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Abstract 

The optimization of pavement Maintenance and Rehabilitation (M&R) planning and costs has 

been historically proven as a complex task. In recent years, Artificial Intelligence (AI) and 

Machine Learning (ML) applications in pavement engineering data analytics have been gaining 

momentum. These advanced techniques have shown promising results in civil engineering and 

transportation asset management. Therefore, designing a smart pavement framework that relies 

on the actual pavement responses and in-service condition can help with utilising the ML 

approach toward better understanding the performance of pavements. To implement the concept 

of “Smart Pavement”, constructing an interactive pavement pilot section that provides the 

necessary data feedback to improve the decision-makings of M&R would be needed. This thesis 

focuses on some aspects of the design of in-situ pavement monitoring and the applying selected 

machine learning techniques for pavement performance prediction. In order to design an 

effective pavement instrumentation plan, a literature review was conducted to identify and 

evaluate the major in-situ monitoring devices and previous case studies. Innovative technologies 

of Structural Health Monitoring (SHM) were also discussed as a part of the sensory system. A 

potential pilot section was identified by the Region of Waterloo, for which the pavement 

structure and technical details were retrieved.   Based on the results from the literature review 

and the evaluation of the proposed section details, a preliminary instrumentation layout has been 

proposed. Next, the interaction between the proposed embedded sensors and surrounding 

pavement structure under traffic loading was further studied to evaluate the effect of pavement 

instrumentation on actual structural responses. Therefore, a series of finite element analysis 

(FEA) scenarios were defined, and modelling was conducted using ABAQUS to quantify the 

artefact impacts of the sensors on the pavement responses.  Based on the FEA results, high 

stress- and strain-concentration areas were located which can be used to optimize the design of 

sensor layout, leading to capturing representative critical pavement responses. Consequently, 

sensor spacing criteria were suggested to avoid device interference for the response 

measurement.  
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Furthermore, it would be informative to know how, and which AI/ML methods have been 

previously used for pavement performance prediction purposes. A systematic literature review 

was conducted indicating that majority of studies used Artificial Neural Network (ANN) of 

which the prediction process is unexplainable to predict International Roughness Index (IRI) 

resulting in high prediction accuracies (R2  0.9). A Decision Tree (DT) model and a Random 

Forest (RF) model were developed using the most commonly used input data retrieved from the 

Long-Term Pavement Performance (LTPP) database to predict IRI. Finally, after the pruning 

process, the DT model and RF model resulted in a cross-validation accuracy (R2) of 0.846 and 

0.859, respectively. The single tree from the DT model is less complex than the trees from the 

RF model. Further studies on machine learning model development should be conducted to 

refine prediction accuracy. Finally, recommendation for future data collection standards from 

pilot sections were provided to help with developing a pavement response database that can 

overcome the inconsistencies in the existing LTPP database and potentially improve the 

reliability of the future pavement performance modelling.  
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Introduction  

1.1 Background 

Pavement networks are multi-billion-dollar assets that play a vital role in the national 

transportation infrastructure and economic growth of countries through enabling movement of 

goods, services, and people in a safe, fast, and economic manner. Understanding pavement 

performance evolution with time and accordingly optimizing Maintenance and Rehabilitation 

(M&R) costs have been historically proven to be complex tasks. This has been especially 

challenging due to the large number of variables that contribute to the overall pavement 

performance and the considerably high level of uncertainty in predicting traffic patterns, climate 

conditions, deteriorations, and material property changes. Poorly performing pavements result in 

increased construction costs, adverse environmental impacts, higher maintenance fees, 

complaints from road-users, and a risk to damaging vehicles and provoking accidents. In Canada, 

there are over 415,600 km of paved and 626,700 km of unpaved public roadway network as of 

December 31, 2019 (Transport Canada, 2019). Meanwhile, new roadways are continuously 

being designed and constructed every year with an increasing growth trend. After the roadways 

have been constructed, in order to maintain the proper functioning of pavement, systematic 

management of the pavement conditions and performance are crucial. Inadequate pavement 

maintenance strategies can result in unexpected cost due to potential failures and shortening of 

the designed service life. This price metric solely considers the impacts on material selection for 

pavement costs without taking other internal factors such as the costs imposed to municipalities 

for landfilling the milling products or repairing and replacing old road sections due to poor 

pavement performance into account.  

 

Typically, pavement deteriorations are monitored by project-level and network-level pavement 

management system (PMS). Current PMS is constructed based on condition surveys such as 

Pavement Condition Index (PCI) survey, surface roughness profiling, and Ground Penetrating 

Radar (GPR) and borehole drilling for existing pavement structure characterization. Such non-

destructive and destructive assessments require significant costs for PMS implementation in 
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order to properly monitor pavement conditions and plan necessary M&R actions. In addition, 

conditions surveys focus on the analysis of the deterioration output results due to damaging 

factors such as heave vehicle loading and extreme climate conditions. Yet, there is a lack of 

interpretation in the pavement deterioration process, i.e., how the pavement structure will 

respond to each type of damaging factors is yet uncertain. To this end, in-situ pavement 

instrumentation collects mechanistic pavement response data subjected to traffic loading and 

undergoing actual climatic condition. Such data can be utilized for quantitative analysis of 

structural and material performance. For example, when stress and strain at the bottom of asphalt 

layer are constantly above the maximum threshold values due to a large volume of heavy 

vehicles, bottom-up cracking may occur. Therefore, by accurately analyzing the stress and strain 

data, cracking occurrence and propagation can be predicted to reduce the need of costly 

condition surveys. The Smart Pavement project at the University of Waterloo implements a set 

of in-situ sensory system to monitor the long-term pavement performance, and this thesis seeks 

to conduct the design and analysis of instrumentation setting in a pilot section that will be 

constructed in the Region of Waterloo.  

 

In recent decades, Artificial Intelligence (AI) and Machine Learning (ML) methods have shown 

promising results in civil and infrastructure engineering data analysis. As a result of their 

growing application in different domains, AI and ML methods have been also introduced in 

pavement performance prediction models in recent years which can be noted from several 

existing studies. Many of those studies have stated that the prediction accuracy and efficiency of 

AI and ML-based models can exceed the accuracy of traditional models. A better performing 

model provides an opportunity to decrease costs associated with M&R of these valuable network 

of transportation assets by a better premise for decision-making. Therefore, this thesis first 

evaluates the types and characteristics of the AI/ML techniques used in the existing literature for 

the purpose of pavement performance predictions, and then utilizing the selected ML models and 

the currently available pavement performance database, to facilitate ML framework development 

for future applications of instrumentation data analysis.  
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1.2 Problem Statement 

In-situ Pavement Monitoring  

In this project, in-situ pavement monitoring will be implemented for the data collection. 

However, to design and install a proper monitoring system for the pilot section, there are many 

factors to consider which can be quite challenging. Of instrumentation layout design, sensory 

system selection, and data collection schemes, each aspect should be tailored for the pilot section 

in order to collect key types of data and maximize data quality and data quantity. Excessively 

sophisticated sensory system may result in unnecessary costs, whereas some key performance 

data may be neglected due to insufficiently designed instrumentation layout and inappropriate 

equipment selection. Currently, in-situ pavement monitoring has not been widely applied in 

Canada since most PMS rely on condition surveys. There is a lack of well-established 

instrumentation practices with specific procedures and regulations for mechanistic data 

collection in Canada. A thorough review of recent instrumentation methods and case studies 

should be conducted in order to fill this knowledge gap by identifying the primary sensor types, 

layout plans, and common issues.  

 

Although there are some recent instrumentation practices in Virginia (Al-Qadi et al., 2004), 

Maine (Swett et al., 2008), France (Gaborit et al., 2013), and China (Wang et al.,2012) that have 

discussed about the sensory system layout and device usage, another important aspect has not yet 

been thoroughly investigated which is the interaction between embedded sensors and 

surrounding pavement structure. In other words, the artefacts of embedding sensors for the 

pavement structural response under loadings need to be identified. The material property 

difference between sensors and pavement material may result in uneven stress and strain 

distribution that can affect the accuracy of measurements. In addition, in order to capture critical 

pavement responses, sensors should be located in the highly concentrated areas of stress and 

strain. However, the effect of embedded instrumentation on these critical response points varies 

from a pavement structure to another and from a layer to another. These questions should be 

answered via running analysis using numerical modelling approaches such as finite element 

Analysis (FEA).  
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AI/ML-aided Data Analysis 

In recent years, there is a growing trend of AI/ML-aided predictive modelling for pavement 

performance prediction. The methodology in each study varies in terms of algorithm and data. A 

thorough review that summarizes the state of the practice and state of the art in application of AI 

and ML for pavement performance prediction and identify the underlying problems can be 

highly informative for the future research.  

 

 However, in the field of pavement management, the M&R decision-makings, it can be 

informative for users to also understand the decision-process. Algorithms such decision tree are 

considered as explainable machine learning algorithm as the decision-making process is 

interpretable. Hence, in this thesis, decision trees are used and compared with random forests 

with limited number of trees to evaluate their performance.  

 

In addition, there has been a lack of transparency of pavement data processing and cleaning 

methods in previous studies that used AI and ML methods to predict pavement performance. 

Model prediction accuracy can rely heavily on data quality and quantity. Although many studies 

may have used the same data source and similar methodologies, their datasets used can be 

different as well as data quality, which is difficult for model performance comparison. Without 

clear data preparation instructions, it is challenging for other researchers to reproduce or replicate 

high quality datasets allowing for model advancements. Therefore, this study should also focus 

on the detailed illustration of data processing and cleaning.  

1.3 Research Objectives 

Corresponding to the problems addressed in section 1.2, the following research objectives are 

set: 

• To synthesize the results of current AI/ML applications in pavement performance 

prediction by identifying the most commonly used algorithms, input variables, output 

variables, pavement types, and data sources.  
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• To prepare a dataset from a publicly accessible data source while clarifying the data 

processing procedures.  

• To implement tree-based algorithms on the prepared dataset and evaluate the results and 

accuracy.  

• To review and evaluate recent in-situ pavement instrumentation and structural health 

monitoring practices in terms of sensory system layout design, proper equipment 

selection, and data collection techniques. 

• To identify the impact of embedded instrumentation sensors on surrounding pavement 

structure under loading using FEA 

• To optimize the instrumentation layout for the pilot section construction of the smart 

pavement project in the future.  

1.4 Summary of Contributions 

The following major contributions can be listed for this thesis: 

• This thesis provides a systematic review of the studies that focused on AI/ML-aided 

pavement performance prediction of which the outcomes help future researchers 

determine effective predictive modelling strategies efficiently by reducing random errors 

and biases and highlighting underlying problems. 

• The results of the IRI prediction models have demonstrated the capability of Decision 

Tree and Random Forest algorithms to achieve promising accuracy while providing clear 

decision-making visualization based on pavement dataset.  

• This study provides concise instructions of LTPP data preparation allowing future 

researchers to reproduce/replicate high quality datasets for prediction model 

advancement.  

• The study would contribute to improving data collection practices for better pavement 

performance modelling purposes.  

• The impacts of embedded sensor on pavement structure have been identified informing 

pavement engineers to optimize the instrumentation layout design to avoid device 

interference and measurement errors.  
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1.5 Thesis Organization  

This article consists of five main chapters to explicitly discuss the different aspects of the smart 

pavement project:   

• Chapter 1 - Introduction  

In this part, the background of the project, problem statement, research objectives, and summary 

of contributions are discussed.   

• Chapter 2 - Review of the relevant work  

The review was divided into two aspects: a systematic literature review of previous studies using 

AI/ML applications in pavement performance prediction and a review of pavement 

instrumentation practices.  

• Chapter 3 - Data analysis and machine learning modelling  

Detailed data preparation procedures are documented along with the challenges in the database. 

Machine learning framework and example models are established using LTPP database and the 

results are discussed. 

• Chapter 4 – Design and finite element modelling of the pilot section 

A set of finite element models in ABAQUS were constructed to investigate subsurface condition 

of pavement structure with embedded sensors under vehicle loading.  

• Chapter 5 - Conclusion and future work 

This Chapter includes a summary of the findings, conclusions, the major contributions of this 

research, and suggestions for future work. 
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Review of Relevant Work 

As an initial part of Smart Pavement project, the scope of review of this thesis fell into these two 

categories: pavement performance prediction using AI/ML techniques and in-situ pavement 

monitoring.  

2.1 Pavement Performance Prediction 

In pavement engineering management, pavement performance prediction is an essential 

component of Pavement Management System which aids the M&R decision-makings by 

estimating timeline when the performance indices will reach the threshold values (Haas et al., 

2015). Based on the parameters used, prediction models can be divided into four types (Haas et 

al., 2015): 

• Purely mechanistic, based on structural response such as stress and strain 

• Mechanistic-empirical that includes both structural parameter and functional parameter 

such as surface roughness 

• Regression, where input variables can be mathematically related to output variable(s)  

• Subjective, where the development of prediction models is based on experience 

Traditionally, the prediction methods behind these models are typically based on statistical 

approaches such as regressions using developed equations. For example, Karan in 1983 has 

developed a Riding Comfort Index (RCI) prediction model base on direct regression equation 

with a squared correlation coefficient (R2) of 0.84 and a standard error of estimate of 0.38 

(Equation 2.1) 

RCI = – 5.998 + 6.870 · LOGe (RCIB) – 0.162 · LOGe (AGE2 + 1) + 0.185 · AGE – 

0.084 · AGE · LOGe (RCIB) – 0.093 ·  AGE               (Equation 2.1) 

 

RCI = Riding Comfort Index  

RCIB = Previous RCI 

AGE = Age in years 

 AGE = Time period between the data collections  
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Another example of cracking prediction developed by Queiroz in 1983 is also based on a 

regression model yet only has a coefficient of determination (R2) of 0.54 and a standard error of 

the residuals of 15.4 (Equation 2.2).  

 

 CR = – 8.70 + 0.258 HST · LOG (N) + 1.006 · 10-7 HST1 · N             (Equation 2.2) 

 

CR = Percent of pavement area cracked 

HST = Horizontal tensile stress at the bottom of the asphalt layer (kgf/cm2) 

N = ESAL  

 

Although these models may have shown some satisfactory accuracies, they typically have 

difficulties adapting to noisy datasets. In addition, Markov chain method is another common 

practice used in the prediction models (Zeiada, 2020; Pulugurta, 2009; and Li et al., 1996). 

However, Markov chain may suffer from the fact that the prediction of the future period is based 

on the most recent time period, and it is difficult to include historical data and trace the long-term 

history (Haas et al., 2015). Furthermore, Federal Aviation Administration (FAA) has developed a 

robust finite-element-based model (FEAFAA) to predict airport pavement structural response 

associated with top-down cracking (Tarahomi et al., 2020). However, the huge computational 

cost of this model’s processing time which may take up to weeks is the major limitation of this 

finite element-based approach (Tarahomi et al., 2020).  

 

2.1.1 AI/ML-Aided Predictions Approaches 

In recent decades, AI and ML applications have been gaining momentum in the field of 

infrastructure asset management and pavement engineering. Common practices of AI/ML have 

been applied into image processing such as pavement crack detection and object recognition 

used in computer vision (Ju et al., 2019), predictive modelling such as asset deterioration and 

material behaviour predictions. Not only these practices have shown superior accuracy and 

precision, task efficiency has also been improved with the use of AI-aided techniques. 
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There are a significant number of studies that have investigated the application of AI/ML in 

pavement performance prediction. However, the data and algorithm used in each study are 

different from other studies. There are many pavement performance indicators from condition 

indices such as Pavement Condition Index (PCI) and International Roughness Index (IRI) to 

specific distress measurements such as longitudinal cracking length and rutting depth. All those 

indicators could be used as the prediction output variables. In terms input variable, it is still 

uncertain that which types of data should be included that have significant impacts on pavement 

deterioration. As for modelling approaches, each type of algorithm has its advantages and 

limitations which may be suitable for different datasets and prediction scenarios. Different 

combinations of dataset and algorithm result in a wide distribution of prediction accuracy. As a 

result, in this part, a systematic literature review has been conducted to determine and discuss 

what input variables and output targets were used in the models in addition to the algorithms 

implemented for model training and testing.  

 

Research Questions 

The research questions have been specified as the followings in order to provide clear guidance 

for the review: 

• What are the most commonly used AI and ML algorithms that have been specifically 

used for the purpose of pavement performance prediction? 

• How do these different algorithms compare with each other in terms of accuracy and 

precision of the predictions? 

• What are the main input (predictors) and output parameters used for the purpose of 

performance prediction modelling? 

• What are the characteristics of the databases used for training and testing the AI based 

models? 

• What are the most promising algorithms for the purpose of pavement performance 

prediction? 
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Scope of Review and Inclusion/Exclusion criteria 

Unlike the studies that focused on damage detection in pavement structure and correlation of 

constituents and mix design to the engineering properties of paving materials, the scope of this 

systematic review covers the performance prediction of pavements in terms of performance 

indices, stress and strain, and correlating the contributing factors to the damage evolution rather 

than detecting existing damages. Pavement performance prediction requires a wide range of 

parameters for its input data, which can be mainly categorized under traffic data, material 

properties, and climate conditions. There are many specific parameters included in each of these 

main categories. Selection of the parameters can affect prediction results as well as the feasibility 

of prediction model comparison.  

 

In addition, the selection of machine learning method and algorithms should also be carefully 

considered. Since this study focuses on the analysis of labelled pavement data, supervised ML 

methods were included, and unsupervised and semi-supervised learning methods were excluded. 

When selecting the review articles, the exclusion/inclusion criteria are: 

Table 2-1 The inclusion and exclusion criteria of systematic review 

Inclusion criteria  Exclusion criteria 

• Studies using supervised ML algorithm to 

predict pavement performance 

 

• Studies evaluating performance of ML 

models on datasets and reports pertaining 

to the accuracy and precision of the 

results 

 

• Studies using flexible, Rigid, and 

composite pavements including either Hot 

Mix Asphalt (HMA) and/or concrete 

properties prediction  
 

• Peer reviewed articles published in 

conferences, journals, and as technical 

reports 

• Studies predicting pavement performance 

using image processing and computer 

vision 

 
• Studies using semi-supervised learning 

and unsupervised learning approaches 
 

• Studies written in a language other than 

English 
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Information Sources 

In this systematic literature review, articles were searched from the following four databases:  

Association for Computing Machinery (ACM), Institute of Electrical and Electronics Engineers 

(IEEE), Transport Research International Documentation (TRID), and Scopus. All of the 

databases were accessed online.   

 

Search Strategy and Keywords 

The search keywords covered both pavement engineering and machine learning aspects.  

In terms of the pavement side, the keywords can be summarized as: “pavement performance 

prediction”, “stresses/distresses”, “rutting”, “fatigue cracking”, “International Roughness Index 

(IRI)”, etc. The selected keywords for the machine learning aspect included: 

“supervised/unsupervised/semi-supervised learning”, “Artificial Neural Network (ANN)”, 

“decision trees”, “Artificial Intelligence (AI)”, and other types of supervised algorithms. 

Table 2.2 summarizes specific set of keywords and number of search results for each database. 

Finally, a total of 1,606 studies have been selected from these libraries.  
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Table 2-2 Set of keywords and number of studies for each database 

 

Data Selection  

After the studies were collected from the four databases, two following processes were 

established to filter the articles: title and abstract screening and full-text assessment. Studies were 

screened independently, adhering to the inclusion and exclusion criteria as previously mentioned. 

A total of four reviewers participated in the screening of the literature. The title and abstract 

screening was used to include or exclude the studies based on the abstracts' relevance. After 

removing the duplicates and conducting the first screening process, selected articles were moved 

onto full-text assessment stage. At the full-text screening process, each article was reviewed 

based on its entire content to make the more accurate judgment to check its eligibility. All the 

screening processes involved at least two reviewers’ consensus to minimize the decision conflict 

thus ensuring the accuracy of the synthesis. At the end of the full-text screening, there were 158 

articles that passed all the inclusion and exclusion criteria and were agreed by the reviewers' 

consensus to be included as the ultimate references. Thus, those 158 articles were transferred to 

the data extraction stage. The PRISMA chart below summarizes the selection process with the 

number of articles at each step. 
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Table 2-3 PRISMA Chart of the data selection process 
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Discussion and Conclusion 

A total number of 158 articles have been included for the data extraction at the end of selection 

process. A set of assessing parameters were generated to extract the key information from each 

article which are: algorithm type(s), input variable(s), output variable(s), data source, data size, 

and model fit/accuracy.  

 

Table 2-4 Commonly used algorithm types and their discussions 

Algorithm types Main advantages Main limitations 

NN*   - Superior prediction accuracy and 

efficiency  

- Able to learn complex and non-linear 

relationships 

- Uninterpretable decision-making 

process 

- Dependent on the hardware to support 

the parallel processing 

 

RF and DT - Great visualization ability of the 

decision-making processing 

- Able to include both categorical and 

continuous variable 

- Prone to overfitting 

- Requires large datasets 

 

SVM - Highly effective in high-dimensional 

data and unstructured data 

- Long training time when the datasets 

are large and/or noisy 

- Difficult to choose kernel function 

FL - Easy to understand  

- Flexible with vague and imprecise 

data 

- May not scale well to large and 

complex problems  

- Difficult to determine the exact fuzzy 

rules 

Linear and non-linear 

regressions  

- Good generalization ability 

- Easy to understand 

- Tendency to overfit 

- May have high precision but low 

accuracy  

- Cannot describe complex relationships 

*Note: mostly used  

 

Among those 158 studies, commonly used types of algorithms have been identified as Neural 

Networks (NN), Random Forest (RF) and Decision Tree (DT), Fuzzy Logic (FL), Support 
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Vector Machine (SVM), linear and non-linear regressions, which predicted a factor related to 

pavement performance, including IRI as used in this study (Table 2.1). In addition, the 

advantages, and disadvantages of each type of algorithm have been discussed (Table 2.1).  

Neural networks were used in the majority of the studies, where a wide range of input variable 

type where included (e.g., Yamany et al., 2020; Zeiada et al., 2019; and Hossain et al., 2017). 

Among the studies that have used NN, typical prediction accuracy (R2) ranges are higher than 

90% (e.g., Ullah et al., 2020; Radwan et al., 2019; and Gu et al., 2018) while the model training 

times are very minimum (e.g., Tarahomi et al., 2020 and Marcelino et al., 2021). However, the 

major disadvantage of NN is its black-box nature, i.e., the decision-making process is 

unexplainable.  

Since one of the objectives of this research is to develop machine learning models that is capable 

of explaining the decision-making process yet maintaining good prediction accuracy with 

complex datasets, there is another type of tree-based algorithms of thought that possess such 

capabilities: DT and RF. DT and RF has been used in some studies predicting IRI and PCI (e.g., 

Gong et al., 2018; Piryonesi and El-Diraby 2018; Piryonesi and El-Diraby 2020; and Piryonesi 

and El-Diraby 2021). In this review, DT and RF has been classified as one type of algorithm due 

to their similar decision-making principles. Well-developed RF models based on large datasets 

(> 10000 data points) have also resulted in high prediction accuracies (R2 > 0.90) (Gong et al., 

2018; Jia et al., 2019; Piryonesi and El-Diraby 2020; and Piryonesi and El-Diraby 2021).  

 

For example, Gong et al. (2018) has achieved a train accuracy (R2) of 0.998 and a test accuracy 

(R2) of 0.974 based on a tuned RF model for IRI prediction. The RF model consists of 500 trees 

and has 18 types of input variable including initial IRI, age, AC thickness, temperature, 

transverse cracking, rutting, potholing, etc. The data were solely retrieved from LTPP database. 

The has also included single decision tree visualization for illustration purpose (Figure 2.1). 

However, the final RF model had a very complex structure having 500 single trees and a 

complicated set of input variables requiring many specific types of distress such as block 

cracking area and patching area. Therefore, the actual implementation of the model can be 
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difficult because it needs a variety of surface condition survey data and selecting an optimum 

tree to represent model overall visualization is challenging when each tree can be unique.  

 

A study from Piryonesi and El-Diraby (2018) used a single tree DT model for PCI prediction and 

PCI prediction. The data set was simple consisting of 8 input variables (initial PCI, age, 

pavement type, freeze index, maximum mean annual temperature, minimum mean annual 

temperature, total annual precipitation, and road functional class) with a total size of 705. Due to 

insufficient training data, the model has only achieved an overall accuracy (R2) of 58%. 3 years 

later, another study from Piryonesi and El-Diraby (2021) utilized RF algorithm based on 100 

base learners for IRI and PCI predictions. The data size was significantly improved to more than 

30,000 and the highest cross-validation accuracy (R2) for IRI and PCI prediction increased to 

0.95 and 0.84, respectively. However, the RF model visualization feasibility was not discussed, 

and the data sources were unclear. Therefore, there is a need of developing highly accurate 

prediction models using tree-based algorithm and based on less complex input data.  

 

The mostly used pavement type has been identified as flexible (asphalt concrete), while the 

studies of other pavement types such as rigid and composite are the minorities. A large range of 

input variable types have been used in the previous models, including traffic, construction 

history, climate, and historical distress records (Table 2.2). For example, for the prediction of 

IRI, Marcelino et al. (2021) and Hossain et al. (2019) used traffic (AADT, AADTT, and ESAL), 

construction history (M&R numbers, age and AC thickness), climate (temperature and 

precipitation), and initial IRI value as their input variables. In conclusion, initial IRI, pavement 

age, temperature, and thickness (AC layer or total layer) were the most frequently used input 

variables (Table 2.2). In addition, temperature, material properties and structural properties such 

as AC bearing capacity and resilient modulus were the primary inputs for cracking and rutting 

predictions (e.g., Okuda et al., 2017; Thube, 2012; and Taddesse, 2017). To explain such, asphalt 

cracking and rutting trends significantly depend on viscoelastic binder properties, which is a 

function of temperature change (Huang, 2004).  Table 2.2 also summarizes the common 

databases for providing the input data.  
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Table 2-5 Commonly used input variables for performance predictions 

Input variable    Description  Major retrieval database 

Initial IRI* Initial IRI value after the original 

construction of the pavement  

LTPP and State/Provincial DOTs 

Age * Age of pavement LTPP and State/Provincial DOTs 

Layer Thickness*  The thickness of AC layers and/or 

base layers 

LTPP and State/Provincial DOTs 

Initial PCI Initial PCI after the original 

construction of the pavement or 

major M&R 

State/Provincial DOTs 

Temperature*  Annual average air temperature LTPP 

ESAL Annual equivalent single axle load LTPP and State/Provincial DOTs 

AADT Includes annual AADT and/or 

monthly AADT  

LTPP and State/Provincial DOTs 

AADTT Includes annual AADTT and/or 

monthly AADTT.  

May include values for specific 

truck classes (e.g., AADTT of Class 

9 truck)  

LTPP and State/Provincial DOTs 

Precipitation  Annual average precipitation  LTPP  

Freeze Index Annual freeze index  LTPP  

Humidity  Annual air humidity  LTPP 

Material Property  Asphalt material properties and/or 

base/subgrade material properties 

Field and/or laboratory data 

*Note: mostly used  

Table 2-6 Commonly used output variables as performance indicators 

Output variable    Description  

IRI* Future IRI values 

PCI Future PCI values 

Cracking Future cracking lengths and/or 

cracking index 

Rutting Future rutting depth  
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Material property  Future AC layer resilient modulus 

    *Note: mostly used  

 

Table 2.3 summarizes the most commonly used output variable for pavement performance 

indicator. IRI was one of the most commonly used ones in many studies 

such as Abdelaziz et al. (2014), Jia et al. (2019), Hossain et al., 2019, and Ziari 

(2016). Studies such as Ling (2019), Lou (2001), Kaya (2020), and Owusu‐Ababio (1998) 

have used cracking lengths and cracking index as their output predictors.  

 

Most studies have used governmental pavement databases such as U.S. State Department 

of Transportation (DOT) database and national-wide Long-Term Pavement Performance 

(LTPP) database (Table 2.2). LTPP has been selected as the primary data source for the majority 

of the studies such as Abo-Hashema (2013), Lucey et al.(2021), and Radwan et al. (2019). 

Studies that have used State DOT databases tend to focus on a smaller and regional data analysis 

such as Lou et al. (2001), Piryonesi and El-Diraby (2021), and Roberts and Attoh-Okine (1998). 

Other less used databases that have used include Federal Aviation Administration (FAA) for 

airport pavement (Gopalakrishnan et at., 2009) and other countries’ databases such as Swedish 

National Road Administration (Braban-Ledoux and Sundin, 2000).  

 

In conclusion, most literature review studies have focused on flexible pavement and used ANN 

algorithm with the input variables shown on table 2.2 to predict IRI, PCI, cracking, and rutting 

based on LTPP database and/or State/Provincial DOT databases. Prediction accuracy has always 

been a focus of those studies  

 

2.2 Pavement Instrumentation Practices 

Recent practice of pavement design relies on proper understanding of the mechanistic response 

of pavement structures under varying climatic condition, traffic, and construction practices. 

Although purely analytical tools such as finite element software provide a valuable resource to 
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predict the pavement response, the results are not always representative of the actual in-situ 

performance of pavement structures. Therefore, verification of the analysis results can 

significantly help with better understanding the role of various factors in the way a pavement 

structure may perform in long-term, and hence can help advance the current state of mechanistic-

empirical pavement design and transportation infrastructure asset management (Tabatabaee and 

Sebaaly, 1990; Tabatabaee et al., 1992). To this end, pavement instrumentation can help 

pavement engineers and researchers better understand the actual response of the structure 

through measuring the in-situ parameters and responses.  

 

Typically, in-situ pavement monitoring can be conducted via two methods: 1) instrumentation 

and monitoring of an actual in-service pavement section with live traffic conditions, or 2) use of 

Accelerated Pavement Testing (APT) facility which typically uses controlled traffic loading 

volume and contact pressure (Guan et al., 2018). According to Willis (2008), there were 45 APT 

experiments reported in 2002 worldwide. The nature of the traffic specifically differs when 

looking at the live traffic versus closely controlled traffic conditions. The first type will be the 

focus of the ongoing Smart Pavement project.  

 

This review provides a summary of the existing literature and past practices on the use of 

pavement instrumentation to monitor the pavement performance. The main focus will be on the 

major aspects including strain, stress, moisture, temperature, and frost penetration at different 

levels within a pavement structure.  

Strain Measurements 

Strain-based thresholds for pavement design have been commonly used in several pavement 

design methods such as AASHTO 1993, Asphalt Institute (AI) method, MEPDG, and many 

others. Measurement of strain distribution within a pavement structure, especially at critical 

response locations, is one of the most commonly used goals of pavement instrumentation. To this 

end, horizontal strain measurements at the bottom of the asphalt concrete layer and vertical strain 

measurement on top of the subgrade soil are two of the major points of interest. Figure 2.3 shows 
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examples of asphalt strain-gauges that can be used in pavement instrumentation. In general, the 

strain gauges used for flexible pavements application need to be robust enough to withstand the 

compaction loads and high temperatures induced during the construction process as well as any 

erosion due to long-term service.  

 

Three major categories of strain gauges include: strain coils, foil gauges, and H-shaped gauges. 

The foil type and some of the coil gauges need to be cemented to a carrier block which is 

considered as a downside from the complexity of construction perspective. However, the coil 

type can also be attached to the layer of interest using tack coat material. The H-Shaped strain 

gauges are one of the most commonly used types in pavement applications (Figure 2.3a). Review 

of the pavement instrumentation research indicates that there are a handful of manufacturers with 

trackable record of successful use of their strain gauges for pavement projects. Willis (2008) 

performed a survey of available manufacturers that seems to be valid to date including Dynatest, 

Tokyo Sokki, Kyowa, TMK, Vishay, and CTL Group.      

 

Furthermore, when selecting a proper strain gauge depending on the project expectations and 

cost, one should carefully consider the costs and performance changes associated with using a 

full-bridge gauge versus half-and-quarter bridge counterparts, which would need additional 

signal conditioning and/or more sophisticated data acquisition systems (Pallas-Areny and 

Webster, 2012). 
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                                  (a)                                                                  (b) 

Figure 2-1 Horizontal (a) and Vertical (b) Asphalt Strain Gauges (Courtesy of CTLGroup) 

Stress Measurements 

Stress measurement is also another pavement structural response factor due to traffic loadings. In 

most cases, pavement design methods and distress analysis require that the stress measurements 

also need to be coupled with strain measurements simultaneously.  The stresses can be assessed 

through total earth pressure cells (TEPCs) as an indication of the vertical stresses due to the 

pavement   loading from traffic. In order to measure the vertical and horizontal pressures, in the 

vertical direction along with the progression of the depth, a series of pressure cells are installed 

in the soil layers including the granular base and other unbound layers underneath the AC layer 

(Figure 2.4, 2.5 and 2.6). 

 

Soil pressure cells commonly consist of two circular metal plates, which can be made of steel or 

aluminum. The diameter of pressure cells typically ranges from 150mm to 250mm with a 

thickness 10mm to 15mm. Pressure cells with smaller-sized loading plates (150mm) are typically 

installed in HMA layers, whereas the larger ones (225mm) fit better for base layers and 

subgrade. Based on the hydraulic principles, the space between the two plates is filled with 

liquids, such as silicon oil (Rabe, 2013), which measures the pressure based on the volumetric 

change. Also, to avoid the expansion of the pressure cell diaphragm, the boiling point (typically 

around 200°C) of the hydraulic oil needs to be higher than the temperature of HMA at its paving 
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phase. (Al-Qadi et al., 2001) The common manufacturers of pressure cells include but not 

limited to: RST Instruments, GEOKON, Sisgeo, Tokyo Measuring Instruments, and KYOWA.  

 

However, traditional oil-filled pressure cells have a major disadvantage: temperature change may 

result in the slight thermal expansion or contraction of the filling oils. Therefore, long-term soil 

pressure monitoring should also consider seasonal temperature variations and calibration based 

on spot temperature measurements.   

 

The longitudinal and transverse positioning of strain gauges and pressure cells is yet 

sophisticated to be carefully considered. For example, in a single direction, if the strain gauges 

are positioned too densely, not only the number of the sensors will increase, the strain value 

interference may also occur if the sensors are too loosely distributed with large spacings, some 

peak strain values at specific locations may not be able to captured or this might cause some 

installation practicality in terms of wires collection and redirection during the construction. 

 

 



 

23 

Figure 2-2 Example of BASt pavement stress and strain due to wheel loading and the measuring 

equipment (pressure cells and strain gauges) (Rabe 2013) 

 

Figure 2-3 Road layer and sensors distribution (Maadani et al, 2015) 

 

Figure 2-4 Example of BASt 2nd generation aluminum soil pressure cell (Rabe 2007) 

Temperature Monitoring  

In addition to the traffic loadings, environmental conditions such as temperature and moisture 

level are also major factors affecting the pavement performance. Pavement surface rutting may 

occur as the high temperatures in summer lower the stiffness and the stability asphalt concrete 

layers. On the other hand, base layers with poor drainage characteristics such as clayey material 

suffer from heavy precipitation resulting in a decrease in overall structural capacity. Temperature 
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variations and freeze-thaw cycles can also accelerate pavement deterioration such as block 

cracking and thermal cracking. Therefore, to better understand the pavement distress, 

mechanistic response monitoring needs to be paired with environment condition monitoring 

concurrently.  

 

There are several types of temperature data collection methods and equipment such as 

thermocouples, thermistor probes, monolithic integrated circuits, and photoelectric system. 

Thermocouples are one of the most commonly used temperature sensors due to their simple 

design, robustness, and cost-efficiency (Tabatabaee and Sebaaly, 1990). Type-T thermocouples 

(Figure 2.7), which are made of copper and constantan, have temperature measuring range from 

below zero to about 370C (700 F) and a measuring accuracy of about 1.8F (Tabatabaee and 

Sebaaly, 1990). 

 

Since the heat transfer is based on layer thickness and material property, thermocouples are 

required to be installed in surface layers and soil layers in various depths. In the soil layers, 

consistent intervals (100mm) between thermocouples in vertical directions were suggested 

(Figure 2.6) (Maadani et al, 2015).  

 

 

Figure 2-5 Type-T Thermocouple (Courtesy of IQS Directory) 
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Figure 2-6 Thermocouple installation (Maadani, 2015) 

Moisture and Frost Monitoring  

Freeze-thaw cycles represented by cold winters and warm summers are more common in Eastern 

Canada and in other similar climate zones. In winter, the water molecules in soil freezes when 

the temperature drops below freezing point. Then, the frozen water molecule expands in its 

volume, thus increasing the void ratios of granular layers and subgrade. However, when spring 

begins and temperature increases, the stability of the base layers and subgrade will be reduced 

due to the thawing process. In addition, frost penetration depth fluctuates depending on air 

temperature and solar radiation. Therefore, moisture monitoring and frost penetration monitoring 

are crucial to the in-situ pavement instrumentation, especially in cold regions such as in 

Canadian climate. Such monitoring also provides feedback to the drainage design to avoid the 

excessive soil moisture and thereby improving the structural stability. 

 

Water-content reflectometer sensor (Figure 2.9) is one of the most commonly used probes for the 

moisture content monitoring. This type of sensor measures the unfrozen water content by volume 

in soil (Maadani, 2015). Common water-content reflectometer sensors are CS615 and CS616 

manufactured by Campbell Scientific. 
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Resistivity Probe Sensors (Figure 2.10), typically made from PVC rods, are used to detect frost 

depth. The probe identifies soil resistance change due to freezing or thawing, and the paired data 

logger record such resistance changes.  

 

Figure 2-7 In-situ water content reflectometer (Maadani, 2015) 
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Figure 2-8  In-situ CRREL resistivity probe (Maadani, 2015) 

 

Data Acquisition System 

To ensure the data quality and quantity, a well-fit data acquisition and control system is critical 

component of the instrumentation setting. Typically, the data acquisition systems collect, store, 

organize, and digitize the raw data transmitted from embedded sensors. The data acquisition 

system consists of hardware units and data processing software (Figure 2.11).  The primary 

purposes of the data acquisition and control system are: signal conditioning, isolation, analog-to-

digital conversion, digital-to-analog conversion for the hardware units; the data processing 

software is responsible for data reduction and analysis, control algorithms, and permanent data 

storage (Mohammad et al, 1994). Depending on the specific instrumentation setting and data 

requirements, the data acquisition and control system varies (Figure 2.12 and 2.13).  
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Typical data acquisition hardware including sets of static and dynamic data loggers, and 

communication devices are assembled in a weather-proof panel (Figure 2.14) near the 

instrumented pavement section.  Static data loggers, which are often used to record 

environmental data, may require long durability, versatile operation conditions in terms of 

climates and fewer calibration needs. Model CR10X is an example of such equipment that is 

manufactured by Campbell Scientific (Maadani, 2015). On the other hand, dynamic data loggers 

that are commonly used to record stress and strain, require fast and yet precise readings, agile 

sensitivity, high reading consistency, and also long durability. Model CR9000 manufactured by 

Campbell Scientific is an example of such system (Maadani, 2015). 

 

When one is designing the hardware system, some important aspects need to be considered: the 

instrumentation sensor properties and output range, the data reading frequency, finding the 

optimum number of sensors that is optimum for the data sampling rate (large number of sensors 

may lower the sampling rate due to the limited system capacity) (Maadani, 2015). 

  

 

Figure 2-9 Data acquisition system hardware architecture (Mohammad et al, 1994) 
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Figure 2-10 Example data acquisition system layout (Maadani et al, 2015) 
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Figure 2-11 Example data acquisition system layout (Dong et al., 2017) 

 

Figure 2-12 Data acquisition and control system panel 
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The main duties of data acquisition software are raw data processing and visualization. A 

complete data acquisition, analysis, and penetration system must need appropriate software. 

Typical software manufacturers include ROMDAS, Omega, and Karol-Warner, among others. 

However, the software evolves faster and varies more comparing to the hardware, but the basic 

principles of the software selection and developments follow such rules:  

• Data processing efficiency  

• Comprehensive yet detailed representation of raw data 

• User-friendly interface for clear interpretations 

• Takes full advantage of the Data Acquisition Processor (DAP) specifications in the 

Graphical User Interface (GUI) environment (Mohammad et al, 1994).  

 

Example Instrumented Sections 

To improve current and future pavement instrumentation practices, the review of past instrumented 

field sections is necessary as it helps identify underlying issues.  Two example projects were briefly 

discussed below. 

 

Started in 1998 and ended in late 1999, Virginia Department of Transportation (VDOT) 

conducted a pioneering smart pavement instrumentation project. The test section has a length of 

3.2km, a width of 100m, and several different depths. The monitoring sensors included (Figure 

2.15): pressure cells, strain gauges, thermocouples for temperature recording, TDR probes for 

soil moisture recording, and resistivity probes for frost depth detecting. The data acquisition 

system collects and processes both static environment data and dynamic stress and strain data. 

Pavement response data were later collected with a testing truck of controlled loading tire 

pressure and controlled speeds over a one-year period. In the end, finite element models were 

applied to verify the pavement response results. The final results showed that the effective 

bonding conditions at the interfaces between road layers may be necessary to be taken account 

into for accurate performance predictions (Barriera et al, 2020). However, the project did not 

include the long-term daily traffic loadings, but only used the experimental truck with controlled 
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volume and weight. The lack of arbitrariness without actual traffic conditions may result in 

overfitting issues in pavement response analysis models.  

 

Figure 2-13 Sensor overview and installation for pavement instrumentation. 

(a) Pressure cells, (b) H-shaped asphalt strain gauges, (c) thermocouples, 

(d) TDR probes, and (e) vibrating wire strain gauges (Al-Qadi et al, 2004) 

 

In 2011, the state of Virginia conducted another in-situ pavement monitoring project with 

improved instrumentation practices on the State Route of 114 (Figure 2.16). Both controlled 
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traffic and actual traffic were applied. In addition, post-construction M&R activities were taken 

into account. The objectives of this study included traffic classification, inverse calculation for 

weigh-in-motion in addition to the pavement structural health monitoring. Sensory system that 

was similar to the previous one in 1998 were used including strain gauges, pressure cells, 

thermocouples, and soil moisture probes. Instrumentation layout was carefully designed (Figure 

2.17) in order to collect multiple types of data at a time. The vehicle wandering was estimated 

beforehand. Five horizontal strain gauges were place in transverse direction to accommodate 

different wheel paths. Sensor positioning is the key to the accurate inverse calculation of 

pavement mechanical conditions with applied loads (Barriera et al, 2020). 

 

FEA modelling in ABAQUS was applied to check the proper functioning of the sensors after 

installation by verifying the inverse calculation of asphalt dynamic modulus and prediction 

distresses. As a result, traffic volume and speed were able to be estimated using back-calculated 

AC modulus and vehicle weight from weight-in-motion scales. Also, Mechanistic-Empirical 

Pavement Design Guide (MEPDG) method was used to predict fatigue cracking and rutting.  
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Figure 2-14 Layout of the sensors in the second Smart Pavement Project in Virginia in 2011 
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Figure 2-15 Pavement monitoring system outlook of the second Smart Pavement Project in Virginia 

in 2011 (Wang et al., 2012) 

 

Modern Instrumentation Trends and Innovative Technologies  

In the past a few decades, pavement instrumentation relies more on the static measurements 

where there is a lack of long-term continuous data collection. However, modern data analysis 

methods such as AI require more consistent, continuous, and dynamic data in order to investigate 

the underlying pattern. Therefore, a long-term Structural Health Monitoring (SHM) system 

should be implemented to provide real-time and continuous monitoring of pavement response 

and structural condition. In addition, modern SHM with wireless technologies ease the data 
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collection yet increase the data quantity and improve data quality without frequent site visits. A 

properly implemented SHM also lowers the life cycle cost. (Ansari, 2007). 

 

SHM typically consists of sets of wireless and/or wired sensors that are capable of capturing the 

simultaneous structural response to the loadings and material and climate conditions within the 

pavement structural. Due to its high sensitivity, versatility, and superior durability, Optical Fiber 

Sensing (OFS) has been a leading branch of the wireless sensing systems (Dong, 2017). Current 

OFS tracks changes in temperature, strain, and other parameters by detecting the induced 

wavelength and frequency of light travel (Figure 2.18 and 2.19). This multi-functional sensor 

allows to reduce the need of other devices that may lower the total equipment cost.   

 

 

 

Figure 2-16 Optical fiber sensor configurations and functioning (Ansari, 2007) 
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Figure 2-17 A typical fiber optic sensor for embedment in concrete (Left); Embedded fiber optic 

sensors during concreting operations (Right). (Ansari, 2007) 

Summary of Findings and General Considerations  

Pavement response monitoring is crucial to the structural health maintaining and an essential part 

of modern pavement management system. In-situ instrumentation is the foundation to such 

monitoring. Based on the current pavement instrumentation literature review, the sensory system 

can be organized into two major categories: structural monitoring and environmental monitoring. 

Also, depending on the length of the data collection period, they can be divided into short-term 

or long-term, dynamic, and static groups. In order to have comprehensive pavement response 

data, all monitoring groups need to collect data simultaneously. This paper summarizes the 

previous pavement performance monitoring practices and the use of essential data collection. 

equipment. The review has identified the types of data that need to be collect strain, stress, soil 

moisture, pavement temperature, and frost penetration depth. Most commonly used data 

collection devices are also listed: H-shaped AC strain gauge, soil pressure cell, temperature 

thermocouple, soil resistivity probe, time-domain reflectometry moisture sensor, and data 

acquisition hardware set. Furthermore, two example instrumentation projects in Virginia were 

discussed.  

 

For the strain gauge selection, whether using a full-bridge gauge, or a half-and-quarter bridge 

counterpart which would need additional signal conditioning and/or more sophisticated Data 

Acquisition systems, should be carefully considered with the costs and performance. The 

operation temperature range of pressure cells should be greater than the in-situ temperature range 

to minimize the hydraulic oil thermal expansion/contraction. Field calibration of pressure cells is 

required and is often validated by non-destructive testing such as FWD (Tabatabaee and Sebaaly, 

1990). As for horizontal and vertical instrumentation layout design, adequate spacing should be 

maintain between sensors to avoid interferences and to control the number of equipment and the 

cost. When installing the soil resistivity probes for frost depth monitoring, to ensure the result 

accuracy, the copper rings on the probes that conducts electric pauses must have proper contact 
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with soil particles over their entire surface area (Al-Qadi, 2004). In addition, data acquisition 

system, including the hardware parts and the data processing software, plays a key role in 

instrumentation projects. The system should be carefully designed and customized to fully 

accommodate sensor outputs.  

Traditional instrumentation methods need frequent field visits. However, recent innovations in 

instrumentation focus on wireless technologies and internet of things (IoT), which provide long-

term and real-time pavement structural health monitoring with remote accesses. Having more 

quantitative understanding and monitoring of pavement conditions would benefit life cycle cost 

optimization.  

 

Although many previous instrumentation practices were review, specific instrumentation system 

designs are still site-specific. Maadani et al. (2015) suggested a few key considerations for 

instrumentation design:  

• The measurement range and output type of sensors 

• Sensors’ functioning mechanism must be compatible with the data acquisition system 

• The life expectancy of sensors 

• Other limitations related to the magnetic surrounding environment.  

• Manufacturer’s specifications such as output and capacity must be carefully examined in 

the selection process and inspected during installation. 
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Data Analysis and Machine Learning Modelling   

3.1 Introduction 

In the past few years, a considerable number of studies had performed predictive modelling for 

pavement data analysis using modern AI/ML method. Based on the literature review from 

Chapter 2, high prediction accuracy has been the main focus from the previous studies and ANN 

was the most commonly used algorithm allowing their models to achieve an average R2 of 0.90. 

However, in the field of pavement management, the M&R decision-makings should not solely 

depend on accuracy but the proper understanding of prediction logic and reasoning of the 

algorithm can be informative.  

 

Tree-based algorithms including Decision Tree (DT), however, have not been frequently 

investigated from the review studies. Although promising results can be seen from the literature 

review, DT still needs to be investigated to improve accuracy and interpretability of the existing 

model predicting pavement performance.  

 

Based on the systematic review results, and with a large number of historical records on LTPP 

database, IRI has been the primary prediction variable used in the previous studies. In terms of 

pavement engineering, IRI index generalizes pavement surface conditions but does not inform 

specific distress. LTPP databased is the largest pavement database in North American and was 

the most extensively used databased among the literature review studies. Therefore, in this study, 

LTPP database was selected as the main data source due to its wide-range data types, and IRI 

was selected as the main output variable due to its meaning and vast amount of records. As for 

the algorithms, decision tree and random forest were selected due to their great visualization 

capability and adaptability to noisy data. Many of these studies have proven promising results 

using the state-of-art data analysis techniques, but there is lack of transparency and interpretation 

of the LTPP data processing among those studies. Data quality and quantity are one of the 

essentials to achieve the high prediction accuracy regardless the types of prediction methods or 
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algorithms. Hence, in this study, the focus was not only the implementation of machine learning 

approach and the modelling methodologies, but the detailed data processing procedures 

combined with pavement engineering concepts were explained with traceable sources and 

directories on LTPP database. As LTPP is a large complex database, demonstrating the data 

selection and processing allows future researchers to reproduce/replicate datasets that can be 

used for prediction model advancements. More specifically, by identifying underlying issues in 

LTPP, these procedures also help the users to retrieve more consistent and complete datasets. In 

addition, this chapter selected and explained the data that are strongly related to pavement 

roughness and distress based on empirical pavement engineering knowledge.  

 

Overall, a carefully prepared dataset retrieved from LTPP was used for IRI predictions based on 

a DT model and a Random Forest (RF) model. Then, the IRI prediction process and results were 

discussed and decision tree(s) were visualized to interpret the prediction process. To further 

improve the prediction accuracy and model generalization capability, model tuning and 

hyperparameter optimization were also covered in this section.  

   

3.1.1 Pavement Databases 

Database is considered as a core part of the modern PMS which provides necessary quantitative 

and qualitative information regarding decision-makings at different levels of PMS (Haas et al., 

2015). A comprehensive database is required to serve as a basis for the following pavement 

performance data analysis. Typically, several types of data are being recorded and stored in the 

PMS database: construction and M&R history, pavement quality measures (distresses, 

roughness, skid resistance, and structural evaluation), and other special design and research data 

(Haas et al., 1994). The major function of PMS database is that the stored data can be further 

utilized and processed to performance various types of analysis and thus control the decision-

makings of M&R activities. To provide a solid foundation of different types of performance 

prediction models, a significant amount of data with long-term yet systematic recording scheme 

are needed. Many State DOTs and municipalities started to value the importance of pavement 
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data analysis and management by constructing their own pavement databases in a few decades 

ago. The quality and amount of data is crucial to the data analysis. Comparing to region and 

municipal PMS databases, LTPP is a unique blend of pavement-related data from many agencies 

in different climate zones and with various scales of pavement network. The development robust 

and versatile pavement performance prediction models demand high-quality data. In terms of the 

field of AI and ML, model training and prediction accuracy typically represent a positive 

relationship with data quality and quantity. Hence, in this study, LTPP was selected as the 

primary database for the following machine learning data analysis.  

 

Long-Term Pavement Performance (LTPP) Database 

Long-Term Pavement Performance (LTPP) database, initiated by Strategic Highway Research 

Program (SHRP) in early to mid-1980s as collaboration of the U.S. Federal Highway 

Administration (FHWA), Transportation Research Board (TRB) and American Association of 

State Highway and Transportation Officials (AASHTO), is the largest pavement database in 

North America (FHWA, 2019). LTPP databases intends to incorporate a wide range of data that 

are related to pavement infrastructure. One of the initial objectives of the LTPP program was to 

help build better performance prediction models for pavement design and management. The 

principal categories of data included on LTPP are pavement structure and construction, climate, 

traffic, performance and distress, and material (Figure 3.1) Over millions of records were stored 

from 2581 pavement sections from 62 States/Provinces across the U.S and Canada. Most of data 

on LTPP were stored beginning in 1989 which provides a 20 to 30 years of data coverage period. 

Figure 3.2 illustrates the processes of LTPP data collection, storage and analysis. LTPP is a 

relational database which consists of separate yet related tables of data (FHWA, 2019). The 

database is implemented in Oracle 12 format. LTPP’s Ancillary Information Management 

System (AIMS) collects, converts and organizes raw data into formal categories as known as 

Pavement Performance Database (PPDB) to ease the data selection. User can easily access the 

database and generate the request of data download in various methods: Microsoft Excel, SQL, 

and Microsoft Access (FHWA, 2019). 
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Figure 3-1 Types of data included on LTPP 
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Figure 3-2 LTPP database structure 

3.1.2 International Roughness Index 

There are many indices that are used to define and evaluate the pavement condition, behavior, 

distress, and response. Some common indices are International Roughness Index (IRI), Present 

Serviceability Index (PSI), and Riding Comfort Index (RCI), etc. Pavement Condition Index 

(PCI) and Surface Distress Index (SDI) are often used to summarize the surface distresses. In 

PMS, these indices can be modelled to assist in the initial design and M&R decision-makings. In 

this study, IRI will be used as the major pavement deterioration indicator due to its data 

availability on LTPP and high popularity in literature review studies.  

The international roughness index (IRI), initially developed in 1980s to represent pavement 

surface conditions in a quantitative method, has been widely used in many transportation 

agencies worldwide. The calculation of the index is based on a moving quarter-car vehicle math 

model that quantifies the total vertical vehicle body movement due to the uneven pavement 
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surface with distresses within 1 kilometer of travelling distance. The typical vehicle operation 

speed is 80 km/hr (MDOT, 2017). The metric unit of IRI is in meters per kilometer (m/km) and 

empirical unit of IRI is in inches per mile (in/mi). IRI data collection procedures shall conform to 

ASTM E950 standard. Higher IRI values indicate rougher pavement surfaces with high distress 

severity and density, whereas lower values indicate smooth riding conditions with better distress 

ratings. However, IRI does not indicate pavement structural condition and specific distresses.  

Typically, IRI is surveyed using mechanical systems where vertical movements are measured 

based on Distance Measuring Instrument (DMI) and laser equipment installed on automatic road 

analyzer (ARAN) vehicle for large-scale measurements at high operation speeds or portable laser 

IRI profiler for small-scale at low speeds. 

IRI value class can vary based on different roadway function types and agencies. For example, 

IRI is categorized into 3 class by The Michigan Department of Transportation (MDOT, 2017): 

• Good: IRI < 95 in/mi (1.5m/km) 

• Fair: 95 in/mi < IRI < 170 in/mi (1.5m/km < IRI < 2.7) 

• Poor: 170 in/mi < IRI (2.7m/km < IRI) 

3.2 Data Preparation 

3.2.1 Data Selection  

Data are typically retrieved and delivered in a format of Microsoft Excel tables or Microsoft 

Access files. Using either the web page of the LTPP or SQL codes can direct to and generate the 

data sets that users want. In this study, a combination of both web page operations (Figure 3.3) 

and SQL (Figure 3.4) were used to locate and download the desired data tables.  
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Figure 3-3 LTPP data selection using web operations 
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Figure 3-4 LTPP data selection using SQL 

 

Although LTPP contains a great abundance of pavement-related data where there are 15 modules 

of data with a total number of more than 600 tables, selecting the meaningful and consistent data 

for IRI prediction can be complicated and challenge. Based on the results from the literature 

review and empirical pavement engineering knowledge, there are a wide range of factors can 

possible contribution to pavement deterioration. The basis of the data selection methodology can 

be summarized as:  

• Step 1: Find out and understand the specific data in search of 

• Step 2: Refer to the LTPP user manual to locate the tables that contain the target data 

using SQL and/or HTML operations  

• Step 3: Download the table and check the consistency and quantity of the data 

• Step 4: If the data quality and quantity are not satisfactory repeat Step 2 

Note: One type of data can be stored on multiple tables. While implementing step 4, 

discussions with a pavement specialist are required.  
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In terms of data quality, here it refers to the consistency of the combined data set for machine 

learning data analysis, where every input and output variable value cannot be left as empty.  

Since the predicted IRI values are on an annual basis, other data such as AADTT and freeze 

index of the years when IRI values were recorded need to be available as well. For example, the 

data quality is undesirable when there are 10 IRI records for each year in a 10-year period but 

only 5 AADTT records were found.  

3.2.2 Data Cleaning and Assembly  

When selecting the data tables, they need to be combined and cleaned to prepare a large dataset 

for modelling purpose. These data tables are not interconnected and contain the data from 

different LTPP test sections in different geographical locations. To join and combine the separate 

data tables, relational fields are used as linking keys (Table 3.1). The diagram below illustrates 

the example relationships between interrelated tables by connecting their related fields (Figure 

3.5). This example shows a combination of three categories of data tables: annual temperature 

data (CLM_VMS_TEMP_ANNUAL), traffic data (TRF_TREND), and construction histories 

(INV_AGE) for all available test sections on LTPP (Figure 3.6). The tables can only be 

combined when all relational field values are matched (i.e., same State/Province, same test 

section, and same year/date).  

 

Table 3-1 LTPP data relational fields 

Relational Fields Description  Example 

STATE_CODE An identifier for 

State/Province. Composed of 

two-digit numerical value. 

42 (Pennsylvania) 

SHRP_ID An identifier for a single test 

section or a group of test 

sections. Composed of 

alphanumeric characters.  

42-1614 (State College, 

Pennsylvania) 
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CONSTRUCTION_NO A cumulative count of 

construction and M&R events 

for each test section. 

1 (Original construction) 

2 (Original construction and 

one following M&R event) 

YEAR/DATE The year or the date that the 

data entry has been recorded 

1998 

Jan/1/1998 

 

 

 

 

Figure 3-5 LTPP data entity relationship example illustration 
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Figure 3-6 Detailed LTPP data entity relationship between AADTT, pavement age and annual 

temperature 

 

In the field of modern data analysis, AI/ML model prediction accuracy is a reflection of data size 

and data consistency. Model training is learning process for algorithms. Similar to human 

intelligence, well-developed knowledge and experience can help a person’s decision-makings 

and reactions when an unknown situation is introduced. To conclude such, sufficient amount of 

training data may be beneficial to the test accuracy. Therefore, having a relatively large data size 

has been always a major objective throughout the data collection and cleaning process. In 
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addition, along with other aspects to consider, the overall objectives of the LTPP data processing 

were summarized as: 

Data types that:  

• Have a large amount of records  

• Are widely recorded and available for the majority of the test sections  

• Are well-recorded with consistently collection frequency (e.g., no missing data in a 

specific year) 

• Are meaningful to pavement performance/deterioration  

• Are consistent with the results from literature review 

• Are universal and feasibly obtainable for various States/Provinces/Agencies 

• Have low complexity  

3.2.3 Challenges  

Data consistency has large impacts on model prediction accuracy. Noisy data can limit the 

algorithms to reach the optimum performance. Although LTPP consists of huge amount of 

pavement-related data, it started storing data more than 30 years ago where there was a lack of 

future vision of data usage for advanced data analysis. Select valuable, meaningful yet consistent 

data from LTPP was quite challenging. In other words, datasets on LTPP are often too 

inconsistent for ML data analysis because it was not intentionally designed for such analysis in 

decades ago. For many researchers, LTPP data analysis has always been an uncharted territory 

with continuous exploration of data interpretation and solutions to the data noise.  

 

In this study, the major steps and challenges of the data cleaning were: 

• Match the records that had different collection frequencies and schedules  

• Discover the methods to represent and absorb IRI fluctuations due to M&R 

• Redefine the initial IRI values  

• Select the data tables have the best data qualities and quantities  

• Create new data based on existing data when it is necessary 
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Data Inconsistency and Missing Data 

To match a type of data to another, 2 to 3 types of relational fields were used: location reference 

(STATE_CODE and SHRP_ID), time reference (YEAR, MONTH, or DATE), and construction 

events (CONSTRUCTION_NO). Each test section only correlates to one location reference and 

but within a certain time period, the number and the collection time of records can be different. 

For example, annual average daily truck traffic (AADTT) data are recorded on an annual basis 

meaning 1 value for each year in each test section. However, pavement condition survey can 

occur multiple time in a year or in a month; as a result, there could me more than 1 IRI record in 

a year for a specific test section which illustrate an example of data inconsistency on LTPP. 

Table 3.2 shows an example of combined AADTT and mean IRI data for test section 1617 in 

Pennsylvania. Seen from the table, IRI recording started in 1989 and ended in 2004, however, 

AADTT records were only found between 1998 and 2004. In addition, there were years that both 

AADTT and IRI records were not found (1996, 2000, and 2001). Such inconsistency may 

drastically reduce the available data size and thus affect the modeling performance. Thus, 

without acquiring missing data from other sources, data from different test sections and 

States/Provinces were combined into a single data set to maximize the data size. 

 

Table 3-2 An example showing data inconsistency on LTPP 

 

STATE_CODESHRP_ID CONSTRUCTION_NO VISIT_DATE Mean IRI YEAR AADTT Note

42 1617 1 12-02-1989 2.25 1989 N/A Missing AADTT records

42 1617 1 05-15-1990 2.28 1990 N/A Missing AADTT records

42 1617 2 10-09-1991 0.83 1991 N/A Missing AADTT records

42 1617 2 10-15-1992 0.81 1992 N/A Missing AADTT records

42 1617 2 10-15-1993 0.85 1993 N/A Missing AADTT records

42 1617 2 09-13-1994 0.84 1994 N/A Missing AADTT records

42 1617 2 11-10-1995 0.86 1995 N/A Missing AADTT records

42 1617 2 N/A N/A 1996 N/A Missing Both AADTT and IRI records

42 1617 2 11-11-1997 0.87 1997 N/A Missing AADTT records

42 1617 2 08-04-1998 0.9 1998 3680

42 1617 2 10-13-1999 0.91 1999 4078

42 1617 2 N/A N/A 2000 N/A Missing Both AADTT and IRI records

42 1617 2 N/A N/A 2001 N/A Missing Both AADTT and IRI records

42 1617 2 06-01-2002 0.91 2002 4200

42 1617 2 12-04-2002 0.91 2002 4200 More than 1 measurement per year

42 1617 2 11-08-2004 0.93 2004 4299
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Climate Zoning  

Although combining the data could enlarge the data size, it was unclear that if there are potential 

differences between different locations. Based on pavement engineering knowledge, bituminous 

materials are sensitive to temperature change and have dynamic modulus under different 

environment settings. Subgrade soil properties are also affected by temperature and moisture. 

Some previous performance predictive modelling studies (Hossain et al., 2018; Zhang et al., 

2017; Piryonesi and El-Dirby., 2021) have segmented data sets based on the climate regions 

(Figure 3.7). Hence, for this study, climate zoning was introduced to mitigate the potential data 

noise caused by geographical difference. Climate zoning was first recorded as a type of 

categorical data along with other continuous numerical data such as AADT and initial IRI. In 

order to process this combined data set, climate zoning data was digitized using binary 

classification while other numerical data remain unchanged (Table 3.3).  

 

Figure 3-7 Climate regions on LTPP for pavement test sections (Zhang et al, 2017) 
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Table 3-3 Digitized climate zoning for LTPP data 

Climate Type Climate Type 

1 

Climate Type 

2 

Climate Type 

3 

Climate Type 

4 

Wet, Non-Freeze 1 0 0 0 

Wet, Freeze 0 1 0 0 

Dry, Non-Freeze 0 0 1 0 

Dry, Freeze 0 0 0 1 

 

Table Selection Dilemma  

On LTPP, one type of data can be stored on multiple tables. For example, on table 3.4, in terms 

of traffic data, annual average daily traffic (AADT), annual average daily truck traffic (AADTT), 

and equivalent single axle load (ESAL) can all be found in both TRF_TREND and 

TRF_MON_EST_ESAL tables. In TRF_TREND table, data are composed of statistically 

computed and estimated traffic value, whereas TRF_MON_EST_ESAL table includes annual 

estimated values from actual test section measurements and monitoring. Based on pavement 

engineering judgement, using TRF_MON_EST_ESAL may provide more realistic and accurate 

data, but its records are relatively inconsistent, and the total data size are much less than that of 

TRF_TREND table. In addition, AADT was not included on TRF_TREND table but on the 

other. However, heavy vehicles are the major contributors to pavement distress. Pavement design 

methods such as AASHTO 1993 and AASHTOWare ME are only considering truck traffic 

(AADTT and ESAL). Thus, AADT can be and were excluded. In terms of machine learning data 

analysis, data size and quantity matter significantly. Therefore, TRF_MON_EST_ESAL table 

was replaced by TRF_TREND table.  
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Table 3-4 Traffic data table comparison 

 

 

Initial IRI and M&R History Representation  

By definition, the first initial IRI value of a test section refers to the measurement immediately 

after the initial construction and traffic opening. However, a significant number of test section 

pavements were initially constructed prior to 1989 and before LTPP started to collect surface 

distress data. This means the first initial IRI values for those test section cannot be found on 

LTPP database but may be stored on some local project-level PMS databases. In this study, for 

each test section, the first IRI value recorded on LTPP after 1989 is regarded as the first initial 

IRI since the original construction.  

 

IRI value increases along with pavement deterioration which is typically a positive function of 

time. However, post-construction maintenance and rehabilitation (M&R) activities may result in 

the sudden decrease of IRI value (Figure 3.8). Major M&R events such as milling, HMA overlay 

and reconstruction can result in a large IRI value drop yet may have only few times during the 

service life; minor M&R activities such as crack sealing and pothole patching have higher 

frequencies and often cause small fluctuations. As a result, the use of a single initial IRI value for 

each test site cannot adapt to the cycles of IRI value change due to the major improvements. To 

incorporate these IRI value drops, once a major improvement has occurred, the initial IRI is 

updated from the previous initial IRI value. The time intervals between the current year and the 

year of initial construction or latest improvement are also calculated as the age since previous 

Data types Table: TRF_TREND Table: 

TRF_MON_EST_ESAL

AADT N/A Inconsistent amount of records

AADTT Good amount of records Inconsistent amount of records

ESAL Good amount of records Inconsistent amount of records

Recording scheme Computed & Estimated 

Value

Monitored Values
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construction or improvement. Furthermore, the number of M&R constructions after 1989 were 

counted as a cumulative value as CONSTRUCTION_NO. Overall, by having this set of 

procedure that includes multiple up-to-date initial IRI values, age since last construction, and the 

number of improvements, the construction history can be numerically represented and localized 

on the timeframe for each section which provide great adaptability to pavement condition 

improvements. Also, IRI values were averaged into a single value if there were more than 1 

records found per year. Table 3.5 shows an example of the initial IRI and M&R history 

representation.  

 

Figure 3-8 Change of IRI over time with M&R activities 

 

 

Change of IRI Over Time with M&R Activities

IR
I

Year

Major Surface Improvement

Minor Surface Improvement
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Table 3-5 Example of defining initial IRI (MRI0), age since last M&R (AGE0), and the number of 

constructions (CONSTRUCTION_NO) 

 

 

3.2.4 Final Input Data Selection 

In the end, a total number of 17,147 rows of data were gathered at the end of the data mining 

process from LTPP. The tables below show the data groups for pavement structure and 

construction (Table 3.6), climate (Table 3.7), traffic (Table 3.8), and performance (Table 3.9) 

respectively.  

Pavement structure and construction 

Table 3-6  Final data for pavement structure and construction 

 

STATE_CODE SHRP_ID CONSTRUCTION_NO Mean IRI (MRI) YEAR Initial MRI (MRI0) AGE0

42 1617 1 2.25 1989 2.25 0

42 1617 1 2.28 1990 2.25 1

42 1617 2 0.83 1991 0.83 0

42 1617 2 0.81 1992 0.83 1

42 1617 2 0.85 1993 0.83 2

42 1617 2 0.84 1994 0.83 3

42 1617 2 0.86 1995 0.83 4

42 1617 2 0.87 1997 0.83 6

42 1617 2 0.9 1998 0.83 7

42 1617 2 0.91 1999 0.83 8

42 1617 2 0.91 2002 0.83 11

42 1617 2 0.93 2004 0.83 13
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Climate 

Table 3-7 Final data for climate 

 

 

Traffic 

Table 3-8 Final data for traffic 

 

 

 

 

Data name Description Source table on 
LTPP

Climate_Zone Climate zones on LTPP: dry/wet and
freeze/non-freeze

MERRA_GRID_SECTI
ON

TEMP_MEAN_AVG Average of the daily mean air 
temperatures 2 meters above the 
MERRA centroid

MERRA_TEMP_YEAR

FREEZE_INDEX Freeze index MERRA_TEMP_YEAR

FREEZR_THAW Total number of freeze-thaw days in 
the year

MERRA_TEMP_YEAR

PRECIPITATION Total precipitation in the year MERRA_PRECIP_YEA
R

REL_HUM_AVG_AVG Average relative humidity MERRA_HUMID_YEA
R

Data name Description Source table on LTPP

AADTT Annual Average Daily Truck 
Traffic for all trucks

TRF_TREND

ANNUAL_TRUCK_VOLUM
E

Annual estimate of trucks in 
LTPP lane

TRF_TREND

AADTT_VEH_CLASS_9_TR
END

Annual estimate of class 9 
trucks in LTPP lane

TRF_TREND

ANNUAL_ESAL_TREND Annual estimated ESAL for 
clase 4-13 trucks in LTPP lane

TRF_TREND
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Performance 

Table 3-9 Final data for pavement performance 

 

 

3.3 Decision Tree and Random Forest Modelling 

Based on the results for the literature review, although the majority of studies using LTPP data 

used supervised ANN as their primary algorithm type which had resulted in promising 

accuracies, the decision-making processes of those studies were not able to be interpreted. ANN 

does provide relatively high prediction accuracy, but it sacrifices the ability to explain the model 

training, interpreting and predicting processes. Nevertheless, decision tree (DT) algorithms allow 

the predicting and decision-making process to be explainable yet without a significant decrease 

in prediction accuracy. Hence, in this section, single DT models and Random Forest  

(RF) models for comparison were constructed to conduct the predictive modelling of the 

prepared LTPP data. The models were built on Python 3.8 language with various libraries 

including Sci-Kit Learn, Pandas and Numpy for data preparation, model training and evaluating, 

and Matplotlib and Plotly for result visualization. The initial DT and RF models have both 

shown the existence of overfitting issues. Thus, hyperparameter optimizations were conducted 

after the initial modelling to prune the decision tree(s) and mitigate the overfitting. Final 

prediction results were discussed, and the decision tree(s) were visualized. 

 

3.3.1 Background 

Classification and Regression Trees 

Data name Description Source table on LTPP

MRI Averaged Annual Mean 
International Roughness Index 
(IRI) 

MON_HSS_PROFILE_SECTION

MRI0 Initial MRI value within 1 year 
after the latest construction 
event

MON_HSS_PROFILE_SECTION
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The concept of classification and regression trees (CART) was first introduced by Leo Breiman 

in 1980s. CART is a type of non-parametric supervised learning approach providing 

classification and regression of the pre-defined data. CART is indeed suitable for this study since 

the data set retrieved from LTPP consist of pre-defined and labelled variables. It is also one of 

the most popular and practical algorithms for inductive inference (Mitchell, 1997). The primary 

objective of CART is not to develop specific prediction equations but was to approximate target 

functions with discrete values (Mitchell, 1997). Due to the basis of such, decision trees process 

greater ability to handle noisy data than logistic and linear regressions do.  

 

Based on the variable type of output predictor (the dependent variable), CART is divided into 

two primary categories: 

• Classification decision trees for the output variable that is categorical 

• Regression decision trees for the output variable that is continuous 

 

Classification decision trees are used when the output variable is categorical, which are not 

numerically continuous. It classifies the final prediction outcome into discrete classes. For 

example, the classification prediction results can be just divided into positive and negative 

answers, which are not numerically related. On the other hand, when the target output variable 

type is continuous rather than discrete classifications, the regression trees were deployed to 

predict the specific value of the output variable. In this study, since the dependent variable IRI is 

a type of continuous variable with specific values, the regression method was selected and 

implemented. Figure 3.9 and 3.10 below show examples of classification tree and regression 

tree, respectively.  
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Figure 3-9 Illustration of Decision Tree classification 

 

Figure 3-10 Illustration of Decision Tree regression 

CART splits the data along the tree from the root node and descends to leaf nodes. Root node is 

the base of the tree where the dataset is complete, and the leaf node is where the splitting process 

terminates. A splitting criterion was assigned at each node to further split the samples. The basis 

of CART is repetitive binary classification splitting the parent node into two child nodes. During 

the splitting process, along with the increase of tree growth and depth, the dataset is partitioned 
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into smaller subsets stepwise as the number of samples on each node decreases and the decision 

rules and the complexity of the tree increase How tree algorithm functions is further summarized 

in the following steps (Breiman, 1984): 

1. Finding each feature’s best split that maximizes the splitting criterion  

2. Finding each node’s best split that maximizes the splitting criterion  

3. Using the best split to split the node  

4. Repeat all three steps above until terminating criterion is satisfied  

There are a few types of splitting criterion and the criterion used in classification trees and 

regression trees are different. Classification trees use Gini’s index whereas the regression trees 

implemented in this study used squared error. In this study, at each node, the splitting decision 

was made in order to achieve least squared error which is equivalent to L2 loss function 

(Equation 3.1).  

 

           𝐿2 𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝐿𝑒𝑎𝑠𝑡 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟) = ∑ (𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)
2𝑛

𝑖=1
       (3.1) 

 

Although decision tree algorithm provides great visualization ability to the decision-making 

process, it still suffers from a few limitations including overfitting. Table 3.10 below summarizes 

the major advantages and limitations. 

Table 3-10 Advantages and limitations of decision tree algorithm 

Advantages Limitations 

• Superior decision-making 

visualization and interpreting abilities 

• Dependent (output) variable can be 

both categorical and numerical data 

• Able to handle noisy data 

• Prone to overfitting with overly grown 

trees  

• Hyperparameter tuning can be 

complicated  

• Instable when small data variations 

occurred 
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Random Forest 

Random forest algorithm an ensemble learning method that is composed of a set of decision trees 

instead of a single decision tree. It is a further development based on CART which is still a non-

parametric supervised learning and uses labelled data (Breiman, 2001). As a descendant of 

decision tree, depending on the data type, random forest was divided into two types: 

classification for categorical output variable and regression for continuous variable. Random 

forest algorithm creates bootstrapped sample datasets derived from the original dataset. 

Meanwhile, this bootstrapping process incorporates feature randomness by randomly generating 

subsets of data samples. By training decision trees with random subsets of data, the correlations 

between the trees within the forest are minimized. Composed a number of decision trees, random 

forest is a more effective tool to tackle overfitting comparing to a single decision tree (Breiman, 

2001). Output evaluation methods of random forest differs from that of decision tree. Random 

forest classification that is based on categorical output variable is evaluated based on a majority 

voting, whereas random forest regression averages the output prediction from each of the single 

trees. Figure 3.11 below illustrates the basic structure of a random forest model.  
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Figure 3-11 Illustration of a Random Forest model 

 

Although random forest is an advancement of single decision tree, overfitting still existing in 

random forest models which is one of the major disadvantages of the algorithm. Table 3.11 

below summarizes the advantages and limitations of random forest.    

Table 3-11 Advantages and limitations of random forest algorithm 

Advantages Limitations 

• Less overfitting comparing to 

decision tree 

• Still provides good visualization 

ability  

• Flexible to handle noisy data 

• Still likely to overfit when the 

trees are complex 

• High computational cost when 

the forest is complex 

• May require large date sets 



 

64 

• Feasible to evaluate feature 

importance 

 

3.3.2 Model Training and Evaluation  

Decision Tree Model 

To build the decision tree model in this study, DecisionTreeRegressor algorithm developed by 

Sci-kit Learn library was implemented in Python 3.8 environment. The entire dataset consisting 

of 17,147 observations was divided into two groups: 80% (13,717) for model training and 20% 

(3,430) for model testing. All groups of data set have 15 input variables and 1 output variable.  

 

In the initial default decision tree models, hyperparameters (Table 3.12) were untuned where the 

tree was allowed to fully grow with complexity without constraints. In addition to the testing, a 

10-fold cross-validation (CV) was performed on the training dataset by using the trained model. 

Since there was only one training dataset and one testing dataset, model overfitting might exist. 

Hence the objective of CV is to repeatedly estimate the model prediction accuracy on 

unintroduced data to investigate the potential overfitting. In the CV process, the testing data were 

excluded, and the training data set was further divided by the number of folds (k), which was 10 

in this case.  

The coefficient of determination (R2) and mean square error (MSE) were used to evaluate the 

model performance. Equation 3.2 and 3.3 shows the calculation methods of R2 and MSE 

respectively. Table 3.13 below is the result summary of model training, testing and 10-fold CV.  

 

                                                          𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�𝑖)2𝑛

𝑖=1

                                       (3.2) 

                                                     𝑀𝑆𝐸 =
1

𝑛
  ∑ (𝑦𝑖 − �̅�𝑖)

2𝑛

𝑖=1
                                     (3.3) 

𝑦𝑖 = observed target value 

�̂�𝑖 = predicted value, 

�̅�𝑖 = mean observed value.  
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Table 3-12 Initial decision tree model parameters 

Parameter Value 

Tree depth 35 

The number of leaves 9903 

Minimum number of samples on each leaf 

node 

1 

Minimum number of samples on each split 2 

Total number of features  18 

 

Table 3-13 Prediction result summary from the initial decision tree model 

Set Average R2 Average MSE 

Training 0.999 3.82e-6 

Testing 0.824 0.0567 

Cross-validation 0.833 0.057 

 

  

 

(a) 
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(b) 

Figure 3-12 Initial decision tree training (a) and testing (b) results 

 

Figure 3-13 Learning curve of training data 

Figure 3.12 and 3.13 show the training accuracy (3.12 a), testing accuracy (3.12 b) and the 

learning curve of the initial decision tree model. In addition, the entire decision had large 
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complexity, so only a part of the visualized decision tree was displayed on figure 3.14 below. In 

the end, these results indicate that the initial decision tree overfitted: 

• A large gap between training accuracy and testing accuracy  

• Training accuracy constantly maintained at close to 1.0 

• The number of samples on the terminal leaf node was very low (around 1~2) 

 

Therefore, a decision tree pruning process was required to improve the overfitting.  

 

 

 

Figure 3-14 Visualization of a part of the initial decision tree 
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Random Forest Model 

Similar to the decision tree model, the random forest model was developed using 

RandomForestRegressor from sci-kit learn library (Pedregosa et al., 2011). The same dataset 

consisting of 80% training data and 20% testing data was used applied for this random forest 

model. Unlike the single tree model, a random forest model may consist up to hundreds of trees 

which is more complex. Hence, the number of trees needs to be considered when constructing 

the model in terms of such aspects:  

• Computational cost 

• Visualization feasibility  

• Prediction accuracy  

• Overfitting 

In the initial random forest model, while the numbers of the trees are pre-defined, there were no 

other hyperparameter constraints meaning the trees were allowed to grow for the optimum 

prediction accuracy. Figure 3.15 below shows the relationship between the number of trees and 

training, testing and cross-validation accuracies. The accuracies started to converge when the 

number of trees was reaching around 5 to 10, and eventually maintained at around 0.91 as the 

number of trees rise to more than 20 (Figure 3.15). Both test and cross-validation accuracies 

were higher than 0.875 when the number of trees was more than 3. In addition, fewer trees would 

allow better decision-making visualization and potentially help reduce the overfitting issues. As 

a result of such early convergence of the accuracies, the number of trees shall be limited to 5 for 

the further optimization of the model. 
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Figure 3-15 The number of trees in initial random forest model vs. accuracies 

3.3.3 Model Pruning and Hyperparameter Optimization 

Decision Tree Pruning  

In the initial decision tree model, overfitting was observed as the training accuracy was more 

than 15% higher than testing accuracy that was close to 1.0. Overfitting indicates the tree is 

overly grown. There are two approaches to prevent the tree from overfitting: pre-pruning and 

post-pruning (Bramer, 2013). Pre-pruning is used to limit the tree growth by pre-defining the 

hyperparameters before the construction of the tree, whereas post-pruning is used to remove the 

branches and leaves after the tree has been developed. Although pre-pruning may save the 

computational costs and is more efficient than post-pruning, post-pruning often provides better 

accuracy by customizing the developed model (Fürnkranz, 1994). Thus, a cost complexity 

pruning process was conducted to optimize the complexity of the tree and avoid the overfitting.  

 

Minimal Cost-Complexity Pruning (CCP) algorithm is developed based on α ≥ 0, which is the 

complexity parameter (Breiman, 1984). Minimal CCP method is based on the principle of 

finding the lowest cost-complexity by minimizing the value from a combination of the number of 
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terminal nodes, complexity parameter alpha, and the misclassification rate. The equation used to 

define the cost-complexity is defined as such (Equation 3.4):  

 

                                                   𝑅𝛼(𝑇) = 𝑅(𝑇) +  𝛼|�̃�|                                           (3.4) 

 

Where 𝑅𝛼(𝑇) is a linear combination of the cost of the tree and its complexity, 𝑅(𝑇) is total 

misclassification rate of the terminal leaf nodes, 𝛼 (alpha) is the complexity parameter, and |�̃�| is 

the number of terminal leaf nodes (Breiman, 1984).  

 

 

The results of the CCP process were illustrated on figure 3.16 below. Higher alpha values 

indicate larger number of nodes pruned. The testing accuracy reached to around 83% to 84% 

where the training accuracy fluctuated between 85% and 91%. The peak testing accuracy peaked 

at 84.2% when the alpha value was 0.000188. As the value of alpha increased, the number of 

nodes and the depth of the tree decreased (Figure 3.17). This would result in an overall decrease 

of tree complexity and improve the overfitting problems.  
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Figure 3-16 Training and testing accuracy as a function of alpha value 

 

Figure 3-17 The number of nodes (a) and the depth of the tree (b) as a function of alpha value 

 

Based on the results from the post-pruning process, an example of the pruned model was shown 

below with its train, test and cross-validation accuracy (Table 3.14) and the tree visualization 

(Figure 3.19). The pruned parameters were shown on table 3.15 and the training and testing 

results were also shown on figure 3.18. In this pruned model, the cost-complexity alpha value 

was pre-defined as 0.000188. Both testing and cross-validation accuracies increased by 1% to 

2% while there was a drop of 8% in training accuracy. The complexity of the tree also 

significantly decreased as the total number of leaves reduced from 9903 to 57 and the depth 

decreased from 35 to 9. As a result, not only the punning process improved the prediction 

accuracy, it also enhanced tree’s generalization capability to adapt to other unknown datasets. 

Table 3-14 Prediction result summary from the pruned decision tree model 

Set Average R2 Average MSE 

Training 0.919 0.0275 

Testing 0.842 0.0511 
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Cross-validation 0.846 0.0523 

 

Table 3-15 Pruned tree model parameters 

Parameter Value 

Tree depth 9 

The number of leaves 57 

Minimum number of samples on each leaf node 1 

Minimum number of samples on each split 2 

Total number of features 18 
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Figure 3-18 Pruned decision tree training (a) and testing (b) results 

 

In conclusion, the final decision tree model was able to achieve satisfactory test and cross-

validation accuracies of 83 to 85% after the pruning process depending on the specific parameter 

alpha, and its generalization capability has been improved while maintaining the great prediction 
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process visualization ability. Figure 3.19 shows a part of the pruned decision tree that informs 

the decision-making process. 

 

 

 

 

Figure 3-19 Visualization of the full pruned decision tree 

Random Forest Hyperparameter Optimization  

Comparing to a single decision tree model, a random forest model has greater model complexity 

as it consists of multiple randomized trees. Potential overfitting issues in RF can be possibly 

mitigated by the unique features in the model (Breiman, 2001): 

• Each individual tree was trained by using bootstrapped sample 

• The correlations between the trees are minimized and those randomized trees have strong 

independency  

 

However, overfitting could still happen if the individual trees are allowed to grow without any 

limits. Single DT post-pruning results in optimized alpha values that are re-applied into the 

training model to generate new outputs. On the other hand, for RF model, trees are randomly 

generated in each training process meaning post-pruning is based on the previous trees and re-

applying the tuned alpha values will not fit the tree in the next training process. Therefore, pre-

pruning that regulates the hyperparameters at the beginning of the training process were used to 

mitigate the overfitting problem, i.e., limit the growth of the trees.  
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Grid search technique was deployed to find the optimum combination of hyperparameters that 

improve the prediction accuracies yet leverages overfitting. Each hyperparameter is pre-defined 

with a range of values and each value in the range will be applied into the model training 

process. The number of values for each hyperparameter and multiply it by the total number of 

hyperparameters is equal to the total number of combinations for the grid search input. There are 

few hyperparameters limiting the tree growth and the overall complexity of the forest which can 

mitigate the overfitting problems: 

• Maximum tree depth 

• Minimum number of samples on each leaf node 

• Maximum number of features considered for splitting a node 

• Number of trees in the forest 

 

In this case, the trial hyperparameters are summarized on table 3.16 below. Although the 

accuracies started to converge based on figure 3.15 in section 3.4.3.2, the number of trees was 

limited to 5 in order to prioritize the visualization feasibility yet without a major sacrifice in 

prediction accuracy.  

 

Table 3-16 Hyperparameters for the RF grid search 

Hyperparameters Values 

Number of trees 1, 2, 3, 4, 5 

Max tree depth  5, 10, 15, 20, 25, 30, 35, 40 

Min number of samples on each leaf node 10, 20, 30, 40, 50 

Max number of features considered for 

splitting a node 

6, 8, 10, 12, 14, 16, 18 

 

The grid search results were interpreted on multi-dimensional plots. Figure 3.20 shows the 

example results when the number of trees is 3. Typically, high number of samples on each leaf, 

high tree depth and high number of features may result in overfitting. As a result, the tuning 
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result visualization on figure 3.20 helps balance the hyperparameter selection and the prediction 

accuracy. For example, the cross-validation accuracy reached 0.859 when there were no 

maximum limits of the number of features, the maximum tree depth was 10, and the minimum 

number of samples on each leaf was 36 (Figure 3.21 and Table 3.17).  

  

Figure 3-20 Visualization of hyperparameter tuning results when the num of trees is 3 

 

Figure 3-21 Hyperparameter selection based on accuracy scores 



 

77 

Table 3-17 RF grid search results 

Hyperparameters Values 

Number of trees 3 

Max tree depth  10 

Min number of samples on each leaf node 36 

Max number of features considered for 

splitting a node 

18 (original total number of features) 

Train accuracy 0.858 

Test accuracy  0.874 

10-fold Cross-validation accuracy 0.859 
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Figure 3-22 Optimized RF model with a total number of 3 trees 

However, comparing to the pruned single tree model (CV accuracy = 0.846) , although the tuned 

RF model could provide slight better accuracies, the trade-off was the visualization feasibility. 

Figure 3.22 below shows the three trees in the pruned RF model. The trees are still too complex 

to be accurately interpreted.  

3.4 Discussion and Conclusion 

At the end of the data processing stage, 15 input variables and 1 output variables were selected 

from LTPP database. The final total data size was 17,147. Based the systematic literature review, 

there were only 2 studies that had more that 15,000 data points (Gone et al, 2019; Piryonesi and 

El-Dirby, 2021). However, both of those studies had used not just LTPP but additional databases 

from local municipalities and State/Provincial DOTs. The data sizes of the rest of studies were 

typically below 5,000. This indicates that data size in study is much above the average data size. 
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Although the final data size is quite considerable, data quality is still not optimum and needs 

improvements. For example, for a test section from year 1995 to 2005, there are years (e.g., 2001 

and 2004) that AADTT or IRI records could be missing.  

 

Conclusions were drawn from the single decision tree modelling and random forest modelling:  

• Pruned single tree model was able to achieve a prediction (cross-validation) accuracy of 

84.6%.  

• After the pruning process, the complexity of the single tree model decreased, and 

visualization of the tree was enhanced allowing the decision-making process to be 

interpreted. 

• Although the pruned RF model could provide slight better accuracies, the interpretation 

of trees is not as clear as the pruned DT model.  

 

Both DT model and RF models resulted in a good IRI prediction accuracy yet maintained a clear 

visualization of the prediction process. Performance of these algorithms collected in the future  

(similar to other machine learning algorithms) can be improved if with having data with high 

quality and consistency. A set of data collection scheme regulating the data collection frequency 

and scheduling shall be established prior to the data collection. A few suggestions for data 

collection based on this work are: 

• AADTT and AADT should be recorded annually and monthly in each year and in each 

month with no missing records in a period of time. 

• Temperature and moisture data should be collected for multiple times in a day (preferably 

hourly) to reflect day-and-night temperature fluctuations and freeze-thaws.  

• Initial IRI profiling should be made prior to the traffic opening date. 

• Surface condition surveys including IRI profiling and distress surveys should be 

conducted regularly between consistent periods of time (i.e., every 8 months or 12 

months). Once the first interval has be defined, it should not be changed for future 
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surveys (e.g., when the second IRI profiling is 12 months after the initial profiling. the 

following ones should all be held 12 months apart).  

• Mechanistic pavement response should be dynamically monitored that the data are 

collected and stored upon each repetition of the vehicle loading in all hours of a day. 

• After the initial construction, each later M&R activity should be explicitly documented 

for its type, construction duration, material used, and thickness for milling and/or overlay.  

• After each M&R, surface condition surveys should be conducted again prior to opening 

to traffic. If it is a major M&R such as full-depth milling and overlay, the M&R event 

should be regarded as an initial construction that starts a new set of data collection time 

intervals (e.g., if last IRI profiling was conducted in January and the major M&R 

happened in March,  the next IRI profiling should be conducted in March in next year 

when the survey time interval is every 12 months).  

 

Further discussions between data analysis experts and experience pavement engineers shall be 

held to define the specific data collection regulations and database management. Detailed data 

collection plans should be made prior to the data collect.  
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Design and Finite Element Modelling of Pilot Section   

4.1 Overview 

In the instrumented pavement section, to understand the pavement response due to vehicle 

loading, asphalt strain gauges and pressure cells are embedded in the pavement structure as 

physical tools to capture the dynamic stresses and strains. In addition to physical 

instrumentation, robust quantitative modeling such as finite element analysis (FEA) of the test 

section is also capable of demonstrating the pavement response due to traffic loading. FEA 

modeling can serve as a validation tool to compare the actual data stress and strain collected 

from physical sensors. When full-scale instrumentation of the pavement section is conducted, 

pavement response data collected from strain gauges and pressure cells are collected. However, 

the impact of those embedded artefact on pavement structure and pavement response under 

traffic loading are not clear. Those sensors could potentially affect the strain and stress 

distributions as their material properties are different from pavement material. Prior to the FEA 

modeling process, a review of the instrumented test section was also conducted in order to 

provide the necessary information of roadway geometry, pavement structure, material used and 

subgrade conditions. At the end, the goal of this modelling process is to discover such effects and 

provide possible suggestions to the layout design of strain gauges and pressure cells.  

4.2 Geometry and Pavement Structure Design Review 

The proposed location of pilot section is in Courtland Ave West, Kitchener, ON which belongs 

the Region of Waterloo. The specific pavement segment is situated in between Hayward Ave 

(STA. 10+351.98) and Highway 7 & 8 on-ramp (STA. 10+013.00). The total pavement length is 

338.98m. Due to the unsatisfactory existing pavement condition with unacceptable levels of 

distresses including pothole, alligator cracking, transverse cracking, the whole roadway structure 

was re-designed and would be re-constructed. The reconstruction plan includes both surface 

pavement structure and the drainage systems underneath the pavement layers. The roadway 

function class is urban arterial, and the speed limit is 50 km/h (City of Kitchener, 2019). The 
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estimated peak AADT count in year 2031 in this segment is below 2,000 vehicles and at an 

average of 1,500 to 1,700 with an annual growth rate of 1.5%. The number of designed lanes in 

each traffic direction is 2. The subgrade condition has been classified as silty clay to clayey silt 

with an approximate resilient modulus of 30 MPa (Fraser, 2019). The thickness of the subgrade 

was considered as infinite. Conforming to OPSS 3090 standard, the frost penetration depth of the 

pavement segment is 1.2 m. Given the penetration depth ratio is 0.6, the minimum designed 

pavement structural thickness is 720mm. Table 4.1 below shows the design pavement structural 

and material of the reconstruction project. In this case, the total designed pavement thickness is 

745mm which is acceptable for the frost penetration criterion.  

Table 4-1 Pavement structural and material design of the test section 

Pavement Layer Material Thickness (mm) 

Surface AC SP 12.5 FC2 50 

Surface AC SP 19 145 

Base Granular A 150 

Subbase Granular B 400 

Subgrade Silty clay to clayey silt Infinite 

 

4.3 Instrumentation Layout Design  

The initial instrumentation layout design was illustrated on figure 4.1 and 4.2. The set of 

instrumentation sensors include asphalt strain gauge, soil pressure cell, temperature 

thermocouple and moisture probes. Adequate spacing between each sensor was assigned to avoid 

the measurement interference issues. Horizontal strain gauges were placed in both longitudinal 

direction and transverse direction to monitoring the strain at each direction. Since axle width can 

vary depending on the vehicle type and wheel paths do not always stay on a constant track, the 

spacings between the strain gauges and pressure cells along the transverse direction are 2.5m and 

1.8m respectively. These varying spacings help capture the peak stress and stress better. In terms 

of the vertical layout design, since pavement temperature is related to depth, temperature 
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thermocouples are installed in both asphalt layers and base layers. In addition, soil moisture level 

depends on the material drainage property, therefore, two soil moisture probes are placed in 

Granular B layer and Subgrade layer. Soil pressure cells are placed 150mm below the top of the 

Granular B layer to measure the vertical stress due to vehicle loading.  

 

  

Figure 4-1 Pilot section instrumentation layout design (top view) 
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Figure 4-2 Pilot section instrumentation layout design (cross-section view) 

 

4.4 Finite Element Modelling  

4.4.1 Model Geometry 

To determine the part geometry for ABAQUS modelling, the following part details need to be 

identified: 

• Vehicle axle and wheel type, spacing and tire pressure 

• Tire contact area 

• Total pavement structure geometry  

• The geometries of asphalt strain gauge and soil pressure cell 
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Tire Pressure and Axle Configuration  

The representative vehicle type has been selected as FHWA class 9 truck since it typically 

accounts for the highest truck volume percentage. The combination of tandem axle and dual 

wheel was selected. Based on the Ontario AASHTOWare ME Default Parameter Manual (MTO, 

2019), the default tire pressure, the default average dual tire spacing and the default axle spacing 

have been selected as 827.4KPa (approximately 0.83MPa), 305mm and 1.45m, respectively 

(Table 4.2 and 4.3).  

Table 4-2 AASHTOWare Pavement ME Design Defaults Axle Configuration 

 

Table 4-3 Ontario Typical Defaults for Axle Spacing 

 

Tire Contact Area 

Tire contact area can vary depending on the vehicle loading and tire pressure and there are no 

default values provided by the Ontario AASHTOWare ME Default Parameter Manual. 

Therefore, in this section, tire contact area was estimated based on the theories developed by 

Huang (2004). Technically, the actual shape of the tire contact area on top of the AC layer is 

approximately elliptical or circular (Huang, 2004). However, in order to simplify the calculation 

of the contact area for pavement loading analysis, the shape can be converted from to elliptical or 

circular to rectangular while the total areas are equivalent (Huang, 2004). The length of the 

actual contact area is L and the width is 0.6L (Huang, 2004). After the shape conversion, the 
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length of the rectangle can be represented as 0.8712L and width remains the same, which is 0.6L 

(Huang, 2004). As a result, the length to width ratio of the rectangle can be derived as 1.452. 

Figure 4.3 illustrates actual shape and converted rectangular shape and equation 4.1 shows the 

area calculation for both shapes.  

 

 

 

Figure 4-3 Actual tire contact area (a) and rectangular tire contact area (b) 

 

                                     𝐴𝑟𝑒𝑎 = 𝜋 0.3𝐿2 + (0.4𝐿)(0.6𝐿) = 0.5227𝐿2                                (4.1) 

 

Table 4.4 below shows the measure tire pressure, vehicle loading and tire contact area from an 

experiment conducted by Nega (2017). Based on such combination of the values, given the 

default tire pressure is 0.83MPa and the length to width ratio of 1.452, the length and width of 

the rectangular area were estimated as 290mm and 200mm respectively (Figure 4.4). Specific 

partitioned pavement structure geometry based on the tire contact area is illustrated on figure 4.5 

below.  

 

 



 

87 

Table 4-4 Measured tire pressure, wheel loading, contact area, and mean contact pressure (Nega, 

2017) 

 

 

 

Figure 4-4 Tire loading pressure and dimension used for ABAQUS input 
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Figure 4-5 Pavement layer surface partioning geometry with respect to tire loading. (Unit: mm) 

 

Asphalt Strain Gauge and Pressure Geometries 

In order to include asphalt strain gauge and pressure cell in the FEM pavement structure model, 

their geometry shall be determined first. The asphalt strain gauge and the soil pressure cell used 

in this case are: PAST-II AC by Dynatest (Figure 4.6) and RST Total Earth Pressure Load Cells 

(TEPLC) 9” (Figure 4.8), respectively. The dimensions of the instrumentation sensors are shown 

on figure 4.7 and 4.9 below.  
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Figure 4-6 Dynatest PAST-II AC strain gauge (Dynatest, 2022) 

 

  

Figure 4-7 The Dimension of Dynatest PAST-II AC strain gauge used in ABAQUS 
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Figure 4-8 RST Total Earth Pressure Load Cells 9” 

 

 

Figure 4-9 The dimension RST Total Earth Pressure Load Cells 9” used in ABAQUS 
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Total pavement structure geometry  

The number of pavement layers and the thickness of each has been identified from the section 

review on table 4.1. As for the subgrade, a representative thickness of 0.8m was used in the 

model. In order to minimize the computational cost, ¼ axisymmetry was used. In this model, the 

length is 2.0m, the width is 1.0m and the total representative thickness is 1.545m (Figure 4.10).   

 

Figure 4-10 Pavement structure geometry without instrumentation sensors 

For the horizontal sensor alignment, the sensors were chosen to be vertically aligned with the 

peak stress and strain areas. The initial finite element model without instrumentation suggested 

that the peak stress and strain occurred not directed under the tire contact area but in between the 

dual tires. Details about the uninstrumented model were discussed in section 4.4.6. As a result, in 

the instrumented model, both pressure cell and strain gauge were vertically centered in between 

the dual tire spacing area (Figure 4.11 and 4.12). In terms of the vertical instrumentation layout, 

asphalt strain gauge was buried at the bottom of the SP 19 layer and soil pressure cell is located 

150mm below the Granular B layer (Figure 4.13). 
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Figure 4-11 Horizontal layout design of asphalt strain gauge 
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Figure 4-12 Horizontal layout design of pressure cell 

 

Figure 4-13 Vertical layout design of strain gauge and pressure cell 

 

4.4.2 Material Property  

After the geometry of the pavements has been defined, the material properties are the next to be 

characterized in ABAQUS analysis. In the proposed FE model, the pavement section consists of 

5 layers and 2 types of sensors: asphalt strain gauge and soil pressure cell. Based on the 

construction plan of the test section, the use of material for each pavement layer has been 

specified. Thus, a total of 7 material sections with 7 types of materials were included in this 

model (Table 4.5). Material properties for each layer were selected as default values from the 

Ontario’s Default Parameters for AASHTOWare Pavement ME Design Manual (the Pavement 

ME manual) (MTO, 2019).  
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Table 4-5 Material property summary 

 

Part Material 
Young’s 

Modulus (MPa) 

Mass Density 

(kg/m3) 

Poisson’s 

Ratio 

Asphalt 

Concrete 
SP 12.5 FC2 5095.7 2530 0.35 

Asphalt 

Concrete 
SP 19 5621.2 2460 0.35 

Granular Base Granular A 250 2048.3 0.35 

Granular 

Subbase 
Granular B-II 200 2013.7 0.35 

Subgrade 

Classification 

ML/MI, Category 

6 

30 1940 0.325 

Dynatest PAST-

II AC (asphalt 

strain gauge) 

Mostly Epoxy 2200 MPa 1100 0.3 

RST 9” Total 

Earth Pressure 

Load Cell 

Stainless Steel 193 GPa 8000 0.27 

 

Asphalt Material Property  

First surface layer is a surface AC course that its material is specified as SP 12.5 FC 2, which has 

mass density of 2530 kg/m3 since the project location is situated in west region of Ontario (Table 

4.6). The binder course consists of SP 19 material with a mass density of 2460 kg/m3 (Table 4.6). 

Asphalt is a type of viscoelastic material that its resilient modulus can vary under different 

loading conditions frequency and temperature settings. Typically, the dynamic modulus of the 
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asphalt material is a list of values that can be determined as a function of both loading frequency 

and temperature. In this study, the temperature was selected at 21 C to represent the non-freeze 

pavement conditions. On the other hand, the dynamic loading frequency is related to the vehicle 

travelling speed (Huang, 2004). Huang (2004) has suggested that a vehicle speed of 64km/h 

corresponds to haversine loading wave pulse time = 0.028s. Then, the loading time can be further 

derived into the frequency for asphalt dynamic modulus tests on equation 4.2 (Huang, 2004). In 

this case, give an approximate loading wave pulse time = 0.03s (when vehicle speed = 50km/h < 

64km/h), the frequency can be calculated as f = 5Hz. In addition, Shell (1978) also suggested that 

a vehicle speed of 50km/h to 64km/h corresponds to a frequency of 8Hz. As a result, the 

frequency for the asphalt mix modulus has been identified as 5Hz from the Ontario 

AASHTOWare ME Default Parameter Manual (Appendix IV). Then, given both of the loading 

frequency and the temperature, the target asphalt mix modulus values were identified on table 

4.7.  

 

𝑡 =  
1

2𝜋𝑓
                                                          (4.2) 

t = loading time 

f = frequency 

 



 

96 

Table 4-6 Ontario Superpave properties (MTO, 2019) 

 

 

Table 4-7 Modulus of asphalt mixes used in this study 

Asphalt Mix Mix Code Modulus (MPa) Temperature (C) Frequency (Hz) 

SP 12.5 FC2 3 5095.7 21 5 

SP 19 16 5621.2 21 5 

 

Base, Subbase and Subgrade Material Properties 

Granular A is used as the primary base material and Granular B Type II is used to construct the 

subbase (Appendix). According to a previous geotechnical site investigation report at 321 

Courtland Ave nearby the pilot section, the subgrade soils often consist of a large fraction of silty 

and clayey material providing moderate to low resilient modulus (Fraser, 2019). Hence, based on 

table 4.8 (MTO, 2019), subgrade soil is categorized as type 6 ML and is used for the material 

property input with a resilient modulus of 30 MPa. The materials for all layers were considered 

at linear elastic.  
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Table 4-8 Ontario subgrade moduli and soil classification 

 

 

 

Instrumentation Sensor Material Properties 

In addition to the geotechnical properties of the pavement layers, the material properties of 

asphalt strain gauge and soil pressure cell were also identified. In this study, Dynatest PAST-II 

AC strain gauge is embedded on the bottom of the AC layers to monitor the strain under traffic 

loading. The strain gauge is primarily made of epoxy material providing a modulus of about 

2200 MPa (Table 4.9)/ It was considered a uniform piece of solid epoxy for ABAQUS 

modelling. RST Total Earth Pressure Load Cells (TEPLC) 9” was used to monitor the subbase 

and subgrade pressures. TEPLC is primarily made of stainless steel. Therefore, a uniform and 

solid 304 stainless steel plate with a modulus of 193GPa (Harvey, 1982) was selected to 

represent TEPLC in ABAQUS. 
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Table 4-9 Dynatest PAST-II AC strain gauge material property 

 

 

4.4.3 Boundary Conditions, Loading, Interaction, and Final Models  

In this study, to investigate the potential relationships between asphalt strain gauge, pressure cell 

and pavement structure, four static implicit finite element models were constructed in ABAQUS 

to simulate different scenarios (Figure 4.14): 

• Model 1: No instrumentation sensors  

• Model 2: Includes pressure cell only, no strain gauge 

• Model 3: Includes strain gauge only, no pressure cell 

• Model 4: Includes both pressure cell and strain gauge 

All four models were constructed based on ¼ axisymmetry along x-axis and y-axis to minimize 

the computational cost. The axisymmetric surfaces were assigned with symmetry boundary 

condition where U1=UR2=UR3=0 for the x-axis symmetric surface and U3=UR1=UR2=0 for 

the z-axis symmetric surface (Figure 4.15). The bottom was assigned with displacement 

boundary condition where the U1=U2=U3=0. The tire loading was defined as uniform pressure 

with a magnitude of 0.83MPa. To ensure the slipping between each layer is minimum, tangential 
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behavior and rough contact condition were assigned for each interface allowing the infinite 

friction.  

 

 

 

 

 

 

 

Figure 4-14 Instrumented and non-instrumented models: (a) Both strain gauge and pressure cell, 

(b) no sensors, (c) only strain gauge, and (d) only pressure cell 
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Figure 4-15 Boundary conditions and loading of the model 

4.4.5 Meshing Techniques and Mesh Independence 

Considering the unique shape of the instrumentation sensors, the mesh type used for all models 

were consistent which was 10-node tetrahedral (C3D10). However, meshing size can be difficult 

to control near the instrumentation sensor area. Typically, stress and strain would change along 

with the change of mesh size if it were mesh dependent. Therefore, in order to generate 

consistent stress and strain outputs that are not significantly affected by mesh size, independent 

meshing was used for all parts of the models so that the final results do not depend on the level 

of mesh convergence. Also, all four models have been defined with same global mesh size and 

same local mesh size in their regions that do not include the sensors. The regions that include the 

sensors may not have the consistent mesh size and pattern as it was automatically generated by 
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computer. Also, the mesh size was further refined for the tire loading area and installed sensor 

area (Figure 4.16).  

 

 

Figure 4-16 Mesh for the instrumented model 

4.4.6 Result Discussion  

The stress and strain output results will be discussed and compared for all four models to 

quantify the effect of instrumentation objects embedded in the pavement structure. As the initial 

step, the uninstrumented model was generated first to investigate the stress and strain 

concentration regions in asphalt and base layers. Then, the visualization result of the 

uninstrumented model suggested that the peak value regions were not direct located underneath 

the tire loading area but were located more toward to the area under the spacing between the dual 

tires (Figure 4.17).  Hence, the analysis reference locations were selected from not only the area 
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directly under the tire loading and but the area under the dual tire spacing. In the end, nodal 

values of stress, stress and pressure outputs from 4 models were selected from a total of 6 

reference areas in each model (Figure 4.18).  

 

 

Figure 4-17 Von Mises stress distribution of the uninstrumented model 
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Figure 4-18 Referencing areas for the ABAQUS output results 
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Table 4-10 Average peak Von Mises stress and tensile strain 

Reference 

area (nodes 

location) 

No 

instrumentation  

Only strain 

gauge  

Only pressure 

cell  

Both pressure 

and strain 

gauge 

#1 - At the 

bottom of SP 

19 layer 

directly under 

the tire loading 

area 

Smises = 1.355 

E11 = 1.28e-04 

E33 = 1.68e-04 

 

Smises = 1.32 

E11 = 0.000125 

E33 = 0.000168 

Smises = 1.35 

E11 = 1.28e-04 

E33 = 1.67e-04 

 

Smises = 1.32 

E11 = 0.000126 

E33 = 0.00017 

 

#2 - At the 

bottom of SP 

19 layer under 

the dual tire 

spacing area 

Smises = 1.27 

E11 = 1e-04 

E33 = 1.75e-04 

 

Smises = 1.58 

E11 = 0.000182 

E33 = 0.00022 

Smises = 1.26 

E11 = 1e-04 

E33 = 1.75e-04 

 

Smises = 1.56 

E11 = 1.83e-04 

E33 = 2.23e-04 

 

# 3 - On the top 

surface of SP 

12.5 FC2 layer 

in the tire 

loading area 

Smises = 0.8 

Min E11 = -

0.00015 

Min E33 = -

0.000162 

Smises = 0.8 

Min E11 = -

0.00015 

Min E33 = -

0.000164 

 

Smises = 0.8 

Min E11 = -

0.00015 

Min E33 = -

0.000163 

 

 

Smises = 0.83 

Min E11 = -

0.00015 

Min E33 = -

0.00016 

 

# 4 - On the top 

surface of SP 

12.5 FC2 layer 

between the 

Smises = 1.13 

Min E11 = -9.8e-

05 

Smises = 1.13 

Min E11 = -9.4e-

05 

Smises = 1.13 

Min E11 = -9.8e-

05 

Smises = 1.13 

Min E11 = -9e-

05 
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dual tire 

spacing 

Min E33 = -

0.000169 

 

Min E33 = -

0.000169 

 

Min E33 = -

0.000168 

 

Min E33 = -

0.00017 

 

 

 

 

 

 

Table 4-11 Average peak Von Mises stress and vertical pressure 

Reference area 

(nodes location) 

No 

instrumentation  

Only strain gauge  Only 

pressure cell  

Both 

pressure and 

strain gauge 

# 5 - On top 

surface of 

Granular B  

Smises = 7.44e-

02 

S22 = -0.077 

 

Smises = 0.0744 

S22 = -0.077 

 

Smises = 

0.077 

S22 = -0.082 

 

Smises = 

0.0778 

S22 = -0.082 

# 6 - On bottom 

surface of 

Granular B 

Smises = 0.046 

S22 = -0.031 

Smises = 0.046 

S22 = -0.031 

Smises = 

0.048 

S22 = -0.032 

Smises = 

0.048 

S22 = -0.032 
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Figure 4-19 Stress results comparison of all reference areas in four models 
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Figure 4-20  Strain results comparison of all reference areas in four models 

 

Based on the result comparison on figure 4.19 and 4.20, all four models have presented 

consistent stress responses to the tire loading in reference area 1, 3, 4, 5, 6 except for area 2. In 

area 2, which is at the bottom of the SP 19 layer and in between the dual tire spacing, the models 

that included strain gauge have triggered higher Von Mises stress (S Mises) and vertical stress 

(S22) in the asphalt material surrounds the strain gauge (Figure 4.21 a and b). Von Mises stress 

is a criterion to determine if the material will yield or fracture which generalizes the material 

behavior. In addition, the horizontal strains along X (E11) and Z (E33) directions were analyzed 

and compared (Figure 4.22 c, d, e, and f). Again, area 2 showed higher values of E11 and E33 

than other areas. This because that the resilient modulus of asphalt strain gauge (2200MPa) is 

significantly lower than SP 19 (>5000MPa), and a very thin layer of SP 19 below the strain 

gauge was segregated from the original SP 19 structure (Figure 4.22) where the peak stress and 

strain values occurred. Overall, the surrounding areas of strain gauge in SP 19 layer have 

experience higher stress and horizontal strain under static tire loading.  

   



 

108 

 

Figure 4-21 Stress and strain comparison between the models with and without strain gauge 
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Figure 4-22 Specific location of the strain gauge (yellow) at the bottom of the SP 19 layer (blue) and 

above the Granular A layer (green) 

4.5 Conclusion 

Pavement instrumentation involves a series of sensors to monitor the pavement structural health 

and dynamic responses under traffic loading. The basis of the pavement instrumentation and 

structural health monitoring is to analyze the data that are collected from the embedded sensors. 

However, there are limited understandings of the interactions between the foreign objects 

(sensors) and the pavement structure. How and what the instrumentation sensors would affect the 

stress and strain distributions within the pavement structure is unclear. In order to investigate the 

effect of instrumentation sensors embedded within the pavement structure, static finite element 

analysis was conducted to quantitatively analysis pavement responses.  

 

In addition, prior to the FEA modelling, a brief review of the instrumentation site construction 

plan was conducted to provide the necessary geometry and material inputs for the ABAQUS 

model. The proposed flexible pavement design includes 4 layers with a total thickness of 

745mm: 

• Surface course: 50 mm of SP 12.5 FC2 

• Binder course: 145 mm of SP 19 

• Base: 150mm of Granular A 

• Subbase: 400mm of Granular B 
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Based on the details provides from the site design plan, a set of four static implicit finite element 

models were constructed in ABAQUS:  

• Includes both strain gauge and pressure cell  

• Includes only strain gauge 

• Includes only pressure cell 

• Original pavement structure without sensors 

 

The pavement response results were analyzed and compared in terms of Von Mises stress (S 

Mises), vertical stress (S22), and horizontal strains (E11 and E33). A total of 6 reference 

locations were kept consistent throughout the 4 models to provide precise comparison. These 

locations are on top of the SP 12.5 surface, at the bottom surface of the SP 19, and the surfaces 

on top and bottom of the Granular B.  

After the comparison and analysis of the stress and strain values from the different models, 

several conclusions were drawn: 

• The peak Von Mises stress is located directly under the tire loading area at the bottom of 

the SP 19 layer 

• The peak horizontal strain (E33) along the vehicle travel direction was located under the 

area in between the dual tire spacings at the bottom of the SP 19 layer.  

• The peak horizontal strain (E11) in the transverse direction is located in the tire loading 

areas at the bottom of the SP 19 layer.  

• Peak horizontal strains (E11 and E33) appeared in the areas that surround the strain 

gauges. This happened when the modulus of the strain gauge was lower than the asphalt 

material. In addition, the unique shape of the strain gauge has segmented SP 19 into 

smaller sections thus reduced the asphalt material’s ability to distribute the load.  

• Although the pressure cell is composed of high strength steel material (193 GPa), t 

modelling results have shown its negligible effect to stress and strain measurements in 

the upper AC layers when the pressure cell embedded in the Granular B layer and 
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150mm below layer’s top surface. This suggests that when the strain gauge and pressure 

cell are vertically aligned together, the depth of the pressure cell shall be enough to 

prevent the potential impact on the strain gauge located above. The specific vertical 

distance requirement may depend on the material properties of the pavement layers. 

Preferably, to avoid such potential interference, a horizontal distance between pressure 

cell and strain gauge should be maintained at least 3 ft.  

 

At the end, despite there may be slight difference between actual pavement responses and the 

readings recorded by instrumentation sensors, embedded sensors are still able to provide accurate 

strain and stress measurements in an effective way. Instrumentation sensors are the key 

components of the pavement structural health monitoring. Instrumentation layout design and 

installing shall be carefully conducted based on a thorough site review to avoid the potential 

interference.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

112 

 

Conclusions and Future Work 

5.1 Summary of Findings and Conclusions  

Based on the analysis and discussion results from Chapter 2, 3, and 4 of this research, the 

following findings and conclusions were drawn: 

• Recent methodologies of machine learning applications in pavement performance 

prediction have been identified: 

• Based on literature review, ANN algorithm has been predominantly used to achieve high 

prediction accuracy, which was the focus of most previous studies. However, the 

interpretation of prediction process has not yet been the focus of previous studies, which 

is in fact crucial to pavement M&R decision-making.   

• Using the input parameters suggested from literature review, a decision tree model, and a 

random forest model for IRI prediction were constructed. After algorithm optimization 

and pruning, both models achieved promising results. 

• Both DT and RF models presented clear visualization of decision trees. Although the RF 

model had slightly higher accuracy, it consists of multiple trees with high structural 

complexity which can be difficult to understand and analyze. On the other hand, the 

single tree from DT model has better interpretability, allowing for concise understanding 

of prediction process.  

• Data quantity and quality significantly affect model prediction accuracy. Based on data 

inconsistency issue on current pavement database, general rules for future data collection 

schemes are summarized:  

o The collection frequency and interval for all types of data must be carefully 

considered and planned prior to the official opening to traffic.   

o Corresponding update of collection frequency and interval should be made to 

each major M&R event.  
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• In-situ pavement monitoring must include following types of measurement: AC strain, 

soil pressure, temperature and moisture at various depths, and frost penetration. 

Innovative SHM technologies and equipment are beneficial, but the design should also 

pay attention to avoid device interference.  

• Finite element analysis (FEA) was utilized to investigate subsurface structural condition 

with embedded sensors and under loading:  

o The peak Von Mises stress is located directly under the tire loading area at the 

bottom of SP 19 layer 

o The peak horizontal strain (E33) along the vehicle travel direction was located 

under the area in between the dual tire spacings at the bottom of the SP 19 layer.  

o The peak horizontal strain (E11) in the transverse direction is located in the tire 

loading areas at the bottom of the SP 19 layer.  

o Peak horizontal strains (E11 and E33) appeared in the areas that surround the 

strain gauges 

o When the pressure cell embedded in the Granular B layer and 150mm below 

layer’s top surface. it showed negligible effect to strain measurements in upper 

AC layers 

 

• Based on FEA results, when strain gauge and pressure cell are vertically aligned together, 

to avoid potential device interference, a horizontal distance between pressure cell and 

strain gauge shall be maintained at least 3 ft. The specific vertical distance requirements 

may depend on the material properties of the pavement layers. In order to capture the 

peak horizontal strain, asphalt strain gauges should be place at the bottom of binder 

course (SP 19). The spacing of strain gauges and pressure cells should be in multiple 

widths to accommodate different vehicle axle width and different wheel path (e.g, 2.5m-

2.6m for trucks and 1.8m-2m for passenger vehicles).  
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5.2 Research Contributions 

In this research, key contributions were made to AI/ML-aided pavement performance data 

analysis and in-situ pavement monitoring: 

• This study has provided a systematic literature review of AI/ML-aided pavement 

performance prediction studies of which the outcomes help future researchers determine 

effective predictive modelling strategies efficiently by reducing random errors and biases 

and highlighting underlying problems. The most commonly used algorithm types, input 

variables, output predictors, and databases have been identified and evaluated from the 

review studies.  

 

• Previous AI/ML-aided pavement performance prediction studies have focused on the use 

of neural networks (ANN) to achieve high results accuracy, but whether more 

interpretable algorithms such as DT are also able to result in similar level of accuracy 

while improving interpretability has not been investigated. Based on the IRI prediction 

models in this study, it has been demonstrated that DT and RF algorithms are capable of 

achieving promising accuracy while providing clearer decision-making visualization 

using pavement data.  

 

• Since LTPP is the largest pavement database in North America and highly accessible to 

public researchers, by explaining the data selection and cleaning processes, this study 

provides concise instructions of LTPP data preparation allowing future researchers to 

reproduce/replicate the datasets from LTPP for model advancements.   

 

• Based on the common data inconsistency problems on LTPP database, this study has 

initiated the regulation planning of mechanistic data collection and formulated criteria for 

optimizing condition data collection. High data quality and quantity help prediction 

models to maximize the performance.   
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• How asphalt strain gauge and soil pressure cell affect the pavement structure under 

loading has been discovered via finite element approach. The interaction between strain 

gauge and pressure cell has also been identified based on FEA modelling allowing the 

sensor layout design to avoid the interference of stiff pressure cell in strain measurements 

and reading errors.  

 

5.3 Recommendations for Future Work 

Based on the outcome of this thesis, recommendations for future work are summarized: 

• Develop machine learning models based on the existing dataset for IRI prediction using 

other supervised learning approaches including neural networks to better compare 

different algorithms’ performance.  

• Compare the accuracy and efficiency all types of algorithms and identify the advantages 

and limitations of each type of model. Discuss and evaluate their overall practicability 

and implementation feasibility (i.e., the cost-effectiveness ratio of input data complexity 

and computational cost to accuracy) 

• Develop detailed pavement in-situ pavement monitoring data collection regulations 

defining specific collection frequencies and periods. Improve the existing conditional 

survey data collection scheme: may reduce the survey frequency but the scheduling 

should be carefully consulted with pavement management experts.  

• Develop a preliminary prototype of multi-functional wireless sensor that allows for real-

time monitoring of asphalt temperature and strength. 

• Initial the pilot section construction, determine the location of instrumented area, and 

adjust the instrumentation layout and device selection based on actual in-situ condition 

accordingly (e.g., may increase the depth of pressure cell position based on the actual 

thickness and quality of subbase layers).  

• Establish an online cloud repository for data exchange, storage and management. 

• Conducting initial conditional data collection and material characterization.  
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• Once the instrumentation site starts to function, integrate the pre-constructed machine 

learning frameworks onto the accumulated datasets and further optimize the models.  
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Appendix 

Material Property for ABAQUS from AASHTOWare ME Design Manual 

Asphalt Mixes 
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Dynamic Modulus of Asphalt Mixes 
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Dynamic Modulus of Asphalt Mixes 
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Base and Subbase Material Properties 
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Ontario Subgrade Soil Classification 
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Ontario Subgrade Material Property 
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