICT POINTS table in intersection dataset contain all the conflict points be-
tween any two lane segment sequence.
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Column Name Description

LANE 1 Lane segment 1
LANE 2 Lane segment 2
RELATION TYPE One of [ADJACENT SEGMENT, IN CONFLICT,NEXT SEGMENT]

Table B.3: LANE RELATIONS table in roundabout dataset contain all relations between two
lane segments.

Roundabout dataset.

Relevant vehicles for the roundabout dataset are constructed with respect to vehicles about to
enter the roundabout, i.e., in lane segments with suffix feeder2 in Fig. B.3. Any vehicle that is
in the three closest inner and outer circle arms along with the two closes feeder lanes is included
in the relevant agent set. Fig. B.5 shows a sketch of these lane segments from the perspective
of a subject vehicle on the lane segment s to nw feeder2 and about to enter the roundabout.
This set of lane segments represents the lane segments that a vehicle entering the roundabout
should notice for the presence of a vehicle. The closest lane segments are calculated based on
the information in the table LANE RELATIONS. The relevant agent information is stored in the
table RELEVANT AGENTS in the data set.

Crosswalk dataset

In the crosswalk dataset, from the perspective of a vehicle about to navigate the crosswalk, any
pedestrian currently on the crosswalk or about to enter the crosswalk in the next 6 seconds is
included in the set of relevant road users. The relevant agent information is stored in the table
RELEVANT AGENTS in the data set.
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Figure B.5: Sketch of lane segments that are used for in the assignment of relevant vehicles for
an example vehicle on lane segment s to nw feeder2

.
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Intersection Roundabout Crosswalk

Car 3352 6192 193
Pedestrian 264 178 1153
Medium Vehicle 182 174 27
Heavy Vehicle 61 53 4
Bus 22 39 12
Motorcycle 17 0 6
Bicycle 15 3 38

TOTAL 3913 6639 1433

Table B.4: Count of each type of road user in the three datasets.

B.5 Agent statistics

The dataset contain trajectories of seven types of road users, car, pedestrian, medium vehicle,
heavy vehicle, bus, motorcycle, and bicycle. Table B.4 shows the distribution of the numbers of
each type in the three datasets.

The average speed of vehicles when not stopped was similar for intersection and roundabout
datasets, inter-quartile range within 5-10ms−1 (Fig. B.6). The maximum speed limit for both
locations is 11ms−1. In the intersection dataset, we observe an association between vehicle size
and average speed, with larger vehicles having lower average speed. This association is not ob-
served for the roundabout dataset. For the crosswalk data set, the average speed of vehicles, as
well as the official speed limit (5ms−1) were lower than those of the other two data sets. It is
interesting to note that for the crosswalk data set, the average vehicle speeds were higher than
the prescribed speed limit for that location.

Fig. B.7 shows the distribution of the minimum distance gap between a subject vehicle and a
relevant road user, for each type of relevant road user type. We do not observe a significant differ-
ence among the different types of road user in terms of the minimum distance gap; however, the
gap values vary between different scenarios. The crosswalk scenario has the lowest interquartile
range of 10-25m for most types of road users, whereas intersection and roundabout scenarios
have higher gaps, IQR 10-25m and 12-40m, respectively.
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Figure B.6: Distribution of average speed of different types of agents in the datasets
.
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Figure B.7: Distribution of minimum distance gap in each interactive scenario of different types
of agents in the datasets

.
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